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Kurzfassung

In der Entwicklung digitaler Systeme ist die Analyse des zeitlichen Verhaltens unabding-
bar. Herkömmlicherweise geschieht diese durch Simulation auf analoger oder digitaler
Ebene. Analoge Simulatoren wie SPICE lösen die Gleichungen, die die Komponenten einer
Schaltung beschreiben, iterativ. Obzwar in der erreichbaren Genauigkeit unübertroffen,
skaliert diese Methode äußerst schlecht, und kann nur für Systeme überschaubarer Größe
eingesetzt werden. Demgegenüber stehen digitale Simulatoren, welche auf Kosten der
Genauigkeit die analogen Vorgänge weitestgehend vernachlässigen. Herkömmliche digitale
Simulatoren sind in der Lage, Systeme praktisch unbegrenzter Größe zu simulieren. Diese
Diplomarbeit präsentiert einen Simulationsansatz, der in die Lücke zwischen beiden
Extremen fällt: Die analogen Signale digitaler Schaltungen werden durch parametrierte
Sigmoide angenähert. Da Sigmoide sowohl Zeitpunkte der Schwellwertüberschreitungen
als auch Flankensteilheiten abbilden können, kann das Ausgangsverhalten von Inver-
tern und NOR Gattern durch Übertragungsfunktionen für diese Parameter vorhergesagt
werden. Durch die Nutzung künstlicher neuronaler Netze(ANN) arbeitet dieser Ansatz
wesentlich schneller als ein analoger Simulator und bietet gleichzeitig mehr Genauigkeit
als ein digitaler Simulator. Unsere Prototyp-Implementierung erzielt vielversprechende
Ergebnisse bezüglich der Simulationsgeschwindigkeit und Genauigkeit.
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Abstract

Investigating the temporal behavior of digital circuits is a crucial step in digital system
design, usually done via either analog or digital simulation. Analog simulators like
SPICE iteratively solve the differential equations characterizing the circuits’ components.
Although unrivalled in its accuracy, this method is only feasible for small designs, as
its drawback is the high computational effort. Digital timing simulators are based
on a digital abstraction of the analog behavior of a circuit. In state of the art tools,
propagation of signals along cells is predicted using pre-computed delay values. This
method can handle designs of virtually any size, but has the drawback of sacrificing
accuracy. This thesis presents another approach, which aims to fill the gap in-between
the two existing ones: We use parameterized sigmoids for approximating the analog
waveforms appearing in digital circuits. Since sigmoids allow to conveniently encode both
threshold crossing times and steepness, we can predict output waveforms of inverters and
NOR gates by determining how these parameters are transferred. Harnessing the power of
artificial neural networks (ANN), this novel approach operates substantially faster than
an analog simulator, while offering better accuracy than a digital simulator. Promising
results regarding accuracy and simulation speed obtained by our implemented prototype
demonstrate the potential of our approach.
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CHAPTER 1
Introduction

Modern digital systems usually consist of several millions if not billions of transistors.
Viewed at the lowest level of implementation, the elementary components of digital
integrated circuits like inverters, NOR gates and other gates are analog electronic devices.
The digital abstraction is created by digitizing the waveforms via some threshold voltage.

During the development of such systems, behavioral and timing simulations have to
be performed to ensure proper functioning. Consequently, simulating digital circuits
to estimate the propagation of signals throughout the circuit is a crucial task in the
development process of digital systems. State-of-the-art tools performing these simulations
mainly use two approaches, namely, analog and digital simulations.

The former approach simulates digital circuits using analog simulators like SPICE [1],
which use highly sophisticated physical models like BSIM [2, 3]. Current and voltage
trajectories are simulated by iteratively solving the differential equations describing the
circuit components. Although these simulations yield highly accurate results, their high
consumption of time and computational resources renders them impractical for digital
circuits consisting of a large number of components.

The latter approach discretizes the analog signals of the circuit to their respective
digital equivalent of true (1) and false (0). Consequently, digital components are char-
acterized by the input-to-output delay values of rising/falling transitions under various
conditions. Instead of solving differential equations at simulation time, the simulator
uses tables of pre-computed delay values [4, 5] to parameterize pure or inertial delay
channels [6]. Prominent examples of this approach are the current source models (CSM)
Effective CSM (ECSM)[4] and Composite CSM (CCSM)[5]. Both models conduct analog
simulations to generate tables of voltage (ECSM) or current (CCSM) traces for different
input slopes and output capacitance values. To simulate a circuit with these approaches,
the surrounding of each cell has to be analyzed beforehand to retrieve the fitting table
entry.

Static timing analysis allows the accurate corner case analysis of circuits consisting of
a large number of components, but does not allow to determine the delay of individual
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1. Introduction

transitions. Digital dynamic timing analysis approaches have been invented to enable this:
Generalizing the concept of the inertial delay channel, the so-called Delay Degradation
Model (DDM) has been developed in [7, 8]. This model acknowledges the fact that pulses
propagating a gate will shorten, and eventually stop propagating, if the pulse length is
below a certain threshold. This is an improvement over inertial delay channels, where
pulses either propagate fully or not at all. The DDM is an instance of a single history
model, where the delay for a given input transition depends on the time difference of the
input to the previous output. However, in [9] it has been shown that the delay functions
used in the DDM, and all other existing models, do not match reality (are unfaithful).
This problem is avoided by the Involution Delay Model (IDM) proposed in [10], which is
based on delay formulas that are self-inverse, i.e., involutions. Based on the IDM, several
models were developed, with some of them also incorporating multi-input switching (MIS)
effects, also known as the Charlie effect [11] [10, 12, 13].

In this thesis, we will advocate an approach that is somewhat in-between analog and
digital simulation. As detailed in Section 1.2, we will use parametrized sigmoids for
representing the analog waveforms appearing in digital circuits.

1.1 Background

The fundamental operations of digital systems are realized by the interplay of combi-
natorial blocks, implementing Boolean formulas, and storage elements. Although the
combinatorial parts of digital systems can be described by Boolean formulas, e.g., Z = ¬I
or Z = A ∨ B, Boolean algebra is not intended to be used to analyze the concrete
implementation of digital systems. Since physical implementations of Boolean functions
will most likely never operate infinitely fast [14] (a maximum frequency of 1PHz is
suggested to be the upper bound for optoelectronics), the temporal behaviour of these
implementations has to be investigated to ensure correctness.

Note that every Boolean formula can be rewritten using only the NOR operator, hence
it is called functionally complete. This justifies why we can solely focus on the NOR gate
in our proof of concept. Of course, real world applications will employ a wide range of
different gates apart from NOR gates. These gates can be modeled in a similar way as
the NOR gate, however.

There are various ways to construct digital systems, possibilities range from mechanical
[15], biological [16] to the more prominent electronic systems. Since the majority of
digital systems are electronic circuits, mainly CMOS [17] nowadays, this thesis will solely
focus on those. Figure 1.1 shows how an inverter and a NOR gate are implemented using
transistors in CMOS technology.

A CMOS inverter is built using one pMOS and one nMOS transistor and works as
follows: If I is connected to VDD (digital 1), the nMOS conducts current and hence
connects the output Z to GND (digital 0), while the pMOS is non-conducting and does
not affect the output. If I is connected to GND the roles of pMOS and nMOS reverse
and Z is connected to VDD.
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A

B
ZI Z

Z = ¬I Z = ¬(A ∨ B)

Boolean Functions

Block Symbols

CMOS Implementations

I Z B

A

Z

Figure 1.1: Inverter and NOR gate.

More complex gates can be built through the use of several nMOS and pMOS
transistors, like in the CMOS implementation of a NOR gate also depicted in Figure 1.1.

