
Combining Textual and Graphical
Modeling with Next Generation

Frameworks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Adam Lencses, BSc
Matrikelnummer 11708472

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Mitwirkung: Dipl.-Ing. Dr.techn. Philip Langer

Wien, 8. April 2024
Adam Lencses Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Combining Textual and Graphical
Modeling with Next Generation

Frameworks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Adam Lencses, BSc
Registration Number 11708472

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork
Assistance: Dipl.-Ing. Dr.techn. Philip Langer

Vienna, 8th April, 2024
Adam Lencses Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Adam Lencses, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. April 2024
Adam Lencses

v

Kurzfassung

Die Kombination von textueller und graphischer Modellierung, d.h. die Darstellung von
textuellen Modellen in Form von Diagrammen, ist seit langem ein beliebtes Thema
in Model Engineering. Modellierungswerkzeuge bieten den Benutzern oftmals nur die
Möglichkeit, Modelle entweder in textueller oder in graphischer Form zu editieren. Bisher
wurden Modellierungswerkzeuge, die beide Ansätze kombinieren, nur mit traditionellen
Frameworks wie z.B. Xtext und EMF entwickelt. Die Frameworks der nächsten Ge-
neration, Langium und die Graphical Language Server Platform (GLSP), bieten neue
Möglichkeiten wie erhöhte Modularität in der Architektur und Bereitstellungsoptionen,
mehr Flexibilität im Design der Benutzeroberfläche, webbasierte und Cloud-freundliche
Entwicklungsmöglichkeiten, während sie die Abhängigkeit von Java eliminieren.

Das Ziel dieser Arbeit ist die Kombination von textueller und graphischer Modellierung
erneut zu erforschen und weiterzuentwickeln mit den next-generation Frameworks, Langi-
um und GLSP. Es wird ein Konzept für kombinierte textuell-graphische Modellierung
auf Basis dieser neuen Frameworks entwickelt, das einen Modellservice nutzt, um die Mo-
difikationsmodelle des textuellen und graphischen Editors gemeinsam zu verwalten. Das
Konzept berücksichtigt, dass der grafische und textuelle Editor auf dem gleichen Modell
arbeiten müssen, gleichzeitiges Editieren des Modells in beiden Editoren möglich sein
muss und nicht-semantische Informationen wie zum Beispiel Kommentare und Formattie-
rungen in der textuellen Darstellung des Modells erhalten bleiben müssen. Das Konzept
wird als Artefakt basierend auf der Workflow domänenspezifische Sprache realisiert. Ein
bestehendes GLSP-Framework existiert bereits für die Workflow Sprache. Dies wird
durch einen Langium-basierten Language Server erweitert, um textuelle Modellierung
zu ermöglichen, sowie durch einen Modellserver, der den Zugriff auf das Modell und die
Bereitstellung und Updates des Modells zwischen den textuellen und grafischen Editoren
verwaltet.

Um die entwickelten Konzepte und Artefakte zu evaluieren, werden die implementierten
Lösungen auch mit zwei UML-Anwendungsfälle des bigUML Modellierungswerkzeug
instantiiert: das Paketdiagramm und das Klassendiagramm. Diese beiden Anwendungsfälle
werden gegen die vordefinierten Anforderungen an die textuell-graphische Modellierung
evaluiert.

vii

Abstract

Combining textual and graphical modeling i.e., representing textual models in the form
of diagrams, has been a popular topic ever since in the field of model engineering. Most
often modeling tools only provide users the possibility to create models either in textual
form or in the form of a diagram, and the users have to decide upon initial creation of
the model whether they would like to use a textual or a graphical model editor. So far,
blended modeling tools combining both approaches have only been developed based on
traditional frameworks e.g., Xtext and EMF. The next generation frameworks Langium
and the Graphical Language Server Platform (GLSP) promote new opportunities such
as increased modularity in architecture and deployment options, more flexibility in user
interface design, web-based and cloud-friendly development possibilities, while eliminating
the dependency to Java.

This thesis aims to revisit and explore the topic of combining textual and graphical
modeling with the next-generation frameworks Langium and GLSP. A concept for blended
textual-graphical modeling based on these frameworks is developed, which utilizes a
model service to jointly manage the textual and graphical editor’s underlying modification
model. The concept considers that the graphical and textual editor must operate on
the same model, simultaneous updates must be possible between the two editors and
non-semantic information of the model must be maintained during updates of the model.
The concept is realized as an artifact based on the Workflow language. An existing GLSP
framework for the Workflow language providing graphical modeling is extended by a
Langium language server providing textual modeling, and a model server handling model
access, provision and updates between the textual and graphical editors.

To evaluate the developed concepts and artifacts, the implemented solution concepts are
instantiated by two UML use cases of the bigUML modeling tool: the package diagram
and the class diagram. These two use cases are evaluated against the conceptualized
requirements of blended textual-graphical modeling.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem Statement & Motivation . 1
1.2 Aim of this Thesis and Expected Results 4
1.3 Methodology . 5
1.4 Summary and Structure of the Work 6

2 Background 9
2.1 Terminology . 9
2.2 Graphical Language Server Platform (GLSP) 12
2.3 Langium . 14
2.4 Summary . 16

3 State of the Art 17
3.1 Combining Textual and Graphical Modeling 17
3.2 Textual-graphical Modeling Frameworks 18
3.3 Drawbacks Observed in the Listed Frameworks 24
3.4 Summary and Comparison of the Listed Frameworks 25

4 Concept 27
4.1 Main Idea and General Approach . 27
4.2 Requirements for the Blended Textual-Graphical Modeling Framework 28
4.3 Framework Architecture . 31
4.4 Model Server Concept . 32
4.5 Solution Concepts for the Requirements 35
4.6 Summary . 39

5 Prototype Implementation 41
5.1 Implementation of the Language Server 41

xi

5.2 Implementation of the GLSP Server 58
5.3 Model Server . 77
5.4 Model Synchronization . 81
5.5 VS Code Extension . 84
5.6 Summary . 85

6 Evaluation 89
6.1 Evaluation Procedure . 89
6.2 bigUML Artifacts . 89
6.3 Implementation of the bigUML Scenarios 90
6.4 Scenario Evaluation . 94
6.5 Summary and Discussion . 96

7 Conclusion 99
7.1 Conclusion . 99
7.2 Future Work . 102

List of Figures 103

List of Tables 105

List of Listings 107

Acronyms 109

Bibliography 111

CHAPTER 1
Introduction

This chapter introduces the domain of this work. Firstly, it defines the motivation and
problem statement for this thesis. Secondly, the aim of the thesis and expected results
are elaborated providing four research questions that assist the implementation process
of this thesis. Afterwards, the description of the applied methodological approach follows.
Finally, the chapter gives an overview of the subsequent chapters of this thesis.

1.1 Problem Statement & Motivation
Combining textual and graphical modeling, i.e., representing textual models in the form of
diagrams, has been a popular topic ever since in the field of model engineering [DLP+22]
[Sch08]. Most often modeling tools only provide users the possibility to create models
either in textual form or in the form of a diagram, and the users have to decide upon
initial creation of the model whether they would like to use a textual or a graphical
model editor. Both representation forms have their benefits and drawbacks. For example,
it is easier to define fine-grained details and attributes of a model textually compared
to editing small details in a diagram editor. The small details are easy to look up and
edit in textual form, but can be difficult to find and modify in a diagram, depending
on how the attributes of the model elements are visualized. On the other hand, it is
easier to create and understand relationships between elements of a model when they are
visually displayed in a diagram. Links between two elements of a diagram e.g., displayed
in the form of edges are straightforward to recognize in a diagram, as edges are directly
connected to their source and target elements. In a textual representation, the edges
might not be defined directly next to the connecting elements, therefore the relationships
between the elements of the model might not be recognized immediately.

Figures 1.1 and 1.2 illustrate the aforementioned differences between a textual and
graphical model editor, both displaying the same model. The relationships (i.e., the

1

1. Introduction

edges) between the elements of the model (i.e., the nodes) are straightforward to recognize
on the graphical model, and harder to understand on the textual one.

Figure 1.1: VS Code’s Monaco editor: An example of a textual model editor.

Tools combining these two forms of modeling integrate the benefits of both textual and
graphical modeling tools [DLP+22]. Users can usually decide whether they want to
interact with the model textually or visually, depending on their preferences or even edit
the model in both representations simultaneously.

Different modeling tools use different approaches to combine textual and graphical
modeling. They can, for example differ in the level of granularity they offer users to
interact with each representation of the model, or in the way the different representations
are synchronized. Tools that derive a read-only visual representation of the textual
model, only allow users to edit and interact with the textual model, and the visual
representation is generated from the textual model afterward. Some tools can embed
one representation within the other, such as embedding a textual editor in the visual
representation of the model. This enables the users to textually edit small details of the
model while maintaining the benefits of the visual representation for the bigger picture.
Other tools enable editing a model both textually and graphically simultaneously, others
only allow editing a model either textually or graphically at the same time, while still
enabling cross-references between the elements of the graphical and textual models.

Depending on the approach, different conceptual challenges [SL] arise while combining
textual and graphical modeling. Firstly, graphical and textual models both need an

2

1.1. Problem Statement & Motivation

Figure 1.2: Graphical Language Server Platform (GLSP) Client: An example of a
graphical model editor.

underlying modification model. A graphical editor, for example, might need additional
attributes for an element to display it correctly, such as the position or the style of this
element. These attributes, however, might not be relevant for a textual model, therefore,
the underlying modification model must deal with this problem. Secondly, cross-references
should be resolved correctly both in the textual and graphical representation of the model.
A graphical editor should be aware of cross-references in textual models and display the
corresponding elements accordingly and vice versa. For example, an edge between a
source and a target element in a textual model should be displayed between the same
source and target elements in the graphical representation of the model. Moreover,
the non-semantic information of the graphical and textual representations must also
be considered. The textual representation of a model might contain comments, special
formatting or white spaces, that are irrelevant for the graphical representation. Also, the
graphical representation might contain information such as the size or position of the
elements that are irrelevant for the textual representation.

So far, these challenges have only been evaluated based on traditional frameworks e.g.,
Xtext [Foue] and EMF [Foub]. A re-evaluation based on the next-generation frameworks
Langium [Typa] and the GLSP [Foua] [MB23b] is important as they promote new
opportunities such as increased modularity in architecture and deployment options, more
flexibility in user interface design, web-based and cloud-friendly development possibilities,
while eliminating the dependency to Java [BLO23].

3

1. Introduction

1.2 Aim of this Thesis and Expected Results
This thesis aims to revisit and explore the topic of combining textual and graphical
modeling with the next-generation frameworks Langium and GLSP. The following results
are expected from the new textual-graphical modeling framework, followed by the research
questions that this thesis aims to provide answers for:

• Model service: An API to make Langium’s abstract syntax tree (AST) accessible
to GLSP and other model-oriented clients. This API must allow for accessing,
querying, and manipulating models. The following question will follow the imple-
mentation of the model service API:

1. Model service:
How can the model service API allow textual and graphical editors to manage
and manipulate the underlying AST jointly?

• Solutions to the conceptual challenges: solutions and approaches that address
the conceptual challenges from Section 1.1 utilizing the next-generation frameworks
Langium and GLSP. The framework must propose solutions for the modification
model, the reference resolution mechanism, and non-semantic information handling.
The conceptualization and implementation of the the textual-graphical modeling
framework will provide example solutions to the following questions:

2. Modification model:
How to implement the modification model to allow for simultaneous modifica-
tions on the textual and graphical models?

3. Cross-references:
How can the Langium-GLSP framework resolve cross-references in the textual
and graphical representations?

4. Non-semantic information:
How to handle non-semantic information with the Langium-GLSP framework
for textual and graphical models?

The integration of Langium and GLSP will be implemented via the following approach.
A blended graphical and textual modeling framework will be developed, where the
underlying modification model is shared between the textual and graphical language
servers. This approach allows for editing models both graphically and textually, either
simultaneously or in one representation at a time.

Successful integration of Langium and GLSP via this approach comprehends the imple-
mentation of the model service API, and proposing solutions for the mentioned conceptual
challenges, contributing to the outcome of the problem statement of this thesis.

4

1.3. Methodology

1.3 Methodology
The methodological approach of this work is based on the Design Science Research
methodology [HRM+04]. The methodology of this thesis entails the problem’s relevance,
the conceptualization of the proposed design, the artifact creation and evaluation and the
research contribution. The following steps will be executed during the implementation of
the thesis.

1. Literature review
State-of-the-art approaches to combine textual and graphical modeling have to
be reviewed and documented. Both approaches utilizing conventional frameworks
(EMF, Xtext) and next-generation frameworks will be reviewed and categorized
by the method of combining textual and graphical modeling. This step is part of
the Design Science Research rigor cycle [Hev07], and is necessary to understand
approaches that were already implemented, to document their features and to
highlight what is missing and yet to be implemented. This provides a ground truth
for this thesis and ensures that the research done is innovative.

2. Library and framework analysis
Several tools, libraries, and frameworks already exist that utilize Langium as a
language server and a diagramming tool e.g., Sprotty [Ecle] to combine textual and
graphical modeling. Investigating and analyzing these are crucial to understand
the state of the art and to identify what is still missing and needs improvement.
Furthermore, a review of Langium and GLSP will be provided, as the artifacts will
be implemented based on these frameworks.

3. Conceptualization
Based on the previous steps, a concept of the blended modeling framework will
be implemented. This concept will provide a detailed description of an approach
on how textual and graphical modeling can be combined and which benefits and
drawbacks this approach has. The concept will be based on the next-generation
modeling tools Langium and GLSP. The concept will provide answers to the
previously stated research questions in Section 1.2: it provides a concept for the
model service to be used with multiple clients (textual and graphical), provides a
concept for the common modification model for the textual and graphical editors,
describes how unresolvable elements - common when interacting with text-based
models, but uncommon for graphical model editors - will be handled, and provides
a concept on how to deal with non-semantic information. This step is part of the
Design Science Research design cycle [Hev07].

5

1. Introduction

4. Artifact implementation
Langium and GLSP will be extended with the following artifacts:

• Model service API: a generic model service API as a Langium service that
allows for accessing, querying, and manipulating models, as well as representing
and resolving cross-references.

• Langium-GLSP framework: a framework to support and simplify combin-
ing textual and graphical modeling based on Langium and GLSP.

The Langium-GLSP framework will be implemented based on the Workflow domain-
specific language (DSL) [Foud], as a Node.js based GLSP server and client are
already implemented, and can be used as a basis for the Langium-GLSP framework.

5. Artifact evaluation
The implemented artifacts will be evaluated on their usability and reusability
on another DSL based on descriptive evaluation using scenarios [Hev07]. The
implemented artifacts will be instantiated and evaluated based on two bigUML
[Bor] [MB23a] use cases. The evaluation criteria is the successful instantiation of
the Langium-GLSP framework and the model service with bigUML as a proof of
concept.

1.4 Summary and Structure of the Work
This chapter provided an introduction to the topic of graphical and textual modeling,
stated the aim and expected results of the thesis and introduced the methodology of the
work. Six more chapters are following.

Chapter 2 provides a background to the reader on modeling in general and on the
technologies that will be further used for conceptualization and artifact implementation.

Chapter 3 elaborates the state of the art approaches to combine textual and graphical
modeling. Approaches using conventional frameworks and next-generation frameworks
will be introduced and discussed.

Chapter 4 presents the concept that proposes solutions to the research questions. It
describes which approaches where chosen to find answers to the graphical-textual modeling
problems, and why. It also describes which decisions should work in general, and which
decisions might need other solutions for arbitrary DSLs.

Chapter 5 gives details on the implementation of the model service and the Langium-
GLSP framework. This chapter highlights which concepts were used to implement the
framework tailored for the Workflow DSL, and which decisions were made to provide
support for this language.

Chapter 6 elaborates the evaluation process. It provides details on how the implemented
framework was instantiated with two bigUML use cases: the package diagram and the

6

1.4. Summary and Structure of the Work

class diagram, which problems arose and what solutions were provided to solve these
problems, or argues why the problem is not solvable.

Chapter 7 concludes the thesis, provides answers to the research questions and possibilities
for further work on this topic.

7

CHAPTER 2
Background

This chapter gives an overview on the basic terminology used in this thesis. Furthermore,
this chapter also provides an introduction to Langium and GLSP, as these frameworks
will be used for the artifact implementation.

2.1 Terminology
This section provides an overview on the most important terms in regards of the topic of
this thesis.

2.1.1 Model
Several different definitions are given in the literature for models.

Thalheim states that a generic notation of a model is the following [Tha22]: "A model is
a well-formed, adequate, and dependable instrument that represents ’something’ (called
origin as a source, archetype, starting point) and functions in scenarios of use."

Kühne defines models as follows [Kü06]: "A model is an abstraction of a (real or language-
based) system allowing predictions or inferences to be made."

Selic states [Sel03] that "Models help us understand a complex problem and its potential
solutions through abstraction."

All the above definitions state that models are abstract and hence represent something.
This representation helps us understand the bigger picture (the ’something’ the model
represents) in different scenarios, allows us to make predictions and to establish potential
solutions to the represented problem.

In the scope of this thesis the following example can be constituted: a model is for
example a representation of a workflow written in the Workflow language, that describes

9

2. Background

the tasks of a workflow and the dependencies between these tasks i.e., which tasks need
to be finished before the next tasks can be started. An example for a model written in
the Workflow language is pictured in Figure 1.2.

2.1.2 Modeling languages
Modeling Language

A modeling language is a textual or graphical language that is used to establish a model.
The most important structural elements of a modeling language are it’s abstract syntax,
concrete syntax, and semantics [CGR09].

Abstract syntax

The abstract syntax of a model defines the elements of a model and how these elements
are related to each other and can be combined. Wile states that [Wil97] "The goal
of an abstract syntax is to describe the structural essence of a language." An abstract
syntax tree represents the abstract syntax in a form of a tree, while there are many
more formalisms and techniques to specify the abstract syntax (i.e., the metamodel) of a
modeling language [BKP20].

Concrete syntax

The concrete syntax of a model is the language’s notation [HR00] [BKP18] i.e., the
notation to illustrate the elements of a model textually or graphically. A textual model
is a model notated with textual concrete syntax and a graphical model is notated with
graphical concrete syntax. An example for a textual model is in Figure 1.1 and for a
graphical model is in Figure 1.2.

Semantics

Harel et al. [HR04] state that "A language’s semantics must provide the meaning of
each expression, and that meaning must be an element in some well- defined and well-
understood domain." Semantics define the actual meaning of the elements of a model
and how they should be interpreted. Following the previous example the semantics of
the model displayed in Figure 1.2 can be interpreted as four tasks where the ’Expensive
Task’ and ’Cheap Task’ both need the ’Prepare’ task to be done, and the ’Evaluate’ task
can only begin when either the ’Expensive Task’ or the ’Cheap Task’ is done.

Domain-specific language (DSL)

A domain-specific language is a language established for a specific domain that is not
intended to support usage in an arbitrary area. Within the scope of this thesis a language
called Workflow language will be used during the artifact development. This language is
specifically established for demo purposes on the used architecture and is an example for
a domain-specific language.

10

2.1. Terminology

General-purpose language (GPL)

A general-purpose language is designed to be used in all kinds of scenarios, they can be
applied to any domain for model creation. An example for a general-purpose language
is the Unified Modeling Language (UML) [Obj]. This language will be used for artifact
evaluation in this work.

2.1.3 Blended modeling

Blended modeling was first defined by Ciccozzi et al. [CTVW19]: "Blended modeling is
the activity of interacting seamlessly with a single model (i.e., abstract syntax) through
multiple notations (i.e., concrete syntaxes), allowing a certain degree of temporary
inconsistencies." A single model means that the editing is done on the same model
irrespective of which view of the model is currently being edited. Multiple notations
means that the model for example can be edited in a textual view and in a graphical view
simultaneously, and inconsistencies can result depending on the view’s editing capabilities
e.g., deleting a character from a cross-reference’s ID in a textual model would already
break the visualization of this reference in the graphical view, even though this step is
probably only temporary between replacing IDs in the textual view.

2.1.4 Metamodeling

Metamodel

A metamodel of a model goes another abstraction layer further and defines the language
elements and their grammar to specify the concrete syntax of the model [BCW17]. A
grammar is a set of rules that predefines which language elements a model can have and
their concrete notation.

Figure 2.1: Metamodeling: ’conformsTo’ and ’instanceOf’ relationships [BCW17]. (page
15)

11

2. Background

Meta-metamodel

A meta-metamodel is another layer of abstraction that the metamodel conforms to.
This describes which language concepts the metamodel is allowed to contain and their
grammar. Another level of abstraction is usually not necessary, as it is shown that
meta-metamodels can be defined using themselves [BCW17].

Figure 2.1 shows the relationship between a model and its metamodel layer in correlation
with the object-class relationship from object-oriented programming. A model can be
always defined as conforming to the corresponding metamodel in the same way as an
object is an instance of a class.

Continuing the previous examples based on the Workflow language, the following can be
observed in regards to metamodeling. Figure 1.1 and Figure 1.2 show two examples of a
model. Their corresponding metamodel is the Workflow language itself, i.e., the grammar
defining the notation of elements and relationships between them. The meta-metamodel
of the workflow metamodel within the scope of this thesis is the Langium grammar
language [Typc], which is implemented using itself.

2.2 Graphical Language Server Platform (GLSP)
The GLSP is an extensible open-source framework for building custom diagram editors
based on web technologies [Foua] [MB23b]. It is based on an extensible client-server
architecture. The communication between the client and server is based on the Language
Server Protocol (LSP) [Micb] [BL23], which is extended to provide features required
for diagram editing. This way, the client only has to cope with the rendering of the
diagram and providing editing possibilities for the users, while the server handles the
more computational heavy tasks e.g., modifying the underlying abstract syntax of the
diagram, loading the diagram and handling user inputs made on the client.

GLSP provides implementations for the client and server in several different frameworks
and programming languages. For the scope of this thesis, the node.js server will be
extended to match Langium, written in TypeScript. As for the client, the glsp-vscode-
integration1 package will be used that provides an example implementation of GLSP as
a VS Code extension using Sprotty [Ecle] as a diagram editor integrated into VS Code’s
webview.

2.2.1 GLSP architecture
The GLSP framework is built up as follows. The server can be written in any programming
language, most commonly either in Java or TypeScript. The server has to load the source
model, which can be in an arbitrary format e.g., in JSON or a parsed AST from Langium
and store it in the model state. It then has to create the graphical model of this loaded
source model. The graphical model contains all the elements that the client will display

1https://github.com/eclipse-glsp/glsp-vscode-integration

12

https://github.com/eclipse-glsp/glsp-vscode-integration
https://github.com/eclipse-glsp/glsp-vscode-integration

2.2. Graphical Language Server Platform (GLSP)

Figure 2.2: GLSP: client-server architecture [Foua]

and all their necessary attributes e.g., size, position, element type, label. This graphical
model is then serialized by the server and sent to the client over the JSON-RPC2 protocol.
The server also provides implementations for actions that are coming from either the
client or the server itself that modify the model state directly. After every modification
on the model state, the server re-generates the graphical model and sends it to the client.
This way, the architecture provides a clearly uni-directional flow of data, enabling the
client to be a lightweight web-based editor.

The client is responsible for rendering the diagram and providing editing operations for
the diagram, that are predefined by the server e.g., manipulating the size or position of
the elements or renaming labels. The client however, does not directly applies changes to
the diagram, it only sends a request to the server to do so, and re-renders the diagram
after the server sends over the modified graphical model.

