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Zusammenfassung
In relativistischen Schwerionenkollisionen entsteht ein neuer Materiezustand, das Quark-
Gluon-Plasma. Eine Möglichkeit, dessen Eigenschaften zu untersuchen, sind Jets, in
der Kollision entstandene hochenergetische Teilchen, die mit den Quarks und Gluonen
wechselwirken und dann in einem Detektor gemessen werden können. Die transver-
sale Impulsänderung eines solchen Teilchens kann mit dem jet quenching Parameter
q̂ quantifiziert werden, für den ich in dieser Arbeit eine Formel aus der effektiven
kinetischen Beschreibung des Plasmas herleite. In unserer Beschreibung kann der Jet
hierbei beliebigen Impuls und Richtung relativ zur Strahlachse haben. Wenn man
den Grenzwert des Impulses gegen unendlich betrachtet, muss man einen maximalen
Impulsübetrag definieren, damit q̂ endlich bleibt. Dann beschreibe ich die Implemen-
tierung dieser Formeln in einem C++ Code, der die Zeitentwicklung eines gluonischen
Plasmas simuliert. Die numerischen Resultate, die für isotrope Teilchenverteilungen
erhalten werden, werden mit bekannten analytischen Berechnungen im thermischen
Gleichgewicht und mit experimentellen Grenzwerten verglichen. Außerdem berechne
ich q̂ für verschiedene skalierte thermische Verteilungen.
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Abstract
In relativistic heavy-ion collisions a new state of matter is created that is referred to
as the Quark-Gluon Plasma (QGP). To probe its properties one can use jets, which
are highly energetic particles that are formed in the collision and traverse the plasma,
while interacting with quarks and gluons, and can then be measured in a detector. The
rate of change of their transverse momentum squared is quantified by the jet quenching
parameter q̂, for which, in this thesis, I derive a formula for the effective kinetic theory
description of the plasma. In our framework the jet can have an arbitrary momentum
and direction with respect to the beam axis. When considering the limit of the jet
momentum going to infinity, we need to introduce a momentum cutoff in order to
render q̂ finite. I then describe the implementation of the corresponding formulae in a
C++ code that simulates the time-evolution of a gluonic plasma. The numerical results
obtained for isotropic particle distributions are finally compared with previous analytic
calculations in thermal equilibrium and with bounds from experimental observations.
Moreover, I also compute q̂ for different scaled thermal distributions.
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1. Introduction

A path to understanding the fundamental building blocks of nature is to study matter
under extreme conditions. This can be done, for example, in heavy-ion collision, where
highly energetic nuclei (e.g. Au + Au or Pb + Pb) are accelerated in particle colliders
and then brought to collision. This has been done at high energies at the BNL Rela-
tivistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). In
these collisions a new state of matter is created, called the Quark-Gluon Plasma (QGP)
[1, 2].

The Quark-Gluon Plasma can be described as a system of many interacting particles,
called quarks and gluons, which are the constituents of atomic nuclei. If energy becomes
high enough, the total particle number is no longer conserved, and real particles can
be created due to Albert Einstein’s famous formula E = mc2, which describes how
much energy E is needed for the creation of a particle with rest mass m, and c is the
speed of light in vacuum. A description of this interacting system is usually done using
quantum field theory, where also short-lived particles, called virtual particles, appear
in our formalism and need to be considered. In quantum field theory particles are
described as the excitations of underlying fields.

Another way to describe such an interacting system is kinetic theory, which is a
probabilistic approach, in which the fundamental object is the particle distribution
function that describes the particle density for a specific point in space-time and for a
specific range of momenta. This effective description is, of course, heavily related to
the more fundamental underlying quantum field theory.

This underlying theory needed to describe the Quark-Gluon Plasma is called Quan-
tum Chromodynamics (QCD), which is, in more technical terms, a non abelian gauge
theory with gauge group SU(3), in which the interaction between quarks is mediated
by the exchange of gauge bosons, the gluons. It is a generalization of the quantum the-
ory of electromagnetism, called Quantum Electrodynamics (QED), which is an abelian
gauge theory with gauge group U(1). In QCD, however, certain features that are not
present in QED exist, for example asymptotic freedom and self-interacting gluons.

Asymptotic freedom means that for high energy scales the interactions between the
particles become weaker and we can describe the theory in a perturbative way. This
will be the basis of the effective kinetic theory [3] description that is used in this Master
thesis.

Because of self-interacting gluons the gluonic sector of QCD is itself an interesting
theory and in this thesis mostly this gluonic sector of QCD is considered, but I will
give an overview of the quark sector as well.

At very early times after a heavy-ion collision, the system can be described using
a classical-statistical approximation, because of the the very large number of gluons.
When the system expands and cools, this approximation breaks down and the system
can then be described by kinetic theory and relativistic hydrodynamics [4, 5].

Highly energetic quarks or gluons that propagate through the Quark-Gluon Plasma,
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1.1. Outline

called jets, experience energy loss due to interactions with the QGP and can thus serve
as probes of its properties [6, 7]. This is known as jet quenching. In this Master
thesis, I will consider the momentum broadening of a jet due to its interaction with the
QGP. The rate of transverse momentum broadening is quantified by the jet quenching
parameter q̂, for which we give a formal definition in Section 3.1. This parameter is
also closely related to radiative energy loss and to the shear viscosity η [7].

q̂ has been calculated for a QGP in thermal equilibrium analytically at leading [8]
and next-to-leading order [9]. We know, however, that an isotropic particle distribu-
tion like in thermal equilibrium does not capture the anisotropy coming from longi-
tudinal expansion along the beam axis [4]. Anisotropic simulations for q̂ have been
done using classical statistical simulations [10]. An effective kinetic theory description
of anisotropic systems becomes more complicated due to plasma instabilities [5, 11].
A way to proceed is to use isotropic screening [12, 13], which we will also use in this
thesis and explain further below. However, it should be noted that anisotropic particle
distributions are shown to yield different results for the jet quenching parameter q̂ in
special cases [14].

At leading order, the processes of jet-medium interaction can be categorized as elastic
scattering and inelastic radiation. These processes can be restructured to allow for a
next-to-leading order treatment [15], but we will restrict ourselves to leading order here,
but not to thermal equilibrium.

In this thesis we will derive a formula for q̂ for an arbitrary jet direction from effec-
tive kinetic theory in and out of equilibrium that is then implemented and its value
is extracted for different non-evolving plasmas. We compare its value in thermal equi-
librium with [8] and with experimental bounds [7] using a momentum cutoff from the
CUJET model [16, 17, 18] and then calculate numerically q̂ for different isotropic par-
ticle distributions.

1.1. Outline

This thesis is organized in the following way: In Chapter 2 we provide a summary of the
theoretical background, upon which this thesis is based. We give a short introduction
to Quantum Chromodynamics in Section 2.1, including a short overview of non equi-
librium field theory and in-medium cutting rules. We then present the effective kinetic
theory description of the QGP in Section 2.2, which will provide the basis for this the-
sis. Although we do not consider the time-evolution of particle distribution functions,
which is described by EKT, we nevertheless provide an overview of the EKT, because
we do use parts of it, namely the elastic collision term, to derive q̂. This is followed
by a short introduction to the method of Monte Carlo integration in Section 2.3. We
then derive a formula for q̂ in Chapter 3, where we also discuss its behavior for large jet
momenta p and how a cutoff can be implemented. After specializing our formula for q̂
for the case of infinite jet momentum in Section 3.10 we discuss its relation to known
analytical results in the soft limit in Section 3.11. We discuss the implementation in
Chapter 4, where we first introduce momentum bounds to our integrals and then de-
scribe the way we implement the Monte Carlo integration. In Chapter 5 we provide
numerical results and compare them to known expressions in thermal equilibrium and
bounds obtained from experiments.
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Chapter 1. Introduction

1.2. Conventions
We use units in which c = ℏ = 1 for notational convenience. By setting c = 1 we
effectively use the same units for length and time, by additionally setting ℏ = 1 we
can now express length and time in inverse energy. The factors c and ℏ can always be
restored by dimensional analysis.

We use the mostly-plus or East coast metric convention, i.e. the Minkowski metric
ηµν has the form

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (1.1)

to be consistent with [3, 15].
Boldface lower-case quantities denote 3-vectors, capital letters denote 4-vectors, while

non bold-face lower-case quantities give the modulus of the corresponding 3-vector, e.g.

P µ = (P 0, p), P 2 = − P 0 2
+ p · p = − P 0 2

+ p2. (1.2)

A hat over a bold quantity denotes a unit vector, e.g. p̂ points in the direction of p
and has unit length, |p̂| = 1.

Greek indices denote Lorentz indices and for them the position is important, an index
can be ”pulled down” with the Minkowski metric (1.1),

Pµ = gµνP ν . (1.3)

Latin indices denote indices in the color group, their position is not important and
will be at our convenience,

ψa = ψa. (1.4)
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2. Theoretical background

In this chapter I will summarize the theoretical background underlying the effective
kinetic theory description. We will start with a short overview of the QCD Lagrangian.
As it will turn out, the scattering rate is given by in medium self-energies [19], Π>, Π<,
which can be most easily calculated by a cutting rule. For this, we need to introduce
a few concepts of the real-time formalism [20], especially the r/a basis, in which the
cutting rule has a very simple form [21]. We will then proceed to present the effective
kinetic theory developed in [3] and make it plausible by our previous formalism.

2.1. Introduction to QCD

No text concerning the quark-gluon plasma can, of course, omit a short introduction to
its underlying fundamental theory, Quantum Chromodynamics (QCD), the quantum
field theory of the strong interaction. Although in this thesis we need very little QCD
explicitly, some terms often pop up, so it is good to summarize them here.

A textbook treatment of QCD in vacuum is given in [22, 23, 24] and in thermal
media in [25, 19].

2.1.1. The QCD Lagrangian

A usual starting point for a relativistic quantum field theory is a Lagrangian density
L, for QCD it has the form [23]

L = ψ̄ i /D ψ − 1
4 F i

µν

2 − mψ̄ψ. (2.1)

This compact form hides some important structure and the rest of this section is devoted
to its explanation.

First, F i
µν

2
is a short notation for F i

µνF µν
i .

ψ is a spinor field, an element of an NC dimensional vector space and can be equipped
with an additional label f labelling different quark flavors. All together, this complex
object can be represented by its components using index notation,

ψ(X)α,a,f , (2.2)

where the three indices are its spinor, color and flavor index, respectively.
Let us begin with the first index, the spinor index. Because we want our theory to

be Lorentz invariant we need a way to apply a Lorentz transformation to our object.
There are different representations of the Lorentz group and as it turns out for fermions
we need an object ψα that lives in a vector space on which the Lorentz group acts in its
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2.1. Introduction to QCD

spinor representation, which can be represented by 4×4 dimensional matrices satisfying
a Clifford algebra relation,

{γµ, γν} := γµγν + γνγµ = −2ηµν . (2.3)

Note that many of the signs are due to convention. The negative sign in this relation
agrees with [22], but not with [23], and is due to our choice of the Minkowski metric,
(1.1). Note that (γµ)αβ are matrices with the indices α, β, which are not Lorentz indices
but we call them spinor indices. ψ̄ in the Lagrangian (2.1) is numerically defined to be

ψ̄ := ψ†γ0, (2.4)

where ψ† means complex conjugation and transposition. /D is defined as

/D = γµDµ. (2.5)

The Lagrangian density (2.1) was constructed in such a way that it is symmetric
under specific symmetry transformations, called gauge transformations under the gauge
group SU(NC),

ψ(x) → U(x)ψ(x), Aµ(x) → U(x)Aµ(x)U †(x) + i

g
U(x)∂µU †(x), (2.6)

where U(x) is an element of the Lie group SU(NC), the group of all NC × NC unitary
matrices with unit determinant. For QCD, NC = 3, but we will leave it arbitrary, since
it provides no additional complications. The gauge field Aµ, which is a generalization of
the vector potential in electrodynamics [26], is an element of the Lie algebra1 su(NC)
corresponding to the gauge Lie group. As such, it can be represented by NC × NC

matrices, which allows us to write (2.6). To distinguish physical degrees of freedom,
we can expand the gauge field in terms of the Lie algebra basis vectors ta,

Aµ = Aa
µta. (2.7)

The basis vectors, also called generators, can be represented by NC × NC matrices and
satisfy the commutation relation

[ta, tb] := tatb − tbta = ifabctc, (2.8)

where fabc are called structure coefficients. Note that we do not write the matrix indices
explicitly, (ta)bc → ta.

The gauge field Aµ has thus N2
C − 1 independent components Aa

µ, which can be
assembled in an N2

C − 1 dimensional vector.
The quantity Dµ is called covariant derivative and is defined as

Dµ := ∂µ − igAµ(X). (2.9)

In principle, the Lie algebra commutation relations (2.8) define the abstract objects ta.
For practical purposes it is convenient to choose a matrix representation of the abstract

1An algebra is a vector space endowed with a product structure, in this case (2.8). A condensed
introduction to Lie groups and Lie algebras can be found in every QFT book, e.g. [22, 23, 24], for
a more precise mathematical treatment, see e.g. [27].
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Chapter 2. Theoretical background

elements ta. Previously, we have referred to all objects as NC × NC matrices, this
representation is called the fundamental representation. (2.8) can also be represented
by a different set of matrices, consisting of the structure constants themselves,

(ta)bc → (T a)bc = (−ifa) bc, (2.10)

which is called the adjoint representation. It consists of N2
C − 1 (N2

C − 1) × (N2
C − 1)

matrices that we denote as T a, whereas the fundamental representation consists of
N2

C − 1 NC × NC matrices that we denote as ta.
The covariant derivative (2.9) can also be represented in the fundamental or in the

adjoint representation, depending on how the gauge field is represented, Aµ = Aa
µta or

Aµ = Aa
µT a = −iAa

µfabc.
Then the covariant derivative acts on the components ψa as

(Dµ)ab ψb = δab∂µ − igAc
µ (tc)ab ψb (2.11)

and on the gauge field components Aa
µ as

(Dµ)ab Ab
ν = δac∂µ + gfabcAb

µ Ac
ν . (2.12)

Thus, on the NC-dimensional color vector ψa the covariant derivative acts in its fun-
damental representation, and on the N2

C − 1-dimensional color vector Aa
µ the covariant

derivative acts in its adjoint representation. Therefore, we often refer to ψ as a field
in the fundamental representation and Aµ as a field in the adjoint representation. We
call the dimension of the vector space on which a representation acts its dimension d,
dA and dF denote the dimension of the adjoint and fundamental representation. There
is another number that can be assigned to every representation, the quadratic casimir
CR, defined to be tata = CF I, TaTa = CAI, where I is the unit matrix. Furthermore,
the generators obey the relation Tr (tatb) = tF δab, Tr (TaTb) = tAδab, and tF , tA is
called the index. For the fundamental and adjoint representation, those quantities take
the values

dF = CA = tA = NC ,

CF = N2
C − 1
2NC

,

dA = N2
C − 1,

tF = 1
2 .

(2.13)

In the Lagrangian (2.1) there appears also a generalization of the field-strength tensor
Fµν of electrodynamics,

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] , (2.14)

or, its components Fµν = F a
µνta,

F c
µν = ∂µAc

ν − ∂νAc
µ + gfabcAa

µAb
ν . (2.15)
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2.1. Introduction to QCD

We also define, for later convenience,

α := g2

4π
, (2.16)

λ := g2NC . (2.17)

The third index in ψ(X)α,a,f denotes the flavor of the corresponding quark, i.e. we
consider a plasma consisting of different quarks (with in principle different masses).
The flavor index is just a label that labels these different quark fields. We will denote
the total number of quark flavors by Nf .

2.1.2. Quantization
One way of quantizing a classical theory is to take a Hamiltonian description, promote
(generalized) position q and momentum variables p to operators, and then impose
canonical commutation relations,

[q̂, p̂] = i. (2.18)

The same can be done for fields, though we usually do not write the hat explicitly,

ψ → ψ̂, A → Â. (2.19)

Then the thermal expectation value of some operator Â is given by

⟨Â⟩β = 1
Z(β) Tr Âe−βĤ . (2.20)

The trace can be represented as a path integral,

⟨Â⟩ = 1
Z C

Dϕ eiSA, (2.21)

Z =
C

Dϕ eiS , (2.22)

where we denote by ϕ a collection of fields and C denotes a path in the (complex) time
plane and suitable boundary conditions have to be imposed, for thermal equilibrium
and time-independent Â, we can think of e−βH as a time evolution operator in negative
imaginary time, from t0 to t0 − iβ. For the trace, we then need to have the boundary
conditions ϕ(X0; x) = ϕ(X0 − iβ; x) for bosonic fields and ϕ(X0; x) = −ϕ(X0 − iβ; x)
for fermionic fields.

S denotes the action, obtained from the Lagrangian density via

S = d4X L(X). (2.23)

For gauge theories, we factor out physically equivalent field configurations (related
by gauge transformations) by the Faddeev-Popov procedure, which results in two ad-
ditional ”ghost” fields η, η̄ and an additional term in the Lagrangian that depends on
the chosen gauge. For covariant gauges, we make the replacement in (2.1)

1
4 F a

µν

2 → 1
4 F a

µν

2
+ 1

2ξ
∂µAa

µ

2

+ η̄a(X) ∂2δab + gfabcA
c
µ(X)∂µ ηb(X). (2.24)
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Chapter 2. Theoretical background

After the quantization procedure, we have the operators Aµ(x), ψ̄f (x), ψf (x), with
which we then proceed to define different propagators2 [20, 28] or correlation functions,

D>ab
µν(X, Y ) = ⟨Aa

µ(X)Ab
ν(Y )⟩, (2.25)

D<ab
µν(X, Y ) = ⟨Ab

ν(Y )Aa
µ(X)⟩, (2.26)

DRab
µν(X, Y ) = Θ(X0 − Y 0)⟨[Aa

µ(X)Ab
ν(Y )]⟩, (2.27)

DAab
µν(X, Y ) = −Θ(Y 0 − X0)⟨[Aa

µ(X)Ab
ν(Y )]⟩, (2.28)

Dab
µν(X, Y ) = ⟨T̂ Aa

µ(X)Ab
ν(Y )⟩ (2.29)

= Θ(X0 − Y 0)D>ab
µν(X, Y ) + Θ(Y 0 − X0)D<ab

µν(X, Y ).

We will not need most of them here, they are just written down for completeness. Note
that in these expressions, the As are operators and thus cannot be simply exchanged.
DR is called retarded propagator, and DA is called advanced propagator. T̂ is called
the time-ordering symbol, which orders the field operators according to their time
arguments. Θ(x) is the step function, defined to be

Θ(x) = 1, x ≥ 0
0, x < 0

. (2.30)

For completeness, we also give the corresponding propagators for fermionic fields,
but for notational convenience we suppress their spinor and color indices,

S>(X, Y ) = ⟨ψ(X)ψ̄(Y )⟩, (2.31)
S<(X, Y ) = −⟨ψ̄(Y )ψ(X)⟩, (2.32)
SR(X, Y ) = Θ(X0 − Y 0)⟨{ψ(X), ψ̄(Y )}⟩, (2.33)
SA(X, Y ) = −Θ(Y 0 − X0)⟨{ψ(X), ψ̄(Y )}⟩, (2.34)

S(X, Y ) = ⟨T̂ ψ(X)ψ̄(Y )⟩ (2.35)
= Θ(X0 − Y 0)S>(X, Y ) + Θ(Y 0 − X0)S<(X, Y ).

