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Kurzfassung

Machine Learning (ML) hat sich zu einem zentralen Punkt in Forschung und Industrie
entwickelt und revolutioniert wie Daten in verschiedenen Sektoren analysiert und genutzt
werden. Ein Herzstück der Effektivität von ML sind beschriftete Daten, auf deren Grund-
lage diese Algorithmen lernen und Vorhersagen treffen. Da ML-Modelle immer komplexer
und umfangreicher werden, steigt auch ihr Bedarf an beschrifteten Trainingsdaten, was
eine große Herausforderung darstellt. Die Beschaffung von großen Mengen an beschrifteter
Daten stellt sich als schwierig heraus. Zeitreihendaten sind aufgrund ihres dynamischen
Charakters eine besondere Herausforderung - Zeitreihen wachsen und entwickeln sich
durch gleitende Fenster. Weiters können die Daten Änderungen der Beschriftungen, der
Beschriftungsregeln und sogar der subjektiven Interpretation dessen, was diese Beschrif-
tungen darstellen sollen, unterliegen. Darüber hinaus ist die Aufgabe der Beschriftung
selbst ein kostspieliges Unterfangen, vor allem aufgrund des hohen Zeit- und Ressour-
cenaufwands. Aufgrund dessen, sind in diesem Bereich neue Methoden entstanden, die
darauf abzielen, diese Herausforderungen zu bewältigen. Ein solcher vielversprechender
Ansatz ist die Anwendung von Weak Supervision in Verbindung mit Endmodellen. In
dieser Arbeit werden ein Beschriftungsworkflow und eine Demoanwendung entwickelt,
um die Leistung der Endmodelle und ihre Beschriftungsgenauigkeit zu testen und mit
traditionellen manuellen Beschriftungspraktiken und einem Supervised Ansatz als Bench-
mark zu vergleichen. Vorläufige Ergebnisse deuten auf den allgemeinen Nutzen dieser
fortgeschrittenen Techniken hin, obwohl die spezifischen Ergebnisse nicht verallgemei-
nerbar sind. Nichtsdestotrotz unterstreicht der positive Ausblick der Studienteilnehmer
hinsichtlich der Verwendung dieser Tools für die Kennzeichnung von Zeitreihendaten das
wachsende Vertrauen in alternative Kennzeichnungsstrategien und deutet auf eine poten-
zielle Veränderung der Art und Weise hin, wie Daten für ML-Anwendungen vorbereitet
werden.
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Abstract

Machine learning (ML) has become a cornerstone in research and industry, revolutionizing
how data is analyzed and utilized across various sectors. At the heart of ML’s effectiveness
lies the crucial need for accurately labeled data, the foundation upon which these
algorithms learn and make predictions. As ML models grow in complexity and size, their
thirst for vast amounts of data intensifies, presenting a significant challenge. Obtaining
accurately labeled data, especially for time series data, is difficult. Time series data is
particularly challenging due to its dynamic nature — time series continuously expand, and
evolve, labels and labeling rules undergo changes, and even the subjective interpretation
of what these labels should represent changes over time. Moreover, the task of labeling
itself is a costly endeavor, primarily due to the extensive amount of time and resources
required. The field has seen the emergence of new methodologies aimed at mitigating
these challenges, acknowledging the importance of labeling. One such promising approach
is the application of weak supervision in conjunction with end models. In this work, a
labeling workflow and demo application are developed to enable testing and comparing
the performance of end models and their labeling accuracy against traditional manual
labeling practices and supervised benchmarks. Preliminary results indicate the general
feasibility of these advanced techniques, although the specific results are not universally
generalizable. Nevertheless, study participants’ positive outlook regarding using these
tools for time series data labeling highlights growing confidence in alternative labeling
strategies, suggesting a potential shift in how data is prepared for ML applications.
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CHAPTER 1
Introduction

Many data science applications, particularly in research and industrial sectors, are
increasingly reliant on Machine Learning (ML) models. The efficacy and precision of
these models are heavily dependent on the availability and quality of training data. In
supervised ML, the significance of well-labeled training data is paramount, as these
models learn from input-output mappings provided during training. The labeled data is
crucial for the model to understand the relationship between input variables and their
corresponding output, enabling it to make accurate predictions when faced with new,
unseen data.

The task of acquiring accurately labeled training data is challenging in terms of time and
cost, especially in fields that require specialized knowledge for accurate labeling, such as
medical imaging or linguistic analysis [1, 2].

In the context of load forecasting and anomaly detection in distributed software systems,
the importance of accurately labeled time series data becomes even more pronounced.
These applications have unique requirements:

1. Load Forecasting: In distributed systems, load forecasting involves predicting
future resource usage and demand based on historical data. Accurate predictions
enable efficient resource allocation and system scalability. Labeled time series
data in this context aids the decision process of which forecasting model to apply,
allowing for more accurate, reliable, and resource-efficient forecasting.

2. Anomaly Detection: Anomaly detection in distributed software systems is crucial
for identifying unusual patterns that may indicate a problem, such as a potential
security breach or system failure. Labeled training data is essential for teaching the
model what constitutes normal and anomalous behavior. However, what constitutes
an anomaly is highly context-dependent and therefore requires flexibility in the
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1. Introduction

labeled dataset. Without accurately labeled data, the model may fail to recognize
critical anomalies, leading to delayed or inappropriate responses to system issues.

The process of labeling data in these applications faces several challenges:

1. Dynamic Data: New time series data continually added to the system must be
labeled manually, leading to a constant need for data annotation. Additional data
points in old data might also make relabeling necessary.

2. Rule Changes: Adaptations to labeling rules or criteria require existing data to
be relabeled, which can be time-consuming and may lead to inconsistencies.

3. Evolving Labels: Introduction or modification of labels necessitates updating
the training data with the changed labels to ensure that the model is trained on
current data.

4. Subjectivity in Labeling: Differing interpretations of labeling criteria by data
scientists can lead to inconsistent labeling, introducing bias and errors in the model.

The importance of labeled training data in supervised ML models, especially for load
forecasting and anomaly detection in distributed software systems, is fundamental to
their success. These models are trained to identify patterns and make predictions based
on their training data. Without a robust, accurately labeled dataset, their ability to learn
and make precise predictions is significantly compromised. This is particularly critical in
applications like load forecasting and anomaly detection, where inaccurate predictions or
failure to detect anomalies can have severe implications, affecting system performance,
security, and reliability.

Thus, obtaining high-quality labeled data is not merely a preliminary step but a crucial,
ongoing task that directly impacts the effectiveness and trustworthiness of ML models in
these advanced applications. The dynamic nature of datasets and the need for accurate,
scalable, and efficient labeling processes and tools are especially highlighted in the fields
of load forecasting and anomaly detection in distributed software systems.

1.1 Motivation
Automatic label generation emerges as a transformative solution in data science, offering
to enhance uniformity and accuracy in the labeling process while simultaneously reducing
the time and effort required for labeling. The implementation of this particular approach
proves beneficial, specifically in the case of handling large datasets where manual labeling
is not only impractical but also susceptible to inconsistencies and errors attributable to
human involvement [3].
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1.2. Research Questions

In recent years, various methodologies have been developed for labeling textual and
image data, prominently featuring the concept of weak supervision [4, 5, 6, 7], auto-
encoders [8, 9], and self-supervised learning [10, 11, 12, 13]. Weak supervision learning
represents a paradigm shift in how machine learning models are trained compared to
supervised learning. It utilizes imperfect or limited supervision signals, making it a fitting
method to aid in the automated label-creation process. This approach recognizes that
while the supervision signals may not be perfect, they are adequate to guide the model
towards meaningful learning. This is especially useful when dealing with large datasets
where obtaining perfectly labeled data is impractical or too costly.

The goal is to adapt these principles to the realm of time series data. Time series
data poses unique challenges in labeling. This work aims to let users define and apply
heuristics, the so-called labeling rules or labeling functions, to sets of time series data.
This allows them to programmatically generate a collection of labels without the need to
individually fit complex and costly statistical models to each time series. By leveraging
these heuristics, large volumes of time series data can be efficiently labeled, a task that
would be unfeasible with traditional labeling methods.

An innovative approach is proposed by chaining already existing tools and providing a
user interface to reduce the costs and efforts associated with labeling time series data.
This approach empowers data scientists and domain experts to engage in an iterative
process of exploring and labeling time series data, by creating, applying, and refining
labeling rules, and by learning from these noisy heuristics. These resulting data sets are
larger and more comprehensive than previously hand-labeled datasets which is crucial
for training more accurate and effective supervised machine learning models.

1.2 Research Questions
The aim of this thesis is to evaluate the feasibility of an ML supported labeling workflow.
During this thesis, we will explore the following research questions (RQs):

1. How effective are simple heuristics and weak supervision in labeling time series
data compared to manual labeling? How effective is this approach compared to a
supervised approach with less data?

2. How can the labeling workflow be designed for time series data? How can users be
aided in the process of writing labeling functions?

3. Which classification models are superior in generalizing beyond weakly labeled time
series data and what are the potential trade-offs?

1.3 Methodological Approach
We will utilize a methodological approach based on the widely recognized CRISP-DM
process model, by Wirth and Hipp [14] in order to address the previously presented
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1. Introduction

research questions. The approach will entail a comprehensive review of the latest literature,
tools, and applications related to data labeling prior to assessing the suitability of tools
for weak supervision labeling use cases. We will prepare a collection of time series data
for testing purposes. A labeling application will be designed and developed to enable
testers to demonstrate the application and generate data. The data generated from the
labeling process will be used to scrutinize the modeling performance and applied models,
and to gain valuable insights.

1.4 Structure
The thesis is structured in the following way. Chapter 2 provides a comprehensive
background about machine learning, performance metrics, and weak supervision, before
introducing the classification models used in the application. Furthermore, the necessities
for data preparation and the fundamentals of data labeling are introduced. Chapter 3
presents the latest research on data labeling approaches, before focusing on already
available tools and the distinction of this work. Chapter 4 outlines our approach and the
implementation. The methodology and the results can be found in Chapter 5. Chapter 6
follows up with a discussion of the results based on the posed research question and takes
threats to validity into consideration. Chapter 7 concludes this thesis. Supplemental
material can be found in Chapter 8.
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CHAPTER 2
Background

2.1 Machine Learning
A brief overview of the historical inception of machine learning will be presented, as
outlined by Zhi-Hua Zhou [15], before delving deeper into the relevant concepts for this
thesis. The concept of machine learning was first mentioned by A. Turing in his 1950
paper [16]. This period also saw the development of A. Samuel’s computer checkers
program and the early stages of neural-network-based connectionism learning, exemplified
by F. Rosenblatt’s Perceptron [17] and B. Widrow’s Adaline [18]. Coinciding with the
broader field of artificial intelligence, the focus during this era was on logical reasoning.
A seminal contribution was the Logic Theorist program by A. Newell and H. Simon [19],
which successfully proved theorems from "Principia Mathematica" [20]. This period was
characterized by the belief that machine intelligence could be achieved through logical
reasoning.

The period of the years from 1950 to 1970 witnessed the growth of logic-representation-
based symbolism learning and decision-theory-based learning. It was also during this
time that the foundations of statistical learning theory were laid. The mid-1970s marked
a shift in focus towards knowledge acquisition, led by researchers like E. A. Feigenbaum.
This era saw the creation of successful expert systems in various fields. However, the
challenge of converting knowledge into a format suitable for machine learning, known as
"Feigenbaum’s knowledge acquisition bottleneck," became apparent [21].

By the 1980s, machine learning had established itself as a distinct field within computer
science. This decade was marked by key events such as the First International Workshop
on Machine Learning 1 and the publication of "Machine Learning: An Artificial Intelligence
Approach" [22]. Between the 80s and the mid-90s decision trees, neural networks and

1http://www.machinelearning.org/icml.html
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2. Background

Actual Class
P N

P TP FPPredicted Class N FN TN

Table 2.1: Confusion Matrix

support vector machines gained prominence until culminating in today’s big data era
with the emergence of deep learning.

In the present era, machine learning has emerged as a promising solution to tackle
numerous complex problems and enhance various applications. The three fundamental
problems that serve as the building blocks of machine learning are: Classification,
Regression, and Clustering. These problems are so versatile that most of the real-world
problems can be derived from one of these three categories or a combination of them.

The task of label generation can be categorized as a classification task. Having established
the problem category, it is now pertinent to consider the approach to measuring its
performance.

Performance Measures

Machine learning models are evaluated based on various performance measures [23].

These measures are derived from the confusion matrix, as illustrated in Table 2.1, which
is a 2x2 matrix that represents the classification results in the case of binary classification.
The matrix consists of four elements: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). TP represents all correctly classified positive
instances, while TN represents all correctly classified negative instances. FP represents
all falsely classified positive instances, while FN represents all falsely classified negative
instances [24].

Hence, the confusion matrix allows for a quick overview of the amount of type I errors
(FP) and type II errors (FN) and is, moreover, a useful tool for calculating the model’s
performance metrics [25].

There are several commonly used measures that can be derived directly from the confu-
sion matrix, including accuracy, precision, recall, error rate, f1-score, and many more.
Therefore, the confusion matrix is an important tool for evaluating machine learning
models.

When it comes to classification problems, accuracy, and error rate are the most commonly
used performance measures. However, to gain a better understanding of the model’s
performance, independent of the dataset, a decision was made to use precision, recall,
and the F1-score. The accuracy and error rate, while often useful, can be misleading in
unbalanced datasets.
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2.1. Machine Learning

Accuracy is the proportion of correctly classified samples. In a binary classification
problem, this is defined as follows in Equation 2.1:

Accuracy = TP + TN

TP + TN + FP + FN
(2.1)

while in multiclass classification it is simply defined as depicted in Equation 2.2.

Accuracy = correct predictions

all predictions
(2.2)

We have opted to omit the error since the error rate is the inverse of the accuracy, as
illustrated in Equation 2.3. Typically, these values are given in percentages.

Err = 1 − Accuracy (2.3)

Precision is the amount of rightly identified positive instances divided by all positively
classified ones. It is therefore given as the following fraction, in Equation 2.4,:

Precision = TP

TP + FP
. (2.4)

Precision is a necessary measure because accuracy does not paint the whole picture.
Especially, in unbalanced datasets it can happen that there is a high accuracy as it is
only predicting one class. This, however, does not mean that the predictions are right.
Therefore, precision offers another dimension.

Recall on the other hand measures how many of the positive instances have been
identified correctly and is illustrated by Equation 2.5.

Recall = TP

TP + FN
(2.5)

The final performance metric we are using is the so-called F1-score, given in Equation 2.6.
The F1-score is the harmonic mean of precision and recall and will thus provide a more
balanced picture of the model performance.

F1 = 2 · Precision · Recall

Precision + Recall
(2.6)

After defining the measures, the next step is to determine where and how to apply them.
This leads us to the crucial aspect of cross-validation, which involves validating the
performance of the measures across different datasets to ensure their accuracy, precision,
and reliability.
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2. Background

(a) K-Fold Cross Validation (b) Leave-One-Out Cross-Validation

Figure 2.1: Cross Validation Methods Visualized [26]

Cross-Validation

Cross-validation is a crucial technique in machine learning used to evaluate a model’s
performance on unseen data while minimizing the risk of overfitting. The technique is
widely used in various fields, including machine learning, to assess a model’s generalization
ability. The process involves dividing a sample of data into complementary subsets,
where one subset is used for training, and the other subset is used for validation [26, 27].
There exist diverse methods of cross-validation, however, we will focus on examining the
following three techniques. It is imperative to note that each method is unique in its
own way and is used to validate and refine the performance of predictive models. Hence,
understanding the differences between them is crucial when deciding on the most suitable
technique to use for a given dataset [28, 29].

K-fold cross-validation is a popular variation where the data set is divided into K
equal-sized subsets, and the analysis is repeated K times, with each of the K subsets used
once as the validation data. This method helps to ensure that every data point is used
for both training and validation. A visual representation can be found in Figure 2.1a.
This is an efficient method for small and large datasets, can, however, cause high
variability in estimates, by being sensitive to the choice of folds. Increasing K increases
the computational workload until K equals the sample set size and we are essentially
performing the next type of cross-validation introduced below.

Leave-One-Out Cross-Validation (LOOCV) is another variation of cross-validation
displayed in Figure 2.1b, where the model is trained on all the data except one point and
tested on that single point. This process is repeated for each data point in the dataset,
making it an exhaustive and expensive approach. It is especially useful for small datasets
because there is a minimal amount of bias and causes high computational costs for large
datasets.

The Stratified Cross-Validation is a modification of K-fold cross-validation that
ensures that each fold of the dataset has the same proportion of observations with a given

8



2.1. Machine Learning

categorical label. This technique is especially beneficial in situations where the dataset
is imbalanced with unequal representation of categorical labels [30] and improves the
model assessment. The major drawback of this method is the increased implementation
complexity.

After the completion of each fold in a cross-validation process, the performance measures
are computed and recorded. These measures are then stored for later analysis and
comparison. Finally, to get an overall estimate of the model’s performance, the recorded
measures are averaged across all the folds.

Cross-validation is a fundamental technique in machine learning that aids in the evaluation
and selection of models. While it does have its limitations, such as computational expense
and variability, its ability to provide a more accurate assessment of a model’s predictive
performance is well worth it. The choice of a particular cross-validation approach is
influenced by the unique requirements of the problem at hand, as well as the characteristics
of the data.

2.1.1 Learning Types
The two most common machine learning types are supervised and unsupervised learning.
These types cover the widest array of machine learning topics and problems. However,
label generation for time series data, and in general, lies somewhere in between these types,
hence there is also the category of weakly- or semi-supervised learning that combines the
two types to solve a specific subset of problems [31].

Supervised Learning

In supervised learning an algorithm receives a set of examples with known labels as
training data. The algorithm then uses this data to make predictions for new, unseen data
points. This type of learning is commonly used for classification, regression, and ranking
problems. For instance, in the case of the often cited spam detection, the algorithm is
trained with a set of examples labeled as spam or not spam, and then it can classify new
emails, comments, or other textual content as either spam or not spam based on what it
learned during training.

Unsupervised Learning

In the case of unsupervised learning, the learner exclusively receives unlabeled training
data and makes predictions for all unseen points. It is most commonly used for clus-
tering problems to recognize patterns in complex data. This also makes evaluating the
performance of the learner difficult.

