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Kurzfassung

Zukünftige industrielle Energiesysteme müssen sich an neue Anforderungen anpassen, die
durch eine flexible Produktionsumgebung, die Nutzung volatiler erneuerbarer Energien
und die Integration in Energiemärkte entstehen. Für solche industrielle cyber-physische
Systeme (ICPS) sind digitale Zwillinge (DZ) eine Schlüsseltechnologie zur Optimierung
des Betriebs dieser Energiesysteme, indem sie Dienste (Services) für deren Überwachung,
Diagnose, Vorhersage und Steuerung bereitstellen. Obwohl das Konzept des DZ nicht neu
ist, fehlen noch immer Frameworks und Methoden, um sie und ihre Services effizient zu
erstellen. Dies führt aktuell zu Realsierungen, die auf anwendungsspezifische Lösungen ab-
zielen und den anfallenden Daten keine Semantik verleihen. OPC UA, als Technologie für
Industrie 4.0 Anwendungen bietet die Möglichkeit, die Daten durch Informationsmodellie-
rung semantisch zu beschreiben. Obwohl OPC UA Informationsmodelle maschinenlesbar
sind, basieren sie nicht auf formaler Logik, wodurch ein automatisiertes Schlussfolgern
verhindert wird. Außerdem mangelt es ihnen an semantischer Ausdruckskraft und auch
die Abfrage und Suche in Informationsmodellen ist aktuell nur eingeschränkt möglich.
Diese Nachteile können durch die Kombination von OPC UA mit Semantic Web Tech-
nologien beseitigt werden. Dadurch können auch die Fähigkeiten von DZ in Bezug auf
Interoperabilität und Anpassungsfähigkeit weiter verbessert werden.

Die vorliegende Arbeit liefert ein technologieunabhängiges Architektur-Framework für
die Erstellung von DZ und deren Services im Bereich industrieller Energiesysteme. Dazu
werden Kontextinformationen und Laufzeitdaten in einem verteilten Knowledge-Graphen
verknüpft. Es wird eine Methode gezeigt, wie bestehende OPC UA Informationsmodelle
genutzt werden können, um domänenspezifische Ontologien zu instanziieren. Diese Onto-
logien liefern die Semantik für die Daten des DZ und seiner Services. Außerdem wird
eine Ontologie-basierte Datenzugriffsmethode für OPC UA-Laufzeitdaten vorgestellt,
um Zeitreihendaten in einen Knowledge-Graphen zu integrieren. Die Leistungsfähigkeit
des entwickelten Ansatzes in Bezug auf Datenabfragen wurde mit verwandten Mög-
lichkeiten zur semantischen Integration von Sensordaten verglichen und evaluiert. Die
gespeicherten Informationen im Knowledge-Graphen wurden außerdem genutzt, um ein
datengetriebenes Simulationsmodell automatisch zu identifizieren.

Die Ergebnisse der Arbeit zeigen die Vorteile der Kombination von OPC UA und Semantic
Web-Technologie im Kontext eines DZ. Der DZ wird an seine Umgebung anpassbar und
semantische Interoperabilität zwischen den Services des DZ dadurch ermöglicht.
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Abstract

Future industrial energy systems have to adapt to new requirements, caused by a
flexible production environment, the usage of volatile renewable energy sources, and the
integration into energy markets. Consider these energy systems as Industrial Cyber-
Physical Systems (ICPSs), Digital Twins (DTs) are the key enabling technology for
optimizing the operation by providing services for advanced monitoring, diagnosis,
prediction, and control. Although the concept of DTs is not new, there are still missing
architectural patterns and methods for creating them and their services in the domain of
industrial energy systems efficiently. This results in implementations targeting application-
specific solutions which provide no semantics to the accruing data. Thus, these data are
hardly reusable for other tasks.

On the other hand, OPC UA, as a promising technology used in Industry 4.0 applications,
provides additional semantics to the data by its information modeling capability. Though
such information models are machine-readable, they still lack semantic expressiveness, are
not based on formal logic, and inhibit automated reasoning. Also, information retrieval
is limited in OPC UA by its current implementation. However, these drawbacks can be
overcome by combing OPC UA with Semantic Web technology further enhancing the
capabilities of DTs regarding interoperability and adaptability.

As an outcome, the thesis provides architectural guidelines for creating DTs and their
services in the domain of industrial energy systems, considering RAMI 4.0 and utilizing
existing OPC UA infrastructures to provide context information and run-time data stored
in a federated knowledge graph. Therefore, a generic DT architecture is presented and a
method is shown, how existing OPC UA information models can be used to instantiate
domain-specific ontologies to provide context information for a DT. Also, an ontology-
based data access method for OPC UA run-time data is developed to integrate time
series data into a knowledge graph. The query performance of the developed approach
is evaluated in comparison with other semantic sensor data integration methods. To
showcase the applicability of the stored context information, the information is used
to identify a data-driven simulation model automatically. In the end, functional and
non-functional requirements and a service framework architecture for DTs are presented.

The results of the thesis show the benefits of combining OPC UA and Semantic Web
technology in the context of an architectural DT framework by making the DT adaptable
to its environment and providing semantic interoperability between the DT’s services.
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Doctoral School Smart Industrial Concept! (SIC!)

Smart Industrial Concept!1 is a joint venture of the three scientific partners, TU Wien,
Austrian Institute of Technology GmbH (AIT), and Montanuniversität Leoben, together
with the industrial partners EVN, evon, FunderMax, ILF Consulting Engineers, and
OSIsoft. The research activities of SIC! are mainly focusing on promoting digitalization
and decarbonization in industry. The doctoral school’s overarching goal is to create
methods for energy-optimized industrial plant operation, energy conversion, distribution,
storage, and interactions with energy markets. The four main research areas of SIC!,
namely data processing and preparation, sector coupling and energy markets, optimal
design of energy supply, and deployment and optimization, are depicted in Figure A.

1https://sic.tuwien.ac.at
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Figure A: Main pillars of the doctoral school SIC!

As part of the doctoral school, the thesis contributes mainly to the area of data processing
and preparation. It provides methods and concepts for semantic data integration as well
as knowledge engineering and management, which can be used to build a Digital Twin of
an industrial energy system. The presented methods and concepts in this thesis can be
seen as a foundation for further research and development work in the other areas of the
SIC! consortium.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
In industry, energy is consumed during the production process to transform raw materials
into products. This energy has to be transformed, transported, and stored within the
facility. Depending on the current production plan, electric power has to be provided to
different equipment, like fans, pumps, or conveyors. Additionally, such industrial energy
systems also transform fuel and power into other energy utilities, like heat, steam, and
hot fluids used for production [35].

Currently, industrial energy systems have to adapt to changing demands. One reason is
the goal of a highly optimized and customized production, as well as increased automation
and adaptability of the production process [41]. These goals should be reached within
the so-called fourth industrial revolution or Industry 4.0. The concepts of Industrial
Cyber-Physical Systems (ICPSs) in combination with Industrial Internet of Things (IIoT)
technology are the main enablers for this revolution. The industrial energy systems are
tightly coupled with the production process, thus they have to fulfill similar requirements.
Another reason is decarbonization in industry, which leads to the integration of renewable
and distributed energy sources. Industrial energy systems have to compensate for the
volatile energy production by facilitating storage capabilities and enhancing energy
management capabilities. The third reason is the development of new business models,
which are enabled through such a flexible industrial energy system. Participating in
energy markets adds new values to the business, but also new constraints must be met
because the energy supply chain has to be considered beyond the plant’s boundary.

Transforming industrial energy systems into flexible ICPSs will be necessary for future
businesses in Industry 4.0. The components of an industrial energy system are tightly
coupled with the production process and become elementary assets of the business. Thus,
Reference Architecture Model Industry 4.0 (RAMI 4.0), which was designed as solution
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1. Introduction

space for production systems, can also be applied to these industrial energy systems. In
this context, RAMI 4.0 seems to be more suitable than other architecture models typically
used in the energy domain, like Smart Grid Architecture Model (SGAM). SGAM is
quite similar to RAMI 4.0 as it also provides a three-dimensional solution space, where
the two dimensions "Interoperability Layers" and "Zones" are more or less equivalent
to the RAMI 4.0 dimensions of "Layers" and "Hierarchy Levels". However, the third
dimension in SGAM called "Domains" is concerned with energy transmission, including
bulk generation, transmission, distribution, distributed energy resources, and custom
premises. As in this thesis, industrial energy systems are viewed from the perspective of
a plant operator RAMI 4.0 seems to be more suitable than SGAM.

A key enabling technology for ICPSs to provide services like monitoring, diagnosis,
prediction, and control to optimize their operation are Digital Twins (DTs) [54]. According
to [32], a DT is a ”formal digital representation of some asset, process, or system that
captures attributes and behaviors of that entity suitable for communication, storage,
interpretation or processing within a certain context”. To this definition, it has to be
added that a DT can also include more than one asset, process, or system, which are
somehow logically connected by the ICPS. Thus, an ICPS can consist of many DTs that
interact with each other by sharing information to reach a common goal. This interaction
can happen in various ways. In this context, the Platform Industrie 4.01 has defined the
concept of an Asset Administration Shell (AAS), which can be seen as a DT, and also
defined a language for Industry 4.0 components [56] to enable their interaction.

However, even if the concept of DTs is not new, their development is still a time-consuming
and laborious task. This is because even if most implementations are goal-driven, their
development is rarely accompanied by following architectural templates [27]. Thus,
methods and concepts are needed in the domain of industrial energy systems to facilitate
the DT development process and support the digital transformation in that area.

Even if some architectural concepts and frameworks for DT exist in the literature, they
are missing a common terminology and understanding. The Industry 4.0 initiative has
defined the RAMI 4.0 as a solution space to locate standards and technologies in its
three dimensions. The clear definition of these dimensions helps to create a common
understanding for new technologies, like the DT. In this context, a DT architecture should
be aligned with RAMI 4.0 and its dimensions. Thus, the following research question
emerges:

RQ1 - What is an appropriate system architecture for Digital Twins of
industrial energy systems considering the Reference Architecture for Industry
4.0 (RAMI4.0)?

To reach the needed flexibility in ICPS and enable informed decision making, information
from the whole life-cycle is needed. The DT acts as an interface to this information
which can be managed to utilize machine-readable knowledge representation. This

1https://www.plattform-i40.de
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1.1. Motivation and Problem Statement

knowledge representation can also be used to provide semantic interoperability within
the DT’s services as well as between the DT and client applications. The Semantic
Web stack provides a comprehensive tool-set for building and querying such knowledge
representations in the form of ontologies, utilizing Resource Description Framework
(RDF), Resource Description Framework Schema (RDFS), Web Ontology Language
(OWL) and SPARQL Protocol and RDF Query Language (SPARQL). These technologies
are standardized by World Wide Web Consortium2 (W3C). In combination with reasoning
engines and the incorporation of external information sources, so-called knowledge graphs
can be created.

Next to these web technologies, there is a well-established industrial standard called
OPC UA, which also provides information modeling capabilities. With these information
models, structure and semantics are provided to the data within an ICPS, but with
less semantic expressivity than provided by formal ontologies. Thus, a combination of
OPC UA and the Semantic Web stack brings advantages regarding tooling, semantic
expressivity by means of reasoning, browsability, and the ability of interlinking with other
information to build an knowledge graph inside the DT. These OPC UA information
models are sometimes already available and contain valuable information. Thus, methods
are needed to reuse these models and utilize them inside a DT. Therefore, the following
research question shall be answered:

RQ2 - What is an appropriate method for providing semantics for the data
of a Digital Twin utilizing existing OPC UA information models?

Ontologies are suitable to create a semantic integration layer that provides a higher level
of abstraction and facilitates the data integration process from heterogeneous sources
[42]. However, ontologies are not suitable to store a large amount of time-series data, as
created by sensors and events in an ICPS. Ontologies are stored in so-called triple stores,
which are specialized RDF databases. If time-series are directly stored in RDF, new
triples have to be created for every new observation. This causes performance issues for
data retrieval if the triple store grows over time. However, the use cases of historical data
access are quite common for a DT application. To overcome the performance problem,
the concept of Ontology-Based Data Access (OBDA) exists, where the data can stay
in their original storage and – for reasons of performance optimization – only mapped
into the ontology on demand. Similar concepts have to be applied and evaluated for the
integration of OPC UA, which is a common data source in industrial applications [16].
Thus, the following research question is stated:

RQ3a - How can OPC UA run-time data be semantically integrated into a
Digital Twin architecture considering enhanced data retrieval performance?

Regardless of its suitability, time-series data are sometimes stored directly in RDF for
certain use cases, as presented in [19]. For relational databases, frameworks like Ontop
[10] exist and are already applied for industrial use cases to facilitate data access [36].

2https://www.w3.org
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1. Introduction

A firm evaluation of the available approaches and a comparison with the one which is
developed for OPC UA data (RQ3a) is needed. Thus, the following research question
shall be answered:

RQ3b - What is the query performance of the OPC UA run-time data
integration approach compared to other semantic sensor data integration
approaches found in the literature?

Simulation models are an important part of a DT in the domain of industrial energy
systems, as the knowledge of the plant’s physical behavior is required for optimizing the
operation. So-called white-box models require a detailed understanding of the underlying
physical principles. However, some physical conditions are often unknown or hard to
get. They make no use of actual data from the process. Differences between the initial
assumptions and the actual implementation result in a mismatch between the simulation
and the actual physical behavior of the process. Even if this is a suitable approach for
some applications, white-box models will not easily adapt to changes in the process
without human intervention.

Thus, two other modeling approaches seem to be more appropriate for most applications,
which rely on data produced by the underlying process. The first approach is called
gray-box modeling and is based on physical principles which provide some predefined
structure to the model. The parameters of the model are determined using historical data.
Black-box models rely solely on data. Typically Machine Learning algorithms are used
to build such models. As a result, prior understanding of the physical principles is not
required as the model does not incorporate this information. The model is only built on
past data produced by the system’s behavior. However, domain expertise, like knowledge
about the plant topology, the process itself with its states, the installed equipment with
its operational boundaries, or the available sensors, is needed to determine which data
should be used as input for the model. To gather this knowledge in combination with
data preparation makes the identification of such data-driven modeling approaches still a
time-consuming task [47]. Thus, the mentioned domain knowledge should be formalized
to support the data-driven model development for DTs and partly automate the process.
Therefore, the following research question is stated:

RQ4 - How can an ontological knowledge representation of a Digital Twin
in combination with semantic run-time data be used to semi-automatically
generate data-driven simulation models?

Services are another important part of the DT concept as highlighted in [53]. Services
encapsulate the functionality of a DT. In recent years, the microservice architectural style
has become more relevant for building distributed software applications with improved
scalability, and maintainability [13]. The idea is to create service-based applications
by composing small, loosely coupled software services [15]. The size of services varies
depending on the application, but the attribute "small" refers to their functionality
rather than the code size. Services are important in the development of DTs, but
they are only mentioned or described at a high level of abstraction in the literature,

8



1.2. Aim of the Thesis

missing implementation details and their fundamental requirements. Because most DT
implementations are driven by a specific goal rather than an architectural template [27],
the same can be said for the services that are implemented. There is still a significant gap
in DT research on how to offer a higher number of services in the same environment to
support complex decision making [11]. Thus, research should focus on the DT’s services
infrastructure, specifically addressing requirements and a service framework architecture
that can later be applied to a variety of DT applications. This problem is addressed in
the following research question:

RQ5 - What are the requirements and a resulting appropriate architecture
for a Digital Twin service framework facilitating semantic interoperability
between services?

The research questions mentioned above showed that there are still missing methods
and concepts that facilitate digital twinning in industrial energy systems. Therefore,
architectural guidelines, data integration methods, and information and knowledge
management methods for digital twinning have to be developed. Semantic Web technology,
with its capabilities and extensive toolset, can help to provide solutions. However, it is
not an established technology for industrial applications, yet, and the combination with
industrial standards like OPC UA is important to gain acceptance in that area. For this
reason, this thesis shall also investigate how Semantic Web technology can leverage the
implementation of DTs in the domain of industrial energy systems.

1.2 Aim of the Thesis
The overall aim of the thesis is to provide concepts and methods for building a DT in
the domain of industrial energy systems. Therefore, the following five goals are defined
and put into relation with the research questions mentioned above.

G1: Develop a generic Digital Twin architecture for industrial energy systems
Architectural templates and guidelines are missing for implementing DTs in the domain of
industrial energy systems. Thus, a generic DT architecture for industrial energy systems
shall be developed. As RAMI 4.0 provides a general solution space in the context of
Industry 4.0, the developed DT architecture should also be aligned with this reference
model. This goal is targeted by research question RQ1.

G2: Reusing existing OPC UA information models to provide semantic
context information for the Digital Twin
Next to the specified communication protocols utilized by OPC UA, it also provides
information modeling capabilities. Those information models hold structure and context
to the OPC UA data. Usually, these information models are built during the engineering
phase and contain relevant information useful for a DT during operation. Thus, research
question RQ2 is targeting the extraction of this information from existing OPC UA
information models and providing this information to the services of a DT.
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G3: Provide a semantic integration method for OPC UA run-time data of a
Digital Twin
A DT has to handle a large amount of time-series data, which are mainly produced by
sensors. The DT has to provide semantics and context to make those data reusable for
various services. In Industry 4.0, OPC UA is currently a recommended standard within
the RAMI 4.0 communication and information layer. Thus, a method for efficiently
integrating OPC UA run-time data and interlinking it with other information has to be
provided. This goal is targeted by research questions RQ3a and RQ3b.

G4: Providing a method for supporting semi-automatic data-driven model
identification
Dynamic models of the physical behavior are important for the operation of a DT. They
are used to monitor or predict the condition of the DT and to optimize the plant’s
performance. As the models have to adapt to changes in the environment or the DT
itself, data-driven models are more suitable for that kind of task. Thus, a method shall be
provided which allows a DT of an industrial energy system to identify such data-driven
models based on engineering information and historical run-time data of the plant. This
goal is addressed by research question RQ4.

G5: Developing an architectural concept for a Digital Twin service framework
Services play a key role for DTs as they structure their functionality in a modular
way. Thus, a DT service framework shall be provided, which is based on fundamental
requirements found in the literature. This goal is tackled by research question RQ5.

1.3 Methodology
This section describes the methodology which is applied to answer the above-stated
research questions and reach the goals of the thesis. As the research questions are
interrelated, an agile, iterative, and incremental research design approach is applied.
Figure 1.1 gives an overview of the steps in the applied research process. In the initial
planning step, the research questions are formulated and the applied corresponding
research methods are determined. Each step in this iterative process is related to a
certain research question. The dissemination is conducted out if final results from a
process step are available. Thus, the chronology of the publications has not the same
order as the stated research questions.

Except for RQ3b, the explorative research is qualitatively evaluated by developing proof-
of-concept implementations, which are applied to certain case studies. For RQ3b, a
descriptive, qualitative research approach is used to evaluate the performance of the
proposed data integration method. In addition, it is compared with other methods found
in the literature. In the following, a more detailed description of the applied methods for
answering each research question is given:

Applied Methods for RQ1 – Generic Digital Twin Architecture: Common
services, concepts, architectures, and frameworks in the context of industrial DTs, which
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Figure 1.1: Iterative, incremental research process.

are applied to the operational phase of the life-cycle, were identified and analyzed based
on a literature review. The acquired information was used to develop a technology-
independent generic DT architecture. A proof-of-concept implementation was used for a
use case of a thermal energy storage system, called Packed-Bed Thermal Energy Storage
(PBTES), which is located at the Institute for Energy Systems and Thermodynamics (IET)
at TU Wien. Therefore, an ontology was designed following the METHONTOLOGY
approach [18]. The implemented ontology has been evaluated using common tools like
the OOPS! Pitfall Scanner [39] and the HermiT reasoner [20].

Applied Methods for RQ2 – OPC UA information model reuse: Various
transformation approaches between OPC UA information models and OWL ontologies
found in the literature were analyzed. Based on the review, a two-step, rule-based
transformation process was defined and evaluated with a proof-of-concept for the use
case of a thermal heating process. Therefore, an OPC UA server was implemented,
exposing the instantiated information model. The correctness of the transformed model
was evaluated by applying SPARQL queries and compared the retrieved information with
the expected results.

Applied Methods for RQ3a – OPC UA run-time data integration: Again, a
literature review was conducted to identify relevant approaches to combine Semantic Web
technology and OPC UA. Based on an analysis of the OPC UA meta information model
and OWL profiles, a mapping between OPC UA and OWL full was defined. Afterward,
a concept for OBDA of OPC UA run-time data, based on Custom Property Function
(CPF) was developed. The feasibility of the proposed OBDA approach was evaluated by
a proof-of-concept implementation for a use case of the PBTES.

Applied Methods for RQ3b – Query performance evaluation of semantic
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sensor data integration methods: Three common semantic sensor data integration
methods were identified in the literature. The scalability of these three methods was
evaluated by applying a quantitative analysis of their query execution time. Therefore,
artificial sensor data were generated, and eight different SPARQL queries were formulated
to test various search dimensions in the time-series data. The number of sensors was
varied between 10 and 500, and the produced amount of data per sensor was varied
between 100 and 100.000 observations. The query execution time was measured for every
combination of these two values for each integration method. Every measurement was
repeated 20 times to calculate the mean and median execution time, which served for
analyzing the results of the defined eight SPARQL queries.

Applied Methods for RQ4 – Semi-Automatic simulation model identification:
A literature review for automatic model identification was carried out. To capture
the essential plant information, an ontology was designed based on the Ontology 101
engineering method [37]. Relevant physical principles, e.g., the conservation of mass
and energy, were identified and formulated as SPARQL rules to capture causal relations
between sensor data. A proof-of-concept implementation for a thermal heating process
was used to evaluate the feasibility of the proposed approach. Therefore, an Open
Modelica simulation was developed to generate sensor data which were used to evaluate
the semi-automatic model identification process.

Applied Methods for RQ5 – Digital Twin service framework: Functional and
non-functional requirements were identified based on a literature review of DT frame-
works, architectures and applications. The identified requirements are the foundation for
an architecture of a technology-independent microservice-based framework. An imple-
mentation of this framework is provided as proof-of-concept and was evaluated against
the identified requirements.

1.4 Summary of the Published Articles
Before a summary of the work is given, the interrelation of the published articles is
described. Therefore, RAMI 4.0, Smart Data in Industry 4.0, and the concept of
knowledge graphs are briefly introduced. Afterward, the publications are set into the
proper context using these concepts. An understanding of these concepts is required to
grasp Figure 1.3 in which the overview of the published articles and their contextual
embedding into the thesis are visualized.

1.4.1 Interrelation of the Published Articles
The work in this thesis is tightly coupled to the concept of RAMI 4.0 which is defined
in [2] and shown in Figure 1.2. In general, RAMI 4.0 is used to achieve a common
understanding of standards, tasks, and use cases. Therefore, three different aspects
or dimensions are used by RAMI 4.0: It expands the hierarchy levels of IEC 62264
by "Product" and "Connected World", defines six layers for an Information Technology
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(IT) representation of an Industry 4.0 component and considers the life cycle of the
product or system according to IEC 62890. For Industry 4.0, the product, as well as
the collaboration with external entities, plays a vital role. Thus, these levels are also
considered in RAMI 4.0. The life cycle is divided into a "type" and "instance" phase. The
"type" phase is part of the engineering phase, which ends when a prototype is available.
An "instance" is the system or product when it reaches the operational phase in the life
cycle. Additionally, six RAMI 4.0 layers are defined to manage complexity, namely the
Asset, Integration, Communication, Information, Functional, and Business Layer.

Figure 1.2: Reference architecture model for Industry 4.0 (RAMI4.0) [2]

With the help of RAMI 4.0, tasks and workflows can be broken down into manageable
pieces and use cases can be provided with context. Even if RAMI 4.0 was originally
designed for the production industry, it is also applicable in the domain of industrial
energy systems. Thus, it is used in this work to investigate certain aspects of a DT in
that domain.

The functional distribution of an industrial energy system can vary over various hierarchy
levels, especially considering the cloud, fog, and edge computing paradigm in modern
automation systems [58]. This aspect is not further investigated in this work. Also, only
the operational and maintenance phase of the energy system is targeted. Thus, these two
dimensions (i.e., life cycle & value stream, hierarchy level) are neglected in Figure 1.3 and
only the RAMI 4.0 layers are taken into account. These layers are now shortly described,
based on the information found in [2]:

Asset Layer – Physical components as well as human beings can be part of the Asset
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Layer.

Integration Layer – This layer represents the interface between the real and the digital
world. It provides information about the underlying assets. Computer-aided control of
the technical process, sensors, as well as interactions with humans over Human-Machine-
Interfaces (HMI) are located on this layer.

Communication Layer – This layer is concerned with data communication and data
models. Currently, OPC UA is a recommended standard on this layer.

Information Layer – This layer provides a run time environment for (pre-)processing of
events, execution of event-related rules, the persistence of data, ensuring data integrity,
and consistent integration of different data for obtaining a higher data quality. This
is achieved via service interfaces and by receiving and transforming events which are
processed by the Functional layer.

Functional Layer – This layer provides a platform for horizontal integration of various
functions. It also provides a run time and modeling environment for services that support
business processes and a run time environment for applications and technical functionality.

Business Layer – Some aspects of this layer include the mapping between business models
and the resulting processes, orchestration of services of the Functional layer and receiving
events for advancing the business process.

Figure 1.3 provides an overview of the main DT components within the RAMI 4.0 layers.
They are only depicted on a very abstract level. The Physical Entity at the Asset layer
represents the industrial energy system, e.g., a heating process or PBTES.

At the Integration layer, run-time data and engineering data are made available to
the DT. Run-time data is mainly produced by sensors whereas engineering data comes
mainly from Piping and Instrumentation (P&I) diagrams in industrial energy systems.
P&I diagrams contain information about the plant’s equipment, its topology, and the
instrumentation.

In this thesis, OPC UA is assumed as used industrial communication system, as it
is also a recommended standard by the Industry 4.0 initiative for the communication
and information layer. It provides unified transport mechanisms and offers information
modeling capabilities. Such information models are standardized for certain domains
in so-called Companion Specifications. This approach is suitable to build modularized
information models [26], which can be reused by a DT. Currently, there is no suitable
Companion Specification for industrial energy systems available, but the Data Exchange
in the Process Industry (DEXPI)3 initiative collaborates with the OPC Foundation to
establish such a specification. This Companion Specification will provide an OPC UA
information model for P&I diagrams. However, it has not been released, yet.

At the information layer, pure process information is not sufficient to achieve the optimum
operation of an ICPS [9]. The needed additional machine-interpretable semantics and the

3https://dexpi.org/
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Figure 1.3: Overview of published papers and their contextual embedding into the thesis.

interlinking of various data can be realized by utilizing a so-called knowledge graph based
on Semantic Web technology. The terms knowledge graph, knowledge-based system,
and ontology are sometimes used interchangeably in the literature. With respect to
[3], a knowledge-based system consists of two parts: a knowledge base and an inference
engine. In this context, an ontology is the knowledge base in a knowledge-based system
on which the reasoner can infer new knowledge. Based on the definition found in [17],
a knowledge graph is a knowledge-based system (ontology and reasoner) that is also
able to integrate information from external sources. This integration of external sources,
like relational databases, is quite important for realizing DTs. However, some of the
publications which are presented in this thesis are focusing more on the ontological aspect
of such a knowledge graph. Thus, both terms are used in the following chapters.

A "Shared Knowledge Graph" is established within the DT. Access to the information
stored in this knowledge graph, which combines various engineering information and
run-time data, is granted via a so-called "Smart Data Service". The Smart Data Service
is located at the Information layer of RAMI 4.0, as depicted in Figure 1.3.
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Other functional services can be built on top of this Smart Data Service in the functional
layer of RAMI 4.0. In the context of Industry 4.0, "Smart Services" are established, which
are traditional industrial services combined with Internet-based services to create new
innovative services [29]. According to [50], Smart Services are digital services that act on
collected and analyze data from networked, intelligent technical systems and platforms.
Thus, Smart Services respond to analyzed data from cross-functional areas. A premise
for Smart Services is the availability of smart data [50]. The term smart data is closely
related to big data, as it refers to structured, semi-structured, and unstructured data,
which are acquired from a variety of heterogeneous sources [25]. This smart data is
provided by the already mentioned Smart Data Service.
Details about certain aspects of the components can be found in the publications. The
dashed lines in Figure 1.3 mark the area within the DT which a certain publication
addresses. Also, a reference to the chapter in which the publication can be found is given.
In Chapter 2, a general DT architecture is presented, which provides more details about
the components in the various RAMI 4.0 layers. In Chapter 3, a concept for reusing
existing OPC UA information models, which incorporate engineering information, e.g.
information about the plant topology, is presented. This method can be used to populate
the shared knowledge graph with engineering information. Chapter 4 presents an OBDA
method for OPC UA. It shows how run-time data can be integrated into the shared
knowledge graph. This method is compared with other semantic sensor data integration
methods found in the literature in Chapter 5, by evaluating their query performance.
A use case for utilizing the available information from the Shared Knowledge Graph to
semi-automatically identify simulation models of the underlying process is presented in
Chapter 6. Chapter 7 presents a concept for a microservice-based framework, which
shows how functional services can be composed and integrated into business processes
utilizing a workflow engine and a federated query engine.

1.4.2 Requirements and Industrial Use Cases
For a DT, created for the use case of an industrial energy system, four main requirements
are identified for this thesis which are the foundation of the Generic Digital Twin
Architecture (GDTA) presented in Chapter 2 and listed below:

GRQ1 A DT shall be able to handle equipment for energy production, storage, distribution,
and consumption which is tightly coupled with the production process and therefore
constitutes a valuable business asset.

GRQ2 A DT should be able to incorporate and interlink various data sources to provide
the needed information about the physical asset’s state to cope with certain tasks.

GRQ3 A DT should provide machine-readable semantics to its gathered data to facilitate
(semi-)automatic information processing.