1.2 Main Contribution
The main contribution of this thesis is to develop a model that simulates digital circuits by
sigmoidal approximations of analog waveforms. The goal is to predict output transitions
by using the information of the current input transition and the preceding output
transition. In that sense, it can be thought of as generalization of the IDM presented
in [9]. While the IDM has its main focus on faithfulness, the presented model is more
concerned about the average prediction performance and neglects faithfulness.

Building on the idea of single history channels, one can increase the information
supplied to the model by not only supplying the time difference between the current input
and the most recent output transition, but also information about the slope (steepness).
Sigmoid waveforms are the most natural candidates to achieve this. We will present the so
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1. Introduction

called third order model (TOM), which uses the time difference between the last output
and current input transition and the slope information of these two transitions to predict
the delay and slope information of the resulting output transition. The cornerstones of
this thesis are:

Sigmoidal approximation of digital waveforms: We present a method of approxi-
mating digital waveforms by sums of sigmoids. This approximation allows us to
encode the information of a waveform as a list of reals, which can be interpreted as
lossy compression.

Output waveform prediction through ANNs: Based on the representation of dig-
ital waveforms as lists of reals, we investigate how an inverter and a NOR gate
transform their input lists into output lists. Using ANNs as universal function
approximators, we can establish gate specific transfer functions to calculate output
parameter sequences based on input parameter sequences.

Implementation of a prototype: As a proof of concept and to investigate the capa-
bilities of our model, we implemented a prototype simulator, which is publicly
available on github [18].

Note that ANNs are not the only means for output prediction. Naturally, polynomials,
splines and lookup tables are also candidates. While polynomials are computationally
easy to handle, they suffer from low accuracy. On the other hand, lookup tables predict
with reasonable accuracy but are too slow due to their size. When lookup tables are
used, virtually every lookup will have to reach to main memory, since the lookup table is
too large to be cached; this is also the reason why using splines is not feasible. ANNs, on
the other hand, are compact and, interestingly, offer even better accuracy than lookup
tables. Therefore, we found that the best choice was to use ANNs.

1.3 Related Work
In [19], circuit cells are modeled as resistor-resistor-capacitor cells. Transitions are
modeled as segments of exponential charge/discharge curves, having their start/end-
points in between GND and VDD.

A somewhat similar approach to this thesis can be found in [20]. Using a data set
consisting of SPICE simulations, an ANN is trained to predict the output delay and
transition time, based on the input rise time. It should be noted, though, that the
authors focus more on the case of multi-input switching (MIS). This means that the
ANN takes the transition times of two inputs, rather than one, and the time difference
between them, as input parameters for its prediction. Additionally, this model also uses
the output capacitance of the respective gate as prediction parameter.

Although many different approaches for digital logic simulation exist [21, 22], we are
not aware of any other existing work that directly relates to the approach proposed in
this thesis.
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1.4. Thesis Structure

1.4 Thesis Structure
The main ideas of our presented approach will be presented in Chapter 2 and Chapter 3.
Chapter 4 outlines some insights into the implementation of the presented approach.
The achieved results are discussed in Chapter 5. Some shortcomings and remarks are
collected in Chapter 6. Finally, Chapter 7 concludes the thesis.
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CHAPTER 2
Third Order Model

This chapter will introduce the core ideas and assumptions the presented approach relies
on. Its focus will be the way of approximating digital waveforms by parametrized sigmoids
and the use of these approximations for waveform prediction. As in the case of other
timing prediction models [6, 7, 20, 23], our third order model (TOM) also operates on
the basis of transitions. But instead of characterizing transitions by their rise/fall time or
their steepness at VDD

2 , we will use the gathered fitting parameters of our fitting function.

2.1 Sigmoidal Approximation of Waveforms

Let us state the definition of a sigmoid according to [24]: A sigmoid function is a bounded
differentiable real function that is defined for all inputs values and that has a positive
derivative everywhere.

Building on the fact that any arbitrary function can be approximated arbitrarily well
by adding sigmoids [25], we will use sigmoids to approximate the voltage waveforms
observed in digital circuits. Obviously, the choice of the particular sigmoid will directly
affect the fitting quality we will be able to achieve. In Figure 2.1, several different
sigmoids are depicted. Although all of them approach the same limits and their derivative
at x = 0 is 1, they differ in shape. Note that the list of sigmoids depicted in Figure 2.1 is
by no means exhaustive: One can easily build new sigmoids by, e.g., linear combinations
of two existing ones or other modifications. The authors’ bachelor thesis [26] presents
one way of adjusting the curvature of a given sigmoid using Taylor series.

In this thesis, we will focus solely on the logistics function as a means of approximating
the waveforms of digital circuits. Our TOM thus approximates real waveforms by a sum
of appropriately parameterized sigmoids according to Equation (2.1). Two parameters
determine the shape of the logistics function: The parameter a tells us the steepness of
the transition, while the parameter b tells us when the transition happens.
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2. Third Order Model

Figure 2.1: Different Sigmoids.

F (t, a, b) = 1
1 + e−a(t−b) (2.1)

In Section 3.2, we will provide the detailed procedure for determining the list of
parameters representing a waveform. Even though sigmoids of different shapes could be
constructed to better match real waveforms, the focus of this thesis is to present a proof
of concept of the general approach.

2.2 Gate Output Signal Prediction
As illustrated in Figure 2.2, every transition is characterized by a tuple (s, t), where
s represents the slope parameter eq. (2.1) and t the shift parameter b. In Figure 2.2
f(sin , tin) is used as an abbreviation of F (t, sin , tin) to stress that only sin and tin are of
interest. The basic idea for modeling signal propagation in the TOM is to use the tuples
characterizing the current input transition (sin , tin) and the previous output transition
(son−1 , ton−1) to predict the tuple characterizing the generated output transition. This is
expressed in the following equation:

(son , ton − tin) = FG(tin − ton−1 , sin , son−1) (2.2)

where FG is a gate dependent transfer function. For each input transition, we are now
able to compute the corresponding output transition. Given FG and a list of input
transition parameters, Algorithm 2.1 gives an overview of how we can implement this
for a single gate. Note that for the first transition at the input we introduced a sentinel
previous transition with parameters (s, −∞), where the sign of s depends on the sign of

8



2.3. Cancellation

Figure 2.2: Fitting a waveform using sigmoids in the TOM.

the first input transition. The absolute value of s is not of much interest and can be set
to any reasonable value. Since this sentinel transition happens at time −∞, it will not
have any influence on the prediction of the first output transition anyway. It is just there
to ensure that we can treat the first input transition like any other transition.

2.3 Cancellation

One crucial detail missing in Algorithm 2.1 is the possibility of a transition not being
propagated due to cancellation. Figure 2.3 depicts an example, where two input transitions
are too close to each other and hence do not propagate to the output. Although the
input waveform crosses the threshold VDD

2 twice, the corresponding output waveform
does not cross this threshold anywhere. This means that the two tuples describing
these transitions, (sin , tin) and (sin+1 , tin+1), do not result in corresponding output tuples
(son , ton) and (son+1 , ton+1), i.e., should not be propagate at all. Note however, that the
output waveform of Figure 2.3 could be fitted to yield such output parameters. We do
not consider these parameters to be worth the effort, however, since sub-threshold spikes
do not propagate through a digital gate in general anyway.

9



2. Third Order Model

Algorithm 2.1: Base Pseudo-Code for Output parameter prediction for gate
G.