Weakly Supervised Learning

Now, weakly supervised learning, also called semi-supervised learning is situated in
between. There are two possible scenarios where the application of weak supervision

9



2. Background

can lead to better results. Either there is data available, but not all data points are
labeled or there is data available with imprecise labeled data which makes training and
generalization more difficult. Therefore, semi-supervised learning is commonly applied
in settings where unlabeled data is easily accessible but labels are expensive to obtain,
which is the case for labeling time series data. Various other types of problems arising in
applications, including classification, regression, or ranking tasks, can also be framed as
instances of semi-supervised learning which is why large systems commonly use some
form of it already [32]. The evidence also points in the direction that the error rate scales
in the same way as for labeled data [6].

There are, of course, more types of machine learning including reinforcement learning,
online learning, and active learning. However, as mentioned above, labeling time series
data fits perfectly into the category of weak supervision tasks.

2.1.2 Models for Classification Problems
After having determined that weak supervision is the appropriate tool for the issue, we
will explore the potential models and their functionalities. A table outlining the pros
and cons as well as data set sizes can be found at the end of the section in Table 2.3.

The problem can be formally described in the following form, assuming a binary clas-
sification problem for the sake of keeping the length of the section at an appropriate
level.

In classification problems, we have a set of input features called X and want to map
these to so-called labels or classes y. The mapping is achieved by applying a function
f to X to receive the labels y. We are trying to find and tune f so that it resembles
an unknown relation R as closely as possible. This is achieved by adapting the model
parameters so that the difference between the input labels and the model predictions is
minimized.

Formally, let Xi = (x1,i; x2,i; ...; xd,i) be a data point in a set X with N points where
0 < i ≤ N . (x1,i; x2,i; ...; xd,i) with d > 0 are called independent variables or features of a
certain data point Xi. There is no limitation on the type of the features.

Let y = (y1, y2, ..., yN ) be the output for the same N points, 0 < i ≤ N , also called
dependent variables, these are, in the case of binary classification, either 0 or 1. More
generally, the classification element is given as element y of a finite set S and |S| = 2 in
binary classification.

The mathematical foundation of the mapping is given in Equation 2.7.

R(Xi) = yi → f(Xi) ≈ yi (2.7)

A representation of the resulting feature matrix resulting from this definition is shown in
table 2.2.

A summary of the following models can be found at the end of Section 2.1.2 in Table 2.3.

10



2.1. Machine Learning

x1,i x2,i ... xd,i yi

X1 x1,1 x2,1 ... xd,1 y1
X2 x1,2 x2,2 ... xd,2 y2
... ... ... ... ... ...
XN x1,N x2,N ... xd,N yN

Table 2.2: Sample feature matrix including the y label vector per feature.

Logistic Regression

Logistic regression is a statistical technique that is commonly used to analyze a dataset
with one or more independent variables that determine the outcome of a dependent
variable. The outcome is a dichotomous variable, which means that there are only two
possible values. Therefore, this model is extensively used for binary classification in
various fields, such as machine learning, medical sciences, and social sciences, hence it is
also applicable for the use in the project.

The model not only provides a binary output for classification but also generates a
probability score for the outcome. It is often considered a good baseline model for
classification tasks because of its simplicity and ease of interpretation, and its ability
to handle large feature sets efficiently. However, there are some limitations. Logistic
regression assumes that there is a linear relationship between the independent and
dependent variables, which means that it might not perform well in scenarios where the
relationship is not linear. Additionally, it may not work well with unbalanced datasets.

We will now briefly introduce the mathematical foundation of logistic regression based
on the book written by B. Hosmer and S. Lemeshow [33].

(a) Logistic function curve: This is a standard
logistic function, and it has a typical "S" shape
(sigmoid curve) [34]. (b) Logistic function fitted to data2.

Figure 2.2: Logistic functions visualized.
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2. Background

The logistic function in Figure 2.2a, given by Equation 2.8,

y = 1
1 + e−z

, (2.8)

is the base for the logistic regression, where e is the Euler’s number and therefore the
base of the natural logarithm, and z is an input to the function.

The odds of an outcome are then modeled by the probability as shown in Equation 2.9.

odds = P (y = 1|x)
1 − P (y = 1|x) (2.9)

To linearize the relationship between the independent variables and the probability, we
take the logarithm of the odds, which is modeled by Equation 2.10.

logit(P ) = log( P (y = 1|x)
1 − P (y = 1|x)) (2.10)

Logit stands for logistic unit [35]. As already described earlier, the relationship between
independent and dependent variables is assumed to be linear and is given by the following
Equation 2.11, where βi for 0 ≤ i ≤ d are regression coefficients mapping the effect of d
independent variables on the outcome.

logit(P ) = β0 + β1 ∗ x1 + β2 ∗ x2 + ... + βN ∗ XN (2.11)

This leads to the desired logistic formula in Equation 2.12.

y = 1
1 + e−(β0+β1∗x1+β2∗x2+...+βN ∗XN ) (2.12)

In the last step, the coefficients are estimated to get definitive values for classification.

During training or so-called fitting, these coefficients are estimated by the Maximum
Likelihood Estimation (MLE). MLE seeks to find the set of parameters that maximize
the likelihood of observing the sample data.

The logistic regression model can be modified to address problems with more than two
potential outcomes, transitioning to a multinomial logistic regression to accommodate
multiclass issues. While this adaptation involves several changes, a detailed discussion
falls beyond the scope of this brief overview. However, for those interested in exploring
the intricacies of this extension, the chapter "Polytomous Logistic Regression" in "Applied
Logistic Regression Analysis" by Menard [36], which provides a comprehensive exploration
of the subject, is recommended.

2https://towardsdatascience.com/logistic-regression-explained-9ee73cede081,
accessed 04.01.2024
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Probabilistic Models

Other models assume that any input provided does not contain any uncertainty. However,
in the context of weak supervision, models that work with uncertainty can improve
the outcome. Two probabilistic models based on the classic Bayes’ theorem, shown in
Equation 2.13, are the probabilistic logistic regression model and the Naive Bayes model.

P (y|X) = P (X|y) · P (y)
P (X) (2.13)

Probabilistic Logistic Regression There are various adaptions for the logistic
regression model to incorporate uncertainty [37, 38, 39, 40], but one specific probabilistic
model is the Bayesian logistic regression as described by A. Johnson et al. in their book
Bayes Rules! [41]. Bayesian logistic regression undergoes the following changes from the
standard logistic regression. In the standard model, the values we are estimating for βi

are fixed. This means that once the training is completed we assume to know the values.
The Bayesian model on the other hand assigns prior distributions to the coefficients
instead, e.g., βi ∼ Normal(µ, σ2), or other probability distributions, depending on the
need. As a result, we get our prior distribution, P (β).

Once the prior distributions are defined we use Bayes’ theorem to calculate the posterior
distribution, P (β|data), of the parameters:

P (β|data) ∝ P (data|β) ∗ P (β) . (2.14)

In addition to the prior, we use the likelihood of observing the given data, P (data|β),
under the assumed logistic model parameterized by β. Instead of the single logistic
function, we have derived earlier, we need to calculate a distribution of predicted outcomes,
which is given by

P (y = 1|x, data) = 1
1 + e−(β0+β1∗x1+β2∗x2+...+βN ∗XN ) P (β|data) dβ (2.15)

Lastly, the parameter estimation needs to be changed from MLE to a Bayesian inference
method to estimate the posterior distribution of β.

Naive Bayes Johnson et al. [41] also present the Naive Bayes model in their book.
The classifier utilizes Bayes’ theorem to compute the probability of each category given
a set of features. This probability is calculated by multiplying the probability of each
feature given the category by the prior probability of the category. The algorithm then
chooses the category with the highest probability as the prediction for the given input.
Furthermore, there is an independence assumption is made that features are conditionally
independent given the class label.

Naive Bayes can yield highly accurate prediction models but compared to the probabilistic
logistic regression it lacks the regression coefficients, causing a loss of information on the
relationships between the variables.
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Figure 2.3: Graphical illustration of support vector machine (SVM) working principles [46]

Support Vector Machines

Another popular model choice for classification problems developed in the mid-1990’s by
Vapnik et al. in machine learning are Support Vector Machines (SVMs) [42, 43, 44, 45].
The underlying principle of SVMs is to identify a hyperplane that distinctly classifies
data points in an N-dimensional space, where N represents the number of features in the
dataset.
Given a dataset {(x0, y0), (x1, y1), ..., (xN , yN )} where N is the number of data points and
yx ∈ {−1, 1}, we want to find the hyperplane with the maximum distance between the
nearest points of each category, as can be seen in Figure 2.3. The features are represented
as a d-dimensional vector, for each of the N data points.
Given this, the hyperplane is defined in Equation 2.16.

wtx − b = 0 , (2.16)

where w is the normal vector to the hyperplane and b is a scalar offset, called bias. The
aforementioned maximum distance can then be described as 2

||w|| . In 1995, Vapnik and
Cortes [43] coined the term support vectors for the data points closest to the hyperplane
because conceptually only these influence the decision function.
The goal of maximizing the distance between the points and the hyperplane is achieved
by minimizing ||w||2 subject to yi(wt ∗ xi − b) ≥ 1, for all i, where 0 ≤ i ≤ N .
However, most classification tasks are not as clear-cut, which results in a need for various
approaches to mitigate the issues. One approach is using soft margins by introducing
an additional slack variable allowing for misclassification. Another trick that is applied
to most SVMs is the kernel trick. This involves mapping the input data into a higher-
dimensional space where a linear separation will become possible.
Similar to logistic regression an adaption to SVMs is necessary in the case of multinomial
classification. In the space of SVMs there are two main techniques to adapting to fit
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more classes: one-versus-all (OvA) and one-versus-one (OvO). In the OvA approach a
separate binary SVM is trained for each class to distinguish that class from all others,
resulting in as many SVMs as there are classes. In the OvO approach, an SVM is trained
for every pair of classes, leading to C2−C

2 SVMs for C classes compared to the C SVMs
in the OvA approach. Both methods classify each data point in each SVM and apply a
voting mechanism or probability calculation afterward to get a final label. Depending
on the number of classes this can be a computationally expensive process. One positive
aspect of these approaches is, however, that applying soft margins and kernels is still
possible.

Tree-based Ensemble Methods

The following ensemble methods are built upon decision trees. Decision trees are tree-like
classifiers, where branches are decisions and leaf nodes are outcomes. They can be
based on branching strategies of various complexity, but the decisions are overall easy to
interpret and understand. However, decision trees are sensible to overfitting, especially
on deep trees. This is where ensemble methods shine, utilizing multiple decision trees
and aggregating the results for a final prediction [47].

Random Forest Classifier A random forest classifier is a variation of a decision
tree [48]. It is designed to reduce bias and sensitivity to the training data by creating a
forest of decision trees, most often based on subsets of the data, and combining their
predictions. The algorithm works by randomly selecting subsets of features and samples
from the training data to create indipendent decision trees. This allows for parallel
execution and also helps to ensure that the trees are diverse and not overfitting to the
data.The final prediction is then made most often by a majority voting on the predictions
of all the trees in the forest.

This approach can improve the accuracy and robustness of the model, making it a popular
choice in many applications.

Gradient Boosting Classifier Gradient Boosting Classifiers are flexible in regard to
choosing their learners and while most often based on decision trees, can be based on a
variety of models, including linear models such as logistic regression or support vector
machines. Compared to the random forest classifier, the models are built sequentially
and correct errors made by the previous models in a process called "boosting" [49]. In the
final aggregation step, the results are summed up and learners with a higher precision
are given more weight.

For the computational and time cost brought on by the sequential execution gradient
boosting classifiers can achieve even higher accuracy on complex data compared to
random forest classifiers but are therefore also prone to overfitting.

Table 2.3 summarizes key facts about the models in this section.
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Classifier Pros Cons Optimal Data Size Feature Scale

Logistic Regression • Efficient
• Interpretable • Assumes linearity between features Small to Medium Low to Moderate

Probabilistic Logistic Regression • Can deal with uncertainty
• Good for small datasets

• Complex
• Computationally expensive Small Low to Moderate

Naive Bayes • Fast
• Interpretable

• Assumes feature idependence
• Poor performance with correlated Medium to Large High

Support Vector Machine • Works in high dimensional space
• Versatile • Sensitive to noise Small to Medium High

Random Forest Classifier • Can handle large datasets
• Can handle missing values

• Complex
• Computationally expensive Medium to Large High

Gradient Boosting Classifier • Effective • Prone to overfitting
• Complex Medium Moderate to High

Table 2.3: Summary of model stats, pros and cons.

2.2 Data Preparation
Nevertheless, before any machine learning model can be applied to data there is an
inherent need for preparing the data beforehand. The preparation is a multi-stage process
from collection to feature extraction.

2.2.1 Data Collection

Data collection is the first step in any data analysis. It involves gathering information from
various sources to build a dataset that meets specific needs. This process is particularly
critical for time series data, where observations are recorded sequentially over regular
intervals. The quality, reliability, and consistency of data collection directly impact the
accuracy and validity of subsequent analysis.

For time series data, it is essential to ensure consistent intervals, such as hourly, daily, or
monthly, and comprehensive data with minimal gaps or missing periods. Depending on
the project, data can be collected from sensors in real-time, historical records, databases,
or public data repositories. The goal is to collect a dataset that accurately represents
the issue and has minimal errors. Having no erroneous data points is impossible in most
cases.

This stage often also involves setting up appropriate data collection mechanisms, ensuring
data integrity, as well as addressing data privacy and ethical issues, especially when
dealing with sensitive or personal information [50].

2.2.2 Data Cleaning

Especially when dealing with time series data, data cleaning is necessary, due to the
sequential nature of the data and its dependency on time-based consistency. The primary
objective of data cleaning is to identify and correct anomalies, fill in missing values, and
remove noise while preserving the underlying patterns and trends of the time series.
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Data cleaning techniques for time series data can be more complex than other data types.
For instance, handling missing values might involve techniques such as interpolation [51,
52, 53], where missing data points are filled in based on the values of nearby points, or
imputation [54, 55, 56], where statistical methods are used to estimate missing values.
Outliers, or extreme values that significantly deviate from the rest of the data may need
to be adjusted or removed, depending on their nature and impact on the overall data
analysis [57].

From the survey on time series data cleaning approaches by Wang and Wang [58], we
can conclude that while some approaches might have very little overhead they might not
be accurate because they can alter correct data and that the approach should be chosen
depending on the problem as not every approach is suitable.

Therefore, effective data cleaning is crucial as it impacts the reliability and accuracy of
subsequent analyses. Poorly cleaned data can lead to misleading results, making this
step a fundamental part of any time series analysis process.

2.2.3 Feature Extraction
Once the data is cleaned up, features can be engineered and extracted. Feature engineering
is the process of analyzing a set of time series and creating features, by applying
mathematical and statistical operations on the time series [59]. These features are
often based on domain knowledge so that they are representative of the time series
characteristics. Feature extraction from time series data involves distilling these important
characteristics or attributes from the raw data into a more manageable set of data points
or features by applying a set of operations on the time series. To gain an understanding
of the underlying distribution of the data, statistical features are extracted over the
complete series or with a sliding window approach. These features include, for example,
the mean and variance, the skewness, and kurtosis. Furthermore, this process is focused
on identifying patterns, trends, and relationships within the time series that are significant
for the analysis or predictive modeling. Common methods include Fourier transforms to
capture periodic patterns and seasonality and wavelet transforms for decomposing the
time series into different frequency components. Autocorrelation features can be used to
quantify how the current value of the series is related to its previous values. However,
features that extract more information and have more difficult underlying math have a
significantly higher increase in computational cost if the time length of the time series
increases.

In recent years, there has been a surge in tools and approaches for feature extraction
as the relevance of data analysis continues to rise [60, 61, 62, 63]. T. Henderson and B.
Fulcher have shown that feature extraction is a promising approach to tackling industry
and scientific problems but that a selection of features still has to happen since there are
lots of correlations between features making them redundant [64]. A. Renault et al. [65]
have shown in their paper that tsfresh and catch22 are among the best performers
in feature extraction for classification tasks.
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Figure 2.4: Set of example time series for feature extraction.

Raw Data Mean Variance Skewness
TS1 [0.19, 0.06, 0.25, 0.36 ... 7.12, 7.25, 6.69, 7.36] 4.35 4.05 -0.65
TS2 [4.5, 4.64, 3.99, 2.47 ... 15.91, 14.85, 14.51, 16.27] 8.28 21.67 -0.11
TS3 [0.68, 0.8, 0.9, 1.12 ... 1.82, 1.4, 1.38, 1.26] 1.48 0.13 0.05

Table 2.4: Feature extraction table

Feature extraction therefore aims to transform the raw time series data into a set of
representative features that encapsulate the distinguishing information in a form that is
more amenable to analysis or machine learning algorithms.

An example illustrates the process of converting raw time series data, as shown in
Figure 2.4, into a feature matrix, which is presented in Table 2.4. The example time
series data is created using a cumulative sum over 50 random predictions, and scaling
the resulting series by a negative value.

2.3 Data Labeling
Now that we have defined our models and have prepared our data we are going to focus
on the labeling aspect. The history of data labeling is closely tied to the history of
machine learning. From 1950 onwards data was manually labeled, the knowledge age
did not change much. With the establishment of machine learning as a distinct field,
there was a rise in semi-automated, machine-supported labeling. From 2000 onwards
crowdsourcing services like Amazon’s Mechanical Turk gained popularity allowing the
outsourcing of the labeling to a human workforce [66, 67].

In more recent years approaches have emerged that try to eliminate the need to label
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Figure 2.5: A time series that can be labeled seasonal with an annotated outlier

data such as self-learning and unsupervised learning, as well as approaches to leverage
machine learning to generate labels, such as in the case of weak supervision.

2.3.1 Annotation and Labeling
While these words are often used interchangeably there is a difference.

Time series labeling or classification involves assigning a label or category to an entire
time series or specific segments of it. Labels are predefined categories or classes. For
instance, in a time series data of stock prices, periods could be labeled as "bull market"
or "bear market" based on the trend observed in the data. Labeling is commonly used in
supervised learning, where these labels serve as training data for models to learn from.
Data labeling is usually performed on larger sets of data.

On the other hand, time series annotation, while similar to labeling, involves providing
more detailed information or notes to specific points or intervals in the time series
data. Annotations can include labels, but they can also provide additional context
or explanations. For instance, in a time series of weather data, a sudden spike in
temperature might be annotated with a note mentioning a heatwave event during those
days. Annotations are helpful for data analysis and interpretation, providing insights
that might not be evident from the raw data itself. Annotation is typically done on single
or small batches of time series [68].

In summary, labeling is about categorizing or classifying data, while annotation is about
enriching data with additional context or information. Both are essential in data analysis,
particularly when working with complex time series data, where understanding the
nuances and patterns over time is crucial, an example is shown in Figure 2.5.