GRQ4 A DT should provide a flexible way of adding or adopting its functionality to be
able to deal with changing demands from production.
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Nevertheless, some topics are not targeted and left out of scope. These include:
Maximum response time - In some applications, the maximum response time is an essential
factor to maintain operations. In this thesis, the DT is implemented based on IT systems,
which can not guarantee a maximum response time. Thus, real-time requirements have
to be handled by the underlying Operation Technology (OT) systems.
Security - Security in the context of a DT is a very important topic. Especially, the
convergence of OT and IT make security considerations more important. However, this
opens up a whole new research direction, not considered in this thesis.
Life-cycle Management - Even small changes in the production process, like replacing
some of the equipment, have to be handled by the DT. This means it has to be aware of
such replacements and also be aware that historical data maybe be deprecated. Internal
simulation models of the DT have to adapt to the changes in the environment, and the
deprecated data cannot be used anymore, e.g., for model identification or fault detection.
Thus, the management of internal simulation models and data over the whole life-cycle
has to be performed within a DT.
In the following chapters, two distinct use cases in the domain of industrial energy systems
are used to evaluate the concepts and methods presented in this thesis. These two use
cases represent the physical asset of the DT.
The first use case (A) is a PBTES, used in industrial processes with high operating
temperatures up to 800 ◦. Typical industrial applications are in the steel, glass, and
cement industry or in solar power plants. A test rig of such an energy storage device
is located at the Institute of Energy Systems and Thermodynamics laboratory at the
TU Wien. It consists of a conic bulk container filled with gravel as the storage medium
and surrounded by insulation. Figure 1.4 shows a schematic diagram of the PBTES. The
ambient temperature Ti, the temperature after the heater TH , the outlet temperature To,
and the mass flow m are measured. Inside the bulk container, temperature sensors at
four different heights are installed (TL1 − TL4) to keep track of the state of charge. The
ventilation unit and a heater are used for loading the PBTES by blowing hot air into the
bulk. The unloading is performed using cold air from the surrounding, which is blown
through the hot bulk to increase the air’s temperature. This hot air can now be used in
the production process.
The second use case (B) is a thermal process, which is depicted in Figure 1.5. Air is
heated up by an electrical heater H1 and blown into a chamber SiPro by the ventilation
unit F1. The temperature inside the chamber is controlled to hold certain set points.
The hot air is retrieved by the ventilation unit F2 from the chamber and transported
to a heat exchanger HE1 for heat recovery. Various temperature sensors are available
to measure the inlet temperature Tin, the temperature after the heat exchanger Thx,
the supply temperature for the process Tsup, the process temperature Tp, the extracted
temperature Text, and the outlet temperature Tout. Also, the mass flow in the inlet min

as well as in the outlet mout is measured.
Use case (A) was specified within the doctoral college SIC! and was investigated by
several students regarding various research topics, e.g., in [23]. It was chosen because
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Figure 1.4: Use case (A) - Schematic diagram of the Packed Bed Thermal Energy Storage
(PBTES).

Figure 1.5: Use case (B) - P&I diagram of the heating process.
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the test rig in the laboratory can be used for experiments without interfering with a real
production process. In this thesis, use case (A) is applied in Chapter 2 and 4.
As use case (A) is just a thermal energy storage, a more complex use case (B) was
developed for this thesis. This use case (B) provides a slightly more complex system,
including energy production, distribution, and consumption. This introduces more
freedom to investigate certain aspects of this thesis, like modeling causalities. Therefore,
a simulation model was developed and used for investigating various scenarios. This use
case is applied in Chapter 3, 6, and 7.

1.4.3 Summary
In the following, a summary of the publications is given. Details can be found in the
referenced chapters.
Generic Digital Twin Architecture for industrial energy systems (Chapter 2)
The concept and capabilities of a DT are not clearly defined in the literature because the
domains, e.g manufacturing, smart grid, building automation, and also their applications
are varying. Thus, most implementations are targeting specific use cases and applications.
This is the reason why realizations follow a certain goal without any architectural template
[27]. Even if some concepts, architectures, and frameworks for DT already exist, they are
not based on a common architecture and name similar things differently. To overcome
this problem, a technology-independent GDTA is proposed, which is aligned with the
RAMI 4.0 layers. With the help of the GDTA, existing frameworks and technologies can
be positioned in this architecture, facilitating the development of DTs.
The GDTA is based on the fundamental Five-Dimensional Digital Twin (5D-DT) concept
presented in [53]. The 5D-DT consist of five main components or dimensions, namely
the Physical Entity, the Virtual Entity, Connections, the Data Model, and Services.
The Physical Entity comprises many subsystems that conduct specific functions and are
supported by numerous sensors that collect state and operational data. The Virtual
Entity tries to model the physical entity with great precision by combining many types of
models such as geometry, physical, behavior, and rule models. Services for the Physical
Entity and the Virtual Entity are included in the Service Model. Data from the Physical
Entity, the Virtual Entity, the Services, as well as domain knowledge, and the fusion
of those data make up the Data Model. The Connection Model describes each link
between the DT’s components. This 5D-DT concept with its five dimensions serves as
the cornerstone for the propose GDTA.
The proposed GDTA is developed based on a literature review of concepts, architectures,
and frameworks for DTs. A proof-of-concept implementation is used to evaluate the
architecture. Therefore, ontology design methods are applied to build a shared knowledge
graph based on Semantic Web technology. A use case of the PBTES, is used to evaluate
a simulation service of the DT.
The GDTA introduces the concept of a "Smart Data Service" which is located at the
Information Layer of RAMI 4.0. It provides access to archived run-time data, like sensor
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data and context information mostly gathered from engineering data. The service provides
endpoints for inserting new information as well as for information retrieval. Information
ownership and access have also to be managed, including data access mechanisms. On
the Functional Layer of the GDTA several service groups are identified, like Simulation
Services, Monitoring Services, Diagnostic Services, Prediction Services, Control Services,
and Reconfiguration Services. The Simulation Service is important as it is the foundation
for other services. It provides models simulating the physical behavior of the Physical
Entity of the DT. The DT can consist of more than one model, which are developed for
a special purpose. Thus, a model has to be connected with context information by the
Shared Knowledge Base to create a certain View on the Virtual Entity. The functional
services have to be managed to include new ones easily and make them available for other
services. Thus service composition and inclusion to business logic have to be performed.

The proof-of-concept implementation is focusing on the Virtual Entity and the simulation
service. Therefore, a hierarchical ontology structure, with a top-level ontology and
domain ontologies for every service class, is presented. Existing ontologies are reused
and extended, like Ontology Web Language for Service (OWL-S) [33] for the service
description and ML-schema [40] for describing the available simulation models. To test the
implemented simulation service, a Representational State Transfer (REST) Application
Programming Interface (API) is defined.

The proof-of-concept implementation showed the instantiation of the technology-independent
GDTA based on Semantic Web technology and their applicability for handling context
information about resources and services within a DT.

Reusing existing OPC UA Information Model to provide semantic context
information for the Digital Twin (Chapter 3)
To expand the capabilities of Cyber-Physical Systems (CPSs), the semantics of data
and context information are crucial. In addition to its communication capabilities, the
OPC UA standard provides concepts for information modeling to give structure and
meaning to OPC UA data. Thus, information about equipment and the plant topology
may be available via OPC UA and used to contextualize data for further processing.
However, the absence of formal semantics, the lack of browsing capabilities [43], and the
low semantic expressiveness compared to more sophisticated knowledge representation
languages [8], are disadvantages of the OPC UA information model. In most cases, a
direct OWL representation of the OPC UA information model is not adequate because
information models are not designed in the same way as ontologies. Thus, for certain
applications, only parts of the OPC UA information model are needed to instantiate a
domain-specific ontology.

It is shown how domain-specific ontologies can be instantiated using existing OPC UA
information models while considering modifications to the source information model
and the target ontology. The proposed method is intended for a use case in which
the information model is already instantiated, and the address space is exposed by an
OPC UA server.
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The transformation process of OPC UA information model into a domain-specific ontology
takes place in two steps. In the first step, the OPC UA information model is converted
to OWL Full. While using OWL Full can result in undecidable reasoning problems, the
mapping is simple, as most concepts can be mapped with a one-to-one relation. In the
second step, the OWL Full graph is transformed into a domain-specific ontology using
SPARQL rules. This domain-specific ontology may be built using OWL DL, which allows
for reasoning if needed.

The rules are formulated as SPARQL construct clauses. They are searching the ontology
graph for patterns and create new concepts and instances based on these patterns in
another graph. To apply this method to different domain ontologies or the OPC UA
information models, only these SPARQL rules must be altered. As a result, a flexible
transformation method is developed.

A simple heating process is chosen as a use case to apply the proposed transformation
process for evaluation. An OPC UA information model is developed for the heating
process use case and instantiated in an OPC UA server. The information model captures
the structure of the heating process, including its components, topology, sensors, and
actuators. The information model is designed following current industry standards
in the domain of piping and instrumentation. The Pipe, Equipment, Topology, and
Instrumentation Ontology (PETIont) is utilized as the target ontology for the proof-of-
concept.

In this use case, nine different SPARQL rules are formulated for the transformation
between the given OPC UA information model and PETIont. When the transformation
procedure is completed, the transformed information is accessible via a SPARQL endpoint.
Because the target ontology is written in OWL DL, reasoning may be applied if necessary.
SPARQL queries are used to retrieve information from the endpoint and compare it to
the expected results in order to evaluate the transformation process.

The information stored in the target ontology can be used by a DT to facilitate plant
monitoring, diagnosis, prediction, and control. The full potential of the suggested
transformation approach is reached once this information is linked to additional domain-
specific ontologies.

Semantic integration method for OPC UA run-time data of a Digital Twin
(Chapter 4)
Semantic Web technology may be used to semantically enrich industrial data, integrate
data from various sources, and improve interoperability. The ontological representation
of the plant structure, together with its run-time data, enables the information processing
within such a CPS, to act on the physical process. Therefore, engineering and run-time
data have to be interlinked to form a so-called knowledge graph. The main objective in
this data integration and the interlinking process is to preserve data in its original format
and storage, which can be accomplished via OBDA approaches. Such an approach is
presented in this work for OPC UA as it is a popular industrial communication standard.

A transformation of the OPC UA information model into an OWL ontology is performed
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to provide access to run-time data via a SPARQL endpoint. Usually, data inside an
ontology is stored in a graph-based database called triplestore and does not often change
over time. In industrial operations, run-time data, such as sensor data or state conditions,
are generated at high volume and velocity. Thus, triplestores are not well suited for
huge time-series data since the enlargement of the graph results in a deterioration of the
SPARQL query performance [34]. As a result, an OBDA technique based on CPF is
proposed. With this method, run-time and historical time-series data may be retrieved
on-demand and without the need for persistent storage in the triplestore.

A transformation between OPC UA meta-model and OWL Full is specified, to auto-
matically turn OPC UA information models into OWL ontologies and demonstrate the
application of CPF for OBDA. Therefore, the Apache Jena Framework4 is utilized in the
proof-of-concept because it supports OWL data and can be enhanced with CPF using its
SPARQL query engine ARQ. To access the OPC UA data within the ARQ extension,
the Eclipse Milo framework5 is used for the OPC UA communication.

To gather the information model from the OPC UA server, an OPC UA client connects
to the server and begins analyzing the address space by reading the NamespaceArray
from the OPC UA server. Afterward, a transformation into RDF is carried out. In a
second post-processing step, the OWL Full vocabulary is added. OWL Full is utilized
because it allows using object properties for relating individuals and classes like it is done
for instance-declarations in the OPC UA information model. Such constructs are not
permitted in OWL DL.

The run-time data is accessible via the OPC UA Read service or the OPC UA HistoryRead
service. To prevent a periodic or event-based updating of the data inside the ontology
and to keep the amount of data in the triplestore as small as possible, the OBDA method
loads the OPC UA data only on-demand.

As a use case for evaluating the ontology-based OPC UA data access, the PBTES is
chosen. It consists of a ventilator, a heater, and a bulk container. It is also equipped
with a number of temperature sensors as well as mass flow sensors. The PBR’s OPC UA
information model is instantiated in an OPC UA server and automatically converted to
OWL. The current sensor data, as well as historical sensor data, can be fetched from the
OPC UA server using SPARQL queries invoking the CPF.

It is demonstrated how such CPF and and the automated transformation of the OPC UA
information models into OWL may be used to integrate OPC UA data into a knowledge
graph, which can be utilized by a DT.

Query performance evaluation of semantic sensor data integration methods
(Chapter 5)
Heterogeneous data sources are often distributed in ICPS, resulting in isolated data
silos. Getting access to these various data sources might be problematic because a lot

4https://jena.apache.org/
5https://github.com/eclipse/milo
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of implicit knowledge is required. For example, in order to get data from a relational
database, the user must first understand its schema, which may consist of tables and
columns with meaningless names and without providing semantics. Thus, the data
integration procedure becomes an extremely time-consuming task. Some of these issues
could be addressed with the use of a knowledge graph that provides semantic to the data
and interlinks existing data sources. Aside from sensor metadata, such as engineering
units, sensor location, and manufacturer information, time-series data must also be
accessible via the knowledge graph to fully develop its potential. Different integration
approaches have been proposed in the literature, but their scalability in terms of data
access performance has yet not be compared. Thus, the question arises, what is the
scalability of different sensor data integration approaches for knowledge graphs regarding
their query execution time?

Three different methods were examined, which were discovered in related work and
applied to an industrial use case. These three approaches are namely, "Ontology Storage",
"Custom Property Function", and the "Ontop Framework6".

Ontology Storage – Storing sensor data inside an ontology is one technique of integrating
sensor data from sensor networks into a knowledge graph. A observations is represented
by a timestamp-value pair. The Sensor, Observation, Sample, and Actuator (SOSA)
ontology [59] is a World Wide Web Consortium (W3C) recommendation and is also
used for evaluating this approach. As the ontology is structured as a graph, every new
observation expands the graph and thus the search space for data retrieval.

Custom Property Function – SPARQL’s functionality can be extended by implementing
a so called "Custom Property Function" (CPF). A property with a specified Uniform
Resource Identifier (URI) determines a CPF, which executes custom code during the
triple matching process. For the evaluation, a CPF is implemented for the Apache Jena
Fuseki Framework to compare this storage strategy with the other two approaches.

Ontop – Ontop is an OBDA framework that is free and open-source. The idea behind
OBDA is to utilize ontologies as an interface for data access. In this context, relational
databases are often used as data sources. However, mappings between an ontology-based
conceptual domain view and the database schema have to be defined.

To evaluate the three approaches, artificial sensor data are generated and stored in a
Structured Query Language (SQL) database and a triplestore. The test data consists of
random floating-point values with a corresponding timestamp. Eight different SPARQL
queries are formulated, which perform a search over three different properties of an
observation, namely the sensor-ID, the timestamp, and the values. The number of sensors
used in the experiment and the number of values per sensor was varied from 10 to 500
and 100 to 100.000, respectively. Because of the page limitation, only two corner cases
are presented. Test Case A has 10 sensors with 100.000 observations per sensor, and
Test Case B has 500 sensors with 2.000 observations per sensor. The two cases are

6https://ontop-vkg.org/
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comparable because they have the same amount of observations in total and demonstrate
scalability problems with the number of sensors and the amount of observation over time,
respectively. The execution time for all eight SPARQL queries is measured for several
combinations of these two values. This procedure is carried out for each of the three
sensor data integration methods. In addition, every measurement is also carried out 20
times to calculate the statistical parameters, like the mean execution time, which are
used for further investigations.
The performance evaluation reveals that storing time-series data in an ontology causes
performance issues if the time-series grows. The CPF is a very adaptable solution for
incorporating many data sources, such as OPC UA or NoSQL databases. Nevertheless,
the implementation of CPF has its limitations. The Ontop framework’s query re-writing
mechanism results in extremely fast data access. Ontop has the shortest query execution
time in the majority of the test cases. Ontop is also able to handle a large amount of
data and scales nicely. One disadvantage of the Ontop framework is that it can only
access a single relational database. Furthermore, this database must be SQL compliant.
Method for supporting semi-automatic data-driven model identification (Chap-
ter 6)
To optimize plant operations and enable production to be tied to the energy market,
novel predictive control strategies have to be applied to ICPS. Accurate models of the
plant’s components are required for such control strategies to forecast their dynamic
behavior and meet set points or detect malfunctions of the plant immediately. However,
the overall model creation process requires knowledge, which is frequently only implicit,
scattered, and rarely adequately documented. As a result, model identification is often
the most time-consuming step within the process of developing model-based control
strategies [28]. Thus, a semi-automatic identification process helps to reduce effort and
could also be performed by software agents within a ICPS.
The cornerstone for such a semi-automatic model identification of components in industrial
energy systems is a formal, machine-readable knowledge representation, as provided by
OWL ontologies. Thus, in this work, information about plant components and equipment,
as well as their causal relationships, are modeled in such an ontology. Also, a mapping of
available sensor data to the appropriate virtual entity is performed. This enables direct
sensor data access via the ontology, as well as the discovery of missing or redundant
sensors within the plant’s topology.
The ontology’s primary information source is the P&I diagram, which is extensively
used in plant engineering. PETIont represents the most important information from
this P&I diagram, like equipment, topology, and instrumentation. This part of the
ontology is used in combination with expert knowledge to create a virtual entity in the
ontology automatically, representing the behavior of the physical plant equipment. The
additional expert knowledge required to generate this virtual entity with its dynamic
equipment models is expressed as SPARQL rules, which are implemented in three steps:
The expert knowledge about plant equipment is encoded by rules, which specify the input
and output characteristics of the Dynamic Model of equipment. These in and outputs
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are related to the Virtual Properties in the PETIont. After each component’s Dynamic
Model and Virtual Properties have been constructed, equivalent properties are identified
within the ontology. Equivalent refers to the fact that they represent the same physical
characteristic. This can be done because the flow information is already available in the
PETIont and knowledge about basic physics principles, like conservation of mass and
energy, are encoded as SPARQL rules. Lastly, the relationship between available and
associated sensors and their data is established. This enables OBDA for the available
sensor data, which is needed for the identification process.

The proposed ontology-based model identification method is evaluated using a thermal
heating process as a use case. Based on the input and output information for the
components and the linked sensor data, a dynamic model is identified using the information
stored in the ontology. To simulate the dynamic behavior of the components, in the
described use case, a linear autoregressive model with exogenous input (ARX) was
chosen. However, any regression model can be used. The model was trained using
Python’s scikitlearn framework, and predictions were made to compare the results with
the expected output.

It is shown how a data-driven model development process can be partially automated,
using ontological knowledge representation of plant equipment, topology, and instrumen-
tation together with expert knowledge encoded in SPARQL rules. This method reduces
the amount of time it takes to create data-driven models for ICPS or can be used within
a DT simulation service.

Architectural concept for a Digital Twin service framework (Chapter 7)
Services are an important part for the development of DT. However, in most published
DT frameworks or architecture, they are only addressed or described at a high level of
abstraction. As most DT implementations are driven by a specific goal rather than an
architectural template [27], the same can be said for the services that are deployed. In
recent years, the microservice architectural style has gained popularity in ICT for devel-
oping distributed software applications with increased scalability and maintainability [13].
Orchestration or choreography is used to perform the service composition. Choreography
follows a decentralized approach, whereas orchestration uses a centralized component.

In general, the design and implementation of services should be based on specific require-
ments guiding architectural principles. Due to a lack of such fundamental requirements
and principles, application-specific solutions are produced, which are rarely reusable,
which increases development time and costs. Thus, the DT’s services infrastructure is
investigated, specifically addressing requirements and a service framework architecture
that can later be used for a variety of DT applications. Therefore, functional and non-
functional requirements for a DT service framework are identified via a literature review.
The requirements are grouped into three RAMI 4.0 layers (Information Layer, Functional
Layer, and Business Layer) that are relevant to the proposed service framework.

The conceptual microservice framework for DT is designed based on the concepts of
the GDTA and the identified requirements. In the proposed architecture, a knowledge
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graph based on Semantic Web technologies is used to interlink information and provide
semantics to the exchanged data. By facilitating a federated SPARQL query engine,
services can add relevant information to the shared knowledge graph. Thus, information
can either remain private or become part of the collective knowledge. OBDA is used to
enable access to run-time and historical data through the knowledge graph while keeping
the data in its original storage.

A Message-oriented Middleware (MOM) with a message broker is used to provide
various communication patterns for inter-service communication. At the Business Layer,
service composition is crucial for providing certain DT functionality. Choreography
or orchestration can be used to provide this functionality. Choreography may provide
advantages in some circumstances because it is a more decentralized approach. However,
orchestration has advantages if complex control flows across several microservices occur
or states have to be handled, like for error handling or user interaction. Workflow engines
can not only be used at the enterprise level to automate business workflows, they can
also be used to orchestrate microservices [22]. Usually, Business Process Model and
Notation (BPMN) is used to describe these workflows. Thus, control flows across several
services can be visualized, and long-lived transactions can be handled. Because workflow
engines support BPMN, it may be used to communicate with non-software developers
and seamlessly add DT capabilities into existing enterprise business processes.

A proof-of-concept for a DT of a thermal heating process is implemented to evaluate
the suggested service architecture. A composite sensor data evaluation service, which
analyzes sensor data from the plant and discovers anomalies, is used to showcase the
service interaction. An anomaly is defined as a sensor fault or abnormal plant behavior
induced by a malfunction of equipment. Three separate services are created for the
described use case, which are orchestrated by the workflow engine Zeebe7. The inter-
services communication is realized using the stream-based MOM Apache Kafka 8. Every
service has its own database or triple store, which is connected to a distributed knowledge
graph through the federated query engine FedX [45]. JSON for Linking Data (JSON-LD)
is used to exchange data across the services and provide semantics. Each service and its
infrastructure (database, triplestore, etc.) is virtualized in Docker9 containers.

With the presented proof-of-concept implementation of the DT service framework ar-
chitecture, the feasibility has been shown and the design artifacts have been evaluated
against the identified requirements.

1.5 Scientific Contribution to the State of the Art
This work contributes to the state of the art in different areas regarding the stated
problems and research questions presented in Section 1.1. In the following, the main
contributions of the published articles are summarized.

7https://github.com/camunda-cloud/zeebe
8https://kafka.apache.org/
9https://www.docker.com/
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Generic Digital Twin architecture for industrial energy systems:
One of the first DT concepts was introduced in [21] and defines three main components:
the physical space, the virtual space, and the connection between them to exchange data
and information. Later, the so-called 5D-DT was presented in [53] as an extension of
this concept, which additionally introduces the data and service aspect. More detailed
architectures and frameworks evolved in the context of DT, like the "Intelligent DT"
[7], the "Reference Framework for DT" [27], "Cognitive Twin Toolbox" [1], and the
"Conceptual Digital Twin Model" [5], which all have different levels of abstraction and
naming conventions.

To partly overcome this naming convention problem and provide an architectural template,
the thesis contributes a technology-agnostic generic DT architecture that is compatible
with the RAMI 4.0 layers. Even if OPC UA is used at the Communication Layer for the
proof of concept, other communication protocols would also be possible. Applying the
RAMI 4.0 layers to the GDTA could support the creation of a DT by applying common
concepts and technologies known from this area. In addition, the concept of a context-
dependent view of the Virtual Entity within the DT, which combines special-purpose
simulation models with context information, is introduced. The provided prototypical
implementation as a proof-of-concept is using Semantic Web technologies and focusing on
the simulation service within the DT. It shows how to manage the context information
of resources and services inside a DT and how a simulation service can create a view of
the Virtual Entity.

Reusing existing OCP UA Information Model to provide semantic context
information for the Digital Twin:
An information model of a digital process twin is presented in [9], which can also be
converted into OPC UA. Similar information models have to be defined for industrial
energy systems to facilitate interoperability. In this domain, P&I diagrams are an
important source for generating DT, as shown in [46]. Thus, information models describing
the plant topology and instrumentation seem to be useful. Approaches for transforming
such OPC UA information models into OWL have been investigated. In [44], a formal
mapping between OPC UA and OWL DL is presented. It is demonstrated why there
is no simple mapping between OPC UA and OWL DL. One major issue is the use of
Instance-Nodes in the OPC UA type definitions, which is not permitted in OWL DL.
As a result, mappings can be specified in a variety of ways depending on design choices.
Another mapping between OPC UA and OWL DL was presented in [8]. They discovered
that axioms and properties in OWL are not available in OPC UA. To avoid the mapping
problem OWL Full can be used instead of OWL DL [49]. Nevertheless, this approach is
only appropriate if no reasoning is required.

In most cases, only parts of the OPC UA information model are needed and domain
ontologies already exist and should be reused to provide interoperability. Thus, the
thesis contributes a method for a flexible model transformation process between OPC UA
information models and domain-specific ontologies. With the proposed transformation
process, domain-specific ontologies can be instantiated based on information available in
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already existing OPC UA information models. This approach targets especially existing
legacy systems with OPC UA information models in place. The method is flexible
regarding the exchange of the source information model and the domain-specific target
ontology. Additionally, an OPC UA information model for the process industry based on
well-established standards is contributed.
Semantic integration method for OPC UA run-time data of a Digital Twin &
query performance evaluation:
The importance of automation models in Industry 4.0 and the Internet of Things (IoT)
is described in [26]. The authors stated that next to a unified access method and
services, the assignment of machine-interpretable semantics is essential for the digital
representation of such models. They also considered linked data concepts and Semantic
Web technologies as a suitable technology for such a task. On the other hand, OPC UA is
a recommended standard in the context of the RAMI 4.0 Communication and Information
layer. Thus, the semantic integration of OPC UA run-time data, which manifests as
time-series data, is important for providing this information to DT services. In [30], it is
used for sensor discovery To fully exploit the potential of ontologies, a semantic access
layer is implemented that does not interfere with the existing OPC UA standard. In
[57], OPC UA data access via an ontology is shown by mirroring OPC UA data into a
relational database and mapping this data into the ontology.
In both cases, data has to be duplicated, which can lead to inconsistencies and performance
issues. Thus, the thesis contributes a mapping between the OPC UA meta model and
OWL full as well as an OBDA method for OPC UA run-time data using CPF in SPARQL.
With this approach, data is further stored at the OPC UA server and only retrieved by the
SPARQL engine when needed. The thesis also contributes an overview of common data
integration methods for knowledge graphs in industrial use cases found in literature. Their
scalability regarding the query performance of sensor data was evaluated. Additionally, a
guideline for choosing the proper integration method for specific use cases is provided.
Method for supporting semi-automatic data-driven model identification:
Semantic data has already been used to identify models automatically. An automatic
thermal model creation approach for thermal building models is presented in [31]. Data
from an existing Building Information Model (BIM) is retrieved to create a simplified
thermal RC-model. In [48], the idea of using OWL ontologies to describe the structure
of an energy system is presented. The ontological domain models were built, and object
dependencies were modeled. This was combined with statistical anomaly detection
algorithms to improve data quality by cleaning sensor data from a power generation
facility. The authors of [14] used an ontology-based BIM and the BASont ontology [38].
They presented a qualitative, symbolic, knowledge-based fault propagation approach for
building automation systems.
Based on the ideas presented in these publications, the thesis contributes an ontology-
based method for deriving causal relations used for data-driven model identification
in industrial energy systems. The expert knowledge which is needed to derive these
causalities is encoded as SPARQL rules and uses knowledge available in the shared
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knowledge graph of the GDTA. Further, an ontology for plant equipment, topology,
and instrumentation is developed, based on well-established standards, which is used to
describe the physical entity of a DT.

Architectural concept for a Digital Twin service framework:
Services are an important part of ICPS in general. Thus, many frameworks exist
proposing services and their composition. In [12], the design and implementation of a DT
in smart manufacturing is discussed. A more concrete example of a service framework
and service interaction within a DT is provided in [4]. In [55], a service-oriented and
event-driven manufacturing information system architecture was proposed, similar to
the previously presented architecture. A microservice architecture is also proposed in
[6]. The authors present a framework for predictive analytics of IoT applications rather
than targeting a DT architecture. The application of the microservice architecture
for advanced manufacturing systems is investigated in [24]. The authors identified the
suitability but also remarked that pitfalls and challenges have to be tackled when applying
this architecture. A comparison between orchestration and choreography for automation
systems is presented in [52]. As a decentralized approach, choreography is suitable
for less complex functional associations, whereas orchestration should be preferred for
more procedural associations. The authors have shown a more practical evaluation of
these concepts for automation systems in [51]. Other articles are focusing more on the
conceptual aspect of a DT and describe services and their interaction on a more abstract
level, not providing any implementation details.

Microservices combined with event-based messaging are used in the majority of the
frameworks presented because it can provide benefits such as separation of concerns,
technology flexibility, scalability, and so on. Their underlying requirements, on the other
hand, are rarely stated. Thus, one of main contribution of this thesis is the specification
of functional and non-functional requirements for a DT service framework derived from a
literature review. These requirements were grouped into the Information, Functional,
and Business layer of RAMI 4.0 relevant to the proposed service framework. Also, a
novel microservice architecture for DTs is proposed based on the identified requirements.
This architecture combines event-based messaging with a workflow engine for service
orchestration and federated knowledge graph to provide semantic interoperability between
services.
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CHAPTER 2
Generic Digital Twin Architecture

for Industrial Energy Systems

Publication: G. Steindl, M. Stagl, L. Kasper, W. Kastner, and R. Hofmann, “Generic
Digital Twin Architecture for Industrial Energy Systems,” Applied Sciences, vol. 10, no.
24, p. 8903, Dec. 2020, doi: 10.3390/app10248903.

Abstract: Digital Twins have been in the focus of research in recent years, trying to
achieve the vision of Industry 4.0. In the domain of industrial energy systems, they are
applied to facilitate a flexible and optimized operation. With the help of Digital Twins,
the industry can participate even stronger in the ongoing renewable energy transition.
Current Digital Twin implementations are often application-specific solutions without
general architectural concepts and their structures and namings differ, although the
basic concepts are quite similar. For this reason, we analyzed concepts, architectures,
and frameworks for Digital Twins in the literature to develop a technology-independent
Generic Digital Twin Architecture (GDTA), which is aligned with the information
technology layers of the Reference Architecture Model Industry 4.0 (RAMI4.0). This
alignment facilitates a common naming and understanding of the proposed architectural
structure. A proof-of-concept shows the application of Semantic Web technologies for
instantiating the proposed GDTA for a use case of a Packed-Bed Thermal Energy Storage
(PBTES).

