
Intelligentes Testen und
Konfiguration von SoCs durch die
Nutzung von IJTAG ergänzt durch

on-chip Mikroprozessor-Zugriff

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Clemens Pircher, BSc
Matrikelnummer 01525889

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Dipl.-Ing. Heimo Hartlieb

Univ.Ass. Dipl.-Ing. Florian Ferdinand Huemer, BSc

Wien, 3. Februar 2022
Clemens Pircher Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Smart SoC testing and remote
configuration facilitated by the

use of IJTAG complemented with
on-chip microprocessor access

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Clemens Pircher, BSc
Registration Number 01525889

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Dipl.-Ing. Heimo Hartlieb

Univ.Ass. Dipl.-Ing. Florian Ferdinand Huemer, BSc

Vienna, 3rd February, 2022
Clemens Pircher Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Clemens Pircher, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Februar 2022
Clemens Pircher

v

Danksagung

Im Laufe dieser Arbeit habe ich viel fachliche und emotionale Unterstützung durch
Personen in meinem Umfeld erfahren. Ich möchte allen von ihnen aus meinem tiefsten
Herzen danken.

Zunächst möche ich Heimo Hartlieb und Wolfgang Ecker meinen Dank für die Möglichkeit
an diesem spannenden Projekt zu arbeiten aussprechen. Insbesondere will ich euch auch
für die erfrischenden und ergiebigen Diskussionen, sowie die ständige unbezahlbare
Unterstützung danken. Ein weiteres großes Dankeschön gebührt Heimo auch dafür, dass
er diese Arbeit über seine Feiertage korrekturgelesen hat.

Ich möchte mich auch bei meinem Betreuer Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas
Steininger für seine Unterstützung, Flexibilität und Zuvorkommenheit im Fachlichen
und Organisatorischen erkenntlich zeigen. Auch er war immer schnell zur Stelle und sehr
engagiert mich in meinen Zeitplänen zu unterstützen.

Weiters möchte ich unserem Manager Gerald Derflinger dafür danken, dass er mir während
einer globalen Pandemie immer den Rücken freigehalten hat.

Ich möchte auch allen Kollegen bei Infineon für ihre Hilfe, aber auch für den Teamgeist
und die generell gute Zeit danken. Es hat mir viel Spaß gemacht mit euch allen zu
arbeiten. Ein großes Dankeschön gebührt Keerthikumara Devarajegowda und Paritosh
Sinha für ihre rasche Unterstützung bei allen Fragen und Problemen bezüglich Metagen
und MetaRTL. Ich schulde auch Michael Werner meinen Dank und zumindest einen
Abend voller Bier für seine Unterstützung bei allen MetaFirm-betreffenden Themen und
für die schnelle Implementierung von Erweiterungen welche für diese Arbeit nötig waren.
Ich möchte auch Zhao Han für unsere Diskussionen und seine Code Reviews danken.
Spezieller Dank gebührt Timotei Muresan für die Verifikation meiner generierten Designs.
Desweiteren möchte ich Thomas Grubelnik dafür danken, dass er bei der SoC Integration
geholfen hat und mich während stundenlangen Debug-Sessions bei Laune gehalten hat.
Ich danke auch Evren Kenanoglu für seine Hilfe beim Aufsetzen der Software Toolchain
und der Modifikation der genutzten Linker Skripte.

Zu guter Letzt möchte ich meiner Freundin, meiner Familie und meinen Freunden meinen
tiefsten Dank für ihre überwältigende Unterstützung und ständige Ermutigung während
meines Studiums und dieser Arbeit aussprechen. Ohne euch hätte ich das alles nicht
geschafft.

vii

Acknowledgements

Over the course of working on this thesis, a lot of people have provided me with technical
and emotional support. I want to thank all of them from the bottom of my heart.

In particular, I would like to express my gratitude to Heimo Hartlieb and Wolfgang Ecker
for the opportunity to work on this exciting project. I also want to thank both of you for
the refreshing and fruitful discussions that we had in the process and the constant and
invaluable support that I have received from you. Moreover, a very big thanks to Heimo
for proofreading this thesis during his holidays.

I am also very grateful to my supervisor Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas
Steininger for his support, flexibility and forthcomingness in technical and organizational
matters. He was always promptly available and committed to supporting me in my
schedule.

I must also thank our manager Gerald Derflinger for always having my back while working
through a global pandemic.

Moreover, I want to thank all my colleagues at Infineon not only for the help they have
offered but also for their good team spirit and in general the good times that we had.
I had a blast working with you all. Big thanks go to Keerthikumara Devarajegowda
and Paritosh Sinha for their prompt support with any Metagen- and MetaRTL-related
questions and issues. I also owe gratitude and at least an evening’s worth of beer to
Michael Werner for his support with any MetaFirm-related topics and for providing the
library extensions that were required for this thesis. I also want to thank Zhao Han
for our discussion and his feedback during code reviews. Special thanks go to Timotei
Muresan for spending the time to verify my generated designs. I also want to thank
Thomas Grubelnik for his help with the SoC integration and for humoring me during
seemingly endless hours of debugging. Furthermore, I want to thank Evren Kenanoglu
for his help with the software toolchain setup and linker script modifications.

Last but not least, I want to express my deepest gratitude to my girlfriend, my family
and my friends for their overwhelming support and words of encouragement throughout
my studies and this thesis. I could not have done it without you.

ix

Kurzfassung

Die ständige Zunahme an integrierten Komponenten in modernen SoCs sorgt für einen
enormen Anstieg der Komplexität. Dies wirkt sich nicht nur auf die digitalen Design- und
Verifikationsprozesse aus, sondern auch auf die End of Line Tests der fabrizierten ICs
deren Anteil an den Produktionskosten immer signifikanter wird. Gängige Design For Test
Praktiken können unter Zuhilfenahme der CPU genutzt werden um den Parallelismus von
End of Line Tests zu erhöhen und die Testzeit zu verkürzen. Diese Methode ermöglicht
auch die Wiederverwendung von Scanketten wodurch mit minimalem Mehraufwand
Selbsttests sowie das Trimmen und die Konfiguration von analogen Bauteilen zur Laufzeit
genutzt werden kann. Die vorliegende Arbeit präsentiert ein Framework aus Hardware-
und Softwaregeneratoren welches in der Lage ist eine modulare on-chip Testinfrastruktur
auf der Basis der etablierten JTAG und IJTAG Standards zu generieren. Aus einer
Spezifikation kann mittels der Generatoren ein systemspezifisches Reconfigurable Scan
Network aus unabhängigen und wiederverwendebaren Subnetzwerkdefinitionen zusam-
mengestellt werden. Durch ein eigens entwickeltes Modul welches Datenverkehr zwischen
der CPU und dem Reconfigurable Scan Network ermöglicht können softwarebasierte
Selbsttest-, Selbsttrim- und Konfigurationsabläufe zur Verfügung gestellt werden. Die
Generierung von spezifischen Treiber aus high-level Definitionen von Scanoperationen
nahe der standardisierten Procedural Description Language unterstützt die Entwicklung
der entsprechenden Software. Dadurch fördert der beschriebene Ablauf nicht nur die
Wiederverwendung von Intellectual Properties und Embedded Instruments sondern auch
die Wiederverwendung der relevanten Software Routinen. Schlussendlich wird die Inte-
gration eines entsprechenden Designs in einen RISC-V-basierten SoC präsentiert. Die
Entwicklung einer Komparator-basierten Selbsttrim-Applikation zeigt die Flexibilität,
Modularität und Produktivitätssteigerung des vorgestellten Frameworks auf.

xi

Abstract

The ever-increasing number of embedded elements in modern SoCs is a major driver
for growing design complexity. This affects not only the digital design and verification
processes but also End of Line testing of manufactured ICs whose fraction of overall
production cost is becoming more significant. Making Design For Test features accessible
to the CPU can augment End of Line testing by increasing parallelism and reducing test
time. Moreover, reusing scan chains in this way can provide valuable Built-In Self-Test,
analog trimming and analog configuration mechanisms in the field with little to no
additional hardware overhead. This thesis presents a hardware and firmware generator
framework that is capable of generating a modular on-chip testing infrastructure based on
the established JTAG and IJTAG standards. By providing a single source specification to
the generators, a system-specific Reconfigurable Scan Network implementation is compiled
from independent and reusable subnetwork definitions. A specially designed peripheral
that manages traffic between the CPU and Reconfigurable Scan Network enables the
provision of software-based self-testing, self-trimming and analog configuration. The
generation of custom drivers from high-level scan operation descriptions close to the
standardized Procedural Description Language further supports the development of
the respective software. In doing so, the proposed flow does not only foster reuse of
Intellectual Properties and Embedded Instruments but also reuse of test- and trim-related
software routines. In the end, integration of a particular design in a RISC-V-based SoC is
presented. The development of a comparator-based self-trim application is demonstrated
to underline the flexibility, modularity and productivity that the proposed flow offers.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

2 Background 3
2.1 Scan Chain Architecture . 3
2.2 Automated Code Generation . 9
2.3 SoC Architecture . 17

3 Related Work 19
3.1 Self-Testing via Scan Chains . 19
3.2 Trimming and Configuration via Scan Chains 21

4 Design Implementation 23
4.1 Design Requirements and Structure . 23
4.2 Design Metamodel . 25
4.3 Hardware Generation . 28
4.4 Firmware Generation . 36

5 Methodology Showcase 43

6 Discussion and Outlook 49

7 Summary 55

List of Figures 57

List of Tables 59

xv

List of Algorithms 61

Acronyms 63

Bibliography 67

A Source Code 71
A.1 Hardware Abstraction Layer . 71
A.2 Basic Driver . 75
A.3 Custom Driver . 78
A.4 Trim Routine . 80

CHAPTER 1
Introduction

1.1 Motivation
Over the past decades, the complexity of Integrated Circuits (ICs) has been increasing
rapidly while manufacturing costs and feature sizes have diminished [1]. Besides the
enormous design and verification effort required to keep up with these fast-paced de-
velopments, the increased risk of manufacturing-induced defects necessitates thorough
End of Line (EOL) testing [1, 2]. The use of Design For Test (DFT) techniques like
scan chains and Built-In Self-Test (BIST) is inevitable to uphold or even improve upon
product standards [3, 1, 4, 5].

With the complexity and number of embedded elements in modern Systems On Chips
(SoCs) increasing, so do the number of Embedded Instruments (EIs) required to achieve
acceptable test coverage. This further adds to the test time and test costs causing their
share in overall production expenses to become more significant [2, 6]. Moreover, the
time required to develop the tests should not be underestimated [1]. Integration of BIST
engines can help to alleviate the demands and burden on Automated Test Equipment
(ATE) during EOL testing while also offering valuable in-field tests but they come at
the expense of increased area overhead [1, 6, 5]. In addition, to test requirements for
digital and analog Intellectual Properties (IPs), analog blocks also require trimming
which takes up a large portion of test time [7, 8] and cannot be parallelized on ATE
easily [8]. Moreover, the required runtime configuration can be problematic because
analog IPs usually do not feature bus interfaces.

The classical scan-inspired approach as described in the IEEE 1149.1 [9], while well
supported by ATE and Electronic Design Automation (EDA) tools, is becoming unwieldy
given the high number of EIs which complicates the test-related aspects of IP-reuse.
This is even more relevant when targeting an entire product family range with a variety
of feature sets among the individual SoCs. Moreover, the EOL test features add to

1

1. Introduction

the overall chip area but usually do not serve any purpose for the rest of the product’s
lifetime.

Therefore, the (re-)use of scan chains with minimal per-IP overhead is of interest for the
purpose of self-trimming, in-field testing and in-field configuration. The fact that an
SoC already comes with a Central Processing Unit (CPU) suggests that enabling on-chip
access to the scan chains can be of enormous help in reaching these goals in a flexible
and future-proof way.

1.2 Objectives
The aim of this thesis is to develop an on-chip testing infrastructure to overcome the
mentioned limitations. Specifically, it is essential to support conventional and transparent
EOL testing as defined in IEEE 1149.1 combined with the additional benefits of smart
software-driven self-testing, self-trimming and runtime configuration based on scan chain
reuse. For this purpose, a strategy that allows interaction with scan chains via the CPU
needs to be devised.

In order to ease IP and test-reuse and ensure future extensibility, recent developments
with respect to flexible scan chain management [10] have to be taken into account.
Moreover, the proposed architecture should be modular and flexible in its components to
cover different on-chip testing requirements on a per-product basis.

Introducing an interface between the CPU and a set of scan chains also implies bridging
the hardware/software boundary. Since dealing with scan chains directly is an intricate
matter, having to work with a simple Hardware Abstraction Layer (HAL) is too tedious
for software engineers. Therefore, productive development of the required test software
must be ensured by provisioning reasonable high-level tool support.

As a demonstration of the achieved results, a practical example that illustrates the
opportunities achieved by the integration of the described approach in an SoC shall be
presented. Specifically, the aim is to showcase the reuse and flexibility made possible
by design decisions at a hardware level as well as how a high level of abstraction in the
firmware toolchain fosters software development.

2

CHAPTER 2
Background

Over the course of this thesis, it is essential to have a firm understanding of scan
architectures. Another key requirement is a good understanding of metamodeling and
how automated hardware generation is practiced at Infineon. Lastly, it is beneficial
to understand the basic architecture of the targeted SoCs and how certain parts of
the toolchain are involved during development. This chapter gives an overview of the
necessary theoretical prerequisites for this thesis.

2.1 Scan Chain Architecture

Scan chains are without a doubt the most used concept when it comes to DFT.The key
idea is to arrange Flip Flops (FFs) in a chain during testing so they act as a shift register.
This can provide any level of observability and controllability of integrated circuits with a
minimal interface. The goal of this section is to introduce standardized and time-proven
(boundary) scan architecture concepts as well as recent developments for dealing with
the ever-increasing complexity of SoCs.

2.1.1 Boundary Scan Architecture

About three decades ago, the Joint Test Action Group (JTAG) finalized the original
IEEE 1149.1 standard [9] focusing on the description of a Test Access Port (TAP) and
boundary scan architecture. The primary purpose was to provide a standardized approach
for the testing of IC to Printed Circuit Board (PCB) interconnect as well as the IC itself.
Oftentimes, the 1149.1 standard is referred to as the JTAG standard.

Figure 2.1 gives a basic overview of the scan architecture. The centerpiece is the so-called
TAP controller which is driven via a TAP interface consisting of four digital signals:

3

2. Background

Bypass Reg

IDCODE Reg

Boundary Scan Reg

Instruction RegTDI

TMS

TDO

TAP Controller

Bypass Reg

IDCODE Reg

Boundary Scan Reg

Instruction RegTDI

TMS

TDO

TAP Controller

Figure 2.1: Simple overview of the boundary scan architecture as outlined in the standard.
Solid lines are data signals and dashed lines are control signals.

• The Test Clock (TCK) which is responsible for clocking of the TAP controller and
the scan chains.

