
FlowTutor: Programmieren mit
Flußdiagrammen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Thomas Rößl, B.Sc.
Matrikelnummer 11775192

an der Fakultät für Informatik
der Technischen Universität Wien
Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Michael Waltl
 Associate Prof. Dr.techn. Lado Filipovic

Wien, 11. März 2024
Thomas Rößl Michael Waltl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

FlowTutor: Programming Using
Flowcharts

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Thomas Rößl, B.Sc.
Registration Number 11775192

Vienna, March 11, 2024
Thomas Rößl Michael Waltl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

to the Faculty of Informatics
at the TU Wien
Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Michael Waltl
 Associate Prof. Dr.techn. Lado Filipovic

Erklärung zur Verfassung der
Arbeit

Thomas Rößl, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. März 2024
Thomas Rößl

v

Danksagung

Ich bin Prof. Michael Waltl und Prof. Lado Filipovic zutiefst dankbar, dass sie mir die
Möglichkeit gegeben haben diese Arbeit durchzuführen. Ihre unermüdliche Unterstützung,
Anleitung und Geduld während dieses Unterfangens waren wirklich von unschätzbarem
Wert.

Ich danke den Teilnehmern an den Evaluierungen für ihr enthusiastisches Engagement,
ihr wertvolles Feedback und ihre Bereitschaft, ihre Erfahrungen zu teilen. Ihre Beiträge
haben diese Untersuchung erheblich bereichert.

Ohne den Einsatz der vielen Open-Source-Tools und Ressourcen wäre ein um ein Vielfaches
höherer Aufwand erforderlich, um eine Anwendung zu entwickeln, wie wir es im Rahmen
dieser Arbeit getan haben. Ich möchte allen danken, die zu dieser großartigen Community
beitragen.

Meinen Kollegen und Freunden danke ich aufrichtig für ihre unermüdliche Unterstützung
und Ermutigungen während dieser Reise.

vii

Acknowledgements

I am deeply grateful to Prof. Michael Waltl and Prof. Lado Filipovic for entrusting
me with the opportunity to conduct this thesis. Their unwavering support, invaluable
guidance, and patience throughout this endeavor were truly invaluable.

I extend my heartfelt appreciation to the participants of the evaluations for their enthusi-
astic engagement, valuable feedback, and willingness to share their experiences. Their
contributions have significantly enriched this research.

Without the use of the many open-source tools and resources, orders of magnitude more
effort would be necessary to develop an application, as we have done in the course of this
work. I want to thank everyone who contributes to this amazing community.

To my colleagues and friends, I express sincere gratitude for their unwavering support
and encouragement during this journey.

ix

Kurzfassung

In der Programmierlehre setzt der traditionelle Ansatz oft auf syntaxlastige Vorlesungen
und Programmierübungen, welche speziell für Personen, welche zum ersten Mal mit
einer Programmiersprache konfrontiert werden, besonders herausfordernd sein können.
Um den Einstieg in das Programmieren zu erleichtern, werden in dieser Arbeit das
Design, die Entwicklung und die Evaluierung einer Anwendung vorgestellt, die darauf
abzielt, das Erlernen von Programmierkonzepten durch die Verwendung von interaktiven
Flussdiagrammen zu verbessern.

Die Anwendung mit dem Namen “FlowTutor” ermöglicht es Studierenden, Flussdia-
gramme zu erstellen, welche die Programmierlogik darstellen. Durch das Verbinden von
Knoten, die Programmierkonstrukte wie Schleifen, Konditionale und Variablen darstellen,
können die Auszubildenden intuitiv und unterstützt durch grafische Darstellung ihre
Algorithmen entwerfen und den Ablauf der Ausführung effizienter nachvollziehen und
auch verstehen.

Die Definition benutzerdefinierter Knotentypen ermöglicht es, Quellcode für beliebige
Programmiersprachen und Konstrukte zu erzeugen.

Programme können in FlowTutor visuell ausgeführt und debuggt werden, wobei die
Möglichkeit besteht, schrittweise durch das Programm zu gehen und Variablenzuweisungen
zu visualisieren.

Abschließend wird in dieser Arbeit die Benutzerfreundlichkeit und die Arbeitsbelastung
der Anwendung mithilfe der System Usability Scale (SUS) und des NASA Task Load
Index (TLX) mit einem mixed-methods Ansatz bewertet. Die SUS-Punktzahl und die
TLX Ergebnisse in der Evaluierung legen eine gute Nutzerfreundlichkeit für Personen
mit wenig oder gar keiner Programmiererfahrung nahe. Zusätzlich haben wir qualitatives
Feedback gesammelt, um die weitere Entwicklung von FlowTutor in der Zukunft zu
unterstützen.

xi

Abstract

In the realm of programming education, the traditional approach often involves syntax-
heavy lectures and code-writing exercises, which can be very challenging, particularly
for beginners who have never dealt with programming languages before. To make
the first programming steps more efficient for newcomers, in this thesis the design,
development, and evaluation of an application aimed at enhancing the learning experience
of programming concepts through the use of interactive flowcharts are presented.

The application, named “FlowTutor” allows students to visually construct flowcharts
which represent programming logic. By connecting nodes representing programming
constructs such as loops, conditionals, and variables, students can intuitively design
algorithms and understand the flow of execution.

A templating system allows for defining custom node types, with which source code can
be produced for arbitrary programming languages and constructs.

Programs can be executed and debugged visually within FlowTutor with the ability to
step through the program and visualize variable assignments.

Finally, the thesis employs a mixed-methods approach to evaluate the usability and
workload of the application, using the System Usability Scale (SUS) and the NASA Task
Load Index (TLX), respectively. The SUS score and TLX results in the evaluation suggest
that the tool is usable for those with little to no previous programming experience. In
addition, we gathered qualitative feedback to aid the further development of FlowTutor
in the future.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Historical Background . 2

1.3.1 Programming Education . 2
1.3.2 Graphical Programming . 3
1.3.3 Flowcharts . 3

2 Related Work 7
2.1 Flowchart Based . 8

2.1.1 BACCII/BACCII++ . 8
2.1.2 RAPTOR . 9
2.1.3 Flowgorithm . 10

2.2 Block Based . 11
2.2.1 Scratch . 11
2.2.2 Snap! . 12

3 Design and Development 13
3.1 Requirements . 13

3.1.1 Personas . 14
3.1.2 User Stories . 15

3.2 Tooling and Libraries . 18
3.2.1 Version Control . 18
3.2.2 Programming Language . 18
3.2.3 Code Style . 19
3.2.4 GUI Framework . 19
3.2.5 Utility Libraries . 20
3.2.6 Testing . 21

xv

3.2.7 Continuous Integration . 22
3.2.8 Deployment . 22

3.3 Implementation . 23
3.3.1 General . 25
3.3.2 GUI . 26
3.3.3 Flowcharts . 32
3.3.4 Node Templates . 33
3.3.5 Code Generator . 52
3.3.6 Debugger . 52

3.4 Testing . 54
3.5 Continuous Delivery . 55

4 Evaluation 57
4.1 Methods . 57

4.1.1 Participants . 57
4.1.2 Design . 57

4.2 Results . 58
4.2.1 System Usability Scale (SUS) 58
4.2.2 NASA Task Load Index (TLX) 59

5 Future Work 63

A System Usability Scale (SUS) 65

B NASA Task Load Index (TLX) 67

C Evaluation Results 69
C.1 System Usability Scale (SUS) . 71
C.2 NASA Task Load Index (TLX) . 76
C.3 Feedback Questions . 80

List of Figures 83

Bibliography 85

CHAPTER 1
Introduction

1.1 Motivation
In 2024, the significance of understanding computer programs and possessing programming
skills extends far beyond the realm of computer scientists and mathematicians. Across
various career paths, these skills have become indispensable. Austria, in particular,
has embraced this trend through a multitude of initiatives focused on IT, informatics,
and digitalization. Literacy today is synonymous with digital literacy, and Austrian
students are required to obtain digital literacy skills and programming fundamentals.
This foundational knowledge equips them for the digital landscape they will encounter
throughout their lives. Digital basic education1 has become a compulsory subject for
Austrian students beginning with the school year 2022/23 [Bunb] and since 2018, Austria
has recognized the importance of coding skills by introducing a dedicated apprentice
profession dedicated to “Coding”. Aspiring coders receive structured training, preparing
them for careers in software development [Wir].

Furthermore, a new university focusing on digitalization and digital transformation is
planned in Linz [Buna] and a survey from 2019 of joinery companies in 2019 showed,
that 85% of respondents regard digitalization as “very important” for their companies in
the next five years [Fac19].

Although other paradigms exist, imperative programming languages are the most common.
Imperative means that the programmer defines the program by writing down statements
in a defined sequence, which get executed in this order [GA16]. This gets extended by
procedural languages where the program is structured around procedures, also known as
functions or subroutines. In the yearly report “The State of Developer Ecosystem 2023”
[Jet23a] almost all of the most widely used programming languages are at least partially

1Digitale Grundbildung

1

1. Introduction

procedural, with the only exceptions being markup- and query languages like SQL and
HTML.

To learn a procedural programming language, one has to learn a particular way of
problem-solving, which includes the ability to analyze a problem and break it down into
discrete steps, which can be executed by a computer. One of the core challenges, when
teaching students who are new to programming, is often that the technical overhead
of learning to use text editors and compilers [CM05], as well as learning the syntax
of a particular language [GM15], make the learning curve to get started rather steep.
Thus, the use of graphical languages [GM15] and visualization techniques [BK00] is
considered a massive help for beginners to focus on the abstract problem-solving aspect
of programming.

1.2 Goals
To support the ideas outlined above, a flowchart-based software tool has been developed
within the scope of this work. There are plans to use this tool during introductory
programming courses at the Institute for Microelectronics at TU Wien. During the
development special focus was placed on maximizing learning efficiency, particularly
to newcomers in software development and programming. Finally, this tool has been
evaluated by students in the bachelor program of electrical engineering, examining
usability metrics and qualitative aspects regarding the motivation of the students to use
such a tool and to gather feedback for further development.

1.3 Historical Background
1.3.1 Programming Education
Computer science did not emerge as an independent field of study from the outset. Its
origins can be traced back to the early days of computing when the focus was primarily
on developing and utilizing electronic computers for specific applications.

In 1937, Cambridge University established the “Mathematical Laboratory” [Cro92] as an
early initiative to explore electronic computing technologies. In 1953, the same institution
marked a significant milestone with the creation of the first academic degree program
in the field, known as the “Diploma in Numerical Analysis and Automatic Computing”
[Spa01].

At the TU Wien, the first course on computing started in 1953 and the first informatics
curriculum was introduced in 1970 [TU b]. Today, Informatics is the second most popular
field of study at TU Wien, with a 19.4% share of all registered students [TU a]. In all of
Germany, it is even the most popular in the STEM (Science, Technology, Engineering
and Mathematics) field, with a 23.9% share of all students [Sta].

2

1.3. Historical Background

1.3.2 Graphical Programming
For this work, we define graphical programming systems as any programming environment,
where the instructions are defined through graphical representations, rather than pure
textual source code alone. Other terms used in literature are Visual Programming [RM17],
and Iconic Programming [Cal92].

