
A Benchmark Suite for AI
workloads in Serverless Edge

Computing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Paul Prüller, BSc
Matrikelnummer 01326451

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Dipl.-Ing. Philipp Raith, BSc

Wien, 7. April 2024
Paul Prüller Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Benchmark Suite for AI
workloads in Serverless Edge

Computing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Paul Prüller, BSc
Registration Number 01326451

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Univ.Ass. Dipl.-Ing. Philipp Raith, BSc

Vienna, 7th April, 2024
Paul Prüller Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Paul Prüller, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. April 2024
Paul Prüller

v

Danksagung

Die letzten Jahre waren eine außergewöhnliche Zeit und es ist nicht selbstverständlich
durch diese Phase mit so einer Unterstützung gehen zu dürfen. Ich möchte daher diese
Möglichkeit nutzen, um mich bei meinen Eltern, FreundInnen und WegbegleiterInnen
zu bedanken, die mir immer wieder die Zeit, aber auch den gewissen Schubser gegeben
haben, um dieses Studium und diese Arbeit mit der nötigen Motivation und Kraft
abschließen zu können. Dieser stetige Rückhalt hat dazu beigetragen, dass ich mit Stolz
und Freude dieses Studium abschließen konnte. Einen großen Dank auch an meinen
Diplomarbeitsbetreuer Philipp Raith, der mich mit Geduld und unglaublichen Fachwissen
unterstützt hat. Weiters möchte ich der Technischen Universität Wien danken und die
vielseitigen und interessanten Studien- und Forschungsmöglichkeiten hervorheben.
Vielleicht sieht man sich ja wieder!

vii

Acknowledgements

The last few years have been an extraordinary time and it is not a matter of course to
be able to go through this phase with such support. I would therefore like to take this
opportunity to thank my parents, friends, and companions, who have always given me
the time, but also the certain push to be able to complete this study and this work with
the necessary motivation and strength. This continuous support has contributed to the
fact that I was able to complete my studies with pride and joy. A big thank you also
to my thesis supervisor Philipp Raith, who supported me with patience and incredible
expertise. I would also like to thank the Technical University of Vienna and emphasize
the diverse and interesting study and research opportunities.
Maybe we’ll see each other again!

ix

Kurzfassung

Die Durchführung von Benchmarking für Anwendungen im Bereich Virtual Reality (VR)
und artifizielle Intelligenz (AI) in Edge Computing Umgebungen gestaltet sich aufgrund
begrenzter verfügbarer Hardwareressourcen als herausfordernd. Insbesondere bei der
Analyse von Smart-City Umgebungen ist es oft nicht möglich, eine realistische Hardwar-
einfrastruktur zu implementieren. Beim Benchmarking serverloser Anwendungen gibt es
zwei gängige Methoden. Auf der einen Seite gibt es maßgeschneiderte Testbed-Setups, bei
denen echte Hardware zum Einsatz kommt, die realistische Bedingungen ermöglichen, auf
der anderen Seite existieren Simulationstools, bei denen ausschließlich Algorithmen und
Modelle zur Nachbildung des Verhaltens eines Systems verwendet werden. Im Gegensatz
zu groß angelegten realitätsnahen Experimenten, die mit der Container Orchestrierungs-
plattform Kubernetes durchgeführt werden, besteht die entwickelte Testumgebung aus
nur wenigen verschiedenen Hardwarekomponenten. Diese ermöglichen es, realistischere
Versuchsergebnisse in einem kleineren Rahmen zu sammeln, als es in einer simplen
Simulation möglich wäre. Der optimale Weg hängt vom Benchmarking Prozess und den
spezifischen Anforderungen bezüglich der Steuerung und Reproduktion von Experimen-
ten ab. Die Begrenzung der verfügbaren Hardwareressourcen kann jedoch mithilfe von
Simulation-Frameworks überwunden werden. Diese können auf einem einzelnen Rechner
ausgeführt werden und helfen dabei, die benötigten Ressourcen erheblich zu reduzieren.
Derartige Frameworks bieten eine breite Palette von Parametern an und erfordern eine
Standardisierung hinsichtlich der verwendeten Workloads, Netzwerkkomponenten und an-
derer Teile derartiger Setups. Es weist Einschränkungen hinsichtlich der Genauigkeit von
Benchmarking Ergebnissen auf. Dabei müssen viele Parameter berücksichtigt werden, um
den Grad der Realitätsnähe zu erhöhen. Obwohl die Simulationen die Realität nicht exakt
abbilden, dienen sie als ausgezeichneter Ausgangspunkt für die Entscheidungsfindung bei
der Entwicklung und Bewertung von Arbeitslasten und Topologien. Zusätzlich können
die Ergebnisse dieser Evaluierungen auch die Ressourcenplanung von Edge Computing
Hardware-Setups unterstützen, speziell, wenn es um die Integration von Edge Computing
Hardwarekomponenten geht. Diese Arbeit erweitert das Simulationsframework faas-
sim um verschiedene AI-basierte Arbeitslasten, Workload Profilen und geodistribuierte
Topologien. Ein spezielles Setup ermöglicht es, Anfragemuster basierend auf benutzerde-
finierten Szenarien zu generieren, indem individuelle Topologien und Ereignisdatensätze
verwendet werden. Durch eine systematische Literaturrecherche werden auch bestehende
Frameworks verglichen, um eine solide Grundlage für zukünftige Designentscheidungen zu

xi

schaffen. Das Framework faas-sim ermöglicht die Durchführung umfangreicher Experimen-
te durch Simulationen. In dieser Studie werden die Ergebnisse verschiedener Szenario- und
Profiling-Experimente verglichen, die auf einer eigens erstellten Testumgebung (Testbed)
durchgeführt wurden. Die entwickelte Suite umfasst sechs verschiedene Openfaas-basierte
Funktionen, sowie eine Inferenzpipeline für das Benchmarking mehrerer verbundener
serverloser Funktionen. Zusätzlich beinhaltet sie Skripte zur Erstellung von Topologien
aus der Open-Source-Datenbank OpenCellid1. Der verwendete NYC Taxi-Datensatz dient
als Grundlage für die Erstellung von Anfragemustern und Workload Profilen. Dieser
Datensatz kann durch jeden beliebigen Ereignisdatensatz, der aus einzelnen Einträgen
mit einfachen Zeitstempeln besteht, ersetzt werden. Die Benchmark Suite wurde in der
Hinsicht entwickelt, sodass das Testbed und die Simulation mit denselben Daten arbeiten
können. Die Ergebnisse zeigen, dass die Metriken der Simulation die experimentellen
Messwerte nicht genau widerspiegeln, in beiden Fällen jedoch erkennbare Unterschie-
de zwischen den Zonen erkennbar sind. Simulationskonfigurationen von Geräten und
Topologien sind daher wichtig, um realistische Simulationsszenarien zu gewährleisten.

1https://opencellid.org/

Abstract

Edge Intelligence applications combine resources in the edge-cloud continuum to provide
new AI applications such as Mobile Augmented Reality. Serverless Edge Computing
can facilitate the deployment of these applications, but current offerings are not yet
suitable. Benchmarking in the field of VR and AI is limited due to the capacity of the
available hardware, and the creation of realistic large-scale Smart City infrastructure
for testing purposes is impractical and very expensive. When benchmarking serverless
applications, there are two common ways to do that. On the one side, we have customized
testbed setups, where real hardware is involved to allocate realistic conditions and allow
small scale experiments, on the other side simulation tools where only algorithms and
models are used to replicate the behavior of a system. They run on a single machine
and reduce the needed amount of resources tremendously. It has limitations like a lower
accuracy of benchmarking and must consider a lot of parameters to increase the degree
of realism. They do not reproduce the real world but can be seen as a point of reference
for further decision. Both ways need standardization concerning the workload inputs
and network components. The portability and reproducibility between real world and
simulation is therefore an aggravating factor. In this thesis, the framework faas-sim
is going to be extended by a suite of AI-based workloads, request patterns, topologies,
and a custom request pattern generator. By using a systematic literature review, other
existing frameworks are compared and can be used for further design decisions. The suite
offers six different open-source based serverless AI functions and an inference pipeline for
benchmarking multiple connected serverless functions. It also includes functionality to
create topologies out of the box for simulation and experiments. The used NYC Taxi
Dataset is the basis for creating united request pattern and workload profile generation.
This can be exchanged by any event dataset. The evolved suite2 will be incorporated
into the study, ensuring that both the testbed and simulation process the same input
data. The faas-sim framework results were then compared with the testbed experiments
results. It shows, that the simulation results do not precisely mirror the experimental
metrics, but recognizable variations among zones are evident in both cases, which allows
to start more detailed analysis regarding further design decisions. Hence, the simulation
configuration of devices and topologies is important to guarantee realistic simulation
scenarios.

2https://github.com/pruellerpaul/benchmark_suite

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aim of the work . 3
1.2 Research Questions . 3
1.3 Structure of Thesis . 5

2 Background 7
2.1 Edge Intelligence . 7
2.2 Edge Computing . 11
2.3 Serverless Computing . 15
2.4 Faas-sim . 20

3 Related Work 25
3.1 Simulation Frameworks . 25
3.2 Emulation Frameworks . 26
3.3 Benchmarking Suites . 26

4 Methods 27
4.1 Literature Review & Related Work Research & Requirement Engineering 27
4.2 Infrastructure topologies, request pattern & workload development . . 28
4.3 Testbed Experiments . 34
4.4 Simulation runs . 39
4.5 Benchmarking result analysis . 39

5 Approach 41
5.1 Literature Review, Related Work Research & Requirement Engineering 41
5.2 Infrastructure Topology Generation . 43
5.3 Request Pattern Generation . 45
5.4 Workload Implementations . 45

xv

6 Experiments 55
6.1 Testbed setup . 55
6.2 Edgerun galileo experiments framework 56
6.3 Profiling experiments . 56
6.4 Scenario experiments . 57

7 Evaluation 59
7.1 Simulation & Emulation Frameworks 59
7.2 Serverless Benchmarking Suites . 69
7.3 Workload Definition . 77
7.4 Simulation and Testbed Evaluation . 81

8 Conclusion 93
8.1 Future work & limitations . 95

List of Figures 97

List of Tables 99

List of Algorithms 101

Bibliography 103

CHAPTER 1
Introduction

Edge Intelligence offers a widespread application area. In the case of this thesis, the areas
of user-centered applications, Augmented Reality, and Artificial Intelligence are viewed as
an opportunity for taking a close look at how effective and performative these applications
and services work in Edge Computing networks and how service orchestration is done in
different scenarios. Kubernetes, which facilitates container virtualization and deployment,
plays a central role in this thesis by enabling the independent rollout of applications
across different devices, independently of the operating system. Applications in these
areas behave differently when looking at the resources needed. Some of them require
intensive computing power, others memory-intensive work. The complexity of managing
these applications is high, but can be handled by serverless computing and implementing
specific scheduling strategies. To obtain the optimal scheduling strategy, it is necessary
to know about the resource needs of a function or application. The performance, costs
and effectiveness of Edge Computing platforms can be influenced by many factors and
must therefore be analyzed using benchmarking methods. Two ways e.g. to achieve this
are benchmarking experiments on real devices that provide very accurate results, and
simulation tools that provide approximations and allow representing upscaled scenarios.

The faas-sim project [RRFD23], developed at the Distributed Systems Group at TU
Wien, is concerned with the simulation of container-based FaaS (Function-as-a-Service)
platforms and the development of strategies for scheduling, auto-scaling or load balancing
in different scenarios like urban sensing edge systems, hybrid Industry 4.0 settings or
cloud regions. Object Classification or Speech-to-text, which are application areas in AR
and AI, are already implemented in this framework as the first examples for such simula-
tions [RRD21]. Edge Intelligence requires a high-performance architecture for computing.
Therefore, Serverless Edge Computing is playing an important role in this area. Functions
that are going to be uploaded by users are deployed and managed autonomously by
the Edge Computing platforms, which gets more complex when handling heterogeneous

1

1. Introduction

environments, like the cloud-edge continuum, where a wide range of different hardware
resources and network participants appear. The efficient execution and the compatibility
among the competitors are challenging for this reason [ZCL+19]. It shows, that the data
management, performance, infrastructure engineering, and AI support are still in need of
improvement [RND23].

Serverless Edge Computing makes use of a hierarchical architecture approach. It is
usually designed to orchestrate and manage systems, applications, or services that are
distributed over multiple cloud providers and network domains. In the case of Edge Com-
puting, which is a very dynamic environment with many devices and network participants,
the orchestration of heterogeneous services proves difficult due to the e.g. geographical
distances between network nodes and the resource (CPU, RAM, etc.) limitations of
edge devices. In [LLR+21], the placement of server and edge devices are discussed and
display a comprehensible use case of this problem area. Let’s think about a smart
city environment, where the need for an even distribution of Edge Computing units is
important, such that the resources and edge devices are placed efficiently regarding the
distribution of the potential clients over the network. The results and methods of this
thesis are a motivational use case regarding server placement and resource planning and
can be part of a prospective way to solve such planning problems. Because of the expen-
sive and complex computing and data storage infrastructure, it is not easy to evaluate
real-world Edge Computing systems against benchmarks and performance indicators,
without simulation and emulation programs. The problem is, that it is not possible to
scale up local settings to a real-world edge system with thousands of machines without
an enormous amount of financial resources. There are several simulation tools, that offer
repeatable evaluation of application traces in virtual large-scale network topologies. For
the emulation of edge infrastructure, some tools can help to test real applications in an
experimental environment. A possible way to emulate and test the behavior of a specific
deployment and orchestration strategy is to set up a testbed in a local environment, which
represents an abstract edge system, and to evaluate the performance for this setting. To
come along with both contexts (testbed emulation and simulation) it is essential to have
a baseline to operate together. The generated traces of the testbed emulation are the
input parameters of the simulator, which then simulates the behavior in a big-scaled
environment.

Currently, in our faas-sim context, the tools are limited and not suitable to cover
a wide area of AI-based workloads, typical infrastructure topologies, geo-distributed
usage patterns and to ensure sufficient evaluation. Also, the offered benchmark indicators
are limited in the context of Quality of Service (QoS). An extendable and complete suite
of geo-distributed request patterns, different workloads, and AI-centered benchmarks,
considering Quality of Service and realistic topologies would close the gap and establish
a verifiable way to test the behavior and performance of AI application deployments on
edge devices.

2

1.1. Aim of the work

1.1 Aim of the work
First of all, we want to give a brief overview of the techniques, and theoretical information
regarding this thesis, analyze common Cloud/Edge Computing simulation & emulation
frameworks, and asses benchmarking tools & metrics in the research area of AI and
AR. The simulation and emulation frameworks are intended to provide a reference and
motivation as to which aspects should be taken into account when working with such tools,
what the existing challenges and obstacles are and what further developments are possible.
The first main aim is to set up an extendable suite of AI-based user-focused workloads
that work with faas-sim and can also be adapted on an existing small-scaled testbed,
which represents a low-scaled edge Kubernetes cluster and works with container-based
orchestration. Because of the large scale of AI applications and workloads, this thesis
is going to limit the scope to Machine learning inference. ML consists of long-running
lived tasks like preprocessing and training and short-running lived tasks like inference,
so we decided to set the focus on the latter to narrow the scope of the work. The
accurate workload structure for the subsequent experiments has to be specified and a
collection of realistic infrastructure topologies and geo-distributed usage patterns should
be developed by using real-world datasets. After this, we are going to define and run
benchmark experiments. In the evaluation phase, we start to line out the differences
between simulation and testbed experiment runs regarding the benchmarks and metrics,
which we gathered before in the requirement engineering phase. Our work enables as
future work to find constellations to implement common scaling and scheduling strategies
with the most outcomes and offer a suite that allows one to find the optimal edge device
and server placement more efficiently.

1.2 Research Questions
RQ1 Which applications or functions, benchmarking tools, and metrics are

used in the research area of Edge Computing and Artificial Intelligence?
What are the necessary aspects and components of a state-of-the-art
AI benchmarking suite? In the context of AI and AR, considering an Edge
Computing environment, it is necessary to know which application fields and
serverless functions are already trialed and which tools and metrics are used in
established works to generate an optimal benchmarking setup. This will be done
by literature review, related work research, and requirement engineering.

RQ2 How can realistic infrastructure topologies, request patterns, workloads,
and recent serverless AI or AR functions be developed for simultaneous
use on a testbed infrastructure and a simulation framework, by only
using open data? How do the developed functions behave in the real-
world on heterogeneous devices in terms of resource usage? When looking
at common benchmarking and performance tests, realistic data is missing, or not
used for benchmarking. For this work, open data is used to develop infrastructure
topologies, workloads, and request patterns, that can be used for simulation and

3

1. Introduction

testbed experiments at once. Also, simple AI-based serverless functions will be
applied in the benchmarking phase. Their profiling results are baseline for the
simulation execution.

RQ3 When comparing the results of the testbed experiments and the simu-
lation, what differences can be examined in terms of the metrics and
benchmarks that are important for our use cases defined in RQ1? To
envelope a reasonable simulation framework like faas-sim, it is necessary to check
and compare its outcome with real-world trace-driven testbed data. For this reason,
the serverless functions from RQ2 will be implemented in the faas-sim simulation.
The simulation and the testbed experiments will get tested with the same request
pattern and topologies we gathered in RQ2. Metrics like round-trip time, latency,
or memory consumption time are useful examples for the benchmarking process.
Different faas-sim reconcile intervals can show how close the simulation is to the
real-world data.

4

1.3. Structure of Thesis

1.3 Structure of Thesis
This thesis starts with the Chapter 2, which presents the fundamental background of Edge
Computing, Edge Intelligence, and Serverless Computing and shows how Kubernetes
and faas-sim work. In Chapter 4, the several methodical stages are described. It is split
into the literature review, related work research, and requirement engineering subsection,
the infrastructure topologies, request pattern, and workload development subsection,
followed by the testbed experiments, simulation runs, and analysis results subsections.
In Chapter 3 the found simulation, emulation, and hybrid frameworks are listed. Also,
a selection of serverless benchmarking tools and suites is shown in this chapter. In
Chapter 5 and Chapter 6 the detailed approach of the methods and experiments are
presented. In the experiment chapter, the testbed setup, the profiling, and the scenario
experiment implementation are described in detail. Chapter 7, the evaluation chapter,
shows the results of the related work research, topology and cell extraction, request
pattern generation, and the testbed scenario and profiling experiments. The Chapter 8
shows the conclusion and elaborates on the limitations of this thesis and future work.

5

CHAPTER 2
Background

The background chapter elucidates information and knowledge about technologies and
concepts that are important to this thesis. It starts in Section 2.1 with an overview of
Edge Intelligence. In Section 2.2 the Edge Computing paradigm is introduced, and in
Section 2.3 the concept of Serverless Computing gets outlined with a special focus on the
Function-as-a-Service paradigm. Finally the platform systems Kubernetes and faas-sim
are presented.

2.1 Edge Intelligence
In the past years, strong growth of performative computing devices, Cloud Computing
servers, or edge devices with hardware accelerators could be observed. This is also a
consequence of the Edge Computing paradigm, presented in Section 2.2. Simultaneously,
the amount of applications, which evolved a heavy need of computing resources, also
increased. In [RD19], the current cyber-human transition is discussed, where augmented
human cognition becomes more and more in our daily lives. According to their definition,
EI can be divided into different categories, namely public, private, predictive maintenance
and intersecting. Due to the successful progression of AI applications and their use cases,
such as image recognition, speech recognition, recommendation systems, the Industrial
Internet of Things or e.g. audio & video surveillance [ZCL+19], these new algorithms
and applications were pushed into the market of systems that have high demand for
computing and network resources. The best examples in which this phenomenon can
be observed are smart home devices and their applications, such as self-assisted systems
Alexa and Siri. These are only two well-known examples of Artificial Intelligence (AI)
systems that use edge devices for computing and allow an insight into how big AI is
already distributed in our daily life, the edge environment. This fact concludes that the
amount of data generated on the edge of the network has also increased. The need for the
knowledge of what data is needed and where it should be processed is also a significant

7

2. Background

key point. Therefore, the paradigm of Edge Intelligence (EI) is introduced, where AI
and Edge Computing find a connection. In this section, we are going to focus on EI, the
included components, and the occurring challenges, advantages & limitations.

Challenges

The data generated at the edge side increases, so the AI algorithms in the cloud data
centers are going to process more and more data in the near future. Hence, a significant
challenge is to reduce the consumption of bandwidth resources by, e.g. improving the
performance of DL algorithms. Therefore, e.g. low-latency data processing is needed to
reduce the needed computing capabilities of the cloud data centers [ZCL+19] [DZF+20].
It is also necessary to know which scenarios are applicable to edge devices and which
are not, which model is the right one for specific AI tasks and what coordination
mechanism betweeen heterogeneous edge devices is used [DZF+20]. In Section 2.1.2 a
possible classification is shown. The further development of hardware edge devices, the
miscellaneous amount of data produced at the edge, and the needed memory size as a
result of it will also be challenging. In [RD19], some unique challenges are listed. For
example the increase in sensing and modular AI capabilities, or the requirement of edge
devices to handle multi-purpose applications. Also, edge coordination mechanisms are,
like in Cloud Computing, a tremendous factor in optimizing workload scheduling. The
privacy factor must not be ignored and is indispensable for applications in both private
and corporate predictive maintenance [RD19].

Advantages

EI is capable of unlocking the full potential of the data generated at the edge of the
network, making fast decisions, and handling a large amount of different data efficiently.
Edge Computing is also able to advance AI with more prolifically data and application
scenarios than Cloud Computing. AI is closer to people, data sources, and devices when it
is used in the Edge Computing environment, which is also more affordable and accessible
than the Cloud Computing environment [ZCL+19].

Limitations

When looking at the resource limitations of edge devices, it seems clear that not all AI
tasks can be moved to the edge. It would require high-end processors to train DNN
models locally. This increases the costs and would not be compatible with existing edge
end devices [ZCL+19] [RD19]. In [RD21], Edge Intelligence as a Service is presented as
a theoretical approach, highlighting many different points of discussion and limitations.
It shows, that not every decentralization, for example, the transition from load balancers
to the edge of the network, is expedient, as security problems can arise here [RD21].

8

2.1. Edge Intelligence

Level 5
All in Edge

Level 4
Cloud-edge co-training

Level 3
On-device inference

Level 2
In-edge co-inference

Level 1
Cloud-edge co-inference

Cloud Intelligence
Training and inference on the cloud

Level 6
All on-device

Reduce amount or
shorten path of data

offloading

Training on
the cloud

Figure 2.1: Level rating adapted from [ZCL+19]

2.1.1 Deep Learning & Deep Neural Networks
Nowadays, self-learning and machine-learning capabilities are necessary for contributing
AI-based applications. The Deep Learning paradigm is inspired by the human Neuron
mechanism, where synapses, neurons, axons, and impulses (activations) play a necessary
role in self-learning and solution-finding. In [ZCL+19] and [SCYE17] the mechanism
is explained in more detail. The main reason, why this human-inspired approach was
chosen is, that the human brain shows perfect preconditions for evolving an ML-based
algorithm [SCYE17]. In this context, different layers process some real-world input data,
combined with weights, and create a nonlinear output, which is then forwarded to the
next layer. These weights will be optimized during the model training phase, which
consists of backpropagation and feedforward processes [ZCL+19], to generate a more
precise model. This model is used in the inference phase to determine predictions and
classifications for different use cases like the already mentioned image recognition. Such
Deep Learning Neural Networks (DNN) can consist of multiple layers. In [ZCL+19], three
popular networks are presented, namely the multilayer perceptron (MLP), which is the
most common form of DNNs, the convolution neural network (CNN), and the recurrent
neural network (RNN). Each of these networks can be used for different use cases and is
the most popular in their application field. CNNs are used e.g. in computer vision areas
and RNNs in speech recognition and natural language processing areas where no fixed
input length is given. Popular CNNs are, e.g. AlexNet, GoogleNet, VGG and ResNet. In
RNNs, the backpropagation through time (BPTT) is used for model training where the
input is based on the previous sample data. Long-short-term memory (LSTM), which is
an extension of an RNN, allows the network to keep or forget information using memory
cells [ZCL+19]. Then there are also so-called Generative Adversarial Networks (GANs),

9

2. Background

where a generator network creates new data based on real data and a discriminator
network has to classify the two data sets. This is used in e.g. image generation or
image transformation tasks [ZCL+19]. DNNs are also used together with Reinforcement
Learning (RL) to contribute Deep Reinforcement Learning (DRL), where long-term tasks
are tackled by continuous learning. It is, e.g. applied in gaming applications for solving
scheduling or decision problems [ZCL+19]. Existing heterogeneous AI networks have
different computational needs. It is therefore important to plan ahead and benchmark
such networks.

