
Implementierung eines
Frameworks für automatisierte

Fehlerinjektion in QDI
Schaltungen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Julian Spitzer, BSc
Matrikelnummer 01325893

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Florian Huemer, BSc

Wien, 1. April 2024
Julian Spitzer Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Implementation of an Automated
Fault-Injection Framework for QDI

Circuits

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Julian Spitzer, BSc
Registration Number 01325893

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Florian Huemer, BSc

Vienna, 1st April, 2024
Julian Spitzer Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Julian Spitzer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. April 2024
Julian Spitzer

v

Kurzfassung

Mit immer kleiner werdenden elektronischen Komponenten, die mit niedrigeren Span-
nungen arbeiten, führt Strahlung mehr und mehr zu Bit-Fehlern in Komponenten und
auf Leitungen. Die Robustheit gegenüber dieser unvermeidbaren Fehler ist ein wichtiger
Aspekt der mit speziellen Strategien verbessert werden kann. Während es für synchrone
Schaltungen viel Literatur zu diesem Thema gibt, sieht dies in der asynchronen Welt
anders aus.

Eine wirkungsvolle Methode zur Quantifizierung der Robustheit ist das gezielte Einbringen
von Fehlern in die Schaltung sowie die Beobachtung der Auswirkung. Dieser Vorgang
wird als Fehlerinjektion bezeichnet. Diese Diplomarbeit beschäftigt sich mit existierenden
Systemen für Fehlerinjektion in synchronen und asynchronen Schaltungen und geht auch
der Frage nach, wann eine asynchrone Schaltung überhaupt anfällig für Fehler ist.

In weiterer Folge wird die Implementierung eines Fehlerinjektions-Systems für asynchrone
Schaltungen beschrieben, welches es dem Benutzer erlaubt, Experimente an asynchronen
Schaltungen durchzuführen und unterschiedliche Implementierungen zu vergleichen. Dazu
wird ein Injektionsgerüst um die getestete Schaltung in Hardware implementiert, welches
über eine Python-Bibliothek angesteuert wird um einen möglichst hohen Automationsgrad
zu erreichen. Die besonderen Herausforderungen dabei sind das automatische Vorbereiten
von Schaltungen für die Integration in das Injektions-System und die Optimierung des
Systems um die Experimente mit möglichst hohem Durchsatz ausführen zu können.

Das System wird mit diversen Schaltungen (wie Addierer, Multiplizierer und einem
rückgekoppelten Schieberegister) und unterschiedlichen Implementationstechniken getes-
tet um die Brauchbarkeit zu zeigen. Zuletzt gibt die Diplomarbeit einen Ausblick auf
mögliche Verbesserungen an denen in Zukunft gearbeitet werden könnte.

vii

Abstract

With electrical components getting smaller and using lower voltages, radiation becomes
an increasing factor causing unpredictable changes on wires or in components, so-called
faults. The fault robustness of circuits is an important factor nowadays, and can be
improved with fault mitigation techniques. While such techniques are well researched and
analyzed in the synchronous domain, the same cannot be said for asynchronous circuits.

An effective method for quantifying the robustness of a circuit is the targeted injection of
faults and observing the effects of these injections. This process is called fault injection.
The thesis explores existing frameworks for fault injection both in the synchronous and
the asynchronous design as well as taking a look at what even constitutes a fault-sensitive
asynchronous circuit.

It further describes the implementation of a framework that enables the user to perform
fault-injection experiments on asynchronous circuits, allowing them to draw conclusions
about the robustness of different implementation techniques. This is achieved with an
injection harness implemented on hardware and a Python library that works alongside
to automate as many tasks as possible. The most notable challenges of this task were
the integration and augmentation of given asynchronous circuits into the framework as
well as optimizing the entire flow to achieve good performance when executing large
experiments.

The framework is tested on various circuits (like adders, multipliers and a LFSR) with
different buffer types and it is shown that it produces sensible and reproducible results.
Finally, an outlook is presented, looking at potential improvements to be implemented.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Structure . 2

2 Background 3
2.1 Synchronous Design . 3
2.2 Asynchronous Design . 4
2.3 Handshaking Protocols . 5
2.4 Delay Modeling of Asynchronous Circuits 8
2.5 QDI Circuit Design . 9
2.6 Static Data-Flow Structures . 11
2.7 Faults in Digital Circuits . 12

3 Related Work 15
3.1 On the Sensitivity of C Gates . 15
3.2 Fault-Injection Toolset for Synchronous Circuits 17
3.3 Simulation Based Fault Injection on Asynchronous Digital Circuits . . 19

4 Automated Fault-Injection Framework for QDI Circuits 23
4.1 Main Objectives . 23
4.2 Framework Design . 24
4.3 Fault-Injection Harness . 25
4.4 UUT Preparation . 32
4.5 Experiment Control Software . 36
4.6 FPGA Integration . 39

5 Experiment Configurations 41
5.1 Test Circuits . 41

xi

5.2 Buffer Styles . 44

6 Experiment Results 49
6.1 LFSR . 49
6.2 Multiplier . 53
6.3 Carry Ripple Adder . 59
6.4 Framework Performance . 62

7 Conclusion and Outlook 65
7.1 Conclusion . 65
7.2 Outlook . 66

List of Figures 69

List of Tables 71

Acronyms 73

Bibliography 75

CHAPTER 1
Introduction

1.1 Motivation
While synchronous design currently dominates the digital design market, the continuous
reduction in transistor sizes inevitably leads to more process and timing variations,
making global clock management and controlling delays ever more difficult. The inherent
robustness of asynchronous circuits against such timing variations makes it seem likely
that they will see a resurgence in relevance over the coming years[MN06].

Additionally, the continued shrinking of both dimensions and voltages of electronic circuits
makes digital circuits significantly more sensitive to the effects of radiation [Bau05]. One
of those effects are ‘soft’ errors where an element in the chip flips its data state, thus
affecting the current execution, but not damaging the chip overall. When these soft errors
occur in combinational logic, e.g., they don’t directly affect a state-holding component
but dissipate, we talk of Single Event Transients (SETs). SETs can turn into Single Event
Upsets (SEUs) if they get captured by a state-holding element before they disappear.

Over the years, the effects of SETs have been well analyzed [ORG92][WQR+04][FCMG13]
with mitigation techniques being developed and tested as well [PHRB11]. A common
theme of these studies is that they are generally aimed at synchronous circuits. For
asynchronous circuits on the other hand it is possible to find various mitigation techniques,
but their actual effectiveness is hard to compare as not a lot of studies could be found
comparing the fault sensitivity in a controlled manner. This is especially troublesome,
as asynchronous designs commonly use handshake signals for propagating data, making
them particularly sensitive to faults.

To pave the way for such comparisons, an approach is presented in [BHNS21], where
the effects of transient faults on Quasi Delay Insensitive (QDI) circuits are analyzed by
large-scale simulation experiments. The sheer computational effort of running a massive
amount of simulations raises the question of developing a more efficient alternative.

1

1. Introduction

This thesis aims at developing a similar framework to perform large scale fault sensitivity
experiments. Contrary to [BHNS21], this framework shall run the experiments in real
time on actual hardware in the form of a Field Programmable Gate Array (FPGA). In
addition to developing the fault-injection framework itself, the thesis will also test the
framework by running a number of experiments on different circuits to compare the effect
of SETs based on fault properties and implementation techniques. The execution of these
experiments should be automated as much as possible to enable the analysis of millions
of individual injections without the need for user interaction.

1.2 Thesis Structure
Chapter 2 gives necessary background information on asynchronous circuit types, im-
plementation techniques and fault types to provide the base knowledge necessary for
understanding the rest of the thesis. In Chapter 3 we are looking at other work that has
been published that directly relates to the topics at hand.

The actual implementation details of the framework are presented in Chapter 4, covering
all aspects from hardware implementation to the accompanying Python library for circuit
preparation, test execution and results processing.

The circuits and additional buffer types with which the framework has been tested are
shortly presented in Chapter 5 while the results of those experiment executions are shown
in Chapter 6. Finally, Chapter 7 presents the accomplishments of the thesis and also
lists potential improvements that could be implemented in future works.

2

CHAPTER 2
Background

In this chapter, some background on asynchronous circuits and their design principles
are presented. This should provide a sufficient base for the further chapters of this thesis.
For a deeper understanding of the matter, the reader is encouraged to consult [Spa20].

2.1 Synchronous Design
Today’s digital design landscape is overwhelmingly dominated by synchronous circuits.
Such designs are based on having a central clock signal which controls the chip.

In its most common form combinational logic stages are linked together by clock-controlled
memory elements (usually Flip-Flops (FFs)). Based on the particular synchronous design
style variant the memory elements latch the input from the previous stage on certain
clock events (most commonly the rising edge). A circuit can contain multiple clock
domains (e.g., different frequencies or phases) which run independently from each other
but the data flow within a clock domain is entirely controlled by its associated clock.

D Q

FF

Logic D Q

FF

Logic D Q

FF

Data In Data Out

clock

Figure 2.1: Example of a synchronous circuit.

A conceptual example of a synchronous circuit is shown in Figure 2.1. The logic clouds
between the FFs are purely combinational and constitute the main constraint of a

3

2. Background

synchronous circuit: The critical path (i.e., the longest path between any two FFs) must
be shorter than the clock period, thus dictating the maximum clock frequency at which
the circuit can run. Furthermore, the storage elements always have setup and hold
constraints, indicating the time for which the data needs to be stable before (setup) and
after (hold) the active clock edge. The critical path together with the setup and hold
constraints dictates the maximum clock frequency.

The biggest upside of the synchronous approach is that time can be seen as a purely
discrete factor. With each clock edge all FFs in the domain switch to their next state.
This abstraction simplifies circuit design and verification, as the delays of logic elements
and wires do not affect the functionality and don’t need to be considered for functional
verification.

A drawback of synchronous design can be observed when considering the maximum clock
frequency. Because the clock is global, the maximum frequency is always bounded by
the longest logic path, even if all other paths are done in just a fraction of this time.
Additionally, one always has to consider the worst case conditions at which the chip
has to run, meaning the chip also needs to be functional at its voltage and temperature
boundaries, further reducing the maximum clock frequency despite these conditions
barely ever occurring.

Another challenge in synchronous designs is the complexity of managing the clock. The
clock tree needs to spread across the whole chip and should reach each component at
roughly the same time to be truly globally synchronous. Constantly toggling a signal
on the entire chip is also a major source of power consumption. This is particularly
problematic because the parts of the chip that are not currently processing data will
generally still be clocked, wasting energy. A common approach for reducing the power
consumption in synchronous circuits is clock gating whereby the clock is selectively
disabled for currently inactive parts of the circuit [SS11][KAN11].

2.2 Asynchronous Design
As the name suggests, asynchronous designs do not rely on a global clock. Instead of
latching combinational results at a fixed point in time (controlled by the clock), data
is propagated in a purely event-triggered fashion. For every produced data word a
handshake is performed with the consumer: The source issues a request together with
valid data which the sink acknowledges when it has consumed the data1. This handshake
mechanism is usually implemented using two wires which are referred to as request (req)
and acknowlegement (ack).

This means that the individual stages do not necessarily take the same amount of time
and are only directly connected to the stages right before and after. A simplified example
of that is depicted in Figure 2.2.

1This explanation only refers to push channels. As these are the only ones used in this thesis, other
channel types are not elaborated on here.

4

2.3. Handshaking Protocols

Even in the asynchronous world timing is still an important factor, swapping global clock
constraints for local timing constraints between individual stages. That is the reason for
the delay elements on the request lines in Figure 2.2. The delay needs to be chosen such
that the associated logic cloud finishes its computation before the request signal reaches
the next stage.

As the delays for each stage are chosen individually, the latency for a data word to make
it through an empty pipeline is no longer bound by the global critical path between
two elements. Instead, the delays between the individual stages are now bound by the
local critical path connecting the two. In the case of a full pipeline the throughput is
still limited by the slowest stage. Another difference to synchronous designs arises when
considering voltage or temperature variations: As the entire chip can naturally speed up
or slow down under differing conditions, the performance is no longer bound by worst
case assumptions.

D QEN

Latch

Logic D QEN

Latch

Logic D QEN

Latch

Data In Data Out

Control
Logic

Control
Logic

Control
Logic

δ0
req

ack

δ1
req

ack

req

ack

req

ack

Figure 2.2: Simplified example of an asynchronous circuit.

2.3 Handshaking Protocols

The req and ack signals in Figure 2.2 constitute the handshake which is always necessary
in an asynchronous circuit. While the shown handshake is comprised of two explicit signals,
there are also protocols where the request is implicit and only the acknowledgement
requires an explicit signal.

Handshaking protocols can be implemented in two different ways: As a 2-phase or a
4-phase protocol. In 4-phase protocols a new data word is indicated by the rising edge of
req and acknowledged with the rising edge of ack. This is followed by a reset phase
where req gets deasserted followed by ack. This leads to the four phases of request,
acknowledge, reset request and reset acknowledge. In 2-phase protocols on the other hand
both edges of the handshake indicate a new data word, i.e., any edge of req corresponds
to a new word and is followed by the same edge of ack to acknowledge it. The difference
between the two is shown in Figure 2.3.

5

2. Background

D D0 D1

req

ack

(a) 4-phase protocol, 4 events per word

D D0 D1 D2 D3

req

ack

(b) 2-phase protocol, 2 events per word

Figure 2.3: 2-phase vs. 4-phase protocol

2.3.1 Bundled Data Protocols
In Bundled Data (BD) protocols there is always an explicit request and acknowledge
handshake to indicate a new data word to be consumed by the sink. The data itself can be
any number of signals that is bundled together with one request signal and acknowledged
all at once. This type of protocol has an inherent data race between the request and the
data signals: If the request arrives before the data, the sink will consume wrong data,
leading to errors. Because of this, it is always necessary to add sufficiently big delays on
the request line to ensure correct functionality. The circuit shown in Figure 2.2 is an
example of BD.

The biggest upside of these protocols is the low overhead as the data is transferred as-is
without the need of encoding and only two additional signals are needed to make it work.

At this point the Muller C gate [Mul59] shall be introduced which is one of the most
common storage elements used in asynchronous circuits. It describes an N -input logic
gate with a single output. When all inputs provide the same value, it is propagated to
the output. If the input signals differ, the gate holds its last output.

The C gate is particularly useful in the control path of an asynchronous circuit to store
request and acknowledgement signals between stages. The so-called Muller Pipeline is built
from C gates and inverters and is commonly used as the control path in asynchronous
circuits, forwarding the request and acknowledge signals. An example is shown in
Figure 2.4 which depicts a 4-phase BD circuit with a Muller Pipeline for the control path.

D QEN

Latch

Logic D QEN

Latch

C

Logic D QEN

Latch

CC C

Data In Data Out

reqin

ackin

reqout

ackoutδ0

δ1

Figure 2.4: BD circuit with Muller Pipeline for the control path.

6

2.3. Handshaking Protocols

2.3.2 Delay Insensitive Protocols

Delay Insensitive (DI) protocols on the other hand do not rely on an explicit request
signal but encode it into the data itself. The sink uses a Completion Detector (CD) to
detect when data has arrived and can be acknowledged.

These protocols have the big advantage of eliminating the race condition between data
and request. The drawback is significant overhead (both in area and performance) for
the completion detection as well as for the encoding of the data.