For the path integral it is convenient to define two different sets of fields, A1 and A2:
Let us start by looking more closely at the definition for D> = Tr (Dϕ(X)ϕ(Y )),

which we have written in terms of arbitrary fields ϕ with arbitrary additional indices
and D = e−βH is the density operator3. The field operators ϕ(X) and ϕ(Y ) are in the
Heisenberg picture and might have different time arguments X0 ̸= Y 0. We can relate
them to the operators in the Schrödinger picture via ϕ(X) = ei(X0−t0)Hϕ(t0, x)e−i(X0−t0)H =
U(t0 − X0)ϕ(t0, x)U(X0 − t0), where

U(t) = e−iHt (2.36)

2Instead of the Feynman propagator at zero temperature, we also need to define additional propaga-
tors. Note that there are different (metric) conventions in [20] and [28], and we will stick to those
in [20].

3Following [28] we use the symbol D for the density operator. It should not be confused with the
symbol D in the integration measure of path integrals.
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Figure 2.1.: Complex time-path for the propagator D>(X, Y )

is the time-evolution operator, which evolves a state in time, |ψ(t)⟩ = U(t) |ψ(0)⟩.
Therefore

D>(X, Y ) = Tr (Dϕ(X)ϕ(Y )) = Tr Dei(X0−t0)Hϕ(t0, x)ei(Y 0−X0)Hϕ(t0, y)e−i(Y 0−t0)H ,

(2.37)

where we can insert I = m |m, t⟩ ⟨m, t|,
D>(X, Y ) =

m,n,o,p,q

⟨m, t0| D |n, t0⟩ ⟨n, t0| U(t0 − X0) |o, X0⟩ ⟨o, X0| ϕ(t0, x) |p, X0⟩

× ⟨p, X0| U(X0 − Y 0) |q, Y 0⟩ ⟨q, Y 0| ϕ(t0, y) |r, Y 0⟩ ⟨r, Y 0| U(Y 0 − t0) |m, t0⟩ .

(2.38)

The time evolution from state |m, t0⟩ to r, Y 0 can be written as a path integral,

⟨r| U(Y 0 − t0) |m⟩ =
|r,Y 0⟩

|m,t0⟩
De

i
Y 0

t0
dt d3xL(X)

. (2.39)

We can then plug these time-evolution operators together along a path, using the
multiplicative property U(t1)U(t2) = U(t1 + t2). We first go on C+ from an initial time
t0 to a final time tf , which must be greater than X0 and Y 0, then we go back to the
initial time t0 on the time-path C−. The extension of the time-path to tf is possible
because U(X0 − y0) = U(x0 − tf )U(tf − Y 0).

We can interpret D = eβH as a time-evolution operator with an imaginary time,
therefore in this case we extend the time-contour integral to −iβ, see also figure 2.1
for the integration contour, for a more detailed description of the time path we refer to
[28].

We can then give a more precise definition of the path integral along this time-path
(see [20]):
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We introduce two different sets of fields (”field doubling”) ϕ1 and ϕ2 on the different
time-paths C+ and C−. In thermal equilibrium we have additional fields ϕE on the
time-path from t0 to t0 − iβ. The full path integral partition function can then be
written as

Z = DϕEeiS[ϕE ] Dϕ1Dϕ2ei[S[ϕ1]−S[ϕ2]]. (2.40)

In the path integral, the 1-fields and 2-fields do not mix, so we have 1-vertices, where
only 1-fields meet and 2-vertices for 2-fields only. But these 1-vertices and 2-vertices
can be connected by propagators.

We can then obtain four different correlation functions depending on the fields we
choose,

⟨ϕ1(X)ϕ1(Y )⟩ = D(X, Y ) (2.41)

is the ”normal” full (time-ordered) propagator, because the path-integral automatically
produces a time-ordering along the contour. Similarly,

⟨ϕ1(X)ϕ2(Y )⟩ = D<(X, Y ), (2.42)

because the path-integral automatically orders ϕ̂1(X)ϕ̂2(Y ) → ϕ̂2(Y )ϕ̂1(X), because
the time-argument of any 2-field is later on the time-path than any time-argument of
any possible 1-field.

These propagators can be arranged in a matrix,

D(X, Y ) = ⟨ϕ1(X)ϕ1(Y )⟩ ⟨ϕ1(X)ϕ2(Y )⟩
⟨ϕ2(X)ϕ1(Y )⟩ ⟨ϕ2(X)ϕ2(Y )⟩ = D(X, Y ) D<(X, Y )

D>(X, Y ) D̄(X, Y ) . (2.43)

Here, D̄(X, Y ) denotes the anti time-ordered correlation function.
These propagators are actually not independent of each other[29], of course, the time-

ordered D(X, Y ) and anti time-ordered D̄(X, Y ) correlation functions can be expressed
in terms of D> and D< with corresponding step functions.

Instead of working in the 1/2-basis, we can perform a linear transformation to arrive
at the r/a basis4 [20, 21, 29]

ϕr = 1
2 (ϕ1 + ϕ2) , ϕa = ϕ1 − ϕ2, ϕ1 = ϕr + 1

2ϕa, ϕ2 = ϕr − 1
2ϕa. (2.44)

In this basis, we obtain vertices that mix the a- and r-fields, because we subtract the
actions,

S[ϕ1] − S[ϕ2] = S ϕr + 1
2ϕa


− S ϕr − 1

2ϕa


. (2.45)

For example, in our original Lagrangian (2.1) there is an interaction term

ψ̄1γµ(A1)c
µtcψ1 − ψ̄2γµ(A2)c

µtcψ2, (2.46)
4The r/a basis is called physical representation in [29].
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which becomes (we suppress again all indices other than r/a)

ψ̄r /Arψa + ψ̄r /Aaψr + ψ̄a /Arψr + 1
8 ψ̄a /Aaψa. (2.47)

Due to the form of the transformation (2.44), we obtain only vertices with odd number
of a-fields.

The propagators, e.g. Dar, now also carry these field indices and we shall represent
them pictorially by an arrow that points towards the r-field,

Dar(x, y) = a r .

These propagators can be arranged in a matrix,

D(X, Y ) = Drr Dra

Dar Daa
=

1
2 (D> + D<) DR

DA 0 . (2.48)

The fact that Daa = 0 reduces the number of diagrams one has to compute. Note also
that we obtain in this basis the retarded (and advanced) propagators that we defined
earlier.

The propagators can also be Fourier transformed,

D̃(P ) = d4(X − Y ) e−iP ·(X−Y )D(X, Y ). (2.49)

For non-homogeneous systems this needs to be replaced by a Wigner transform, for
details we refer to [28].

2.1.3. Self-energy
Up until now we have defined our propagators, but we have not actually talked about
if we can easily calculate them. As it turns out, for an interacting theory (QCD for
example) the path integral cannot be done in most cases. So what we usually do
in physics when a problem is too difficult to solve is to reduce it to a problem we can
solve: The free theory! Free meaning no interactions. It turns out that the path integral
becomes Gaussian and can be done in that case, which gives the free propagator D0.
And for weak coupling we can apply perturbation theory to obtain the full propagator
D and other more interesting quantities. The difference between those two quantities
is in some sense - which we define below - given by the self-energy.

The self-energy Π(x, y) is defined via the Dyson equation5

D−1(X, Y ) = D−1
0 (X, Y ) + iΠ(X, Y ), (2.50)

or, equivalently,

D(X, Y ) = 1
D−1

0 (X, Y ) + iΠ(X, Y )
, (2.51)

5There are different conventions on how the signs and factor is are defined. Here we quote the
expression from [20].
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= + + + . . .

Figure 2.2.: The full propagator on the left-hand side is given by the sum of free propagators
with insertions of self-energies (hatched blobs).

which provides a relation between the full propagator D, the free propagator D0 and
the self-energy Π. The fraction is a short notation for the geometric series

D(X, Y ) = D0(X, Y ) + d4Z1 d4Z2 D0(X, Z1)Π(Z1, Z2)D0(Z2, Y )

+
Z1,Z2,Z3,Z4

D0(X, Z1)Π(Z1, Z2)D0(Z2, Z3)Π(Z3, Z4)D0(Z4, Y ) + . . . ,

(2.52)

which represents repeated insertions of Π diagrams that are connected via free prop-
agators. Pictorially, this equation is represented in figure 2.2. We integrate over all
intermediate spacetime points and represent the individual pieces by diagrams. A
propagator is represented by a line, a self-energy via a hatched blob.

On the other hand, let us think of the full propagator as the fully connected two-
point function. We can build this function out of parts that are one-particle irreducible,
meaning that we have to cut through at least two lines for them to fall apart. Those one-
particle irreducible parts have to be connected by free propagators. By looking again
at figure 2.2, we realize that the self-energy is given by the one-particle irreducible
diagrams (to which we can attach two legs).

Similarly to the propagator, we can define Π> and Π<,

Π(X, Y ) = Θ(X0 − Y 0)Π>(X, Y ) + Θ(Y 0 − X0)Π<(X, Y ). (2.53)

In the r/a basis, the in-medium self-energy Π̃>(k) is given by the cutting rule (see
[21, 20],

Π̃>(K) =
n

1
n!

 n

j=1

d4Qj

(2π)4

 (2π)4δ4(Q1 + · · · + Qn − K)

× Mar...r(P ; Q1, . . . , Qn)Mar...r(−P ; −Q1, . . . , −Qn)
× D̃>(Q1) . . . D̃>(Qn)

(2.54)

=
n K

Q1

Q2

Qn

...
...

, (2.55)
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where Mar...r are fully retarded amplitudes, i.e. they represent a matrix element where
we have exactly one a-index, the sum runs over all the propagators D̃>(Q1) . . . that
are inserted between the two diagrams, or alternatively, over all the lines that are cut
and then replaced by D̃>(Q1) . . . .

2.1.4. Perturbative expansion and hard thermal loops
Because we cannot solve QCD exactly, we need to use perturbation theory, which works
if the coupling g is small enough. Luckily, for QCD, this is the case for high enough
temperatures, which is a property called asymptotic freedom. We can then expand
all quantities of interest in terms of free propagators D0 and obtain corrections that
are proportional to the coupling g, g2, . . . . This procedure is usually done in a loop
expansion, because every vertex comes with a factor g or g2 and thus increases the
order in perturbation theory.

It turns out, however, that some diagrams that seem to be of higher order in the
coupling constant will actually have the same magnitude as tree-level diagrams for non
zero temperature [25]. This is due to hard thermal loops (HTL), important contri-
butions when the internal momentum is hard (∼ T ) and the external lines are soft
(∼ gT ). One needs to include the HTL self-energy in the propagator, for the retarded
propagator, this reads [20]

DR(P ) = 1
[DR

0 (P )]−1 + iΠR(P )
, (2.56)

where Π should be evaluated in the HTL limit, which means that one has to expand
for soft external momenta Q ∼ gT ≪ P ∼ T .

The resulting HTL propagators GR in strict Coulomb gauge are given by [20]

D00
R (Q) = i

q2 + m2
D 1 − ω

2q ln ω+q+iϵ
ω−q+iϵ

, (2.57)

Dij
R(Q) = δij − q̂iq̂j DT

R(Q) = i δij − q̂iq̂j

ω2 − q2 − m2
D

2
ω2
q2 − ω2

q2 − 1 ω
2q ln ω+q

ω−q ω=ω+iϵ

,

(2.58)

where ω = Q0 and mD is the leading-order Debye mass, which reads in general (also
out of equilibrium) [3]

m2
D =

s

2dsg2 Cs

dA

d3p
2p(2π)3 fs(p), (2.59)

where the sum runs over g (gluons) and all quark flavors in the plasma. ds and Cs

are the dimension and quadratic casimir of the corresponding representation of s, see
(2.13).

The Debye mass reduces in thermal equilibrium to [15]

m2
D = g2T 2

3 NC + Nf

2 . (2.60)

The HTL self-energies can also be constructed directly from kinetic theory without
using diagrammatic techniques, for a review see [28].
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2.1.5. A contribution to the self-energy diagram

Let us look at a specific term appearing in the self-energy, according to the cutting rule
(2.54),

ησϵΠ>
σϵ(P ) ∋ 1

6
d4Q1 d4Q2 d4Q3

(2π)12

× D̃>
αµ(Q1)D̃>

βν(Q2)D̃>
γρ(Q3)(2π)4δ4(Q1 + Q2 + Q3 − P ) (2.61)

×




σ

ρ

ν

µ
Q1

Q2

Q3
P








ϵ

γ

β

α
Q1

Q2

Q3
P





∗

This is, for simplicity, a diagram consisting only of gluons. The arrows denote propa-
gators in the r/a basis and the gray wavy-line in the middle is the only propagator that
is not amputated when computing the amplitudes. In the r/a basis a propagator with
one a and one r leg (or with one arrow) is a retarded propagator, in which we should
also include the retarded HTL self-energy, (2.56).

Now we can still massage this expression a bit. Let us insert the Kadanoff-Baym
ansatz6 [30, 31],

D̃>(Q1) = 1 ± f̃(Q1) ρ(Q1), (2.62)

where ρ(Q1) is called spectral function and f̃(Q1) will become the particle distribution,
when Q1 is on-shell. The upper sign is for bosons, the lower sign for fermions, which
corresponds to Bose enhancement and Fermi blocking factors. In the quasiparticle
approximation [28] we obtain

ρ(Q) = 2πϵ(Q0)δ (Q0)2 − E2
q g(Q), (2.63)

where g(Q) might be an additional function of Q, e.g. for fermions [19] g(Q) = /Q + m,
for gluons (in Feynman gauge) g(Q) = −ηµν , and ϵ(Q0) = sign(Q0). Eq > 0 denotes
the energy of the quasiparticle that depends on q. We assume Eq = E−q. Inserting
this for the gluonic propagators in (2.62) means that we can write the two diagrams as
|M|2

ν , if we define |M|2 to be summed over all initial and final polarizations and colors.
Therefore, for an ingoing particle with a definite spin and color state, we need to divide

6This is motivated by the fact that in thermal equilibrium we can use a thermal particle distribution.
Note that here we are more general, f̃(Q) does not have to be the Bose-Einstein or Fermi-Dirac
distribution. This is a way to define the (time-dependent) particle distribution. In fact, these
quantities can also be position-dependent, then the Fourier transform (2.49) should be replaced by
a Wigner transform, see also [28].
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by ν, which is defined as the number of spin times color states for the ingoing particle
species. |M|2 is thus

|M|2 = ηαµηβνηγρησϵ (2.64)

×




σ

ρ

ν

µ
Q1

Q2

Q3
P








ϵ

γ

β

α
Q1

Q2

Q3
P





∗

=

Q1

Q2

Q3
P

2

, (2.65)

with the corresponding legs contracted and summed over all colors (and polarizations).
The delta function can be expanded,

ρ(Q) = 2πg(Q) 1
2Eq

δ(Q0 − Eq) − δ(Q0 + Eq) , (2.66)

with which we can write D̃> as

D̃>(Q) = ρ(Q) Θ(Q0) 1 ± f̃(Q) + Θ(−Q0) 1 ± f̃(Q) (2.67)

With

D̃>(−Q) = 1 ± f̃(−Q) ρ(−Q) = D̃<(Q) = f̃(Q)ρ(Q), (2.68)

ρ(−Q) = −ρ(Q) (2.69)

we obtain

f̃(Q) = − 1 ± f̃(−Q) . (2.70)

Inserting this into (2.67) yields

D̃>(Q) = ρ(Q) Θ(Q0) 1 ± f̃(Q) − Θ(−Q0)f̃(−Q) (2.71)

= 2πg(Q) 1
2Eq

δ(Q0 − Eq) 1 ± f̃(Q) + δ(Q0 + Eq)f̃(−Q) (2.72)

= 2πg(Q) 1
2Eq

δ(Q0 − Eq) (1 ± f(q)) + δ(Q0 + Eq)f(−q) . (2.73)

28



Chapter 2. Theoretical background

Now the Q0 component in all f̃ is always positive because of the delta function,

δ(Q0 − Eq)f̃(Q0, q) = δ(Q0 − Eq)f̃(Eq, q), (2.74)
δ(Q0 + Eq)f̃(−Q0, −q) = δ(Q0 + Eq)f̃(Eq, −q). (2.75)

This allows us to define

fq := f(q) := f̃(Eq, q). (2.76)

The Q0 integrals in (2.62) can now be performed, where for every D̃> the delta
function removes the Q0 integral and yields two terms according to (2.73),

1
6ν

d3q1 d3q2 d3q3
(2π)92Eq12Eq22Eq3

(2π)4δ3(q1 + q2 + q3 − P ) |M|2

× δ(Eq1 + Eq2 + Eq3 − Ep) [(1 ± fq1)(1 ± fq2)(1 ± fq3)]

+ δ(−Eq1 + Eq2 + Eq3 − Ep) [f−q1(1 ± fq2)(1 ± fq3)]
+ similar with q1 ↔ q2, q1 ↔ q3

+ δ(−Eq1 − Eq2 + Eq3 − Ep) [f−q1f−q2(1 ± fq3)]
+ similar with q2 ↔ q3, q1 ↔ q3

δ(−Eq1 − Eq2 − Eq3 − Ep) [f−q1f−q2f−q3 ]

(2.77)

= 1
6ν

d3q1 d3q2 d3q3
(2π)92Eq12Eq22Eq3

(2π)4 |M|2

× δ4(Q1 + Q2 + Q3 − P )
(Qi)0=Eqi

[(1 ± fq1)(1 ± fq2)(1 ± fq3)]

+ δ4(−Q1 + Q2 + Q3 − P )
(Qi)0=Eqi

[fq1(1 ± fq2)(1 ± fq3)]

+ similar with q1 ↔ q2, q1 ↔ q3

+ δ4(−Q1 − Q2 + Q3 − P )
(Qi)0=Eqi

[fq1fq2(1 ± fq3)]

+ similar with q2 ↔ q3, q1 ↔ q3

δ4(−Q1 − Q2 − Q3 − P )
(Qi)0=Eqi

[fq1fq2fq3 ]

(2.78)

Energy-momentum conservation can only be fulfilled for the second delta function,
which can be seen as follows:

The last term cannot contribute, because it contains δ(Eq1 + Eq2 + Eq3 + Ep) and
all E > 0. For the first delta function, let us consider for a moment P to have a small
mass m. Then we can boost into its rest frame to obtain

P = Q1 + Q2 + Q3 (2.79)
m
0 = Eq1

q1
+ Eq2

q2
+ Eq3

q3
, (2.80)

which can never be fulfilled, because Eqi ≥ m. For massless particles this could in
principle be fulfilled, if all particles are collinear, however since they acquire a small
thermal mass, this argument should hold.
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We thus obtain

= 1
2ν

d3q1 d3q2 d3q3
(2π)92Eq12Eq22Eq3

(2π)4 |M|2

× δ4(−Q1 + Q2 + Q3 − P )
(Qi)0=Eqi

[fq1(1 ± fq2)(1 ± fq3)]
. (2.81)

2.2. Effective kinetic theory
In this section we give a brief introduction to the effective kinetic theory (EKT) de-
veloped in [3]. A brief one-page overview, including also the isotropic screening pre-
scription [12] we use can also be found in [13]. Although we do not consider the
time-evolution of particle distribution functions, which is described by EKT, we do use
the elastic collision term introduced in Section 2.2.2, and for completeness we provide
a complete introduction to the EKT, including also the inelastic collision term.

2.2.1. Overview
In the effective kinetic theory (EKT) description [3] of the quark-gluon plasma, quarks
and gluons are represented by their phase-space density or distribution functions fs(x, p, t)
for a single helicity and color state, where s labels the different species (quark flavors
and gluons). The time-evolution of these distribution functions is given by a Boltzmann
equation,

∂

∂t
+ v · ∇x fs = −Cs[f ], (2.82)

where Cs[f ] is called the collision term, which can be split into two parts, elastic 2 ↔ 2
processes and effective collinear ”1 ↔ 2” processes,

Cs[f ] = C2↔2
s [f ] + C”1↔2”

s [f ]. (2.83)

We will describe those two terms individually in the following sections.