The idea of graphical programming environments is at least as old as graphical user inter-
faces (GUIs) for personal computers are available [GT84]. In his 1975 Ph.D. dissertation,
Smith stated that the goal is “[...] to develop a computer system whose representational
and processing facilities correspond to and assist mental processes that occur during
creative thought.” [Smi75].

Graphical programming languages have encountered significant challenges, when used as
a general-purpose language, because visual metaphors quickly become overwhelming if
all implementation details must be visually present [BM95]. The use of diagrams and
flowcharts plays a significant role in software development processes, but rather as a
means for abstract conceptualization and documentation purposes, rather than for use in
concrete implementations. Standardized as UML (Unified Modelling Language) [BM99]
graphical diagrams are used throughout the software engineering process.

In the context of programming education, the requirements are different. Students need
only to solve very constrained problems, which can be more easily represented graphically,
and there have been numerous evaluations which show the high efficiency of graphical
programming for educational purposes [GM15] [Gaj18] [CWHH04].

1.3.3 Flowcharts
A flowchart is a graphical representation of a workflow or process that illustrates the
steps, logic, and control of a program or system. It visually depicts how different actions
or tasks are connected and the order in which they occur.

One of the earliest formalizations of this concept was introduced at the Annual Meeting
of the American Society of Mechanical Engineers by Frank and Lillian Gilbreth in 1921
[GG21].

The method involves representing a series of operations or steps in a process using
symbols, connected by arrows. Different symbols denote different activities, such as
operations, inspections, transportation, and delays. The Gilbreths aimed to improve
efficiency and eliminate unnecessary steps in work processes by providing a visual tool for
analyzing and optimizing workflows. Their work laid the foundation for modern process
mapping and flowcharting techniques widely used in industries today.

Based on their work, the American Society of Mechanical Engineers (ASME) released a
standardization “Operation and Flow Process Charts” in 1947 [Spe47]. An example of a
typical operation process chart is shown in Figure 1.1.

3

1. Introduction

Figure 1.1: ASME operation process chart from 1921, originally published in [GG21].

Flowcharting in the realm of computing goes back to Goldstine and von Neumann at
Princeton [Cha70], who published the systematic use of flowcharts for the first time in
1947 [GvN47]. As an example of an algorithm represented as a flowchart, see Figure 1.2.

4

1.3. Historical Background

Figure 1.2: Flowchart by Goldstine and von Neumann describing the evaluation of an
integral, 1947, originally published in [GvN47].

5

1. Introduction

After the publication of Goldstine and von Neumann’s work, companies and organizations
adopted the use of flowcharts, often with adaptations and additions of their own [Cha70].

The American Standards Association (ASA), now known as American National Standards
Institute (ANSI), started the standardization of flowcharting techniques in the early
1960s, published the first standard in 1963, and kept revising it up to 1970 [ans70].

During that same time, the International Organization for Standardization (ISO) started
work on its own standard. The Technical Committee ISO/TC 97, Computers and
information processing adopted a draft recommendation, which was accepted as an
official recommendation in 1969 [iso69]. This recommendation was transformed into
an official ISO standard in 1975 [iso73], which in turn was superseded by ISO 5807
“Information processing - Documentation symbols and conventions for data, program and
system flowcharts, program network charts and system resources charts” in 1985 [iso85].
An example of a program flowchart according to the ISO 5807 standard is provided in
Figure 1.3. This is the standard still in use today.

Figure 1.3: A program flowchart based on standard ISO 5807, originally published in
[iso85].

6

CHAPTER 2
Related Work

As discussed in the introduction, we mainly concentrate on work, which focuses on
programming education as their main goal. Most other graphical programming systems
are not general-purpose solutions and only try to solve specific constrained problems.

Over the years, there have been a number of graphical programming systems, mainly
aimed at education. Some have used the same visual framework of flowcharts as we
have with FlowTutor, but there are different approaches as well. As examples for other
visualization systems, we cite some systems using blocks as their main metaphor.

7

2. Related Work

2.1 Flowchart Based
2.1.1 BACCII/BACCII++
BACCII [Cal92] and its successor BACCII++ [CBH97] were developed in 1992 and 1997,
respectively, by Calloni at Texas Tech University. See Figure 2.1 for an exemplary
program. BACCII uses custom icons as its flowchart nodes, rather than the ISO 5807
symbols.

Figure 2.1: BACCII++, originally published in [Cal92].

In their evaluation, they found that “[...] the BACCII++ students showed higher compre-
hension of the C++ syntax” [CBH97], when compared to a group which was not using
the program.

Because it was developed between 1992 and 1996 for the versions of Microsoft Windows
available at the time and there has not been any further development, it is not possible
to easily execute BACII or BACCII++ on modern machines.

8

2.1. Flowchart Based

2.1.2 RAPTOR
RAPTOR (Rapid Algorithmic Prototyping Tool for Ordered Reasoning) [CWHH04] was
developed in 2004 by Carlisle at the United States Air Force Academy. See Figure 2.2,
for an example of its GUI. It was “designed specifically to address the shortcomings of
syntactic difficulties and non-visual environments” [CWHH04]. The flowchart nodes are
based on the ISO 5807 standard.

Figure 2.2: “RAPTOR in action”. Originally published in [CWHH04].

In their evaluation, they found that students preferred the visual approach when given
the choice and “[...] that students using RAPTOR who entered the course with a much
lower incoming GPA outperformed students with a higher incoming GPA using Ada or
MATLAB.” [CWHH04].

RAPTOR is open-source and written in a combination of Ada, C#, and C++. Originally
developed for Windows, there is a version utilizing the cross-platform Avalonia framework.

9

2. Related Work

2.1.3 Flowgorithm
Flowgorithm [Coo15] was developed in 2015 by Cook at California State University. For
an example of its user interface see Figure 2.3. Flowgorithm also bases its flowchart nodes
on the ISO 5807 standard. Flowgorithm can convert the flowcharts into a comprehensive
list of common programming languages and has a built-in debugger, similar to FlowTutor.

Figure 2.3: Flowgorithm, originally published in [Coo15].

While there was no formal evaluation in the original work, Cook noted that “Student
reaction to the software, as well as comments from the website, have been extremely
positive” [Coo15]. In a later paper, Gajewski concluded, that “Flowgorithm enabled to
distinguish between programming (creating an algorithm) and coding (representing an
algorithm in a particular programming language) and concentrate on algorithms and
programming” [Gaj18].

As a proprietary piece of software there are some concerns with long-term reliability and
possibilities to influence future development, should there be changing requirements in
the future. Flowgorithm is written using Microsoft’s “.NET” framework and as such can
only be run on Windows, which hinders its use in a diverse classroom, where students
might use MacOS or Linux.

10

2.2. Block Based

2.2 Block Based
2.2.1 Scratch

Figure 2.4: Scratch GUI.

Scratch [MBK+04] was developed in 2004 by Maloney et al. at MIT (Figure 2.4). It is
aimed at children aged 8-14 and provides a user-friendly platform for creating interactive
stories, games, and animations, making it particularly popular among beginners, children,
and early educators.

Users build programs by dragging and dropping visual blocks which represent code
structures. These blocks snap together like puzzle pieces. Through these commands,
characters or objects are controlled and respond to various events and user inputs.

In an evaluation during Harvard Summer School’s “Computer Science S-1: Great Ideas
in Computer Science” program, Malan et al. found that Scratch was perceived positively
by students, with 75% feeling it was a positive influence and only 8% feeling it was a
negative influence [ML07].

11

2. Related Work

2.2.2 Snap!

Figure 2.5: “Snap!” web-based GUI.

“Snap!” formerly known as BYOB (Build Your Own Blocks) [HM10] was developed
in 2010 by Harvey and Mönig at UC Berkeley. See Figure 2.5 for an example of its
web-based user interface. “Snap!” is a reimplementation of Scratch with an enhanced
feature set for high school and university students.

“Snap!” extends its support to learners aged 14-20 by introducing named procedures,
thereby enabling recursion, treating procedures as data to facilitate higher-order functions,
incorporating structured lists, and elevating sprites to first-class objects with inheritance
capabilities [HGB+13].

12

CHAPTER 3
Design and Development

3.1 Requirements
For the gathering of requirements, we used the Persona technique [SHM+12]. Terms like
“user” are vague and can mean different things to different people [PA10]. By defining
fully formed fictitious characters, we can focus the process on requirements for real people
and all participants have a better understanding of the goals which should be achieved
[SHM+12].

The requirements themselves were formulated as user stories. Following an agile develop-
ment paradigm, the user stories do not specify every detail of the application but rather
focus on the value they bring to the users [Coh04]. These stories are not static entities
which get defined in a step in the process and then are fixed in place; rather but they are
allowed to evolve with every iteration of the application. There may be details which get
added, or large stories which get split into many smaller ones [Coh04].

For this work, we defined three personas and created a list of user stories based on these
personas. In the following sections, we list the persons first, followed by deriving the user
stories.

13

3. Design and Development

3.1.1 Personas
Programming Instructor

Name: Associate Prof. Dipl.-Ing. Dr.techn. Stefanie Schneider

Age: 42

Background:

Prof. Stefanie Schneider is an Associate Professor of Electrical Engineering with a
passion for nurturing the next generation of engineers. Her journey into academia
began with a deep fascination for the intricate world of circuits and systems. Stefanie
earned her Ph.D. in Electrical Engineering, specializing in signal processing and
control systems. Throughout her academic career, she discovered the transformative
power of demystifying complex concepts, especially when it came to teaching the
fundamentals of programming to aspiring electrical engineers.

Stefanie’s research endeavors have often intersected with the practical application
of programming in the context of hardware design, embedded systems, and control
algorithms. Drawing from this rich experience, she transitioned seamlessly into a
teaching role, driven by the desire to bridge the gap between theoretical knowledge
and hands-on application for her students.

She holds an introductory C-programming lecture with exercises for electrical
engineering students.

Beginner Programmer

Name: Mario Egger

Age: 20

Background:

Unlike many of Mario’s peers, he did not grow up with a computer at his fingertips
but rather with a soldering iron in hand.

During school, where his strengths lay in physics and mathematics, Mario found
a passion for understanding the fundamentals of electrical systems. The allure
of tinkering with wires and discovering how components interacted became the
highlight of his afternoons. While his friends were immersed in the digital world,
Mario was more at home with analog devices and hands-on experiments.

Choosing Electrical Engineering for his university studies, Mario faced the challenge
of integrating programming into his skill set. Unlike some of his classmates who
had been coding since their early teens, he approaches programming languages
with a fresh perspective. The world of algorithms and code structures is a new
territory, and Mario embraces the challenge with a determination to understand
the digital aspects of his field.

14

3.1. Requirements

To help him with his understanding he decided to attend the lectures of Prof.
Schneider.

Intermediate Programmer

Name: Lena Ziegler

Age: 19

Background:

Lena discovered her love for technology through a childhood fascination with
gadgets. Growing up in a household where discussions about the latest tech trends
were as common as family dinners, Lena’s interest in technology was sparked during
her early teenage years.