The most commonly used encoding in DI protocols is the 4-phase Dual-Rail (DR)
encoding. In this approach every data bit D is encoded with two rails, usually referred
to as the true (D.T) and false (D.F) rails. When the data is 1, D.T gets set and when
the data is 0, D.F gets set. When all bits of a DR channel are in a data state, the
resulting data word is referred to as data token. Between two data words the protocol
returns both rails to 0, providing a spacer for the completion detection to distinguish
between the different phases of the protocol. In the 4-phase protocol data tokens are
always separated by spacers. Having both D.T and D.F set at the same time is an
invalid state that must never occur. Using this encoding a CD can easily check if data is
valid by using an OR or NOR gate on the two rails of each bit. The implementation as
4-phase protocol is shown in Figure 2.5.

Spacer A = 0
B = 0 Spacer A = 0

B = 1 Spacer

ack

A.F

A.T

B.F

B.T

Figure 2.5: 4-phase DR example. Two bits are being transmitted in parallel.

The DR encoding can also be implemented as a 2-phase protocol. One common imple-
mentation is by not using the actual values of the rails but only observing which line has
toggled. Another possibility is Level Encoded Dual Rail (LEDR) where the rails are split
into a data and a parity rail, with the data rail providing the actual data and the other
bit just being used for parity. The required parity (i.e., even or odd) changes between
data words, so there is always exactly one rail that needs to toggle when transmitting
the next word. The 2-phase protocols are generally not as popular because they cause
significant additional overhead in both the CD as well as the processing of data.

7

2. Background

2.4 Delay Modeling of Asynchronous Circuits

As time is no longer a purely discrete component, the modeling of delays is an important
aspect of asynchronous design. Asynchronous circuits can be categorized into different
classes based on their robustness to varying gate or wire delays.

The most robust class of asynchronous circuits are DI circuits. In DI circuits, the delays of
gates and wires can be completely arbitrary while still guaranteeing correct functionality.
As shown in [Mar90] such circuits are limited to only using inverters and Muller C Gates.

The reason for this limitation are wire forks which is why the class of QDI circuits
introduces the isochronic fork constraint. This means that the wire delays after certain
forks are guaranteed to be equal. With this restriction arbitrary functionality can be
implemented in a QDI way. The framework developed in this thesis is aimed at evaluating
the fault robustness of QDI circuits.

For completeness’ sake also Speed Independent (SI) and Self-Timed (ST) circuits shall
be mentioned. In SI circuits, gate delays can be arbitrary but all wire delays are assumed
to be zero. If all forks are isochronic, SI and QDI are the same timing model. ST circuits
describe the concept of circuits which require additional higher-level timing constraints
to work. The data race in BD protocols constitutes such a constraint.

For a circuit to be SI, DI or QDI, it must be free from gate and wire orphans. A
gate becomes an orphan when it toggles for some particular input but does not actually
impact the observable output as shown in Figure 2.6a. When dealing with arbitrary gate
delays like in the aforementioned timing models, gate orphans are problematic because a
gate might toggle long after the previous phase has passed, resulting in invalid or wrong
output. If gate orphans occur in combinational DR logic, specific internal completion
detectors are required, whose outputs are combined to a ‘done’ signal that is used together
with the output to verify that the circuit has finished processing and data is ready to be
acknowledged.

Wire orphans can appear after wire forks when only a single destination is able to observe
the signal. This is pictured in Figure 2.6b. Again, this can cause issues for arbitrary
delays as the toggling wire might cause the output to toggle in an unrelated phase. The
problem of wire orphans disappears with the isochronic fork constraint.

a = 0 → 1

b = 0

c = 1 z

(a) Gate orphan

a = 0 → 1

b = 0

c = 0

y

z

(b) Wire orphan

Figure 2.6: Gate and wire orphans.

8

2.5. QDI Circuit Design

2.5 QDI Circuit Design
As this thesis is mostly centered around fault injection in DR QDI circuits, one popular
DR buffer and three QDI implementation techniques for combinational logic are presented
in detail. The robustness of these implementation techniques will later be compared
when running experiments with the framework introduced in this thesis.

2.5.1 Weak-Conditioned Half Buffer
One of the most basic ways of storing data in a QDI pipeline is with the Weak-Conditioned
Half Buffer (WCHB). In this circuit C gates are used for capturing the values of the data
rails. A completion detector recognizes when the C gates have switched to a valid phase
(data or spacer) and sets the ack signal accordingly. An example is shown in Figure 2.7.

Stage 1 Stage 2 Stage 3
C
C
C
C

C

C
C
C
C

C

C
C
C
C

C

A.F

A.T

B.F

B.T

ack

X.F

X.T

Y.F

Y.T

ack

Figure 2.7: 3-stage WCHB pipeline.

In the initial state when all data inputs and all C gates of a stage are set to 0, the inverter
asserts one input of each buffer C gate. When a data word comes in, one rail of each
input bit will get set, toggling the corresponding C gate. Once all bits have a rail set,
the C gate of the completion detector switches to 1, indicating to the previous stage that
the data has been accepted and the spacer can be sent. As the inverter is connected to
the ack signal from the next stage, the C gates can only propagate the spacer once the
next stage has consumed the data as well.

The individual pipeline stages are usually connected with combinational logic to perform
data manipulation. The next sections will present design methods for such logic.

2.5.2 Delay-Insensitive Minterm Synthesis
In the Delay-Insensitive Minterm Synthesis (DIMS) [SS93] design methodology, the
DR inputs are fed into a row of C gates such that there is a C gate for each possible

9

2. Background

combination of data rails (i.e., a 2-input component requires four 2-input C gates while a
3-input component requires eight 3-input C gates, etc.).

The C gates feed OR gates which directly produce the DR outputs. A DIMS implemen-
tation of an OR gate is shown in Figure 2.8a. This technique produces no gate orphans
as only one of the C gates can toggle for each valid data input which in turn toggles only
gates that are directly connected to the output. While it is a very robust implementation
it takes up a lot of space due to the high number of C gates required.

a.F

a.T

b.F

b.T

C

C

C

C

z.T

z.F

(a) DIMS OR gate.

a.F

a.T

b.F

b.T

2

3 z.T

z.F

(b) NCL OR gate

a.F

a.T

b.F

b.T

z.F

z.T

C done

(c) NCLX OR gate

Figure 2.8: Different implementation techniques of an OR gate.

2.5.3 Null Convention Logic
Another approach for designing QDI logic is Null Convention Logic (NCL) [FB96]. It
introduces a generalized form of C gates referred to as threshold gates. These threshold
gates can have any number of inputs2 N and have a certain threshold value T . If at least
T inputs are asserted, the output of the threshold gate is asserted as well. The threshold
gate holds this value until all inputs are deasserted. If T is equal to N , the gate is simply
a T -input C gate.

How these gates can be used to build logic functions is pictured in Figure 2.8b. It
is apparent that the overall complexity of the circuit is much lower than with DIMS.

2In reality, there is of course an upper limit to the number of inputs due to hardware limitations.

10

2.6. Static Data-Flow Structures

Unfortunately, the threshold gates are expensive in area when it comes to actual hardware
implementations as they require large p-stacks (N Transistors in series), making NCL
not very efficient either.

2.5.4 Null Convention Logic with Explicit Completion
To counteract these inefficiencies, an alternative approach exists [KL02] which does not
rely on threshold or C gates in the data path, making it significantly faster. In the
Null Convention Logic with Explicit Completion (NCLX) approach, logic functions are
implemented with non-state-holding logic gates while the input and intermediate results
use OR gates for explicit completion detection. The individual completion detectors
are chained together using C gates providing an explicit ‘done’ output to indicate that
internally the circuit is done processing. The previously shown OR example in NCLX is
depicted in Figure 2.8c.

The OR example is quite simple and has no internal signals requiring completion detection,
but the approach scales quite well with more complex designs because every input and
additional internal signal that needs completion detection requires exactly one OR gate
and one C gate. While this approach still uses an inherently slow tree of C gates, they
are not on the data path allowing the ‘done’ signal to be evaluated in parallel, improving
overall performance significantly compared to conventional NCL.

DIMS and NCLX are the two implementation techniques that will be compared in the
evaluation section of this thesis.

2.6 Static Data-Flow Structures
As some concrete asynchronous circuits will be presented in this thesis, Static Data-Flow
Structures (SDFSs) shall shortly be introduced. These structures allow the abstract
description of asynchronous circuits, independently of the concrete implementation details.
For our purposes only the 4-phase variant with a small number of operations is needed
as presented in Figure 2.9a. A more comprehensive overview can be found in [Spa20].

buffer logic fork

f

(a) A subset of SDFS operations

V V

E E

Value token Value bubble

Empty token Empty bubble

(b) Tokens in SDFS

The arrows represent bundles of data that share an acknowledgement, so-called channels.
Buffer blocks store valid data and spacers. Logic blocks are purely combinational and are

11

2. Background

used for data manipulation, they are usually placed between buffers in a pipeline. Forks
can be used to forward a channel to multiple components at the same time, ensuring
proper acknowledgement between the targets and the source.

Additionally, tokens can be represented in SDFS as shown in Figure 2.9b. Tokens are
placed in buffers and represent the current state of the stored data. A value token
represents a valid data word to be pushed to the next component while the empty token
represents the spacer between data words. When a token is acknowledged by the next
component, it turns into a bubble, meaning that the buffer is ready to accept the next
input word/spacer. Analogous to the 4-phase protocol, a buffer always cycles through
these 4 states.

2.7 Faults in Digital Circuits
In digital circuits a fault can be described as a signal flipping (i.e. taking on an unexpected
value) temporarily on a wire (SET) or permanently (SEU) in some memory cell (e.g., a
Flip-Flop or a C Gate). These faults are mostly caused by ionizing particles hitting the
circuit and are unavoidable. That is why designing fault-tolerant circuits is an important
aspect especially in high-radiation and safety-critical environments. The framework of
this thesis is used for injecting only SETs into QDI circuits, so the injection of SEUs will
not be further touched on in this chapter. However, an SET can always turn into an
SEU if captured by a storage component.

In synchronous designs the effect of a transient fault is generally rather easy to predict: If
the fault is short enough to have no effect at a clock edge it will simply dissipate. But if
the bit flip is still present when the clock edge arrives, a wrong value will be latched and
the fault propagates. Such faults can be mitigated for example with register triplication
and majority voting [FCMG13].

For asynchronous circuits the effect of transient faults is a lot harder to predict. There is
no global time base at which data gets propagated, every stage performs its own handshake
for the most part independently of other components in the design. Additionally short
pulses can cause handshakes at completely arbitrary times, potentially even leading to
deadlocks. For DR designs invalid data could enter the system (i.e., both data rails of a
DR signal set) or QDI properties might be violated (e.g., data rails toggling multiple
times in a phase).

2.7.1 Fault Injection

Because of these difficulties it is a challenging task to properly evaluate the effects of faults
on an asynchronous circuit. One of the most common strategies is fault injection at the
circuit level. Generally the circuit is run on some input pattern and at some predefined
time a transient fault is provoked. There are three main approaches for injecting faults:
Simulation based, hardware based or emulation based fault injection [EGRM20].

12

2.7. Faults in Digital Circuits

Simulation based approaches are cheap to implement but require a lot of computational
effort and runtime as the simulation of a circuit is very slow.

Hardware based approaches on the other hand are very fast in execution but require
very expensive equipment. For hardware based fault injection the faults can be injected
either through direct contact (i.e., pin-level probes) or without contact by firing external
energy resources (i.e., laser beams, heavy ions, protons and neutrons) towards parts of
the design [EGRM20].

The emulation based approaches provide a middle ground between the other two options,
providing the speed of hardware-based approaches while still being relatively efficient.
The most common approach is creating an augmented version of the circuit under test
which provides some kind of interface for injecting faults and then downloading this
design to a FPGA. Doing this the fault locations and injection times can be defined on
software level while the actual fault-injection experiments are still run in real-time on
hardware.

2.7.2 Fault Effects in DR QDI circuits
Transient faults in DR QDI circuits can lead to different kinds of errors, differing greatly
in their severity. The fault-injection framework described in this thesis classifies the
observations as outlined in [HNS20].

The fault might lead to a deadlock, where the circuit completely locks up and no longer
processes any data, neither accepting input nor producing output tokens. Depending on
the environment such a fail-stop behavior might be preferred over wrong data.

In the case of a token count error, the number of output tokens does not match the
expected count. This error indicates that the fault has lead to an additional data token
being generated or that an existing token has been destroyed. When the token count
is lower than expected, the differentiation between deadlock and token count error can
become difficult, which is why the fault-injection framework of this thesis only recognizes
count errors when there are too many output tokens and only indicates a deadlock when
the number of expected tokens has not been reached after a very long time.

Another possible effect are value errors, in which case no protocol errors can be observed
at the output, but at least one output token has the wrong value. This kind of error is
especially problematic as it can be very difficult to notice. This class can be compared to
faults observable in synchronous designs.

A code error occurs when an invalid DR codeword is observed on the output, i.e., both
data rails of a bit being set at the same time. Glitches are a similar effect where a data
rail changes its value twice during a protocol phase. Both of these errors can lead to
issues with completion detection or wrong values being propagated.

With timing deviations some output tokens appeared considerably early or late
compared to a run without fault. As the insensitivity to delays is one of the main features
of QDI designs, this is not an actual error.

13

CHAPTER 3
Related Work

In this chapter some related work on the topic of fault injection in digital circuits will be
presented. In Chapter 3.1 the sensitivity of asynchronous circuits to faults is analyzed by
focussing on C gates in particular. Given the heavy reliance of QDI circuits on C gates,
this provides interesting insights. The observed results are subsequently compared to
results obtained by our own framework. In Chapter 3.2 an FPGA based fault-injection
framework generally aimed at synchronous circuits is presented. This provides good
base knowledge for the principal design of such a framework in hardware. Chapter 3.3
then shows the simulation-based approach for a fault-injection framework that can
be seen as the inspiration for the one developed as part of this thesis. It goes into
detail on experiment execution, error classification, and techniques used for performance
improvements.

3.1 On the Sensitivity of C Gates

The fault sensitivity of QDI circuits can be analyzed in an analytical way as shown by
Monnet et al. [MRL04]. In their approach, the first step is to analyze when a QDI (DR)
circuit is sensitive at all to transient faults. Based on this analysis a specific circuit is
evaluated with different input values.

Only QDI circuits are considered that use C gates as the sole storage elements, so it is
first established that a transient fault can only propagate if it causes a C gate to change
its output at an unexpected time. If the fault never causes a C gate to toggle it will
simply dissipate without taking effect. Because of this property it is important to exactly
formalize when a C gate is sensitive to faults. For this the terminology ‘M-sensitive to
0/1’ is introduced meaning that it would take M faults on a C gate’s inputs for it to
take on the wrong value.

15

3. Related Work

0
1 C 1

(a) 1-sensitive to 1

C1
0

1
1

(b) 2-sensitive to 1

Figure 3.1: Different sensitivity states of C gates.

A 1-sensitive to 1 gate is shown in Figure 3.1a. The output would wrongly switch to 0 if
there was a fault on just one input (i.e., the upper one), thus propagating the fault. It is
important to point out that the circuit is not 1-sensitive to 0: If the second input would
transition to 1 because of a fault, the output would remain at 1, so the fault is masked.
On the other hand, the gate in Figure 3.1b is 2-sensitive to 1. There would need to be
faults on two inputs at the same time to cause the C gate to switch to the wrong output,
making it much less sensitive to transient faults. This leads to the conclusion that if
there are currently no 1-sensitive C gates in a system, it is immune to single transient
faults.