2.2.2. 2 ↔ 2 collision term
The first term is given by

C2↔2
a [f ](p) = 1

4|p|νa bcd kp′k′
Mab

cd(p, k; p′k′)
2

(2π)4δ4(P + K − P ′ − K ′)

fa(p)f b(k) 1 ± f c(p′) 1 ± fd(k′)

− f c(p′)fd(k′) [1 ± fa(p)] 1 ± f b(k) , (2.84)

which represents a loss and gain term, respectively, and νs = 2dR is the number of spin
times color states for a given (quasi-)particle species. The particles are ultra-relativistic,
i.e. P 2 = 0 or P 0 = |p| = p. The integral measures are defined as

k
:=

R3

d3k
(2π)32k

. (2.85)
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ab ↔ cd Mab
cd

2
/g4

q1q2 ↔ q1q2,

8d2
F C2

F
dA

s2+u2

t2
q1q̄2 ↔ q1q̄2,
q̄1q2 ↔ q̄1q2,
q̄1q̄2 ↔ q̄1q̄2

q1q1 ↔ q1q1, 8d2
F C2

F
dA

s2+u2

t2 + s2+t2

u2 + 16dF CF CF − CA
2

s2

tuq̄1q̄1 ↔ q̄1q̄1

q1q̄1 ↔ q1q̄1 8d2
F C2

F
dA

s2+u2

t2 + t2+u2

s2 + 16dF CF CF − CA
2

u2

st

q1q̄1 ↔ q2q̄2 8d2
F C2

F
dA

t2+u2

s2

q1q̄1 ↔ gg 8dF C2
F

u
t + t

u − 8dF CF CA
t2+u2

s2

q1g ↔ q1g, −8dF C2
F

u
s + s

u + 8dF CF CA
s2+u2

t2q̄1g ↔ q̄1g

gg ↔ gg 16dAC2
A 3 − su

t2 − st
u2 − tu

s2

Table 2.1.: Matrix elements from [3]. Singly-underlined denominators indicate infrared-
sensitive contributions from soft gluon exchange, double-underlined denominators
from soft fermion exchange. The constants dF , CF , dA, CA are given in (2.13).

The matrix elements Mab
cd

2
correspond to elastic 2-particle scattering processes and

are summed over the spins and colors of all incoming and outgoing particles. They
obey certain symmetry relations given in [3], out of which we will later need

Mab
cd(p, k; p′, k′)

2
= Mab

dc(p, k; k′, p′)
2

. (2.86)

The matrix elements for the relevant scattering processes in vacuum are given in Table
2.1. They are functions of the so-called Mandelstam variables

s = −(P + K)2, t = −(P ′ − P )2, u = −(K ′ − P )2. (2.87)

However, since a Quark-Gluon Plasma certainly differs from vacuum, these matrix
elements must be modified to include medium-dependent corrections. For leading order,
it turns out that these matrix elements are sufficient, except for the singly or doubly
underlined ones. In those matrix elements, medium-dependent self-energy corrections
need to be taken into account. A singly underlined denominator indicates a correction
for an internal virtual (soft) gluon, whereas a doubly underlined denominator for an
internal virtual (soft) fermion. We will only need to consider the singly underlined
terms, and we will do so in the following section.

2.2.3. Isotropic screening
As we have seen before, the free particle propagator is modified due to interactions
with the many-body system, which are quantified by the self-energy. We must therefore
replace it by the full propagator. In the EKT description this amounts to [3]
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su

t2 = 1
4 − 1

4
(s − u)2

t2 → DR(P − P ′)µν(P + P ′)µ(K + K ′)ν
2

. (2.88)

where DR is the HTL retarded propagator, given by (2.57) and (2.58).
This prescription only becomes important when the momentum of the virtual particle

Q2 becomes small with respect to ΠR, otherwise we can use the free propagator, DR
0 (Q),

instead. Therefore, we only need to incorporate this screening prescription in the
underlined terms in Table 2.1.

The reason that the retarded propagator (and not some other propagator) appears
here is because the in-media gain and loss rates in (2.84) are proportional to Π< and
Π>, respectively [19], where for gluons we need to take e.g. gµνΠ<

µν and for fermions
e.g. Tr /PΠ> . As an example, we have calculated one of those terms contributing to
the loss term in (2.84) in (2.81), where we have seen via the cutting rule (2.54) that the
propagator that appears in the matrix element (2.65) must be a retarded propagator.
(2.81) has also the correct Bose enhancement and Fermi blocking factor incorporated.

Instead of incorporating the hard-thermal-loop (HTL) self-energy, we use a different
method presented in [12], which is leading order accurate for isotropic distributions and
amounts to replacing

q2t → t(q2 + 2ξ2m2), (2.89)

where ξ = e5/6/
√

8 ≈ 0.8135 and m is the gluonic effective mass [3], which for a gluonic
plasma reads

m2 = 2λ
d3p

(2π)3
f(p)
|p| , (2.90)

with λ = g2NC . We can also represent this via the Debye mass, m2
D = 2m2, as we can

easily compare with (2.59).

Example of how the screening is implemented

Let us illustrate this procedure by an example. Consider a matrix element ∼ − su
t2 . As

we will show later (cf. (3.193)), we can write this, for k, p ≫ q, ω, as

−su

t2 = 4p2k2(1 − cos ϕ)2t2

t2q4 . (2.91)

Applying our regularization procedure (2.89) yields

−su

t2 = 4p2k2(1 − cos ϕ)2

(q2 + ξ2m2
D)2 . (2.92)

Actually, we could have also replaced q4 → q2(q2 + ξ̃2m2
D) with another constant

ξ̃. Every replacement that exhibits the same behavior is equally valid, albeit with a
different constant ξ.

32



Chapter 2. Theoretical background

The exact HTL result for this matrix element would be, following [3],

su

t2 = 1
4 − 1

4
(s − u)2

t2 → DR(P − P ′)µν(P + P ′)µ(K + K ′)ν
2

. (2.93)

The matrix element must be gauge invariant, so we can perform the calculation in
any gauge and use the retarded HTL propagator GR in the strict Coulomb gauge (2.57)
and (2.58).

We then obtain

|Dµν
R (Q)(2P + Q)µ(2K − Q)ν |2 (2.94)

= D00
R (Q)(2p + ω)(2k − ω) (2.95)

+ (2p + q) · (2k − q) − (q · (2p + q)) (q · (2k − q))
q2 DT

R(Q)
2
. (2.96)

Using the parametrization of (3.58), (3.59) and (3.60), and also (3.98b) and (3.98a),
we obtain

D00
R (Q)(2p + ω)(2k − ω) + 4pk(sin θpq sin θkq cos ϕkq)DT

R(Q)
2

(2.97)

= D00
R (Q)

2
(2p + ω)2(2k − ω)2 (2.98)

+ 16p2k2 1 − ω

q
+ t

2pq

2
1 − ω

q
− t

2kq

2
cos2 ϕ DT

R(Q)
2

+ cos ϕ . . . ,

which for p, k ≫ q, ω ≫ mD has exactly the same behavior as (2.91), because D00
R (Q) 2 →

1
q4 and DT

R(Q)
2 → 1

(ω2−q2)2 . This is the reason, why we could replace the full HTL
matrix element by the simpler one. Note that we integrate over dϕ, so we need not
consider the term ∼ cos ϕ.

In the collision term we always integrate over q, ω. For small ω, we can expand the
distribution functions for small ω as in [12] and then obtain the condition that this
integral should vanish:

∞

−∞
dω ω2

∞

|ω|
dq

2π

0
dϕ M2

ξ,mD

Approx HTL

k,p≫q
− M2

mD

Exact HTL

k,p≫q
(2.99)

If we split the ω-integral in |ω|>a dω and |ω|<a dω, with a ≫ mD, then for the first case,
those two terms cancel each other, as we have shown before that they are identical in
this limit. And this is also the leading order behavior of the integrated matrix element.
Thus all further terms are of lower order. The integrated matrix element thus behaves
as 1

ωn + const, where the constant is given by the low-ω region, i.e. by the region
where our approximated matrix element differs from the ”exact” HTL matrix element.
For the exact element the constant can only be given by a function f(mD), whereas
for the approximated matrix element g(ξmD). We can then adjust the value of ξ,
effectively rescaling the mass, such that g(ξmD) = f(mD), which leads to the value
reported above for ξ, see (2.89).
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2.2. Effective kinetic theory

2.2.4. Effective ”1 ↔ 2” collision term
C”1↔2”

f does not only describe a 1 ↔ 2 particle process, but also includes 1+N ↔ 2+N
processes and has the form [3]

C”1↔2”
a [f ] = (2π)3

2p2νa b,c

∞

0
dp′ dk′ δ(p − p′ − k′)γa

bc(p; p′p̂, k′p̂)

× fa(p) 1 ± fb(p′p̂) 1 ± fc(k′p̂) − fb(p′p̂)fc(k′p̂) [1 ± fa(p)]

+ (2π)3

p2νa b,c

∞

0
dk dp′ δ(p + k − p′)γc

ab(p′p̂; p, kp̂) (2.100)

× fa(p)fb(kp̂) 1 ± fc(p′p̂) − fc(p′p̂) [1 ± fa(p)] [1 ± fb(kp̂)] ,

where γa
bc now represents the differential splitting/joining rates and includes all the

phase space integrations and the summation over N .
γa

bc can be calculated as follows: Let n̂ be a unit vector in the direction of propagation
of the splitting/merging. Then

γq
qg(pn̂; p′n̂, kn̂) = γ q̄

q̄g(pn̂; p′n̂, kn̂) = p′2 + p2

p′2p2k3 F n̂
q (p, p′, k), (2.101)

γg
qq̄(pn̂; p′n̂, kn̂) = k2 + p′2

k2p′2p3 F n̂
q (k, −p′, p), (2.102)

γg
gg(pn̂; p′n̂, kn̂) = p′4 + p4 + k4

p′3p3k3 F n̂
g (p, p′, k), (2.103)

where

F n̂
s (p′, p, k) := dsCsα

2(2π)3
d2h

(2π)2 2h · Re Fn̂
s (h; p′, p, k). (2.104)

α is given by (2.16), h is a two-dimensional vector perpendicular to n̂, and Fn̂
s is the

solution to the linear integral equation

2h = iδE(h; p′, p, k)Fn̂
s (h; p′, p, k) + g2 d4Q

(2π)4 2πδ (vn̂ · Q) vµ
n̂vν

n̂⟨Aµ(Q)[Aν(Q)]∗⟩

× Cs − 1
2CA Fn̂

s (h; p′, p, k) − Fn̂
s (h − kq⊥; p′, p, k)

+ 1
2CA Fn̂

s (h; p′, p, k) − Fn̂
s (h + p′q⊥; p′, p, k)

+ 1
2CA Fn̂

s (h; p′, p, k) − Fn̂
s (h − pq⊥; p′, p, k) . (2.105)

vn̂ = (1, n̂) and q⊥ is the part of q perpendicular to n̂, and ds, Cs given by (2.13).
δE is defined as

δE(h; p′, p, k) =
m2

eff,g

2k
+

m2
eff,s

2p
− m2

eff,s

2p′ + h2

2pkp′ , (2.106)
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where the effective mass meff,g of gluons and fermions meff,s are given by

m2
eff,g =

s

2νs
g2Cs

dA

d3p
2p(2π)3 fs(p), (2.107)

m2
eff,s = 2g2CF

d3p
2p(2π)3 [2fg(p) + fs(p) + fs̄(p)] . (2.108)

Finally, ⟨Aµ(Q)[Aν(Q)]∗⟩ is the Fourier transform of the (non-equlibrium) HTL ap-
proximation to the Wightman gauge field correlator and is given by

⟨Aµ(Q)[Aν(Q)]∗⟩ = DRet
µα (Q)Παβ

12 (Q)[DRet
νβ (Q)]∗. (2.109)

For consistency with the previous isotropic screening, we make the same assumption
here, which enables us to evaluate

g2 d4Q

(2π)4 2πδ (vn̂ · Q) vµ
n̂vν

n̂⟨Aµ(Q)[An(Q)]∗⟩h(q⊥)

= g2T∗
d2q⊥
(2π)2

1
q2

⊥
− 1

q2
⊥ + m2

D

h(q⊥), (2.110)

with

T∗ = s νs
g2Cs

dA

d3p
(2π)3

fs(p)
p

1
2 s νs

g2Cs

dA

d3p
(2π)3 fs(p) [1 ± f(p)]

. (2.111)

We only consider a gluonic plasma, which means that we do not have any quarks in
the plasma, which allows us to simplify these expressions to obtain (see also [12, 13])

2h = iδE(h; p′, p, k)Fn̂
g (h; p′, p, k) + g2T∗

d2q⊥
(2π)2

1
q2

⊥
− 1

q2
⊥ + m2

D

× CA

2 3Fn̂
g (h) − F n̂

g (h − kq⊥) − F n̂
g (h + p′q⊥) − F n̂

g (h − pq⊥) .

(2.112)

2.2.5. Expansion term
For heavy-ion collisions we also should take into account expansion along the beam axis.
We assume that our distribution function does not depend on x, y, but can depend on
z. In the Boltzmann equation, (2.82), we then have a term

vz ∂f

∂z
. (2.113)

We will now show that this reduces under the assumption of boost invariance and at
z = 0 to [32]

vz ∂f

∂z
= −pz

t

∂f

∂pz
. (2.114)
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2.3. Monte Carlo integration

To show this, we follow [32] and consider the distribution function to be dependent
on t, z, p, i.e. f(t, z, p⊥, pz). We then apply a Lorentz boost, parametrized [33] by the
rapidity η,

t
z

= cosh η sinh η
sinh η cosh η

t̃
z̃

, (2.115)

where t̃, z̃ are the components of the position vector in a different basis. The same
transformation applies to the 4-momentum, which yields

t = t̃ cosh η + z̃ sinh η z = t̃ sinh η + z̃ cosh η (2.116)
p0 = p̃0 cosh η + p̃z sinh η pz = p̃0 sinh η + p̃z cosh η (2.117)

With boost invariance we mean that
∂f

∂η η=0, z=0
= 0 (2.118)

This yields
∂f

∂η
= p̃0 cosh η + p̃z sinh η

∂f

∂pz

+ t̃ sinh η + z̃ cosh η
∂f

∂t

+ t̃ cosh η + z̃ sinh η
∂f

∂z
= 0, (2.119)

which at η = z = 0 reduces to

t
∂f

∂z
= −p0 ∂f

∂pz
(2.120)

Using7 vz = pz

p0 , we obtain (2.114).
The Boltzmann equation (2.82) then reads

∂fs

∂t
= −Cs[f ] + pz

t

∂f

∂pz
, (2.121)

and we can formally define a new collision term,

Cexp
s [f ] = −pz

t

∂f

∂pz
, (2.122)

which captures the expansion of the system.

2.3. Monte Carlo integration
The numerical evaluation of multi-dimensional integrals can become quite costly when
using a deterministic method of numerical integration, e.g. a trapezoidal rule [34]

xN−1

x0
f(x) dx ≈ h

1
2f(x0) + f(x1) + f(x2) + · · · + f(xN−2) + 1

2f(xN−1)


, (2.123)

7This follows immediately from E = mγ and p = mγv in relativistic kinematics, see e.g. [26].
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Chapter 2. Theoretical background

where the integration interval (x0, xN−1) is discretized using N evenly spaced points
xi with h = xi+1 − xi.

The Monte carlo method uses random samples from our integration region.
We can calculate an integral of a function f over a multidimensional volume V via

[34]

f dV ≈ V ⟨f⟩, (2.124)

with ⟨. . . ⟩ denoting the arithmetic mean over the N randomly chosen and uniformly
distributed sample points xi,

⟨f⟩ = 1
N

N−1

i=0
f(xi). (2.125)

If we have a function f that is strongly peaked in a small region and almost zero
elsewhere, drawing samples xi from a uniform distribution is very inefficient, since most
samples that are drawn randomly do not contribute much. We can then generalize
(2.124) for importance sampling, where we draw our samples from a probability density
p satisfying

p dV = 1. (2.126)

Our integral can then be approximated as

f dV = f

p
p dV ≈


f

p
, (2.127)

with samples drawn from p and the volume factor yields 1 because of the normalization.
We can also generalize this, such that the probability distribution does not need to

be normalized to 1. Consider now a one-dimensional integral,

I =
b

a
f(x) dx =

b

a
h(x)g(x) dx . (2.128)

We can perform a change of variables to g(x) dx = dy, with

y(x) = y0 + g(x) dx . (2.129)

Then our integral becomes

I =
y(b)

y(a)
h (x(y)) dy ≈ (y(b) − y(a)) 1

N

N−1

i=0
h(x(yi)), (2.130)

with yi from a uniform distribution from (y(a), y(b)). This is exactly the same as before
with V = y(b) − y(a) and h(x) = f(x)

g(x) .
In principle, this formula is exact and should work for any g(x) ̸= 0 such that y(x)

of (2.129) is invertible, but the convergence can be rather slow if g(x) is not chosen
appropriately. The best case is that we can choose a g(x) such that h(x) = 1, then
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2.3. Monte Carlo integration

(2.130) is exact. In this case, of course, it is best to perform the integral analytically.
The best choice of g(x) is such that h(x) becomes approximately constant.

For an example of how (2.130) can be used in practice, we refer to Section 4.2.1.
Because this method is based on random numbers, it will deviate from the ”exact”

value of the integral. An exact estimation of the error is difficult since it depends on
the specific integrand, but it can be estimated to be proportional to 1√

N
, where N is

the number of samples [34].
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3. A formula for q̂

In this Chapter we derive a formula for q̂ based on the effective kinetic theory description
introduced in 2.2. In the derivation we consider a plasma consisting of both quarks
and gluons. Likewise for the jet we make no restriction, both a high energy gluon and
quark is considered. The jet direction is parametrized by an angle θp to account for
different jet directions in an expanding plasma. In Section 3.11 we will show that this
formula produces known analytical results in the soft limit in thermal equilibrium.

3.1. Definition of q̂

We use the definition of q̂ from [8],

q̂(p) =
q⊥<Λ⊥

d2q⊥ q2
⊥

dΓel
d2q⊥

, (3.1)

with Γel being the rate of elastic collisions of a high energetic jet particle with plasma
particles and q⊥ is the transferred transverse momentum in such a single collision.

We use the expression (2.84) from [3, 15] for the 2 ↔ 2 Collision operator,

C2↔2
a [f ](p) = 1

4|p|νa bcd kp′k′
Mab

cd(p, k; p′k′)
2

(2π)4δ4(P + K − P ′ − K ′)

fa(p)f b(k) 1 ± f c(p′) 1 ± fd(k′)

− f c(p′)fd(k′) [1 ± fa(p)] 1 ± f b(k) , (3.2)

which consists of a loss and a gain term. The first term thus must be proportional
to the decay rate (or rate of elastic collisions). The proportionality constant is exactly
one, which we will now make plausible.