2.1 Introduction
2.1.1 Motivation
Digitalization is changing the way business is conducted within industrial value chains,
facilitated by the rapid development of communication and information technology [33].
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This process is also referred to as the fourth industrial revolution or Industry 4.0. The goal
is a highly optimized and customized production, as well as enhanced automation and
adaption capabilities [37]. To realize these visions of Industry 4.0, the DT is one of the
most promising enabling technologies [39].

Industry 4.0 and the sustainable energy transition share important characteristics and
can mutually benefit from each other [41]. Information and communication technology
helps to increase energy efficiency and the interaction of industry with smart grids which
facilitates the integration of renewable energy sources. DTs are also the key enabler
for such applications, as their common functionality includes monitoring, diagnostic,
prediction, and control [26].

The concepts and capabilities of DTs are not clearly defined and sometimes hard to
grasp. This is caused by the fact that DTs can be applied for various tasks in different
life-cycle phases and industrial domains. Thus, different interpretations of a DT exist,
driven by specific use cases. This leads to the problem that concrete realizations of
DTs follow a concrete goal without any architectural template [22]. For this reason, we
present a novel generic architecture for a DT, which is in line with the RAMI 4.0, called
GDTA. The GDTA facilitates a technology independent implementation of DTs and gives
orientation for locating existing frameworks and technologies inside this architectural
model. We also introduce a context-dependent View on the Virtual Entity inside the DT,
consisting of special-purpose simulation models in combination with context information.
Additionally, a prototypical implementation of the proposed GDTA is presented as a
proof-of-concept, using Semantic Web technologies. It demonstrates how the context
information of resources and services can be managed inside a DT, and how a View of
the Virtual Entity can be based on a Simulation Service.

The remainder of the paper is structured as follows: Section 2.1.2 gives a short overview
of related work in the area of DT concepts, frameworks, and reference architectures.
Section 2.2 describes the methods which are applied for carrying out the presented work.
Afterward, the GDTA is introduced in Section 2.3. The proposed architecture is used for
our proof-of-concept implementation, based on Semantic Web technologies and applied
for a use case of a thermal energy storage system in Section 2.4. In the end, the presented
GDTA is discussed with respect to other DT architectural frameworks, and an outlook
on our future work is given.

2.1.2 Related Work
In general, a DT can be defined as “a formal digital representation of some asset, process
or system that captures attributes and behaviors of that entity suitable for communication,
storage, interpretation or processing within a certain context” [28].

A very basic concept for structuring a DT defines three different aspects: the physical
space, the virtual space, and the connection between them to exchange data and infor-
mation [14]. A similar concept is known from the industrial domain as CPS or more
specifically as Cyber-Physical Production System (CPPS). In [32], CPSs are described as
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autonomous and cooperative elements and sub-systems across all levels of production,
able to communicate with each other in situation-dependent ways. The goal of CPSs
is to have elements that can acquire and process data, allowing them to self-control
certain tasks and interact with humans. To reach that goal, a certain kind of virtual
representation of the production system has to be available. Therefore, a CPS can be
characterized by a physical asset and its cyber counterpart, which means that a DT can
be seen as only the digital model inside a CPS [26]. Conversely, this also implies that a
DT is the prerequisite for a CPS [40].

For CPSs, a five layer architecture (5C architecture) was proposed in [25], defining
a “Smart Connection Level”, “Data-to-Information Conversion Level”, “Cyber Level”,
“Cognition Level”, and “Configuration Level”. These layers should help to develop and
implement CPSs at a certain layer of this 5C architecture. In this context, the Smart
Connection Level has to deal with acquiring accurate and reliable data from the physical
entity and is the first step to create a CPS. Afterward, meaningful information is inferred
from the data at the Data-to-Information Conversion Level. This level brings self-
awareness to the machines. The Cyber Level acts as an information hub inside the 5C
architecture, which also introduces the possibility of self-comparison of the performance of
machines. In-depth knowledge of the monitored system is created at the Cognition Level.
Expert users will be supported by this information to make the correct decision. At the
Configuration Level, feedback is given from the cyber-space to the physical space. Here,
the supervisory control resides and makes machines self-configurable and self-adaptive.
This functional view of a CPS can also be beneficial for designing and implementing a DT
for certain applications. Typical applications have been identified by a literature review
in [21] and can be clustered in the following categories: simulation and optimization,
monitoring, diagnosis, and prediction.

Another important concept for describing DTs is the so-called 5D-DT [38]. It is an
evolution of the previously mentioned DT concept, which extends the three dimensions
(“Physical Entity”, “Virtual Entity”, “Connection”) by the data aspect as well as the
service aspect. These five dimensions and their relations are shown in Figure 2.1. The
“Physical Entity” consists of various subsystems that perform specific tasks, facilitated
with different sensors that collect the states and working parameters. The “Virtual Entity”
aims to model the physical entity with high precision by the integration of multiple
different types of models such as geometry models, physical models, behavior models,
and rule models. The “Service Model” includes services for the “Physical Entity” and the
“Virtual Entity”. It optimizes the operations of the “Physical Entity” and ensures the high
fidelity of the “Virtual Entity” through calibration of the “Virtual Entity” parameters
during run-time. The “Data Model” consists of five parts: data from the physical entity,
data from the virtual entity, data from the services, domain knowledge, and the fusion of
those data. The “Connection Model” describes each connection between the components
of the DT. The ideas of the 5D-DT concept are the foundation for our proposed GDTA.
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Figure 2.1: Five dimensions of the Five-Dimensional Digital Twin (5D-DT) concept
adapted from [38].

In addition to these very general concepts with a high level of abstraction, more detailed
architectural concepts and frameworks have been proposed for the implementation of
DTs. In the following paragraph, an overview of these concepts is given and summarized
in Table 2.1. Table 2.1 also gives a classification based on their level of abstraction.
A high level of abstraction means that a more general concept is presented, whereas a low
level indicates a more concrete architecture or framework, targeting the implementation
of a DT. They are also used in the discussion (Section 2.5) to set our proposed GDTA
into perspective by comparing it with these concepts.

“Intelligent Digital Twin”—In [5], an architecture for an “Intelligent Digital Twin” was
proposed by applying algorithms known from Artificial Intelligence (AI). Next to the
data acquisition interface, a synchronization interface is introduced to keep the simulation
models of the DT in line with the physical asset, as they can otherwise differ over its
life-cyle. Also, a co-simulation interface is described as a component of the architecture to
enable communication with other DTs and to facilitate multidisciplinary co-simulation.

“Reference Framework for Digital Twins”—A reference framework for DTs in the context
of the 5C architecture of CPS is presented in [22]. The main building blocks of DTs,
including their properties (structure and interrelation), were specified for the proposed
framework. Therefore, a systematic literature review was conducted followed by a frame-
work analysis using grounded theory. They identified four main building blocks of a DT
which are: a “Physical Entity Platform”, a “Virtual Entity Platform”, a “Data Manage-
ment Platform”, and a “Service Platform”. They also identified three different types of
physical entities, namely the “Physical Objects”, “Physical Nodes”, and “Humans”. The
“Virtual Entity Platform” consists of many virtual entity models, including information
to mirror a certain aspect of the physical entity. It is responsible for the generation
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and maintenance of “Semantic Models” (geometric models, physical models, behavioral
models, rule models, process models) of the physical entity to create its virtual repre-
sentation. The “Data Management Platform” performs data acquisition, management
(collection, transmission, storage, integration, processing, cleaning, analysis, data mining
and information extraction), and storage. The “Service Platform” consists of service
models and a service management layer to organize services for concrete applications.
“Cognitive Twin Toolbox”—In [1], a conceptual architecture of the Cognitive Twin Toolbox
(COGNITWIN) is presented with a special focus on the process industry. Three levels of
twins were defined: A “Digital Twin” which only uses isolated models of the physical
system, a “Hybrid Twin” which is also able to interconnect its models, and a “Cognitive
Twin” which uses extended models that include expert knowledge for problem-solving and
to handle unknown situations. The toolbox proposes five layers: “Model Management
Layer”, “Data Ingestion and Preparation Layer”, “Service Management Layer”, “Twin
Management Layer”, and a “User Interaction Layer”. The specified model types are
quite similar to the defined semantic models in [22] and consist of first-order principle
models based on the underlying physics, empirical models, e.g., AI algorithms, and
knowledge-driven models based on domain experts. The “Service Management Layer” is
responsible for handling services, like registration and orchestration. Two types of services
are distinguished. Data-driven and model-based driven services. The “Twin Management
Layer” manages the structure of the DT. Especially, the synchronization problem caused
by changes in the behavior of the physical system is handled here. The toolbox also
introduces a “User Interaction Layer” where users can explore the COGNITWIN.
“Conceptual Digital Twin Model”—A conceptual model for a DT in the context of
IoT is presented in [3]. The model is structured into five layers: “Physical Space”,
“Communication Network”, “Virtual Space”, “Data Analytics and Visualization”, and
“Application”. Security aspects are also covered explicitly by a vertical “Security Layer”
that overlaps with all other layers. The tasks of the various layers are quite similar
to the already mentioned layers in other frameworks. Two conceptual use cases in the
automotive domain and smart health care area are described, but no real implementation
of the proposed model is presented.
“Asset Administration Shell”—In the context of the Industry 4.0 initiative, the AAS is
introduced as a standardized digital representation of an asset. It is used to uniquely
identify and describe the functionality of asset as well as the AAS. It also holds various
models of certain aspects. Details of how the information of the AAS can be exchanged
in a meaningful way between partners along a value chain can be found in [6], where a
meta-model for the AAS is defined. As resource description, discovery, and access are
the basic functionality of DTs [1], the current state of the AAS is only a first part of the
solution. The discovery and the definition of how operations are provided and described
by standardized interfaces is ongoing work for the AAS.
To structure the functionality of the presented architectures and frameworks, some
kind of layered architecture is used to handle the complexity. As presented, layers are
defined with different names, which often have similar functionality. This prevents the

41



2. Generic Digital Twin Architecture for Industrial Energy Systems

establishment of a common view and terminology in the context of DTs. In order to solve
this problem in the context of the Industry 4.0, RAMI 4.0 was introduced [2]. RAMI 4.0
is used to achieve a common understanding of standards, tasks, and use cases. Therefore,
three different aspects or dimensions are used by RAMI 4.0: It expands the hierarchy
levels of IEC 62264 [18] by “Product” and “Connected World”, defines six layers for an IT
representation of an Industry 4.0 component and considers the life cycle of the product
or system according to IEC 62890. The life cycle is divided into a “type” and “instance”
phase. The “type” phase is part of the engineering phase, which ends when a prototype
is available. An “instance” is the system or product, when it reaches the operational
phase in the life cycle. We used the mentioned six IT layers of the RAMI 4.0 (Business,
Functional, Information, Communication, Integration and Asset Level) to structure our
proposed GDTA (Section 2.3) to achieve a consistent naming and understanding of the
used layers.

Table 2.1: Overview of concepts, architectures, and frameworks for Digital Twins (DT).

Name Target Domain Structure Main Parts Level of
Abstrac-

tion

3D-DT [14] Life-cycle Manage-
ment

component-based 3 components high

5D-DT [38] Manufacturing component-based 5 components high
5C Architecture [25] CPS in manufactur-

ing
layer-based 5 layers high

Intelligent DT [5] Production Sys-
tems

component-based 4 interfaces & 9
components

low

Ref. Framework for
DT [22]

CPS in general component-based 4 main components low

COGNITWIN [1] Process Industry components & lay-
ers

5 layers & 19 com-
ponents

low

Conceptual DT
Model [3]

CPS in general layer-based 6 layers medium

ASS [6] Manufacturing only meta-model ongoing work —

2.2 Materials and Methods
A literature review was conducted to identify common services, concepts, architectures,
and frameworks in the context of industrial DTs applied to the operational phase of the
life-cycle. These concepts were analyzed and used to develop a technology-independent
generic architecture GDTA in line with RAMI 4.0.

Afterward, a proof-of-concept was implemented, based on Semantic Web technologies
and ontologies. Therefore, a DT was implemented based on the GDTA as an exploratory
prototype. The focus of the presented proof-of-concept is put on the Simulation Service
and the modeling of context information, based on ontologies, to create a certain View
on the Virtual Entity. Also, the Simulation Service was identified as a base service inside
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the DT.

The ontologies are developed following the METHONTOLOGY approach [11]. The
implemented ontologies have been evaluated with the help of the OOPS! Pitfall Scan-
ner [35], which detects common inadequacies made during the ontology development
process. The logical consistency of our ontology has been evaluated with the HermiT
1.4.3.456 reasoner [12].

To evaluate the proof-of-concept implementation, a thermal energy storage system was
chosen as use case. With the help of the implemented DT for the PBTES, the basic
simulation functionality is evaluated.

2.3 Proposed Generic Digital Twin Architecture
In this section, we present our proposed GDTA which targets the applications of DTs
during the operational phase of an asset. The architectural model of the GDTA is
depicted in Figure 2.2. The architecture is aligned with the IT layers of RAMI 4.0 to
structure the specified components. The hierarchy levels of RAMI 4.0 are not taken
into account because a DT can be located at various levels, depending on its application
or the physical entity for which it is designed for. Thus, a DT can potentially cover
all hierarchy levels of RAMI 4.0. As mentioned before, our DT architecture targets
the “instance-phase” of the RAMI 4.0 life-cycle. Thus, only the IT layer dimension
of RAMI 4.0 is shown in Figure 2.2 and the architecture is structured based on this
dimension.

The GDTA is based on the introduced 5D-DT concept and inspired by the 5C architecture
for CPSs, because both concepts have a sufficient level of abstraction, which means they
provide a more conceptual view than a concrete architecture. However, they are still
useful to identify key components and functionality for DT.

The proposed GDTA defines the basic structure and components of a DT without
specifying or binding it to certain technologies. For realizing a DT based on the GDTA,
various existing technologies and frameworks can be used to implement its functionality
on different layers. The specified components of the DT are explained in more detail
regarding their associated RAMI 4.0 layer in the following paragraph.

Asset Layer—The physical representation of the DT is located at the Asset Layer and
corresponds to the Physical Entity of the 5D-DT concept. It holds the physical parts of
the CPS.

Integration Layer—At the integration layer, Run-time Data as well as Engineering Data
can be distinguished. Run-time Data are generated by sensors or events and represent
the current state of the physical entity. They are usually time-series data. These data
are very dynamic, so the underlying infrastructure has to follow application-specific
requirements, like big data processing or real-time reaction. Archives, e.g., special time-
series databases, can be used to store these data for diagnosis and model identification
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Figure 2.2: Generic Digital Twin Architecture (GDTA) model.

purposes. Engineering Data are usually static data, which means they will not often
change over time. Examples are the plant topology or information about a physical
component inside a plant. This information is mostly available in analog formats, like
drawings of pipe and instrumentation diagrams, and has to be digitized. Even if the
information is already available in machine-readable form, the information has to be
transformed and integrated into the DT as contextual information.

Communication Layer—Industrial communication or IIoT protocols can be applied within
the Communication Layer of the DT. The concrete protocol depends on the requirements
of the application, e.g., real-time capabilities or publication/subscription support. Thus,
a combination of various protocols can be expected, which are made transparent to
the upper layers by the Smart Data Service. Here, OPC UA is a representative in the
context of Industry 4.0. Next to its communication capabilities, information modeling
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also enables the representation and access to context information through OPC UA.

Information Layer—Within the Information Layer of the DT architecture, data is gathered
and enriched with semantics and related with other context information. Thus, the data
dimension of the 5D-DT becomes an information dimension at this stage. The central
component inside the Information Layer is a Shared Knowledge base, which stores
contextual information about resources and services. Data are linked with this information
to add semantics to it. Different levels of semantic expressivity can be achieved by applying
different information modeling technologies. Ideally, data are stored in their original
formats in proper databases. The Shared Knowledge base acts as a semantic integration
layer for run-time data and engineering data by providing access to historical data
(archives) and holding contextual information inside the Shared Knowledge. Access
to the information inside the Shared Knowledge is granted by an Information Query
Service. This service can retrieve information from the knowledge base and provide it to
other services. The Information Insertion Service is used to add or change information
from the upper layers of the DT architecture inside the Shared Knowledge base. Thus,
information ownership and access have to be managed including data access mechanisms.
This is performed by an Information Management component inside the DT architecture,
which handles the information access of the Query and Insertion Service.

The above-mentioned components and services form the so-called Smart Data Service [24],
which builds a central point of information inside the architecture. It provides information
about resources and services through the Shared Knowledge base and makes it accessible
for other services in the Functional Layer.

Functional Layer—In the Functional Layer, the service dimension of the 5D-DT concept is
realized. A service-oriented architecture is applied to enable loose coupling and cohesion
of certain functionality [20]. The services of the DT can be grouped by their functionality
and can build on each other. Five groups are identified: Simulation Services, Monitoring
Services, Diagnosis Services, Prediction Services, Control Services, and Reconfiguration
Services. Next to these functional services, a Service Management component takes care
of service registration, discovery, and obtaining status information about certain services.
This information about a service is part of the Shared Knowledge in the Information
Layer and will be inserted and queried through the offered Smart Data Service interface.
The resource management is not handled by a central component, as the services have to
handle their resources by themselves, facilitating the Shared Knowledge base.

Simulation Services are the core services, as they are part of the Virtual Entity of the
5D-DT concept. Typically, there exists not only one model of the physical entity in a
DT, but a set of executable models that are specific for the intended purpose and also
evolve over time [8]. Thus, different models for various domains, like the mechanical
structure, thermal behavior, etc. can be hosted and used inside the Simulation Service of
a DT. As for the other services, resources have to be managed by the service itself, and
the related information about the models has to be made available through the Shared
Knowledge base. A simulation model hosted by the Simulation Service in combination
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with related context information from the Shared Knowledge base generates a certain
View of the Virtual Entity inside the DT.

Monitoring Services are elementary services to acquire data from the physical entity
and observe its current state. An example could be a fault detection service, which can
be implemented based on simple statistical models and indicate abnormal operating
conditions of a plant.

Diagnostic Services are services supporting, for instance, condition monitoring or root
cause analysis of faults. They can build upon underlying Monitoring Services in combina-
tion with Simulation Services to gain more insight into the current state of the Physical
Entity.

Prediction Services are important for the DT to make decisions based on information
about future events. Such services can be used, for instance, for predictive maintenance
or the prediction of energy consumption. Also, external variables, like renewable energy
production or prices at the energy market, can be predicted. Additionally, external
prediction services can be integrated. The prediction results can be used by Control
Services for realizing an optimized control or used to generate recommendations for the
operating staff.

Control Services have an influence on the operation of the plant via recommendations
over Human-Machine Interface (HMI) or direct access to the process control. Control
Services with direct access can bypass the Smart Data Service in the Information Layer to
change the state of the physical entity without additional delay. Usually, Control Services
make use of monitoring, diagnosis, and prediction services to achieve optimized operation.
Thereby, the control strategy can change over time, caused by a reconfiguration of the
Physical Entity or new objectives specified by the business logic.

Reconfiguration Service. Reconfiguration means a rather static change of the fundamental
properties of the Physical Entity by the DT itself. This has a significant influence on
the context information inside the Shared Knowledge. Reconfiguration can be initialized
through events or changed objectives inside the business logic, which resides inside the
business layer. The Reconfiguration Service takes care of such changes inside the DT.

Humans have to be informed about the current state of the Physical Entity as well as
the DT itself to interact with it. Thus, an appropriate HMI is very important for almost
every service of a DT.

Business Layer—In this layer, the business logic resides, which can also orchestrate a
large amount of DT. It defines the overall objectives (e.g., to reduce the risk of downtime
or cost), which should be reached with the help of the DT. As this highly depends on
the business strategy, it is not relevant for the design of the GDTA but only relevant via
specific inputs.
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2.4 Proof-of-Concept: Digital Twin Instantiation
The following section describes a prototypical implementation of the proposed GDTA as
it is shown in Figure 2.2. The focus of the implementation is the Virtual Entity consisting
of a Simulation Service in combination with context information, as it is a fundamental
service inside the DT. The code of the prototype is publicly available in a GitLab repository
(https://gitlab.tuwien.ac.at/iet/public/GDTA_Prototype).

To realize the Shared Knowledge base, Semantic Web technology is used, based on
RDF and OWL to describe the resources and services. Already existing ontologies, like
OWL-S, ML-Schema [29] and OWL-Time [16] are reused and extended with new concepts.
The ontologies are created using the tool Protégé [23]. The ontologies are loaded into
Apache Jena Fuseki Server v.3.16.0 running in a Docker container. Jena Fuseki provides a
SPARQL endpoint to access the information of the Shared Knowledge base. The service
invocation is performed via Hypertext Transfer Protocol (HTTP) in combination with a
REST API as suggested in [19].

2.4.1 Knowledge Representation Inside the Shared Knowledge Base
Semantic Web technologies are used to build the Shared Knowledge base as a central
part of our Smart Data Service. Ontologies are used to hold information about resources
and services in a formal and machine-readable way. A hierarchical design approach is
used, consisting of a top-level-ontology and a domain ontology, as shown in Figure 2.3.
Further hierarchy levels would be possible. The top-level ontology defines general terms
that are common across all sub ontologies. Terms in the domain ontology are ranked
under the terms of the top-level ontology. For the presented implementation the Base
Service Ontology is defined as a top-level ontology holding general information about
the available services of the DT. Other services implement their information inside the
domain ontologies. For the current prototype, only the Simulations Service Ontology is
implemented, but other domain ontologies can be developed quite similar.

Figure 2.3: Top Level and Domain Ontology structure.

Base Service Ontology

The Base Service Ontology holds the necessary information for a general service descrip-
tion, which helps to discover and access the service. The implementation of the Base
Service Ontology consists of a service description based on OWL-S profile classes and
properties, additionally defined Quality of Service (QoS) metrics for the services, and a
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specification of a service endpoint. OWL-S provides a set of vocabulary and semantic
rules for formal description of Web Services. The information about a service is described
using the OWL-S Profile, a subclass of ServiceProfile. More Information about OWL-S
can be found in [29]. The main concepts and relations of the ontology are depicted
in Figure 2.4. The grey concepts are part of OWL-S, whereas the white concepts are
extensions and explained in more detail.

BaseService—The service is a subclass of the owl-s:Service class and described by the
owl-s:Profile. The BaseService concept aggregates the essential information about the
service, like the service endpoint, the current status, and quality metrics. A service is
always related to a PhysicalEntity inside the ontology (not depicted in Figure 2.4). Thus,
the services of a component or a whole asset can be retrieved from the Shared Knowledge
base for the purpose of service discovery.

ServiceCategory—In order to classify a BaseService and define it as a certain functional
service, the abstract class ServiceCategory is used. The categories correspond to the
functional service types defined in the GDTA and also used for the grouping of the
domain ontologies in Figure 2.3.

Quality Metrics—OWL-S has no capabilities for describing QoS for a certain service. To
counteract, eleven additional properties are added to describe certain QoS metrics for a
service, like Accessibility, ResponseTime, Availability, etc. This information can be used
during service discovery to choose the best service if more than one is available.

Status—To gain information about the current service status, the last time of invocation,
the invoked method, that invoked the service, and a service status message (“OK”, “In
Use”,“Warning”,“Error”) is related with the service entity.

ServiceEndpoint—Each service has at least one service endpoint which enables service
invocation or subscription in order to exchange data with a service. The endpoint
categories can be flexible in nature and comprise of different protocols. In the prototypical
implementation, a REST endpoint is specified in the ontology. However, endpoints are
not restricted to that type, e.g., SOAP could also be used.

Simulation Service—Domain Ontology

A View on the Virtual Entity of the DT consists of a Simulation Service in combination
with context information, stored in the Shared Knowledge base. The information about
the simulation models used by the Simulation Services is captured by the Simulation
Service—Domain Ontology. This ontology can be seen as a reference implementation
for other domain ontologies. The main concepts of this ontology and their relations are
shown in Figure 2.5.

The domain service ontology inherits all classes and properties from the Base Service
Ontology and adds domain-specific knowledge. For the implementation of the Simulation
Service—Domain Ontology, ML-Schema is used to describe data-driven and physical
simulation models within a Simulation Service. ML-Schema is developed to represent and
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Figure 2.4: Part of the Base Service Ontology concepts and their relations.

Figure 2.5: Main Simulation Service—Domain Ontology concepts and their relations.

interchange information on machine learning algorithms, datasets, and experiments [36].
The concepts in the ontology which are reused from ML-Schema are depicted with grey
background in Figure 2.5. More Information about ML-Schema can be found in [10].
The additional concepts of the domain ontology are depicted with a white background.

The SimulationService is a special type of service for describing simulation models inside
the DT. It inherits all properties from the BaseService concept in the top-level ontology.
The Simulation Service executes a certain ML-Schema:Software which consists of an
ML-Schema:Implementation and ML-Schema:Model. The model is trained on a certain
Dataset, which has properties to describe how the data can be used (dataset location,
dataset format, feature names, etc.).

The Virtual Environment provides a description of the environment in which a model
is executed. A Container is one possibility of such a concrete realization of a Virtual
Environment. The presented implementation uses a Docker container for providing such
an environment. Each ML-Schema:Model is related with a OWL-Time:TimeInstant to
capture the date and time of its training or parameter identification. This information is
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used to handle various versions of a model.

2.4.2 Simulation Service API

The Simulation Service is realized as a microservice that communicates over REST-ful
service endpoints with other services or agents. The stored information inside the Shared
Knowledge base is made available by calling HTTP methods on the endpoints. In the
same way, information can be inserted into the knowledge base, and the Simulation
Service can be invoked. Currently, information about the simulation model and the
service status can be retrieved, models and data can be uploaded, and the model can
be trained. Also, predictions can be made by the Simulation Service, calling an HTTP
method on a special endpoint. A full list of the implemented service endpoints, as well
as the required parameters, can be found in Table 2.2. The Simulation Service adds
information about a new model instance to the Shared Knowledge base automatically,
whenever a new model is created or successfully trained, or a new hyper-parameter for
the model is set. In the current implementation, only Matlab simulation models are
supported by the Simulation Service.

2.4.3 Use Case: Packed-Bed Thermal Energy Storage

The PBTES is a reliable high-temperature thermal energy storage device with low
investment costs. It is capable of operating at temperatures of above 800 ◦C [4] and thus
applicable in variable industrial energy systems, as, for example, in the steel, glass, and
cement industry or in solar power plants. Thermal energy storage solutions are required
to match heat supply with demand and, thus, can contribute significantly to meeting
society’s desire for more efficient, environmentally friendly energy use [9]. Increasingly
complex energy systems, induced by the transition to renewable energy sources [27],
feature high flexibility that requires adequate control and optimization concepts. For fast
analysis of various operating conditions and different parameters by simulation, detailed,
but efficient models of such systems are needed. A PBTES is therefore considered as an
ideal use case for a DT implementation.

Packed-Bed Thermal Energy Storage Test Rig

The PBTES represents the Physical Entity for the instantiated DT in this use case. It
is located at the laboratory of the Institute for Energy Systems and Thermodynamics
(IET) at TU Wien. A schematic illustration of the PBTES for loading and unloading is
shown in Figure 2.6. It consists of an insulated vessel filled with gravel, an electric heater,
and a ventilation unit. For charging the PBTES, hot air is ventilated through the gravel,
which increases its temperature and stores sensible thermal energy. For discharging, cold
air is ventilated through the hot tank and the heated air leaves the storage. To assess
the thermodynamic conditions in the test rig’s storage vessel, it is equipped with a total
of 18 calibrated thermocouples, as well as mass flow and pressure measurement sensors
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Table 2.2: Hypertext Transfer Protocol (HTTP) endpoint description for the implemented
Simulation Service Application Programming Interface (API).

Endpoint Description HTTP URL Parameters
service Returns information

about the simulation
service as JSON

‘GET‘ /servicestate none

model Returns information
about the current
model within the
simulation service as
JSON

‘GET‘ /model/ none

train Trains the current
model and returns in-
formation of the cur-
rent model together
with a summary of the
model performance.

‘PUT‘ /train data_path = path to
the training data;
model_params = dic-
tionary with model pa-
rameters

predict Returns prediction of
the input data from
the selected model in-
stance as JSON

‘GET‘ /predict model = modelLoca-
tion returned by call-
ing model-endpoint or
after a training invoca-
tion;
data_path = path to
the input data

uploaddata Uploads new data to
the simulation service
which is used for train-
ing or prediction

‘POST‘/upload/data/ file = data stored in a
file in arbitrary format

uploadmodel Uploads a new model
for the Matlab based
Simulation Service in-
stance.

‘POST‘/upload/model/ file = code stored in a
Matlab file

at the inlet and outlet. For a detailed description of the test rig and it’s measurement
instrumentation, please refer to [17, 31].

Various models were developed to simulate the thermodynamic behavior of the PBTES,
i.e., the measured values for intrinsic and outlet temperatures given the input values for
temperature and mass flow. A physical model based on a 1D finite-difference approach
was presented in [30]. A grey box model using recurrent neural networks was published
in [15]. Furthermore, physical and data-driven modeling approaches for PBTES were
compared and evaluated regarding prediction accuracy and modeling, as well as the
computational effort [17]. In general, each of these evaluated simulation models can be
reused in the Simulation Service of the DT. For the presented use case the mentioned
grey box model was chosen, which was developed in [15].
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Figure 2.6: Bulk container of the Packed Bed Thermal Energy Storage (PBTES) installed
at the laboratory in load and unload state.

Simulation Service Invocation

To provide some insights into the capability of our prototypical DT implementation, we
show the procedure of loading a dynamic thermal model of the PBTES into the DT, train
the model with available data, and use the model for a time-series prediction of the outlet
temperature of the PBTES. The previously explained Simulation Service API is used
to perform these tasks. The Simulation Service interacts with the Shared Knowledge
base in the background to store and retrieve context information. This information is
organized using the explained Base Service Ontology and the Simulation Service—Domain
Ontology.