10

2.2. Edge Computing

2.1.2 Levels of EI

In [ZCL+19] an excellent classification of EI levels was made. To come along with different
resource requirements, application scenarios, and end-user requirements the different AI
tasks have to be distributed over edge devices or servers and cloud centers, according
to their requirements. Hence, seven levels were introduced, which are also shown in
Figure 2.1.
Cloud intelligence allows full data offloading for training and inference, cloud–edge
co-inference partial offloading of inference and complete training in the cloud, and
in-edge co-inference facilitate in-edge inference and complete training in the cloud. On-
device inference enables no data-offloading and full training in the cloud, cloud–edge
co-training partial offloading of inference and training, all in-edge inference and
inference training only in-edge, and all on-device does not allow data offloading in
training and inference.

In-edge:

„In-edge means that the model inference is carried out within the network
edge, which can be realized by fully or partially offloading the data to the
edge nodes or nearby devices (via D2D communication).“ [ZCL+19]

2.2 Edge Computing

Edge Computing extended the paradigm of Cloud Computing by placing the computing
and data storage nodes closer to the requesting services and network participants. A
summary of Edge Computing devices is shown in the next sub-section. Fog Computing
closes the gap between edge and cloud by using the advantages of both sides. In Figure 2.2
the placement of Edge and Fog devices is displayed. Because of the computational power
and the data storage which are geographically close to the edge devices, the latency is
much lower than for Cloud Computing devices. The resources that are used in these
edge devices are in the majority of cases based on Linux technologies and virtualized by
using modern virtualization methods, like container virtualization which we discuss in
Section 2.3.1. This is done to optimize overall performance, memory usage, and reliability.
It can be said that Edge Computing enables EI, but there is currently no clear definition,
which clearly shows the division into the areas of Mobile Cloud Computing and Mobile
Edge Computing, which define the different computing methods of workload offloading.

2.2.1 Mobile Cloud Computing

Mobile Cloud Computing (MCC) is part of the Edge Computing paradigm and takes
advantage of the computational offloading architecture. It uses remote data centers for
computing. This leads to higher latency and bandwidth limitations [LSHG16].

11

2. Background

Edge

Fog

Cloud

Proximity to
Data OriginLatency

High

Low

Far

Close

Figure 2.2: Edge Computing overview. (Adapted from [CDPLR19])

2.2.2 Mobile Edge Computing

Mobile Edge Computing (MEC) is also part of the Edge Computing paradigm and is
a more recent form of Edge Computing concerning mobile devices. It takes advantage
of mobile base stations and the Radio Access Network (RAN) and allows to extend
Cloud Computing services to the edge of the mobile network. The so-called cloudlets,
which are small-scale servers at the location of mobile base stations, allow one to perform
computational tasks close to the actual location of mobile devices. MEC uses the nearest
mobile station to reduce latency and provide a large geographic coverage [LSHG16].

2.2.3 Edge Devices

Sensors are devices that output and generate data, e.g. airflow sensors, thermometers,
or cameras. The only task of these devices is to produce raw data. They are not
configured to do computational work or aggregation. Devices with computational
power, like servers, have the purpose of processing generated data and performing the
hard computation tasks required by other services. End-user devices, like smartphones,
tablets, etc., are used to receive and display the computed or aggregated data. Such
Edge devices can be divided into constrained devices, single-board computers, or mobile
devices. They rarely support virtualization and have, by comparison with e.g. cloud
servers a much smaller memory and computing power. Edge/Fog Server, e.g. for
special use cases such as automotive, or common cloud, and customized platform devices

12

2.2. Edge Computing

are used in both levels. They support virtualization and relay on CPUs with one or more
GPU co-processors [CDPLR19].

2.2.4 Applications in Edge Computing
Edge Computing has many areas of deployment in real-world environments, and the
integration of Edge Intelligence enhances its capabilities further. Some of the most
applied areas are listed in this section.

Cloud Offloading outsources the computational work to the centralized cloud server(s),
which enables much more latency than compute workloads on edge devices. In some
cases, e.g. shopping cart modification in e-commerce online applications, the latency can
be reduced by pushing the computational work to the edge nodes near the users. Hence,
the data in the edge devices has to be synchronized to offer the current availability infor-
mation. In addition, aggregation, filtering, vision aid entertainment games, augmented
reality, and connected health workloads can benefit from the Edge Computing paradigm
[SCZ+16] and Edge Intelligence as a Service [RD21].

Video Analytic can benefit from Edge Computing and EI, due to the wide distri-
bution of edge devices with camera and video recording capabilities. Computing work
can be performed on each device, so the time to get results, e.g. to search for someone in
a video or image, could be decreased tremendously [SCZ+16].

Smart Home devices produce an enormous amount of data, so these data must be con-
sidered in privacy considerations regarding processing data on central Cloud Computing
devices. Edge Computing and EI can prevent such privacy difficulties by allowing only
the processing of the data in the home environment [SCZ+16].

Because of the large data quantity, e.g. heavy traffic workloads, or applications that
require a low network latency, the Edge Computing paradigm with help of EI can improve
Smart City computing structures. Regarding applications where the geographical
location of the data used is more important, computation can also be performed on the
edge instead of in the cloud [SCZ+16].

Collaborative Edge connects multiple physically distributed factions and allows data
sharing and collaboration with these data. In [SCZ+16] an example of collaborative Edge
Computing is shown in relation to healthcare cooperation.

[RD21] shows applications in different domains and their classification into different
EI levels. In this thesis, we will focus on low latency applications. These are ap-
plications or functions where users only send one single request and demand on a low
network latency towards end-user satisfaction. Examples of such applications are mi-
crobenchmarks such as floating point arithmetic operations, solving linear equations,
solving linear equations [KL19], or ML steps such as data pre-processing, model training,

13

2. Background

and model serving which are used in [RRD21]. More detailed workloads are mentioned
in Section 2.3.2

14

2.3. Serverless Computing

2.3 Serverless Computing

APPLICATION

OS & MIDDLEWARE

Hardware & Network

OS & MIDDLEWARE

Application
Scaling

Hardware & Network Hardware & Network

OS & MIDDLEWARE

APPLICATION Application
Logic

Infrastructure
as a Service

Platform
as a Service Serverless

User

Cloud Vendor

Figure 2.3: Differences between IaaS, PaaS and Serverless Computing

This paradigm abstracts the infrastructure components, operating system, middleware,
runtime, and other parts that are needed to run an application away from the specific
application logic. As distinct from Infrastructure as a Service (IaaS) and Platform as a
Service (PaaS), Serverless computing allows the developer to focus on the application logic
and allows to specify scaling and resource configuration, depending on the service provider.
In Figure 2.3 the differences are briefly shown. Section 2.3.1 introduces containerization,
which allows the provider of the serverless computing platform to deploy functions or
applications on demand using a stateless container.

Function as a Service

In this thesis, we focus on Function as a Service, where only single functions are going to
get deployed, instead of a whole application. These functions get invoked by events like
e.g. timer events or normal user requests and have only one single specific task to fulfill.
In Section 2.2.4 some of these functions are already listed (low latency applications).
Because of this modern form of software development and deployment, the paradigm
allows the developer to back away from the time-consuming monolith development and
focus on single code components. This enables the platform to autonomously adapt
faster deployments, reducing service provider costs, because only function usage has
to be paid, loss of environment control, and higher degree of testing trouble, due to
the difficult debugging strategy with regard to multiple function deployments [SS18].
Scheduling, scaling and load balancing are strategies that go hand in hand with FaaS
platforms and must be handled differently depending on the scenario, available resources
and other influences such as user behavior, number of function requests, or, for example,
the technical coverage in Edge Computing networks. In Section 2.3.1 an open-source
framework for serverless computing is introduced and in Section 2.3.2 typical workloads
and application types are presented.

15

2. Background

2.3.1 Kubernetes
Container Virtualization

Beyond virtual machines and unikernel virtualization, container virtualization also plays
an enormous role in modern service and application deployment. In contrast to the
hypervisor-based virtualization methods mentioned above, containers only share the
same kernel and are constructed to isolate the software from the current environment.
This enables the software, which is supposed to run in containers, to get deployed
on different kinds of devices, independent from the operating system. In a single
container, the necessary components like libraries, source code, environment variables,
and other dependencies are packed together. One of the most widely used container-based
frameworks is Docker 1, which requires only a single text file (Dockerfile2) to build an
application image for the container. It is supported by the majority of cloud provider
platforms and is open source. Docker images, which represent an executable, static, and
complete form of a function or application, are used in these containers. The contained
application or function is available during the runtime of the container. Kubernetes3

Kubernetes Master

API Server

ControllerScheduler etcd

Kubernetes Worker

Kubelet

Kube-proxy

Pod
Pod

Pod
Pod

Kubernetes Worker

Kubelet

Kube-proxy

Pod
Pod

Pod
Pod

Kubernetes Worker

Kubelet

Kube-proxy

Pod
Pod

Pod
Pod

Figure 2.4: Kubernetes architecture

is a container orchestration platform that can be deployed on physical hardware, like a
normal laptop, clouds, or VMs. It consists of the following elements:

• The control pane node is responsible for the orchestration of the worker nodes
and all administrative tasks e.g. scheduling. There can be multiple control pane
nodes in the cluster, but only one of them can orchestrate the cluster at the same
time. Communication with this node is done via CLI, API Server (RESTful), or

1https://www.docker.com/
2https://docs.docker.com/reference/dockerfile/
3https://kubernetes.io/docs/concepts/overview/components/

16

2.3. Serverless Computing

graphical dashboard. It consists of a scheduler, a (cloud) controller manager, an
API server, and the etcd key-value store.

• Worker nodes can be seen as devices that can run Linux containers. Users who
want to use a service of the cluster can only communicate with the worker nodes.
These nodes consist of a network proxy that listens to the API Server, a container
runtime like Docker, rtklet, or containerd, and an agent named Kubelet who is
responsible for communicating with the control pane node and receiving the pod
definition through the API server. The worker nodes are based on the Kubernetes
Container Runtime Interface (CRI). 4

• A Pod contains multiple running containers and is used by the scheduler to provide
redundant services on multiple nodes. The container healthiness of the pods is
monitored by the Kubelet agent.

• Etcd: This is open-source software that contributes a distributed key-value store
that saves the state of the cluster. It can be deployed by default on the control pane
node or on other nodes, has a very small memory usage, and provides a redundant,
fast-accessible, and resilient data store for the updatable node configuration files.

2.3.2 Workloads
In this section, common workloads and usage patterns are presented. This is done for
the sake of clarity and comprehensibility and because of the later executed experiments.
To select the appropriate workloads for evaluation and experiments, a general overview
is necessary. Regarding [CMT16] the following workloads are defined:

Web Workloads

These workloads consist mainly of common HTTP requests and can be divided into some
subsections like conventional web workloads where users request pages in a periodic usage
behavior, shopping service workloads, online auctions, web robot traffic, or workloads
concerning the web content which can be highly dynamic nowadays. Also, the page &
traffic properties, the access patterns, and the user behavior play an important role in
this workload type [CMT16].

Online Social Network Workloads

Online Social Network workloads can be divided into General-Purpose Services, such
as Facebook where user profiles, user activities, and social interactions influence the
workload and user behavior. E.g. the small-world phenomenon, which means that users
usually form groups that are closer connected and have more latent interactions between
users than direct ones. Microblogging Services like Twitter, which focus on content

4https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/container-
runtime-interface.md

17

2. Background

propagation and social interaction, Visual Content Sharing Services like Flickr which
enables the upload, organization, dissemination, and rating of content and Location-
Based Services like Instagram where the location to user relation, network structure, and
mobility pattern has a big influence on the user behavior and workload [CMT16].

Video Service Workloads

These workloads are governed by the media properties, the traffic properties, the social
sharing properties, and the user behavior itself. Media Content Services like Netflix
generate workloads that have to consider the request arrival process, video popularity,
content access patterns, and interactive user behavior. Workloads in Video Sharing
Platforms like Youtube are concerned with traffic patterns, uploading and usage patterns,
popularity evolution, and social interactions [CMT16].

Cloud & FaaS Workloads

Because of the high variation of cloud application types and the scaleable ecosystem of
cloud providers, it is necessary to have an exact look at the workloads that appear in
these systems. To have a deeper understanding usage patterns, arrivals processes, and
cloud workload patterns have to be analyzed [CMT16]. In [SFG+20] the Azure Public
dataset5 got analyzed and it shows that the trigger types in Cloud Computing are mainly
HTTP requests (35.9%), followed by queue (33.5%) and common trigger events (24.7%).
Timer, storage & orchestration events are between 0.7% and 2% with respect to the total
number of invocations. It also emerged that 54% of all applications deployed only have
one function. This indicates that the Function as a Service paradigm is a widespread
approach [SFG+20].

Concerning the invocation pattern, it can be outlined that 50% of the invocations
do not show variation. The average interval between invocations is at most once per
hour in 45% of the applications and at most once per minute in 81% of the applications.
This concludes that most applications are invoked very infrequently. The warm-keeping
costs of application and function containers are going to be higher regarding the total
execution time. 18.6% of the most popular functions, those that are invoked on average
at least once per minute, represent 99.6% of all function invocations. According to
[SFG+20] the average execution time of applications is between 200ms and 2 seconds at
the median. Memory usage is present in 90% of the applications never over 400MB and in
50% of the applications at most by 170MB. Memory is an important factor because of the
warm-up, allocation, and keep-alive decisions that have to be made in FaaS orchestration.
These parameters will also help to construct realistic workloads for later evaluation and
experiments. The FaasProfiler [SBW19] is built for generating workloads and testing
FaaS platforms with Apache OpenWhisk6. It offers several benchmark applications

5https://github.com/Azure/AzurePublicDataset
6https://openwhisk.apache.org/

18

2.3. Serverless Computing

(functions), like sentiment analysis, string auto-completion, or e.g. image resizing, and
allows us to specify the workload distribution type, test duration, and other parameters.

Mobile Device Workloads

Nowadays mobile devices dominate the situation of connected things on the Internet.
These workloads are the majority in wireless networks and can be characterized by their
typical task offloading and the varying traffic load. Because of the limited resources
in mobile devices, the need for computation power in the current radius of the device,
e.g. offered by cloudlets, is high. In Section 2.2.2 the related Mobile Edge Computing
paradigm is mentioned. In [SAA21] augmented reality, speech recognition, language
translation, and navigation applications were mentioned and analyzed as examples for
mobile applications and mobile workloads by using CloudSim. In [YQZ+15] usage
of mobile data, mobility patterns, and application usage of different user groups were
analyzed toward a metropolitan data set in China. They conclude that heavy users, which
are approximately 1% of all users, are the main drivers of mobile traffic. Approximately
80% of the mobile traffic generated was generated from social networks, e-commerce,
advertisements, and search requests, and half of the users use more than five different
application categories per day. The number of cells where users log in while changing
their location is about ten cells per day. The most time is spent on social networks and
e-commerce and less time on email services. Periodic usage patterns are mainly discovered
in email and online gaming applications, social media and e-commerce applications do
not show a high variation in the usage pattern. The analyzed video application usage
shows that users only watch video if the network bandwidth is good enough because of
the large traffic volume of videos. News browsing is also done only in short time intervals,
indicating that users do not stay long on news sites. On the other hand, users visit social
media and search for services for longer periods [YQZ+15].

19

2. Background

2.4 Faas-sim
This Python-based discrete event simulation tool was developed at the Distributed System
research department7 at TU Wien. In the next sections, the foundational concept and
components of faas-sim are presented.

2.4.1 Concept

FunctionDeploymentFunction
<name>

FunctionImage

FunctionContainer

Resource
Configuration

Scaling
Configuration

faas.deploy(<name>) faas.invoke(<name>)

FunctionDeployment

Function
Repilca

Node state

Capacity

Labels
Node

FunctionRequest

Design Time Run Time

Figure 2.5: Function and Deployment concept in faas-sim

Faas-sim receives different input parameters to calculate and simulate serverless Function-
as-a-Service platforms. It takes a network & cluster topology configuration and a
benchmark setup which represents a distinct simulation experiment. The conceptual
model of faas-sim consists of the following components and is shown in Figure 2.4.1:

• Function: This component is an abstraction at the design time of a single func-
tionality with respect to the FaaS paradigm. Section 2.3 describes this paradigm.
It is recognizable by a unique name and the function can be invoked by a Func-
tionRequest.

• A Function Image is a specific type of Function implementation, which can
consider different deployment platforms to configure e.g. TPU, GPU, or CPU-based

7https://dsg.tuwien.ac.at/

20

2.4. Faas-sim

implementations. With this possibility of variant images, the resource scheduler is
enabled to make the decision on which image is used.

• A FunctionDeployment is a definite function instance with a specific allocation
and scaling configuration and includes several FunctionContainer which rep-
resents a FunctionImage in runtime. The container includes the resource usage
(VRAM, CPU, etc.) configuration.

• The FunctionReplica is the running instance of a FunctionContainer in a cluster
Node and can be conceptually seen as a typical Docker container.

Ether

The Python-based tool is used to generate the edge infrastructure topologies in faas-
sim and allows to evaluate strategies for resource allocation and capacity planning. It
implements different cloud region scenarios like industrial IoT scenarios or urban sensing
scenarios which can be used for further simulation.

Simpy

SimPy is a Python-based framework and is used to handle events and asynchronous
(background) processes in faas-sim by offering a usable concurrent environment. It allows
to define shared resources and capacity limitations.

Skippy

Faas-sim takes use of the Skippy scheduler presented in [RRD21]. Skippy is basically
a container scheduling system that extends serverless frameworks like Kubernetes to
work with edge functions. In faas-sim only a certain code is used which is needed for
scheduling. The Kubernetes API is not triggered.

Request patterns

Figure 2.6: Constant, sine wave and random walk pattern

Faas-sim provide different workload request patterns per default. In principle, it allows
one to configure the following request pattern profiles and mutate them with arrival
profiles to get more realistic profiles that represent the request value per timestamp.:

21

2. Background

• Constant: In this pattern, a variation of the instructions (invocations) per second
is not possible. It fires e.g. ten requests every one second.

• Sine: In this pattern, the requests are addicted to the sine wave function. It fires
requests concerning a given maximal value and period (time between peaks) value.

• Random Walk: For this pattern standard deviation and a maximal and start value
have to be configured. The spikes (higher values) will increase with the request
time.

In Figure 2.6 the three pattern plots are shown. The arrival profiles then readjust the
above patterns to handle zero values like in the sine wave pattern. In faas-sim it is
possible to save and load these profiles.

In faas-sim the implementation of a function can be configured by customizing the
different states of a serverless function in a so-called FunctionSimulator which is influ-
enced by OpenFaas8. It enables the modification of the deploy, startup, setup, invoke, and
teardown behavior of a serverless function. Every time a request is sent, the implementa-
tion of the invoke method simulates the behavior of the function, blocks resources, and
consumes time in the Simpy environment. Similarly in the other states, the environment
can consume time and resources of the replica which is associated with a node. Faas-sim
also provides two Watchdog modes, namely Forking and HTTP. Watchdog starts and
monitors functions, works like a reverse proxy for running functions, and is inspired by
the official OpenFaas implementation9. Faas-sim offers following different examples for
FunctionSimulator implementations:

• ForkingWatchdog enables a mechanism for queuing and simulating works. If, i.e.
a worker becomes available, it will claim the resources after it receives a token.

• HTTPWatchdog claims the resources and executes the function after each request
immediately. Therefore, it does not generate a delay.

• TrainingFunctionSim uses the ForkingWatchdog implementation to simulate the
training of an ML model. It claims the resources per request and simulates the
download, training, and upload of the model per request. It also simulates a docker
pull command for deploying the function and the start-up and tear-down phase.

• InferenceFunctionSim simulates the model download the resources needed to
cache it and the inference per execution. It uses, in contrast to the TrainingFunc-
tionSim, the HTTPWatchdog implementation. During the setup phase, the basic
CPU usage and the basic memory consumption are going to be claimed.

8https://www.openfaas.com/
9https://github.com/openfaas/of-watchdog#modes

22

2.4. Faas-sim

• PythonHTTPSimulator enables a simple implementation of function invocation
for sending concurrent requests.

• AIPythonHTTPSimulator shows how a combination of AI-specific preprocessing,
training, and inference could look together in a single implementation. It estimates
the additional time needed if concurrent requests happen and also simulates the
model down and uploads.

• InterferenceAwarePythonHttpSimulator extends the functionality of AIPython-
HTTPSimulator and adds degradation for inference.

23

2. Background

Methods

Faas-sim provides a basic interface consisting of the following methods:

method name description
deploy It takes a FunctionDeployment and deploys multiple

FunctionReplicas concerning the ScalingConfiguration.
invoke When the function is deployed it is able to get invoked. With

the invoke method a user is able to send a FunctionRequest.
The load balancer then selects a replica and fires the in-
voke method of the function simulator associated with the
function.

remove It removes all replicas fires the teardown method and frees
all resource allocations in the environment.

get_deployments If instances of FunctionDeployments are available, this
method returns a list of them.

get_function_index This method returns a dictionary of all available Function-
Container regarding their Function names.

get_replicas It takes a function name and state and returns a list of
corresponding FunctionReplicas. If the state == null the
method returns all replicas. Possible states are CONCEIVED,
STARTING, RUNNING, or SUSPENDED.

scale_down This method takes a Function name and the number of repli-
cas which then get removed from the cluster. The method
removes the most recently deployed replicas.

scale_up This method takes a Function name and the number of
replicas which then get added to the cluster if the maximum

discover By forwarding the Function name this method returns a list
of the associated FunctionReplicas

suspend Tears down all running replicas by forwarding the specific
Function name

poll_available_replica Continuous polling of available function replicas by forward-
ing the specific Function name and an interval

Table 2.1: Methods overview of faas-sim

24

CHAPTER 3
Related Work

In this chapter, a selection of cloud, fog, and edge-based simulation and emulation
frameworks is presented in Section 3.1 and Section 3.2. Five simulation and emulation
frameworks and two hybrid frameworks were investigated. In addition, a collection of
current serverless benchmarking tools is listed in Section 3.3. The results of this related
work research are going to answer the first research question shown in Section 1.2. The
gathered related work will give an overview of the existing frameworks and benchmark
suites, that are currently offered in this research area. The selected works are summarized,
and their competencies are listed in detail in the evaluation Chapter 7.