Input: List of input parameter tuples ((sin , tin))n≥1, sorted by ascending tin

Output: List of output parameter tuples
1 add (−∞, s) to Output;
2 Prev ← (−∞, s);
3 while (sin , tin) ∈ Input ascending in time do
4 (son−1 , ton−1) ← Prev;
5 T ← tin − ton−1 ;
6 if sin > 0 then
7 (son , t

′
on

) ← F ↑
G(T, son−1 , sin);

8 else
9 (son , t

′
on

) ← F ↓
G(T, son−1 , sin);

10 end
11 ton ← t

′
on

+ tin ;
12 Prev ← (son , ton);
13 add (son , ton) to Output;
14 end

Figure 2.3: Example of pulse cancellation.
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2.3. Cancellation

Algorithm 2.2: Pseudo-Code of TOM with Cancellation.
Input: List of input parameter tuples ((sin , tin))n≥1, sorted by ascending tin

Output: List of output parameter tuples
1 add (−∞, s) to Output;
2 Prev ← (−∞, s);
3 while (sin , tin) ∈ Input ascending in time do
4 (son−1 , ton−1) ← Prev;
5 T ← tin − ton−1 ;
6 if sin > 0 then
7 (son , t

′
on

) ← F ↑
G(T, son−1 , sin);

8 else
9 (son , t

′
on

) ← F ↓
G(T, son−1 , sin);

10 end
11 ton ← t

′
on

+ tin ;
12 if Cancellation(son−1 , ton−1 , son , ton) then
13 remove (son−1 , ton−1) from Output;
14 (son−2 , ton−2) ← last element of Output;
15 Prev ← (son−2 , ton−2);
16 else
17 Prev ← (son , ton);
18 add (son , ton) to Output;
19 end
20 end

We add a mechanism to Algorithm 2.1, which takes care of such cancellations and
works as follows: Since a cancellation can only happen between two adjacent transitions, it
is enough check the current and the previous output transition with parameters (son , ton)
and (son−1 , ton−1). We verify whether the waveform built out of f(son , ton)+f(son−1 , ton−1)
crosses VDD

2 at any point. If this is not the case we treat these two transitions as canceled,
otherwise nothing changes.

Although the additional case distinction added in Algorithm 2.2 may look innocent,
it has subtle implications for the resulting implementation. More specifically, it can
happen that the latest transition that has been added to “Output” will be canceled by
the next incoming transition. Since the “Input” and “Output” queues of two connected
gates are basically the same, it could be the case that the successor gate has already
processed a transition that gets canceled. For such cases, the implementation has to
supply appropriate data structures that handle the deletion of canceled transitions along
the propagation path.
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CHAPTER 3
Transfer Relation

This chapter gives an overview of how we establish a relationship between the TOM input
and output parameters of logic gates, and its implementation in an ANN that can be
used for prediction later on. We also present our approaches for generating the training
data, the fitting process and the architecture of the ANN, used in our implemented tool.
Restricting our attention to logic gates with fan-out of exactly one, we instantiate our
approach for both an inverter and a NOR gate.

3.1 Data Generation via SPICE Simulations
The following setup was chosen to obtain the data for building our model. An inverter
chain made up of an arbitrary number n of inverters G1, ..., Gn, preceded by four pulse-
shaping stages also consisting of inverters, see Figure 3.1, is stimulated by a sequence of
zero-time (Heaviside) transitions. An example of zero-time transitions used as stimulus
and the input of the inverter G1 after the pulse-shaping section is shown in Figure 3.3.
Pulse-shaping is necessary, since we only want to add data to our data set that results
from physically possible waveforms. The end of the inverter-chain is terminated by two
inverters in series, where the final one drives a capacitor. This ensures that Gn also
has its output connected to an inverter. For our simulations, we used the 15 nm FinFet
models of the Nangate Open Cell Library [27].

In this circuit, the inputs of G1 to Gn and the output of Gn are recorded. The length
of the chain n can be chosen according to the input stimulus. Indeed, to save time and
memory, pulse trains that vanish after a few gates can be recorded using circuits with a
small n. At the same time, n can be chosen bigger if the pulses propagate through many
gates. In our experiments, n was usually around 20.

Although not drawn in Figure 3.1, the input and output of two adjacent stages are
connected by a parasitic network. For ease of data generation, we modified the generated
parasitic network between two inverters by the place and route tool, and plugged the

13



3. Transfer Relation

Pulse-Shaping

Termination

G1 G2

Gn−1 Gn

Figure 3.1: Inverter-chain used for Data Generation.

In
R RA R RB R RA R

Out

C CA CA CB CB CA CA C

R = 4 Ω
RA = 0.173 714 Ω
RB = 2.258 29 Ω

C = 0.033 35 fF
CA = 0.026 16 fF
CB = 0.091 13 fF

Figure 3.2: Parasitic Network connecting two adjacent Stages.

network shown in Figure 3.2 between every two stages of the inverter chain. Note that
using the same network everywhere allows us to treat all stages of the inverter chain as
having the same input output relation with respect to our model.

To cover all the possible waveforms a circuit can encounter at its input, the zero-time
transitions of the stimulus are generated in a systematic way. The three time intervals
TA, TB, and TC , shown in Figure 3.3, are varied in such a way that the coverage is
maximized. We used the following procedure here: As a first step, all time intervals are
set to large values, such that, at the output of the pulse-shaping section, the voltage in
between two transitions definitely stays at VDD resp. GND for some time. This yields
the upper bounds TAU = TBU = TCU = 25ps for the respective time intervals.

The lower bounds are obtained by lowering one of the three values until only two
transitions are generated at the output of the pulse-shaping section. This yields the lower
bound TAL = TBL = TCL = 3ps for the respective time intervals.

14



3.1. Data Generation via SPICE Simulations

Figure 3.3: Pulse-shaping input and output example.

Having gathered the upper and lower bounds for the respective time intervals, we
then constructed the set of stimulus parameters. We subdivided each time interval into
reasonable sub-intervals and defined a set containing the boundaries of these sub-intervals.
For instance, the set for TA is given by:

ST A = {3ps, 3.5ps, 4ps, ..., 24.5ps, 25ps}, (3.1)

which was constructed by dividing [TAL, TAU ] into approximately 50 sub-intervals. The
sets ST B and ST C were constructed analogously. Choosing the granularity of these sets
is a trade-off between available simulation time and desired data set size. A fine grained
set implies that the resulting training data set is densely populated, but also means that
a considerable number of analog simulations has to be conducted. Note that in our case
all three sets ST A, ST B, and ST C are the same, since they consist of the same elements,
but in general this need not be the case. With the three sets ST A, ST B, and ST C , the
complete set of stimulus vectors S was constructed:

S = ST A × ST B × ST C (3.2)

S contains approximately 503 = 125000 interval combinations. For each of those, we ran
analog simulations using Spectre and recorded the simulation files. Each such waveform
was finally fitted to our TOM, according to the procedure explained in the next subsection.
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3. Transfer Relation

3.2 Waveform Fitting Process
We use the well-known least squares fitting method [28] to match a model function to a
given waveform in our data sets. Formally speaking, the least squares fitting method
aims to minimize the metric

m

i=1


y(ti) − F (ti, x)

σi

2
(3.3)

where m is the cardinality of the data set consisting of tuples (ti, yi) representing yi(ti),
F (ti, x) is the model function, x the vector of parameters, and σi provides a means of
assigning a specific weight to the ith data point. For our fittings we use the curve_fit
implementation of scipy1.

3.2.1 Single Transition Model Function
The choice of an adequate model function is crucial to ensure a proper fitting of the
obtained data sets. As already mentioned in Chapter 2, we use the logistic function
[24, 29] given in Equation (3.4) for this purpose:

F (t) = 1
1 + e−t

(3.4)

Although any other sigmoid shown in Figure 2.1 would probably also meet our require-
ments, previous experience in [26] has shown that the logistic function is very well suited
for our approach. As Equation (3.4) does not supply any parameters for the fitting
algorithm to work on, we enhanced it as follows:

F (t, a, b) = 1
1 + e−a(t−b) (3.5)

With the two parameters a and b, we can vary the shape of the logistic function according
to our needs. With a > 0, a rising transition can be modeled, while a falling one can
be represented with a < 0. The absolute value of a will determine how fast a transition
happens. The parameter b allows us to place the transition at any point of time we
desire.