2.3.2 Gold Labels
The task of labeling is both challenging and time-intensive, driving the push towards
automating the labeling process. Given that large models require vast datasets, the
manual labor involved in labeling this data represents a significant cost. Automating
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parts of this process aims to mitigate these issues by reducing the need for manual
intervention.

In assessing the effectiveness of automated labeling approaches, the metrics established
earlier can be applied. The main challenge, however, lies in establishing a benchmark for
comparison. These benchmark or "ground truth" labels are known as gold labels. These
gold labels are supposed to be right and hence are used for evaluating the accuracy of
any labeling tool. Despite their importance, it is important to acknowledge that these
gold standards are not flawless either. Human-generated labels are susceptible to errors
and exhibit bias [69, 70, 71].

This reality further underscores the potential value of automated labeling methods and
brings us directly to the next chapter about the current state of data labeling.
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CHAPTER 3
Related Work

This chapter provides a broad overview of the research directions in regard to data,
and more specifically time series data, labeling from a research, as well as a practical
application perspective.

3.1 Related Research
The research area of label generation for machine learning training data has been gaining
significant traction in recent years, emerging as a critical domain in the field of artificial
intelligence. This growing interest stems from the fundamental role that accurately
labeled data plays in the development and performance of machine learning models.
While there are many promising results in the recent research one main hindrance for
comparison is the lack of standardized benchmarks [72]. The current research directions
can be broadly categorized into the following four approaches.

3.1.1 Deep Learning and Neural Networks
These approaches leverage complex and novel neural network architectures to extract
meaning full features and classify time series data seemingly without the need for manual
input.

Zhao et al. (2017) [73] explored deep learning techniques to improve labeling performance
and developed a novel convolutional neural network (CNN) for time series classification.
They showed that their CNN outperforms the state-of-the-art methods at the time,
by automatically internalizing the structure of the input time series. However, their
approach is limited by the fact that the time series need a fixed length, as well as by the
time it takes to train the network and adapt its parameters.

Fawaz et al. (2019) [74] re-implemented nine end-to-end deep learning classifiers and
evaluated their accuracies for 85 univariate time series data sets. They show in their
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review that deep neural networks can be highly effective in time series classification, with
advanced architectures bringing significant improvements in uni- and multivariate time
series classification tasks.

Yu et al. (2021) [75] apply recurrent neural network (RNN) based autoencoders to
multivariate time series and evaluate the performance of different variations. Their main
findings are that contrary to the general practice of rearranging the sequence of input
and output time series this has no significant benefit. Furthermore, they show that
only gated RNN architectures are able to encode time series data and that there is no
significant difference between the gated architectures they studied. Lastly, they show
that bidirectional RNN autoencoders slightly outperform unidirectional ones.

3.1.2 Semi-Supervised Learning and Weak Supervision
Semi-supervised and weak supervision approaches are applicable if there is a subset of
labeled data and a large set of unlabeled or inaccurately labeled data. These methods
are designed to enhance and learning efficiency and performance on large data sets. The
methods are not necessarily based on classifying time series data.

Ratner et al. (2018) [76] propose a framework that allows them to break down problems
into sub tasks, solving them individually and noisily. After combining the results in a
matrix and solving the completion problem they achieved better labeling performances.
They have shown that their approach improves the end model performance on a named
entity recognition, relation extraction, and medical document classification problem,
compared to a hand-labeled approach, a majority voting model, and a prior weak
supervision denoising approach.

The work of Khattar et al. (2019) [77] is directly based on the work of Ratner et al.
(2016) [6]. They use programmatic labeling and apply weak supervision learning to
wearable sensor data of patients with Parkinson’s to predict a negative progression in
their health. They are able to show that their performance comes close to the performance
of hand-labeled data.

Wang et al. (2022) [78] propose a framework that allows them to include unreliable
pseudo-labels into their image classification model. They show that their proposed
semi-supervised semantic segmentation framework outperforms many state-of-the-art
methods. However, the increased performance necessitates an increased amount of time
needed for training.

3.1.3 Time Series Classification with Specific Techniques
This section will delve into a range of specialized techniques designed to classify time
series data. These methods are distinct from the approaches described earlier and are
particularly useful when dealing with complex or unconventional data sets. By providing
an overview, we hope to gain a broader understanding of how else time series data can
be analyzed and classified.
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In their review, Gonzalez et al. (2018) [79] compared self-labeling techniques from semi-
supervised classification models. They conducted experiments on 35 different datasets
using various learning schemes. The researchers concluded that the nearest neighbor rule
is a reliable option, and multi-classifier self-labeled approaches show promising results.

Abanda et al. (2019) [80] conducted a review of classifiers that use distance-based
techniques for time series analysis. They studied various approaches, such as the 1
nearest neighbor (1-NN) classifier and its derivatives, as well as methods that use distance
measures to construct features and kernel constructing approaches. The study found
that the newer approaches outperform the plain 1-NN classifier and can close the gap to
traditional classifiers. However, these new approaches also come with new weaknesses
that should be taken into consideration.

3.1.4 Self-Supervised Learning
Self-supervised learning is a paradigm of unsupervised learning. It represents another
shift from traditional learning, which relies on labeled datasets, to unsupervised learning
paradigms that allow machines to generate their own supervision signals. Through
unsupervised learning, self-supervised models generate data representations that can
be used in subsequent machine learning stages. This approach has shown promise in
reducing the need for large labeled datasets, thus making it an appealing area of research
in recent years.

While most of the aforementioned research is about generating labels, Spathis et al.
(2022) [81] focus their work on avoiding the need for labels. They demonstrate the
potential of self-supervised models in the domain of intelligent health, though these
models can incur high computational costs. Another main issue that arises in health
monitoring is the considerable gap between Proof of Concepts (PoCs) and production
deployments and the heterogeneity of the sensors on the market. Furthermore, in their
review, Rani et al. (2023) [82] emphasize the broad applicability of self-supervised
learning, specifically through tasks in healthcare and computer vision.

Each group of papers reveals significant insights and advancements in their respective
areas, showcasing the diverse approaches to the ever-present topic of data labeling.

3.2 Available Tools
We have analyzed eleven tools or frameworks for their applicability in the realm of data
labeling and annotation. We took a closer look at the following tools and outlined their
main use and unique selling points. While we made no difference in the previous section
between the main approaches to labeling data, we are going to differentiate now. To
group available tools, we separated them by their focus in regard to classifying whole
data or annotating parts. Further, we have grouped the tools according to their data type
and lastly listed tools using weak supervision and programmatic labeling. A summary of
the outlined tools can be found in Table 3.1.
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3.2.1 Data Labeling and Annotation Tools
Amazon SageMaker Ground Truth [83] is a data labeling service by Amazon that
is fully managed and proprietary. It is designed to create accurate training datasets
for machine learning, and it uses a combination of automated and human-in-the-loop
labeling processes. This service enables the labeling of large volumes of data including
images, text, and videos. It also allows users to hire a workforce to manually label the
training data and provides access to the Amazon Mechanical Turk workforce for this
purpose.

Label Studio [84] is an open-source platform that provides extensive flexibility and
customizability for data annotation across various data types, including images, text,
audio, and video. Its adaptability to different project requirements and support for
collaborative labeling make it ideal for diverse and complex data labeling tasks. The
main focus of the tool is however data annotation, rather than labeling big datasets.

Prodigy by Explosion AI [85] is also a commercial annotation tool that excels in
rapid and efficient data labeling, particularly in Natural Language Processing (NLP) and
image annotation. It integrates active learning to improve annotation efficiency, making
it an excellent choice for quickly refining and improving the quality of labeled data.

Labelbox [86] is a versatile tool that provides capabilities for both data annotation and
labeling, with a focus on annotation. It supports creating custom labeling interfaces and
collaborative labeling features, making it an ideal choice for those who want to customize
their interfaces and collaborate with others while labeling data.

Rubrix [87] is an open-source tool focused on labeling and monitoring data for NLP
models. Rubrix is designed for data exploration and integrates human feedback into the
model training process. Its streamlined annotation process for NLP, with a focus on
integrating human insights into the machine learning workflow, makes it an excellent
choice for those looking for an efficient and collaborative tool.

3.2.2 Time Series Data Tools
Visplore [88] specializes in visualization and exploration of time series data, particularly
useful for industrial and sensor data analysis. Its high-performance data analysis with a
focus on interactive exploration makes it ideal for complex industrial datasets.

Trainset by Geocene [89] is a tool specifically designed for annotating time series data,
valuable in applications involving sensor data or sequential data. Its dedicated focus on
time series data and user-friendly interface for labeling such data make it an efficient and
easy-to-use tool.

3.2.3 Weak Supervision and Programmatic Labeling Tools
Snorkel [6] is an open-source framework that uses weak supervision to generate labeled
datasets. Its programmatic approach to labeling reduces the need for extensive manual
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Tool Name Mainly Used For Focus Cost
Amazon SageMaker Ground Truth [83] Various types (images, text, video) Labeling Subscription (AWS services)
Label Studio [84] Various types (images, text, audio, video) Annotation & Labeling Free and Paid Plans
Visplore [88] Time series data Annotation & Labeling Subscription-based
Trainset by Geocene [89] Time series data Annotation Free (Open-source)
Snorkel [6] Various types Labeling Free (Open-source)
WeaSEL [4] Various types Labeling Free (Open-source)
Prodigy by Explosion AI [85] Various types (NLP, images) Annotation Commercial (One-time purchase)
Labelbox [86] Various types (images, text) Annotation & Labeling Free and Paid Plans
Rubrix [87] NLP Annotation & Labeling Free (Open-source)
Reef (formerly Snuba) [90] Various types Labeling Free (Open-source)
Darwin NLP Labeling Research/Not Publicly Available

Table 3.1: Data Annotation and Labeling Tools

labeling, making it an efficient choice for those looking for a faster labeling process for
large datasets. One of the significant benefits of this approach is also the ability to
easily update and improve the labeling functions based on model performance. However,
the quality of the labels produced is heavily dependent on the quality of the labeling
functions designed by the users and the gold labels the model is evaluated against. Poorly
designed functions or bad gold labels can lead to inaccurate labels. As a result, effective
labeling functions require a thorough understanding of both the data and the domain.
Another point is that it is recommended to train an end model with the generated labels
to increase the performance and generalize over the labeling functions.

WeaSEL (Weakly Supervised End-to-end Learning) [4] is designed for weakly
supervised learning, integrating model training into the weak supervision process. Its end-
to-end learning approach, which encompasses both label generation and model training,
is particularly suited for complex machine learning tasks. WeaSEL aims to eliminate the
need to separately train an end model by directly binding it into the label generation
process. However, WeaSEL does not provide a way to generate the initial set of labels
and it is recommended to use WeaSEL in conjunction with Snorkel to generate the initial
heuristics that are used for the approach.

Reef [90] focuses on utilizing weak supervision by utilizing partially labeled data and
a feature matrix to extract new labels. The aim is to strongly limit human input
and therefore save cost. However, Reef only supports binary classification limiting its
applicability in many ways.

Darwin [5] is an academic project focusing on automatically generating labeling heuristics
based on an initial rule. The aim is to reduce the human input and to generalize from
good heuristics by getting input from the annotator. They were able to show improved
performance with their rules compared to Reef. Darwin is however not publicly available.

3.3 Distinction from Current Research and Tools
While there is an abundance of data labeling and annotation software available in the
market, it is notable that the majority of these tools have not been designed with a
primary focus on time series data. This data type, characterized by its sequential nature
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and temporal dependencies, presents unique challenges and opportunities for analysis
and interpretation. Among the available tools, Snorkel and WeaSEL stand out due to
their innovative approach to data labeling, leveraging machine learning techniques to
automate this often tedious process. However, a significant limitation of these tools is
their lack of a graphical user interface (GUI) for the detailed analysis and development of
labeling rules and their subsequent results. This is a crucial aspect as a GUI can greatly
enhance the user experience, making the tool more accessible and intuitive, especially for
users who are not proficient in programming.

The distinct gap in the market is, therefore, the absence of tools that specialize in the
exploration and labeling of batch time series data. This specialization would ideally
involve the utilization of already developed models and strategies that are tailored for
time series data, enabling more accurate and efficient labeling. The proposed tool aims
to fill this gap by providing a comprehensive and user-friendly interface that facilitates
the exploration and labeling of time series datasets.

Furthermore, the overarching goal of developing such a tool is to investigate the feasibility
of this approach specifically for time series data. Time series datasets are prevalent in
various domains such as finance, healthcare, and software system monitoring. Hence,
a tool that efficiently labels and annotates this type of data could have significant
implications for these fields. It could enable more effective data analysis, leading to better
decision-making and advancements in these sectors. The development of this tool could
thus be a pivotal step in enhancing the capabilities of data analysis and interpretation in
the context of time series data.
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CHAPTER 4
Label Generation

The initial idea for automated label generation is based on the research in Section 2 and
builds directly upon the frameworks in Section 3. Therefore, we want to develop a machine
learning supported label generation process, decreasing the need for human labeling.
Transferring the research on weak supervision labeling for other data types to time series,
we should be able to achieve this by leveraging a combination of labeled and unlabeled
time series data, along with a set of newly created labeling functions that encapsulate
pertinent labeling properties, and weak supervision models. The labeling functions should
be designed, as well as refined, by domain experts for optimal performance. To make
designing and refining labeling functions as easy as possible a graphical user interface
should be used. A more detailed approach is outlined in the following Section 4.1 and
followed by the specific implementation in Section 4.2

4.1 Approach
Tackling the idea we iterated through versions of data and workflows, evaluating various
subtasks of the labeling process. With the first idea formalized in Figure 4.1, the limiting
factor proved to be in the amount of computation time necessary for time series feature
extraction. During testing, it has proven to be infeasible to compute time series features
on the fly because these calculations can take anywhere from minutes to hours depending
on the amount of time series in the analyzed set. As a result, time series feature extraction
has been decoupled from the labeling step, shown in Figure 4.2. Therefore, all time
series features are calculated beforehand, to enable interactive exploration and labeling.
Once a feature matrix is calculated, time series and features can be used for exploration.
Users should be able to create labeling functions utilizing the feature matrix and get a
preemptive result of the effect of the labeling function. Once there are enough functions
for the labeling model to vote on results, the labels can be calculated for a ruleset.
The data set will then be weakly labeled with the labeling functions and is inspectable
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Figure 4.1: Initial labeling workflow flow chart
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Figure 4.2: Labeling workflow with decoupled feature extraction

afterward. Finally, the data will flow into a classification model to generalize above the
labeling heuristics.

In a final iteration, the workflow and approach has been adapted and extended to include
all necessary steps for labeling and evaluation. The final label generation workflow,
shown in Figure 4.3, was conceptualized to utilize two sources for time series data and
predefined labels. The time series data should be provided directly through a database,
while the pre-existing labels are read from a .csv file and matched to the respective
time series. The raw time series data undergoes a preparation step to handle any missing
values, after which features are extracted from the data to create a feature matrix (FM).
This results in two versions of the FM: one without ground truth labels and another that
includes ground truth labels.

Within the scope of the demo application, as indicated by the green box, labeling rules
are applied to the FM that lacks ground truth labels, producing an FM that now contains
rule-based labels. This FM is subjected to visual testing to assess the extent of changes
introduced by the rule-based labeling. If significant changes are observed, the users
should cycle back to refine the labeling rules. If the changes are minor, the labeling
can proceed to the next phase. The feature matrix including the gold labels will be

29



4. Label Generation

split into training, test, and validation sets. In the case of the demo, the validation set
is completely separated so that any bias of users can be avoided. The train and test
set are then used to train and evaluate a surrogate model. If the labels are deemed
unsatisfactory at any point, the users should loop back to enhance the labeling rules or
adapt the model parameters, improving the preliminary labeling result. Once the labels
meet the satisfaction criteria, the label model is considered validated, concluding the
process that has been implemented within the demo application. This enclosed part of
the flow represents the iterative development and validation of a labeling system designed
for a time series data application.

4.2 Implementation
We have chosen to use Python as a programming language because it offers a vast
amount of frameworks and dependencies in the area of machine learning that allows rapid
development. The frameworks have been evaluated individually for their capabilities and
functional interaction in Databricks3 notebooks. We will now give an overview of the
main frameworks and dependencies used in the project.

Frameworks and Dependencies

Streamlit4 is an open-source Python library allowing developers to rapidly build data
dashboards, visualizations, and interactive reports. Streamlit integrates seamlessly
with most major data science and machine learning libraries, making it appealing for
prototyping and a good choice for the project. However, one major drawback of Streamlit’s
simplicity is that on every state change, be it a callback or any other change, the whole
script reruns. This makes implementation easy in many cases for small prototypes but
turns out to be limiting the development in the later stages when larger amounts of data
are used.

While Streamlit already offers a large number of so-called widgets for visualization and
interaction with the platform, there are many functionalities missing, such as buttons to
switch between pages or define dynamic rows. This is where Streamlit-extras5 provides
missing quality-of-life features and widgets.

Streamlit-authenticator6 provides a way to store and retrieve user data. The idea
was to make the labeling as collaborative as possible, hence an authentication service
was needed to distinguish between users.

Pandas7 and Numpy8 provide the foundation for time series data manipulation and
calculations in the application.

3https://www.databricks.com/
4https://streamlit.io/
5https://arnaudmiribel.github.io/streamlit-extras/
6https://github.com/mkhorasani/Streamlit-Authenticator/
7https://pandas.pydata.org/
8https://numpy.org/
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4.2. Implementation

Figure 4.3: Conceptual labeling and data flow. The green box highlights the parts
included in the prototype implementation.
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The PoC is centered around Snorkel9, which is a library that enables users to create and
manage training data using labeling functions. These functions speed up the generation
of labeled datasets compared to manual labeling. Snorkel also simplifies the process of
developing and iterating machine learning models by enabling quick modifications to the
labeling functions, which can be immediately reflected in the training data.

scikit-learn10 and PyTorch Lightning11 are two powerful libraries in the Python
ecosystem that cater to different aspects of a ML pipeline. scikit-learn is widely recognized
for providing an extensive suite of tools for data preprocessing, model selection, and
evaluation [91]. This makes it an ideal choice for the project. In contrast, PyTorch
Lightning is an extension of the PyTorch framework that aims to simplify the deep
learning process. It eliminates the need for much of the boilerplate code required in
vanilla PyTorch, enabling to focus more on the research aspect of the models. As a result,
it provides a structured and scalable approach to building custom models. Together,
these libraries build a robust foundation for the surrogate models in the application.

In contrast to Snorkel, WeaSEL12 takes an end-to-end learning approach. The model is
learned directly by maximizing its agreement with probabilistic labels generated using a
neural network to reparameterize previous probabilistic posteriors. Even though, WeaSEL
is therefore more of a holistic model making another end model obsolete, it is used as a
so-called surrogate model in the application. Furthermore, Snorkel also enables generating
a label matrix, which is crucial as input for the WeaSEL model.