2.2.2 Components and services
To provide customizability and extensibility, the server and client are both implemented
using an inversion of control pattern based on dependency injection3. On the server, all
of the provided services i.e., the action handlers, and the components i.e., the model
state are placed in a global dependency injection container and can be either extended
or completely overwritten. The following section lists the most important services and
components of the GLSP framework.

• Source model storage: is responsible for loading and saving the source model,
which can be in arbitrary format.

2https://www.jsonrpc.org/specification
3https://eclipse.dev/glsp/documentation/overview

13

https://www.jsonrpc.org/specification
https://eclipse.dev/glsp/documentation/overview

2. Background

• Model state: holds information about the current model state and the original
source model. The actions and services have access to this model state and can
directly modify it.

• Model index: indexes the elements of the graphical model and the semantic
elements of the model state they represent.

• GModel factory: the component that transfers the model state into the corre-
sponding graphical model. It creates the diagram elements that are represented
via a graph, the GGraph. This graph gets sent to the client for rendering. The
GModelFactory re-creates and resends the graphical model to the client every
time a change on the model state occurs.

• Diagram module: binds all the custom implemented or extended components
and services to the framework.

• Command: is the core component of an action. A command defines how an
action will be executed in regards of the model state and defines the necessary
modifications to undo and redo the command.

• Operation handler: defines how an action modifies the model state and executes
the corresponding command.

• Provider: providers define custom operations for the client that it can execute on
a model i.e., navigation between elements or defining actions of a command palette.

• Validator: custom validators can validate the structure and attributes of the
model, and can define error markers to show on the graphical model for the client.

2.3 Langium

"Langium is an open source language engineering tool with first-class support for the
Language Server Protocol, written in TypeScript and running in Node.js [Typa]." Langium
provides the possibility to create domain-specific languages together with an out of the
box TypeScript-based language server, that can be easily integrated into VS Code as
an extension or other web applications, and can be arbitrarily customized to meet the
language creators’ needs.

Giner-Miguelez et al. implemented a modeling tool called DescribeML [GMGC22],
which is a dataset description tool for machine learning developed with Langium. The
implemented tool uses a Langium-based grammar to define the created DSL’s syntax
and provides custom services showcasing Langium’s language engineering capabilities.

14

2.3. Langium

2.3.1 Langium workflow
The Langium framework is also built based on dependency injection. All its default
services and other components that the framework provides out of the box can be
arbitrarily customized, completely replaced or extended.

The most important element of a Langium project is the grammar file that describes
the grammar of the DSL for which the language server should be created. Langium has
its own Langium grammar language4, which is based on EBNF that Xtext’s grammar
language is also based on. The grammar defines the structure of the AST which is created
after Langium parses a document written in the specified language.

Figure 2.3: Creation of LangiumDocuments [Typb]

The LangiumDocument is the main data structure of the language server that repre-
sents a text document written in the specified DSL. The LangiumDocumentFactory
creates a LangiumDocument utilizing the LangiumParser, that parses the text doc-
ument based on the created grammar. The LangiumDocuments service manages the
LangiumDocument instances that are loaded by the language server. This process of
creating LangiumDocuments is shown in Figure 2.3.

Figure 2.4: Stages of a LangiumDocument [Typb]

After the LangiumDocument was parsed and created, it has to be built by the
DocumentBuilder service. During the build process, the LangiumDocument goes
through following stages [Typb], which are also illustrated in Figure 2.4:

1. Parsed: after the LangiumDocument has been created and parsed by the
LangiumParser. At this point the AST of the document has already been

4https://langium.org/docs/grammar-language/

15

https://langium.org/docs/grammar-language/

2. Background

created. The AST of a LangiumDocument is TypeScript-based and the types of
the abstract syntax are generated based on the grammar.

2. IndexedContent: the IndexManager service collects all the symbols of the
documents that could be cross-referenced from another document or from the
document itself e.g., an ID attribute of an element. The symbols from all the
indexed documents are collected together building the global scope.

3. ComputedScopes: after the global scope has been computed, the
ScopeComputation service computes the local scope of every LangiumDocument,
to define which named symbols belong to which LangiumDocument, and which
symbols are accessible from which LangiumDocument.

4. Linked: in this stage the Linker services tries to resolve all the cross-references
of a LangiumDocument. It queries the computed scope that is accessible to
the given LangiumDocument and loads the AST node of the cross-reference if
available within the computed scope.

5. IndexedReferences: during this stage an index for the previously obtained cross-
references is created, which defines which LangiumDocument has dependencies
to another document.

6. Validated: during validation, all the errors occurred in the previous stages are
collected and organized by the stage in which the error occurred, and the severity
of the error.

7. Changed: after a document has changed in the text editor, the LangiumDocument
gets invalidated and either completely removed (if the file was deleted) or gets
re-parsed and rebuilt again. If the indexed references of other LangiumDocuments
contain references to the invalidated document, they also run through the linking
phase again.

This document workflow allows Langium to act as a language server that is communicating
with a language client based on the LSP. Furthermore, as Langium is based on node.js
and TypeScript, it makes Langium a great choice as a language server for the aims of
this thesis.

2.4 Summary
This chapter provided an overview on the basic terminology used in this thesis, and
an introduction to Langium and GLSP. These frameworks are used for the artifact
implementation. The following chapter provides an overview on the state of the art
blended modeling tools.

16

CHAPTER 3
State of the Art

This chapter gives an overview on the state of the art to combine textual and graphical
modeling. Approaches using conventional frameworks and next-generation frameworks
are listed. Furthermore, this chapter also elaborates what drawbacks the listed approaches
have and which observed problems this thesis is intended to solve.

3.1 Combining Textual and Graphical Modeling
Most of the popular modeling tools are focusing on only one type of modeling: either
textual or graphical but not both at the same time [AG13]. Examples for graphical only
modeling tools are Eclipse Sirius [Fouc], Modeling SDK for Visual Studio [Micc] and
Eclipse GMF Runtime [Ecla]. These frameworks enable users to create graphical DSLs
for an arbitrary domain. These graphical DSLs are tailored to hold graphical information
relevant for the specific framework which the creators of the DSLs can specify i.e., how
each diagram element should look like, which type of elements the DSL should consist of
and so on. Examples for textual modeling frameworks are Xtext [Foue], and Langium
[Typa]. These frameworks provide out of the box solutions for creating textual DSLs,
and provide default implementations for all types of functionalities a textual model editor
should be capable of e.g., syntax highlighting, reference resolving, or tooltips and hints.

Several different approaches were already implemented for combining textual and graphical
modeling. These approaches mostly differ in the way how the textual and graphical
models are synchronized with each other, in which way the graphical and textual editors
are combined, and how the users are allowed to interact with each of the models or
representations of the model.

When combining textual and graphical editors, the two editors have to synchronize
the textual representation, the graphical representation and the underlying models
[vRWS+13]. The most straightforward approach is to only synchronize the graphical and

17

3. State of the Art

textual representations of the model in one way e.g., to generate a graphical representation
of the textually defined model. In this scenario, the users can only interact with the
textual model and the graphical representation has to be generated when the textual
model changes. The underlying AST of the textual model is converted into a graphical
model based on predefined rules, e.g., how each element of the textual model should
be represented in the graphical model. The graphical model is then most presumably
rendered using an auto layout, as users cannot directly modify the elements on the
graphical view, and some predefined rules have to decide where each element should be
displayed on the view.

Another approach of combining textual and graphical modeling is to synchronize the
graphical and textual representations of the model not only in one way but both ways.
This means that changes made in the textual representation must be synchronized to
the graphical representation and vice versa. This synchronization is the main reason
where most problems of combining textual and graphical modeling arise [AG13]. The two
representations must either use the same underlying model and AST or they have to be
synchronized with each other every time a change occurs in either of the representations.
Even if the graphical and textual views represent and modify the same AST, other
challenges arise as the textual and graphical views need to display different aspects of the
model. For example, it does not make sense to render a comment in the graphical view
written in the model’s text that only contains relevant information for the textual view.
At the same time it does not make sense to store information which is only relevant for
the graphical representation, i.e., a color of an element type of a model - that should not
be modified by the user - in the model.

3.2 Textual-graphical Modeling Frameworks

The following sections present several different tools that combine textual and graphical
modeling, summarize their benefits and drawbacks, and compare the introduced tools.

3.2.1 Excalibur workbench [RCG18]

The Excalibur workbench is an Xtext and Sirius based framework designed to model
requirements engineering processes. The authors created their own suitable DSL called
Messir and used Xtext to create the grammar of the language and generate the textual
model editor. They call their approach a text-first approach meaning that the users are
only allowed to edit the models in the text editor. Using Sirius, the authors created a
graphical DSL that only allows to graphically display certain important aspects of the
textual models. The displayed diagrams cannot be further modified by the users and are
re-created each time the textual model changes. Therefore, this system is an example for
one way synchronization of the textual and graphical representations.

18

3.2. Textual-graphical Modeling Frameworks

Figure 3.1: Excalibur: an Xtext-Sirius framework for read-only graphical representation.
[RCG18]

3.2.2 Langium meets Sprotty [Pet22]

Petzold [Pet22] provides an example implementation of automatic diagram generation
combining Langium with Sprotty, an open-source web-based diagramming framework.
In previous work Sprotty was mainly used to display visualizations of models created
with an Xtext-based language server. As Xtext is Java based and Sprotty is TypeScript-
based, these solutions had to combine these two programming languages and maintain the
connection between them, which meant increased development and maintenance overhead.
Using Langium as a language server instead of Xtext provides a TypeScript-only based
solution, which simplifies development and maintenance.

The proposed architecture creates a DSL using Langium and utilizes Langium as a
language server for the textual model editor in VS Code. Furthermore, Petzold makes
use of the langium-sprotty1 extension that generates the diagram from the model’s
Langium-based AST, and also the sprotty-vscode2 package that embeds Sprotty diagrams
in VS Code webviews.

1https://github.com/langium/langium/tree/main/packages/langium-sprotty
2https://github.com/eclipse-sprotty/sprotty-vscode

19

https://github.com/langium/langium/tree/main/packages/langium-sprotty
https://github.com/eclipse-sprotty/sprotty-vscode

3. State of the Art

Figure 3.2: Langium meets Sprotty: graphical representation of a textual model using
next-generation frameworks [Pet22]

The users of this framework can have the textual editor and the diagram representation
open side-by-side as shown in Figure 3.2, and the graphical representation is automatically
updated when the textual model gets modified. The diagram is read-only, however the
framework provides some customization features in terms of color and visualizing sub-
components in the model.

3.2.3 Xtext / Sirius - Integration [Obe17]
Obeo and Typefox present a framework utilizing Xtext and Sirius, a framework that
allows to specify a graphical representation for an Ecore-based metamodel, created by
Xtext. Three different approaches are presented by Obeo and Typefox: editing the same
model both textually and graphically simultaneously; editing different aspects of a model
textually and graphically, with references between the two representations and embedding
an Xtext Editor into Sirius, to only allow editing smaller details of the model textually
and the remaining details only graphically.

Figure 3.3 shows an example of an integrated Xtext editor in Sirius. The model editors are
able to modify the core elements of the model graphically and to establish relationships
between them, and can define rules for the elements in the integrated Xtext editor, which
is easier to interact with for this use case than in a graphical representation for these
rules. The text editor still provides syntax-aware text editing e.g., syntax highlighting
and auto-completion.

Cooper et al. elaborate the problems recognized with the proposed approaches [CK19].

20

3.2. Textual-graphical Modeling Frameworks

Figure 3.3: Xtext / Sirius - Integration: Embedding an Xtext Editor into Sirius [Obe17]

Firstly, editing the textual and graphical representations of the same model only synchro-
nizes the views on save. This thesis tries to propose a solution to the simultaneous editing
problem stated in Research Question 2 that allows editing in both of the representations
in real-time. Secondly, this way of model representation can cause the diagram to get very
complicated, as it tries to represent every element and every attribute of each element of
the model. As for integrating the Xtext editor into Sirius, Cooper et al. see the biggest
problem in the way the data for the Xtext editor is stored in the model. The textual
data is stored as its string representation, which e.g., can cause problems when finding
cross-references between models or renaming attributes.

3.2.4 Langium + Sirius Web = heart [Gir22]
Giraudet introduces an approach for a blended textual and graphical modeling tool
combining Langium with Sirius Web, a web-based implementation of Sirius [Ecld].
The proposed framework uses two different metamodels for the diagram and textual
representation, and propagate the changes to each other when a modification on the
model occurs. A Monaco editor is integrated into Sirius to make editing in the textual
representation utilizing Langium as a language server possible, as shown in Figure 3.4.

Sirius displays a default representation of the model, the users are not able to change

21

3. State of the Art

Figure 3.4: Langium + Sirius Web: simultaneously editing the same model graphically
and textually [Gir22]

the visual properties of the diagram elements, only to edit the attributes and create and
delete elements of the diagram that are also part of the textual representation. Sirius
and Langium exchange information via a webhook in both directions, making on-the-fly
changes possible on the same model in both representations simultaneously.

3.2.5 bigER modeling tool [GB21]

Figure 3.5: The bigER modeling tool based on Xtext and Sprotty [GB21]

The bigER modeling tool is a blended textual-graphical modeling framework based on

22

3.2. Textual-graphical Modeling Frameworks

Xtext and Sprotty for creating Entity-Relationship (ER) models. The proposed tool is
distributed as a VS Code extension3.

The synchronization of the two representations are based on the modification of the
underlying textual model. Both the changes made in the text editor and in the graphical
editor are done on the textual model. After the textual model is changed, the Sprotty
diagram is re-generated using an auto layout. However, as this is a blended modeling tool,
it is also possible to edit the model in the graphical view using the predefined actions
e.g., adding a new node, or directly modifying the attributes of a node on the diagram.
It is not possible to change the layout of the diagram.

3.2.6 A blended modeling framework based on Xtext and Papyrus
[ACLP17] [AC21]

Figure 3.6: Blended modeling framework based on Xtext and Papyrus: simultaneously
editing the same resource graphically and textually [ACLP17]

Adazzi et al. propose a blended textual-graphical UML modeling framework combining
Xtext with Papyrus for UML [Eclb]. Their solution differs from previous approaches
having separate abstract syntaxes for the graphical and textual representations, as Adazzi
et al. use only one abstract syntax with two concrete syntaxes for one model.

3https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram

23

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram

3. State of the Art

The proposed framework uses an in-place model transformation to solve the simultaneous
editing problem. The changes on one concrete syntax are propagated in real-time to the
other concrete syntax, which enables real-time simultaneous editing both textually and
graphically.

3.3 Drawbacks Observed in the Listed Frameworks
The following section provides examples in the listed frameworks for the problems stated
in Section 1.2 that this thesis aims to provide solutions for.

Problem 1: model service

None of the listed approaches utilize an external model service to handle the communica-
tion between the graphical and textual editors. For example, the Langium + Sirius Web
framework [Gir22] explicitly states the use of a webhook in Langium and Sirius that gets
called when a change in one of the representations occurs. The framework proposed in
this thesis aims to provide a model service API that allows textual and graphical editors
to manage and manipulate the underlying abstract syntax of the model jointly.

Problem 2: modification model

The proposed Xtext-Sirius framework in [Obe17] explicitly states that the modifications
made in one representation are only delegated to the other representation when the model
gets saved to the file system. This thesis aims to provide a solution to this problem
by implementing a modification model that synchronizes the textual and graphical
representations in real-time when a change occurs.

Problem 3: cross-references

Cooper et al. states [CK19] that implementing the Xtext-Sirius editor integration
proposed by [Obe17] with enabling Xtext for editing small parts of the model in the
graphical view, can cause problems with cross-referencing attributes as the text is only
persisted as a string attribute in the model. This way the cross-reference resolution
mechanism might not notice elements of the model that are only defined in this string
attribute. This thesis aims to solve the problem of resolving cross-references correctly in
both representations with the proposed Langium-GLSP framework.

Problem 4: non-semantic information

The video demonstration of the Langium + Sirius Web framework [Gir22] shows that
a modification in the diagram triggers a re-serialization of the model as the format of
the textual representation changes after editing in the graphical representation. This
references the non-semantic information problem of the expected results that this thesis
tries to provide a solution for.

24

3.4. Summary and Comparison of the Listed Frameworks

Used
technology for

textual
modeling

Used
technology for

graphical
modeling

Editing
possible

Synchronization
mechanism

Excalibur
workbench
[RCG18]

Xtext Sirius textual only

one way:
Xtext ->
Sirius

only selected
elements
displayed

Langium
meets Sprotty

[Pet22]
Langium Sprotty textual only

one way:
Langium ->

Sprotty

Xtext / Sirius -
Integration

[Obe17]
Xtext Sirius textual +

graphical

both ways
changes only
synchronized

on save

Langium +
Sirius Web =
heart [Gir22]

Langium Sirius Web textual +
graphical

both ways
changes

synchronized
instantly

bigER [GB21] Xtext Sprotty textual +
graphical

both ways
changes

synchronized
instantly

Xtext /
Papyrus

framework
[ACLP17]

Xtext Papyrus
textual +

graphical +
tree view

both ways
changes

synchronized
instantly

Table 3.1: Comparison of the listed frameworks.

The expected results of this thesis go beyond the state of the art as previous work does
not comprehend combining textual and graphical modeling using Langium and GLSP.
The proposed framework in this thesis also tries to provide solutions to all of the problems
listed above.

3.4 Summary and Comparison of the Listed Frameworks
This chapter provided an overview on the state of the art blended modeling tools. Table
3.1 compares the most important aspects of the introduced frameworks. The listed
frameworks differ in the technologies they use to combine textual and graphical modeling,

25

3. State of the Art

the modifications they allow in the model and how these modifications are propagated
between the two frameworks they combine. It is important to state that even though some
of the frameworks provide blended textual-graphical modeling, none of the frameworks
allow to modify the structure of the diagram i.e., the size of the diagram elements or
how they are arranged. The implemented prototype for this thesis aims to provide this
functionality, too, which the following chapter further elaborates.

26

CHAPTER 4
Concept

In this chapter, the concept for creating the prototype of the novel graphical-textual
modeling framework is discussed. It outlines the prototype’s requirements and details its
planned architecture. Furthermore, this chapter also provides an overview of the model
service and provides solution concepts for the stated requirements of the prototype.

4.1 Main Idea and General Approach
The main goal of this thesis is to create a prototype of a graphical-textual modeling
framework that allows users to interact with the same model both graphically and
textually simultaneously. Simultaneously means, that the same model can be opened
in both the textual editor and the graphical editor, and changes made in one editor are
automatically synchronized to the other. The goal of this thesis is to use "next generation
frameworks" to implement the prototype. At the time of writing this thesis Langium
and GLSP are considered as next generation frameworks, and a combination of these
frameworks for blended graphical-textual modeling does not yet exists, therefore these
two frameworks will be used to develop the prototype.

As introduced in Chapter 2 Langium provides out of the box features to be used as a
language server for textual modeling, and GLSP is a framework for graphical modeling,
hence, Langium will be utilized for textual modeling and GLSP for graphical modeling
in the proposed framework. To provide a connection between these two frameworks, and
to ensure that the underlying modification models of both frameworks are synchronized
with each other, a third component, a model server is to be implemented.

An example implementation of a model service [Crob] that connects a GLSP server with
Langium already exists, developed by CrossBreeze [Croa]. To facilitate the conceptualiza-
tion and development process of this thesis, this model service will be used as a starting

27

4. Concept

point for the proposed framework’s model server, and will be further implemented and
extended to suit the needs of blended textual-graphical modeling.

4.1.1 General approach of the prototype implementation
To implement a blended textual-graphical modeling framework that meets all the require-
ments described below and to provide a tool that is ready-to-use and to demonstrate
the required functionalities, an example modeling language must be chosen. The GLSP
framework provides an example implementation of a TypeScript-based server and client
for graphical modeling in the Workflow language [Foud]. Therefore - as at the moment
no other TypeScript-based server-client example projects are available - the Workflow
language based GLSP framework is chosen as a base for the prototype. This enables to
concentrate on the core of the framework, which is the synchronization of graphical and
textual modeling, to enable simultaneous editing in both of the representations.

To match the base GLSP project, the language server will be also tailored to the Workflow
language. A suitable grammar must be created and the language server services e.g.,
syntax highlighting, model validation etc. will be adjusted to provide the required textual
modeling features listed below.

The model service will also be implemented to suit the needs of the Workflow language
based prototype, however, the general concepts and features of the model service should
be implemented so that it can be used with arbitrary textual and graphical clients. This
is feasible, as synchronization of the models between the different services should not be
as language-specific as e.g., a diagram representation of a model or explicit validation
rules on the language server are.

To validate the implemented prototype, the general concepts and features of blended
modeling will be implemented and adjusted to provide blended graphical-textual modeling
on two bigUML [Bor] [MB23a] use cases: the class diagram and the package diagram.
The GLSP server, the language server, and the model server will be tailored to match
the required needs of the framework listed below. language-specific features that were
only viable for the Workflow language will not be implemented, features that need to be
adjusted will be documented and adopted and features that work as is will be inherited.

4.2 Requirements for the Blended Textual-Graphical
Modeling Framework

This section elaborates the general requirements of a blended textual-graphical modeling
framework. These requirements are based on the advantages and drawbacks of the
modeling frameworks introduced in Chapter 3, and try to list all the necessary features
that a blended textual-graphical framework should have, to make simultaneous graphical
and textual modeling possible. These requirements are to be realized by the proposed
Langium-GLSP prototype framework.

28

4.2. Requirements for the Blended Textual-Graphical Modeling Framework

4.2.1 Requirements for the language server and text editor
This section explains the requirements for the language server, which must be met to
enable textual modeling capabilities for the blended framework. The requirements only
consider features of the Langium framework that need to be explicitly adapted for the
graphical-textual modeling framework.

• Grammar: the grammar of the modeling language must be implemented in the
Langium grammar language [Typc]. The grammar defines the textual syntax rules
of the language and infers the types and interfaces of the TypeScript-based AST,
that Langium auto-generates. For the prototype, the Workflow language grammar
must be defined and implemented.

• Syntax highlighting: the textual editor must feature syntax highlighting, meaning
that different grammar components are highlighted with different colors in the text
editor.

• Validation: the textual model must be validated to ensure that it corresponds to
the defined grammar and also to the specialities of the given modeling language.
These language-specific requirements on the model must be explicitly defined as
validation rules e.g., that a given name must not be used twice in a model or that
a given element can only have edges to a specific type of element.

• Error handling: if there are any grammatical or semantic errors in the textual
model, the editor must display them after unsuccessful validation. It must be clear
for the user which component causes the error and why. For some language-specific
errors that can be automatically fixed, a mechanism should also be implemented
that fixes this error on the model.

• Serialization: the language server must provide a serializer, that converts the
AST of the model to the text that is displayed in the text editor i.e., the actual
model. The serializer must generate a syntactically correct textual model. It must
also pay attention to the existing white spaces and comment of the model, that
must be preserved during serialization.

• Cross-references: the language server must be able to resolve cross-references in
the model, and correctly reference the element in question or display an error if the
referenced element is not found.

• Workspace and scope management: the language server must define the
workspace of the model, i.e., where the models should be loaded from for the
current project. The cross-references are only resolved within the defined workspace.
The server must also provide scope management i.e., to define which symbols are
accessible from which models for cross-references.