Although Equation (3.5) already supplies us with the necessary parameters for fitting,
we actually use a slightly modified version, given by:

Fs(t, a, b) = 1
1 + e−a(t·1010−b) (3.6)

The multiplication factor 1010 added to t ensures that both parameters a and b are in the
same range: Since the time periods we work on are in the range of picoseconds, omitting
this multiplicative factor would result in a being in the range of 1012, while b would be in
the range of 10−12. This would be rather inconvenient for visualization and processing,
however.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
curve_fit.html
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3.2. Waveform Fitting Process

3.2.2 General Model Function
In general, a waveform consists of several transitions. In that case, it is not possible
to isolate and fit each transition on its own. All transitions have to be fitted at the
same time to capture the effects two neighboring transitions cause to each other. For a
waveform consisting of m transitions, we consider the following joint model function:

Fg(t, x0, ..., x2·m−1) = VDD


m−1

i=0
Fs(t, x2·i, x2·i+1) − FComp(x0, m) , (3.7)

where (x2·i, x2·i+1) are the parameters of the ith transition. The function Fcomp, given
in Equation (3.8), guarantees that Fg will result in a function that stays between GND
and VDD. Subtracting Fcomp is needed, since adding an arbitrary number of single
transition model functions would generally result in a function value between k · VDD

and (k + 1) · VDD.
FComp(x0, m) =


m

2


− C(x0, m) (3.8)

C(x0, m) = 1 if x0 < 0 and m%2 = 0
0 otherwise

(3.9)

3.2.3 Initial Guesses and Bounds
For good fitting quality, the fitting algorithm must be supplied with reasonable bounds
and initial guesses for the parameters we wish to obtain from fitting. In order to generate
these guesses and bounds, we will resort to heuristics. The main idea is to use the second
derivative ∂2V (t)

(∂t)2 of the waveform V (t) to identify the inflection points. These inflection
points will serve as initial guesses for the shift parameters, while the initial guesses for
the steepness are set to a reasonable constant value for each transition. Overall, the
bounds will be set generously yet firmly enough such that the fitting algorithm does not
change the transition order determined by the heuristics.

In the following, we will describe the heuristics we chose for generating the initial
guesses and bounds in more detail. While the guesses and bounds for the steepness
parameters are not too difficult to generate, determining the shift parameters is a bit
subtle. More precisely, for the steepness parameter we only need to know whether we
identified a rising or a falling transition and choose a typical steepness value as an initial
guess, while setting the lower/upper bound about one magnitude smaller/larger. For
example, in our case the steepness parameters for a falling transition were usually around
-180. Consequently, the lower bound was to -2000 and the upper bound to -20. These
bounds are supplied to the fitting algorithm.

For the shift parameter we use the zero-crossings ∂2V (t)
(∂t)2 = 0 of the second derivative

to identify the inflection points. From the value of the first derivative at the inflection
points, we can infer whether it is a rising or falling transition: if ∂V (t)

∂t > 0 it is a rising
transition, if ∂V (t)

∂t < 0, it is a falling transition. However, since V (t) also contain over-
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3. Transfer Relation

and undershoots, as can be seen in Figure 3.3, we have to distinguish between valid
and non-valid inflection points. To achieve this, we introduce a lower/upper bound
χ = 0.05 V. The value V (t) at valid inflection points must lie between χ and VDD − χ.
Having identified all inflection points that meet these criteria, we can use them as initial
guesses for the shift parameters. The respective bounds are set to lie in-between two
adjacent inflection points. For example, if the nth inflection point is located at tn, the
initial value for the nth shift parameter will be tn, while the lower bound will be tn−1+tn

2
and the upper bound tn+tn+1

2 .

3.2.4 Usage of σ

During our attempts to fit the voltage waveforms in our simulation data, we observed
that some transitions that only differ by a marginal numerical noise resulted in parameter
values that differed by a considerable amount. This means that the fitting algorithm was
caught in different local minima in its search space, which might severely impose the
prediction performance of our method. To reduce the number of close-by local minima,
i.e., guide the fitting algorithm towards our desired fitting, we chose to use the weight
σ in way that the region around an inflection point adds more to the error term. The
region of interest around an inflection point is defined in the following way: Starting
from an inflection point we move along the time axis in both directions until either V (t)
leaves the range between VDD − χ = 0.8 V − 0.05 V = 0.75 V and χ = 0.05 V or ∂V (t)

∂t
changes sign.

To guide the fitting algorithm, the region around inflection points will have a σ value
lower than 1, meaning that these regions contribute more to the error term. The choice
of how much bigger this contribution should be is delicate. If σ is too small the fitting
quality outside of these regions will be poor, while σ too big means that maybe the
number of local minima did not decrease. In our case we chose σ to be around 1

25 inside
of these regions. By making σ depend on the first derivative ∂V (t)

∂t inside the inflection
point region, see Figure 3.4, we express that the fitting should focus on the inflection
point and gradually return to σ = 1 as we move to the border of the inflection point
region.

3.2.5 Waveform Clipping

As typical waveforms contain over- and undershoots, which cause V (t) to rise above
VDD or fall below GND, the approach to fit these waveforms with sigmoids faces some
difficulties: Since a single sigmoid cannot model such over- and undershoots the fitting
algorithm will calculate relatively big error terms, which may lead to a degradation of
the fitting process. In order to mitigate this problem, we intentionally clip away over-
and undershoots, meaning that V (t) is always between VDD and GND.
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3.3. Transition Relation Generation

Figure 3.4: σ Visualization. Inside the inflection point region 1
σ is scaled according to

∂V (t)
∂t .

3.3 Transition Relation Generation
The previous sections explained our approach of fitting a waveform and representing it
as a sequence of parameters ((sn, tn)). In Algorithm 2.2, we presented our algorithm for
predicting the output parameter sequence of a gate, given an input parameter sequence.
Algorithm 2.2 uses the two transition functions F ↑

G(T, son−1 , sin) and F ↓
G(T, son−1 , sin)

for prediction. We now present how we generated the ANNs F ↑
G and F ↓

G from simulation
data.

3.3.1 Simulation Data to Training Data

The data gathered from the simulation of the circuit shown in Figure 3.1 consists of
several thousand waveforms. All these waveforms are fitted using Equation (3.7) and
their fitting parameters x0, ..., x2·m−1 are stored. Based on these parameters we trained
our ANNs F ↑

G and F ↓
G. The whole process is explained by the example of Figure 3.5,

which depicts the output of three gates of the inverter chain and the respective fittings.
The fitting parameters of transitions t1, ..., t4 are listed in Table 3.1.

The basic idea is that the output of gate Gn is the result of its input, which is the output
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3. Transfer Relation

of Gn−1. For instance, looking at Table 3.2, transition t3 of G1 will result in transition
t3 at G2, hence F ↑

G(3.417 − 3.319, 119.350, 99.378) should yield (-184.887, 3.438 − 3.417).
Two more equivalences are listed in Table 3.2, which represent the training set for F ↑

G.
The training set for F ↓

G, which takes the parameter of falling input transitions as input, is
constructed analogous. Of course, the full tables containing all the training data generated
from the simulations are huge, they consist of several hundred thousand entries.

Figure 3.5: Example waveforms with their fittings.

Output Node t1 t2 t3 t4
G1 ( 109.213, 3.140) (-164.174, 3.291) ( 119.350, 3.417) (-141.482, 3.458)
G2 (-161.041, 3.162) ( 99.378, 3.319) (-184.887, 3.438) ( 120.154, 3.480)
G3 ( 109.033, 3.190) (-156.254, 3.340) ( 131.668, 3.464) (-139.814, 3.493)

Table 3.1: Fitting values for Figure 3.5.