• The Test Mode Select (TMS) is used to change the state of the TAP controller at
the rising edge of TCK.

• The Test Data Input (TDI) is the serial input clocked into the system at the rising
edge of TCK.

• The Test Data Output (TDO) is the serial output clocked out of the system at the
falling edge of TCK.

Figure 2.2 shows how the TMS signal controls the scan architecture. Essentially, when
the TAP controller is not idle, it is either modifying the Instruction Register (IR) or a
Test Data Register (TDR) (e.g. Bypass, IDCODE, Boundary Scan Register, ...).

The content of the IR determines which TDR is currently selected and would be operated
on during a data scan operation. Moreover, multiple values of the IR may select the
same TDR but cause a difference in the mode of operation. A single access to a TDR
(called scan operation) consists of a capture operation (data is loaded into the register), a
series of shift operations through the register and an update of the TDR (data shifted
into the register takes effect).

All TDRs are chains of so-called TDR cells. Figure 2.3 shows a schematic of a so-called
capture-update cell which consists of a capture-shift register and an update-register. The
former has two roles in this circuit. Firstly, it acts as a stage in a shift register chain
during shift operations in that it fetches data from the serial input (SI) and provides its
content to the serial output (SO). Moreover, during capture operations, it captures data

4

2.1. Scan Chain Architecture

Test Logic
Reset

Run Test/Idle Select DR-
Scan

Select IR-
Scan

Capture DR

Shift DR

Update DR

Exit1 DR

Exit2 DR

Pause DR

Capture IR

Shift IR

Update IR

Exit1 IR

Exit2 IR

Pause IR

Test Logic
Reset

Run Test/Idle Select DR-
Scan

Select IR-
Scan

Capture DR

Shift DR

Update DR

Exit1 DR

Exit2 DR

Pause DR

Capture IR

Shift IR

Update IR

Exit1 IR

Exit2 IR

Pause IR

Figure 2.2: State diagram of the TAP controller as described in the standard. Solid
lines are transitions taken when TMS=1 while dashed lines are transitions taken when
TMS=0.

from the parallel input (i.e. observes a circuit or PCB signal via PI). In contrast, the
update-register fetches the content of the capture-shift register during update operations
and provides its state onto a parallel output (i.e. controls a circuit or PCB signal via
PO). The control signals CaptureEn, ShiftEn and UpdateEn are generated by the TAP
controller in the respective states. It is worth noting that capture and shift operations
take place on the rising edge of TCK while update operations take place on the falling
edge.

Figure 2.4 illustrates a simple scan operation on a 3-bit TDR. As specified in the standard,
the Least Signigicant Bit (LSB) is always shifted into the TDR first. This means that
the cell that represents the Most Signigicant Bit (MSB) is closest to TDI and farthest
from TDO.

In general, depending on the specific needs, TDR cells can have varying functionality.
Leaving out the update register results in a capture cell while leaving out the capture
logic (CaptureEn-driven multiplexer) results in an update cell. Waiving both results
in a shift-only cell. Missing capture functionality means that observing signals via the
cell is not possible anymore. Notably, missing update functionality does not imply a

5

2. Background

SO

PO
PI

CaptureEn

ShiftEn

UpdateEn

SI

Clock

Capture-
Update-

Cell

CS
D Q

CS
D Q

U
D Q

U
D Q

0

1

0

1

0

1

0

1

0

1

0

1 SO

PO
PI

CaptureEn

ShiftEn

UpdateEn

SI

Clock

Capture-
Update-

Cell

CS
D Q

U
D Q

0

1

0

1

0

1

Figure 2.3: Schematic of a capture-update cell as described by the standard.

TCK

SI

SO

PI 101

PO 011

CS Reg. 101 110 111 011

CaptureEn

ShiftEn

UpdateEn

Figure 2.4: Timing diagram demonstrating a scan operation on a TDR via the signals
generated by the TAP controller. In this case, 101 is captured from the parallel input
and 011 is shifted in and updated to the parallel output.

loss of controllability. However, without the update register, there is no way of ensuring
consistent updates and shift operations cause rapid signal changes at cell outputs.

The idea of boundary scan is to provide a TDR of so-called boundary scan cells around
the input and output pins of an IC. This TDR which is often referred to as Boundary
Scan Chain (BSC) allows the application of stimuli and observation of signals at the
IC’s border. A boundary scan cell is essentially a TDR cell whose parallel output is not
connected directly to the circuit or PCB but instead multiplexed with a default signal,
usually its parallel input, based on a mode select signal. This makes it possible to control
the operation mode (i.e. test or normal operation) independently of scan operations on
the BSC. Controlling the output cells and observing the input cells enables testing of
interconnect. In contrast, controlling input cells and observing output cells allows testing
of the IC’s functionality.

6

2.1. Scan Chain Architecture

The IEEE 1149.1 standard requires implementation of at least the bypass register, a
simple 1-stage shift register for when no operation is required, and the Boundary Scan
Register for boundary scans. There are further standardized TDRs like IDCODE which
provides a device identification. Further, it is possible to implement custom TDRs as
needed (e.g. for operation of an On Chip Debug System (OCDS)).

For operation of the TDRs, the standard enforces provision of four instructions:

• A BYPASS instruction to select the bypass register.

• A PRELOAD instruction which can be used to load data into the BSC’s update
stage without asserting the test mode.

• A SAMPLE instruction which can be used to fetch data into the BSC’s capture
stage without asserting the test mode.

• An EXTEST instruction which asserts the test mode and also allows scan operations
to be performed on the BSC. This is inteded for testing PCB connectivity.

It is permitted to combine instructions that do not conflict with one another meaning that
implementation of a SAMPLE_PRELOAD instruction is also allowed. Moreover, there
are several other standardized instructions like INTEST which is similar to EXTEST but
targets testing of the IC itself. For that purpose, it also has to support single stepping in
the TAP controller’s idle state.

The JTAG architecture has been used for decades and is supported by practically every
relevant EDA tool. Nevertheless, it does come with some problems. Making a design
scannable by replacing FFs with Scannable Flip Flops (SFFs) is possible by implementing
a custom TDR and making it selectable with a custom instruction. However, in modern
SoCs where multiple embedded elements require a TDR each, one has to decide whether
they should be arranged in series or in parallel. In the first case, accessing a part of
the TDR sequence means that data has to traverse the entire scan chain which causes a
noticeable increase in test time. Moreover, special care has to be taken to avoid corrupting
the state of other parts of the scan chain. Putting the TDRs in parallel does solve both
of the problems but also does not allow any patterns where the TDRs of multiple EIs are
accessed at the same time which is another cause of increased test time. Moreover, it
would require introducing a lot of instructions which ultimately causes strong coupling
between the TAP controller and the feature set of a system. In a way, the described scan
chain architecture is too rigid for the purposes of modern SoCs. Furthermore, retargeting
of tests due to product variety and IP reuse is very tedious if not impossible. While the
newest revision of the standard introduced some improvements regarding these aspects,
an entirely new standard has evolved with the goal of extending IEEE 1149.1 to fix those
exact problems.

7

2. Background

TAP
CTRL

T
D
R

T
D
R

Instrument A

Instrument B

TAP
CTRL

T
D
R

T
D
R

Instrument A

Instrument B

(a) Scan chain of two TDRs in series.

TAP
CTRL

T
D
R

T
D
R

Instrument A

Instrument B

SIB

SIB

TAP
CTRL

T
D
R

T
D
R

Instrument A

Instrument B

SIB

SIB

(b) Scan chain of two TDRs guarded by SIBs.

Figure 2.5: Example of how SIBs are used in the IJTAG network to make it configurable.

SelectIn

CaptureIn
ShiftIn

UpdateIn

SIIn

Clock

Segment-
Insertion-

Bit

CS
D Q

CS
D Q

U
D Q

U
D Q

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1SOIn

SelectOut

SIOut

SOOut

SelectIn

CaptureIn
ShiftIn

UpdateIn

SIIn

Clock

Segment-
Insertion-

Bit

CS
D Q

U
D Q

0

1

0

1

0

1
0

1SOIn

SelectOut

SIOut

SOOut

Figure 2.6: Schematic of a possible implementation of an SIB as specified in the standard.

2.1.2 A flexible and reconfigurable Scan Network
The Integrated Joint Test Action Group (IJTAG) has recognized that the TAP is used for
many more purposes than just boundary scan and identified the need for an Reconfigurable
Scan Network (RSN) based on scan chains for increased flexibility when accessing EIs as
well as retargeting capabilities. This caused the emergence of the IEEE 1687 standard [10].

The basic idea is to allow flexible inclusion and exclusion of parts of a scan chain. An
elementary building block to achieve this is the Segment Insertion Bit (SIB). It can be
thought of as a single bit update cell that acts as a kind of TDR-guard. When it is
active, the TDR is included in the scan chain right before the SIB’s internal shift stage.
Deasserting the SIB causes the TDR to be excluded from the scan chain. In this case, it
essentially acts as a bypass register. Figure 2.5 outlines how SIBs can be used to guard
subnetworks. Of course, a subnetwork guarded by an SIB may contain SIBs of its own
which enables the construction of multi-level hierarchies.

A possible implementation of the SIB is visualized in Figure 2.6. It can be seen as a
modified capture-update cell that multiplexes the input of its shift stage between the

8

2.2. Automated Code Generation

serial input of its predecessor (SIIn) and the serial output of the TDR it is guarding
(SOIn). Moreover, it generates a SelectOut signal for the subnetwork it is guarding which
can be used to mask the control signals of the subnetwork to freeze it when the SIB is
de-asserted.

The SIB is an example of an in-line scan chain multiplexer meaning that the control
signal is generated from the same TDR as the SIB is configuring. An alternative would be
a remotely controlled multiplexer whose control signal is being generated from a different
register (e.g. another TDR or a decoded instruction). The main difference between
the two approaches is that the SIB allows updating the configuration for the next scan
operation during the current scan operation while remotely controlled scan multiplexers
may require changing the IR.

Besides providing methods to allow more efficient and flexible operation on scan chains,
the standard also provides definitions for two description languages. The first one is the
Instrument Connectivity Language (ICL) which makes it possible to define the structure
of the RSN for a given product. This allows efficient retargeting of operations on TDRs
written in the second language called Procedural Description Language (PDL). The
advantage is that sequences of operations can be developed at the level of EIs. Given
the ICL definition of a system (e.g. an SoC) a toolchain can then retarget a set of
PDL definitions to the system level which significantly improves test development time.
Moreover, the development of the operation procedures does not depend in any way
on the final feature set of the system itself and can thus take place rather early or also
entirely independent of the final system (e.g. third-party IP).

2.2 Automated Code Generation
The concept of automated code generation is a major driver for productivity and a
valuable tool for the purpose of closing the design productivity gap [11]. When practiced
correctly, it can also offer the same conveniences as IP reuse with the addition of
significantly increased flexibility. For this reason, many processes at Infineon build upon
a metamodeling-based code generation framework. In conjunction with the concepts of
Model Driven Architecture (MDA), this has also opened up opportunities for user-friendly
Register Transfer Level (RTL) generation. This section provides an introduction to the
concepts of this toolchain which is used throughout this thesis.

2.2.1 Metamodeling
The MDA methodology makes use of models to capture properties of systems at different
levels of abstraction. It is therefore clear that a model has to consist of a set of objects.
However, a model is essentially worthless without knowledge of its respective domain.
Moreover, depending on the domain, a model may have to fulfill certain constraints.

This is where the concept of metamodels comes into play. A metamodel is essentially a
structural and relational description of a class of models. One could say that a metamodel

9

2. Background

Operation
Operator = "*"

Operation
Operator = "*"

Operation
Operator = "*"

Operation
Operator = "+"

Variable
Name = "a"

Variable
Name = "b"

Variable
Name = "c"

Formula
Name = "Pythagorean Theorem"
Type = Equal

Constant
Value: number[1]

«enumeration»
FormulaType
Equal
NotEqual
Less
Greater
...

Variable
Name: string[1]

Operation
Operator: string[0..1]

Formula
Name: string[1]
Type: FormulaType[1]

Legend:

Association

Composition

* *

*

RootNode

2

*

*

Figure 2.7: Example of a Formula metamodel (left) and a specific Formula model (right).

is itself a model of an underlying model; in a sense, it is "beyond" this described model,
hence the name metamodel. A metamodel defines a set of models (i.e. a design space)
by establishing certain constraints. The models in this set are said to be instances of the
metamodel or conform to the metamodel. A model, in turn, characterizes a system at
some level of abstraction.

Figure 2.7 illustrates a metamodel of simple mathematical formulas described in Unified
Modeling Language (UML) as well as a concrete instance of the metamodel. The
metamodel contains a root node which describes the attributes of a Formula, a Name
and a Type which denotes whether the Formula is an equation or an inequality of some
sort. Moreover, a Formula has multiple constituents. On the one hand, it can have an
arbitrary number of Constants with assigned Values and Variables with assigned Name.
In addition, it is also composed of exactly two Operations which basically describe the
left- and right-hand sides of the formula. Each Operation can1 have an Operator and an
arbitrary number of associated Constants and Variables. Also an Operation can have an
arbitrary number of "child"-Operations. As an example, a Formula instance representing
the Pythagorean theorem a2 + b2 = c2 is visualized.

It is apparent that the exemplary model fulfills all restrictions of the metamodel in that
it has a valid structure and valid attributes. Moreover, it is certainly a valid model of
the Pythagorean theorem. However, it is also noteworthy that the metamodel itself
allows the construction of models that no mathematician would ever accept as valid
formulas. For example, it is possible to describe an operation without any operands,
a unary operation with more than one operand or a non-unary operation with just
a single operand. In a practical scenario, this would have to be forbidden by either
introducing proper constraints in the metamodel (e.g. via Object Constraint language
(OCL) for UML 2 and above) or implementing proper constraint checking in tools that
take instances of the metamodel as input.

1It does not have to have an Operator since it would be acceptable for it to just be a Variable or a
Constant.

10

2.2. Automated Code Generation

Automatically generated frameworkAutomatically generated framework

API

Model
XML

Reader
XML

Writer

Plugins and
Extensions

Template
EngineSpecSpec

Spec (XML)Spec (XML)

Readers

MetamodelMetamodel

TemplatesTemplates

Spec (XML)Spec (XML)

ViewView

instance of instance of

Automatically generated framework

API

Model
XML

Reader
XML

Writer

Plugins and
Extensions

Template
EngineSpec

Spec (XML)

Readers

Metamodel

Templates

Spec (XML)

View

instance of instance of

Figure 2.8: Visualization of the Metagen framework.

The goal of metamodeling is to identify and capture application-specific requirements in
an abstract metamodel. This results in a formalized description of the models of interest
which can be used to guide automation.