29

4. Concept

• Model synchronization: the language server must be able to rebuild the un-
derlying modification model i.e., the LangiumDocument after a change occurs in
the graphical modeling editor and the change is delegated to the language server
via the model server. The language server must also be able to delegate changes
made in the textual model to the model server that will trigger the update of the
graphical view.

4.2.2 Requirements for the graphical language server and client
This section states the requirements for the graphical modeling part of the Langium-
GLSP framework. These features must be implemented in order to provide a blended
textual-graphical modeling environment, where simultaneous editing of the same model
is possible both textually and graphically.

• Graphical model: a graphical model must be created that represents the under-
lying AST generated by the language server from the textual model. The graphical
model must be displayed in the web view on the client.

• Model editing: the GLSP framework must allow editing of the graphical model,
including editing attributes of the elements, creating new elements, creating cross-
references (e.g., by creating edges) between the elements, and also to modify the
graphical representation of the elements i.e., the size and position of each element.

• Validation: the GLSP framework must be able to validate the model and to
display errors on the graphical model if present.

• Error handling: the framework must allow users to fix errors and provide ways
to modify the underlying model of the diagram to remove the error, if the error
can be fixed in the graphical representation.

• Model synchronization: the GLSP framework must provide a solution for model
synchronization. The framework must be able to send the modifications done in
the graphical editor to the model service, that will delegate these changes to the
language server. The GLSP framework must also be able to apply the changes
coming from the language server delegated by the model server, and re-generate
the graphical model according to these changes.

4.2.3 Requirements for the model server
The following requirements must be satisfied by the model server to ensure proper
synchronization of the language server and GLSP server, and to make sure that the
currently edited model is always up-to-date on both ends.

• Access: the model server must provide access to the models in the current
workspace. An arbitrary client that wants to interact with the model must be able

30

4.3. Framework Architecture

to maintain connection with the model server, to open, request, update, and save a
model.

• Model provision: the model server must be able to provide the current version
of the requested model including every change that a client might have made to it
during the current life-cycle. It means, that a client can have already made changes
to a model without saving it to disk, when another client is requesting this model.
Then, the model server must provide the current version of this model.

• Model synchronization: the model server must update its internal state of a
model when a client requests an update on this model. If another client also has
this model opened, the model server must notify this client and send over the new
version of the model to make sure that all the clients are synchronized to the newest
version of the model.

4.3 Framework Architecture

Figure 4.1: Architecture of the Langium-GLSP blended modeling framework

This section outlines an architecture that the implemented framework should be based
on. The proposed architecture is displayed in Figure 4.1.

31

4. Concept

The framework will be implemented as a VS Code extension [Mica]. The Langium
framework and the GLSP framework already provide glue code on how to integrate them
as VS Code extensions, therefore the two frameworks must yet to be combined with each
other utilizing the model server. This way, the Langium-GLSP framework will be able to
run integrated into the VS Code editor, utilizing Monaco [Micd], the default text editor
of VS Code as the framework’s text editor, and the GLSP client’s VS Code web view as
the framework’s graphical model editor.

The model server is the central connecting component of the framework. Both the GLSP
server and the Langium language server must communicate with it to ensure model
synchronization between them. The model server must also be able to communicate with
the text editor itself, to directly delegate changes to it coming from the GLSP server and
to listen to changes to delegate to the GLSP server.

Starting from the text editor, it’s internal state is the textual model i.e., the concrete
syntax of the model. The Langium language server acts as a language server for this text
editor, providing and enabling all the defined requirements for it e.g., syntax highlighting,
validation, error handling. The users of the framework can directly interact with the
model making changes to the textual concrete syntax of the model in this editor.

The language server makes textual modeling available for the Monaco editor. It listens to
changes in the opened text document and rebuilds the corresponding
LangiumDocument including the AST of the model as described in Section 2.3 ev-
ery time a change in the text file occurs.

The model server listens to changes on the text editor, the language server, and the
GLSP server. This is necessary as the changes made in the text editor are delegated in
the form of the AST and textual concrete syntax to the GLSP server, and the GLSP
server delegates the changes to the model server in textual form. Therefore, the model
server has to maintain both the textual concrete syntax and the AST in its internal state.

The GLSP server delegates the changes both to the GLSP client and the model server.
The GLSP client is responsible for rendering the graphical model and providing the
graphical model editor in a VS Code web view.

4.4 Model Server Concept
The model server must be designed and developed in accordance with the aims and
expected results of this thesis as stated in Section 1.2 and also with the requirements
stated in this chapter’s Section 4.2.

The initial model server provided by CrossBreeze [Crob] provides two possibilities for
operation: to work as a server receiving and sending requests to and from the clients via
JSON-RPC and to be integrated with the language server as a custom service. In the
prototype the model server will be used as a shared language server service, that both
the Langium language server and the GLSP server have access to.

32

4.4. Model Server Concept

4.4.1 Basic model operations
The model server has to implement the following unambiguous features to provide a
solution for Research Question 1 of the expected results.

• open: the model server has to load the model from disk if it has not yet been
opened with another client or it has to provide the current version of the model
to the requesting client, even if it has already been open and modified by another
client.

• request: the model server has to provide the current version of the model from
its internal state if it has already been opened either from the requesting client or
another client, otherwise it has to open the model and load it from the disk.

• save: the model server has to be able to save the current version of the model to
disk on client request.

• close: the model server has to close the connection with a client on request and
remove the model from its internal state if none of the other clients have it open.

• update: the model server has to provide a way for clients to actively request the
server to update a model, and it also has to listen to updates on clients which do
not provide methods to actively send updates to the model server.

4.4.2 Model server internal state and update mechanism
To provide an answer to the Research Questions 1, 2, and 4 i.e., to allow for simultaneous
modifications on the model coming from the language server and the GLSP server
preserving non-semantic information in the model’s textual concrete syntax, the following
possible concepts for the model server are established.

1. Storing only the AST in the model server’s internal state with incremental
updates

The model server must keep track of the current version of the model. Therefore, it is
necessary that after every model update coming from the client, the internal state is
updated. The best way to keep track of the model updates would be to hold the AST of
the model in the model server’s internal state and successively update it on every update
request. This way every client would send a request on which operation they would like
to perform on the AST, e.g., to add or delete a node or to modify an attribute on a
node. This way, the AST would not be replaced on each update with a newer version,
but would be updated incrementally according to the client’s requests.

After every update, the GLSP server would receive the newer updated AST, to regenerate
the graphical model from it. As the Langium framework does not foresee direct updates
on the AST, the model server would have to directly replace the textual concrete syntax in
the Monaco editor. For this, the model server would have to know which elements of the

33

4. Concept

semantic model have changed, and must update only these exact elements in the concrete
textual syntax. Then, this would trigger Langium to re-built the LangiumDocument
and re-generate it’s AST. This concept would provide solutions for Research Questions
1, 2, and 4. However, this concept also foresees purely incremental updates on the
AST, and at this moment this is not possible using Langium. After making changes
in the text editor, Langium always re-builds the whole LangiumDocument, and only
provides the complete AST afterwards, without explicitly stating which changes occurred
in the AST. Also, incrementally updating the AST on the model service would mean
that either it has to provide operations on the AST and the textual syntax that are
language-specific. As the model service should provide a generic implementation, this
concept is not appropriate to solve the problem of the model service.

2. Storing only the AST in the model server’s internal state with full updates

Instead of incremental AST updates, the whole AST could also be replaced on every
update. This way, the clients would have to deal with updating the semantic model,
and sending it to the model server as a newer version. After a model server received
an update, it would have to either serialize the AST and replace the textual concrete
syntax of the model in the text editor with the newly serialized version if the update was
coming from the GLSP server, or, it would have to forward the AST to the GLSP server
if it was coming from the language server.

This concept would provide solutions to Research Questions 1 and 2, but not to the
problem of non-semantic information stated in Research Question 4. The previous
concept would allow for a solution for updating the textual concrete syntax to only
update elements that were actively changed by the clients and preserving the other parts
of the textual model including all the white spaces and comments. However, if the whole
AST was updated, it would either mean that the model server would have to re-serialize
the whole model, which would update the previous version of the textual concrete syntax
and delete all comments and extra white spaces, or the new and old versions of the AST
would need to be compared to find out which exact elements changed and only update
these in the textual concrete syntax as in the previous concept. As this task is proven to
be non-trivial [CLG+10], this concept is also not feasible for the scope of this thesis.

3. Hybrid AST-text model server internal state

To overcome the hurdles discussed in Points 1. and 2. the following blended concept is
developed for simultaneous updates on the model server’s internal state, which involves
both the textual concrete syntax of the model and the AST.

• Update from the GLSP server: the update request for the model server could
either be in form of an incremental AST update or an update on the textual
concrete syntax. With the first option, the problem of the model server having to
provide updates on the textual concrete syntax would arise, as the model server can
only send updates in textual form to the text editor as discussed before. Therefore,
it is evident that the model server should store the model as it’s textual concrete

34

4.5. Solution Concepts for the Requirements

syntax in its internal state, and the GLSP server would only send updates on this
textual syntax. To avoid the model server having to re-serialize the model and
compare the changes of the old and new textual syntax to maintain non-semantic
information, the re-serialization is sourced out to be done on the GLSP server.
Hence, an update coming from the GLSP server is a full update on the textual
concrete syntax. The model server then updates its internal state with the new
textual syntax and sends this update to the text editor, which triggers the language
server to re-build the document of the language server’s internal state and update
the AST.

• Update from the language server: as mentioned before, Langium re-generates
the LangiumDocument including the model’s AST on every update made in the
text editor. As the language server is not able to directly send updates to the
model server, the model server must listen to the DocumentBuilder service of
Langium and update its internal state if a new LangiumDocument has been built.
The LangiumDocument contains both the textual concrete syntax of the model
and it’s AST. Hence, the model server’s internal state is updated with the textual
concrete syntax, and the AST (and the new textual concrete syntax) are sent to
the GLSP server, which then re-generates the graphical model and triggers the
client to re-render the web view.

With this concept all of Research Questions 1, 2 and 4 can be solved. With model updates
enabled in both directions, joint modifications of the model’s AST with both textual
and graphical editors are possible, providing a solution concept for Research Question 1.
The concept also attempts to provide a solution for Research Question 2, as it clearly
defines that the underlying modification model of both the GLSP server and the language
server is the textual concrete syntax. The concept also considers Research Question 4, as
maintaining non-semantic information in the textual concrete syntax should be provided
as explained above.

4.5 Solution Concepts for the Requirements
This section provides solution concepts for the requirements of the textual modeling,
graphical modeling and model server for the blended textual-graphical modeling frame-
work listed in Section 4.2. It also elaborates, whether the concepts are language-specific
i.e., developed specifically for the Workflow language, or generic i.e., could also be used
for an arbitrary language.

Textual modeling

• Grammar - language-specific
The grammar will be specifically developed to match the Workflow language syntax
and semantics of the provided GLSP server and client projects. This must be

35

4. Concept

re-written for every other language that the framework will be used on. The
grammar will be designed so that the model can be split into two different files:
one containing all the elements of the model and another containing the attributes
of these elements that are only needed for the graphical representation, in case of
the Workflow language these are size and position.

• Syntax highlighting - generic
The auto generated syntax highlighting rules will be used by Langium.

• Validation - language-specific
Workflow language-specific validation rules must be developed, which are not likely
to be reused for other languages.

• Error handling - generic/language-specific
The generic solution concept for error handling foresees that all the errors are
labeled and provide an understandable explanation to the user. If an error is
auto-solvable i.e., if a cross-reference can not be resolved, but the missing node
could already be created with the information that is already provided in the model,
than the language server should provide a code action to do so. The actual error
messages, and implementation of the code actions are Workflow language-specific.

• Serialization - generic/language-specific
The generic solution concept for the AST serialization is to not re-serialize the whole
AST, but only the changed elements, and replace them in the current serialized
text (the textual concrete syntax). The serializer service therefore has to provide
functions that only serialize one element of the AST. This is necessary to maintain
the non-semantic elements of the textual concrete syntax. If the whole AST would
be re-serialized and the textual concrete syntax replaced on every model update,
the non-semantic information would be lost. The actual implementation of the
serialized elements are Workflow language-specific.

• Cross-references - generic
The generic cross-reference resolution mechanism of Langium will be used.

• Workspace and scope management - generic
The scope will be reduced to only allow cross-references within files belonging to
the same model, as it is not common that elements of a graphical model reference
other elements in another graphical model. If the same model consists of multiple
files, cross-references can still be declared in each of them referencing to an element
declared in another file belonging to the model.

• Model synchronization - generic
As explained in the solution concept for the model server, the model server will
be set up to listen to changes in the DocumentBuilder service of Langium. On
each change in the textual model, the DocumentBuilder service rebuilds the
LangiumDocument, and sends an update to the model server. The model server

36

4.5. Solution Concepts for the Requirements

then updates its internal state with the received textual concrete syntax and sends
the new AST to the GLSP server or any other arbitrary client listening for changes
on the model.

Graphical modeling

• Graphical model - language-specific
The graphical model is specifically tailored to match the GLSP client’s graphical
elements. Each element has its own type and graphical properties that is specific
to the Workflow language.

• Model editing - generic/language-specific
The generic solution concept for model editing is that every possible element of
the language must be able to be created, updated, and deleted via the GLSP
framework, according to the semantics of the language. The elements have a
predefined language-specific layout, that is defined by the graphical model, but the
elements must be resizeable and the users must be able to re-position them.

• Validation - language-specific
The GLSP server must be able to validate the model according to the language’s
semantics.

• Error handling - generic/language-specific
The generic concept for error handling in the graphical model editor is to not
allow any actions to be made on the graphical editor which would contradict the
language’s semantic, e.g., only allow to draw an edge between specific types of
elements. If an erroneous modification on the model was made in the text editor, the
model server would still send the error prone AST to the GLSP server in predefined
language-specific scenarios, to make the GLSP client render the error to the user
and to provide actions to solve the error. In the case of the Workflow language,
missing references of nodes will be added to the graphical model as missing nodes,
and the GLSP client will render them accordingly. The GLSP client will then
provide possible actions to the user to create the missing node according to the
language’s specification on which type of nodes are allowed in which scenarios. If
other types of errors occur in the text editor, the model server will not delegate
the updated model to the GLSP server, only after the error was resolved in the
text editor. To prevent overwriting the erroneous textual syntax in the text editor
with updates from the GLSP editor, the model server will not update its internal
state until the current LangiumDocument of internal state contains errors.

• Model synchronization - generic/language-specific
The generic concept for model synchronization is the following: on the one hand,
the GLSP server will be listening to updates on the model server, and update its
internal state i.e., the AST and the textual syntax of the model. After the internal
state has been updated, the graphical model will be re-generated from the new AST

37

4. Concept

and the GLSP client will be triggered to update its graphical view. On the other
hand, if the update operation is coming from the GLSP client, it will trigger the
GLSP server to update the textual syntax of the model directly. This will be done
by utilizing the serializer of the language server, to only re-serialize the elements of
the model that were updated in this operation. The GLSP server then updates
only the elements in the textual syntax that were re-serialized during the operation.
This is possible as the AST contains the exact positions of each element in the
textual syntax. This way, the non-semantic information in the textual syntax will
be maintained. After the GLSP server is done updating the textual syntax it sends
the updated textual syntax to the model server which provides the updated AST
as a response to the update request and with this the GLSP server also updates its
own graphical model, which again, triggers the GLSP client to update the graphical
view.

Model server

• Access - generic
Access to the model will be provided by the basic model operations as described in
Section 4.4.1.

• Model provision - generic
The model server will receive all updates on the model coming from either the
language server or the GLSP server (or another arbitrary client, that is connected
to the model server similarly to the GLSP server) and store it in its internal state.
Therefore, if a new client requests the model, always the newest version will be
provided by the model server, even if the model has not yet been saved to the disk
by the other clients.

• Model synchronization - generic
The model synchronization will be implemented as discussed in Section 4.4.2 and
this section’s textual modeling and graphical modeling synchronization concepts.
To avoid infinite update loops i.e., a GLSP server update triggering a text editor
update and language server update, which normally would also again trigger a
GLSP server update, and vice versa, the models will be versioned on the model
server. The model server will track which version of the model each client is cur-
rently operating on and increase the client’s model version if an update is coming
from this client. This way, the model server can avoid sending the same update to
the client that was originating from this exact client and only send the updates to
the other clients if their version of the model is behind the newest updated one.

38

4.6. Summary

4.6 Summary
This chapter provided the basic requirements of a blended textual-graphical modeling
framework that utilizes a model server to jointly update the underlying model. Further-
more, concept solutions were developed for the language server, the GLSP server, and
the model server that fulfil the stated requirements. The concept solutions were tailored
to provide a generic solution that can be applied for an arbitrary DSL where possible,
and were fine-tuned for the Workflow language where necessary. The following chapter
discusses how these concepts were implemented to provide a blended textual-graphical
modeling framework for the Workflow language.

39

CHAPTER 5
Prototype Implementation

This chapter elaborates the approach of the prototype implementation for the blended
textual-graphical modeling framework. The implemented prototype has three major
components, corresponding to the planned architecture of the framework, as introduced in
the previous chapter: the language server, the model server, and the GLSP server. These
components are implemented simultaneously as they all depend on each other to achieve
the goal of blended textual-graphical modeling. Where applicable, the implementation
aims for a general solution in terms of compatibility with arbitrary DSLs, however the
prototype is tailored to support the Workflow language.

5.1 Implementation of the Language Server
The core of the textual modeling in the blended framework is the Langium [Typa]
language server. Langium provides the possibility to create domain-specific languages
together with an out of the box TypeScript-based language server with generic features
for textual modeling, such as syntax highlighting, model validation, hints, serialization,
cross-reference resolution, and scope management.

Langium provides a Yeoman generator [Yeo], that automatically generates a Langium
language server project based on their Hello World example language, creating a general
project structure with example implementations of some custom services. This example
project will be modified and expanded to act as a language server for the Workflow
language.

5.1.1 Grammar
The core of the Langium language server is the grammar of the given DSL the language
server should be built for. The grammar must be defined as a .langium file according
to the Langium grammar language [Typc]. Langium then generates the TypeScript

41

5. Prototype Implementation

interfaces of the AST based on this grammar, which is also the base for the custom
services, as they interact with these generated TypeScript interfaces. Therefore, the first
step of the language server implementation is to define the grammar of the Workflow
language.

The semantics of the Workflow language are gathered from the example node.js and
TypeScript-based implementations of the GLSP client and server projects, and can be
defined as follows.

Workflow semantics

A model written in the Workflow language represents a workflow that can be split into
smaller tasks and sequential dependencies between these tasks, and can contain the
following elements: nodes as a TaskNode, ActivityNode or Category, and edges.

A TaskNode can either be a manual task or an automated task. Both types of tasks
have an ID, a label as their names, and a duration.

An ActivityNode can either be a decision node, a fork node, a join node, or a
merge node. All activity nodes have an ID. A decision node implies that it can be
decided which ones from its outgoing tasks might be done, with a merge node as its
counterpart. A fork on the other hand implies that all of its outgoing tasks need to be
done, before the result can be joined again with a join node.

A Category can have all types of nodes and edges as their children and acts as a group
for them. It also has an ID and a label parameter.

An edge can either be a plain directed Edge connecting two nodes, meaning that a
task has to be finished before the next task can be started, or a WeightedEdge, which
can have a decision node as its source, and has a probability parameter, which
indicates the probability that the task on the outgoing end of the edge will be executed.

Workflow syntax

1 grammar Workflow
2
3 entry Model:
4 (nodes+=Node | edges+=Edge | metaInfos+=MetaInfo)*;
5
6 Node:
7 (TaskNode | Category | ActivityNode);
8
9 MetaInfo:

10 (Size | Position);
11
12 TaskNode:
13 'TaskNode' name=ID label=STRING? (expanded?='expanded')?
14 duration=NUMBER? taskType=TaskType?';';
15
16 Category:
17 'Category' name=ID label=STRING? ('{' children=Model '}')? ';';
18

42

5.1. Implementation of the Language Server

19 ActivityNode:
20 'ActivityNode' name=ID (nodeType=NodeType)?';';
21
22 TaskType returns string:
23 'automated' | 'manual';
24
25 NodeType returns string:
26 'decision' | 'fork' | 'join' | 'merge';
27
28 Weight returns string:
29 'low' | 'medium' | 'high';
30
31 Edge:
32 (source=[Node:ID] '->' (target=[Node:ID])? ';') |
33 ((source=[Node:ID])? '->' target=[Node:ID] ';') |
34 WeightedEdge;
35
36 WeightedEdge:
37 (source=[Node:ID] '->' probability=Weight (target=[Node:ID])? ';') |
38 ((source=[Node:ID])? '->' probability=Weight target=[Node:ID] ';');
39
40 Size:
41 'Size' node=[Node:ID] width=NUMBER height=NUMBER ';';
42
43 Position:
44 'Position' node=[Node:ID] x=NUMBER y=NUMBER ';';
45
46 hidden terminal WS: /\s+/;
47 terminal ID: /[_a-zA-Z@][\w_\-@\/#]*/;
48 terminal STRING: /"[^"]*"|'[^']*'/;
49 terminal NUMBER returns number: /(-)?[0-9]+(\.[0-9]*)?/;
50
51 hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;
52 hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

Listing 5.1: Workflow grammar

Listing 5.1 shows the implementation of the Workflow grammar using the Langium
grammar language corresponding to the language’s semantics. The grammar is built on the
following simple pattern: "typeOfNode ID attribute1 attribute2;" for nodes
and "node1 -> node2;" for edges. An example of a model written corresponding to
this grammar is shown in Figure 1.1.

The grammar also has additional elements not disclosed in the semantics, that are needed
to enable blended modeling. As the solution concept states, the model will be split into
two files: a .wf file for the core of the model including the definitions for all nodes
and edges, and a .wfd file for these additional elements, which are only needed for the
graphical representation of the model. For this reason, a model can also have MetaInfo
elements, which can either be of type Size or Position. These elements must reference
an already declared node, and store either the node’s width and height or its x and y
coordinates, to define the node’s size and position on the graphical model.

The solution concept for graphical modeling foresees that missing nodes are also displayed
on the diagram, and the framework must provide a possibility for the users to create

43

5. Prototype Implementation

these missing nodes. To satisfy this requirement, the developed grammar also allows
edges to either not have a source node reference or a target node reference provided. This
means that edges are allowed to only be connected to one node, and on the other side of
the edge a missing node will be displayed in the graphical model. Lines 32, 33 and 37, 38
of Listing 5.1 correspond to this concept in the grammar definition.

The concept of the Langium grammar language foresees that the defined nodes are
referenced by their name attributes per default. Hence, in the Workflow grammar, the
name attributes of the nodes are also used as their unique identifiers, and the additional
label attribute is used as the actual name of the node.

The grammar also provides definitions for the type of each attribute as regular expression,
which can either be of type ID, STRING or NUMBER as listed in Lines 47, 48, and 49 of
Listing 5.1. Furthermore, the grammar also provides a possibility for comments that can
either be single-line or multi-line comments, as defined in Lines 51 and 52 of Listing 5.1.
The comments defined in the textual concrete syntax are part of the model’s non-semantic
information, which need to be preserved on updating the model.

Auto-generated resources

As mentioned before, Langium automatically generates the TypeScript interfaces of the
AST based on this grammar, the grammar rules used for parsing and validating the
model, and the syntax file of the defined language which is used by the language server
for syntax highlighting. These files should not be manually adjusted and are re-generated
if any change occurs in the grammar definition.

The implementation of the grammar therefore satisfies the Grammar and Syntax high-
lighting requirements of textual modeling.