3.1 Simulation Frameworks

In this thesis, several simulation frameworks were investigated. The event-driven and
layer-based simulator CloudSim allows to model of large-scale topologies and manage
e.g. the memory, storage, and bandwidth control. It is very flexible and customizable
regarding its own workload request allocations or performance tests [CRB+11]. IFogSim
is also a layer-based simulation framework. It is Java-based and extends the CloudSim
framework. IFogSim allows to simulate of edge and fog networks and consists of different
components like sensors, actuators, fog devices, etc... It has also a monitoring service for
investigating resource usage statistics [PVCM20]. Based on IFogSim an extension named
IFogSim2 exists . It enables new components like Microservices, Clustering, or Mobility
[MPGB21]. The EdgeCloudSim simulator is also a CloudSim extension. Based on five
different expandable modules, the framework enables new configurable parameters like
the definition of mobile device places according to a mobility motion model [SOE17].

25

3. Related Work

3.2 Emulation Frameworks
Beyond the simulation, also emulation frameworks play a necessary role in this field.
Tools like EmuFog, which is based on MaxiNet, allow to generate fog computing in-
frastructure topologies and enable different parameter configurations for the emulation
setup [MGG+17]. When combining simulation and emulation frameworks the area of
hybrid frameworks is showing up. EMUSIM and EmuEdge are two of this frameworks.
They are connected with local or external infrastructure and extend also a simulation
environment. EMUSIM can produce configuration files for deploying the locally tested
setup into production infrastructure, where EmuEdge can also run MiniNet containers
[CNRB13] [ZCS19].

3.3 Benchmarking Suites
Seven benchmarking suites were selected during the research. They differ from each
other in particular points. Some of them, like FunctionBench, can only offer micro-
benchmark workloads, which are e.g. simple mathematical operations [KL19]. Other
frameworks, like Faasdom or iBench, have already implemented machine learning training
or inference models in their workload proposition [MFKS20] [BBS+20]. The potentially
usable metrics reach from End-to-end latency, processing time, round trip time, and
function execution time to model accuracy or e.g. the power consumption. The detailed
review and evaluation of all suites are shown in Section 7.2.

26

CHAPTER 4
Methods

This section describes the approaches and methods that are used and applied in this thesis.
To gain a better understanding, the methods are segmented in the order in which they are
used and applied in the subsequent implementation phase. In Chapter 4 the methodical
approach can be seen and which research question, shown in Section 1.2, is going to be
answered by which stage of the methods. It starts with a literature review and related
work research. The results of them will then be used for the requirement engineering and
to answer RQ1. From this point, the topology generation and workload development
are the subsequent steps, which will be applicable to the already mentioned testbed and
simulation framework faas-sim. Furthermore, several scenarios for the experiments are
going to be developed, based on the previously developed topologies, request patterns,
and workloads. After that, all important and fundamental elements are gathered for
answering RQ2 and starting the testbed profiling and scenario experiments. The results
of the profiling experiments, topology generation, and request pattern generation are
then used in the simulation runs by faas-sim. In the evaluation and result presentation
phase, the experiment and simulation results will be compared and illustrated. This will
answer RQ3.

4.1 Literature Review & Related Work Research &
Requirement Engineering

This thesis uses systematic literature research to gather articles and related work. With
the help of a well-defined requirement engineering phase, the potential metrics for the
benchmark will be explored. The search is carried out only with online research, where
common digital libraries, such as IEEE Xplore1, are used to search and access journal
articles, conference journals, technical standards, and related work materials.

1https://ieeexplore.ieee.org/

27

4. Methods

Literature
reviews

Requirement
engineering

Testbed
experiments

(Profilng & scenario)

Related work
research

Topology generation
(Cell tower dataset)

Request pattern
generation

(taxi dataset)

Faas-sim
simulations

(Scenario)

Workload
development

(serverless functions)

Evaluation
Result

presentation
(Notebooks)

Scenario
development

RQ1

RQ2

RQ3

Section 4.1

Section 4.2.1

Section 4.4

Section 4.2.2 Section 4.2.3

Section 4.3

Section 4.3.5

Section 4.5

Figure 4.1: Methodical approach

To limit the amount of results while searching and increase the quality of the gath-
ered literature and papers, criteria like the publication date, language, type, and number
of citations are applied as search constraints. The results are then analyzed by quality
check to see if the criteria are met and summarized. The aim of this step is to also
evaluate the essential aspects in text form, to present them in a comparative manner,
and to present and evaluate the essential findings of the included studies to answer the
research questions. From the information obtained after reviews of the literature and
related research, the requirement engineering method defines how to select metrics for
benchmarking.

4.2 Infrastructure topologies, request pattern & workload
development

The creation of realistic infrastructure topologies, request patterns and workloads is
necessary for the course of this work. Two open source datasets are the starting points
for the development of the topologies and query patterns. LTE cells are filtered from the
OpenCellid dataset and linked to the NYC Taxi event dataset. A corresponding cell must
be mapped for each event so that the events can be divided into their occurrence areas.

28

4.2. Infrastructure topologies, request pattern & workload development

4.2.1 Infrastructure topologies
When developing realistic infrastructure topologies, OpenCellid dataset is used as a
baseline. To match various scenarios, this dataset is processed to extract different
constellations such as metropolis topologies, average cities, or countryside locations.

OpenCellid Dataset

This dataset is open source licensed under the Creative Commons Attribution-ShareAlike
4.0 International license and includes worldwide data of geo-distributed cell towers.
The corresponding database is being updated daily and can be downloaded as a CSV
file for free. The database entries consist of several parameters like cellular network
technology, mobile country code, Longitude, Latitude, unique identification number, etc.
The complete list of parameters is listed in [Lab]. The cellular network technologies
are GSM (Global System for Mobile Communications), CDMA (Code Division Multiple
Access), UMTS (Universal Mobile Telecommunications System), and LTE (Long Term
Evolution). For the purpose of this thesis, only the data entries with LTE network
technology are used to determine the position of the specific network nodes. In Figure 4.2
an example of multiple network cells is shown, rendered in a map view.

Figure 4.2: Example screenshot from https://www.opencellid.org/

Topology extraction

To find an appropriate topology for a related scenario, the dataset will be pre-processed
and filtered by a Python script, which can handle the following input parameters:

• topology name (e.g. new_york_2x2) as string

• city name (e.g. New York) as string

• latitude (e.g. 40.754380) as float number

• longitude (e.g. -73.984986) as float number

• width in kilometers of the area (e.g. 2) as float number

29

4. Methods

• height in kilometers of the area (e.g. 2) as float number

• cloudlet area width in km (e.g. 1) as float number

• cloudlet area height in km (e.g. 1) as float number

The topology name specifies the distinct topology area for later reuse and clarity. When
entering the parameter city name, the script uses the central point of the city. It is
also possible to specify custom latitude and longitude values. This location is the center
point of the filtered area and is limited by the parameters width and height. The script
then only considers cells in this specific area. The rectangle area is the size of the
width and height entered. The cloudlet area width and height define the sub-areas in
kilometers. All cells are going to be associated with a cloudlet area. These cloudlets will
handle all requests that are sent to a specific cell in this area and will be used for the
request pattern generation later. In Section 4.2.2 an example area of filtered cell towers
is shown schematically. The correlating scripts are published on a public repository2.
The implementation is explained in detail at Section 5.2.

Faas-sim topology creation

For the simulation in faas-sim a own topology of the testbed is already implemented in
the FaaS Sim Evaluation3 repository. It uses the preexisting topology implementation of
Ether and consists of three different scenario parts, namely the Cloud Scenario, IoTBox
Scenario, and Cloudlet Scenario, which are all combined into the Testbed Scenario. All
nodes are figured with the parameters, like CPU, architecture, and memory size, of
the real testbed. Also, links between the nodes are created in the simulation topology.
Section 4.4 describes, how the latency of the real testbed nodes is measured for these
links.

4.2.2 Request pattern

The edgebench project contains already implemented profiles & patterns which can be used
for later experiments and simulations. In addition, Section 4.2.1 shows how the request
pattern generation method takes advantage of the OpenCelliD dataset and extracted
topologies. In combination with the NYC Taxi dataset, where pickup and drop-off
events are recorded, the request pattern will be created. The generation method can be
used with other databases similar to the NYC Taxi Dataset. The detailed procedure is
described in the following section.

2https://github.com/edgerun/faas-topologies
3https://github.com/edgerun/faas-sim-evaluation/blob/main/evaluation/simulation/topology/testbed.py

30

4.2. Infrastructure topologies, request pattern & workload development

NYC Taxi Dataset

This dataset4 from the year 2013 includes taxi pickup and drop-off location data, date
time information, and other parameters, which were recorded in New York City, United
States. The 28,85 GB database is split into multiple CSV files, where one file contains
the data for a whole month. An entry in the CSV has many different columns. For the
purpose of this thesis, the important and required columns are the pickup longitude and
latitude, the passenger count, and the pickup date & time.

Figure 4.3: Example cell tower map with NYC Taxi Dataset events

Prepare Trip Dataset

Before the trip dataset is used to generate the request pattern, it must be prepared
by removing the unnecessary columns and limiting the entries by the pickup location
(latitude & longitude). This is done by a script, which takes a trip database file and
an extracted topology from Section 4.2.1 as input and calculates the maximum and
minimum boundaries of the topology. After that, it limits the NYC Taxi Dataset by
these boundaries, so the prepared dataset contains only entries in the area of the topology.
In Section 4.2.2 the pickup events are schematically shown in the area of the cell tower
topology.

Generate Request Pattern

To generate a realistic request pattern, pickup events must be associated with a cell
tower. We define a request pattern as an list of time delta entries, which allows to
create various pattern with different intervals between the events. The time deltas are
defined in seconds. The association of events and cell towers is done by searching for
the nearest cell tower. The range in which cell towers can receive requests is variable
and depends on the infrastructure environment and the obstructed technologies in the
cell. Due to this missing information, the communication range of an LTE cell tower is

4https://github.com/andresmh/nyctaxitrips

31

4. Methods

defined, in this case, as 500 meters, based on previous research and data on 5G (26Ghz)
connectivity collected from Samsung in 20185. If no cell is in range of the pick-up event,
the event is ignored. When all events are associated with a cell tower, the script creates
the request pattern by calculating the timestamp delta of all pick-up events in the distinct
cloudlet area. Because every cell is linked to a cloudlet, the script generates a request
pattern file for each cloudlet in the topology. If a trip event includes more than one
passenger, the script counts these events as multiple events and adds a time difference
of 0.1 seconds between the single events. If e.g. a trip event includes three passengers,
then three requests are sent to the cell tower with a gap of 0.1 seconds. This gap is
necessary for the later use of the request pattern files in the experiments and should
simulate concurrent request activities. In Section 4.2.2 the cloudlet areas are shown and
indicated by the rectangles numbered 1 to 4. The advantage of this method is, that

Figure 4.4: Example cell tower map with cloudlet areas

it is possible to generate patterns for different time ranges and special periods within a
whole year. With the generated data, it is possible to analyze it and search for "Low"
(minimal number of requests), "Normal" (average number of requests), or "Intensive"
usage patterns (maximum number of requests) per cloudlet. This will become important
to cover different use cases in the experiment phase.

4.2.3 Workloads
The development of various AI-based workloads is necessary to cover the need for a
balanced suite of serverless AI-related functions. Therefore, this section describes how
workloads will be developed, which workload types are excluded, and what structure for
the developed functions is chosen. Due to the already implemented setup of OpenFaas
function deployment in the context of the existing testbed, provided by the Distributed
System Group at TU Wien, this implementation method is mandatory. The implementa-
tion language will be adapted from the existing implementation; hence Python is chosen

5https://news.samsung.com/global/samsung-and-verizon-announce-first-5g-customer-trials-set-to-
begin-in-q2-2017

32

4.2. Infrastructure topologies, request pattern & workload development

for the development of the distinct functions. In addition to the developed function, a
Dockerfile per function must also be created. The workloads can have various attributes
such that different resource requirements are covered. Therefore, the workloads can be
seen as data intensive, latency sensitive, and accuracy critical workloads, or a combination
of them. When looking at data intensive workloads, these functions usually process a
large amount of data, and latency sensitive functions are functions that depend on a
minimal response time. The accuracy critical functions have to meet a high inference
model accuracy. Due to the limited resources regarding this thesis, we focus on inference
only tasks. Therefore, learning and training tasks related to ML are dismissed in this
context. The ML models used in this thesis are pre-trained.

A single function may include the following steps: pre-processing; model loading; pre-
diction and post-processing. Therefore, every function has to measure the time spent
according to the different steps and to output the times in the corresponding JSON
formatted output. The development will be distinguished between the so-called One-Step
functions and inference pipelines. The pipelines offer a more realistic way to emulate
real-world serverless function scenarios as One-Step functions.

One-Step Functions

These functions are common serverless functions with a unique purpose. They are not
dependent on other functions and can be developed usually by implementing only a single
method. Section 4.2.3 this concept is illustrated.

Inference Pipelines

Regarding this thesis, an inference pipeline, illustrated in Section 4.2.3, is declared as a
serverless function that is based on other different serverless functions. Such inference
pipelines can call other functions in a successive or concurrent way so that the return
value of the pipeline is dependent on the return values of the other functions. The called
functions can also be invoked as One-Step functions, from outside the pipeline.

function output

input

model

Figure 4.5: Conceptual illustration of an One-Step function

33

4. Methods

feedback

function

False

function

feedback

function

function

input

Truedecisionoutput

Figure 4.6: Conceptual illustration of an Inference Pipeline

Build & release:

The distinct functions will be built using the faas-cli client. To satisfy the distin-
guish architecture needs of the testbed hardware devices, the functions are built in
different operating system architecture variants, namely linux/arm32v7, linux/arm64v8
and linux/amd64. The functions are built and provided on the public docker registry
https://hub.docker.com/u/edgerun and can be pulled, e.g. with the command docker pull
edgerun/function_name. Related prediction models are uploaded to a private file server
and can be fetched using the provided script.

4.3 Testbed Experiments
The empirical experiments for gathering the traces of the simulation are going to be
divided up into single profiling runs and workload scenarios. The profiling runs perform
experiments on only one serverless function at the same time, and the scenarios are going
to cover multiple serverless functions concurrently. The serverless functions developed
from Section 2.3.2 are going to be used as workloads for the experiments. The request
pattern collected from Section 4.2.2 is used as input for request generation and association
with the individual zones of the testbed.

4.3.1 Testbed setup
The provided testbed is a combination of multiple hardware devices that cover different
responsibilities. It is divided into three zones (A, B, and C), where each of them includes
a list of distinct nodes that own a unique IP address and can be called by SSH via the
TU Wien VPN. Devices are, e.g., Raspberry Pi, NVIDIA Jetson, or Xeon CPU nodes
that represent the worker and controller nodes and, e.g., an Intel NUC (Next Unit of
Computing) node that will execute client requests.

4.3.2 Emulated network latency
To emulate the issues of WAN latency in the testbed setup, we take advantage of the
Linux kernel component called netem6. It allows one to add and remove simulated

6https://wiki.linuxfoundation.org/networking/netem

34

4.3. Testbed Experiments

Cloud

Gateway

Worker
Worker

Worker

30ms
Latency

Internet

Inter-
network

Intra-
network

Backhaul

(Wireguard)

K3s

Master

15ms Latency

Load
Balancer

Worker Client

Cloudlet
Load

Balancer

Worker Client

IoT Box

Figure 4.7: Testbed illustration with the cloudlet, IoT Box, and cloud zones

network latency rules to the Linux server. The following command allows, for example,
to add 100 ms network delay to the ethernet interface of the server: tc qdisc add dev
eth0 root netem delay 100ms. In [BZKH20] directly connected, edge and cloud setups
were measured according to Mobile Augmented Reality application offloading. For the
purpose of this thesis, the values for the LTE round-trip time in edge environments are
used to add realistic network delay for the testbed nodes. For the edge zones a and b, a
delay of 19.9 ms is chosen. [BHQT22] reported that the average network delay from 260
locations to the closest Amazon EC2 zone is approximately 74ms. This delay is used for
the cloud cluster zone c.

4.3.3 Galileo
The experiments will be executed with the Galileo experiment repository 7 that is already
implemented on top of galileo and the Galileo shell and is a framework for distributed
load testing. It allows the recording of HTTP traces, and telemetry data, and implements
a container orchestration functionality. To adapt its own workloads and request pattern,
the repository has to be extended by itself.

4.3.4 Profiling
Before the simulation can be started, the applications must be profiled, to get a realistic
distribution of the function execution time and the used resources. For this, the single
functions will get deployed on the same testbed node as the scenarios were executed,
with the difference, that the workload profiles are fixed to 100 requests, where every
two seconds a single request is sent to the deployed function. With the help of the
running telemd8 daemon, the system data of the node will be gathered. In Section 6.3,

7https://github.com/edgerun/galileo-experiments
8https://github.com/edgerun/telemd

35

4. Methods

the profiling experiments are going to be described in detail.

4.3.5 Experiment Scenarios
In this section, the different scenarios for the experiments are defined. The scenarios
attempt to cover a realistic scope of usage patterns and topology combinations. They will
be divided into around 12 different setups according to the limitation of the testbed and
the scope of the thesis. Because the testbed only offers an emulation of three cloudlet
areas, the experiments will be fitted to this requirement. Therefore, the request pattern
generation will be suited to a maximum of three cloudlet areas, where the generated
pattern will then be associated with the testbed zones. When, for example, four different
patterns were generated, pattern 1 and pattern 2 are going to be associated with zone
A and zone B and pattern 3 with zone C. In our case, the last pattern will be ignored.
Because the script is flexible, it would hypothetically be possible to scale the scenarios
to multiple cloudlet areas. In the next section, the exact breakdown of the scenarios is
shown.

36

4.3. Testbed Experiments

Scenario 1, 2 & 3

2 km

2 km

Cloudlet 2

Cloudlet 3 Cloudlet 4

Cloudlet 11
km

Figure 4.8: Cloudlet setup for sce-
nario 1, 2 & 3

These scenarios are going to cover a wider city
area with 2 km × 2 km in combination with large-
scale cloudlet areas that have an area of 1 km × 1
km. This topology has four expected cloudlet areas,
which are shown in Figure 4.8. But in contrast to
this assumption, the cloudlet area 3 and 4 are going
to act as areas, where requests are sent to a cloud
provider and not to a nearby cloudlet. The latency
will therefore increase in these areas, so the function
execution times are not as good as in the cloudlet
areas.

• Topology size: 2 km × 2 km

• Cloudlet size: 1 km × 1 km

• Timespan: 10 min of max., avg. & min. re-
quests

• Expected cloudlet areas: 2

• Expected cloud areas: 2

Scenario 4, 5 & 6

2 km

2 km

Cloudlet 2

Cloudlet 11
km

Figure 4.9: Cloudlet setup for sce-
nario 4, 5 & 6

The experiment setting for these scenarios is similar
to the previous scenarios with the difference being
that there are only two areas, the cloudlet area is
much larger than the previous one and none of the
cloudlets will act as a cloud provider. It shows a
setup where the cloudlet coverage is not as good as
in highly advanced smart city environments. There-
fore, this can be seen as a worst-case scenario. The
resource usage in these areas will be an interesting
object of investigation.

• Topology size: 2 km × 2 km

• Cloudlet size: 2 km × 1 km

• Timespan: 10 min of max., avg. & min. re-
quests

• Expected cloudlet areas: 2

37

4. Methods

Scenario 7, 8 & 9

1 km

Cloudlet 2

Cloudlet 3 Cloudlet 4

Cloudlet 1

1 km

0.
5

km

Figure 4.10: Cloudlet setup for sce-
nario 7, 8 & 9

Scenario 7 - 9 will cover only a topology size of 1
km × 1 km and will allow examination of a cloudlet
area of only 0.5 km × 0.5 km. This should simulate
an average smart city setting. Like in Section 4.3.5,
also the areas 3 and 4 will act as a cloud provider.
It will show if the area reduction has a significant
effect on the benchmarks or not.

• Topology size: 1 km × 1 km

• Cloudlet size: 0.5 km × 0.5 km

• Timespan: 10 min of max., avg. & min. re-
quests

• Expected cloudlet: 2

• Expected cloud areas: 2

Scenario 10, 11 & 12

1 km

Cloudlet 1

1 km

Figure 4.11: Cloudlet setup for sce-
nario 10, 11 & 12

Like in scenarios 7, 8 & 9, this will also cover the
same topology size of 1 km × 1 km, but it will
handle only a single cloudlet area by setting the
cloudlet area to the same size as the topology area.
It is also not an optimal setting for smart cities.
This case should show if such a setting has a bad
impact on resource usage and function execution
times.

• Topology size: 1 km × 1 km

• Cloudlet size: 1 km × 1 km

• Timespan: 10 min of max., avg. & min. re-
quests

• Expected cloudlet areas: 1

Section 4.3.6 describes how these scenarios will cover the three different request pattern
edge cases.

38

4.4. Simulation runs

4.3.6 Edge Case Extraction
To also consider worst cases and not just regular scenarios, this part of the scenario and
pattern creation phase enables the extraction of various edge cases. This expands the
evaluation. First of all, the dataset allows us to extract three different edge cases to
allow realistic experiment setups and to cover foreseeable scenarios: Time ranges where
the most trips are registered, the average amount of events, and times when a minor
amount of events are detectable. Due to the limitation of the experimental hardware
resources, the time range is set to a maximum of ten minutes. First, the NYC Taxi
Dataset will be iterated over all entries that occur in the corresponding topology. Because
the dataset stretches over one year, the resulting amount of intervals would be around
50.000, therefore, the script will only consider a time range of three months (May, June,
July), so the calculation effort is reduced. In order to avoid statistical outliers when
extracting the ten-minute intervals, the method uses the fifth percentile of the result
set as the minimum value and the 95th percentile as the maximum value. The average
interval is closest to the mean value of all intervals.

4.4 Simulation runs
When finishing the profiling runs and the experiments of the scenarios, the simulation of
the scenarios is going to be executed in faas-sim. It takes the resource usage results and
execution times of the profiling runs, the generated arrival profiles, and the size of the
single container images as parameters. For this evaluation, an own repository9 was set up.
It already implements the ether topology of the testbed and allows to create simulation
scenarios by adapting the existing implementation of an example scenario, load balancers,
and an inference function simulation. To prepare the simulation for the desired scenarios,
the deployment of the clients must be adapted, the latency must be added for each device
and the inference function has to be modified, so the profiling results can be used for
each function. To get realistic latency for the simulation, the log-normal distribution of
100 ping requests to each of the devices will be calculated. Before executing the ping
requests, the emulated latency must be added like in Section 4.3.2. The distribution
calculation is required, because in real-world environments the latency fluctuates over
time.

4.5 Benchmarking result analysis
After the simulation of the scenarios, the results of the simulation and the results of
the experiments are going to be compared. The metrics CPU, FET, and RAM will be
compared. The metrics are limited to the implementation of the faas-sim repository but
can be extended in further research. The traces also need to be examined. The goal is to
determine whether there are significant differences between the testbed experiments and
the simulation runs.