2.2.2 Metamodel-based Code Generation
Metagen is a metamodel-based code generation framework that was developed at Infineon.
Given a metamodel described in UML by the user, a Python-based framework is generated
(see Figure 2.8). This framework consists of the following parts:

• An Application Programming Interface (API) for construction of and interaction
with models as defined by the metamodel provided by the user including respective
documentation.

• A set of readers and writers for de-/serialization of models from/to predefined
formats (e.g. XML).

• A Graphical User Interface (GUI) for the purpose of creation, inspection and
modification of model instances.

When a model is loaded into the framework through a reader, a Python representation
of the model is constructed. In addition to the automatically generated readers, the
user also has the option to provide their own readers. A custom reader implementation

11

2. Background

may be useful to map data in an arbitrary input format to the Python-based model
representation using the generated API. Essentially, the input data is interpreted as a
specification for the resulting model.

After a model has been loaded into the framework, extensions provided by the user can
be employed for model modifications. This may not always be useful or required but
drastically increases the flexibility of the entire approach.

Finally, given a model representation, a default or custom writer can be invoked. The
most relevant use case is the employment of custom write routines by providing so-called
templates to a powerful template engine called Mako. Templates are basically a skeleton
of the output format including placeholders and Python code. By combining a template
with a model, a model-specific view is generated by the template engine. Multiple
templates can be provided to generate multiple views from a single model (e.g. code,
documentation, ...).

Simply put, Metagen is used to drastically speed up the development of code generators
accepting models conforming to a metamodel. An interesting aspect of this flow is that,
at a higher level, Metagen itself is a code generator accepting metamodels conforming to
a meta-metamodel. This is in line with the concept of Meta-Object Facility (MOF) as
defined by Object Management Group (OMG).

Metagen is used very extensively and has a high potential for reducing Non-Recurring
Engineering (NRE) costs via automation and reuse. Specifically, productivity gains of up
to 95% for particular tasks and effort reductions of up to 70% have been observed [12, 13].

While the advantages of the flow are evident as soon as a generator is usable, there
is still one problem to be addressed during the development. When faced with the
task of generating a specific type of view from a specific type of specification, it is
often the case that there is a significant difference between source and target structure.
Essentially, the metamodel has to lie somewhere in between the interval of input and
output structure. If the metamodel is close to the specification, it is trivial to develop a
custom reader, however, the development of the templates becomes a very complex task.
This is especially apparent when considering the generation of Hardware Description
Language (HDL) code from a specification of a digital filter, let alone more complex
and irregular structures. On the other hand, when the metamodel is close to the view,
developing the respective template is simple but transforming a specification into the
respective model becomes increasingly tedious. Moreover, this choice would defeat the
purpose of being able to transform a specification into many different views. Therefore, a
flow for e.g. HDL generation needs to allow the metamodel to be close to the specification
while also providing a sufficiently high-level API.

2.2.3 Model Driven Architecture
The concept of MDA has been adopted by the OMG for the purposes of reducing
complexity and cost and increasing interoperability and reuse about two decades ago [15,

12

2.2. Automated Code Generation

CIM

PIM

PSM

PM

Spec

View

CIM

PIM

PSM

PM

Spec

View

Figure 2.9: Y-chart of the MDA approach [14].

16, 17]. In principle, MDA makes use of models as formal descriptions of systems at
different levels of abstraction. These levels of abstraction are often called viewpoints.
The key idea is that well-defined model transformations between adjacent viewpoints (i.e.
relatively close levels of abstraction) are more straightforward to develop, reusable and
allow for clearer semantics at higher levels of abstraction.

MDA defines three models whose relation can be seen in Figure 2.9:

• The Computation Independent Model (CIM) captures the requirements of a system
without going into any detail regarding implementation. It is very close to the
specification and serves as a high-level representation of the system. Essentially, it
delivers an answer to the question: "What is our goal?".

• The Platform Independent Model (PIM) is more detailed in that it describes the
required behavior of the system. Yet, it is still somewhat coarse in its level of
abstraction in that it is not bound to a specific platform (i.e. a certain framework
or environment). It basically answers the question: "With what strategy can we
achieve our goal?".

• The Platform Specific Model (PSM) is a more refined description of the system’s
behavior and takes highly platform-specific details into account. It can be seen
as an answer regarding the question: "How can we implement our strategy under
given circumstances?"

As the Y-chart depicts, a more abstract model of a system is transformed in a step-wise
fashion to a less abstract model of the system. From a higher point of view, a specification

13

2. Background

is translated to a respective view via a series of model-to-model transformations. This
multi-level process allows bridging the gap of enormous differences in abstraction while
sticking to a model (CIM) that is close to the specification.

In the step from PIM to PSM, a Platform Model (PM) is required which describes the
capabilities and restrictions of the target platform. Depending on the use case, the
platform may be for example a programming language (code generator) or an instruction
set (compiler).

It is noteworthy that multiple classes of CIMs (i.e. conforming to different metamodels)
can be mapped to the same class of PIMs, provided that the PIM’s metamodel is powerful
enough. In other words, the platform-independent metamodel defines what kinds of
computation-independent metamodels are supported.

2.2.4 RTL Code Generation
MetaRTL is an adaptation of the fundamental principles of MDA to the Metagen
framework with the goal of allowing efficient development of RTL generators [18, 19, 20, 21].
This is achieved by introducing three types of models analogous to the CIM, PIM and
PSM:

• The Model-of-Things (MoT) defines components (things) of the design, their
attributes and how they are related. The defining metamodel is close to the
specification (and hence use-case-specific) so mapping informal requirements to an
MoT is very straightforward. A simple example of an MoT could be the definition
of a digital Finite Impulse Response (FIR) filter in terms of its coefficients.

• The Model-of-Design (MoD) defines the design in terms of an RTL schematic. Its
metamodel offers a rich set of digital primitives to support the construction of a
wide range of digital circuits. In the exemplary case of a digital FIR filter, the MoD
would be a chain of registers whose outputs are connected to multipliers (according
to the coefficients) and then summed up by an adder.

• The Model-of-View (MoV) is close to the desired view which is HDL code. There
is a separate metamodel for each target backend (e.g. VHDL, Verilog, ...).

Figure 2.10 visualizes how MoTs are passed through several model transformations to
generate a low-level MoV which can then be unparsed into the desired HDL code.

This structure has significant advantages over a Metagen-only approach when it comes
to implementing a generator for a specific class of circuits. Figure 2.11 highlights the
responsibilities of the developer. First, an appropriate metamodel is defined and the
respective framework is generated using Metagen. Afterwards, the transformation between
a specific MoT and its respective MoD has to be developed. For this purpose, a template
called Template-of-Design (ToD) is written in Python. To accomplish this, the developer

14

2.2. Automated Code Generation

MoT A
Metamodel

MoT A
Metamodel

MetaRTL
Metamodel

MetaRTL
Metamodel

MoT AMoT A

MoT BMoT B

MoDMoD

VHDL
Metamodel

VHDL
Metamodel

Verilog
Metamodel

Verilog
Metamodel

MoT B
Metamodel

MoT B
Metamodel

Verilog MoVVerilog MoV VHDL MoVVHDL MoV

vhdvhd
vhdvhd

vhd
vhd

vv
vv

v
v

M
oT

 La
ye

r
M

oV
 La

ye
r

M
oD

 La
ye

r

Views

Transformation (ToD)

Transformation (ToV)

UnparsingUnparsing

MoD
Trafo

MoT A
Metamodel

MetaRTL
Metamodel

MoT A

MoT B

MoD

VHDL
Metamodel

Verilog
Metamodel

MoT B
Metamodel

Verilog MoV VHDL MoV

vhd
vhd

v
v

M
oT

 La
ye

r
M

oV
 La

ye
r

M
oD

 La
ye

r

Views

Transformation (ToD)

Transformation (ToV)

UnparsingUnparsing

MoD
Trafo

Figure 2.10: An MDA-oriented approach to RTL generation called MetaRTL.

can use the MoD-specific API (generated by Metagen) as well as domain-specific high-level
extensions to ease the process of constructing the digital design.

The rest is handled by the MetaRTL core and the HDL-specific backends. Notably,
the developer does not require knowledge of the MoD to MoV transformation via the
Template-of-View (ToV) much like implementing compiler optimizations at the level
of abstract syntax trees does not require knowledge of the microarchitecture backends.
Overall, the reduction in code required by the MetaRTL flow compared to a Metagen-only
flow is a factor of 5x to 10x[21].

The power, flexibility and reusability of a generator grow with the freedom of the defining
metamodel. However, there are certain concepts in digital design that are orthogonal
to the specification of a circuit and may be applied frequently. For example, regardless
of the functionality of a circuit, there is always the option of replacing registers with

15

2. Background

User Metalib MetaRTL Core & Backend
MoT

Metamodel
MoT

Metamodel
MoD

Metamodel
MoD

Metamodel
MoV

Metamodel
MoV

Metamodel

API

Extensions

To
V

MoD

API

Un
pa

rs
e

MoV

API

To
D

MoTSpecSpec ViewView

Tr
af

o

User Metalib MetaRTL Core & Backend
MoT

Metamodel
MoD

Metamodel
MoV

Metamodel

API

Extensions

To
V

MoD

API

Un
pa

rs
e

MoV

API

To
D

MoTSpec View

Tr
af

o

Figure 2.11: Display of the boundary between user-defined code and the MetaRTL
environment.

hardened registers for functional safety. Of course, this only makes sense if the use case
really requires it. Since implementing this feature in ToDs would quickly lead to code
duplication and incidental complexity, this can be solved with MoD transformations.
Essentially, the extended API provides features to apply transformations to an already
existing MoD regardless of how it was originally constructed. Therefore, given an arbitrary
MoD and a set of transformations, an altered variant of the MoD can be produced in a
transparent and flexible fashion.

2.2.5 Firmware Generation
With the help of MetaRTL, a rich variety of similar hardware designs can be generated.
However, some hardware components are at the hardware/software boundary and there-
fore require an appropriate HAL and driver. It follows that variations in the generated
design are likely to cause variations in the required software stack.

For this reason, an MDA-inspired flow for firmware generation called MetaFirm is provided
to complement MetaRTL. MetaFirm is relatively similar to MetaRTL in that it is also a
MDA-based three-layer flow. The idea is to use the same MoT (i.e. a single source with
abstract concepts concerning hardware and software) as a basis for both, MetaRTL and
MetaFirm.

An essential part connecting MetaRTL and MetaFirm is the Control Status Configuration
(CSC) metamodel whose models serve as hardware/software interfaces. Every MoT at
the hardware/software boundary also contains a CSC MoT. On the hardware side, the
CSC MoT is transformed into a register interface that can be connected to a data bus.
The software side is the HAL of said register interface in the C programming language.

Since the same MoT is used by MetaFirm and MetaRTL, the first layer in the MDA-
inspired structure is essentially identical. The second model in MetaFirm is called

16

2.3. SoC Architecture

AHB Matrix

AHB

APB

Mem

AHB

M

S

Mem

AHB

Mem

AHB

Mem

AHB

M M M S

S

M

M

SPI

MS

Analog
IP

APB Fabric S

OTP
S

iROM
S

iRAM
S

dRAM
S

RISC-V

MM
iBus dBus

Digital IP Digital IP

MM

CSC
S S

CSC

AHB Matrix

AHB

APB

Mem

AHB

M

S

Mem

AHB

Mem

AHB

Mem

AHB

M M M S

S

M

M

SPI

MS

Analog
IP

APB Fabric S

OTP
S

iROM
S

iRAM
S

dRAM
S

RISC-V

MM
iBus dBus

Digital IP Digital IP

MM

CSC
S S

CSC

Figure 2.12: Overview of the RiVal 2 test chip.

Model-of-Firmware (MoF) and it is created by transforming the MoT via a Template-
of-Firmware (ToF). It captures programming concepts like functions, loops, conditions
and variables and can make use of the HAL. The model at the third layer is again called
MoV but is concerned with representing the firmware in the C programming language
and should not be confused with its MetaRTL counterpart. Unparsing yields a view in
the form of C source and header files.

2.3 SoC Architecture
Infineon is developing an SoC called RiVal 2 on the basis of a RISC-V [22] implementation
based on MetaRTL. Besides the CPU, several other parts of the architecture are generated
via MetaRTL like the multi-layer Advanced High-Performance Bus (AHB) matrix. A
Serial Peripheral Interface (SPI) module makes it possible to program the SoC. Figure 2.12
gives a high-level overview of the architecture.

As already outlined in Section 2.2.5, peripherals at the hardware/software boundary
require a register interface. This can be generated via the MetaRTL-based CSC metalib.
It offers a simple data bus interface that is very easy to bridge to other peripheral
interfaces. In the case of the RiVal 2, an Advanced Peripheral Bus (APB) bridge allows
the peripheral to be connected to the APB fabric of the SoC. This APB fabric then
connects to the bus matrix via an AHB-to-APB bridge. The data widths of the AHB
and APB buses are 32 bit and 16 bit respectively.

Any functional access to the digital peripherals can be handled via the bus. This is in

17

2. Background

contrast to any analog peripherals which do not have a bus interface. Of course, both
digital and analog IPs still need to be scannable for EOL testing. Additionally, analog IPs
must be trimmed at least once after the manufacturing process. Moreover, configurability
of the analog peripherals based on the found trim values is necessary for operation in the
field.

18

CHAPTER 3
Related Work

The subject of this thesis is related to the possibilities that scan architectures open up
during EOL testing as well as in the field with respect to BIST and analog IP trimming
and configuration. Another corner stone is the addressing of design productivity by
means of harmonizing these aspects with the concept of automated firmware generation.
This chapter provides an overview of state-of-the-art proposals to tackle self-testing,
trimming and configuration via scan chains and RSNs as well as the possibilities that
EDA tools already offer.

3.1 Self-Testing via Scan Chains
Using (and reusing) scan chains for BISTs is attractive because the hardware interface
is very simplistic and lightweight and the introduction of scan chains may be a require-
ment for EOL testing anyways. Therefore, there are multiple proposals targeting the
opportunities especially in combination with the recent IJTAG standard. Moreover,
processor-driven self-test opens up a lot of flexibility on its own.

In larger systems, one possibility is the employment of a dedicated service processor
acting as a JTAG master [23]. This way, BISTs can be performed in the field via the use
of software-based test routines. While this opens many possibilities, it is not exactly a
resource-saving approach and therefore not feasible for integration on an SoC.

A more lightweight approach is described in [24] where blocks of memory are connected
as alternative drivers of the TAP controller. This memory is used to store the signal
transitions required for the application of test vectors. The TAP interface is multiplexed
to allow switching between off-chip and on-chip operation. In the paper, an IJTAG
network is used to allow access to sensors for temperature monitoring but the system can
be used for virtually any monitoring or test-related task. It is, however, worth noting

19

3. Related Work

that the design is relatively static with respect to test data and test flow since they are
essentially programmed into the memory.