At the age of 14 Lena attended a coding camp, where she was introduced to
the world of Python. Over high school summers, Lena delved into online coding
tutorials, playing with languages like JavaScript and exploring web development.
While her friends were absorbed in social media, Lena was building small websites
and experimenting with interactive features.

Despite her knowledge of the basics, Lena still struggles with understanding complex
algorithms and data structures. She also attends the lecture of Prof. Schneider.

3.1.2 User Stories
Based on these personas we gathered the following initial user stories and grouped them
into categories:

Prerequisites

• Stefanie uses Python frequently in her research and students also learn Python.
For ease of maintaining the application, FlowTutor should be written in Python.

• To maintain the ability to improve the application in the future and assure avail-
ability, FlowTutor should be licensed with an open-source license.

• Many students use operating systems other than Windows. FlowTutor should be
able to run cross-platform without configuration necessary for the end-user.

Program Creation

• Mario has to solve an assignment involving variables. He needs to draw a flowchart
which includes a variable declaration node.

• Based on the previous story, Mario needs to draw a flowchart which includes a
variable assignment node.

15

3. Design and Development

• Lena needs to solve an assignment involving even and odd numbers. For that, she
needs to draw a flowchart which includes a decision node (“if-else” in C-syntax).

• Lena needs to solve an assignment involving an arbitrary length series of numbers.
For that, she needs to draw a flowchart which includes a loop node (“while” in
C-syntax).

• Based on the previous story, Lena wants to simplify the construct with a “for-loop”,
this also helps to more easily convey the meaning of the program.

• Stefanie makes an example program and wants to clarify a step in the algorithm.
To this end, she wants to be able to add comments to the flowchart.

• Lena encounters a scenario, where she needs to make several nested conditional
statements to cover different cases. She wants to simplify this construct with a
node which represents a “switch-case” instruction.

• Stefanie wants to demonstrate an algorithm, which requires a statement, not covered
by the available node types. She needs a node, where she can insert arbitrary code.

• Mario needs to solve an assignment, where he must define a function. He needs to
be able to define a function through a separate flowchart.

• Based on the previous story, Mario needs to be able to call his defined function in
the main function.

• Stefanie wants to clarify the syntax of C by comparing it with the flowchart-
representation. She needs a way to see the resulting source code.

Program Execution and Debugging

• Mario has problems understanding an algorithm. Going through a completed
example, step-by-step in the flowchart would aid his learning process.

• Based on the previous story, Mario needs to be able to see the variable assignments,
so he can understand the intermediate steps.

• Mario is debugging a program including pointers, he needs to be able to see the
values the pointers refer to, not only their memory addresses.

• With the variable assignments alone, it is difficult for Mario to understand com-
plex program states. He would benefit from a visual representation of pointer
assignments, arrays, etc.

• Variable scope is a difficult concept for Mario to grasp, the visualization should
include a visual representation of it, to help Mario.

16

3.1. Requirements

• When stepping through a program, Lena always needs to step through a long loop
with many steps, before she gets to the position in the program, in which she is
interested. The ability to set breakpoints would make her life easier.

• Mario has created a program which prints some textual output to the console. The
application needs a way to show this output to Mario.

• Lena’s latest program has a bug which leads to a crash. For easier debugging, she
needs to see the error messages generated by the compiler and during program
execution.

• Lena has created a program, which displays all prime numbers below 100. She
wants the ability to vary this limit, without having to change the program source
every time. The application should facilitate user input.

Project Management

• Mario tries to solve an assignment but hits a roadblock. He decides to throw away
his current attempt and start from a clean slate. FlowTutor needs to support
starting fresh.

• Stefanie has created a half-finished example, which she wants her students to
complete as an exercise. To this end she needs to save the project to a file, to be
able to distribute it.

• Based on the previous story, Lena needs to be able to load this file, to keep working
on it.

• Lena realizes that she can create a program for a calculation, which would be useful
to her outside of the lecture. She wants to export an executable version of the
program for her own use.

Settings

• Stefanie works a lot on FlowTutor projects and sometimes the arrangement and
sizing of the User Interface (UI) elements get in her way. She wants a way the
customize it by rearranging and resizing the elements.

• Lena likes to work late into the night, the white background of FlowTutor disrupts
her preferred dark surroundings. She wants the ability to use a dark color scheme
for the UI.

17

3. Design and Development

3.2 Tooling and Libraries
There are plans to use FlowTutor as a teaching aid in introductory programming courses
at the Institute of Microelectronics at the TU Wien. This is reflected in the choice of
tools and libraries used, as we want to facilitate an easy path to take over the project
in the future. Further development should not be hindered by licensing issues or steep
learning curves.

3.2.1 Version Control
Git was chosen as the version control system for the project, as it has become the de facto
standard for software development in recent years, with 87% of developers responding of
regularly using it in “The State of Developer Ecosystem 2023” by JetBrains [Jet23b]. In
the initial development stages, the code was hosted in a repository at the Institute of
Microelectronics Gitea-Instance1 but was later relocated to a publicly available GitHub
repository2 with a LGPL-3.0 license, to make it open-source and accessible to a wider
audience.

To maintain a consistent style in the commit messages, we followed the Conventional
Commits [MPSD19] specification for commit messages.

New features were developed in feature branches and merged into the development
branch. The master branch contains code intended for release. For more information
on the deployment process, see Section 3.5.

3.2.2 Programming Language
The choice of programming language was Python. While it is not the most widely
used language for application development [Jet23a], Python is the second most used
programming language in general and at the Institute of Microelectronics. It is also
taught in the introductory programming courses, where FlowTutor should be utilized.
Another advantage of Python is the availability of the Python Package Index3 as a
means of distributing the application, which removes the need to maintain packages for
different OS platforms. Python is also consistently ranked as one of the languages which
is easiest to learn, so students would be able to pick it up quickly to further contribute
to development. C++ has a much steeper learning curve before one can be proficient in
writing useful and usable code.

1https://tea.iue.tuwien.ac.at
2https://github.com/thomasroessl/FlowTutor
3https://pypi.org

18

https://tea.iue.tuwien.ac.at
https://github.com/thomasroessl/FlowTutor
https://pypi.org

3.2. Tooling and Libraries

3.2.3 Code Style
To ensure a consistent coding style, we opted to integrate flake8 4 into our Continuous
Delivery (CD) workflow. It analyzes the source code for style violations, using a ruleset
based on PEP 8 “Style Guide for Python Code” [vRWC01].

While Python is not a statically typed language, since Python 3.5 it supports the use of
type hints [Pyta]. Type hints in Python are annotations used to specify the expected data
types of variables, function parameters, and return values. Type hints are not enforced
by the Python interpreter but serve as a form of documentation and can be used by
static type checkers. We choose to enforce a consistent use of type hints throughout the
application, by integrating mypy5 into the CD workflow. Through static typing, an IDE
can provide better features like code completion and we can detect many programming
errors early, which saves time debugging and reduces bugs.

For more information on the CD workflow, see Section 3.5.

3.2.4 GUI Framework
There is no platform-independent standard GUI framework which is part of the standard
Python installation in its entirety. We considered several different options:

• Using system native GUI facilities or writing our own:
This was dismissed early on, as the requirement for platform independence would
force us to develop and maintain several different packages for utilizing the facilities
on the various OS platforms, or to write our own GUI toolkit, which would go far
beyond the scope of this work.

• tkinter6, the standard Python interface to the Tcl/Tk GUI toolkit:
We considered tkinter, because of its simplicity and because it is included with the
standard Python installation. While the library itself is part of the installation,
the Tcl/Tk toolkit is not available on every system. This would introduce a
complication, where users have to install Tcl/Tk before they can use FlowTutor.
We want to avoid such prerequisites wherever possible.

• PyQt7, a library with Python bindings for the Qt application framework:
Qt is a very large and complex framework, which would give us many possibilities
in the development of FlowTutor. Its complexity also gives it a steep learning curve
and makes it a heavy-weight in terms of file size for distribution. As we wanted
the project to be easily taken over by new developers, we decided to explore other
options.

4https://github.com/pycqa/flake8
5https://www.mypy-lang.org
6https://docs.python.org/3/library/tkinter.html
7https://www.qt.io/product/framework

19

https://github.com/pycqa/flake8
https://www.mypy-lang.org
https://docs.python.org/3/library/tkinter.html
https://www.qt.io/product/framework

3. Design and Development

• Kivy8, an open-source app development framework:
Kivy supports traditional desktop-style applications, but its focus is on cross-
platform touchscreen solutions, which is reflected in its default GUI elements. As
FlowTutor is intended as a desktop application, at least in its current form, we
found it more appropriate to use another framework instead.

• DearPyGui9, a cross-platform graphical user interface toolkit:
DearPyGui is based on Dear ImGui10, a “Bloat-free Graphical User interface for
C++ with minimal dependencies”. Despite its simplicity, it also supports drawing
custom graphical elements on a canvas-like drawing area. It is licensed with an
MIT License, which permits its use with almost no restrictions.

We decided to use DearPyGui due to its simplicity and light-weight nature. If new
developers take over the project in the future, they should have an easy time understanding
the project as a result.

3.2.5 Utility Libraries
Since we aimed to keep our development effort on features that directly benefit the users
of FlowTutor and to avoid “reinventing the wheel”, we used several utility libraries for
sufficiently complex tasks. While doing so, we always weighed their usefulness, with
the burden of using external code. We also took care, only to use actively maintained
projects, with the criterion being, that there should have been a release during the last
24 months.

In the following list, we explain the reasoning behind the use of the external libraries:

• appdirs11, “a small Python module for determining appropriate platform-specific
dirs, e.g. a ’user data dir’.”:
Every OS platform has different default paths for user data. When it comes to
supporting many different Linux distributions, which can differ amongst themselves,
it becomes infeasible, to try to maintain consistent functionality.

• blinker12, “provides fast & simple object-to-object and broadcast signaling for
Python objects.”:
The development of a signaling library was not in the scope of this project. We
used a robust and well-tested solution instead.

8https://kivy.org
9https://github.com/hoffstadt/DearPyGui

10https://github.com/ocornut/imgui
11https://github.com/ActiveState/appdirs
12https://blinker.readthedocs.io/en/stable/

20

https://kivy.org
https://github.com/hoffstadt/DearPyGui
https://github.com/ocornut/imgui
https://github.com/ActiveState/appdirs
https://blinker.readthedocs.io/en/stable/

3.2. Tooling and Libraries

• dependency-injector13, a Dependency Injection framework:
For similar reasons as the previous library, we also chose not to develop a custom
Dependency Injection framework.

• Jinja214 is“a fast, expressive, extensible templating engine. Special placeholders in
the template allow writing code similar to Python syntax.”:
The development of a custom templating language was not feasible within the scope
of this project.

• pygdbmi15, a library to interact with the machine interface of the GNU Debugger
(GDB):
We tried using custom code for all communication with the GDB process but ran
into many edge cases with race conditions and character encoding faults, so we
opted to use this library instead.

• Shapely16, a library for “manipulation and analysis of geometric objects in the
Cartesian plane.”:
There are many edge cases and numeric complexities when developing functions
for geometric calculations. To avoid “reinventing the wheel”, we chose to use a
well-tested and established solution.