Uploading a Simulation Model—The implemented Simulation Service allows for uploading
new simulation models. As mentioned before, a “Neural Net” grey box model, which is
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implemented in Matlab is used. More details about the simulation model can be found
in [15]. Figure 2.7 shows the sequence diagram of the upload process. For uploading a new
model, the HTTP POST method is invoked on the endpoint with the URL /upload/model.
As a parameter, the Matlab file is included in the HTTP body. The endpoint returns the
internal path where the simulation model is stored. This path is needed afterward to
access the specific model for training or prediction.

Agent Simulation Service: /upload/model

‘POST‘ Param[“file=@C:/Code/Matlab/NN/trainNN.m”]

{ “filestored at”: “trainNN.m” }

Figure 2.7: Sequence diagram for uploading a dataset at the service endpoint.

Uploading a Dataset—The HTTP POST method is used to upload a new dataset by
invoking the simulation service’s upload/data endpoint. The internal file path is returned
in the HTTP response. The returned path is used in order to train a model or to make
predictions with the uploaded dataset. The procedure is shown in the sequence diagram
in Figure 2.8.

Agent Simulation Service: /upload/data

‘POST‘ Param[“file=@C:/DATA/data_fbr.xlsx”]

{ “filestored at”: “data_fbr.xlsx” }

Figure 2.8: Sequence diagram for uploading a model at the service endpoint.

Train a Simulation Model—In order to train an uploaded simulation model with an
uploaded dataset, the HTTP PUT method is invoked at the Simulation Service endpoint
with the URL /train. The HTTP request holds the path to the uploaded training data
and the model path as arguments. Additionally, simulation model parameters can also be
forwarded as a dictionary. As a result of the training process, a new model description is
returned in the JSON format and the information is also stored in the Shared Knowledge
base. The old model is archived but can be used for predictions afterwards as well.
The sequence is depicted in Figure 2.9, where just a small fraction of the returned
information, formatted in JSON, is shown.
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Agent Simulation Service: /train

‘PUT‘ Param[“data_path=data_fbr.xlsx”,
“model=trainNN.m”]

{ “Fitted Values”: “”,
“model”: { “modelInstance”: “NN-2”,

“modelLocation”: “netOpen.mat”,
“mls:hasInput”: { “hasHyperParameter”: {},
“trainingData”: { “datasetName”: “data_fbr.xlsx”,
“datasetLocation”: “data_fbr.xlsx”,
. . . }

. . .
}

Figure 2.9: Sequence diagram for training a simulation model at the service endpoint.

Make a Prediction—In order to use the Simulation Service for predictions, the endpoint
with the URL /predict has to be called using the HTTP GET method. Its arguments are
the path to an input dataset and optionally a path to a model. If no path to a model is
specified the service uses per default the most recently trained model to make predictions.
The service endpoint returns the predictions in a JSON array as shown in Figure 2.10.

Agent Simulation Service: /predict

‘GET‘ Param[“data_path=data_fbr.xlsx”,
“model=predictNN.m”]

{ “prediction”:
{“values”: [24.319, 24.851, 25.662, . . . ] }

}

Figure 2.10: Sequence diagram for using a model to predict a time series at simulation
endpoint.

In the presented use case of the PBTES, the output temperature is predicted by the
Simulation Service for a specified input trajectory. The predicted loading cycle of the
PBTES over time is shown in Figure 2.11. These prediction results could further be used
for an optimized control strategy performed by the DT.
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Figure 2.11: Results of the Simulation Service for the output temperature Tout of the
Packed-Bed Thermal Energy Storage (PBTES) for a specific load cycle.

2.5 Discussion
The aim of our proposed GDTA is a simple architectural model that captures the essential
components of a DT in a technology-independent way. We presented various concepts
and architectures for DTs in Section 2.1.2. It becomes clear that DTs have to be able to
handle various types of models for different applications. Also, a structuring of different
functionality by using services as well as information and knowledge management are
essential to gain a certain level of cognition.

The user interaction with a DT is a very important aspect, as in Industry 4.0 the workers
or operators will be the most flexible part of the CPS. They have the role of a strategical
decisions-maker and problem solver [13] so they have to interact closely with a DT. This
is not reflected by most frameworks or concepts.

Almost all presented frameworks or architectures use a layered structure to specify some
functionality. Various layers are introduced with different names, which often perform
similar tasks. This leads to confusion. The alignment of our architecture with RAMI 4.0
facilitates a standardized wording and common understanding of the layers in a DT. This
helps to classify, combine, and re-use already existing frameworks and technologies in the
area of Industry 4.0 and the IIoT for designing and implementing a DT.

In the following paragraph, the concepts, architectures, and frameworks for DTs,
which have been introduced in Section 2.1.2 are re-visited and set into relation with our
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proposed GDTA.
The foundation of our GDTA is the 5D-DT concept [38]. The data and service dimension of
this concept is refined in our architecture by identifying service clusters and introducing a
Shared Knowledge base, which semantically enriches available data and stores information
about resources and services. This Shared Knowledge base is the main component inside
the Smart Data Service in our proposed architecture and enhances the data dimension of
the 5D-DT.
The suggested architecture for an “Intelligent Digital Twin” in [5] emphasizes the usage
of AI inside a DT to evaluate “what-if” scenarios. Therefore, certain components in the
architecture are defined, like an “Intelligent Algorithm” module, or a “Co-simulation
Interface”. In our opinion, these are quite specific modules, which can be implemented
by distinct services of the proposed GDTA (e.g., a simulation service can support co-
simulation), but do not always have to be present in a DT. Also, the separation of
“intelligent” algorithms from the services into dedicated components seems not always
beneficial. Nevertheless, important aspects and problems are addressed in this work, like
user feedback, which is also considered in our architecture.
A reference framework for DTs within CPSs is presented in [22] where four main building
blocks are identified. These blocks can be mapped to certain layers of our proposed
architecture, which is aligned with RAMI 4.0: The key concepts of the “Service Platform”
are found in the Functional Layer in our architecture. The “Physical Entity Platform”
is equivalent to the Asset and Integration Layer. In addition, our architecture captures
the aspect of the communication layer. The main aspects of the “Data Management
Platform” can be located on the Information Layer. As we propose a service-oriented
architecture for the GDTA, some of the mentioned data management methods, like
data processing, data cleaning, data analysis, data mining and information extraction
can be carried out by specific services of the Functional Layer. The “Virtual Entity
Platform” includes various “Semantic Models”. This corresponds to our idea of a View
on the Virtual Entity in the GDTA, consisting of various semantic simulation models
in combination with context information, stored in the Shared Knowledge base. The
proposed reference framework and the identified structural properties of the DT are very
generic, but some additional aspects can be found in our GDTA. So we introduced a
Service Management component and defined groups of common service types inside a DT,
which help to structure and implement certain services. We also see the HMI interaction
as an important part of our GDTA which almost every service has to implement. Thus,
we include a HMI component in our GDTA.
The conceptual architecture of the Cognitive Twin Toolbox presented in [1] also introduces
a “Knowledge Repository” in combination with “Cognitive Services”. This is only applied
for a “cognitive Twin”. The basic DT concept implements only a so-called “Metadata
Repository”. A separation into two distinguishable components, as presented in [1] seems
neither beneficial nor has practical advantages. Therefore, we introduced the Shared
Knowledge base, which acts as a central point of information in our GDTA. Also a “Model
Management Layer” is not explicitly stated in our architecture as resource management
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has to be done by the service implementations themselves. The information about the
resources has to be made available through the Shared Knowledge base. The functions
described for the “Twin Management Layer” can be located in a Reconfiguration Service
in the GDTA. The COGNITIVE Twin toolbox is a solution with various components
that seems to be specific for their definition of the so-called “Hybrid” or “Cognitive Twin”.
Thus, we tried to reduce the components of the proposed GDTA to be as simple and
generic as possible.

The conceptual model of a DT in the context of IoT, as presented in [3] introduces
five layers which are quite similar to the layers of RAMI 4.0. The “Physical Space”
corresponds to the Asset and Integration Layer; the “Virtual Layer”, to the Information
Layer; the “Data Analytics and Visualization” and “Application”, to the Functional Layer.
In our architecture, we chose a more service-oriented view of the various applications of
the DT. Providing semantics of the data and a shared knowledge base is not explicitly
handled in this conceptual model, in contrast to the suggested GDTA. The conceptual
DT model emphasizes the importance of security by defining a vertical module overall
specified layers. In our generic architecture, such a module is not explicitly depicted, as
it applies to all levels of RAMI 4.0 implicitly and must be considered for the asset as a
whole [34].

The AAS is a promising way of standardization as shown in [6] but still ongoing work. In
its current state, the concept of the AAS meta-model can be applied and implemented in
line with our proposed architecture. It was already shown, that the defined data model
of the AAS can be semantically lifted to a knowledge representation based on RDF [7].
In the context of our proposed architecture, this enables the representation of the AAS
inside the Shared Knowledge base.

The presented proof-of-concept implementation is the basis for further development of
other services inside the DT. Additionally, the knowledge representation of the simulation
models can be extended with application-specific domain ontologies. This would facilitate
the integration of other semantic models of the DT as described in [22]. The hierarchical
and modular ontology design, using a top-level ontology as well as various domain
ontologies, facilitates the integration of new concepts and ontologies. These hierarchies
can be further increased by introducing additional levels, like application or even task
ontologies. The alignment with already existing or emerging standards, represented in
OWL, can be performed by having similar concepts in the upper layers of the ontology
hierarchy and using the owl:equivalentClass property defined in OWL 2.

The presented use case was chosen in the domain of industrial energy system, but the
proposed GDTA can also be applied for a broader spectrum of applications. For this
reason, we will investigate other domains and apply the proposed GDTA also for other
use cases.
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2.6 Conclusions
A novel GDTA based on the 5D-DT concept is presented and evaluated based on a pro-
totypical proof-of-concept implementation. Other concepts, architectures, or frameworks
in literature often use a layered structure with similar functionality but different names.
To overcome this problem, we aligned our GDTA with the IT dimension of RAMI 4.0.
This helps to have a common naming and understanding of the layers inside the GDTA,
which facilitates the development of a DT.

The presented GDTA is technology-independent. We instantiated it based on Semantic
Web technology and showed the suitability for handling context information about
resources and services in combination with simulation models. This enables application
dependable Views on the Virtual Entity of the DT. In our proof-of-concept, ontologies
build the foundation for the Shared Knowledge base of the Smart Data Service. Existing
ontologies like OWL-S or ML-Schema are reused to describe resources and services and
facilitate interoperability.

Future work will further extend the service infrastructure inside the DT, including service
management. Other functional services of a DT will be implemented and the domain-
specific ontologies will be extended. For this goal, an advanced version management
system has to be developed to keep track of changes made on the DT during its life-cycle.

Another research direction will investigate the applicability of already available IoT
standards and frameworks at the Communication and Information Layer of our GDTA. It
will investigate how those can be organized in the hierarchical dimension of the RAMI 4.0
using edge and cloud computing.
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CHAPTER 3
Transforming OPC UA

Information Models into
Domain-Specific Ontologies

Publication: G. Steindl and W. Kastner, "Transforming OPC UA Information Models
into Domain-Specific Ontologies," 2021 4th IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS), 2021.

Abstract: Semantics interoperability is important for cyber-physical systems to enable
complex data processing and facilitating interworking. OPC Unified Architecture (OPC
UA) provides an extensible information model but lacks formal semantics. Ontologies
based on the Web Ontology Language (OWL) can provide such formal semantics. Thus,
we present a transformation approach that converts OPC UA information models (or
only parts of them) into domain-specific ontologies. The transformation process consists
of two steps. The first step is a mapping from OPC UA to OWL Full. The second step
performs a graph transformation, based on SPARQL rules, into the domain-specified
target ontology. The adaption of this transformation to the source information model
and the target ontology can be accomplished by only adapting these transformation rules.
The presented approach is evaluated for a use case of an industrial heating process to
show its flexibility.

3.1 Introduction
Data play a key role in the ongoing transition to Industry 4.0, trying to reach the goals
of operational efficiency and productivity and a higher level of automation [12]. CPSs
are applied in the industrial domain, which gather these data and process them. The
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semantics of data and context information is important to further improve the abilities
of the systems based on the underlying CPSs. The OPC UA standard provides, next to
its communication specification, a standardized information model, providing additional
structure and semantics to the data. Thus, information about equipment and the plant’s
topology can be made available in OPC UA and later be used to set data into context
for further processing.

Because of its capabilities, OPC UA is a suitable technology for Industry 4.0 applications.
A disadvantage of the OPC UA information model is its lack of formal semantics, the
missing browsing capability [16] and a limited semantic expressiveness compared to
more advanced knowledge representations [1]. However, these features are important to
develop more sophisticated CPSs, like presented in [11], which are able to get an in-depth
knowledge of the monitored system or make them self-configurable and self-adaptive.

A more formal, machine-readable knowledge representation is provided by the Semantic
Web with its technologies, like RDF, OWL and SPARQL. Thus, transformations between
the OPC UA information model and OWL have been proposed to use various features of
OWL [17], [1],[18]. However, a simple OWL representation of the OPC UA information
model is not always appropriate. For some applications, the information from the
OPC UA model or only parts of it shall be used to instantiate a domain-specific ontology.
Thus, this paper provides an answer to the question, how domain-specific ontologies can
be instantiated based on already available OPC UA information models, considering
changes of the source information model and the target ontology.

The remainder of the paper is structured as follows: Sec. 3.2 gives a short overview of
related work in the area of OPC UA in combination with the Semantic Web. Sec. 3.3
explains the proposed process of transforming OPC UA information models into domain-
specific ontologies. In Sec. 3.4, a proof of concept implementation is presented to evaluate
the proposed transformation process for a use case of a thermal heating process. Finally,
the proposed transformation process is discussed, and an outlook on our future work is
given.

3.2 Related Work
Ontologies are used for knowledge representation and can be defined as a formal, explicit
specification of a shared conceptualization [19]. Technologies and standards form the
so-called Semantic Web Stack like RDF [8], RDFS [3], OWL [21], and SPARQL [6] support
the development of ontologies. RDF defines triples to formulate statements, consisting
of a subject, a predicate, and an object. RDFS introduces new concepts based on RDF
to increase its semantic expressiveness. OWL further enhances this expressiveness by
introducing concepts of formal logic. There exists different OWL levels, like OWL Full
and OWL DL with its profiles EL, RL, QL. It is important to know that OWL Full
has the least restrictions for modeling, which leads to undecidability when it comes to
reasoning. More details can be found in [9].
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OPC UA is an industrial communication standard that aims to solve interoperability
problems at the transport and semantic layer in Industry 4.0 applications. Thus, next to
the data communication, OPC UA facilitates the semantic description of data by defining
an OPC UA information model. Everything can be described with this information model,
from simple devices to very complex components in an object-oriented and semantically
meaningful way. Therefore, OPC UA defines an address space model, which is the meta-
model of the information model [14]. The address space model uses Nodes and References
to form a graph structure. Based on this meta-model, the OPC UA information model
defines the address space of the OPC UA server [15]. This address space is the information
that is exposed by a specific OPC UA server. A detailed description of these concepts
and their application can be found in [13].

A formal mapping between OPC UA and OWL DL is presented in [17]. It is shown, why
a trivial mapping between OPC UA and OWL DL is not possible. One major issue is the
usage of Instance-Nodes at the type definitions in OPC UA, which is not allowed in OWL
DL. Thus, mappings have to be defined for such OPC UA design patterns, which can be
specified in various ways, based on certain design choices. Another mapping between
OPC UA and OWL DL has been presented in [1]. They identified axioms and properties
which are available in OWL but not in OPC UA. Thus, they conclude that OWL is
semantically more expressive than OPC UA and also specified a mapping between them.

The mapping problem can be partly avoided by using OWL Full instead of OWL DL,
which allows one-to-one mappings for most of the OPC UA concepts, as shown in [18].
But such an approach is only applicable in cases where reasoning is not required.

However, all these approaches only allow a direct translation of the used OPC UA
information model into an OWL representation, whereas our proposed approach also
makes it possible to define mapping rules to extract the needed information from the
OPC UA model and use it in a domain-specific target ontology. This makes our approach
even more flexible.

3.3 Transformation Process
The proposed approach targets the situation where the information model is already
deployed at a running OPC UA server, and the address space can be read by an OPC UA
client.

For the model transformations, different levels of abstraction are of interest. A three-tier
architecture with M2 as meta-model, M1 as model, and M0 as instance level can be used
to describe these levels of abstraction, as shown in Fig. 3.1. The OPC UA address space
model is located on Level M2 as the meta-model of the OPC UA information model [10].
For the ontology, the ontology definition is located on level M1 and the used ontology
language, in this case OWL, on M2 [20].

The transformation of the OPC UA information model into a domain-specific ontology is
done in two steps. The first step is transforming the OPC UA information model into

65



3. Transforming OPC UA Information Models into Domain-Specific Ontologies

Figure 3.1: Model transformation on different levels of abstraction.

OWL Full. Using OWL Full makes reasoning impossible, but the mapping is straight
forward, by a one-to-one mapping of most concepts. In the second step, the OWL Full
graph is transformed with the help of SPARQL rules into a domain-specific ontology.
This domain-specific ontology can be based on OWL DL, which re-enables reasoning
again.

The second transformation step is performed at a lower level of abstraction, namely on
M1. SPARQL rules are used to define how concepts are transformed from one ontology
into the other. Therefore, SPARQL construct clauses are applied to search for patterns
in the ontology graph and create new concepts and instances based on these patterns.
To adapt this approach to other domain ontologies or the OPC UA information models,
only these SPARQL rules have to be changed. This leads to a flexible transformation
approach.

A more detailed description of the whole transformation process, as well as the involved
components, is depicted in Fig. 3.2 and described in the following:

1. The OPC UA information model is designed, and an XML-Nodeset file is created.

2. The information model is instantiated in an OPC UA server, which exposes the
information via its address space.

3. The whole OPC UA address space is read by a client from the server and a OWL
Full representation is generated, based on defined mapping rules.

4. The OWL Full representation is stored in a so-called "Quad Store". A quad store is
a specific database for RDF triples (triple store), which additionally provides the
feature of named graphs.

5. The SPARQL transformation rules are defined. These rules specify the transforma-
tion between the OWL Full representation of the OPC UA information model and
the domain-specific target ontology.
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6. The specified SPARQL rules are executed at the SPARQL endpoint of the quad
store. These rules create a new ontology stored in a new named graph to separate
it from the source ontology.

7. The created ontology can now be accessed. New information can be inferred by
reasoners and retrieved with SPARQL queries.

Figure 3.2: Model transformation process steps and involved components.

3.4 Use Case - Heating Process
To evaluate our proposed transformation approach, we selected a simple heating process
as use case. The pipe and instrumentation (P&I) diagram of the heating process is
shown in Fig. 3.3. The main components are an electric heater "H1", two fans "F1" and
"F2", a heat exchanger "HE1", and an open vessel named "SiPro". Various temperature
sensors (TI) and two flow sensors (FI) are installed at the inlet and outlet pipes. The
fans can only be switched to discrete speeds, while the heater’s power can be controlled
continuously. Fresh air is heated by the electric heater "H1" and ventilated through the
inlet pipe to the vessel. The heater is controlled by the temperature of the chamber,
which is measured at the chamber outlet. The exhaust air of the process is used by the
heat exchanger "HE1" for heat recovery.

3.4.1 OPC UA Information Model
For the described use case, shown in Fig. 3.3, an OPC UA information model is designed
and initiated in an OPC UA server. The information model captures the structure of
the heating process, including its components, their topology, sensors, and actuators.
The information model builds on existing industrial standards. To structure the plant,
elements defined by ISO 10209 [4] are used. The plant equipment is named and structured
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Figure 3.3: P&I diagram of the heating process.

based on EN ISO 10628 [5], which defines equipment for P&I diagrams, such as heat
exchangers, blower fans, vessels, etc. A small excerpt from the resulting type hierarchy
in the OPC UA information model is depicted in Fig. 3.4, limited to the exchanger type.
The complete information model is available on GitHub1.

As shown in Fig. 3.4, it can be specified whether the pressure or temperature change
for a certain equipment should be neglected or not by two variables, called NeglectPres-
sureChange and NeglectTemperatureChange. This information can be used later on for
sensor data evaluation, which is out of scope for this paper. Nevertheless, this information
is also used in the transformation step. Next to these variables, the HeatExchangerType
defines additional objects for flow ports and methods for controlling the equipment.

The standard IEC 62424 [7] defines "process control engineering (PCE) requests", repre-
senting sensors, actuators, and control functions. These elements are used in the OPC UA
information model, as depicted in Fig. 3.5. The designation of a PCE request consists of
its category and its function. Also, a unique reference number is assigned. A standardized
character string specifies the category and function. For example, the PCE request with
the reference number 106.1 in Fig. 3.3 has the designation "TIC", where category "T"
means temperature, the letter "I" stands for indication and "C" for a control function.
More Information about the application of IEC 62424 can be found in [2].

Non-hierarchical references are also specified and used to describe the topology of the
pant. They are shown in Fig. 3.6. Equipment can be connected via a mass transport
(hasMassFlowTo) or via an information flow (hasSignalTo). The hasPCE_Request and
hasProcessConnection references are used to connect sensors and actuators with their
corresponding plant equipment.

For the use case of the thermal heating process, depicted in Fig. 3.3, an information model
is loaded into an OPC UA server. This model instance is partly shown in Fig. 3.7. The

1https://github.com/Smart-Industrial-Concept/HeatingProcess_OPC_UA_Model
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Figure 3.4: OPC UA information model - excerpt of the specified equipment.
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Figure 3.5: OPC UA information model - PCE request type

Figure 3.6: OPC UA information model - reference hierarchy
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server exposes its address space, where a client can access it to perform the transformation
process.

Objects

SIC_UseCase

ThermalHeatingProcess

Equipment

Fan1

Fan2

H1

ElectricPower

SetpointValue

Inlet

Outlet

NeglectPressureChange

NeglectTemperatureChange

Start

Stop

HE1

SiPro

PCE_Requests

Figure 3.7: Instantiating the OPC UA information model for the simple thermal heating
process.

3.4.2 Domain Ontology - PETIont
As target ontology for the presented proof of concept, the Pipe, Equipment, Topology,
and Instrumentation Ontology (PETIont) is used. It has similar concepts as the OPC UA
information model as it is partly based on the same standards, like IEC 62424 with its
PCE requests. The ontology is implemented in OWL DL, and its main class concepts
and relations are depicted in Fig. 3.8. The ontology distinguishes between hydraulic
and thermal equipment. Thermal equipment changes the temperature between its input
port and output port, whereas hydraulic equipment changes the pressure. The complete
ontology can be found on GitHub2.

3.4.3 Transformation Rules
The first step of the transformation process is reading the address space form the OPC UA
server and creating the OWL Full representation of it. Basically, an OPC UA client
connects to the server and extracts the address space from it. The mapping creates
an owl:Class for the OPC UA node classes ObjectType, VariableType and DataType.

2https://github.com/Smart-Industrial-Concept/PETIont
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Figure 3.8: PETIont - main concepts and their relations.

Nodes of node class ReferenceType are mapped to owl:ObjectProperty. A more detailed
description of all these transformation rules can be found in [18].

The second step in the transformation process is performing a graph transformation
on the created OWL Full representation of the OPC UA information model. This is
achieved with the help of the SPARQL construct feature, which creates RDF triples
based on a SPARQL query. As the quad store supports named graphs, the results are
stored in a new graph inside the quad store. Thus, the new graph can be built step-wise
by executing rules which search for certain patterns inside the source graph. For our
proof of concept, we used Apache Jena Fuseki version 3.17.0 as the quad store.

For the transformation in our use case between the presented OPC UA information
model and PETIont, we specify nine different SPARQL rules. To make the rules more
understandable, not all created relations between the concepts are explicitly mentioned
in the following rule description. The transformation output is indicated with a "→":

1. Equipment where the pressure change is not neglected → peti:HydraulicEquipment

2. Equipment where the temperature change is not neglected → peti:ThermalEquipment

3. A hasMassFlowto reference between two ports belonging to different components
→ peti:hasDirectMassFlowTo

4. A hasMassFlowTo reference between two ports belonging to the same component
→ peti:hasInternalMassFlowTo
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5. ActuatorFunctionType → peti:PCEActuatorFunction

6. SensorFunctionType → peti:PCESensorFunction

7. SensorFunctionType including a control function (letter "C") → peti:ProcessControlFunction
and a peti:Setpoint

8. A "HasProcessConnection" between a PCE request and a component → peti:hasProcessConnection

9. A HasSignalto reference between two PCE requests → peti:hasSignalTo

To give an impression how these rules are implemented in SPARQL, Listing 3.1 shows
rule number 3 as an example. This rule is chosen because of its traceability to understand
the general principles without being too complex.
1 PREFIX uaBase : <http :// auto . tuwien . ac . at /~ o n t o l o g i e s /opcua#>
2 PREFIX : <http :// auto . tuwien . ac . at /~ o n t o l o g i e s /useCaseOPCUA#>
3 PREFIX p e t i : <http :// auto . tuwien . ac . at / s i c /PETIont#>
4
5 INSERT{
6 #c r e a t e i n s t a n c e s o f the mass f low connect ion between the
7 #port s o f connected component
8 GRAPH <http :// auto . tuwien . ac . at / petiGraph> {
9 ? startPortURI p e t i : hasDirectMassFlowTo ?endPortURI .

10 ?endPortURI p e t i : hasDirectMassFlowFrom ? startPortURI .
11 }
12 }
13 WHERE{
14 #r e t r i e v e the mass f low connect ion between a outport o f a component
15 #and the i n p o r t o f another component
16 ? s t a r t P o r t : hasMassFlowTo ? endPort .
17 ? s t a r t P o r t a : outFlowPortType .
18 ? endPort a : inFlowPortType .
19
20 #r e t r i e v e the names o f the connected components
21 ? s t a r t P o r t uaBase : BrowseName ? startPortName .
22 ? endPort uaBase : BrowseName ?endPortName .
23 ? s t a r t P o r t uaBase : ComponentOf ? startComp .
24 ? startComp uaBase : BrowseName ?startCompName .
25 ? endPort uaBase : ComponentOf ?endComp .
26 ?endComp uaBase : BrowseName ?endCompName .
27
28 #c r e a t e the URIs o f the i n s t a n c e s in the t a r g e t onto logy
29 BIND( " http :// auto . tuwien . ac . at / s i c /PETIont#" as ? petiURI )
30 BIND( u r i (? petiURI + s t r (? startCompName ) +"_" + s t r (? startPortName ) ) as ?

startPortURI )
31 BIND( u r i (? petiURI + s t r (?endCompName) +"_" + s t r (? endPortName ) ) as ?endPortURI

)
32 }

Listing 3.1: SPARQL rule 3 - Transforming a mass flow connecting two different
components.

Line 1 to 3 are just defining abbreviations for the namespaces. The "WHERE" clause
is used to find patterns inside the OWL representation of the OPC UA information
model. In the first block (lines 14 to 18), all hasMassFlowTo connections between an
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outport and an inport are retrieved. In the second block (lines 20 to 26), the associated
components’ names are queried. These names are used to define the URIs used in the
target ontology, stored in the variables ?startPortURI and ?endPortURI. This definition
happens in the last block, starting in line 28. In the "INSERT" clause, the object
property peti:hasDirectMassFlowto and its inverse property peti:hasDirectMassFlowto
are instantiated in the target ontology (lines 9 and 10). The resulting target ontology is
created in a named graph, specified in line 8, which separates it from the source graph.

3.4.4 Information Retrieval

After the transformation process is performed, the information is accessible via the
SPARQL endpoint of the Fuseki Server. As the target ontology used OWL DL, reasoning
can also be applied if necessary. The full potential of the approach will be achieved if
the created domain-specific ontology will be interlinked with other domain ontologies to
build a large knowledge graph. This knowledge graph would be accessible for various
applications or services within Cyber-Physical Systems (CPSs).

To prove that our transformation was successful, a simple example is given in Listing 3.2.
It shows how information can be retrieved from the instantiated target ontology with the
help of SPARQL. Therefore, the plant topology information, represented in the domain-
specific ontology, is accessed. The SPARQL query retrieves the installed equipment.
Additionally, directly connected components located before and after the equipment are
also retrieved. The answer to that query is also depicted at the end of Listing 3.2. To
reduce the query’s complexity, property paths are used in lines 8 and 11, supported in
SPARQL version 1.1.
1 PREFIX : <http :// auto . tuwien . ac . at / s i c /PETIont#>
2
3 SELECT ∗
4 WHERE {
5 ? equipment a : Equipment
6
7 o p t i o n a l {
8 ? equipment : hasOutPort / : hasDirectMassFlowTo /^ : hasInPort ?nextComp
9 }

10 o p t i o n a l {
11 ? equipment : hasInPort /^ : hasDirectMassFlowTo /^ : hasOutPort ?prevComp
12 }
13 }

| ? equipment | ?nextComp | ?prevComp |
| " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " |
| : H1 | : SiPro | : Fan1 |
| : Fan2 | :HE1 | : SiPro |
| :HE1 | : Fan1 | : Fan2 |
| : Fan1 | : H1 | :HE1 |
| : SiPro | : Fan2 | : H1 |

Listing 3.2: SPARQL query to retrieve the topology information with its corresponding
result.
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3.5 Discussion and Future Work
We evaluated the proposed approach for transforming OPC UA information models into
domain-specific ontologies with a proof of concept. The adaption of the transformation
process to other OPC UA information models or domain ontologies can be achieved
by only adapting the SPARQL rules. The remaining steps in the process are executed
automatically, which makes it flexible to an adaption of the source model or target
ontology. An additional benefit of our approach is that it is also applicable for already
existing OPC UA servers, as the information model is directly retrieved from the address
space of a running OPC UA server.

We also briefly introduced the information retrieval by applying a SPARQL query to the
endpoint. Having all this information about the plant topology, the available equipment,
and instrumentation in a machine-readable, formal representation is very beneficial for a
broad spectrum of applications or services. It can be used to facilitate the monitoring,
diagnosis, prediction, and control of a plant. The interlinking of this information with
other domain-specific ontologies will enable the proposed transformation approach’s full
potential.