An example of an EDA tool that offers the compilation of IJTAG networks for the purpose
of testing is Tessent IJTAG [25]. It supports inclusion of Tessent MemoryBIST [26] and
LogicBIST [27] components as well as any other IJTAG-compatible IPs. With the help
of Tessent MissionMode [28], a so-called In-System Controller can be generated which
enables on-chip operation of the RSN. MissionMode offers memory-based and CPU-based
implementations. The former option is similar to the approach described in [24] in
that test data is stored in memory and access to the TAP controller is multiplexed.
Another possibility is to embed a controller that allows the CPU to operate on the
RSN by mapping CPU signals to the TAP controller. As of June 2021 [29], another
CPU-driven option is available where the detour via the TAP controller is bypassed
and an APB-slave device is employed to map memory transactions to scan operations.
The software required for the CPU-targeted can be generated from Verilog test benches
which only supports limited functionality. Alternatively, it can also be written by hand
to enable more dynamic control flow but this quickly becomes a tedious task especially
due to arbitrary bit widths and the dynamic nature of RSNs.

On a sidenote, the interest in using alternative interfaces (like Inter-Integrated Circuit
(I2C), SPI or in the above example APB) to access RSNs has generally been picking up in
the last years. Consequently, an entirely new standard, currently known as P1687.1 [30],
is expected to evolve from the ongoing research. A strong focus of this work is enabling
highly dynamic accesses to the IJTAG network for the use in BISTs where the use of
static predefined test vectors is not sufficient.

In [31, 32] an on-chip RSN controller is presented that is supported by a cross compiler
flow for efficient development and retargeting of test procedures in high-level programming
languages. This allows software developers to use PDL-derived operations on parts of the
IJTAG network without having to care about the network’s hierarchy, TDR definitions
or the required scan operations. The proposal also features a dynamic on-line retargeting
engine which provides a great deal of flexibility with respect to control flow in access
routines and is especially valuable for access in interrupt service routines.

Making use of the structural information of an RSN and retargetable scan operations
during the test software development is certainly an important aspect in terms of usability
and productivity. The PDL and ICL are the IEEE 1687 conforming methods of capturing
this information. For this purpose, the software layer, especially PDL and ICL parsers,
provided in the open IEEE 1687 ecosystem in [33] can be extremely valuable.

IJTAG networks have also been used in [34] for the purpose of efficient fault monitoring.
Specifically, a slightly modified SIB is introduced which is capable of opening its respective
subnetwork based on some events. This allows the RSN to reconfigure itself and provide
scan-chain-based fault monitoring and fault localization.

20

3.2. Trimming and Configuration via Scan Chains

3.2 Trimming and Configuration via Scan Chains
The usual way of performing digital trimming would be to use ATE for the application
of digital trim stimulus and also measurement of the produced analog signal. In [35, 36]
the concept of self-trimming is outlined where the ATE is instead concerned with the
provision of an analog reference signal. The analog signal produced by the IP is then
compared against this reference using an on-chip Analog Digital Converter (ADC) or
analog comparator. This (digital) result can then be used to systematically adjust the
trim value which can effectively be carried out on-chip by a respective state machine.

As outline in [8], going with an ADC instead of just a comparator does allow to implement
a so called full BIST approach instead of just a partial BIST (i.e. no reference from ATE
needed) but also increases the required area. Moreover, this freedom comes at the cost of
initial ADC trimming requirements. The authors describe a BIST trim controller which
is capable of adaptively switching between linear, binary and hybrid search including
early response analysis.

In [7] an IJTAG based approach is introduced to integrate the mentioned concepts within
a digital core which can be operated transparently via I2C. Specifically, for each analog
block, a digital island consisting of the required test and trim logic as well as a TDR for
the operation thereof is introduced. The islands are then combined into an RSN and
augmented with a TAP controller as well as an I2C-to-TAP mapper. Their self-trim logic
and configuration registers can therefore be accessed via both interfaces.

Interestingly, the authors chose to use the TDRs as an addressing mechanism to operate
on the digital islands’ register banks instead of using it as a direct access mechanism.
While this promotes transparent operation via I2C and simplifies the software aspect for
programmers by a great deal, it also means that the flexible and in some sense parallel
nature of RSNs can not be used to its full potential. This also means that the maximum
number of analog blocks and their registers is fixed which again results in a relatively
limited and rigid approach.

In general, configuration is not any different from testing in that it greatly benefits from
a suitable software abstraction layer and reuse through retargeting. Therefore, software
ecosystems and ICL- and PDL-specific parsers like in [33] are also relevant to this task.

21

CHAPTER 4
Design Implementation

The aim of this chapter is to give an overview of the hardware and firmware generators
implemented in the course of this thesis. To that end, it provides insights into how the
requirements outlined in Section 1.2 affect design decisions with respect to the overall
design structure. Based on these considerations, the metamodel that is employed in the
generation flow is presented. This chapter also goes into detail on how the generated
hardware architecture is structured, what possibilities the firmware generation flow
offers and how specification parameters and design transformations can be employed to
influence code generation. In the end, it should become clear how various aspects of the
implemented flow empower reuse, flexibility and extensibility on a hardware level and
further support software development for self-test, self-trim and configuration routines.

4.1 Design Requirements and Structure
One of the basic requirements identified in Section 1.2 is compatibility with existing
ATE. For this reason, an IEEE 1149.1 conforming JTAG-Module is required including a
TAP controller and the TDRs and instructions mandated by the standard. The design-
specific aspects like the content of the IDCODE register or instruction indices shall be
configurable. Moreover, it is essential to offer straightforward extensions with other
standardized instructions as well as custom instructions. Ideally, both can be achieved
by simply adapting the specification from which the hardware is generated. This would
allow putting together varying feature sets based on the actual product requirements
with minimal effort. Of course, some instructions (standardized or custom) may require
very specific logic even within the JTAG-Module which means that changes to the code
generator may be required from time to time which is fine as long as it enhances the
generator in a modular and reusable way. Section 4.3.1 gives an overview of how these
requirements can be met with the presented design.

23

4. Design Implementation

Arguably, the most important aspect of the entire design is the interaction of the CPU
with scan chains which enables self-testing, self-trimming and runtime configuration. For
this purpose, a module that is capable of performing scan operations on TDRs via the
serialization of input data and deserialization of output data is required. As mentioned
in Section 2.3, the RiVal 2 SoC offers an AHB matrix with a data width of 32 bits as
well as an APB bus with a data width of 16 bits. Since serialization is slower than
the memory transactions, the high performance of the AHB interface is certainly not
necessary. Therefore it makes sense to opt for an APB-driven CPU-to-TDR interface
which will be referred to as APB-Module. This thesis will focus on the specific choice of
an APB interface with a data width of 16 bits.
From a functional point of view, the APB-Module must support the selection of instruc-
tions and TDR registers similar to the JTAG-Module. Since there may be TDRs that are
accessible via the JTAG-Module but not via the APB-Module and concurrent operation
on disjunct TDRs may be necessary in the future (e.g. a JTAG-driven OCDS), the
APB-Module must have its own IR. Moreover, one must be able to trigger capture and
update operations as well as a series of shift operations. Since the APB bus of the RiVal 2
has a data width of 16 bits, in theory, up to 16 shifts can be carried out per transaction.
However, TDRs can have arbitrary lengths. Therefore, it must also be possible to shift
only a fraction of the 16 data bits. While shift operations supply data to TDRs via the
serial input, they also produce data at the serial output. Consequently, the APB-Module
must deserialize this data and provide it to the CPU as necessary.
All in all, the register interface of the APB-Module must map sequences of memory
transactions to scan operations according to the discussed requirements in a transparent
way. Section 4.3.2 goes into detail on how this is achieved in the presented design.
Since strong support for the reuse of IPs and related test routines is another key
requirement, it is natural to employ an IJTAG network for the scan chains which shall
be accessible via the JTAG-Module and the APB-Module. Most importantly, it shall
be possible to define IP-specific and reusable subnetworks on a per-IP basis. Within
a subnetwork, the common types of standardized TDR cells and custom configuration
cells shall be supported. The generation of an IJTAG-Module which combines these
subnetworks into a corresponding RSN shall be driven by the system’s specification. For
maximum flexibility, reconfigurability of the RSN shall be possible at the network- and
subnetwork-level. Therefore, scan multiplexers (e.g. SIBs) must be employed within the
subnetworks and the IJTAG-Module. To enable operation via the JTAG-Module or the
APB-Module, the IJTAG-Module must define a set of instructions and TDRs. Signals
towards the IJTAG-Module must be multiplexed depending on the mode of operation
(off-chip vs on-chip). The details on how the related requirements are achieved are
presented in Section 4.3.3 and Section 4.3.4.
Finally, since TDRs can have arbitrary widths and the state of the RSN affects the
total scan chain length, operating the IJTAG-Module via the APB-Module is inherently
complex and can easily lead to convoluted code. This negatively impacts productivity and
increases the probability of bugs. Moreover, this is not in line with the idea of fostering

24

4.2. Design Metamodel

«enumeration»
AccessType

Clear
Read
Write

Setting
Value: int[0..1]
Type: AccessType[1]

Contained
Position: int[1]

Unit
Name: string[1]
Address: int[1]
DataWidth: int[0..1]

Interface
AddressWidth: int[0..1]
AddrUnit: int[0..1]
DataWidth: int[0..1]
DataUnit: int[0..1]
Name: string[1]
Type: InterfaceType[1]

«enumeration»
InterfaceType

DataBus
SFR
AHBBus
IJTAG

Configuration
Name: string[1]

Bitfield
Name: string[1]
Size: int[1]
Defaultvalue: int[1]
HwRd: bool[1]
HwWr: bool[1]
SwRd: bool[1]
SwWr: bool[1]
Config: bool[0..1]
Virtual: bool[1]

Metacsc
Name: string[1]

1

*

1
*

1

*

*

*

RootNode

*
*

Figure 4.1: UML description of the extended CSC metamodel. Hardware-related aspects
are displayed in yellow while firmware-related aspects are displayed in blue. All changes
are highlighted in red.

code reuse since the source code would have to change whenever the IJTAG network
structure defined in the system specification or a subnetwork specification changes.
Therefore, the generation of source code from high-level descriptions of RSN interactions
is necessary to support software developers. The primary purpose is to handle TDR
interactions for testing, trimming and configuration in the generated driver while the
developers can focus on the algorithmic aspects of the software. Ideally, the high-level
description of these RSN procedures shall be close to PDL so that a combination with
existing workflows and tools is possible later on. Section 4.4 outlines the possibilities and
inner workings of the firmware generation.

4.2 Design Metamodel
For the full specification of a design as presented in this thesis, two types of metamodels
are needed. The first metamodel is an extension of the existing CSC metamodel mentioned
in Section 2.2.5 which is concerned with the generation of register interfaces. Figure 4.1
illustrates the parts of the CSC metamodel relevant for this thesis. The second metamodel
is the JTAG metamodel and can be seen as the main metamodel in the context of this
thesis. It is depicted in Figure 4.2.

The CSC metamodel serves two purposes in the presented design. On the one hand, the
APB-Module contains an instance of the CSC since it must be controlled via a register
interface. On the other hand, the CSC metalib was adapted to also handle the generation
of the IJTAG subnetworks.

25

4. Design Implementation

DebugTransportModule
...

JTAGInstruction
Index: int[1]
Name: string[1]

«enumeration»
VariableType

uint8_t
uint16_t
uint32_t
uint8_tPtr
uint16_tPtr
uint32_tPtr

«enumeration»
ActionType

Read
Write
Apply
Wait

«enumeration»
IJTAGMuxType
Remote
Inline

Operation
Action: ActionType[1]
Value: int[0..1]
TDRName: string[0..1]

Variable
Name: string[1]
Input: bool[1]
Output: bool[1]
Type: VariableType[1]
Bitcount: int[1]

Sequence
Name: string[1]
Level: string[1]
Config: string[1]
Split: string[1]
Comment: string[1]

APB
IR_Length: int[1]

IJTAGSubNetwork
Index: int[1]
InterfaceDefinition: string[1]

JTAG
IR_Length: int[1]
IDCODE_Version: int[1]
IDCODE_PartNum: int[1]
IDCODE_MfrID: int[1]
BYPASS_Index: int[1]
IDCODE_Index: int[1]
SAMPLE_Index: int[1]
PRELOAD_Index: int[1]
EXTEST_Index: int[1]

IJTAGNetwork
MuxType: IJTAGMuxType[1]

Metajtag
Name: string[1]

RootNode

0..1

1
DMIA

1
DTMCS

*
*

0..1

0..1

*

*

*
*

1..*

IJTAG
1

EXCFG
1

SIB
0..1

0..10..1 0..1

Figure 4.2: UML description of the extended CSC metamodel. Hardware-related as-
pects are displayed in yellow while firmware-related aspects are displayed in blue. The
DebugTransportModule represents a future addition. The underlined attribute Inter-
faceDefinition is an external reference to a CSC Interface (i.e. a JTAG MoT can reference
multiple CSC MoTs).

A CSC instance contains a set of Bitfields, which can be seen as the actual physical
registers. They have a Name and Size and can be readable and writable from the
hardware and the software side (HwRd, HwWr, SwRd, SwWr). The CSC also contains a
set of Interfaces that can be of various Types like the DataBus which is a single-cycle
bus with data_in, address, rd_en, wr_en inputs and data_out, error outputs. Moreover,
Interfaces are assigned specific data and address widths and unit definitions. They can
be used to access the Bitfields via their respective Units which are essentially logical
registers with a defined Address. Generally, Bitfields and Units have a many-to-many
relationship which is defined by the Contained relation and the translation from logical
to physical registers is handled by the CSC circuit accordingly.

The CSC metamodel also captures some firmware-related information in the form of
Configurations that describe sequences of operations on Bitfields. These can be seen as
an addition to the basic HAL generated for the register interface via MetaFirm.

The new option that is required for the design presented in this thesis are interfaces of

26

4.2. Design Metamodel

Type IJTAG. In this case, the address and data information does not serve any purpose
since the described subnetwork always has a serial input and a serial output and the JTAG
control signals. Moreover, the notion of a Unit’s address is a bit different. Essentially,
a Unit is still equivalent to an addressable unit in that its design analogue is an SIB
at a specific position in the described subnetwork. This SIB guards its related Bitfields
which are realized as TDRs. The HwRd and HwWr flags denote whether the respective
TDR has update and capture functionality while the new Config flag is used to state
that a configuration cell (see Section 4.3.4) shall be generated instead. Since the test-,
trim- and configuration-procedures for the presented design must be able to work across
multiple subnetworks, the firmware-related information in the CSC metamodel is of no
direct use in this case.

The JTAG metamodel describes the composition of the presented architecture as well as
the system-specific details of the individual modules. Therefore, it can have a JTAG-
Module, an APB-Module and an IJTAG-Module which are configured by the respective
child objects of an MoT.