3.2.6 Testing
The tests are written using the pytest17 framework. Coverage reports are generated with
pytest-cov18. The tox19 tool is used locally to run the test cases with different Python
versions. At the time of writing the tested versions are 3.9, 3.10, 3.11 and 3.12.

Our main focus, when writing the test cases was the functionality of the Flowchart
classes, to ensure consistent results when adding and removing nodes of different types,
such as loops and conditional statements, which might split the execution path into
multiple branches.

The other major collection of test cases checks the results of the code generator, to ensure
that the generated code matches the expected result.

For more information on Testing, see Section 3.4.

13https://github.com/ets-labs/python-dependency-injector
14https://jinja.palletsprojects.com
15https://github.com/cs01/pygdbmi
16https://github.com/shapely/shapely
17https://docs.pytest.org
18https://github.com/pytest-dev/pytest-cov
19https://tox.wiki/en/4.11.4/

21

https://github.com/ets-labs/python-dependency-injector
https://jinja.palletsprojects.com
https://github.com/cs01/pygdbmi
https://github.com/shapely/shapely
https://docs.pytest.org
https://github.com/pytest-dev/pytest-cov
https://tox.wiki/en/4.11.4/

3. Design and Development

3.2.7 Continuous Integration
For the choice of Continuous Integration (CI) and Continuous Delivery (CD) systems,
we valued a permissive license and a large developer community, to ensure long-term
maintenance of our solution. To keep the hosting of the project flexible, we also did not
want to tie us to a specific hosting platform. The following solutions were considered:

• Travis CI20

• CircleCI21

• GitHub Actions22

• Jenkins23

Travis CI and CircleCI have a reputation for being more stable than Jenkins because its
Plugin system makes the pipelines brittle [Man19]. In “The State of Developer Ecosystem
2023” 51% of developers stated they use Jenkins, with 11% for CircleCI and 9% for
Travis CI [Jet23a]. Jenkins is also the only open-source solution of the three.

For our purposes, the open-source licensing and large developer community of Jenkins
outweighed the risks of the plugin system, which is why it was chosen.

As our repository was hosted on the Institute of Microelectronics “Gitea” instance at the
start, the consideration to switch to GitHub Actions, came only when the repository was
migrated to GitHub. This would have simplified the setup somewhat, because we could
have made use of the direct integration with the GitHub code repository. We decided
against this to maintain the flexibility to migrate away from GitHub in the future.

For more information on the CD workflow, see Section 3.5.

3.2.8 Deployment
The main method of deployment is as a Python module through the Python Package
Index (PyPI)24. In addition, we generate standalone Microsoft Windows executable
installers for users, who do not have Python installed or lack the knowledge to use PyPI.
For this task we use pynsist25.

For more information on the CD workflow, see Section 3.5.
20https://www.travis-ci.com
21https://circleci.com
22https://github.com/features/actions
23https://www.jenkins.io
24https://pypi.org
25https://github.com/takluyver/pynsist

22

https://www.travis-ci.com
https://circleci.com
https://github.com/features/actions
https://www.jenkins.io
https://pypi.org
https://github.com/takluyver/pynsist

3.3. Implementation

3.3 Implementation
The application can be divided into five general sections:

1. General functions, such as the main entry point into the application and different
utility services.

2. The GUI, where all user interface elements are defined in separate classes.

3. The flowchart classes which define the appearance and behavior of the different
elements of the flowcharts.

4. The code generator class, which handles the translation from the internal represen-
tation of the flowcharts into source code.

5. The debugger classes, which handle debugging in various languages.

For an overview class diagram of the application see Figure 3.1, Figure 3.2 and Figure 3.3.

Figure 3.1: Overview class diagram of debugger classes.

23

3. Design and Development

Figure 3.2: Overview class diagram of flowchart classes.

24

3.3. Implementation

Figure 3.3: Overview class diagram of GUI classes.

In its first iteration FlowTutor was intended for a lecture on introductory C programming
and some features and implementation details still reflect this. In the latest version,
FlowTutor was partially rewritten, to support custom language templates, with which
users can define custom language definitions, see also Section 3.3.3.

3.3.1 General
In FlowTutor various service classes are injected through Dependency Injection (DI). The
fundamental concept behind Dependency Injection involves using a separate object, in
the implementation employed here called a container, which is responsible for providing

25

3. Design and Development

a concrete implementation to a constructor parameter, which is defined as an interface.
This form of DI is also called Constructor Injection [Fow08].

The following service classes are instantiated as Singletons[GHJV94] in the Container
class:

• LanguageService
This service facilitates using programming languages defined in the templates folder.

• ModalService
A service to handle the showing of modal dialogs throughout the GUI.

• SettingsService
A Service for storing and retrieving settings between executions of FlowTutor.

• UtilService
Various helper methods, e.g., to get file system paths.

3.3.2 GUI
The GUI class is instantiated once at the startup of the application and contains the
program state in its fields.

Upon startup of the application, the users are greeted with a welcome modal, see
Figure 3.4, where they can either create a new project, by selecting the programming
language, or opening an existing project. For convenience, the most recently opened
projects are listed.

After the project selection, the users are presented with the main interface, as shown in
Figure 3.8.

Figure 3.4: The welcome modal window of FlowTutor.

The interface is separated into different sections:

Top menu bar

The menu bar at the top (see Figure 3.5) contains general file commands such as creating
a new program, saving and loading projects, etc. In the View menu, FlowTutor can be
switched into a dark mode, which can be seen in Figure 3.6.

26

3.3. Implementation

Figure 3.5: The main view of FlowTutor.

Figure 3.6: FlowTutor in dark mode.

27

3. Design and Development

Left sidebar

The sidebar on the left changes depending on the selected node in the drawing area.
As an example, Figure 3.7 shows the sidebar, when a function definition is selected. In
this case, the user can add, remove, and edit parameters and select a return type of the
function. In Figure 3.5 an input node is selected, which results in different options being
shown in the sidebar.

Figure 3.7: The sidebar for a function definition in FlowTutor.

For all node types, there are three default options, in the lower part of the sidebar:

• A text field for a code comment

• A checkbox which toggles a debugging breakpoint on this node

• A checkbox which disables the node and effectively comments it out in the source
code

If no node is selected, the sidebar shows project-wide parameters. These differ, depending
on the programming language of the project. Figure 3.8 shows that in Python it is
currently only possible to insert custom code at the beginning of the source code file. In
contrast, Figure 3.9 shows the options for a C project, which include importable headers,
custom definitions, and a button to access the type definition window.

28

3.3. Implementation

Figure 3.8: An empty FlowTutor project in Python.

Figure 3.9: An empty FlowTutor project in C.

29

3. Design and Development

Type definition window

This optional window can only be accessed for C projects. Here, the users can declare
type definitions as well as structure definitions (see Figure 3.10).

Types are defined by entering the name of the new type and the existing type to which
it should refer.

Structures are defined by entering the name and members of the new structure, with the
members in turn being defined by their name, type, and whether they are pointers or
arrays. In the case of array members, the size must be defined as well.

Figure 3.10: Various C type-definitions and structure definitions in a FlowTutor project.

Center drawing area

In the center of the screen is the main area, where the flowcharts are created. Directly
above it, is a tabbed interface, where users can switch between different flowcharts,
representing function definitions. Initially, a main function is created for every project
and new functions can be added with the “+” button. For more information on the
flowcharts see Section 3.3.3.

30

3.3. Implementation

Right source code area

In the right text area, the source code is displayed in real-time, meaning that a change
in the flowchart is immediately reflected in the source code. As an example see an
implementation of the FizzBuzz problem in Figure 3.11.

Bottom debugger

In the bottom area, below the drawing area and source code area, is the debugger. See
also Figure 3.11.

At the top of the debugger are the control buttons:

• Compiling the program (only shown for C projects).

• Running the program.

• Stepping over the current statement.

• Stepping into the current statement.

• Stopping execution.

Below these controls is a console which provides an interface for text input and output.
In the Windows version of FlowTutor, the console only shows compiler messages, such as
warnings and errors for C programs. This is due to the fact that Windows does not support
TTY interfaces for the built-in console. For more information on the implementation of
the debugger see section 3.3.6.

To the right of the console is a table which shows variable assignments during execution.

31

3. Design and Development

Figure 3.11: The FlowTutor debugger.

3.3.3 Flowcharts
A FlowTutor project is a list of Flowchart objects, each representing a function and
associated metadata.

Each Flowchart object contains a root FunctionStart object which is derived from
the abstract base class Node. The FunctionStart node contains a single Connection,
which connects it to its predecessor. For new flowcharts, this is always a FunctionEnd
node, see Figure 3.8.

In the first iteration of FlowTutor, the only supported programming language was C.
Each node type was represented through its own class derived from Node. The following
C constructs were available:

• Variable declaration

• Variable assignment

• Conditional

• For-loop

• While-loop

32

3.3. Implementation

• Do-while-Loop

• Input

• Output

• Function call

• Code snippets

A follow-up feature enhancement introduced the Template node type. With this node
type, the users have the ability to create custom nodes through JSON-formatted definition
files. The source code these template nodes produce is also defined in the definition file.
The Template node type was iterated upon until it could replace all the hard-coded
derived node classes. The template system is described in detail in Section 3.3.4.

Depending on the type of node, it has a connection to one or multiple child nodes. The
only exception is the FunctionEnd node, which has no outgoing connection. The users
insert new nodes, by clicking at the start of the connection, where they plan to insert
the new node. The node is inserted with the appropriate connections and existing nodes
are shifted to make space and avoid overlapping nodes in the drawing area.

The users can select nodes by clicking on them, or by dragging a selection fence over
them. The node-specific settings appear in the sidebar on the left.

All changes are translated in real time to their corresponding source-code representation.
See also Section 3.3.5.

3.3.4 Node Templates
To create a flexible system which can support arbitrary programming languages and
constructs, we decided to base the available programming languages on user-definable
templates. These nodes are configured with JSON files and each node type has a
corresponding configuration. Every available language has its own directory in the
FlowTutor directory structure.

We wanted to avoid reinventing the wheel with our source code template syntax, which
is why used an existing solution with Jinja226.

The configuration files contain the following properties:

• label
The name of the node shown to the user (e.g., on button labels).

• node_label (optional)
The text that is displayed on the drawn node in the flowchart. Can be a Jinja
template string. See also the body property.

26https://jinja.palletsprojects.com

33

https://jinja.palletsprojects.com

3. Design and Development

• shape_id
The shape of the node. Can be one of the following:

– data (see Figure 3.12a)
– data_internal (see Figure 3.12b)
– process (see Figure 3.12c)
– predefined_process (see Figure 3.12d)
– preparation (see Figure 3.12e)
– decision (see Figure 3.12f)
– terminator (see Figure 3.12g)

(a) Data (b) Data internal (c) Process (d) Predefined process

(e) Preparation (f) Decision (g) Terminator

Figure 3.12: Node shapes based on ISO 5807 [iso85].