We start with a textbook [35] expression for the Boltzmann equation,

∂f

∂t
+ v · ∇f = C(f), (3.3)

C(f) = w(k̃′, k̃′
1; k̃, k̃1)(f ′f ′

1 − ff1) d3k̃1 d3k̃′ d3k̃′
1 , (3.4)

which is a classical (and non-relativistic) expression (no Bose enhancement or Fermi
blocking factors are present, no Lorentz-invariant integration measure), but this can be
generalized to quantum particles in a straightforward way. We use a condensed nota-
tion, in which f ′ is dependent on k̃′. w contains an energy and momentum conserving
delta function.
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3.1. Definition of q̂

The quantity w(k̃′, k̃′
1; k̃, k̃1) is related to the differential cross section via

dσ = w(k̃′, k̃′
1; k̃, k̃1)

|v − v1| d3k̃′
1 d3k̃′

2 , (3.5)

which describes the collision of two molecules with k̃ in a given range dk̃ (similarly for
k̃1) that scatter into dk̃′ (similarly k̃′

1).
This is, of course, all done in a non relativistic way, so we will compare this to a

textbook treatment of cross section and decay rates [24]. The differential cross section
is given by

dσ = 1
(2Ek1)(2Ek2)|v1 − v2| |M|2(2π)4δ4(K1 + K2 − K ′

1 − K ′
2) d3k′

1
2Ek′

1
(2π)3

d3k′
2

2Ek′
2
(2π)3 .

(3.6)

We can now compare this to the non-relativistic expression,

w = |M|2(2π)4δ4(K1 + K2 − K ′
1 − K ′

2)
(2Ek1)(2Ek2)(2Ek′

1
)(2Ek′

2
) , (3.7)

where we used that d3k̃ = d3k
(2π)3 due to different conventions.

This is just the change from a transition matrix element to a Lorentz-invariant matrix
element [36].

Comparing with (3.2), we find1

|M|2 =
Mab

cd(p, k; p′, k′)
2

2ν
. (3.8)

The decay rate for a decay in two particles in vacuum is given by [24]

dΓ1→2
vac = 1

2Ep
|M|2(2π)4δ4(P − K − K ′ − P ′) d3k′

2Ek′(2π)3
d3p′

2Ep′(2π)3 , (3.9)

which we integrate over d3k
2Ek(2π)3 with the probability of finding a particle in state k,

f(k), and add Bose enhancement and Fermi blocking factors for the final states:

dΓ = 1
2Ep

|M|2(2π)4δ4(P − K − K ′ − P ′) d3k
2Ek(2π)3

d3k′

2Ek′(2π)3
d3p′

2Ep′(2π)3

× f(k) 1 ± f(k′) 1 ± f(p′) (3.10)

We now insert (3.8) to obtain2

Γ = 1
4pνa bcd kp′k′

(2π)4δ4(P + K − P ′ − K ′) (3.11)

Mab
cd(p, k; p′, k′)

2
f b(k) 1 ± fd(k′) 1 ± f c(p′) .

1We can do this for every term in the sum over b, c, d, that means for a specific combination a, b, c, d.
2A more precise procedure would be to take the decay rate as [19] Γ = 1

2p
Π<(P )µνηµν , together with

(2.81), which yields the same result. This is also equivalent to taking only the loss term in (3.2)
and setting f(p) = 1, i.e. having one jet particle.
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Chapter 3. A formula for q̂

Note that this expression is symmetric under the exchange p′ ↔ k′ and c ↔ d. Adding
something to the integral like q2

⊥ breaks this symmetry! (Unless we define p′ > k′)
Now there are two possibilities to proceed further:

1. Always define p′ > k′, which can always be done since we can just rename p′ ↔ k′

if p′ < k′. This yields a factor 2 because we integrate over p′ and k′, thus

k′p′
g(k′, p′) =

k′p′
g(k′, p′)θ(k′ − p′) +

k′p′
g(k′, p′)θ(p′ − k′) (3.12)

= 2
k′p′

g(k′, p′)θ(p′ − k′), (3.13)

with g(k′, p′) = g(p′, k′). However, then we need to be careful about the matrix
elements, because we obtain more than those shown in Table 2.1. We then always
have the lower momentum particle in k′ ≃ d-index. Thus if we consider qg → qg,
this becomes qg → gq for p′ < k′ (before renaming) and qg → qg for p′ > k′. If the
c and d species are identical, e.g. gg → gg, this provides no further complication.
This option basically means that we define the jet as the outgoing particle with
larger momentum.

2. Do not define p′ > k′ but leave them arbitrary. Then we do not always have
p′ > k′. So far everything was symmetric under the replacement p′ ↔ k′ and
c ↔ d. However, for k′ > p′, t and u switch places and now u becomes the
smallest one.

We choose the former3 and define p′ > k′, or, viewed differently, rename p′ ↔ k′ if
p′ < k′. This yields a factor 2, and additional matrix elements, see section 3.5.

Using the symmetry (2.86) of the matrix element,

Mab
cd(p, k; p′, k′)

2
= Mab

dc(p, k; k′, p′)
2

, (3.14)

we can rename k′ ↔ p′, which yields the first term. Thus via this procedure we call p′

the ”hard” outgoing momentum and obtain a factor 2,

Γ = 1
2pνa bcd

kp′k′
p′>k′

(2π)4δ4(P + K − P ′ − K ′) Mab
cd(p, k; p′, k′)

2
f b(k) 1 ± fd(k′) .

(3.15)

By assumption the jet has a very large momentum, such that by energy conservation
p + k = p′ + k′ with p′ > k′ the outgoing state with momentum p′ is unoccupied, i.e.
f(p′) = 0.

Thus, with q = p′ − p, q⊥ = p′
⊥ − p⊥,

q̂ = 1
2pνa bcd

kp′k′
p′>k′

q2
⊥(2π)4δ4(P + K − P ′ − K ′) Mab

cd(p, k; p′, k′)
2

f b(k) 1 ± fd(k′) ,

(3.16)

3q̂ is most often defined in a way that the outgoing jet particle has still very large momentum [15, 8].
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3.1. Definition of q̂

which we can rewrite using 4-dimensional integrals,

q̂ = 1
2pνa bcd

d4K d4P ′ d4K ′

(2π)5 q2
⊥δ4(P + K − P ′ − K ′) Mab

cd(p, k; p′, k′)
2

× δ(K2)δ(P ′2)δ(K ′2)Θ(K0)Θ(P ′0)Θ(K ′0)f b(k) 1 ± fd(k′) Θ(p′ − k′) (3.17)

q̂ = 1
2pνa bcd

d4K d4P ′

(2π)5 q2
⊥ Mab

cd(p, k; p′, k′)
2

Θ(p′ − k′)

× δ(K2)δ(P ′2)δ(K ′2)Θ(K0)Θ(P ′0)Θ(K ′0)f b(k) 1 ± fd(k′) , (3.18)

where we integrated out the delta function. To ease notation we still write K ′ or k′ as
a short notation for P + K − P ′ or p + k − p′. We will proceed similarly as in [37].
Now let’s introduce Qµ = (ω, q)µ via

Q = P ′ − P ⇔ q = p′ − p = k − k′ (3.19)
ω = p′ − p = k − k′. (3.20)

Then4 d4Kd4P ′ = d4Kd4Q and thus

q̂ = 1
2pνa bcd

d4K d4Q

(2π)5 q2
⊥ Mab

cd(p, k; p′, k′)
2

Θ(p′ − k′)

× δ(K2)δ (P + Q)2 δ (K − Q)2 Θ(K0)Θ(P 0 + ω)Θ(K0 − ω)f b(k) 1 ± fd(k′) .

(3.21)

Note that Q is not light-like, i.e. Q2 = −ω2 + q2 ̸= 0. The delta functions can be
rewritten as

δ (P + Q)2 δ (K − Q)2 = δ Q2 + 2P · Q δ Q2 − 2K · Q , (3.22)

where we have used the lightlikeness of the momenta P and K, i.e. P 2 = K2 = 0. We
can now write the arguments of the delta function with 3-momenta, which yields the
same result in any metric convention (The factor −1 is irrelevant since δ(x) = δ(−x)).

Thus we obtain

δ(−ω2 + q2 − 2ωp + 2pq cos θpq)δ(−ω2 + q2 + 2ωk − 2kq cos θkq) (3.23)

= 1
4pkq2 δ cos θpq − ω

q
− ω2 − q2

2pq
δ cos θkq − ω

q
+ ω2 − q2

2kq
. (3.24)

Because of this expression we decide to perform the q integral in a coordinate frame in
which θpq is its polar angle and the k integral in a frame in which θkq is its polar angle.
The delta function only contributes if its argument becomes zero, which restricts the

4We could have also decided to integrate out P ′ first. Then we would have d4Kd4K′ = −d4Kd4Q,
but the minus sign cancels with the shifted integration boundaries, ∞

−∞ dK′1 = − −∞
∞ dQ1 for a

fixed k, which then yields the same result.

42



Chapter 3. A formula for q̂

integration region. First we consider the first delta function. Because the cosine can
only take values between −1 and 1, we obtain the condition

−1 <
ω

q
+ ω2 − q2

2pq
< 1 (3.25)

−2pq < 2ωp + ω2 − q2 < 2pq (3.26)
ω2 − q2 + 2p(ω + q) > 0 > ω2 − q2 + 2p(ω − q) (3.27)
(ω + q)(ω − q + 2p) > 0 > (ω − q)(ω + q + 2p) (3.28)

Let us first look at the left-hand side.

ω + q > 0 : ω − q + 2p > 0 ⇐⇒ p >
q − ω

2 (3.29)

ω + q < 0 : ω − q + 2p < 0 ⇐⇒ p <
q − ω

2 . (3.30)

For the right-hand side we obtain

ω > q : ω + q + 2p < 0 ⇐⇒ p <
−ω − q

2 (3.31)

ω < q : ω + q + 2p > 0 ⇐⇒ p >
−ω − q

2 . (3.32)

From the step function Θ(ω + p) we obtain ω + p > 0. We know that q > 0 and p > 0
by construction. In (3.31), however, we obtain p < −ω−q

2 , which is negative for ω > q.
This is in contradiction to p > 0 and thus we conclude that ω < q. In (3.30) we have
p < q−ω

2
q<−ω

< −ω. This is in contradiction with the Θ(ω + p) function, thus we know
that ω > −q. By comparing (3.29) and (3.32), we observe that (3.32), p > −q

2 − ω
2 is

always fulfilled if (3.29) holds, p > q
2 − ω

2 . Thus we obtain from the first δ function the
conditions

|ω| < q p >
q − ω

2 . (3.33)

We now repeat this procedure for the second delta function in (3.24): We obtain the
condition

−1 <
ω

q
− ω2 − q2

2kq
< 1 (3.34)

−2kq < 2ωk − ω2 + q2 < 2kq (3.35)
−ω2 + q2 + 2k(ω + q) > 0 > −ω2 + q2 + 2k(ω − q) (3.36)
(ω + q)(−ω + q + 2k) > 0 > (ω − q)(−ω − q + 2k) (3.37)

Let us first look at the left-hand side. We know already from before that ω + q > 0,
thus

ω + q > 0 : −ω + q + 2k > 0 ⇐⇒ k >
ω − q

2 (3.38)

For the right-hand side with ω < q we obtain

ω < q : −ω − q + 2k > 0 ⇐⇒ k >
ω + q

2 . (3.39)
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By comparing (3.38) and (3.39), we observe that (3.39) is the stronger restriction that
already includes (3.38). Thus we obtain from the delta functions the conditions

|ω| < q, p >
q − ω

2 , k >
q + ω

2 . (3.40)

Now we can integrate out the K0 integral in (3.21), dK0 δ(K2)Θ(K0) = 1
2k , where

k = |k|, and we obtain

q̂ = 1
16p2νa bcd

d3k d3q dω

(2π)5q2k2 q2
⊥ Mab

cd(p, k; p′, k′)
2

× δ cos θpq − ω

q
− ω2 − q2

2pq
δ cos θkq − ω

q
+ ω2 − q2

2kq
Θ(p′ − k′)

× Θ p − q − ω

2 Θ k − q + ω

2 Θ(q − |ω|)f b(k) 1 ± fd(k′) . (3.41)

From the step function we obtain restrictions for our integration variables q, ω, k that
can be expressed in different sets of integration bounds:

∞

0
dq

q

−q
dω

∞
q+ω

2

dk Θ p − q − ω

2 Θ(p′ − k′) (3.42)

=
∞

0
dq

q

max(−q,q−2p)
dω

∞
q+ω

2

dk Θ(p − k + 2ω) (3.43)

=
∞

0
dq

q

max(−q,q−2p)
dω

p+2ω

q+ω
2

dk (3.44)

We also need the upper boundary of the k-integral to be always bigger than the lower
boundary, which yields ω > 1

3 (q − 2p), and thus

∞

0
dq

q

max(−q,q−2p, 1
3 (q−2p))

dω
p+2ω

q+ω
2

dk . (3.45)

Another set of integration bounds is
∞

0
dk

∞

−∞
dω

∞

|ω|
dq Θ p − q − ω

2 Θ k − q + ω

2 Θ(p′ − k′) (3.46)

=
∞

0
dk

∞

−∞
dω

min(p+p′,k+k′)

|ω|
dq Θ(p′ − k′) (3.47)

=
∞

0
dk

∞

− p−k
2

dω
min(p+p′,k+k′)

|ω|
dq (3.48)

We also need the q-integral boundaries to be consistent, i.e. min(p + p′, k + k′) > |ω|.
If (i) p + p′ = 2p + ω < 2k − ω = k + k′ ⇐⇒ ω < k − p, we obtain (ii) 2p + ω > |ω|,
which for ω > 0 is already fulfilled and otherwise yields ω > −p. If (i), ω < k − p, is
not fulfilled, i.e. if ω > k − p, but then ω > −p automatically, since k > 0. Similarly,
if 2k − ω < 2p + ω ⇐⇒ ω > k − p, we obtain 2k − ω > |ω|, which is always true for
ω < 0 and otherwise yields ω < k. Again, if the initial condition does not hold and we
have instead ω < k − p, this condition is always fulfilled.
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Thus

∞

0
dk

k

max(− p−k
2 ,−p)

dω
min(p+p′,k+k′)

|ω|
dq . (3.49)

Actually, the lower boundary of the ω-integral is always −p−k
2 , and thus

∞

0
dk

k

− p−k
2

dω
min(p+p′,k+k′)

|ω|
dq (3.50)

or

∞

0
dk

p−k
2

0
dk′ min(p+p′,k+k′)

|k−k′|
dq . (3.51)

We will use these different sets of integration bounds, (3.45), (3.50) and (3.51), fre-
quently.

3.2. Coordinate systems
Now we need to choose the coordinate systems in which we want to evaluate these
integrals. Since we have delta functions containing θpq and θkq it makes sense to use
coordinate systems in which we integrate over θpq and θkq. We choose coordinate frames
as in appendix A of [37]. In our code, we store the phase-space distribution functions
f(k) in a specific frame, let us call it ”lab frame”, see figure 3.1 for an overview of the
different frames. The q integration is done in the ”p-frame”, while the k integration is
done in the ”q-frame”. We write the coordinates with respect to a specific frame in a
vector p1, where the subscript labels the frame. The vector p in the lab frame has no
y-component because we assume cylindrical symmetry. We thus have

p1 = p(sin θp, 0, cos θp) (3.52)
q1 = q(sin θq cos ϕq, sin θq sin ϕq, cos θq) (3.53)
k1 = k(sin θk cos ϕk, sin θk sin ϕk, cos θk) (3.54)
p2 = p(0, 0, 1) (3.55)
q2 = q(sin θpq cos ϕ̃pq, sin θpq sin ϕ̃pq, cos θpq) (3.56)
k2 = k(sin θpk cos ϕpk, sin θpk sin ϕpk, cos θpk) (3.57)
p3 = p(sin θpq, 0, cos θpq) (3.58)
q3 = q(0, 0, 1) (3.59)
k3 = k(sin θkq cos ϕkq, sin θkq sin ϕkq, cos θkq). (3.60)

We put a tilde on ϕ̃pq to emphasize that it is not the same as ϕpq in [13].
The relations between the different angles can be derived as follows: We construct

first the coordinate transformation between the different frames and then use those to
obtain the relations between the different angles.
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Figure 3.1.: The integration frames. The first frame (1) is called the ”lab frame”. In this frame
all vectors are parametrized by polar and azimuthal angles that only contain one
subscript, e.g. the vector q is uniquely determined by its length q and the angles
θq and ϕq. We perform a rotation around the y axis to obtain the second frame,
”p-frame”, in which the p vector points into the z direction. The vector q is
determined by θpq and ϕ̃pq. The third frame, ”q-frame”, is obtained by applying
a rotation to the ”p-frame” such that q points in the z direction and p lies in the
x − z plane.

A coordinate transformation between orthonormal bases is a linear transformation
that is represented by an orthogonal matrix that can be defined by transforming the
basis vectors, ei → e′

j ,

e′
i = Ti

jej = Sj
iej . (3.61)

The coordinates5 then transform inverse,

v = vj ′e′
j = vj ′

Sk
jek = vkek, (3.62)

and thus

vk = Sk
jv′j (3.63)

vk ′ = S−1 k

jvj . (3.64)

Because we have orthonormal bases6 in Euclidean space, we can write this in matrix
notation simply as7

S = T T , v = Sv′, v′ = ST v = Tv. (3.65)

5Here, v denotes an abstract vector of a vector space and vj its components in a specific basis.
6Otherwise we would have to proceed with more care as R−1 = RT is only true for orthogonal

matrices.
7The superscript T means transposition, i.e. AT

ij
= Aji.
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We shall label the rotation matrices as R, R = T , they read

Rx(α) =


1 0 0

0 cos α sin α
0 − sin α cos α


 , (3.66)

Ry(α) =


cos α 0 − sin α

0 1 0
sin α 0 cos α


 , (3.67)

Rz(α) =


 cos α sin α 0

− sin α cos α 0
0 0 1


 . (3.68)

The components of vectors transform in a frame change as

v2 = Av1, A = Ry(θp), (3.69)
v3 = Bv2, B = Ry(θpq)Rz(ϕ̃pq). (3.70)

The transformation matrices read

A =


cos θp 0 − sin θp

0 1 0
sin θp 0 cos θp


 , (3.71)

B =


cos θpq cos ϕ̃pq cos θpq sin ϕ̃pq − sin θpq

− sin ϕ̃pq cos ϕ̃pq 0
cos ϕ̃pq sin θpq sin θpq sin ϕ̃pq cos θpq


 (3.72)

We are also interested in anisotropic systems, thus we implement an anisotropic version
[5, 14] of q̂, where we need all the components. For the definition of q⊥ and the
components of q̂, we have two possibilities:

• Define it in the p-frame,

qx = (q2)x = q sin θpq cos ϕ̃pq (3.73)
qy = (q2)y = q sin θpq sin ϕ̃pq (3.74)
qz = (q2)z = q cos θpq (3.75)

Then the components of q̂ are always defined relative to p, thus the labels qx do
not refer to the x-axis in the ”lab-frame”.