In the case of the JTAG-Module, the length of the IR, the contents of the IDCODE
register and the indices of the mandatory IDCODE, SAMPLE, PRELOAD and EXTEST
instructions can be configured. While the IDCODE register is strictly speaking not
mandatory according to the JTAG standard, it is definitely considered good practice to
include one and is therefore enforced by the metamodel. The JTAG-Module can also have
additional JTAGInstructions which could be any optional standardized instructions or also
custom instructions. Moreover, other modules may require their own JTAGInstructions
to which the JTAG-Module can have a reference to model the fact that it can interact
with them.

The APB-Module is similar to the JTAG. However, it cannot have its own JTAGInstruc-
tions. The only way for the APB to interact with TDRs is to have a reference to other
modules’ JTAGInstructions.

The most complex part of the metamodel is the IJTAG-Module. It has a set of IJTAGSub-
Networks that correspond to CSC interfaces of Type IJTAG. Each of these subnetworks
has a unique Index to define its position in the network. The module also has a set
of JTAGInstructions for the purpose of accessing the RSN (IJTAG and EXCFG) and
an optional SIB instruction which may be required depending on the MuxType. The
MuxType is there to give control over the type of scan multiplexer that is generated
between the subnetworks. While the Inline setting corresponds to SIBs, the Remote
setting uses the TDR of the SIB instruction for the control of the scan multiplexers.

On the firmware side, the model can have a set of Sequences. Each Sequence has a set
of Variables and Operations. A Variable has a Name, a Type that corresponds to the
data type in the code and a Bitcount which defines the usable bits within the Variable
to provide some form of documentation and additional safety. Moreover, the Input and
Output flags denote whether a Variable is local, a return variable or some kind of function
parameter. The Operations can describe Reads from TDRs into Variables and Writes of

27

4. Design Implementation

Name Width Direction Description
TCK 1 Input The TCK signal
TMS 1 Input The TMS signal
TDI 1 Input The TDI signal
TDO 1 Output The TDO signal

Table 4.1: Overview of the JTAG-Interface from the perspective of the SoC.

Name Width Master Slave Description
Clock 1 Output Input The clock signal
Capture 1 Output Input The capture enable signal
Shift 1 Output Input The shift enable signal
Update 1 Output Input The update enable signal
SI 1 Output Input The serial input signal

Table 4.2: Overview of the JTAG-TAP-Interface which provides shared control and data
signals between the TAP controller and the TDRs. The control signals are not masked
yet.

Values or Variables to TDRs. The respective TDR is identified by the reference to the
IJTAGSubNetwork and the Name of the Bitfields. Similar to PDL, the Apply is required
to define when a scan operation is complete and shall be executed (i.e. all formerly issued
Reads and Writes take effect with the Apply). For time-sensitive procedures, Wait can
be used to wait at least the specified number of cycles.

Each Sequence has a Name and a Comment which are used for code generation. Moreover,
it has a Level that can be used to define driver feature subsets. The Config flag is required
to specify whether the Sequence targets normal TDRs or configuration cells. The latter
needs to be handled slightly differently in that an additional update with the EXCFG
instruction is required. In this case, the Split flag defines whether the two configuration
phases should be split into two functions in the generated driver.

4.3 Hardware Generation
Instances of the metamodel presented in Section 4.2 serve as a specification for the
implemented hardware generators. Therefore, they directly affect the features of the
generated hardware description. This section goes into detail on the capabilities of the
individual modules, how they are generated and how they are combined to form the
presented design.

4.3.1 JTAG-Module
The generator of the JTAG-Module expects an instance of the JTAG child object of
the JTAG metamodel illustrated in Figure 4.2. It instantiates a finite state machine in

28

4.3. Hardware Generation

Name Width Master Slave Description
Idle 1 Output Input Active in the Idle state
Reset 1 Output Input Active in the Test Logic Reset state
Pause 1 Output Input Active in the Pause DR state

Table 4.3: Overview of the JTAG-TAP-EXT-Interface which provides extension signals
from the TAP controller.

Name Width Master Slave Description
Select 1 Output Input The TDRs select signal
SO 1 Input Output The serial output signal

Table 4.4: Overview of the JTAG-TDR-Interface which provides the TDR-specific control
and data signals. The Select signal is required to mask the control signals of the JTAG-
TAP-Interface.

the form of a MetaRTL FSM primitive, which models the TAP controller depicted in
Figure 2.2. Moreover, it creates shift registers for the IR as well as for the IDCODE
and BYPASS instructions. These are described as MetaRTL Register primitives with
Mux primitives at their input and SLICE and CONCAT primitives to describe the shift
operations. As the IR requires consistent updates, a separate update register is placed
after the shift register. The clock sensitivity of all generated registers is in line with
the IEEE 1149.1 standard and also the TAP signals generated by the state machine are
delayed accordingly.

In contrast to the BYPASS and IDCODE TDRs, the BSC and any custom instructions
are external scan chains. They must therefore be connected to the JTAG-Module via
appropriate interfaces. For this purpose, a shared JTAG-TAP-Interface (see Table 4.2)
and per-TDR JTAG-TDR-Interfaces(see Table 4.4) are provided.

Since the BSC is a special TDR in that it must be selected by multiple standardized
instructions, the generator has an internal record of the implemented instructions which
target the BSC. The Select signals are merged and only one JTAG-TDR-Interface is
provided for the BSC. However, the individual Select signals are also provided as sideband
signals. Another specialty of the BSC is that a Mode signal, which is required to control
the multiplexers of boundary scan cells to switch between normal operation and test
mode, is also provided as a sideband signal.

Apart from the peculiarities of the standardized instructions and registers, the selection
logic and interfaces of any extension instructions are embedded fully automatically. This
drastically eases the integration of future extensions without the need to change the
generator of the JTAG-Module. The generator also checks the instructions’ indices against
any IEEE 1149.1 requirements or suggestions to warn the user about violations of the
standard or questionable design choices.

29

4. Design Implementation

Name Address Width Readable Writable Description
Instruction 0 IR_Length yes yes The internal IR
Action 1 2 no yes Trigger capture/update
WriteF 2 16 no yes Full 16 bit shift
WriteP 3 16 no yes Partial <16 bit shift
Read 4 16 yes no Read output data
Control 5 0 yes yes Reserved for future
Status 6 1 yes no Poll state of the module

Table 4.5: Overview of the APB-Module’s register interface.

Idle ActionsShift
DoShift DoActionsDoIdle

SetInstruction

Instruction ∧ ¬ActionScheduled
InstructionScheduled

SetInstruction

Instruction ∧ ¬ActionScheduled
InstructionScheduled

StartActions, EndActions

Action ∧ LastAction
ActionScheduled ∧ LastAction

StartActions, EndActions

Action ∧ LastAction
ActionScheduled ∧ LastAction

StartActions

Action ∧ ¬LastAction
ActionScheduled ∧ ¬LastAction

StartActions

Action ∧ ¬LastAction
ActionScheduled ∧ ¬LastAction

EndShift
LastShift
EndShift
LastShift

EndActions
LastAction
EndActions
LastAction

StartShift

Write ∧ ¬InstructionScheduled ∧
¬ActionScheduled

StartShift

Write ∧ ¬InstructionScheduled ∧
¬ActionScheduled

Idle ActionsShift
DoShift DoActionsDoIdle

SetInstruction

Instruction ∧ ¬ActionScheduled
InstructionScheduled

StartActions, EndActions

Action ∧ LastAction
ActionScheduled ∧ LastAction

StartActions

Action ∧ ¬LastAction
ActionScheduled ∧ ¬LastAction

EndShift
LastShift

EndActions
LastAction

StartShift

Write ∧ ¬InstructionScheduled ∧
¬ActionScheduled

Figure 4.3: State machine of the APB module. Transitions are labelled with their input
conditions and their outputs. If none of the conditions of incident transitions are met,
the state machine stays in its current state.

4.3.2 APB-Module

While the APB-Module’s metamodel object is very simple, the respective hardware
implementation is a bit more complex. As already outlined in Section 4.1, the APB-
Module must expose quite a bit of functionality via a register interface. The register
interface (see Table 4.5) consists of seven addresses that provide controllability and
observability of scan chains. Similarly to the JTAG-Module, the APB-Module provides a
single shared JTAG-TAP-Interface as well as one JTAG-TDR-Interface per implemented
instruction.

As the APB-Module must serialize and deserialize data and enforce a strict sequence
while mostly operating concurrently to the CPU, it contains a state machine as described
in Figure 4.3. The transitions’ input signals are based on transactions via the regis-

30

4.3. Hardware Generation

ter interface (Write, Instruction, Action), the data serialization circuit (LastShift), the
instruction circuit (InstructionScheduled) and the action circuit (LastAction, Action-
Scheduled). Transition and state output signals directly control the data serialization
circuit (StartShift, DoShift, EndShift), the instruction circuit (SetInstruction) and the
action circuit (StartActions, DoActions, EndActions).
The first register is the Instruction register which can be used to select a TDR in a JTAG-
style. However, in contrast to JTAG the register’s bits are written and read in parallel
without any need for serialization or deserialization. It is implemented by the generator
as two simple MetaRTL Register primitives whose widths depend on the definition in
the MoT. If the state machine is not in its idle state, writing to the logical Instruction
register causes the data to be cached in the secondary register and InstructionScheduled
is asserted. The physical register is only updated when SetInstruction is asserted by the
state machine (i.e. after any serialization or actions on the selected TDR are finished).
The Action register is only two bits wide and cannot be written to in the conventional
sense. Instead, writing to this register causes the currently set bits to be merged with the
written bits. The 0-bit (LSB) and 1-bit correspond to a scheduled capture and update
operation respectively. When setting any bits in this register, Action is asserted. If
any bits are already set, ActionScheduled is asserted. Moreover, if only one bit is set
LastAction is asserted. When StartActions or DoActions is asserted by the state machine,
the bits in the register are cleared from the MSB to the LSB on successive cycles while
performing the assigned actions on the selected TDR (i.e. asserting the respective TDR
enable signals). At first, it may seem counterintuitive that a scheduled update action
is processed before a scheduled capture action since the state machine in Figure 2.2
does it the other way around. However, in the APB-driven flow, this choice is much
more appropriate because it allows to schedule the end and start of back-to-back scan
operations.
Shift operations can be started by writing the data to be shifted to the WriteF or the
WriteP register. Data supplied during the write is cached and Write is asserted. The
cached data is serialized from LSB to MSB to the shared SI on successive cycles as soon
as StartShift or DoShift are asserted. During serialization of the 16th bit, LastShift is
asserted to leave the shift state. The difference between the two registers is that the
WriteF is used to shift the full 16 bits while the WriteP only performs a partial shift of the
supplied data. Partial shifts require a special format to clearly encode the number of bits
to be shifted which will be called first-zero-encoding. This is achieved by MSB-aligning
the partial data and then padding it with a single zero and as many one bits as are
necessary to reach the full 16 bits. For example, padding the data 1101101 to 16 bits
would result in 1101101011111111. Hence, when the serialization circuit encounters a
WriteP, the only difference to a WriteF is that the shift enable signal must be kept low
until the first zero bit (in the example the 8-bit) has been serialized. This is achieved by
a register within the serialization circuit which is only set during a WriteP operation.
Reading the data shifted out of the selected TDR during a WriteF or WriteP operation
can be accomplished by reading the Read register. During serialization to the SI, the

31

4. Design Implementation

Name Width Master Slave Description
Clock 1 Output Input The clock signal
CaptureEn 1 Output Input The capture enable signal
ShiftEn 1 Output Input The shift enable signal
UpdateEn 1 Output Input The update enable signal
ExCfg 1 Output Input The configuration mode signal
ConfigEn 1 Output Input The configuration lock signal

Table 4.6: Overview of the IJTAG-TAP-Interface which provides shared control and
data signals to the IJTAG subnetworks. The ExCfg and ConfigEn signals are required to
drive the custom configuration cells presented in Section 4.3.4

data at the selected SO is shifted into an internal buffer. The content is provided via the
Read register as soon as the serialization is complete. It is worth noting that, since the
input data supplied during a WriteP is MSB-aligned, the same is true for the output
data in the Read register.

Finally, the Status register is supplied to provide some information on the status of the
APB-Module. It can be used to poll whether the state machine is idle or busy which
returns a 0 or 1 respectively. Therefore, it provides valuable information for software
flow control.

As already mentioned, the APB-Module is accessible via an APB bus. However, the CSC
MoD that is instantiated by the generator and connected to the internal logic of the
APB-Module does not offer an APB interface. Therefore, a simple purely combinational
APB-to-CSC bridge is connected to the CSC circuit.

In some circumstances, it is not possible to accept an access to a register and the APB
transaction must be stalled. For example, in order to impose a strong sequence of all
TDR interactions, it must never occur that an instruction change is scheduled while
actions are scheduled. Therefore, a stall occurs when writing to the Instruction or Action
register when the respective other operation has already been scheduled. Moreover,
writing to WriteF or WriteP while a previous serialization has not yet finished or actions
are being processed results in a stall. Finally, reading from Read while a serialization
is ongoing would result in inconsistent data and therefore also causes the transaction
to be stalled. This way, it is not necessary to always poll the Status register until the
next operation can be issued. Nevertheless, it can still make sense to use the polled
information to optimize scan operations in terms of overall test time.

4.3.3 IJTAG Subnetworks
As outlined in Section 4.2, the IJTAG subnetworks are generated from CSC MoTs. The
generator creates a scan chain which includes an SIB per Unit and a corresponding chain
of tdr cells or configuration cells (see Figure 4.4) for each contained Bitfield. If there are
gaps between SIB addresses or the contained TDRs, these are interpreted as reserved

32

4.3. Hardware Generation

Name Width Master Slave Description
Select 1 Output Input The TDRs select signal
SI 1 Output Input The serial input signal
SO 1 Input Output The serial output signal
Error 1 Input Output The configuration error signal

Table 4.7: Overview of the IJTAG-TDR-Interface which provides the subnetwork-specific
control and data signals. The Error signal is driven by the error detection units in the
custom configuration cells presented in Section 4.3.4

CaptureEn

ShiftEn

UpdateEn

SI

Clock

Custom
Config-

Cell

CS
D Q

CS
D Q

U
D Q

U
D Q

0

1

0

1

0

1

0

1

0

1

0

1

Cfg
D Q
Cfg

D Q

ConfigEn
ExCfg

0

1

0

1

0

1

0

1

SO

PO

Error

CaptureEn

ShiftEn

UpdateEn

SI

Clock

Custom
Config-

Cell

CS
D Q

U
D Q

0

1

0

1

0

1

Cfg
D Q

ConfigEn
ExCfg

0

1

0

1

SO

PO

Error

Figure 4.4: Schematic of the custom configuration cell. It is similar to a self-capturing
update-TDR with an additional config register. The config register can only be updated
in a special EXCFG instruction. Moreover, updating of the config cell can be locked and
deviations between the update and config registers are detected during normal operation.

positions and shift-only cells are generated. Since the shift order as defined by the JTAG
standard is always LSB to MSB, the cells are arranged in such a way that the SI is
connected to the SIB with the highest address.