Lastly, we are using SQLAlchemy13 as a database connector. SQLAlchemy enables the
creation of SQL schemas by defining the entities in the project, which makes switching
between databases easier in case more or different functionality is necessary.

Architecture

In order to prepare the data for the demo, a separate project has been created which
contains various scripts for loading, manipulating, and processing the data. The main
demo application is divided into two separate projects: the demo project and the surrogate
model project. These two applications communicate with each other through remote
procedure calls. The separation of these two applications was necessary because Streamlit
processes caused issues during the Pytorch Lightning training of the models. It is
important to note that the demo is a standalone application that currently offers one
scikit-learn logistic regression model, but more advanced models are only available if
both applications are up and running. The demo application is fully containerized with
Docker14 and compose, and the startup is automated using a script.

9https://www.snorkel.org
10https://scikit-learn.org/
11https://lightning.ai/docs/pytorch/stable/
12https://github.com/autonlab/weasel/
13https://www.sqlalchemy.org/
14https://www.docker.com/
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4.2. Implementation

Model Input Features Input Labels Example Label Input
scikit-learn Logistic Regression Feature Matrix Label Predictions [0]
Pytorch Lightning Logistic Regression Feature Matrix Label Probabilities [0.13 0.87]
Pytorch Lightning Probabilistic Logistic Regression Feature Matrix Label Probabilities [0.13 0.87]
WeaSEL Model Feature Matrix Label Matrix [0 2 0 1 1]

Table 4.1: Surrogate Model Inputs

4.2.1 Models
The following section is split into models provided by Snorkel for the initial labeling and
our surrogate models for generalizing beyond the labels generated by Snorkel.

Snorkel Models

Once at least three labeling functions have been designed, they can be used in conjunction
with the label models to get preliminary labels and their respective probabilities. Snorkel
provides two out-of-the-box label models for users. We have decided to allow users to
choose whichever model they prefer. Additionally, there is a choice of how to proceed in
case the model ties in multiple classes.

Snorkel Majority Vote The Snorkel Majority Vote model is a method of combining
labels from individual labeling functions and assigning each time series the label that
received the most votes. This model has several advantages, such as predictability and
ease of understanding. Additionally, it does not carry any kind of bias that more advanced
models might have. In cases where the majority voting model is unable to decide on a
label, the tie-break policy will be used to resolve the issue and an equal probability is
assigned to each of the majority classes.

Snorkel Label Model This label model is based on the approach by Ratner et
al. [76] The Snorkel Label Model is designed to understand and utilize the conditional
probabilities of Labeling Functions (LFs) in producing the accurate, yet unobserved,
label Y, symbolized as P (lf |Y ). This is achieved by learning a model based on these
probabilities and then applying it to adjust and integrate the labels given by the LFs.
Using this approach they were able to improve the performance compared to a majority
voter model on average by 6.3 points.

Surrogate Models

The surrogate models, in the literature also called end-models, are utilized to further
generalize the labels and possibly find patterns in the data beyond what has been specified
in the labeling functions. There is an immeasurable amount of possibilities for choosing
end models and fine-tuning them for a problem. We have decided to focus more on
simplistic models for the performance evaluation.

33



4. Label Generation

scikit-learn Logistic Regression (SKL Log Reg) The scikit-learn Logistic Regres-
sion is the baseline model used. The main benefit of the model is the fast performance
and that it is available directly in the demo application without running the backend
supplying the more sophisticated models. Another convenient feature of this model is
that it offers a multinomial logistic regression out-of-the-box. To run the model a feature
matrix and a vector containing the label prediction is necessary.

PyTorch Lightning Logistic Regression (PTL Log Reg) This model is a basic
logistic regression implementation using the Pytorch Lightning framework and proba-
bilistic input labels instead of the label predictions by the label model. This model needs
the feature matrix and an n × m matrix, for n time series and m labels, to accurately
model the label probability. The model code is illustrated in Listing 4.1.

1 self.model = nn.Sequential(
2 nn.Linear(input_size, hidden_size1),
3 nn.ReLU(),
4 nn.Linear(hidden_size1, hidden_size2),
5 nn.ReLU(),
6 nn.Dropout(0.1),
7 nn.Linear(hidden_size2, output_size)
8 )

Listing 4.1: Pytorch Lightning Logistic Regression Model

PyTorch Lightning Probabilistic Logistic Regression (PTL Prob Log Reg)
using Monte Carlo Dropout The foundation and inspiration for the probabilistic
approach were the "Probabilistic Logistic Regression with TensorFlow" article by L.
Roque [92] and the "Introduction to Bayesian Logistic Regression" article by M. Kana [93]
about the implementation of probabilistic methods for logistic regression. Yet, the
undertaken approach is only a way to estimate the uncertainty and not a full Bayesian
inference approach. This model is used to gauge if more advanced models might make
sense to be included. This model, as shown in Listing 4.2, has the same input as the
previous Pytorch Lightning model.

1 self.model = nn.Sequential(
2 nn.Linear(input_size, hidden_size1),
3 nn.ReLU(),
4 nn.Dropout(0.1), # Dropout layer for Bayesian approximation
5 nn.Linear(hidden_size1, hidden_size2),
6 nn.ReLU(),
7 nn.Dropout(0.1), # Another Dropout layer
8 nn.Linear(hidden_size2, output_size)
9 )

Listing 4.2: Pytorch Lightning Probabilistic Logistic Regression Model

WeaSEL Model This model is an application and adaption of the model defined
by S. Rühling Cachay [4]. In contrast to the other models, this model utilizes the
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complete labeling matrix by Snorkel and does not depend on the Snorkel labeling models.
Furthermore, the WeaSEL model has a mechanism to integrate the probabilistic labels
into the downstream model. Hence, the model takes the feature matrix and an n × m
matrix, for n time series and m labeling functions, as shown in Listing 4.3.

1 endmodel = MLPNet(dropout=0.3, net_norm=’none’, activation_func=’ReLU’,
input_dim=features.shape[1],

2 hidden_dims=[10, 10, 5], output_dim=n_classes)
3
4 weasel = Weasel(
5 num_LFs=labels.shape[1],
6 n_classes=n_classes,
7 temperature=2.0,
8 accuracy_scaler=’sqrt’,
9 use_aux_input_for_encoder=True,

10 class_conditional_accuracies=True,
11 encoder={"hidden_dims": [32, 10]},
12 optim_encoder={"name": "Adam", "lr": 1e-4},
13 optim_end_model={"name": "Adam", "lr": 1e-4},
14 scheduler=None,
15 end_model=endmodel,
16 )

Listing 4.3: WeaSEL Model Definition

4.2.2 Database Design

The database structure (Figure 4.4) comprises several interconnected tables each serving
a specific function. The User table stores basic information about users, including ID,
name, and email. Labeling Task holds details about labeling tasks, such as task ID,
name, data URL, and labels. Ruleset links to User and Labeling Task tables, containing
ruleset ID, name, user ID, and labeling task ID. Gold Label records the ground truth
labels for tasks, referencing Labeling Task and User tables through task ID and user ID.

Rule table contains individual rules, linked to the Ruleset table via ruleset ID. Finally,
Labeling Result table tracks the outcomes of labeling efforts, including links to Labeling
Task, Ruleset, and User tables. These tables collectively support a comprehensive system
for managing labeling tasks, rules, and results, emphasizing relationships among tasks,
users, rulesets, and labeling outcomes.

The database was initially designed around SnowflakeDB with the feature of storing
semi-structured data as VARIANT inside the labeling results. However, to make the
demo available to a wider audience and guarantee reproducibility in a non-commercial
environment a switch to SQLite was necessary. The VARIANT fields were converted to
VARCHARs which meant a loss of functionality from the database side.

15Diagram created with https://dbdiagram.io/d
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Figure 4.4: Database relations visualized15.

In the demo application the database is created from the model entities should it not
exist upon startup. A translation of the process can be done to extract an equivalent
database creation file using SQLAlchemy.

4.2.3 Functionality and User Interface
Home

The Home page is the first page a user lands on when opening the application in the
browser. It introduces the demo, a sample task, and the use case, as well as links to the
additional information page in case there are any open issues. In case a user arrives on
the Home page for the first time there is also an authentication section. If a user is not
authenticated, none of the other pages are navigable and the application redirects to
the Home page. The intention is less to keep intruders out but to gain insight into who
worked on and labeled which part. Once logged in, everything is usable.

Sidebar

Furthermore, once a user is authenticated, the Sidebar on the left-hand side displays
the name of the authenticated user, the selected labeling task, and the labeling ruleset.
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Figure 4.5: Labeling Result Overview

Labeling tasks and rulesets can be changed at any point in the application via the
drop-down menus on the sidebar. Changing a labeling task can incur a waiting period
because the time series data has to be loaded into the context so that the application
can display the data correctly. Changing the ruleset does not incur any waiting time.

Labeling Result Overview

The Labeling Result Overview in Figure 4.5 consists of two tables. The first table, "Scores
per Labeling Run", is indexed by labeling runs and shows the label and surrogate model
performance per run, the used labeling ruleset, as well as the model types that were used
to achieve the performance. The chosen display metrics are the model performances
compared to the entered gold labels. This means that users should enter some gold
labels for the results to be reliable. Further, we have to note, that these runs, and
respective results, are subject to change, should additional gold labels be added. The
results are sortable by each category and are used to give users an overview of past
labeling performances of a specific labeling task. Additionally, there is a column with go
to checkboxes. When ticking a checkbox a user will be forwarded to the labeling page, in
Figure 4.14, with the previous parameters, allowing users to continue their efforts, as
well as letting different users build on the already achieved performance.
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Figure 4.6: Labeling Task View

The second data frame, "Labels per Timeseries", allows users to inspect individual time
series in conjunction with the labeling results. This table is indexed by time series and
each labeling run is a column and the respective assigned label per time series. Users
can gather additional information on how the performance of a specific run was achieved.
Furthermore, users can take an even more in-depth look when clicking on the go to
checkbox in this table, allowing them to view the time series, all features, and the labeling
results on a time series analysis page, in Figure 4.19b.

Labeling Tasks

The labeling page comprises two tabs, the first tab called "Tasks", in Figure 4.6, offers
insight into the selected labeling task. This tab provides a comprehensive overview of
the available time series and features, the number of gold labels, and the number of
existing labeling results. Additionally, the user can access information on the available
labels for the given task. Lastly, there is a list of expanders for already created rulesets,
specifying exactly how many labeling results per ruleset have been created. Based on
this information, users can create a ruleset or view the existing labeling results.

The second tab, called "Options", in Figure 4.7, offers the possibility to add gold labels
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Figure 4.7: Labeling Task Options

should the feature matrix already contain some. These gold labels can only be added
before any gold labels have been added by hand to avoid overwriting more recent labels.
Furthermore, the labels can only be matched correctly if the label text matches exactly.
Below the option for the existing task, there is another option to create a new labeling
task. To create a new labeling task several properties must be specified. Every labeling
task needs a name, as well as a Data URL, this is where the feature matrix is located.
Moreover, the directory where the raw time series are is needed as well for displaying
them and lastly, users need to provide at least two labels for the application to work. The
ABSTAIN label will be created automatically in the background. The edit and deletion
options have been hidden during the demo runs.

Rulesets

The ruleset page, in Figure 4.8, follows the pattern established on the labeling task
page. There are again two tabs. The first tab, called "Rulesets", displays the created
rules in expanders. Once expanded each shows the respective rule and the labels for
either condition. There are two main types of rules, as will be established in the next
Section 4.2.3. If rules have been created with the Free Form Rule Creator there is a
leading (*) to indicate that these rules do not follow the basic structure. Rules with a
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Figure 4.8: Ruleset View

leading (*) only show their name and the labeling code as displayed in Figure 4.8.

The options tab of the ruleset page only allows for creating more rulesets. The edit and
deletion options have been removed for the use case.

Rule Creators

The application features three different rule creators, namely, the Simple Rule Creator in
Figure 4.9, the Advanced Rule Creator in Figure 4.11, and the Free Form Rule Creator
in Figure 4.11. These rule creators can be split into structured (Simple and Advanced)
and unstructured (Free Form) rule creators. To allow for this behavior there are two
mechanisms for transforming the string input into executable labeling functions.

The Simple Rule Creator, as well as the Advanced Rule Creator, follow a structure where
users can provide the conditional part of an if-then-else construct, while the condition
will be negated for the else part. Users can then choose the label they want to apply to
the left or right part of their conditional.

For the translation of the input string to an executable labeling function we need to
wrap all features contained in the rule in a lookup, as can be seen in Listing 4.4. The
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lookup function called in the wrap_lookup method is a local function that is used in
the local context to link the features to the function. Furthermore, the function uses a
regex pattern to match all possible features excluding matching for partial feature names.

1 def wrap_lookup(self, rule, features):
2 for f in features:
3 def replace_feature(matchobj):
4 return str(matchobj.group(0)).replace(f, ’lookup(x, "’ + f +

’", feature_matrix)’)
5
6 rule = re.sub(r’([(<>=)&| ]|^)’ + f + r’([(<>=)&| ]|$)’,

replace_feature, rule)
7 return rule

Listing 4.4: Method wrapping the features in a lookup function that has been put into
the program context earlier.

The Free From Rule Creator allows a user to write what is close to a standard Python
function, with the exception that assignments are not allowed. The allowed input can be
a sequence of if-then-else statements nested as far as needed. The features are wrapped in
the same war as above but the Free Form Rule Creator needs additional attention because
there is a limitation regarding the Snorkel library where the outermost if-condition has
to be closed. To compensate for a shortcoming of Snorkel and to avoid users having to
close the condition manually there is a check that adds the outermost else clause with an
ABSTAIN label, should it not be there, as shown in line 5 of Listing 4.5.

The full labeler then compiles and executes all functions and retrieves them from the
context to be passed forward.

1 lf = "def {}(x):\n{}".format(
2 rule_name, self.wrap_lookup(rule.rule, features))
3
4 if lf.count(’if’) > lf.count(’else’):
5 lf += ’\n\treturn ABSTAIN’ % close the outermost if

statement if it has not been closed to avoid issues with snorkel
6
7 compiled = compile(lf, filename="<string>", mode="exec")
8 exec(compiled)
9 lfexec = locals()[rule_name]

10
11 new_lf = LabelingFunction(name=rule_name, f=lfexec)

Listing 4.5: Creating executable labeling functions from strings

All rule creators offer the possibility to name the rules for easier communication with
other developers when collaborating on the same task or problem. In case a rule has no
name, the rule expanders will display the first 25 characters and internally an ID will be
assigned for working with these unnamed rules.

Simple Rule Creator The Simple Rule Creator, in Figure 4.9, is a useful tool that
allows you to explore your data by selecting features, setting the condition, adjusting
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Figure 4.9: Simple Rule Creator

the value slider, or setting the value manually via the number input. When you change
the feature, the slider is automatically set to the median value. This feature helps you
visualize the distribution of the data, making it easier to identify patterns and trends.

In addition, the tool comes with a "Show Statistics" expander that displays important
information such as the minimum value, maximum value, median, and first and third
quantiles. This feature is particularly useful for identifying outliers and understanding
the overall distribution of your data. By analyzing this information, you can gain valuable
insights that can help you make informed decisions.

To improve the exploratory experience, each time series is represented as a dot in the time
series rule list below to give users a sense of scale during exploration. This helps users
easily discern the proportions of data that have been labeled a certain way. Additionally,
when a time series is given a gold label, it will be highlighted in green if the gold label
and the label from the label function are the same, and in red if they are different. This
allows users to quickly assess how their function is performing and improve it as more
time series are labeled manually.

If users desire more detailed information, they can choose to display thumbnails for
the time series, in Figure 4.10. The number of thumbnails can be adjusted using a
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Figure 4.10: Time Series View of Simple Rule Creator

number input. To quickly browse through the data set, there is a button called "Shuffle
thumbnails" changing the displayed time series on each side of the labeling condition.
The time series thumbnails follow the same color pattern as the dots: green for matching
labels and red for incorrect labels.

Advanced Rule Creator The Advanced Rule Creator, in Figure 4.11, operates on the
same principles as the Simple Rule Creator but allows users to use logical connectives to
join conditions together. A limitation is that everything is contained in one if-condition.
This makes it impossible to assign more than two labels. Since the rule creator is also
free-text-based, but limited to the if conditional part, there is an expander located on
the bottom of the page with all available features. However, it is recommended to start
exploration with the Simple Rule Creator.

Free From Rule Creator The Free Form Rule Creator, in Figure 4.12, allows users to
assign multiple labels and create complex labeling functions by chaining conditionals and
return statements. With this tool, it is possible to use the index of the labels or the label
in all capital letters with spaces switched to underscores as a return statement. This
means that users can easily create labeling functions that are tailored to their specific
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Figure 4.11: Advanced Rule Creator

needs and requirements while refreshing every change to see if the changes are what is
desired.

Figure 4.13 shows the time series thumbnails and rule list for three labels for the currently
selected sample labeling task and the sample labeling function of Figure 4.12. It also
applies here that matching labels are green and incorrect labels are red. The ABSTAIN
label will always take the rightmost column and can never be green, since this is not a
valid label for a time series.

Labeling

The Labeling page, in Figure 4.14, is a main part of the application and the place
where the models live. It consists of four parts, namely, the labeling properties, in
Figure 4.15, the labeling results data frame, the labeling function analysis, in Figure 4.16,
and the surrogate model analysis, in Figure 4.17. Once a user navigates to this page a
first preliminary labeling step will occur creating a baseline for the user and allowing a
familiarization with the result metrics.

44



4.2. Implementation

Figure 4.12: Free From Rule Creator

Labeling Properties The Labeling Properties expander, in Figure 4.15, is the main
input component for the labeling workflow. This is the place where all configuration
takes place. Due to the nature of Streamlit rerunning the script on every change, every
change to the properties will result in a recalculation of the label model. The changes
will be displayed in the three sections below. The Labeling Properties expander is split
into the same sections that our proposed workflow is, namely the Snorkel Label Model,
here called Snorkel Model, and the Surrogate Model. These parts change according to
the input possibilities of the selected models. The possible model input parameters are
listed below.

List of the model parameters for the Snorkel Label Model:

• Snorkel Model: The snorkel model is used for evaluating the labeling rules.
There are two models available, the label model and the majority model. More
information about the models can be found in Section 4.2.1.

• Epochs: The number of epochs to train (where each epoch is a single optimization
step).

• Seed: A random seed to initialize the random number generator with.
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Figure 4.13: Time Series View of Free Form Rule Creator

• Tie Break Policy: What the model does in case of a tie. Either abstain,
random, or true-random. True-random is not encouraged since it makes results less
reproducible.

• Only use selected labeling functions: If the ruleset contains many rules, there
is the option to exclude some.

List of model parameters for the Surrogate Model:

• Surrogate Model: Selection between the four available surrogate models from
Section 4.2.1: A scikit-learn Logistic Regression, a PyTorch Lightning driven logistic
regression, a PyTorch Lightning driven probabilistic logistic regression, and the
WeaSEL model using a multilayer perceptron (MLP) Net as end-model.

• Restart Surrogate Model Training: In case the input parameters do not change
the model will not be retrained. If you want to retrain for any reason, click this
button.

• Use Gold Labels (where available): This replaces the labels from the Label
Model with the available Gold Labels for training the Surrogate Model.
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Figure 4.14: Labeling View

• Use only the same features as the Snorkel Model: The feature matrices
contain many features. Not all of them are representative of the task you want to
achieve, therefore, the pre-selection is true. If more features are needed that are
not already included via the labeling functions they can be added in the additional
features multi-select below.

• C and Solver: These are scikit-learn parameters for the logistic regression. More
information can be found in the scikit-learn documentation16.

• Number of Stratified K-Folds: Sets the K, the number of folds, for an evaluation
metric. Has no real influence on training and solely allows to gauge the generalization
capabilities.

Labeling Function Analysis As the name suggests the labeling function analysis 4.16
shows data that is related to the outcome of the labeling model. The first table is
a labeling function analysis that Snorkel provides. For each rule we get the polarity,

16https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html/
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Figure 4.15: Labeling Properties

meaning which are possible labels the rule applied, based on the evidence of the created
labeling matrix. Furthermore, there are also coverage, overlaps and conflicts outlined. All
values are between 0 and 1, where one is 100% of all time series. The coverage describes
how much of the dataset was covered by a rule. The overlaps value is a fraction of the
amount of time series with more than one label and the conflicts is the fraction of data
with more than one different label.

The next metric row displays the label model accuracy compared to the manually added
gold labels with the previously established metrics of accuracy, precision, and recall. This
should allow users to gain a first insight into the performance of their labeling functions
in regard to what they have set as ground truth without the application of a surrogate
model. This can be especially interesting in contrast to the gold label scores from the
surrogate model analysis allowing users to quickly glance if applying the surrogate model
brings an improvement.

The label model properties enable the exclusion of rules, while rules can include many
different features. In the following sections, the features used for the label model are
listed, followed by an expander in case the labeling rules require inspection.
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Figure 4.16: Labeling Function Analysis

Surrogate Model Analysis The Surrogate Model Analysis, in Figure 4.17, provides
users with metrics in regard to the surrogate model performance. There are five sections
providing in-depth model metrics. Since we are interested in the model’s generalization
capabilities the stratified K-fold from the properties is applied during prediction, the
scores are extracted and provided to the user to compare to the other metrics. The
gold label scores can be considered the most important scores, considering there is a
substantial amount of labeled data already available. The users want to maximize these
scores and compare them directly to the label function analysis metrics to see if the
scores improved with the chosen model. Furthermore, there are the label model scores in
the surrogate model analysis, these are predicted when the data is trained on the whole
set as recommended by Zhou [25]. In addition to these scores, there is also the feature
matrix available in an expander at the bottom of the page. Lastly, the surrogate model
also displays the features used, since it is possible to apply a bigger feature matrix to
the surrogate model in case there are significant features available that have not been or
could not be translated to labeling functions.

Time Series Analysis The Time Series Analysis page, in Figure 4.5, is the last
component of the application allowing users to view and analyze individual time series.
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Figure 4.17: Surrogate Model Analysis

There are two main pathways to this page, each being a ’go to’ button inside a data
frame, either on the labeling results page or on the labeling page. Depending on the
path taken, the bottom section displays different information. This is also the only page
that includes a full, non-scaled-down, version of the time series graph since loading the
data can cause performance issues. Above the chart, there is a select box allowing a user
to set or change the gold label of a time series. Below the chart, there are all available
features for the time series and the respective values. This should allow users to look
up specific values for a time series. Depending on the path taken, the bottom of the
page displays either the labels for the different labeling runs 4.19a or the labels for the
different label models 4.19b.

4.2.4 Implementation Improvements
It has been observed that the Streamlit architecture, which was initially useful in getting
the application up and running quickly, is now causing hindrances in terms of performance.
Additionally, managing the cache in the background has become a challenging task in
itself. There are several known issues that arise due to difficulties in keeping the data in
sync, which further impacts the overall efficiency of the application. In order to optimize
the performance of the system in the future, it would be advisable to separate the frontend
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Figure 4.18: Time Series Analysis

completely from the backend. This would involve utilizing a RESTful architecture which
would enable better management of communication between the frontend and backend.
Additionally, this approach would allow multiple users to interact with the system

(a) Time Series Analysis from Labeling (b) Time Series Analysis from Labeling Result

Figure 4.19: Bottom section of Time Series Analysis
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simultaneously, thereby enhancing the overall user experience. By implementing these
changes, the system would become more efficient, flexible, and scalable.

As a result of building the database structure based on a relational database with
capabilities for semi-structured data, the tables have not been optimized for a solely
relational setup resulting in a performance loss.

Switching away from the Streamlit approach, it could have been possible to run the label
models at different times in the background to provide label model insights during the
rule and ruleset creation process. This would shift some of the computational workload
to an earlier stage in the labeling process and would provide earlier feedback for users.
Furthermore, this would allow a deferred execution in case more than one change to a
parameter is desired without a need to wait for the previous calculation to finish.

In general, it would seem interesting to allow users to create their own features during
the rule creation process. However, depending on the feature and time series data set
this might not be feasible for complex calculations.
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CHAPTER 5
Evaluation

The following chapter consists of two main parts. In the methodology section, we outline
the study. The section describes the experiment, the study participants, the procedure,
the datasets, and the survey. Finally, we present the results of the study and analyze
them in-depth. The discussion of the results follows in Chapter 6.

5.1 Methodology
We have opted for a mixed-methods approach to facilitate answering the posed research
questions in our preliminary research. Our analysis of RQs 1 and 3 is based on the results
obtained from the quantitative phase of our study, whereas the insights for RQ 2 are
derived from the qualitative data collected. We implemented an experimental design
for the quantitative segment. We designed the experiment to assess the effectiveness
of weak labels and end models compared to ground truth labels and those obtained
through supervised methods. We aimed to observe, measure, and analyze how these
models perform within a weak supervision context, focusing on model performance. On
the qualitative side, we engaged in a comprehensive survey targeting experts in the field.
Through thematic analysis of the responses collected, we aimed to find patterns, themes,
and insights. These qualitative findings allow interpretation and provide additional depth
to our understanding of the experimental results, thereby enriching our comprehension
of the research topic.

5.1.1 Experiment
We aim to answer the posed quantitative research questions with the following real-world
scenario in mind: During load forecasting for a server metric, a forecaster has to be
selected. For this selection, we have to analyze the time series up to the forecast point
and decide which forecasting model to choose. This is an important decision since more
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Figure 5.1: Forecasting Model Selection17

sophisticated models, such as seasonal forecasting models incur much higher costs than,
for example, linear forecasting models. Figure 5.1 shows such a flowchart for model
selection.

To aid the algorithm selection process we need a way to classify the time series data
accordingly. One way to achieve this classification is by training a ML model with
accurately labeled data so that the resulting model can in turn classify new unseen
time series. As established in earlier sections, acquiring labeled data is expensive. To
simplify and reduce the cost of this process, we have designed a labeling workflow and
implemented a labeling demo application. The application is used to label time series
data by applying labeling rules and using a surrogate model to further generalize the
input-output mapping.

Therefore, to generate evaluation data for the scenario, labeling rules using either the
Seasonal Baselining or Constant Threshold labels [94] are required to be created and
applied to a set of time series data.

Participants

For our experiment, we have specifically targeted individuals with substantial domain
knowledge, prioritizing professionals in data and computer science fields. This includes
researchers with a solid foundation in mathematics, statistics, and computer science, who
are adept at navigating the intricacies involved in our study. Our selection criteria focus
on individuals with a blend of theoretical understanding and practical expertise in these
disciplines. Therefore, we have specifically asked members of a data science team at
Dynatrace, a company that utilizes the aforementioned forecasting systems. Furthermore,
we asked software engineering researchers at TU Vienna to participate in the experiment.
We have decided to use convenient sampling to decrease the amount of time until we can

17https://docs.dynatrace.com/docs/platform/davis-ai/on-demand-analysis/
forecast-analysis/, accessed 05.12.2023
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evaluate the results. Since this is preliminary research we have opted to choose a sample
size of five participants.

Procedure

The experiment setting involves the setup of the demo outlined in Chapter 4. For local
usage, participants can either use the provided Docker files or the manual installation. For
an easy collaborative experience, a setup of the demo on a remote server is preferred. Once
the participants launch the prototype they are confronted with additional information
and a sample task to familiarize themselves with the tool, task, and scenario. During the
experiment, every participant is assigned either an individual or a collaborative labeling
task. Both labeling tasks require the participants to generate labels for all time series
outlined in the training data set later in this section. Participants are able to do this
by generating at least three labeling functions and then by refining or changing models,
parameters, and labeling functions. When a participant is sufficiently happy with a
labeling result the result can be persisted for the task.

The labeling performance is measured with the metrics outlined in Section 2.1. These
metrics are calculated for the weak labels as well as the gold labels, using k-fold cross-
validation. Initially, the participants do not have any gold labels available, but they are
free to add as many as they like to improve the assessment of their model’s performance.
Participants can then reiterate through the process of creating and adapting their labeling
rulesets until content.

Once a participant is sufficiently content with their labeling performance on the dataset
the resulting database is sent back for evaluation and the survey is conducted. After
receiving all labeling results, we will conduct an extended analysis of the results, the
surrogate models, and their labeling performance before and after hyperparameter tuning.

Datasets

To prepare the data for evaluation, the tools catch22 [63] and tsfresh [95] were used to
extract a total of 793 features. However, for tsfresh, only the EfficientFCParameters
setting was applied, which calculates features that can be extracted without a high
computational cost. This approach produced 771 usable features for evaluation, meaning
that the resulting feature is not NaN. The feature calculation process took 15 hours and
47 minutes, whereas the pycatch22 [96] implementation of the catch22 features only took
just under 5 minutes using an Apple M1 Max processor with 64GB of Memory.

The available datasets have been divided into two parts — the training dataset and the
testing dataset. The training dataset has not been used or seen by the people involved in
this particular use case. On the other hand, the testing dataset is familiar to some of the
participants, but it has different features extracted from it. To prevent any assumptions
based on the names of the time series, the series names have been encoded with a 6-digit
metric key.
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Dataset Type Count Avg Observations Avg NaNs
Condition Monitoring [97] Training 48 3,684 0
DJIA 30 Stock [98] Training 155 3,019 0
MotionSense Dataset [99] Training 4,320 3,928 0
Total Training Data Training 4,523 3,894 0

Initial Initial 303 58,735 18,772
Eval DS1 Evaluation 303 58,735 0
Eval DS2 (Lin) Evaluation 303 77,507 0
Eval DS3 (Split) Evaluation 324 37,365 0
Eval DS4 (Split Lin) Evaluation 324 40,874 0
Eval DS5 (Split Cub) Evaluation 324 40,874 0

Table 5.1: Dataset overview

Training Datasets Upon conducting a closer inspection of various datasets, we have
selected three specific sets that provide a mix of seemingly (visually) seasonal and non-
seasonal data. These datasets were then split into 4514 individual time series, which
represent the training time series dataset for our use case. Although the dataset may
not be ideal for training, it provides a scenario that is much closer to reality than a fully
balanced set. On average, each time series has 3894 observations. There were no NaN
values present because these datasets were already prepared in advance. Furthermore,
compared to the test set, these time series are approximately ten percent of the length.

Condition Monitoring Dataset [97, 100]: The dataset is derived from a specially
configured AC induction motor that uses a motor capacitor to work on 230 V, 50 Hz,
single-phase AC. Instead of its original fan, the motor uses various 3D printed fans,
some similar to the original and others modified, like fans with missing blades. The 3D
acceleration data is then collected from a sensor and microcontroller at an interval of 3
milliseconds. It has already been harmonized to regular time intervals at a sampling rate
of 300 Hz using cubic spline interpolation, which means that no further processing was
necessary. The set added 48 time series with a high amplitude and a high frequency.

DJIA 30 Stock Time Series [98]: The dataset consists of the 30 Dow Jones Industrial
Average (DJIA) stock prices between the first trading day of 2006 and the last trading
day of 2018. In addition to the daily closing price, it also consists of the opening price,
the highest and lowest price, as well as the traded volume for each day. The dataset used
for the analysis covers a period of 12 years and includes only data from weekdays since
stock markets are officially open from Monday to Friday. Hence, the dataset contains
only 5 data observations per week and series, resulting in fewer data points than the total
number of days in the 12-year period. The missing days have not been filled to avoid
prioritizing values occurring on Fridays. Apart from this, the data has no missing values.
To generate 150 series trending upwards and 5 for the index, the multivariate time series
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Figure 5.2: Evaluation datasets visualized

have been split into five univariate series per stock, and the index respectively.

MotionSense Dataset: Smartphone Sensor Data - HAR [99, 101]: The dataset
is comprised of sensor-based time-series data, generated using the accelerometer and
gyroscope sensors of an iPhone 6s. This data, capturing a range of parameters like
attitude, gravity, user acceleration, and rotation rate, was gathered through an iPhone
app utilizing the SensingKit framework, designed to access the Core Motion capabilities
of iOS devices. The dataset involved 24 participants, each conducting a series of 15
trials that included six different activities: walking downstairs and upstairs, walking,
jogging, sitting, and standing. These activities were performed under uniform conditions,
with the participants carrying the iPhone in their front trouser pocket. The data is
split into long sets, lasting 2-3 minutes, and short sets, lasting 30 seconds to 1 minute.
Each participant’s trial generated multivariate time-series data, with 12 distinct features.
These features are then split, as in the above dataset, to create univariate time series.
The data from the MotionSense dataset makes up the bulk of training data with a sum
of 4312 usable time series.
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Evaluation Datasets The initial dataset consists of 303 time series that have been
manually labeled. These series are obtained by monitoring and collecting server metrics in
one-minute intervals and have an average length of 58.735 data points. Out of these data
points, an average of 18.772 are NaN, which means that there are 39.963 observations on
average. The valid data points are found in 14-day clusters between July 2020 and the
beginning of January 2021. The complete dataset is available in the project repository.
The initial dataset is used to extract the evaluation sets, which are used for performance
evaluation.

The main difficulty of the evaluation is the extraction of high-quality features from this
dataset. There is an initial set of features available for these time series. However, the
initial feature matrix used for producing the gold labels was extracted using proprietary
tools and the features cannot be reproduced for the training time series sets.

To mitigate the effect of the NaN values the data has been prepared in five different
ways, resulting in five evaluation data sets. The first data set (Eval DS1) ignores the
NaN values and extracts the features from this set. The second data set (Eval DS2 (Lin))
linearly interpolates the NaN values of the first dataset. The third set (Eval DS3 (Split))
splits a time series if there is a day missing between observations and ignores a subseries
if there are less than 100 observations in it. All other NaN values are ignored. The fourth
set (Eval DS4 (Split Lin)) builds on the third set and linearly interpolates the missing
values while the fifth set (Eval DS5 (Split Cub)) uses a cubic interpolation algorithm for
the missing values. Splitting the time series for sets 3-5 results increases the amount of
time series by 21. The split series received the same label the initial series had, resulting
in an increased weight for the split series in the evaluation.

The demo application does not contain the evaluation data sets and labels to avoid
influencing the participants.

Hyperparameter Tuning

In order to possibly enhance the model performance we will conduct hyperparameter
tuning runs [102]. Hyperparameters are the external configurations of the model and
cannot be learned from data directly. They influence the learning process and the
structure of the model itself [103]. Unlike model parameters learned during training,
hyperparameters include the regularization parameter C or the selected kernel, considering
SVMs. Tuning these parameters is critical because they have a profound impact on
the behavior of the trained model. Optimal hyperparameter settings can help avoid
overfitting while also improving the model’s ability to generalize from training data to
unseen data. This process often involves searching through a predefined space of possible
hyperparameter values, evaluating the performance of the model for each combination,
and selecting the set that yields the best results, measured against a validation set.
To facilitate this process we have decided to utilize the ParameterGrid functionality
provided by scikit-learn (SKL). Hyperparameters can vary drastically between datasets
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and problems, making hyperparameter a valid but costly way to improve the model
performance.

5.1.2 Survey
To answer the qualitative RQ about the labeling workflow design we have designed
the survey to be a case-control study according to the six-part series "Principles of
Survey Design" by Kitchenham and Pfleeger [104, 105, 106, 107, 108, 109] and follows the
principles provided. Furthermore, a focus was put on avoiding common survey pitfalls
outlined in the article of Ghazi et al [110]. In regards to this study, it is important to
note that there may be certain problems that cannot be prevented, namely the limitation
of having a relatively small sample size. Nevertheless, the survey is intended to provide
context for the evaluation results, and as such, it remains a crucial component of this
study.

The target population of this survey is the same as that of the experiments. Reiterating,
the survey and experiment target experts in the domain of time series data labeling,
particularly those who possess a strong understanding of categorizing seasonal data, and
who are adept at software engineering.

Given the preliminary nature and the small scale of this study, every experiment partici-
pant will be asked to answer the survey questions, meaning that the same convenient
sample of five people will be used. In other words, every experiment participant will be
given an opportunity to provide feedback and insights.

Since this is a small-scale experiment, we want to ensure a high response rate. To achieve
this the experiment participants will be reminded of the survey in multiple locations, and
especially personally after completing the experiment and submitting their experiment
data.

The survey is composed of 49 questions that are divided into eight sections. These
questions cover a wide range of topics, from general demographic information to more
specific inquiries about the tool and its use case, and provide valuable insights for
evaluation purposes.

The following are the main sections of the survey:

1. Demographic Information: This section gathers information about the survey
participants and their backgrounds allowing for better interpretation of the results.

2. Data Labeling: This section aims to evaluate the participants’ data labeling
expertise, to provide some context about the outcome of their labeling functions
regarding the experiment.

3. Time Series Data: This section assesses the participants’ experience in dealing
with time series data and their general understanding of it.
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4. First Impressions: This section focuses on the look and feel of the demo tool
and provides valuable insight into the initial exposure and complexity.

5. Labeling Scenario: This section evaluates the participants’ domain knowledge
and ability before focusing on the outcome of their labeling results.