3.3.2 ANN Topology
We used TensorFlow [30] for training our ANNs. For an inverter, we need to generate 4
ANNs: Both F ↑

G and F ↓
G are implemented by two ANNs, one that predicts the output

transition steepness son and one for the output shift (delay) d, where d = ton − tin .
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3.4. Data Generation for NOR Gates

T sin son−1 son d

0.0982 119.350 99.378 -184.887 0.0208
0.1293 99.378 109.033 -156.254 0.0212
0.0165 120.154 131.668 -139.814 0.0124

Table 3.2: Example Parameter Table generated from Table 3.1. Herein, T = tin − ton−1

and d = ton − tin .

For the topology of our ANNs we chose a network with 3 internal layers, where the
first two layers have 10 neurons and the last one has 5, all layers use relu activation
functions. Since there are three input neurons and one output neuron the topology is
given by [3,10,10,5,1]. The prediction accuracy of this architecture is around 1%. We
experimented with several other ANN architectures but did not conduct a systematic
search. Future work may investigate more advantageous architectures.

3.4 Data Generation for NOR Gates
So far, this chapter was only concerned with inverters. Since we also want to cover gates
with more than one input, we also characterized a NOR gate. The procedure for a gate
with more than one input stays the same, only the SPICE simulations, of course, have to
be conducted with the desired gate. In Figure 3.6, the circuit for SPICE simulations for
a NOR gate is depicted. As in the case of inverters, the parasitics in between two adjacent
gates were set to those in Figure 3.2. Note that this procedure has to be done for every
input. With respect to the NOR gate, this means that we also need to run simulations
with the other input. In the case of NAND gates, for example, one would have to tie the
other input to VDD as opposed to GND in Figure 3.6 to construct an inverter chain to
record the desired data.

Pulse-Shaping

Termination

G1 G2

Gn−1 Gn

Figure 3.6: Inverter-chain of NOR gates used for Data Generation.
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3.5 Valid Region Containment
No matter how good the prediction of our ANNs (or any other means of prediction)
is, we always have to expect some error. If we look at a single gate, this error is to be
expected and lies in the nature of an approximation. But if we look at a chain of gates,
where one gate is the input of the next gate, we have to anticipate that the erroneous
prediction of a gate will lead to an even more erroneous prediction of the successor gate.
In other words, the predicted parameters after a few gates may have diverged so far that
no reasonable prediction can be expected anymore.

Especially ANNs can show arbitrary behavior if they are presented with input values
that are far outside of the training set. Suppose, across a chain of gates, only one prediction
causes the parameters to fall outside this training set. In that case, the predictions based
on these faulty parameters will become arbitrary and, therefore, meaningless. Unless
countermeasures are taken, this flaw will render our approach useless.

Our solution to this problem works as follows: Since the problem arises from the fact
that an ANN may be called with input values for which it was never trained, we have to
ensure that this can never happen. This means that we have to identify the region for
which our ANNs were trained, in the following we call this the “valid region”.

3.5.1 Computing a Valid Region

Since we already generated the data to train our ANNs, we use this data to compute
a hull separating an inner valid region and an outer invalid region. Of course, this
entails that the training data covers all possible parameter combinations that appear in a
physical waveform. Since we have three inputs, T, sin and son−1 as depicted in Table 3.2,
this region will have three dimensions. Populating the three dimensional Euclidean space
with our data points (T, sin , son−1), we can compute the concave hull of this point cloud,
which will yield such a valid region. Care has to be taken with this operation, since
the concave hull, unlike the convex hull, is not uniquely defined in general [31]. The
algorithm we use to compute the concave hull, supplied by pcl [32], offers a parameter
α that essentially controls the granularity of the resulting concave hull. Setting α to a
small value yields a fine grained hull, which will lead to good separation of the valid
and invalid regions but comes at the cost of high computational effort during run time.
Setting α to a large value has the opposite effects. We chose α = 20 which, looking at
Figure 3.7, seems a reasonable compromise.

3.5.2 Usage of Valid Region

The computed valid region from above allows us to ensure that the ANNs are always
invoked with parameters that lie inside the training data. Since an input to an ANN (T,
sin , son−1) can again be interpreted as a point in three dimensional Euclidean space we
can easily test whether or not it is inside our computed valid region. This now allows the
following case distinction:
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3.5. Valid Region Containment

(i) The input values are inside the valid region: In this case, nothing has to be done
since the problem we stated does not arise.

(ii) The input values are outside of the valid region: In this case, we have to replace
the invalid input values (T, sin , son−1) with the closest point (Tv, sv

in
, sv

on−1) that
lies on the hull defining the valid region.

It should be noted that care has to be taken regarding the scale of the single parameters
T, sin and son−1 . Since the library [33] we used to implement our operations uses the
Euclidean distance, i.e., treats all three dimensions equal when computing the distance,
the correction will be flawed if not all three parameters are approximately scaled the
same. In our case, the steepness parameters sin and son−1 are in the range of ~100, while
T can be in the range of ~0.1. If this would not be changed, the Euclidean distance will
be dominated by the steepness parameters, which would result in the closest point (Tv,
sv

in
, sv

on−1) having an arbitrary value for Tv. To ensure that the Euclidean distance takes
all three dimensions into account, we can stretch the dimension of T such that it will
have the same scale as the other parameters. For this purpose we multiply T with 104

for computing (Tv, sv
in

, sv
on−1) and divide the Tv that resulted from the correction by

104 to return back to normal parameter range. Figure 3.7 depicts an example of how the
input parameters (T, sin , son−1) populate three dimensional space, in this picture the
parameter T is multiplied by a factor of 500 for ease of visualization.
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Figure 3.7: Example of how (T, sin , son−1) populate three the dimensional space.
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CHAPTER 4
Implementation

This chapter gives an overview of the prototype implementation of a simulation tool
for digital circuits, which utilizes the transfer function-based approach described in the
previous chapters. Our framework has been implemented in C++ and is available on
github [18]. Since this is only a prototype implementation, for ease of usage, we assumed
that every NOR gate and every inverter have the same transfer function FG. This way,
only two transfer functions have to be supplied to the tool, see Section 4.2.5. Of course,
under realistic circumstances, virtually every gate has a different transfer function FG,
caused by different fan-out and parasitics.

4.1 Basic Tool Operation
In order to conduct a simulation, the tool has to be invoked with a file containing
the description of the circuit, links to stimulus waveform files, and the ANN files. A
description of theses files can be found in Section 4.2.

As a first action, the program loads the specified ANNs and builds its internal
representation of the given circuit specification. After this, the initial values of all gate
outputs are computed, which is non-trivial if the circuit contains feedback loops. Then,
based on the stimulus waveforms, the transition schedule is computed and executed.

4.1.1 Initial Values
In order to properly simulate a circuit, the initial values of each gate output have to be
determined at the start of the simulation. Since not all circuits posses a well-defined
initial state (e.g., an odd-numbered inverter ring), the tool must check if it exists. In order
to answer this question and to determine appropriate initial values, we use a SAT-solver.
Of course, to simplify the implementation, we could have relied on the user to supply
correct initial states for each gate to tool. But this is a tedious and error prone process,
which also becomes non trivial when circuits with feedback are at hand. Our tool hence
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provides a way to automatically compute feasible initial states. Note that (the existence
of) a well-defined initial state not only depends on the circuit, but also on externally
supplied initial values. For example, Figure 4.1 depicts a ring of three NOR gates with
one external input. If the input is set to GND, the ring oscillates, whereas with the input
set to VDD, it has a well-defined state.