9https://github.com/edgerun/faas-sim-evaluation

39

CHAPTER 5
Approach

The approach chapter presents a concrete way for gathering the related work, reviewing
the literature, and finding the optimal requirements. It shows the structure and concrete
implementation of the developed software parts and the adaptations that were made to
existing software. It shows the coding languages, frameworks, libraries, and third-party
software that were used to generate the workloads, topologies, and request patterns. In
Section 5.2 the implementation of the generation of infrastructure topologies is shown, in
Section 5.3 the generation of request patterns is presented, and in Section 5.4 the different
workloads and their implementations of serverless functions are listed. Furthermore,
Section 5.4.2 describes the implementation of an inference pipeline.

5.1 Literature Review, Related Work Research &
Requirement Engineering

Literature
reviews

Requirement
engineering

Related work
research

RQ1

Figure 5.1: Approach towards RQ1

The following constraints and main categories, which then influence the search terms,
are defined to meet the research area of this thesis:

• Edge & Serverless Computing

• Artificial & Edge Intelligence

41

5. Approach

• Simulation & Emulation frameworks

• Serverless Benchmarking tools

• Serverless, Geo-distributed, and AI workloads & applications

The following criteria are applied to narrow the potential search results:

• Because Edge Computing is more up-to-date than Cloud Computing, only recent
(last five years) publications are considered when searching for Edge Computing
related publications. Generally speaking, no publication older than about ten years
should be considered due to the actuality of the topic.

• When searching for papers, articles, etc. only publications in English are accepted.

• The search will focus on work published in renowned peer-reviewed scientific journals
and not on e.g. blog posts, company-based websites, or similar sources. It will not
consider articles published in journals with a very low impact factor but in at least
peer-reviewed conferences.

• Papers or articles with more citations in other papers are typically more trustworthy,
therefore, this type of work is going to be examined with more priority than those
without any citation.

• When a trusted source is found, the citations in these papers will also be examined,
because of the high possibility of finding similar work related to the concrete topic.

The requirement engineering will focus on metrics of state-of-the-art Cloud Computing
and Edge Computing benchmarking tools and will also take care of AI-based benchmarks.
It will select the most common metrics that are examined in related work and Quality
of Service (QoS) metrics specific to AI. Due to the limited scope of this thesis, not all
metrics will be taken into account. The key metrics will be pre-selected by analyzing the
summarized related work. This set of benchmarks is going to be filtered by the following
questions:

• Is the metric necessary for the proposed evaluation and helps answer the research
questions?

• Is it possible to implement this metric in the given experiment setup?

• How great is the benefit if metrics are selected for evaluation?

42

5.2. Infrastructure Topology Generation

Topology generation
(Cell tower dataset)

Request pattern
generation

(taxi dataset)

Workload
development

(serverless functions)

Scenario
development

RQ2

Figure 5.2: Approach towards RQ2

5.2 Infrastructure Topology Generation
When looking at Figure 5.2, four important stages of the approach towards research
question two are shown. It starts with the topology generation. The infrastructure
topology generation is implemented in Python. It is split into four steps: preparing
and filtering the OpenCelliD dataset, combining the cells with a cloudlet area, and
creating the Ether-based topology on top of it. In the first step (prepare), a simple script
removes unnecessary columns from the dataset reduces the data by the given radio type
parameter, and saves them as a new file for the next step. This is done using pandas, a
Python-based data analysis library.1 In Algorithm 5.1 the preparation steps are shown
as pseudo-code. After that, it is possible to start the filter algorithm, where the user

Algorithm 5.1: Prepare dataset
1 dataframe = pd.readCSV(file);
2 dataframe.drop([’mcc’, ..., ’created’, ’updated’]);
3 for row in dataframe do
4 if row[’radio’] != "LTE" then
5 dataframe.remove(row);
6 end
7 end

can set specific parameters for generating location-based datasets. In Section 4.2.1 the
available parameters are already listed. When using the parameter —-city, the script
searches for coordinates using the geocoder geopy library2, where it is possible to request
location data regarding the name of a city. If no city is specified, the script takes the
longitude and latitude parameters for filtering. Parameters width and height then narrow
the already prepared cell data to a rectangle area with the corresponding height and
width. In Algorithm 5.2 the pseudo-code is shown to filter the data set.

1https://pandas.pydata.org/
2https://pypi.org/project/geopy/

43

5. Approach

Algorithm 5.2: Filter topology dataset
1 if name != null then
2 centerPoint = getLatLonFromCityName(name);
3 else
4 centerPoint = (lat, lon);
5 end
6 data = pd.readCSV(file);
7 [maxLat, minLat, maxLon, minLon] = getBounds(centerPoint, width, height);
8 filteredData = data.between(minLat, maxLat, minLon, maxLon);

When the dataset was filtered, the Create cloudlet membership algorithm, shown in
Algorithm 5.3, takes the parameters width and height and the maximum boundaries of
the filtered topology dataset to determine the specific cloudlet areas for the corresponding
cells. This is done by iterating over the longitude and latitude and adding the height to
the longitude and the width to the latitude at every step of the loop. To do that, the
kilometer values have to be transformed into degrees. If some cells are located between
the new boundaries, they will be associated with the current cloudlet (iteration index i).

Algorithm 5.3: Create cloudlet membership
1 topology = pd.readCSV(topologyFile);
2 minLat, maxLat, minLon, maxLon = getMaxBounds(topology);
3 i = 0;
4 newLon = minLon;
5 oldLon = newLon;
6 newLat = minLat;
7 while newLon <= maxLon do
8 newLat = minLat;
9 oldLon = newLon;

10 newLon = addKmToLon(oldLon, newLat, height);
11 while newLat <= maxLat do
12 oldLat = newLat;
13 newLat = addKmToLat(newLat, w);
14 toplogy.between(oldLon, newLon, oldLat, newLat)[’cloudlet’] = i;
15 i = i + 1;
16 end
17 end

44

5.3. Request Pattern Generation

5.3 Request Pattern Generation
The generation of the request pattern is divided into three steps, namely the dataset
preparation, the edge case extraction, and the pattern generation. First, the trip dataset
will be narrowed by the max bounds of the topology file, which was created in Section 5.2.
In addition, unnecessary columns, such as travel time or car medallion, are removed using
the Pandas library. This is done to reduce the size of the file and increase performance.

After that, the resulting trip dataset will be used in the Extract edge cases algorithm,
shown in Algorithm 5.5. The script reads the dataset takes the first and the last pick-up
date-time value of the set and iterates these values by adding five minutes to the date
time object in every iteration. In each step, the algorithm calculates the sum of measured
passengers and adds the interval (trips in this time range) and the sum to a dictionary.
When the loop is finished, the fifth percentile, the average, and the 95th percentile are
calculated. After the calculation, the script saves the three intervals, which are closest to
the values extracted before, as single SVG files.

From this point on, it is now possible to use the edge-case files to generate the specific
pattern. The Generate pattern script, shown in Algorithm 5.6, loads the topology file and
the edge-case trip file and iterates all trip entries. In every iteration, the getNearestCell
method searches for the cell closest to the topology according to the longitude and
latitude of the pickup event of the trip. The corresponding cloud area number is then
added to the trip event. In the next steps, the trip events that hold more than one
request will be split up into single trip events. The gathered trips are then grouped
by the cloudlet area. For every cloudlet area, the specific set of trips is iterated, the
difference between the timestamp then gets added to an array, and trips with the same
timestamp will be adjusted to have a difference of 0.1 seconds. The first event will start
with a difference of 0.5 seconds. The generated pattern will have the form of a list of
time deltas and is going to be saved in a single CSV file for every cloudlet area.

Algorithm 5.4: Prepare dataset
1 trips = pd.readCSV(tripFile);
2 trips.drop([’medallion’, ..., ’trip_time_in_secs’, ’trip_distance’]);
3 topology = pd.readCSV(topologyFile);
4 maxBounds = getMaxBoundsOfTopology(topology);
5 trips = trips.between(maxBounds)

5.4 Workload Implementations
This section describes the specific workload implementations. The workloads are grouped
into so-called One-Step functions, where the purpose of the single function is straightfor-
ward, and inference pipelines, where different One-Step functions are used concurrently
or sequentially. The developed inference pipeline (Taxi Driver Safety App) is inspired by

45

5. Approach

Algorithm 5.5: Extract edge cases
1 intervals = dict();
2 sumIntervals = dict();
3 trips = pd.readCSV(tripFile);
4 firstDate = min(trips[’pickup_datetime’]);
5 lastDate = min(trips[’pickup_datetime’]);
6 date = firstDate;
7 i = 0;
8 while date <= lastDate do
9 start = date;

10 end = date + ’10min’;
11 date = date + ’5min’;
12 temp = trips.between(start, end);
13 sumPickups = sum(temp[’passenger_count’];
14 sumIntervals[i] = sumPickups;
15 intervals[i] = temp;
16 i = i + 1
17 end
18 p5 = np.percentile(sumIntervals, 5);
19 avg = sum(sumIntervals) / sumIntervals.length;
20 p95 = np.percentile(sumIntervals, 95);
21 trips_p5 = getClosestInterval(p5);
22 trips_avg = getClosestInterval(avg);
23 trips_p95 = getClosestInterval(p95);

the NYC Taxi Dataset and the One-Step functions are based on state-of-the-art literature
and research. The implementation language is Python and the functions are implemented
in the Openfaas3 Docker environment and can be built and pushed to a repository as
common Docker images. This approach allows us to extend the workloads practically.
The functions are provided and listed in their own repository at Git Hub.4

Openfaas function templates

The Openfaas templates5 allow one to specify options for creating serverless-based
functions in a yaml file. Different coding languages, like e.g. Python, Go, Java, or
Dockerfile-based templates, can be chosen. The following example shows how a simple
Python3 -based function with the name example is specified.

v e r s i on : 1 . 0
prov ide r :

3https://www.openfaas.com/
4https://github.com/edgerun/galileo-experiments-functions
5https://github.com/openfaas/templates

46

5.4. Workload Implementations

name : openfaas
gateway : http : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0

f u n c t i o n s :
example :

lang : python3
handler : . / example
image : r e g i s t r y /example : l a t e s t

Listing 5.1: Openfaas function template

The gateway and related image must also be set. The handler specifies the callable name
of the function in the openfaas context. These templates are predefined, in the context
of this thesis, the used templates are going to be modified, because of the distinct needs
regarding different AI-based Python libraries and testbed architectures. The Python file,
which handles the single request for the specific function, has the following structure,
where only the single method handle must be specified:

de f handle (req) :
r e turn "HI , you entered : " + req

Listing 5.2: Python file template

5.4.1 One-Step Functions
Object Detection

This function allows deducing objects from a committed image file. It ranks the objects
found by score, which defines object detection accuracy and assigns them to the correlating
category name. This AI-based function rests on a pre-trained TensorFlow Lite6 model,
which gets loaded by the function to predict the objects in the image. In Figure 5.4.1 the
abstract workflow is shown.

function:
object detection

objects:
- score
- category name

Image

.tfile

Figure 5.3: Object detection workflow

• input format: byte array
6https://www.tensorflow.org/lite/guide

47

5. Approach

• function name: objectdetection

• model: TensorFlow Lite (.tflite)

• attributes: accuracy critical & data intensive

• output:

model load time : f l o a t ,
pre−proce s s time : f l o a t ,
p r e d i c t i o n time : f l o a t ,
post−proce s s time : f l o a t ,
r e s u l t s : [(f l o a t , s t r i n g) , . . .]

Human Detection

The Human Detection function offers to determine if one or more persons are present in
an image file. The model used is a pre-trained HOG (Histogram of Oriented Gradients)
& linear SVM (Support Vector Machine) model, provided by the OpenCV AI 7 library.
The function outputs, after prediction, whether humans were found in the image or not
by returning a simple Boolean expression. Figure 5.4.1 shows the simplified workflow of
this method.

function:
human detection found: True / False

Image

OpenCV
People

Detector

Figure 5.4: Human detection workflow

• input format: byte array

• function name: humandetection

• model: Standard OpenCV People Detector

• attributes: latency sensitive

• output:
7https://opencv.org/

48

5.4. Workload Implementations

model load time : f l o a t ,
pre−proce s s time : f l o a t ,
p r e d i c t i o n time : f l o a t ,
post−proce s s time : f l o a t ,
found : boolean

Mask Detection

Like in Section 5.4.1 this function uses a pre-trained TensorFlow model to predict worn
masks on faces from a committed image and returns the found mask types (homemade,
surgical, n95, or bare). It also includes some pre-process tasks, like image resizing or
converting into a floating model, which is needed for prediction.

function:
mask detection

mask type:
- homemade
- surgical
- n95
- bare

Image

.tfile

Figure 5.5: Mask detection workflow

49

5. Approach

• input format: byte array

• function name: maskdetection

• model: TensorFlow Lite (.tflite)

• attributes: latency sensitive & accuracy critical

• output:

model load time : f l o a t ,
pre−proce s s time : f l o a t ,
p r e d i c t i o n time : f l o a t ,
post−proce s s time : f l o a t ,
masks : [s t r i ng , . . .]

Sleep Detection

When trying to determine whether a person is sleeping or awake, based on an image,
this function calculates the ratio of eye and mouth closeness in a list of facial landmarks.
If the ratios violet a distinct threshold, the likelihood of a sleeping person is given.
This prediction method demands the dlib8 ML algorithm library and uses a pre-trained
shape prediction model for the detection of landmarks of the face. The function also
takes advantage of the pre-existing Frontal Face Detector of dlib. The Sleep Detection
includes some pre and post-processing steps such as image resizing, image converting, or
calculation of eye and mouth closeness ratios, where also the OpenCV AI library is used.

function:
sleep detection

results:
- mouth open ratio
- eye open ratio

Image

.dat

Figure 5.6: Sleep detection workflow

• input format: byte array

• function name: sleepdetection

• model: dlib shape prediction model (.dat),
8http://dlib.net/

50

5.4. Workload Implementations

• attributes: data-intensive, accuracy critical & latency sensitive

• output:

model load time : f l o a t ,
pre−proce s s time : f l o a t ,
p r e d i c t i o n time : f l o a t ,
post−proce s s time : f l o a t ,
r e s u l t s : [(f l o a t , f l o a t) , . . .]

Pose Estimation

This function has the goal if a person is located in a committed image, to return the
points regarding the pose and body parts pairs of the person. To do this, it utilizes
the DNN from the OpenCV AI library and loads a pre-trained network model, which is
provided in the ".caffemodel" format.

function:
pose estimation

- pose pairs
- points

Image

.caffemodel .prototxt

Figure 5.7: Pose estimation workflow

• input format: byte array

• function name: poseestimation

• model: DNN OpenCV network model (.caffemodel),

• attributes: data-intensive, accuracy critical

• output:

model load time : f l o a t ,
pre−proce s s time : f l o a t ,
p r e d i c t i o n time : f l o a t ,
post−proce s s time : f l o a t ,
pose_pairs : [(f l o a t , f l o a t) , . . .] ,
po in t s : [((f l o a t , f l o a t) , . . .]

51

5. Approach

Gun Detection

The function is created to detect guns in images. The algorithm is based on the
implementation in [Gee]. It uses the already known OpenCV library and takes advantage
of their Cascade Classifier, which loads a xml Haarcascade file with positive and negative
examples. For this thesis, the predefined Haarcascade file from [Gee] is used, for simplicity.
Returns True or False if a gun was detected or not.

function:
gun detection

gun found: True / False

Image

.xml
OpenCV
Cascade
Classifier

Figure 5.8: Gun detection workflow

• input format: byte array

• function name: gundetection

• model: Haarcascade file (.xml),

• attributes: accuracy critical & latency sensitive

• output:

model load time : f l o a t ,
pre−proce s s time : f l o a t ,
p r e d i c t i o n time : f l o a t ,
post−proce s s time : f l o a t ,
gunExist : boolean ,

5.4.2 Inference Pipelines
Taxi Driver Safety App

The purpose of this inference pipeline is to assess whether a taxi driver is safe by
recognizing people who want to get into a taxi and to detect if they are unarmed and
wear a mask. This is done by looking for a human in a taken picture calling the human
detection function presented in Section 5.4.1. If this proves to be true, the pipeline
calls the functions the gun detection and mask detection, shown in Section 5.4.1 and
Section 5.4.1, simultaneously. With the return values of these calls, the pipeline can
assess if the driver is safe. It only has to check if the response of the gun detection
request is false and the mask detection response does not include the mask type bare.

52

5.4. Workload Implementations

Since the two calls are concurrently made, the pipeline can return as soon as one of the
responses leads to a negative result. In Figure 5.4.2 the workflow is shown schematically.
To show how the implementation was performed, the following pseudo-code illustrates

Taxi driver

mask found / not found

function:
mask detection

False

function:
human detection

gun found / not found

function:
gun detection

safe / not safe function:
taxi driver safety

app

Image

Truefound?

Figure 5.9: Taxi Driver Safety App workflow

the inference pipeline function, where the two function calls (mask & gun detection) are
concurrently:

de f handle (req) :

1 . c a l l human de t e c t o r
response_human = ca l l_r eque s t (req , " humandetection ")

2 . no human found
i f response_human == False :

r e turn " d r i v e r i s s a f e "
3 . human found
e l s e :

3 .1 Ca l l mask d e t e c t i on
s t a r t c a l l " mask d e t e c t i on " :

response_mask = ca l l_r eque s t (req , " maskdetect ion ")
i f " bare " in response_mask [’ masks ’] :

r e turn " d r i v e r i s not s a f e "
break ;

3 .2 Ca l l gun d e t e c t i on
s t a r t c a l l " gun d e t e c t i on " :

response_obj = ca l l_r eque s t (req , " gundetect ion ")
i f response_obj == True :

r e turn " d r i v e r i s not s a f e " ;
break ;

r e turn " d r i v e r i s s a f e "
Listing 5.3: Taxi Driver Safety App pseudo code

53

5. Approach

Algorithm 5.6: Generate pattern
1 topology = pd.readCSV(topologyFile);
2 trips = pd.readCSV(tripFile);
3 for row in trips do
4 cell = getNearestCell(row, topology);
5 row[’cloudlet’] = cell[’cloudlet’];
6 end
7 tripsTemp = [];
8 for row in trips do
9 r = row[’requests’];

10 if r > 1 then
11 for 1 ... r do
12 row[’requests’] = 1;
13 tripsTemp.append(row);
14 end
15 else
16 tripsTemp.append(row);
17 end
18 end
19 cloudletDataframes = tripsTemp.groupBy(’cloudlet’);
20 for df in cloudletDataframes do
21 pattern = [];
22 sort(df, ’timestamp’);
23 lastTimestamp = 0;
24 for row in df do
25 if lastTimestamp == 0 then
26 pattern.append(0.5);
27 else
28 diff = row[’timestamp’] - lastTimestamp;
29 if diff == 0 then
30 pattern.append(0.1);
31 else
32 pattern.append(diff);
33 end
34 end
35 lastTimestamp = row[’timestamp’];
36 end
37 pattern.save(path + ’/’ + df[’cloudlet’] + ’.csv’);
38 end

54

CHAPTER 6
Experiments

This chapter shows the setup of the experiment, the setup of the cluster machines, the
testbed configurations used and the profiling experiments. Section 4.3.5 introduces the
implementation of the scenarios.

6.1 Testbed setup

The testbed is split into three zones, zone A, B, and C, a master node that allows the
starting of a tmux session, and a storage node that runs Redis, MYSQL, and Influx
databases for saving the experiment results. Every single zone consists of a controller
node and several different worker nodes. The zones are already shown in Figure 4.3.1.
The controller nodes are also configured as worker nodes. Zones A and B represent
two different IoT and cloudlet clusters in a smart city network environment. Zone C
illustrates a cloud cluster and consists of four virtual machines. There are also two Intel
NUC devices for zones A and B that emulate the user requests. For this thesis, the
following devices, shown in Table 6.1, will be important and considered when executing
the experiments:

Table 6.1: Testbed, table from [RRP+22]

Device Arch CPU Memory Cluster
1x AsRock x86 8x Ryzen @ 2 GHz 33GB IoT Box
1x Xeon x86 4x Xeon @ 4.6GHz 16 GB Cloudlet
4x VM x86 4x vCPU @ 2Ghz 8 GB Cloud
2x NUC x86 4x i5 @ 2.2 GHz 16 GB Clients

55

6. Experiments

6.2 Edgerun galileo experiments framework
To start experiments on the testbed, the Galileo Experiments Edgebench repository,
which relies on the Galileo Experiments repository 1 offers Kubernetes related deployment
of applications and clients, telemetry data collection and controller handling. It uses the
galileo shell to start the experiments. The experiments will get triggered remotely by
using a Tmux session.

6.2.1 Tmux
Tmux is a Linux-based terminal multiplexer. It allows one to open terminal sessions,
leave and reconnect to different sessions of applications running on a terminal window.
Considering the experiments, tmux is useful to start them when the single experiments
will get executed remotely on the testbed.

6.3 Profiling experiments
To get the resource usage and the execution time data of the single investigated functions
on the different devices, profiling experiments have to be executed on the testbed. This
is done, because the simulation in faas-sim requires the profiling data and the resource
usage of the single functions and devices, such that the simulation and experiments can
be compared with the same database. With the help of the Edgerun Galileo Experiments
framework, the human detection, gun detection, mask detection, and object detection
serverless functions presented in Section 5.4 will get profiled. The following parameters
must be set when starting a profiling experiment:

• creator name

• hostname (i.e., eb-a-controller)

• container image of the application (i.e. edgerun/maskdetection:1.1.0)

• zone (i.e., zone-a)

• master node name (i.e. eb-k3s-master)

• picture URL

• number of pods on the host

• number of requests & the inter-arrival time

• number of clients
1https://github.com/edgerun/galileo-experiments

56

6.4. Scenario experiments

For this thesis the number of pods is set to 1, the number of requests to 100, and the
inter-arrival time to two seconds. To get realistic and authentic resource usage and
execution time data, a two-second pause between the single requests is necessary. After
completion of the experiment, the mean execution time and the mean resource usage for
each device will be calculated by using the K3SGateway implementation and Jupyter
analysis notebooks. Also, the log-normal distribution of the execution time will be
calculated for the later executed simulation runs. The concrete implementation of an
profiling experiment (e.g. maskdetection) can be investigated in the Galileo Experiments
Extension repository2.

6.4 Scenario experiments
The scenario experiments are executed, to have comparable data regarding the simulation
and to show how server and edge device placement is important for the infrastructure
and resource planning of such Edge Computing settings. For the scenarios, the same
repositories will be used, with some parameter changes. Also, the additional inference
pipeline, shown in Section 5.4.2, is going to be executed as an experiment. As distinct from
the profiling experiments, these experiments are going to use the request pattern generated
in Section 5.3. Before the experiments can be started, the emulated network delay must
be applied to the different network nodes. Section 4.3.2 shows the corresponding method.
Each scenario will last about ten minutes. Because of the scope of this thesis, not every
single one of the twelve scenarios, shown in Section 4.3.5, is going to be executed for each
application/function, but every scenario will be covered by at least one of the applications.
The Galileo Experiments Extension repository also allows to start of scenario experiments,
therefore following parameters are needed for a single experiment run:

• creator name

• container image of the application (i.e. edgerun/maskdetection:1.1.0)

• number of zones (from 1 - 3)

• master node name (i.e. eb-k3s-master)

• path to request pattern files

• picture URL

When executing an experiment in one zone, the framework will start it only in zone A,
when the zone number is set to 2, the framework will also execute it in zone B, and when
the zone number is set to 3, all three clusters (IoT Box, Cloudlet, Cloud) are going to be
used. This should emulate the concurrent execution of the gathered requests and provide

2https://github.com/edgerun/galileo-experiments-extensions/tree/pruellerpaul/experiments/

57

6. Experiments

realistic results for later evaluation. In the scenario implementation3 of the framework,
the following mappings are used to indicate the correct zone, node, and image:

• application mapping (maps the unique name of an application to the function
image, e.g. maskdetection-zone-a will get mapped to edgerun/maskdetection:1.1.0)

• Zone mapping (maps the node, e.g. eb-a-controller, to a distinct zone, e.g. zone A)

• Service mapping (maps the node, e.g. eb-b-controller, to a function and determines
the number of available services, e.g. maskdetection-zone-a : 1)

• Profiling application mapping (maps the distinct application name to the concrete
profiling implementation regarding the used framework)

• Arrival profile mapping (e.g. client of zone A uses a different arrival profile than
the client for zone B)

A special case is the inference pipeline. This experiment needs four images in each
zone, namely the main function (taxi driver safety app) which makes use of three other
deployed functions (humandetection, maskdetection, gundetection). The workflow of the
pipeline is shown in Figure 5.4.2. Therefore the mapping needs to consider more images.