A pitfall of applying SPARQL rules for the graph transformation could be, that depen-
dencies between rules can easily be introduced. These dependencies would require a
certain execution order for the transformation. This should be avoided by design or
clearly documented if it cannot be avoided.

In the future, we want to use the available topology information from the OPC UA
information model to evaluate sensor data in CPS, based on the information in the
created domain-specific ontology and other interlinked domain ontologies, capturing
further knowledge about the plant. Various services can make use of and contribute to
such an interlinked, shared knowledge graph, which will enable new capabilities within
CPSs.
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CHAPTER 4
Ontology-Based OPC UA Data

Access via Custom Property
Functions

Publication: G. Steindl, T. Frühwirth and W. Kastner, "Ontology-Based OPC UA
Data Access via Custom Property Functions," 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), 2019, pp. 95-101, doi:
10.1109/ETFA.2019.8869436.

Abstract: Cyber Physical Production Systems have a need of sharing and interlinking
information and knowledge over different domains. In the area of industrial automation,
OPC Unified Architecture (OPC UA) is a widely used and established standard for
communication and information modeling. We propose an ontology-based OPC UA data
access method utilizing custom property functions, which enables interlinking between
OPC UA information and other factory data. To avoid duplicated data and to reduce the
communication overhead in the proposed method, the OPC UA run-time data are loaded
on-demand and are not persistently stored in the triplestore. To enable fast and easy
ontology-based access and interlinking of the OPC UA information, the needed ontology
is automatically generated from the OPC UA information model. A proof of concept
demonstrates the application of our approach for a laboratory use-case of a Packed-Bed
Regenerator.

4.1 Introduction
The process of digitalization in industry is an ongoing challenge for industry itself as
well as for academia. This transformation is often called the fourth industrial revolution
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or Industry 4.0. The main goals of Industry 4.0 are optimization and customization
of production as well as enhanced automation and adaption [21]. This claims benefits
for increasing flexibility of the whole production system, which is a composition of
human resources, production equipment, and aggregated products that interact over
cyber-physical interfaces [20]. Such production systems are referred to as CPPSs.

CPPSs can be structured into five levels, which is called the 5C architecture [13] and
depicted in Figure 4.1. This architecture consists of a connection, conversion, cyber,
cognition, and configuration level. The Semantic Web Stack, including the RDF, the
RDFS and the OWL as well as SPARQL can be applied on the upper levels of this 5C
architecture to implement and enhance its functionality. Semantic Web technologies can
be used to semantically enrich industry data, integrate data from heterogeneous sources,
and increase interoperability. With the help of Semantic Web technologies engineering
and run-time information can be interlinked to form a so-called ontology-based Linked
Factory Data [23]. A key aspect of Linked Factory Data is to keep the data in their
natural format and storage, which can be achieved with the help of various types of
ontology-based data integration methods [6].

Figure 4.1: Levels of the 5C architecture for CPPS [13] and the application of OPC UA
and Semantic Web technologies

In the area of industrial automation, OPC UA is a well-established standard for industrial
communication. It specifies the data exchange and facilitates semantic interoperability by
use of an extensible information model. Thus, OPC UA is a framework for object-oriented
data and information representation and exchange [4]. As it is widely used and also
recommended by the Industry 4.0 initiative [1], the integration into Linked Factory Data
is addressed in this paper. Therefore, the transformation of the OPC UA information
model into an OWL ontology as well as an ontology-based data access method is presented,
which both are prerequisite for OPC UA integration into Linked Factory Data.

Usually, the information in an ontology is stored in a graph-based triplestore and is not
changing frequently over time. In industrial processes, run-time data, like sensor data
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or state conditions, are generated in high volume and velocity. Triplestores are not well
suited for large time series data as it will reduce the performance of SPARQL queries [16],
because the query engine has to perform a pattern matching over the whole graph in the
triplestore. Therefore, we propose an ontology-based data access method, which uses
custom property functions in SPARQL to retrieve run-time data and time series data
on-demand and without a persistent storage of the data in the triplestore. To reduce
the engineering effort and to enable an easy ontology-based OPC UA data access, an
automatic transformation of the OPC UA information model into an OWL ontology is
performed.

The remainder of this paper is structured as follows: Section 4.2 is giving a short
introduction into the OPC UA information model and Semantic Web technologies.
Also, a literature review of Semantic Web applications in combination with OPC UA
is presented. Section 4.3 explains the proposed ontology-based OPC UA data access
method as well as the automatic ontology generation process. Section 4.4 presents a
laboratory use case of a Packed-Bed Regenerator, which is used to demonstrate our
approach. In Section 4.5, a conclusion is drawn and ideas for future work are discussed.

4.2 State of the art
This section gives a short overview of OPC UA and its information modeling as well as
some introduction to the Semantic Web technologies used in this work. Also previous
work is reviewed which already applies Semantic Web technologies in combination with
OPC UA.

4.2.1 OPC UA Information Model
A key feature of OPC UA is its information modelling capability. It allows to describe
everything from simple devices (sensors, actuators, etc.) to very complex components
(production machinery, energy storage devices, etc.) in an object-oriented and semantically
meaningful way [15]. The information model is thereby built from nodes, representing
objects, variables, etc. and references, representing relations between nodes. OPC UA
defines eight different types of nodes, so-called node classes. They are briefly summerized
in Table 4.1.

Depending on its node class, each node has a set of attributes. Most importantly, each
node has a unique NodeId, which consists of a NamespaceIndex and an Identifier, e.g.
"id=2;s=Heater". Other attributes are the NodeClass (one of the entries of Table 4.1),
DisplayName (a human-readable name for the node), Description (a human-readable
description of the nodes’s purpose), possibly a Value, and many more. The information
model exposed by a specific OPC UA server is called the server’s address space. OPC UA
clients use services to interact with the server, e.g. the Browse service to navigate
through the address space, the Read/Write service to read/write variable values, the
HistoryRead/HistoryUpdate service to read/update historic values of variables, the Call
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Table 4.1: OPC UA node classes

Node
class

Comment Example

Object
Type

The ObjectType can be
used to model complex
objects. Typically, these
objects expose some in-
ternal structure.

HeaterType

Object An Object is an instance
of the corresponding Ob-
jectType, just like ob-
jects in programming
are instances of their cor-
responding class.

Heater

DataTypeDataTypes are typically
simple types such as
String, Boolean, Float,
Int32, etc. However,
they can also have a
more complex internal
structure if needed.

Float

Variable
Type

VariableTypes are used
to model the value
and structure of data.
Additional information,
e.g. the EngineeringU-
nit, can be added. The
value is of a specific
DataType.

AnalogItemType

Variable A Variable is an in-
stance of the correspond-
ing VariableType.

Temperature

Reference
Type

The ReferenceType
node class is used to
define the references
between nodes and their
semantics.

HasComponent

Method Methods can be called
by an OPC UA client.
Input arguments, as well
as output arguments,
are supported.

SetSetpoint()

View Views can be used to
structure and filter the
information in a user-
group-specific way.

OperatorView
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service to invoke methods, etc. The historical values themselves are not visible in the
OPC UA address space of the server.

4.2.2 Semantic Web Technologies

In the context of Semantic Web, various technologies are standardized under the lead
of the W3C1. One of the base technologies is called RDF [12], which can be used to
model information by creating statements about resources. These statements consist
of a subject, a predicate and an object, and, therefore, are called triples. As the object
of such a statement can be used as a subject in another statement, the information is
represented as a graph with interlinked resources. Special databases, called triplestores,
are used for this kind of data.

RDFS [2] and OWL [26] are both formal knowledge representation languages. RDFS is
an extension of the basic RDF and provides vocabulary to create hierarchies of classes
and properties. OWL extends RDFS with further language constructs, like cardinalities,
value restrictions, characteristics of properties, and complex class construction and is
based on description logic. Thus, RDFS and OWL enables reasoning for the Semantic
Web.

With the help of these technologies and standards, so-called ontologies can be created.
In computer science, ontologies are an explicit specification of a conceptualization, where
a conceptualization is a simplified abstract model of a certain domain [8]. In addition,
ontologies in computer science should be machine readable. Thus, an ontology can be
defined as "... a formal, explicit specification of a shared conceptualization" [24].

To retrieve information from such an ontology, SPARQL [9] was designed to query RDF
data including RDFS and OWL constructs. It supports a SELECT statement to perform
a graph-based pattern matching over the RDF graph and to retrieve data in a table-based
fashion. It also supports the CONSTRUCT clause, which allows to extract information
from the ontology and to create new RDF graphs based on these data.

Ontologies can be used in different fields of application, like communication, interop-
erability, as well as information sharing and reuse [25]. In the context of CPPS, data
and information integration is one of the key applications, where ontologies are applied.
OBDA, as the foundation of Ontology-Based Data Integration (ODBI), enables semantic
enrichment of available data from heterogeneous sources to create a semantic integration
layer, which is able to provide a higher level of abstraction [22].

Since in the manufacturing domain, data is hardly available in the RDF format, mappings
and transformations from existing data sources have to be performed [17]. For relational
databases, frameworks for OBDA, like Ontop exist [3] and have already been applied for
industrial use cases [18]. Similar concepts have to be investigated for OPC UA, which is
a common data source in an industrial environment [4].

1https://www.w3.org
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4.2.3 Combining Semantic Web Technology and OPC UA
Semantic Web technology in combination with OPC UA can be used in CPPSs for various
applications, like creating flexible orchestration plans in manufacturing [11] or semantic
data integration and analysis like conceptually shown in [19].

Semantic Web technologies are also used to harmonize the access and utilization of
industrial devices. Therefore, a conceptional architecture with an OPC UA adaption
layer is presented in [10], to perform a transformation of data exchange structures into
RDF. The transformation itself is not described in detail in this work, because it primarily
focuses on the creation of a plant model ontology.

A more concrete implementation strategy of combining OPC UA and Semantic Web
for an ontology-based OPC UA data access can be found in [14]. Thereby, Semantic
Web technology is used in combination with OPC UA for sensor discovery. A semantic
access layer is implemented to tap the full potential of ontologies while not affecting the
existing OPC UA standard. The data are retrieved by a subscription handler if available.
Otherwise, a sensor data request is triggered frequently to map the OPC UA data to a
sensor ontology. In [27], the OPC UA ontology-based data access is enabled by mirroring
the OPC UA data into a relational database and to map this data into an ontology. This
architecture is chosen to enable real-time processing of a large amount of industrial data.
The stored data in this database are used in combination with the ontology to perform
reasoning periodically to generate new knowledge dynamically. Both of these approaches
to ontology-based OPC UA data access have the disadvantages of duplicating data or
communication overhead, if the information is frequently polled.

To directly access the OPC UA data, a so-called linked data adapter is implemented
in [7]. This adapter provides data from an OPC UA server as RDF via a REST interface.
The base functionality of OPC UA is mapped to HTTP GET, POST, PUT and DELETE
requests. As the adapter returns RDF data, URI dereferencing can be used in SPARQL
to access these data on-demand.

Our proposed approach of ontology-based OPC UA data access is a direct extension of
the SPARQL query engine, by implementing so-called custom property functions. This
extension implements an efficient data extraction mechanism, as it only retrieves the
necessary data from an OPC UA server, if a SPARQL query is invoked, which needs
these specific data. This enables data access on-demand, but waives an additional REST
mapping.

4.3 Proposed Ontology-based OPC UA Data Access
Method

To enable ontology-based OPC UA data access, an OWL model has to be created and
mapped to the OPC UA information model. To reduce engineering effort, the OPC UA
information model, which is stored in the OPC UA server, is extracted by a software
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module and automatically transformed into OWL. This needs only to be performed once
or if the OPC UA information model of the server has changed.

To implement the proposed ontology-based OPC UA data access method, a Semantic
Web framework has to be used which supports custom property functions. Inside these
functions, the OPC UA server is accessed and its run-time data is retrieved. For our
proof of concept, the Apache Jena Framework2 is used. It is able to handle the OWL data
and its SPARQL query engine ARQ can be extended with custom property functions.
For the OPC UA communication the Eclipse Milo framework3 is chosen to implement
an OPC UA client inside the ARQ extension. To test the implementation, an Apache
Jena Fuseki server is configured to load the ARQ extension and to provide a SPARQL
web interface for exploring the data in the triplestore. Figure 4.2 gives an overview of
the used software modules of our proof of concept. The OPC UA ontology extraction as
well as the custom property function implementation are described in more detail in the
following subsections.

Figure 4.2: Software Modules of the proof of concept

4.3.1 OPC UA Ontology Extraction
The components and steps involved in generating OWL models from the address space
of an existing OPC UA server are illustrated in Figure 4.3. First, the OPC UA client
connects to the OPC UA server and starts analyzing the address space by reading
the OPC UA server’s NamespaceArray, which associates each NamespaceIndex to its
corresponding NamespaceUri. This is required because each NodeId only contains the
NamespaceIndex, while in Semantic Web technologies each resource is identified by

2https://jena.apache.org
3https://projects.eclipse.org/proposals/milo
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Namespace # Identifier . Next, the OPC UA client recursively browses the address
space of the OPC UA server and creates an RDF model for each Namespace. It thereby
maps OPC UA nodes to RDF resources and OPC UA references to RDF properties.
Additionally, for each reference between two OPC UA nodes, an RDF statement is
created in the model. If such a statement involves resources of different namespaces, and
thus different models, it is added to the model corresponding to the namespace with
the higher index, according to the NamespaceArray. This way, the model corresponding
to namespace with NamespaceIndex 0 only contains statements about namespace 0,
namespace 1 contains statements about namespace 1 and 0, etc. Finally, attributes in
OPC UA (such as NodeId, BrowseName, etc.) are added to the corresponding resources
by means of literals.

OPC UA Server

OPC UA

RDF model
namespace 0

OPC UA Client 

OPC UA to RDF Transformer

...

OWL Full Post Processor

http://auto.tuwien.ac.at/~ontologies/opcua.owl

http://auto.tuwien.ac.at/~ontologies/session.owl

...

RDF model
namespace 1

OPC
UA

Ontology
Extraction

Figure 4.3: OPC UA ontology extraction process

The result of this transformation step is a set of models, which only use the vocabulary
provided by RDF. Additional vocabulary of a more specific ontology language, e.g. RDFS,
OWL DL or OWL Full, is then added in the post processing step. As different ontology
languages provide different modelling concepts, the resulting RDFS/OWL models may
deviate quite substantially from the initial OPC UA address space. A very prominent
challenge in this regards is the capability of OPC UA to arbitrarily create references
between objects (corresponding to individuals in most ontology languages) and types
(corresponding to classes in most ontology languages). Only OWL Full allows to use
object properties for relating individuals and classes with similar flexibility. This short
discussion already indicates that the post processing step requires many design decisions
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and compromises to be made. As a more expressive ontology language enables the
creation of models that better represent the OPC UA address space, a post processor for
OWL Full has been developed in a first attempt. The post processor currently implements
the following transformation rules and can easily be extended:

• An rdfs:label is created for each resource from the OPC UA node’s DisplayName.

• All resources corresponding to an OPC UA node of node class ObjectType, Vari-
ableType, or DataType are declared as owl:Class.

• All resources corresponding to an OPC UA node of node class ReferenceType are
declared as owl:ObjectProperty.

• All resources corresponding to an OPC UA node being the source of a HasType-
Definition reference are declared as individual of the corresponding class.

• All resources corresponding to an OPC UA node being the source of a HasSubtype
reference are declared as superclass of the corresponding class.

• All object properties, for which the corresponding OPC UA ReferenceType’s at-
tribute Symmetric is set, are declared as symmetric property.

• For all object properties, for which the corresponding OPC UA ReferenceType’s
attribute InverseName is set, an inverse object property is created.

• All properties relating OPC UA nodes to their OPC UA attributes are declared as
annotation properties.

While not always being respected, it is best practice in ontology engineering to use
namespaces that actually correspond to ontology documents accessible via the web. This
idea is not present in OPC UA, and, thus, the namespaces extracted from the OPC UA
server’s NamespaceArray have no meaning except for being unique. For this reason,
the post processor allows to substitute namespaces with user-defined replacements, e.g.
http://opcfoundation.org/UA/ is substituted with
http://auto.tuwien.ac.at/~ontologies/opcua.owl.4 This completes the OPC UA
ontology extraction process.

4The resulting ontology documents are available in RDF/XML format at
http://auto.tuwien.ac.at/~ontologies/opcua.owl,
http://auto.tuwien.ac.at/~ontologies/session.owl, and
http://auto.tuwien.ac.at/~ontologies/packed-bed-regenerator.owl.
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4.3.2 Ontology-based OPC UA data access method
As most of the run-time data that are accessible through the Read or HistoryRead
service are changing over time, they should not be statically stored in the ontology. An
ontology-based data access method has to be provided which loads the OPC UA data
on-demand to avoid a periodical or event-based update of the ontology and to keep the
triplestore as small as possible.

We have implemented such an ontology-based data access for the OPC UA Read and
HistoryRead service as an extension to a SPARQL query engine. SPARQL is a very
flexible language which allows to implement custom property functions to add function-
ality. Two custom property functions were implemented, namely value and histValue.
These functions use the information stored in the ontology to retrieve the OPC UA
endpoint url and the OPC UA node ID to connect to the OPC UA server and re-
quest the required data. These two custom property functions are registered within the
http://auto.tuwien.ac.at/~ontologies/opcua.owl namespace.

The value property function can be applied on every OPC UA node in the ontology. If
for that node the Read service is available, the data are retrieved during the SPARQL
query and the value is assigned to the SPARQL variable. Listing 4.1 shows a SPARQL
query which uses the custom property function value.

The histValues property function returns the timestamp and its related value and binds
them to the specified SPARQL variables. As additional parameter, the start and end
time of the HistoryRead service can be defined. If no end time is defined, the current time
is used as default value. Table 4.2 illustrates the implemented function overloadings of
histValues. The usage of the custom property function histValues is shown in Listing 4.2

Table 4.2: Overloading of the Custom Property Function histVlaues

Function Signature Behaviour
histRead(?timestamp
?value)

Retrieves all available
data

histRead(?timestamp
?value int n)

Retrieves the n last val-
ues till now

histRead(?timestamp
?value "YYYY-MM-DD
hh:mm:ss")

Retrieves all data since
the specified date

histRead(?timestamp
?value "YYYY-MM-DD
hh:mm:ss"
"YYYY-MM-DD
hh:mm:ss")

Retrieves all data be-
tween the first and sec-
ond date-string

SPARQL can not only be used for querying, but also for updating or inserting new data.
For example, if certain OPC UA run-time data should be stored persistently in the
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ontology, the SPARQL INSERT command can be utilized.

4.4 Use Case - Packed-Bed Regenerator

As use-case for the ontology-based OPC UA data access, a model of a PBTES test rig
is chosen, which is located at the laboratory of the Institute for Energy Systems and
Thermodynamics (IET) at TU Wien (Figure 4.4b). The PBTES is a thermal energy
storage, which has a conic steel container filled with gravel as storage medium and
surrounded by an insulation. Ambient air is used as a heat transfer fluid. It gets heated
by a electric heater and transported through the tank during the charging phase. The
hot air heats up the gravel inside the tank which stores the energy. For discharging, cold
air is ventilated through the hot gravel. The schematic of the PBTES and its components
are depicted in (Figure 4.4a)

(a) Schematic diagram of
the Packed-bed Regener-
ator

(b) Test rig at the labo-
ratory of TU Wien [5]

Figure 4.4: Packed-bed Regenerator

The PBTES consists of a ventilator, a heater and the bulk container. It has various
temperature sensors installed as well as a mass flow sensor. The bulk container has
four temperature sensors at different levels to track its state of charge. An OPC UA
information model has been created which is partly shown in Figure 4.5. This model is
automatically transformed into OWL, as explained in previous Section. With this OWL
model and the implemented custom property function value and histValues, ontology-
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based OPC UA data access is performed, by sending SPARQL queries to the Apache
Jena Fuseki Server.

Objects

PackedBedRegenerator

BulkContainer

T_L1

CurrentTemperature

EngineeringUnits

EURange

SerialNumber

T_L2

T_L3

T_L4

Heater

T_H

Setpoint

SetSetpoint()

Ventilator

m_flow

CurrentTemperature

EngineeringUnits

EURange

SerialNumber

Setpoint

SetSetpoint()

T_i

T_o

Figure 4.5: OPC UA Information Model of the Packed-Bed Regenerator

Listing 4.1 shows a SPARQL query which retrieves the current value of the temperature
sensor TL1 in the bulk container of the PBTES. The SPARQL query engine connects to
the OPC UA server in the background, requests the data, and assigns it to the SPARQL
variable ?temp. The answer to this query is also shown at the end of Listing 4.1.
1 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
2 PREFIX uaBase : <http :// auto . tuwien . ac . at /opcua . owl#>
3 PREFIX j . 0 : <http :// auto . tuwien . ac . at /packed−bed−r e g e n e r a t o r . owl#>
4
5 SELECT ? displayName ?temp
6 WHERE {
7 ? s en s o r r d f s : l a b e l "T_L1 " .
8 ? s en s o r r d f s : l a b e l ? displayName .
9 ? s en s o r uaBase : HasComponent/uaBase : va lue ?temp

10 }

| ? displayName | ? temp |
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| " " " " " " " " " " " " " " " " " " " |
| " T_L1" | 8 1 . 0 0 |

Listing 4.1: SPARQL query using custom property function value and its corresponding
answer

Listing 4.2 shows a SPARQL query which retrieves the historical data (timestamp and
values) of the temperature sensor TL1, starting at 2019-03-21 10:00:00. As the retrieved
data is assigned to a SPARQL variable, the values can be processed by the SPARQL
engine. In the case of this query, a filtering of the values greater than "41.0" is applied.
The corresponding answer to this query is also partly shown in Listing 4.2.
1 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
2 PREFIX uaBase : <http :// auto . tuwien . ac . at /opcua . owl#>
3 PREFIX j . 0 : <http :// auto . tuwien . ac . at /packed−bed−r e g e n e r a t o r . owl#>
4
5 SELECT ? displayName ? time ?temp
6 WHERE {
7 ? s en s o r r d f s : l a b e l "T_L1 " .
8 ? s en s o r r d f s : l a b e l ? displayName .
9 ? s en s o r uaBase : HasComponent/uaBase : h i s t V a l u e s (? time ?temp "2019−03−21

1 0 : 0 0 : 0 0 " ) .
10 FILTER(? value > " 4 1 . 0 " )
11 }

| ? displayName | ? time | ? temp |
| " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " |
| " T_L1" | " Thu Mar 21 1 0 : 0 0 : 0 0 CET 2 0 1 9 " | 8 1 . 0 |
| " T_L1" | " Thu Mar 21 1 0 : 0 0 : 0 1 CET 2 0 1 9 " | 8 0 . 0 |
| . . . | . . . | . . . |
| " T_L1" | " Thu Mar 21 1 0 : 2 5 : 5 2 CET 2 0 1 9 " | 1 0 4 . 0 |

Listing 4.2: SPARQL query using custom property function histValue and its
corresponding answer

In Listing 4.3 a SPARQL query is shown, which retrieves all temperature sensor val-
ues from the bulk container and calculates the average temperature. As the OPC UA
type definitions are present in the Objects and the Types folder of the OPC UA infor-
mation model, the query has to state that the BulkContainer is a component of the
PackedBedRegenerator. Afterwards, all components of the BulkContainer which are from
type TemperatureSensorTypes are retrieved and their current values are accessed by
invoking the custom property function uaBase:value.
1 PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
2 PREFIX uaBase : <http :// auto . tuwien . ac . at /opcua . owl#>
3 PREFIX j . 0 : <http :// auto . tuwien . ac . at /packed−bed−r e g e n e r a t o r . owl#>
4
5 SELECT ( avg (? va lue s ) as ?averageTemp )
6 WHERE {
7 ? r e g e n e r a t o r r d f s : l a b e l " PackedBedRegenerator " .
8 ? r e g e n e r a t o r uaBase : HasComponent+ ? bulkCont .
9 ? bulkCont uaBase : HasTypeDef init ion j . 0 : BulkContainerType .

10 ? bulkCont uaBase : HasComponent+ ? tempSensors .
11 ? tempSensors uaBase : HasTypeDef init ion j . 0 : TemperatureSensorType .
12 ? tempSensors uaBase : HasComponent/uaBase : va lue ? va lue s
13 }
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| ? averageTemp |
| " " " " " " " " " " " " |
| 1 9 5 . 0 |

Listing 4.3: SPARQL query to retrieve the average temperature of the bulk container
and its corresponding answer

The temperatures in the bulk container are TL1 = 180 ◦C, TL2 = 190 ◦C, TL3 = 200 ◦C
and TL4 = 210 ◦C. The answer to this query is an average temperature of TA = 195 ◦C,
which is also shown as a result at the end of Listing 4.3. The calculation of the average
temperature is performed by the SPARQL engine, as the retrieved data are assigned to
the SPARQL variable values.

4.5 Conclusion and future work
We have shown how ontology-based OPC UA data access can be implemented with the
help of custom property functions and an automatic transformation of the OPC UA
information model into OWL. The combination of Semantic Web technologies and
OPC UA enables new possibilities in the context of CPPS, which could lead to higher
flexibility in the production system. We have shown the application of the SPARQL
query language to retrieve OPC UA data from a specified information model.

In this paper, we did not explore the reasoning capabilities of OWL, which can be
beneficial for certain applications in the context of CPPS. Further research will be carried
out to enable reasoning for the OPC UA ontology and combining it with logical rules.
Also, a performance evaluation of our approach, regarding to query execution time and
memory space, is planned as future work.

The presented proof of concept showed only a simple use case in an isolated environment.
We believe that the full potential of the ontology-based OPC UA data access is only
achieved, if other information, like environmental conditions, production plans, device
information, etc. are interlinked to build up Linked Factory Data. This will lead to new
insights into the data and the production system itself.
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CHAPTER 5
Query Performance Evaluation of
Sensor Data Integration Methods

for Knowledge Graphs

Publication: G. Steindl and W. Kastner, "Query Performance Evaluation of Sen-
sor Data Integration Methods for Knowledge Graphs," 2019 IEEE Big Data, Knowl-
edge and Control Systems Engineering (BdKCSE), 2019, pp. 1-8, doi: 10.1109/Bd-
KCSE48644.2019.9010668.

Abstract: In this paper, a Smart Data Service, based on Semantic Web technology is
introduced, which supports the control engineer during the data-driven model development
process by enabling enhanced data analysis.

As a perquisite for such a service, sensor data consisting of semantic meta data as well as
time series data have to be integrated into a so-called knowledge graph. Therefore, three
different integration approaches, found in the literature, were evaluated and compared
regarding their query execution performance. The characteristics and limitations of these
three methods are discussed to specify the conditions for their specific utilization.

5.1 Introduction
For the development of advanced control strategies for industrial as well as building
energy management systems, accurate system models are required. For retrofitting of
existing systems with already available monitored data, data-driven model development
can be applied to create such models. Nevertheless, the model identification process is
time consuming task and requires additional domain knowledge [14]. Unfortunately, this
knowledge is often scattered and not well documented.
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Figure 5.1: Automation Pyramid

From a control engineer’s perspective, various data and information sources are available
on different levels of the automation pyramid. A generic version of this pyramid –
covering factory automation systems as well as building automation systems – is shown in
Fig. 5.1. For developing novel control strategies, information out of various layers of the
automation pyramid has to be taken into account. Such an information is, for instance,
the price from an energy market, the capabilities of installed components, operational
data, as well as run-time information, like plant conditions or sensor data.

At the so-called management level, data is usually kept in (relational) database man-
agement systems, CSV files, with proprietary formats or sometimes accessible via Web
interfaces. Below at the automation level, other data sources are common and often
bundled in supervisory control and data acquisition systems based on, e.g. Open Process
Control (OPC) or Building Automation and Control Network (BACnet) servers. These
heterogeneous data sources are often distributed with their underlying data stored in
isolated silos. In any case, access to these different data sources can be difficult, since a
lot of implicit knowledge is needed. To retrieve information from a relational database,
for example, the user has to know its schema, including tables and columns, which can
have meaningless names without any semantics. This makes a data integration process a
very laborious task.

A so-called Linked Factory Data [16], where the implicit knowledge is captured in an
ontology and is interlinked with existing information sources, could help to overcome
some of these problems. Based on Semantic Web technology, the Linked Factory Data
forms a so-called knowledge graph. This graph can be used to build a Smart Data
Service [10], which will act as a single point of interaction for control engineers. This
service provides the interlinked, structured and partly labeled data, to reduce the effort
of information gathering during the data-driven model development process. It will also
facilitate an enhanced semi-automatic data analysis process.

In the context of industrial energy systems, the integration of sensor data into the
Linked Factory Data is important. Next to meta data of sensors, e.g. engineering units,
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localization of the sensors, manufacturer information, also the time series data have to
be accessible over the knowledge graph. Various integration methods are proposed in
literature, but their scalability, regarding their data access performance has not been
compared, yet. Therefore, the following two research questions are addressed within this
paper:

• RQ1: What is the scalability of different sensor data integration approaches for
knowledge graphs, regarding their query execution time?

• RQ2: What are the limitations and conditions for the utilization of these ap-
proaches?

The remainder of the paper is structured as follows: Sec. 5.2 gives an overview of the
fundamental Semantic Web technologies and describes the three investigated sensor data
integration approaches found in literature. Sec. 5.3 explains the applied performance
evaluation method. The results of this evaluation are presented in Sec. 5.4, followed by a
discussion of the results in Sec. 5.5. Finally, a short conclusion is drawn in Sec. 5.6.

5.2 Sensor Data Integration Methods
Semantic Web technologies are the foundation of the Linked Factory Data and the
investigated sensor data integration methods. Three different approaches were evaluated
which were found in related work and applied to an (industrial) use-case. The approaches
are called "Ontology Storage", "Custom Property Function", and "Ontop Framework".
They are described in more detail in this section. First, the fundamentals of the Semantic
Web technologies are explained.

5.2.1 Semantic Web Technologies
The vision of the Semantic Web was to annotate Web content to add semantics to it.
This allows making the content more accessible to humans and computers [2]. Ontologies
are used as tool to specify the meaning. An ontology can be defined as "... a formal,
explicit specification of a shared conceptualization" [17], usually applied for a certain
domain of interest. Today, various Semantic Web technologies are standardized and
maintained by the W3C1. These technologies are also known as the Semantic Web Stack.
The main technologies in place are the RDF, RDFS, OWL, and the SPARQL.

RDF [9] is used to formulate statements about resources with the help of so-called
triples. A triple consists of a subject, a predicate, and an object. It represents some
kind of knowledge. As an object can be used as a subject for another statement, the
information is forming a graph and, thus, interlinks various resources. RDFS [3] is adding
semantics by introducing class and property hierarchies, as well as the domain and range

1https://www.w3.org

99

https://www.w3.org


5. Query Performance Evaluation of Sensor Data Integration Methods for
Knowledge Graphs

constraints for properties. OWL [19] provides additional language constructs, which
allow to define, for instance, cardinalities, value restrictions and complex class constructs.
These three technologies enable the formulation of a formal knowledge base or ontology.
New knowledge can be inferred from the ontology with the help of reasoning techniques.

The ontology, based on triple-statements is usually stored in a specific database, which
is called triple-store. To retrieve the stored information, a query language has been
standardized called SPARQL [8]. SPARQL performs pattern matching over the triple-
graph and is comparable to the SQL for relational databases.

Ontologies can be applied for communication tasks, interoperability problems, as well
as information sharing and re-use [18]. In particular in the engineering domain, in
which various engineering disciplines have to work together using different terminologies
accompanied by various data formats and schema, ODBI can be very useful. ODBI
captures the implicit knowledge across the these heterogeneous data sources in an ontology
to create semantic interoperability [6].

As in the manufacturing domain data is hardly available in the RDF format, mappings
and transformations from existing data sources into RDF have to be performed to
integrate these data into an ontology [12]. The concept of mapping data source into
an ontology is named OBDA. One of such an OBDA framework is called Ontop2 and
explained in some more detail in one of the following sections.

Sometimes the terms ontology, knowledge graph and knowledge-based system are used
in an intermingled way. With respect to [1], a knowledge-based system consists of two
parts: a knowledge base and an inference engine. The ontology works as the knowledge
base where a reasoner can be applied to infer new knowledge. Based on this definition, a
knowledge graph can be defined as a knowledge-based system, with a knowledge base
(ontology) and reasoning engine, as well as the integration of information from external
sources [5]. As our proposed Linked Factory Data includes such external sources, we use
the term knowledge graph when we refer to it.

5.2.2 Ontology Storage

One way of integrating sensor data from sensor networks into a knowledge graph is to
store the sensor data inside the ontology. The sensor observations are then represented
by a timestamp-value pair. The data inside an ontology is organized as a graph. This
way, every new observation is enlarging the graph and also the search space for data
retrieval. Such an approaches has been used, for example, to create a Linked Data for
building management systems [7]. The data update and synchronization between the
data stored in the triplestore and the plant has to be handled by an additional client
software.

2https://ontop.inf.unibz.it/

100

https://ontop.inf.unibz.it/


5.2. Sensor Data Integration Methods

Even if this approach seems reasonable and easy to implement, the scalability of this
approach seems limited as the ontology is growing with every new observation. This can
reduce the performance when accessing data in some cases.

5.2.3 Custom Property Function

The functionality of SPARQL is extensible, by implementing a so-called CPF. A CPF
allows to execute some piece of code during the process of triple matching, which is
determined by the property URI. Most SPARQL engines of Semantic Web frameworks,
like Eclipse RDF4J3 or Apache Jena4 are supporting the implementation of such custom
functions.

A CPF has also been used to integrate sensor data from an OPC UA server into an
ontology [15]. Inside this CPF, an OPC UA client was implemented, which was able
to connect to an OPC UA server. During a SPARQL query with a CPF, the data is
retrieved from the OPC UA server. The OPC UA data stays in its normal storage and
the triplestore is not growing by adding new observations over time.

The CPF approach seems to be very flexible supporting the integratation of different
kinds of data sources which provide some API. Thus, a CPF allows to integrate not only
OPC UA, but also e.g special time series databases or connections via Web interfaces.

To compare this approach with the other two methods, a CPF was implemented for the
Apache Jena Fuseki Framework. A common relational database was used as data source.
The implementation uses an RDF mapping file to specify the database connection, the
related sensor data, as well as a query string. The query string is sent to the specified
connection endpoint. In the case of a relational database, the query string is a SQL
string. This could also be changed to access NoSQL databases. Listing 5.1 shows such an
exemplified mapping for a sensor with the ID S0 and a database connection Connection1.

@pref ix ns1 : <http :// s i c . auto . tuwien . ac . at /mappings#> .
@pref ix sosa : <http ://www. w3 . org / ns / sosa />.

sosa : S0 ns1 : hasMapping ns1 : MappingS0 .

ns1 : MappingS0 ns1 : hasDBConnection ns1 : Connection1 ;
ns1 : hasSQLString "SELECT ’ time ’ , ’ value ’

FROM SensorData
WHERE ( sensorID = ’ S0 ’ )
ORDER BY ’ time ’ DESC " .

ns1 : Connection1 ns1 : db " Sensors " ;
ns1 : passw " password " ;
ns1 : u r l " l o c a l h o s t : 5 4 3 2 " ;
ns1 : user " username " .

Listing 5.1: Mapping file for CPF

3https://rdf4j.eclipse.org
4https://jena.apache.org/
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It is assumed that every sensor can store its data in another database. Thus, an arbitrary
amount of database connections can be defined in the mapping file, which can be
associated with the mapping of a sensor.

The CPF is registered under the standard namespace and the property name getHistValues
is assigned. As parameters for the CPF, two SPARQL variables are mandatory to store
the timestamp and the corresponding value. Two additional parameters can be specified,
to constrain the time interval of data retrieval. These two parameters are optional and are
used to reduce the amount of data which have to be retrieved, by filtering the timestamps
directly at the data source level. This improves the performance for certain types of
queries. The usage of the CPF inside a SPARQL query is shown in Tab. 5.2.

5.2.4 Ontop Framework
Ontop is an open-source OBDA framework. The concept of OBDA is to use ontologies as
interface for data access [13]. OBDA allows to abstract the data sources schema details
and makes information access easier for users. Usually the data source are relational
databases which are queried over SQL.

However, mappings between an conceptual domain view in terms of an ontology and the
database schema have to be defined. A formal definition of OBDA is given in [20], by
defining a relational database source D which conforms to the data source schema S,
an ontology O and a mapping M from S to O . The OBDA specification is defined as
P = (O, M, S). The ontology O provides the conceptual view of the data.

Ontop enables the virtual integration of a data source into an RDF graph without
transforming and materializing the relational data. This is performed by query re-writing
techniques [4]. Therefore, mappings between the database and the ontology have to be
defined. The mapping file for the presented use case can be found in Listing 5.2. Ontop
is also compliant to W3C recommendations, like SPARQL, but can only connect to one
SQL compliant database.

5.3 Evaluation Method
The performance evaluation was carried out on a Virtual Machine (VM) which has four
64-bit Intel Cores @ 2.6 GHz and uses CentOS Linux 7.6.1810 as operating system.

To provide a SPARQL endpoint and persistent RDF storage, an open-source Semantic
Web framework was used. As the CPF was already implemented for Apache Jena Fuseki
v3.12.0, it was also used as SPARQL endpoint for the ontology storage.

Ontop v1.18.1 was chosen for OBDA because it is a very popular open-source framework,
well documented, features active development within the last year and provides the
possibility to access external relational databases. Alternatives, which were presented in
[11] could not fulfill all of these requirements. Additionally, Ontop was already proposed
in other publications as a framework for accessing time series data (cf. [12]).
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To store the test sensor data, PostgreSQL v11.5 was installed as relational database
management system, because it is supported by Ontop. For our test case, we used a very
simple database schema with only one table. The database table is shown in Table 5.1.
A sensor observation is represented by a single row in this table. Every observation has a
unique index and consists of a sensor ID, timestamp and the corresponding value.

Table 5.1: Sensor Data Table in relational database

Index SensorID Time Value
0 S1 2019-08-01 00:00:00 5.56
1 S2 2019-08-01 00:00:00 25.36

. . . . . . . . . . . .
10 S1 2019-08-01 00:15:00 78.36
11 S2 2019-08-01 00:15:00 68.75
. . . . . . . . . . . .

As test data, random floating point values were generated and assigned with a timestamp.
The timestamps start with 2019-08-01 00:00 and have a resolution of 15 minutes. The
generated random floating point values are in a range between 0 and 100.

To evaluate the data access performance of all three sensor data integration approaches,
eight SPARQL queries were specified (Table 5.2) and executed. The query Q7* is a
modification of Q7 to investigate a special behavior of the CPF approach in more detail.
A query can search over three different properties of the observation, which are the
SensorID, the Time and the Value. These three search dimensions are also indicated in
the query list, shown in Table 5.2.

For the test procedure the amount of sensors as well as the amount of values per sensor
were varied. The amount of sensors were set to 10, 100, 250, and 500. The amount of
values per sensor were set to 100, 1000, 2500, 10.000, and 100.000. For every combination
of these two values, the execution time for all eight SPARQL queries is evaluated. This
procedure was repeated for all three presented sensor data integration approaches.

To represent the sensor data inside the knowledge graph, the Semantic Sensor Network
(SSN) ontology was used, which is a recommendation of the W3C. For the evaluation,
only view concepts from the core part of the SSN, the SOSA ontology, are used depicted
in Fig. 5.2.

To evaluate the ontology storage approach, an RDF file with individuals was created.
Every observation was connected with the corresponding sensor via the SOSA prop-
erties (madeBySensor and madeObservation). For every test case, the Fuseki server
was restarted and the RDF data was loaded. Afterwards, the queries were sent to the
SPARQL endpoint and the execution time for every SPARQL query was measured.
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Table 5.2: Queries

SPARQL Query Search Dimension
Nb Standard Custom Property Function SensorID Time Value

Q1

SELECT ?time ?value
WHERE {
sosa:S1 sosa:madeObservation ?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime
?time}

SELECT ?time ?value
WHERE {
sosa:S1 :getHistValues(?time ?value)
}

Q2

SELECT ?time ?value
WHERE {
sosa:S2 sosa:madeObservation ?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime ?time.
Filter( ?time >= "2019-08-01T07:00:00"^^xsd:dateTime
&& ?time <= "2019-08-01T10:00:00"^^xsd:dateTime)}

SELECT ?time ?value
WHERE {
sosa:S2 :getHistValues(?time ?value
"2019-08-01T07:00:00" "2019-08-01T10:00:00")
}

X

Q3

SELECT ?time ?value
WHERE {
sosa:S3 sosa:madeObservation ?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime ?time.
Filter( ?value >96.1)}

SELECT ?sensor ?time ?value
WHERE {
sosa:S3 :getHistValues(?time?value)
Filter( ?value >96.1)
}

X

Q4

SELECT ?sensor ?time ?value
WHERE {
?sensora sosa:Sensor.
?sensor sosa:madeObservation ?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime?time.
Filter( ?value >99.5)}

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor :getHistValues(?time ?value)
Filter( ?value >99.5)
}

X X

Q5

SELECT ?time ?value
WHERE {
sosa:S5 sosa:madeObservation ?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime?time
Filter( ?value >= 50
&& ?time >= "2019-08-01T07:00:00"^^xsd:dateTime
&& ?time <= "2019-08-01T10:00:00"^^xsd:dateTime)
} OrderBy ?time

SELECT?time ?value
WHERE {
sosa:S5 :getHistValues(?time ?value
"2019-08-01T07:00:00"
"2019-08-01T10:00:00")
Filter( ?value >= 50)
}OrderBy ?time

X X

Q6

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor sosa:madeObservation ?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime ?time.
Filter( ?time >= "2019-08-01T10:00:00"^^xsd:dateTime
&& ?time <= "2019-08-01T11:00:00"^^xsd:dateTime)}

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor :getHistValues(?time ?value
"2019-08-01T10:00:00"
"2019-08-01T11:00:00")
}

X X

Q7

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor sosa:madeObservation?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime ?time.
Filter( ?value >99.5 &&
?time >="2019-08-01T07:00:00"^^xsd:dateTime)}

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor :getHistValues(?time ?value
"2019-08-01T07:00:00") Filter(?value >99.5)
}

X X X

Q7*

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor sosa:madeObservation?obs.
?obs sosa:hasSimpleResult ?value.
?obs sosa:resultTime ?time.
Filter( ?value >99.5 &&
?time >="2019-08-01T07:00:00"^^xsd:dateTime &&
?time <="2019-08-01T07:30:00"^^xsd:dateTime)}

SELECT ?sensor ?time ?value
WHERE {
?sensor a sosa:Sensor.
?sensor :getHistValues(?time ?value
"2019-08-01T07:00:00" "2019-08-01T07:30:00")
Filter(?value >99.5)
}

X X X
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Figure 5.2: Overview of used SOSA classes and properties

To access the data through CPF, an RDF mapping file was created for every test case.
The mapping file defines a database connection for every sensor. An example of such an
CPF mapping file is shown in Listing 5.1.

Additionally to the CPF mapping file, an individual was created in the ontology for every
sensor. To test the CPF approach, the Fuseki server and the database server holding the
test data were started. Only the SOSA ontology and the individuals were loaded into
the triplestore. Then all eight SPARQL queries, as shown in Table 5.2, were executed.
As the CPF defines a special property, the CPF queries are slightly different than the
standard SPARQL queries.

To test the Ontop approach, a proper mapping file was created, which is partly shown in
Listing 5.2. It describes how to map the data from the database (source) into certain
concepts of the ontology (target). Listing 5.2 illustrates the mapping definition for the
Observation and the Sensor class including their properties. This file is loaded at the
startup of Ontop. The database connection details are also configured in a separate file.
Afterwards, only the data in the relational database were altered and all eight SPARQL
queries were executed.

[ MappingDeclaration ] @ c o l l e c t i o n [ [
mappingId urn : Observat ion
t a r g e t : Observation_ { index } a : Observat ion ;

: hasSimpleResult { va lue } ;
: resu l tTime { time } ;
: madeBySensor : { sensorID } .

: { sensorID } : madeObservation : Observation_ { index } .
source SELECT " index " , sensorID , time , va lue

FROM SensorData

mappingId urn : SensorID
t a r g e t : { sensorID } a : Sensor .
source SELECT D i s t i n c t sensorID

FROM SensorData
] ]

Listing 5.2: Ontop mapping file
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As caching is performed in the relational databases as well as the triplestore, the execution
measurement was repeated several times and also the execution order of the queries was
randomly changed. Thus, every measurement was repeated 20 times. Afterwards, the
distribution of the execution time was analyzed. For further investigations, the mean
execution time was calculated and used for the analysis.

To verify that no server error occurred during the query execution, which would lead to
wrong measurements of the data retrieval process, all query results were automatically
checked, if the retrieved data were as expected.

5.4 Query Performance Evaluation
In this section, the results of two expressive and complementary test cases are presented.
Both cases have the same amount of observations (1.000.000) which are stored in the
relational database or triplestore. They only differ by the amount of sensors and
observations per sensor:

• Test Case A: 10 sensors with 100.000 observations per sensor

• Test Case B: 500 sensors with 2000 observations per sensor

Fig. 5.3 shows the mean execution time for the queries Q1, Q2, Q3, Q5 for Test Case A.
Q1 represents the base line, because all generated test data are loaded. For the queries
Q2, Q3 and Q5, the sensor name is specified in the SPARQL query, which means that a
search must only be performed over the timestamps and values.

As shown in Fig. 5.3, the CPF mean execution time of Q3 is much higher than for the
query Q2 and Q5. The reason for this behavior is the additional filtering of the sensor
values in Q3. This filter function is performed by the SPARQL engine over all returned
sensor values. Thus, the CPF returns the whole data stored in the database for the
sensor S3 to the SPARQL endpoint. After that, the filtering is done by the SPARQL
engine. Therefore, it takes about the same amount of time as to retrieve and filter the
data directly from the triplestore.

Ontop performs query re-writing, which means that the value filter is already applied at
the relational database in SQL. Thus, the filtering is performed much faster and has no
big influence on the query execution time at all.

In query Q5, only data between a certain time interval is retrieved from the relational
database. In case of CPF, filtering of timestamps is performed at the database and the
amount of returned is much smaller than in Q3. Thus, the value filtering is performed
much faster by the SPARQL engine and the execution time of the CPF for Q5 is smaller.

The test case shows, that value filtering can have a significant impact on the CPF
performance, if large amount of data is returned. Thus, an additional query Q7* was
introduced to investigate this behavior in more detail.
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Figure 5.3: Test Case A: Mean query execution time for Q1, Q2, Q3, and Q5

The queries Q4, Q6 and Q7 do not specify a particular sensor in their query. This means,
a search has to be performed over all available sensors. Fig. 5.4 shows the mean execution
times for these queries. The performance of the CPF for Q4 an Q7 is worse than for
Q6, because of the already mentioned additional value filtering. This is demonstrated by
the execution of query Q7*. This query is a modification of query Q7, which adds an
additional time constraint (time ≤ 2019-08-01T07:30:00). As the CPF performs filtering
of the timestamps directly at the database, the amount of retrieved data is reduced.
This constraint reduces the number of returned values from 999.720 to 1.500. Therefore,
the value filtering for the CPF at the SPARQL engine is performed much faster. This
reduces the execution time for CPF significantly.

It is also shown in Fig. 5.4, that the additional time constraint in Q7* increases the mean
execution time for the ontology storage by about 4 seconds. To investigate this behavior
and exclude any connection problems during the procedure, the distribution of the access
time was examined shown in Fig. 5.5. The box-plot shows a symmetrical distribution
around the mean value. This implies that no outliers caused that increase in time, but
the additional filter parameter which has to be handled by the SPARQL engine.

The queries Q1, Q2, Q3 and Q5 only retrieve data for one particular sensor. Therefore, a
variation in the amount of sensors – as performed for Test Case B – has no influence on
the query execution time.

Fig. 5.6 shows the results for the queries Q4, Q6 and Q7 of Test Case B. For the ontology
storage approach and Ontop, the variation has no influence, as the overall amount of
observations stay the same. But, the performance of the CPF decreases significantly.
This is caused by the CPF design approach. The CPF assumes that every sensor can be
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Figure 5.4: Test Case A: Mean query execution time for Q4, Q6,Q7, and Q7*

Figure 5.5: Test Case A - Ontology storage method: Execution Time
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stored in another database. Therefore, the CPF has to iterate over the sensors in the
SPARQL result set and performs separated SQL queries for every sensor. This reduces
the query execution performance drastically.
Ontop supports only one database connection and applies an optimized query rewriting.
Thus, only one SQL query is necessary facilitating very fast data retrieval.

Figure 5.6: Test Case B: Mean query execution time

5.5 Discussion
The results of the performance evaluation show, that the storage of time series data in
the ontology leads to performance issues, if the time series grows over time. The ontology
storage method took much more time for the most queries (Q1, Q2, Q5, Q6, Q7, Q7*)
than the other two approaches. Thus, these method can not be recommended for most
use cases. Nevertheless, for implementation of prototypes or use cases with only a small
amount of data, it seems to be a feasible solution as long as around 100.000 observations
are taken into account under the outlined test conditions. If the amount of observations
is constantly growing over time, other approaches should be preferred.
The CPF is a very flexible approach to include different kinds of data sources, e.g. OPC UA
or NoSQL databases. Nevertheless, the CPF implementation has two limitations. One
drawback is the filtering over sensor data values, as is not directly performed at relational
database but at the SPARQL endpoint. This drastically increases the query execution
time, if large amount of data is returned from the database. This can be avoided, if the
CPF is extended with additional function parameters to perform filtering directly at the
data source. This issue will be subject for further investigations and was not in the scope
of the present work.
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The second limitation of the CPF is caused by its flexible design approach allowing
every sensor value to be stored in another relational database. This feature supports
the integration of more than one relational database into a knowledge graph, but also
effects that a SQL query is sent to the database for every sensor in the SPARQL result
set. This iteration leads to a performance reduction for use cases where a query has to
search over a large amount of sensors. If the sensor data are stored in the same database,
the CPF performance could be improved by optimizing the SQL queries. This could be
considered for future implementations.

The query re-writing process, performed by the Ontop framework, leads to very fast data
access. In most of the test cases, Ontop has the shortest query execution time. Thus,
Ontop is able to scale well for large amount of data. A drawback of the Ontop framework
is its limitation of accessing only a single relational database. Additionally, this database
has to be SQL compliant. Thus, a connection to NoSQL databases is not possible. The
disadvantage of only one database connection could be solved by a workaround, using
data virtualization systems like Teiid5. Such systems allow to connect multiple data
sources to one virtual database. Also, this approach would demand for further tests out
of scope for the present work.

5.6 Conclusion
To find answers for the stated RQ1, the performance evaluation and comparison of three
different approaches suitable for sensor data integration into a knowledge graph was
carried out.

To answer RQ2, the characteristics and their resulting limitations of all three methods as
discussed in the previous section were addressed. To conclude the conditions for their
application, it can be stated that, if the sensor data is already stored externally in an
SQL compliant relational database, the Ontop framework should be preferred. Only if
the data sources are not SQL-compliant, like NoSQL databases or data held in OPC UA
servers, the CPF can be applied. Improvements of the CPF should be made to avoid
performance reduction for certain types of queries.

If more than one SQL database should be integrated, CPF is a feasible solution or Ontop
with additional third party data virtualization software could be used.

Storing time series data directly in the ontology should be avoided. Only for little
data, up to about 100.000 observations, it is still quite efficient under the presented test
conditions. This means, that all queries could be executed under one second.

Fig. 5.7 sums up the stated conditions by means of a design support decision tree.

As future work, the already suggested improvements for the CPF implementation will be
made to overcome its discussed shortcomings. A CPF will be applied to a real industrial

5http://teiid.io/
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Figure 5.7: Design support decision tree

use case, to interlink non-SQL-compliant data sources with other information inside the
Linked Factory Data.
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CHAPTER 6
Ontology-Based Model

Identification of Industrial Energy
Systems

Publication: G. Steindl and W. Kastner, "Ontology-Based Model Identification of
Industrial Energy Systems," 2020 IEEE 29th International Symposium on Industrial
Electronics (ISIE), 2020, pp. 1217-1223, doi: 10.1109/ISIE45063.2020.9152386.

Abstract: The paper presents a novel approach for ontology-based model identification
of industrial energy systems. Therefore, an ontology is designed which is extended by
formal rules to automatically identify causal relations between the components’ input and
output quantities. Also, available sensor data are mapped with rules to these quantities
to enable direct data access for model identification. The proposed approach is evaluated
for a use case of an industrial heating process. The results show, that the required
information is available in the extended ontology to automatically generate dynamic
models of the plant equipment.

6.1 Introduction
With the ongoing fourth industrial revolution, inter-networked CPSs are now going to
change the industrial environment. A key challenge in this context is resource efficiency [1].
Therefore, energy efficiency in the industry has to be addressed to reduce greenhouse gas
emission and facilitate the sustainable energy transition. To reach these goals, retrofitting
of existing plants is important and also challenging.

To avoid high investment costs for new plant components, novel predictive control
strategies for existing equipment can be applied. These strategies can optimize the
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plant’s operation and enable coupling of the plant’s production with the energy market.
Prerequisites for such control strategies are accurate models of the plant’s components to
predict their dynamic behavior and meet given constrains or detect faulty behavior.

For retrofitting plants, process data from various sensors are usually already available.
This facilitates a data-driven model development approach. But, data alone is not enough.
Additionally, the overall model development process needs knowledge, which is often
implicit, scattered, and unfortunately seldom well documented. This requires the model
developer to rely on domain experts [14]. Thus, model identification is often the most
time-consuming task in the process of model-based control development[10].

To reduce this effort and partly automate the model development step, knowledge about
the plant and its components has to be available in a machine-readable format. This
implies the usage of formal knowledge representation, which also facilitates the creation
of so-called Smart Data.

Smart Data integrates various data sources which are correlated and analyzed to use
them for decision making and action processing [8]. It serves as a foundation for Smart
Services in the context of Industry 4.0 [18].

This leads to the idea of a Smart Data Service for data-driven model development, which
is based on formal knowledge representation, like an ontology or knowledge graph. The
Smart Data Service can integrate various data sources and once done acts as a single
point of information for model developers as well as other (software) agents. Additional
information (e.g., about data quality, operational anomalies, sensor faults) are also
valuable for the model developer and later on the data analysts or operators of a plant.

This paper focuses on the ontological knowledge representation, which is the foundation
for an automatic model identification of components in industrial energy systems. In
such an ontology, information about the components and equipments of plants as well as
their causal relations is modeled. Additionally, related sensor data are mapped to the
component models to facilitate a semi-automatic model identification process.

The remainder of the paper is structured as follows: Section 6.2 gives a short introduction
to ontologies and the Semantic Web Stack, which is heavily used in this work. Also,
some literature in the context of automatic model identification is presented. Section 6.3
explains the applied method to develop a plant ontology and automatically generate
causal relations inside this ontology. Afterward, the proposed method is applied and
evaluated for an industrial use case of a thermal heating process in Section 6.4. In
Section 6.5, conclusion are drawn and ideas for future work are briefly presented.

6.2 State-of-the-Art
This section gives a short introduction to some of the technologies from the Semantic
Web Stack. Also, some literature in the context of automatic model identification is
discussed, which the ideas of this paper are based on.
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An ontology can be defined as "...a formal, explicit specification of a shared conceptual-
ization" [19]. To specify such a formal ontology, a so-called Semantic Web Framework
has been established, which consists of several technologies. These technologies are
standardized by the W3C1.

The RDF [11] is designed for modeling information by formulating statements, so-called
triples. A triple consists of a subject, a predicate and an object, which are identified
by their URI. An object can be used as a subject in another statement. This allows to
interlink statements in a graph-based fashion. The RDFS [2] adds additional semantics
to RDF, by introducing class and property hierarchies as well as domain and range
constraints for properties. The OWL [20] provides even more language constructs,
like cardinalities or value restrictions, to formulate more complex semantic expressions.
These three standards are the base technologies for expressing an ontology, which is also
sometimes called a knowledge base. With additional reasoning capability, new knowledge
can be inferred from such an ontology. If also external information is integrated, it is
called a knowledge graph [4].

To retrieve information from an ontology or knowledge graph, the SPARQL [7] were
specified as W3C Recommendation. It is comparable to the SQL for relational database
management systems. With SPARQL version 1.1 an update functionality was introduced,
which enables creating, updating and removing RDF graphs in a graph store [6]. This
enables the formulation of complex rules, which can create new triples inside an ontology.

Semantic information has already been used for automatic model identification. In [12],
an automatic thermal model creation approach for thermal building models is presented.
Therefore, information from an existing BIM is retrieved. With that information, a
simplified thermal RC-model was generated. BIM already contains static building
information like geometry and thermal properties of the model elements. Dependencies
between quantities are only implicit modeled in this context.

The idea of using OWL ontologies to describe the structure of an energy system can be
found in [15]. The ontological domain models were constructed and dependencies between
objects modeled. This was combined with statistical anomaly detection algorithms, to
improve data quality by cleaning sensor data of a power generation facility. Duplicated
and neighboring sensors were identified by searching for equipment of the same type and
deployed at the same location. The relations in the ontology were only statically modeled
and could not be identified by rules.

The authors of [3] used an ontology-based BIM, facilitating the BASont ontology [13].
They presented a qualitative, symbolic, knowledge-based fault propagation approach for
building automation systems. The scope of this work was fault detection and diagnosis,
thus they also specified causal relations, based on SPARQL rules.

A similar approach is followed in this paper, but focusing on using that information to
automatically create dynamic component models based on available sensor data. The

1https://www.w3.org
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required information for such a process is retrieved from the created ontological knowledge
base.

6.3 Methods
The following subsections describe the method which is followed in this paper. First,
an ontology is designed to capture the essential plant information in a formal, machine-
readable format. Second, based on the knowledge captured by this so-called Plant
Equipment, Topology and Instrumentation Ontology (PETIont), formal rules are defined
to automatically generate information about the virtual representation of the plant
equipment and the causal relations between the components. The last step is the
mapping of available sensor data to the related virtual entity. This enables direct data
access of sensor data through the ontology and the detection of missing or redundant
sensors inside the plant’s topology. The procedure is described in more detail in the
following two subsections.

6.3.1 PETIont - Plant Equipment, Topology and Instrumentation
Ontology

A thermohydraulic plant ontology is designed to capture the required knowledge about
the installed equipment, the plant’s topology as well as the available instrumentation
(sensors and actuators). The main concepts of the developed ontology are partly depicted
in Fig. 6.1. The available sensor data can be directly accessed through OBDA. Further
details on OBDA and a comparison of various sensor data integration methods into
knowledge graphs can be found in [17].

The main information sources for the ontology are diagrams, commonly used in plant
engineering, like a P&I diagram. The contained information in such diagrams and the
various types of plant equipment are specified in EN ISO 10628 [5]. A simple P&I
diagram is depicted in Fig. 6.2a, which also includes the instrumentation of the plant,
based on IEC 62424 [9]. This standard defines so called Process Control Engineering
(PCE) requests to represent sensor and actuator functionality. The upper part of the
PETIont, which has a solid border in Fig. 6.1, captures the essential information from
the P&I diagram and reuses the terminology from the above-mentioned standards.

Inside PETIont, the plant equipment is divided into two sub-classes. Thermal Equipment
changes only thermal states inside the plant, whereas Hydraulic Equipment changes
only hydraulic states. Usually, plant equipment will be both, but in some cases, one
aspect can be neglected. As an example, the temperature increase of the air caused by
a fan is usually ignored. Thus, a fan can be modeled most of the time as a hydraulic
component. Subtypes are defined for fans, electric heaters, heat exchangers, vessels and
can be extended in the future.

The ontology defines properties to describe the interconnection between the plant equip-
ment. These connections can be a mass flow (hasMassFlowTo) or an information flow
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Figure 6.1: Main concepts of the Plant Equipment, Topology and Instrumentation
Ontology (PETIont).

(hasSignalTo). Mass flow is transported via pipes, whereas signals are typically used to
connect process control functions with PCE requests.

The sensor functionality of PCE requests provide data for the identification of the
equipment models. Additional semantic sensor information about the physical quantity
and measurement unit is present in the ontology. This information is used for the
mapping of sensors to their virtual representation and to automatically detected different
measurement scales, e.g., Celsius and Kelvin.

The part of PETIont which is surrounded by the dashed rectangle in Fig. 6.1 is reasoned
automatically based on the information from the upper part of the ontology and SPARQL
rules (explained in the next subsection). This part of the ontology forms a virtual entity,
representing the behavior of the physical plant equipment. The Dynamic Model concept
represents some kind of mathematical model for plant equipment which will be identified
from data. It is related to some Virtual Properties, which are quantities that have an
influence on or are influenced by the dynamic behavior of the plant equipment. These
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Virtual Properties represent the inputs and outputs of the model. They are quantities,
like mass flow rates or temperatures which can correspond to real sensor data but can also
be non-measurable, like a set point or the value of a manipulated variable of a controller.
The term "Virtual Property" is used to indicate that the property belongs to the virtual
entity of the plant equipment. As an example, consider a heater model, where the outlet
temperature is influenced by the heater’s set point, the inlet temperature, and the mass
flow through the heater. All these quantities are represented as Virtual Properties in the
ontology. The generated Virtual Properties are connected to PCE requests, if available.
This enables direct data access for the model identification task later on.

6.3.2 Rule-Based Virtual Entity Creation
The general idea of the rule-based virtual entity creation is depicted in Fig. 6.2. The
information from the P&I diagram, which is already captured in the upper part of the
ontology, is the starting point. The additional expert knowledge, which is needed to
create the virtual entity with the dynamic models of the equipment, is formulated as
SPARQL rules and applied in three steps:

Step 1 - Creating Dynamic Model with Virtual Properties

The expert knowledge about the plant equipment is encoded in SPARQL rules, defining
the input and output properties of the equipment’s Dynamic Model. The related Virtual
Properties are created and connections to PCE requests with actuator functionality are
set based on these rules (Fig. 6.2b).

Rules for a fan, an electric heater, a heat exchanger as well as a vessel are defined. As
an example, the rule for a Vessel type with one inlet and one outlet is presented in
Listing 6.1. This rule creates a Dynamic Model concept and its related Virtual Properties
for the input and output temperature as well as the mass flow. The names for the
concepts are created from the URI of the Vessel instance. These Virtual Properties are
connected to the equipment’s Dynamic Model, with the information about the causal
relation (hasInfluenceOn or isInfluencedBy). The Virtual Properties are then related to
the input or output ports of the plant equipment.
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(a) Step 0 - Essential information about the plant
in the P&I diagram

(b) Step 1 - Creating Dynamic Models with Vir-
tual Properties and related PCE requests (actua-
tors)

(c) Step 2 - Identify equivalent Virtual Properties

(d) Step 3 - Associate Virtual Properties with
PCE requests (sensors)

Figure 6.2: Rule-based creation of the causal relations in the PETIont
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PREFIX : <http :// auto . tuwien . ac . at / s i c /PETIont#>

INSERT{
#c r e a t e dynamic model

?dynModelURI a : DynamicModel .
?comp : hasDynamicModel ?dynModelURI .

#c r e a t e v i r t u a l p r o p e r t i e s
?TinURI a : Vi r tua lProper ty .
?TinURI : hasPhys ica lQuant i ty : Temperature .
?ToutURI a : Vi r tua lProper ty .
?ToutURI : hasPhys ica lQuant i ty : Temperature .
?mURI a : Vi r tua lProperty .
?mURI : hasPhys ica lQuant i ty : MassFlowRate .

#connect p r o p e r t i e s with dynamic model and r e l a t e d por t s
?TinURI : hasInf luenceOn ?dynModelURI .
?dynModelURI : i s I n f l u e n c e d B y ?TinURI .
?TinURI : hasRelatedPort ? inPort .
? inPort : hasRe latedVir tua lProperty ?TinURI .

?mURI : hasInf luenceOn ?dynModelURI .
?dynModelURI : i s I n f l u e n c e d B y ?mURI.
?mURI : hasRelatedPort ? inPort .
? inPort : hasRe latedVir tua lProperty ?mURI.

?dynModelURI : hasInf luenceOn ?ToutURI .
?ToutURI : i s I n f l u e n c e d B y ?dynModelURI .
?ToutURI : hasRelatedPort ? outPort .
? outPort : hasRe latedVir tua lProperty ?ToutURI .

} WHERE {
?comp a : Ves se l ;
: hasInPort ? inPort .
: hasOutPort ? outPort .

BIND( u r i ( s t r (?comp)+"_Tin " ) AS ?TinURI ) .
BIND( u r i ( s t r (?comp)+"_m" ) AS ?mURI) .
BIND( u r i ( s t r (?comp)+"_Tout " ) AS ?ToutURI) .
BIND( u r i ( s t r (?comp)+"_DynModel " ) AS ?dynModelURI )

}

Listing 6.1: SPARQL rule for constructing the Dynamic Model and its Virtual Properties
for a Vessel type.

Step 2 - Identify equivalent Virtual Properties

After the Dynamic Model with its Virtual Properties is created for every component,
they have to be connected inside the ontology in case they are equivalent. Equivalent
means, that they represent the same property of the plant system (Fig. 6.2c).

Based on the flow information, captured in the upper part of the ontology and additional
knowledge about basic physical principles, like conservation of mass and energy, SPARQL
rules are formulated.

Like for bond graphs, the concept of flow and effort properties can be used to define and
structure the SPARQL rules. For example, mass flow rate and the heat flow are flow

122



6.3. Methods

properties and the pressure and temperature are effort properties. With the help of this
concept, the assignment of equivalent Virtual Properties can be formulated as follows:

• Rule C1 : properties with the physical quantity of mass flow rate are equivalent if
they have a mass flow connection without any branch between.

• Rule C2a: properties with the physical quantity of temperature are equivalent if
they share a direct mass flow connection.

• Rule C2b: properties with the physical quantity of temperature are equivalent
if they share a direct mass flow connection with only hydraulic components in
between.

• Rule C3a: properties with the physical quantity of pressure are equivalent if they
share a direct mass flow connection.

• Rule C3b: properties with the physical quantity of pressure are equivalent if they
share a direct mass flow connection with only thermal components in between.

Some of these rules could have been encapsulated in another rule, but they are separated
to reduce complexity. The rules for pressure and temperature are quite similar as both
are effort properties. A rule for the heat flow is not formulated as for the current use
case the energy transfer is always related to mass transportation.

Rules C1 to C3 are also formulated as SPARQL Update rules. An example of such a
SPARQL rule is shown in Listing 6.2.

PREFIX : <http :// auto . tuwien . ac . at / s i c /PETIont#>

INSERT{
? al lTempPropert i es : hasEqu iva l entVi r tua lProper ty

? equ iva l entProper ty .
? equ iva l entProper ty : hasEquiva l entVir tua lProper ty

? a l lTempPropert i es .

}WHERE {

? al lTempPropert i es a : Virtua lPropery ;
: hasPhys ica lQuant i ty : Temperature ;
: hasRelatedPort ? s t a r t P o r t .

? s t a r t P o r t : hasDirectMassFlowTo | : hasDirectMassFlowFrom ? endPort .
? endPort : hasRe latedVir tua lProperty ? equ iva l entProper ty .
? equ iva l entProper ty : hasPhys ica lQuant i ty : Temperature .

}

Listing 6.2: SPARQL rule C2a - Connecting equivalent temperature properties
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Step 3 - Associate sensors with Virtual Properties

After all Virtual Properties are created and connected with equivalent properties from
other components, the relation to available and associated sensors and their data is
created (Fig. 6.2d). This enables access to the available sensor data through the ontology.
Also, redundant or missing sensors can be identified. The mapping between Virtual
Properties and the sensors is again specified with the help of SPARQL rules.

• Rule S1 : Mapping of mass flow rate sensors

• Rule S2 : Mapping of temperature sensors

• Rule S3 : Mapping of pressure sensors

The mapping Rule S2 is presented in Listing 6.3. The rule searches for PCE requests
(sensors) with a physical quantity of temperature and assigns these sensors to the Virtual
Properties which are reachable through a direct mass flow connection. Also, equivalent
Virtual Properties are connected with these senors.

PREFIX : <http :// auto . tuwien . ac . at / s i c /PETIont#>

INSERT{
? a l l P r o p e r t i e s : hasMeasurement ? s e n so r

}WHERE {
? s en s o r a : SensorFunct ion ;

: hasPhys ica lQuant i ty : Temperature ;
: hasProcessConnect ion ? port .

? port ( : hasDirectMassFlowTo | : hasDirectMassFlowFrom ) ∗ ? connectedPorts .
? connectedPorts : hasRe latedVir tua lProperty ? property .

? property : hasPhys ica lQuant i ty : Temperature ;
: hasEqu iva l entVi r tua lProper ty ∗ ? a l l P r o p e r t i e s .

}

Listing 6.3: SPARQL rule S2 - Mapping temperature sensors to their Virtual Property

6.4 Use Case - Heating Process
A thermal heating process is used as a use case to evaluate the proposed ontology-based
model identification approach. The P&I diagram of this process is shown in Fig. 6.3. For
referencing the instrumentation, labels are used instead of numbers.

An electric heater H1 is used to warm up the air, which is transported to an open vessel
SiPro which is not insulated, thus the temperature inside the vessel is influenced by a
surrounding temperature which acts as a disturbance to the process. The temperature
T_p inside this vessel is controlled by a PI-controller. The air is transported to the vessel
by a simple fan F1 which creates a fixed pressure increase. The extracted air is used by
a heat exchanger HE1 for heat recovery.
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Figure 6.3: P&I diagram of the heating process.

An OpenModelica simulation model is utilized for evaluation and shown in Fig. 6.4.
This simulation model is used to create synthetic sensor data for the data-driven model
development process.

Figure 6.4: OpenModelica simulation model of the heating process use case.

For the model identification task, a pseudo-random binary signal is used for the input
and disturbance variables. The data is applied to the model and the generated output
data is used as synthetic sensor data for model identification, afterward.

To make the artificial sensor data more realistic, a random noise signal was added to
it. This signal has a Gaussian distribution with a standard deviation of 0.1° C for the
temperature sensors and 0.01 kg/s for the mass flow sensors. For evaluation purposes,
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different set points were applied to the Modelica simulation model and the model’s
outputs are recorded.

The basic topology information from the P&I diagram is modeled in the ontology.
Afterward, the presented SPARQL rules are applied to create the Virtual Entity inside
the ontology, with its causal relations and sensor mappings. These causal relations are
depicted in Fig. 6.5. With the information about the plant equipment in the ontology,
in combination with the direct sensor data access, the model identification task can be
performed automatically. The sensor data retrieval through the SPARQL endpoint is
based on custom property functions and explained in detail in [16]. Apache Jena Fuseki
is used as SPARQL endpoint, where the ontology is loaded and the queries are executed.
Some SPARQL queries and their answers, which are used for the model identification
process, are shown below.

Listing 6.4 retrieves all input Virtual Properties for the heater H1 with their related
sensors if they exist. The answer to that query shows, that for every Virtual Properties
of heater H1 an associated sensor exists, even if it was initially not directly associated
with that component. An example of such newly inferred knowledge results in sensor
T_hx. It can be seen, that the sensor T_hx is located directly after the heat exchanger
HE1 in the P&I diagram (Fig. 6.3). After applying the explained SPARQL rules, this
sensor is also associated with the input temperature of the heater H1, because the fan

Figure 6.5: Automatically created causal relations and sensor mapping inside the ontology
for the presented use case.
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F1 was specified as a hydraulic equipment. The same applies to the other temperature
and mass flow rate sensors. Thus, the sensor data is directly accessible for the model
identification task, without any further human intervention.
1 PREFIX : <http :// auto . tuwien . ac . at / s i c /PETIont#>
2
3 SELECT ? property ? s e ns o r ? actuator
4 WHERE {
5 : H1 : hasDynamicModel ?dynModel .
6 ?dynModel : i s I n f l u e n c e d B y ? property .
7 o p t i o n a l {
8 ? property : hasMeasurement ? s e ns o r .
9 }

10 o p t i o n a l {
11 ? property : hasActuator ? actuator
12 }
13 }

| ? property | ? s e n so r | ? ac tuator |
| " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " |
| : H1_ConVar | : | : Act_H1 |
| : H1_Tin | : T_hx | |
| :H1_m | : m_in | |

Listing 6.4: SPARQL query to retrieve the input properties for the electric heater H1
and their associated PCE requests.

Similar queries can be formulated to find all existing components with their input and
output properties as well as related sensor data. With this information, models can be
trained automatically.

It is also possible to search the ontology for redundant sensor information in the plant.
The query in Listing 6.5 retrieves all Virtual Properties inside the plant which have
redundant sensors installed (e.g., T_ext and T_p). The answer is in compliance with the
P&I diagram of Fig. 6.3. In combination with additional semantic sensor information, like
the physical unit of the measurement, this can be used for further sensor data evaluation.
1 PREFIX : <http :// auto . tuwien . ac . at / s i c /PETIont#>
2
3 SELECT ? property ( count (? property ) as ? sensorCount )
4 WHERE{
5 ? property a : Vi r tua lProper ty .
6 ? property : hasMeasurement ? s e ns o r
7 }GROUP BY (? property )
8 HAVING ( count (? property ) > 1)

| ? property | ? sensorCount |
| " " " " " " " " " " " " " " " " " " " " " " " " " " |
| : HE1_Tin_sec | 2 |
| : SiPro_Tout | 2 |

Listing 6.5: SPARQL query and answer to retrieve redundant sensors

With the information stored in the ontology, a dynamic model is identified based on
the input and output information as well as the related sensor data. In principle, any
regression model, like an artificial neural network or a support vector machine can be

127



6. Ontology-Based Model Identification of Industrial Energy Systems

applied. Such more sophisticated models can be useful for real plant data with high
non-linearity. For our use case, a linear autoregressive with exogenous input (ARX) is
chosen to represent the dynamic behavior of the components. The model was trained with
the Python scikit-learn framework2. Prediction results of the mass flow m_in and the
heat exchanger temperature T_hx are shown in Fig. 6.6. A sliding window serial-parallel
model structure is applied to predict the ARX-model output with a window size of 15
seconds by a one second simulation step size. A qualitative analysis shows that the
retrieved sensor data for these models are correct and the results of the ARX-models
follow the synthetic sensor data.

Figure 6.6: Prediction results of the linear ARX-models, which are created based on the
knowledge from the ontology.

The available causal relations in the ontology could have also advantages for sensor data
evaluation. As an example, Fig. 6.6 shows two decreases in the mass flow m_in, starting
at about 1,100 and 1,800 seconds. The first one was produced by reducing the set point
of fan F1 and the second by introducing an increased flow resistance through the heat
exchanger. The Model of F1 follows the reduced set point but shows a mismatch at the
second decrease because the predicted mass flow at this pressure set point should be
much higher. This can be an indication for a sensor fault, detected by the ARX-model.
To verify the measurement of sensor m_in, the causal relation in the ontology can be
used (Fig. 6.5). An implicit sensor redundancy of m_in is found in the temperature
sensor T_hx. As Fig. 6.6 shows, T_hx has no large discrepancies from the prediction,

2https://scikit-learn.org
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which means that the measured mass flow m_in is correct. This implies an abnormal
behavior inside the plant and, thus, further investigations for the usage of these causal
relations for sensor data evaluation have to be carried out.

6.5 Conclusion & Future Work
The paper illustrates that – based on ontological knowledge of a plant equipment, its
topology, and instrumentation – a data-driven model development process can be partly
automated. This reduces the overall amount of time needed for developing model-based
control strategies of industrial energy systems.

In the presented approach, additional work has to be carried out to initialize the plant’s
topology information in the ontology. Yet, it cannot be expected from engineers to be
aware of ontology modeling. Therefore, future work will investigate, how already existing
information sources can be utilized to create the initial ontology, taking into account that
the process of information modeling should be based on well-known industrial standards
or languages. In this context, OPC UA often named as a pathfinder for information
modeling in the area of Industry 4.0 seems to be a promising candidate.

For real-world applications, related sensor data have to be pre-processed before they can
be used for model identification. This was not necessary for our use case as we used
synthetic sensor data. For this reason, future work will investigate how sensor data can
be automatically pre-processed and evaluated based on the created causal relations in
the ontology.
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CHAPTER 7
Semantic Microservice Framework

for Digital Twins

Publication: G. Steindl and W. Kastner, "Semantic Microservice Framework for Digital
Twins," Applied Sciences, vol. 11, no. 12, p. 5633, Jun. 2021, doi: 10.3390/app11125633.

Abstract: Digital Twins (DT) in industrial cyber-physical systems are the key enabling
technology for Industry 4.0. Services are an essential part of almost every DT concept,
but their interaction is usually implementation-specific since no common guidelines are
available. This work identifies some fundamental requirements for a DT service framework
based on applications identified in corresponding literature. Based on these requirements,
a service framework architecture is proposed. The architecture utilizes Semantic Web
technology and a workflow engine for service orchestration to support the fulfilment of
the identified requirements. As a case study for sensor data evaluation of an industrial
process, a proof-of-concept implementation is presented, showing the feasibility and
suitability of the proposed DT service framework architecture.

7.1 Introduction
The fourth industrial revolution or Industry 4.0 is changing business within the indus-
try, caused by the rapid development of Information and Communication Technology
(ICT) [37]. One of the most promising technologies that enables us to achieve the vision
of Industry 4.0 is the DT [52]. A DT can be defined as “a formal digital representation
of some asset, process or system that captures attributes and behaviors of that entity
suitable for communication, storage, interpretation or processing within a certain con-
text” [33]. DTs can be used within ICPS for monitoring, diagnostic, prediction, and
control [32].
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During the last few years, a number of research projects have addressed DT architectures
and frameworks [25, 7, 28, 51, 1, 48]. A very interesting concept is the 5D-DT presented
in [51], where five elements or dimensions for a DT are specified: “Physical Entity”,
“Virtual Entity”, “Connection”, “Data” and “Services”. In this conceptual model, the
aspect of services is emphasized as an important part of the DT. This 5D-DT approach
is used in [48] as the basis for the GDTA, which is aligned with the six IT layers of the
RAMI 4.0 [2] to structure the elements of the GDTA model. However, services are only
considered in a more general and abstract way in the GDTA.

In ICT, the microservice architectural style has become more relevant for building
distributed software applications with improved scalability and maintainability in recent
years [12]. The idea is to build service-based applications by composing small, loosely
coupled software services [15]. The actual size of services depends on the application, but
the attribute “small” targets their functionality rather than the lines of code. The service
composition can be performed via orchestration or choreography. Orchestration is a
centralized approach, whereas choreography follows a decentralized method. Sometimes, it
even can be beneficial to apply both of those two concepts, e.g., in automation systems [50].
Another design decision that has to be made when utilizing microservices is inter-service
communication. The communication can be established using an asynchronous or
synchronous request–reply pattern or event-driven asynchronous message exchange.
In microservice architectures, event-driven communication is preferred as it supports
decoupling of services from each other [35]. A common technology for synchronous request–
reply communication is HTTP, which is often used in combination with REST. For
event-driven asynchronous communication, many message-oriented middleware solutions
exist. One such solution that is widely used is Apache Kafka, which provides fault-tolerant,
scalable, and stream-based messaging [21].

As described before, services play a key role in building DTs, but in most DT frameworks
or architectures, they are only mentioned or described at a high level of abstraction. As
most DT implementations are realized following a specific goal without any architectural
template [28], the same holds for the implemented services. There are many design
choices for how these services can be composed for later interaction. Their final design
and implementation should be based on distinct requirements. Still, there is a significant
gap in DT research, regarding how to offer a higher number of services in the same
environment to support complex decision making [10]. Missing architectural guidelines
are resulting in application-specific solutions which are barely reusable, and increase
development time and costs. Thus, our research focuses on the services infrastructure of
a DT and explicitly addresses requirements and a service framework architecture, which
can later be applied for various DT applications.

The main contributions of our work are the specification of functional and non-functional
requirements for a DT service framework derived from a literature review. These
requirements were clustered based on three RAMI 4.0 IT layers (Information Layer,
Functional Layer, and Business Layer) which are relevant for the proposed service
framework. Resting upon the identified requirements, a novel microservice architecture for
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DTs is proposed. This architecture uses a federated knowledge graph to provide semantic
interoperability between services and enables both choreography and orchestration by
incorporating event-based messaging in combination with a workflow engine. A case
study for a DT of a thermal heating process is used to investigate and evaluate the
proposed service architecture. Therefore, microservices for an automatic sensor data
evaluation were implemented and the design artifacts are checked against the identified
requirements.

The remainder of the paper is structured as follows: Section 7.2 gives a short overview
of related work in the area of DT service framework as well as DT architectures and
applications which are used to derive requirements for a DT service framework from.
Next, the identified requirements and the derived service framework are presented in
Section 7.3. The proposed service framework is implemented as a proof-of-concept for a
defined use-case in Section 7.4. In the end, the presented service framework and future
research directions are discussed.

7.2 Related Work
A short overview of available DT service frameworks is given, and literature that is used
to derive requirements for such a service framework is presented.

7.2.1 Digital Twin Service Frameworks
In this section, service framework architectures dedicated to DTs and related areas, such
as IoT applications and smart manufacturing, are presented to find commonalities and
shortcomings, which influence the design of our proposed DT service framework.

The design and implementation of a DT in smart manufacturing is presented in [11]. The
authors investigated available open-source tools and technology for the implementation
of the DT. In this context, they proposed a DT concept in alignment with the Industrial
Internet Reference Architecture (IIRA) and the RAMI 4.0. They also introduced a
microservice framework and defined 36 services, clustered in groups related to their
components in their conceptual DT model, such as monitoring services, things and event
management services, simulation management services, decision-making and control
services. The import role of semantic interoperability and a life cycle-oriented knowledge
base of DTs is also conceptually addressed by their architecture but not fully explored in
their prototype. A Service Manager component is responsible for the composition and
orchestration of the services, but further details of how this is performed are not given.

A more concrete example of a service framework and the service interaction inside a
DT is provided in [3]. The authors proposed a microservice approach in combination
with an event-based architecture. They argue that a DT should follow an event-driven
architecture style to parallelize processing and provide near real-time capabilities. Their
solution to the problem is the use of Apache Kafka for state tracking, since most of the
stream processing in DT implies stateful operations, but microservices should be stateless
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in principle. Thus, stateful stream processing can be supported in a DT. They carried
out performance analysis and showed that Apache Kafka is suitable for managing the
states with some restrictions. Such tracking of the current system state is relevant for
stream data and human–machine interaction.

Similar to the previously presented architecture, a service-oriented and event-driven
manufacturing information system architecture was proposed in [55]. The event-driven
architecture is used to avoid point-to-point device and service integration and ensures loose
coupling of the services. Apache ActiveMQ [6] is used as Enterprise Service Bus (ESB).
The presented use-case is targeting discrete manufacturing, in which the authors showed
the integration of devices and services on all hierarchy levels. The service composition in
this system is performed using choreography to avoid a central orchestrator. The benefit
they explored using their microservices in combination with event-based communication
is that services can be developed and tested in isolation, as mock-ups may serve as
temporary replacement for other applications.

A microservice architecture is also used in [5]. Rather than targeting a DT architecture,
the authors present a framework for predictive analytics of IoT applications. However,
some concepts are similar and helpful in the context of DTs. The authors used a
containerized microservice architecture to build the data pipeline. Their implementation
is based on Docker [14] and Apache Kafka. A central orchestrator is used to combine
multiple operations provided by microservices. Additionally, data modeling is used, based
on the Web of Objects framework [20] to achieve semantic interoperability.

In most of the presented frameworks, microservices combined with event-based messaging
are used, as they can provide benefits regarding separation of concerns, flexibility in
choosing technology, scalability, etc. However, their underlying requirements are mostly
not stated. Therefore, the next section analyzes DT frameworks and applications to
identify some fundamental requirements regarding a DT framework.

7.2.2 Requirements for a Digital Twin Service Framework
Requirements found in the literature primarily target the overall concept of a DT, rather
than only focusing on the service infrastructure. Nevertheless, some general requirements
are also relevant for the proposed service framework. Here, the main literature is presented,
which is used to derive the requirements presented in Section 7.3.1.

A requirements-driven DT framework for smart manufacturing or Industry 4.0 is presented
in [34]. Some requirements mentioned there are also specifically relevant for a service
framework, e.g., a DT’s capability should be modular with clear boundaries (RN2).
Services should also provide some form of narrow intelligence to solve some special tasks
in the application domain (RI3). Furthermore, expertise should be incorporated into
services to realize intelligence in solutions (RI4). Another aspect is the interoperability
with DT clients, which must be realized by providing an appropriate service interface
(RI5). DT should also be extensible, which means incorporating data or services from
outside (RN4). An important aspect is that a DT framework must support an evolution
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rather than a revolution of capabilities, helping us to introduce and further develop the
DT over its whole life-cycle (RN3). New services are supporting the evolution of existing
capabilities. As DT should provide an added value over lifetime, the DT services have to
be integrated into the business process at the enterprise level in some way (RB1).

In [53], a method for DT-driven product design, manufacturing, and service is introduced.
In this context, nine service categories are presented. Some of these service categories
demand some requirements regarding the service communication infrastructure. For
instance, a service for real-time state monitoring requires a certain data acquisition
infrastructure (RF1) and certain communication patterns (RF2). The same holds for
a service within the category of energy consumption analysis and forecast, such as
processing heterogeneous data from various sources (RI1, RF3), dealing with historical
data (RI2) and supporting request–response communication with other services (RF4).
These two examples show that a service framework has to be able to support different
communication patterns.

A DT architecture reference model for the cloud-based CPS (C2PS) is presented in [4], in
which the key properties of computation, control, and communication are described. The
cloud-based approach seems reasonable, based on requirements such as computational
power and scalability. On the other hand, this can cause a problem, as the communication
over the Internet is critical, regarding availability [19] and the communication delay [13]
for real-time control applications. Thus, a combination of an edge, fog, and cloud-based
approach is feasible for a DT to provide services with their needed resources, as presented
in [40]. However, in some use-cases with a high demand for reliability, security, and
privacy, the hosting of the DT has to be done on-premise (RN1). To enable this flexibility,
a containerized solution for DT services, as proposed in [8], seems to be suitable.

Human–machine interaction is also essential in the context of DTs, which includes social
and technical aspects [24]. Maintenance scenarios are one example of such a human–
machine interaction. These scenarios can be quite complex, and their states have to be
stored during this process, as shown in [36] for gas turbine maintenance. Thus, the state
must also be stored at the involved services in such a human–machine interaction (RB2).

Services of a DT often have to process a large amount of data. Such data-intensive
applications have some basic non-functional requirements which should be met, such as
reliability (RN5), scalability (RN3), and maintainability (RN2, RN4) [29]. Unfortunately,
there are no easy solutions to meet these requirements, but specific architectural patterns
and techniques can be applied during implementation to fulfil them.

7.3 Microservice Framework Architecture

In this section, the identified functional and non-functional requirements are presented,
which are used to design the proposed DT service framework architecture. A detailed
description of this service framework architecture can be found in Section 7.3.2.
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7.3.1 Identified Requirements

Based on the literature review, some essential fundamental requirements are identified to
implement a DT service framework. They are grouped into functional and non-functional
requirements. The functional requirements are again grouped by the IT layers of the
RAMI 4.0. The list is not comprehensive but gives a solid base for a service framework
architecture and its implementation.

Non-Functional Requirements

Table 7.1 shows the identified non-functional requirements. The possibility to host the
services on-premise is, in some use-cases, a prerequisite because of data ownership issues
or response time (RN1). The other requirements are mainly concerned with reliability
(RN5), scalability (RN3), and maintainability (RN2, RN4), which are relatively common
for data-intensive systems.

Table 7.1: Non-functional requirements.

ID Requirement Origin
RN1 The DT and its services should be able to be hosted at the cloud as

well as on-premises for data ownership and performance reasons.
[4, 8]

RN2 Services of a DT should be loosely coupled to add or remove new
services without influencing each other.

[34,
53]

RN3 Services of a DT should be scalable to handle requests from a single
machine up to a whole factory.

[34,
29]

RN4 Services of a DT should be maintainable by different development
teams (third party integration).

[29]

RN5 The service infrastructure of a DT should tolerate short down times
of single services to increase the reliability.

[29]

Functional Requirements

The following functional requirements are clustered by the Information Layer, Functional
Layer, and Business Layer defined in RAMI 4.0.

The requirements for the Information Layer are shown in Table 7.2. They are mainly
concerned with interoperability issues, e.g., how information is provided to other services
(RI3, RI4) and exchanged between services and other systems (RI5). Furthermore, how
heterogeneous data can be integrated (RI1) and how these data can be interlinked with
context information (RI2) to provide further semantics is targeted.
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Table 7.2: Functional requirements for the Information Layer.

ID Requirement Origin
RI1 The DT should be able to process heterogeneous data from different

sources.
[53]

RI2 The DT should be able to interlink time series data with context
information, to make it interpretable for other services.

[53]

RI3 Services of a DT should have control about the information they
provide to other services.

[34]

RI4 The DT should have a service which provides access to the information
provided by all services of the DT.

[34,
48]

RI5 Services of the DT should exchange information in a semantically
meaningful way.

[34]

Requirements for the Functional Layer are shown in Table 7.3. They define how the
continuous stream of data (e.g., sensor data) is handled (RF1) and which communication
patterns between the services are needed (RF2, RF3, RF4). The communication patterns
are manifold: providing sensor data to many services needs an event-based 1:n communica-
tion; a monitoring service receiving data from many sources needs an n:1 communication;
prediction services would most likely need a request–reply communication pattern.

Table 7.3: Functional requirements for the Functional Layer.

ID Requirement Origin
RF1 Services shall be able to access a continuous stream of (sensor) data

to monitor the system in real-time.
[53]

RF2 Data streams should be accessible by multiple services simultaneously
to process it in parallel and reduce reaction time of the system.