6. Usage: This section delves deeper into how the label maker was used, its perfor-
mance, and possible improvements.

7. Rule Creation: This section specifically evaluates which of the rule creators was
preferred and why, providing insight into the tool usage.

8. Final Section: This section is used to gain an overall understanding of the
participants’ expectations and future outlook.

5.2 Results
Five individuals participated in the experiment. The aim of the experiment is to assess
the performance of the labeling approach across different labeling tasks and to analyze
the effectiveness of the models.

We have received three completed labeling tasks, the Individual Labeling Task 1 (ILT1),
Individual Labeling Task 2 (ILT2), and Collaborative Labeling Task (CLT). The ILT1
and ILT2 are individual labeling tasks and were performed by one individual data scientist
respectively. The CLT is a collaborative task and was completed by three collaborating
data scientists. The participants conducted varying amounts of labeling runs per task.

Additionally, one individual labeling task was taken on by a computer science researcher
who did not have prior experience in time series data labeling. Unfortunately, the results
of this task were not submitted for evaluation due to a non-satisfactory performance.

In this section, we are differentiating between four types of labels:

• Weak labels, or weakly generated Labels, are labels that are generated by a
Snorkel label model and used to train our surrogate models.

• Predicted labels, or in some cases called surrogate labels, are labels that are
predicted by a ML model trained on any labels, or weak labels respectively.

• Gold labels, or ground truth labels, are labels that have been manually labeled
during the experiment by the participants.

• Evaluation labels are the ground truth labels from our evaluation set. We
distinguish specifically between evaluation labels and gold labels to emphasize
the different datasets. Furthermore, the evaluation labels have been verified and
error-corrected using a majority vote.
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Overall, eight labeling runs in three different labeling tasks were submitted by the
participants. All of the labeling runs were performed on the Snorkel Label Model and the
SKL Log Reg model with the standard parameters. Table 5.2 displays the performance
of the surrogate model compared to the weak labels generated by the label model (LM),
as well as compared to the manually set gold labels. The metrics are always calculated in
relation to their count. From the results, we can see that the gold label account increased
in the CLT, meaning that additional gold labels were added between labeling runs. The
average performance of the metrics precision, recall, and F1 does not look very promising.
However, in many cases this is a result of an inability of the surrogate model’s ability
to model the input. Thus, it returned only the 0, or Constant Threshold, label. More
precisely:

• The ILT1 surrogate model could not predict anything.

• The ILT2 surrogate model could only predict something in run 2.

• The CLT surrogate model could only predict something in runs 4 and 5.

In total, 229 time series have been hand-labeled. 28 have been labeled by two and 10
by three users. Five, respectively two, have received ambiguous labels, resulting in 174
unambiguous labels. Furthermore, this results in 7 time series being labeled differently
in various labeling tasks by different users. This means that 18% of time series that have
been labeled more than once are labeled differently. Taking all labeled data points into
consideration the participants agree in 96% of cases. An example of 2 time series that
have received both labels can be seen in Figure 5.3. Examples for the labels Seasonal
Baselining and Constant Threshold can be seen in Figure 5.4 and Figure 5.5 respectively.

During all labeling runs, a total of 26 different labeling rules have been applied to the data.
These rules can be inspected in Listing 8.1. A full overview of their polarity, coverage,
and conflicts on the labeling task can be found in the Appendix 8 in the Table 8.1, 8.2,
and 8.3.

Run LT TS Count LM Precision LM Recall LM F1 GL Count GL Precision GL Recall GL F1
1 CLT 4523 0.2604 0.5103 0.3448 24 0.25 0.5 0.3333
2 CLT 4523 0.2604 0.5103 0.3448 44 0.3492 0.5909 0.4390
3 CLT 4523 0.2604 0.5103 0.3448 60 0.3403 0.5833 0.4298
4 CLT 4523 0.5185 0.5178 0.5181 87 0.5853 0.5747 0.5800
5 CLT 4523 0.5185 0.5178 0.5181 128 0.5458 0.5391 0.5424
1 ILT1 4523 0.1302 0.3608 0.1913 50 0.3364 0.58 0.4258
1 ILT2 4523 0.5661 0.7524 0.6461 51 0.2599 0.5098 0.3443
2 ILT2 4523 0.7801 0.7813 0.7807 51 0.2369 0.3137 0.2699

Mean 0.4118 0.5576 0.4611 0.3630 0.5239 0.4206
Min 0.1302 0.3608 0.1913 0.2369 0.3137 0.2699
Max 0.7801 0.7813 0.7807 0.5853 0.5909 0.5800

Table 5.2: Labeling results table with the maximum results highlighted.
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Figure 5.3: Time series with ambiguous labels

Figure 5.4: Time series labeled Seasonal Baselining

Figure 5.5: Time series labeled Constant Threshold

The labeling rules made use of 23 of the 793 features. A description of the features can
also be found in the Appendix 8. They used a total of 23 different features. 13 of those
were extracted from tsfresh and 10 from pycatch22.

5.2.1 Analysis
Upon the initial evaluation of the labeling results, it can be observed that their perfor-
mance falls short of the specified target of 70% compared to the gold labels. In order
to carry out a more in-depth analysis, the following measures have been taken. Firstly,
additional machine learning models are introduced. Furthermore, we will evaluate which
labeling functions are the most significant and have the biggest influence on the scores.

Then, an extra benchmark is added by implementing standard supervised learning on the
gold labels to compare the resulting outcomes with the existing models. All incorporated
models are trained and their results are evaluated against the gold label sets and the
evaluation sets. These steps have been taken to ensure that the analysis is thorough and
complete and that the best possible outcome is achieved in this stage of the analysis.

Evaluation Models

To aid the comprehensive evaluation, a wider set of models is trained and evaluated
for their performance on the training data. Following is a list of models and a short
description.
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• SKL Log Reg18: scikit-learn implementation of the logistic regression model. Allows
for changes of the solver in regard to the optimization problem.

• PTL Log Reg: Logistic regression implementation using Pytorch Lightning as
outlined in a previous section.

• PTL Prob Log Reg: Probabilistic logistic regression implementation using Pytorch
Lightning as outlined in a previous section.

• WeaSEL19: WeaSEL model implementation using a Pytorch multi-layer perceptron
network as end-model.

• scikit-learn Support Vector Classifier (SKL SVC)20: scikit-learn implementation
of the support vector classifier. Has multiple kernels to preselect for optimal
performance.

• scikit-learn Gaussian Naive Bayes (SKL GNB)21: This is a Gaussian implementation
of the Naive Bayes classifier by scikit-learn, allowing for classification of continuous
data.

• scikit-learn Random Forest Classifier (SKL RFC)22: A random forest classifier
implementation by scikit-learn allowing for changes in the measurement of the split
quality.

• scikit-learn Gradient Boosting Classifier (SKL GBC)23: Tree-based sci-kit learn
implementation of a gradient boosting classifier.

• scikit-learn K Neighbors Classifier (SKL KNN)24: scikit-learn implementation of
the K-nearest neighbor classification model offering various algorithms for distance
calculation.

Labeling Function Performance

We conducted an extensive analysis of labeling function performance by executing
an exhaustive search of the search space. To achieve this, we applied every possible
combination of labeling functions that had at least three rules per labeling task to our
label model. Then the labeling function performance was evaluated based on their

18https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html/

19https://github.com/autonlab/weasel
20https://scikit-learn.org/stable/modules/svm.html/
21https : / / scikit-learn . org / stable / modules / naive _ bayes . html #

gaussian-naive-bayes/
22https://scikit-learn.org/stable/modules/ensemble.html#forest/
23https : / / scikit-learn . org / stable / modules / ensemble . html #

gradient-boosted-trees/
24https://scikit-learn.org/stable/modules/neighbors.html#classification/

63

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html/
https://github.com/autonlab/weasel
https://scikit-learn.org/stable/modules/svm.html/
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes/
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes/
https://scikit-learn.org/stable/modules/ensemble.html#forest/
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosted-trees/
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosted-trees/
https://scikit-learn.org/stable/modules/neighbors.html#classification/


5. Evaluation

performance metrics on both the use case feature matrix and the evaluation set feature
matrices.

combinations =
n

k=3


n

k
(5.1)

Equation 5.1 models the count of combinations per labeling run for a set of n labeling
functions and a subset of k labeling functions.

For the CLT task, 9 rules produce 466 combinations, for ILT1, 10 rules result in 968
combinations, and for ILT2, 7 rules generate 99 possible combinations. Moreover,
evaluating the combinations on both training and evaluation matrices, in total, 3066
models were trained and evaluated. As a result, we were able to extract six superior rule
combinations, five of which were unique and can be viewed in Listing 5.1.

1 fs1 = [’fourier_entropy__bins_2’,
2 ’percentage_of_reoccurring_values_to_all_values’,
3 ’time_reversal_asymmetry_statistic__lag_1’, ’number_peaks__n_50’]
4
5 fs2 = [’SP_Summaries_welch_rect_centroid’, ’cid_ce__normalize_True’,
6 ’FC_LocalSimple_mean3_stderr’, ’PD_PeriodicityWang_th0_01’,
7 ’fft_aggregated__aggtype_variance’]
8
9 fs3 = [’standard_deviation’, ’PD_PeriodicityWang_th0_01’,

10 ’SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1’, ’CO_f1ecac’]
11
12 fs4 = [’fourier_entropy__bins_3’, ’time_reversal_asymmetry_statistic__lag_1’,
13 ’percentage_of_reoccurring_values_to_all_values’]
14
15 fs5 = [’PD_PeriodicityWang_th0_01’, ’SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1’,
16 ’CO_f1ecac’, ’variance’]

Listing 5.1: Feature sets extracted from best performing labeling rules.

These rule subsets per labeling task are then used to extract more representative features.
A histogram of the features used in the labeling rules can be seen in Figure 5.6

Supervised Benchmark

To generate a practical and real-world benchmark as a comparison, a supervised approach
was also implemented for the labeling tasks. Unlike the regular approach taken in this
project that involves applying labeling functions and training the label model before
using the surrogate model, this approach directly trained the ML models with the gold
label inputs for each labeling task.

Furthermore, to provide a comprehensive comparison, another set of runs was included
that utilized all 174 unambiguous gold labels from all labeling tasks for training with
all features in each run. Moreover, a series of runs (Best FT ) were conducted using the
highest-performing labeling rule combination features.
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Figure 5.6: Features by occurrence in the best labeling rulesets

LT Evaluation Set Gold Label Count Model Precision Recall F1
CLT Eval DS2 (Lin) 128 SKL Log Reg 0.6130 0.6105 0.6117
ILT1 Eval DS3 (Split) 50 SKL KNN 0.5930 0.5833 0.5881
ILT2 Eval DS3 (Split) 51 SKL GBC 0.7105 0.6944 0.7024

CLT Eval DS3 (Split) 174 SKL KNN 0.6667 0.6450 0.6557
Best FS25 Eval DS1 174 SKL Log Reg 0.5902 0.5907 0.5904

Table 5.3: Supervised training results considering the training features of each labeling
run

For the supervised benchmark, only the six scikit-learn models were used, resulting in a
total of 240 training and evaluation runs. The peak performances for each labeling task
and the peak performances of the additional runs are shown in Table 5.3. Interestingly, the
ILT2 runs performed best with only 51 gold labels. However, considering all unambiguous
labels, the CLT had the best result and improved its performance by >3% all metrics.
Surprisingly, when using the feature sets from Section 5.2.1, the best feature set (Best
FS) could only surpass the performance of the worst labeling run. These results provide
a thorough baseline of the performance of the models and labeling tasks.

25Best FS are features extracted from the best combination of labeling rules.
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Precision Recall F1
count 805 805 805
mean 0.4777 0.5158 0.4873
std 0.1533 0.0718 0.118
min 0.2248 0.4191 0.3025
25% 0.4159 0.4653 0.4175
50% 0.4782 0.4884 0.4801
75% 0.5775 0.5617 0.5651
max 0.7482 0.6944 0.7050

Table 5.4: Resulting metrics of the eval-
uation of nine models per labeling result
averaged over five runs.

Figure 5.7: Metrics density distribution

Model Evaluations

The next step in our analysis is evaluating the labels we obtained from the three labeling
tasks and comparing the results to our benchmark. To evaluate which of the used models
exhibits the highest initial potential for further hyperparameter tuning another series
of training and evaluation steps was conducted. Each of the machine learning models
was trained on the weakly generated labels and the surrogate model labels. As stated in
the first part of this section only in three of eight cases the surrogate model predicted
anything but zero resulting in 490 runs. As we have seen a high variance during these
runs, the models were trained five times each and the metrics were averaged over the
runs. The resulting data frame can be described as seen in Table 5.4 and the metrics
density distribution is shown in Figure 5.7. The maximum result on any untuned model,
with basic parameters, is a confidence boost that the benchmark of 70% can be reached.

Models Trained on Surrogate Model Labels Now, we are diving deeper into
the models that were trained with labels from the surrogate model, as was initially
conceptualized in the idea. The result data is split by the training label type. The models
considered in this case are the six scikit-learn models because we only have a 1-d label
array as input. The results of the runs show that the top-performing models can come
close to the specified 70% and are among the top results overall.
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Model Evaluation Set LT Precision Recall F1
SKL GNB Eval DS1 CLT 0.7482 0.6666 0.7050
SKL GBC Eval DS2 (Lin) ILT2 0.7013 0.6897 0.6955
SKL SVC Eval DS2 (Lin) CLT 0.7428 0.6369 0.6858
SKL Log Reg Eval DS1 ILT2 0.5577 0.5478 0.5527
SKL KNN Eval DS3 (Split) CLT 0.5533 0.5462 0.5497
SKL RFC Eval DS5 (Split Cub) ILT2 0.5532 0.5327 0.5427

Table 5.5: Model training results with surrogate labels as inputs.

Figure 5.8: Model performances trained on surrogate model, sorted by the F1-score.

The key findings from Table 5.5 are:

• The SKL GBC has the highest recall.

• The SKL GNB has the highest F1-score.

• Eval DS1 and Eval DS2 are the best-performing evaluation sets.

Models Trained on Weak Labels The question we are focusing on in this part is
if the performance can be improved right away without the need to fit another model
before. This means that we want to see if these models perform better when used directly
as surrogate models. All nine evaluation models have been trained and evaluated against

67



5. Evaluation

Model Evaluation Set LT Precision Recall F1
SKL GNB Eval DS1 CLT 0.7482 0.6666 0.7050
SKL GBC Eval DS2 (Lin) ILT2 0.7055 0.6930 0.6991
SKL SVC Eval DS4 (Split Lin) CLT 0.7455 0.6358 0.6862
PTL Log Reg Eval DS1 CLT 0.6269 0.6145 0.6206
PTL Prob Log Reg Eval DS1 CLT 0.6173 0.6026 0.6098
SKL Log Reg Eval DS1 ILT2 0.5577 0.5478 0.5527
SKL KNN Eval DS3 (Split) CLT 0.5533 0.5462 0.5497
WeaSEL Model Eval DS3 (Split) CLT 0.5568 0.5290 0.5425
SKL RFC Eval DS5 (Split Cub) ILT2 0.5322 0.5148 0.5233

Table 5.6: Model training results with the weak labels as inputs.

Figure 5.9: Model performances trained on label model, sorted by the F1-score.

the five evaluation datasets. As we can see these results look similar to the results of
the previously evaluated models trained on surrogate labels, making a strong case for
continuing with the weak label approach for model tuning. Considering the performance
metrics overall the three most promising models are the SKL GBC, SKL GNB, and SKL
SVC. Depending on the model different evaluation sets perform better. However, the
Eval DS1 set performs best in most cases. The best performances have been achieved
with the full feature set from ILT2.

68



5.2. Results

Model Evaluation Set LT Features Precision Recall F1 F1 Change
SKL RFC Eval DS2 (Lin) CLT fs5 0.7149 0.7030 0.7089 +0.1662
SKL GNB Eval DS1 CLT fs1 0.7482 0.6667 0.7051 +0.0001
SKL KNN Eval DS1 CLT fs3 0.7042 0.7030 0.7036 +0.1539
SKL GBC Eval DS1 CLT fs5 0.7206 0.6832 0.7014 +0.0059
SKL SVC Eval DS4 (Split Lin) CLT fs1 0.7455 0.6358 0.6863 +0.0005
SKL Log Reg Eval DS1 CLT fs3 0.6465 0.6469 0.6467 +0.0940

Table 5.7: Surrogate models trained with better features.

The key findings from Table 5.6 are:

• The SKL GNB has the highest precision and F1-score.

• The CLT labeling results perform best as input.

• Models other than SKL GNB, SKL SVC, and SKL GBC perform significantly worse
across the board.

• The custom models are not worth the effort in this case.

• Eval DS1, Eval DS2 (Lin), and Eval DS4 (Split Lin) have the highest chance of
evaluating positively.

Models Trained on Improved Features Since we have established previously
that the Pytorch Lightning models are not worth the additional effort because their
performance has not been higher, we have focused on the scikit-learn models from now
on. These have been trained in this round with the features extracted from Listing 5.1,
to see if this improves the performance and if there is a set of features that performs
considerably better than any other.

After implementing the better feature sets, we observed a substantial improvement in the
performance of the models that can be seen in Table 5.7. Among all the models, we noted
the most substantial increase in the accuracy of SKL RFC and SKL KNN algorithms.
On the other hand, the accuracy scores of SKL GNB and SKL GBC models remained
unchanged. Out of all the models, four have surpassed the benchmark of 70% accuracy,
while one model is very close to reaching this mark, and its performance could further
improve with some tuning. However, the logistic regression model is still lagging, with a
noticeable difference of more than 5% in each metric compared to the other models.

Through our experimentation with enhanced feature sets and weak labels, we have
identified notable improvements in model performance in select cases, as can be seen in
Table 5.8. The SKL KNN model exhibited the most substantial improvement, experiencing
an increase of more than 17%. Additionally, the SKL RFC model demonstrated a 16%
improvement, while the SKL Log Reg model exhibited a 14% improvement, re-establishing
its place in the competition. It’s crucial to acknowledge that while some models showcased
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Model Evaluation Set LT Features Precision Recall F1 F1 Change
SKL KNN Eval DS2 (Lin) CLT fs5 0.7221 0.7195 0.7208 +0.1711
SKL GNB Eval DS1 CLT fs3 0.7138 0.6997 0.7067 +0.0017
SKL Log Reg Eval DS3 (Split Lin) CLT fs2 0.7046 0.6852 0.6948 +0.1421
SKL GBC Eval DS1 CLT fs4 0.6851 0.6832 0.6841 - 0.0150
SKL RFC Eval DS1 CLT fs4 0.6851 0.6832 0.6841 +0.1608
SKL SVC Eval DS2 (Lin) ILT1 fs3 0.6576 0.5314 0.5878 - 0.0984

Table 5.8: Label models trained with better features.

Features Evaluation Set LT Model Precision Recall F1
fs5 Eval DS2 (Lin) CLT SKL KNN 0.7221 0.7195 0.7208
fs3 Eval DS2 (Lin) CLT SKL KNN 0.7129 0.7129 0.7129
fs4 Eval DS1 ILT2 SKL KNN 0.6970 0.6931 0.6950
fs2 Eval DS2 (Lin) ILT2 SKL GBC 0.6973 0.6865 0.6918
fs1 Eval DS3 (Split) CLT SKL RFC 0.6953 0.6698 0.6823

Table 5.9: Feature sets ranked by F1-score

a significant performance boost, others experienced a decline in performance following
feature selection. Nonetheless, we attained the highest overall performance in this
analysis.

In a final attempt, we try to discern performances between the feature sets, shown in
Table 5.9. The best-performing feature set is fs5. However, there does not seem to be a
sizable gap between the different sets, as most features overlap anyway.

5.2.2 Hyperparameter Tuning
Based on the results of the previous subsections, we have decided not to exclude any
more models from the hyperparameter tuning. We are using the weak labels from each
task, as well as weak labels generated by applying the most significant labeling rules.
Furthermore, we are using the improved feature sets (fs1-5 ), as well as the features that
occur in the labeling rules per labeling task for training. The parameter search space is
illustrated in Table 5.10.

Maximizing the training metrics during the hyperparameter tuning did not yield a better
result than choosing the default parameters for the models. On the contrary, fitting the
models better to the training data meant that they had worse outcomes on the evaluation
data, as shown in Table 5.11.

Nevertheless, when evaluating the whole model and parameter grid against the evaluation
set we can find a configuration where the results can be improved even further, as seen in
Table 5.12. This is not practical in a real-world scenario, since the labels for an evaluation
set might not be known, thus not allowing for model tuning in this direction.
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Model SKL Log Reg
Parameter Values
C 1e-1, 1, 1e3, 1e5
Penalty l1, l2, elasticnet, None
Solver liblinear, lbfgs, newton-cg, saga
L1 ratio 0.1, 0.25, 0.5, 0.75, 0.9

Model SKL SVC
Parameter Values
C 1e-1, 1, 10, 1e3
Kernel rbf, poly
Poly Degree 3, 5

Model SKL KNN
Parameter Values
Neighbors range(1,50)

Model SKL GBC
Parameter Values
Estimators 1, 10, 100, 1000
Learning Rate 1, 1e-1, 1e-2, 1e-3
Max Depth 1, 5, 10, 25, 50, Inf

Model SKL RFC
Parameter Values
Estimators 1, 10, 100, 1000
Criterion gini, entropy, log_loss
Max Depth 1, 5, 10, 25, 50, Inf

Model SKL GNB
Parameter Values
Smoothing 1e-11, 1e-9, 1e-7, 1e-5, 1e-3, 1e-1

Table 5.10: Parameter space for hyperparameter tuning
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Model Evaluation Set LT Labels FS Eval Prec Eval Rec Eval F1
SKL KNN Eval DS1 CLT Best fs3 0.7100 0.7063 0.7081
SKL GBC Eval DS3 (Split) CLT Best fs3 0.7064 0.6852 0.6956
SKL RFC Eval DS1 CLT Full fs4 0.6851 0.6832 0.6841
SKL Log Reg Eval DS3 (Split) CLT Best fs1 0.6975 0.6698 0.6833
SKL SVC Eval DS1 ILT1 Best Full 0.3642 0.3630 0.3636
SKL GNB Eval DS5 (Split Cub) ILT1 Best Full 0.3443 0.3488 0.3465

Table 5.11: Model results achieved by maximizing the training metrics. The column
Labels describes which set of labeling rules was used to extract the weak labels from the
label model.

Model LT Labels FS Precision Recall F1
SKL KNN ILT2 Full fs3 0.7398 0.7360 0.7379
SKL RFC ILT2 Full Full 0.7441 0.7191 0.7314
SKL GBC ILT1 Full fs2 0.7471 0.6964 0.7209
SKL GNB ILT1 Best fs3 0.7275 0.7006 0.7138
SKL Log Reg ILT2 Full fs5 0.7121 0.6944 0.7031
SKL SVC CLT Best Full 0.7406 0.6337 0.6830

Table 5.12: Model results by maximizing the evaluation set metrics. The column Labels
describes which set of labeling rules was used to extract the weak labels from the label
model.

Precision Recall F1
LT LR Model LM SM LM SM LM SM
CLT Best SKL RFC 0.6364 0.7967 0.5920 0.6667 0.6134 0.7259
CLT Full SKL GNB 0.5881 0.7974 0.5747 0.6264 0.5813 0.7017
ILT1 Best SKL GBC 0.7846 0.8378 0.5805 0.7644 0.6673 0.7994
ILT1 Full SKL RFC 0.8222 0.7842 0.7989 0.7701 0.8104 0.7771
ILT2 Best SKL GBC 0.7731 0.8351 0.5345 0.7586 0.6320 0.7950
ILT2 Full SKL KNN 0.5311 0.5176 0.5402 0.5287 0.5356 0.5231

Table 5.13: Hyperparameter training results (SM) when compared to the gold labels per
labeling task (LM).

Performance improvements are, however, attainable if the evaluation set is a real subset
of the training set, meaning that the data source is the same. In the case of our models,
we could achieve an increase in most labeling tasks compared to only applying the label
model, as shown in Table 5.13. This directly loops back to the initial results in Table 5.2
and shows the generalization and tuning capabilities of the models.
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Precision Recall F1
LT LR Model LM SM LM SM LM SM
CLT Best SKL RFC 0.6364 0.7967 0.5920 0.6667 0.6134 0.7259
CLT Full SKL GNB 0.5881 0.7974 0.5747 0.6264 0.5813 0.7017
ILT1 Best SKL GBC 0.7846 0.8378 0.5805 0.7644 0.6673 0.7994
ILT1 Full SKL RFC 0.8222 0.8898 0.7989 0.8621 0.8104 0.8757
ILT2 Best SKL GBC 0.7731 0.8351 0.5345 0.7586 0.6320 0.7950
ILT2 Full SKL RFC 0.5311 0.6179 0.5402 0.6149 0.5356 0.6164

Table 5.14: Hyperparameter training results (SM) when compared to all unambiguous
gold labels (LM).

We saw an even bigger increase in performance across all tasks, when we evaluated the
model results against the unambiguous gold labels (Table 5.14). The minimum increase
exceeds 5% in all metrics and tops out at an increase of above 20% in some cases.

Evaluation across the various optimization stages Figure 5.10 shows the evalu-
ation performance across the various stages during our evaluation and illustrates that
in most cases at least a similar performance is attainable by utilizing weak labels and a
classification model compared to using supervision. Across the board, we have achieved
F1-scores that are similar if not improved over a supervised approach by using weak
labels and one of the tuned ML models.

5.2.3 Feature Importance
In an attempt to find features with a big impact across the different models and evaluation
results we have calculated and compared the feature importance between models trained
on gold labels and models trained on the predicted labels. Feature importance is in
general not comparable across multiple models because the definition varies based on
the interpretation. Regarding the interpretations of features in models, linear models
determine it by analyzing the model’s coefficients, with the feature’s importance indicated
by the coefficient’s magnitude and its direction by the sign. Meanwhile, tree-based
models measure feature importance by considering how much it reduces impurity or how
frequently it is used to split nodes. To overcome these difficulties we have scaled the
importance with a min-max scaler, to get the relative importance for a model.

For our evaluation, we have decided to focus on Spearman’s rank correlation coeffi-
cient [111]. Spearman’s rank correlation is a method to measure the rank correlation
between variables without making any assumptions about their underlying probability
distribution. It evaluates the degree to which the relationship between two variables can
be explained by a monotonic function. This method is particularly useful when the data
doesn’t follow a normal distribution or when the relationship between the variables is
not linear.
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Figure 5.10: Movement of performance metrics for each labeling task across the evaluation
stages.

Not surprisingly, the correlation coefficient is mostly positive between models trained on
the ground truth and models trained on the best predictions from our hyperparameter
tuning section. This at least indicates that the models capture the underlying data
structure well and it emphasizes the consistency between the models. Also not surprisingly,
we have seen that when we correlate the feature importance between the ground truth
models there is a negative correlation. This emphasizes what we have seen in the
previous section, that models that are fitted better to the evaluation sets perform worse
on the ground truth sets and vice versa. One step further, comparing the prediction
model performances we get low positive correlation coefficients, further strengthening
the hypothesis that there is not one model that fits all if the data set is highly variable.

We have further used the importance coefficients to create a bar chart, shown in Fig-
ure 5.11, showcasing the relative scaled importance across all models when used for classi-
fying seasonal and constant data. The three relatively most important features in our case
are the fft_aggregated__aggtype_variance, the time_reversal_asymmetry_statistic_lag_1,
and the variance.

5.2.4 Evaluation Sets

While we also set out to evaluate if there is an evaluation set that performs best, hence
also a superior interpolation algorithm (at least for the problem at hand), we have not

74



5.2. Results

Figure 5.11: Feature importance coefficients scaled and averaged across all models.

seen a drastic change in the performance evaluations. The difference in the evaluation
metric is per evaluation set below 2%. The reasoning for continuing to evaluate against
all sets anyway is the low cost of prediction, compared to training.

5.2.5 Survey Results
The survey was completed by five participants, four of whom provided labeling tasks for
the labeling task evaluation. We gathered feedback from these individuals on their usage
of a time series data labeling tool. Due to the small sample size of only five respondents,
the conclusions drawn lack significance. Generalizing the survey results of the time series
data labeling tool is impossible with such a limited group. The potentially valuable
insights may not accurately reflect the views, experiences, and needs of a larger user
base due to this lack of representativeness. The diversity and variability inherent in a
larger sample are missing, which leads to skewed perceptions of user satisfaction and
tool effectiveness. Averages, proportions, and correlations derived from such a small
group are subject to high variability and can be overly influenced by outliers. Drawing
firm conclusions or making significant decisions based on the data is difficult due to
this instability. However, the qualitative feedback and the feedback that is directly
related to labeling tasks become an important source of insight under these circumstances.
The open-ended responses offer a deeper understanding of experiences and perceptions,
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highlighting areas of appreciation as well as suggestions for improvement.

The form contained various fields regarding the participants’ background, work experience,
education, knowledge of data labeling concepts, participation in labeling tasks, overall
satisfaction with the tool, and their likelihood of recommending it to others. The data
collected was a mix of categorical data, such as job title, experience level, and educational
qualifications, ordinal data, including familiarity and contentment ratings, and comments
left in a free-text format.

The main results from the survey are:

• Roles Distribution: The majority of respondents are Data Scientists (80%), with
the remainder being Researchers (20%).

• Experience Levels Distribution: Most respondents have 3 to 5 years of experience
in their current role (60%), followed by those with 1 to 2 years (20%) and 6 to 10
years (20%).

• Educational Backgrounds Distribution: 3 of 5 hold a Mathematics/Statistics Degree
and 2 of 5 hold a Computer Science/Software Engineering degree.

• Familiarity with Data Labeling: Each of the participants selected a different level
of familiarity from a scale of 1 to 5, resulting in a big spread.

• Familiarity with Time Series Data: All participants are familiar with time series
data and have at least some experience in analyzing and interpreting the data,
through various applications.

• Data Labeling Experience: 60% of respondents have been involved in data labeling
tasks in their professional or academic work.

• Seasonality: All participants have a general understanding of seasonality and
seasonal patterns.

• Labeling Rule Creation: Four participants preferred the Simple Rule Creator. One
user preferred both, the Simple and the Advanced Rule Creator.

• Overall Satisfaction and Tool Recommendation: The average satisfaction rating
with the time series data labeling tool is 7.8 out of 10. Furthermore, all users would
recommend utilizing a tool with a similar suite of functionality to their colleagues
and peers.

• Potential: Most participants (4 out of 5) anticipate that the tool can potentially
save time during data labeling processes.

• Collaboration: Collaboration has been rated as important by the participants.
Additionally, the tool has been rated to facilitate collaboration. Collaboration was
also considered most crucial for the work by one participant.
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• Satisfaction with the Labeling Performance: 0 participants were fully satisfied with
their labeling performance. One remark was that it is hard to find good surrogate
models.

Taking a closer look at the analysis, there is a positive correlation coefficient between data
labeling familiarity and years of experience, as well as a negative correlation coefficient
between the years of experience and overall satisfaction with the time series data labeling
tool. This negative correlation suggests that as the years of experience and the data
labeling expertise increase, the overall satisfaction with the tool slightly decreases. It
might indicate that more experienced users have higher expectations or different needs
when it comes to data labeling tools.

The survey overall paints a positive picture in regard to the labeling demo and the
participants offered valuable insight into the results.
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CHAPTER 6
Discussion

The discussion follows the initially posed research questions structurally and aims to
answer them by interpreting the results in Section 5 before finally discussing threats to
validity.

Research Question 1 How effective are simple heuristics and weak supervision in
labeling time series data compared to manual labeling? How effective is it compared to a
supervised approach with less data?

In our experiment, we have obtained a small set of hand-labeled data, details of which
are given in Section 5.2. Out of the entire dataset, 38 time series received two or more
labels, of which 7 were labeled differently by the participants. This implies that 18% of
data points were erroneously labeled by humans. The error rate per labeling task may
even be higher since overall only about 17% of time series had two labels. Therefore, the
human benchmark performance for label agreement is approximately 82%. Interestingly,
one of the participants also noted that the scale at which a time series is analyzed plays
a crucial role in its classification and can be an issue between labelers. This further
underscores the necessity for automated label generation.

Using these labels to train supervised machine learning models, we achieved a best-case
performance of 70%, with most performances ranging from 58-61% when compared to
our evaluation set. While maximizing the metrics of the models, it was found that we
could push all labeling task metrics up to 74%, but not beyond that. This could be
attributed to the different sampling rates, the vastly different amount of observations per
time series, as well as the nature of the datasets. The evaluation set is solely based on
server metrics, whereas the other sets were obtained through different means, as outlined
in Section 5.1.1. However, attaining a widely available training set equal in structure
and type to the evaluation set was not possible.
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In a real-world scenario, there might also not be an evaluation set available and the only
validation can be obtained by firstly labeling parts of the data. This can be the case
because there is newly generated data that needs to be labeled, the labels of existing
data changed, or some of the characteristics of the labels evolved. This case has been
thoroughly evaluated by considering the labels that we attained through the experiment
instead of the evaluation set. This might arguably be a better indicator for real-world
performance, than any external evaluation set. By considering these gold labels, we get
a much more uniform set of time series, where we were able to improve the f1-score
to a maximum of 87% in one case, and in general, to an average of 73.64%. This is
significantly higher than the evaluation set average and also exceeds our goal of 70%.
Considering the best-case scenario we were able to outperform our human benchmark
of 82%. Furthermore, we have to take into consideration that there might be room for
improvements in regard to the labeling rules, based on the medium satisfaction of the
users with their labeling results.

How simple are the applied heuristics?

While many of the features cannot be considered simple heuristics by themselves, such
as Fourier transform or autocorrelation features, the burden of extracting them has been
moved away from the demo application and hence the user. Furthermore, even though
the demo application allowed for nested conditions and an arbitrary amount of boolean
arithmetic, 95% of the rules applied through the demo were based on one extracted
feature, evaluated against a condition to label a time series. Therefore, we consider the
heuristics to be simple.

Can the results be generalized in the space of classifying seasonal and non-seasonal data?

As shown in Section 5.2.2, the results depend heavily on the data. This claim is further
supported by the negative Spearman’s rank correlation coefficients between the baseline
evaluation and gold label sets, as outlined in Section 5.2.3. Therefore, the generalization
capabilities are limited within our non-homogeneous set of time series.

Research Question 2 How can the labeling workflow be designed for time series data?
How can users be aided in the process of writing labeling functions?

We have gone through multiple iterations of the labeling workflow to improve upon the
process where users label time series manually and collaborate to get consensus on their
results. The entire approach is detailed in Section 4.1, and it is divided into two main
parts: rule creation and labeling.

When creating rules, users can select the level of flexibility they desire and need to
design the rules. The level of flexibility affects the amount of information available to
users, as higher flexibility comes with less information. The rule creator with the least
flexibility works with drop-down fields, sliders, and a statistics expander to provide a
broad overview of the feature distribution. In contrast, the most flexible creator is a
free-form text field. Rule creation is aided by a simple distribution of time series per
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label, colored green, red, or black, depending on whether they are classified correctly,
incorrectly, or not at all, respectively. This feature has been found to be particularly
beneficial for rule creation. However, the color choices have been deemed inappropriate
for individuals with red-green blindness. In addition, a set of thumbnails can be displayed
to provide another visual cue about the classification per rule. Overall, these features
have been found to be especially useful during rule creation. The statistics expander
could have been improved by using metric distributions instead of raw numbers.

In the second part of the process, users label the dataset using a table that displays a
thumbnail of the time series, the label per model (label model, surrogate model), and
the gold label. Users can modify and set gold labels directly from the table. Suppose the
thumbnail and labeling results are insufficient for a user. In that case, they can navigate
to the time series analysis, where the entire graph, along with all features and labeling
results, is displayed. Furthermore, users can set the gold label immediately from there.

To enable users to adjust their surrogate model, we have provided them with four different
models and model parameters and metrics to track the changes in metrics.

Considering the input format for labeling functions, which formats are preferred by users?

During the survey, participants provided valuable feedback about their experience using
the application. Additionally, a qualitative feedback session was conducted to gather
more in-depth feedback. The results indicated that in general, participants preferred
a simple approach to the application. It was observed that the more advanced rule
creators were considered too complicated for the users who all had less than two hours of
experience with the application. However, these tools could prove to be beneficial for
users who need to dive deeper into labeling and refining the labels of a dataset. One
user expressed a desire for more flexibility during label design. They suggested that
full calculations should be possible. These calculations could also alleviate the need to
extract all the features beforehand, at the cost of an increased computation time during
the labeling.

Despite this, the user feedback was generally positive in regard to the overall navigation,
user-friendliness, and workflow of the application.

Research Question 3 Which classification models are superior in generalizing beyond
weakly labeled time series data and what are the potential trade-offs?