3https://github.com/edgerun/galileo-experiments-extensions/tree/pruellerpaul/experiments/

58

CHAPTER 7
Evaluation

Testbed
experiments

(Profilng & scenario)

Faas-sim
simulations

(Scenario)

Evaluation
Result

presentation
(Notebooks)

RQ3

Figure 7.1: Approach towards RQ3

This chapter shows the gathered related work, describes the experiments and scenarios
examined, and the results that could be gathered from it. It begins with the found
simulation and emulation frameworks in Section 7.1.1 and Section 7.1.2, the serverless
benchmark suites in Section 7.2, followed by the preparation and filtering of the cell
database set in Section 7.3.1, topology creation, edge case extraction, and request pattern
generation. After that, the results of the experiment and the simulation runs are inspected.
At the end of this chapter, the metrics collected from the experiments will be analyzed
and compared against the collected benchmarks. Section 4.1 introduces the method for
this part.

7.1 Simulation & Emulation Frameworks
In this section, we examine frameworks by their configuration possibilities and features,
if they are pure simulation or emulation tools or also have hybrid features for both
approaches. The configurable parameters are listed and the buildup of the frameworks is
shown. Afterward, a conclusion paragraph lines out the most important facts about the
simulation and emulation tools.

59

7. Evaluation

7.1.1 Simulation Frameworks
Simulation Frameworks, in the context of cloud and Edge Computing, are predomi-
nantly open-source tools for repeatable evaluation of applications in large-scale network
topologies. Because of the financial limits in common software development, setting up
a real-world environment for testing applications is a well-known problem. These tools
can offer multiple platform support, generate communication, energy, and cost models
of the submitted application & network settings, and provide sometimes graphical user
interfaces for end users. There is no need for an expensive IT infrastructure to work with
such simulators [FKK17].

CloudSim
User code

Simulation Specification
(Cloud Scenario, User Requirements, Application Configuration, ...)

Scheduling Policy
(User or Data Center Broker)

CloudSim

User Interface Structures
(Cloudlet, Virtual Machine)

VM Services
(Cloudlet Execution, VM Management)

Cloud Services
(VM Provision, CPU Allocation, Memory Allocation, Storage Allocation, Bandwidth Allocation)

Cloud Resources
(Events Handling, Sensor, Cloud Coordinator, Data Center)

Network
(Network Topology, Message delay Calculation)

CloudSim core simulation engine

Figure 7.2: The CloudSim layer architecture (Adapted from [CRB+11])

CloudSim is an extensible, event-driven simulator for testing the performance of Cloud
Computing related services. It enables the modeling of large-scale topologies with
distinct network infrastructure, service brokers, virtual machines (VM), and other cloud
components like data centers, and allows one to define allocation policies, all on a single
machine. It allows one to model public, private, hybrid, or multi-cloud environments.
Components maintain a message queue by sending messages to other network participants
along the queue. The data centers are made up of storage servers and physical host
machines, which host the so-called cloudlets. Cloudlets perform specific tasks from
workloads that are assigned by a simulation [CRB+11] [FKK17]. Regarding virtualized
services, it is possible to switch between space-shared and time-shared processing core
allocation. This time effectiveness, applicability, and flexibility are the main advantages
of using CloudSim to simulate application services in cloud environments [CRB+11]. In
Figure 7.2 the CloudSim multi-layer architecture is displayed. The CloudSim simulation

60

7.1. Simulation & Emulation Frameworks

layer provides management interfaces for virtual machines and handles the following
topics:

• Memory, storage, and bandwidth control

• Hosts to VMs provisioning

• Application execution management

• (Dynamic) system state monitoring

The User Code layer allows a developer to generate workload request allocations, custom
application provisioning methods, cloud availability scenarios, and perform tests regarding
system robustness based on the following extendable basic entities [CRB+11]: Number of
machines; Number of tasks; Virtual machines; Number of users; Application types; and
Scheduling policies.

iFogSim

IoT Applications

Application Modules
(Sense-Process-Actuate, Stream Processing)

Resource Management
(Resource Provision and Operator Placement, Scheduling)

Infrastructure Monitoring
(Monitoring, Performance Prediction, Knowledge Base)

Data Generated
(Data Streams)

Fog Devices

IoT Sensors and Actuators

Figure 7.3: The iFogSim layer architecture (Adapted from [GVGB17])

This open-source, Java-based framework enables the simulation of edge and fog networks
and provides application scheduling policies through edge and cloud resources. It also
offers a resource management tool and extends on the CloudSim simulator presented in
Section 7.1.1. IFogSim offers a graphical user interface (GUI) where physical topologies
can be created and exported in JSON format. It is also possible to create the topologies
in JAVA programmatically [PVCM20].

In iFogSim, the architecture consists of seven different layers shown in Figure 7.3.
The first layer, at the bottom of this architecture, contains the Internet of Things (IoT)
devices, such as sensors, cameras, etc. which generate data and react to changes in the

61

7. Evaluation

environment. In the next layer, so-called fog devices, such as cloud resources, gateways,
or application modules, are hierarchically created. They can only communicate between
parent and child devices, so device-to-device communication is not possible, and only tree
topologies are supported. Data streams are sequences of value tuples that are issued by
e.g. sensor devices, application modules, or fog devices. Furthermore, these data streams
can be used by the next layer, the infrastructure & monitor layer which monitors the
resources, power usage, sensors, and other fog devices. The resource management layer
makes use of this information. The main task of resource management is, with the help
of scheduler and placement components, to minimize resource consumption by listening
to the information of the previous layer and distributing resources with respect to the
desired application modules. Generally, it is possible to change the implementation of
resource management and have a distributed, hybrid, or static way of resource allocation.
The distributed data flow (DDF) model is the basement for developing applications that
are deployed in the fog. DDF means that the data flow is deployed to multiple devices
rather than one device. Therefore, the data input and output flow can be drawn as a
graph between modules [GVGB17].

The following table shows the components of the iFogSim framework [GVGB17] and
their main attributes that the user can define:

Fog Devices - Accessible memory, processor, storage size, uplink, and downlink bandwidths
- Custom policies: changeable methods to handle resource scheduling and modules deployment

Sensors - Connected gateway reference, gateway connection latency, output characteristics of the sensor
- Tuple inter-transmissions distribution (tuple arrival rate)

Actuators - Connected gateway reference, gateway connection latency
- Changeable actuator methods

Tuples - Type, source and destination application modules
- Processing requirements in million instructions (MI), length of data

Application - Number of output tuples per input tuple, periodic and event-based application edges
- Process-control loops to measure end-to-end latency

Monitoring service - Resource usage statistics for each device
- Power consumption at given CPU use

Resource management service
- Changeable placement policy
- Changeable application scheduling policy
- Default scheduling policy: uniformly distributed

Table 7.1: Components of the iFogSim framework

iFogSim2

This framework is an extension of iFogSim presented in Section 7.1.1. It extends the
existing core functionality with three new components, namely Mobility, Microservices,
and Clustering. With the Mobility component, it is possible to choose between different
mobility models, e.g. the random, or the directional pattern. Different parameters such
as location, speed, stop time, communication range, etc. are set in these models to
generate the movement data of the IoT devices. The Microservices component adds
the possibility to simulate microservice architecture orchestration, in contrast to the
standard monolithic approach. The new Clustering component enables the coordination
and communication among distributed nodes in the simulation network [MPGB21].

62

7.1. Simulation & Emulation Frameworks

EdgeCloudSim

Mobility Module

Load Generator
Module

Core Simulation
Modules

Edge Orchestrator
Module

Networking Module
(WLAN, WAN, ...)

CloudSim (Base)
(Global Cloud, Edge Server)

Figure 7.4: EdgeCloudSim modules (Adapted from [SOE17])

These CloudSim extensions enable the user to specify designated computational and
networking resources before running Edge Computing scenarios. It consists of five
expandable modules, shown in Figure 7.4. EdgeCloudSim1 offers additional configurable
parameters. It allows us to define the places where mobile devices are simulated with
respect to a distinct mobility motion model, change the WAN and WLAN parameters, or
enter the number of edge servers per place [SOE17]. The complete list is shown below.

Conclusion

CloudSim is a free, powerful, and detailed documented tool to create models and sim-
ulations of large-scale Cloud Computing data centers or virtualized server hosts. It is
the base layer of many other simulation frameworks. With its great customizability and
user-defined policies, it is very flexible and can be adapted to the developer’s needs. The
CloudSim based frameworks iFogSim and iFogSim2 extend the functionality of CloudSim
by a graphical interface and many components like a monitoring service, resource man-
agement service, clustering, a mobility component and customizable fog devices and
sensors. The GUI enables a user-friendly way to use such a framework and create e.g.
topologies for the simulation. Also the EdgeCloudSim extension offers the developer new
opportunities, like configurable WAN and WLAN parameters or the already mentioned
mobility motion model. These extensions of CloudSim can be seen as an advancement, if
further special needs are recommended when planning simulations.

1https://github.com/CagataySonmez/EdgeCloudSim

63

7. Evaluation

Parameters
Poisson Interarrival Time of Tasks (second)
Simulation Time (hours)
Number of repetitions
User Mobility Model Nomadic M. M.
Number of Mobile Devices
Number of Place Type (Attractiveness Level)
Probability of selecting a place type equal
Number of places
Dwell time of place (minute)
Active/Idle period of the user (second)
Number of Edge Server per Place
Number of VMs per Edge Server/Cloud
CPU Utilization
VM Processor Speed (MIPS) per Edge Server/Cloud
Probability of Offloading to Cloud
Average Data Size for Upload/Download (KB)
Average Task Size (MI)
WAN/WLAN Bandwidth (Mbps)
WAN Propagation Delay (ms)

Table 7.2: EdgeCloudSim Parameters (Adapted from [SOE17]

7.1.2 Emulation Frameworks
Emulation tools allow one to run assessable and repeatable experiments with respect
to real-world conditions and benefit the detection of e.g. bottlenecks before production
deployment. These frameworks are able to emulate real code, in contrast to simulation
tools, which only consider assumptions and set application parameters. Simulation tools
and their configuration possibilities, such as the one presented in Section 7.1.1, are
not always representative of real-world applications, so we also have to keep in mind
emulation frameworks to test Edge Computing applications.

EmuFog

Figure 7.5: EmuFog emulation workflow (Adapted from [MGG+17])

64

7.1. Simulation & Emulation Frameworks

EmuFog2 is an open-source and extensible emulation framework that enables the design of
fog computing infrastructures and the emulation of docker-based real-world applications.
End users can choose the topology that is consistent with the required application case.
Implement scalability for large-scale topologies by allowing the creation of topologies with
network topology generators or by loading real-world datasets with a single file [MGG+17].
The user can configure the following parameters before starting the emulation. The

Parameters
Topology generation or external topology datasets
Fog and device node types
Maximum connections (fog nodes)
Costs, memory limit, and CPU share (fog nodes)
Scaling factor, average device count (device nodes)
Memory limit and CPU share (device nodes)
Maximal number of fog nodes
The cost function’s threshold (like latency)
Host device latency and bandwidth
Computational capabilities (high level specification)
Expected client numbers

Table 7.3: EmuFog Parameters

defined settings are stored in a single configuration file. EmuFog allows one to export the
defined software to execute it in the MaxiNet3 emulator. This is a distributed network
emulator based on the MiniNet4 emulator. MaxiNet adds docker-based virtual hosts to
the basic implementation of MiniNet, which allows one to run the emulation only on a
single physical machine. This provides a more realistic approach than the above-described
simulation attempt. It is also cheaper, more sustainable, and more efficient than real
deployments.

7.1.3 Hybrid Frameworks
EMUSIM

EMUSIM is a framework that uses both techniques, namely simulation, and emulation,
to investigate the application’s behavior and software-as-a-service cloud deployment
scenarios. It enables the user to generate a more precise deployment model for the
service and allows one to measure costs and performance in the cloud environment.
EMUSIM aggregates a configuration for deployment in production infrastructure. It
applies the emulator on a local environment to extract the application profile, which is
one of the inputs of the CloudSim-based simulator, and to gather the necessary external

2https://github.com/emufog/emufog
3https://maxinet.github.io/
4https://github.com/mininet/mininet

65

7. Evaluation

Figure 7.6: EMUSIM organization overview (Adapted from [CNRB13])

infrastructure characteristics and QoS (Quality of Service) metrics. The framework needs
the following four configuration files to run emulation and simulation of the application
[CNRB13]:

1. Physical environment configuration (XML file)

2. Emulation environment configuration (minimum & maximum number of VMs)

3. Application configuration

4. Simulation configuration (e.g. number of users, request arrival pattern, data center
capacity, number of virtual machines, and policies for provisioning)

66

7.1. Simulation & Emulation Frameworks

EmuEdge

Simulator Container VM Testbed

Emulator

EmuEdge
<interface> <interface>

Figure 7.7: EmuEdge structure (Adapted from [ZCS19])

EmuEdge [ZCS19] is an open-source hybrid emulator that enables interfaces to connect
to simulation frameworks and real-world testbeds. It is built on an emulator that can
run applications in similar Mininet containers or enables full system virtualization in
VMs and allows the physical deployment nodes to be connected to virtual hosts. The
coarse structure is shown in Figure 7.7. EmuEdge offers its own reproduction framework,
which allows setting the following inputs:

• Emulation parameters (CPU core, memory, or disk allocation)

• Network topologies (routers, switches, devices, physical devices, network links)

• Network traces (gathered from experiment logs)

• Synthetic traces (generated from simulations)

Conclusion

EmuFog is a pure emulation framework, that allows the generation and import of topolo-
gies and configures multiple parameters like scaling factors, node types, computational
capabilities, and many more. As distinct from the two hybrid emulation frameworks
EMUSIM and EmuEdge, it does not have features for deploying or exporting configura-
tions for productive infrastructure, but can be connected to a simulation framework via
its own interface.

67

7. Evaluation

Framework Features Simulation
only?

Emulation
only?

Parameters

CloudSim Public, private, hybrid, or
multi-cloud environment mod-
els; Space-shared and time-
shared processing core allo-
cation; Hosts to VMs provi-
sioning; Application execution
management; System state
monitoring

Yes No Number of machines; Num-
ber of tasks; Number of users;
Application types; Scheduling
policies; Virtual machines

IFogSim All features of CloudSim; Sim-
ulation of edge and fog net-
works; Resource management,
GUI for topology creation; Fog
device customization;

Yes No All parameters of CloudSim;
Accessible memory, processor,
storage size, uplink, and down-
link bandwidths; Custom poli-
cies (scheduling, deployment);
More parameters are listed in
Table 7.1

IFogSim2 All features of IFogSim; Mo-
bility models; Microservice or-
chestration; Clustering

Yes No Location, speed, stop time,
communication range of mo-
bility models

EdgeCloudSim All features of CloudSim; Mo-
bility motion model; Edge Or-
chestration;

Yes No WAN & WLAN parameters;
Mobile device places; Num-
ber of places; Number of Edge
Server per Place; More param-
eters are listed in Table 7.2

EmuFog Docker-based application emu-
lation; Network topology gen-
erator or real-world data im-
port; Export for MaxiNet em-
ulation

No Yes Fog and device node types;
Fog node maximum connec-
tions; Memory limit and CPU
share; Expected client num-
bers; More parameters are
listed in Table 7.3

EMUSIM Generate precise deployment
models; Cost and performance
measurement; Configuration
aggregation for production de-
ployment; CloudSim simula-
tion input; Gather infrastruc-
ture characteristics and QoS
metrics

No No Physical environment configu-
ration; Minimum & maximum
number of VMs; Number of
users; Request arrival pattern;
Data center capacity; Provi-
sioning policies; Application
configuration

EmuEdge Interface for simulation; Inter-
face for testbed; MiniNet em-
ulator; Full system virtualiza-
tion

No No CPU core; Memory; Disk
allocation; Network topolo-
gies; Network traces; Syn-
thetic traces

Table 7.4: Summary of the investigated emulation and simulation frameworks

In the next section, seven different benchmarking suites and tools are summarized. The
workloads, applications and benchmarks of each tool are consolidated. In the end, a
small conclusion lines out the features and hard facts about the single tool.

68

7.2. Serverless Benchmarking Suites

7.2 Serverless Benchmarking Suites
Seven benchmarking tools were examined. For example, FunctionBench, which applies in
the area of Microbenchmarks, Data Processing, Applications, and ML Model Training
& Serving, offers a widespread set of serverless FaaS workloads to measure the latency
in cloud and edge environments. EdgeBench is a cloud and edge benchmarking suite
for workloads in the area of Smart Home & Autonomous Vehicles, that enables end-to-
end latency, bandwidth utilization, local resource utilization, and infrastructure costs
benchmarking. The IoTBench, DeepEdgeBench, and EdgeDroid suites have to be
emphasized because they are suites that only work in edge environments, while the
iBench and FaaSdom suites are only for use in cloud benchmarking.

7.2.1 FunctionBench
FunctionBench is a suite of serverless FaaS workloads that can be deployed on common
cloud services, namely AWS Lambda Google5, Cloud Functions6 and Azure Functions7.
It offers micro benchmarking and application workloads which will be lined out precisely
in this section. Micro benchmarks allow one to evaluate different resource usage self-
contained. Such workloads are not common in modern FaaS applications, because
real-world applications or functions require multiple concurrent resources for executing
the program code. This is why FunctionBench extends the benchmarks with different
applications, ML Model Training, and ML Model Serving workloads to evaluate more
concurrent resource-addicted workloads.

Workloads & Benchmarks

First of all, the workloads in FunctionBench have four different characteristics; they can
be distinguished into CPU, memory, Disk I/O, and network required loads.

Micro benchmarks:
The suite offers float point operations, such as square root or sine and cosine, linear
equation (Linpack), and matrix multiplication computation. These are mainly CPU
and memory-intensive workloads. It also allows performing a disk I/O-based workload,
namely a function where the dd system command is executed. To measure network
performance, FunctionBench has a cloud storage workload in which an object is down
and uploaded. The iperf3 workload is also a network-intensive workload where a direct
connection between sender and receiver is required.

Applications:
FunctionBench has an application workload that executes an Image Processing com-
putation. It has medium CPU and memory usage for image processing and low disk I/O

5https://aws.amazon.com/de/lambda/
6https://cloud.google.com/functions/
7https://azure.microsoft.com/en-us/services/functions/

69

7. Evaluation

and network usage for down- and uploading the image. Additionally, the suite offers a
Video Processing workload. This load has high CPU and memory usage and a medium
disk I/O and network overhead.

ML Model Training & Serving:
To evaluate ML workloads, the suite offers a preprocessing featurization workload
to prepare raw data for the next ML step. It executes TF-IDF vector transformation
on a text dataset. The logistic regression workload then builds a model based on
the featured data. These two loads require high memory, CPU, and network resources
due to the large size of the datasets that must be accessed. For the ML serving phase,
FunctionBench offers a face detection, a logistic regression, a deep learning-based
image classification, and a word generation inference workload. All these loads do
not require much resource usage like the training workloads.

Benchmarks:
FunctionBench offers the investigation of latency after performing the workloads. The
main goal of this suite is to evaluate the performance of the different functions of different
service providers.

Conclusion

The corresponding paper [KL19] does not show how they set up the request pattern and
user behavior. Also, the orchestration performance is not examined in FunctionBench,
but it offers a great balanced selection of workloads to build on.

70

7.2. Serverless Benchmarking Suites

7.2.2 EdgeBench
EdgeBench offers a suite of different benchmark applications to measure the performance
of common cloud providers. Like in FunctionBench, presented in Section 7.2.1, the
EdgeBench suite also offers different application types to benchmark serverless platforms.
The difference here is that it processes the input data of the application on an edge device
and then sends it to two selectable cloud providers (AWS Greengrass8 and Microsoft
Azure IoT Edge9) which is nearer on the thread this thesis wants to examine [DPW18].

Workloads & Benchmarks

The suite allows one to use three different types of application, namely an image recog-
nizing application, a speech to text application, and a scalar value generator that
emulates a sensor and is used to measure performance with a lightweight workload when
the resources on the edge are sparse. The speech-to-text area is relevant since Smart
Home devices like Amazon Echo or Google Home are readily available for all households
and users all over the world. Image processing is used in areas such as smart cameras or
autonomous vehicles, to name only two examples [DPW18].

Benchmarks:
The developers of this suite implemented two pipelines to benchmark the three application
types in combination with the selected cloud provider. They offer a cloud-only pipeline
to measure the performance of the cloud provider like in FunctionBench and an edge
pipeline to measure the edge-based performance benchmarks. The Python-based suite
generates metrics like Compute time, Time-in-flight, Payload size, CPU and memory
utilization, and end-to-end latency. In [DPW18] the contributors set up an experiment
with a Raspberry Pi 3B as an edge device and investigated end-to-end latency, band-
width utilization and local resource utilization. Subsequently, they presented
Infrastructure Costs and compared the two pipelines according to all the benchmarks.

Conclusion

This is a good approach to manually investigate the providers, but, like FunctionBench,
it is limited to measuring orchestration performance and managing user behavior. It
offers a good selection of metrics and benchmarks that can be used for a more precise
examination.

8https://aws.amazon.com/de/greengrass/
9https://azure.microsoft.com/de-de/services/iot-edge/

71

7. Evaluation

7.2.3 DeepEdgeBench

In [BJCG21] the contributors investigated the model inference performance on five differ-
ent edge devices regarding four AI-based Deep Neural Network frameworks (Tensorflow,
TensorRT, Tensor-flow Lite, and RKNN-Toolkit). Some of the devices conclude an
Artificial Intelligence (AI) unit for which performance will also be examined.

Application & workload:
DeepEdgeBench evaluates the performance through image classification workloads by
specifying the DNN model and the number of images used from the ImageNet dataset.

Benchmarks:
They developed a method to measure power consumption, the time required for
inference (inference speed) and model accuracy. For model accuracy, the evaluation
investigates the claimed accuracy and compares it with the measured accuracy of the
model by looking at TOP-5 and TOP-1 accuracy. They examined different models
like MobileNetV2, MobileNetV2 Lite, MobileNetV2 Quant. Lite, or MobileNetV1 Quant.
Lite.

Conclusion

The focus in this setup is on comparing hardware devices and not orchestration techniques.
The paper shows how to benchmark different edge hardware devices in a comparable
way. The investigation of the model accuracy by excluding and including AI units is a
very insightful evaluation part of DeepEdgeBench. Also, the way in which the power
consumption is done is a good input for further work.