Based on this knowledge the overall sensitivity of a circuit can be analyzed. Generally
speaking, a circuit’s sensitivity to transient faults is related to the number of C gates
that are in a 1-sensitive state and how long they remain in such states. In the paper, an
in-depth analysis is provided of the fault sensitivity of a QDI 4-bit carry ripple adder
implementation. The adder is tested with three different test benches, analyzing the
effect of different input values:

1. Exhaustive, all input combinations were tested

2. A minimum set, with all inputs set to 0

3. A set for activating the critical path, i.e., such that the carry bit needs to ripple
through all full adders.

For each test bench, the total time spent in 1-sensitive states is analyzed for all individual
C gates in the circuit. The analysis shows that the sensitivity of the gates is heavily
dependent on the purpose of the individual gate and also on the input data. Especially
when it comes to the worst-case ripple scenario, one of the C gates spends more than
50% of the time in a 1-sensitive state making it a lot more susceptible to transient faults.

The work done in [MRL04] shows how sensitivity of asynchronous circuits can be quantified
and also provides an approach for analyzing the sensitivity of particular circuits. This is
a very different approach from fault injection and could be a useful tool for explaining
observed behaviors in fault-injection experiments. For this thesis, the 4-bit adder circuit
that has been analyzed by [MRL04] has also been recreated to run fault-injection
experiments on and a comparison of results is performed in Chapter 6.3.

16

3.2. Fault-Injection Toolset for Synchronous Circuits

3.2 Fault-Injection Toolset for Synchronous Circuits
A fault-injection tool named FIDYCO (Flexible on-chip fault Injector for run-time
Dependability validation with target specific COmmand language) has been developed
by Rahbaran et al. [RSH04] which is aimed at synchronous designs in its basic form. In
later works, this has also been extended for use with asynchronous circuits [RS08].

3.2.1 Design Considerations
The main idea for the tool is to combine hardware and software fault injection. As
the target system is already available in the shape of programmable logic, it can be
programmed to an FPGA, thus running in actual hardware, producing representative
results in fault-injection experiments. Contrary to typical hardware-based fault injection,
this can be done in an early design stage and does not require an expensive Application-
Specific Integrated Circuit (ASIC) prototype to be produced. The programmable nature
of the FPGA additionally allows full access to every node in the circuit, leading to high
controllability and observability. As fault injections can be performed in real time, the
performance is much improved over simulation based approaches.

Software-based injection frameworks generally work by injecting the faults at a code-
level,requiring a recompilation and/or re-programming of the tested device. To avoid
these overheads, the actual fault injector can also be moved onto the FPGA, significantly
decreasing the time between individual fault injections. One downside of this approach
is the area overhead from the injector, making it a difficult approach for big circuits that
are already closing in on the limits of the target platform.

A typical fault-injection setup is composed of three distinct components: The fault
injector module is responsible for causing the faults in the target system (Unit Under
Test (UUT)), while some form of result analyzer verifies the reaction of the UUT to the
injected fault. This can be done by checking against an identical target system that is
running without faults (‘Golden Node’) or by comparing to a set of known good results.
The third component is the fault-injection manager which is responsible for the selection
of faults, initiating the injection and observing the results. How and where (i.e., hardware
or software) to implement these components is one of the main considerations when
developing a fault-injection framework based on the desired properties (e.g., performance,
area efficiency, controllability).

In [RSH04], these requirements have been worked out to be met by the framework:

1. Ability to inject and observe transient faults

2. Low-level parts of the fault-injection tool to be implemented in hardware, tightly
connected to UUT and Golden Node, to allow for fault injection with high precision

3. The hardware portion of the framework should be area efficient

17

3. Related Work

4. Observations should be preprocessed by the hardware to reduce communication
overhead

5. The user should be able to define high-level commands for the experiments, both
to reduce overhead and to make the fault-injection programs more readable.

6. An automatic mode should exist which runs without user interaction

7. Experiments should run in real time

8. Failures in the value as well as the time domain should be automatically recognized
by the hardware

3.2.2 The Fault-Injection Toolset FIDYCO

With consideration of the previously mentioned parameters, the FIDYCO toolset has
been developed for use in FPGA platforms. This framework is a hardware/software
fault-injection environment, with the hardware being implemented in Very High Speed
Integrated Circuit Hardware Description Language (VHDL) and downloaded to an FPGA.
The software is implemented entirely on the host to reduce chip area overhead. FIDYCO
is implemented on the FPGA together with the UUT and optionally a golden node.
With the use of a golden node, it is possible generate observations synchronously to the
fault injections. If the user decides to prioritize area efficiency, a golden run can be used
instead. In such a case, the efficiency is reduced because the fault-injection run needs to
be preceded by a fault-less execution to get the golden run. The framework injects faults
by parsing commands in a dynamically generated language. These commands can be be
arbitrarily defined by the user and used in any order, also allowing for loops.

The framework itself can be used in interactive or automatic mode. In automatic mode,
the sequence of commands is loaded from the ‘Local Fault Library’ (which is defined
at compile time) and automatically executed. In this mode, the fault injections are
performed very quickly because there is no communication overhead. In interactive
mode on the other hand, the user can transmit a sequence of commands from the host
to the FPGA which will be interpreted and stored accordingly in a specific command
Random Access Memory (RAM). The actual execution then follows the same procedure
as in automatic mode.

For communication to the host, a special-purpose terminal has been developed for
transmitting the test sequences receiving the results of fault-injection experiments from
the FPGA. The user can generally choose the interface to the host, with the framework
supporting either an RS232 (Universal Asynchronous Receiver Transmitter (UART))
module or a faster Universal Serial Bus (USB) module. It is also possible to directly
transfer the results to a hard disk, providing the best performance.

18

3.3. Simulation Based Fault Injection on Asynchronous Digital Circuits

3.2.3 Application to Asynchronous Circuits

In a later paper, the FIDYCO concept was also used on asynchronous circuits for evalu-
ating the robustness in comparison to their synchronous counterparts [RS08]. For that
purpose, wires in the UUT were cut up and replaced with fault-injection modules, allowing
for bit flips, stuck-at-0 and stuck-at-1 faults. For the purposes of their experiments, the
faults were of configurable length in 50 ns steps.

Two main issues were identified when using an asynchronous UUT. On one hand, triggering
the fault becomes in a 100 percent reproducible way becomes impossible as FIDYCO
itself runs on a synchronous clock aligned to which the fault injections are triggered. As
the UUT is inherently independent from that clock, the trigger is completely unrelated
to the activities of the UUT and just based on temperature and voltage variations the
fault will be applied at a slightly different point in time of the execution sequence. On
the other hand, observing the effects of the injected fault becomes more difficult. The
concept of a golden node is not usable because it is impossible to run two asynchronous
circuits in lockstep as they are not controlled by an external signal. Because of this, the
golden run concept is used instead. As the timing between two runs in an asynchronous
is not reproducible, the comparisons are no longer done on a clock cycle basis but instead
based on events. For bridging the gap between the asynchronous and the synchronous
world, dual-clock First In First Out (FIFO) memories are used which allows for output
acknowledgement without the need for synchronizers.

In conclusion, the FIDYCO framework has some similarities to the framework developed
in this thesis, although generally aimed at synchronous circuits. The predictability of
synchronous circuits allows for quite complex injection strategies which become more
difficult to realize in an asynchronous context. That is one of the reasons why the
framework of this thesis is generally kept more simple. One downside of FIDYCO is
the limited error detection capability, the different error types (e.g., code errors) are not
explicitly detected unless the data happens to be captured at the right moment.

3.3 Simulation Based Fault Injection on Asynchronous
Digital Circuits

A large scale simulation based fault-injection framework has been developed by Behal et
al. [BHNS21]. The framework is based around the idea of testing the fault robustness
of a QDI circuit by injecting a single transient fault on a wire during simulation and
observing its outputs. The key feature of the framework is the high degree of automation.
It is designed in a way that billions of injections can be simulated in a reasonable
amount of time by spreading the load over multiple nodes and storing results in a central
database. The framework is used to simulate and compare the fault robustness of various
asynchronous circuits implemented in different QDI design styles.

19

3. Related Work

3.3.1 Experiment Steps
For the experiments a simulation model of the target circuit with annotated timing for
the gates is used. This approach allows for comprehensive access to all the internal
signals for fault injection and observation. The execution of a simulation experiment
always follows the same outline.

Definition of Parameter Space

The first step is the definition of the parameter space to be tested. This includes obvious
parameters like the circuit type or design style and spans to the input sequences to be
sent to the circuit as well as the timing of the faults that should be injected. Because
time in asynchronous circuits is a continuous factor it is impossible to exhaustively test
all transient faults. Hence, a certain tradeoff has to be accepted when deciding on the
granularity at which faults should be injected (both in start time and length of the fault).

Golden Run

To analyze the failures resulting from a fault injection it is necessary to first have a
reference against which to compare. For this purpose, the circuit is first simulated on the
input data without injecting any faults (i.e., golden run). This leads to a reference signal
trace against which the fault-injection simulations are compared to detect deviations and,
thus, errors.

Fault-Injection Run

The next step is the actual fault injection. For this the simulation is run with the same
input data as the golden run but a fault is injected on one of the wires at a certain time
for a specific amount of time according to the previously defined parameter space.

Failure Classification

For each injected fault the behavior of the circuit needs to be analyzed by comparing the
output to the golden run. The deviations are classified as outlined in Chapter 2.7.2.

Presentation of Statistics

Finally, the results from the experiment runs need to be statistically analyzed for being
able to draw conclusions about the fault robustness of QDI circuits as well as for comparing
specific implementation techniques.

3.3.2 Parallelization
The generally enormous parameter space leads to a huge number of individual simulations
that need to be performed. To improve performance, the execution of this workload
is parallelized by the framework over multiple nodes with each node running multiple

20

3.3. Simulation Based Fault Injection on Asynchronous Digital Circuits

simulator instances at the same time. To reduce overhead from starting and stopping
the simulator, each instance runs multiple fault-injection experiments in a row before
shutting down and writing the results to the database.

For managing the simulations that still need to be performed as well as storing results, a
central Structured Query Language (SQL) database is used. When starting an experiment,
the database is filled with tasks (each task is a set of fault injections) to be performed
according to the parameter space. Whenever an individual node is ready to perform new
simulations, it independently retrieves the next task from the database and runs the
associated simulations.

Every time a task has finished processing, the results of the experiments are stored in the
database as well. These results not only contain the deviations but also all information
that is required for re-running the simulation in case something went wrong or some
interesting behavior shall be further analyzed.

3.3.3 Case Study
To evaluate the performance of the framework, large-scale experiments were executed
over the course of a month, using around 40 computers in parallel. In total, more
than one billion simulations were run. The tested circuits range from simple FIFOs to
adders, multipliers and infinite impulse response filters (IIR). All circuits were tested with
different buffer-styles, WCHB being the most basic one. Based on the experiment results,
various graphs were generated, showing the frequency at which different errors occur,
providing insight into the robustness of the different buffer types. Further comparisons
are made, analyzing the origin of failures (i.e., either the data path or the control path),
providing an in-depth insight into what parts of the circuit are susceptible to faults.

21

CHAPTER 4
Automated Fault-Injection

Framework for QDI Circuits

This chapter introduces the emulation-based automated fault-injection framework that
constitutes the main part of this thesis.

4.1 Main Objectives
The main objective for the framework is the ability to integrate a given QDI circuit
(i.e., the UUT) with fault-injection inputs into synthesizable VHDL code, compile it and
download it to an FPGA. It shall provide an interface to the host PC for configuring
the parameter space and then running fault-injection experiments where a fixed set of
input tokens are sent to the circuit while transient faults are injected. The output of
the circuit shall be checked for correctness and in the case of failures, the failure is to be
transmitted back to the host PC.

To reduce the complexity of the framework on one hand and because it is sufficient for
our example circuits, the UUT is restricted to meet the following requirements:

• It has exactly one output channel

• It has one or zero input channels

• The input and output channels use the 4-phase DR protocol

The following high-level features shall be supported by the framework:

• Different kinds of faults (bit flips, stuck-at-0, stuck-at-1)

23

4. Automated Fault-Injection Framework for QDI Circuits

• Configurable durations and start times for the injected faults

• Configurable rate at which input tokens are provided

• Configurable rate at which valid output tokens are acknowledged

• Automatic augmentation with fault-injection gates of a given QDI circuit

• Synthesis and download to the FPGA

• Automated test execution based on configuration files, including results management

4.2 Framework Design
To achieve the previously mentioned goals, the framework is split into two distinctive
parts:

1. Hardware Implementation (fault-injection harness in VHDL)

2. Software Interface (Python library)

At its heart the fault-injection harness is a synchronous design which acts as a wrapper
around the UUT. The harness itself is implemented as a synchronous design to give full
control over the individual fault-injection pulses and get a highly deterministic design
which generates reproducible results. To avoid problems with metastability [Gin11]
at the boundaries between the synchronous framework and the asynchronous UUT,
synchronizers are used. These introduce delays on the acknowledgement of the input and
the output tokens of the UUT, which are unfortunately inevitable.

The UUT around which the wrapper is built is already augmented with fault-injection
gates. This is done with logic gates that are inserted at chosen wires (the victims). An
example for such an augmentation is shown in Figure 4.1, depicting an OR gate where
the ‘A’ input has been augmented with a fault-injection gate: Whenever the injection
input is asserted, the XOR gate will invert the signal on the wire, causing a fault for the
duration of the fault injection.

A

B

inj

Z

Figure 4.1: Augmentation with a fault-injection gate on wire ‘A’.

For communication with the host PC, the framework provides a UART interface through
which the parameters can be configured and experiments are started. For controlling

24

4.3. Fault-Injection Harness

this interface, a Python library has been written, allowing easy experiment execution
through configuration files in JavaScript Object Notation (JSON) format. The library
not only provides functions for UART access (i.e., harness configuration and experiment
execution) but also for automatic augmentation of QDI circuits and the processing of
experiment results.

4.3 Fault-Injection Harness

A block diagram outlining the basic structure of the fault-injection harness is shown
in Figure 4.2. The block labeled ‘Workstation’ is the host PC which configures the
framework and then launches the experiments.

Figure 4.2: Block Diagram of the fault-injection harness. The actual QDI circuit is the
block labeled UUT. Everything around it is part of the harness.

When an experiment is started, a previously stored input sequence is fed into the UUT
without errors (golden run) and the output sequence is saved together with the timestamp
of each output word. After that, the same input sequence is repeatedly fed into the
UUT while exactly one gate is triggered to inject a fault by sending a pulse to it. The
injection of the actual faults is done in a separate module running on its own clock,
which is always a multiple of the core clock. This is done for all fault-injection gates
and all permutations of pulse widths and pulse starting points (as defined by the test
parameters). The UUT is always reset between fault injections to avoid any interference
and to provide a consistent starting point for when the pulse should be injected.

25

4. Automated Fault-Injection Framework for QDI Circuits

During a run, the test monitor keeps track of any encountered errors. When a run has
finished, the result is forwarded to the test PC via the UART interface. In general only
results with errors are forwarded to the workstation to avoid the slow UART interface
becoming a bottleneck. The only exception is the golden run, which is always forwarded
to make it possible to receive information about the runtime of the golden run.

4.3.1 UART Interface
The UART controller is the direct interface to the workstation. It is a generic
implementation of the UART protocol with configurable parameters. The test framework
uses the following configuration by default:

• Data width: 8 bit

• Baud-Rate: 576,000

• 1 Stop bit

• Even parity

The TX/RX bytes are exchanged with the rest of the framework through simple FIFO
memories, making the interface easily exchangeable if a different protocol is ever intended
to be used.