Figure 4.1: Three NOR gates in a ring.

Therefore, the circuit in Figure 4.1 can only be simulated if the first transition of the
external input is falling. Furthermore, as mentioned when presenting Algorithm 2.1, in
order to propagate the first input transition of a gate, we added a transition (−∞, s) to
the output list. To determine the sign of s, we have to compute the initial state of the
gate. If the initial output of a gate is GND, s will be negative since we pretend that a
falling transition took place at t = −∞; if the initial output is VDD, we pretend that a
rising transition took place at t = −∞. The absolute value of s is simply set to a fixed
value, since it does not affect the calculation of the first output transitions anyway.

In the following, we will describe our approach for constructing a formula representing
a circuit and the initial values of each input. For ease of understanding, Figure 4.2 depicts
the labeling we use for our formulas. For each NOR gate and inverter, a single variable is

A1

A2
Z I Z

Figure 4.2: Gate Labeling.

used to describe the respective output; ⊤ represents true, ⊥ represents false. All that
remains is to state the input/output relation of each gate. For a NOR gate, this relation
is given by:

Z ⇐⇒ ¬(A1 ∨ A2) (4.1)

which can be converted to a conjunctive normal form (CNF) as follows, see e.g., [34] for
details:

(A1 ∨ A2 ∨ Z) ∧ (¬A1 ∨ ¬Z) ∧ (¬A2 ∨ ¬Z) ≡ ⊤ (4.2)

The relation for an inverter, on the other hand, is given by:

Z ⇐⇒ ¬I (4.3)
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which converted to CNF yields:

(I ∨ Z) ∧ (¬I ∨ ¬Z) ≡ ⊤ (4.4)

If an input A1, A2 or I is directly connected to GND/VDD or to an external input, it is
set to the respective Boolean value. If an input is connected to the output of another gate
Gn, the formula describing this input will be the respective variable Vn that describes
the output of Gn.

The clause set supplied to the SAT-solver will consist of an instance of Equation (4.2)
for every NOR gate and an instance of Equation (4.4) for every inverter. If the SAT-solver
determines that the clause set is unsatisfiable, the circuit does not have a well-defined
initial state and cannot be simulated. If the clause is satisfiable, the SAT-solver will
return the corresponding variable assignment. From this assignment, we can derive the
initial state of each gates’ output1.

4.1.2 Transition Schedule
After the initial values have been determined, the actual simulation can be executed.
Right after initialization, the transitions of all inputs are read in and stored in a global
transition schedule, where the transitions are ordered according to their shift parameter
in ascending order. Each transition does contain not only its fitting parameters, but
also metadata like its source and its sink(s) or the parent and child transitions, which is
important in the case of cancellation.

As long as there are transitions in the schedule, the transition with the smallest shift
parameter will be removed, and Algorithm 2.2 will be performed on it. Since a transition
at the input of a gate may result in a transition at the output of a gate, the generated
output transitions are added to the transition schedule.

4.1.3 Simulation Output
In the tool input file, the user can specify the gate outputs that should be recorded;
of course, the output of every gate in the circuit can be recorded. After all transitions
are processed and the transition schedule is empty, the output transition of the gates
specified in the input file are written to an output file.

4.2 Tool Input Files
The program is called with a main file that specifies the input waveforms, the circuit to
be simulated, the circuit nodes to be recorded, and the references to the ANNs and valid
regions to be used. This main references other files like input stimulus and files containing
the transfer relations. Lines that start with * are comments and will be skipped.

1It should be noted that, in general, care has to be taken with the initial values of stateful elements,
e.g., latches. There might be constellations where both GND and VDD are valid initial values for these
elements.
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4.2.1 Stimulus File Format

Since our tool operates on the basis of transitions, and every waveform can be represented
as a sequence of transitions, the stimulus is represented as a sequence of transition
parameters. For example, the file InA.csv with the content:
-197.5899086, 10.4053535
201.5360181, 10.6480647
-192.6446782, 10.6819359
contains three transitions. Although the transitions do not have to be listed in temporal
order, it is strongly recommended to do so.

4.2.2 Inputs

Starting with the keyword INPUTS, this section lists the files containing the stimulus
waveforms and the external input identifiers that can be used in the circuit specification.
An example of this section will look like:

INPUTS
INA InA.csv

Each input has to be separated by a new line.

4.2.3 Circuit Specification

After the keyword GATES, the circuit to be simulated is specified. So far, two elements
can be used to construct circuits, namely 2-input NOR gates, and inverters. A NOR gate
can be specified by the following line:

NOR GATE_NAME NOR_OUPUT_NAME INPUTA_NAME INPUTB_NAME

where every keyword ending on _NAME is an input resp. output identifier that can
be chosen freely. Likewise, an inverter can be specified by the following line:

INV INV_NAME INV_OUTPUT_NAME INPUT_NAME

In addition to external input identifiers, the keywords GND and VDD can be used to serve
as inputs.

4.2.4 Outputs

After the keyword OUTPUTS, a list of gate output identifiers that should be recorded can
be specified.
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4.2.5 Transfer Relations
At last, the paths to the ANNs and the valid region files have to be provided. Recall that
an output tuple (son , ton) is calculated by FG(tin − ton−1 , sin , son−1), see Equation (2.2).
Since FG is divided in two parts, namely F ↑

G and F ↓
G, both have to be specified. F ↑

G and
F ↓

G are provided by two different ANNs each, one that calculates ton (shift) and one that
calculates son (steepness).

This section begins with the keyword TRANSFERFUNCTIONS and is followed by the
list of the respective ANNs, valid region files and their paths. For example:

SIS_A_F ANN tfs/SIS_A_falling_model
SIS_A_F OFF tfs/SIS_A_falling_input.off

specifies that the ANNs that predict son and ton are located in
./tfs/SIS_A_falling_model_shift and ./tfs/SIS_A_falling_model_steepness,
while the valid region file is ./tfs/SIS_A_falling_input.off. The complete list
of all ANNs and region files that have to specified is found in the examples in the public
github repository [18].

4.3 Usage
To invoke the simulator, only the above specified input file has to be provided through
the option -c. Example invocations and input files can be found in the public github
repository [18].

4.4 Dependencies
Table 4.1 lists the direct dependencies of the implementation.

CppFlow https://github.com/serizba/cppflow
Cryptominisat 5.6.8 https://github.com/msoos/cryptominisat

plog https://github.com/SergiusTheBest/plog
pcl 1.12.1 https://pointclouds.org/
cgal 5.4 https://www.cgal.org/

Table 4.1: Table of direct dependencies.

CppFlow is able to load pre-trained Tensorflow models from C++ code, enabling
us to easily train our ANNs in Python and execute them in C++. Cryptominisat
provides a generic SAT-solver used for determining the initial conditions, as explained
in Section 4.1.1. plog serves as generic logging library. The Point Cloud Library (pcl)
provides a function for computing the concave hull of a three dimensional point cloud.
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The Computational Geometry Algorithms Library (cgal) is used to determine whether or
not a three dimensional point lies inside a concave hull, as depicted in Section 3.5.2.
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CHAPTER 5
Evaluation

In this chapter, we will present some quantitative results we achieved using the approach
presented in this thesis. By comparing the predictions of our model to the predictions
of SPICE, we were able to shed some light on the achievable accuracy. Since we ran
the SPICE simulations on a dedicated server equipped with the required licenses, while
our tool ran on a local computer, a fair running time comparison is impossible. The
vastly different computing platforms cause a severe bias in the time measurements, which
is also dependent on the simulated circuit. Additionally, the SPICE settings allow to
reduce simulation accuracy, which also impacts SPICE simulation time. We therefore
avoid stating speed-up numbers for our approach.