• control_flow (optional)
Defines how the connections work for this node. There are four possibilities for this
property:

– No value, resulting in a single input and output.
– loop (see Figure 3.13a)
– post-loop (see Figure 3.13b)
– decision (see Figure 3.13c)

34

3.3. Implementation

(a) Loop (b) Post loop (c) Decision

Figure 3.13: Control-flow variations.

• color (optional)
The color of the node, defined by its RGB values.

• parameters
The user-facing parameters which can be changed when using the node. A parameter
has the following properties:

– name
The name that is referenced in the template body to insert the argument.

– label
The user-facing label of the parameter.

– default
The default value of the parameter.

– options
A predefined list of values to which the the parameter is constrained. The
user is presented with a drop-down list.

– visible
An expression in Python syntax which can reference other parameters to
conditionally hide this parameter.

• body (optional)
A string which is inserted in the source code. If this value is omitted, a Jinja
template file of the same name as the configuration must be present (e.g., for
while-loop.template.json there must be a file called while-loop.jinja)

For an example of a template file see Figure 3.14.

35

3. Design and Development

Figure 3.14: Template for a C “For”-loop node.

36

3.3. Implementation

We have predefined templates for the C and Python programming languages, which are
to be adapted and extended in the future:

C Nodes

• Declaration (Figure 3.15)
A variable declaration; used to create variables of all available basic types, as well
as pointers and arrays of these types. Variables can be declared as static and have
a default value.

• Assignment (Figure 3.16)
Variable assignment; used to assign values to variables.

• Call (Figure 3.17)
Primarily used to make function calls, but can be used to execute any arbitrary
expression.

• Conditional (Figure 3.18)
Represents a conditional statement which divides the execution path into two, based
on a condition expression. If the “else” branch is left empty, the corresponding
source code does not include it.

• While-Loop (Figure 3.19)
A “while” loop which is executed based on a condition expression.

• Do-While-Loop (Figure 3.20)
A post-test “do-while” loop which is executed based on a condition expression.

• For-Loop (Figure 3.21)
A “for” loop which is executed based on a condition expression, where initialization,
evaluation, and iteration are part of the syntactic construct.

• Function Start (Figure 3.22)
This node represents a function declaration and definition. Parameters are defined
by their type and name. Every flowchart in FlowTutor is a function, so a “Function
Start” node is always the root node of every flowchart. The function body gets
defined by adding more nodes after this one.

• Function End (Figure 3.23)
Used to terminate a flowchart and to define a return value for the current function.

• Input (Figure 3.24)
Reads a value from the end-user, using the built-in scanf function. Its parameters
are the name of the variable to which the data is being written, a template specifier,
which handles the type of the input data, and a user-facing prompt message.
Optionally the node can generate a variable declaration if it was not declared
previously.

37

3. Design and Development

• Output (Figure 3.25)
Prints text to the console using the built-in printf function. Its parameters are a
template expression and corresponding arguments.

• Open File (Figure 3.26)
Declares a variable for a pointer to a file on disk and uses fopen to open it. The
parameters are the path on disk and the mode in which the file should be opened.

• Write File (Figure 3.27)
Writes a value to a file on disk. The parameters are the name of a pointer variable
of a previously opened file and the value which is to be written.

• Close File (Figure 3.28)
Closes a previously opened file using its pointer variable.

• Snippet (Figure 3.29)
Arbitrary multi-line code used to insert code which is not otherwise available as a
dedicated node type.

Figure 3.15: C “Declaration” node and resulting source code.

38

3.3. Implementation

Figure 3.16: C “Assignment” node and resulting source code.

Figure 3.17: C “Call” node and resulting source code.

39

3. Design and Development

Figure 3.18: C “Conditional” node and resulting source code.

Figure 3.19: C “While”-loop node and resulting source code.

40

3.3. Implementation

Figure 3.20: C “Do-While”-loop node and resulting source code.

Figure 3.21: C “For”-loop node and resulting source code.

41

3. Design and Development

Figure 3.22: C “Function Start” node and resulting source code.

Figure 3.23: C “Function End” node and resulting source code.

42

3.3. Implementation

Figure 3.24: C “Input” node and resulting source code.

Figure 3.25: C “Output” node and resulting source code.

43

3. Design and Development

Figure 3.26: C “Open File” node and resulting source code.

Figure 3.27: C “Write File” node and resulting source code.

44

3.3. Implementation

Figure 3.28: C “Close file” node and resulting source code.

Figure 3.29: C “Snippet” node and resulting source code.

45

3. Design and Development

Python Nodes

• Assignment (Figure 3.30)
Assigns a value to a variable.

• Call (Figure 3.31)
Primarily used to make function calls, but can be used to execute any arbitrary
expression.

• Conditional (Figure 3.32)
Represents a conditional statement which divides the execution path into two, based
on a condition expression. If the “else” branch is left empty, the corresponding
source code does not include it.

• While-Loop (Figure 3.33)
A “while” loop which is executed based on a condition expression.

• For-Loop (Figure 3.34)
A “for” loop which is executed for every member of an iterable object.

• Function Start (Figure 3.35)
This node represents a function definition. Parameters are defined by their name.
Every flowchart in FlowTutor is a function, therefore a “Function Start” node is
always the root node of every flowchart. The function body is defined by adding
more nodes after this one.

• Function End (Figure 3.36)
Used to terminate a flowchart and to define a return value for the current function.

• Input (Figure 3.37)
Reads a value from the end-user, using the built-in input function. Its parameters
are the name of the variable, to which the data is being written and a user-facing
prompt message.

• Output (Figure 3.38)
Prints text to the console, using the built-in print function. Its parameters are a
template expression and corresponding arguments.

• Snippet (Figure 3.39)
Arbitrary multi-line code used to insert code which is not otherwise available as a
dedicated node type.

46

3.3. Implementation

Figure 3.30: Python “Assignment” node and resulting source code.

Figure 3.31: Python “Call” node and resulting source code.

47

3. Design and Development

Figure 3.32: Python “Conditional” node and resulting source code.

Figure 3.33: Python “While”-loop node and resulting source code.

48

3.3. Implementation

Figure 3.34: Python “For”-loop node and resulting source code.

Figure 3.35: Python “Function Start” node and resulting source code.

49

3. Design and Development

Figure 3.36: Python “Function End” node and resulting source code.

Figure 3.37: Python “Input” node and resulting source code.

50

3.3. Implementation

Figure 3.38: Python “Output” node and resulting source code.

Figure 3.39: Python “Snippet” node and resulting source code.

51

3. Design and Development

3.3.5 Code Generator
The code generator takes a list of Flowchart objects, generates the corresponding
source code, and saves it to a file.

This generated code is structured in the following order:

• Module imports

• Type definitions (optional)

• Struct definitions (optional)

• Preprocessor definitions (optional)

• Custom code

• Function declarations (optional)

• Function definitions.
Depending on whether the selected language has function declarations, the order of
the functions is unchanged or the main function is inserted at the end, so all other
functions are defined before their use.
The generator iterates over the nodes in the flowcharts, starting with the root
node. It recursively resolves the decision and loop nodes to generate the function
definitions.

The resulting code file is placed in the working directory.

To facilitate debugging of the application, the code generator assigns the corresponding
source-code line numbers back to their originating nodes.

3.3.6 Debugger
Since there is no standardized interface for debugging programs in arbitrary programming
languages, we have implemented integrations with the GNU debugger (GDB) for C and
the generic Python debugger base class Bdb.

To consolidate the difference in controlling different debuggers, we have defined an
abstract base class DebugSession with concrete implementations for each case.

C Debugger

To debug our programs with GDB, we first need an executable of the program to debug,
which has been compiled with debugging symbols turned on. Therefore, before a C-
program can be debugged in FlowTutor, the user must compile it by clicking on the
appropriate button. This starts the compilation process with GCC and the executable is

52

3.3. Implementation

placed in the working directory. Every time a change is made to the program, it must be
recompiled.

When the program is executed, the application starts GDB in a sub-process. Normally
GDB is used in a command line interface (CLI) environment and to this end, it produces
output that is suitable to be read by humans. For the purpose of interpreting its output
in a program this presents a challenge, because the output of the debugged program is
mixed in with the debugger output, with no clear indication which is which. Luckily,
GDB offers a solution for use cases such as this: There exists a mode, which generates
machine-readable output, called the GDB Machine Interface (GDBMI). With the GDBMI
enabled, program output is provided with a special prefix which allows the program to
distinguish between the two.

Our debug session communicates with the GDB sub-process through the GDBMI over
a TTY, if available. If there are no TTYs available on the system, as in Windows for
example, the input and output of the program itself take place through an external
console window.

Breakpoint definitions are written into a separate file which gets loaded into GDB on
every change via the source command.

Variable assignments are queried on every breakpoint hit or if there is a single step made
in the execution. Value types are directly displayed to the user and pointers are resolved
to the value to which they point, as this is more pertinent information for the purpose of
debugging simple programs, such as our intended use case.

The debug session reports changes to its state, such as execution steps, hit breakpoints,
and variable assignments back to the GUI through signals.

Python Debugger

The Python Standard Library provides a debugger framework in the form of the bdb
module. Bdb “[...] handles basic debugger functions, like setting breakpoints or managing
execution via the debugger.” [Pytb]. Our implementation derives from the Bdb base
class and handles the interaction with our GUI. The code generated from the flowchart
is run in the same process as the application through the run method of the debugger
class derived from Bdb.

We do not want to block our application with the execution of the program we are
debugging and therefore a separate thread is started in which the application runs
separately from the UI.

Since the users usually do not have access to the console input and output facilities,
from which the application is started, we redirect stdout, stdin, and stderr to a
Python multiprocessing.Queue object which we wrapped inside a separate class.
This allows us to read from and write to the queue from the GUI thread.

53

3. Design and Development

When a breakpoint is hit, a threading.Barrier object is instantiated. This Barrier
lets the debugger thread wait until the interact method is called from the GUI thread.
Every time a line is hit, either from a breakpoint or by stepping through the code, the
debugger reads the local variables from the current stack frame and sends them to the
GUI to be displayed to the user. For the main stack frame of the program, there are
some global variables which would pollute our application with unnecessary information,
so we filter those out.

Figure 3.40: Testy-coverage report.

3.4 Testing
The first intention was to base the entire development process on the methodology of
test-driven-development (TDD) [Bec02]. With this approach, the automated test cases
are written before the actual implementation. The feature is considered complete when
all the predefined tests complete successfully.

The heavy focus on the GUI and graphical elements of FlowTutor, made TDD infeasible
to be applied to the whole process. The GUI framework used does not have provisions
for automated tests and tests based on image comparison of screenshots were considered
not to have enough advantages to overcome their immense maintenance requirements.

54

3.5. Continuous Delivery

GUI testing was instead carried out through exploratory testing and the creation of
checklists of test cases.

TDD was not abandoned fully and was employed wherever automated tests could be
used efficiently. This was the case for the logic of the flowchart nodes, such as how they
are added and removed from the flowchart, as this was separated from the graphical
representation. The source code generator also contains extensive test cases.

With insignificant code like system utility methods and GUI setup code excluded, we
have a test coverage of 83% in the latest build (see Figure 3.40).