5.1.2 Custom services
Langium provides general implementations for its language server services that handle
the LSP requests coming from the text editor, such as code hints, code formatting, scope
providing, or code validation. To implement the presented solution concepts for textual
modeling in Section 4.5, some of these default implementations must be customized,
and will therefore be overwritten or extended by custom implementations based on the
Workflow language’s syntax and semantics. These service are the following:

• Validator: this service registers custom validators, that are needed to ensure
the Workflow language’s semantics, and also to ensure that the correct element
declarations are in the correct files.

• Code action provider: this service implements automatic code actions, that are
available if an error occurs, to resolve this error. In the scope of the prototype, code
actions will be used to generate missing nodes as an example for error handling.

44

5.1. Implementation of the Language Server

• Serializer: this service serializes the model’s AST, i.e., it generates the concrete
textual syntax of the model given the AST. The solution concept also foresees, that
this service provides serialization for the individual components of the Workflow
model, in order to maintain non-semantic information in the textual concrete syntax
of the model.

• Workspace manager: this service defines which files are included in the workspace
that the language server is currently operating on. The default implementation -
which foresees that every file of the open directory is part of the workspace - will
only be extended by an event emitter, that tells the modeling framework when the
language server is ready and the workspace is initialized, as the model server and
GLSP server should only be started afterwards.

• Scope provider: this service defines which symbols are accessible from which
models for cross-references. The scope will be reduced to only allow cross-references
between files belonging to the same model.

• Scope computation: this service defines which elements of the document and
how these elements are exported to be available for cross-references. The default
scope computation will be extended to provide exports for the nested elements of
the Workflow language.

• Name provider: this service provides methods that generate unique names for
the model’s components, based on their type, attributes and parents, if they have
any. The default implementation is rewritten to match the Workflow language’s
syntax.

The custom implementations of the listed services are all registered in the language server’s
service module, to instruct the dependency injection component, that these custom
implementations should be used by the language server per default. The implementation
details of each of the custom services are discussed in the following sections.

5.1.3 Validator
Custom validators are needed to ensure that the model corresponds to the semantics of
the DSL. There are several types of errors, that Langium will report:

• Lexer and parser errors: they occur during the parsing of the textual syntax and
creation of the AST. These errors mean that the textual syntax does not correspond
to the given grammar, and therefore, the AST cannot be generated correctly.

• Linking errors: they occur after the textual model has already been parsed and
the AST has been generated, during cross-reference resolution, if a referenced node
was not found by the language server.

45

5. Prototype Implementation

• Custom validation errors: they occur when some of the custom validator rules
were not satisfied by the model. Hence, a syntactically correct and parsed model
(i.e., without any lexer and parser errors), might also have custom validation errors,
if they do not satisfy the semantics of the language.

As the points stated above, a model that satisfies the grammar rules alone is not enough
assurance, that the model also corresponds to the language’s semantics. This observation
also applies to the Workflow language, as some custom language semantic rules can
only be ensured by custom validators. Therefore, the following custom validators are
implemented on the language server.

• No duplicate names: the name property of each node (as they act as a unique
identifier for this node) must be unique across all nodes of the model.

• No duplicate edges: an edge must not appear twice with the same source and
target nodes. If the same edge could be declared twice in the model, they would
still only be displayed as one edge on the diagram, as they would appear in the
same position. This would cause uncertainty for the users as they would not know
which edge they are currently modifying.

• No duplicate position for a node: a position of a node must only be declared
once. If a node’s position would be declared twice, the graphical model would either
have to consider the first one or a random one, which would cause uncertainty in
the graphical representation.

• No duplicate size for a node: similar to the position, the size of a node must
also only be declared once, for the previous uncertainty reasons.

• AST node in correct file: the model must be split into two files, one containing
the declarations for all the nodes and edges of the model and the other one containing
the sizes and positions of the nodes declared in the previous file. As both files
correspond to the same grammar, a custom validator is needed to check whether
the elements are declared in the correct files.

• Weighted edge starts from decision node: according to the semantics of the
Workflow language a weighted edge must only have a decision node as its source
node.

A custom validator always has to be registered on a type of node of the AST, as this will
be the scope of the validation. The duplicate checks and the AST node in correct file
check are registered on the Model node type of the AST. This is the type of the root node
of the AST and this node contains all the nodes of the model as their children. This is
needed, as these validators must either iterate through all the nodes of the AST or all the
nodes of a specific type of the AST, and only the Model root node contains all of these

46

5.1. Implementation of the Language Server

nodes. The validator for the weighted edges is only registered on the WeightedEdge
type, as it only needs to check one WeightedEdge at a time and validate its source
node.

1 checkNoDuplicateNames(model: Model, accept: ValidationAcceptor): void {
2 const reported = new Set();
3 model.nodes.forEach((node) => {
4 if (reported.has(node.name)) {
5 accept("error",
6 `Node has non-unique name '${node.name}'.`,
7 { node: node, property: "name" });
8 }
9 reported.add(node.name);

10 });
11 }

Listing 5.2: Custom validator: no duplicate names

Listing 5.2 shows an example implementation of the no duplicate names custom validator.
The input variable shows which node type the validator is operating on (in this case
Model), and the function has to call the ValidationAcceptor input method if an
error is detected on the input node. The validator iterates through all the nodes that
must be checked for duplicates - in this case, all the nodes of the model must be checked
- and collects every name into a set. If a currently expected node’s name is already in the
set, then the validator found a duplicate name and calls the accept method providing
an adequate error message, which the text editor will display to the user, and the node
and its property which caused the error to specify where the error message should be
displayed.

The other custom validators listed above are implemented likewise. The implementations
of the custom validators together with Langium’s generic validators for lexer, parser and
linking errors satisfy the Validation requirement for textual modeling.

5.1.4 Code action provider
A code action provides automated processes executed on the model’s code i.e., in the
textual concrete syntax. It can be declared, in which types of context the code action
should be available for the user to execute, and for which part of the model the code
action should be prompted for. Usually it is used if an error is detected on the model,
and an automatic fix can be carried out to eliminate the error, but it could also be used
in any other types of scenarios e.g., to delete unused code or to refactor code based on
automated rules.

For the Workflow language, code actions will be used to provide automated error handling
where possible. Corresponding to the requirements for error handling in textual modeling,
code actions will be used to generate missing nodes, i.e., where a cross-reference to a node
is already declared in the model - in the case of the Workflow language either as part

47

5. Prototype Implementation

of an edge’s source or target node, or as part of a size or position declaration - but the
node itself is not yet declared. If this scenario arises, there is already enough information
available for this undeclared node to be displayed on the graphical model as a missing
node. As the graphical editor will also provide a possibility to create and declare new
nodes from missing nodes that are already displayed as missing nodes, the textual model
editor should also do so, and for this reason, a code action provider will be implemented.

To implement a code action, the getCodeActions method of the
CodeActionProvider interface must be implemented by a custom code action service
as shown in Listing 5.3. This method is called every time when an LSP request to show
the Quick Fix menu [Mice] is triggered by the text editor. The method must return
a list of code actions that are available from the current position of the code, where
the method was triggered from. The document i.e., the built LangiumDocument
containing the textual syntax and AST of the model and the params of the request
containing the request context are handed over as input parameters.

1 getCodeActions(
2 document: LangiumDocument,
3 params: CodeActionParams,
4 cancelToken?: CancellationToken
5): MaybePromise<Array<Command | CodeAction> | undefined> {
6 const codeActions: Array<CodeAction> = [];
7 // only handle linking-errors
8 if (
9 params.context.diagnostics.length > 0 &&

10 params.context.diagnostics.filter(
11 (value) => value.data?.code === "linking-error"
12).length === params.context.diagnostics.length
13) {
14 const missingNode = params.context.diagnostics[0];
15 let uri = document.uri.toString();
16
17 // if size or position has missing reference,
18 // the created node must be inserted
19 // to the corresponding .wf file
20 // and not the current .wfd file
21 if (
22 missingNode.data.containerType === Size ||
23 missingNode.data.containerType === Position
24) {
25 uri = uri.slice(0, -1);
26 }
27
28 // create decision node
29 const createDecisionNode = this.createCodeAction(
30 "Decision Node",
31 this.createActivityNode("decision", document, missingNode),
32 uri
33);
34 codeActions.push(createDecisionNode);
35
36 // if error is caused by WeightedEdge 'source' property only allow
37 // the creation of a decision node
38 if (
39 missingNode.data.containerType === WeightedEdge &&

48

5.1. Implementation of the Language Server

40 missingNode.data.property === "source"
41) {
42 return codeActions;
43 }
44
45 [...]
46
47 // create category
48 const createCategory = this.createCodeAction(
49 "Category",
50 this.createCategory(document, missingNode),
51 uri
52);
53 codeActions.push(createCategory);
54 }
55
56 return codeActions;
57 }
58
59 /**
60 * Creates an ActivityNode object with the given properties
61 * @returns The serialized ActivityNode
62 */
63 private createActivityNode(
64 type: NodeType,
65 document: LangiumDocument,
66 missingNode: Diagnostic
67): string {
68 const activityNode: ActivityNode = {
69 $container: document.parseResult.value as Model,
70 $type: "ActivityNode",
71 name:
72 missingNode.data.refText ??
73 findAvailableNodeName(document.parseResult.value as Model, "_an"),
74 nodeType: type,
75 };
76 return this.services.serializer.Serializer.serializeAstNode(activityNode);
77 }
78
79 [...]
80
81 /**
82 * Creates a CodeAction that attaches a serialized
83 * node to the end of the document with the given uri.
84 * @returns The serialized Category
85 */
86 private createCodeAction(
87 nodeType: string,
88 serializedNode: string,
89 uri: string
90): CodeAction {
91 const action: CodeAction = {
92 title: `Create missing ${nodeType}`,
93 kind: "quickfix",
94 edit: {
95 changes: {
96 [uri]: [
97 {
98 range: {
99 start: {

100 character: Number.MAX_SAFE_INTEGER,
101 line: Number.MAX_SAFE_INTEGER,

49

5. Prototype Implementation

102 },
103 end: {
104 character: Number.MAX_SAFE_INTEGER,
105 line: Number.MAX_SAFE_INTEGER,
106 },
107 },
108 newText: `\n${serializedNode}\n`,
109 },
110],
111 },
112 },
113 };
114 return action;
115 }

Listing 5.3: Code action: create missing nodes

The listed implementation executes the following steps:

1. Check if there are errors in the requesting context and check if these errors are
linking errors, which means that a referenced node cannot be found i.e., the
declaration of this node is missing.

2. If there are errors in the requesting context and all of these errors are linking
errors, find the name of the missing node that must be created. This is possible, as
the requesting context only contains errors for the node which was selected when
requesting the quick fix menu, and not for the whole document, therefore, the
missing node name that is reported, will be the one that needs to be created to
fix the given error. If any other errors are also present on the selected node (e.g.,
syntax errors), these must be fixed before the code action can be executed, and the
getCodeActions method will return an empty list.

3. If the missing node was referenced from a size or position element, the node must
not be created in the current LangiumDocument, but the corresponding .wf file
of the model, therefore, the Uniform Resource Identifier (URI) of the document
that will be edited by the code action must be modified.

4. Create the code actions for every possible node type. The code action does the
following: it creates a node of the required type with the corresponding missing name,
and serializes this node as shown in the createActivityNode function of Listing
5.3. The other types of nodes are created likewise. This serialized node then gets
appended to the end of the textual syntax as shown in the createNodeAction
function of Listing 5.3. This way, the previous textual syntax of the model will
not be refactored, only extended, which provides a solution for the problem of
maintaining non-semantic information in the textual syntax.

5. To assure correct semantics of the Workflow language, if the missing node is the
source node of a WeightedEdge, the code action only allows the creation of
decision nodes. Otherwise, the creation of every node type is allowed.

50

5.1. Implementation of the Language Server

The implementation of the custom validator and the code action provider solves the
Error handling requirement of textual modeling stated in Section 4.2 and also provides
an answer for Research Question 4 of the problem statement of this thesis, as it maintains
non-semantic information of the textual syntax on automated editing of the model.

5.1.5 Serializer
As Langium does not yet provide an out-of-the box serializer at the time of writing this
thesis, a custom serializer that converts the AST of the model to its textual concrete
syntax must be implemented. Corresponding to the Serializer requirement for textual
modeling, the implementation of the custom serializer must fulfill following criteria.

• The serializer must generate a syntactically correct output, that can be validated
and parsed using the implemented grammar for the Workflow language.

• The serializer must provide a method to serialize the whole model given its AST.
The serializer must implement the Serializer interface of Langium, and it
foresees to implement its serialize method, that serializes the model, even
if this method will not be used directly from the implemented textual-graphical
modeling framework, as serializing the whole model when an update on the AST
happens and replacing the textual syntax with the newly serialized textual syntax
would remove the non-semantic information of the textual model.

• The serializer must also provide methods that make it possible to only serialize one
concrete element of the model i.e., one concrete node of the AST. This is necessary
to maintain the non-semantic information of the textual syntax of the model, and
these methods will be used by the blended modeling framework to update the
textual syntax when necessary. The serializeAstNode method in Listing 5.4
serializes one concrete node of the AST. This method will be used instead of the
serialize method in the implemented textual-graphical modeling framework.

1 serialize(root: Model): string {
2 const nodes = this.serializeNodes(root.nodes);
3 const edges = this.serializeEdges(root.edges);
4 const metaInfos = this.serializeMetaInfos(root.metaInfos);
5 const serializedModel = [nodes, edges, metaInfos]
6 .filter((part) => part.length > 0)
7 .join("\n");
8 return serializedModel;
9 }

10
11 serializeAstNode(astNode: AstNode): string {
12 if (isNode(astNode)) {
13 return this.serializeNode(astNode);
14 } else if (isEdge(astNode)) {
15 return this.serializeEdge(astNode);
16 } else if (isMetaInfo(astNode)) {
17 return this.serializeMetaInfo(astNode);

51

5. Prototype Implementation

18 }
19 return "";
20 }
21
22 protected serializeNodes(nodes: Node[]) {
23 return `${nodes.map((node) => this.serializeNode(node)).join("\n")}`;
24 }
25
26 protected serializeNode(node: Node): string {
27 if (isTaskNode(node)) {
28 return this.serializeTaskNode(node);
29 } else if (isCategory(node)) {
30 return this.serializeCategory(node);
31 } else if (isActivityNode(node)) {
32 return this.serializeActivityNode(node);
33 }
34 return "";
35 }
36
37 [...]
38
39 protected serializeTaskNode(node: TaskNode): string {
40 let serializedNode = `TaskNode ${node.name}`;
41 if (node.label) serializedNode += ` "${node.label}"`;
42 if (node.expanded) serializedNode += ` "expanded"`;
43 if (node.duration) serializedNode += ` ${node.duration}`;
44 if (node.taskType) serializedNode += ` ${node.taskType}`;
45 serializedNode += ";";
46 return serializedNode;
47 }
48
49 [...]

Listing 5.4: Serializer

Listing 5.4 shows methods of the implemented custom serializer. The serialize
method serializes the whole model provided as its root input parameter, and the
serializeAstNode method serializes only the provided astNode input node, which
could also have children e.g., a category node. Both of the methods are based on
the actual implementations of the serialization functions for each types of nodes e.g.,
the serializeTaskNode function, which serializes a task node. These functions are
implemented to convert a given type of node to its textual representation corresponding
to the grammar rules of the serialized node’s type.

The serialize and serializeAstNode methods break down their input parameters
and iterate through every node in the provided abstract syntax tree. After reach-
ing the actual leaf nodes, for which concrete serialization methods are provided i.e.,
TaskNode, ActivityNode, TaskNode, Category, Edge, WeightedEdge, Size,
and Position, these nodes are serialized, and concatenated with a line break between
each node. This way, the textual concrete syntax of either the given model or the given
AST node is created.

The implementation of the custom serializer provides solution for the Serializer require-
ment of textual modeling.

52

5.1. Implementation of the Language Server

5.1.6 Workspace manager
Langium’s DefaultWorkspaceManager is implemented to find source files in the
workspace, which are the files of the workspace that have the grammar specific predefined
extension, for the Workflow language .wf and .wfd. Its initializeWorkspace
function indexes the workspace folders, and collects information about all referenced and
exported AST nodes and stores it locally. This information will be passed to and used
by the scope management service later.

1 export class WorkflowWorkspaceManager extends DefaultWorkspaceManager {
2 protected onWorkspaceInitializedEmitter = new Emitter<URI[]>();
3
4 constructor(protected services: WorkflowSharedServices) {
5 super(services);
6 this.initialBuildOptions = { validation: true };
7 }
8
9 override async initializeWorkspace(

10 folders: WorkspaceFolder[],
11 cancelToken?: CancellationToken | undefined
12): Promise<void> {
13 await super.initializeWorkspace(folders, cancelToken);
14 console.info("Workspace Initialized");
15 const uris =
16 this.folders?.map((folder) => this.getRootFolder(folder)) || [];
17 this.onWorkspaceInitializedEmitter.fire(uris);
18 }
19
20 get onWorkspaceInitialized(): Event<URI[]> {
21 return this.onWorkspaceInitializedEmitter.event;
22 }
23 }

Listing 5.5: Workspace Manager

Listing 5.5 shows the extended WorkflowWorkspaceManager class. The only neces-
sary modification to the default service is to include an event emitter, the
onWorkspaceInitialized emitter, which is fired after the workspace was successfully
initialized. This way, other servers that depend on the language server can be notified
that the language server is up and running, and therefore can be started safely. In
the blended modeling framework the GLSP server and the model server depend on the
language server and will only be started after this event was emitted.

5.1.7 Scope provider
A scope provider service is a language-specific service that determines the visible target
elements for cross-references in a given context. The context determines for which AST
node the available cross-references should be provided and which type of elements should
be available for cross-references from the given node. An example for the Workflow
language is, that when creating an edge, the language server should provide suggestions
for all declared nodes in the given model for the source and target nodes, but not other

53

5. Prototype Implementation

edges. Another example is, when declaring a size or position element of a node in the
.wfd file of the model, the language server should provide suggestions for all the nodes
declared in the model’s .wf file.

Langium provides two types of scopes: the local and the global scope. The local scope
determines which elements are available for cross-references within the given document,
and the global scope contains all the possible cross-referable elements of the workspace
by default. As per the Workspace and scope management requirement, a model should
only be able to reference elements declared in the same model, i.e., a size and position
element declared in a model’s .wfd file should only be allowed to reference elements
declared in the model’s corresponding .wf file and not elements from a different model.
Therefore, the global scope must be overwritten accordingly. The local scope provider
will not be modified.

1 protected override getGlobalScope(
2 referenceType: string,
3 context: ReferenceInfo
4): Scope {
5 // define uris from which references should be included for the global scope
6 const source = getDocument(context.container);
7 const uri = source.uri.toString();
8
9 const uris: Set<string> = new Set();

10 uris.add(uri);
11 if (uri.endsWith("d")) {
12 // add .wf document
13 uris.add(uri.slice(0, -1));
14 } else {
15 // add .wfd document
16 uris.add(uri.concat("d"));
17 }
18
19 // the global scope contains all elements known to the language server
20 // from the documents included in uris
21 const globalScope = this.globalScopeCache.get(
22 referenceType,
23 () => new MapScope(this.indexManager.allElements(referenceType, uris))
24);
25
26 return globalScope;
27 }

Listing 5.6: Scope provider

Listing 5.6 shows the implementation of the global scope provider function. The only
difference between the default implementation and the customized implementation is,
that the allElements method of the index manager is called with an array of URIs.
Without the URIs specified, this method returns every element reference from all the files
of the workspace. To be in accordance with the requirements, the global scope should
only contain elements of the same model, therefore, an array of both URIs of the current
model where the scope request is coming from - one with the model’s .wf file and one

54

5.1. Implementation of the Language Server

with the model’s .wfd file - is passed to the allElements method. This way, only the
required elements will be provided in the global scope.

5.1.8 Scope computation
To enable scope providing, the available elements for the global and local scopes must
first be defined, and the descriptions for these elements must be computed. A description
of an element for scope providing contains the element itself, the name of the element and
the document it is located in. Afterwards, the scope is computed from these descriptions
creating a map object, which maps the name of the elements to the document it was
found in.

The default scope computation exports descriptions for the model itself if it is named
(i.e., has a unique name identifier) and every child of the model. However, the default
service does not consider nested elements i.e., elements that also contain other elements
that should be exported for the scope. For the Workflow language, the default scope
provider would not consider elements that are declared in a category node, therefore, the
service must be extended accordingly.

1 export class WorkflowScopeComputation extends DefaultScopeComputation {
2 override async computeExportsForNode(
3 parentNode: AstNode,
4 document: LangiumDocument<AstNode>,
5 children: (root: AstNode) => Iterable<AstNode> = streamContents,
6 cancelToken: CancellationToken = CancellationToken.None
7): Promise<AstNodeDescription[]> {
8 const exports: AstNodeDescription[] = [];
9

10 this.exportNode(parentNode, exports, document);
11 for (const node of children(parentNode)) {
12 await interruptAndCheck(cancelToken);
13 this.exportNode(node, exports, document);
14 if (isCategory(node) && node.children) {
15 // recursively include elements of the child model of a category node
16 exports.push(
17 ...(await this.computeExportsForNode(
18 node.children,
19 document,
20 children,
21 cancelToken
22))
23);
24 }
25 }
26 return exports;
27 }
28 }

Listing 5.7: Scope computation

Listing 5.7 shows the extended scope computation service. The computeExportsForNode
method is called by the language server on the root model to compute all the references

55

5. Prototype Implementation

that can be exported for the given model. The method iterates through the children of
the model and creates descriptions for them where possible. If a given child is a category
node, then the function recursively calls itself again on the child model of this category
node if available, and therefore also computes the descriptions for the given category’s
children. This ensures that every node of a model written in the Workflow language can
be referenced.

The implementations of the custom workspace manager, scope provider and scope com-
putation services provide solution for the Workspace and scope management requirement
of textual modeling.

5.1.9 Name provider

Langium’s default name provider retrieves the unique identifier name attribute of an
arbitrary AST node if exists. The name provider is called while computing the scope of
the document, and the computed description of the exported nodes uses this retrieved
name as an identifier. Furthermore, in the blended modeling framework, the provided
name of an AST node will also be used as a unique identifier of the node in the model
index service of the GLSP server. As this index service must index every single element
of the model, the language server’s name provider must be extended. The default
implementation only considers the name attribute of the element, and does not provide a
name if this attribute does not exist. As only the model’s nodes: the tasks and categories
have a name attribute, the custom name provider must also define names for the edges
and the size and position elements. The implementation of the name provider is listed in
Listing 5.8.

1 export class WorkflowNameProvider implements NameProvider {
2 constructor(protected services: WorkflowServices) {}
3
4 /**
5 * Returns the direct name of the node if it has one.
6 * Creates unique name for edges and MetaInfo nodes.
7 *
8 * @param node node
9 * @returns direct, local name of the node if available

10 */
11 getLocalName(node?: AstNode): string | undefined {
12 if (isNode(node)) {
13 return node && isNamed(node) ? node.name : undefined;
14 } else if (isEdge(node)) {
15 return `${node.$type}_${node.source?.$refText}${node.target?.$refText}`;
16 } else if (isMetaInfo(node)) {
17 return `${node.$type}_${node.node?.$refText}`;
18 } else {
19 return undefined;
20 }
21 }
22
23 getName(node?: AstNode): string | undefined {
24 return node ? this.getLocalName(node) : undefined;

56

5.1. Implementation of the Language Server

25 }
26 }

Listing 5.8: Name provider

The name provider class provides the direct name of the node or creates a unique name
if it does not have one for elements that are already declared, however, names for the
elements that are yet to be created either by the language server’s code action or by
the GLSP server must also be provided. For this purpose, a utility function called
findAvailableNodeName is created, which provides a unique default name for nodes
on creation. The implementation of this function is listed in Listing 5.9. The following
prefixes are used by the framework by default on creating new elements: _tn for task
nodes, _an for activity nodes, and _cat for categories. A consecutive number is attached
to the given prefix by the function, creating a unique name for the model.