7.2.4 FaaSdom

FaaSdom is an open-source automated test suite to evaluate the performance of different
providers of serverless computing platforms (Amazon Web Services, Microsoft Azure,
Google Cloud, and IBM Cloud) and programming languages. The suite allows the
deployment, execution, and clean-up of associated tests in an automated way and also
offers continuous monitoring of the benchmark tests.

Applications:
The suite offers several HTTP trigger-based functions: A CPU bounded function that
does integer factorization and matrices multiplications; a network bounded
function that allows one to measure the round-trip time of geographically distributed
deployments; a IO Disk bounded function to measure disk read and write perfor-
mance; and the possibility of defining a custom function [MFKS20].

Workloads:

72

7.2. Serverless Benchmarking Suites

The workloads are invoked by the wrk210 framework, which allows a constant throughput
load to be injected through the HTTP trigger. This tool also shows the average latency
of the requests.

Benchmarks:
In [MFKS20] the call latency (round trip), the cold start latency, the execution
time regarding different memory setups, and the successful requests per second
(throughput) by handling CPU intensive workloads. In addition, active instances are
measured during the load test. The tool offers a pricing calculation to compare each
platform and configuration.

Conclusion

The suite offers a user interface to work with. It allows one to set up their own functions
by providing their own function template and [MFKS20] shows how to provide a pricing
calculation that gives the developer a good opportunity to estimate the future costs of
serverless functions on different platform providers. FaasDom allows one to investigate the
cold start latency and round-trip time, which are also indicators of how good scheduling
and auto-scaling are done on the different platforms.

7.2.5 EdgeDroid
This tool is developed to benchmark human-in-the-loop applications in the context of
Edge Computing. Human-in-the-loop applications are, e.g. wearable cognitive assistance
(WCA) or augmented reality (AR) mobile applications that have a tight affinity with
the end users themselves. EdgeDroid applies recorded user interaction traces and a
so-called user model to imitate user feedback in the subsequent benchmarking process.
Python-based control backend and application instances are deployed in a cloudlet, client
emulators, and user model run on one or more Android devices. A detailed description
of the EdgeDroid approach is shown in [OMnWSG19].

Applications:
The main application types considered by the contributors in [OMnWSG19] are human-
in-the-loop apps. They got pulled and deployed in the cloudlet by a simple Docker
image and are communicating over TCP with the clients. In the associated paper,
the contributors set up an experiment that looks at a WCA based application called
gabriel-lego11.

Workloads:
As described above, the workloads are generated by the recorded traces and the evolved
user model which are able to consider, for example, fatigue, annoyance, and other user
reactions to the feedback of the application. The experiment shown in [OMnWSG19]

10https://github.com/giltene/wrk2
11https://github.com/cmusatyalab/gabriel-lego

73

7. Evaluation

also considered single and multiple users.

Benchmarks:
It includes several latency benchmarks, namely processing time, uplink and down-
link transmission. The comparison of the metrics shows the distribution between the
components and allows one to make application and architecture decisions based on it.
They also compared the impact of well-connected devices and clients in an impaired
WiFi environment and looked at RTT regarding input-feedback cycles that allows
one to analyze the latency of different steps in the application.

Conclusion

EdgeDroid is a practical tool for developing solutions to prevent bottlenecks that appear
after the use of AR and WCA applications. With this method, developers can decide
whether they need to improve scalability, WiFi connection, or processing power in the
back-end itself and allow one to determine whether the weakness is affected by software
or hardware [OMnWSG19].

7.2.6 iBench

IBench is a benchmark suite for determining the inference performance of distributed
Edge Computing systems at the system level and also for measuring the performance of
the AI accelerators used. It consists of two main components, namely a data simulator
engine and an inference server. IBench allows measuring more components of a High-
Performance Computing (HPC) system than a chip-level-based performance measuring
like in MLPerf12 [BBS+20].

Application & workloads:
The focus lies on benchmarking AI based inference server on HPC systems. Workloads
are generated in the Source module of iBench. This is a simulation engine that generates
image and document data and allows one to specify data transfer rates (Velocity,
Volume and Variety).

Benchmarks:
In iBench the Post-processing module stores the results and allows one to generate
visualizations and offers a search function for filtering results. The main benchmarks
are throughput, latency, ingest rate / bandwidth, pre-processing time, and
GPU efficiency. Compared to other suites for ML benchmarking, iBench offers a more
extensive selection of metrics [BBS+20].

12https://www.nvidia.com/en-us/data-center/resources/mlperf-benchmarks/

74

7.2. Serverless Benchmarking Suites

Conclusion

The suite allows one to have a more precise insight into the performance of distributed HPC
architectures. By looking at the additional metrics, the developer has the opportunity to
take the appropriate action, e.g., add additional GPUs or improve network speed and
CPU performance.

7.2.7 IoTBench

This edge processing benchmark suite covers a selection of Internet of Things (IoT) related
applications. Due to the limited resources in IoT devices, this suite should enable more
precise architecture decisions for IoT device platforms. The contributors of IoTBench
show in [LLYC19] a benchmark evaluation on a Raspberry Pi3 device.

Applications:
The suite offers three different application areas. Computer Vision offers technologies
such as self-driving cars or video surveillance, Speech Recognition is widely spread
in smart home devices and Physiological Signal Processing applications can run on
wearable personal health devices.

Workloads:
IoTBench includes imposing workloads in all of the three areas mentioned above. The
workload domains in the Vision area are Video Summarization, Stereo Image
Matching, Image Recognition, and Scan Matching. In the area of Speech Recog-
nition, it offers a Voice Feature Extraction workload and Signals Enhancement.
For Physiological Signal Processing, IoTBench allows one to run a Data Compression
workload. Workloads are executed by the user.

Benchmarks:
It offers benchmark metrics regarding computational demand, efficiency, and energy
consumption. For measuring computational demand, metrics like frames per second or
execution time for inference deep learning in Computer Vision workloads. Processing
rate is used to measure the demand in Speech Recognition and Physiological Signal
Processing. The evaluation of performance efficiency in [LLYC19] shows an instruction
breakdown of difference characteristics such as CPU instructions, cycles, cache,
memory, floating point, branch or SIMD instructions in different workloads. Also,
the Cache sensitivity is lined out. The power and energy breakdown is separated into
computation, on-chip memory, off-chip memory and storage consumption.

Conclusion

IoTBench is a compact and balanced tool to investigate the performance of the IoT
device and energy consumption by offering different areas of common applications and
workloads. It allows one to make a decision regarding the hardware design architecture in

75

7. Evaluation

IoT edge devices. [LLYC19] shows a practical example of how to benchmark IoT devices
on a Raspberry Pi3, which is widely used in an Edge Computing environment. It is only
used for edge processing (front-end processing) and does not include the opportunity to
test computational offloading.

In Table 7.5, all benchmarking suites/tools previously investigated are listed. The
used metrics, application areas & workloads are shown. Also, the Cloud and Edge
compatibility is present.

Benchmark Suite Areas Workloads Cloud
only?

Edge
Only?

Metrics

FunctionBench Microbenchmarks,
Data Processing
Applications, ML
Model Training &
Serving

Float point, Matrix multipli-
cation, Dd system, Cloud stor-
age, Iperf3, Image processing,
Video processing, Featuriza-
tion, Logistic regression, Face
detection, Image classification,
Word generation

No No Latency

EdgeBench Smart Home &
Autonomous Vehi-
cles

Image recognizing, Speech to
text, Scalar value generator

No No End-to-end latency, Band-
width utilization, Local re-
source utilization, Infrastruc-
ture costs

DeepEdgeBench ML Model Infer-
ence

Image classifiction No Yes Power consumption, Inference
speed, Model accuracy, TOP-5
and TOP-1 accuracy

FaaSdom HTTP trigger-
based functions

Wrk2 framework: Integer fac-
torization, Matrix multiplica-
tion, Network bounded func-
tion, Disk I/O

Yes No Call latency, Cold start la-
tency, Execution time, Suc-
cessful Requests per second,
Active instances, Pricing cal-
culation

EdgeDroid Human-in-the-
Loop Applications

Gabriel-lego No Yes Latency, Processing time, Up-
link & downlink transmission,
RTT, Input-feedback cycles

iBench ML Model Infer-
ence

Allow to specify: Image and
document data, Data transfer
rates

Yes No Throughput, Latency, In-
gest rate/bandwidth, Pre-
processing time, GPU effi-
ciency

IoTBench Computer Vision,
Speech Recogni-
tion, Physiological
Signal Processing

Video summarizing, Stereo im-
age matching, Image recog-
nition, Scan matching, Voice
feature extraction, Signals en-
hancement, Data compression

No Yes Execution time, Processing
rate, CPU instructions, Cy-
cles, Cache, Memory, Floating
point, Branch, SIMD, Cache
sensitivity, On-chip & off-chip
memory, Storage consumption

Table 7.5: Summary of the investigated benchmarking tools

Conclusion

Towards RQ1 in Section 1.2, it can be concluded, that there are many multifaceted
and adaptable benchmarking tools, that cover application areas like Microbenchmarks,
Data Processing applications, ML Model Training, Serving & Inference, Smart Home
& Autonomous Vehicles, Human-in-the-Loop applications, Computer Vision, speech
recognition and physiological signal processing. The examined tools offer metrics like
latency, bandwidth & local resource utilization, infrastructure costs, power consumption,
inference speed, model accuracy, and many more in greater detail, e.g. Input-feedback

76

7.3. Workload Definition

cycles, Cache sensitivity, or On-chip & off-chip memory. Some frameworks presented in
Section 7.1 allow custom workload & topology generation, generate application profiles
and enable the creation of mobility models, which is a notable baseline to perform VR and
AI-based benchmarking. Some frameworks offer monitoring of e.g. end-to-end latency
and allow defining and changing application types. Furthermore, the hybrid frameworks
are a huge opportunity to combine the emulation metrics with the one of the simulation.

7.3 Workload Definition
This section shows the evaluation of the workload definition phase, which includes the
cell extraction and request pattern generation results.

7.3.1 Cells extraction
The original OpenCelliD dataset file has a size of 3.95 GB13 and will be prepared with
the help of the script provided in the faas-topologies14 repository. Before starting the
following command, the original file is placed in the datacells_data folder.

python prepare_dataset . py −−rad io LTE

After preparation, the new file, saved as datacells_data/cell_towers_prepared.csv, now
has a size of around 720 MB. From this point on, it is easier to work with the cell data
file. The next step is the filtering. With the following command, the dataset will be
filtered against the latitude and longitude values 40.754380 and 73.984986, which are in
the center of New York City, and the width and height of 1 km respectively 2 km.

python f i l t e r _ d a t a s e t . py −−name new_york_1x1
−−l a t 40.754380 −−lon −73.984986 −−width 1 −−he ight 1

The script saves the files with the given name parameter in the topologies folder. The
new_york_1x1 has a size of 109 KB and includes 2839 cells. The new_york_2x2 is
320 KB in size and includes 8313 cells. Now, the cells are ready to be allocated with the
different cloudlet scenarios mentioned in Section 4.3.6. With the following command,
the create_cloudlet_membership.py script creates a CSV file with the new cloudlet
membership entries.

python create_cloudlet_membership . py
−−path t o p o l o g i e s /new_york_1x1 . csv −−name new_york_1x1_1x1
−−width 1 −−he ight 1

Now, every cell in the files has a cloudlet number assigned. Figure 7.8 shows the cloudlet
assignment, where the x-axis represents the longitude and the y-axis the latitude. The
value points in the figures represent the cells in the area. The different colors show

13date of download: 30.12.2022
14insert url

77

7. Evaluation

the cloudlet belonging. The Figure 7.8b consists of 2839 cells, which is the size of the
total number of cells in the file. In Figure 7.8a, the area was divided into four cloudlet
areas, where the single cloudlet areas have 807, 825, 525, and 682 cells. When analyzing
Figure 7.8c, it shows that the cloudlet areas are split into 2319, 1900, 1867, and 2227
cells. The largest amount of cells in a single cloudlet area is to be located in Figure 7.8d,
where the first area includes 4219 and the second 4094 cells.

7.3.2 Request pattern generation
When the topology and cloudlet data are created. Algorithm 5.5 describes the script,
which allows one to extract the three edge cases from the trip data. In this evaluation, the
minimum, average, and maximum ten-minute intervals of the 1km×1km and 2km×2km
areas were calculated by looking at a time range of three months (May, June, July).
With the following command, the Python script starts searching for the edge cases.

python get_edge_cases . py −−name new_york_2x2
−−t r i p s data / t r i p s /new_york_2x2/ t r i p s . csv

After completion, the intervals, illustrated in Figure 7.9, were created and show that the
smaller area has only twenty events occurring in ten minutes as the minimum interval,
164 events as the average, and 265 for the maximum. For the bigger area, the minimum
number (5th percentile) of events in a ten-minute interval is 119, for an average of 710
and the maximum is 1128. In Table 7.6 an overall overview of the total number of trip
events in the different intervals and areas is shown. Because of the used dataset, the
intervals shown in Figure 7.9 have accumulations on the exact minutes between the
interval start and end. That goes back up to the measuring method of the NYC Taxi
Dataset and should be resolved in future work by using more detailed datasets.

With these interval trip data, the baseline is set for the request pattern creation. Before
starting the experiments, the patterns have to be generated using the script described in
Algorithm 5.6. With the following command, the patterns for every cloudlet area are
generated.

python generate_request_pattern . py −−name new_york_1x1_1x1_min
−−topology data / t o p o l o g i e s /new_york_1x1_1x1 . csv
−−t r i p s data / t r i p s /new_york_1x1/ minInterva l . csv

area minimum average maximum
1km × 1km 20 164 265
2km × 2km 119 710 1128

Table 7.6: Total number of trip events in all extracted intervals.

78

7.3. Workload Definition

73.990 73.988 73.986 73.984 73.982 73.980

Longitude

40.750

40.752

40.754

40.756

40.758

L
a
ti

tu
d
e

(a) New York 1 km × 1 km with a
cloudlet area size of 0.5 km × 0.5 km

73.990 73.988 73.986 73.984 73.982 73.980

Longitude

40.750

40.752

40.754

40.756

40.758

L
a
ti

tu
d
e

(b) New York 1 km × 1 km with a
cloudlet area size of 1 km × 1 km

73.995 73.990 73.985 73.980 73.975

Longitude

40.7450

40.7475

40.7500

40.7525

40.7550

40.7575

40.7600

40.7625

L
a
ti

tu
d
e

(c) New York 2 km × 2 km with
a cloudlet area size of 1 km × 1 km

73.995 73.990 73.985 73.980 73.975

Longitude

40.7450

40.7475

40.7500

40.7525

40.7550

40.7575

40.7600

40.7625
L
a
ti

tu
d
e

(d) New York 2 km × 2 km with
a cloudlet area size of 2 km × 1 km

Figure 7.8: Cells extracted from different-sized areas in New York City. The different
colors of the data points illustrate the cloudlet areas.

79

7. Evaluation

04:20 04:3004:22 04:24 04:26 04:28

time

0

2

4

6

8

10

12

14

re
q
u
e
s
ts

min. interval

(a) Minimum interval of trip events
in a 1 km × 1 km area

00:06 00:08 00:10 00:12 00:14

time

0

5

10

15

20

25

re
q
u
e
s
ts

avg. interval

(b) Average interval of trip event
in a 1 km × 1 km area

21:26 21:28 21:30 21:32 21:34

time

0

10

20

30

40

re
q
u
e
s
ts

max. interval

(c) Maximum interval of trip events
in a 1 km × 1 km area

03:20 03:3003:22 03:24 03:26 03:28

time

0

5

10

15

20

re
q
u
e
s
ts

min. interval

(d) Minimum interval of trip events
in a 2 km × 2 km area

16:0015:56 15:58 16:02 16:04

time

0

20

40

60

80

re
q
u
e
s
ts

avg. interval

(e) Average interval of trip event
in a 2 km × 2 km area

21:40 21:5021:42 21:44 21:46 21:48

time

0

20

40

60

80

100

120

140

160

re
q
u
e
s
ts

max. interval

(f) Maximum interval of trip events
in 2 km × 2 km area

Figure 7.9: Trip event intervals in New York City, with an area size of 1 km × 1 km and
2 km × 2 km. The interval time range is 10 minutes.

80

7.4. Simulation and Testbed Evaluation

7.4 Simulation and Testbed Evaluation
7.4.1 Experiments evaluation
This section shows the results of the profiling and scenario experiments. The experiments
deliver the baseline for the comparison between experiment and simulation and give
an insight of how the developed functions and workloads perform on the testbed. For
this purpose, the function execution time, CPU usage, RAM usage, and network usage
are going to be investigated. The results will then be examined to find noticeable
abnormalities in the data. The profiling data is then also used for the simulation runs.
The profiling delivers a concrete performance metric for each function in a sheltered
environment. The function were executed in a fix interval with no other external influence,
such that this metrics can be used in the simulation of faas-sim.

Profiling

The figures in Figure 7.11 display the results of all executed profiling experiments. It
shows that the network usage is consistently similar across all devices. Gun detection and
human detection are allocating roughly 390 KB, the object and mask detection around
195 KB. The function execution time varies depending on the device. While gun, object,
and human detection have a higher execution (42 ms, 185 ms, and 76ms) on the cloud
cluster eb-c-vm-0 than on the other two devices, the mask detection occurs to be a little
bit faster on the eb-b-controller (54 ms). When looking at the CPU usage in Figure 7.11b,
the cloud cluster uses the least amount of computational power. Human detection requires
the most amount of computational power on eb-a-controller and eb-b-controller (557 %
and 544 %). The eb-b-controller is using the maximum amount of memory considering
the gun, object, and human detection functions. The object detection function is using
the maximum amount of RAM (245 MB) on the eb-b-controller. The mask detection
needs roughly the same memory on each device. In Table 7.7 the whole results are listed
as a table.

eb-a-controller

Node

0

100

200

300

400

500

600

c
p

u
 (

%
)

humandetection_new_york_1x1_1x1

Type

min

avg

max

(a) Experiment with 1 cloudlet

eb-a-controller eb-b-controller eb-c-vm-0

Node

0

50

100

150

200

250

300

c
p

u
 (

%
)

humandetection_new_york_1x1_05x05

Type

min

avg

max

(b) Experiment with 3 cloudlets

Figure 7.10: CPU consumption in human detection scenario

81

7. Evaluation

gundetection objectdetection humandetection maskdetection

Function

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

F
E

T
 (

s
)

Node

eb-a-controller

eb-b-controller

eb-c-vm-0

(a) Function Execution Time

gundetection objectdetection humandetection maskdetection

Function

0

100

200

300

400

500

c
p
u
 (

%
)

Node

eb-a-controller

eb-b-controller

eb-c-vm-0

(b) CPU usage

gundetection objectdetection humandetection maskdetection

Function

0

50

100

150

200

250

R
a
m

 (
M

B
)

Node

eb-a-controller

eb-b-controller

eb-c-vm-0

(c) RAM usage

gundetection objectdetection humandetection maskdetection

Function

0

50

100

150

200

250

300

350

400

n
e
tw

o
rk

 u
s
a
g
e
 (

K
B

)

Node

eb-a-controller

eb-b-controller

eb-c-vm-0

(d) Network usage

Figure 7.11: Resource and execution time profiling results.

Scenarios

Because of the 10s interval of the telemd setup on the testbed, the scenario results
are calculated in a other way than the profiling experiments. The ten-second interval
forces us to get three different time stamps to calculate the mean values of every metric.
They are the last measurement before the single request, the telemd value before the
request, and in distinct cases the value in between the start and end timestamp of the
request. When looking at the results in the table below, some interesting investigations
can be outlined. It shows, that in all scenarios the function execution times in zone
C are greatly higher than in the other zones. The most CPU-intensive scenario was
the human detection scenario in zone A with a cloudlet size of one square kilometer
and the maximum workload size. The needed CPU consumption was around 644 %,
which means that six cores were needed in the mean. The thriftiest scenario was the
gun detection scenario in zone C, with minimum workload size and a small cloudlet
size of only 1 times 0.5 kilometers, where only around 10 % CPU consumption was
recorded. It is remarkable, that cloud zone C requires the lowest CPU consumption. It
also shows, that when increasing the cloudlet size, the request amount gets greater and
in further succession, the CPU utilization increases. E.g., when looking at the human

82

7.4. Simulation and Testbed Evaluation

detection scenarios in zone A, with an average workload size, the CPU consumption in
a cloudlet area of 1 times 0.5 kilometers was at 321,67 %. In contrast, the mean CPU
consumption in a one square kilometer cloudlet was 397,59 %. This phenomenon could
be observed in all experiment scenarios and shows clearly, that the CPU consumption
is directly connected to the cloudlet size and request amount. Figure 7.10 shows the
CPU consumption of the human detection experiments in a single cloudlet area and in
three different areas. In [LLR+21] the problem of edge server placement is discussed and
solutions were presented. It shows, that in cases where different workload profiles and
cloudlet sizes are present, the knowledge in which area how many Edge Computing units
should be placed is important for providing the most efficient coverage. This suite can
provide support for such problems.

Service Node FET (s) CPU (%) Network (kB) RAM (MB)
objectdetection eb-a-controller 0.106965 436.892487 193.328495 153.941067
objectdetection eb-b-controller 0.102486 490.657676 193.673717 244.592371
objectdetection eb-c-vm-0 0.185652 302.506663 197.588980 159.656854
humandetection eb-a-controller 0.058615 557.584905 390.010495 87.977795
humandetection eb-b-controller 0.049020 544.140779 391.005737 166.844933
humandetection eb-c-vm-0 0.076519 261.859020 397.133354 77.331822
maskdetection eb-a-controller 0.070769 111.692226 192.681798 186.889371
maskdetection eb-b-controller 0.054737 116.302763 193.364535 187.779072
maskdetection eb-c-vm-0 0.068802 109.009730 196.817283 185.441870
gundetection eb-a-controller 0.024452 189.764076 385.866730 41.775906
gundetection eb-b-controller 0.022127 239.732796 387.007330 90.363576
gundetection eb-c-vm-0 0.042908 131.736536 396.268414 42.851447

Table 7.7: Profiling results of all functions on every device of the testbed.

7.4.2 Simulation evaluation
The data of the profiling function execution time and resource usage experiments are
taken as input for the function resource characterization and parameterized distribution
of the function execution time in the faas-sim simulation setup. Also, the ping results of
each device, shown in Table 6.1, were included in the latency distribution of each part
of the simulated testbed scenario. The latency of the cloud cluster was around 75 ms,
and the latency of the other two cloudlets and IoT Box cluster was around 21 ms. The
request profiles for each scenario and zone were provided as Pickle files like in the testbed
experiments. The image properties, like size and architecture, were also defined based on
the Docker images of the different workload functions. Before starting the simulations
for the scenarios, the size of the image, that has to be sent in the request, has also to be
set. When all of these parameters are defined, the simulation owns the complementary
setting of the testbed scenario. In Table 7.10 and Table 7.13 the generated simulation
results for the interval of 0.1s are shown. The tables show the size of the measured

83

7. Evaluation

area and cloud(let) area, request pattern type, service name, zone, function execution
time, CPU usage, RAM, and round trip time. The mask and gun detection scenarios
are a lot less CPU intensive than the human and object detection scenarios. While
they only require between 39 % and 52 % in the mean, human and object detection
are more CPU intensive and more widely distributed, with mean usages of 83 % to 280
%. The lowest mean function execution time, 0.0186s, and the lowest round trip time,
0.0353s, produce the gun detection scenario in zone B with the average request pattern.
Remarkably, the object detection scenario in zone C with the minimum request pattern
has the highest round trip and function execution time (0.2184s, 0.1896s) and not the one
with the maximum pattern. Zone B needs in the human detection, gun detection, and
object detection scenarios more RAM than in the other zones. Only the mask detection
scenarios are nearly equally distributed when looking at the RAM usage. The most RAM
usage appears in the object detection scenario of zone B with 244.58 MB usage.