3.5 Continuous Delivery
Continuous Integration (CI) was first written about by Beck in 1999 [Bec99] and is the
practice of frequently integrating code changes into a shared repository. With every
commit to the source code repository, automated tests run on the CI server, in order to
detect regressions early on.

Continuous Delivery (CD) extends CI by automating the entire delivery pipeline, including
testing, deployment, and releases [HF10]. The goal of continuous delivery is to ensure that
software can be released to production at any time with minimal manual intervention,
reducing the time and risk associated with the release process.

An overview of our CD process can be seen in Figure 3.41, with manual steps depicted in
orange and automated steps carried out by the CI server in blue.

New features and bug fixes first get developed in their own separate feature branch.
These branches are supposed to be small in scope, so they can be merged frequently back
into the development branch. To avoid a broken CI pipeline, testing should be carried
out locally first.

Each push to the repository triggers the CI pipeline, including automated tests and style
checks. For successful runs, a test-coverage report is generated. In order to avoid an
excessive number of releases, the release process is triggered by the creation of a release
version tag in the git repository. This should only be done if the CI pipeline runs through
successfully and all manual tests are successful.

The server builds the Python package with the appropriate version number and deploys
it automatically to PyPI.

55

3. Design and Development

Figure 3.41: Continuous delivery process, with manual steps depicted in orange and
automated steps carried out by the CI server in blue.

56

CHAPTER 4
Evaluation

During the development of FlowTutor, an initial round of informal evaluations was
performed with tutors of the introductory programming lecture at the Institute of
Microelectronics. Four of the tutors used FlowTutor to solve a simple programming task
and performed some informal exploratory testing. The feedback was collected in the
form of qualitative statements and bug reports and was incorporated into subsequent
iterations of the application.

Later in the evaluation process, there was a wider evaluation, in the form of a voluntary
exercise, where students provided quantitative as well as qualitative feedback. This
evaluation is described in the following sections.

4.1 Methods
4.1.1 Participants
The participants are students of the bachelor program of electrical engineering, who
attended an introductory programming lecture before taking part in the evaluation.
There were eleven students in total who completed the assignment and responded to our
questionnaire and feedback questions.

4.1.2 Design
The study was a quasi-experimental, empirical mixed-methods study. The participants
were separated into five groups and solved a small programming task using FlowTutor.

The scale used for measuring usability is the System Usability Scale (SUS). Described by
its inventor as “a simple, ten-item scale giving a global view of subjective assessments of
usability.” [Bro95].

57

4. Evaluation

The ten statements were rated by the participants with a value of 1 (strongly disagree)
to 5 (strongly agree).

Based on the supplied values a value between 0 and 100 is calculated, which is meant to
objectively evaluate the usability of the application. The exact questions can be found in
Appendix A.

The workload was measured with the NASA Task Load Index (TLX) [HS88], which is
described by its inventors as “the results of a multi-year research program to identify the
factors associated with variations in subjective workload.” [HS88].

Similarly to the SUS, the participants answer six questions with a value between 1 and
5. Based on the answers a value between 0 and 100 is calculated, which indicates the
workload with the application. The exact questions can be found in Appendix B.

Besides these two indices, we added questions for students to self-evaluate their pro-
gramming abilities and we posed the following questions and collected the responses as
statements:

1. Do you feel FlowTutor made solving the assignment easier, or was it a hindrance?
Please elaborate on your answer.

2. Compare your experience using FlowTutor with your experience programming with
a text editor or IDE.

3. Was there some missing functionality that prevented you from accomplishing a
desired result, or forced you to use a workaround?

4. Which feature or set of features needs the most improvement to provide a better
experience for students?

4.2 Results
Detailed results of the questionnaires and feedback questions are provided in Appendix C.

4.2.1 System Usability Scale (SUS)
The total average SUS score over all participants in our evaluation was 55.45 on a scale
from 0 to 100, where 0 is least usable and 100 is most usable. In order to be able to draw
conclusions from this value, it must be classified. Although it is clear that a value cannot
be below 0 and not above 100, it is not clear how to classify other values in between.
What constitutes acceptable user-friendliness and in which range is the application to be
classified as unusable?

Bangor et al. attempted to find an answer these questions [BKM09]. To this end, an
eleventh question was added to almost 1000 SUS surveys:

58

4.2. Results

“Overall, I would rate the user-friendliness of this product as: 1 Worst Imaginable, 2
Awful, 3 Poor, 4 OK, 5 Good, 6 Excellent, 7 Best Imaginable”

The results showed that the answers to the added question correlate well with the SUS
scores (r = 0.822).

Based on these results, the values obtained can be interpreted more accurately. As can be
seen in Figure 4.1, our participants ranked the usability of FlowTutor in the marginally
acceptable range. An explanation for this low score, which stands to reason becomes
apparent when looking at the results for the questions about programming experience.
All of the participants report being at least somewhat experienced with programming,
making it inefficient to have to navigate flowchart creation in FlowTutor, when they are
already able to write the source code themselves.

While the sample is too small to draw accurate statistical conclusions, we suspect that
the SUS score might inversely correlate with prior programming experience. When
divided into two groups, with one having little to no prior Python experience (Answers
1 and 2) and the other having some or a lot of experience (Answer 3 and above), an
independent-samples t test suggests that there is a significant difference in the SUS scores
between the groups (t(9) = 2.4209, p < 0.05). Although it supports our hypothesis, the
small sample size of N = 11 should be kept in mind with this result.

Figure 4.1: FlowTutor SUS score (marked in red) compared to the grade rankings of
SUS scores, originally published in [BKM09].

4.2.2 NASA Task Load Index (TLX)
The total average TLX in our evaluation was 28.79 on a scale of 0 to 100 with 100 being
the highest workload and therefore the least desirable.

It could be argued that this result has a downward bias, since physical and temporal
demands are not relevant in our application, because there is only negligible physical
effort involved in any desktop computer application and the participants did not have
limiting time restrictions in their assignment, which could be solved over the course of

59

4. Evaluation

several months. When we exclude these factors from the analysis, the TLX comes to
31.25.

There are similar questions regarding classification for the TLX as for the SUS. How can
we classify this numerical value? Hertzum attempted to aid researchers with this problem
by conducting a meta-analytic review of 556 studies using the TLX to gather task load
data [Her21]. His paper supplies reference values to use as a benchmark for our results.

As can be seen in Figure 4.2, FlowTutor has a relatively low workload value across
all the subscales of the TLX. As previously mentioned, the moderately high value in
the inefficiency scale might be explained by the prior programming experience of the
participants, who are not the target audience of this tool

Figure 4.2: “Distribution of the six TLX subscales (solid lines) and the TLX score (dotted
line), N = 556 studies”, originally published in [Her21]. Results from our evaluation
additionally marked in red.

60

4.2. Results

The answers to the free-form questions were received mostly as prose and we summarized
the answers into their essential meaning and grouped them into positive statements,
negative statements, and improvement suggestions, which are provided in Appendix C.
As most participants had experience programming, a common theme in their answers
was, that they felt held back by having to draw the flowcharts instead of writing source
code of their own, but they could see the value of visualizing difficult-to-understand
algorithms.

61

CHAPTER 5
Future Work

While we have confirmed the benefits of FlowTutor for beginners to programming, there
are nevertheless several areas of FlowTutor for which there is room for improvement.

Users are accustomed to certain basic features, which are regarded as self-evident basic
functionality across applications, such as the ability to copy and paste elements and
being able to undo their actions at any point. The mentioned features are missing from
the current version of FlowTutor, which are fundamental features of software tools as was
mentioned by the participants in our evaluation. Implementing them and focusing more
on quality-of-life features, in general, would make the tool more attractive for students.

Getting started with FlowTutor could be made easier, with improved documentation and
by providing tutorials, either in video form or with text and pictures.

Our predefined templates focused on the basics, but further node types could be defined
to help focus students on various aspects of programming assignments. An example was
reflected in one feedback we obtained during the evaluation, where a student wished
there were nodes for string manipulation operations because he felt like he needed to
know Python syntax to be able to solve the assignment.

More varying language definitions to enable other programming languages could also be
created. To be able to debug other languages, a generic solution to integrate external
debuggers would be a significant improvement.

Currently FlowTutor only supports a procedural paradigm for the most part, the tem-
plating system and GUI could be improved to support other programming constructs
more intuitively, e.g., classes.

Visualization of the program state during debugging is only implemented in a rudimentary
way. Better solutions, especially graphical representations of references, like arrays and
pointers, could be tremendously helpful for demonstrating and understanding complex
algorithms.

63

5. Future Work

Participants in the evaluation expressed the desire for an application that would reverse
the principle of FlowTutor : The flowchart should be generated based on source code
written by the user.

The evaluation served a useful purpose in gathering valuable feedback for future de-
velopments as well as establishing a quantitative baseline for future evaluations. More
long-term studies should be carried out, comparing the efficacy and usability of our
application, with an approach which relies solely on textual programming.

64

APPENDIX A
System Usability Scale (SUS)

65

A. System Usability Scale (SUS)

Strongly Disagree Strongly Agree
I think that I would
like to use FlowTutor
frequently.

□ □ □ □ □

I found FlowTutor
unnecessarily com-
plex.

□ □ □ □ □

I thought FlowTutor
was easy to use. □ □ □ □ □

I think that I would
need the support of
a technical person to
be able to use Flow-
Tutor.

□ □ □ □ □

I found the various
functions in FlowTu-
tor were well inte-
grated.

□ □ □ □ □

I thought there was
too much inconsis-
tency in FlowTutor.

□ □ □ □ □

I would imagine that
most people would
learn to use FlowTu-
tor very quickly.

□ □ □ □ □

I found FlowTutor
very cumbersome to
use.

□ □ □ □ □

I felt very confident
using FlowTutor. □ □ □ □ □

I needed to learn a
lot of things before I
could get going with
FlowTutor.

□ □ □ □ □

66

APPENDIX B
NASA Task Load Index (TLX)

67

B. NASA Task Load Index (TLX)

How much mental and perceptual activity was required? Was the assignment easy or
demanding, simple or complex, exacting or forgiving?

Very low Very high
□ □ □ □ □

How much physical activity was required (e.g. pushing, pulling, turning, controlling,
activating. etc.)? Was the assignment easy or demanding, slow or brisk, slack or strenuous,
restful or laborious?

Very low Very high
□ □ □ □ □

How much time pressure did you feel due to the rate or pace at which the assignment or
assignment elements occurred? Was the pace slow and leisurely or rapid and frantic?

Very low Very high
□ □ □ □ □

How successful do you think you were in accomplishing the goals of the assignment
set by the instructors (or yourself)? How satisfied were you with your performance in
accomplishing these goals?

Perfect Failure
□ □ □ □ □

How hard did you have to work (mentally and physically) to accomplish your level of
performance?

Very low Very high
□ □ □ □ □

How insecure, discouraged, irritated, stressed, and annoyed versus secure, gratified,
content, relaxed and complacent did you feel during the assignment?

Very low Very high
□ □ □ □ □

68

APPENDIX C
Evaluation Results

69

C. Evaluation Results

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How would you rate your experience with programming in general before attending the
lecture?”

(1) No experience – (5) Very experienced

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How would you rate your experience with programming in Python before attending the
lecture?”