5.1 Error Metric

Accuracy comparison is a delicate task in our setting, since the output of our tool is
neither an analog waveform nor a series of binary signal transitions. In order to compare
the prediction of our tool with SPICE, we compare the root-mean-square error (RMSE)
of the area under the predicted trace and the SPICE waveform. There are two variations
that are of interest in our case: We will compare our prediction both to the plain
SPICE waveform, and to the TOM fitting of the SPICE waveform. In Figure 5.1, an
example waveform with its optimal fitting and the prediction is depicted. Comparing the
prediction to the optimal fitting allows us to inspect how far off the prediction is from
the best possible results, since we cannot achieve a better prediction than the optimal
fitting. By comparing the SPICE waveform to our prediction, we can evaluate the overall
prediction and fitting error, which gives an insight on how well our approach performs.
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Figure 5.1: Example SPICE waveform with its optimal fitting and prediction.

5.2 Inverter Chain Example

The simplest circuit to test our approach on is the one that was used to generate the
training data, i.e., an inverter chain made of NOR gates, see Figure 3.1. We expect
that the prediction of our approach will have the least error possible on this circuit and
therefore gives a lower bound on the achievable accuracy. The inverter chain we used
has hundred stages. After each stage, we compare the prediction of our approach with
both the SPICE waveform and the fitting of the SPICE waveform. The input of the
inverter chain is generated by a pulse-shaping section consisting of 10 inverters, the
pulse-shaping input is stimulated by a random transition sequence of length 50, with
Gaussian distribution of the inter-transition times with mean µ = 10 ps and variance
σ = 5 ps. We considered the average of 200 such sequences.

Table 5.1 lists the first few elements of such a trace, which were calculated by the
fitting algorithm from the respective SPICE waveform. Table 5.2 lists the prediction for
the input trace given in Table 5.1. The Input row of both tables is the same, since this is
the stimulus. Figure 5.2 depicts an example waveform taken from a stage of the inverter
chain. The predicted waveform is compared to the fitting of the SPICE waveform and
the SPICE waveform itself. As expected, the RMS error between prediction and fitting
is, of course, smaller than the error between the prediction and SPICE. The difference

32



5.3. Other Circuit Examples

Signal t1 t2 t3 t4 tn

Input ( 187.357, 10.335) (-197.369, 10.677) ( 186.633, 10.775) (-199.268, 10.967) ...
Stage 1 (-199.655, 10.352) ( 188.701, 10.695) (-195.763, 10.792) ( 180.644, 10.985) ...
Stage 2 ( 189.829, 10.370) (-198.603, 10.712) ( 184.386, 10.810) (-210.301, 11.002) ...
Stage 3 (-198.686, 10.388) ( 186.520, 10.730) (-197.220, 10.827) ( 186.032, 11.020) ...
Stage 4 ( 189.001, 10.406) (-196.495, 10.747) ( 187.225, 10.845) (-199.534, 11.037) ...
Stage n ... ... ... ... ...

Table 5.1: (sin , tin) of inverter chain signals generated through fitting.

Signal t1 t2 t3 t4 tn

Input ( 187.357, 10.335) (-197.369, 10.677) ( 186.633, 10.775) (-199.268, 10.967) ...
Stage 1 (-198.383, 10.352) ( 186.737, 10.694) (-198.344, 10.792) ( 186.935, 10.985) ...
Stage 2 ( 186.873, 10.370) (-198.474, 10.712) ( 188.413, 10.810) (-199.010, 11.002) ...
Stage 3 (-198.435, 10.388) ( 186.863, 10.730) (-198.621, 10.828) ( 186.949, 11.020) ...
Stage 4 ( 186.892, 10.406) (-198.464, 10.747) ( 188.372, 10.845) (-199.005, 11.037) ...
Stage n ... ... ... ... ...

Table 5.2: (sin , tin) of inverter chain signals generated through prediction.

between the two error calculations is approximately equal to the fitting error.
Figure 5.3 depicts the error observed at each stage. The error compared to the

fitting is approximately 0.5% after one stage, while after hundred stages it is about 3%.
Interestingly, the error compared to SPICE is about 2.8% after one stage, while after
hundred stages is it about 4.5%. One would have expected this error to be above the
error for the fitting by a constant offset, no matter the stage.

5.3 Other Circuit Examples
Apart from the simple inverter chain, as elaborated in Section 5.2, we also investigated
four other circuits. The first is an inverter chain consisting of NOR gates, where the input
alternates with each stage. The second circuit is a NOR latch, which demonstrates the
capability of our approach to handle short feedback loops. It will become apparent that
the remarkable accuracy of the simple inverter chain, depicted in Figure 5.3, cannot be
maintained for these other circuits. Additionally, we investigated the frequency (period)
of NOR rings of different lengths in two different versions. Finally, we investigated how
MIS effects affect the prediction performance in an XOR circuit composed of five NOR
gates.

5.3.1 Inverter Chain with alternating Inputs
Figure 5.4 depicts an inverter chain, made from NOR gates, where the input tied to
GND alternates between every stage. This is in contrast to the inverter chain that was
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Figure 5.2: Inverter Chain Trace Comparison to Fitting and SPICE.

used for training data generation, see Figure 3.6: There, a chain of NOR gates was used,
where either every gate in the chain had either its first input or its second input tied
to GND. Consequently, no data was recorded for the “alternating” chain considered
here. Of course, this case could have been covered by simulations and incorporated into
the training set, leading to a more accurate prediction of this circuit. But we want to
examine here how our approach deals with circuits it has never seen before.

The input stimulus and the number of simulations are the same as in the case of the
conventional inverter chain studied in Section 5.2. Figure 5.5 depicts the measured error
at each stage. As we can see, the error across the stages is substantially bigger than in
Figure 5.3: After one stage, the error compared to the fitting is 3% and already 19%
after ten stages, while the error to SPICE is 5% after one stage and 22% after ten stages.

34



5.3. Other Circuit Examples

Figure 5.3: RMSE across an Inverter Chain.

Figure 5.4: NOR inverter chain with alternating inputs.

5.3.2 NOR latch

The next circuit we investigated in our evaluation is a NOR latch. Figure 5.6 depicts
the circuit with its inputs InA, InB and its outputs Q, Q̄. Once again, the stimulus at
the input will consist of random transition sequences with a Gaussian distribution of
µ = 10 ps and σ = 5 ps.

Figure 5.7 depicts the example traces of the inputs and the predicted output of one of
the 200 conducted runs. Even though the model has never been trained with simulation
data that covers the behavior of a NOR gate where both inputs can switch, the results
look very promising. Overall, we found that the prediction error of Q and Q̄ is about
10.5% compared to the fitting and about 15% compared to SPICE. A closer look at
Figure 5.7 shows that a lot of spikes appear in the SPICE waveform of Q that do not
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Figure 5.5: RMSE across a NOR inverter chain with alternating inputs.

Q

Q̄

InA

InB

Figure 5.6: NOR Latch.

cross the threshold voltage, which might be the reason why the calculated error of Q is
that high. Yet, the prediction matches the SPICE waveform very closely in the cases
where the threshold is crossed. If we had defined our error metric in way that would
focus only on threshold crossings (and would therefore be oblivious to sub-threshold
spikes) we would definitely have calculated less than 15% error.
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5.3.3 NOR rings
Another circuit we consider is an inverter ring composed of NOR gates. A “symmetric”
version, as shown in Figure 4.1, and an “asymmetric” version, shown in Figure 5.8, are
investigated. In the asymmetric version the NOR gate that is controlled by the input
source gets its feedback through input B, whereas in the symmetric case all NOR gates
use input A to form the ring. Through simulation in SPICE and the TOM, the period is
calculated and compared for rings of different sizes. Table 5.3 lists the obtained periods
for rings of sizes 3 to 11. As in the case of the inverter chains, a noticeable difference
between the symmetric and asymmetric case can be observed. The prediction error in the
case of symmetric rings is the highest in the case of 3 stages and settles to well below 1%
for larger rings. This is in accordance with the errors that are in observed in a symmetric
inverter chain, already presented in Figure 5.3. In the asymmetric case, rings with 3
and 5 stages also show promising prediction performance, albeit rings consisting of 7
stages and more show rather poor accuracy: In the case of 11 stages, an error of 17% is
observed. Again, this is in accordance with the results obtained for inverter chains with
alternating inputs, see Figure 5.5. This once again highlights the fragility of ANN-based
predictions when analyzing scenarios that are not in the training set.