1 /**
2 * Provides a name for newly created nodes
3 * @param container the model root
4 * @param name the prefix of the name e.g., '_tn'
5 * @returns a new name that does not yet exists in the model
6 */
7 export function findAvailableNodeName(container: Model, name: string): string {
8 let counter = 1;
9 let availableName = name + counter;

10 while (
11 streamAst(container).find(
12 (node) => isNode(node) && node.name === availableName
13)
14) {
15 availableName = name + counter++;
16 }
17 return availableName;
18 }

Listing 5.9: Name utility

57

5. Prototype Implementation

5.2 Implementation of the GLSP Server
The graphical modeling component of the blended textual-graphical modeling framework
is based on the GLSP framework. The GLSP framework consists of two main components:
the client and the server. The server is responsible for loading, modifying and providing
the underlying model and possible actions on it for the client, and the client copes with
rendering the diagram and providing editing possibilities for the users.

As the GLSP framework provides an example implementation of a TypeScript-based server
and client for graphical modeling on the Workflow language [Foud], the implementation
of the blended framework will be based on these provided components. The client already
provides every aspect for graphical modeling on the Workflow language, therefore, it will
be reused as is. The server will be modified to operate on models originating from the
model server instead of the file system, and to match and expand the generation of the
graphical model and every available action on it to the requirements of blended modeling.

5.2.1 Graphical model
To provide graphical modeling for the blended modeling framework, the GLSP server
must create a graphical model from the input model sourcing from the model server,
corresponding to the elements that are foreseen to be rendered on the Workflow language’s
GLSP client. For this purpose, the following core components of the server must be
adapted.

• Source model storage: to request the model from the model server instead
of loading it from the file system.

• Model state: to store the current model state for both the .wf and .wfd parts
of the model, including both the AST and the textual concrete syntax.

• Model index: to utilize the language server’s name provider for indexing every
element of the model.

• GModel factory: to generate the graphical model based on the underlying AST
sourcing from the model server, and to also incorporate the representation of missing
nodes on the diagram.

Source model storage

The default implementation of the source model storage service loads a requested file from
disk when the user opens the file on the GLSP client. To enable model synchronization
between the language server and the GLSP server, the model must be requested from
the model server instead of loading it from the disk, to provide the current status of it
for the GLSP server. The custom implementation of the loadSourceModel method of
the custom WorkflowModelStorage serve is provided in Listing 5.10.

58

5.2. Implementation of the GLSP Server

1 async loadSourceModel(action: RequestModelAction): Promise<void> {
2 // load semantic model from document in language model service
3 const sourceUri = this.getSourceUri(action);
4 const rootUri = sourceUri;
5 const rootUriDetails = `${sourceUri}d`;
6 const root = await this.state.modelService.request(
7 rootUri,
8 isModel,
9 "glsp"

10);
11 const rootDetails = await this.state.modelService.request(
12 rootUriDetails,
13 isModel,
14 "glsp"
15);
16 if (!root) {
17 throw new GLSPServerError("Expected Workflow Diagram Root");
18 }
19 if (!rootDetails) {
20 throw new GLSPServerError("Expected Workflow Diagram Details Root");
21 }
22 this.state.setSemanticRoot(rootUri, root, rootUriDetails, rootDetails);
23 this.state.modelService.onUpdate(
24 this.state.semanticUri,
25 async (newModel: Model) => {
26 this.state.replaceSemanticRoot(newModel);
27 this.actionDispatcher.dispatch(
28 UpdateClientOperation.create(false, true)
29);
30 }
31);
32 this.state.modelService.onUpdate(
33 this.state.semanticUriDetails,
34 async (newModel: Model) => {
35 this.state.replaceSemanticRootDetails(newModel);
36 this.actionDispatcher.dispatch(
37 UpdateClientOperation.create(true, false)
38);
39 }
40);
41 }

Listing 5.10: Workflow model storage: loadSourceModel

The client is customized to only operate on .wf files, however, as the corresponding
.wfd file providing the size and position details of the model’s elements is also necessary
for the graphical model, it must also be requested from the model server as seen in Lines
6 and 11 of Listing 5.10. The function than sets the semantic root of the model state in
Line 22 of Listing 5.10, as the further services of the GLSP server operate on this model
state.

To provide continuous synchronization with the model server, the model storage service
also subscribes to updates coming from the model server when the model is opened
initially. The model server’s onUpdate listener gets fired every time an update on the
model happens. Subscribing to this listener for both of the model’s URIs provides the

59

5. Prototype Implementation

possibility to synchronize the model with other clients of the model server. When an
update happens, the GLSP server replaces the model state with the newer one and triggers
the re-generation of the graphical model, which afterwards triggers the re-rendering of
the model on the client, keeping the model up-to-date.

The further methods of the model storage saveSourceModel and sessionDisposed
are also extended to call the model server’s appropriate methods for saving and closing
the model.

Model state

The model state is the service that holds the current version of the model i.e., the internal
state of the GLSP server and provides access for external services of the language server,
making them available for the GLSP server. The model loaded by source model storage
service is stored here, and every other service of the GLSP server operates on the model
provided by this service. The graphical model is generated from the model provided by
the model state service, every action executed on the model in the GLSP client modifies
the underlying model of the model state and every update on the model originating
from outside of the GLSP server, e.g., the model server, must trigger an update on the
underlying model of the model state in order to keep the graphical model up to date.

As explained in the solution concepts for model synchronization in graphical modeling in
Section 4.5, the model state holds and maintains two representations of the model: the
AST and the textual concrete syntax. This is necessary to provide continuous updates on
the textual syntax when an update occurs on the model, maintaining the non-semantic
information of the textual syntax. To maintain currentness of the model, the model state
must provide methods for the following scenarios of model updates.

• Update request from the GLSP framework: if the user edits the model in the
diagram editor, the model state must provide update possibilities for the textual
syntax. After sending the update to the model server, the model server generates
an updated AST for the new textual syntax and sends it back to the GLSP server
for re-rendering, updates its internal state and notifies the other clients that the
model was updated. If the model server’s internal state currently contains arbitrary
errors (i.e., there are errors in the text editor, which are not linking errors), it won’t
generate the updated AST but return an empty model, expressing that updates
cannot be currently delegated.

• Update request from the model server: if an update outside the GLSP
framework happens, the model server notifies the GLSP server to update its
internal state. Therefore, the model state must provide methods to replace the
AST and the textual syntax of the model with the new, updates ones.

60

5.2. Implementation of the GLSP Server

1 export interface WorkflowSourceModel {
2 text: string | undefined;
3 textDetails: string | undefined;
4 }
5
6 /**
7 * Custom model state that does not only keep track of the
8 * GModel root but also the semantic root.
9 * It also provides convenience methods for accessing specific language services.

10 */
11 @injectable()
12 export class WorkflowModelState
13 extends DefaultModelState
14 implements JsonModelState<WorkflowSourceModel>
15 {
16 [...]
17
18 setSemanticRoot(
19 uri: string,
20 semanticRoot: Model,
21 uriDetails?: string,
22 semanticRootDetails?: Model
23): void {
24 this._semanticUri = uri;
25 this._semanticRoot = semanticRoot;
26 if (uriDetails) {
27 this._semanticUriDetails = uriDetails;
28 }
29 if (semanticRootDetails) {
30 this._semanticRootDetails = semanticRootDetails;
31 }
32 this._semanticText = semanticRoot.$document?.textDocument.getText() ?? "";
33 this._semanticTextDetails =
34 semanticRootDetails?.$document?.textDocument.getText() ?? "";
35 this.index.indexSemanticRoot(this.semanticRoot, this.semanticRootDetails);
36 }
37
38 replaceSemanticRoot(model: Model) {
39 this._semanticRoot = model;
40 this._semanticText = model.$document?.textDocument.getText() ?? "";
41 this.index.indexSemanticRoot(this.semanticRoot, this.semanticRootDetails);
42 }
43
44 async updateSourceModel(
45 sourceModel: WorkflowSourceModel,
46 doNotUpdateSemanticRoot?: boolean,
47 doNotUpdateSemanticRootDetails?: boolean
48): Promise<void> {
49 if (!doNotUpdateSemanticRoot) {
50 const model = await this.modelService.update<Model>(
51 this.semanticUri,
52 sourceModel.text ?? this.semanticRoot,
53 "glsp"
54);
55 if (Object.keys(model).length > 0) {
56 // only replace semantic root if model is not empty
57 this._semanticRoot = model;
58 }
59 }

61

5. Prototype Implementation

60 if (!doNotUpdateSemanticRootDetails) {
61 const model = await this.modelService.update<Model>(
62 this.semanticUriDetails,
63 sourceModel.textDetails ?? this.semanticRootDetails,
64 "glsp"
65);
66 if (Object.keys(model).length > 0) {
67 // only replace semantic root if model is not empty
68 this._semanticRootDetails = model;
69 }
70 }
71 this.index.indexSemanticRoot(this.semanticRoot, this.semanticRootDetails);
72 }
73
74 insertToSemanticText(node: AstNode, container?: string) {
75 let serializedNode =
76 this.services.language.serializer.Serializer.serializeAstNode(node);
77 if (container) {
78 // new node was inserted as a child node of a category
79 let insertPosition = container.lastIndexOf("}");
80 let newContainer = container;
81 if (insertPosition < 0) {
82 // no childre yet, create model container
83 serializedNode = ` {\n${serializedNode}\n}`;
84 insertPosition = container.lastIndexOf(";");
85 } else {
86 // append child to model
87 serializedNode = `${serializedNode}\n`;
88 }
89 newContainer =
90 newContainer.slice(0, insertPosition) +
91 serializedNode +
92 newContainer.slice(insertPosition);
93 this._semanticText = this._semanticText.replace(container, newContainer);
94 } else {
95 this._semanticText += `\n${serializedNode}`;
96 }
97 }
98
99 deleteFromSemanticText(range: Range) {

100 this._semanticText = this._semanticText.replace(
101 getRangeFromText(range, this._semanticText),
102 ""
103);
104 }
105
106 updateInSemanticTextDetails(
107 oldText: string,
108 oldAttributeValue: string,
109 newAttributeValue: string
110): string {
111 let newText = oldText;
112 const cleanedText = removeAllComments(newText);
113 // find the position of the attribute in the cleaned text
114 const attributeIndex = cleanedText.indexOf(oldAttributeValue);
115 newText = replaceStartingFrom(
116 newText,
117 oldAttributeValue,
118 newAttributeValue,
119 attributeIndex
120);
121 this._semanticTextDetails = this._semanticTextDetails.replace(oldText, newText);

62

5.2. Implementation of the GLSP Server

122 // return updated text to ensure multiple updates in the same comment
123 return newText;
124 }
125
126 [...]
127 }

Listing 5.11: Workflow model state

Listing 5.11 shows selected functions of the custom Workflow model state service. To
allow update request from the GLSP framework itself, the model state provides the
following methods to enable direct modifications on the textual concrete syntax of the
model, which are called by the action handlers of the server.

• insertToSemanticText: for creating new elements. The method serializes the
new node to be added to the model and appends it to the current textual syntax. If
the new node is a child node, then it appends it to the list of the parent’s children.

• deleteFromSemanticText: to remove elements from the model. The method
deletes the provided range from the textual syntax. The AST of the model contains
the range for every element in the textual syntax i.e., the first and last characters
associated with the element in the textual syntax, therefore, an element can’t be
precisely deleted from the textual syntax.

• updateInSemanticText: for updating elements in the textual syntax. The old
textual syntax of the element and the old and new values of the attributes must
be provided. The old attribute is then replaced by the function with the new one,
and the old version of the element’s textual syntax is then replaced by the new
one. This method ensures, that non-semantic information within the element’s
textual syntax e.g., an in-line comment, will be maintained and will be ignored
when searching for the current value of the attribute (i.e., to not interfere with
the update, if a comment within the element’s textual syntax contains the same
value). A drawback of this method is, that it would only replace the first attribute
that matches the old value, so if there are two attributes with the same value, the
second one would not be replaced. To solve this problem, either replacing the whole
textual syntax with a re-serialized one would provide a solution, meaning, that the
non-semantic information would be lost, or Langium would need to provide the
ranges of each attribute in the textual syntax, which is not yet the case.

After the action handlers updated the textual syntax, they must also call the provided
updateSourceModel method. This method triggers the update of the model on the
model service, therefore it is necessary to synchronize the model between the textual and
graphical client.

To incorporate update requests from the model server the model state provides the
setSematicRoot, replaceSemanticRoot and replaceSemanticRootDetails

63

5. Prototype Implementation

methods. The setSematicRoot must be called when the model is initially loaded to
set the URIs, ASTs and textual syntaxis for both the .wf and .wfd files of the model.
The replaceSemanticRoot and replaceSemanticRootDetails are called by the
source model service when the model server triggers an update event. Either the model
components of the .wf or the the .wfd file get updated at a time, depending on which
part of the model got updated by another client.

Model index

The model index service is used to index all elements of a model by their ID and to
index all references of the model. The model index also offers a set of query methods to
retrieve indexed elements and to retrieve unresolvable cross-references to display them
as missing nodes. This service is essentially used by the action handler services or any
other arbitrary service that performs updates on the model state. The index provides
the exact node of the AST for these services and can pursue the updates on this node.

1 protected idToSemanticNode = new Map<string, AstNode>();
2 protected references = new Set<string>();
3
4 createId(node?: AstNode): string | undefined {
5 return this.services.language.references.NameProvider.getLocalName(node);
6 }
7
8 indexSemanticRoot(root: Model, rootDetails?: Model): void {
9 this.idToSemanticNode.clear();

10 this.references.clear();
11 streamAst(root).forEach((node) => {
12 this.indexAstNode(node);
13 streamReferences(node).forEach((reference) => {
14 this.references.add(reference.reference.$refText);
15 });
16 });
17 if (rootDetails) {
18 streamAst(rootDetails).forEach((node) => {
19 this.indexAstNode(node);
20 streamReferences(node).forEach((reference) => {
21 this.references.add(reference.reference.$refText);
22 });
23 });
24 }
25 }
26
27 protected indexAstNode(node: AstNode): void {
28 const id = this.createId(node);
29 if (id) {
30 this.idToSemanticNode.set(id, node);
31 }
32 }
33
34 getAllInvalidReferences(): string[] {
35 return Array.from(this.references).filter(
36 (referenceId) => !this.findSemanticElement(referenceId, isAstNode)
37);
38 }
39

64

5.2. Implementation of the GLSP Server

40 /**
41 * Creates an index with a different ID for the provided node.
42 * This is necessary to index edges with missing nodes.
43 * @param idNode the node with the ID that should be used for the index
44 * @param node tte noded that should be indexed by the given ID
45 */
46 addNodeToIndexWithDifferentId(idNode: AstNode, node: AstNode): void {
47 const id = this.createId(idNode);
48 if (id) {
49 this.idToSemanticNode.set(id, node);
50 }
51 }
52
53 findNode(id: string): Node | undefined {
54 return this.findSemanticElement(id, isNode);
55 }
56
57 findSemanticElement<T extends AstNode>(
58 id: string,
59 guard: (item: unknown) => item is T
60): T | undefined {
61 const semanticNode = this.idToSemanticNode.get(id);
62 return guard(semanticNode) ? semanticNode : undefined;
63 }
64
65 [...]

Listing 5.12: Workflow model index

Listing 5.12 shows important methods of the index service. The index itself is a map, that
maps the ID of an element to the corresponding AST node. The indexSemanticRoot
method creates a reference for every element of the model, using the language server’s
name provider as the element’s ID. The addNodeToIndexWithDifferentId indexes
edges with undefined source or target nodes. These edges will be displayed on the diagram
as edges to a node with a random generated ID, and therefore, the edge must be indexed
with this ID, to allow the action handlers to provide delete and reconnect operations for
these edges.

The findNode method shows an example for a method that retrieves an element from
the index with a given type and ID. The methods retrieving the other types of elements
of the model are implemented similarly.

GModel factory

The GModel factory service is responsible for generating the graphical model from the
model state. The generated graphical model is serialized by the GLSP framework and
sent to the GLSP client for rendering. The factory gets triggered every time a change in
the model state occurs, resulting in a re-generation and re-serialization of the graphical
model and re-rendering on the client side.

The factory’s createModel method must generate a GGraph i.e., the graphical model
containing all the corresponding graphical elements of the model in the form of GLSP

65

5. Prototype Implementation

specific graphical elements e.g., GNode or GEdge. Corresponding to the Error handling
requirement of graphical modeling, the generated graphical model must also contain
missing nodes i.e., edges without source or target nodes or nodes with missing cross-
references.

1 createModel(): void {
2 this.missingNodes = new Set();
3 const newRoot = this.createGraph();
4 if (newRoot) {
5 // update GLSP root element in state so it can be used in
6 // any follow-up actions/commands
7 this.modelState.updateRoot(newRoot);
8 }
9 }

10
11 protected createGraph(): GGraph | undefined {
12 const model = this.modelState.semanticRoot;
13 const modelDetails = this.modelState.semanticRootDetails;
14 this.graphBuilder = GGraph.builder().id(this.modelState.semanticUri);
15 model.nodes
16 .map((node) => this.createNode(node))
17 .forEach((node) => this.graphBuilder.add(node));
18 this.createEdgesAndMissingNodes(model, modelDetails).forEach((element) =>
19 this.graphBuilder.add(element)
20);
21 return this.graphBuilder.build();
22 }
23
24 protected createNode(node: Node): GNode {
25 if (isActivityNode(node)) {
26 return this.createActivityNode(node);
27 } else if (isCategory(node)) {
28 return this.createCategory(node);
29 } else if (isTaskNode(node)) {
30 return this.createTaskNode(node);
31 }
32 return GNode.builder().build();
33 }
34
35 protected createTaskNode(taskNode: TaskNode): GNode {
36 const node = GTaskNode.builder().id(taskNode.name);
37 if (taskNode.taskType) {
38 node.taskType(taskNode.taskType);
39 switch (taskNode.taskType) {
40 case "automated":
41 node.type(ModelTypes.AUTOMATED_TASK);
42 break;
43 case "manual":
44 node.type(ModelTypes.MANUAL_TASK);
45 break;
46 }
47 }
48 if (taskNode.duration) {
49 node.duration(taskNode.duration);
50 }
51 if (taskNode.label) {
52 node.name(taskNode.label);
53 } else {
54 node.name(taskNode.name);

66

5.2. Implementation of the GLSP Server

55 }
56 const size = this.modelIndex.findSize(taskNode.name);
57 if (size) {
58 node.addLayoutOption("prefWidth", size.width);
59 node.addLayoutOption("prefHeight", size.height);
60 node.size(size.width, size.height);
61 }
62 const position = this.modelIndex.findPosition(taskNode.name);
63 if (position) {
64 node.position(position.x, position.y);
65 }
66 return node.build();
67 }

Listing 5.13: Workflow GModel factory - creating a task node

Listing 5.13 shows how the factory constructs the GGraph out of smaller graphical nodes
corresponding to each element of the diagram. The code shows an example for creating
graphical nodes based on the creation of task nodes. The GTaskNode.builder()
creates a specific type of GNode which contains the corresponding CSS classes and other
task node style properties. The GTaskNode is then further customized with the type
of the task and the attributes of the element, which the builder will generate GNode
attributes for. Furthermore, the size and position of the element is retrieved using the
model index service and are also added to the GNode’s properties.

The methods creating GNodes for activity nodes and categories, and GEdges for edges
and weighted edges are implemented similarly. To also visualize missing nodes on the
diagram, the createEdgesAndMissingNodes method must be implemented. Missing
nodes that should be displayed on the diagram can occur in the following scenarios.

• The cross-reference of the source or target node of an edge can not be resolved i.e.,
the source or target node of an edge is not defined in the model.

• The node’s cross-reference of a size or position element can not be resolved i.e., a
size or position element is defined for a non-existent node.

• The source or target of an edge is not defined i.e., the edge is only connected to
one node.

1 protected createEdgesAndMissingNodes(
2 model: Model,
3 modelDetails?: Model
4): GModelElement[] {
5 const createdElements: GModelElement[] = [];
6 // non-existent cross-references
7 this.modelIndex
8 .getAllInvalidReferences()
9 .map((missingId) => this.createMissingNode(missingId))

10 .forEach((node) => {
11 createdElements.push(node);

67

5. Prototype Implementation

12 });
13 // add missing nodes to graph
14 Array.from(this.missingNodes)
15 .map((id) => this.createMissingNode(id))
16 .forEach((node) => {
17 createdElements.push(node);
18 });
19
20 // add missing edge sources
21 model.edges
22 .filter((edge) => !edge.source)
23 .forEach((edge) => {
24 const missingNodeId = `${ModelTypes.MISSING_NODE}_${this.modelIndex.createId(
25 edge
26)}`;
27 const newEdge: Edge = {
28 $container: edge.$container,
29 $type: edge.$type,
30 source: { ref: undefined, $refText: missingNodeId },
31 target: edge.target,
32 };
33 this.modelIndex.addNodeToIndexWithDifferentId(newEdge, edge);
34 createdElements.push(this.createMissingNode(missingNodeId));
35 createdElements.push(this.createEdge(newEdge));
36 });
37
38 // add missing edge targets
39 [...]
40
41 // create edges with valid target and source (remaining edges)
42 model.edges
43 .filter((edge) => edge.target && edge.source)
44 .map((edge) => this.createEdge(edge))
45 .forEach((edge) => {
46 createdElements.push(edge);
47 });
48
49 return createdElements;
50 }

Listing 5.14: Workflow GModel factory - creating missing nodes
To display missing nodes from the scenarios described above the
createEdgesAndMissingNodes function is implemented as displayed in Listing 5.14.
The function iterates through every listed scenario and creates GNodes and GEdges
connected to either the currently declared missing node or to an already existing one.
If an ID of a missing node is already declared, then this ID will be used as the missing
node’s ID. This way, if the user decides to define this node, the reference to this newly
defined node will automatically be correct and the missing node will disappear from
the diagram. If the missing node does not yet have a known ID, then a random ID is
generated for it. The edge referencing to this missing node will also be re-indexed with
the newly generated random ID of the missing node, to enable the GLSP framework to
interact with it from other services.
The implementation of the source model storage, the model state, the model index and
the GModel factory provide solution for the Graphical model requirement of graphical

68

5.2. Implementation of the GLSP Server

modeling. Furthermore, the implementation of displaying missing nodes on the graphical
model contributes to the Error handling requirement of graphical modeling, and the
custom implementations of the source model storage and the model state contributes to
the Model synchronization requirement of graphical modeling.

5.2.2 Model editing
The implementation of the source model storage, the model state, the model index and
the GModel factory services already provide a graphical representation of the model for
the GLSP client. However, to also be able to edit the model in the graphical view, action
handlers must be implemented.