Internally, the data from the UART controller goes through the UART arbiter which
forwards the command to the right component. The component is chosen based on the
first byte that is received:

• 0x00: Test Control & Parameters

• 0x01: Input Sequence

All further bytes are then forwarded to the selected component. That component
acknowledges when it has received enough bytes for a command, after which the UART
arbiter sends an acknowledgement byte back to the workstation. This kind of handshake
ensures that dropped bytes would get noticed, as the host software never receives the
acknowledgement.

Additionally, the UART arbiter is also connected to the result FIFO which stores the
run results from the test monitor. Anytime the FIFO is not empty, the UART arbiter
will read it and transmit the result to the workstation. Results are always prefixed with
a byte of the value 0x80 so the host PC can easily detect it. Finally, when the last fault
injection of a run has finished, it will transmit an end-of-test byte of value 0x81 to the
host to indicate that the fault-injection experiment has concluded.

The full sequence of commands that need to be performed for running a fault-injection
experiment is:

26

4.3. Fault-Injection Harness

1. Write a sequence of input words to be fed into the UUT

2. Configure the test parameters (pulse lengths and start times on fault gates)

3. Start the experiment

4. Read the results until the end-of-test byte is received

4.3.2 Input Sequence
The Input Sequence module stores the sequence of input words that will be fed into the
UUT for the actual fault-injection tests. If a circuit without input channels is tested (i.e.,
self-generating its output), this module is still instantiated but is simply not connected
to the test circuit.

A sequence of input words can be stored by first transmitting the length of the sequence
and then sending all the input words consecutively. When writing the sequence, the
individual input words are always byte-aligned. The write sequence is shown in Figure 4.3.

0x01 LENGTH
15:8 7:0

WORD023:20
19:16 15:8 7:0

WORD123:20
19:16 15:8 7:0

...

LENGTH times

Figure 4.3: UART command structure for setting a new input sequence. The first byte is
consumed by the UART arbiter and never makes it to the module. In this example, the
input words are 20 bit wide which gets padded to three bytes each. Bits 23 to 20 of each
word are the padding bits. When the last word has been received by the module, the
UART arbiter will acknowledge it by sending 0x01 back to the workstation.

As can be seen in Figure 4.3, the length parameter is 16 bits wide so the theoretical
maximum number of words for the input sequence is 65, 535. When generating the
framework, the actual maximum size for the input sequence is set to a constant to reduce
resource consumption on the FPGA by instantiating memories of that size.

Internally, the module is directly connected to the UUT wrapper through a read interface
for feeding the input sequence into the UUT. When a run is started the module will
provide the currently stored sequence sequentially until all of the words have been
acknowledged or the run is aborted (e.g., in case of a deadlock).

4.3.3 Test Control & Parameters
This component allows to write and read parameters of the fault-injection framework
and provides commands for starting and stopping a fault-injection experiment. The basic
structure of the UART command is shown in Figure 4.4.

27

4. Automated Fault-Injection Framework for QDI Circuits

The supported commands are listed in Table 4.1 while the parameter addresses can be
found in Table 4.2. A detailed explanation of all parameters is given in the subsequent
subsections.

0x00 CMD ADDR DATA

1 Byte 1 Byte 1 Byte N Bytes

Figure 4.4: UART command structure for communicating with the test control unit. The
ADDR and DATA field are optional depending on the executed command.

CMD Command Description
0x00 START Start a fault-injection experiment covering the currently config-

ured parameter space. ADDR and DATA are not used.
0x01 STOP Stop a currently running fault-injection experiment. ADDR and

DATA are not used.
0x10 READ Read the currently configured value of a parameter. When reading,

the address of the parameter is provided in the ADDR field and
DATA is sent by the component to the workstation.

0x11 WRITE Set the parameter at address ADDR to DATA.

Table 4.1: All supported commands of the test control unit. The addresses for read and
write commands are listed in Table 4.2.

Fault Width

The width of the fault is one of the parameters over which the injection framework
iterates and is always given in clock cycles of the injection clock. To achieve this, it is
configured with three parameters: The minimum (or starting) width that is used for the
first fault-injection pulse, the increment between runs, and the total number of different
fault widths to be tested.

Fault Start

The second iteration parameter is the point in time where the fault starts. This too is
given in clock cycles of the injection clock and provides the same three configuration
parameters as the fault width: The initial starting point, the increments and the total
number of starting points to iterate over. From the number of widths, starts and injection
gates, the total number of injection runs in an experiment can be determined by simple
multiplication.

28

4.3. Fault-Injection Harness

Address Width Parameter
0 2 Minimum Fault Width
1 2 Fault Width Increment
2 2 Number Fault Widths
3 2 Minimum Fault Start
4 2 Fault Start Increment
5 2 Number Fault Starts
6 2 Expected Output Length
7 4 Core Clock Frequency
8 4 Injection Clock Frequency
9 1 Input Delay
10 1 Output Delay

0x80 Variable Result RAM

Table 4.2: All parameters accessible through the test control unit. The width parameter
indicates the DATA width in bytes.

Expected Output Length

By default the framework expects the same number of output tokens as input tokens are
provided by the input sequence. This is the behavior when this parameter is set to 0
(which is also its reset value). When set to a non-zero value, the framework waits exactly
until the configured number of output tokens was observed to consider a run finished.
This is particularly useful for circuits without input channels or that produce more than
one output token for each input token. When this parameter is active count errors are no
longer tracked as the run immediately stops after the expected number of output tokens.

Core and Injection Clock Frequency

These parameters are fixed during synthesis and provide read-access to find the clock
frequencies at which the framework runs. This is particularly useful for being able to
directly convert run results into real time.

The injection clock drives only the fault injector that is responsible for generating the
pulses on the injection gates. By putting this functionality in a separate clock domain, it
is possible to run it at a higher frequency, allowing for higher granularity of the injection
pulses.

The rest of the circuit is driven by the core clock, which is why the run durations
forwarded to the workstations are given in clock cycles of the core clock.

To avoid problems with clock domain crossings both clocks need to be derived from the
same source clock and the injection clock needs to be an integer multiple of the core
clock.

29

4. Automated Fault-Injection Framework for QDI Circuits

Input Delay

This parameter allows to control the rate at which input tokens are provided to the UUT.
Whenever the circuit is ready for new input (i.e., ack goes low), the UUT wrapper waits
for the configured amount of time (in core clock cycles) before switching from the spacer
to the next token. At its default value of 0, input tokens are provided as quickly as
possible.

Output Delay

Analogous to the input delay, the rate at which output tokens are acknowledged can be
configured. The configured delay corresponds to the number of core clock cycles between
the time that a valid output word is detected and the time when it is acknowledged.

Result RAM

After a golden run execution it is possible to read out the result tokens for the stored
input sequence starting with this address. To do so, the requested address of the result
RAM is added to the base address of 0x80. As the address field is just one Byte and
the highest bit is already used, only the results for sequences of up to 128 entries can be
read out completely.

4.3.4 Test Driver
The actual execution of fault-injection experiments is managed by this module. Whenever
an experiment is started (i.e., through the test control unit), the test driver performs the
following steps:

1. Start the golden run by removing the UUT reset, starting the input sequence and
informing the test monitor (see also Chapter 4.3.5) about the run that was started.

2. Wait for the test monitor to indicate that the run has finished.

3. From here on out the following steps are repeated until the configured parameter
space has been processed:

a) Put the UUT into reset and provide the next fault-injection parameters to
the fault injector.

b) Repeat step one (start the run), additionally start the fault injector.

c) Wait for the test monitor to indicate that the run has finished.

4. After the last run, assert a done signal to the UART arbiter for it to generate the
end-of-test symbol.

30

4.3. Fault-Injection Harness

To avoid data loss due to FIFO overflows, the module uses a stall input which is
connected to the result FIFO. Anytime the FIFO is almost full, stall gets asserted,
prohibiting the test driver from starting a new run.

4.3.5 Test Monitor
The test monitor keeps track of the output tokens that are produced by the UUT. It also
monitors the elapsed time between tokens and of the total run.

For each run, the test monitor generates a result containing information about the
injected fault (i.e., gate location, duration and width), the run duration and any observed
deviations from the golden run.

During the golden run, all output tokens received from the UUT are stored sequentially
in RAM together with a timestamp. When the expected number of tokens has been
received (either corresponding to the length of the input sequence or to the explicitly
configured value), the result is pushed to the result FIFO.

In all further runs, the previously written output tokens are read from the RAM and
compared to the tokens received from the UUT. The test monitor keeps track of deviations
in the data as well as timing deviations beyond a fixed number of clock cycles. Once
no output tokens have been received for a certain amount of time, the run is considered
to be done. If not enough output tokens were received in that time frame, the run is
marked as deadlock.

A finished run is indicated to the test driver so it can start the next iteration. In case
of deviations from the golden run, the run result is also pushed to the result FIFO for
transmission to the host PC.

4.3.6 UUT Wrapper
The UUT wrapper is built around the augmented QDI circuit and does the actual
interfacing to the UUT.

On the input side, the next input token is continuously fetched from the input sequence
and converted to DR notation. The input tokens are then provided to the UUT following
the 4-phase DR protocol.

The UUT output is connected to a completion detector which generates the appropriate
acknowledgement as required. Additionally, the CD keeps track of any protocol violations
by detecting glitches (i.e., a data rail changes its value twice during a protocol phase) and
code errors (both rails true at the same time). As the CD is running in the synchronous
domain, there is the possibility of some glitches and code errors not being detected if
they are shorter than the clock period. This is unfortunately not avoidable with the
current implementation.

The fault-injection signals generated by the fault injector are unmodified by the wrapper
and directly connected to the UUT.

31

4. Automated Fault-Injection Framework for QDI Circuits

4.3.7 UUT
The asynchronous QDI circuit to be tested is augmented with fault-injection gates. As
previously described, these fault-injection gates take two inputs: The original wire as
well as a dedicated injection wire. Based on the chosen fault type, the injection gate
could cause a bit flip on the wire or a constant ‘0’ or ‘1’ for the fault duration.

While the framework supports the integration of a pre-made VHDL instance including the
fault-injection gates, it also provides tool support for automatic wrapping of augmented
circuits or even first augmenting a given QDI circuit with the injection gates. The different
options provided by the software framework are described in detail in Chapter 4.4.

4.4 UUT Preparation
Here the components of the Python library are described which can automatically generate
augmented UUT instances along with all required files.

4.4.1 PYPR
In this section the pypr python package1 is introduced as it plays an integral part for
automatically generating and augmenting QDI circuits through the software framework.
The package has been developed by Florian Huemer to conveniently create, analyze,
modify and simulate asynchronous (and specifically dual-rail QDI) circuits[Hue22].

On a lower level, digital circuits are represented in a Production Rule Set (PRS) based
hardware description language. This language allows to describe components as a series
of wire assignments, which can instantiate other components or logic gates directly. A
simple example of a circuit description in PRS is shown in Listing 4.1.

1 prs dims_and is
2 inputs a : DRBit; b : DRBit;
3 outputs x : DRBit;
4 begin
5 cg_00 := cgate(a.F, b.F);
6 cg_01 := cgate(a.F, b.T);
7 cg_10 := cgate(a.T, b.F);
8 cg_11 := cgate(a.T, b.T);
9 x.T := wire(cg_11);

10 x.F := or_gate(cg_00, cg_01, cg_10);
11 end prs;

Listing 4.1: PRS example of a simple DIMS AND Gate

On a higher abstraction level, pypr can be used to describe circuits in Python in
the form of Data Flow Graphs (DFGs). This allows the creation of QDI circuits by

1https://git.ecs.tuwien.ac.at/eda/pypr

32

https://git.ecs.tuwien.ac.at/eda/pypr

4.4. UUT Preparation

connecting individual building blocks (given as PRS) directly in Python, simplifying the
parametrization of the circuit (e.g., different buffer or logic styles, bus widths).

To further simplify the generation of QDI circuits, pypr has the capability of directly
synthesizing combinational logic provided as Verilog functions into DR logic. Included
with the library there are three logic styles with which the Verilog logic can be synthesized:
DIMS, NCL and NCLX.

Another feature of the library is the possibility of exporting a given PRS circuit directly
into Hardware Description Languages (like VHDL) for use in conventional Electronic
Design Automation (EDA) software. This can either be done for simulation tools where
the individual gates will simply be represented by, e.g., generic VHDL processes or
directly for hardware in which case the logic gates are directly mapped to components of
the target platform (e.g., Lookup Tables (LUTs) in an FPGA).

The possibility of importing PRS files and having direct access to all assignments is
extensively used by the framework to take an existing circuit in PRS form and augmenting
it with fault-injection gates for the experiments. The procedure is explained in detail in
the next chapter.

4.4.2 Circuit Augmentation

To run fault-injection experiments, the tested circuit needs to be augmented with fault-
injection inputs. When one of these fault-injection inputs gets asserted, it causes a fault
on one of the wires in the circuit. While the framework also supports using a prepared
circuit which already provides those inputs, one of its main advantages is the possibility
of taking an arbitrary QDI circuit in PRS form and automatically augmenting the circuit
with the fault-injection inputs. This is realized in the Augmenter Python class.

The fault-injection gates are added as inputs to the PRS and then selected assignments
(the victims) are changed by rewiring their targets. Instead of the original target they
go to temporary wires which are used as inputs to the gates that perform the actual
fault injection. Three different kinds of faults are supported by the framework: Bit flips,
Stuck-at-0 and Stuck-at-1. For bit flips the value of a wire is inverted while for stuck-at-0
and stuck-at-1 the value is set to a constant 0 or 1 respectively. To achieve these effects
XOR, AND or OR gates are used accordingly. A simple example of an assignment being
augmented is shown in Listing 4.3 (for simplicity reasons the example is not an actual
QDI circuit).

33

4. Automated Fault-Injection Framework for QDI Circuits

1 prs example is
2 inputs
3 a : Bit;
4 b : Bit;
5 outputs
6 x : Bit;
7 begin
8 x := and_gate(a, b);
9 end prs;

Listing 4.2: Example circuit
before augmentation

1 prs example is
2 inputs
3 a : Bit;
4 b : Bit;
5 err : Bit(1);
6 outputs
7 x : Bit;
8 begin
9 x_pre_err := and_gate(a, b);

10 x := xor_gate(x_pre_err, err(0))
11 end prs;

Listing 4.3: Example circuit after adding
a bit flip injection gate.

One key feature of the PRS format in pypr are attributes that can be added to signals to
provide further information about their functionality. One common use case of attributes
is for grouping together signals that belong to particular channels. In the case of circuit
augmentation, the fault-injection inputs in the resulting PRS are also extended with
attributes to allow for automatic processing in subsequent scripts. An example is shown
in Listing 4.4. It shows the declaration of a multiplier circuit where the two input vectors
together constitute an input channel and the result vector an output channel.

1 prs umul is
2 inputs
3 a : DRBit(4) attributes(channel := Cin, role := data);
4 b : DRBit(4) attributes(channel := Cin, role := data);
5 ack_in : Bit attributes(channel := Cout, role := ack, channel_type := DIDR);
6 reset : Bit attributes(role := reset);
7 err_inj : Bit(32) attributes(role := errinj, type := FLIP);
8 outputs
9 ack_out : Bit attributes(channel := Cin, role := ack, channel_type := DIDR);

10 s : DRBit(8) attributes(channel := Cout, role := data);

Listing 4.4: PRS header of a multiplier circuit that has been augmented with 32 bit-flip
injection gates.