(1) No experience – (5) Very experienced

70

C.1. System Usability Scale (SUS)

“Based on VARK model of learning styles, which style or styles do you closest identify
with? (Multiple choices allowed)”

(V) Visual, (A) Aural, (R) Read/Write, (K) Kinesthetic

C.1 System Usability Scale (SUS)
Total average SUS score: 55.45

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I think that I would like to use FlowTutor frequently.”

(1) Strongly disagree – (5) Strongly agree

71

C. Evaluation Results

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I found FlowTutor unnecessarily complex.”

(1) Strongly disagree – (5) Strongly agree

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I thought FlowTutor was easy to use.”

(1) Strongly disagree – (5) Strongly agree

72

C.1. System Usability Scale (SUS)

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I think that I would need the support of a technical person to be able to use FlowTutor.”

(1) Strongly disagree – (5) Strongly agree

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I found the various functions in FlowTutor were well integrated.”

(1) Strongly disagree – (5) Strongly agree

73

C. Evaluation Results

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I thought there was too much inconsistency in FlowTutor.”

(1) Strongly disagree – (5) Strongly agree

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I would imagine that most people would learn to use FlowTutor very quickly.”

(1) Strongly disagree – (5) Strongly agree

74

C.1. System Usability Scale (SUS)

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I found FlowTutor very cumbersome to use.”

(1) Strongly disagree – (5) Strongly agree

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I felt very confident using FlowTutor.”

(1) Strongly disagree – (5) Strongly agree

75

C. Evaluation Results

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“I needed to learn a lot of things before I could get going with FlowTutor.”

(1) Strongly disagree – (5) Strongly agree

C.2 NASA Task Load Index (TLX)
Total average TLX: 28.79

Total average TLX (excluding physical and temporal demand): 31.25

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How much mental and perceptual activity was required? Was the assignment easy or
demanding, simple or complex, exacting or forgiving?”

(1) Very low – (5) Very high

Total average mental demand: 22.73

76

C.2. NASA Task Load Index (TLX)

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How much physical activity was required (e.g. pushing, pulling, turning, controlling,
activating. etc.)? Was the assignment easy or demanding, slow or brisk, slack or

strenuous, restful or laborious?”

(1) Very low – (5) Very high

Total average physical demand: 29.55

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How much time pressure did you feel due to the rate or pace at which the assignment or
assignment elements occurred? Was the pace slow and leisurely or rapid and frantic?”

(1) Very low – (5) Very high

Total average temporal demand: 18.18

77

C. Evaluation Results

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How successful do you think you were in accomplishing the goals of the assignment set
by the instructors (or yourself)? How satisfied were you with your performance in

accomplishing these goals?”

(1) Perfect – (5) Failure

Total average performance (lower is better): 29.55

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How hard did you have to work (mentally and physically) to accomplish your level of
performance?”

(1) Very low – (5) Very high

Total average effort: 29.55

78

C.2. NASA Task Load Index (TLX)

1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11

N
um

be
r

an
sw

er
ed

“How insecure, discouraged, irritated, stressed, and annoyed versus secure, gratified,
content, relaxed and complacent did you feel during the assignment?”

(1) Very low – (5) Very high

Total average frustration: 43.18

79

C. Evaluation Results

C.3 Feedback Questions

Positive statements in order of their prevalence in our evaluation:

Statement Occurrences
There are fewer opportunities for syntax errors and typos. 3
The flowchart gives a nice overview of the algorithm the program
represents.

3

The flowcharts help to visualize the program flow. 3
It is easier to get started than with a textual IDE, due to its focused
feature set.

1

Debugging is easier to understand than with a textual IDE. 1

Negative statements in order of their prevalence in our evaluation:

Statement Occurrences
Developing feels slower than with a text editor. 8
It is frustrating to have to manipulate the flowchart, when the neces-
sary change in the source code would be obvious.

5

There are difficulties with the discoverability of functionality. 3
Too much knowledge of the language syntax is necessary to accomplish
a task.

2

It would be hard to keep an overview of larger projects in the flowchart
representation.

2

There are graphical glitches in the UI and flowchart. 2
The code execution is slower than if the program would be executed
outside of FlowTutor.

2

There is too little documentation. 1
There is no existing community where one could turn to for questions. 1
The use of the mouse is necessary. 1
One needs to adjust the nodes constantly to keep the flowchart visually
tidy.

1

Comments are not visible in the flowchart. 1
The separate tabs for functions is cumbersome because of the need to
constantly switch between them.

1

Error messages are less helpful than in console. 1

80

C.3. Feedback Questions

Improvement suggestions in order of their prevalence in our evaluation:

Suggestion Occurrences
Add a delete button for nodes in the UI. 4
Add the ability to copy and paste nodes and groups of nodes. 3
Add the ability to zoom the flowchart view. 3
Provide more UI controls for defining complex parameters like condi-
tional statements.

3

Add undo and redo functionality. 2
Reverse the principle of the application: Let the user write the source
code and generate the flowchart.

2

Provide a tutorial on how to get started with FlowTutor. 2
Add a grid to arrange and align nodes more easily. 2
Show code comments in the graphical view of the flowchart. 2
Add affordances related to the file save status. 1
Add automatic saving. 1
Add ability to insert nodes with drag and drop. 1
Manipulate node parameters directly in the flowchart view, instead
of the sidebar.

1

Provide the ability to collapse groups of nodes. 1
Highlight the corresponding source code, when highlighting the node
in the flowchart view.

1

Add tooltips throughout the application. 1
Provide a way to run the program in a slowed down manner, to be
able to follow the execution visually.

1

Add an area to put nodes for later use, like a tray. 1
Add dedicated node types for loop commands, i.e., break and
continue.

1

Add syntax highlighting in the source code view. 1

81

List of Figures

1.1 ASME operation process chart from 1921, originally published in [GG21]. 4
1.2 Flowchart by Goldstine and von Neumann describing the evaluation of an

integral, 1947, originally published in [GvN47]. 5
1.3 A program flowchart based on standard ISO 5807, originally published in

[iso85]. 6

2.1 BACCII++, originally published in [Cal92]. 8
2.2 “RAPTOR in action”. Originally published in [CWHH04]. 9
2.3 Flowgorithm, originally published in [Coo15]. 10
2.4 Scratch GUI. 11
2.5 “Snap!” web-based GUI. 12

3.1 Overview class diagram of debugger classes. 23
3.2 Overview class diagram of flowchart classes. 24
3.3 Overview class diagram of GUI classes. 25
3.4 The welcome modal window of FlowTutor. 26
3.5 The main view of FlowTutor. 27
3.6 FlowTutor in dark mode. 27
3.7 The sidebar for a function definition in FlowTutor. 28
3.8 An empty FlowTutor project in Python. 29
3.9 An empty FlowTutor project in C. 29
3.10 Various C type-definitions and structure definitions in a FlowTutor project. 30
3.11 The FlowTutor debugger. 32
3.12 Node shapes based on ISO 5807 [iso85]. 34
3.13 Control-flow variations. 35
3.14 Template for a C “For”-loop node. 36
3.15 C “Declaration” node and resulting source code. 38
3.16 C “Assignment” node and resulting source code. 39
3.17 C “Call” node and resulting source code. 39
3.18 C “Conditional” node and resulting source code. 40
3.19 C “While”-loop node and resulting source code. 40
3.20 C “Do-While”-loop node and resulting source code. 41
3.21 C “For”-loop node and resulting source code. 41
3.22 C “Function Start” node and resulting source code. 42

83

3.23 C “Function End” node and resulting source code. 42
3.24 C “Input” node and resulting source code. 43
3.25 C “Output” node and resulting source code. 43
3.26 C “Open File” node and resulting source code. 44
3.27 C “Write File” node and resulting source code. 44
3.28 C “Close file” node and resulting source code. 45
3.29 C “Snippet” node and resulting source code. 45
3.30 Python “Assignment” node and resulting source code. 47
3.31 Python “Call” node and resulting source code. 47
3.32 Python “Conditional” node and resulting source code. 48
3.33 Python “While”-loop node and resulting source code. 48
3.34 Python “For”-loop node and resulting source code. 49
3.35 Python “Function Start” node and resulting source code. 49
3.36 Python “Function End” node and resulting source code. 50
3.37 Python “Input” node and resulting source code. 50
3.38 Python “Output” node and resulting source code. 51
3.39 Python “Snippet” node and resulting source code. 51
3.40 Testy-coverage report. 54
3.41 Continuous delivery process, with manual steps depicted in orange and auto-

mated steps carried out by the CI server in blue. 56

4.1 FlowTutor SUS score (marked in red) compared to the grade rankings of SUS
scores, originally published in [BKM09]. 59

4.2 “Distribution of the six TLX subscales (solid lines) and the TLX score (dotted
line), N = 556 studies”, originally published in [Her21]. Results from our
evaluation additionally marked in red. 60

84

Bibliography

[ans70] ANSI X3.5 - Flowchart Symbols and their Usage in Information Processing.
Standard, American National Standards Institute, 1970.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[Bec02] Kent Beck. Test Driven Development. By Example. Addison-Wesley, 2002.

[BK00] Lynne P. Baldwin and Jasna Kuljis. Visualisation techniques for learning and
teaching programming. In Proceedings of the 22nd International Conference
on Information Technology Interfaces, pages 83–90, 2000.

[BKM09] Aaron Bangor, Philip Kortum, and James Miller. Determining what in-
dividual sus scores mean: adding an adjective rating scale. 4(3):114–123,
2009.

[BM95] Margaret M. Burnett and David W. McIntyre. Visual programming. Com-
puter, 28:14–14, 1995.

[BM99] Jean Bézivin and Pierre-Alain Muller. Uml: The birth and rise of a standard
modeling notation. In The Unified Modeling Language.«UML»’98: Beyond
the Notation: First International Workshop, Mulhouse, France, pages 1–8.
Springer, 1999.

[Bro95] John Brooke. Sus: A quick and dirty usability scale. Usability Evaluation in
Industry, 189, 11 1995.

[Buna] Bundesministerium für Bildung, Wissenschaft und Forschung. Die
neue TU für Digitalisierung und digitale Transformation entsteht in
Linz. https://www.bmbwf.gv.at/Themen/HS-Uni/Aktuelles/
TU-Linz.html. Accessed: 2024-02-18.

[Bunb] Bundesministerium für Bildung, Wissenschaft und Forschung. Digitale Grund-
bildung. https://www.bmbwf.gv.at/Themen/schule/zrp/dibi/
dgb.html. Accessed: 2024-02-18.

85

https://www.bmbwf.gv.at/Themen/HS-Uni/Aktuelles/TU-Linz.html
https://www.bmbwf.gv.at/Themen/HS-Uni/Aktuelles/TU-Linz.html
https://www.bmbwf.gv.at/Themen/schule/zrp/dibi/dgb.html
https://www.bmbwf.gv.at/Themen/schule/zrp/dibi/dgb.html

[Cal92] Ben A. Calloni. Baccii: An iconic, syntax-directed windows system for
teaching procedural programming. Master’s thesis, Texas Tech University,
1992.

[CBH97] Ben A. Calloni, Donald J. Bagert, and H. Paul Haiduk. Iconic programming
proves effective for teaching the first year programming sequence. In Pro-
ceedings of the Twenty-Eighth SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’97, page 262–266. Association for Computing
Machinery, 1997.

[Cha70] Ned Chapin. Flowcharting with the ansi standard: A tutorial. ACM
Computing Surveys, 2(2):119–146, 1970.

[CM05] Stephen Chen and Stephen Morris. Iconic programming for flowcharts,
java, turing, etc. In Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’05,
page 104–107. Association for Computing Machinery, 2005.

[Coh04] Mike Cohn. User stories applied: For agile software development. Addison-
Wesley, 2004.

[Coo15] Devin D Cook. Flowgorithm: Principles for teaching introductory program-
ming using flowcharts. In Proceedings of the American Society of Engineering
Education Pacific Southwest Conference, pages 158–167, 2015.

[Cro92] Mary Croarken. The emergence of computing science research and teaching at
cambridge, 1936-49. IEEE Annals of the History of Computing, 14(4):10–15,
1992.

[CWHH04] Martin C. Carlisle, Terry A. Wilson, Jeffrey W. Humphries, and Steven M.
Hadfield. Raptor: Introducing programming to non-majors with flowcharts.
Journal of Computing Sciences in Colleges, 19(4):52–60, 2004.

[Fac19] Fachverband des Tischlerhandwerks Nordrhein-Westfalen. Digitalisierung
im Tischlerhandwerk. https://www.tischler.nrw/fileadmin/
lv_nrw/file/innovation_technologie/2020-Auswertung_
Digi-Umfrage.pdf, 2019. Accessed: 2024-02-18.

[Fow08] Martin Fowler. Inversion of control containers and the dependency injection
pattern. http://www.martinfowler.com/articles/injection.
html, 2008. Accessed: 2024-02-18.

[GA16] Lidia Gorodniaia and Tatiana Andreyeva. Study of programming paradigms.
In INTED2016 Proceedings, 10th International Technology, Education and
Development Conference, pages 7482–7491. IATED, 2016.

86

https://www.tischler.nrw/fileadmin/lv_nrw/file/innovation_technologie/2020-Auswertung_Digi-Umfrage.pdf
https://www.tischler.nrw/fileadmin/lv_nrw/file/innovation_technologie/2020-Auswertung_Digi-Umfrage.pdf
https://www.tischler.nrw/fileadmin/lv_nrw/file/innovation_technologie/2020-Auswertung_Digi-Umfrage.pdf
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

[Gaj18] R. Robert Gajewski. Algorithms, programming, flowcharts and flowgorithm.
E-Learning and Smart Learning Environment for the Preparation of New
Generation Specialists, 10:393–408, 2018.

[GG21] Frank Gilbreth and Lillian Gilbreth. Process charts: First steps in finding
the one best way to do work. In Transactions of the American Society of
Mechanical Engineers, pages 1029–1043, 1921.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1
edition, 1994.

[GM15] Daniela Giordano and Francesco Maiorana. Teaching algorithms: Visual
language vs flowchart vs textual language. In 2015 IEEE Global Engineering
Education Conference (EDUCON), pages 499–504, 2015.

[GT84] Ephraim P. Glinert and Steve Tanimoto. Pict: An interactive graphical
programming environment. Computer, 17(11):7–25, 1984.

[GvN47] Herman Heine Goldstine and John von Neumann. Planning and coding of
problems for an electronic computing instrument. Technical report, Institute
for Advanced Study Princeton, 1947.

[Her21] Morten Hertzum. Reference values and subscale patterns for the task load
index (tlx): a meta-analytic review. Ergonomics, 64(7):869–878, 2021.

[HF10] Jez Humble and David G. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-Wesley,
2010.

[HGB+13] Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley.
Snap! (build your own blocks). In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, SIGCSE ’13, page 759, New
York, NY, USA, 2013. Association for Computing Machinery.

[HM10] Brian Harvey and Jens Mönig. Bringing “no ceiling” to scratch: Can one
language serve kids and computer scientists? Constructionism, pages 1–10,
2010.

[HS88] Sandra G. Hart and Lowell E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. In Peter A. Hancock
and Najmedin Meshkati, editors, Human Mental Workload, volume 52 of
Advances in Psychology, pages 139–183. North-Holland, 1988.

[iso69] ISO R 1028 - Flowchart Symbols for Information Processing. Recommenda-
tion, International Organization for Standardization, Geneva, CH, 1969.

87

[iso73] ISO 1028:1973 - Information processing - Flowchart symbols. Standard,
International Organization for Standardization, Geneva, CH, 1973.

[iso85] ISO 5807:1985 - Information processing - Documentation symbols and con-
ventions for data, program and system flowcharts, program network charts
and system resources charts. Standard, International Organization for Stan-
dardization, Geneva, CH, 1985.

[Jet23a] JetBrains. The State of Developer Ecosystem 2023 - Languages. https://
www.jetbrains.com/lp/devecosystem-2023/languages/, 2023.
Accessed: 2024-02-18.

[Jet23b] JetBrains. The State of Developer Ecosystem 2023 - Team Tools. https://
www.jetbrains.com/lp/devecosystem-2023/team-tools/, 2023.
Accessed: 2024-02-18.

[Man19] Kurt Mandel. Jenkins Plugins: The Good, the
Bad and the Ugly. https://medium.com/@kmadel/
jenkins-plugins-the-good-the-bad-and-the-ugly-d7fd0c801a0e,
2019. Accessed: 2024-02-18.

[MBK+04] John Maloney, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and
Mitchel Resnick. Scratch: a sneak preview. In Proceedings of the Second
International Conference on Creating, Connecting and Collaborating through
Computing, pages 104–109, 2004.

[ML07] David J. Malan and Henry H. Leitner. Scratch for budding computer
scientists. In Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’07, page 223–227, New York, NY,
USA, 2007. Association for Computing Machinery.

[MPSD19] Steve Mao, Damiano Petrungaro, Zeke Sikelianos, and Lorenzo D’Ianni.
Conventional commits. https://www.conventionalcommits.org/
en/v1.0.0/, 2019. Accessed: 2024-02-18.

[PA10] John Pruitt and Tamara Adlin. The persona lifecycle: keeping people in
mind throughout product design. Elsevier, 2010.

[Pyta] Python Software Foundation. Python Documentation - Support for type
hints. https://docs.python.org/3/library/typing.html. Ac-
cessed: 2024-02-18.

[Pytb] Python Software Foundation. The Python Standard Library - bdb, Debug-
ger framework. https://docs.python.org/3/library/bdb.html.
Accessed: 2024-02-18.

[RM17] Partha Pratim Ray and Alok Mishra. A survey on visual programming
languages in internet of things. Scientific Programming, 2017, 2017.

88

https://www.jetbrains.com/lp/devecosystem-2023/languages/
https://www.jetbrains.com/lp/devecosystem-2023/languages/
https://www.jetbrains.com/lp/devecosystem-2023/team-tools/
https://www.jetbrains.com/lp/devecosystem-2023/team-tools/
https://medium.com/@kmadel/jenkins-plugins-the-good-the-bad-and-the-ugly-d7fd0c801a0e
https://medium.com/@kmadel/jenkins-plugins-the-good-the-bad-and-the-ugly-d7fd0c801a0e
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/bdb.html

[SHM+12] Lydia Schneidewind, Stephan Hörold, Cindy Mayas, Heidi Krömker, Sascha
Falke, and Tony Pucklitsch. How personas support requirements engineering.
In 2012 First International Workshop on Usability and Accessibility Focused
Requirements Engineering (UsARE), pages 1–5, 2012.

[Smi75] David Canfield Smith. PYGMALION: A Crative Programming Environment.
PhD thesis, Stanford University, 1975.

[Spa01] Sparck Jones, Karen. A brief informal history of the Computer Lab-
oratory. https://www.cl.cam.ac.uk/events/EDSAC99/history.
html, 2001. Accessed: 2024-02-18.

[Spe47] Special Committee on Standardization of Therblings, Process Charts, and
their Symbols. Operation and flow process charts, 1947. American Society
of Mechanical Engineers.

[Sta] Statistisches Bundesamt. Studierende in Mathematik, Infor-
matik, Naturwissenschaft (MINT) und Technik-Fächern. https:
//www.destatis.de/DE/Themen/Gesellschaft-Umwelt/
Bildung-Forschung-Kultur/Hochschulen/Tabellen/
studierende-mint-faechern.html. Accessed: 2024-02-18.

[TU a] TU Wien. TU Wien in numbers. https://www.tuwien.at/en/
tu-wien/about-tu-wien/facts-and-figures. Accessed: 2024-02-
18.

[TU b] TU Wien Informatics. Our History. https://informatics.tuwien.
ac.at/history/. Accessed: 2024-02-18.

[vRWC01] Guido van Rossum, Barry Warsaw, and Alyssa Coghlan. PEP 8 - Style
Guide for Python Code. https://peps.python.org/pep-0008/, 2001.
Accessed: 2024-02-18.

[Wir] Wirtschaftskammer Österreich. Applikationsentwicklung - Cod-
ing. https://www.wko.at/service/bildung-lehre/
berufs-und-brancheninfo-applikationsentwicklung-coding.
html. Accessed: 2024-02-18.

89

https://www.cl.cam.ac.uk/events/EDSAC99/history.html
https://www.cl.cam.ac.uk/events/EDSAC99/history.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/studierende-mint-faechern.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/studierende-mint-faechern.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/studierende-mint-faechern.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/studierende-mint-faechern.html
https://www.tuwien.at/en/tu-wien/about-tu-wien/facts-and-figures
https://www.tuwien.at/en/tu-wien/about-tu-wien/facts-and-figures
https://informatics.tuwien.ac.at/history/
https://informatics.tuwien.ac.at/history/
https://peps.python.org/pep-0008/
https://www.wko.at/service/bildung-lehre/berufs-und-brancheninfo-applikationsentwicklung-coding.html
https://www.wko.at/service/bildung-lehre/berufs-und-brancheninfo-applikationsentwicklung-coding.html
https://www.wko.at/service/bildung-lehre/berufs-und-brancheninfo-applikationsentwicklung-coding.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Goals
	Historical Background
	Programming Education
	Graphical Programming
	Flowcharts

	Related Work
	Flowchart Based
	BACCII/BACCII++
	RAPTOR
	Flowgorithm

	Block Based
	Scratch
	Snap!

	Design and Development
	Requirements
	Personas
	User Stories

	Tooling and Libraries
	Version Control
	Programming Language
	Code Style
	GUI Framework
	Utility Libraries
	Testing
	Continuous Integration
	Deployment

	Implementation
	General
	GUI
	Flowcharts
	Node Templates
	Code Generator
	Debugger

	Testing
	Continuous Delivery

	Evaluation
	Methods
	Participants
	Design

	Results
	System Usability Scale (SUS)
	NASA Task Load Index (TLX)

	Future Work
	System Usability Scale (SUS)
	NASA Task Load Index (TLX)
	Evaluation Results
	System Usability Scale (SUS)
	NASA Task Load Index (TLX)
	Feedback Questions

	List of Figures
	Bibliography