• Define it in the ”lab-frame”, but then we need to express the angles in terms of
θpq and ϕ̃pq,

q1 = AT q2 = q


 cos θp sin θpq cos ϕ̃pq + sin θp cos θpq

sin θpq sin ϕ̃pq

− sin θp sin θpq cos ϕ̃pq + cos θp cos θpq


 . (3.76)

Because q̂ measures the momentum broadening transverse to the jet, it makes more
sense to define it in the p-frame. The only caveat is that the x in qx means something
different than in the code.
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Actually, one can easily transform between those two definitions: Let us define

q̂ij
1 = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

− p−k
2

dω
min(p+p′,k+k′)

|ω|
dq

qi
1qj

1
|Mab

cd |2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) (3.77)

q̂ij
2 = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

− p−k
2

dω
min(p+p′,k+k′)

|ω|
dq

qi
2qj

2
|Mab

cd |2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) (3.78)

With qi
2 = Ai

jqj
1 we obtain

q̂ij
2 = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

− p−k
2

dω
min(p+p′,k+k′)

|ω|
dq

Ai
lq

l
1Aj

mqm
1

|Mab
cd |2

p2 fb(k, vk) (1 ± fd(k − ω, vk′)) (3.79)

and thus

q̂ij
2 = Ai

lA
j
mq̂lm

1 = (Aq̂1AT )ij . (3.80)

In our integration we only have ϕ̃pq, ϕkq, k, ω, q, so we need to express all other
quantities in terms of them. cos θpq, for example, is actually set by the delta function,
but we can also rederive it easily:

To do this, we first find that the Mandelstam variable t is given by t = ω2 − q2 and
consider

|k′|2 = |k − q|2 = (k − ω)2 (3.81)
q2 − 2kq cos θkq = −2ωk + ω2 (3.82)

cos θkq = ω

q
− t

2kq
. (3.83)

Similarly, for p′,

|p′|2 = |p + q|2 = (p + ω)2 (3.84)
q2 + 2pq cos θpq = 2ωp + ω2 (3.85)

cos θpq = ω

q
+ t

2kq
. (3.86)

We also need θk′q,

|k|2 = |k′ + q|2 = (k′ + ω)2 (3.87)
q2 + 2k′q cos θpq = 2ωk′ + ω2 (3.88)

cos θk′q = ω

q
+ t

2k′q
. (3.89)
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In our expression for q̂, we have f(k) and f(k′), which we store in the ”lab-frame”.
Thus we need to figure out how to express θk and θk′ . The azimuthal angles ϕk and
ϕk′ are not needed since we assume cylindrical symmetry.

We thus need to compute

k1 = AT BT k3 = AT BT k


sin θkq cos ϕkq

sin θkq sin ϕkq

cos θkq


 (3.90)

The components of k1 read

(k1)x

k
= − cos θp sin ϕkq sin ϕ̃pq sin θkq

+ cos θkq cos θpq sin θp + cos ϕ̃pq cos θp sin θpq

+ cos ϕkq sin θkq cos ϕ̃pq cos θp cos θpq − sin θp sin θpq (3.91)
(k1)y

k
= cos ϕ̃pq sin ϕkq sin θkq + cos ϕkq cos θpq sin ϕ̃pq sin θkq + cos θkq sin ϕ̃pq sin θpq

(3.92)
(k1)z

k
= sin ϕkq sin ϕ̃pq sin θkq sin θp

+ cos ϕkq sin θkq − cos ϕ̃pq cos θpq sin θp − cos θp sin θpq (3.93)

+ cos θkq cos θp cos θpq − cos ϕ̃pq sin θp sin θpq

From (k1)z we can extract cos θk,

cos θk = sin ϕkq sin ϕ̃pq sin θkq sin θp

+ cos ϕkq sin θkq − cos ϕ̃pq cos θpq sin θp − cos θp sin θpq

+ cos θkq cos θp cos θpq − cos ϕ̃pq sin θp sin θpq , (3.94)

which, for θp = π
2 (jet transverse to direction of expansion), reduces to

cos θk = sin ϕkq sin ϕ̃pq sin θkq

− cos ϕkq sin θkq cos ϕ̃pq cos θpq

− cos θkq cos ϕ̃pq sin θpq. (3.95)

A similar formula holds for k′, with k → k′.

3.3. Formula for q̂ for finite p

In summary, we obtain
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q̂ij
2 = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

− p−k
2

dω
min(2p+ω,2k−ω)

|ω|
dq

× qi
2qj

2
|Mab

cd|2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) (3.96a)

q̂ij
2 = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k+p
2

0
dk′ min(p+p′,k+k′)

|k−k′|
dq

× qi
2qj

2
|Mab

cd|2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) , (3.96b)

q̂ij
2 = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dq

q

max(−q,q−2p q−2p
3 )

dω
p+2ω

q+ω
2

dk

× qi
2qj

2
|Mab

cd|2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) . (3.96c)

q̂ = qxx
2 + qyy

2 (3.96d)

with v(... ) = cos θ(... ), And the components qi are defined as

qx
2 = q 1 − v2

pq cos ϕ̃pq, (3.97a)

qy
2 = q 1 − v2

pq sin ϕ̃pq, (3.97b)

qz
2 = qvpq. (3.97c)

The additional quantities are

vpq = ω

q
+ t

2pq
, (3.98a)

vkq = ω

q
− t

2kq
, (3.98b)

vk′q = ω

q
+ t

2k′q
, (3.98c)

vk = sin ϕkq sin ϕ̃pq 1 − v2
kq 1 − v2

p

+ cos ϕkq 1 − v2
kq − cos ϕ̃pqvpq 1 − v2

p − vp 1 − v2
pq

+ vkq vpvpq − cos ϕ̃pq 1 − v2
p 1 − v2

pq , (3.98d)

vk′ = sin ϕkq sin ϕ̃pq 1 − v2
k′q 1 − v2

p

+ cos ϕkq 1 − v2
k′q − cos ϕ̃pqvpq 1 − v2

p − vp 1 − v2
pq

+ vk′q vpvpq − cos ϕ̃pq 1 − v2
p 1 − v2

pq , (3.98e)
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p′ = p + ω, (3.98f)
k′ = k − ω, (3.98g)
t = ω2 − q2, (3.98h)

s = − t

2q2 (p + p′)(k + k′) + q2 − (4pp′ + t)(4k′k + t) cos(ϕkq) , (3.98i)

u = t

2q2 (p + p′)(k + k′) − q2 − (4pp′ + t)(4k′k + t) cos(ϕkq) , (3.98j)

and νa = 2dR, where dR is the dimension of the representation of the jet particle.
ϕk′q = ϕkq because they are defined in a coordinate frame in which q = q(0, 0, 1) and
k′ = k − q. In (3.96a), (3.96b) and (3.96c) the upper sign is to be used when the d
particle is a boson (gluon), the lower sign if it is a fermion (quark). The expressions
for u, s can be found in [37] and in Appendix A.

We will use these different parametrizations, (3.96a), (3.96b) and (3.96c), which are
all equivalent, as a sanity check, because they should all give the same results.

3.4. Symmetries of q̂ij
2

If the particle distribution f(k, vk) is spherically symmetric, i.e. does not depend on
vk, the mixed components of q̂ij

2 vanish, i.e.

q̂xy = q̂xz = q̂yz = 0. (3.99)

This is because the only ϕ̃-dependence comes from qi
2 and 2π

0 dϕ̃pq cos ϕ̃pq sin ϕ̃pq = 0.
We can even take it a step further and generalize this for general f(k, vk). Let us

look at a general function dependent only on the angles
2π

0
dϕ̃pq

2π

0
dϕkq f ϕ̃pq, ϕkq =

π

−π
dϕ̃pq

π

−π
dϕkq f ϕ̃pq, ϕkq . (3.100)

Then we can split the ϕ̃pq-integral to arrive at
0

−π
dϕ̃pq

π

−π
dϕkq f ϕ̃pq, ϕkq +

π

0
dϕ̃pq

π

−π
dϕkq f ϕ̃pq, ϕkq . (3.101)

In the first term, we perform a change of integration variables, ϕ̃pq → −ϕ̃pq, ϕkq →
−ϕkq,

π

0
dϕ̃pq

π

−π
dϕkq f −ϕ̃pq, −ϕkq + f ϕ̃pq, ϕkq . (3.102)

In the expression for q̂ij
2 , ϕkq and ϕ̃pq only appear in vk ϕkq, ϕ̃pq , vk′ ϕkq, ϕ̃pq , in

qx
2 ∼ cos ϕ̃pq, and qy

2 ∼ sin ϕ̃pqin the matrix elements via s (cos ϕkq) and u (cos ϕkq).
Because the cosine is an even function ϕkq → −ϕkq does not change s and u. Similarly,
vk and vk′ are not changed by simultaneously replacing ϕpq → −ϕ̃pq and ϕkq → ϕkq,
because the cosines are, again, even, and the only odd functions, sin ϕkq sin ϕ̃pq appear
in pairs, resulting in an even expression. The only change happens in qy

2 → −qy
2 , which

results in

q̂xy
2 = q̂yz

2 = 0. (3.103)
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3.5. Matrix elements

We have started with the matrix elements in Table 2.1, however, we chose p′ > k′,
which breaks the symmetry that is present in [3]. Consider e.g. the process q1g ↔ q1g.
Let us assign the incoming quark q1 momentum p, the incoming gluon g momentum
k, the outgoing quark q1 momentum p′ and the outgoing gluon momentum k′. In [3]
there is no restriction for k′ and p′, but if we define p′ > k′ we must make a distinction
whether the quark or the gluon has the larger outgoing momentum. In table 2.1 there
is no explicit matrix element for q1g ↔ gq1, because in the symmetric way one can
always relabel p′ ↔ k′ and c ↔ d, which yields the same. In our case, however, we can
have q1g ↔ q1g corresponding to a incoming quark with momentum p scattering of a
gluon with momentum k, where the outgoing quark has momentum p′, which is larger
than the outgoing gluon momentum k′. If the outgoing gluon has larger momentum,
we label it p′ and thus we call the process then q1g ↔ gq1.

In table 2.1 the Mandelstam variables s, t, u are defined with respect to a, b, c, d,

s = −(P + K)2, t = −(P ′ − P )2, u = (K ′ − P )2. (3.104)

In our case, in the process q1g ↔ q1g, where the gluon has a larger momentum, we
relabel P ′ ↔ K ′ and thus obtain the substitution

s → s, t → u, u → t. (3.105)

The matrix elements are then given in Table 3.1.
We use again a regulator ξ0 for the 1

t2 matrix elements, as explained in Section 2.2.3.
We will find, however, that this ξ0 will be different than the one used in Section 2.2.3.
This is because previously the matching condition was formulated in such a way that
the longitudinal momentum diffusion is reproduced in the soft limit, and here we use
the transverse momentum diffusion. We will elaborate more on this in Section 3.11.

3.6. p dependence of q̂

In all our calculations before we always considered the jet momentum to be much
larger than all other momentum scales of the plasma. Now let us take this assump-
tion to its extreme limit and consider p → ∞. Then, of course, all matrix elements
|Mab

cd(s,t,u)|2

p2 vanish unless they are at least proportional to p2.

Let us now consider the Mandelstam variables individually, starting with t = ω2 −q2,
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ab ↔ cd Mab
cd

2
/g4

q1q2 ↔ q1q2,

8d2
F C2

F
dA

s2+u2

t2
q1q̄2 ↔ q1q̄2,
q̄1q2 ↔ q̄1q2,
q̄1q̄2 ↔ q̄1q̄2

q1q2 ↔ q2q1,

8d2
F C2

F
dA

s2+t2

u2
q1q̄2 ↔ q̄2q1,
q̄1q2 ↔ q2q̄1,
q̄1q̄2 ↔ q̄2q̄1

q1q1 ↔ q1q1, 8d2
F C2

F
dA

s2+u2

t2 + s2+t2

u2 + 16dF CF CF − CA
2

s2

tuq̄1q̄1 ↔ q̄1q̄1

q1q̄1 ↔ q1q̄1 8d2
F C2

F
dA

s2+u2

t2 + t2+u2

s2 + 16dF CF CF − CA
2

u2

st

q1q̄1 ↔ q̄1q1 8d2
F C2

F
dA

s2+t2

u2 + u2+t2

s2 + 16dF CF CF − CA
2

t2

su

q1q̄1 ↔ q2q̄2, 8d2
F C2

F
dA

t2+u2

s2q1q̄1 ↔ q̄2q2

q1q̄1 ↔ gg 8dF C2
F

u
t + t

u − 8dF CF CA
t2+u2

s2

q1g ↔ q1g, −8dF C2
F

u
s + s

u + 8dF CF CA
s2+u2

t2q̄1g ↔ q̄1g

q1g ↔ gq1, −8dF C2
F

t
s + s

t + 8dF CF CA
s2+t2

u2q̄1g ↔ gq̄1

gg ↔ gg 16dAC2
A 3 − su

t2 − st
u2 − tu

s2

Table 3.1.: Matrix elements for q̂, obtained from the matrix elements from Table 2.1 by chang-
ing c ↔ d and t ↔ u. Singly-underlined denominators indicate infrared-sensitive
contributions from soft gluon exchange, double-underlined denominators from soft
fermion exchange. Note that - in contrast to [3] - only denominators with t are
underlined. This is because the problematic regions are those where either −t or
−u is small while s is large [3]. However, for big enough incoming jet momentum
p, −u ∼ s, so only regions with small t can be problematic.
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3.6. p dependence of q̂

which is much smaller than p. For s we expand

s = − t

2q2 (p + p′)(k + k′) + q2 − (4pp′ + t)(4k′k + t) cos(ϕkq) (3.106)

= − t

2q2 (2p + ω)(2k − ω) − q2 − (4p(p + ω) + t)(4(k − ω)k + t) cos ϕkq

(3.107)

= − t

2q2 2p(2k − ω) + ω(2k − ω) − q2 − (4p2 + 4pω + t)((2k − ω)2 − q2) cos ϕkq

(3.108)

= − t

2q2 2p (2k − ω) + ω(2k − ω) − q2

2p
(3.109)

− (2k − ω)2 − q2 + ω

p
((2k − ω)2 − q2) + t

4p2 ((2k − ω)2 − q2) cos ϕkq

= − t

2q2 2p (2k − ω) 1 + ω

2p
− q2

2p(2k − ω) (3.110)

− (2k − ω)2 − q2 · 1 + ω

p
+ t

4p2 cos ϕkq

Now we need to find out if the terms ∼ 1
p are indeed small when p → ∞. The näıve

way to proceed would be to write

s = −pt

q2 (2k − ω) − (2k − ω)2 − q2 cos ϕkq + O 1
p


, (3.111)

but are these O 1
p terms really ∼ 1

p in the expression for q̂?
Let us define κ as the maximum momentum present in our plasma, i.e. f(k) =

0 ∀k > κ. Then we take a look at ω/p. From the parametrization of the integral
boundaries, (3.45), we know that 0 < k < κ, −p−k

2 < ω < k. For positive ω, this is
obviously fine, since p ≫ κ and thus ω

p < k
p ≪ 1. For ω < 0, however, we seemingly

run into troubles, since
ω

p
= −ω

p
<

p − k

2p
= 1

2 − k

2p
, (3.112)

and thus the first term is independent of p, so we cannot make ω
p arbitrarily small by

increasing p. Maybe, however, it works out under the integral, eventually, but for this
let us consider the whole matrix element. The gluonic matrix element, gg → gg, reads

Mab
cd

2
/g4 = 16dAC2

A 3 − su

t2 − st

u2 − tu

s2 . (3.113)

Due to our choice of our regularization (see section 2.2.3), the t-channel matrix element
is changed, which yields

Mgg
gg

2
/g4 = 16dAC2

A 3 − su

t2
q4

(q2 + m̃2)2 − st

u2 − tu

s2 . (3.114)
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Chapter 3. A formula for q̂

In the expression for q̂, we need Mab
cd

2
/(g4p2). Let us expand this expression in 1/p,

then the leading order term should be independent of p and the next-to-leading-order
(NLO) term should be ∼ 1

p . In s and u, p appears explicitly, thus they are at leading
order ∼ p. Then, for the first terms in the 1

p -expansion of the matrix element, we can
neglect all terms except for su/t2. Any explicit8 p-dependence can only come from the
su term, thus it is sufficient to consider su.

su = − t2p2

q4

(2k − ω) 1 + ω

2p
− q2

2p(2k − ω) − (2k − ω)2 − q2 1 + ω

p
+ ω2 − q2

4p2

1/2

cos ϕkq


(2k − ω) 1 + ω

2p
+ q2

2p(2k − ω) − (2k − ω)2 − q2 1 + ω

p
+ ω2 − q2

4p2

1/2

cos ϕkq


(3.115)

= − t2p2

q4 (2k − ω) 1 + ω

2p
− q2

2p(2k − ω) − (2k − ω)2 − q2 1 + ω

2p
+ . . . cos ϕkq

(2k − ω) 1 + ω

2p
+ q2

2p(2k − ω) − (2k − ω)2 − q2 1 + ω

2p
+ . . . cos ϕkq

(3.116)

≈ − t2p2

q4 2k − ω − (2k − ω)2 − q2 cos ϕkq

2
(3.117)

− ωt2p

q4 2k − ω − (2k − ω)2 − q2 cos ϕkq

2

Thus we obtain for the matrix element

Mgg
gg

2
/p2 = 16dAC2

A

2k − ω − (2k − ω)2 − q2 cos ϕkq

2

(q2 + m̃2)2 1 + ω

p
+ O 1

p2 .

(3.118)

We now want to determine the behavior of9

q̂ = 1
νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

− p−k
2

dω
min(p+p′,k+k′)

|ω|
dq

(q2 − ω2) |Mab
cd|2

p2 fb(k, vk) (1 ± fd(k − ω, vk′)) (3.119)

with the matrix element given in (3.118). First, we observe that the distribution
function fb(k, vk) provides a natural upper boundary on the k-integral. Let us assume,
for simplicity, that the distribution function is of the form

f(k) = NΘ(κ − k), (3.120)
8With explicit we mean that the p-dependence is already in the matrix element. In principle, after the

integration, we could also obtain a p-dependence without any explicit p-dependence in the matrix
element.

9We use vpq = ω
q

, which is justified for large p, see also (3.163).
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3.6. p dependence of q̂

i.e. f(k) = 0 ∀k > κ. Physically, κ is the maximum momentum of a particle in our
plasma.

By assumption, the jet momentum p ≫ κ. Thus the minimum of (p + p′, k + k′) =
(2p + ω, 2k − ω) is always 2k − ω, because

2k − ω < 2p + ω (3.121)
ω > k − p (3.122)

is always fulfilled via the lower boundary of the ω-integral, ω > k−p
2 .

The second distribution function, fd(k − ω) enforces k − ω < κ and thus yields a
lower bound for the ω-integral, ω > k − κ. But any p-dependence of the integral (that
was not there in the matrix element) can only come from the lower boundary of the
ω-integral. Therefore, fd(k − ω) does not contribute to the p-dependence.

The p-dependence of q̂ can therefore be inferred from

q̂ ∼ I(p) =
k

− p−k
2

dω
2k−ω

|ω|
dq A(q, ω, k, p, ϕkq, m̃), (3.123)

A(q, ω, k, p, ϕkq, m̃) = (q2 − ω2)
Mgg

gg

2

p2 . (3.124)

The p-dependence of q̂ can either come from the lower boundary of the ω-integral or a
p-dependence of A. We can expand A in p,

A(p) = A0 + A1
1
p

+ O 1
p2 , (3.125)

where A0 and A1 do no depend on p, but still depend on q, ω, k, ϕkq, m̃, but for the
ease of notation we do not write this dependence explicitly. Comparing with (3.118),
we obtain

A0 = 16g2dAC2
A(q2 − ω2)

2k − ω − (2k − ω)2 − q2 2

(q2 + m̃2)2 , (3.126)

A1 = ωA0. (3.127)

We now split the ω-integral,

I(p) = Ic(p) + Ip(p), (3.128)

Ic(p) =
k

−ξ
dω

2k−ω

|ω|
dq A(q, ω, k, p, ϕkq, m̃), (3.129)

Ip(p) =
−ξ

− p−k
2

dω
2k−ω

−ω
dq A(q, ω, k, p, ϕkq, m̃), (3.130)

with

k ≪ ξ ≪ p. (3.131)

Because of our expansion of A in p, (3.125), we can perform the limit p → ∞ for Ic,
leaving ξ fixed. Ic is then independent of p, or constant, therefore labelled with the
index c. For large p, any p-dependence to q̂ can only come from Ip.
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Inserting (3.125) into the definitions of Ic and Ip, we obtain an expansion of Ic and
Ip in p,

Ic(p) = Ic
0 + 1

p
Ic

1 + . . . , (3.132)

Ic
0 =

k

−ξ
dω

2k−ω

|ω|
dq A0(q, ω, k, ϕkq, m̃), (3.133)

Ic
1 =

k

−ξ
dω

2k−ω

|ω|
dq A1(q, ω, k, ϕkq, m̃), (3.134)

Ip(p) = Ip
0 (p) + 1

p
Ip

1 (p) + . . . , (3.135)

Ip
0 =

−ξ

− p−k
2

dω
2k−ω

−ω
dq A0(q, ω, k, ϕkq, m̃), (3.136)

Ip
1 =

−ξ

− p−k
2

dω
2k−ω

−ω
dq A1(q, ω, k, ϕkq, m̃), (3.137)

and also

I(p) = I0(p) + 1
p

I1(p) + . . . . (3.138)

From (3.132) we can see immediately that for p → ∞ Ic(p) becomes independent of
p, because Ic

1 does not depend on p. The p → ∞ asymptotic behavior of I(p) =
Ic(p) + Ip(p) comes, therefore, only from Ip(p).