After extensive hyperparameter tuning, the SKL RFC model was found to be the top
performer in most testing scenarios. It demonstrated robustness against variations in
the feature set and outperformed other models by a margin of over 10%. The SKL GBC
and the SKL KNN models also performed well, ranking closely behind the SKL RFC.
Notably, both the SKL KNN and SKL RFC models showed a significant improvement
in performance after careful tuning, highlighting the importance of hyperparameter
optimization in maximizing model effectiveness.
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Our evaluation showed that simplifying the model by using fewer features led to a
negligible performance difference between the different models. This allowed all models
to achieve high levels of training accuracy and precision. However, this approach
highlighted certain trade-offs, especially with tree-based classifiers like SKL RFC and
SKL GBC. These models delivered superior performance but can be challenging in terms
of interpretability and computational efficiency when dealing with larger models. It
becomes more difficult to trace how input features influence model predictions, while also
increasing the computational resources needed.

Furthermore, the SKL KNN model, while effective, was noted for its high computational
cost and memory requirements, which could be problematic with larger models and
might not be feasible at all. Meanwhile, the SKL GNB model’s assumption of feature
independence can be a significant limitation, given the evident interdependence of features
in our dataset. Moreover, while the SKL SVC is generally praised for its performance in
high-dimensional spaces, this advantage was less relevant in our scenario, which involved
a reduced feature set. Ultimately, our exploration confirmed that tree-based models,
despite their interpretability and computational drawbacks, outperformed other models.

Are there any features that influenced the model performance substantially?

After our hyperparameter tuning process, we established a comparative basis for our
models through the calculation and scaling of Spearman’s correlation coefficients. The
visualization provided in Figure 5.11 highlights that among the various features evaluated,
two stand out as more effective predictors within our models, underscoring their pivotal
role in influencing model performance. However, these coefficients are highly dependent
on the subset of features chosen by the labeling participants, and even though they
occur consistently with high values in our results, might not be the best predictors for
seasonality.

Threats to Validity The field of empirical software engineering research faces multiple
challenges, as outlined in the work of Feldt et al. [112]. These challenges can be broadly
categorized into three types: Internal Validity, External Validity, and Construct Validity.
While the mixed-methods evaluation employed in this study has been designed with these
threats in mind, it is impossible to avoid them altogether. Some of the specific threats
encountered in this study have been previously discussed, but we will elaborate on them
here.

The Internal Validity threat concerns the accuracy of the measurement. This means
ensuring that the results obtained are what we intend to measure and that we are not
misinterpreting any data. To address this threat, we have utilized various models to
try to map linear and non-linear relationships and ensure that the measurements are
accurate. However, there is always a possibility of misinterpretation.

The threat of External Validity concerns the transferability of the results beyond the
study’s context. This means there is no guarantee that the results we obtained in this
study are generalizable beyond what we have shown. The highly dynamic nature of
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time series data, such as differences in sampling rates, different lengths, and growing or
changing data, make it difficult to generalize the results. We have used non-related data
to mitigate this threat, but our evaluation indicates that the results may still not be
fully generalizable. Additionally, the small sample size of participants further limits the
impact of the results.

The Construct Validity threat pertains to the suitability of the methodology used to
address the research question. In this study, defining, implementing, and subsequently
ranking input formats according to a survey was particularly challenging. Furthermore,
it cannot be guaranteed that a construct has not been clearly defined and, therefore,
misrepresented, making the drawn conclusions inadequate.
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CHAPTER 7
Conclusion

In this thesis, we aimed to address the feasibility of automating the labeling process for
time series data by applying simple heuristics, so-called labeling functions, in conjunction
with machine learning models. An evaluation framework based on a real-world case
was developed to approach this goal. Furthermore, to aid the evaluation, a complete
labeling workflow was developed. The evaluation data generation was facilitated via
a demo application. The demo application was developed to enable participants to
interactively label time series data by applying labeling rules to the datasets. The
application development was supported by applying state-of-the-art frameworks and
tools.

The labeling results were then dissected. During the initial evaluation, we found evidence
that study participants were not in total agreement on time series labels, the so-called
gold labels. This supports the claims of subjectivity in labeling data and hence proves
the importance of a standardized labeling workflow. The labeling results were further
used to extract supervised benchmark performances. These benchmarks were used as
a comparison for the evaluation models trained on weak labels and surrogate labels.
Performance improvements were shown during hyperparameter tuning, underscoring the
necessity for well-tuned models. We found that achieving high levels of performance
comparable to manual labeling and supervised labeling is possible under certain conditions.

Our investigation, therefore, highlighted some promising aspects of automated labeling,
including identifying superior models and the necessity of hyperparameter tuning to
achieve optimal performance. However, it also revealed a significant limitation: the
results of our study are not broadly generalizable. This limitation points to the nuanced
challenges inherent in applying machine learning techniques to diverse datasets and
underscores the complexity of the task. While the concrete results are not generalizable,
the survey responses suggest a general positive impact of such a system.
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7. Conclusion

The findings of this research suggest a path forward that necessitates additional investi-
gation. Specifically, there is a clear need for further research to explore the applicability
in regard to different labels and datasets. Such efforts are crucial for enhancing the
utility and effectiveness of automated time series labeling processes in a broader array of
contexts.

In sum, this thesis contributes to the ongoing conversation about the automation of
data labeling, particularly within the context of time series data. While we have
demonstrated that it is feasible to develop a programmatic labeling workflow that
can perform comparably to manual efforts, the limited generalizability of our results
underscores the challenges that remain. Future research in this area is essential for
extending the reach and relevance of these findings and for continuing to refine the
processes and technologies involved in automated labeling.

An artifact for reproduction can be found on Zenodo using the following URL:
https://zenodo.org/records/10871162.
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CHAPTER 8
Appendix

1 import pandas as pd
2
3 feature_matrix = pd.DataFrame()
4
5 def lookup(x, feature, feature_matrix):
6 return feature_matrix.at[x.name, feature]
7
8 def rule_Small_variance_indicates_Constant_Threshold(x):
9 return 0 if lookup(x, "variance", feature_matrix) < 0.1 else -1

10
11 def rule_Large_skewness_indicates_Constant_Threshold(x):
12 return 0 if lookup(x, "skewness", feature_matrix) > 1 else -1
13
14 def rule_Many_duplicate_values_indicates_Constant_Threshold(x):
15 return 0 if lookup(x, "ratio_value_number_to_time_series_length",

feature_matrix) < 0.9 else -1
16
17 def rule_Small_fourier_entropy__bins_5_indicates_Seasonal_Baselining(x):
18 return 1 if lookup(x, "fourier_entropy__bins_5", feature_matrix) < 0.2

else 0
19
20 def rule_Small_fourier_entropy__bins_3_indicates_Seasonal_Baselining(x):
21 return 1 if lookup(x, "fourier_entropy__bins_3", feature_matrix) < 0.1

else 0
22
23 def rule_Small_fourier_entropy__bins_2_indicates_Seasonal_Baselining(x):
24 return 1 if lookup(x, "fourier_entropy__bins_2", feature_matrix) < 0.08

else 0
25
26 def rule_Time_reversal_asymmetry_lag_1_indicates_constant_threshold(x):
27 return -1 if lookup(x, "time_reversal_asymmetry_statistic__lag_1",

feature_matrix) > -1.8314717772846557e+21 else 0
28
29 def rule_number_peaks__n_50_indicates_seasonal_baseline(x):
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30 return -1 if lookup(x, "number_peaks__n_50", feature_matrix) < 85.915
else 1

31
32 def rule_More_than_20_percentage_of_reoccuring_values_to_all
33 _values_indicate_constant_threshold(x):
34 return 0 if lookup(x, "percentage_of_reoccurring_values_to_all_values",

feature_matrix) > 0.20139 else -1
35
36 def rule_embedding_dist(x):
37 return 0 if lookup(x, "CO_Embed2_Dist_tau_d_expfit_meandiff",

feature_matrix) < 0.12 else 1
38
39 def rule_Minimal_Variance(x):
40 return 0 if lookup(x, "variance", feature_matrix) < 0.010 else 1
41
42 def rule_Min_AC(x):
43 return 0 if lookup(x, "CO_FirstMin_ac", feature_matrix) < 7.0 else 1
44
45 def rule_Min_standard_deviation(x):
46 return 0 if lookup(x, "standard_deviation", feature_matrix) < 0.10 else 1
47
48 def rule_ForecastError1(x):
49 return 0 if lookup(x, "FC_LocalSimple_mean3_stderr", feature_matrix) <

0.17488 else 1
50
51 def rule_Change_in_AC_after_diff(x):
52 return 0 if lookup(x, "FC_LocalSimple_mean1_tauresrat", feature_matrix) <

0.773398 else 1
53
54 def rule_Periodicity_Metric(x):
55 return 0 if lookup(x, "PD_PeriodicityWang_th0_01", feature_matrix) < 10.0

else 1
56
57 def rule_Logi_Scaling(x):
58 return 0 if lookup(x, "SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1",

feature_matrix) < 0.17016 else 1
59
60 def rule_Sum_20_low(x):
61 return 0 if lookup(x, "SP_Summaries_welch_rect_area_5_1", feature_matrix)

>= 0.999 else 1
62
63 def rule_F1AC(x):
64 return 0 if lookup(x, "CO_f1ecac", feature_matrix) > 128.62096999936 else

1
65
66 def rule_4dd90fb2_22a4_40dc_b1b9_5fb4c2c4c11d(x):
67 return 0 if lookup(x, "cid_ce__normalize_True", feature_matrix) < 1.0

else 1
68
69 def rule_8e7e0683_9824_475b_a3f6_7449e3281c7c(x):
70 return 1 if lookup(x, "fft_aggregated__aggtype_variance", feature_matrix)

> 400000.0 else 0
71
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72 def rule_c6e90c15_c4d9_4564_820c_af71ba4eb025(x):
73 return 0 if lookup(x, "fourier_entropy__bins_10", feature_matrix) >

0.211776 else 1
74
75 def rule_99ce81a2_8c98_4ed4_ac97_b79efac28bcb(x):
76 return 0 if lookup(x, "DN_HistogramMode_5", feature_matrix) > 0.5 or

lookup(x, "DN_HistogramMode_5",
77

feature_matrix) < -0.5 else 1
78
79 def rule_588654e0_5822_43c0_b2c5_ac54fe684839(x):
80 return 0 if lookup(x, "PD_PeriodicityWang_th0_01", feature_matrix) < 23.0

else -1
81
82 def rule_56c3bc47_3043_4750_8020_e180e98ed299(x):
83 return 0 if lookup(x, "SP_Summaries_welch_rect_centroid", feature_matrix)

> 1.0 else -1
84
85 def rule_f83f8771_f75c_445d_a782_b60c9839ddf3(x):
86 return 1 if lookup(x, "FC_LocalSimple_mean3_stderr", feature_matrix) >

0.1 else -1

Listing 8.1: Labeling rules extracted from experiment labeling tasks
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Rule Name Polarity Coverage Overlaps Conflicts
rule_embedding_dist 0,1 1 1 0.9708
rule_Minimal_Variance 0,1 1 1 0.9708
rule_Min_AC 0,1 1 1 0.9708
rule_Min_standard_deviation 0,1 1 1 0.9708
rule_ForecastError1 0,1 1 1 0.9708
rule_Change_in_AC_after_diff 0,1 1 1 0.9708
rule_Periodicity_Metric 0,1 1 1 0.9708
rule_Logi_Scaling 0,1 1 1 0.9708
rule_Sum_20_low 0,1 1 1 0.9708
rule_F1AC 0,1 1 1 0.9708

Table 8.1: ILT1 Labeling Function Analysis

Rule Name Polarity Coverage Overlaps Conflicts
rule_4dd90fb2_22a4_40dc_b1b9_5fb4c2c4c11d 0,1 1 1 0.9896
rule_8e7e0683_9824_475b_a3f6_7449e3281c7c 0,1 1 1 0.9896
rule_c6e90c15_c4d9_4564_820c_af71ba4eb025 0,1 1 1 0.9896
rule_99ce81a2_8c98_4ed4_ac97_b79efac28bcb 0,1 1 1 0.9896
rule_588654e0_5822_43c0_b2c5_ac54fe684839 0 0.3420 0.3420 0.3413
rule_56c3bc47_3043_4750_8020_e180e98ed299 0 0.0170 0.0170 0.0170
rule_f83f8771_f75c_445d_a782_b60c9839ddf3 1 0.8832 0.8832 0.8766

Table 8.2: ILT2 Labeling Function Analysis

Rule Name Polarity Coverage Overlaps Conflicts
rule_Small_variance_indicates_Constant_Threshold 0 0.5275 0.5275 0.3515
rule_Large_skewness_indicates_Constant_Threshold 0 0.1291 0.1291 0.0720
rule_Many_duplicate_values_indicates_Constant_Threshold 0 0.1337 0.1337 0.0944
rule_Small_fourier_entropy__bins_5_indicates_Seasonal_Baselining 0,1 1 1 0.5381
rule_Small_fourier_entropy__bins_3_indicates_Seasonal_Baselining 0,1 1 1 0.5381
rule_Small_fourier_entropy__bins_2_indicates_Seasonal_Baselining 0,1 1 1 0.5381
rule_Time_reversal_asymmetry_lag_1_indicates_constant_threshold 0 0.0015 0.0015 0
rule_number_peaks__n_50_indicates_seasonal_baseline 1 0.0740 0.0740 0.0638
rule_More_than_20_percentage_of_reoccuring_values_to_all_values_indicate_constant_threshold 0 0.0605 0.0605 0.0486

Table 8.3: CLT Labeling Function Analysis
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Feature Type Description
Catch22
CO_Embed2_Dist _tau_d_expfit_meandiff Other Goodness of exponential fit to embedding distance distribution
CO_FirstMin_ac Linear autocorrelation structure First minimum of the ACF
CO_f1ecac Linear autocorrelation structure First 1/e crossing of the ACF
DN_HistogramMode_5 Distribution shape 5-bin histogram mode
FC_LocalSimple _mean1_tauresrat Incremental differences Change in autocorrelation timescale after incremental differencing
FC_LocalSimple _mean3_stderr Simple forecasting Error of 3-point rolling mean forecast
PD_PeriodicityWang _th0_01 Linear autocorrelation structure Wang’s periodicity metric
SC_FluctAnal_2_dfa _50_1_2_logi_prop_r1 Self-affine scaling Detrended fluctuation analysis (low-scale scaling)
SP_Summaries_welch _rect_area_5_1 Linear autocorrelation structure Power in lowest 20% frequencies
SP_Summaries_welch _rect_centroid Linear autocorrelation structure Centroid frequency

Table 8.4: Description of catch22 features applied in the experiment

Feature Type Description
TSFresh
cid_ce__normalize _True Simple Calculator for time series complexity
fft_aggregated__aggtype _variance Combiner Spectral variance of the absolute fourier transform spectrum
fourier_entropy__bins_10 Simple Binned entropy of the power spectral density (using welch method)
fourier_entropy__bins_2 Simple Binned entropy of the power spectral density (using welch method)
fourier_entropy__bins_3 Simple Binned entropy of the power spectral density (using welch method)
fourier_entropy__bins_5 Simple Binned entropy of the power spectral density (using welch method)
number_peaks__n_50 Simple The number of peaks of at least support n in the time series x
percentage_of_reoccurring _values_to_all_values Simple The percentage of values that are present in the time series more than once
ratio_value_number_to _time_series_length Simple A factor which is 1 if all values in the time series occur only once, and below one if this is not the case
skewness Simple Skewness of x
standard_deviation Simple Standard deviation of x
time_reversal_asymmetry _statistic__lag_1 Simple Time reversal asymmetry statistic
variance Simple Variance of x

Table 8.5: Description of tsfresh features applied in the experiment

91



8. Appendix

Model Evaluation Set LT Accuracy Precision Recall Features Trained on
skl_knn Eval DS2 (Lin) CLT 0.7195 0.7221 0.7195 fs5 LM
skl_gnb Eval DS1 CLT 0.6997 0.7138 0.6997 fs3 LM
skl_gbc Eval DS2 (Lin) ILT2 0.6931 0.7055 0.6931 full LM
skl_gbc Eval DS2 (Lin) ILT2 0.6898 0.7014 0.6898 full SM
skl_log_reg Eval DS4 (Split Lin) CLT 0.6852 0.7046 0.6852 fs2 LM
skl_gbc Eval DS1 CLT 0.6832 0.6851 0.6832 fs4 LM
skl_rfc Eval DS1 CLT 0.6799 0.6820 0.6799 fs4 LM
skl_gnb Eval DS1 CLT 0.6667 0.7482 0.6667 full SM
skl_gnb Eval DS1 CLT 0.6667 0.7482 0.6667 full LM
skl_svc Eval DS2 (Lin) CLT 0.6370 0.7429 0.6370 full SM
skl_svc Eval DS4 (Split Lin) CLT 0.6358 0.7455 0.6358 full LM
ptl_log_reg Eval DS1 CLT 0.6145 0.6269 0.6145 full LM
ptl_prob_log_reg Eval DS1 CLT 0.6026 0.6174 0.6026 full LM
skl_log_reg Eval DS1 ILT2 0.5479 0.5578 0.5479 full SM
skl_log_reg Eval DS1 ILT2 0.5479 0.5578 0.5479 full LM
skl_knn Eval DS3 (Split) CLT 0.5463 0.5533 0.5463 full SM
skl_knn Eval DS3 (Split) CLT 0.5463 0.5533 0.5463 full LM
skl_rfc Eval DS5 (Split Cub) ILT2 0.5327 0.5532 0.5327 full SM
skl_svc Eval DS2 (Lin) ILT1 0.5314 0.6576 0.5314 fs3 LM
weasel Eval DS3 (Split) CLT 0.5290 0.5569 0.5290 full LM
skl_rfc Eval DS5 (Split Cub) ILT2 0.5148 0.5323 0.5148 full LM

Table 8.6: Full results table for model comparison

Model Evaluation Set LT Accuracy Precision Recall Features Trained on
skl_knn Eval DS2 (Lin) CLT 0.7195 0.7221 0.7195 fs5 LM
skl_gnb Eval DS1 CLT 0.6997 0.7138 0.6997 fs3 LM
skl_gbc Eval DS2 (Lin) ILT2 0.6931 0.7055 0.6931 full LM
skl_log_reg Eval DS4 (Split Lin) CLT 0.6852 0.7046 0.6852 fs2 LM
skl_rfc Eval DS1 CLT 0.6799 0.6820 0.6799 fs4 LM
skl_svc Eval DS2 (Lin) CLT 0.6370 0.7429 0.6370 full SM
ptl_log_reg Eval DS1 CLT 0.6145 0.6269 0.6145 full LM
ptl_prob_log_reg Eval DS1 CLT 0.6026 0.6174 0.6026 full LM
weasel Eval DS3 (Split) CLT 0.5290 0.5569 0.5290 full LM

Table 8.7: Cleaned rankings for ML models
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