The choice of whether capture, update, capture-update or configuration cells are used
depends on the combination of HwRd (update), HwWr (capture) and Config flags. A
configuration cell is considered hardware readable but not hardware writable. Each
Bitfield is checked for illegal configurations before generation.

A current restriction is that Bitfields in an IJTAG Interface cannot be addressed via
multiple Units since that is not applicable within a scan chain. The generator detects this
besides other illegal patterns like overlapping TDRs and informs the user accordingly.

Each subnetwork has an IJTAG-TAP-Interface (see Table 4.6) and an IJTAG-TDR-
Interface (see Table 4.7) which make it possible to perform the scan operations. Addi-
tionally, for each Bitfield with capture or update logic, respective inputs and outputs are
provided as sideband signals so they can connect to the IP or EI.

33

4. Design Implementation

4.3.4 IJTAG-Module
The primary job of the IJTAG-Module is to connect all subnetworks into a single RSN.
For that purpose, the generator must create a global scan multiplexer network in which
the subnetworks can be embedded. In principle, there are two ways to generate the scan
multiplexers based on the MuxType, namely remote-controlled multiplexers or SIBs. At
the moment, only the Remote variant is implemented which means that the control bits
of the scan multiplexers are located in a separate TDR whose length is equal to the
number of subnetworks.

Since the module must be operable via the JTAG-Module and APB-Module, it contains a
JTAG-TAP-Interface. Moreover, with the Remote style three instructions are generated
which implies that three JTAG-TDR-Interfaces are required. In addition, a shared IJTAG-
TAP-Interface and an IJTAG-TDR-Interface per subnetwork are created. Essentially,
the IJTAG-Module can be seen as a bridge between JTAG- and IJTAG-Interfaces.

In order to construct the RSN, the generator creates a multiplexer per subnetwork. The
two inputs of each multiplexer are the serial input and serial output of the respective
subnetwork. Its output is the serial input to the next subnetwork. If the control bit is
enabled, the Select signal of the subnetwork is asserted and the multiplexer chooses the
respective SO. Otherwise, the Select signal is de-asserted and the SI signal is forwarded.
Just like with the generation of subnetworks from TDRs and SIBs, the subnetwork with
the highest address must be the first element in the chain in order to comply with the
LSB to MSB convention.

In addition to handling the inclusion and exclusion of subnetworks, the IJTAG-Module
also collects all error signals of the configuration cells in the connected subnetworks. The
result is masked based on the ConfigEn sideband signal so that no errors are triggered
during any configuration processes. This signal can be used by an on-chip monitor to
detect bitflips in the configuration registers which could cause malfunction.

The three instructions allow operation of the IJTAG-Module as follows. In order to
configure the scan multiplexers, the SIB instruction selects the TDR which contains the
control bits of the multiplexers. The IJTAG and EXCFG instructions both select the
RSN itself. This means that the signals of their JTAG-TDR-Interfaces are basically
merged. The difference between the two is that the EXCFG also asserts the ExCfg signal
of all configuration cells causing any occurring update actions to target the config register
instead of the update register.

4.3.5 Top-Level
The top-level generator of the entire design is what instantiates all the modules (provided
that the MoT demands it) by calling their respective generators. It then has to connect
the generated MoDs into a single top-level MoD. Hence, it has to contain all the logic that
is required to make the existing modules (and also future modules) interface with one
another. For the most part, this is a matter of systematically connecting interfaces and

34

4.3. Hardware Generation

IP

IP

CPU

APB-
Module

JTAG-
Module

IJTAG-
Module

Subnetwork 0

Subnetwork n

DebugTransportModule

APB
Bus

JTAG
Port

Switch

0

1

0

1
IP

IP

CPU

APB-
Module

JTAG-
Module

IJTAG-
Module

Subnetwork 0

Subnetwork n

DebugTransportModule

APB
Bus

JTAG
Port

Switch

0

1

Figure 4.5: A high-level overview of how the design’s top level connects the JTAG-Module,
APB-Module and IJTAG-Module. Also illustrates how a future DebugTransportModule
for an OCDS would integrate.

wiring sideband signals which can be automated to a large extent. However, one special
case that needs to be covered is the multiplexing of the interfaces to the IJTAG-Module.

As described in Section 4.3.4, the IJTAG-Module has one JTAG-TAP-Interface and
three JTAG-TDR-Interfaces. If the MoT specifies that the design should also include a
JTAG-Module and an APB-Module and they both implement the three instructions of
the IJTAG-Module, these interfaces have to be shared. This involves the introduction
of a Switch signal which can be used to select between the two modules as the current
controller of the IJTAG-Module. Basically, all inputs to the IJTAG-Module coming from
the controllers are multiplexed via the Switch as illustrated in Figure 4.5. Therefore, the
Switch signal is static in comparison to the signals related to scan chain operation and
must not change while scan operations are being performed.

4.3.6 Edge Detection Transformation
Section 4.3.5 mentions how the JTAG-Module’s and APB-Module’s signals related to the
IJTAG-Module are multiplexed. For the most part, this does not cause any problems.
However, while the APB-Module is in the SoC’s clock domain, the JTAG-Module has its
own TCK clock domain. This causes the introduction of a multiplexer in the clock path
of the IJTAG-Module which is not safe for synchronous design.

Fortunately, MetaRTL makes it possible to apply transformations to the generated
top-level MoD. For this reason, the presented generators come with an edge detection
transformation that can be used to eliminate the problematic multiplexer. The basic
idea is to rebuild the TCK-clocked parts of the design into an analogue circuit that is
clocked by the SoC’s clock and samples the TCK. Usually rewriting a design in this way
would not be particularly hard but definitely tedious. With an automatic transformation,
this can be accomplished in a matter of seconds for any possible design configuration.

The transformation consists of three main steps whose effects can be seen in Figure 4.6.
First, an edge detector is introduced that samples the TCK signal and provides Rising

35

4. Design Implementation

1 1

D Q
En

D Q
En

D Q
En

D Q
En

D Q
En

D Q
En

D Q
En

D Q
En

Combinational Logic

System Clock

Test Clock

System Data

Test Data

Switch

0

1

0

1

0

1

0

1

1 1

D Q
En

D Q
En

D Q
En

D Q
En

Combinational Logic

System Clock

Test Clock

System Data

Test Data

Switch

0

1

0

1

(a) System with two clock domains and unsafe multiplexer in clock path.

D Q
En

D Q
En

D Q
En

D Q
En

D Q
En

Combinational Logic

System Clock

Test Clock

System Data

Test Data

Switch

0

1

0

1

Sampling

Rising Falling

Input

Sampling

Rising Falling

Input
D Q

En
D Q

En
D Q

En
D Q

En
D Q

En

Combinational Logic

System Clock

Test Clock

System Data

Test Data

Switch

0

1

Sampling

Rising Falling

Input
D Q

En

(b) System transformed to a single clock domain with sampling of second clock.

Figure 4.6: Example of how the edge detection transformation can modify a system to
eliminate the second clock domain.

and Falling signals. Then, all synchronous components of the circuit (e.g. registers, state
machines, ...) that were connected to the TCK (directly or indirectly) can be modified
hierarchically. Based on their clock sensitivity, their enable signal is masked by either of
the two signals produced by the edge detection circuit. Moreover, they are reconfigured to
be sensitive only to the rising edge. Lastly, the multiplexer in the clock path is removed
and every transformed component is connected to the system clock.

4.4 Firmware Generation
Since the APB-Module described in Section 4.3.2 has to be operated via the CPU, a
corresponding HAL is required for software development. To provide higher levels of
abstraction, the metamodel outlined in Section 4.2 offers the possibility to describe
interactions with the IJTAG network. In this Section, the generation of two layers of
drivers with increasing levels of abstraction is presented.

36

4.4. Firmware Generation

Function Description
INSTRUCTION_WRITE(uint8_t) Sets the Instruction register
INSTRUCTION_READ() Returns content of the Instruction register
ACTION_WRITE(uint8_t) Schedules capture and update actions
WRITEF_WRITE(uint16_t) Initiates 16 shift operations
WRITEP_WRITE(uint16_t) Initiates <16 shift operations
READ_READ() Returns deserialized data of last shift operations
CONTROL_WRITE(bool) Not in use yet
CONTROL_READ() Not in use yet
STATUS_READ() Returns whether the APB-Module is busy

Table 4.8: Overview of the APB-Module’s HAL.

4.4.1 Hardware Abstraction Layer
The HAL is automatically generated from the APB-Module’s CSC definition (see Listing 1
and Listing 2). It can be used to control the APB-Module’s register interface described
in Section 4.3.2 via the JTAG_HAL object. Therefore, it already offers the capabilities to
perform any possible interaction with the attached IJTAG-Module. However, it is not
specific to the IJTAG-Module and is also extremely low-level which means that developers
would still have to take care of complying with the module’s protocol. Table 4.8 gives an
overview of the provided functionality.

4.4.2 Basic Driver
The basic driver is generated to provide a more straightforward interface to the IJTAG-
Module (see Listing 3 and Listing 4). It makes use of the HAL and the information in
the IJTAGNetwork object of the design’s MoT as well as the knowledge about the APB-
Module’s protocol. The idea is to provide high-level functions for manual interaction with
the attached IJTAG-Module which improve productivity and reduce the potential for bugs
by abstracting the module’s protocol (see Table 4.9). Nevertheless, the developers still
have to be aware of the actual structure of the generated RSN and have to ensure proper
SIB states at all times. This is also a major drawback in the sense that a slight change in
the network’s structure can render large chunks of source code obsolete. Moreover, input
and output data must often be masked, concatenated and padded which is a tedious and
error-prone process.

4.4.3 Custom Driver
In order to further boost productivity and enable reuse, it is necessary to leverage the
power of MetaFirm in combination with the complete specification in the form of the
design’s MoT for the generation of system-specific code. As mentioned in Section 4.2,
the MoT can contain high-level specifications of RSN access sequences. The task of the
driver generator can be seen as a form of retargeting of these abstract sequences to the

37

4. Design Implementation

Function Description
JTAG_Select_IJTAG() Selects the IJTAG instruction
JTAG_Select_EXCFG() Selects the EXCFG instruction
JTAG_Select_SIB() Selects the SIB instruction
JTAG_Capture() Schedules a capture action
JTAG_Update() Schedules an update action
JTAG_ShiftF(uint16_t) Shifts exactly 16 bits of data
JTAG_ShiftP(uint16_t,
uint8_t)

Pads data and shifts specified amount of bits

JTAG_ShiftData(uint16_t *,
uint16_t)

Shifts an entire array of data given a bit count

JTAG_ShiftF_R(uint16_t) Like JTAG_ShiftF() but returns read data
JTAG_ShiftP_R(uint16_t) Like JTAG_ShiftP() but returns read data
JTAG_ShiftData_R(uint16_t *,
uint16_t *, uint16_t)

Like JTAG_ShiftData() but provides read data

JTAG_Wait() Waits for the APB-Module to become idle

Table 4.9: Overview of the IJTAG-Module-specific basic driver for the APB-Module.

system’s IJTAG network definition into source code which makes use of the APB-Module’s
features.

The description of these sequences is close to PDL as outlined in the IEEE 1687.1 in that
a set of Read and Write operations are provided and the entire set is applied with an
Apply action. If multiple Writes target the same TDR only the last one succeeds. It is
worth noting that the order in which the actions are applied to the RSN is not dependent
on the order they are listed in but on the network’s structure. Essentially, a single Apply
action corresponds to a single scan operation where the input data and the configuration
of the network depend on the set of TDR-accesses. In order to generate efficient code, it
is important that the scan operation of an Apply action already pre-configures the RSN
for the scan operation of the following Apply action.

The generator for the custom driver instantiates functions from the Sequence objects in
the MoT. In the current state, a function can be either a test or a configuration function
which is denoted by the Config flag. While the former can only target standardized
TDRs, the latter can only target registers made up of configuration cells. This distinction
is used to ease the process of code generation since the two groups of registers need to be
handled slightly differently.

For configuration Sequences, in addition to the code for the usual scan operations, a
postfix code must be generated which triggers the actual update of the config registers.
This can occur within the function itself or, alternatively, a separate function can be
generated for this finalizing step by setting the Split flag.

Apart from this, all Sequences are handled similarly. First, the generator creates the
function signature and variables based on the assigned Variable objects. It partitions

38

4.4. Firmware Generation

Bitcount > Datatype Bitcount ≤ Datatype
Pointer Non-Pointer Pointer Non-Pointer

Input Paramter Error Parameter Parameter
Output Paramter Error Parameter Return*
Both Parameter Error Parameter Parameter + Return*

Neither Local Array Local Array Local Variable Local Variable

Table 4.10: Overview of how the Variables of a Sequence are classified into function
parameters, local variables and return parameters. Note that there can only be one
return parameter per function!

them into function parameters, local variables and up to one return variable based on their
Type, whether they are Inputs or Outputs and their Bitcount attribute which describes
how many of the bits may actually be used. Table 4.10 gives a concise overview over this
process.

Next, the sequence of Operations is separated into groups which all consist of Reads and
Writes, an Apply and an optional Wait. All Reads and Writes must have a TDR assigned.
Furthermore, Reads must reference a Variable while Writes must have either a Value or
a Variable. Based on the referenced TDRs, the active subnetworks as well as the active
SIBs can be identified for each group of Operations. In the current state, each TDR must
be in a defined state after each Apply which means that each included updateable TDR
must be written to. Moreover, it is not yet possible to use a Variable as a source of a
Write and destination of a Read in the same group. Both conditions are checked by the
generator and if they are violated generation is aborted with the respective warnings.

As soon as all groups are processed, a scan operation schedule must be built according
to Algorithm 4.1. This is done because the actual scan operation of one group can be
overlapped with the network configuration for the following group. Therefore, for each
pair of adjacent groups, the respective state in the schedule is computed. First, the union
of the required subnetworks for both groups is formed. Moreover, the SIBs required
by the first group, the SIBs required by the second group and the Operations of the
first group are used to build a write stream. Figuratively, this is done by assembling a
sequence of Variables and constants according to the Writes and the SIBs that must be
activated (second group’s SIBs) and deactivated (only first group’s SIBs) during the scan
operation. Notably, this sequence is in the order of the respective SIBs and TDRs in
the RSN. In a similar way, a read stream is computed from the Reads of the first group.
The streams can be interpreted as a compressed sequence of data to be serialized and
deserialized which must then be split into individual transactions of up to 16 bits.