3.7. Analysis of the integrand
We shall now analyse a general integrand of the form in (3.135), e.g. Ip

0 or Ip
1 . Let us

define a general Inm,

Inm(p) =
−ξ

− p−k
2

dω
2k−ω

−ω
dq Anm(q, ω), (3.139)

for

Anm(q, ω) = qnωm, n ̸= −1. (3.140)

To get rid of additional minus signs, we define x = −ω,

Inm(p) = (−1)m
p−k

2

ξ
dx

2k+x

x
dq qnxm, (3.141)

n ̸=−1= (−1)m

n + 1

p−k
2

ξ
dx xm (2k + x)n+1 − xn+1 . (3.142)

It will be useful for later to also go to next-to-leading order. We expand the first term
in a power series using the Binomial series [38],

(x + y)r =
∞

k=0

r
k

xr−kyk, x, y ∈ R, |x| > |y|, r ∈ C. (3.143)
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We thus obtain

Inm = (−1)m

n + 1

p−k
2

ξ
dx xm

 ∞

j=0

n + 1
j

xn+1−j(2k)j − xn+1

 . (3.144)

The first term with j = 0 cancels, so we can start the sum at j = 1,

Inm = (−1)m

n + 1

p−k
2

ξ
dx

∞

j=1

n + 1
j

xn+m+1−j(2k)j , (3.145)

= (−1)m

n + 1

∞

j=1
j ̸=n+m+2

n + 1
j

xn+m+2−j

n + m + 2 − j

p−k
2

x=ξ

(2k)j

+ n + 1
n + m + 2 ln p − k

2ξ
(2k)n+m+2 . (3.146)

We only want to get the leading (and next-to-leading) order behavior in p, thus we
need not consider the lower boundary x = ξ, and we only need to take into account
the leading terms, i.e. the terms with the largest exponents in p. The largest exponent
is obtained for j = 1, for which the (generalized) binomial coefficient yields n + 1. As
hinted earlier, it will be useful to also consider the next-to-leading order (NLO) terms.
We obtain

ILO
nm =

(−1)m(2k)
n+m+1

p
2

n+m+1
, n + m + 1 ̸= 0

(−1)m(2k) ln(p) + const, n + m + 1 = 0
(3.147)

INLO
nm =





(−1)m(2k)2

(n+1)(n+m)
n + 1

2
p
2

n+m
, n + m ̸= 0

(−1)m

n+1
n + 1

2
(2k)2 ln(p) + const, n + m = 0.

(3.148)

(3.149)

Now we need to find out n and m for our specific integrand of Ip
0 , A0:

A0 = 16dAC2
A(q2 − ω2)

2k − ω − (2k − ω)2 − q2 2

(q2 + m̃2)2 (3.150)

= 16dAC2
A(q2 − ω2)

ω2 1 − 2k
ω + 4k2−4kω+ω2−q2

ω2

2

q4 1 + m̃2
q2

2 . (3.151)

By assumption |ω| > ξ ≫ k and q > |ω|, thus 2k
ω → 0, 4k(k−ω)

ω2 → 0 and q2−ω2

ω2 <
(2k−ω)2−ω2

ω2 = 4k(k−ω)
ω2 → 0 for big enough ξ.

We then have A0 = α ω2

q2 − ω4

q4 , α = 16dACA, thus

Ip
0 (p) = α (I−2,2 − I−4,4) . (3.152)
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The leading order term depends only on n + m and (−1)m, and behaves like pn+m+1.
A closer look, however, reveals that the leading order terms cancel and we need to take
into account the NLO terms,

I−2,2 − I−4,4 = (−1)2

−1
−1
2 (2k)2 ln(p) − (−1)4

−3
−3
2 (2k)2 ln(p), (3.153)

thus

Ip
0 (p) ∼ ln(p), (3.154)

I0(p) = a + b ln(p) + O 1
p

. (3.155)

which diverges logarithmically.
For Ip

1 we find

Ip
1 (p) = α (I−2,3 − I−4,4) , (3.156)

I−2,3 = (−1)3(2k)
2

p

2
2

+ (−1)3

(−1)(1)
−1
2 (2k)2 p

2 (3.157)

I−4,5 = (−1)5(2k)
2

p

2
2

+ (−1)5

(−3)(1)
−3
2 (2k)2 p

2 (3.158)

and thus

Ip
1 (p) ∼ p (3.159)

I1(p) = c + ep + O 1
p

. (3.160)

Taking only the leading order term is a good approximation if I1(p)
p ≪ I0(p), which we

can now easily show:
I1
p

I0
=

1
p (ep + c)
b ln(p) + a

=
e 1 + c

ep

b ln(p) 1 + a
b ln(p)

∼ 1
ln(p) (3.161)

We have now learned two important facts:

• For p → ∞, q̂ is given by its leading order contribution in p

• q̂ grows logarithmically with p.

Actually, it is not always the case that the NLO term is negligible. If we consider
A0 = qnωm with n + m > 0, A1 = ωA0, we obtain I0 ∼ pn+m+1 and I1 ∼ pn+m+2 and
thus

1
pI1

I0
=

1
p apn+m+2 + b

cpn+m+1 + e
∼ a

c
+ O 1

p
,

which means that the NLO term does not get smaller than a/c with larger p. Luckily,
for our case, these leading order terms cancel and we effectively obtain n + m < 0, so
we have convergence. This example is to show that an expansion in 1/p of A does not
necessarily mean that all higher-order terms do not contribute.
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3.8. UV-cutoff for q⊥

In the previous section we have seen that q̂ exhibits a logarithmic divergence in the
limit of p → ∞. Therefore, we need to impose some cutoff, which is typically [8, 9]
implemented as a q⊥-cutoff.

We only consider processes up to a maximum q⊥ < Λ⊥,

q⊥ = q 1 − v2
pq = q 1 − ω2

q2 − ω2 − q2

2pq
< Λ⊥. (3.162)

For p → ∞,

q2 − ω2

2pq
<

4k(k − ω)
2pq

= 2 k

p

≪1

k

q
− 2 k

p

≪1

ω

q

∈[−1,1]

. (3.163)

The second term clearly becomes 0 for p → ∞. The first term → 0 for q ̸= 0. Let us
look at the case q = 0 separately. From (3.45) we see immediately that q > |ω|, and
thus q → 0 can only happen for ω = 0. Then,

lim
q→0

ω2 − q2

2pq
ω=0

= lim
q→0

−q2

2pq
= 0. (3.164)

For p → ∞, the q⊥-cutoff can therefore be implemented by requiring

q2 − ω2 < Λ2
⊥. (3.165)

We can implement this in the different parametrizations, (3.45), (3.50) and (3.51).
For (3.50) and (3.51), this can easily be implemented via

q̂ ∼
∞

0
dk

∞

0
dk′ min k+k′,

√
(k−k′)2+Λ2

⊥

|k−k′|
dq (3.166)

and

q̂ ∼
∞

0
dk

k

−∞
dω

min 2k−ω,
√

ω2+Λ2
⊥

|ω|
dq . (3.167)

For (3.45) we need to implement the condition (3.165) in the ω-integral, ω2 > q2 − Λ2
⊥.

If q < Λ⊥, this leads to no new condition, but if q > Λ⊥, we need to have a lower
boundary for |ω|, which we write symbolically as

q̂ ∼
Λ⊥

0
dq

q

−q
dω +

∞

Λ⊥
dq

−
√

q2−Λ2
⊥

−q
dω +

q

√
q2−Λ2

⊥
dω

∞
q+ω

2

dk . (3.168)

3.9. p → ∞ behavior of q̂ with a q⊥ cutoff
Previously, we have seen that q̂ diverges for p → ∞. We shall now show that, this is
no longer the case for a q⊥ cutoff.
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We can now perform, again, a similar analysis of the integrand as in (3.139), but
with different integration boundaries,

Inm(p) =
−ξ

− p−k
2

dω
min(2k−ω,

√
ω2+Λ2

⊥)

−ω
dq Anm(q, ω). (3.169)

Actually, we can simplify the minimum, because it is always the second item for ξ big
enough,

ω2 + Λ2
⊥ < 2k − ω (3.170)

ω2 + Λ2
⊥ < 4k(k − ω) + ω2 (3.171)

−ω >
Λ2

⊥
4k

− k, (3.172)

but since −ω > ξ, we can just choose a ξ that is big enough such that this expression
is fulfilled, i.e. if

ξ >
Λ2

⊥
4k

− k. (3.173)

Thus we may rewrite (3.169) to

Inm(p) =
−ξ

− p−k
2

dω

√
ω2+Λ2

⊥

−ω
dq qnωm (3.174)

Similarly as before, with x = −ω, we obtain

Inm(p) = (−1)m
p−k

2

ξ
dx

√
x2+Λ2

⊥

x
dq qnxm, (3.175)

n ̸=−1= (−1)m

n + 1

p−k
2

ξ
dx xm x2 + Λ2

⊥
n+1

2 − xn+1


. (3.176)

For the convergence of (3.143) we need to know if Λ2
⊥ < x2. From (3.173) we know

that Λ2
⊥ < 4kξ 1 + k

ξ ≈ 4kξ and thus Λ2
⊥/ξ2 < 4k

ξ ≪ 1, which makes Λ⊥ < ξ and
thus Λ⊥ < x.

Inm = (−1)m

n + 1

p−k
2

ξ
dx xm

 ∞

j=0

(n + 1)/2
j

xn+1−2j(Λ⊥)2j − xn+1

 (3.177)

= (−1)m

n + 1

p−k
2

ξ
dx

∞

j=1

(n + 1)/2
j

xn+m+1−2j(Λ⊥)2j , (3.178)

= (−1)m

n + 1

∞

j=1
j ̸=(n+m+2)/2

(n + 1)/2
j

xn+m+2−2j

n + m + 2 − 2j

p−k
2

x=ξ

Λ2j
⊥

+ (n + 1)/2
(n + m + 2)/2 ln p − k

2ξ
Λn+m+2

⊥ . (3.179)
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We now obtain

ILO
nm =


(−1)mΛ2

⊥
2(n+m)

p
2

n+m
, n + m ̸= 0

(−1)mΛ2
⊥ ln(p) + const, n + m = 0

(3.180)

INLO
nm =





(−1)mΛ4
⊥

(n+1)(n+m−2)
(n + 1)/2

2
p
2

n+m−2
, n + m − 2 ̸= 0

(−1)m

n+1
(n + 1)/2

2
Λ4

⊥ ln(p) + const, n + m − 2 = 0.

(3.181)

Therefore,

Ip
0 (p) ∼ 1

p2 , (3.182)

Ip
1 (p) ∼ 1

p
, (3.183)

I0(p) = a + b

p2 + O 1
p3 , (3.184)

I1(p) = c + e

p
+ O 1

p2 . (3.185)

The leading order term to q̂, ∼ I0 is then independent of p, the NLO term, ∼ I1
p → 0,

or, more precisely,

I1/p

I0
=

1
p c + e

p

a + b
p2

∼ 1
p

. (3.186)

Thus, now q̂ converges, and the NLO terms for finite p are also small.

62



Chapter 3. A formula for q̂

3.10. q̂ in the limit p → ∞
Previously, we have seen that in the limit p → ∞ we can take the leading order term
in the expansion in p of the matrix element. The formula for q̂ then reads

q̂ij
2 (Λ⊥) = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

−∞
dω

min 2k−ω,
√

ω2+Λ2
⊥

|ω|
dq

× qi
2qj

2
|Mab

cd|2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) , (3.187a)

q̂ij
2 (Λ⊥) = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

∞

0
dk′ min k+k′,

√
(k−k′)2+Λ2

⊥

|k−k′|
dq

× qi
2qj

2
|Mab

cd|2
p2 fb(k, vk) 1 ± fd(k′, vk′) , (3.187b)

q̂ij
2 (Λ⊥) = 1

νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

×
Λ⊥

0
dq

q

−q
dω +

∞

Λ⊥
dq

−
√

q2−Λ2
⊥

−q
dω +

q

√
q2−Λ2

⊥
dω

×
∞

q+ω
2

dk qi
2qj

2
|Mab

cd|2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) , (3.187c)

q̂ = qxx
2 + qyy

2 , (3.187d)

with

qx
2 = q 1 − v2

pq cos ϕ̃pq, (3.188a)

qy
2 = q 1 − v2

pq sin ϕ̃pq, (3.188b)

qz
2 = qvpq, (3.188c)

vpq = ω

q
, (3.188d)

vkq = ω

q
− t

2kq
, (3.188e)

vk′q = ω

q
+ t

2k′q
, (3.188f)

vk = sin ϕkq sin ϕ̃pq 1 − v2
kq 1 − v2

p

+ cos ϕkq 1 − v2
kq − cos ϕ̃pqvpq 1 − v2

p − vp 1 − v2
pq

+ vkq vpvpq − cos ϕ̃pq 1 − v2
p 1 − v2

pq , (3.188g)

vk′ = sin ϕkq sin ϕ̃pq 1 − v2
k′q 1 − v2

p

+ cos ϕkq 1 − v2
k′q − cos ϕ̃pqvpq 1 − v2

p − vp 1 − v2
pq

+ vk′q vpvpq − cos ϕ̃pq 1 − v2
p 1 − v2

pq , (3.188h)
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3.11. Soft limit

ab ↔ cd limp→∞ |Mab
cd |2/(p2g4)

q1qi ↔ q1qi

16d2
F C2

F
da

2k−ω−
√

4(k−ω)k+t cos(ϕkq) 2

(q2+2ξ2
0m2)2

q̄1qi ↔ q̄1qi

q1q̄i ↔ q1q̄i

q̄1q̄i ↔ q̄1q̄i

q1g ↔ q1g
16dF CF CA

2k−ω−
√

4(k−ω)k+t cos(ϕkq) 2

(q2+2ξ2
0m2)2q̄1g ↔ q̄1g

gg ↔ gg 16dAC2
A

2k−ω−
√

4(k−ω)k+t cos(ϕkq) 2

(q2+2ξ2
0m2)2

Table 3.2.: Matrix elements for q̂ in the limit p → ∞.

k′ = k − ω, (3.188i)
t = ω2 − q2, (3.188j)

s = − t

q2 p 2kω − 4(k − ω)k + t cos(ϕkq) + O 1
p


, (3.188k)

u = −s + O(1), (3.188l)

and the only nonvanishing matrix elements with limp→∞
|M |2

p2 are given in Table 3.2.
The upper sign, again, is for bosonic (gluons) d particles, the lower sign for fermionic
particles (quarks). Previously, we have only shown the limiting behavior of − su

t2 for
p → ∞, but the behavior of s2+u2

t2 must be similar, since from s + t + u = 0 we can
deduce

t2 = (s + u)2 = s2 + 2us + u2 (3.189)
s2 + u2

t2 = 1 − 2us

t2 . (3.190)

Note that we have some freedom of choice regarding the regularization in the de-
nominator. All choices that reproduce the same behavior for q, ω ≫ mD are equally
acceptable. We then need to fit the constant ξ0 such that it reproduces the exact matrix
element or known analytical results to leading order.

3.11. Soft limit
We now take the soft limit of the q̂ formula in thermal equilibrium, i.e. the limit in
which Λ⊥ ≪ T , or Λ⊥ ≪ κ, where κ denotes the largest momentum in our plasma.
This restricts the maximum transverse momentum q⊥ that can be transferred to the jet
particle, but not its longitudinal momentum transfer. But we will make the additional
assumption that also ω ≪ κ, which also restricts q.

Our assumptions are

Λ⊥ ≪ T, ω ≪ T fb,d(k) = 1
ek/T ± 1

. (3.191)
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Chapter 3. A formula for q̂

We will denote the Bose-Einstein distribution as nBE(k) = (ek/T −1)−1 and the Fermi-
Dirac distribution as nF D(k) = (ek/T + 1)−1

Let us consider a generic process with a matrix element

lim
p→∞

Mab
cd

2

p2g4 = A
2k − ω − 4(k − ω)k + t cos(ϕkq)

2

(q2 + 2ξ2
0m2)2 , (3.192)

where A is some constant.
With our approximations the matrix element becomes

lim
p→∞

Mab
cd

2

p2g4 ≈ 4k2A

(q2 + 2ξ2
0m2)2 (1 − cos ϕkq)2 . (3.193)

We then obtain for q̂

q̂(Λ⊥) = 1
νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dq

q

−q
dω

∞
q+ω

2

dk Θ(q2 − ω2 − Λ2
⊥)

q2 sin2 θpq
|Mab

cd|2
p2 fb(k, vk) (1 ± fd(k − ω, vk′)) , (3.194)

≈ 4A

νa

1
29π5

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dq

q

−q
dω

∞
q+ω

2

dk Θ(q2 − ω2 − Λ2
⊥)

q2
⊥ (1 − cos ϕkq)2

(q2 + 2ξ2
0m2)2 k2fb(k, vk) (1 ± fd(k − ω, vk′)) . (3.195)

Currently, we integrate over the modulus of q = (q⊥, qz). From the definition of qz,
(3.75), we see that for p → ∞ we have

qz = ω. (3.196)

Thus we can write

q2 = q2
⊥ + ω2, (3.197)

with q2
⊥ = |q⊥|2 = q2

x + q2
y . Note that the labels x, y, z are with respect to the direction

of p, i.e. in a frame in which p points in the z-direction. We now perform a change of
integration variables from (q, ϕ̃pq, ω) → (qx, qy, ω). The transformation is given by (see
(3.188a), (3.188b) and (3.188c)),

qx = q 1 − ω2

q2 cos ϕ̃pq, (3.198)

qy = q 1 − ω2

q2 sin ϕ̃pq, (3.199)

ω = ω. (3.200)

We obtain a Jacobian factor of q,

dq dϕ̃pq dω = 1
q

dqx dqy dω = 1
q2

⊥ + ω2
d2q⊥ dω . (3.201)
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The transformation yields

q̂(Λ⊥) = 4A

νa

1
29π5

2π

0
dϕkq

Λ⊥

0
d2q⊥

∞

−∞
dω

∞
q+ω

2

dk

q2
⊥ (1 − cos ϕkq)2

q2
⊥ + ω2 q2

⊥ + ω2 + 2ξ2
0m2 2 k2fb(k) (1 ± fd(k)) , (3.202)

where we have used that f(k − ω) ≈ f(k). We have also implemented the integration
intervals for ω, −q = − q2

⊥ + ω2 < ω < q2
⊥ + ω2, which yields no restriction to the

ω-integral. Actually, our assumption was that ω is small, but we will check later that
performing the integral from −∞ to ∞ does not significantly change the result.

We have now several possibilities to proceed. As discussed in section 2.2.3, we have a
certain freedom of how to implement the screening. We will check this fact here, again.
For now, let us make a different choice for the regularization,

q2
⊥

q2
⊥ + ω2 q2

⊥ + ω2 + 2ξ2
0m2 2 → q4

⊥
q2

⊥ + ω2 5/2
q2

⊥ + m2
D

. (3.203)

This choice will be justified a posteriori, when we compare to known analytical results.
There it will turn out that this mass mD is indeed the Debye mass, and we can then
via this change fit the value of ξ0.

We can now shift the lower boundary of the k-integral to 0, a fact that we will later
check, then the integral can be factorized,

q̂(Λ⊥) = 4A

νa

1
29π5

2π

0
dϕkq (1 − cos ϕkq)2

×
∞

0
dk k2fb(k) (1 ± fd(k)) (3.204)

×
Λ⊥

0
d2q⊥

q4
⊥

(q2
⊥ + m2

D)
∞

−∞
dω

1
q2

⊥ + ω2 5/2

The first integral can be easily evaluated, 2π
0 dϕkq (1 − cos ϕkq)2 = 3π. The second

integral can also be analytically evaluated. For the case of gluons, we use for f the
Bose-Einstein distribution function nBE(k), whereas for quarks, we use the Fermi-Dirac
distribution, nF D(k):

∞

0
dk k2nBE(k) (1 + nBE(k)) =

∞

0
dk

k2

eβk − 1 1 + 1
eβk − 1 = π2T 3

3 (3.205)
∞

0
dk k2nF D(k) (1 − nF D(k)) =

∞

0
dk

k2

eβk + 1 1 − 1
eβk + 1 = π2T 3

6 (3.206)

Now let us look at the contribution from the lower boundary, i.e. let us split the
integral,

∞
q+ω

2

f(k) (1 ± f(k)) =
∞

0
f(k) (1 ± f(k)) −

q+ω
2

0
f(k) (1 ± f(k)) . (3.207)
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
k

0.0
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k2nBE(k) (1 + nBE(k))
k2nF D(k) (1 + nBE(k))
k2nF D(k) (1 − nF D(k))

Figure 3.2.: Plot of the integrand k2f(k) (1 ± f(k)) for β = 1. The cases nF D(k)(1+nBE(k))
and nBE(k)(1 − nF D(k)) are identical. nF D(k) and nBE(k) denote the Fermi-
Dirac and Bose-Einstein distribution, respectively.

In Figure 3.2 we plot the integrand for different distribution functions. We see that if
at least b or d is fermionic, the low k-behavior does not contribute much. If the plasma
particles are gluonic, we can approximate the integral

a

0
dk f(k) ≤ af(k∗), (3.208)

where k∗ is the k value for which f(k) reaches its maximum. For us this is the case at
k = 0,

lim
k→0

k2

eβk − 1 1 − 1
eβk − 1 = lim

k→0

k2

βk + O(k2) 1 − 1
βk + O(k2) = T 2. (3.209)

The largest error we make by shifting the lower integration boundary to 0 is thus

T 2(q + ω)
2 , (3.210)

which is always ≪ π2T 3

3 .
Now we turn to the ω-integral, which can be performed analytically and yields

∞

−∞
dω

1
q2

⊥ + ω2 5/2 = 4
3q4

⊥
. (3.211)

As discussed before, our assumption ω ≪ T actually forbids us to push the integration
boundaries to ±∞, but we can analyse the integrand for different boundaries and we
find no change of the integral value if the boundary is sufficiently large, see Figure 3.3.
We thus obtain
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1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
ξ/q⊥

1.175

1.200

1.225
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1.275

1.300
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Figure 3.3.: Plot of the integral ξ

−ξ
dω 1

(q2
⊥+ω2)5/2 for different boundary values ±ξ. For ω >

q⊥, the integral roughly stays the same, which permits us to push the boundaries
to ±∞.

q̂(Λ⊥) = A

sνa

T 3

3 · 25π2

Λ⊥

0
d2q⊥

1
q2

⊥ + m2
D

, (3.212)

with s = 1 for scattering off gluonic particles and s = 2 for fermionic particles. The
integral can be performed,

Λ⊥

0
d2q⊥

1
q2

⊥ + m2
D

= 2π
Λ⊥

0
dq⊥

q⊥
q2

⊥ + m2
D

(3.213)

= π
Λ2

⊥+m2
D

m2
D

dx
1
x

(3.214)

= π ln Λ2
⊥ + m2

D

m2
D

≈ 2π ln Λ⊥
mD

. (3.215)

We then arrive at

q̂ ≈ AT 3

3 · 24πsνa
ln Λ⊥

mD
. (3.216)

Let us now start with a quark jet, thus νa = 2NC . We take the matrix elements
from Table 3.2. We can thus either scatter with a quark or with a gluon. We have 2nf

quarks to scatter from (nf quarks and nf antiquarks), so this yields a factor 2nf ,

q̂ =


16d2

F C2
F g4

dA

A

·2nF · 1
3 · 26πNC

+ 16dF CF CAg4

A

· 1
3 · 25πNC


 T 3 ln Λ⊥

mD
. (3.217)
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The Debye mass in thermal equilibrium is given by (2.60),

m2
D = g2T 2 NC

3 + Nf

6 . (3.218)

We then use dF = CA = NC , CF = dA
2NC

and dA = N2
C − 1 to arrive at

q̂ = T 3g4

3 · 2πNC

N2
CCF nF

2NC
+ N2

CCF ln Λ⊥
mD

(3.219)

= g2CF T

2π
g2T 2 nF

6 + NC

3
m2

D

ln Λ⊥
mD

. (3.220)

For a gluonic jet we have νa = 2dA,

q̂ =


16dF CF CAg4

A

·2nF · 1
3 · 26πdA

+ 16dAC2
Ag4

A

· 1
3 · 25πdA


 T 3 ln Λ⊥

mD
, (3.221)

= T 3g4 CAdAnF

3 · 22πdA
+ CANC

3 · 2π
ln Λ⊥

mD
(3.222)

= g2CAT

2π
g2T 2 nF

6 + NC

3
m2

D

ln Λ⊥
mD

. (3.223)

This is the same as the known result [15, 8].
Instead of (3.203) we could have also chosen to calculate q̂ in our original regulariza-

tion. We can do this for arbitrary ξ0 and we find that the choice ξ0 = 0.698 correctly
reproduces this soft limit result. This is in contrast to the original screening factor
ξ = 0.8135. In fact, this soft limit result is only valid for mD ≪ Λ⊥ ≪ T . We can only
see this behavior in our simulation if the ’t Hooft coupling λ is very small. Only then
we can have a region with mD ≪ Λ⊥ ≪ T . If we perform our simulations with ξ, we
find that we obtain a similar behavior as in (3.223), but with a constant shift of about
8 %. If we use ξ0 instead, we obtain the correct behavior, which we take as evidence
that our prediction here for ξ0 is valid.

The difference in ξ ̸= ξ0 is a result of the different matching procedure. In [12],
effectively a matching of q̂L is performed, which we can do as well when we replace
q2

⊥ → ω2 in (3.195), then we obtain the same result. However, since we are interested
in the transverse momentum transfer, it makes more sense to perform the matching in
a way such that the transverse momentum is reproduced in the soft limit.
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4. Implementation
We do not implement the effective kinetic theory description from scratch, but use
the C++ code for the time evolution of the gluonic plasma corresponding to (2.82),
described in [13].

The particle distribution function for gluons f(p) = f(p, vp) is discretized on a 2D
grid and the integrals in the collision term are evaluated using the Monte Carlo method,
see Section 2.3. In our simulation we want our results to be insensitive to the number
of grid points, which we check by varying this number.

To this existing code we append a routine that calculates q̂ at different times, i.e. a
routine that performs the integral (3.187a) numerically. We describe our implementa-
tion in this chapter.

4.1. Finite integral boundaries
4.1.1. Introducing kmin and kmax

In our code we store the distribution function only on a finite interval, i.e. only in the
interval kmin < k < kmax. There are two possibilities to account for that

1. Sample according to (3.187a), (3.187b), (3.187c), and evaluate the expression to
0 if k or k′ is out of range.

2. Already include the finite boundaries kmin and kmax in the integral boundaries,
such that k, k′ is already in the desired form.

In the first case we will have samples in our sampling region that yield zero and do not
contribute to the integral.

In the second case, though a bit more tedious to work out, every sample will yield a
contribution. Thus we stick to the second case.

For the Monte Carlo importance sampling, see Section 2.3, we need the probability
density or volume factor, which is dependent on the exact boundaries of the integral.
We thus cannot simply generate a random number and accept or reject it if it is in our
integration region, because the weight depends on the integration boundaries.

We will consider the integrals1 in the p → ∞ limit,

I1 =
∞

0
dk

k

−∞
dω

2k−ω

|ω|
dq , (4.1)

I1b =
∞

0
dk

∞

0
dk′ k+k′

|k−k′|
dq , (4.2)

I2 =
∞

0
dq

q

−q
dω

∞
q+ω

2

dk . (4.3)

1For the remaining integrals over the angles we do not need any additional boundaries kmin, kmax.
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Now let us insert boundaries for numerical integration,

kmin < k < kmax, kmin < k′ < kmax, k′ = k − ω. (4.4)

For (4.2) this is most easily implemented as

kmax

kmin

dk
kmax

kmin

dk′ k+k′

|k−k′|
dq . (4.5)

For (4.1) we can implement this easily by kmin < k − ω < kmax ⇐⇒ −kmin + k > ω >
−kmax + k

kmax

kmin

dk
k−kmin

k−kmax

dω
2k−ω

|ω|
dq . (4.6)

For (4.3) we use kmin < k < kmax to obtain
∞

0
dq

q

−q
dω

kmax

max( q+ω
2 ,kmin)

dk . (4.7)

We then enforce kmin < k − ω < kmax ⇐⇒ kmin + ω < k < kmax + ω,
∞

0
dq

q

−q
dω

min(kmax,kmax+ω)

max( q+ω
2 ,kmin,kmin+ω)

dk . (4.8)

The k′ condition also gives us a restriction for the ω integral, k−kmax < ω < k−kmin →
kmin − kmax < ω < kmax − kmin:

∞

0
dq

min(q,kmax−kmin)

max(−q,kmin−kmax)
dω

min(kmax,kmax+ω)

max( q+ω
2 ,kmin,kmin+ω)

dk (4.9)

Now we also need to enforce max q+ω
2 , kmin, kmin + ω < min(kmax, kmax + ω),




ω > 0 ∧ q+ω
2 > ω + kmin : ω < 2kmax − q

ω > 0 ∧ q+ω
2 < ω + kmin : ω < kmax − kmin already fulfilled

ω < 0 ∧ q+ω
2 > kmin : ω > q − 2kmax

ω < 0 ∧ q+ω
2 < kmin : ω > kmin − kmax already fulfilled

(4.10)

We thus need for q > 2kmin + |ω| that q < 2kmax − |ω|, which gives an upper boundary
on q, q < 2kmax. Additionally, for big enough q, such that this condition is fulfilled, we
need additionally ω < 2kmax − q and ω > q − 2kmax.

2kmax

0
dq

min(q,kmax−kmin,2kmax−q)

max(−q,kmin−kmax,q−2kmax)
dω

min(kmax,kmax+ω)

max( q+ω
2 ,kmin,kmin+ω)

dk (4.11)

But could we also have cases in which this condition is not fulfilled, q is not big enough?
I.e. where we impose the latter condition |ω| < 2kmax−q although we would not need it
because q < 2kmin+|ω|? Let us think of the case when we have the 2kmax−q boundary.
This is the case if q > kmax + kmin. We would impose this condition wrongly if we
could find an ω with |ω| > q − 2kmin, but |ω| > q − 2kmin > kmax − kmin, which we do
not allow. Thus we can always impose the latter boundary.
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4.1.2. q⊥ cutoff for kmin and kmax

We take now (4.6) and implement the q⊥ cutoff, q2 − ω2 < Λ2
⊥,

kmax

kmin

dk
kmax

kmin

dk′ min(k+k′,
√

(k−k′)2+Λ2
⊥)

|k−k′|
dq . (4.12)

Now we adapt (4.11),

2kmax

0
dq

min(q,kmax−kmin,2kmax−q)

max(−q,kmin−kmax,q−2kmax)
dω

if q>Λ⊥:
−
√

q2−Λ2
⊥

max(−q,kmin−kmax,q−2kmax)dω+ min(q,kmax−kmin,2kmax−q)√
q2−Λ2

⊥
dω

min(kmax,kmax+ω)

max( q+ω
2 ,kmin,kmin+ω)

dk ,

(4.13)

but we must ensure that for q > Λ⊥ the upper boundaries of the ω integral are always
larger than the lower boundaries. Thus we obtain, for kmax − kmin < q < kmax + kmin:

kmax − kmin > q2 − Λ2
⊥, (4.14)

(kmax − kmin)2 > q2 − Λ2
⊥ (4.15)

q < (kmax − kmin)2 + Λ2
⊥. (4.16)

This condition is also fulfilled in (4.12), which is a nice cross-check.
We also need 2kmax − q > q2 − Λ2

⊥, which gives an additional upper boundary for

the q integral, q < kmax + Λ2
⊥

4kmax
.

We thus obtain, for arbitrary Λ⊥,

min 2kmax,kmax+
Λ2

⊥
4kmax

,
√

(kmax−kmin)2+Λ2
⊥

0
dq

min(q,kmax−kmin,2kmax−q)

max(−q,kmin−kmax,q−2kmax)
dω

if q>Λ⊥:
−
√

q2−Λ2
⊥

max(−q,kmin−kmax,q−2kmax)dω+ min(q,kmax−kmin,2kmax−q)√
q2−Λ2

⊥
dω

min(kmax,kmax+ω)

max( q+ω
2 ,kmin,kmin+ω)

dk . (4.17)

One might ask if the upper boundaries on the q-integral are the most general, because
we got them out of the conditions:

• For kmax − kmin < q < kmax + kmin we need that q < (kmax − kmin)2 + Λ2
⊥

• For q > kmax + kmin we need that q < kmax + Λ2
⊥

4kmax
.
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4.1. Finite integral boundaries

It might be that by enforcing q to be smaller than both, we are too restrictive. We will
find that this is not the case and the boundaries are fine.

To show this, we need to show that, if q < kmax + kmin the minimum is always given
by the square root, i.e. (kmax − kmin)2 + Λ2

⊥ < kmax + Λ2
⊥

4kmax
. On the other hand, if

q > kmax + kmin, then we need (kmax − kmin)2 + Λ2
⊥ > kmax + Λ2

⊥
4kmax

.
This can indeed be shown:

• First assume that the upper q-boundary is given by the square root and that it
is smaller than kmin + kmax,

(kmax − kmin)2 + Λ2
⊥ < kmin + kmax (4.18)

−2kmaxkmin + Λ2
⊥ < 2kmaxkmin (4.19)

Λ2
⊥ < 4kmaxkmin. (4.20)

We then need to show that the minimum comes always from the square root,
which can easily be shown via

(kmax − kmin)2 + Λ2
⊥ < kmax + Λ2

⊥
4kmax

(4.21)

−2kminkmax + k2
min + Λ2

⊥ <
1
2Λ2

⊥ + Λ4
⊥

16k2
max

(4.22)

<
1
2Λ2

⊥ + 16k2
maxk2

min

16k2
max

(4.23)

Λ2
⊥ < 4kmaxkmin. (4.24)

• Next, if the upper q-boundary is not given by the square root, i.e. if kmax+kmin <

q < kmax + Λ2
⊥

4kmax
,

kmax + Λ2
⊥

4kmax
> kmin + kmax (4.25)

Λ2
⊥ > 4kminkmax. (4.26)

Then the square root must not be smaller than the other term, which it indeed
is, as we can see via

(kmax − kmin)2 + Λ2
⊥ > kmax + Λ2

⊥
4kmax

(4.27)

−2kminkmax + k2
min + Λ2

⊥ >
1
2Λ2

⊥ + Λ4
⊥

16k2
max

(4.28)

>
1
2Λ2

⊥ + 16k2
maxk2

min

16k2
max

(4.29)

Λ2
⊥ > 4kmaxkmin. (4.30)

Thus the conditions and the minimum in the integral boundary match perfectly!
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4.2. Phase-space sampling
The implementation of q̂ in the code is done in the p → ∞ limit using (3.187b) and its
discretized version for k, k′, q, (4.12); and (3.187c) and for k, ω, q (4.17). The integrals
are evaluated using the Monte Carlo method with importance sampling, (2.130). As a
cross-check, we also implemented a deterministic trapezoidal rule, (2.123), but this is
rather slow.

For another cross-check, we implement both (4.12) and (4.17). The ω-sampling and,
of course, the integral boundaries vary.

4.2.1. Sampling q

Because the matrix element is strongly peaked for small q, we need to use importance
sampling, see (2.130), and we choose

g(q) = 1
(q + m̃)2 , (4.31)

where m̃ = ξ0mD is the rescaled mass, see Section 2.2.3. So we write the integral

b

a
dq f(q) =

b

a
dq

1
(q + m̃)2 h(q), (4.32)

with h(q) = f(q) (q + m̃)2.
From

dy = dq

(q + m̃)2 (4.33)

we obtain, see (2.129),

y(q) = y0 − 1
q + m̃

. (4.34)

With the choice y0 = 1
a+m̃ we can invert this expression,

q = 1
1

a+m̃ − y
− m̃. (4.35)

Thus,

b

a
dq f(q) =

1
a+m̃

− 1
b+m̃

0
dy h(q(y)) (4.36)

≈ 1
a + m̃

− 1
b + m̃

 1
N

N

i=1
h(q(yi)) (4.37)

= b − a

(a + m̃)(b + m̃)
1
N

N

i=1
f(q(yi)) (q(yi) + m̃)2 , (4.38)

with yi ∈ 0, b−a
(a+m̃)(b+m̃) sampled uniformly and q(y) = 1

1
a+m̃

−y
− m̃.
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4.2.2. Sampling k, k′

The particle distribution is peaked for small k, thus we sample from a probability
distribution ∼ 1

k . We sample k this way in both (4.12) and (4.17) and k′ in (4.12).
We use again (2.130) with

g(k) = 1
k

. (4.39)

We write
b

a
dk f(k) =

b

a
dk

1
k

h(k), (4.40)

with h(k) = kf(k).
From

dr = dk

k
(4.41)

we obtain, see (2.129),

r(k) = r0 + ln k
r0=− ln a⇔ k = aer. (4.42)

Thus,
b

a
dk f(k) ≈ ln b

a

1
N

N

i=1
f(k(ri))k(ri), (4.43)

with ri ∈ 0, ln b
a sampled uniformly and k(r) = aer.

4.2.3. Sampling ω, ϕkq, ϕ̃pq

For ω in (4.17), ϕkq and ϕ̃pq we do not use importance sampling, g(x) = 1,

b

a
dx f(x) ≈ (b − a) 1

N

N

i=1
f(xi), (4.44)

with xi ∈ (a, b) sampled uniformly.

4.3. Statistics and Plotting
Because the Monte Carlo method for evaluating the integrals is stochastic, it will be
important to quantify the error or amount of fluctuations.

To do this, we perform the integration several times and then use the sample mean
and standard error [39]:

We generate n values for the integral, Ii, then take the sample average Ī and sample
variance s2,

Ī =
n
i=1 Ii

n
(4.45)

s2 =
n
i=1 Ii − Ī

2

n − 1 . (4.46)
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The standard error σ̄ is then calculated as

σ̄ = s2

n
. (4.47)

The data analysis is done using the Python NumPy library [40] and the plots are
generated with the Matplotlib package [41].
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5. Results

In this section we give the numerical results of our implementation.
We assume a fully gluonic plasma, and also use a gluonic jet with p → ∞. The value

of q̂ for a gluonic jet can easily be transferred to a quark jet by Casimir scaling. This
can easily be seen from Table 3.2: The matrix elements for the two processes, gg ↔ gg
and q1g ↔ q1g differ only by a multiplicative constant. The factor dR cancels with
νa = 2dR in (3.187a), then they only differ in CA, CF , which provides exactly Casimir
scaling: q̂quark = CF

CA
q̂gluonic.

All simulations were done using a temperature T = 1 GeV, but actually T gives
the only energy scale in the plasma (apart from kmin and kmax, which should anyway
be chosen in a way such that the result does not depend on them). Thus another
way of thinking about this is that all results are scaled with respect to temperature,
i.e. by changing T = 1 GeV → 2 GeV we change e.g. Λ⊥ = 5 GeV → 10 GeV and
q̂ = 0.5 GeV3 → 4 GeV3.

In the code I have implemented the anisotropic version of q̂, q̂ij from (3.187b) and
(3.187c). We have checked that the two different integral parametrizations give the
same results and that the off-diagonal elements q̂xy vanish, as predicted from (3.103).

As a sanity check we compare the output of our code with something that has been
analytically calculated: q̂ in thermal equilibrium.

5.1. Thermal equilibrium
In thermal equlibrium, the particle distribution function of the gluonic plasma is given
by the Bose-Einstein distribution

f(k) = 1
eβ|k| − 1

. (5.1)

5.1.1. Analytical results

For q̂ in thermal equilibrium, we compare our simulation with analytical results from
[8]:

For mD ≪ Λ⊥ ≪ T , Arnold and Xiao find

q̂(Λ⊥) ≃ g2Tm2
DCR

2π
ln Λ⊥

mD
(5.2)

and for Λ⊥ ≫ T

q̂(Λ⊥) = CR [ΞbI+(Λ⊥) + Ξf I−(Λ⊥)] g4T 3

π2 (5.3)
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with

I± ≃ ζ±(3)
2π

ln Λ⊥
mD

+ ∆I±, (5.4)

∆I± = ζ±(2) − ζ±(3)
2π

ln T

mD
+ 1

2 − γE + ln 2


− σ+
2π

, (5.5)

σ+ = 0.386043817389949 . . . , σ− = 0.011216764589789, (5.6)

where ζ+(x) = ζ(s) is the Riemann ζ function and

ζ−(s) = (1 − 21−s)ζ(s), (5.7)
Ξb = 2tA, (5.8)

Ξf = 4Nf tF , (5.9)

and in the case of Nf -flavor QCD, Ξb = 6, Ξf = 2Nf . This result ignores running of
the coupling constant, which can be accounted for using the replacements described in
[8], but we also do not consider a running coupling constant in our EKT code. γE is
the Euler-Mascheroni constant with numerical value [38, 42]

γE = 0.5772156649 . . . (5.10)

and ζ(2) and ζ(3) are given by [42]

ζ(2) = π2

6 , ζ(3) = 1.2020569031 . . . . (5.11)

It should be noted that Arnold and Xiao [8] make the assumption1 that one can choose
a momentum scale Λ̃ with mD ≪ Λ̃ ≪ T . This is only valid for small coupling λ.

5.1.2. Comparison
In thermal equilibrium, the collision term identically vanishes (without longitudinal
expansion), thus we do not need to solve the kinetic equations for the distribution
function numerically. The distribution function is initialized once and stays the same.
Effectively, we only need to evaluate the integral (3.187a), (3.187b) or (3.187c). We
use a finite kmin and kmax and a Monte Carlo method for evaluating the integral as
described in Chapter 4. The results of the numerical integration procedure are then
compared with the analytical results quoted in the previous section.

In Figure 5.1 we plot the results of our Monte Carlo integration for λ = 0.01, T =
1 GeV for different q⊥ cutoffs Λ⊥.

Our integration results are compatible with (5.2) and (5.3), see Figure 5.1(a). In (b),
(c) and (d) we plot the obtained value for q̂ for different kmin, kmax. In (b) we observe
that the results are all compatible with one another, whereas in (c) and (d) we look
explicitly at the low and high Λ⊥ behavior. As we might näıvely expect, changing kmin

1See (3.24) in [8]. We write Λ̃ instead of λ in [8], because in our case λ is reserved for the cou-
pling λ = g2NC , (2.17). The scale is introduced in the evaluation of the integral I±(Λ⊥) =

q⊥<Λ⊥
d2q⊥
(2π)2

I±(q⊥/T )
q2

⊥+m2
D

≈
q⊥<Λ̃

d2q⊥
(2π)2

I±(0)
q2

⊥+m2
D

+ Λ̃<q⊥<Λ⊥
d2q⊥
(2π)2

I±(q⊥/T )
q2

⊥
.
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Figure 5.1.: Numerical integration results of q̂ for λ = 0.01, T = 1 GeV. The numerical values
for kmin and kmax are also given in GeV. In (a) the analytical results for Λ⊥ ≪ T ,
(5.2); Λ⊥ ≫ T , (5.3); and the result of our numerical integration is shown. The
results agree well with (5.2) and (5.3). In (b) different kmin and kmax are used.
As shown in the plot, they agree very well. In (c) we look at different kmin and
kmax in the small Λ⊥ region. In this region we see a weak dependence on kmin.
In (d) we look at different kmax in the large Λ⊥ region, where we see a weak
dependence on kmax. 81
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Figure 5.2.: Behavior of q̂ for small λ = 0.0125, T = 1 GeV and different Λ⊥. Different values
for the screening mass have been used. ξ = 0.814 is from [12], whereas ξ = 0.698
is chosen such that our result matches the soft limit. Λ⊥ ≫ T denotes (5.3),
while Λ⊥ ≪ T denotes (5.2).

influences especially the low Λ⊥ behavior, while changing kmax influences the large Λ⊥
behavior. In (4.12) we want Λ⊥ to dictate the integral boundaries, not kmax, thus we
see immediately that, if kmax is too small, we lose a part of our integration region,
which can explain the deviations.

In Figure 5.2 we plot q̂ for λ = 0.0125 for different regularization parameters ξ,
which also matches well with (5.2) and (5.3) for ξ = 0.698. We obtained this value
from matching the soft limit result to analytic calculations, but we see that this value
also reproduces (5.3), which is valid for Λ⊥ ≫ T . The parameter ξ = 0.814 from [12]
also quoted in Section 2.2.3 yields slightly different results.

A comparison of different λ is given in Figure 5.3. For λ = 1 we have no region in
which our results for q̂ follow (5.2). This is no surprise, because (5.2) is only valid for
mD ≪ Λ⊥ ≪ T . From (2.60) we can calculate the Debye mass, mD = T√

3 ≈ 0.58 GeV.
Thus the required condition is not fulfilled.

We find that for different values of λ we need to use different values of ξ → ξ(λ)
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if we want our result to match with the analytical result (5.3), although the different
values of ξ only slightly change the result. As mentioned earlier, the formulae (5.2) and
(5.3) were derived under the assumption mD ≪ T , which is only satisfied for small λ.
Thus we use the constant ξ0 = 0.698, which reproduces the analytic formulae for small
couplings λ.

In Figure 5.4 we summarize these behaviors in one plot. We calculate and plot q̂ for
λ = 10, where we see that neither of the two screening masses, ξ or ξ0, agrees with (5.3).
The dependence on kmax can also clearly be seen. We use λ = 10 because as we will
see later in Section 5.1.3, a comparison with experimental bounds yields approximately
λ ≈ 10. This value is also used frequently in the literature [13, 43, 44].

Effect of discretization

We now study the effects resulting from the discretization of our particle distribu-
tion function f(k). For the numerical time evolution via the Boltzmann equation we
need a discretized version of the particle distribution function. In thermal equilibrium,
however, we know and therefore can use its exact form and study the effect of the
discretization on q̂. We now study this effect at the q⊥ cutoff Λ⊥ = 11 GeV. We use
this cutoff because we expect the effects to be largest for larger values of Λ⊥ and for
Λ⊥ = 11 GeV our results match the analytic calculation for kmax = 80 GeV. The nu-
merical results for q̂ are plotted in Figure 5.5. On the left-hand side, the exact form
for f was used, whereas on the right-hand side we used the discretized version of f .
We observe that the discretized version behaves differently than the continuous version
for different values of the lower momentum cutoff, kmin. Whereas for λ = 0.01 the be-
havior is qualitatively similar, for λ = 1 the value for q̂ increases with increasing kmin

in the discretized version, while it decreases in the continuous version. We believe this
is a result of the different Debye masses used. For the continuous version we used the
exact Debye mass for the screening mD = λ

3 T , in the discretized version we calculate
the Debye mass from the discretized distribution function f(k) via (2.59). In our case,
f(k) is given by the Bose-Einstein distribution, which is sharply peaked for small k.
Thus enforcing a non-zero kmin changes the outcome of the numerical integral for mD,
which changes the screening mass and therefore changes q̂. The error bars in the plot
denote the standard error (4.47).

5.1.3. Comparison with RHIC and LHC data

After these simple checks we now compare with constraints for q̂ obtained from the
measurement of single hadron nuclear modification factors at RHIC and LHC (quark
jet energy E = 10 GeV) [7]:

q̂

CRT 3 = 3.5 ± 0.9, T ≈ 370 MeV (RHIC)
2.8 ± 1.1, T ≈ 470 MeV (LHC)

(5.12)

We now have to establish which cutoff Λ⊥ and coupling λ to use. For the cutoff we
decide to use values also used in the CUJET model [16]: In CUJET2.0 [17], Λ⊥ =

√
4ET

is used, whereas in CUJET3.0 [18], Λ⊥ =
√

6ET .
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Figure 5.3.: Behavior of q̂ for different λ, T = 1 GeV and different Λ⊥. Different values for the
screening mass are used. ξ = 0.814 is from [12], whereas ξ0 = 0.698 is the result
such that we match the soft result. In (b) both screening masses yield different
results than the analytic calculation. Λ⊥ ≫ T denotes (5.3), while Λ⊥ ≪ T
denotes (5.2).
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Figure 5.4.: Behavior of q̂ for λ = 10, T = 1 GeV, kmin = 0.01 and different kmax and
screening masses, ξ. The blue dashed curve, labeled Λ⊥ ≫ T is the analytic
result (5.3).
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Figure 5.5.: Numerical integration results of q̂ for T = 1 GeV, Λ⊥ = 11 GeV and different λ.
The dependence on kmin is shown. (Left) Here we use a continuous form for the
distribution function f and the exact value for the Debye mass mD. We see that
for the smallest values, kmin < 0.1 and λ = 0.01, the results are compatible with
(5.3) (dashed line). (Right) Here we use a discretized form for the distribution
function f and the Debye mass is calculated as a numerical integral.
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Figure 5.6.: Comparison of q̂ with bounds obtained from RHIC and LHC, (5.12). The cutoffs
used are given in physical units in (5.13). Different screening masses are used,
denoted by ξ = 0.814 and ξ0 = 0.698. We used kmin = 0.01 and kmax = 200.

Thus we use for Λ⊥

Λ⊥ =





T ≈ 370 MeV
√

6ET = 4.71 GeV√
4ET = 3.85 GeV

T ≈ 470 MeV
√

6ET = 5.31 GeV√
4ET = 4.34 GeV

. (5.13)

Because the only scale in our calculation is the temperature T , we can rescale everything
with T ,

Λ⊥
T

=





T ≈ 370 MeV 12.73
10.39

T ≈ 470 MeV 11.30
9.23

. (5.14)

We compare our results for different λ with these bounds in Figure 5.6. We find that
λ ∼ O(10). A value of λ = 10 corresponds to α = 0.27, see (2.16). The difference
between the different regularization masses is about 8 %.

5.2. Scaled thermal distribution
Let us consider a rescaled thermal distribution,

f(p; β, N0) = N0
eβp − 1 (5.15)
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and calculate q̂ without time evolution, i.e. at initial time t0.
As independent parameters we have

• the coupling λ = g2NC ,

• Temperature T = 1/β,

• N0.

Let’s assume that β = 1 GeV−1, i.e. we scale everything with the temperature. Then
we have two independent parameters, on which q̂ will depend. Every matrix element
comes with a factor g4 ∼ λ2, which we could factor out. Since the Debye mass scales
with N0λ, the scaled matrix element then depends only on N0λ,

λ2 M̃ab
cd (N0λ)

2
= Mab

cd(N0, λ)
2

. (5.16)

Then q̂ becomes

q̂ = 1
νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

−∞
dω

2k−ω

|ω|
dq

q2 sin2 θpq
|M̃ab

cd (N0λ)|2
p2 λ2fb(k, vk) (1 ± fd(k − ω, vk′)) . (5.17)

We can now consider the two terms separately and write

q̂ = λq̂f (N0λ) ± q̂ff (N0λ), (5.18)

with

λq̂f = 1
νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

−∞
dω

2k−ω

|ω|
dq

q2 sin2 θpq
|M̃ab

cd (N0λ)|2
p2 λ2fb(k, vk), (5.19)

q̂ff = 1
νa

1
29π5

bcd

2π

0
dϕ̃pq

2π

0
dϕkq

∞

0
dk

k

−∞
dω

2k−ω

|ω|
dq

q2 sin2 θpq
|M̃ab

cd (N0λ)|2
p2 λ2fb(k, vk)fd(k − ω, vk′). (5.20)

Note that f also contains a factor N0, which, together with λ combines to the N0λ
behavior in (5.18). Thus we can simulate q̂f and q̂ff with one independent parameter,
N0λ, and then add the second independent parameter later.

The behavior of q̂ for different λ and N0 is plotted in Figure 5.7. We have used
different values for λ, N0 in the code and checked that the result depends only on its
product λ · N0. We have seen in thermal equilibrium that there are different values for
the screening mass constant, ξ. We plot the difference in Figure 5.8. We find that the
difference is about 3 %.
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Figure 5.7.: Behavior of q̂ for a scaled thermal distribution, (5.15), for different λ, N0 and
different Λ⊥ for T = 1 GeV, kmin = 0.001 GeV, kmax = 80 GeV. The screening
mass used is ξ0 = 0.698 obtained previously. The curves have been normalized
to its maximum value at Λ⊥ = 5 GeV.
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5.2. Scaled thermal distribution
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Figure 5.8.: Behavior of q̂ for a scaled thermal distribution, (5.15), for different λ, N0 and ξ
as a function of Λ⊥ for T = 1 GeV, kmin = 0.001 GeV, kmax = 80 GeV.
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6. Conclusion, summary and outlook
In this thesis I have derived a formula for the jet quenching parameter q̂ that de-
scribes transverse momentum broadening of jets traversing the Quark-Gluon Plasma,
a state of matter that is created in heavy-ion collisions. The formula for q̂ is derived
from a framework called effective kinetic theory (EKT), of which we presented a short
overview. First, we derive the formula for finite jet momentum p and then take the
limit p → ∞, where we then need to introduce a cutoff in order to render q̂ finite.
The formula reproduces correctly the known soft limit in thermal equilibrium, but its
scope goes beyond that, as it can be used for different and even anisotropic distribu-
tion functions f(p). I have implemented the formula for q̂ in a C++ code simulating
the evolution of the distribution function f in effective kinetic theory. The formula is
implemented for anisotropic distributions. The code reproduces the analytic formulae
in thermal equilibrium and the off-diagonal elements q̂xy are zero. By comparison with
bounds obtained from RHIC and LHC experiments, we find that the coupling λ ≈ 12.
We have then extracted q̂ for a scaled thermal distribution.

We have found that the regularization parameter ξ in q̂ differs from its counterpart in
the matrix elements that describe the evolution in the EKT. This difference originates
from a different matching condition, and q̂ differs from the value of q̂ that employs the
usual isotropic screening prescription of the EKT by only a few percent (∼ 8 %).

The formula I have implemented in the code assumes infinite jet momentum, p → ∞,
and needs a momentum cutoff, but we also derived a formula for finite jet momentum p,
which in future can be used to compare these two approaches. Additionally, the code
can be used to extract q̂ in anisotropic systems, for example in systems undergoing
Bjorken expansion. However, both in the time evolution and in q̂ the assumption of
isotropic screening will produce an error which is yet to be quantified. A further pos-
sibility is to work on extending the derived q̂ formula and the current EKT framework
to take anisotropies into account.
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A. Mandelstam variables

Here we derive a formula for the Mandelstam variables defined in (2.87),

s = −(P + K)2, t = −(P ′ − P )2, u = −(K ′ − P )2, (A.1)

and use (3.58), (3.60), (3.98a) and (3.98b) to express them in terms of p, k, q, ω, ϕkq.
Also, we use that P 2 = K2 = P ′2 = K ′2 = 0.

First we start with t. Recall that we introduced Q = (ω, q) in (3.19) in such a way
that

q = p′ − p, ω − p′ − p. (A.2)

For t, we then insert

t = −(P ′ − P )2 = (p′ − p)2 − (p′ − p)2, (A.3)

from which we immediately obtain

t = ω2 − q2 . (A.4)

Next we insert for s,

s = −(P + K)2 = −2P · K = 2pk − 2p · k. (A.5)

Using (3.58) and (3.60), we obtain

s = 2pk − 2pk [sin θpq sin θkq cos ϕkq + cos θpq cos θkq] , (A.6)
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in which we can insert (3.98a) and (3.98b),

s = 2pk − 2pk 1 − ω

q
− q2 − ω2

2pq

1/2
1 − ω

q
+ q2 − ω2

2kq

2
1/2

cos ϕkq

+ ω

q
− q2 − ω2

2pq

ω

q
+ q2 − ω2

2kq
(A.7)

= 2pk 1 − cos ϕkq 1 − 1
q2 ω2 − ω(q2 − ω2)

p
+ (q2 − ω)2

4p2

1/2

× 1 − 1
q2 ω2 + ω q2 − ω2

k
+ (q2 − ω2)2

4k2

1/2

− ω2

q2 − ω(q2 − ω2)
2pq2 + ω(q2 − ω2)

2kq2 + (q2 − ω2)2

4pq2 (A.8)

= 2pq
q2 − ω2

q2
q2 − ω2

q2 − ω2 − ω

2p
+ ω

2k
+ q2 − ω2

4pk

− cos ϕkq 1 + ω

p
− q2 − ω2

4p2

1/2

1 − ω

k
− q2 − ω2

4k2

1/2

(A.9)

= 2(q2 − ω2)
q2 pk − ωk

2 + ωp

2 + 1
4(q2 − ω2)

− cos ϕkq p2 + ωp + 1
4(ω2 − q2)

1/2
k2 − ωk + 1

4(ω2 − q2)
1/2

(A.10)

We obtain

s = − t

2q2 (2p + ω)(2k − ω) + q2 − cos ϕkq (2p + ω)2 − q2 (2k − ω)2 − q2 ,

(A.11)

which can also be rewritten as

s = − t

2q2 (p + p′)(k + k′) + q2 − cos ϕkq [4pp′ + t] [4kk′ + t]


. (A.12)

Using

s + t + u = 0, (A.13)

we find

u = t

2q2 (p + p′)(k + k′) − q2 − cos ϕkq [4pp′ + t] [4kk′ + t]


. (A.14)
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