An action handler responds to a specific action coming from the GLSP client, such as
dragging an element on the diagram or changing the label of an element. An operation
handler is a specific form of an action that performs a specific update on the model
state. The client provides all the necessary attributes for the server to be able to modify
the model state, e.g., the ID of the element that was modified and the new values of
the attributes that should be updated. The server’s corresponding operation handler
then verifies the action if necessary, and changes the textual syntax of the model state
accordingly. The update of the model state then triggers sending the update to the model
server, which provides the updated AST to the model storage and model state. After the
updated AST was provided to the model state, the re-generation of the graphical model
also gets triggered.

The designated operation handlers responding to predefined actions on the model and
their implementations are bound to the semantics of the DSL that the GLSP framework
is operating on. Different DSLs may require different actions, however, how an operation
handler is built up, and how it modifies the underlying model state is similar in all of
the operation handlers of the blended framework. The following actions are available for
the Workflow language in the blended textual-graphical modeling framework, and have
designated operation handlers.

• Change bounds: changing either the position or the size of a selected element.

• Create new element: the creation of following types of nodes and edges are
available.

– Automated task
– Manual task
– Decision node
– Fork node
– Join node
– Merge node

69

5. Prototype Implementation

– Edge
– Weighted edge - only allowing a decision node as a source node.
– Category

• Reconnect edge: changing either the source or target node of the selected edge.
If the selected edge is a weighted edge, the source node can only be changed to
another decision node.

• Delete: deletes the selected element. If the deleted element has connecting edges,
the edges will also be deleted.

• Edit label: changing the label of a task node.

• Edit task: updating an attribute of a task node. Currently, only updating the
task type is supported. If the missing node is connected to a simple edge or is not
connected to an edge, the creation of an arbitrary type of node is possible. If the
missing node has an outgoing weighted edge, only the creation of a decision node is
permitted.

• Create missing node: the creation of the selected missing node.

• Update GLSP client: an empty operation handler to trigger re-generating the
graphical model and the update of the GLSP client. The corresponding action is
fired by the GLSP server when the model gets updated by the model server.

The listed operations can be triggered in various forms, depending on where the action is
fired on the client side. The following possibilities exist in the Workflow GLSP framework.

• Direct model editing: the change bounds, the label edit, the reconnect edge
and the delete operations can be directly performed on the diagram. The change
bounds operation by selecting a node on the diagram and either dragging and
dropping it to a new position or resizing it by dragging one of the edges of the node.
The label edit operation by double clicking on the designated label and typing in
the new name for the label. The reconnect edge operation by selecting an edge on
the diagram and dragging one of the ends of the edge to a new node. The delete
operation by clicking on an element and hitting the delete key.

• Tool palette: each of the create new element operations are available on the tool
palette. To create a new node the user must click on the desired node type and
click on the diagram in the position where the new element should be created. The
tool palette with the available actions is shown in Figure 5.2.

• Command palette: the edit task type, the create new element, the delete and the
create missing node operations are available on the command palette, as shown in
Figure 5.1. The command palette is context dependent, meaning that the available

70

5.2. Implementation of the GLSP Server

Figure 5.1: Command palette Figure 5.2: Tool palette

actions displayed depend on whether an element was selected and which element
was selected. The create new element and delete operations are available generally,
the change task type operation is available only when called on a selected task node
and the create missing node operations are available only when called on a selected
missing node.

Operation handler structure

As mentioned before, even though every operation handler modifies or interacts with the
model in a different way, the executed steps in the implementation are similar. The core of
each operation handler is the Command. A command implements a specific modification
of the model state, which can be applied by invoking its execute() function. The
blended framework’s WorkflowCommand also provides implementations to the undo
and redo methods, which respectively undo or redo the change they made to the model
state.

1 @injectable()
2 export class WorkflowDeleteOperationHandler extends OperationHandler {
3 operationType = DeleteElementOperation.KIND;
4
5 @inject(WorkflowModelState) protected state: WorkflowModelState;
6
7 createCommand(operation: DeleteElementOperation): Command | undefined {
8 if (!operation.elementIds || operation.elementIds.length === 0) {
9 return;

71

5. Prototype Implementation

10 }
11 return new WorkflowCommand(this.state, () => this.deleteElements(operation));
12 }
13
14 protected deleteElements(operation: DeleteElementOperation): void {
15 for (const elementId of operation.elementIds) {
16 const element = this.state.index.findSemanticElement(elementId, isDiagramElement);
17 if (element?.$cstNode) {
18 this.state.deleteFromSemanticText(element.$cstNode.range);
19 }
20 if (isNode(element)) {
21 this.deleteIncomingAndOutgoingEdges(element);
22 this.deleteSizeAndPosition(element);
23 }
24 }
25 }
26
27 private deleteIncomingAndOutgoingEdges(node: Node): void {
28 this.state.semanticRoot.edges
29 .filter(
30 (edge) =>
31 edge.source.$refText === node.name || edge.target?.$refText === node.name
32)
33 .forEach((edge) => {
34 if (edge.$cstNode) {
35 this.state.deleteFromSemanticText(edge.$cstNode.range);
36 }
37 });
38 }
39
40 private deleteSizeAndPosition(node: Node): void {
41 this.state.semanticRootDetails.metaInfos
42 .filter((metaInfo) => metaInfo.node.$refText === node.name)
43 .forEach((metaInfo) => {
44 if (metaInfo.$cstNode) {
45 this.state.deleteFromSemanticTextDetails(metaInfo.$cstNode.range);
46 }
47 });
48 }
49 }

Listing 5.15: Delete operation handler

Listing 5.15 shows the implementation of the delete operation handler as an example
for implementing operation handlers. An operation handler must always have a unique
operationType attribute corresponding to the type of the action that should trigger
this operation. The only function that the operation handler must implement is the
createCommand function, which must create and return a WorkflowCommand to be
executed by the GLSP server.

The command must define how the model state should be updated. This is done by
providing a function that executes the necessary updates on the model state, which
in this case is the deleteElements function. The WorkflowCommand records the
current state and executes the provided function on the current state updating it. The
previous state is recorded in case the user triggers an undo or redo action.

72

5.2. Implementation of the GLSP Server

In the provided example, the model state is updated as follows. Firstly, the textual syntax
is updated, and the elements to be deleted are cut out from the textual syntax. This is
the general approach of updating the model state in every implemented operation handler.
The command then triggers the model update on the model server providing an updated
AST for the GLSP server’s model state. Afterwards, this triggers the re-generation of
the graphical model on the GLSP server.

In the specific operation handler shown in Listing 5.15, deleting an element might also
trigger the deletion of other elements from the model too. If the deleted element is a node
and has connected edges, the deleteIncomingAndOutgoingEdges method is also
executed for this node deleting the connected edges for it. Furthermore, if the deleted
element is a node, meaning that it also has size and position elements persisted on the
model, these will also be deleted by executing the deleteSizeAndPosition method.

Action providers

To make the implemented operation handlers available for execution on the client, the
framework must implement action providers. Action providers define which actions or
operations are available for execution, in which form and on which elements of the model.
In the previous section three ways of providing user actions for the graphical model were
defined: executing actions via directly editing the model, executing actions on the tool
palette and executing actions on the command palette.

The implementation of the tool palette and direct model editing action calls are done
on the client project, as these do not require dynamic modification of available actions
for the Workflow language. Every element on the diagram is re-sizeable and might
be re-positioned and also every type of element might be created via the tool palette
continuously. However, the action provider for the command palette must be implemented
on the server side.

The available actions on the command palette depend on the context it was called
from i.e., which element was selected when opening it. The create new element and
delete operations are available generally, the change task type operation is available only
when called on a selected task node and only to change its task either from manual
to automated or vice versa and the create missing node operations are available only
when called on a selected missing node.

1 export class WorkflowCommandPaletteActionProvider extends CommandPaletteActionProvider {
2 getPaletteActions(
3 selectedElementIds: string[],
4 selectedElements: GModelElement[],
5 position: Point,
6 args?: Args
7): LabeledAction[] {
8 const actions: LabeledAction[] = [];
9 if (this.modelState.isReadonly) {

10 return actions;
11 }

73

5. Prototype Implementation

12 [...]
13 // Create actions
14 const location = position ?? Point.ORIGIN;
15
16 // Create actions for missing nodes with IDs
17 if (selectedElements.length === 1) {
18 const element = selectedElements[0];
19 if (element instanceof GMissingNode) {
20 // if missing node has weighted outgoing edge it can only be a decision node
21 if (
22 this.modelState.index
23 .findOutgoingEdges(element.id)
24 .filter((edge) => isWeightedEdge(edge)).length === 0
25) {
26 actions.push({
27 label: "Create Missing Node - Manual Task",
28 actions: [
29 CreateNodeOperation.create(ModelTypes.MANUAL_TASK, {
30 location,
31 args: { name: element.id },
32 }),
33],
34 icon: "fa-plus-square",
35 });
36 [...]
37 }
38 actions.push({
39 label: "Create Missing Node - Decision Node",
40 actions: [
41 CreateNodeOperation.create(ModelTypes.DECISION_NODE, {
42 location,
43 args: { name: element.id },
44 }),
45],
46 icon: "fa-plus-square",
47 });
48 }
49 }
50 }
51 [...]
52 }

Listing 5.16: Command palette action provider

Listing 5.16 shows a segment of the implemented command palette action provider. The
getPaletteActions function must return an array containing every available action
for the given selected elements. In the example, actions for creating a manual task and a
decision node out of a missing node are shown. The action provider first must make sure,
that the selected element is a missing node to provide this action, and then define the
possible actions including the operation that must be called on executing the action and
the necessary attributes for the operation. To ensure a semantically correct model, the
example shows how only a creation of a decision node out of a missing node is possible,
if the missing node has an outgoing weighted edge connected to it.

The implementation of the custom operation handlers and the command palette ac-
tion provider provides solution for the Model editing requirement of graphical modeling.

74

5.2. Implementation of the GLSP Server

Furthermore, only allowing the creation of elements according to the Workflow lan-
guage’s semantics contributes to the Error handling requirement of graphical modeling,
and the custom implementations of the WorkflowCommand contributes to the Model
synchronization requirement of graphical modeling.

5.2.3 Validation
The GLSP framework must ensure that creating and editing a model results in a
syntactically and semantically correct model in regards of the underlying DSL i.e., the
Workflow language. In other words, creating, updating, or deleting elements of the model
must result in a syntactically and semantically correct AST and textual syntax of the
model. To ensure this criteria, the following solutions are implemented.

• Creating new elements: the corresponding operation handler ensures that the
resulting AST and textual syntax of the model state are correct after execution. This
is possible, as the actions do not require custom user input, the inserted elements
and the whether creating a new element is possible are predefined according to the
language’s syntax and semantics.

• Deleting elements: similarly to creating new elements, it can also be ensured by
the operation handler that the AST and textual syntax of the model are correct
after deletion.

• Updating elements: the only update that requires custom user input is the la-
bel edit operation. The user is allowed to enter an arbitrary text as the new
label of a task node, therefore it must be validated. For this purpose, the
LabelEditValidator interface is implemented, which ensures, that the label is
only valid and can be persisted if it is not empty, and warns the user if it does not
begin with a capital letter. The correctness of other update operations are ensured
by their corresponding action handlers.

To showcase validation on the graphical model a custom implementation of the
ModelValidator service is provided on the GLSP server, validating the model for
duplicate IDs and duplicate edges. However, this would not be necessary, as having
duplicate IDs would cause a runtime exception on the GLSP client, as it is not capable
of rendering two elements with the same ID. The implementation of the operation han-
dlers, the model validator, and the label edit validator services provide solution for the
Validation requirement of graphical modeling.

5.2.4 Error handling
Error handling in graphical modeling can be prevented in a large measure by defining
default attribute values when creating or modifying an element, and only allowing updates
on the model that result in both a semantically and syntactically correct model. For

75

5. Prototype Implementation

example, on creating a new element, the element’s attributes will be filled by default
valid values. On updating an element, the updated attributed should be validated if it
is a custom user input, or should be a predefined valid value, that a user can choose to
update the value to. On deleting an element, other elements referencing to this element
should also be updated or deleted.

As the blended textual-graphical modeling framework allows simultaneous editing of the
textual and graphical representations of the model, errors might still arise while editing
the model in the text editor, as updates to the model can not be limited there. To still
make interactions with an erroneous model in the graphical editor available after an error
occurs during textual model editing, the model service provides updates to the GLSP
server in following cases on the Workflow language:

• Size or position of element gets deleted. As the resulting model is still
syntactically correct, the model must still be rendered on the diagram. If the
position of an element is missing, it will be displayed on the (0,0) position of the
diagram, and if the size of an element is missing a default value will be applied for
rendering. On moving or resizing the element, the missing attribute will be added
to the model again.

• Missing node in a size or position element. If a size or position’s element
references to a node that is not defined on the model, a node will be rendered on
the diagram with the corresponding size and/or position and ID on the diagram,
displayed as a missing node. The user is then able to define a node to the missing
attribute with the available command palette actions.

• Missing node in a source or target edge reference. If an edge has a source
and/or target attribute referencing an undefined node, a missing node will be
rendered on the diagram with the corresponding ID and the edge connecting to
it. The user is able to define a node for the missing node with a command palette
action. The created node will have the ID of the missing node, and therefore the
missing cross-reference of the edge will be resolved. Another way of handling this
error is to reconnect the edge to point to an existing node instead of the missing
node. In this case, the missing node disappears from the diagram.

• Missing source or target node of edge. If an edge has an undefined source or
target node, the edge will still be displayed on the graphical model connected to a
missing node with a random unique ID. The user is able to create a new node from
the missing node or reconnect the edge to an existing node, in which case, the new
node’s ID or the selected node’s ID will be inserted into the edge’s missing source
or target reference.

In other error scenarios on the textual model, the model server does not provide updates
to the GLSP server, and also does not accept updates from the GLSP server. This is to

76

5.3. Model Server

prevent overwriting the erroneous textual syntax in the text editor, which would cause
confusion to the user and go against the concept of incremental updates. After the error
is fixed in the text editor, the model server accepts updates again from the GLSP server.

Figure 5.3: Error handling in the graphical editor

Figure 5.3 shows the different possibilities a missing node might appear on the graphical
model. The left side shows the text editor and the right side the graphical editor, both
operating on the example1 model. _tn5 represents a missing cross-reference for size
and position elements, both of these elements are defined in the example1.wfd file.
_tn4 represents a missing cross-reference in an edge’s target. The definition of the edge
is shown in line 15 of the text editor, where the text editor also marks the missing cross-
reference as an error. The last missing node represents the missing target node definition
in the edge defined in line 14. _tn5’s open command palette shows the available actions
for creating a node out of the missing _tn5 node.

The implementation of the graphical model including the representation of the missing
nodes and the implementation of the action handlers and action provides according to the
scenarios listed above, provide a solution to the Error handling requirement of textual
modeling.

5.3 Model Server
The model server is the central connecting artifact of the blended textual-graphical
modeling framework. It allows the connected clients to access the requested model, to
provide the newest version of the model for the clients and to synchronize model updates
between them. Without the model server, simultaneous updates on the same model i.e.,
editing the same file would not be possible. Updates on a client would only be delegated

77

5. Prototype Implementation

to other clients if the file got updated on the disk or the updates would explicitly be sent
to a client.

The implementation of the model server must enable to edit the same model with different
clients at the same time, while keeping the model in sync on the connected clients. For
this, the model server stores the content of the file containing the model i.e., the textual
concrete syntax, when the model was first requested by a connected client. From this
point on, any other client that requests to open this model will be sent the model stored
in the model server’s internal state, making sure that the client receives the current
version. Update requests coming from a client also only update the internal model state
of the model service, and the model only gets persisted to disk when a client explicitly
requests the server to save it. Additionally, the model server notifies the connected clients
when an update on a model in its internal state happens, and provides them the updated
version of the model on request.

Base project

The model server’s implementation is based on the CrossModel model server from
CrossBreeze [Crob], and is extended and modified to provide simultaneous model editing
capabilities for the graphical and textual clients. The implementation on one hand
provides a possibility for the clients to send request messages via an RPC connection.
These messages are handled in the ModelServer class, with each request calling the
corresponding method of the ModelService class, that further handles the execution.
On the other hand, the server can also be integrated as a custom service of the language
server and the GLSP server, in which case, the mentioned servers can directly call the
available methods of the ModelService class. The latter approach is used in the
blended modeling framework.

The main concept of the model server is to provide Langium’s model provision and
updating capabilities to clients which do not operate on the LSP. To integrate with
the language server, the model server is registered as a custom model service as a
part of the language servers added shared custom services. Furthermore, a wrap-
per class OpenableTextDocuments is implemented to extend the LSP‘s default
TextDocuments class, which provides events that are fired when a text document
is opened, changed, saved and closed by VS Code’s text editor and keeps hold of the
synchronized text documents, which are currently opened by the language server. The
OpenableTextDocuments class extends this by providing methods to be able to in-
voke events from within the language server. These events are used to notify the model
server’s internal state in the OpenTextDocumentManager that a language server event
is occurred, and therefore the state of the model on which the event occurred can be
updated.

78

5.3. Model Server

5.3.1 Model server internal state
The OpenTextDocumentManager is extended to hold the current state of each model
per client that is opened by either the language server or another client. The state
is a map with uri of the model and client as key, and the model’s version and
text as value. Storing the current version of a model per client is necessary to provide
incremental updates synchronized between multiple clients. An update is only delegated
to other clients if the client’s version of the model where the update is coming from is
greater than the client’s model version where the update should be delegated to. This
way, infinite updates where a delegated update would trigger another update on the
client where the update was originating from can be prevented.

Updating the internal state from a model server client

Figure 5.4: Updating the internal state from a model server client

To update the internal state, the update can be originating from two directions: either
from a connected client e.g., the GLSP server, or the language server. The former update
process is displayed in Figure 5.4.

An update from a client can be either in form of the textual concrete syntax of the model
or the AST of the model. In latter case, the update method of the Model Service
serializes the whole AST, therefore, it should be only used if maintaining non-semantic
information on the textual syntax is not necessary or on initial serialization of the model.
The model service then retrieves the client’s current version of the model, and sends
an update request to the OpenTextDocumentManager with an updated version of it,
which then updates its internal state. To provide an updated AST for the client that
requested the update from the model service, the model service also retrieves the current
LangiumDocument of the model, updates it with the new version of the model’s textual
syntax and triggers Langium to rebuild the document. This way, the model’s AST is
updated and can be sent back to the client that requested the update, e.g., the GLSP
server, that will then rebuild its graphical model based on the received updated AST.
Furthermore, as the LangiumDocument is up-to-date it can be provided to other clients
on request.

Updating the internal state from the language server

Figure 5.5: Updating the internal state from the language server

79

5. Prototype Implementation

To detect updates coming from the text editor through the language server, the
OpenableTextDocuments class must listen to the onDidChangeTextDocument
event emitted by the underlying LSP connection, as shown in Figure 5.5. This event gets
emitted every time a change occurs in the model’s text editor. The OpenableTextDocu-
mentsclass then updates its synchronized documents and fires the __didChangeContent
event, to which the OpenTextDocumentManager service subscribes to. This is neces-
sary as the OpenableTextDocuments class is injected into the
OpenTextDocumentManager class, therefore, communication in this direction is only
possible via events and listeners. After the __didChangeContent event is emitted,
the OpenTextDocumentManager updates its internal state of the text editor’s model
version and text.

5.3.2 Model access and provision

To provide access and modification possibilities to the model server’s internal state the
following methods are implemented in the Model Service.

• open: triggers the OpenTextDocumentManager to read the file from disk if
it has not been opened yet. On initial open the model is loaded with version 1
to the model server’s internal state and the OpenableTextDocuments class is
also notified that the document was opened. If the request was triggered by the
OpenableTextDocuments i.e., the text editor, the model service replaces the
text editor’s content with the up-to-date version of the model’s textual syntax, if it
has already been updated by another client.

• request: opens the document, if it has not been opened yet, and retrieves the
current LangiumDocument containing the AST and the textual syntax of the
model. The LangiumDocument is up-to-date as it has either been rebuilt on a
client model update request, or on a change made in the text editor, or it is built
for the first time if the model has not been opened yet.

• save: firstly, the method serializes the model if it is called with an AST provided,
or directly triggers the OpenTextDocumentManager’s save method with the pro-
vided textual syntax. The OpenTextDocumentManager then saves the textual
syntax of the model to disk.

• close: triggers the OpenTextDocumentManager’s close method, that removes
the model from the requesting client’s state and notifies the
OpenableTextDocuments if no other clients have this model open to also remove
the model from its synchronized documents.

• update: the model service’s update method is implemented as discussed in
Section 5.3.1.

80

5.4. Model Synchronization

5.4 Model Synchronization
To provide synchronous graphical-textual modeling for the blended framework, the model
server must notify its connected clients if another client performed an update on one
of its opened models. As discussed in Section 5.3.1, an update from either a connected
client or the language server already updates the model server’s internal state for the
given client, however, these updates still need to be synchronized with the other clients if
they also have the updated model open. For this purpose, two possible directions must
be implemented similarly to updating the model server’s internal state.

Updating the text editor

Updates originating from a connected client e.g., the GLSP server, must be synchronized
with the language server after the model’s internal state was updated. Therefore, the
OpenTextDocumentManager’s update method must provide the updated textual
syntax of the model for the language server. For this, the method looks up whether the
language server’s version of the model is behind the current version of the model and
notifies the OpenableTextDocuments to update its synchronized documents with the
new textual syntax of the model. Furthermore, if the model is open in a text editor, the
text editor’s content is replaced with the new version of the model’s textual syntax. The
methods implementation is shown in Listing 5.17

1 /**
2 * Updates the semantic model stored in the document with the given model
3 * or textual representation of a model.
4 * Any previous content will be overridden.
5 * If the document was not already open for modification, it throws an error.
6 * If the request is coming from a non-LSP client, the content of an open text editor
7 * with the given document will be overwritten.
8 *
9 * @param uri document URI

10 * @param model semantic model or textual representation of it
11 * @returns the stored semantic model
12 */
13 async update(
14 uri: string,
15 version: number,
16 text: string,
17 client?: string
18): Promise<void> {
19 if (!this.isOpen(uri, client)) {
20 throw new Error(`Document ${uri} hasn't been opened for updating yet`);
21 }
22
23 this.openDocuments.set(
24 { uri: this.normalizedUri(uri), client: client ?? "text" },
25 { version, text }
26);
27
28 if (client && client !== "text") {
29 let textDocument = this.openDocuments.get({
30 uri: this.normalizedUri(uri),
31 client: "text",

81

5. Prototype Implementation

32 });
33 let clientDocument = this.openDocuments.get({
34 uri: this.normalizedUri(uri),
35 client,
36 });
37
38 // update the version of the LangiumDocument if update was not coming
39 // from the LSP, otherwise it is already updated
40 if (
41 (!textDocument && clientDocument) ||
42 (textDocument && clientDocument && clientDocument.version > textDocument.version)
43) {
44 this.textDocuments.notifyDidChangeTextDocument(
45 {
46 textDocument: VersionedTextDocumentIdentifier.create(
47 this.normalizedUri(uri),
48 clientDocument.version
49),
50 contentChanges: [{ text }],
51 },
52 client
53);
54 // replace the content of an open text editor with the given update
55 if (
56 textDocument &&
57 clientDocument &&
58 clientDocument.version > textDocument.version
59) {
60 await this.replaceTextEditorContent(uri, text);
61 }
62 }
63 }
64 }

Listing 5.17: Model server: OpenTextDocumentManager’s update method

If an update was triggered by the OpenableTextDocuments update event, the same
method is executed on the OpenTextDocumentManager. Therefore, it is necessary to
check whether the received version is greater than the one that the language server is
already operating on, otherwise, this method would replace the text editor’s content in
an infinite loop, as it would be triggered every time a change in the text editor occurs.