When it comes to choosing victims (i.e., wires that are augmented with injection gates),
the library generally performs a random approach for choosing the signals. The only
exception are assignments that directly connect to the output channel. These are always
skipped as an fault injection at the output would no longer test the fault robustness of
the circuit itself. Additionally, it is possible to pass a regular expression to pre-filter what
wires are potential victims. The Augmenter class accepts the number of injection gates
to add, the type of fault, a regular expression for pre-filtering victim wires and a seed

34

4.4. UUT Preparation

that is used for the random selection of victims as parameters. Additionally a counter
can be passed to discard the first iterations of the chosen gates. This allows randomly
iterating over all gates in the circuit without repetition by repeatedly augmenting the
circuit with the same seed and only incrementing this counter.

It should be noted that it is also possible to add fault-injection inputs for all rules at once,
thus only needing one synthesis run to test all gates. One downside of this approach is
that every injection gate adds a certain delay, thus changing the timing of the circuit.
While the placement on the FPGA will always be different between synthesis runs, the
timing of the circuit should be closer to its original implementation when keeping the
number of injection gates low.

4.4.3 Circuit Wrapping
After having obtained a PRS description of an augmented circuit (either manually or
by using the Augmenter class), the PRS code still needs to be converted into a VHDL
representation that fits with the framework design to actually be synthesizable. For these
purposes, the Python library provides a Wrapper class, working in two steps.

First it creates a PRS wrapper around the PRS circuit which follows the exact specification
of the entity that is required by the framework. This includes making sure that the input
and output channels are joined together in one vector each and that the entity and all
its ports have the expected names.

In the second step, the actual files are created out of the PRS wrapper for further use in
the framework. The circuit is exported into two VHDL entities, where one is intended for
the actual FPGA implementation, meaning that all gates are mapped to specific VHDL
components, ensuring that the correct mapping to the FPGA’s hardware resources is
used. This generation of the VHDL entity also allows the addition of delay gates to
artificially slow down the UUT. The gates will be added at the circuit inputs and at the
outputs of all logic gates in the circuit to slow down the circuit as evenly as possible.
The other VHDL entity generated is for simulation purposes and makes use of VHDL
processes to represent the individual gates. The simulation entity is primarily intended
for debugging purposes and has no impact when only running hardware injections.

Additionally, a VHDL package is generated which contains generics about the tested
circuit like port widths, maximum sequence lengths or the number of injection gates.
The last file that is generated is a Python package called UUT.py which contains those
same constants and some more if they are available (e.g., a list of names that correspond
to the victim gates). The Python package is used by the rest of the library to send the
right commands to the framework and for being able to generate reproducible and useful
results.

When generating the files, the output directories for the VHDL and Python files
need to be provided as well as the maximum sequence length that should be al-
lowed to be written as input sequence. As part of the framework, a script is provided

35

4. Automated Fault-Injection Framework for QDI Circuits

(generate_uut_instance_from_prs.py) which can be used to take an existing
PRS file, augment it with fault-injection gates, and generate the VHDL and Python files
that are required for synthesizing the fault-injection framework and running experiments.

4.5 Experiment Control Software
This section describes the Python library components that have been developed for
controlling the injection harness by configuring the execution parameters, starting the
experiments and processing the results.

It also comes with a class for executing large-scale experiments on specific circuits and
storing the results. The results of experiments can be parsed by a result manager to
filter for certain properties and to create plots from the data to simplify post-processing
and analysis.

4.5.1 UART Driver
The UartDriver class is the abstraction layer between the FPGA and the actual
experiment execution by providing functions for configuring the tester, starting runs and
receiving results. It is extensively used by the other classes in the framework for test
execution.

When writing an input sequence using this class, the input words are generated randomly,
but a seed can be passed. This way it is guaranteed that experiments can be reliably
reproduced.

4.5.2 Experiment Execution
For running automated large-scale experiments on circuits the Executor class can be
used. It takes an experiment configuration and automatically performs all the requested
fault injections, storing the results in Comma Separated Values (CSV) files for further
analysis.

The experiment configuration is provided in the JSON format, accepting a number of
different options for covering as much of the parameter space as possible. Such a JSON
example is shown in Listing 4.5. It demonstrates how to iterate over different parameters
with one configuration file. An example are the logicStyle and bufferStyle
parameters which are directly incorporated as placeholders in the filename, enabling
experiment execution over multiple input files with just one experiment configuration.

In some cases the value −1 is used to iterate over all possible combinations. In the case of
numPulseStarts being −1, a golden run is executed before the actual test execution
for finding the ideal value for numPulseStarts to inject an error at every possible
point in time until the last token has been received. The runPart parameter is passed
to the Augmenter to choose which set of victims to take. When it is set to −1, all sets
will be iterated over until all injection gates have been tested.

36

4.5. Experiment Control Software

1 {
2 "name" : "lfsr16b",
3 "logicStyle" : ["NCLX", "DIMS"],
4 "bufferStyle" : ["WCHB", "DeadlockingWCHB", "DualCDWCHB"],
5 "file" : "prs/lfsr_{bufferStyle}_{logicStyle}.prs",
6 "resultDir" : "./results/",
7 "skipReruns" : 0,
8 "runType" : "Augment",
9 "faultType" : "FLIP",

10 "gatesPerRun" : 64,
11 "seqLength" : 32,
12 "runPart" : -1,
13 "testParams" : {
14 "minPulseWidth" : 1,
15 "incPulseWidth" : 1,
16 "numPulseWidths" : 20,
17 "minPulseStart" : 0,
18 "incPulseStart" : 1,
19 "numPulseStarts" : -1,
20 "expectedOutputs" : 32,
21 "outputDelay" : [0,1,2],
22 "inputDelay" : 0
23 },
24 "seed" : 74,
25 "uart" : {
26 "port" : "/dev/ttyUSB0",
27 "baud" : 576000
28 }
29 }

Listing 4.5: Example of an experiment configuration in JSON format.

When the Executor is run on a configuration it will iterate over the full parameter
space, perform the still required operations (e.g., augmentation, wrapping, synthesis,
flashing) and then run the actual fault-injection experiments as specified by the test
parameters. The results are collected and then passed on to the results manager (see
Chapter 4.5.3) where they get directly exported to the associated CSV files.

4.5.3 Result Manager
To keep track of experiment outcomes the ResultManager class has been developed.
It uses CSV files for importing/exporting the result data and pandas2 dataframes for
managing the datasets internally. The class uses two datasets to manage the results.

In the ‘runs’ dataset, there is an entry for each individual fault-injection experiment,
providing a summarized view of the injected faults and the resulting observations. It
contains the following information:

2https://pandas.pydata.org/

37

https://pandas.pydata.org/

4. Automated Fault-Injection Framework for QDI Circuits

• name: Arbitrary name chosen for the experiment as written in the experiment
configuration

• file: Path of the PRS file that was used as input

• seed: Seed used for choosing victim gates and also the input sequence

• logicStyle: Logic style used on the circuit (e.g., DIMS, NCLX)

• bufferStyle: Buffer style used (e.g. WCHB)

• faultType: Fault type (i.e., FLIP, SA0 or SA1)

• minPulseStart, incPulseStart, numPulseStarts,
minPulseWidth, incPulseWidth, numPulseWidths: Information about which
pulses were tested exactly

• inputDelay, outputDelay: Delays (in core clock cycles) that were applied
when generating/acknowledging the input and output tokens

• numGates: Number of fault-injection gates

• totalRuns: Number of individual fault injections performed (product of numGates,
numPulseWidths and numPulseStarts)

• valueErrors, glitchErrors, codeErrors,
deadlocks, countErrors, timingDeviations: The number of times that
each error has been observed.

• anyErrors: The number of times that at least one error was observed (does not
include timing deviations)

• anyDeviations: The number of times that any deviation was observed

• multiErrors: The number of times that multiple errors were observed at once
(does not include timing deviations)

• victimGates: List of gates that were chosen for the fault injections. The indexes
of the list correspond to the gate IDs seen in the ‘results’ dataframe

The ‘results’ dataset contains an entry for each individual fault injection that caused a
deviation or was the golden run of a specific run. As one would expect, this dataset can
get very big containing millions of entries. It is useful when detailed analysis of results is
required or the effect of faults on particular gates is of interest. The stored data fields
are:

• runId: Link between the ‘runs’ and ‘results’ dataframe, making it possible to trace
back to the run that produced the result

38

4.6. FPGA Integration

• duration: Duration that the run took in nanoseconds. The duration is always
until the last output token was observed (i.e., for a deadlock the timeout is not
included)

• faultStart: Time in nanoseconds at which the fault was injected, counted from
when the reset is removed from the UUT.

• faultDuration: Time in nanoseconds for which the fault was applied.

• faultGateId: ID of the fault-injection gate used.

• faultGateName: Name of the gate corresponding to the gate ID. This only has
a valid value if UUT.py contains the appropriate information (done automatically
when the full augmentation flow of the library is used)

• faultType: Type of fault: FLIP, SA0 or SA1

• valueError, glitchError, codeError,
deadlock, countError, timingDeviation: Boolean value indicating if the
respective error has been observed

• anyDeviation: Boolean value indicating whether any deviation has been observed

• anyError: Boolean value indicating whether any error has been observed (excludes
timing deviations)

• multiError: Boolean value indicating whether multiple errors have been observed
(excludes timing deviations)

The class provides functions for filtering by fields and summing up multiple runs for easy
processing of the data, simplifying the consolidation of data for plotting and further
analysis.

4.6 FPGA Integration
The full framework design has been ported to the DE2-115 Development and Education
Board3 for running experiments on real hardware. The board comes equipped with the
Cyclone IV EP4CE115 FPGA and an integrated RS232 serial port used for communication
with the host PC. Some of the LEDs on the board are additionally used to provide visual
feedback of the current state of the framework.

As the framework itself is mostly self-contained, integrating it into a platform is not very
difficult. The primary task is generating the clocks that are used to drive the entire
design, i.e., the core clock and the injection clock. As noted previously, both clocks must
be derived from the same source and the injection clock frequency must be a multiple of

3https://de2-115.terasic.com/

39

https://de2-115.terasic.com/

4. Automated Fault-Injection Framework for QDI Circuits

the core clock frequency (i.e., they can also be the same). The second step is instantiating
the framework itself with appropriate generic settings (i.e., UART settings and clock
frequencies) and connecting the pins correctly.

To make sure the asynchronous circuits are really instantiated as intended it is also
necessary to provide declarations of basic logic gates (e.g., C Gates, OR-Gates, . . .) which
should ideally each be bound to exactly one LUT on the device. The PRS conversion
generates exactly these basic gates which are then instantiated at synthesis. For the
development board used, Altera primitives are directly used in these gate declarations to
directly map to the LUTs of the FPGA. This means, that the implementation specific
source code files can be reused if someone intends to port the design to another Altera/Intel
FPGA. If a different manufacturer is targeted (e.g., Xilinx), these gates will need to be
re-implemented for that specific platform.

An overview of all parameters used in the implementation used for the experiments in
this thesis is given in Table 4.3.

Parameter Value
Platform DE2-115
FPGA EP4CE115
Core clock frequency 100 MHz
Injection clock frequency 200 MHz
Baud Rate 576,000
Parity Even
Stop Bits 1

Table 4.3: Implementation Parameters

40

CHAPTER 5
Experiment Configurations

The framework is evaluated by running automated fault-injection experiments on multiple
circuits. All circuits will be generated with various implementation techniques (namely
different logic and buffer styles) and the results will be compared. This chapter provides
a detailed description of the exact configurations used throughout this thesis. Chapter 5.1
will functionally describe the QDI circuits while Chapter 5.2 will go into detail on the
different buffer styles with which those circuits will be generated. In addition to the
buffer styles, the experiments will be tested with two of the logic styles that have been
presented earlier: Delay-Insensitive Minterm Synthesis (DIMS) and Null Convention
Logic with Explicit Completion (NCLX).

5.1 Test Circuits
5.1.1 Linear-Feedback Shift Register
The Linear-Feedback Shift Register (LFSR) is a circuit where a register of fixed length is
continuously shifted by one bit, with the lowest bit being removed and the highest bit
getting set according to a linear function based on its previous state. The most common
replacement strategy for the highest bit is an XOR function fed with specific bits of the
state register. The feedback function is most commonly expressed as a polynomial where
the degrees of the individual terms represent the bits to be used for the XOR function.
A simple LFSR example is shown in Figure 5.1.

For the experiments, a purely combinational 16 bit LFSR module (using x16 + x15 + x13 +
x4 + 1 as polynomial) was implemented in Verilog which performs 16 steps at a time. By
doing 16 steps at once it is ensured that all bits need to be generated by some actual
logic instead of just shifting them to a new position.

The actual circuit under test is comprised of a ring of three buffers and the combinational
LFSR logic as depicted in Figure 5.2. Additionally, there is a fork between buffers B1 and

41

5. Experiment Configurations

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
1

1615134

Figure 5.1: 16-bit LFSR example using the feedback polynomial x16 + x15 + x13 + x4 + 1.
The register’s current value is 0x1234 and will be 0x891A in the next step.

B2, with the second output being directly connected to the module’s output. The buffer
in the middle (B1) is initialized with a data token (in our case 0x1234), meaning that
once the reset is removed, the data token is immediately provided to the output as well
as to B2. As long as the output tokens get acknowledged, the circuit will continuously
generate new data without the need for an input channel. The DR implementations
of all the components are provided by pypr, which also takes care of synthesizing the
combinational LFSR module either in the NCLX or the DIMS logic style.

16 times:
Z = LFSR(Z)

E V

E

B0 B1

B2

Z

Figure 5.2: SDFS diagram of the tested LFSR circuit in its initial state.

The circuits are generated with two logic types and six different buffer types as presented
in Chapter 5.2 leading to a total of 12 different implementations that will be compared
with the framework.

5.1.2 Carry-Ripple Adder
The last circuit we are going to look at is the 4-bit carry-ripple adder that was analyzed
in [MRL04], see also Chapter 3.1. It is built from four full adders with carry bits whose
design is shown in Figure 5.4. The full design is depicted in Figure 5.3.

It can be seen that the Cout signal in the individual full adders is independent from Cin
if A and B are both set to the same value. Thus, the four carry signals can be calculated
independently from each other if A equals B, constituting the best case scenario. On
the other hand, whenever A and B differ in all four bits, the Cout output of each adder
depends on the Cin input coming from the previous instance, thus activating the critical
path of the circuit. Because of these different behaviors, the circuit will be subjected to
different input sets to compare the impact this has on the fault sensitivity.

42

5.1. Test Circuits

As [MRL04] was analyzing the fault sensitivity of the individual C gates in the design, the
experiments will focus on those as well. For this purpose, a fault-injection gate is inserted
at every C gate input in the design (indicated by the lightning bolts in Figure 5.4). This
positioning of the injection gates ensures that every fault can only directly affect one C
gate. As there are 10 C gates with two inputs each, there is a total of 80 fault-injection
gates to be inserted over all four full adders. To affect the inter-circuit timing as little
as possible, all injection gates will be added at once when running the experiments,
essentially slowing down all C gates roughly by the same amount.

Full Adder 0

B(0)A(0)

S(0)

Full Adder 1

B(1)A(1)

S(1)

Full Adder 2

B(2)A(2)

S(2)

Full Adder 3

B(3)A(3)

S(3)

CinCout

Figure 5.3: Schematic of the full 4-bit adder. All the signals are DR.

A.F

A.T

B.F

B.T

C

C

C

C

C

C

C

C

C

C

Cin.F

Cin.T

S.F

S.T

Cout.F

Cout.T

M00

M01

M02

M03

M04

M05

M06

M07

M08

M09

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 5.4: Schematic of the combinational full adder. The lightning bolts indicate the
positions where fault-injection gates are added.

5.1.3 Multiplier
The second circuit to be analyzed is an unsigned N -bit multiplier. The design takes two
N -bit numbers and generates the N × 2-bit product as output. It is implemented as a

43

5. Experiment Configurations

pipeline with N stages for maximum throughput. It consists of N data buffers (D0 to
DN−1) and N − 1 logic blocks that calculate the product A × B bit by bit. The structure
of the circuit for N = 4 is shown in Figure 5.5. The required combinational logic of the
individual stages is mostly comprised of full adders which are implemented either using
the DIMS or the NCLX logic style.

D0

Z =A ∗ B[1 :0]
A=A<<2

D1

Z +=A ∗ B[2]
A=A<<1

D2

Z +=A ∗ B[3]

D3

A
B ZE E E E

Figure 5.5: 4-bit SDFS example of the tested multiplier. The first logic block processes
two bits at once because there is no Z yet, reducing the initial complexity.

As the multiplier is implemented in the form of a pipeline, it is possible that multiple
products are calculated in an interleaved fashion. To verify the impact of different fill
levels of the pipeline, the experiments will be executed with different input and output
delay settings.

5.2 Buffer Styles
The most basic buffer style to be tested with the framework is the WCHB as presented
in Section 2.5.1. Whenever the WCHB is awaiting a new data word, the input C gates
are in a 1-sensitive to 0 state, leaving a potentially large time window during which the
structure is sensitive to faults. To mitigate these issues, various buffer styles have been
devised, aimed at reducing different kinds of errors. Many of these styles are based on
the WCHB. The buffer types that are evaluated with the framework will be referred to
according to the names given in Table 5.1.

Buffer Type Short Name Details
Weak-Conditioned Half Buffer WCHB Chapter 2.5.1
Deadlocking WCHB Deadlocking Chapter 5.2.1
Interlocking WCHB Interlocking Chapter 5.2.2
Dual Completion Detector WCHB DualCD Chapter 5.2.3
[BS09] type Locking WCHB Locking Chapter 5.2.4
MOUSETRAP-Style D-Latch Half Buffer Mousetrap Chapter 5.2.5

Table 5.1: Tested buffer styles

5.2.1 Deadlocking WCHB
The Deadlocking WCHB is a modified version of the WCHB where asymmetric C gates
are used for storing the data. Asymmetric C gates provide additional inputs which are
only considered for their respective transitions, i.e., positive inputs need to be high for a

44

5.2. Buffer Styles

transition to 1 while negative inputs need to be low for a transition to 0. These inputs
are not considered for the opposite transition. In the case of the Deadlocking WCHB,
asymmetric C gates with negative inputs are used. The outputs of the C gates storing
the DR data are connected to the negative inputs of the opposite rail as depicted in
Figure 5.6.

C

C

A.T

A.F

Q.T

Q.F

en

Figure 5.6: Deadlocking Buffer. An invalid word will cause a deadlock that can only be
resolved with a reset.

The feedback of the output to the negative inputs of the C gates ensures that the circuit
immediately deadlocks if an invalid DR word is captured (i.e., both data rails set) by
preventing the buffer from entering the null phase ever again. This buffer type is well
suited in cases where value errors are unacceptable while deadlocks can be handled
(e.g., safety critical systems with redundancy).

5.2.2 Interlocking WCHB

Similarly to the Deadlocking WCHB, the interlocking variant also uses cross-coupled
asymmetric C gates. In this buffer style, the feedback signal is inverted and fed into the
positive input of the asymmetric C gate as depicted in Figure 5.7.

C
+

C
+

A.T

A.F

Q.T

Q.F

en

Figure 5.7: Interlocking Buffer. Once a valid state has been captured, a transition on the
other input will be ignored.

With this modification, only the first transition is propagated to the output as the
feedback line effectively disables the other C gate from performing a rising transition.
This structure is especially useful for avoiding code errors. On the other hand, the
likeliness of a fault causing a value error is significantly higher as the fault can cause
an immediate propagation of a wrong value. While the likeliness of a code error is
significantly reduced, the possibility is not entirely eliminated as both transitions could
arrive so close to each other that the feedback signals did not have enough time to
propagate back to the inputs.

45

5. Experiment Configurations

5.2.3 Dual Completion Detector WCHB
Another possibility to reduce the window in which the C gates are sensitive to faults
is an additional CD in front of the WCHB to only arm the C gates once all inputs are
either in the data or the spacer phase, see also Figure 5.8. The Dual-CD WCHB masks
transient faults that occur while the next token is not completely processed yet. If a fault
occurs after the completion detector has already switched, it might still be propagated.

Input CD Output CD
C
C
C
C

C CC

A.T

A.F

B.T

B.F

A.T

A.F

B.T

B.F

ackinackout

Figure 5.8: Example of a Dual-CD WCHB storing two DR bits. The C gates get armed
for the next transition only when both bits have finished their transitions.

5.2.4 Locking WCHB
Another variant of the WCHB has been proposed in [BS09] and is shown in Figure 5.9.
This version can be seen as a generalized version of the Interlocking WCHB by using the
output of the CD for locking the C gates instead of directly connecting to the opposite
data rail. Thus, this variant can also be used for non-DR protocols (i.e., 1-of-N).

In our implementation, the individual CDs of the bits are connected directly to the C
gates to minimize the sensitivity windows as much as possible. This behavior is not
clearly specified in [BS09], another option could be to use the overall CD output to lock
all C gates at once, i.e. locking all C gates as soon as the full token has been stored.

When using the individual CD outputs, it is functionally identical to the Interlocking
WCHB, but we would expect it to be slightly less effective as the locking signal goes
through an additional logic gate before reaching the asynchronous inputs of the C gates,
slightly delaying the locking behavior.

46

5.2. Buffer Styles

Output CD
C

C

C

C

+

+

+

+

C

A.T

A.F

B.T

B.F

A.T

A.F

B.T

B.F

ackout ackin

Figure 5.9: Example of the Locking WCHB based on [BS09] storing two DR bits. The C
gates of each bit are locked as soon as one of the data rails goes high.

5.2.5 MOUSETRAP-Style D-Latch Half Buffer (MDHB)
The last buffer style to be tested is the MOUSETRAP-Style D-Latch Half Buffer (MDHB)
which is a completely different approach based on the MOUSETRAP pipeline style
introduced in [SN07]. In this style, D-Latches are used instead of C gates for storing the
data. As seen in Figure 5.10, the enable inputs of the D-Latches are controlled by an
XNOR gate using the acknowledgement from the next stage and the output of the CD. In
this setup, the latches become transparent for the data when the next stage acknowledges
the current output and close as soon as the next phase has been detected by the CD.

It needs to be noted that this technique introduces a small timing constraint between
the output of the completion detector and the acknowledgement from the next stage and
as such is not strictly QDI. Furthermore, this structure is not meant to improve fault
robustness over the other buffer types. It is included in the comparison to see how a
D-Latch based approach fares compared to the C-gate-based buffers.

47

5. Experiment Configurations

Output CD
D
en

Q

D
en

Q

D
en

Q

D
en

Q

C

A.T

A.F

B.T

B.F

A.T

A.F

B.T

B.F

ackout ackin

Figure 5.10: Example implementation of a MDHB storing two DR bits.

48

CHAPTER 6
Experiment Results

This chapter presents and analyses the observations made while running fault-injection
experiments on the circuits introduced in the previous chapter. We mostly focus on statis-
tical analysis of the observed effects but also provide some insights into the performance
of the framework itself.

When analyzing the individual error rates, any occurrence of an error is counted, inde-
pendently of whether it was the only one observed in a run. Thus, the overall error rate
may sometimes be lower than the sum of the individual error rates that are presented.
One exception from this rule is how deadlocks are counted: A deadlock is only counted
as such if the same injection did not also result in a code error or glitch. This is to ensure
that the deadlocked state is reached internally and not simply because an invalid output
token is not acknowledged by the completion detector at the output.

6.1 LFSR
The LFSR circuit was tested with the following parameters:

• All six buffer types

• Both logic styles (DIMS and NCLX)

• Three fault types: Bit flips, stuck-at-0 and stuck-at-1

• Output delays of 0, 10 and 20 ns

• 10 different fault durations, from 5 to 50 ns

• All possible fault start times within the range of golden run execution

• 32 fault-injection gates at a time

49

6. Experiment Results

6.1.1 Encountered Problems

During execution there were problems with the MDHB in both logic styles. The experi-
ments could not always be executed properly because the golden run was unable to finish,
indicating some problem in the generated circuit. The cause for this problem could not
be found. In total, this caused around 20% of runs to fail in the DIMS logic style and
around 15% in the NCLX logic style. Because of this, the numbers presented for MDHB
might not be fully representative as the injection experiments were not executed on all
potential victims.

6.1.2 Error Rates

The error rates for value errors, deadlocks, code errors and glitches are presented in
Figure 6.1. Additionally, the overall error rate is shown. Count errors are not included
because they are not reported in circuits without input channels. The plots combine the
error rates for different output delays, as the impact of the parameter was negligible on
the LFSR circuit.

It can be seen that almost all error types as well as the overall error rate are more
common in the DIMS logic style. A likely cause for this effect is the reliance of DIMS on
C gates. The 16-bit combinational LFSR logic in DIMS style uses 144 C gates, resulting
in roughly 50% more C gates than the NCLX implementation. As each C gate has the
possibility of capturing a fault, turning it from an SET to an SEU, the increased error
rate makes perfect sense.

Another observation to be made is that the deadlocking WCHB seems to work as
intended. The (already low) rate of value errors and glitches is noticeably lower than with
the standard WCHB implementation while deadlocks are slightly more common. The
frequency of code errors does not change much, which is easy to explain as an individual
stage that deadlocks will still store the code error and potentially propagate it to the
output. This also explains why the rate of deadlocks does not see a significant spike as
the deadlocking usually coincides with a code error and is only counted as such.

The interlocking and locking WCHB implementations behave very similarly to each
other, producing the lowest overall error rates which mostly stems from the reduction
in code errors. This is the expected behavior because the individual bits lock in on
the first transition of a data rail, thus, filtering out faults on the other data rail that
occur after the buffer has been locked. This, of course, also works the other way around.
If a fault on the wrong data rail arrives first, the wrong bit will be locked in and the
valid transition gets ignored. This is clearly visible in the vastly increased rate of value
errors. An interesting observation is the increase in deadlocks which suggests that while
these buffers are effective at reducing code errors at the output, the faults still cause
problems internally which lead to a deadlock. It seems likely that some of the internal
DR buffers still reach an invalid state which can happen when the two transitions arrive
close enough to each other. This theory is supported by the locking WCHB showing the

50

6.1. LFSR

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0.0

0.2

0.4

0.6

0.8

%
 o

f
to

ta
l
ru

n
s

Value Errors

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0.0

2.5

5.0

7.5

10.0

12.5

%
 o

f
to

ta
l
ru

n
s

Deadlocks

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

40

%
 o

f
to

ta
l
ru

n
s

Code Errors

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

1

2

3

4

5

%
 o

f
to

ta
l
ru

n
s

Glitches

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

40

%
 o

f
to

ta
l
ru

n
s

Any Errors

DIMS NCLX

Figure 6.1: LFSR error rates relative to all performed bit flip injections

higher deadlocking rate as it has the longer path to lock the other C gate, resulting in a
bigger sensitivity window.

Perhaps most interesting about the MDHB results is the high number of glitches
compared to all other buffer types. This makes sense when considering the transparent
latch behavior when the next stage has acknowledged the last output. Any faulty

51

6. Experiment Results

Buffer Style Value Errors Glitches Code Errors Deadlocks Any Errors
WCHB −0.02% +0.02% +0.02% −0.20% +0.02%
Deadlocking −0.45% −0.29% +0.02% −0.10% +0.02%
Interlocking −0.09% +0.16% +0.01% −0.11% +0.01%
Locking +0.49% +0.06% +0.02% +0.15% +0.06%
DualCD −0.20% +0.14% +0.01% −0.08% +0.01%
Mousetrap −0.95% +0.08% −0.01% +0.07% +0.01%

Table 6.1: Error rates when rerunning the LFSR experiment on the same board, relative
to the original run

Buffer Style Value Errors Glitches Code Errors Deadlocks Any Errors
WCHB +0.96% −0.47% −0.58% +0.88% −0.54%
Deadlocking +6.24% −5.12% −0.07% +0.64% −0.14%
Interlocking +2.92% −2.71% −0.80% −0.09% −0.77%
Locking +1.38% −6.65% −0.36% +0.06% −0.41%
DualCD +7.55% −0.24% −0.31% +0.45% −0.28%
Mousetrap +7.47% −4.92% +2.84% −6.62% +0.23%

Table 6.2: Error rates when rerunning the LFSR experiment on a second board, relative
to the original run

transitions during that phase will be propagated as-is including the dissipation of the
fault if the completion detector does not lock the latches in between. This differentiates
the buffer style from C gate based implementations where the C gates generally store
the observed value until the next data phase. The other interesting point is the spike in
deadlocks in the NCLX logic style. The reason for this behavior was not further analyzed
but it might also be related to C gates as the DIMS logic style still uses them in the
combinational logic while they are completely absent in NCLX.

6.1.3 Reproducibility
One interesting aspect in evaluating the framework is the reproducibility of results. For
that purpose, the LFSR experiments have been run three times in total to compare the
error rates. It was run twice on the same board and then an additional time on a different
board to investigate how different hardware can affect the error rates.

The relative error rates of the rerun on the same boards are listed in Table 6.1, showing
only the relative change compared to the results seen in Figure 6.1. It is clearly visible
that the error rates only change marginally, with the changes mostly staying under 0.1%
and never exceeding 1%. This demonstrates that the framework is generally able to
reproduce results and behaves as expected. Small deviations can unfortunately not be
avoided as asynchronous circuits are inherently influenced by external factors like junction

52

6.2. Multiplier

temperature which are impossible to control completely.

The same statistics when running the experiment on a second board are shown in Table 6.2.
In this case, the differences are clearly much more pronounced, especially when looking
at the less common value errors and glitches. While the differences seem to be quite high
at first glance, it is important to put these numbers into context: A 7.55% increase of
value errors with the DualCD buffer corresponds to the error rate rising from 0.1182% to
0.1272%, showing that the actual number of observed errors is still very similar when
running on the same board. More importantly, the overall trends that can be observed
on the first board also hold for the second board.

6.2 Multiplier
The multiplier circuit was tested in a 4-bit and an 8-bit configuration with this set of
parameters:

• All six buffer types

• Both logic styles (DIMS and NCLX)

• One fault type: Bit flips

• Input delays of 0 and 10 ns

• Output delays of 0, 10 and 20 ns

• 10 different fault durations, from 5 to 50 ns

• All possible fault start times within the range of golden run execution

• 32 fault-injection gates at a time (128 for the 8-bit version)

The input data that is used for the experiments is a sequence of 32 pseudo-randomized
tokens, being the same for every execution of the test framework to ensure that the
processed data is always the same.

The general error rates for the 4-bit configuration are depicted in Figure 6.2 and show
a similar picture to what was observed with the LFSR circuit. No count errors were
observed (neither on the 4-bit nor on the 8-bit implementation). This is no surprise
because the odds of a single SET to generate an additional data token are extremely low.

When comparing these results to what was observed on the simulation framework
in [Beh21], the overall trends generally match, even though the percentages are usually
in different ranges. The most likely reason for this is the decreased level of control over
the circuit in hardware, e.g., not being able to perform injections that last less than 5 ns
or having slightly skewed timing due to the synchronizers.

53

6. Experiment Results

Compared to the LFSR results, an interesting observation is the rate of value errors which
is higher by almost an order of magnitude in most of the instances, for the interlocking
and locking buffer styles exceeding 6% consistently. This suggests that the multiplier
circuit is relatively sensitive to producing wrong outputs when faced with SETs compared
to the LFSR. This is not too surprising given that the multiplier circuit contains a lot
more combinational logic. While many faults in the LFSR circuit will directly go into C
gates, most likely causing a code error or no error at all (if the C gate was expected to
toggle), the faults in the multiplier circuit are much more likely to affect wires in the
combinational logic, where the effect is not as straightforward to predict. Even faults
that are directly captured by C gates as code errors will most of the time still need to
pass through a few stages of combinational logic. The logic blocks themselves do not
define a specific behavior for erroneous inputs and as such, might not (or with delay)
propagate the code error to their outputs, but instead (temporarily) provide a valid data
word with a wrong value that is captured by the next buffer, providing another potential
reason for the increase in value errors.

Most of the other errors occur at a slightly lower rate except for glitches. Similarly to the
value errors, this can be explained by the more complex combinational logic, making it
more likely that a fault does not directly get propagated by a C gate or simply dissipates
before it gets captured.

When looking at the error rates of the 8-bit configuration in Figure 6.3, it can be seen
that the data width of the multiplier does not have a noticeable impact on the overall
error rate for any buffer type. The interlocking and locking WCHB produce even more
value errors, which indicates that the longer data paths manage to filter out even more
code errors as one would expect. The other significant change is the reduction of glitches
which is also consistent with the expected behavior, because the added logic makes it
even more unlikely for glitches to occur.

54

6.2. Multiplier

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

2

4

6

8

%
 o

f
to

ta
l
ru

n
s

Value Errors

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

1

2

3

4

5

%
 o

f
to

ta
l
ru

n
s

Deadlocks

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Code Errors

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

2

4

6

%
 o

f
to

ta
l
ru

n
s

Glitches

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Any Errors

DIMS NCLX

Figure 6.2: 4-bit Multiplier error rates of the different buffer types and logic styles relative
to all performed bit flip injections

55

6. Experiment Results

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

2

4

6

8

10

%
 o

f
to

ta
l
ru

n
s

Value Errors

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

2

4

6

8

%
 o

f
to

ta
l
ru

n
s

Deadlocks

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Code Errors

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

1

2

3
%

 o
f

to
ta

l
ru

n
s

Glitches

DIMS NCLX

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Any Errors

DIMS NCLX

Figure 6.3: 8-bit Multiplier error rates of the different buffer types and logic styles relative
to all performed bit flip injections

56

6.2. Multiplier

6.2.1 Effects of the Fault Duration
An interesting property to look at is the effect that the fault duration has on the observed
errors. To analyze this, a separate experiment was run on the 4-bit multiplier with the
WCHB buffer type both with DIMS and NCLX. As opposed to the other experiments,
the total number of fault durations was increased to 100, meaning that fault durations
from 5 to 500 ns were tested. Based on these results, the numbers presented in Figure 6.4
were obtained.

It is visible that the fault duration has a significant impact on all error types, with the
effect starting to become a lot less notable at around 100 ns for most error types.

One notable exception to this trend are glitches, which hit their highest value much
earlier and are the most stable from then on. This is not surprising behavior as glitches
occur in transitional states of the protocol. As the individual stages are not that big, a
certain fault duration will eventually cover the full time span of the transitions and such
a longer fault duration will not cause further glitches.

The other obvious observation to be made is the rather unstable rate of value errors
which also seems to hit a plateau but then oscillates and actually shows a small downward
trend. This is not as straightforward to explain and without further investigation it is
only possible to speculate on the cause of this effect. One possible explanation could
be the volatile nature of value errors: Both data rails of a single bit need to switch to
the wrong value at least long enough for the data to be captured. With longer fault
durations it stands to reason that the timing of the data rail transitions to each other
shift just enough that the faults manifest in the form of other errors (e.g., code errors).

A similar behavior is seen on deadlocks which also start oscillating at a certain fault
duration. The reasoning could be very similar to the one for value errors but has not
been further analyzed. It could be interesting to run these experiments on different buffer
types where value errors and deadlocks are generally more common.

6.2.2 Effects of the Output Delay
The last analyzed aspect is the effect of the output delay on error rates. The idea of
increasing the output delay is so that the pipeline spends more time in a filled state
(i.e., multiple tokens being processed simultaneously) instead of processing data token by
token.

It can be seen in Figure 6.5 that the effect strongly depends on the error type as well as
the used buffer style. One of the most interesting observations is probably the change
in error rates on the interlocking and the locking WCHB compared to the other buffer
types. The value error rate drops significantly with the higher output delays while it
increases on the other buffer types. For code errors and deadlocks on the other hand,
there is a noticeable increase. As the overall error rate remains roughly the same, it
seems likely that the code errors and deadlocks replace some of the value errors for higher
output delays. The cause of this phenomenon is yet to be determined and would require

57

6. Experiment Results

100 200 300 400 500

Fault duration (ns)

0.00

0.05

0.10

0.15

0.20
%

 o
f

to
ta

l
ru

n
s

Value Errors

100 200 300 400 500

Fault duration (ns)

0.000

0.025

0.050

0.075

0.100

0.125

%
 o

f
to

ta
l
ru

n
s

Deadlocks

100 200 300 400 500

Fault duration (ns)

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Code Errors

100 200 300 400 500

Fault duration (ns)

0.0

0.5

1.0

1.5

2.0

2.5

%
 o

f
to

ta
l
ru

n
s

Glitches

100 200 300 400 500

Fault duration (ns)

0

20

40

60

%
 o

f
to

ta
l
ru

n
s

Timing Deviations

100 200 300 400 500

Fault duration (ns)

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Any Errors

Figure 6.4: 4-bit multiplier error rates (WCHB) in relation to the fault duration

further analysis. It is particularly interesting because this trend was not observed at all
in [BHN+21].

The other observation of note is the reduction of glitches on the MDHB with increasing
output delays, seeing the error rate fall from 6% to 2%. This indicates that the latches
spend less time in transparent states when the pipeline is filling up which also matches
the results presented in [BHNS21].

58

6.3. Carry Ripple Adder

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

5

10

15

%
 o

f
to

ta
l
ru

n
s

Value Errors

Output Delay

0ns 10ns 20ns

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

2

4

6

%
 o

f
to

ta
l
ru

n
s

Deadlocks

Output Delay

0ns 10ns 20ns

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Code Errors

Output Delay

0ns 10ns 20ns

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

2

4

6

8

10

%
 o

f
to

ta
l
ru

n
s

Glitches

Output Delay

0ns 10ns 20ns

W
C
H
B

D
ea

dl
oc

ki
ng

In
te

rl
oc

ki
ng

Lo
ck

in
g

D
ua

lC
D

M
ou

se
tr
ap

0

10

20

30

%
 o

f
to

ta
l
ru

n
s

Any Errors

Output Delay

0ns 10ns 20ns

Figure 6.5: Effect of the output delays on the error rates on the 4-bit multiplier

6.3 Carry Ripple Adder

The carry ripple adder differs from the other tested circuits as the basic design is
purely combinational and does not use any buffers. Thus, when plugging it into the
injection harness, the acknowledgement of the input token is directly connected to the
acknowledgement of the output token. As synchronizers are required both on input
and output, the overhead introduced by the synchronizers alone would take longer than
the actual combinational processing of the adder, skewing the observed fault-injection
effects as the circuit would spend most of its time waiting for an acknowledgement. To
counter-act this problem, delay gates are added to slow down the circuit as described in
Chapter 4.4.3.

59

6. Experiment Results

The circuit was tested with three different input sets as explained in [MRL04]:

• An exhaustive set, testing all (512) potential input combinations

• A zeros set where A = B = 0, where the carry bit does not need to ripple through

• A worst-case set where A = 0xF and B = 0, activating the critical path of the
circuit as the fast carry output is not used in any of the full adders

The experiment was executed on a sequence of 544 input tokens, with the fault injections
being performed in such a time window that they are performed on the middle 512 input
tokens. This is done to ensure that all input combinations on the exhaustive set are
tested while avoiding irregular behavior due to being at the beginning or the end of each
run.

6.3.1 Input Set Comparison
The first aspect we looked at was the effect of the input set on the different error rates of
the circuit. For this experiment, the fault durations were chosen to be between 5 and
230 nanoseconds (starting at 5 ns, using 10 different widths, incrementing by 25 ns each).
Ten delay gates were added at the outputs of all gates in the circuit to ensure that the
asynchronous circuit was running significantly slower than the injection harness. The
extracted results are shown in Table 6.3.

The impact of the input set is clearly visible in how long the golden run takes to finish,
with the worst-case input set taking almost 50% longer than the zeros input set and the
exhaustive set being almost exactly centered between the two.

The effect can also be seen in the error rates, as the zeros set has the lowest error rate,
producing no value errors at all. Interestingly, the exhaustive input set has the highest
total error rate, surpassing the worst-case set. This shows that while the combination
used for the worst-case set is clearly the slowest, it is not the one that is most sensitive to
faults. To understand these differences in error rates it helps to analyze the number of C
gates that have a direct impact on the output of one of the full adders. For A = B = 0,
each full adder has four of ten C gates that would cause an output to switch that is
not supposed to. All other C gates do not affect any output signals or only those that
are supposed to toggle anyways (i.e., at worst causing a signal to toggle earlier than
expected). When A = 0xF and B = 0, that number increases to five C gates, providing
an explanation for the increased error rate. The same analysis could be done for the
exhaustive set by calculating these values for all 512 input combinations.

6.3.2 Sensitivity Windows of C Gates
As the next step, the intent was to reproduce the analysis presented in [MRL04] in real
hardware, more specifically to look at the error rates caused by fault injections on specific

60

6.3. Carry Ripple Adder

Input Set Golden Run Time Value Errors Any Errors
Zeros 103 us 0.000% 17.543%
Exhaustive 122 us 1.023% 22.142%
Worst-Case 146 us 0.621% 20.836%

Table 6.3: Error rates of the 4-Bit carry ripple adder on different input sets

C gates and comparing them to the amount of time these gates are supposed to be in
1-sensitive states.

To achieve representative results, the same experiment as before was executed but only the
shortest possible injection pulse was chosen (i.e., 5 ns), thus each individual fault injection
covers exactly one time window without overlaps to other injections. To maximize the
granularity of the fault-injection windows, the circuit was generated with 20 delay gates.
The numbers shown in [MRL04] and our results are condensed into Table 6.4 to provide
a brief overview.

C Gate Input Set Time in 1-sensitive state Error Rate
FA0.M02 Exhaustive 27.75% 12.31%
FA3.M02 Exhaustive 24.97% 12.45%
FA0.M07 Zeros 28.57% 0.00%
FA3.M07 Zeros 0.00% 0.00%
FA0.M09 Worst-Case 14.29% 0.00%
FA3.M09 Worst-Case 54.55% 0.00%

Table 6.4: Adder error rates compared to expected time in 1-sensitive states of C gates

While it was not expected that the error rates would match up exactly with the times
the circuit spends in 1-sensitive states, we were hoping to see similar ratios or at least
that the rates between the adders would decrease or increase accordingly. It is quite
clear that we were unable to achieve the desired results as no errors were observable at
all for the M07 and the M09 C gates. This is actually no surprise when looking at the
circuit in more detail. Both M07 with the zeros input set and M09 with the worst-case
set are gates that should be set in the data phase, meaning that the time they spend in
a 1-sensitive to 0 state is just the time before the expected transition to 1. If a fault now
causes the transition prematurely, this could at most be noticeable as a timing deviation,
but it will not cause an observable error at the output. For the exhaustive input set, a
similar effect might occur where the discrepancy in time spent in 1-sensitive states only
comes from situations where the ‘faulty’ transition is bound to happen anyways. This
shows that the analysis of 1-sensitive states as performed in [MRL04] does not directly
translate to the error rate of circuits.

61

6. Experiment Results

6.4 Framework Performance
One major motivation behind the framework is achieving a better performance compared
to a purely simulation based framework like the one presented in [BHNS21]. To evaluate
this, the execution times of the experiments are analyzed and set in relation to the total
individual fault injections performed. Assuming a fixed UART baud rate, there are two
major factors that affect the number of injections per second: The number of injections
performed per synthesis and the observed error rates.

As a new synthesis is required whenever the injection targets change, which takes roughly
a constant amount of time, it is evident that the injection rate can be improved by
increasing the number of injections per synthesis, most notably by increasing the following
parameters:

• Number of error gates per synthesis run

• Number of pulse start times

• Number of pulse widths

• Number of input and output delay combinations

The overall error rate is the second performance factor due to the UART interface being
an inherent bottleneck for the framework, meaning that once the result FIFO is full, an
entry needs to be transmitted to the workstation before another injection can be started,
slowing down the actual execution. Thus, a circuit that exhibits low error rates should
generally have a better injection rate.

The values shown in Table 6.5 were obtained when running the experiments as presented
earlier in this chapter. It can be seen that the overall injection rate never fell below 4,000
injections per second. It is also clearly visible that the number of injection gates used
massively increases the injection rate.

The second entry for the multiplier circuit comes from the experiments run for determining
the fault duration effect in Section 6.2.1. Here the main reason for the lower injection
rate is the high number of timing deviations, being higher than 50% for almost 80% of
all runs, leading to huge overhead in data that needs to be transmitted via UART.

To really show the effect of the UART bottleneck, the fault duration experiment was
re-run such that the faults would not cause any errors, i.e. for each execution only the
golden run result would need to be transmitted (this was done by setting the initial pulse
start higher than the golden run takes to execute). The effect is very clearly visible, as
the injection rate more than triples. This even slightly understates the effect of the slow
UART interface because just the synthesis takes up around 70 seconds of each run. The
actual experiment execution takes roughly 190 seconds with and 25 seconds without any
errors being reported.

62

6.4. Framework Performance

Circuit Gates Starts Widths Injections Duration Injections/s
LFSR 32 440 10 233 million 16 hours 4,046
Multiplier 32 447 10 144 million 6.3 hours 6,330
Multiplier 32 385 100 35 million 2.2 hours 4,378
Multiplier (no err.) 32 385 100 35 million 0.8 hours 18,615
Multiplier (8bit) 128 488 10 646 million 20.3 hours 8,818

Table 6.5: Injection rates of the different experiments that have been run

A direct comparison of the performance to the simulation framework introduced in [BHNS21]
is not that easy as such numbers were not directly presented. Instead, we look at the
shown simulation progress over a full month. As there were initial issues which were
eventually resolved, it is not fully representative to look at the full month. As such, only
the period from April 13th, 2021 to April 17th, 2021 will be looked at, which seems to
be when the framework was working at its best. During that time period, the simulation
count grew from roughly 0.44 to 0.74 billion, meaning that 300 million simulations were
performed in a span of 4 days. These numbers lead to an estimated rate of 868 fault
injections per second.

At first glance, these numbers may seem underwhelming as the FPGA framework in
some cases only performs about five times faster while the fault injection is a lot less
precise. It needs to be considered that the simulation framework employs a very high
degree of automation, spreading the simulation over 40 computers running in parallel
and storing results in a common SQL database. The results presented here, on the other
hand, were all performed on a single board, without any parallelization between the
individual runs. Some options for potentially increasing the framework performance are
explored in Chapter 7.2.

63

CHAPTER 7
Conclusion and Outlook

The final chapter provides an overview of the research that has been done in the course
of this thesis and also gives some outlook on potential improvements that could be
implemented in the future.

7.1 Conclusion
With the developed fault-injection harness and accompanying Python library, it was
possible to execute billions of individual fault-injection experiments, taking just a few
days of execution time. Especially the Python library turned out to be a big factor,
automating the entire process of experiment execution:

• Iteration over different circuits and parameters

• Circuit augmentation

• Synthesis of injection harness and download to FPGA

• Experiment execution

• Result retrieval and processing

The results themselves are stored in simple CSV files, making them easily accessible
without the need for specific software. In addition, the framework provides function-
ality for basic filtering of the results and generating summaries of error rates for easy
interpretation of generated results.

In the process of evaluating results for this thesis, it became clear that the handling
of such big data sets can get cumbersome especially when attempting to filter for very

65

7. Conclusion and Outlook

specific cases. Thus, it is generally advisable to keep the experiment configuration in
clearly defined scopes, depending on the observations that the user is trying to make.

The results presented in this thesis are not aimed at giving answers about which buffer
or logic style to use, but rather to prove that the framework obtains realistic results
compared to previous publications and to show some of the specific capabilities that the
framework itself has to offer, e.g.:

• Injecting faults on circuits without input

• Precisely targeting certain signals for fault injection

• Result processing for specific victims

While the high degree of automation allowed the execution of hundreds of millions of
injections without user intervention, the framework can also be used in a more iterative
process. By generating results within minutes, it has the potential to be an effective tool
when trying to find the right fault mitigation strategy for a QDI circuit.

7.2 Outlook
During development of the framework, numerous ideas for improvements and further
work came up, which exceeded the scope of this thesis so they have not been further
explored yet:

• Supporting a wider range of QDI circuits
As outlined in Chapter 4.1, there are specific limitations that the tested circuit
needs to fulfill to be compatible to our framework. Some limitations that could
be interesting to widen is allowing multiple input/output channels or supporting
different QDI protocols, e.g., a 2-phase DR protocol.

• Improving UUT performance
One issue with the implementation stems from the communication between the UUT
and the injection harness as the input and output tokens cross the clock boundary,
requiring synchronizers. These synchronizers add delays to the acknowledgement of
input and output tokens, potentially being a bottleneck for the actual execution of
the QDI circuit. A potential solution for this could be the use of dual-port FIFOs
on both sides of the UUT for communicating the tokens, providing an asynchronous
interface on one side and a synchronous interface on the other. This would allow
reading and writing the tokens without the need for synchronizers, keeping the
entire execution sequence in the asynchronous domain.

• Changing the host interface
As described earlier, the UART interface is the most obvious bottleneck when it

66

7.2. Outlook

comes to experiment execution, as the harness regularly needs to wait for the result
FIFO to empty before starting the next injection. This problem could be avoided
by, e.g., using a USB interface, improving the result transmission rate. This change
could also lead to an on-demand interface for the results instead of constantly
pushing them. That can be an important factor when it comes to processing the
results on the host, as the current implementation needs to ensure that no bytes are
missed on the UART interface, effectively waiting for all Bytes to be transmitted
before starting the processing of any results.

• Use a database for results storage
While the usage of CSV files allows for very easy information access and storage,
they are not very efficient when it comes to receiving detailed results. Setting up a
proper SQL database could improve performance of results processing and analysis.

• Parallelization
Another obvious way of improving the performance of experiment execution is
adding parallelization capabilities. The potential scope of this option is very wide,
ranging from the possibility of running the synthesis for the next experiment while
the current one is still executing to having multiple workstations that coordinate
through a central database similar to what is presented in [BHNS21].

67

List of Figures

2.1 Example of a synchronous circuit. 3
2.2 Simplified example of an asynchronous circuit. 5
2.3 2-phase vs. 4-phase protocol . 6
2.4 BD circuit with Muller Pipeline for the control path. 6
2.5 4-phase DR example. Two bits are being transmitted in parallel. 7
2.6 Gate and wire orphans. 8
2.7 3-stage WCHB pipeline. 9
2.8 Different implementation techniques of an OR gate. 10

3.1 Different sensitivity states of C gates. 16

4.1 Augmentation with a fault-injection gate on wire ‘A’. 24
4.2 Block Diagram of the fault-injection harness. The actual QDI circuit is the

block labeled UUT. Everything around it is part of the harness. 25
4.3 UART command structure for setting a new input sequence. The first byte is

consumed by the UART arbiter and never makes it to the module. In this
example, the input words are 20 bit wide which gets padded to three bytes
each. Bits 23 to 20 of each word are the padding bits. When the last word
has been received by the module, the UART arbiter will acknowledge it by
sending 0x01 back to the workstation. 27

4.4 UART command structure for communicating with the test control unit. The
ADDR and DATA field are optional depending on the executed command. 28

5.1 16-bit LFSR example using the feedback polynomial x16 + x15 + x13 + x4 + 1.
The register’s current value is 0x1234 and will be 0x891A in the next step. 42

5.2 SDFS diagram of the tested LFSR circuit in its initial state. 42
5.3 Schematic of the full 4-bit adder. All the signals are DR. 43
5.4 Schematic of the combinational full adder. The lightning bolts indicate the

positions where fault-injection gates are added. 43
5.5 4-bit SDFS example of the tested multiplier. The first logic block processes

two bits at once because there is no Z yet, reducing the initial complexity. 44
5.6 Deadlocking Buffer. An invalid word will cause a deadlock that can only be

resolved with a reset. 45

69

5.7 Interlocking Buffer. Once a valid state has been captured, a transition on the
other input will be ignored. 45

5.8 Example of a Dual-CD WCHB storing two DR bits. The C gates get armed
for the next transition only when both bits have finished their transitions. 46

5.9 Example of the Locking WCHB based on [BS09] storing two DR bits. The C
gates of each bit are locked as soon as one of the data rails goes high. . . 47

5.10 Example implementation of a MDHB storing two DR bits. 48

6.1 LFSR error rates relative to all performed bit flip injections 51
6.2 4-bit Multiplier error rates of the different buffer types and logic styles relative

to all performed bit flip injections . 55
6.3 8-bit Multiplier error rates of the different buffer types and logic styles relative

to all performed bit flip injections . 56
6.4 4-bit multiplier error rates (WCHB) in relation to the fault duration . . . 58
6.5 Effect of the output delays on the error rates on the 4-bit multiplier . . . 59

70

List of Tables

4.1 All supported commands of the test control unit. The addresses for read and
write commands are listed in Table 4.2. 28

4.2 All parameters accessible through the test control unit. The width parameter
indicates the DATA width in bytes. 29

4.3 Implementation Parameters . 40

5.1 Tested buffer styles . 44

6.1 Error rates when rerunning the LFSR experiment on the same board, relative
to the original run . 52

6.2 Error rates when rerunning the LFSR experiment on a second board, relative
to the original run . 52

6.3 Error rates of the 4-Bit carry ripple adder on different input sets 61
6.4 Adder error rates compared to expected time in 1-sensitive states of C gates 61
6.5 Injection rates of the different experiments that have been run 63

71

Acronyms

ASIC Application-Specific Integrated Circuit. 17

BD Bundled Data. 6, 8, 69

CD Completion Detector. 7, 31, 46, 47

CSV Comma Separated Values. 36, 37, 65, 67

DFG Data Flow Graph. 32

DI Delay Insensitive. 7, 8

DIMS Delay-Insensitive Minterm Synthesis. 9–11, 32, 33, 38, 41, 42, 44, 49, 50, 52, 53,
57

DR Dual-Rail. 7–10, 12, 13, 15, 23, 31, 33, 42, 43, 45–48, 50, 66, 69, 70

EDA Electronic Design Automation. 33

FF Flip-Flop. 3, 4

FIFO First In First Out. 19, 26, 31, 62, 66, 67

FPGA Field Programmable Gate Array. 2, 13, 15, 17, 18, 23, 24, 27, 33, 35, 36, 39, 40,
63, 65

JSON JavaScript Object Notation. 25, 36

LFSR Linear-Feedback Shift Register. ix, 41, 42, 49–54, 63, 69–71

LUT Lookup Table. 33, 40

MDHB MOUSETRAP-Style D-Latch Half Buffer. 47, 48, 50, 51, 58, 70

NCL Null Convention Logic. 10, 11, 33

73

NCLX Null Convention Logic with Explicit Completion. 10, 11, 33, 38, 41, 42, 44, 49,
50, 52, 53, 57

PRS Production Rule Set. 32–36, 38, 40

QDI Quasi Delay Insensitive. 1, 8, 9, 12, 13, 15, 16, 19, 20, 23–25, 31–33, 41, 47, 66

RAM Random Access Memory. 18, 31

SDFS Static Data-Flow Structure. 11, 12, 42, 44, 69

SET Single Event Transient. 1, 2, 12, 50, 53, 54

SEU Single Event Upset. 1, 12, 50

SI Speed Independent. 8

SQL Structured Query Language. 21, 63, 67

ST Self-Timed. 8

UART Universal Asynchronous Receiver Transmitter. 18, 24–27, 30, 40, 62, 66, 67, 69

USB Universal Serial Bus. 18

UUT Unit Under Test. 17–19, 23–25, 27, 30–32, 35, 39, 66

VHDL Very High Speed Integrated Circuit Hardware Description Language. 18, 23, 24,
32, 33, 35, 36

WCHB Weak-Conditioned Half Buffer. 9, 21, 38, 44–47, 50, 54, 57, 58, 69, 70

74

Bibliography

[Bau05] Robert C Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and materials reliability, 5(3):305–
316, 2005.

[Beh21] Patrick Behal. Quantitative Comparison of the Sensitivity of Delay-Insensitive
Design Templates to Transient Faults. PhD thesis, Wien, 2021.

[BHN+21] Patrick Behal, Florian Huemer, Robert Najvirt, Andreas Steininger, and
Zaheer Tabassam. Towards explaining the fault sensitivity of different qdi
pipeline styles. In 2021 27th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 25–33. IEEE, 2021.

[BHNS21] Patrick Behal, Florian Huemer, Robert Najvirt, and Andreas Steininger. An
automated setup for large-scale simulation-based fault-injection experiments
on asynchronous digital circuits. In 2021 24th Euromicro Conference on
Digital System Design (DSD), pages 541–548. IEEE, 2021.

[BS09] William John Bainbridge and Sean James Salisbury. Glitch sensitivity and
defense of quasi delay-insensitive network-on-chip links. In 2009 15th IEEE
Symposium on Asynchronous Circuits and Systems, pages 35–44. IEEE, 2009.

[EGRM20] Mohammad Eslami, Behnam Ghavami, Mohsen Raji, and Ali Mahani. A
survey on fault injection methods of digital integrated circuits. Integration,
71:154–163, 2020.

[FB96] Karl M Fant and Scott A Brandt. Null convention logic/sup tm: a complete
and consistent logic for asynchronous digital circuit synthesis. In Proceedings
of International Conference on Application Specific Systems, Architectures
and Processors: ASAP’96, pages 261–273. IEEE, 1996.

[FCMG13] Veronique Ferlet-Cavrois, Lloyd W Massengill, and Pascale Gouker. Single
event transients in digital cmos—a review. IEEE Transactions on Nuclear
Science, 60(3):1767–1790, 2013.

[Gin11] Ran Ginosar. Metastability and synchronizers: A tutorial. IEEE Design &
Test of Computers, 28(5):23–35, 2011.

75

[HNS20] Florian Huemer, Robert Najvirt, and Andreas Steininger. Identification and
confinement of fault sensitivity windows in qdi logic. In 2020 Austrochip
Workshop on Microelectronics (Austrochip), pages 29–36. IEEE, 2020.

[Hue22] Florian Ferdinand Huemer. Contributions to efficiency and robustness of
quasi delay-insensitive circuits. PhD thesis, Technische Universität Wien,
2022.

[KAN11] Jagrit Kathuria, M Ayoubkhan, and Arti Noor. A review of clock gating
techniques. MIT International Journal of Electronics and Communication
Engineering, 1(2):106–114, 2011.

[KL02] Alex Kondratyev and Kelvin Lwin. Design of asynchronous circuits by
synchronous cad tools. In Proceedings of the 39th annual Design Automation
Conference, pages 411–414, 2002.

[Mar90] Alain J Martin. The limitations to delay-insensitivity in asynchronous circuits.
In Beauty is our business: a birthday salute to Edsger W. Dijkstra, pages
302–311. Springer, 1990.

[MN06] Alain J Martin and Mika Nystrom. Asynchronous techniques for system-on-
chip design. Proceedings of the IEEE, 94(6):1089–1120, 2006.

[MRL04] Yannick Monnet, Marc Renaudin, and Régis Leveugle. Asynchronous circuits
sensitivity to fault injection. In Proceedings. 10th IEEE International On-Line
Testing Symposium, pages 121–126. IEEE, 2004.

[Mul59] David Muller. A theory of asynchronous circuits. In Proc. Int. Symp. on
Theory of Switching, 1959, volume 29, pages 204–243, 1959.

[ORG92] Joakim Ohlsson, Marcus Rimen, and Ulf Gunneflo. A study of the effects of
transient fault injection into a 32-bit risc with built-in watchdog. In FTCS,
volume 22, pages 316–325, 1992.

[PHRB11] Ilia Polian, John P Hayes, Sudhakar M Reddy, and Bernd Becker. Modeling
and mitigating transient errors in logic circuits. IEEE Transactions on
Dependable and Secure Computing, 8(4):537–547, 2011.

[RS08] Babak Rahbaran and Andreas Steininger. Is asynchronous logic more robust
than synchronous logic? IEEE Transactions on dependable and secure
computing, 6(4):282–294, 2008.

[RSH04] Babak Rahbaran, Andreas Steininger, and Thomas Handl. Built-in fault in-
jection in hardware-the fidyco example. In Proceedings. DELTA 2004. Second
IEEE International Workshop on Electronic Design, Test and Applications,
pages 327–332. IEEE, 2004.

76

[SN07] Montek Singh and Steven M Nowick. Mousetrap: High-speed transition-
signaling asynchronous pipelines. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 15(6):684–698, 2007.

[Spa20] Jens Sparsø. Introduction to Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark, 2020.

[SS93] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring structures.
Integration, 15(3):313–340, 1993.

[SS11] Jitesh Shinde and SS Salankar. Clock gating—a power optimizing technique
for vlsi circuits. In 2011 annual IEEE India conference, pages 1–4. IEEE,
2011.

[WQR+04] Nicholas J Wang, Justin Quek, Todd M Rafacz, et al. Characterizing the
effects of transient faults on a high-performance processor pipeline. In
International Conference on Dependable Systems and Networks, 2004, pages
61–61. IEEE Computer Society, 2004.

77

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Thesis Structure

	Background
	Synchronous Design
	Asynchronous Design
	Handshaking Protocols
	Delay Modeling of Asynchronous Circuits
	QDI Circuit Design
	Static Data-Flow Structures
	Faults in Digital Circuits

	Related Work
	On the Sensitivity of C Gates
	Fault-Injection Toolset for Synchronous Circuits
	Simulation Based Fault Injection on Asynchronous Digital Circuits

	Automated Fault-Injection Framework for QDI Circuits
	Main Objectives
	Framework Design
	Fault-Injection Harness
	UUT Preparation
	Experiment Control Software
	FPGA Integration

	Experiment Configurations
	Test Circuits
	Buffer Styles

	Experiment Results
	LFSR
	Multiplier
	Carry Ripple Adder
	Framework Performance

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	Acronyms
	Bibliography