At this point, the actual code generation is started as described in Algorithm 4.2. It
basically consists of a loop over all the states that were computed before. First, if
the currently active subnetworks are not equal to the required subnetworks, the SIB
instruction must be selected and the IJTAG-Module’s scan multiplexers must be configured
accordingly using shift and update operations. Afterwards, the RSN must be selected by

39

4. Design Implementation

Algorithm 4.1: Creating states of a scan schedule from operation groups. It
uses the two functions CreateWriteStream(current_sibs, next_sibs, writes)
and CreateReadStream(reads) to create the compressed sequences of a state.

Data: groups
Result: states

1 g = groups[0];
2 wstr = GenerateWriteStream({}, g.SIBs, g.Writes);
3 rstr = GenerateReadStream(g.Reads);
4 states.append(State(g.Subnetworks, wstr, rstr));
5 forall (g1, g2) in AdjacentPairs(groups) do
6 snets = Union(g1.Subnetworks, g2.Subnetworks);
7 wstr = CreateWriteStream(g1.SIBs, g2.SIBs, g.Writes);
8 rstr = CreateReadStream(g.Reads);
9 states.append(State(snets, wstr, rstr));

10 end
11 g = groups[−1];
12 wstr = GenerateWriteStream(g.SIBs, {}, g.Writes);
13 rstr = GenerateReadStream(g.Reads);
14 states.append(State(g.Subnetworks, wstr, rstr));

switching to the IJTAG instruction. A capture action must be triggered to latch data
into the included TDRs. Now, the current write and read streams are used to generate
the actual scan operation code which performs the Writes and Reads and also engages
and disengages SIBs as required for the next state. Finally, an update action is triggered
and the loop continues with the next state.

Generation of the register interface accesses according to the write and read streams are
outlined in Algorithm 4.3. For the most part, this process is relatively straightforward.
The first write packet is prepared and sent to the APB-Module. Afterwards, a loop starts
which always prepares a write packet during serialization, then reads back the output
of the previous packet (if necessary), transmits the prepared write packet and unpacks
the received read packet. This goes on until no more write packets must be generated in
which case the loop terminates and the last read packet is retrieved and handled.

The most intricate part of this process is of course the fact that arbitrary bit widths
of the TDRs and Variables must be handled. All shift operations but the very last are
triggered using WriteF transactions to keep the code efficient (although not necessarily
optimal). Therefore, proper masking, shifting and merging of constants and variables is
essential during the preparation of write packets and unpacking of read packets.

There is one more special case that has to be covered. In the case of a Config operation,
config registers of the config cells must be updated after the loop in Algorithm 4.2 or in
a separate function (depending on the Split attribute). This is done by generating code
that selects all subnetworks and asserts all the SIBs that were active during the sequence.

40

4.4. Firmware Generation

Algorithm 4.2: Generating the code from the schedule states. Generation is
modelled via the code object.

Data: states
Result: code

1 subnetworks = ∅;
2 forall s in states do
3 if subnetworks ̸= s.Subnetworks then
4 code.SetInstruction(SIB);
5 code.SerializeSubnetworks(s.Subnetworks);
6 code.Update();
7 code.SetInstruction(IJTAG);
8 end
9 code.Capture();

10 code.GenerateScanOperation(s.WriteStream, s.ReadStream);
11 code.Update();
12 end

Then, with the EXCFG instruction selected, zeros are shifted into the RSN. Another
update action brings the RSN in its closed state while performing the configuration on
all selected config cells. Since the EXCFG instruction is selected, the update register of
the config cells is not affected in any way by the zeros that were shifted into the shift
register.

41

4. Design Implementation

Algorithm 4.3: Generation of WriteF, WriteP and Read transaction from
readstream and writestream. Generation is modelled via the code object.

Data: read_stream, write_stream, bitcount
Result: code
/* Send first write packet */

1 writes = GetWritesInPacket(counter);
2 code.PackWrites(writes);
3 if 16 ≤ bitcount then
4 code.TransmitWriteF ();
5 end
6 else
7 code.TransmitWriteP (bitcount − counter);
8 end
9 counter = 16;

10 while counter ≤ bitcount do
/* Prepare next write packet */

11 writes = GetWritesInPacket(counter);
12 code.PackWrites(writes);

/* Retrieve last read packet */

13 reads = GetReadsInPacket(counter − 16);
14 if reads ̸= ∅ then
15 code.RetrieveRead();
16 end

/* Send next write packet */

17 if counter + 16 ≤ bitcount then
18 code.TransmitWriteF ();
19 end
20 else
21 code.TransmitWriteP (bitcount − counter);
22 end

/* Unpack last read packet */

23 if reads ̸= ∅ then
24 code.UnpackRead();
25 end
26 counter = counter + 16;
27 end
/* Retrieve and unpack final read packet */

28 reads = GetReadsInPacket(counter − 16);
29 if reads ̸= ∅ then
30 code.RetrieveRead();
31 code.UnpackRead();
32 end

42

CHAPTER 5
Methodology Showcase

The presented design was integrated into the RiVal 2 SoC (see Figure 5.1) to explore
and demonstrate its capabilities as well as the benefits of the implemented firmware
generation flow. This should show how the work presented in this thesis can offer on-chip
and off-chip test, trim and configuration functionality via an SoC-specific IJTAG network.
In addition, an example of firmware-generation-aided software development shall reveal
how the hardware/software boundary can be bridged in a productive way.

The example chosen for this demonstration is a comparator-based self-trimming process
since it uses the test and configuration aspects of the presented firmware generator
and essentially forms a closed loop. On the one hand, this process requires repeated
reconfiguration of trim values via the RSN. On the other hand, the comparator result
which is also supplied via the RSN has to be read back after every configuration step.
The reference voltage could either be supplied externally (partial self-trim) or using a
pre-trimmed on-chip voltage source (full self-trim). Once a valid trim value is found, it
can be stored in non-volatile on-chip memory and used on every startup to configure the
trim register.

In order to generate the design, a suitable specification in the form of an MoT is required
which is visualized in Figure 5.2. According to this model, the generated design shall
contain a JTAG-Module and an APB-Module which shall both contain an 8-bit wide
IR. The JTAG-Module further has combined Sample and Preload instructions since
the indices are the same. Of course, the design also needs an IJTAG-Module which
provides an RSN. In this specific case, the network consists of three subnetworks that
are guarded with remote-controlled scan multiplexers. The IJTAG-Module instructions
are implemented by the JTAG-Module and the APB-Module which means that both can
be used to access the RSN.

The InterfaceDefinition attributes in the subnetworks point to their respective CSC MoTs.
For the specific self-trim example, only the third subnetwork (subnetwork2) is of interest

43

5. Methodology Showcase

AHB Matrix

AHB

APB

Mem

AHB

M

S

Mem

AHB

Mem

AHB

Mem

AHB

M M M S

S

M

M

SPI

MS

Analog
IP

OTP
S

iROM
S

iRAM
S

dRAM
S

RISC-V

MM
iBus dBus

JTAG-
Module

APB Fabric S

Digital IP Digital IP

MM

CSC
S S

CSC

APB-Mod
CSC

S

M

AHB Matrix

AHB

APB

Mem

AHB

M

S

Mem

AHB

Mem

AHB

Mem

AHB

M M M S

S

M

M

SPI

MS

Analog
IP

OTP
S

iROM
S

iRAM
S

dRAM
S

RISC-V

MM
iBus dBus

JTAG-
Module

APB Fabric S

Digital IP Digital IP

MM

CSC
S S

CSC

APB-Mod
CSC

S

M

Figure 5.1: High-level overview of the RiVal 2 extended with the presented design.

Variables
Sequence Name Input Output Type Bitcount
set_trim_value trim_value True False uint16_t 10
get_comparator_result result False True uin8_t 1

Table 5.1: Variables of the two Sequences defined in the MoT.
Operations

Sequence Action Subnetwork TDR Variable

set_trim_value Write subnetwork2 TrimValue trim_value
Apply

get_comparator_result Read subnetwork2 ComparatorResult result
Apply

Table 5.2: Operations of the two Sequences defined in the MoT.

since it implements the registers required for trimming. The MoT of this subnetwork is
visualized in Figure 5.3. Its respective implementation would be a subnetwork consisting
of two SIBs which guard a 10-bit configuration register for trimming and a 1-bit capture
register for the comparator feedback.

What the described MoTs have not captured so far are the firmware-related Sequences. In
practice, these are described in the main MoT but they are not particularly understandable
in a graphical representation. Therefore, the definition of the two Sequences that are

44

IJTAGSubNetwork
Index = 2
InterfaceDefinition = subnetwork2

IJTAGSubNetwork
Index = 1
InterfaceDefinition = subnetwork1

JTAGInstruction
Index = 10
Name = EXCFG

JTAGInstruction
Index = 8
Name = IJTAG

JTAGInstruction
Index = 9
Name = SIB

APB
IR_Length: = 8

IJTAGSubNetwork
Index = 0
InterfaceDefinition = subnetwork0

JTAG
IR_Length = 8
IDCODE_Version = 0
IDCODE_PartNum = 0
IDCODE_MfrID = 65
BYPASS_Index = 255
IDCODE_Index = 1
SAMPLE_Index = 19
PRELOAD_Index = 19
EXTEST_Index = 18

IJTAGNetwork
MuxType = Remote

Metajtag
Name = "RiVal2JTAG"

IJTAG

EXCFG

SIB

Figure 5.2: The MoT used for generation of the design for the RiVal 2. The Sequences
are omitted for brevity.

used for the presented example are instead outlined in Table 5.1 and Table 5.2. The
set_trim_value can be used to update the value of the trim register. It has set Config and
Split flags which means that two functions are generated for split-phase configuration. The
get_comparator_result is used to capture and return the comparator result. Therefore,
the Config flag is set to false.

The final design generated from the presented MoT has an extensive interface which can
be seen in Table 5.3. It is apparent that there are two interfaces for interaction with the
implemented scan chains (jtag and apb). The jtag_apb_switch signal can be used to
choose which one should be controlling the IJTAG network. All the external scan chains
that are implemented by the JTAG-Module can be operated via the jtag_* interfaces
and sideband signals. The IJTAG subnetworks can be attached to the ijtag interface
as well as their respective IJTAG-TDR-Interfaces. One can also also see that there are
*_clock_rising and *_clock_falling signals. These were introduced by the edge detection
transformation that was applied to the generated MoD before generating the design
sources. Therefore, they also have to be forwarded to the transformed subnetworks or
any other future additions to the scan architecture.

The generated subnetwork2 connects to this via the ijtag and subnetwork2 interfaces.
Moreover, it provides a 10-bit output value and a 1-bit input value which connect to the
unit to be trimmed and the comparator output respectively. This way, everything that is
required for the self-trim routine on the hardware side is wired up accordingly.

On the firmware side, three functions are provided. The generated code can be seen
in Listing 5 and Listing 6. Since the required Sequences for this application are rather
simple and only one transaction is required per scan operation, the code is relatively easy

45

5. Methodology Showcase

Contained
Position = 0

Unit
Name = "ResultUnit"
Address = 1
DataWidth = 1

Bitfield
Name = "ComparatorResult"
Size = 1
Defaultvalue = 0
HwRd = False
HwWr = True
SwRd = True
SwWr = True
Config = False
Virtual = False

Contained
Position = 0

Unit
Name = "TrimUnit"
Address = 0
DataWidth = 10

Interface
Name = "subnetwork2"
Type = IJTAG

Bitfield
Name = "TrimValue"
Size = 10
Defaultvalue = 0
HwRd = True
HwWr = False
SwRd = True
SwWr = True
Config = True
Virtual = False

Metacsc
Name = "IJTAGCSC2"

Figure 5.3: The MoT used for description of subnetwork2 in the generated design.

to comprehend. Essentially, it always selects the SIB instruction (index 9) and activates
the required subnetwork(s) (in this case subnetwork2). Then, the IJTAG instruction is
selected to enable the SIB of the TrimUnit or the ResultUnit. Finally, the writing of
the trim value or reading of the result and closing of the SIB is performed. While this
is a simple piece of code, it is already apparent that, even though the SIBs ensure high
flexibility, keeping track of them and changing their states when necessary can complicate
scan operations significantly. This is mainly because, from a programming perspective,
they are mixing up the separation between control flow and data signals.

Fortunately, because of the provided driver generation, it is not necessary for the
application programmers to care about these details of the RSN. Instead, they can focus
on the self-trimming algorithm that they want to employ in the final design. One example
of trimming with a comparator would be a simple binary search within the range of
possible values. Listing 7 shows an example of a binary search routine that can be
employed for the 10 bit trim value.

This application of the proposed flow is a perfect example of how code and IP reuse
can be improved. On the one hand, the definition of the subnetwork which is used for
self-trimming can be seen as a building block that can be embedded in any JTAG MoT
as required. Since the self-trim-related functions are generated automatically, the source
code which makes use of subnetwork2 -specific driver code is also independent of the RSN
structure.

It is also noticeable how such a routine can improve the trimming process in general.

46

Name Type Direction
sysclk clk in
sysrst_n reset in
jtag_apb_switch logic in
apb APB-Interface in
jtag JTAG-Interface in
jtag_apb_switch logic in
jtag_tap JTAG-TAP-Interface out
jtag_tap_ext JTAG-TAP-EXT-Interface out
jtag_bsc JTAG-TDR-Interface out
jtag_bypass_sel logic out
jtag_idcode_sel logic out
jtag_sample_preload_sel logic out
jtag_extest_sel logic out
jtag_tap_clock_rising logic out
jtag_tap_clock_falling logic out
ijtag IJTAG-TAP-Interface out
subnetwork0 IJTAG-TDR-Interface out
subnetwork1 IJTAG-TDR-Interface out
subnetwork2 IJTAG-TDR-Interface out
ijtag_config_lock logic in
ijtag_error logic out
ijtag_tap_clock_rising logic out
ijtag_tap_lock_falling logic out

Table 5.3: Interface of the generated design.

Usually, even without the possibility of on-chip RSN-access, this setup would already
enable ATE-driven trimming. Using dedicated on-chip trim instruments would also allow
for self-trimming. With the power of the CPU-based access via the APB-Module, it is
possible to employ self-trimming without any application-specific hardware overhead.
Moreover, since the self-trim solution is software-based, it is very easy to make changes
to the trim routine. Finally, more parallelization is now possible since less ATE resources
are needed and multiple chips can be programmed and trimmed in parallel.

This is just one example of a CPU-driven self-trim and configuration routine. In principle,
any proven self-test or self-trim method which would usually require a dedicated hardware
state machine can be realized with this flow. Notably, the APB-Module is a one-time
investment in terms of hardware overhead that can be used for any element embedded in
the entire RSN.