1 /**
2 * Generates a workspace edit and applies it to replace
3 * the content of an open text editor
4 * @param uri the uri of the open file
5 * @param text the text that the current content will be replaced with
6 */
7 private async replaceTextEditorContent(uri: string, text: string) {
8 let workspaceChange = new WorkspaceChange();
9 let textChange = workspaceChange.getTextEditChange(uri);

10 textChange.replace(
11 {
12 start: { line: 0, character: 0 },
13 end: { line: Number.MAX_SAFE_INTEGER, character: Number.MAX_SAFE_INTEGER },
14 },
15 text

82

5.4. Model Synchronization

16);
17 await this.connection.workspace.applyEdit(workspaceChange.edit);
18 }

Listing 5.18: Model server: replaceTextEditorContent method

To replace the open text editor’s content, the method displayed in Listing 5.18 is
implemented. This method sends a WorkspaceChange command to the open LSP
connection, delegating the text editor with the opened document of the provided URI to
replace its entire content with the provided new textual syntax.

Updating a connected client

To enable model update synchronization for arbitrary clients, the
OpenTextDocumentManager’s update method does not explicitly sends updates
to the connected clients. On the contrary, it provides a listener, that subscribes to
Langium’s DocumentBuilder service and triggers execution of the provided function
every time a document reaches the Validated state. The implementation of this
method is listed in Listing 5.19.

1 /**
2 * Subscribes to the 'Validated' state of Langium's document builder.
3 *
4 * @param uri Uri of the document to listen to. The callback only gets
5 * called when this URI and the URI of the saved document are equal.
6 * @param client the requesting client
7 * @param listener Callback to be called
8 * @returns Disposable object
9 */

10 onUpdate<T extends AstNode>(
11 uri: string,
12 client: string,
13 listener: (model: T) => void
14): Disposable {
15 return this.documentBuilder.onBuildPhase(
16 DocumentState.Validated,
17 (allChangedDocuments, _token) => {
18 const changedDocument = allChangedDocuments.find(
19 (document) => document.uri.toString() === uri
20);
21 if (changedDocument) {
22 const textDocumentVersion = this.getClientDocumentVersion(
23 this.normalizedUri(uri),
24 "text"
25);
26 const clientDocumentVersion = this.getClientDocumentVersion(
27 this.normalizedUri(uri),
28 client
29);
30 // only trigger listener is update is coming from text editor
31 if (clientDocumentVersion && textDocumentVersion > clientDocumentVersion) {
32 if (
33 !changedDocument.diagnostics ||
34 (changedDocument.diagnostics.length === 0 &&

83

5. Prototype Implementation

35 changedDocument.parseResult.parserErrors.length === 0) ||
36 changedDocument.diagnostics.filter(
37 (value) => value.data.code === "linking-error"
38).length === changedDocument.diagnostics.length
39) {
40 const root = changedDocument.parseResult.value;
41 return listener(root as T);
42 }
43 }
44 }
45 }
46);
47 }

Listing 5.19: Model server: onUpdate listener

The calling client must subscribe to every model they want to listen to updates for with
providing the model’s URI. The onUpdate method then filter’s the changed documents,
to only trigger the listener function if the client has subscribed to the given model. Then,
the method verifies whether the client’s version is behind the language server’s version,
and if so, executes the listener function. This is again necessary to prevent infinite
updates.

To provide the possibility of displaying missing nodes on the graphical model, the listener
also gets executed if the updated model has linking errors, which means that some of the
cross-references could not be resolved on the model. Otherwise, the listener would only
get triggered if the built document does not have any errors, to prevent the GLSP server
from displaying an invalid model.

5.4.1 Summary
The implementation of the model server provides model access, model provision and
model synchronization satisfying the stated requirements for the model server from
Chapter 4. Furthermore, the implemented solution concept also provides an answer
for Research Question 1, providing a solution to how textual and graphical editors can
manage and manipulate the model’s underlying AST jointly.

5.5 VS Code Extension
To combine the GLSP framework, the Langium language server, and the model server
together to form the blended modeling framework, a VS Code extension is developed
[Mica]. The Workflow GLSP client already provides an extension [Eclf], which needs to
be extended to make use of the blended backend.

To integrate the language server as an LSP provider, it is launched as a language client
in the extension with the Workflow language registered as a DSL that the language client
should operate on. This way, VS Code knows that the models written in the Workflow
language with the extensions .wf and .wfd should be hooked up with the Langium

84

5.6. Summary

language server if opened in the default text editor. To also launch the GLSP server and
the model server in the extension, a default language server starter script is developed.
After the language server has successfully started and the workspace for the extension is
initialized, the script also starts the GLSP server together with the model server. This
way, all the necessary backends are started and connected for the extension.

To also make graphical modeling available, the GLSP client must be registered as a
custom editor provider. The default editor for the .wf files is set to be the GLSP client,
hence, on opening the model within the VS Code extension, it will be automatically
loaded in the GLSP editor instead of the text editor. The operating extension is shown
in Figure 5.6. The left panel shows the GLSP client connected to the Workflow GLSP
server, and the middle and the right panel show the default text editor connected to
the Workflow language server. Changes made in the GLSP editor are synchronized and
automatically displayed in the corresponding text editor and changes made in either of
the text editors automatically update the GLSP client’s graphical model.

5.6 Summary
This chapter provided details about the implementation of the blended graphical-textual
modeling framework. The chapter elaborated how each component of the framework:
the language server, the GLSP server, and the model server were implemented to satisfy
the requirements for each component listed in the previous Chapter 4 based on the
introduced solution concepts. The implementation of the VS Code extension concludes
the implementation of the framework’s components and forms the blended modeling tool
operating on the Workflow language.

Table 5.1 provides on overview of the implemented concepts for the blended textual-
graphical modeling framework based on the Workflow language.

The following chapter describes how the implemented framework was evaluated.

85

5. Prototype Implementation

Textual modeling Graphical modeling

Grammar
Workflow language split into two files: .wf for nodes and edges

.wfd for size and position of the nodes (which are only needed for
the graphical model)

Modification
model

textual syntax in text editor;
LangiumDocument is
rebuilt on every change in
the textual syntax

the model’s AST and textual syntax
provided by the model server;
incremental updates on the textual
syntax, AST is regenerated by the
model server after updated textual
syntax is sent

Model-
specific
features

syntax highlighting,
serialization, workspace and
scope management

model editing on the diagram

Validation

Langium’s default validators
to detect lexer, parser and
linking errors;
custom validators to ensure
semantics

custom validators to ensure
semantics;
textual syntax must be correct to
ensure the generation of the
graphical model

Error
handling

custom validators provide
hints and error messages;
code actions to solve linking
errors by creating new nodes
for missing references

only models with linking errors are
delegated to the GLSP server,
otherwise updates on the diagram
are not allowed;
displays missing nodes for
unresolvable cross-references;
provides command palette actions
to solve linking errors by creating
new nodes for missing references

Cross-
references

global scope is restricted to
only provide node
descriptions between the
model’s .wf and .wfd files

model’s corresponding .wfd file is
loaded on opening a .wf file,
cross-references between them are
resolved by the server

Model
editing

unrestricted updates in text
editor;
language server rebuilds
model on each update

only allow updates that result in a
semantically and syntactically
correct model; if update requires
custom user input, input is validated

Model syn-
chronization

updates on graphical model
result in a new textual
syntax delegated to the
model server, model server
replaces text editor’s content

updates on textual model are
emitted by listener on Langium’s
DocumentBuilder, updated
LangiumDocument containing
AST and textual syntax of the
model is sent to GLSP server

Table 5.1: Implemented concepts of the blended modeling framework.

86

5.6. Summary

Fi
gu

re
5.

6:
V

S
C

od
e

ex
te

ns
io

n:
th

e
bl

en
de

d
fra

m
ew

or
k

87

CHAPTER 6
Evaluation

This chapter describes the chosen procedure to evaluate the implemented blended textual-
graphical modeling framework. Then, it introduces the artifacts and scenarios, on which
the framework was evaluated and elaborates the implementation steps executed during
the evaluation process. Finally, the chapter concludes the results of the evaluation
procedure.

6.1 Evaluation Procedure
The evaluation procedure’s main goal is to show the feasibility of the implemented generic
concepts of the blended modeling framework - which was developed based on the Workflow
language - for arbitrary modeling languages created by Langium and with a corresponding
GLSP framework. For this purpose, the descriptive evaluation method [Hev07] is chosen:
the implemented artifacts will be instantiated and evaluated based on two bigUML
[Bor] [MB23a] use cases: the Package Diagram and the Class Diagram. The generic
components of the blended framework will be instantiated with bigUML as a proof of
concept, furthermore a description of which concepts and components of the blended
framework could be successfully implemented on the two scenarios, which language-
specific features might be implemented and which concepts could not be implemented
will be provided.

6.2 bigUML Artifacts
To instantiate the implemented concepts of the blended modeling framework on another
modeling language the following resources are required: a language server for the modeling
language implemented with Langium a TypeScript-based GLSP server and a VSCode-
based GLSP client operating on the given modeling language. To acquire these resources
for the package diagram and class diagram use-cases of UML [Obj], resources of a thesis

89

6. Evaluation

developed by David Jäger in parallel will be used. Jäger’s thesis Frontend-only browser-
based modeling tools [Jä24] develops a GLSP-Langium-based modeling tool utilizing a
model server for AST access and updates, which can be browser-packaged, meaning, that
the complete modeling tool can run in a browser. The implemented tool also provides a
generator service that generates a complete Langium-based language server for a modeling
language defined as a TypeScript-based meta-model. The generated language server is
based on a generic JSON grammar, that is also generated by this tool. To evaluate the
developed artifacts Jäger implemented a meta-model for UML from which the generator
tool created a UML-based Langium language server. Jäger’s evaluation procedure also
includes the implementation of a corresponding TypeScript-based GLSP server utilizing
the implemented model service, which is connected to an already existing VSCode-based
GLSP client for UML1 [Bor] [MB23a] .

To evaluate the blended textual-graphical modeling framework, the implemented UML
use cases of Jäger’s thesis will be used: the package diagram and the class diagram.
Both of the use cases are based on the same generated UML grammar, and therefore the
same language and model server. Solely, the GLSP framework is customized to operate
on the two types of diagrams. The provided GLSP server and language server will be
customized to utilize the model service of the blended framework and make simultaneous
textual and graphical modeling available.

6.3 Implementation of the bigUML Scenarios
The implementation concepts of the package diagram and class diagram use cases
are shown in Table 6.1. As the evaluation’s goal is to clarify the feasibility of the
generic concepts of the blended modeling framework, the requirements that were tailored
specifically to the Workflow language’s semantics will not be considered and the provided
implementations of the bigUML artifacts will be used as is. Generic implementation
means, that the implemented generic solutions for the Workflow blended framework are
used, and the provided initial implementations are updated with them. Customized
implementation means that the given service had to be rewritten to match the UML
language as a generic solution was not possible.

• Model server: as the model server is the core component that enables simultaneous
modeling, and its requirements foresee a generic implementation, it is used as is,
and no modifications are performed on it.

• Language server: the generated UML language server already provides default
implementations of the grammar, for syntax highlighting, validation, error handling,
serialization, cross-references and workspace and scope management. To correspond
to the requirements of the blended framework only the provided generic serializer
must be updated to provide methods for serializing every element of the language
as is and not just a part of a diagram.

1https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram

90

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram

6.3. Implementation of the bigUML Scenarios

Framework
component

Implemented
functionality Implementation method

Model
server

Access generic implementation
Model provision generic implementation
Model synchronization generic implementation

Textual
modeling

Grammar provided implementation
Syntax highlighting provided implementation
Validation provided implementation
Error handling provided implementation

Serialization
provided implementation
customized with generic node
serialization

Cross-references provided implementation
Workspace and scope
management provided implementation

Model synchronization provided implementation

Graphical
modeling

Graphical model
provided implementation extended
with generic missing nodes
implementation

Model editing
generic operation handlers;
customized textual syntax
modification methods

Validation provided implementation
Error handling generic implementation
Model synchronization generic implementation

Table 6.1: Implemented concepts of bigUML blended modeling framework.

• GLSP server: the provided services must be customized to correspond to the
concepts of blended modeling and enable model synchronization with the model
server. Both the services of the package diagram and the class diagram have to be
customized.

– Graphical model: the provided GModelFactory is extended with the
generic implementation of adding missing nodes to the graphical model which
correspond to non-resolvable cross-references in the model.

– Model editing: all of the provided action handlers have to be customized
to use the methods of the model state for updating the textual syntax of the
model. Furthermore, the methods that insert a new element, update an
existing element and delete an existing element must be customized to fit
the syntax of the generated UML grammar.

91

6. Evaluation

Method Implementation details

insert

new element to root model: inserts element to the end of the textual
model
new child element: inserts element to the end of the list of the
corresponding node’s child elements

delete replaces the textual syntax of the given node with an empty string in
the textual model

update replaces the old value of an attribute with the new one in the given
node’s textual syntax

Table 6.2: Implemented concepts for incremental textual syntax updates on the Workflow
language.

– Validation: the provided generic implementation of the model validator is
kept.

– Error handling: the generic concept for error handling in graphical modeling
is applied: no modifications are allowed that would cause errors in the model,
the non-resolvable cross-references are displayed on the diagram as missing
nodes, and missing nodes are createable by generic actions.

– Model synchronization: the generic approach for model synchronization
is applied, extending the model storage and model state with the generic
methods for listening to changes coming from the model server and sending
the updated textual syntax to the model server on diagram updates.

6.3.1 Graphical model editing
To enable incremental updates on the textual concrete syntax for operation handlers in
the GLSP server, the insertToSemanticText, deleteFromSemanticText, and
updateInSemanticText methods must be customized to match the syntax of the
UML grammar.

The incremental updates for the Workflow language cover the cases shown in Table 6.2
and the incremental updates for the UML language must cover the cases listed in Table
6.3.

To showcase the implementations of the customized textual syntax update methods,
Listing 6.1 shows the implementation of the updateInSematicText method. The
other update methods are based on the same idea.

Firstly, the comments are removed from the textual syntax, to not consider the text
in the comments while searching for attributes or values in the textual syntax. Then,
the attribute’s position in the textual syntax is determined and the first element found
starting from this position, which corresponds to the attribute’s old value is replaced
with the attribute’s new value in the original text. It is necessary to determine the
attribute’s position in the text to make sure that the correct value is updated. Otherwise,

92

6.3. Implementation of the bigUML Scenarios

Method Implementation details

insert node

every new element is inserted into an array, method must find the
starting "[" of the correct array in the textual model and insert
element after; array can also be nested into other elements/arrays
first element of array: only insert serialized node to the found
position
array already contains elements: insert serialized node to the found
position following with a "," to separate new node from other
elements in the array

delete

delete from array with only one element: delete element
first or n-th (but not last) element of array: delete element with a
following ","

last element of array: delete element with a prepending ","

update
replaces the old value of an attribute with the new one in the given
node’s textual syntax; must also consider nested attributes e.g., an
element’s id in a reference object.

insert
attribute

insert a new attribute to an existing node, method must find the
starting "{" of the correct node to add the attribute to; the
attribute can also be nested into a child element
first attribute of node: only insert serialized attribute to the found
position
node already contains attributes: insert serialized attribute to the
found position following with a "," to separate new attribute from
the other attributes of the node

Table 6.3: Implemented concepts for incremental textual syntax updates on the UML
language.

a replace operation could replace another attribute’s value if it is the same than the one
that should be updated. Finally, the old textual syntax is replaced by the newly created
one in the model’s textual syntax.

93

6. Evaluation

1 updateInSemanticText(
2 oldText: string,
3 attributeName: string[],
4 oldAttributeValue: string,
5 newAttributeValue: string
6): string {
7 let newText = oldText;
8 const cleanedText = removeAllComments(newText);
9 if (typeof oldAttributeValue === "undefined") {

10 // should also fill undefined string variables
11 oldAttributeValue = '""';
12 }
13
14 // find the position of the attribute in the cleaned text
15 let attributeIndex = regexIndexOf(
16 cleanedText,
17 new RegExp(`"${attributeName.at(0)}"\\s*:`, "g"),
18 0
19);
20 if (attributeName.length > 1) {
21 // iterate through all the nested attributes of the element
22 attributeName.slice(1).forEach((selector) => {
23 attributeIndex = regexIndexOf(
24 cleanedText,
25 new RegExp(`"${selector}"\\s*:`, "g"),
26 attributeIndex
27);
28 });
29 }
30
31 // replace old attribute value with new one
32 newText = replaceStartingFrom(
33 newText,
34 oldAttributeValue,
35 newAttributeValue,
36 attributeIndex
37);
38 this._semanticText = this._semanticText.replace(oldText, newText);
39 // return updated text to ensure multiple updates in the same comment
40 return newText;
41 }

Listing 6.1: bigUML GLSP server: updateInSemanticText method

The implemented bigUML class diagram use case in the blended textual-graphical editor
is shown in Figure 6.1. The left side shows the GLSP editor and the right side the
corresponding textual editor. Both editors have the same model open, changes made in
one editor are synchronized immediately with the other utilizing the model service.

6.4 Scenario Evaluation
After successful implementation of the package diagram and class diagram bigUML
scenarios, it must be proofed whether the generic concepts of the blended modeling

94

6.4. Scenario Evaluation

framework still hold on either of the scenarios. The following concepts are handled
corresponding to the generic requirements of textual modeling, graphical model and the
model server as listed in Section 4.2.

• Textual modeling

– Model synchronization: whether the changes made in the textual editor are
correctly synchronized with the graphical editor

• Graphical modeling

– Graphical model: declared elements displayed correctly, missing nodes dis-
played for non-resolvable cross-references

– Model editing:

∗ insert node: creating a new node in an empty container and in a non-empty
container

∗ delete: deleting a node from an array only containing this node, deleting
the first node of an array, deleting the last node of an array

∗ update: updating an attribute’s value in the given node, updating an
attribute’s value in the given node’s nested node

∗ insert attribute: insert new attribute to a node

– Error handling: missing nodes are createable

– Model synchronization: changes made in the graphical editor are correctly
synchronized with the textual editor maintaining non-semantic information

• Model server

– Access: whether the model is openable and can be accessed by both clients

– Model provision: whether the model server provides the correct version of the
model (including providing an empty model if there are non-linking errors)

– Model synchronization: whether the model server synchronizes the model
correctly between the GLSP server and the language server

The other requirements for textual modeling and graphical modeling stated in Section
4.2 are language-specific and either a default implementation was used in the Workflow
framework or a Workflow language-specific solution was implemented. Therefore, for
these requirements the generated default services are used in the bigUML modeling tool,
and these requirements will not be evaluated.

95

6. Evaluation

6.4.1 Evaluation results

Table 6.4 shows the results of the scenario evaluation. Both the package diagram and
class diagram implementations were evaluated.

For textual modeling and the model server every requirement was met by the instantiated
bigUML use cases. Changes made in the text editor were instantly synchronized with
the GLSP editor, the GLSP server was provided access to the model server’s opened
models, the GLSP server received the updates coming from the model server if the model
did not have errors or only contained linking-errors and the updated textual syntax of
the GLSP server got correctly sent to the model server updating the text editors content.

The graphical model, error handling and model synchronization requirements of graphical
modeling were also met by the implemented use cases, and the insert node, delete, and
update operations of the model editing requirement also met the predefined criteria.
The insert attribute requirement however failed the evaluation for both use cases. The
GLSP server inserted in both cases the new attribute on the predefined position of the
provided note: directly after the node’s opening bracket, as the first attribute of the node.
However, the generated UML language foresees a strict order of attributes on the node,
and in most of the cases the attribute to be inserted should not be on the first place.

To solve this problem without modifying the grammar, either the insert positions of
each attribute of each type of node must be hard coded based on the grammar’s rules,
which is not feasible for the purposes of this evaluation, a validator rule for each type of
node must be implemented for the language server to mark nodes as erroneous if not all
of their attributes are defined or the update method must be rewritten to replace the
complete node with a re-serialized updated node, which would remove the non-semantic
information for this node.

6.5 Summary and Discussion
The evaluation of the blended textual-graphical modeling framework has shown that the
implemented generic concepts for textual modeling, graphical modeling and the model
server can be successfully applied for other modeling languages that are based on a
structurally different grammar to enable simultaneous graphical and textual modeling on
the same model.

The implemented generic services of the language server, the model server, and the GLSP
server could be reused on a provided framework containing a Langium-based language
server and a TypeScript-based GLSP server and client. On the GLSP server, solely the
implemented methods for manipulating the textual syntax had to be customized to fit
the syntax of the new grammar and the operation handlers of the GLSP server to make
use of these methods to update the model’s textual syntax. On the language server
only the serializer had to be customized to not only provide a method for serializing the
complete model, but also to provide a method for serializing individual elements.

96

6.5. Summary and Discussion

Framework
component Functionality Package

Diagram
Class
diagram

Textual
modeling Model synchronization

Graphical
modeling

Graphical model

Model
editing

insert node
delete
update
insert
attribute

Error handling
Model synchronization

Model server
Access
Model provision
Model synchronization

Table 6.4: Scenario evaluation: package and class diagram.

As the implementation of the evaluation scenarios are based on a Langium language
server generated by Jäger’s [Jä24] language server generator tool, the customized methods
for manipulating the textual concrete syntax on the GLSP server could be reused for
other languages generated by this tool, as they are based on the same JSON syntax.

97

6. Evaluation

Fi
gu

re
6.

1:
bi

gU
M

L
sc

en
ar

io
:

an
ex

am
pl

e
cl

as
s

di
ag

ra
m

m
od

el
.

98

CHAPTER 7
Conclusion

This final chapter summarizes the work done in this thesis, provides answers to the
research questions stated in Section 1.2, and elaborates possibilities for future work.

7.1 Conclusion
The main goal of this thesis was to develop a concept on how blended textual-graphical
modeling could be realized with the next generation frameworks Langium and GLSP
utilizing a model service to jointly manage the underlying modification model, and to
implement an artifact showcasing the established concept. The concept had to consider
that the graphical and textual editor must operate on the same model, simultaneous
updates must be possible between the two editors, and non-semantic information of the
model must be maintained during updates on the model. Updates on the model must be
delegated through the model service to other editors and the model service must keep
track of the model’s current state and be able to provide the current model to requesting
clients.

After elaborating the framework’s requirements and establishing a conceptual solution
to them, an example artifact based on the requirements was established. The blended
textual-graphical modeling artifact is based on the Workflow language, as for this language
an example TypeScript-based GLSP framework already existed. This framework was
extended by a Langium language server based on the Workflow language’s grammar and
a model server handling model access, provision and updates between the language server
and the GLSP server. The GLSP server was also extended and customized to meet the
defined requirements of blended modeling.

To evaluate the developed concept and artifact, the implemented solution concepts were
instantiated with two UML use cases: the package diagram and the class diagram. The
initial implementation of these use cases is based on Jäger’s thesis’ artifacts, which were

99

7. Conclusion

developed in parallel. The artifacts provide a UML-based Langium language server
connected to a TypeSript-based GLSP framework called bigUML. These artifacts were
extended by the implemented artifacts for the blended textual-graphical framework and
the generic requirements of the blended framework were verified on the extended bigUML
modeling tool. The evaluation of the blended textual-graphical modeling framework has
shown that the implemented generic concepts for textual modeling, graphical modeling
and the model server can be successfully applied for other modeling languages, needing
only some services to be customized based on the used language’s grammar.