Circuit SPICE period[ps] predicted period[ps] Difference
3 stages symmetric 15.867 15.453 -2.613%
5 stages symmetric 27.378 27.323 -0.202%
7 stages symmetric 38.448 38.515 0.175%
9 stages symmetric 49.475 49.426 -0.099%
11 stages symmetric 60.504 60.410 -0.155%
3 stages asymmetric 15.233 14.994 -1.569%
5 stages asymmetric 26.817 26.705 -0.421%
7 stages asymmetric 37.887 34.757 -8.262%
9 stages asymmetric 48.909 41.792 -14.551%
11 stages asymmetric 59.932 49.721 -17.039%

Table 5.3: Comparison of the period in NOR rings of different sizes.

5.3.4 XOR gate
Finally, we investigate a small combinatorial circuit where both inputs of a gate can
switch simultaneously. Figure 5.9 depicts an XOR gate made of NOR gates. The two left
most NOR gates serve as inverters and do not exhibit any multi-input switching (MIS)
effects, but the inputs of the remaining three NOR gates may switch at the same time.
Since MIS effects, which can speed-up or slow down the signal propagation through a
NOR gate [13], are not considered in the TOM, a limited prediction performance is to be
expected.

As in the earlier examples, the inputs of the circuit were stimulated with random
transition sequences. Figure 5.10 shows an example waveform and the corresponding
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transition of the circuit output. The prediction error over 200 runs was found to be
8% compared to the fitting and 10.5%. It appears that the lacking MIS effect modeling
capabilities of our TOM had a low impact on the prediction performance. Again, judging
by Figure 5.10, a main source of error seems to be the over- and undershoots at the start
of a transition, which are generally uninteresting with regards to timing analysis.
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Figure 5.7: Example Traces of Inputs and Output of the NOR Latch.
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Figure 5.8: Three NOR gates in a ring, feedback through input B.

Figure 5.9: XOR gate built from NOR gates

Figure 5.10: Example trace at the output of the XOR gate
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CHAPTER 6
Shortcomings and Remarks

In this chapter, we present some shortcomings of the proposed approach, which could
not be addressed in this thesis within the available time frame.

6.1 General Output Loads
One of the main unaddressed aspects of of the proposed approach is how to handle varying
output loads. A realistic model would somehow have to incorporate this information
into its prediction. One possible approach would be to develop a theory of sigmoidal
transfers across RC-circuits, similar to Elmore delays [35], which approximate the effects
an RC-circuit imposes on sigmoids. Another straightforward way would be to subdivide
the domain of possible output capacitances, similar to CCS [5], and compute transfer
relations for each section. It should also be noted here that we did not consider process
voltage and temperature (PVT) variations, which considerably affect the operation of
digital circuits [36].

6.2 Intractable source of error
Although we deliberately restricted our attention to gates that are connected to exactly
one other gate of the same kind in this thesis, we also stumbled over an interesting effect
in the case of a fan-out larger than one: It appears that the voltage of one input of a NOR
gate affects its other input. To illustrate this effect, consider the circuit in Figure 6.1,
where a NOR gate with fan-out of four is depicted in three different scenarios.

In case A, all four output gates have their other input connected to GND, in case B
two inputs are connected to GND and two to VDD, while in case C all other inputs are
connected to VDD. Of course, the parasitics of the circuit were made symmetric in the
case of the connection between G1 and G2−5. We used the parasitic network depicted in
Figure 6.3, which is a slightly modified version of a Cadence-generated one. All parasitic
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Case A Case B Case C

G1

G2

G3

G4

G5

G1

G2

G3

G4

G5

G1

G2

G3

G4

G5

Figure 6.1: NOR gate with fan-out of four in different scenarios.

Figure 6.2: Input and Output Waveforms in all scenarios.

networks between the input and G1 and between G2−5 and their output are the one
shown in Figure 3.2.

When stimulating the input of the NOR gate G1 with the same waveform in every
scenario, we observed that its output waveform considerably varies. Figure 6.2 shows
an example input waveform with the three different output waveforms for each case.
We can observe that in case A the output steepness is the smallest, while in case C it
is the highest. Apparently, the output steepness gets higher as more inputs are set to
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6.3. Future Work

Signal t1 t2 t3 t4
Input (-186.41,7.11) (149.00, 7.17) (-185.92, 7.25) (105.42, 7.35)

Output Case A (97.22, 7.15) (-68.03, 7.18) ( 62.15, 7.30 ) (-65.68, 7.36)
Output Case B (97.40, 7.15) (-74.65, 7.18) ( 61.21, 7.30 ) (-78.14, 7.37)
Output Case C (94.03, 7.14) (-97.51, 7.19) ( 72.06, 7.29 ) (-104.91, 7.37)

Table 6.1: Fitting Parameters of Figure 6.2.

VDD. Note that, in the case of the other input being VDD, the input transition does
not propagate. A naive interpretation of this phenomenon may be that transitions that
do not trigger output transitions require no work from the receiving gate to switch its
output, resulting in a lower input capacitance of the respective input.

Also note that the three scenarios are such that the unused inputs are supplied with
a constant voltage. Cases where the other inputs also switch where not considered.

Regardless of the underlying physical phenomenon governing this behavior, it imposes
a considerable accuracy penalty to our modeling approach. Table 6.1 lists the fitting
results of the waveforms shown in Figure 6.2. Considering that the fitting parameters for
the input are the same in all three cases, the difference in fitting parameters between
the three cases is remarkable. The steepness of the falling transitions varies by more
than 30% from case A to case C. Since it is highly unreasonable to incorporate the input
states of the successor gate(s) into the transition computation for a gate, there is no
chance of keeping track of this behavior when modeling such circuits. It is unclear how
to construct a reasonable model covering this behaviour.

6.3 Future Work
Although a proof of concept has been provided in this thesis, we could not investigate
every aspect of our approach in depth. Several questions remain unanswered: What is
the optimal sigmoidal function for fitting analog waveforms? What is the optimal ANN
topology for predicting fitting parameters? How to deal with arbitrary interconnect or
gates that have arbitrary fan-out? How to model process voltage and temperature (PVT)
variations? We believe that satisfying answers to these questions would yield a simulation
tool competitive to existing ones.
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Figure 6.3: Circuit used as Parasitic Network for the case of Fan-out=4.
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CHAPTER 7
Conclusions

This thesis presented a novel approach for simulating the temporal behavior of digital
circuits, which complements existing approaches by combining the advantages of both
analog and digital simulators. It is based on approximating voltage waveforms of
digital circuits with parameterized sigmoids and using the list parameters representing a
waveform for predicting the output waveforms of inverters and NOR gates. We presented
the core ideas and the means of characterizing logic gates using the example of 15 nm
technology inverters and NOR gates. The approach easily translates to other technologies
and logic gates, however. When comparing the predictions of our approach against
SPICE, we observed errors in the range of a few percent, while spending considerably
less time for simulating. As the implementation of our approach has not been exposed to
several years of refinement, we do believe that even better simulation-time performance
could be achieved.
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