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
1 km2, 1 km2 max humandetection a 0.1176 644.30 90.21 0.1674
1 km2, 1 km2 avg humandetection a 0.1173 497.59 91.26 0.1674
1 km2, 1 km2 min humandetection a 0.1166 245.17 81.45 0.1690
1 km2, 0.5 km2 max humandetection a 0.1187 172.91 89.54 0.1694
1 km2, 0.5 km2 max humandetection b 0.1243 242.19 87.62 0.1748
1 km2, 0.5 km2 max humandetection c 0.3238 65.56 74.63 0.4951
1 km2, 0.5 km2 avg humandetection a 0.1188 129.49 80.25 0.1701
1 km2, 0.5 km2 avg humandetection b 0.1271 321.67 82.19 0.1773
1 km2, 0.5 km2 avg humandetection c 0.3556 36.57 70.97 0.5383
1 km2, 0.5 km2 min humandetection a 0.1162 108.98 69.04 0.1672
1 km2, 0.5 km2 min humandetection b 0.1274 228.56 70.54 0.1777
1 km2, 0.5 km2 min humandetection c 0.3568 35.91 59.37 0.5998
1 km2, 1 km2 max gundetection a 0.0850 138.45 43.06 0.1324
1 km2, 1 km2 avg gundetection a 0.0849 109.37 42.39 0.1324
1 km2, 1 km2 min gundetection a 0.0848 53.53 39.71 0.1324
1 km2, 0.5 km2 max gundetection a 0.0853 37.92 40.81 0.1328
1 km2, 0.5 km2 max gundetection b 0.0868 67.71 39.06 0.1348
1 km2, 0.5 km2 max gundetection c 0.2524 25.12 42.88 0.4202
1 km2, 0.5 km2 avg gundetection a 0.0861 28.48 39.90 0.1338
1 km2, 0.5 km2 avg gundetection b 0.0874 94.06 39.04 0.1354
1 km2, 0.5 km2 avg gundetection c 0.2922 13.03 41.55 0.4711
1 km2, 0.5 km2 min gundetection a 0.0851 23.85 38.07 0.1332
1 km2, 0.5 km2 min gundetection b 0.0865 66.68 36.71 0.1347
1 km2, 0.5 km2 min gundetection c 0.3070 10.06 39.59 0.5447

Table 7.8: Experiment results of human and gun detection scenarios. The color gradation
allows to distinguish between the minimal, average and maximum request pattern.

84

7.4. Simulation and Testbed Evaluation

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
2 km2, 1 km2 max maskdetection a 0.1094 195.66 170.37 0.1569
2 km2, 1 km2 max maskdetection b 0.1025 208.47 181.88 0.1500
2 km2, 1 km2 max maskdetection c 0.1677 142.95 183.94 0.3212
2 km2, 1 km2 avg maskdetection a 0.1110 107.20 171.77 0.1583
2 km2, 1 km2 avg maskdetection b 0.1014 135.93 183.76 0.1491
2 km2, 1 km2 avg maskdetection c 0.1861 87.58 176.63 0.3410
2 km2, 1 km2 min maskdetection a 0.1167 37.33 169.22 0.1645
2 km2, 1 km2 min maskdetection b 0.0993 35.90 181.20 0.1471
2 km2, 1 km2 min maskdetection c 0.2267 22.56 170.88 0.4002
2 km2, 2 x 1 km max maskdetection a 0.1097 301.51 173.70 0.1569
2 km2, 2 x 1 km max maskdetection b 0.1023 374.68 183.46 0.1499
2 km2, 2 x 1 km avg maskdetection a 0.1117 199.75 170.39 0.1591
2 km2, 2 x 1 km avg maskdetection b 0.1020 188.65 181.20 0.1495
2 km2, 2 x 1 km min maskdetection a 0.1118 50.84 173.22 0.1596
2 km2, 2 x 1 km min maskdetection b 0.0999 50.97 174.73 0.1477
1 km2, 1 km2 max objectdetection a 0.1577 607.44 164.25 0.2051
1 km2, 1 km2 avg objectdetection a 0.1658 468.47 160.32 0.2133
1 km2, 1 km2 min objectdetection a 0.1532 226.97 136.82 0.2010
1 km2, 0.5 km2 max objectdetection a 0.2097 127.75 151.01 0.2575
1 km2, 0.5 km2 max objectdetection b 0.1712 223.99 150.96 0.2197
1 km2, 0.5 km2 max objectdetection c 0.8169 52.99 160.13 1.0169
1 km2, 0.5 km2 avg objectdetection a 0.1841 106.41 145.06 0.2322
1 km2, 0.5 km2 avg objectdetection b 0.1681 302.90 149.20 0.2169
1 km2, 0.5 km2 avg objectdetection c 0.6287 45.78 155.50 0.8240
1 km2, 0.5 km2 min objectdetection a 0.2211 72.67 112.70 0.2684
1 km2, 0.5 km2 min objectdetection b 0.1627 230.42 128.19 0.2123
1 km2, 0.5 km2 min objectdetection c 0.6817 43.48 104.12 0.9335

Table 7.9: Experiment results of the mask and object detection scenarios. The color
gradation allows to distinguish between the minimal, average and maximum request
pattern.

7.4.3 Comparison of Experiments & Simulation

The CPU calculation method, which was used to calculate the experiment CPU usage,
did not apply to the simulation results, because the simulation monitors the usage in a
different way than the experiment telemd monitor. It handles a customizable monitoring
interval (reconcile interval), while the telemd only monitors the resource usage every 10
seconds. Therefore, the direct comparison of the values would be not well substantiated,
so the results must be examined by its noticeable distinctions and common tendencies.
For the purpose of RQ3, three different reconcile intervals are applied to investigate
what differences appear when setting the monitoring interval to 0.1s, 1s, and 10s. For
each of the reconcile interval, an average error value is calculated. For this, we subtract
the result of each scenario experiment by the one of the simulation and calculate the

85

7. Evaluation

average for the interval over all scenarios. In the evaluation repository15 the calculation
is accessible. The results for each scenario are listed in Table 7.8 to Table 7.15.

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
1 km2, 1 km2 max humandetection a 0.0584 217.89 87.97 0.0765
1 km2, 1 km2 avg humandetection a 0.0584 229.61 87.96 0.0769
1 km2, 1 km2 min humandetection a 0.0584 163.73 87.96 0.0790
1 km2, 0.5 km2 max humandetection a 0.0586 261.81 87.96 0.0745
1 km2, 0.5 km2 max humandetection b 0.0487 199.19 166.82 0.0642
1 km2, 0.5 km2 max humandetection c 0.0768 112.46 77.32 0.0946
1 km2, 0.5 km2 avg humandetection a 0.0585 225.87 87.96 0.0755
1 km2, 0.5 km2 avg humandetection b 0.0489 204.71 166.82 0.0661
1 km2, 0.5 km2 avg humandetection c 0.0759 83.10 77.32 0.1005
1 km2, 0.5 km2 min humandetection a 0.0574 277.99 87.96 0.0754
1 km2, 0.5 km2 min humandetection b 0.0476 220.77 166.82 0.0632
1 km2, 0.5 km2 min humandetection c 0.0771 201.86 77.32 0.1036
1 km2, 1 km2 max gundetection a 0.0245 40.67 41.77 0.0417
1 km2, 1 km2 avg gundetection a 0.0244 40.26 41.77 0.0421
1 km2, 1 km2 min gundetection a 0.0246 39.16 41.77 0.0439
1 km2, 0.5 km2 max gundetection a 0.0242 39.37 41.77 0.0402
1 km2, 0.5 km2 max gundetection b 0.0191 41.86 90.35 0.0358
1 km2, 0.5 km2 max gundetection c 0.0424 44.38 42.85 0.0561
1 km2, 0.5 km2 avg gundetection a 0.0237 43.00 41.77 0.0421
1 km2, 0.5 km2 avg gundetection b 0.0186 39.60 90.35 0.0353
1 km2, 0.5 km2 avg gundetection c 0.0419 43.16 42.85 0.0649
1 km2, 0.5 km2 min gundetection a 0.0234 40.10 41.77 0.0456
1 km2, 0.5 km2 min gundetection b 0.0198 44.24 90.35 0.0372
1 km2, 0.5 km2 min gundetection c 0.0402 41.36 42.85 0.0548

Table 7.10: Simulation results of human and gun detection scenarios in a reconcile interval
of 0.1s. The color gradation allows to distinguish between the minimal, average and
maximum request pattern.

RAM

The simulation and experiment RAM usage have a similar range of values in zone A and
C, while zone B needs significantly more RAM in the simulation than in the experiments,
except in the mask detection scenarios. E.g. the average object detection scenario
allocates only 149.20 MB memory in zone B, while the simulation requires 244.58 MB
memory. These results indicate a possible discrepancy in the allocation of memory
resources in zone B during the simulation and the testbed runs. The error values for the
intervals were −20.71 MB, −20.59 MB, and −19.59 MB, which means that the simulation
calculates around 20 MB more RAM on average than was measured in the experiment.
The differences between the simulation intervals are minimal and show no conspicuous
features.

15https://github.com/edgerun/faas-sim-evaluation/blob/feature/pprueller/evaluation

86

7.4. Simulation and Testbed Evaluation

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
1 km2, 1 km2 max humandetection a 0.0585 79.44 87.87 0.0786
1 km2, 1 km2 avg humandetection a 0.0585 79.58 87.86 0.0781
1 km2, 1 km2 min humandetection a 0.0589 73.20 87.85 0.0776
1 km2, 0.5 km2 max humandetection a 0.0583 75.43 87.86 0.0781
1 km2, 0.5 km2 max humandetection b 0.0482 55.18 166.59 0.0684
1 km2, 0.5 km2 max humandetection c 0.0763 32.90 77.22 0.1757
1 km2, 0.5 km2 avg humandetection a 0.0585 57.69 87.85 0.0784
1 km2, 0.5 km2 avg humandetection b 0.0483 67.24 166.58 0.0683
1 km2, 0.5 km2 avg humandetection c 0.0761 31.81 77.21 0.1708
1 km2, 0.5 km2 min humandetection a 0.0577 64.34 87.85 0.0709
1 km2, 0.5 km2 min humandetection b 0.0478 54.74 166.57 0.0689
1 km2, 0.5 km2 min humandetection c 0.0787 32.47 77.21 0.1481
1 km2, 1 km2 max gundetection a 0.0244 12.55 41.72 0.0441
1 km2, 1 km2 avg gundetection a 0.0244 12.28 41.72 0.0462
1 km2, 1 km2 min gundetection a 0.0250 10.96 41.71 0.0466
1 km2, 0.5 km2 max gundetection a 0.0242 11.37 41.72 0.0450
1 km2, 0.5 km2 max gundetection b 0.0193 10.54 90.35 0.0407
1 km2, 0.5 km2 max gundetection c 0.0421 10.32 42.85 0.1396
1 km2, 0.5 km2 avg gundetection a 0.0245 9.25 41.72 0.0434
1 km2, 0.5 km2 avg gundetection b 0.0192 12.60 90.35 0.0388
1 km2, 0.5 km2 avg gundetection c 0.0425 8.50 42.85 0.1359
1 km2, 0.5 km2 min gundetection a 0.0230 11.64 41.71 0.0371
1 km2, 0.5 km2 min gundetection b 0.0179 9.38 90.35 0.0383
1 km2, 0.5 km2 min gundetection c 0.0436 9.19 42.85 0.1442

Table 7.11: Simulation results of human and gun detection scenarios in a reconcile
interval of 1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern.

FET

The function execution time of the experiments in zone C is significantly higher than the
one in the simulation. Generally, all experiment execution times are eminent higher than
in the simulation. The highest execution time in the 0.1s interval simulation is 0.1896s,
while the experiments have several execution times above 0.300s and up to 0.8169s. This
remarkable difference indicates possible deviations between the real environment (zone
C) and the simulated environment. The error values for the intervals were 0.114429s,
0.114405s, and 0.114616s, which means that the simulation calculates approximately
0.114s less on average than was measured in the experiment. The function execution
time is almost the same between the three simulation intervals, which indicates that the
FET calculation does not directly depend on the reconcile interval.

87

7. Evaluation

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
1 km2, 1 km2 max humandetection a 0.0585 25.70 87.12 0.0792
1 km2, 1 km2 avg humandetection a 0.0583 20.14 87.07 0.0780
1 km2, 1 km2 min humandetection a 0.0580 9.24 87.01 0.0815
1 km2, 0.5 km2 max humandetection a 0.0582 12.76 87.07 0.0790
1 km2, 0.5 km2 max humandetection b 0.0481 10.22 166.08 0.0691
1 km2, 0.5 km2 max humandetection c 0.0764 6.99 76.98 0.1786
1 km2, 0.5 km2 avg humandetection a 0.0584 8.98 87.03 0.0780
1 km2, 0.5 km2 avg humandetection b 0.0487 12.75 166.04 0.0699
1 km2, 0.5 km2 avg humandetection c 0.0756 4.57 76.96 0.1774
1 km2, 0.5 km2 min humandetection a 0.0593 8.81 87.00 0.0772
1 km2, 0.5 km2 min humandetection b 0.0485 7.97 166.01 0.0685
1 km2, 0.5 km2 min humandetection c 0.0758 5.29 76.95 0.1625
1 km2, 1 km2 max gundetection a 0.0245 3.63 41.36 0.0458
1 km2, 1 km2 avg gundetection a 0.0246 2.83 41.34 0.0446
1 km2, 1 km2 min gundetection a 0.0241 1.43 41.32 0.0466
1 km2, 0.5 km2 max gundetection a 0.0245 1.84 41.34 0.0465
1 km2, 0.5 km2 max gundetection b 0.0187 1.80 89.94 0.0401
1 km2, 0.5 km2 max gundetection c 0.0432 2.21 42.65 0.1438
1 km2, 0.5 km2 avg gundetection a 0.0244 1.40 41.32 0.0474
1 km2, 0.5 km2 avg gundetection b 0.0196 2.25 89.92 0.0401
1 km2, 0.5 km2 avg gundetection c 0.0431 1.37 42.64 0.1467
1 km2, 0.5 km2 min gundetection a 0.0246 1.25 41.31 0.0401
1 km2, 0.5 km2 min gundetection b 0.0167 1.18 89.90 0.0386
1 km2, 0.5 km2 min gundetection c 0.0411 1.44 42.63 0.1350

Table 7.12: Simulation results of human and gun detection scenarios in a reconcile interval
of 10s. The color gradation allows to distinguish between the minimal, average and
maximum request pattern.

RTT

Like the function execution time, also the round trip time is in all cases distinguished
higher in the experiment scenarios. The maximum round trip time of the experiments
is 1.0169s, while the 0.1s interval simulation only has one with 0.2184s. The zone C
round trip time is higher in all scenarios of simulation and emulation, because of the
added latency for this zone, but it shows that the experiments have a significantly higher
round trip time in zone C than in the simulation. The error values for the intervals
were 0.17883s, 0.15978s, and 0.15806s, which means that the simulation calculates
approximately 0.1580s to 0.1788s less on average than was measured in the experiment.
When looking at the 10s interval results in Table 7.12 and Table 7.15, it shows that the
round trip time is significantly higher in zone C than in the 0.1s interval. The other
metrics do not show any higher deviations.

88

7.4. Simulation and Testbed Evaluation

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
2 km2, 2 x 1 km max maskdetection a 0.0675 49.22 186.88 0.0841
2 km2, 2 x 1 km max maskdetection b 0.0538 43.48 187.78 0.0700
2 km2, 2 x 1 km avg maskdetection a 0.0675 48.92 186.88 0.0845
2 km2, 2 x 1 km avg maskdetection b 0.0536 45.95 187.78 0.0705
2 km2, 2 x 1 km min maskdetection a 0.0677 48.51 186.88 0.0845
2 km2, 2 x 1 km min maskdetection b 0.0540 52.58 187.78 0.0683
2 km2, 1 km2 max maskdetection a 0.0674 51.53 186.88 0.0830
2 km2, 1 km2 max maskdetection b 0.0538 45.67 187.78 0.0700
2 km2, 1 km2 max maskdetection c 0.0683 47.38 185.44 0.0860
2 km2, 1 km2 avg maskdetection a 0.0674 47.69 186.88 0.0829
2 km2, 1 km2 avg maskdetection b 0.0537 44.54 187.78 0.0703
2 km2, 1 km2 avg maskdetection c 0.0686 49.35 185.44 0.0918
2 km2, 1 km2 min maskdetection a 0.0679 49.44 186.88 0.0823
2 km2, 1 km2 min maskdetection b 0.0540 42.59 187.78 0.0706
2 km2, 1 km2 min maskdetection c 0.0687 46.99 185.44 0.0877
1 km2, 1 km2 max objectdetection a 0.1055 234.86 153.92 0.1234
1 km2, 1 km2 avg objectdetection a 0.1062 233.76 153.92 0.1236
1 km2, 1 km2 min objectdetection a 0.1068 237.65 153.92 0.1251
1 km2, 0.5 km2 max objectdetection a 0.1065 225.27 153.92 0.1228
1 km2, 0.5 km2 max objectdetection b 0.1015 245.60 244.58 0.1178
1 km2, 0.5 km2 max objectdetection c 0.1854 220.49 159.65 0.2095
1 km2, 0.5 km2 avg objectdetection a 0.1080 236.02 153.92 0.1234
1 km2, 0.5 km2 avg objectdetection b 0.1021 263.31 244.58 0.1191
1 km2, 0.5 km2 avg objectdetection c 0.1822 223.55 159.65 0.1989
1 km2, 0.5 km2 min objectdetection a 0.1019 194.50 153.92 0.1247
1 km2, 0.5 km2 min objectdetection b 0.1058 259.47 244.57 0.1199
1 km2, 0.5 km2 min objectdetection c 0.1896 222.08 159.65 0.2184

Table 7.13: Simulation results of object and mask detection scenarios in a reconcile
interval of 0.1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern.

CPU

Contrary to the experiments, where an increase in CPU usage is noticeable between the
usage patterns, the CPU usage of the simulation scenarios seems to stay at the same level
when comparing the results of the min., avg., and max. usage pattern. In some cases,
also the minimum or average pattern creates higher mean CPU usage values than the
maximum pattern. The error values for the intervals were 32.21%, 116.45%, and 149.15%,
which means that in all intervals the simulation calculates less CPU and the higher the
reconciliation interval, the less CPU is calculated. In the two intervals, 1s and 10s, the
CPU usage metric is significantly lower than in the 0.1s interval. For example, the mask
detection scenario of zone B with a minimum request pattern shown in Table 7.15 and
Table 7.14 has a CPU utilization of only around 1% and 10%, while the same scenario in
the interval of 0.1s has a CPU utilization of 52.58%.

89

7. Evaluation

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
2 km2, 2 x 1 km max maskdetection a 0.0676 20.81 186.86 0.0866
2 km2, 2 x 1 km max maskdetection b 0.0536 17.04 187.59 0.0731
2 km2, 2 x 1 km avg maskdetection a 0.0674 18.08 186.85 0.0869
2 km2, 2 x 1 km avg maskdetection b 0.0537 14.15 187.56 0.0737
2 km2, 2 x 1 km min maskdetection a 0.0678 13.42 186.85 0.0873
2 km2, 2 x 1 km min maskdetection b 0.0531 10.84 187.53 0.0722
2 km2, 1 km2 max maskdetection a 0.0674 19.31 186.85 0.0869
2 km2, 1 km2 max maskdetection b 0.0534 16.76 187.58 0.0733
2 km2, 1 km2 max maskdetection c 0.0688 13.47 185.25 0.1581
2 km2, 1 km2 avg maskdetection a 0.0676 16.53 186.85 0.0868
2 km2, 1 km2 avg maskdetection b 0.0536 15.28 187.57 0.0727
2 km2, 1 km2 avg maskdetection c 0.0683 12.16 185.24 0.1599
2 km2, 1 km2 min maskdetection a 0.0676 13.48 186.85 0.0839
2 km2, 1 km2 min maskdetection b 0.0541 10.90 187.53 0.0746
2 km2, 1 km2 min maskdetection c 0.0689 10.40 185.19 0.1646
1 km2, 1 km2 max objectdetection a 0.1056 101.47 153.73 0.1244
1 km2, 1 km2 avg objectdetection a 0.1054 100.93 153.72 0.1247
1 km2, 1 km2 min objectdetection a 0.1067 89.10 153.70 0.1264
1 km2, 0.5 km2 max objectdetection a 0.1062 93.30 153.72 0.1257
1 km2, 0.5 km2 max objectdetection b 0.1011 92.72 244.36 0.1202
1 km2, 0.5 km2 max objectdetection c 0.1875 80.55 159.50 0.2845
1 km2, 0.5 km2 avg objectdetection a 0.1071 77.30 153.70 0.1264
1 km2, 0.5 km2 avg objectdetection b 0.1005 107.26 244.34 0.1204
1 km2, 0.5 km2 avg objectdetection c 0.1874 71.31 159.49 0.2768
1 km2, 0.5 km2 min objectdetection a 0.1103 85.45 153.70 0.1315
1 km2, 0.5 km2 min objectdetection b 0.1026 96.99 244.33 0.1220
1 km2, 0.5 km2 min objectdetection c 0.1789 58.94 159.49 0.2890

Table 7.14: Simulation results of object and mask detection scenarios in a reconcile
interval of 1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern.

90

7.4. Simulation and Testbed Evaluation

Size, Cloudlet Size Type Service Zone FET (s) CPU (%) RAM (mb) RTT (s)
2 km2, 2 x 1 km max maskdetection a 0.0675 9.49 185.24 0.0876
2 km2, 2 x 1 km max maskdetection b 0.0533 8.17 186.87 0.0734
2 km2, 2 x 1 km avg maskdetection a 0.0675 6.20 185.06 0.0865
2 km2, 2 x 1 km avg maskdetection b 0.0540 5.52 186.77 0.0741
2 km2, 2 x 1 km min maskdetection a 0.0672 2.27 184.77 0.0861
2 km2, 2 x 1 km min maskdetection b 0.0526 1.54 186.61 0.0732
2 km2, 1 km2 max maskdetection a 0.0674 6.01 185.20 0.0866
2 km2, 1 km2 max maskdetection b 0.0535 5.14 186.85 0.0732
2 km2, 1 km2 max maskdetection c 0.0677 4.51 184.52 0.1655
2 km2, 1 km2 avg maskdetection a 0.0676 4.55 185.11 0.0877
2 km2, 1 km2 avg maskdetection b 0.0533 3.08 186.80 0.0734
2 km2, 1 km2 avg maskdetection c 0.0682 3.83 184.47 0.1668
2 km2, 1 km2 min maskdetection a 0.0670 1.83 184.74 0.0854
2 km2, 1 km2 min maskdetection b 0.0535 1.44 186.59 0.0717
2 km2, 1 km2 min maskdetection c 0.0682 1.62 184.26 0.1549
1 km2, 1 km2 max objectdetection a 0.1061 33.29 152.26 0.1262
1 km2, 1 km2 avg objectdetection a 0.1059 27.77 152.16 0.1261
1 km2, 1 km2 min objectdetection a 0.1068 14.72 151.99 0.1276
1 km2, 0.5 km2 max objectdetection a 0.1046 16.20 152.16 0.1225
1 km2, 0.5 km2 max objectdetection b 0.1021 19.97 242.17 0.1227
1 km2, 0.5 km2 max objectdetection c 0.1858 20.04 158.07 0.2912
1 km2, 0.5 km2 avg objectdetection a 0.1045 11.66 152.05 0.1243
1 km2, 0.5 km2 avg objectdetection b 0.1011 23.07 242.01 0.1211
1 km2, 0.5 km2 avg objectdetection c 0.1831 14.38 157.97 0.2895
1 km2, 0.5 km2 min objectdetection a 0.1055 12.30 151.99 0.1227
1 km2, 0.5 km2 min objectdetection b 0.0979 12.80 241.93 0.1209
1 km2, 0.5 km2 min objectdetection c 0.1926 15.53 157.92 0.3069

Table 7.15: Simulation results of object and mask detection scenarios in a reconcile
interval of 10s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern.