With the implementation and evaluation of the concepts and artifacts, finally, the research
questions stated in Section 1.2 can be answered.

1. Model service:
How can the model service allow textual and graphical editors to manage and
manipulate the underlying abstract syntax tree (AST) jointly?

The implemented concept only allows textual and graphical editors to manipulate the
underlying AST indirectly. Updates arriving from the graphical editor are in form of
the textual concrete syntax of the model. The model server re-generates the underlying
LangiumDocument based on the updated textual syntax of the model, and provides
the updated AST from the LangiumDocument for the graphical editor. It also updates
the content of a text editor if it has the given model open, with the updated textual
syntax of the model.

To allow the textual editor to update the underlying AST of the model server, the model
service listens to any updates coming from the language server. If the content of a textual
editor was modified, the model service gets notified and again replaces the underlying
LangiumDocument with the newly built one provided by the language server. The
graphical editor listens to these updates and the model service provides the updated
LangiumDocument containing the AST and the textual syntax of the model for the
graphical editor if an update happens.

2. Modification model:
How to implement the modification model to allow for simultaneous modifications
on the textual and graphical models?

The modification model of the GLSP server is the textual concrete syntax of the model,
even though, the model index, the model state and the diagram elements are also based
on the AST of the model. The updates on the model are solely executed on the textual
syntax, from which the model service provides the GLSP server a re-generated updated
AST.

The modification model of the text editor is also the textual concrete syntax as every
update performed on the model in the text editor are direct edits on the model’s textual

100

7.1. Conclusion

syntax. The language server generates a LangiumDocument from the textual syntax
on every update, providing the updated AST and textual syntax for the model service
and its connected clients.

3. Cross-references:
How can the Langium-GLSP framework resolve cross-references in the textual and
graphical representations?

In the implemented Workflow framework and the evaluation scenarios the Langium
language server resolves cross-references based on the framework’s default cross-reference
resolution mechanism with a customized scope to only resolve cross-references between
files that belong to the same model, as it is unusual for graphical modeling editors to
reference nodes in another model.

The GLSP server resolves cross-references based on the ID of the node provided in the
reference’s text in the AST. The GLSP server also only looks for nodes in the same
diagram to resolve cross-references.

If a reference is not resolvable, the language server displays an error and the GLSP server
displays a missing node with the given ID of the unresolvable cross-reference on the
diagram. It is possible to create a node with this ID on both the textual and graphical
model editors.

4. Non-semantic information:
How to handle non-semantic information with the Langium-GLSP framework for
textual and graphical models?

Updating the textual syntax in the textual editor maintains non-semantic information
as the user would explicitly have to delete comments or reformat the model to change
the non-semantic information. The changes delegated via the model server to the GLSP
server also contain the textual syntax with the maintained non-semantic information.

The updates on the diagram editor are explicitly performed on the textual syntax to
maintain non-semantic information. The framework provides an example implementation
of the language-specific update, delete, and insert methods, which manipulate the
textual syntax of the model maintaining non-semantic information based on the Workflow
language.

Even though inserting a new attribute on a node did not meet the requirements on the
customized manipulation methods on the evaluation scenarios, possible solutions were
provided to fix the arose problems.

101

7. Conclusion

7.2 Future Work
To conclude the thesis, this section presents possible future work and revisions that could
improve the developed concepts and artifacts.

Firstly, the implemented model service is planned to be combined with David Jäger’s
implemented model service and generator tool [Jä24] to be released as an open-source
framework within the EMF Cloud [Eclc]. The framework should also provide the
implemented example artifacts for blended modeling including the Workflow modeling
framework and the bigUML modeling tool.

To improve the developed artifacts functionality-wise, several approaches could be in-
vestigated to also provide a generic implementation for model updates on the GLSP
server. One idea could be to customize Langium’s AST generation to not only provide
the textual syntax for each node but also for attributes. This way, updating the textual
syntax could be simplified significantly as the position of each node and their attributes
would be known and could be updated directly or the position of where to insert or delete
elements from would also be straightforward. Another idea to generalize model updates
on the GLSP server would be to investigate updates in form of manipulating the node’s
AST instead of its textual syntax. This way, the model service would have to serialize
the provided AST and re-inject the lost non-textual information after serialization.

Finally, another idea for improvement would be to combine the concepts developed by
David Jäger and this thesis. The generator tool developed in his work generates a Langium
language server based on a TypesScript-based interface declaration file corresponding
to the language’s grammar, and his version of the model server operates with JSON
patches as model updates, as the generated grammar corresponds to the JSON format.
As comments and other non-semantic information are not part of the JSON structure,
the model service always re-serializes the current textual model to create a correct JSON
structure and apply the patch on it. It would be interesting to investigate how the JSON
patches could be extended to maintain non-semantic information of the textual model on
GLSP updates, eventually utilizing the JSON5 [jso] format instead of the common JSON
format.

102

List of Figures

1.1 VS Code’s Monaco editor: An example of a textual model editor. 2
1.2 GLSP Client: An example of a graphical model editor. 3

2.1 Metamodeling: ’conformsTo’ and ’instanceOf’ relationships [BCW17]. (page
15) . 11

2.2 GLSP: client-server architecture [Foua] . 13
2.3 Creation of LangiumDocuments [Typb] 15
2.4 Stages of a LangiumDocument [Typb] 15

3.1 Excalibur: an Xtext-Sirius framework for read-only graphical representation.
[RCG18] . 19

3.2 Langium meets Sprotty: graphical representation of a textual model using
next-generation frameworks [Pet22] . 20

3.3 Xtext / Sirius - Integration: Embedding an Xtext Editor into Sirius [Obe17] 21
3.4 Langium + Sirius Web: simultaneously editing the same model graphically

and textually [Gir22] . 22
3.5 The bigER modeling tool based on Xtext and Sprotty [GB21] 22
3.6 Blended modeling framework based on Xtext and Papyrus: simultaneously

editing the same resource graphically and textually [ACLP17] 23

4.1 Architecture of the Langium-GLSP blended modeling framework 31

5.1 Command palette . 71
5.2 Tool palette . 71
5.3 Error handling in the graphical editor . 77
5.4 Updating the internal state from a model server client 79
5.5 Updating the internal state from the language server 79
5.6 VS Code extension: the blended framework 87

6.1 bigUML scenario: an example class diagram model. 98

103

List of Tables

3.1 Comparison of the listed frameworks. 25

5.1 Implemented concepts of the blended modeling framework. 86

6.1 Implemented concepts of bigUML blended modeling framework. 91
6.2 Implemented concepts for incremental textual syntax updates on the Workflow

language. 92
6.3 Implemented concepts for incremental textual syntax updates on the UML

language. 93
6.4 Scenario evaluation: package and class diagram. 97

105

List of Listings

5.1 Workflow grammar . 42
5.2 Custom validator: no duplicate names . 47
5.3 Code action: create missing nodes . 48
5.4 Serializer . 51
5.5 Workspace Manager . 53
5.6 Scope provider. 54
5.7 Scope computation . 55
5.8 Name provider. 56
5.9 Name utility . 57
5.10 Workflow model storage: loadSourceModel. 59
5.11 Workflow model state . 61
5.12 Workflow model index . 64
5.13 Workflow GModel factory - creating a task node . 66
5.14 Workflow GModel factory - creating missing nodes. 67
5.15 Delete operation handler . 71
5.16 Command palette action provider . 73
5.17 Model server: OpenTextDocumentManager’s update method 81
5.18 Model server: replaceTextEditorContent method. 82
5.19 Model server: onUpdate listener . 83
6.1 bigUML GLSP server: updateInSemanticText method. 94

107

Acronyms

AST abstract syntax tree. 4, 12, 15, 16, 18, 19, 29, 30, 32–38, 42, 44–46, 48, 51–53, 56,
58, 60, 63–65, 69, 73, 75, 79, 80, 84, 86, 90, 100–102

DSL domain-specific language. 6, 14, 15, 17–19, 39, 41, 45, 69, 75, 84

ER Entity-Relationship. 23

GLSP Graphical Language Server Platform. xii, 3–6, 9, 12, 13, 16, 24, 25, 27, 28, 30–35,
37–39, 41, 42, 45, 53, 56–61, 63, 65, 67–73, 75–79, 81, 84–86, 89–92, 94–97, 99–103,
107

LSP Language Server Protocol. 12, 16, 44, 48, 78, 80, 83, 84

UML Unified Modeling Language. 11, 23, 89–93, 96, 99, 100, 105

URI Uniform Resource Identifier. 50, 54, 59, 64, 83, 84

109

Bibliography

[AC21] Lorenzo Addazi and Federico Ciccozzi. Blended graphical and textual mod-
elling for uml profiles: A proof-of-concept implementation and experiment.
Journal of Systems and Software, 175:110912, 2021.

[ACLP17] Lorenzo Addazi, Federico Ciccozzi, Philip Langer, and Ernesto Posse. To-
wards seamless hybrid graphical–textual modelling for uml and profiles. In
Anthony Anjorin and Huáscar Espinoza, editors, Modelling Foundations and
Applications, pages 20–33, Cham, 2017. Springer International Publishing.

[AG13] Colin Atkinson and Ralph Gerbig. Harmonizing textual and graphical
visualizations of domain specific models. In Proceedings of the Second
Workshop on Graphical Modeling Language Development, GMLD ’13, page
32–41, New York, NY, USA, 2013. Association for Computing Machinery.

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice: Second Edition. Morgan & Claypool Publishers,
2nd edition, 2017.

[BKP18] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. Systematic analysis
and evaluation of visual conceptual modeling language notations. In 12th
International Conference on Research Challenges in Information Science,
RCIS 2018, Nantes, France, May 29-31, 2018, pages 1–11. IEEE, 2018.

[BKP20] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. A survey of
modeling language specification techniques. Inf. Syst., 87, 2020.

[BL23] Dominik Bork and Philip Langer. Language server protocol: An introduction
to the protocol, its use, and adoption for web modeling tools. Enterp. Model.
Inf. Syst. Archit. Int. J. Concept. Model., 18:9:1–16, 2023.

[BLO23] Dominik Bork, Philip Langer, and Tobias Ortmayr. A vision for flexible glsp-
based web modeling tools. In João Paulo A. Almeida, Monika Kaczmarek-
Heß, Agnes Koschmider, and Henderik A. Proper, editors, The Practice of
Enterprise Modeling - 16th IFIP Working Conference, PoEM 2023, Vienna,
Austria, November 28 - December 1, 2023, Proceedings, volume 497 of Lecture
Notes in Business Information Processing, pages 109–124. Springer, 2023.

111

[Bor] Bork, Dominik. bigUML. https://github.com/borkdominik/
bigUML. [Online; accessed 01-Feb-2024].

[CGR09] María Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within
modeling language definitions. pages 670–684, 10 2009.

[CK19] Justin Cooper and Dimitris Kolovos. Engineering hybrid graphical-textual
languages with sirius and xtext: Requirements and challenges. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 322–325, 2019.

[CLG+10] Baojiang Cui, Jiansong Li, Tao Guo, Jianxin Wang, and Ding Ma. Code
comparison system based on abstract syntax tree. In 2010 3rd IEEE In-
ternational Conference on Broadband Network and Multimedia Technology
(IC-BNMT), pages 668–673, 2010.

[Croa] CrossBreeze. CrossBreeze. https://crossbreeze.nl. [Online; accessed
15-Feb-2024].

[Crob] CrossBreeze. crossmodel. https://github.com/CrossBreezeNL/
crossmodel/tree/main/extensions/crossmodel-lang/src/
model-server. [Online; accessed 15-Feb-2024].

[CTVW19] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns.
Blended modelling - what, why and how. In 2019 ACM/IEEE 22nd Inter-
national Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C), pages 425–430, 2019.

[DLP+22] Istvan David, Malvina Latifaj, Jakob Pietron, Weixing Zhang, Federico
Ciccozzi, Ivano Malavolta, Alexander Raschke, Jan-Philipp Steghöfer, and
Regina Hebig. Blended modeling in commercial and open-source model-
driven software engineering tools: A systematic study. Software and Systems
Modeling, 22, 06 2022.

[Ecla] Eclipse Foundation. Eclipse GMF Runtime™. https://projects.
eclipse.org/projects/modeling.gmf-runtime. [Online; accessed
08-Feb-2024].

[Eclb] Eclipse Foundation. Eclipse Papyrus™. https://eclipse.dev/
papyrus/. [Online; accessed 08-Feb-2024].

[Eclc] Eclipse Foundation. Emf cloud. https://eclipse.dev/emfcloud/.
[Online; accessed 18-Mar-2024].

[Ecld] Eclipse Foundation. Sirius web. https://eclipse.dev/sirius/
sirius-web.html. [Online; accessed 08-Feb-2024].

112

https://github.com/borkdominik/bigUML
https://github.com/borkdominik/bigUML
https://crossbreeze.nl
https://github.com/CrossBreezeNL/crossmodel/tree/main/extensions/crossmodel-lang/src/model-server
https://github.com/CrossBreezeNL/crossmodel/tree/main/extensions/crossmodel-lang/src/model-server
https://github.com/CrossBreezeNL/crossmodel/tree/main/extensions/crossmodel-lang/src/model-server
https://projects.eclipse.org/projects/modeling.gmf-runtime
https://projects.eclipse.org/projects/modeling.gmf-runtime
https://eclipse.dev/papyrus/
https://eclipse.dev/papyrus/
https://eclipse.dev/emfcloud/
https://eclipse.dev/sirius/sirius-web.html
https://eclipse.dev/sirius/sirius-web.html

[Ecle] Eclipse Foundation. Sprotty. https://sprotty.org. [Online; accessed
08-Feb-2024].

[Eclf] EclipseSource. Workflow extension. https://github.com/
eclipse-glsp/glsp-vscode-integration/blob/master/
example/workflow/extension/src/workflow-extension.ts.
[Online; accessed 08-Mar-2024].

[Foua] Eclipse Foundation. Eclipse GLSP. https://eclipse.dev/glsp/. [On-
line; accessed 01-Feb-2024].

[Foub] Eclipse Foundation. Eclipse modeling framework (EMF). https://
eclipse.dev/modeling/emf/. [Online; accessed 01-Feb-2024].

[Fouc] Eclipse Foundation. Eclipse sirius. https://projects.eclipse.org/
projects/modeling.sirius. [Online; accessed 02-Feb-2024].

[Foud] Eclipse Foundation. Workflow example overview. https://eclipse.dev/
glsp/examples/#workflowoverview. [Online; accessed 01-Feb-2024].

[Foue] Eclipse Foundation. Xtext. https://eclipse.dev/Xtext/. [Online;
accessed 01-Feb-2024].

[GB21] Philipp-Lorenz Glaser and Dominik Bork. The biger tool - hybrid textual
and graphical modeling of entity relationships in vs code. In 2021 IEEE 25th
International Enterprise Distributed Object Computing Workshop (EDOCW),
pages 337–340, 2021.

[Gir22] Théo Giraudet. Langium + sirius web = heart. https://blog.obeosoft.
com/langium-sirius-web, 2022. [Online; accessed 08-Feb-2024].

[GMGC22] Joan Giner-Miguelez, Abel Gómez, and Jordi Cabot. Describeml: A tool
for describing machine learning datasets. In Proceedings of the 25th Inter-
national Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’22, page 22–26, New York, NY, USA,
2022. Association for Computing Machinery.

[Hev07] Alan Hevner. A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19, 01 2007.

[HR00] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all
that stuff, part i: The basic stuff. Technical report, ISR, 2000.

[HR04] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of
"semantics"? Computer, 37(10):64–72, 2004.

[HRM+04] Alan Hevner, Alan R, Salvatore March, Salvatore T, Park, Jinsoo Park, Ram,
and Sudha. Design science in information systems research. Management
Information Systems Quarterly, 28:75–, 03 2004.

113

https://sprotty.org
https://github.com/eclipse-glsp/glsp-vscode-integration/blob/master/example/workflow/extension/src/workflow-extension.ts
https://github.com/eclipse-glsp/glsp-vscode-integration/blob/master/example/workflow/extension/src/workflow-extension.ts
https://github.com/eclipse-glsp/glsp-vscode-integration/blob/master/example/workflow/extension/src/workflow-extension.ts
https://eclipse.dev/glsp/
https://eclipse.dev/modeling/emf/
https://eclipse.dev/modeling/emf/
https://projects.eclipse.org/projects/modeling.sirius
https://projects.eclipse.org/projects/modeling.sirius
https://eclipse.dev/glsp/examples/#workflowoverview
https://eclipse.dev/glsp/examples/#workflowoverview
https://eclipse.dev/Xtext/
https://blog.obeosoft.com/langium-sirius-web
https://blog.obeosoft.com/langium-sirius-web

[jso] json5. Json5 – json for humans. https://json5.org. [Online; accessed
18-Mar-2024].

[Jä24] David Jäger. Frontend-only browser-based modeling tools. 2024.

[Kü06] Thomas Kühne. Matters of (meta-) modeling. Software Systems Modeling,
5:369–385, 12 2006.

[MB23a] Haydar Metin and Dominik Bork. Introducing BIGUML: A flexible open-
source glsp-based web modeling tool for UML. In ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS
2023 Companion, Västerås, Sweden, October 1-6, 2023, pages 40–44. IEEE,
2023.

[MB23b] Haydar Metin and Dominik Bork. On developing and operating glsp-based
web modeling tools: Lessons learned from BIGUML. In 26th ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS 2023, Västerås, Sweden, October 1-6, 2023, pages 129–139.
IEEE, 2023.

[Mica] Microsoft. Extension API | Visual Studio Code Extension API. https:
//code.visualstudio.com/api. [Online; accessed 15-Feb-2024].

[Micb] Microsoft. Language Server Protocol. https://microsoft.github.
io/language-server-protocol/. [Online; accessed 10-Feb-2024].

[Micc] Microsoft. Modeling SDK for Visual Studio. https://
learn.microsoft.com/en-us/visualstudio/modeling/
modeling-sdk-for-visual-studio-domain-specific-languages?
view=vs-2022. [Online; accessed 02-Feb-2024].

[Micd] Microsoft. Monaco - The Editor of the Web. https://microsoft.
github.io/monaco-editor/. [Online; accessed 16-Feb-2024].

[Mice] Microsoft. Refactoring source code in Visual Studio Code. https://code.
visualstudio.com/docs/editor/refactoring. [Online; accessed
23-Feb-2024].

[Obe17] Xtext / Sirius Integration - White Paper. https://www.obeodesigner.
com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf,
2017. [Online; accessed 08-Feb-2024].

[Obj] Object Management Group®. About the unified modeling language
specification version 2.5.1. https://www.omg.org/spec/UML/2.5.1/
About-UML. [Online; accessed 05-Feb-2024].

114

https://json5.org
https://code.visualstudio.com/api
https://code.visualstudio.com/api
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://learn.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://code.visualstudio.com/docs/editor/refactoring
https://code.visualstudio.com/docs/editor/refactoring
https://www.obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf
https://www.obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/UML/2.5.1/About-UML

[Pet22] Jette Petzold. Langium meets sprotty: Combining text and
diagrams in vs code. https://www.typefox.io/blog/
langium-meets-sprotty-combining-text-and-diagrams-in-vs-code,
2022. [Online; accessed 08-Feb-2024].

[RCG18] Benoît Ries, Alfredo Capozucca, and Nicolas Guelfi. Messir: A text-first dsl-
based approach for uml requirements engineering (tool demo). In Proceedings
of the 11th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2018, page 103–107, New York, NY, USA, 2018. Association
for Computing Machinery.

[Sch08] Markus Scheidgen. Textual modelling embedded into graphical modelling.
In Ina Schieferdecker and Alan Hartman, editors, Model Driven Architecture
– Foundations and Applications, pages 153–168, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[Sel03] Bran Selic. Selic b.: The pragmatics of model-driven development. ieee softw.
20(5), 19-25. Software, IEEE, 20:19 – 25, 10 2003.

[SL] Miro Spönemann and Philip Langer. Combining textual graph-
ical editors. https://docs.google.com/presentation/d/
1JLevi168Jmm03Wop4DVCcY2d-xUyCxURHBOVu3GMu10. [Online;
accessed 26-May-2023].

[Tha22] Bernhard Thalheim. Models: the fourth dimension of computer science.
Software and Systems Modeling, 21:1–10, 02 2022.

[Typa] TypeFox GmbH. Langium. https://langium.org. [Online; accessed
01-Feb-2024].

[Typb] TypeFox GmbH. Langium - Document Lifecycle. https://langium.
org/docs/document-lifecycle/. [Online; accessed 10-Feb-2024].

[Typc] TypeFox GmbH. Langium grammar language. https://github.com/
eclipse-langium/langium/blob/main/packages/langium/
src/grammar/langium-grammar.langium. [Online; accessed
05-Feb-2024].

[vRWS+13] Oskar van Rest, Guido Wachsmuth, Jim R. H. Steel, Jörn Guy Süß, and
Eelco Visser. Robust real-time synchronization between textual and graphical
editors. In Keith Duddy and Gerti Kappel, editors, Theory and Practice
of Model Transformations, pages 92–107, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[Wil97] David S. Wile. Abstract syntax from concrete syntax. In Proceedings of
the 19th International Conference on Software Engineering, ICSE ’97, page
472–480, New York, NY, USA, 1997. Association for Computing Machinery.

115

https://www.typefox.io/blog/langium-meets-sprotty-combining-text-and-diagrams-in-vs-code
https://www.typefox.io/blog/langium-meets-sprotty-combining-text-and-diagrams-in-vs-code
https://docs.google.com/presentation/d/1JLevi168Jmm03Wop4DVCcY2d-xUyCxURHBOVu3GMu10
https://docs.google.com/presentation/d/1JLevi168Jmm03Wop4DVCcY2d-xUyCxURHBOVu3GMu10
https://langium.org
https://langium.org/docs/document-lifecycle/
https://langium.org/docs/document-lifecycle/
https://github.com/eclipse-langium/langium/blob/main/packages/langium/src/grammar/langium-grammar.langium
https://github.com/eclipse-langium/langium/blob/main/packages/langium/src/grammar/langium-grammar.langium
https://github.com/eclipse-langium/langium/blob/main/packages/langium/src/grammar/langium-grammar.langium

[Yeo] Yeoman. Yeoman | The Web’s Scaffolding Tool For Modern Webapps.
https://yeoman.io. [Online; accessed 22-Feb-2024].

116

https://yeoman.io

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement & Motivation
	Aim of this Thesis and Expected Results
	Methodology
	Summary and Structure of the Work

	Background
	Terminology
	Graphical Language Server Platform (GLSP)
	Langium
	Summary

	State of the Art
	Combining Textual and Graphical Modeling
	Textual-graphical Modeling Frameworks
	Drawbacks Observed in the Listed Frameworks
	Summary and Comparison of the Listed Frameworks

	Concept
	Main Idea and General Approach
	Requirements for the Blended Textual-Graphical Modeling Framework
	Framework Architecture
	Model Server Concept
	Solution Concepts for the Requirements
	Summary

	Prototype Implementation
	Implementation of the Language Server
	Implementation of the glsp Server
	Model Server
	Model Synchronization
	VS Code Extension
	Summary

	Evaluation
	Evaluation Procedure
	bigUML Artifacts
	Implementation of the bigUML Scenarios
	Scenario Evaluation
	Summary and Discussion

	Conclusion
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography

