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Kurzfassung

Für elektronischer Produkte, wie Smartphones, Notebooks oder Computerbildschirme,
gibt es eine Menge konkurrierender Geräte unterschiedlicher Hersteller. Benötigt man ein
neues Smartphone, so ist es praktisch unmöglich alle relevanten Marken zu finden, deren
Produktseiten zu durchforsten und sich über jedes einzelne Gerät zu informieren. Die
relevanten Produkte können anhand von Eigenschaften, wie der maximalen Gerätelänge,
gefiltert und eingegrenzt werden. Preis- und Produktvergleichsportale wie Geizhals und
Idealo bieten dafür Filter-, Sortier- und Vergleichsfunktion an und eignen sich, um einen
Überblick über aktuelle Modelle zu verschaffen. Auf welche Quellen dafür zurückgegriffen
wird und wie die Aufbereitung funktioniert, ist nicht öffentlich bekannt. Die Daten werden
jedoch von Menschen gepflegt und somit kontinuierlich manuell verbessert.

Diese Diplomarbeit untersucht die Frage, ob Produktdaten von Online-Shops ausreichen,
um detaillierte Produktspezifikationen für ein Produkt zu erstellen. Die Untersuchung
fokussiert sich dabei auf die Kategorie der Computerbildschirme und Onlineshops aus
dem deutschsprachigen Raum, die auf Geizhals vertreten sind.

Im Rahmen der Arbeit wurde eine automatisierte Pipeline zur Datenextraktion von
Produktwebseiten und Weiterverarbeitung in eine strukturierte und vereinheitlichte Form
implementiert. Zudem wurde der ComputerScreen2023 Datensatz erstellt. Dieser enthält
Produktdaten von 32.227 Produktseiten mit mehr als 2.000 unterschiedlichen Compu-
terbildschirmen und deren Referenzspezifikation von Geizhals. Die Pipeline kombiniert
Daten von mehreren Onlineshops, um erstellt daraus möglichst präzise Produktspezifi-
kationen. Die erzeugten Daten lassen sich für Produktvergleichswebseiten mit Filter-,
Sortier- und Vergleichsfunktion nutzen.

Die Leistung der Pipeline wurde durch ein Experiment mit dem ComputerScreen2023-
Datensatz ermittelt. Die Basis-Pipeline-Implementierung, die ausschließlich reguläre
Ausdrücke zur Datenextraktion nutzt, erreichte dabei eine Genauigkeitsquote von 59,67 %
und eine Vollständigkeitsquote von 47,54 % pro Eigenschaft. Damit extrahiert die Pi-
peline durchschnittlich 14,5 korrekte Eigenschaften pro Produkt. Durch Nutzung eines
Machine-Learning-Modells für die Extraktion, oder einer manuellen Anpassung der Kon-
figuration konnten die Werte leicht verbessert werden. Die Auswertung basierend auf 15
Eigenschaften zeigt das wahre Potenzial der Pipeline und erreicht eine Genauigkeitsquote
von 89,13 % pro Eigenschaft und eine Vollständigkeitsquote von 72,01 % pro Attribut.
Das ergibt einen F1-Wert von 79,66 %.
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Abstract

For electronic products such as smartphones, notebooks or computer screens, there are
a lot of competing devices from a wide range of manufacturers. If you need a new
smartphone, it is practically impossible to find all the relevant brands, browse their
product pages and inform oneself about each individual device. The number of products
in question can be reduced by desired product properties, such as the maximum device
length. Price and product comparison portals like Geizhals and Idealo offer filtering,
sorting and comparison functions for this purpose and are suitable for providing an
overview of current models. Their databases contain a huge amount of products with
detailed product specifications. It is not publicly known which sources they have and
how the processing works. However, the data is maintained by people and is therefore
continuously improved manually.

This thesis examines the question of whether the data from some online stores is sufficient
to create equally detailed product specifications as Geizhals and implements an automated
pipeline for this purpose. Our investigation focuses on the category of computer monitors
and online stores from German-speaking countries that are represented on Geizhals.

As part of the work, an automated pipeline for extracting data from product websites
and processing it into a unified, structured data format was implemented. In addition,
the ComputerScreen2023 data set was created. It contains product data from 32,227
product landing pages with more than 2,000 different computer screens and their reference
specification from Geizhals. The pipeline combines data from several online shops to
create product specifications that are as precise as possible. The resulting structured
data can be used to build product comparison websites with filter, sort and comparison
functionality.

The performance of the pipeline was determined by experimental analysis using the
ComputerScreen2023 dataset with reference data for more than 2,000 computer screen.
The base pipeline implementation solely relies on regular expressions for data extraction
and achieved an attribute precision of 59.67 % and a recall of 47.54 % and mined an
average of 14.5 correct properties per product. With the addition of a machine learning
model for extraction, or a manual adjustment of the configuration, the scores slightly
raise. Based on a selection of 15 attributes, the pipeline shows its true potential with an
attribute precision of 89.13 % and a recall of 72.01 %, which results in an F1 score of
79.66 %.
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CHAPTER 1
Introduction

In this thesis, I aim to solve a long-standing problem with relevance for product and
price comparison websites. I present an information extraction pipeline, which mines
data from online shops and creates well-structured and unified product data. The focus
is on the category of computer screens, with the goal of retrieving a high number of valid
attributes. The processed data is solely based on German-speaking shops, so the resulting
specifications and property names are also in German. However, the implementation is
adaptable for other languages and product categories as well. Therefore, attribute-value
pairs of product specifications are extracted from the merchants’ product landing pages.
Based on predefined attributes and a regular expression for each attribute, this data is
processed and converted into structured data. Combining data of the same product from
multiple shops leads to one specification per computer screen.

In order to test and evaluate the pipeline, a dataset containing over 2000 different
computer screens has been created by me. Therefore, the monitor category of the
product and price comparison website Geizhals has been used as starting point. For each
monitor, offers from multiple online shops are linked and a comprehensive table with
product specifications are given on the Geizhals website. For the ComputerScreen2023
dataset, these specifications are stored as reference data and 32,227 product specifications
extracted from the linked online shops are stored in a JSON file as well. Thus, all the
gathered data comes from freely accessible sources on the internet. The online shop’s
source code has been used as raw data for the extraction pipeline, and the reference data
was used for the evaluation of it. A slight improvement is noticeable with the addition of
machine learning model, or manual tuning of the configuration.

1.1 Problem Statement and Motivation
With online shopping, a large selection of products from various categories are available
and advertised to everyone. But how to find the smartphone that best suits from an
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1. Introduction

overwhelming selection?
Online product catalog websites like Geizhals and Idealo can help with that. They provide
a huge product database with goods from various categories, reaching from every sort
of electronics up to clothing. Their product landing pages list several merchant offers
for the identical product. Comparison and filter functionality make it easier to find the
desired product. To provide this functionality, they need structured and unified product
information. Based on that, numerous properties can be selected to thin out the gigantic
selection of smartphones. Should it be a handy device? Then pick a maximum length of
150 mm and two thirds of around 3,000 listed smartphones are out [AG]. Furthermore,
pick an operating system and only several hundreds are left. Additionally, cut off devices
older than two years and limit the price tag. Only a handful of devices are left, which
can be examined in detail. The same approach also works for computer screens, but with
different properties. Pick a range for the screen diagonal and select the ports it should
have. Further options to pick from can be ergonomic features or the panel type.
However, product catalogs require workers to manually add properties and constantly
enhance the product information in their database. A completely manual approach is not
feasible for millions of products. Therefore, a fully automated method of data collection
and processing must be pursued. In contrast to extracting an average of 13.3 attributes
per product [NFP+11], the pipeline will collect more properties for the category of
computer screens and get close to the attribute number and details as Geizhals provides.
Although there are many related research topics based on product data extraction, I
found insufficient literature on gathering specifications from German-speaking product
websites. Furthermore, I could not find a solution that aims for the variety of properties
and data quality, which Geizhals seems to reach with additional manual labor [Gei]. For
its competitor Idealo it is rumored that even 500 data maintainers keep their product
catalog up to date [KK22]. So there seems to be a lot of room to automate these processes.
In this thesis, I propose a solution to create such structured data from shop landing
pages automatically. Thus, the research questions I tackle in this thesis are:

• Is it possible to create high quality product specifications solely from merchant
landing pages?

• Does Geizhals use more data sources, than I had, to create their detailed product
specifications?

1.2 What is semi-structured data?
This thesis distinguishes between the following three data formats.

1.2.1 Plain text
Some product properties might be given in text paragraphs, where they are hard to
retrieve. With a regular expression, collecting lengths like ’20 mm’ is simple, but you

2
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also need to find the property name to which it corresponds to. This is challenging, as it
can be the height of a small screen, the thickness of the delivered package or the range of
the height adjustable stand.

1.2.2 Semi-structured data
According to the merchant data, far more product properties are based on lists, such as
attribute-value pairs. They contain many properties and are easier to collect, than the
sparse data from plain texts. Thus, the focus of this work is on partly structured, but
inhomogeneous data, as this will bring the best results with limited resources. Lists are
often visualized as bullet points with text, where each point holds related product data.

Lists on websites are meant to be characterized by an unordered list tag <ul> and
multiple list item tags <li>, which are semantic tags in HyperText Markup Language
(HTML). The same applies to tables, where a <table> tag should wrap the row elements
<tr>, which are further split into columns using the table data <td> tags. However,
many websites do not use semantic HTML and rely on their own way to structure the
HTML code, often with plain <div> tags. This makes it harder to extract property
names and values from lists of attribute-value pairs automatically.

Although the data structures are similar, the values are not unified. As visualized in
Figure 1.1 and Figure 1.2 the property titles differ and also the values are given in
different formats. In this thesis, such data is called semi-structured.

1.2.3 Unified and structured data
A data format that follows strict rules, is called structured data in this thesis. Unified
and structured data is comparable to a dictionary in Python, with a fixed set of allowed
keys and also distinct format of the values. An example is shown in Figure 4.10.

1.3 Contribution
I tackle the problem of information extraction and build an automated pipeline for the
category of computer screens. In contrast to other research papers, I focus on semi-
structured data extracted from product landing pages in German language. Therefore,
the research data will be based on shops with product offers for Austria and Germany.

The thesis shows the positive sides and the shortcomings of a traditional extraction
approach based on manually crafted regular expressions. According to preliminary tests,
specifications like the screen resolution and screen diagonal are well retrievable with
regular expression, as the values mostly conform to a standard format. In contrast to
that, the ports of a computer screen are hard to gather with these conventional methods,
as they are specified in highly different formats (compare Figure 1.3 and Figure 1.4).

Building on this knowledge, I aim to mitigate this problem with a machine learning
approach, based on Natural Language Processing (NLP). I fine-tune a Bidirectional
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1. Introduction

Figure 1.1: Semi-structured product specifications from a shop

Figure 1.2: Semi-structured product specifications from another shop
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Figure 1.3: Port specific properties from a shop

Figure 1.4: Port specific properties from another shop

Encoder Representations from Transformers (BERT) transformer model and use it for
token classification in order to extract the relevant port details for HDMI and DisplayPort.
The aim of this work is a generalizable solution, which is applicable for all shops. This
is not the most straightforward solution, but with the greatest benefit in practice. The
evaluation results from chapter 6 will reveal shortcomings of the proposed pipeline and
give hints for further improvements. Secondly, the results will show, if merchant websites
deliver enough data to create detailed specifications.

Additionally, I evaluate the pipeline with a manually enhanced pipeline configuration.

1.3.1 ComputerScreen2023 dataset

I offer a dataset with reference specifications for 2,555 different computer screens and
32,227 JSON files with product data extracted from product landing pages of several
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1. Introduction

online shops. Initially, the raw HTML source code of more than 45,000 pages has
been gathered from more than 200 online shops, which sell their goods in Austria and
Germany. I have collected links to the merchants by crawling the offers from Geizhals
product landing pages, as shown in Figure 3.1. Due to the size of all these HTML files
together, I provide the extracted, but unedited product data as attribute-value pairs
from the 30 most common shops as JSON. Due to the fact, that the extraction of the
raw specifications from HTML is based on manually crafted CSS selectors for each shop
(compare Figure 4.2), I am rather certain to catch the main attribute-value pairs of
a shop. However, some merchants add additional information like EAN in secondary
listings, which I do not collect. I provide the parser configuration for these shops, but do
not make efforts to fully automate and generalize this extraction for of all shops.

Ground truth for evaluation

The product specifications from all the Geizhals product detail pages, shown in Figure 3.1,
are also saved as reference data. They contain dense specification which are necessary
for the evaluation of the pipeline. This reference data is also processed in the base
pipeline, in order to convert it to a compatible, structured format for comparison with
the extracted data from the landing pages.

6



CHAPTER 2
Related work

I propose an automated pipeline to gather structured computer screen specifications
from semi-structured data. My base pipeline uses manually crafted regular expression
to collect property values. Further processing puts the data into a predefined structure,
in order to filter, search or compare products based on their specification. Afterward,
monitors can be filtered to show, e.g. all computer screens with a diagonal between 27
and 32 inches providing DisplayPort.

Using natural language processing, I want to improve the extraction quality with a token
classifier. According to my tests, the ports are especially hard to extract and even require
knowledge to propose a useful catalog structure. For example, a USB-C port on its own
is able to deliver data, various amounts of power and a DisplayPort signal. The hard part
is, that the schema provided by merchants differ completely, which makes the extraction
of ports with all their details especially hard.

The evaluation of a fully automated pipeline as proposed in [NFP+11] gathers an average
of 13.3 attributes for products with more than ten merchant offers. According to
preliminary tests, the pipeline is able to extract a lot more attributes, even with data
from single merchants. However, I can not evaluate the pipeline with other datasets for
comparison, as I could not find one for the domain of computer screens and also none
using German language.

2.1 Extracting attribute-value pairs from product
specifications

Petrovski et al. aim to solve the problem of product specification extraction from HTML
tables and lists [PB17]. Product comparison portals show product specifications together
with offers from many shops. An offer consists of a title and a free-text product description
containing some product attributes. Additionally, such an offer may contain product
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specifications as tables or lists with many more product properties. Extracting these
attribute-value pairs is necessary for product matching, categorization, faceted product
search and product recommendation.

Dataset Their evaluation and training dataset consists of the Web Data Commons
Gold Standard for Product Matching and Product Feature Extraction [PPMB15] with
564 products. It contains annotated specification lists and gold labels for product data
extraction.

The implementation of specification extraction consists of two steps. First, the detection
of specification tables or lists. Therefore, they use a binary classification model based on
SVM with a linear kernel. The classifier relies on several features, such as the number
of links or the average ratio between numerical and alphabetical characters in a cell.
Secondly, for the extraction process, they use supervised learning to identify attribute
and value columns. The data then gets extracted from these HTML fragments.

Their table extraction approach outperforms DEXTER [QBD+15] in F-score, which is
based on precision and recall, by 10%. The detection of tables with more than a single
attribute-column is claimed to lead to the significant increase. For lists, the improvement
to DEXTER is 3%.

The challenges for future research directions are specification extraction from lists. This
is more difficult compared to tables, as they sometimes do not even contain any type of
delimiter.

2.2 Extraction of product specifications beyond tables and
lists

Product specifications in structured tabular blocks are often present on E-commerce
product listings. Thus, extraction of these specifications from product landing pages is a
big benefit in product catalog creation and for product search. However, websites rely on
different HTML tags like <table>, <div> or <ul> to render them, which makes the
specifications harder to find and extract.

Gangadhar et al. [GK22] suggest an approach that identifies and extracts product
specifications as attribute-value pairs in two stages. In addition to that, their approach
is not limited to tables and lists.

Existing product datasets with specifications seemed limited to these two HTML building
blocks. Thus, they created a labeled dataset of product specifications gathered from
14,111 product websites, that are composed of any kind of HTML blocks.

An efficient SVM model with a linear kernel is used as pre-filter, leaving only a small
amount of HTML blocks for further classification. For the remaining blocks, a CNN model
with word embeddings is used to classify them as specification or not. The attribute-value

8



2.3. Synthesizing products for online catalogs

extraction is the second stage and relies on wrapper induction techniques based on known
attribute names and values.

The evaluation of the specification and non-specification detection shows a 1.6 % improve-
ment of F1-score compared to the approach by Petrovski et al. [PPMB15]. However, the
extraction task, evaluated for tables, performed 6.7 % worse. Nevertheless, the approach
shows its ability to extract attribute-value pairs from specification blocks built from
unknown HTML tags.

Specification blocks on product pages consist of various HTML tags. Without a limited
standard set of HTML elements, it remains a challenge to find the specifications and
extract data automatically.

2.3 Synthesizing products for online catalogs
Product search engines like Google Shopping require an extensive product catalog with
structured properties in order to be successful. However, adding new products is a
challenging task that requires automation to keep up with all the updates. Therefore,
Nguyen et al. present an automated end-to-end solution on product synthesis for online
catalogs [NFP+11]. Based on a set of merchant offers, new products should be identified
and added to the product catalog, along with its structured attributes.

Their product synthesis pipeline consists of four big components. Merchants provide offer
feeds with the title and URL to the product landing page. The latter website contains
the product specifications in a structured way, e.g. as HTML table, but the schema varies
between merchants and products. So, the first step consists of the product categorization
based on its title, as each product category has its own attributes of interest. From the
extracted attribute-value pairs, the schema reconciliation component maps merchant
attribute names with the attributes, that already exist in the catalog. For example,
"Hard Disk Size" is mapped to "Capacity" from the catalog. Third comes the clustering
component, which groups offers of the identical product, based on key attributes like
the Manufacturer Part Number(MPN). Lastly, the data from one cluster is merged to a
single product specification using majority voting.

Dataset The dataset they used for evaluation is based on more than 800,000 product
offers. It consists of web pages, gathered from product pages of various shops listed on
Bing Shopping. It contains data from more than 1000 merchants and 400 categories,
including electronic goods, such as computers and hard drives.

The evaluation results show, that 287,135 products (with 1,126,926 product attributes)
were synthesized out of 800,000 products given as input. From a sample of 400 products,
consisting of 1,447 attribute-value pairs the evaluation shows an attribute precision of
92 % and a product precision of 85 %.

The challenge of product synthesis lays within the heterogeneity of data from merchant
offers. Shops rely on different attribute names and schemas, which often lack a variety

9
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of attributes. Therefore, locating the manufacturer’s product page to extract relevant
information should enrich the specifications.