91

CHAPTER 8
Conclusion

Edge Intelligence aims to provide AI applications between the edge and the cloud. This
is enabled by the targeted, timely provision of application logic and data sources close
to the network participants. Applications that require a high level of cloud offload-
ing, e.g. in the areas of Smart City, Smart Home, and Collaborative Edge, benefit
from Edge Intelligence. Moving these from the cloud to the edge demonstrably reduces
latency between the network participants and the requested edge devices. The high
complexity of managing and deploying applications in edge environments requires a
performative provision solution. The Function As A Service paradigm autonomously
manages application deployments, thus, is a promising solution for managing EI appli-
cations. However, appropriate FaaS platforms for EI have yet to be developed and are
challenging to evaluate in real-world environments. Therefore, simulations and testbeds
are used to test solutions. A benchmark suite that can be used for simulation and
testbeds is therefore beneficial, but only a few works address this. In this work, a method
is used that first analyzes the performance of the desired application on a testbed and
provides profiling and individual scenario data for the simulation, whereby scenarios,
such as a Smart City setup, can be reproduced in the simulation and on the testbed.
Benchmarking applications in edge environments prove to be complex and depends on
many factors, such as the resource consumption of each serverless function, the specific
implementation of these functions, the available hardware edge devices, the placement
of these devices in the network, and the used scheduling strategy. This thesis provides
an overview of various existing benchmarking and simulation tools, all of which have
different approaches in terms of measurement techniques and metrics. This large number
of gathered simulation frameworks and benchmarking tools, and their different areas of
applications, show a high level of interest in functioning and capable solutions in this field.

To this end, we introduce a benchmark suite of AI-based workloads, which are used for
benchmarking and profiling applications on a real-world testbed and in the simulation.

93

8. Conclusion

We extend the existing faas-sim simulation framework by an approach to automate the
benchmark process by using a suite of AI-based workloads, realistic request patterns, an
inference pipeline, and geo-distributed topologies. We used two open-source datasets,
that can be easily replaced by custom datasets which enable new use cases, similar to the
NYC Taxi and the OpenCellid dataset. It employs the applications, benchmarking tools,
and metrics that are already used in the research area of Edge Computing and Artificial
Intelligence. Trace-based data is used in the faas-sim framework, where the simulation
creates a compact overview of four metrics (RAM, CPU, FET, RTT), regarding the
different examined scenarios. We present various scenarios that are intended to reflect
reality and cover all areas such as the minimum, average, and maximum utilization of
edge devices. The results of the simulation and real-world experiments are compared and
allow conclusions to be drawn as to whether the simulation delivers realistic results in such
scenarios. The evaluation results are then also available for further design decisions that
affect server placement in the current environment, changes to the application logic and
scheduling strategy, or the improvement of individual network device computing resources.

A contribution of this work is the developed Taxi Driver Safety App inference pipeline in
Section 5.4.2, which allows several serverless functions to be called one after the other or
in parallel and introduces a way more complex scenario in Edge Computing. Also, the
presented technique of request pattern generation in Section 5.3 is a contribution and a
more realistic way of workload development. The merging of two open-source datasets is
a standalone method in this generation process.

With regard to RQ1, the benchmarking tools and frameworks, evaluated in Table 7.5
and Table 7.4, show how diverse the context of benchmarking, simulation, and emulation
can be. It enables an extensive baseline to build upon. The investigated benchmark
suites offer a wide spectrum of metrics, from standard metrics like latency, CPU usage,
and memory usage, to much more complex metrics like model accuracy, infrastructure
costs, or power consumption, and have already working benchmarking tools in the area of
model inference, smart home or Human-in-the-Loop applications. It shows that AI and
Edge Computing are already an integral part of benchmarking, but an overall solution
for EI benchmarking still needs to be improved. Our benchmark suite covers the most
important aspects of these findings and shows how an approach for an overall solution
can look conceptually and also in part practically.

For answering RQ2, we introduced methods in Section 4.2 to establish realistic in-
frastructure topologies, request patterns, and AI-related workloads. Based on these
methods we build a suite1, which is practicable, extendable, and creates realistic usage
patterns in a semi-automatic way by using a bundle of tools. The developed serverless
functions are representative of the area of AI and AR applications and can be seen
as examples and a baseline for further work. They include function-specific metrics of
model load, preprocess, prediction, and post-process time, which are available during

1https://github.com/pruellerpaul/benchmark_suite

94

8.1. Future work & limitations

testbed experiments. The functions are also used in the developed inference pipeline,
which is also part of the suite but is not yet implemented in the simulation process. This
inference pipeline example, and the developed benchmarking approach of this thesis, allow
measuring more complex serverless functions and enable the benchmarking of serverless
functions, distributed over multiple nodes in an edge environment. The developed suite
offers a connection point for such evaluations and can be used in simulation and real-world
experiments. The profiling results in Table 7.7 can be used as a reference for further
optimization. Like the four investigated applications, all other serverless-based functions
can be easily profiled with our benchmarking method.

With regard to RQ3, we can state some main differences between testbed experiments
and the simulation. Also, some decisive differences can be observed when evaluating the
different simulation intervals. The configured devices in the simulation do not always
behave the same as in the testbed experiments, this can be derived from a different
topology and device configuration towards the simulation and real-world devices. The
simulation does not exactly replicate the experiment metrics, but the differences between
the functions and zones are visible. The average error values of RTT, FET and CPU
all show a deviation in the sense that the simulation calculates less. Only regarding the
RAM the simulation calculates more. When looking at the CPU error values 32.21%,
116.45%, and 149.15%, we have a much greater differ than in then other metrics. The
contrasting function execution time and round trip time measured for all scenarios in zone
C strongly suggest that further simulation adjustments are required. The simulations
with the reconcile interval of 10s and 1s can be used to analyze usage trends, but it is
very inaccurate in terms of CPU and RTT measurement. These differ by far from the
experiment results. It is noticeable that the CPU usage suffers enormously from a too
high reconcile interval. The RTT in the cloud zone C also differs extremely between the
narrow interval of 0.1s and the other ones. It can be stated that the CPU simulation
results with lower intervals approach those of the experiments. Therefore, decreasing the
interval is an important aspect for generating realistic results in faas-sim. It is relatively
easy to test different configurations and topologies. The simulation provides a good basis
for this. The frameworks offer more metrics like network usage, or also node utilization
metrics, such that the fields of benchmarking are also extendable in this direction. This
suite has a lot of scope and possibilities for expansion and improvement, but already
offers a very simple way to benchmark AI-based applications in local environments with
Edge Computing units.

8.1 Future work & limitations
The procedure to create all necessary parts for the benchmarking is slightly inflexible
yet, therefore, an automated pipeline that creates the pattern and topologies and runs
experiments and simulations one after the other would be much more efficient. Also,
the collecting of experiment metric data must be improved, by decreasing the telemd
measurement interval, such that the comparison of the results can be much more precise.

95

8. Conclusion

In this thesis, only four function utilization parameters, namely the function execution
time, round trip time, RAM, and CPU usage were measured. The investigated metrics
are limited in faas-sim and the used testbed, therefore a wider spectrum of metrics, like
e.g. the power consumption, cold start latency, pricing calculations, or infrastructure
costs, would create a more consummate suite of benchmarks. Some of the presented
suites of the related work in Section 7.2 already implement these metrics, so an adaption
would be possible. The function-specific metrics, like the model loading time, can be
used in the future to simulate the QoS metrics. It would be progressive to enable the
customization of parameters such as the latest, common, or outdated technology of edge
devices and network components by an interface like in Section 7.1.1. Also, the possibility
of working with such testbeds and hardware is restricted, therefore publicly accessible and
affordable infrastructure (IaaS) would improve the value of the benefit for the suite. The
used dataset in this thesis does not provide the exact distance between the event and the
cell. Hence, if a dataset can be found that contains this data, the reduction of network
speed based on the distance between the event and cell would be a great possibility to
increase accuracy. The used NYC Taxi Dataset does not include the exact timestamp of
the pickup event, so many events were logged at the exact minute, without including the
exact seconds. This could distort the results and should be fixed by using a dataset with
more exact timestamps. Increasing the amount of distributed event datasets, that can be
used in the framework, would enable a wider perspective and could allow a more effective
optimization of the framework. An enormous relief would be to implement a feature for
this suite, where placement strategies are compiled by searching for the optimal edge
and cloud hardware location by considering the key indicators like the minimal round
trip time, CPU usage, and function execution time. An important feature would be
the implementation of the inference pipeline in the simulation. The more complex the
interactions between edge functions and various devices are, the more important the
evaluation of benchmarks and the placement of edge devices and servers is.

96

List of Figures

2.1 Level rating adapted from [ZCL+19] . 9
2.2 Edge Computing overview. (Adapted from [CDPLR19]) 12
2.3 Differences between IaaS, PaaS and Serverless Computing 15
2.4 Kubernetes architecture . 16
2.5 Function and Deployment concept in faas-sim 20
2.6 Constant, sine wave and random walk pattern 21

4.1 Methodical approach . 28
4.2 Example screenshot from https://www.opencellid.org/ 29
4.3 Example cell tower map with NYC Taxi Dataset events 31
4.4 Example cell tower map with cloudlet areas 32
4.5 Conceptual illustration of an One-Step function 33
4.6 Conceptual illustration of an Inference Pipeline 34
4.7 Testbed illustration with the cloudlet, IoT Box, and cloud zones 35
4.8 Cloudlet setup for scenario 1, 2 & 3 . 37
4.9 Cloudlet setup for scenario 4, 5 & 6 . 37
4.10 Cloudlet setup for scenario 7, 8 & 9 . 38
4.11 Cloudlet setup for scenario 10, 11 & 12 38

5.1 Approach towards RQ1 . 41
5.2 Approach towards RQ2 . 43
5.3 Object detection workflow . 47
5.4 Human detection workflow . 48
5.5 Mask detection workflow . 49
5.6 Sleep detection workflow . 50
5.7 Pose estimation workflow . 51
5.8 Gun detection workflow . 52
5.9 Taxi Driver Safety App workflow . 53

7.1 Approach towards RQ3 . 59
7.2 The CloudSim layer architecture (Adapted from [CRB+11]) 60
7.3 The iFogSim layer architecture (Adapted from [GVGB17]) 61
7.4 EdgeCloudSim modules (Adapted from [SOE17]) 63
7.5 EmuFog emulation workflow (Adapted from [MGG+17]) 64

97

7.6 EMUSIM organization overview (Adapted from [CNRB13]) 66
7.7 EmuEdge structure (Adapted from [ZCS19]) 67
7.8 Cells extracted from different-sized areas in New York City. The different

colors of the data points illustrate the cloudlet areas. 79
7.9 Trip event intervals in New York City, with an area size of 1 km × 1 km and

2 km × 2 km. The interval time range is 10 minutes. 80
7.10 CPU consumption in human detection scenario 81
7.11 Resource and execution time profiling results. 82

98

List of Tables

2.1 Methods overview of faas-sim . 24

6.1 Testbed, table from [RRP+22] . 55

7.1 Components of the iFogSim framework . 62
7.2 EdgeCloudSim Parameters (Adapted from [SOE17] 64
7.3 EmuFog Parameters . 65
7.4 Summary of the investigated emulation and simulation frameworks 68
7.5 Summary of the investigated benchmarking tools 76
7.6 Total number of trip events in all extracted intervals. 78
7.7 Profiling results of all functions on every device of the testbed. 83
7.8 Experiment results of human and gun detection scenarios. The color gradation

allows to distinguish between the minimal, average and maximum request
pattern. 84

7.9 Experiment results of the mask and object detection scenarios. The color
gradation allows to distinguish between the minimal, average and maximum
request pattern. 85

7.10 Simulation results of human and gun detection scenarios in a reconcile interval
of 0.1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern. 86

7.11 Simulation results of human and gun detection scenarios in a reconcile interval
of 1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern. 87

7.12 Simulation results of human and gun detection scenarios in a reconcile interval
of 10s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern. 88

7.13 Simulation results of object and mask detection scenarios in a reconcile interval
of 0.1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern. 89

7.14 Simulation results of object and mask detection scenarios in a reconcile interval
of 1s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern. 90

99

7.15 Simulation results of object and mask detection scenarios in a reconcile interval
of 10s. The color gradation allows to distinguish between the minimal, average
and maximum request pattern. 91

100

List of Algorithms

5.1 Prepare dataset . 43

5.2 Filter topology dataset . 44

5.3 Create cloudlet membership . 44

5.4 Prepare dataset . 45

5.5 Extract edge cases . 46

5.6 Generate pattern . 54

101

Bibliography

[BBS+20] Wesley Brewer, Greg Behm, Alan Scheinine, Ben Parsons, Wesley
Emeneker, and Robert P. Trevino. ibench: a distributed inference simu-
lation and benchmark suite. In 2020 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–6, Sep. 2020.

[BHQT22] L. Baresi, D. Hu, G. Quattrocchi, and L. Terracciano. Neptune: Network-
and gpu-aware management of serverless functions at the edge. In 2022
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pages 144–155, Los Alamitos, CA, USA,
may 2022. IEEE Computer Society.

[BJCG21] Stephan Patrick Baller, Anshul Jindal, Mohak Chadha, and Michael
Gerndt. Deepedgebench: Benchmarking deep neural networks on edge
devices. In 2021 IEEE International Conference on Cloud Engineering
(IC2E), pages 20–30, Oct 2021.

[BZKH20] Tristan BRAUD, Pengyuan ZHOU, Jussi KANGASHARJU, and Pan
HUI. Multipath computation offloading for mobile augmented reality.
In 2020 IEEE International Conference on Pervasive Computing and
Communications (PerCom), pages 1–10, March 2020.

[CDPLR19] Maurantonio Caprolu, Roberto Di Pietro, Flavio Lombardi, and Simone
Raponi. Edge computing perspectives: Architectures, technologies, and
open security issues. In 2019 IEEE International Conference on Edge
Computing (EDGE), pages 116–123, July 2019.

[CMT16] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. Workload
characterization: A survey revisited. ACM Comput. Surv., 48(3), feb
2016.

[CNRB13] Rodrigo Neves Calheiros, Marco Aurélio Stelmar Netto, César A. F. De
Rose, and Rajkumar Buyya. Emusim: an integrated emulation and simula-
tion environment for modeling, evaluation, and validation of performance
of cloud computing applications. Software: Practice and Experience, 43,
2013.

103

[CRB+11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F.
De Rose, and Rajkumar Buyya. Cloudsim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper., 41(1):23–50, jan 2011.

[DPW18] Anirban Das, Stacy Patterson, and Mike Wittie. Edgebench: Bench-
marking edge computing platforms. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Compan-
ion), pages 175–180, Dec 2018.

[DZF+20] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram
Dustdar, and Albert Y. Zomaya. Edge intelligence: The confluence of edge
computing and artificial intelligence. IEEE Internet of Things Journal,
7(8):7457–7469, 2020.

[FKK17] Fairouz Fakhfakh, Hatem Hadj Kacem, and Ahmed Hadj Kacem. Simula-
tion tools for cloud computing: A survey and comparative study. In 2017
IEEE/ACIS 16th International Conference on Computer and Information
Science (ICIS), pages 221–226, 2017.

[Gee] GeeksforGeeks. Gun detection using python-opencv. https://www.
geeksforgeeks.org/gun-detection-using-python-opencv/.
Accessed: 2022-07-11.

[GVGB17] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296, 2017.

[KL19] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), pages 502–504, July 2019.

[Lab] Unwired Labs. Opencellid database. http://wiki.opencellid.
org/wiki/Menu_map_view#database:~:text=https%3A/
/opencellid.org/-,Columns%20present%20in%20database%
3A,-Parameter. Accessed: 2022-07-12.

[LLR+21] Tero Lähderanta, Teemu Leppänen, Leena Ruha, Lauri Lovén, Erkki
Harjula, Mika Ylianttila, Jukka Riekki, and Mikko J. Sillanpää. Edge
computing server placement with capacitated location allocation. Journal
of Parallel and Distributed Computing, 153:130–149, 2021.

[LLYC19] Chien-I Lee, Meng-Yao Lin, Chia-Lin Yang, and Yen-Kuang Chen. Iot-
bench: A benchmark suite for intelligent internet of things edge devices. In
2019 IEEE International Conference on Image Processing (ICIP), pages
170–174, Sep. 2019.

104

https://www.geeksforgeeks.org/gun-detection-using-python-opencv/
https://www.geeksforgeeks.org/gun-detection-using-python-opencv/
http://wiki.opencellid.org/wiki/Menu_map_view#database:~:text=https%3A//opencellid.org/-,Columns%20present%20in%20database%3A,-Parameter
http://wiki.opencellid.org/wiki/Menu_map_view#database:~:text=https%3A//opencellid.org/-,Columns%20present%20in%20database%3A,-Parameter
http://wiki.opencellid.org/wiki/Menu_map_view#database:~:text=https%3A//opencellid.org/-,Columns%20present%20in%20database%3A,-Parameter
http://wiki.opencellid.org/wiki/Menu_map_view#database:~:text=https%3A//opencellid.org/-,Columns%20present%20in%20database%3A,-Parameter

[LSHG16] Hongxing Li, Guochu Shou, Yihong Hu, and Zhigang Guo. Mobile edge
computing: Progress and challenges. In 2016 4th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering (Mo-
bileCloud), pages 83–84, March 2016.

[MFKS20] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. Faas-
dom: A benchmark suite for serverless computing. In Proceedings of
the 14th ACM International Conference on Distributed and Event-Based
Systems, DEBS ’20, page 73–84, New York, NY, USA, 2020. Association
for Computing Machinery.

[MGG+17] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umak-
ishore Ramachandran. Emufog: Extensible and scalable emulation of
large-scale fog computing infrastructures. In 2017 IEEE Fog World
Congress (FWC), pages 1–6, Oct 2017.

[MPGB21] Redowan Mahmud, Samodha Pallewatta, Mohammad Goudarzi, and
Rajkumar Buyya. Ifogsim2: An extended ifogsim simulator for mobility,
clustering, and microservice management in edge and fog computing
environments. arXiv preprint arXiv:2109.05636, 2021.

[OMnWSG19] Manuel Osvaldo J. Olguín Muñoz, Junjue Wang, Mahadev Satya-
narayanan, and James Gross. Edgedroid: An experimental approach
to benchmarking human-in-the-loop applications. In Proceedings of the
20th International Workshop on Mobile Computing Systems and Applica-
tions, HotMobile ’19, page 93–98, New York, NY, USA, 2019. Association
for Computing Machinery.

[PVCM20] David Perez Abreu, Karima Velasquez, Marilia Curado, and Edmundo
Monteiro. A comparative analysis of simulators for the cloud to fog
continuum. Simulation Modelling Practice and Theory, 101:102029, 2020.
Modeling and Simulation of Fog Computing.

[RD19] Thomas Rausch and Schahram Dustdar. Edge intelligence: The conver-
gence of humans, things, and ai. In 2019 IEEE International Conference
on Cloud Engineering (IC2E), pages 86–96, June 2019.

[RD21] Philipp Raith and Schahram Dustdar. Edge intelligence as a service. In
2021 IEEE International Conference on Services Computing (SCC), pages
252–262, 2021.

[RND23] Philipp Raith, Stefan Nastic, and Schahram Dustdar. Serverless edge
computing—where we are and what lies ahead. IEEE Internet Computing,
27(3):50–64, 2023.

105

[RRD21] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized
container scheduling for data-intensive serverless edge computing. Future
Generation Computer Systems, 114:259–271, 2021.

[RRFD23] Philipp Raith, Thomas Rausch, Alireza Furutanpey, and Schahram Dust-
dar. faas-sim: A trace-driven simulation framework for serverless edge
computing platforms. Software: Practice and Experience, 53(12):2327–
2361, 2023.

[RRP+22] Philipp Raith, Thomas Rausch, Paul Prüller, Alireza Furutanpey, and
Schahram Dustdar. An end-to-end framework for benchmarking edge-
cloud cluster management techniques. In 2022 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 22–28, Sep. 2022.

[SAA21] Banele G. Simelane, Isaiah O. Adebayo, and Matthew O. Adigun. Evalu-
ating the effect of mobile applications on cloudlet placement. In 2021 3rd
International Multidisciplinary Information Technology and Engineering
Conference (IMITEC), pages 1–5, Nov 2021.

[SBW19] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architec-
tural implications of function-as-a-service computing. In Architectural
Implications of Function-as-a-Service Computing, 10 2019.

[SCYE17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings of
the IEEE, 105(12):2295–2329, Dec 2017.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE Internet of Things Journal,
3(5):637–646, Oct 2016.

[SFG+20] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud provider. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 205–218.
USENIX Association, July 2020.

[SOE17] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An
environment for performance evaluation of edge computing systems. In
2017 Second International Conference on Fog and Mobile Edge Computing
(FMEC), pages 39–44, May 2017.

[SS18] Mohit Sewak and Sachchidanand Singh. Winning in the era of serverless
computing and function as a service. In 2018 3rd International Conference
for Convergence in Technology (I2CT), pages 1–5, April 2018.

106

[YQZ+15] Jie Yang, Yuanyuan Qiao, Xinyu Zhang, Haiyang He, Fang Liu, and
Gang Cheng. Characterizing user behavior in mobile internet. IEEE
Transactions on Emerging Topics in Computing, 3(1):95–106, March 2015.

[ZCL+19] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, Aug 2019.

[ZCS19] Yukun Zeng, Mengyuan Chao, and Radu Stoleru. Emuedge: A hybrid
emulator for reproducible and realistic edge computing experiments. In
2019 IEEE International Conference on Fog Computing (ICFC), pages
153–164, June 2019.

107

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the work
	Research Questions
	Structure of Thesis

	Background
	Edge Intelligence
	Edge Computing
	Serverless Computing
	Faas-sim

	Related Work
	Simulation Frameworks
	Emulation Frameworks
	Benchmarking Suites

	Methods
	Literature Review & Related Work Research & Requirement Engineering
	Infrastructure topologies, request pattern & workload development
	Testbed Experiments
	Simulation runs
	Benchmarking result analysis

	Approach
	Literature Review, Related Work Research & Requirement Engineering
	Infrastructure Topology Generation
	Request Pattern Generation
	Workload Implementations

	Experiments
	Testbed setup
	Edgerun galileo experiments framework
	Profiling experiments
	Scenario experiments

	Evaluation
	Simulation & Emulation Frameworks
	Serverless Benchmarking Suites
	Workload Definition
	Simulation and Testbed Evaluation

	Conclusion
	Future work & limitations

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