[53]

RF3 Services of the DT should be able to receive data streams from
multiple sources at the same time to fuse and process data.

[53]

RF4 Services of the DT should be able to respond to a specific service re-
quest to enable a one-to-one communication for information retrieval.

[53]

The requirements for the Business Layer are shown in Table 7.4. The integration of the
DT capabilities and services into the business processes at the enterprise level is essential
to support the value-added chain (RB1). Furthermore, human–machine interaction
requires holding the state for a certain period (RB2), e.g., a maintenance assignment to
a service technician triggered by a predictive maintenance service of the DT. The state
of the involved services has to be stored till the service technician confirms some action.
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Table 7.4: functional requirements for the Business Layer.

ID Requirement Origin
RB1 The functional services of the DT should be able to be integrated into

the business processes at enterprise level to support the value-added
chain.

[34]

RB2 Service interaction states should be traceable to facilitate human–
machine interaction and the identification of service faults.

[24]

7.3.2 Proposed Service Framework Architecture
Based on the identified requirements presented in Section 7.3.1, design decisions for the
service framework architecture are made and explained in this section. The principal
architecture of the proposed service framework for a DT is shown in Figure 7.1. It is based
on the concepts of the GDTA presented in [48], which is also aligned with the RAMI 4.0
IT layers. Relevant for the proposed service framework are the Information Layer, the
Functional Layer, and the Business Layer, which are also depicted in Figure 7.1.

Figure 7.1: Proposed micorservice framework architecture, in alignment with the RAMI4.0
IT-layers.

One of the main components present in the GDTA is the shared knowledge as part of
the Smart Data Service on the Information Layer. This Smart Data Service provides
contextual information about data and resources, which can be facilitated by the services
of the DT. Its shared knowledge can be realized using Semantic Web technologies to
build a so-called knowledge graph. A knowledge graph is a knowledge-based system,
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which consists of an ontology and reasoner, but also is capable of integrating external
information sources [16]. In this context, an ontology means a formal, explicit specification
of a shared conceptualization [49]. Ontologies, based on OWL can provide the semantics
for the data processed by the DT and can be used to enable automatic reasoning if
needed. The data can be accessed via SPARQL endpoints. A SPARQL endpoint is a
web service that is capable of receiving and processing SPARQL protocol requests using
HTTP. Fundamental information about the physical entity of the DT, such as plant
equipment, topology, and the instrumentation, is directly stored in a triplestore, which is
managed by the Smart Data Service itself.

Services can add relevant information to the knowledge graph by facilitating a federated
SPARQL query engine, within the Smart Data Service. A federated query engine is able
to integrate distributed data sources virtually. That means a query is sent to several
SPARQL endpoints, and the results are merged. This process is fully transparent for the
user, as it seems that only one triplestore is queried [42]. Services can include graphs from
their local triplestore that are managed by the services themselves. Thus, information
can stay private or can be included into the shared knowledge.

To provide access to historical data and add context and semantics to it, OBDA is used.
Data from a relational database is mapped to ontological concepts and can be accessed
through the knowledge graph. The loading from the data is only performed when the
data is accessed. Thus, the data stay in their original database and do not have to
be copied into the shared knowledge graph, which usually enhances the data access
performance [47].

With the help of the presented concepts for building a Smart Data Service, existing
and also newly created ontologies can be used within a DT to provide a description in
terms of classes, properties, and their interrelation for a specific domain (TBox). Various
services can instantiate the individuals (ABox). As they can refer to TBox concepts, clear
semantics to the data is provided. This approach has the advantage that data integration
can be performed with less effort, as the knowledge graph acts as an abstract semantic
integration layer [41]. Thus, data from relational databases and also from other sources,
e.g., OPC UA can be included in the knowledge graph and made accessible for all services.
Furthermore, the interoperability between services is enhanced, as the exchanged data
can be referred to concepts defined in the TBox, providing precise semantics to the
data. This is additionally supported by formats such as JSON-LD, which allow stating
such references. Another advantage of using a knowledge graph based on Semantic Web
technology is the support for knowledge discovery. Data from various services can be
connected, and new insights into the DT can be gained.

The Functional Layer contains the actual services of the DT. Thus, the requirements tar-
geting inter-service communication are relevant, but also the non-functional requirements
have influence on the design.

A microservice architecture facilitates maintainability because services can be realized
and deployed by independent development teams. Another advantage of microservices
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is that they can be containerized. Thus, they can be deployed and orchestrated in a
virtualized environment hosted in the cloud or on-premise if needed.

For the inter-service communication, a Message-oriented Middleware (MOM) with a
message broker is used. This MOM allows the realization of various communication
patterns, such as a 1:n or an n:1 communication, which are useful for building data
pipelines. A typical request–reply communication is also often required for certain
services, which can be implemented on top of such an MOM. The use of an MOM can
help to decouple services and support reliability and scalability by operating a cluster
of brokers. Suppose the broker is able to store messages; the reliability can be further
increased because, if a service is not available for a short period, it can retrieve the
message from the broker once it is reconnected.

Service composition is fundamental at the Business Layer to provide certain functionality
of the DT. This composition can be implemented by choreography or by orchestration.
In some cases, choreography might have advantages because it is a more decentralized
approach. However, if states have to be handled, e.g., for error handling or user interaction,
this can be laborious [39]. Orchestration, on the other hand, uses a central component,
where the composition logic is located. This can lead to a tight coupling of services
and integrating service logic into the orchestrator [35]. The workflows in which a DT
service is involved can be located on the enterprise or production level [30]. At the
enterprise level, typically BPMN is used to describe these workflows, and sometimes
workflow engines are used to automate them. Such workflow engines can also be used for
microservice orchestration [26]. Using orchestration combined with a workflow engine
to manage the flow between various microservices can help to visualize these flows and
handle long-lived transactions. As workflow engines support BPMN, this notation can
be used to communicate with a non-software developer and seamlessly integrate the DT
capabilities into existing business processes on the enterprise level. In Figure 7.1, only a
central workflow engine is depicted, but it is also possible to use multiple decentralized
engines.

7.4 Proof-of-Concept: Automatic Sensor Data Evaluation
For evaluating the proposed service architecture, a proof-of-concept for a DT of a thermal
heating process is implemented. The service interaction is demonstrated with a composite
sensor data evaluation service, which analyzes sensor data from the plant and detects
anomalies. The anomaly is classified as a sensor fault or abnormal behavior of the plant
caused by a malfunction of the equipment.

For the presented use-case, three different services are implemented, which are orchestrated
by the workflow engine Zeebe [9], as shown in Figure 7.2. The communication between
the services takes place over the stream-based MOM Apache Kafka [21]. Every service
holds its own database or triple store, which are connected by the federated query
engine FedX [38] to build a distributed knowledge graph as a shared knowledge base
for the services. The information exchange between the services is based on JSON-LD.
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This format is used because it provides semantics by referencing specific contexts with
URI. Thus, ontological concepts defined in the shared knowledge graph can be used to
unambiguously specify the meaning of the data, which facilitates interoperability.
The services are implemented in Python 3.9.1 and use several libraries to communicate
with Zeebe, Kafka, the triplestores, or the databases. Every service and its infrastructure
(database, triplestore, etc.) are virtualized in Docker containers.

Figure 7.2: Overview about implemented services for sensor data evaluation.

After introducing the use-case, the implemented services are explained in more detail
in the following subsections. The source code and a Docker-compose file to set up the
service infrastructure can be found on GitHub [43].

7.4.1 Use-Case: Thermal Heating Process
As depicted in the pipe- and instrumentation diagram in Figure 7.3, a simple thermal
heating process is used to evaluate the proposed service architecture. The ventilation unit
“F1” blows ambient air through an electric heater “H1” into a vessel called “SiPro” where
a thermal process takes place. The temperature of the process is controlled by modifying
the power of the heater. The air is retrieved from the vessel by the ventilation unit “F2”.
The heat exchanger “HE1” is used for heat recovery of the exhaust air. Five temperature
and two mass flow sensors are placed in the supply and return ducts. The ambient
temperature surrounding the vessel causes heat loss of the vessel. The temperature after
the heat exchanger Thx, the supply temperature Tsup, and the process temperature Tp

are measured by sensors with the IDs 102, 105, 106.1. The mass flow into the process is
measured by the sensor min. Those are the most relevant data points for the presented
sensor evaluation showcase.
The data for the service evaluation is generated by a simulation, and implemented in
Open Modelica [22]. The simulation was used to produce data for a sensor fault as well
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Figure 7.3: Use-case: Pipe and instrumentation diagram of the heating process.

as abnormal behavior of the plant caused by a clogged duct. During a regular operation,
the temperature inside the process Tp is controlled and is following the setpoint trajectory
shown in Figure 7.4. As shown, there are three operating points for Tp: 50 ℃, 70 ℃,
and a standby mode, in which the temperature is held at 30 ℃. During standby, the
pressure setpoint of the ventilation unit “F1” is reduced. Thus, the mass flow min is also
decreased.

Figure 7.4: Setpoint for the ventilation unit “Fan 1” and the process temperature Tp.

To emulate the behaviour of real sensors, random noise is added to the simulated values,
which is modeled as a normal distribution with zero mean and a standard deviation of
0.2 ℃ and 0.01 kg/s, respectively. The Open Modelica simulation model is available at
the GitHub repository [44].
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7.4.2 Smart Data Service and Communication Infrastructure
Figure 7.5 shows more details of the Smart Data Service as well as the needed communi-
cation infrastructure. The separated processes that build the Smart Data Service, their
encapsulation into Docker containers, and the communication between them are shown.

Figure 7.5: Smart Data Service and Communication Infrastructure.

The Smart Data Service provides access to the knowledge graph formed by interlinking
various SPARQL endpoints. Essential plant information, such as equipment and topology
information, is directly stored at the Smart Data Service. For the presented proof-of-
concept, the Plant, Equipment, Topology and Instrumentation Ontology (PETIont) [46]
was used to describe the heating process use-case. Information provided by other services
is stored and managed by the services themselves but included in the knowledge graph by
the federated SPARQL engine FedX. Thus, this information is interlinked and accessible
through the Smart Data Service.
The time-series data from the sensors are stored in a PostgreSQL [54] database. To make
these data accessible through the Smart Data Service and interlink them with context
information, OBDA is utilized. The Ontop Framework [57] is used to map the data
into the Sensor, Observation, Sample, and Actuator (SOSA) ontology [56]. Therefore,
mappings are defined to populate the SOSA ontology with individuals based on the data
stored in the PostgreSQL database. As an advantage of this approach, the data remain
in the relational database and are only loaded in a virtual knowledge graph if needed by
a SPARQL query request.
The communication between the services is handled by the stream-based MOM Apache
Kafka. Kafka is designed as a distributed system, running on a server cluster. Apache
Zookeeper provides a centralized service to manage the nodes inside this cluster. Kafka
topics are used to send data to services inside the DT. The request–reply communication
pattern is implemented on top of the Kafka infrastructure. The requesting service can
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add a reply topic to its request, to which the reply will be sent. Such a pattern is
implemented to communicate with the Smart Data Service.

As the Smart Data Service communicates with SPARQL internally, a wrapper is imple-
mented to enable requests from other services over Kafka. Services can send queries to
the Kafka topic, to which the Smart Data Service is listing to. The answer is sent to the
reply-topic specified in the request formatted in JSON-LD

7.4.3 Anomaly Detection Service
The Anomaly Detection Service is used to find deviation in the data of single sensors.
Therefore, a data-driven approach was chosen. A linear ARX model is trained based on
data which is provided by the Smart Data Service. Details about how these models can
be derived and identified based on the information stored in the knowledge graph can be
found in [46].

The service infrastructure is shown in Figure 7.6. The “Data-driven Anomaly Detection
Process” listens to a specified Kafka topic and starts the anomaly detection if a request
arrives. The trained ARX models are executed in a serial–parallel fashion, which means
the models are used to predict certain time-steps, and the results are compared with the
actual measurements. If the error is larger than a certain threshold, which is three times
the standard deviation of the model error, the time is marked as an anomaly. Then, the
prediction window is shifted by one time step and actual measured values are used as
input for the next prediction.

Figure 7.6: Anomaly Detection Service.

If an anomaly for a sensor value is detected, OWL-Time [27] is used to store that
information in the knowledge graph. As depicted in Figure 7.7, an anomaly is defined
in PETIont and described as OWL-Time “time:Interval”. A relation is set between the
sensor and the anomaly with the property “peti:hasAnomaly”. This information is stored
in the local triplestore of the service. As the triplestore of this service is connected to the
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federated query engine, the information is also instantly accessible through the Smart
Data Service.

Figure 7.7: Anomaly modeled inside the knowledge graph.

7.4.4 Sensor Evaluation Service
The Sensor Evaluation Service receives detected anomalies and classifies these anomalies
as a sensor fault or abnormal behavior of the plant. Therefore, the service has informa-
tion about the causal relations between sensors and actuators stored in its triplestore,
connected to the federated query engine (Figure 7.8). A detailed description of how such
relations can be automatically derived based on topology and equipment information
stored in the knowledge graph can be found in [46].

Figure 7.8: Smart Data Service and Communication Infrastructure.

The first step the service performs is clustering the anomalies based on their timely
occurrence. For a cluster of anomalies, the root sensor is detected based on the
causal relations retrieved from the knowledge graph. For every cluster of anomalies,

147



7. Semantic Microservice Framework for Digital Twins

a “peti:Incident” is created in the knowledge graph related to the anomalies in the
cluster via the “peti:hasRelatedAnomaly” property. Implicit redundant sensors are
searched, starting at the identified root sensor. The implicit redundant sensors are
checked if they are also detected with an anomaly. If so, a simple majority voting
is performed to decide if it is a single sensor fault or an abnormal behavior of the
plant is detected. The classification is performed by specifying the “peti:Incident” as
a subclass of “peti:AbnormalBehavior” or “peti:SensorFault”, as shown in Figure 7.9.
A sensor fault is also related to the identified faulty sensor, which is a subtype of
“peti:PCE-Request” in PETIont. The result is stored at the local triplestore, which is
connected to the federated query engine. Thus, this information is also accessible by
the Smart Data Service and also sent to a Kafka reply-topic encoded as JSON-LD.

Figure 7.9: Incident classification.

7.4.5 Service Orchestration

The microservice orchestration is performed using the open-source workflow engine Zeebe.
This workflow engine allows defining the processes visually in BPMN version 2.0. The
communication between Zeebe and the services is based on gRPC Remote Procedure
Calls. It is also possible to react to messages from Kafka or other MOMs. For the
presented use-case, Kafka Connect is used to establish the connection between Zeebe and
the services, as shown in Figure 7.10. Elasticsearch [18] is used by the Zebee workflow
engine to store the execution states of the workflows with their internal messages. The
Zebee Operate tool is for user interaction, such as visualizing the workflow state of the
current execution.

The workflow in BPMN for the sensor evaluation of the presented use-case is depicted in
Figure 7.11. The first “service task” is sending a Kafka message to the Anomaly Detection
Service, described in Section 7.4.3. Message parameters, such as a correlation ID, or a
reply topic, are defined. The “message catch event” is used afterwards to wait for the
response of the service. The results of the Anomaly Detection Service are encapsulated
in the Zebee message. If no anomalies are found, the process is finished. Otherwise,
the results are handed over to the Sensor Evaluation Service, described in Section 7.4.4.
Again, the catch message event is used to receive the response from Kafka. Depending
on the result, a faulty behavior is logged for further analysis, or the maintenance of
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Figure 7.10: Zeebe workflow engine infrastructure.

the faulty sensor is commissioned. Therefore, a service notification can be sent to a
service technician. The workflow engine holds the state for maintenance till the service
technician confirms the replacement of the sensor.

Figure 7.11: Service orchestration for sensor data evaluation.

For the implementation of the logging of abnormal behavior, a simple Zeebe Worker
is used. The same applies to the Sensor Service task. The confirmation by a service
technician is emulated via the command-line interface of Zeebe.

7.4.6 Results of the Sensor Evaluation Process
Two scenarios, “A” and “B”, are introduced for testing the sensor evaluation service. In
both scenarios the mass flow, which is measured by the sensor min, shows an anomaly.
The anomalies of min are depicted in Figure 7.12 and marked with “A” and “B”.

The first scenario (“A”) is caused by a clogged duct, which results in a reduced mass flow.
Therefore, an additional flow resistor is used in the simulation, which is rapidly increased
220 min after the start. As the fan has no closed-loop control, the mass flow decreases
rapidly. After 17 min, the resistance is removed so that the mass flow can increase to its
normal value again.

The second scenario (“B”) is caused by a faulty mass flow sensor min, which delivers the
wrong values. To make things more difficult for the sensor evaluation service and show
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its capability, the faulty sensor values for the mass flow sensor min are exactly the same
as for the anomaly “A”, but in that case, the mass flow is not reduced in the simulation.
Thus, the sensor evaluation service has to use context information to classify the occurred
anomalies correctly. The faulty sensor data starts about 600 min after the start.

Figure 7.12: Scenarios: sensor fault (“A”) and clogged duct (“B”).

The workflow shown in Figure 7.10 is invoked with a unique correlation ID, to assign
messages to the workflow instance. With that correlation ID, the Data Anomaly Detection
service is started. The deviations between the internal ARX model results and the
measured values are visualized in Figure 7.13. The periods in time where the deviation
is exceeding the threshold are marked as red area. As the internal models are executed
in a serial–parallel manner, the unexpected values are propagating through the various
models, as shown for the anomaly “B”. The simulated values are used as input values
within the simulation window. Thus, a clogged duct, which results in a reduced mass
flow, shown by the discrepancy between the measured and simulated values of min, has
also influence on the simulated values of Thx, Tsup, and Tp during the parallel operation.

The detected anomalies are encoded in JSON-LD, based on the parts of PETIont and
OWL-Time, as shown in Figure 7.7, and sent as response. The response is handed over to
the Sensor Evaluation Service by the workflow engine. The service analyses the detected
anomalies based on causal relations derived from the topology information. The service
clusters all identified anomalies into two groups, based on their timely occurrence.
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Figure 7.13: Anomalies detected by the Sensor Anomaly Detection Service.

The first cluster or incidence contains only one anomaly (Scenario A). The other sensor
values which are influenced by min are in line with the simulated output of the ARX
models. Thus, the measurements are correct and the incident is classified as abnormal
behavior of the plant, causing a reduced mass flow min.

For scenario B, a deviation between the measurement and the simulation is visible also
at sensors which are influenced by min (Figure 7.13). This means there is a discrepancy
between the measurements and the simulated ARX model. The causality information
from the knowledge graph is used to identify the root cause of the deviations—in this
case, a faulty sensor value of min. A simplified visualization of the causal relations is
shown in Figure 7.14. Based on this information, the root sensor min is identified and
the incident is classified as a sensor fault.

Figure 7.14: Causal relations between sensors.
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The identified incidences are classified based on the parts of PETIont, which is shown in
Figure 7.9. In the presented use-case scenario, “A” is correctly classified as abnormal
behavior and “B” as sensor fault. The result is encoded as JSON-LD and returned as a
reply to the workflow engine over Kafka.

As mentioned before, the other services for logging and interaction with a service technician
are only implemented as mock-up.

7.5 Discussion

The proposed DT service framework architecture was evaluated with the proof-of-concept
implementation for the presented use-case. The service interaction combined with the
shared and federated knowledge graph and the service orchestration with the workflow
engine has been shown.

The presented functional and non-functional requirements for a DT service framework do
not form a comprehensive list, but they can be used as a starting point for the implemen-
tation. In particular, non-functional requirements depend on the concrete implementation
and cannot be fulfilled by a general architecture. However, the architecture can support
their achievement. An essential non-functional requirement was not targeted by the
proposed architecture, as it has to be considered inherently—security. Nevertheless,
security has to be considered in DT applications during the whole life-cycle.

The proposed DT service framework architecture can be extended for particular use-
cases. The proof-of-concept implementation for the sensor data evaluation for a DT used
open-source tools to fulfill the identified requirements. Table 7.5 shows design artifacts
and the requirements which were supported to be met by the specific artifact.

The microservice architectural style supports the maintainability of the whole framework
(RN2, RN4), as they can be extended and developed by individual teams. Further-
more, microservice can be easily containerized, which facilitates the hosting in a cloud
infrastructure as well as on-premise (RN1).

Inter-service communication is a crucial part of the whole service framework. Using a
MOM with event-based messaging is also beneficial for decoupling microservices (RN2)
as well as enable 1:n and n:1 communication (RF2, RF3). Apache Kafka, used in the
proof-of-concept implementation, further supports the data streams (RF1), which are
stored persistently in Kafka (RN5). Thus, connecting services can also access previously
sent data. Kafka topics are used to enable request–reply communication between services
(RF4). Furthermore, it supports scalability by running multiple brokers on a server
cluster (RN3).
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Table 7.5: Requirements supported by design artifacts.

Design Artifact Supported Requirements
Microservice Architecture RN2, RN4

Containerization RN2, RN4
MOM (Apache Kafka) RN2, RN3, RN5, RF1, RF2, RF3, RF4

Shared Knowledge graph RI1, RI5
Federated Query Engine RI4, RI3

OBDA RI2
Workflow Engine RB1, RB2

Semantic Web technology can be utilized to perform data integration (RI1) and build up
the shared knowledge graph. Based on the ontologies used in the knowledge graph, data
can be exchanged between services and external clients using JSON-LD (RI5). Using
standard ontological models is vital to provide interoperability. A hierarchical structure
of the used ontology, with an upper, a domain, and task ontology, can help to provide a
common understanding of concepts. Several ontology integration methods exist for such
cases as described in [17]. As there will be hardly a consensus about the ontologies to
be used, topics such as ontology alignment and mapping will become more important.
Additionally, proper ontology design methods, such as those presented in [23], facilitate
the reusability of these ontologies.

The federated query engine enables the distribution of the knowledge graph. Every
service of the DT manages its information and can decide which part should be shared
with other services by including it in the knowledge graph. The parts which are not
included are only available locally by the service itself (RI3, RI4). However, reasoning
on the shared knowledge graph can introduce problems because of inconsistency. As
services can add relevant information by themselves to the shared knowledge graph, this
problem becomes more likely. To avoid this problem, reasoning should only be applied
to private parts of the knowledge graph, where consistency can be guaranteed to some
extent. If reasoning should be performed on the whole graph, other techniques have to be
applied which can deal with uncertainty, e.g., fuzzy reasoning methods. Even if reasoning
capabilities can not be provided, the knowledge graph can still be used for data retrieval
and knowledge discovery.

Using a workflow engine for service orchestration is beneficial for holding states during
human–machine interaction. Using BPMN also facilitates the integration DT services into
workflows at enterprises level. For the production level planning, BPMN is not always
sufficient and other notations such as Coloured Petri Nets might be more suitable [31].
Extensions of the workflow engine could support this multi-level workflow execution in a
more convenient way.

Future work will investigate the real-time performance of the proposed service architecture
for various use-cases. In this context, the integration of OPC UA is planned. How OPC
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UA information can be included in the shared knowledge graph has already been shown
in [45]. Next, OPC UA integration into the service framework will be investigated. In
this context, the execution time of SPARQL endpoints can become relevant, which will
be further investigated.
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CHAPTER 8
Conclusion & Future Work

In this thesis, methods and concepts for creating DTs in the domain of industrial energy
systems were presented. The already specified goals of the thesis, defined in Chapter 1.2,
are used to discuss the results and identify future research directions.

G1: Develop a generic Digital Twin architecture for industrial energy systems
The novel GDTA is introduced and evaluated based on a prototypical proof-of-concept
implementation. The four general requirements for a DT in the industrial energy system
domain, and relevant for this thesis are stated in Chapter 1.4.2. It has been demonstrated
how the GDTA can be used to instantiate a DT for the use case of a PBTES, fulfilling
requirement GRQ1. The concept of a shared knowledge, based on Semantic Web
technologies, enables the integration and interlinking of external data sources (GRQ2)
and also provides machine-readable semantics for semi-automatic information processing
(GRQ3). The requirement for seamlessly adding or adopting the DT’s functionality is
accomplished by facilitating a service-based architecture (GRQ4).

It has been shown that in the related literature, layered structures with similar func-
tionality but different names are frequently used in other DT concepts, architectures, or
frameworks. The different names and their functionality are elaborated in Chapter 2.1.2.
The proposed GDTA is aligned with the IT dimension of RAMI 4.0 to solve this prob-
lem. This facilitates the development of a DT by allowing for a common naming and
understanding of the layers within the GDTA.

Simulation models are essential parts of the DT, but they heavily depend on the targeted
application and task. Therefore, the DT has to be able to deal with various models,
which also can change over time and provide context information with the models. For
the proof-of-concept implementation of the GDTA, Semantic Web technology is used
for combining such a simulation model with context information about resources and
services. This combination enables application-dependable views on the DT’s Virtual
Entity. Ontologies serve as the foundation for the shared knowledge, which is the basis
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of the Smart Data Service. In this shared knowledge, information from the whole DT
life-cycle can be managed and interlinked. Even if the GDTA was designed based on
a use case of an industrial energy system, it is likely that it also can be applied in
other domains. Its suitability will be tested and evaluated in future research projects.
Also, the evaluation of the GDTA, which is only based on one use case, might not be
sufficient. Thus the application of the GDTA for other types of energy systems will also
be elaborated. Therefore, an upcoming research project in the domain of wind power
generation will be used.
G2: Reusing existing OPC UA information models to provide semantic context information
for the Digital Twin
OPC UA is currently one of the main technologies used in IIoT applications. With a
proof of concept, the proposed approach for transforming OPC UA information models
into domain-specific ontologies is evaluated. These ontologies can be included in the
shared knowledge graph of the GDTA to make the information available for services
inside the DT. The transformation process can be adapted to other OPC UA information
models or domain ontologies by simply changing the SPARQL rules. The remaining steps
of the process can be automated, making it adaptable to changes in the source model or
target ontology. Additionally, because the information model is directly retrieved from
the address space of a running OPC UA server, the proposed approach is also applicable
to already existing OPC UA servers. The presented transformation method has only be
evaluated on a single proof-of-concept to show its applicability. Further evaluations will
be done in the future by applying this method to other OPC UA information models as
well as domain ontologies in ongoing research projects.
G3: Provide a semantic integration method for OPC UA run-time data of a Digital Twin
Next to engineering information provided by the OPC UA information models, it is
also important for a DT to have access to run-time data from the underlying process.
Thus, it was demonstrated how CPF can be utilized to create ontology-based OPC UA
data access. This enables the integration of OPC UA run-time data into the shared
knowledge graph as proposed in the GDTA. It has been demonstrated how these data
can be retrieved from a knowledge graph using SPARQL.
Additionally, a performance evaluation and comparison of the CPF approach with two
other methods for sensor data integration into a knowledge graph were carried out. All
three approaches were evaluated for their characteristics and the resulting limitations
were discussed. Therefore, two corner cases are presented which show the strengths and
weaknesses of the individual approaches. It has been shown that the Ontop framework
should be preferred if the sensor data is already stored externally in an SQL compliant
relational database. The CPF can be used if the data sources are not SQL-compliant,
such as special time-series databases or OPC UA servers. It should be avoided to store
time-series data directly in an ontology, as the query performance degrades over time.
However, it is still quite efficient for certain use cases or prototypes, where only a small
amount of data is produced.
G4: Providing a method for supporting semi-automatic data-driven model identification
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To show an application of how information and semantically enriched run-time data can
be used by a DT, the simulation model identification process is partly automated, based
on ontological knowledge of plant equipment, topology, instrumentation, and run-time
data. SPARQL rules were used to infer new knowledge, like causality relations. In
combination with simulation models, such causality information can be used to develop
novel services for DTs. It can also enhance the explainability of ICPS, e.g., by applying
it to fault detection and analysis scenarios. Further use cases will be explored in the
future, extending this approach to electrical energy systems to evaluate the full potential
of such an approach.
G5: Developing an architectural concept for a Digital Twin service framework
The presented service framework is based on the microservice architectural style. This
facilitates maintainability and extendability. Microservices may also be containerized,
making them easier to host in both cloud and on-premise environments. The shared
knowledge graph of the GDTA can be distributed thanks to a federated query engine.
Each DT service handles its own data and information. It can select which parts of it
should be shared with other services by providing it to the knowledge graph. It has
been shown that for holding states during long-lived transactions, like human-machine
interactions, a workflow engine for service orchestration can be beneficial. Also, the usage
of BPMN makes it easier to integrate DT services into enterprise workflows. It has to be
mentioned that requirements regarding real-time capability for the service framework are
not addressed, as the used communication network technologies and operating systems
are not capable of that. Interaction between services and the plant only happens by
sending set points to the underlying control system. The underlying control system has
to be able to deal with delayed set points without reaching critical system states. If a
real-time response is needed, this has to be implemented directly in the control system
and using real-time OT communication.
Also other future research directions are manifold in the area of DTs. For the DT
architecture, the other two dimensions of RAMI 4.0 should be further investigated. On
the hierarchy dimension, the application of edge, fog, and cloud computing has to be
analyzed. Also, managing information over the whole life-cycle of the DT and perform
change management is an important topic, which needs further intensive research.
In the area of knowledge graphs suitable for industrial applications, machine learning
approaches can be applied for analyzing the graph and to detect issues, like inconsistencies
or missing links. A drawback when working with ontologies and knowledge graphs
compared to machine learning methods is that they cannot deal with uncertainty. Thus,
fuzzy reasoning might be an interesting line of attack in the area of knowledge graphs,
introducing the concept of impreciseness into reasoning. Such approaches might be worth
to be investigated in the near future.
Also, it is an important question, how concepts and methods presented in this thesis
can be combined with the ongoing standardization activities regarding the AAS. In
recent years, the concept of the AAS has matured. Next to its data model, the interface
description of an AAS has also been defined. In this context, the concept of semantic
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IDs, defined by the AAS data model, can be used to refer to ontological knowledge
representations. Also, the standardized RDF export format of the AAS is useful to
integrate the information available in an AAS into an knowledge graph. This integration
enables the interlinking of information from the whole life-cycle and all hierarchy levels of
the RAMI 4.0, to support knowledge-discovery with the help of Semantic Web technology.
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