2.4 Overview of related datasets
My paper also describes the creation of a dataset with computer screens, which is called
ComputerScreen2023 dataset. The two datasets with electronic goods used in the related
papers are summarized in the comparison Table 2.1. In contrast to my dataset, they
contain data in English.

Dataset name Categories Data format Products
Bing search 498 (laptops, hard drives) Web page 856,781
WDC Gold Std. TVs, headphones, phones Web page + annotation 564

Table 2.1: Overview of related product datasets

10



CHAPTER 3
The ComputerScreen2023 dataset

In order to build and run an automatic specification extraction pipeline, data is necessary
to test and evaluate it. Due to my focus on the niche of German and Austrian shops,
datasets with relevant product data were nowhere to be found. However, with publicly
available data for various electronic goods on the Internet, I decided to collect data on
my own and build a dataset with product specifications in German language. As the
goal of the thesis are dense product specifications, I focused on one category. I selected
computer screens due to familiarity with their specifications and particularities, as well
as their wide variety of relevant properties.

For this dataset, I automatically gathered data from all computer screens listed on
Geizhals [AG]. There, each product has its own landing page with detailed structured
specifications, as well as offers of this product from several merchants. Figure 3.1 shows a
screenshot from such a landing page. I grabbed the product specification table for every
computer screen and saved it as reference data. In addition, a list of product offers from
several online shop is shown on the bottom. Each of them lists their shop name, the
price and a link to their online shop. Based on these links to a shop’s product landing
page, I gather the page source (HTML) and extract product specification tables and
lists. The resulting raw data is stored in JSON files and is later used as input for my
proposed pipeline. These two types of data, the reference from Geizhals and the product
specifications from multiple shops, build up the foundation of my ComputerScreen2023
dataset.

It contains data for more than 2,000 different monitors and over 30,000 raw product
specifications extracted from German-speaking online shops. For both of them, data is
stored as attribute-value pairs in a JSON format. The ComputerScreen2023 dataset is
available as part of the source code on GitHub [Hag].

The dataset solely contains public data, collected on October 1, 2023. Geizhals listed
2,555 different computer screens on that day, which are all part of this dataset. In
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3. The ComputerScreen2023 dataset

Figure 3.1: Geizhals product page with detailed specifications and merchant offers

addition to the reference data from Geizhals, 45,460 product landing were gathered from
more than 250 online shops. For the most common 30 shops, manually crafted parser
configurations allowed me to extract product specifications from tables or lists. The
unedited attribute-value pairs are part of the dataset and provided as JSON files. The
huge number of HTML files makes them quite big and are thus not part of the dataset.

3.1 Public data
The starting point for dataset creation was the price comparison website Geizhals. It is a
freely accessible product catalog website with a focus on price comparison of electronic
goods and shows an extensive list of product specifications. The website also offers search
and filter capabilities, with the granularity of filter options depending on the product
category. To provide this, the website must have well-structured and unified data in their

12
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backend. On product pages, Geizhals shows these specifications in a list with property
title and according values. It is worth to note, that Geizhals groups several related
property values in a single field. For example, the color gamut for sRGB, DCI-P3 and
more are all shown in the same row, separated by a comma.

In addition, it lists online shops that offer this product, together with the price and
link to the offer. Keep in mind, that the website is profit oriented and having a shop
listed comes with a cost. Hence, the dataset certainly does not contain all websites, that
sell the product in Austria and Germany and solely pays attention to the shops listed
on Geizhals. However, most well known shops are listed there, and it can be believed,
that the vast majority of computer screens sold in Austria in 2023 are contained in the
ComputerScreen2023 dataset.

3.2 Content of the dataset
The ComputerScreen2023 dataset contains product specifications, but also metadata
with additional information, such as product and shop names, as well as links to the
original data source. Additionally, each file in the dataset contains an ID incorporated
in its filename. The ID is always the first number, that occurs in a filename, and equal
numbers refer to the same product.

3.2.1 Metadata allows clustering of equal computer screens
Files with matching ID all contain data for the same monitor. The link between the
product offers and their common reference specification was solely gathered from Geizhals
product detail pages, as shown in Figure 3.1. Thus, the dataset also provides ground truth
data for clustering of computer screens. I assume this data is very accurate. Hence, the
ComputerScreen2023 dataset is usable as training and validation dataset for a machine
learning approach to product clustering and evaluating product matching algorithms.

3.2.2 Reference specifications and shop offers
Geizhals lists more than 2,500 computer screens together with their specifications. These
specifications and product offers were collected from Geizhals product details page and
are provided as unedited attribute-value pairs in JSON format, together with some
metadata and merchant offers.

Each reference file contains the following data, which is solely gathered from Geizhals:

• Product name

• Geizhals link

• Geizhals product specifications as list of attribute-value pairs

• Shop offers with shop name, link to product landing page and price
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3. The ComputerScreen2023 dataset

Based on Figure 3.1 the attributes relate to the left column of the product specifications
and the right column describes the related cell with one or multiple values. The latter
are often separated within a cell via comma.

3.2.3 Shop offers
The shop offers provide the links to collect data from 45,460 product landing pages,
served by 288 shops. On average, the same computer screen is offered by 17.8 shops on
Geizhals. As the raw source code (HTML) of all these landing pages is huge, I provide
the extracted, but unedited attribute-value pairs of the most common 30 shops as JSON.

Each raw specification file contains the following data, which is solely gathered from
online shops:

• Product name

• Product price

• Product specifications as list of attribute-value pairs

• Shop name

• Shop link

• Name of the reference file, containing the reference specifications.

The attribute-value extraction from HTML is described in more detail in section 4.3.

3.2.4 Gold labeled dataset for HDMI and DisplayPorts
I provide gold labels for the HDMI and DisplayPort specifications of 200 computer
screens. Label Studio, an open source tool for data labeling, was used for the manual
annotation task. The program provides a graphical user interface (GUI) for a wide variety
of labeling tasks for machine learning applications. Label Studio randomly selected the
monitors based on all the shop offers. As the labels were solely created by the author as
a single annotator, no inter-annotator agreement scores exists. An example of a manually
annotated computer screen is given in Figure 3.2.

For each port, the following four labels are available:

• Port type, e.g. ’Mini DisplayPort’

• The port count, e.g. ’2x’

• The version, e.g. ’2.0’

• Additional details, e.g. ’120Hz@2560x1440’

14



3.2. Content of the dataset

Figure 3.2: Gold labeled data as visualized in Label Studio

Be aware, that some shops also mention cables, which are supplied within the product
box. Although, they include the port name, they are not assigned a label, as they are
not a port. The labeled dataset is exported as CoNLL file, which is similar to the better
known comma-separated value (CSV) format. Label Studio automatically applies a
Word Piece tokenizer, so the exported data is split into tokens according to that. The
granularity of the labels is therefore based on whole words and not individual characters.

Use case

These so-called gold labels or ground truth data is necessary for fine-tuning general
purpose machine learning models like BERT on a specific task. Such transformer models
are pre-trained on a huge dataset using powerful hardware, which is not feasible by
individuals. Fortunately, some of these models are provided free of charge and can be
further trained on specific tasks with much lower effort. Fine-tuning is possible with
consumer hardware, and the tuned models aims to do noticeable better on the trained
task. For this thesis, the labeled data is used for fine-tuning a BERT model and enhance
the information retrieval pipeline (compare chapter 5).
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CHAPTER 4
Information extraction pipeline

The pipeline for product data extraction from semi-structured data consists of two parts.
First is the setup part, which is automated to a big extent. Second, the processing stages
do the actual work and build the information extraction pipeline.

The proposed implementation creates structured and unified product specifications for
computers screens by processing semi-structured data. The basic idea is based on the
paper Synthesizing Products for Online Catalogs from Hoa Nguyen et al. [NFP+11].
The pipeline can bed fed with the HTML of computer screen landing pages from
online shops or from already extracted, but unedited attribute-value pairs as provided
in my ComputerScreen2023 dataset from chapter 3. Based on these semi-structured
specifications, regular expression are used to extract specific properties and put them in
a structured and unified format.

The hard part in this is the alignment of all the properties towards the predefined property
names. The attribute names retrieved from the merchant’s landing pages need to be
aligned with my manually defined property names, which are the foundation of the unified
structured data format. This problem is solved with field mappings, which link the
predefined property names to the shop’s property, which contains that information. The
field mappings can be automatically created via fuzzy matching, but manual adoption
leads to even better results. In addition, each predefined property is tight towards a
manually crafted regular expression. This regex parses the property-value and extracts
several groups of text. A width given as string ’68.8cm’ is split up into the parts ’number’
and ’unit’.

The resulting structured data from one landing page is then fused with data from other
shops to form a single instance of product specifications for each computer screen. The
resulting structured and unified data is then stored in a JSON file per computer screen.
All these files together build a database of uniform computer screen specifications, which

17
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can be used for real world applications like product catalog websites with filter, search
and product comparison functions.

Figure 4.1 gives a high level overview of all the stages. The preparation tasks are shown
in green and processing stages in blue. The gray boxes represent the data flow through
the pipeline and visualize the transformation of the data in each stage. The orange
box represents real world use cases, for which the resulting database of computer screen
specification can be used.

The implementation of the pipeline is solely written in Python.

4.1 Preparation
4.1.1 Define catalog properties for unified data structure
Shops supply their product specifications using various names for the same property, such
as Farbraum or Farbraumabdeckung for the color gamut. As there are many synonyms in
use, the property names for the unified database need to be defined. For each property,
that should be gathered a German word like Helligkeit for the screen brightness has been
chosen, and the expected data format has been defined. For the brightness, a number
in cd/m2 is expected. The pipeline supports extraction of more than 50 properties, an
excerpt of them is shown in Table 4.1.

In addition, it can also extract the cables included in the box and the screen bezel sizes.
I have disabled these properties for evaluation, as there is no reference data to compare
them to. Moreover, this data is only supplied by a few shops.

4.1.2 Configure HTML product data parser
This pre-processing step is only necessary to extract semi-structured data as attribute-
value pairs from HTML files. The ComputerScreen2023 dataset already provides the
resulting data as JSON files (compare subsection 3.2.3).

Merchant landing pages contain product specifications in a table or list-like format
(compare section 1.2). Hence, the relevant attribute-value pairs need to be extracted
for further processing in the pipeline. I manually defined parser configurations for the
web mining and data extraction tool minet[mS]. An example configuration using CSS
descriptors to extract product specifications from the HTML of a specific shop is given
in Figure 4.2.

The iterator targets the table rows, where each row contains a column for the property
name and another one for the property value. It extracts these entries for each row of the
gray highlighted box, shown in Figure 4.3. The CSS selectors then target the column tags
inside the parent to gather name (highlighted in red) and value (highlighted in pink).

Such parser configurations have been set up for the 30 most common shops of the
dataset, based on their product count. This results in approximately 70 % of the initially
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Figure 4.1: High level overview of the data extraction pipeline
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4. Information extraction pipeline

Term in German English term Example value
Abmessungen Dimensions 613.2x384.6x193.3mm
Anschlüsse DisplayPort DisplayPort ports 1x DisplayPort 1.4
Anschlüsse HDMI HDMI ports 1x HDMI 2.1
Anschlüsse USB-A USB-A ports 1x USB-A 3.1
Auflösung Resolution 2560x1440
Bilddiagonale (Zoll) Screen diagonal (inch) 27"
Bildwiederholfrequenz Refresh rate 60 Hz
Blickwinkel horizontal Horizontal viewing angle 178°
Blickwinkel vertikal Vertical viewing angle 178°
Farbraum DCI-P3 Color gamut DCI-P3 98%
Farbraum sRGB Color gamut sRGB 100%
Farbtiefe Color depth 10 Bit
Gewicht Weight 2.98 kg
Herstellergarantie Manufacturer’s warranty 2 Jahre
Helligkeit Brightness 350 cd/m2

Kontrast Contrast 1000:1
Leistungsaufnahme (SDR) Power consumption (SDR) 28 W
Neigungswinkelbereich Range of tilt angle +21°/-5°
Panel Panel IPS
Reaktionszeit Response time 5 ms
Seitenverhältnis Aspect ratio 16:9
VESA VESA 100x100

Table 4.1: Excerpt of extractable properties

iterator: div:is(.more-desc, .more-descs) tr
fields:

name:
sel: td:nth-child(1)

value:
sel: td:nth-child(2)

Figure 4.2: HTML parser configuration with CSS selectors
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4.1. Preparation

Figure 4.3: Semi-structured product data from an online shop

gathered data from computer screens landing pages (32,227 out of 45,460) being provided
in the ComputerScreen2023 dataset and used for the evaluation of the pipeline. As
filtering proper data from HTML is a research topic on its own [GK22] I solely considered
extraction with manual parser configurations.

Extracted attribute-value pairs

The resulting data consist of a bunch of attribute title and value pairs, as shown in
Figure 4.4.

4.1.3 Manually crafted regular expressions
In the base pipeline, the data extraction relies on regular expressions, which have been
created by me based on Geizhals reference specifications and sample data from shops. In
addition, the expressions have been generalized to support different spellings and deal
with different use of whitespace. Each property defined in the catalog is linked to one
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{
...
"USB-Spannungsversorgung": "90 Watt",
"Bildschirmtyp": "IPS",
"Seitenverhältnis": "16:9,
...

}

Figure 4.4: Extracted JSON data from HTML

regular expression. They do the hard work and extract numbers, units, lengths, time
spans and more from attribute value strings.

A simple example is the screen diagonal given as ’68.6 cm’, which is converted to a value
string of ’68.6’ and a unit string of ’cm’. The related regular expression is shown in
Figure 4.5. It extracts lengths into number and unit, when given in millimeter, centimeter
or meter. The first round brackets define, what is taken as number and the second
determines the characters gathered as unit.

(\d+[.,]*\d*)\s*(mm|cm|m)

Figure 4.5: Regular expression for screen diagonal extraction

The regular expression for the color depth is shown in Figure 4.6. A typical value for
this is ’10 Bit’, which is split up into value and unit as well. The weight in kilogram or

(\d+)\s*(\D*[bB]it)

Figure 4.6: Regular expression for color depth extraction

gram is extracted similarly, as shown in Figure 4.7. It also results in a value and unit.

(\d+.?\d*)\s?(kg|g)

Figure 4.7: Regular expression for weight extraction

4.1.4 Field mappings align attribute names
The regular expressions are used to create structured data from the raw string values.
An example of these values can be seen in Figure 4.3. The cells framed with a pink box
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4.1. Preparation

contain the attribute value. The regular expressions are applied to these text entries in
the property extraction step of the processing pipeline.

At this time, it is unknown which regular expression should be applied to which row. A
brute force approach, with every regular expression being applied on every row, seems
possible. Nevertheless, even if a rule successfully extracts data, it is unknown to which
catalog property it belongs to. That alignment step is crucial for the creation of a unified
data structure, which is necessary for filter, sort and comparison functions. If you want
to filter the products by screen brightness, the value needs to be accessible at a distinct
place for all gathered products. That is why field mappings are necessary here. So, for
data extraction with regular expressions, a mapping from a property name of the catalog
properties to the related property name used by a shop (see red boxes in Figure 4.3) is
necessary.

This mapping stores under which property name a distinct value is expected in the shop’s
raw data. Look at Figure 4.8 for an excerpt of a manually enhanced field mapping for a
single shop. The catalog properties on the left link to the expected property name for
this shop on the right. If there is no mapping for a specific key, then ’null’ is shown, and
a value for this property can not be collected for this shop via the regular expression
approach.

"Besonderheiten": "Kennzeichnung",
"Bilddiagonale (Zoll)": "Bildschirmdiagonale",
"Bilddiagonale (cm)": "Bildschirmdiagonale",
"Bildwiederholfrequenz": "Maximale Bildwiederholrate",
"Blickwinkel horizontal": "Horizontaler Betrachtungswinkel",
"Blickwinkel vertikal": "Vertikaler Betrachtungswinkel",
"EAN": null,
"Energieeffizienzklasse": "Energie Effizienzklasse",
"Farbe": "Produktfarbe",
"Farbraum Adobe RGB": "Farbraum",
"Farbraum DCI-P3": "Farbraum",
"Farbraum NTSC": "Farbraum",
"Farbraum sRGB": "Farbraum",
"Farbtiefe": "Farbintensität",
"Form": "Bildschirmform",
"Gewicht": "Gewicht",
"HDR": "HDR-Format",
"Helligkeit": "Helligkeit (typisch)",
"Herstellergarantie": null,

Figure 4.8: Excerpt of field mappings for one shop
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Automatic field mappings with fuzzy matching

I have introduced an automatic field mapper, which uses a given dataset, together with
an example value for each property, as shown in Figure 4.9.

"Bilddiagonale (Zoll)": ’27 "’,
"Bilddiagonale (cm)": "68.6 cm",
"Marke": "Acer",
"Auflösung": "2560x1440",
"Helligkeit": "250 cd/m²",
"Reaktionszeit": "5 ms",
"Blickwinkel horizontal": "178",
"Blickwinkel vertikal": "178",
"Panel": "IPS",

Figure 4.9: Example values for some properties

For automatic creation of these links, an algorithm based on fuzzy matching with the
Levenshtein distance has been implemented. The resulting score determines the similarity
between two texts or single words. For each shop and property of the input data, the
following procedure happens. First, the similarity scores between a property title from
the input data and all catalog property names are calculated. If the best score is above
a certain threshold, a possible mapping has been found, and it is added to the field
mappings of that particular shop. The score related to such link is also stored. If a better
mapping for the same shop and same attribute is found, then it overrides an existing
mapping. This behavior aims to improve the field mapping quality.

One problem with value matching is, that they can perfectly match with similar, but
incorrect properties. For example, the vertical and horizontal viewing angle are often
given with a value of ’178°’, which is not distinguishable by its value alone. These entries
require more context in terms of the property name. Thus, I have added a small penalty
for value based mapping scores. A mapping found by similarity of property names can
still be overridden by a mapping found via similarity of values.

The resulting JSON file contains mappings for each shop, and it is possible to fine-tune
the mappings manually to enhance the pipeline results. An evaluation with one shop
being enhanced with manual mappings is shown in section 6.4.

4.2 Data input

The implementation supports HTML pages from online shops or attribute-value pairs
passed via JSON files.
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4.3. HTML data extraction

4.3 HTML data extraction

To extract the attribute-value pairs from the HTML of merchant pages, a manually
crafted and shop dependent parser is applied. Figure 4.2 shows such a configuration file
for one shop. It converts the HTML data into a dictionary with the property name and
value. An example of the resulting unedited shop data is given in Figure 4.4. For the 30
most common shops for computer screens at Geizhals, such parser configurations have
been created. As websites are seldomly renewed, these configurations will be valid for a
long time.

4.4 Extraction and alignment of properties

The pipeline consists of a baseline approach, that extracts values based on regular
expressions and field mappings. An enhancement brings a machine learning model based
on BERT, which has been fine-tuned on sequence labeling. It helps to retrieve port name,
version and the number of ports for HDMI and DisplayPort. Further details are given in
chapter 5.

4.4.1 Using regular expressions

Based on the property mappings shown in Figure 4.8 the schema matching component
retrieves the corresponding merchant value. This plain text string is then parsed via a
predefined regular expression.

The string provided for the screen brightness could look like ’300 cd/m2’ and is one of
the easier ones to get. The resulting pieces are the numerical value ’300’ and its unit
’cd/m2’. From that point on, the brightness data is further processed in a structured
format as shown in Figure 4.10.

"Helligkeit": {
"unit": "cd/m^2",
"value": "300"

}

Figure 4.10: Example of structured brightness data

This step is repeated for every attribute-value pair defined in the field mappings. At the
end, the specifications are in a unified format and solely contains predefined property
names. If a predefined known key, such as the German term ’Helligkeit’ for the screen
brightness is missing, then the brightness data was not available in the shop’s data, or it
could not be extracted with the given regular expression. To improve the situation, the
regular expression can be relaxed or a more sophisticated approach is necessary.
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4.4.2 Using a transformer model
For the latter, I trained a BERT transformer model to enhance the generalized extraction
performance of the pipeline. The selected model is trained on Named Entity Recogni-
tion (NER) and fine-tuned on labeling port data using the gold labels included in the
ComputerScreen2023 dataset. With limited resources in terms of time, processing power
and training data, I set the focus on improving the quality of the extraction of ports,
especially HDMI and DisplayPort. As data formats for these differ much from shop to
shop, a regular expression is only of limited use for these properties. This approach does
not require field mappings, but training on a prepared dataset for the learning process.

A detailed explanation of the machine learning approach is given in chapter 5.

4.5 Clustering products
Identical product offers e.g. with equal European Article Number (EAN) need to be
matched by key attributes like EAN or other unique identifiers. However, the test data
shows, that merchants in Austria and Germany seldom supply an EAN or a similar
unique identification number in their specifications. That requires a more sophisticated
approach, which is a whole research topic on its own [RPMP18, PB22]. Fortunately, I
have initially gathered the data from Geizhals’ product landing pages, and it provides
the data clustered as necessary. This circumvents the need for a product matching
implementation, and it is not addressed in this thesis. However, the ComputerScreen2023
dataset can be used for research on that topic, as it provides ground truth data for
clustering. A more detailed description is given in subsection 3.2.1.

4.6 Value fusion
In this process step all extracted specifications related to the same product are merged
into a single instance of unified, structured specifications. Common properties like the
screen resolution and screen diagonal are supplied by various shops and need to be
reduced to a single value. With a property being equal across data from all shops, that
is trivial. However, filtering possible wrong values can be tricky when there are an equal
number of competing values.

4.6.1 The strategy
I have chosen a fusion strategy, where the shop with most properties for this particular
product wins and all its values are used. Then the next shop adds all properties, which
are missing in the combined data. This continues with the priority of shops descending
as they supply fewer specifications.

A voting is conducted for values which are delivered by multiple shops. If, by majority
voting, more than half the of shops deliver the same value for an attribute, it overrules
any other value.
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Example Given 20 shops supply specifications for a product, and three out of five shops
deliver the VESA mount property with ’100x100’ and the shop with most properties sets
it to ’75x75’, then it is overwritten by majority voting with ’100x100’.

At the end, a comprehensive product specification with data combined from all merchants
is stored in the product catalog as structured and unified JSON data (compare Figure 4.11).
The data structure is coherent among all computer screens present in the catalog. Filtering
and sorting products by specifications, as well as in-depth property comparisons, are
possible. The data is ready to build a product catalog listing with structured specifications
like Geizhals.

4.7 Use cases

At this stage, the collection of unified computer screen specifications can be used for real
world applications, such as a computer screen database with filter and search capabilities.

Two post-processing functions, which are likely necessary for any application, have been
implemented.

4.7.1 Normalization

There is one caveat with the structured data produced by the pipeline - everything is
stored as string. Even numbers and their units are kept as string, so further processing
is left open for the application. However, normalization of numbers and units has been
implemented for some simple cases and can be optionally applied.

With this additional step, numbers with a unit are converted into quantities, which allow
sorting and filtering based on the data. Just consider sorting of two screens, one with
521 mm length and one screen with a length of 54 cm, ignoring the unit would not work.
Additionally, time spans like 2 years and 24 months match after normalization. The
automatic evaluation scores gathered in chapter 6 also apply this normalization before
data comparison.

However, normalization is also beneficial for formatted and unified output of properties.
On a product listing website, an attribute should be shown with the same unit and
format for every product. In this case, normalized data is also helpful.

Apply synonyms

For some common keywords, a table with synonyms has been created. Synonyms, such
as schmaler Rahmen, Zero Frame and Slim Bezel are replaced with the latter defined as
the most common term by me. This allows better control of which keywords appear in
the unified data.
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{
"Anschlüsse DisplayPort": {

"count": "1",
"value": "DisplayPort"
"version": "1.2"

},
"Anschlüsse HDMI": {

"count": "1",
"value": "HDMI",
"version": "1.4"

},
"Auflösung": {

"height": "1440",
"width": "2560"

},
"Beschichtung": "matt",
"Bilddiagonale (Zoll)": {

"unit": "Zoll",
"value": "31.5"

},
"Bilddiagonale (cm)": {

"unit": "cm",
"value": "80.0"

},
"Bildwiederholfrequenz": {

"unit": "Hz",
"value": "75"

},
"Farbtiefe": {

"unit": "bit",
"value": "10"

},
"Form": "gerade",
"Gewicht": {

"unit": "kg",
"value": "10.10"

},
...

}

Figure 4.11: Computer screen specifications in JSON format
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4.7.2 Formatted output
Printing the structured data in well human-readable way is a necessity for product
databases as well as online shops.

The output format of my proposed pipeline is adaptable via a configuration. A collective
term and the values summarized in one row are freely configurable. Figure 4.12 shows
the formatted product specifications of a computer screen. It contains real data, as
mined and extracted by the pipeline. The figure shows, that the collective term for the
resolution, in German ’Auflösung’, combines two properties in one field. The resolution
and screen ratio are displayed as text separated by commas.

Diagonale: 32Zoll, 79.8 cm
Auflösung: 3840x2160, 16:9
Helligkeit: 350 cd/m²
Kontrast: 1000:1
Reaktionszeit: 1 ms
Blickwinkel: 178, 178
Panel: IPS
Form: gerade
Beschichtung: matt
HDR: HDR 400
Farbtiefe: 10 bit
Bildwiederholfrequenz: 144 Hz
Variable Synchronisierung: NVIDIA G-SYNC, AMD FreeSync ...
Anschlüsse: 1x HDMI 2.1, 2x USB-A
Weitere Anschlüsse: 1x Gb LAN
Audio: 1x Line-Out
USB-Hub In: 1x USB-B 3.0
USB-Hub Out: 2x USB-A 3.0
Ergonomie: 17.6 cm, -15/15, 02/+13
Farbe: Schwarz
Gewicht: 8.3 kg
VESA: 100x100
Energieeffizienzklasse: G
Leistungsaufnahme (SDR): 33 W
Leistungsaufnahme (Sleep): 33 W
Stromversorgung: DC-In (externes Netzteil)
Abmessungen: 71.46x31.11x60.26 cm
Besonderheiten: Spielmodus, ConnectShare, ...
Herstellergarantie: 24 Monate

Figure 4.12: Product specifications from one computer screen as formatted text
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CHAPTER 5
Machine learning for enhanced

data extraction

Product specifications provided from merchant landing pages differ in their structure
and their provided properties from shop to shop. Well-structured properties, where all
relevant values are contained entirely in one table row or list entry, form a good use case
for extraction with regular expressions. But on the other hand, peculiar formats spread
data from related properties like HDMI ports across multiple attributes, such as shown
earlier in Figure 1.3 and Figure 1.4. Also, the details about USB-C spread across several
attributes, with one even requiring knowledge of the previous attribute.

It is hard to link and combine such features for extraction with regular expressions. Thus,
I introduce sequence labeling, a technique from Natural Language Processing, to improve
the data extraction capabilities of the pipeline.

Figure 5.1 shows such sequence labels applied to an example sentence. The model used
for this has been trained on labeling persons and locations.

Figure 5.1: Sequence labeling shown on an example sentence

Sequence labeling is used for several Natural Language Processing tasks. I use a BERT
transformer model for Named Entity Recognition, which I fine-tune on HDMI and
DisplayPort features. With that approach, text tokens related to port specifications
should be recognized and properly tagged with labels. Based on such labels, the text is
processed and used for an improved data extraction for difficult cases.

31



5. Machine learning for enhanced data extraction

5.1 Selecting a machine learning model
Pre-trained machine learning models are state of the art for Natural Language Processing
tasks. They are trained on huge datasets, which is not reproducible with your own model
at home. Recent inventions are solely available as online service, which are not a good fit
for this research, the results are not independently repeatable, and the services are apt
to change any time.

Thus, the selection of a machine learning model was limited by the following conditions:

• Supports fine-tuning on local computer

• Inference runs on own machine, no connection to online server

• Ordinary consumer hardware fast enough for fine-tuning and inference

• Free and open source model, which is independent of any external servers, once it’s
downloaded

As BERT models [DCLT19] have been state-of-the-art in pre-trained models for Natural
Language Processing over the last years and checked all points, I focused on them.
Inventions, such as GPT 4 from OpenAI [Ope] or Gemini from Google [SP] will be more
capable, but rely on remote servers. Furthermore, the results are apt to change over
time and are not reliably repeatable as local models are. Thus, I did not take them into
account and went on with BERT, an open source transformer model, which Google
initially published in 2018.

I searched the Hugging Face library in the category of token classifications models and
selected a well established and common model for Named Entity Recognition, called
dslim/bert-base-NER [Fac]. It distinguishes between uppercase and lowercase letters and
was fine-tuned on the English version of the CoNLL-2003 dataset for Named Entity
Recognition. It achieves scores higher than 91% for precision and recall on their test
dataset. Related NER-specific models were trained for niche categories or had no scores
to back up how well they work. The model is trained to distinguish only between four
classes, including location and person names.

5.2 Fine-tune a BERT model
I used my gold labeled dataset on HDMI and DisplayPort specifications (compare
subsection 3.2.4) to fine-tune the dslim/bert-base-NER model on eight labels, including
COUNT-HDMI, VERSION-HDMI and TYPE-DISPLAYPORT. The dataset is fully
compatible with the machine learning library PyTorch, which is used in this thesis. A
custom data loader adds compatibility between the labeled data exported from Label
Studio and the PyTorch training library.
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That data in conjunction with the Trainer API from PyTorch is the foundation to
fine-tune the base NER model. It relies on a token size of 512 and cuts off text that is
too long. This limitation on token size has one downside, as text below the fold is not
taken into account for training or inference. To speed up the training and achieve faster
convergence of the model, I also used the AdamW optimizer. The parameters for the
optimizer are a learning rate of 2e-5 together with the default weight decay of 0.01. The
values were selected based on the default suggestions and some experimental evaluations
based on the dataset.

5.3 Hardware requirements
Decent hardware with native support for machine learning is sufficient to run any
calculation in this thesis. It has been conducted on an Apple M1 Chip in combination
with 16 GB RAM. No discrete GPU was necessary for fine-tuning of the BERT model or
inference on the ComputerScreen2023 dataset.

5.4 Inference
The fined-tuned model is fed with the raw specifications, gained from the HTML extraction
stage, and outputs statistically calculated labels. The model receives its input as plain
text, where the given attribute-value pairs are joined with a semicolon. This is the same
separator that was used for model fine-tuning on computer screen data.

Applying the model on some text, is called inference. Given the text shown in Figure 5.2
as input, it results in labeled data shown in Figure 5.3. The results are shown in a
CoNLL-like format, with the text token on the left and the label on the right of each line.

Paneltyp:VA;Höhenverstellbarkeit:nein;Energieeffizienzklasse:E;
VGA:1x;DVI:0x;HDMI:3x;VESA-Bohrung:100x100;
Swivelfunktion:nein;Pivotfunktion:nein;Lautsprecher:nein;
Reaktionszeit:4 Millisekunden;Helligkeit:250 cd/m2;

Figure 5.2: Product specifications formatted for inference

In this example, the name of the HDMI port and its number of occurrences is correctly
labeled as expected. All other tokens end up with ’O’, which denotes tokens, that do not
belong to a named entity.

This leads to the relevant classifications TYPE-HDMI: HDMI and COUNT-HDMI: 3x.
The values are parsed and structured, so they are fully compatible with the base pipeline
using regular expressions. The evaluation scores of the pipeline with this machine learning
extended extraction method is shown in section 6.3.
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5. Machine learning for enhanced data extraction

VGA O
: O
1x O
; O
DVI O
: O
0x O
; O
HDMI TYPE-HDMI
: O
3x COUNT-HDMI
; O
VESA-Bohrung O
: O
100x100 O
; O

Figure 5.3: Inference results visualized as token-label pair
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CHAPTER 6
Experimental evaluation of the
information extraction pipeline

All the following metrics are evaluated using data from more than 30,000 merchant
landing pages provided by the ComputerScreen2023 dataset as input for my pipeline. The
structured and unified data output is then compared with the reference specifications,
initially gathered from Geizhals. It is worth to highlight, that the reference data is
processed with the base pipeline to get the same data granularity and a compatible data
format. The comparison is conducted based on strict equality of each property. The
structured and unified data is handled as dictionary with a range of allowed keys, earlier
defined as catalog properties. An example of such a dictionary is shown in Figure 4.11.

Normalization of values is applied on top, so one dimensional lengths and value-unit
combinations with differing units can match. Be aware that normalization is not used on
more complex data yet. Thus, the dimensions given as combination of width, length and
height are not normalized, which likely decreases the evaluation scores.

In addition to that, the reference data is not perfect, as further investigated in the case
study in section 6.5. All that taken into account, the scores build a baseline for further
research and are a solid foundation for comparison of all three pipeline variants.

6.1 Definition of evaluation scores

The reference data refers to the Geizhals reference specification from the Computer-
Screen2023 dataset. The catalog data refers to the output of the proposed data extraction
pipeline, given the JSON shop offers from the same dataset as input. For the determina-
tion of evaluation score, we rely on the following definitions:
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6. Experimental evaluation of the information extraction pipeline

• True positives: The number of properties that exist in both (reference and catalog
data) and the values match.

• False positives: The number of properties, where the attribute only exists in the
catalog data or the values do not match.

• False negatives: The number of properties, where the attribute only exists in the
reference data or the values do not match.

Attribute precision

The attribute precision (Equation 6.1) is defined as the ratio of correctly extracted
properties, over the sum of all extracted properties. It represents how many of the
gathered entries are correct, according to the reference data from Geizhals.

attribue precision = true positives

true positives + false positives
(6.1)

The precision score emphasizes false positive values.

Attribute recall

The recall score (Equation 6.2) describes the ratio of correctly gathered properties over
all reference properties, as supplied by Geizhals.

attribute recall = true positives

true positives + false negatives
(6.2)

The recall score accentuates false negatives.

Attribute F1

The F1 score (Equation 6.3) is a combination of precision and recall. In contrast to
accuracy, this value is not biased for unbalanced data and the single value score of choice.

F1 = 2 ∗ attribute precision ∗ attribute recall

attribute precision + attribute recall
(6.3)

6.2 Base pipeline using regular expressions
The evaluation of the default pipeline, relies on automatic field mappings. It solely uses
regular expressions to extract the data and achieves an attribute precision of 59.67 % and
an attribute recall of 47.54 %, as calculated from the values in Table 6.1 and summarized
in Table 6.2. Based on these numbers it can be concluded, that the extraction works,
but there’s room for improvement. Approximately a third of the extracted properties
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do not match with the reference data. However, this could be caused by faulty data
provided from online shops. In addition, the reference data can be incorrect or marginally
different. The latter is often the case with free text entries, screen dimensions, widths
or power consumption values, which happen to be rounded or slightly different. Thus,
evaluation scores based on a selection of 15 attributes are shown in subsection 6.2.2.
These scores better reflect the real world performance, as they focus on attributes with
well comparable reference data.

True positives 33,837
False positives 22,874
False negatives 37,338

Table 6.1: Confusion matrix using base pipeline

Attribute precision 59.67 %
Attribute recall 47.54 %
Attribute F1 52.92 %

Table 6.2: Evaluation scores from base pipeline

Additional statistics of the ComputerScreen2023 dataset and the property retrieval
pipeline are shown in Table 6.3. The base pipeline implementation achieves, an average
extraction performance of 14.5 correct properties over more than 2,000 computer screens,
while solely relying on more than 30,000 landing pages of 30 online shops as input.

Shop offers in dataset 32,227
Sum of extracted computer screens 2,330
Sum of all correct properties 33,837
Avg. correct properties/product 14.52

Table 6.3: Statistics from computations related to the ComputerScreen2023 dataset

6.2.1 Evaluation scores on the attribute level

Evaluation scores for each extractable property are given in Table 6.4. The recall and
precision scores are calculated based on true positives (TP), false positives (FP) and
false negatives (FN). These raw values provide valuable information about outliers and
to suggest improvements and show shortcomings of the implementation or reference data.
Attributes, which solely list false positives, indicate that they could only be extracted
from the shop’s product data. On the other side, attributes which solely contain false
negatives, point out that they could only be extracted from the reference data. There are
several attributes with no true positives, which hint at a problematic evaluation or a lack
of normalization. These attributes are a good starting point for future work.
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Attribute name Prec. [%] Rec. [%] F1 [%] TP FP FN
Abmessungen 0.12 0.09 0.10 2 1732 2308
Anschlüsse DVI 92.45 65.92 76.96 147 12 76
Anschlüsse DisplayPort 50.00 0.23 0.46 4 4 1709
Anschlüsse HDMI 91.30 3.03 5.87 63 6 2016
Anschlüsse Klinke 100.00 48.24 65.08 905 0 971
Anschlüsse LAN 100.00 73.37 84.64 135 0 49
Anschlüsse Mini DP 0.00 0.00 0.00 0 0 25
Anschlüsse USB-A 74.47 32.85 45.59 385 132 787
Anschlüsse USB-C 22.12 55.73 31.67 73 257 58
Anschlüsse VGA 97.27 67.71 79.84 499 14 238
Auflösung 91.82 75.67 82.96 1763 157 567
Ausgänge Display 0.00 0.00 0.00 0 0 124
Beschichtung 40.98 31.40 35.56 720 1037 1573
Besonderheiten 20.93 18.16 19.45 422 1594 1902
Bilddiagonale (Zoll) 96.00 62.79 75.92 1463 61 867
Bilddiagonale (cm) 32.05 25.36 28.32 591 1253 1739
Bildwiederholfrequenz 88.18 75.58 81.40 1761 236 569
Blickwinkel horizontal 84.36 73.13 78.34 1704 316 626
Blickwinkel vertikal 84.36 73.13 78.34 1704 316 626
Energieeffizienzklasse 83.85 78.29 80.97 1583 305 439
Farbe 0.10 0.09 0.09 2 1991 2328
Farbraum Adobe RGB 70.61 46.26 55.90 161 67 187
Farbraum DCI-P3 82.56 51.03 63.08 322 68 309
Farbraum NTSC 0.00 0.00 0.00 0 585 0
Farbraum REC 2020 0.00 0.00 0.00 0 0 33
Farbraum REC 709 0.00 0.00 0.00 0 45 152
Farbraum sRGB 82.02 60.01 69.31 830 182 553
Farbtiefe 95.33 58.51 72.51 1327 65 941
Form 84.57 40.47 54.75 943 172 1387
Gewicht 84.60 71.19 77.32 1643 299 665
HDR 82.29 56.43 66.95 395 85 305
Helligkeit 93.30 82.67 87.67 1923 138 403
Herstellergarantie 0.00 0.00 0.00 0 1354 0
Höhenverstellbar 22.71 28.94 25.45 432 1470 1061
Kontrast 14.60 12.59 13.52 292 1708 2028
Krümmung 99.01 52.62 68.72 201 2 181
Leistungsaufnahme (SDR) 52.73 42.87 47.29 974 873 1298
Leistungsaufnahme (Sleep) 30.48 23.50 26.54 534 1218 1738
Neigungswinkelbereich 0.00 0.00 0.00 0 1742 0

Table 6.4: Evaluation results per attribute from the base pipeline
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6.2. Base pipeline using regular expressions

Attribute name Prec. [%] Rec. [%] F1 [%] TP FP FN
Panel 86.07 78.14 81.91 1816 294 508
Reaktionszeit 85.11 75.81 80.19 1755 307 560
Schwenkwinkelbereich 0.00 0.00 0.00 0 763 0
Seitenverhältnis 98.92 86.14 92.09 2007 22 323
Stromversorgung 83.12 47.21 60.21 1098 223 1228
Thunderbolt 68.29 60.87 64.37 28 13 18
USB-Hub Ausgang 100.00 55.29 71.21 658 0 532
USB-Hub Eingänge USB-B 100.00 53.74 69.91 460 0 396
USB-Hub Eingänge USB-C 0.00 0.00 0.00 0 2 502
VESA 91.88 82.26 86.80 1822 161 393
Variable Synchronisierung 15.40 12.45 13.77 290 1593 2040

Table 6.5: Evaluation results per attribute from the base pipeline (cont.)

6.2.2 Evaluation scores of 15 selected attributes

The low scores based on over 50 attributes do not represent the full capabilities of the
pipeline. Some attribute values need more work on the evaluation and normalization
side in order to produce sensible evaluation scores, that better reflects the output
of the pipeline. Therefore, I also provide scores for a selection of the following 15
attributes: Auflösung, Bilddiagonale (Zoll), Bildwiederholfrequenz, Blickwinkel horizontal,
Energieeffizienzklasse, Farbraum sRGB, Farbtiefe, Gewicht, Helligkeit, Krümmung, Panel,
Reaktionszeit, Seitenverhältnis, Stromversorgung and VESA.

Based on the subset of scores given in Table 6.4, it results in new values for the confusion
matrix, as shown in Table 6.6. The evaluation scores based on these 15 attributes, the
precision drastically increases from 59.67 % to 89.13 % and the recall increases from
47.54 % to 72.01 % as shown in Table 6.7. Thus, the F1 score also improves noticeable
from 52.92 % to 79.66 %.

True positives 22,696
False positives 2,768
False negatives 8,823

Table 6.6: Confusion matrix using the base pipeline with 15 selected attributes

Attribute precision 89.13 %
Attribute recall 72.01 %
Attribute F1 79.66 %

Table 6.7: Evaluation scores from the base pipeline with 15 selected attributes
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6.3 Pipeline enhanced with machine learning model

The machine learning model and its fine-tuning is described in chapter 5. The evaluation
results of the enhanced pipeline show a slight improvement of 0.5% in attribute recall, as
calculated from the values in Table 6.8 and summarized in Table 6.9. On the other hand,
the precision fell by more than 1 %. According to the data, the DisplayPort extraction
scores did not change at all. This leads to the conclusion, that DisplayPort version
numbers are seldomly provided and the four cases, where it was, were already covered by
the base pipeline.

Based on the increased number of true positives, which went from 63 to 410 correctly
extracted HDMI properties, it can be concluded, that the machine learning model is a
good addition to gather data, that is hard to extract with regular expression alone. The
flexibility of the machine learning enabled pipeline allows extraction of single port details,
e.g. just the HDMI port count. Whereas the reference data and evaluation solely relies
on the combination of port count, port name and port version. As there is no disposal
algorithm for partly retrieved port data, the scores for the machine learning approach
need to be taken with a grain of salt. The evaluation is strict, so even port data that is
correct, counts as false positive and also as false negative in the statistics.

True positives 34,228
False positives 24,542
False negatives 36,947

Table 6.8: Confusion matrix using the base pipeline + machine learning

Attribute precision 58.24 %
Attribute recall 48.09 %
Attribute F1 52.68 %

Table 6.9: Evaluation scores from the base pipeline + machine learning

It is worth to note, that the machine learning enhancement only applies to the HDMI
and DisplayPort related properties. With a larger scope of the machine learning model
and improved training data, a higher positive impact will be possible.

6.4 Pipeline enhanced with manually improved field
mappings

In addition to the base pipeline implementation, I also evaluate possible improvements
with improved field mappings. They play a vital part for the extraction with regular
expression. Invalid mappings directly reduce the number of extractable properties and
imply a reduced number of correctly collected properties.
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Due to approximately 2000 field mappings, I have manually enhanced the mappings
for the most common shop from the ComputerScreen2023 database and compare the
results with the base pipeline. The manually improved field mappings, for one out of
thirty shops, already lead to a noticeable improvement by one percent in the F1 score.
The attribute precision, as well as the attribute recall, have increased by roughly one
percent as calculated from the values in Table 6.10 and shown in Table 6.11. That
is as expected, because more valid mappings lead to more extractable values and the
recall rises. Additionally, fewer incorrect mappings are supposed to lead to fewer falsely
extracted property values, and the precision goes up as well.

True positives 34,678
False positives 22,777
False negatives 36,497

Table 6.10: Confusion matrix using the base pipeline + manual mapping of one shop

Attribute precision 60.36 %
Attribute recall 48.72 %
Attribute F1 53.92 %

Table 6.11: Evaluation scores from the base pipeline + manual mapping of one shop

A comparison of the attribute evaluation scores based on the pipeline variants is shown
in Table 6.12.

Pipeline Attr. prec. Attr. rec. Attr. F1 TP FP FN
Base 59.67 % 47.54 % 52.92 % 33,837 22,874 37,338
Base (15 attr.) 89.13 % 72.01 % 79.66 % 22,696 2,768 8,823
Base + ML 58.24 % 48.09 % 52.68 % 34,228 24,542 36,947
Base + Manual 60.36 % 48.72 % 53.92 % 34,678 22,777 36,497

Table 6.12: Comparison of evaluation results

6.5 Manual evaluation
The automatic performance evaluation with Geizhals as reference is only suitable as
an approximation, as the reference specifications are likely based on additional data,
which the dataset does not provide as input for the pipeline. There are data maintainers
who enhance the data manually, according to their job descriptions [Gei]. Thus, my
assumption is, that the Geizhals reference contains data from other sources like the
website of the manufacturer and product datasheets.

The ComputerScreen2023 dataset consists of data from 1st October 2023. Only shops
listed on that day - so shops which had the product ready for sale - are available in
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6. Experimental evaluation of the information extraction pipeline

that dataset. This means, that even a program with an ideal information extraction
performance will not able to achieve a perfect score in the automatic evaluation.

To prove the assumption for the given dataset and get a clearer picture of the data mining
performance and expected deviation from a perfect score, I pick a computer screen and
investigate it. I automatically collect the properties of the computer screen and the
reference data. In order to prove the claim of additional data being necessary, all the
properties are also manually collected based on the input data for the pipeline.

I picked an example screen, for which the proposed pipeline supports data extraction for
all shop offers of this product.

6.5.1 Case study of one computer screen
I have manually evaluated the raw data for the Fujitsu E-Line E22-8 TS Pro (2021),
21.5" computer screen, as available in my dataset. The underlying data can be found in
my dataset under the ID 1115 and contains product data from three shops. Thus, there
is data from three landing pages available to gather the specifications for this product.

I claim, that Geizhals uses more than data from these three websites to create their
specification. The investigation shows, that even in theory it is not possible to extract
and get all the specifications, that the reference contains, as properties are missing in the
source data.

The automatic evaluation between the extracted data and the reference values shows low
scores (see Table 6.13) compared to the average scores achieved with a base pipeline run
using the ComputerScreen2023 dataset.

Attribute precision 50.00 %
Attribute recall 33.33 %
Attribute F1 40.00 %

Table 6.13: Automatic pipeline evaluation scores of a computer screen

The comparison of values in Table 6.14 and Table 6.15 shows, that the reference data
from Geizhals contains some attribute values, which are not contained in the source data.
The ’manual’ column shows the hand-picked, apparently best values as selected by the
author. Lastly, the pipeline column shows the property values as mined by the base
pipeline. The pipeline, as well as the hand-picked reference values, are solely based on
the data from the product landing pages of three online shops.

Data not taken into account

It can be seen, that the automatic field mapping algorithm did not find a mapping or
the regular expression could not extract the relevant value for Herstellergarantie and
Bildwiederholfrequenz. However, the manual evaluation brought up the properties, so
they are in the dataset, but the pipeline could not collect them.
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Property Reference Manual Base pipeline
Diagonale 21.5"/54.6cm 21.5"/54.6cm -
Auflösung 1920x1080, 16:9,

102ppi
1920x1080, 16:9 1920x1080, 16:9

Helligkeit 250cd/m2 250cd/m2 250cd/m2

Kontrast 1.000:1 1.000:1 1000:1
Reaktionszeit 5ms 5ms 5ms
Blickwinkel 178°/178° 178°/178° 178°/178°
Panel IPS IPS IPS
Form gerade - -
Beschichtung matt (non-glare) Blendfrei, 3H

Hard Coating
HDCP, ..., Low
Blue Light Mode,
sRGB Mode

Farbtiefe 8bit (16.7 Mio.
Farben)

16,7 Millionen Far-
ben

-

Farbraum - - -
Bildwiederholfrequenz 60Hz 60Hz 76Hz
Anschlüsse - 1x DisplayPort,

1x HDMI, 1x
VGA, 1x DVI-D

-

Audio Lautsprecher (2x
1.5W), 1x Line-In,
1x Line-Out

Lautsprecher -

Ergonomie (neigbar) +22°/-5° -5°/+22° -5°/+22°
Farbe schwarz (Dis-

playrahmen),
schwarz ...

schwarz schwarz

VESA 100x100 100x100 100x100
Leistungsaufnahme 20W (maximal),

14.6W (typisch),
0.12W (Standby)

26W (max.),
11.6W (Ein),
0.14W (Standby)

0.11W (Sleep)

Energieeffizienzklasse
SDR (A bis G)

D D D

Energieverbrauch
SDR

12kWh/1000h 11.6kWh/1000h -

Table 6.14: Comparison of extracted computer screen specifications
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Property Reference Manual Base pipeline
Stromversorgung AC-In (internes

Netzteil)
- -

Abmessungen (Bx-
HxT)

500.5x343.45x212
mm

50.05x21.2x34.35
cm

50.05x21.2x34.35
cm

Gewicht 2.98kg 2.98kg 2.98 kg
Besonderheiten EPEAT Silver,

mechanische
Tasten, Sicher-
heitsschloss (...)

EPEAT Bronze,
...

HDCP, ..., Low
Blue Light Mode,
sRGB Mode

Herstellergarantie drei Jahre drei Jahre -

Table 6.15: Comparison of extracted computer screen specifications (cont.)

Data that is not retrievable

Then there are entries, which are not possible to extract right. These are the fields with
a reference value, but an empty or only partly correct manual value, such as Form and
Stromversorgung. The data is there at Geizhals, but the shop’s landing pages did not
contain them. These are the entries, that make it impossible to achieve a score of 100 %
with the given input data.

Ambigious data

Lastly, there is similar, but not perfectly matching data, such as the ports with an
additional ’DVI-D’ port, listed on one of the show websites. At this point it is unknown,
which party really has the correct information. Then there are the ’Abmessungen
(BxHxT)’ where just one differs by 0.05 mm, probably due to rounding to one decimal
for millimeter values. And then there is the ’Energieverbrauch SDR’ which also differs
only in the last digit.

Due to humans not acting as strict and determined as computers do, I could not determine
sensible real world performance scores. Many questionable cases arise when manually
evaluating this computer screen.

Real world scores would mainly depend on the assumptions you make:

• When do lengths match?

• When do values match? Are they only correct when they are equal to the last
digit?

• Is rounding okay?
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In contrast to that, all shown scores are determined with a simple condition. If the
pipeline does not get it, the property has not been retrieved and if a gathered value does
not match, it is incorrect.

Due to these issues and humans being error-prone in such tasks, I do not present scores for
the real world performance. But it would definitely result in better evaluation scores. The
perfectly matching properties are already taken into account, so manual evaluation will
only discover false positives and some false negatives could be marked as not retrievable
from the source data. The amount of actually extractable properties shrinks and thus,
the recall score increases. Additionally, it could be discovered, that the pipeline collects
more perfectly fine values, but the properties are missing in the reference data.
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CHAPTER 7
Conclusions

Summing up, the information retrieval and alignment pipeline works and extracts valuable
specifications. Based on a selection of attributes with well comparable reference data,
the pipeline shows its true potential with an attribute precision of 89.13 % and a recall
of 72.01 % for these attributes. This leads to an F1 score of 79.66 %. The pipeline
collects an average of 14.5 product properties based on the evaluation of more than 2,000
computer screens with data solely from merchant landing pages. There are many data
processing steps, which can be improved in order to achieve better extraction scores
for even more attributes. It can be concluded, that it is possible to create good unified
product specifications from data supplied solely by online shops. The output is heavily
dependent on the quality of the supplied raw data, and fewer on the number of shops,
that provide it. Most online shops list the main properties, such as screen diagonal,
resolution and panel type, but only few provide more detailed specifications for every
aspect. Thus, few shops, that supply good data, are better than many shops providing
the same basic properties over and over again.
According to the case study, Geizhals has more data to create their product specifications,
than the web shops provided on October 1, 2023. That is no surprise, as the listed offers
change regularly, based on the availability of the product in the related shop. However,
Geizhals relies on data maintainers and user feedback. Thus, it can be assumed, that
some properties are added from product data sheets and the manufacturer’s official
product pages as well. At the market launch of new products, it can be observed, that
Geizhals provides very detailed product specifications from the beginning. This leads to
the conclusion that they have access to more non-public channels, from which they get a
large amount of good quality data. Based on these source, they likely unify and align
the specifications to present uniform data across all products from many manufacturers.
All in all, the regular expressions are quite powerful and do a good job with pulling
data from a text string. The need for field mappings is a disadvantage of the proposed
implementation, as it requires real world data and at least a one time setup for each
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new shop that the pipeline is used with. On the other hand, the implementation is
certainly adoptable for other categories with dense and distinct product properties, such
as smartphones or tablets. Another strength is, that expected properties and the resulting
data format is configurable.

The fine-tuning of the BERT model resulted in a measurable increase of extracted data.
However, to achieve better and more consistent results some preprocessing or a different
machine learning approach is required. The shortcoming of BERT is the maximum token
size of 512 tokens per run, which leads to cut off of long computer screen specification for
training and inference. Taking care of these issues, will noticeably improve the machine
learning model. Support for retrieval of more properties and details is another factor to
achieve better results.

An overall learning is, that automatically aligning properties from various providers and
unifying data is a hard task. While implementation of the basic things works fine, the
issues start once it comes to the details of attribute extraction. Hidden characters appear
and require clean up, or numbers are only given as text like ’one’ and needs a conversion
to Arabic numerals for further processing. Additionally, data can differ from shop to
shop by some nit, and assumptions are necessary to deal with them and not get stuck by
too much attention to one detail.

The supported input for the base pipeline is semi-structured data, in order to have
attribute-value pairs to process. The approach is not suitable for plain text paragraphs
with properties wrapped in full sentences. An extraction from plain text data is only
applicable for the machine learning part, when it is trained on such input as well. The
machine learning approach needs another thought in order to overcome the mentioned
shortcomings and increase its helpfulness.

7.1 Future work
The proposed pipeline has not yet reached its full potential and there are many steps,
that can be refined. Tackling any of the following suggestions likely leads to a noticeable
gain in extraction performance:

• Support multiple regular expressions per property

• Enhance automatic mapping approach and validate found mappings

• Evaluate multiple value fusion algorithms

• Extend the normalization to support all values

• Rethink the machine learning approach, generalize and adapt it for the use with
more attributes

• Evaluate the pipeline on a more fine-grained data level, rendering ’1x HDMI’ a
correct subset of the reference data ’1x HDMI 1.4’
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7.1. Future work

Lastly, the thesis did not deal with a clustering strategy for equal products or a general
purpose approach for data extraction from HTML, which leaves these open topics for
further work as well.
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