47

CHAPTER 6
Discussion and Outlook

The primary objective of this thesis was the development of a modular on-chip testing
infrastructure that supports IEEE 1149.1 conforming EOL testing as well as CPU-driven
self-testing. Furthermore, employment of an RSN according to IEEE 1687 should foster
IP reuse and test procedure reuse and ensure high flexibility and performance during
scan operations. Finally, a high-level abstraction of CPU-driven scan operations was a
key requirement to ensure productive software development.
The flow presented in this thesis aims at providing all these aspects via the generation of
hardware and firmware from a single specification as visualized in Figure 6.1. Provision of
a standard-conforming JTAG-Module for external accesses as well as a specially designed
APB-Module for interactions via the CPU enable partitioning of EOL testing into off-
chip and on-chip procedures. Moreover, the CPU-access allows for self-testing and IP
configuration in the field with little to no per-IP hardware overhead. The specification
also contains all information that is required to generate a system-specific RSN from an
arbitrary set of IP- and EI-specific subnetworks in a modular way. This eases the reuse
of IPs and EIs while also ensuring high flexibility in the development of SoCs. Further,
the automatic generation of system- and application-specific drivers from high-level
descriptions is made possible via the firmware-related information which is also encoded
directly in the specification. This releases the burden of writing RSN-specific code from
software developers and therefore boosts productivity while eliminating the probability
of bugs.
Although the presented approach addresses the mentioned requirements, it is certainly
not in a completely finalized state simply due to the fact that it connects to so many
topics related to DFT, EOL testing and BIST. As hinted in Figure 6.1, one of the
most important future additions is surely the extraction of an RSN description from the
specification in the standardized ICL format. This information is what enables EDA tools
to perform retargeting of test procedures in the PDL format. Therefore, this addition
is necessary to link EDA tools like the Tessent suite [25, 28] and EOL test procedures

49

6. Discussion and Outlook

SpecSpec

MetaRTL MetaFirmMetagen

ICLICL RTLRTL
RTLRTL

RTL
RTL

HALHAL
HALHAL

HAL
HAL

Hardware SoftwareEOL Test

Sources

vvvvvv
Sources

cccccc hhhhhhcc hh

Figure 6.1: Concluding overview of the flow presented in this thesis. Dashed lines mark
future extensions of the approach.

with the generated RSN of the physical chip. Since the metamodel was created with
this feature in mind, a given MoT already contains all information that is required for
the generation of a corresponding ICL definition using an additional Metagen-based
generator.

Another future improvement related to EOL testing is addressing the unsafe multiplexer
in the clock path of the IJTAG-Module (or any other future shared scan chains). As
outlined in Section 4.3.6, the edge detection transformation can be used to circumvent
this problem to some extent. However, since the TCK must now be synchronized and
sampled, some constraints must be fulfilled to ensure stable external operation via the
JTAG-Module. According to the IEEE 1149.1 standard, inputs are clocked in at the
rising edge while outputs are clocked out at the falling edge. Usually, given TCK’s high
period th

tck and low period tl
tck as well as TCK input delay dtck, TDI input delay din and

TDO output delay dout it must hold that

dtck + dout < tl
tck

dtck − din < th
tck

It is worth noting that the second constraint is inherently fulfilled for reasonable delay
values much smaller than the clock period and similar dtck and din.

50

sys_clk

TCK_ATE

TCK_Chip

TCK_sync

TDI_ATE

TDI_Chip

TDO_Chip

TDO_ATE

dtck

sync. delay

din

dout
TDI clocked in

TDO clocked in

Figure 6.2: Timing diagram visualizing the oversampling of the TCK signal with the
system clock and how transmission and synchronization delays affect satisfiability of the
JTAG protocol.

After the transformation, the system clock must be fast enough to sample TCK without
the overhead of the synchronization delay causing violations of the above constraints.
For a 2 stage synchronizer, it must hold that

3 · tsys + dtck + dout < tl
tck

3 · tsys + dtck − din < th
tck

Again, the second constraint is not as critical as the first one. When assuming a 50%
duty cycle, complying with the first constraint even implies satisfaction of the second
provided that din < −dout. In this case, the criterion reduces to

3 · tsys + dtck + dout <
ttck

2
In other words, TCK should be oversampled by at least a factor of 8 to ensure that the
JTAG protocol is not violated. Of course, depending on the propagation delays, this
factor may be even higher. Figure 6.2 illustrates this situation.

While totally reasonable for exploration of the design capabilities, this may already entail
a significant speed limit on EOL testing. Morover, during EOL testing, the system clock
may not be trimmed yet which could complicate the testing process and lead to even
higher test times. Therefore, a viable alternative would be the introduction of a clock
multiplexer which would also have to be provided via a MetaRTL primitive. The nice
thing about this addition is that no change of the design generator is required to also
offer an alternative clock multiplexer transformation.

It is also of high interest to develop a good on-chip vs. off-chip partitioning approach.
Unfortunately, at the time of writing this thesis, the RiVal 2 was not yet in a stable
state and while the presented design was verified in [37], extensive exploration of on-chip
testing and trimming was not possible. Therefore, an in-depth analysis of the time

51

6. Discussion and Outlook

required to perform common EOL testing routines is needed in the future. When moving
test routines from ATE to the SoC-internal software-driven applications, there are some
factors that have to be taken into account. On the one hand, being able to free up
ATE resources and the fact that each chip can do its own testing can be expected to
increase the potential parallelism. On the other hand, some scan operations may take
more time when they are run on the CPU simply because of the delays introduced during
memory transactions and required instructions. Moreover, the time it takes to program
and boot the SoCs must be considered. Therefore, it is necessary to evaluate the possible
parallelism p and the sequential and parallelizable processing times tseq and tpar of both
approaches. They could then be compared to one another in terms of their overall time
required per tested unit tunit = tseq/p + tpar. By collecting this information for further
showcases, the profitability of the approach can be evaluated accordingly.

Of course, there is also room for the development of the individual modules of the
presented design. The APB-Module acts as a bridge between the CPU and the RSN.
Therefore, it is certainly worth exploring variations of the proposed design.

In the current state, it is required to issue a Read transaction after a Write* transaction
if the output data is required. However, it would be possible to employ an output queue
that makes it possible to buffer multiple packets of output data. The existing Control
register could be used to enable and disable the buffering of deserialized results as needed.
Moreover, input queues could also be employed to reduce the number of stalling cycles
when a lot of Write* transactions are performed in rapid succession.

Another possible way of boosting the APB-Module’s performance would be an option
to perform parallel writes to the TDR which controls the scan multiplexers between
the subnetworks. This would make the inclusion and exclusion of subnetworks much
faster. As a matter of fact, the IJTAG-Module already supports the optional generation
of a parallel input for this TDR. It is merely a matter of extending the APB-Module’s
interface with an option to make use of this feature.

This thesis has only addressed the APB interface with a data width of 16 bits for this
module. An obvious extension would be to offer alternative interfaces and data widths.
This is actually very straightforward since a special metalib has been developed to handle
the mapping of arbitrary bus interfaces to the CSC’s DataBus and almost no changes to
the module’s generator will be necessary.

On the IJTAG side, it would be possible to further extend the CSC metamodel or extract
the IJTAG-specific parts altogether to provide more possibilities with respect to the RSN
structure. For example, it could be interesting to allow multiple levels of hierarchy per
subnetwork. Moreover, special SIBs could be introduced that capture a constant zero
when the EXCFG instruction is selected. This would make the update of the config
registers more efficient since it is not necessary to fill the entire active scan path with
zeros. Instead, engaging the relevant SIBs and then performing a capture action followed
by an update action would perform the configuration and close all the SIBs within a few
cycles.

52

Finally, there are also a few possible improvements with respect to firmware generation.
An obvious one is the fact that the Read operation currently does not support any
expected values like PDL does. The current flow does of course allow to return the read
values and the application can check these against the expected values. Nevertheless,
supporting the generation of routines that automatically check the read values against
expected values would certainly be useful.

Another useful feature to strengthen the bonding with third-party IP and EDA tools would
be the implementation of a PDL-to-Sequence translator. Since Sequence descriptions are
already close to PDL (level 0), this would allow retargeting of PDL definitions into driver
routines for the proposed design without any changes in the current generators. The
cross compiler flow outlined in [31, 32] is an example of how this can boost productivity
and compatibility even further.

A major difference to the off-line retargeting presented in this thesis is that the RSN
controller in [31, 32] performs on-line retargeting to enable the use of PDL level 1
definitions. Of course, on-line retargeting comes with a major hardware overhead in
comparison to the lightweight design presented in this thesis. Interestingly, the support
of PDL-1 is not at all impossible with off-line retargeting since the power of the on-chip
CPU is available. The key extension would be to introduce wrappers around the static
Sequences that allow the mapping of control flow commands. These could then be
translated into the corresponding control flow constructs in the C programming language.

Another interesting feature would be to embed callbacks in the high-level description of
scan operations. The basic idea would be to let the generator embed a call to a specific
function with arguments. This could be used to allow software developers to hook into
the scan operation assembling process which could increase the flexibility drastically.

An important aspect concerning reusability would be the modification of the metamodel
in such a way that the Sequences can also be provided as modular building blocks just
like the subnetworks. This would provide support for what one could call libraries of
Sequences which could be included in the specification as required. However, this process
is not trivial since some Sequences may rely on the presence of very specific or very
broad classes of subnetworks. The most appropriate approach would probably be a
dedicated generator pass that is capable of transforming standalone Sequence libraries
into MoT-specific Sequences. While it would be very beneficial for code reuse and reuse of
custom Sequences across multiple MoTs, PDL-to-Sequence translation is certainly more
important.

A final point to consider is how the driver code is generated. At the moment, the generator
tries to pack all shift operations into as little APB transactions as possible. However,
this does not take the runtime of the code on the CPU into account. Realistically, even
though serialization is running in parallel to data preparation, it may sometimes be worth
it to not squeeze a few bits of data from a variable into an almost full packet if that would
mean that for the next packet less shift and mask operations are required. However, this
would already require very platform-specific knowledge of the target system. Moreover,

53

6. Discussion and Outlook

finding efficient schedules for the operation of RSNs is in general NP-hard. Therefore,
any changes in the code generation should be driven by the incentive for more optimal
code based on the results of actual benchmarks.

54

CHAPTER 7
Summary

The presented framework of hardware generators enables the straightforward provision
of RSN-based on-chip testing infrastructure which supports conventional EOL testing
as well as CPU-driven self-testing, self-trimming and IP configuration. A corresponding
firmware generation flow helps in bridging the hardware/software boundary by raising
the abstraction of CPU-interaction with the embedded scan chains. The generators are
based on Infineon’s metamodeling code generation frameworks Metagen, MetaRTL and
MetaFirm which enable the use of single-source specifications and support the modularity,
flexibility and reusability of the proposed flow.
The backbone of the modular on-chip testing infrastructure is an IEEE 1687 conforming
RSN which can be assembled from reusable subnetwork definitions on a case-by-case
basis to foster IP- and EI-reuse. Employing the principles of the IJTAG standard also
resolves shortcomings of the JTAG standard without interfering with its requirements.
This way, the generated design can also offer a IEEE 1149.1 conforming JTAG interface
to enable transparent operation via existing ATE and EDA toolchains. Moreover, the
set of instructions implemented by the TAP controller is extensible which further boosts
flexibility with respect to future additions. A specially developed peripheral allows
the CPU to address the RSN which makes it possible to augment EOL testing with
smart software-driven self-testing and self-trimming. Moreover, it enables self-testing,
self-trimming and IP configuration in the field by reusing embedded scan chains with
minimal to no hardware overhead.
The firmware generator enhances this approach by enabling the generation of test-, trim-
and configuration-related code from high-level descriptions of scan operations close to
the standardized PDL. By abstracting away the system-specific details of the generated
RSN and the CPU-to-RSN controller, it decouples software routines from the hardware
description and potential changes. This way, it equips software developers with the
tools that are required to focus on the algorithmic aspects of self-test, self-trim and
configuration routines and fosters code reuse.

55

7. Summary

The generation of a particular design and its integration in an SoC is demonstrated
on the basis of the RiVal 2 SoC. The implementation of a software-driven self-trim
routine is outlined as an example of how the presented flow can be employed to improve
EOL throughput and enable self-testing, self-trimming and IP configuration in an actual
product.

56

List of Figures

2.1 Simple overview of the boundary scan architecture as outlined in the standard.
Solid lines are data signals and dashed lines are control signals. 4

2.2 State diagram of the TAP controller as described in the standard. Solid lines
are transitions taken when TMS=1 while dashed lines are transitions taken
when TMS=0. 5

2.3 Schematic of a capture-update cell as described by the standard. 6
2.4 Timing diagram demonstrating a scan operation on a TDR via the signals

generated by the TAP controller. In this case, 101 is captured from the
parallel input and 011 is shifted in and updated to the parallel output. . . 6

2.5 Example of how SIBs are used in the IJTAG network to make it configurable. 8
2.6 Schematic of a possible implementation of an SIB as specified in the standard. 8
2.7 Example of a Formula metamodel (left) and a specific Formula model (right). 10
2.8 Visualization of the Metagen framework. 11
2.9 Y-chart of the MDA approach [14]. 13
2.10 An MDA-oriented approach to RTL generation called MetaRTL. 15
2.11 Display of the boundary between user-defined code and the MetaRTL envi-

ronment. 16
2.12 Overview of the RiVal 2 test chip. 17

4.1 UML description of the extended CSC metamodel. Hardware-related aspects
are displayed in yellow while firmware-related aspects are displayed in blue.
All changes are highlighted in red. 25

4.2 UML description of the extended CSC metamodel. Hardware-related aspects
are displayed in yellow while firmware-related aspects are displayed in blue.
The DebugTransportModule represents a future addition. The underlined
attribute InterfaceDefinition is an external reference to a CSC Interface (i.e.
a JTAG MoT can reference multiple CSC MoTs). 26

4.3 State machine of the APB module. Transitions are labelled with their input
conditions and their outputs. If none of the conditions of incident transitions
are met, the state machine stays in its current state. 30

57

List of Figures

4.4 Schematic of the custom configuration cell. It is similar to a self-capturing
update-TDR with an additional config register. The config register can only
be updated in a special EXCFG instruction. Moreover, updating of the config
cell can be locked and deviations between the update and config registers are
detected during normal operation. 33

4.5 A high-level overview of how the design’s top level connects the JTAG-
Module, APB-Module and IJTAG-Module. Also illustrates how a future
DebugTransportModule for an OCDS would integrate. 35

4.6 Example of how the edge detection transformation can modify a system to
eliminate the second clock domain. 36

5.1 High-level overview of the RiVal 2 extended with the presented design. . . 44
5.2 The MoT used for generation of the design for the RiVal 2. The Sequences

are omitted for brevity. 45
5.3 The MoT used for description of subnetwork2 in the generated design. . . 46

6.1 Concluding overview of the flow presented in this thesis. Dashed lines mark
future extensions of the approach. 50

6.2 Timing diagram visualizing the oversampling of the TCK signal with the sys-
tem clock and how transmission and synchronization delays affect satisfiability
of the JTAG protocol. 51

58

List of Tables

4.1 Overview of the JTAG-Interface from the perspective of the SoC. 28
4.2 Overview of the JTAG-TAP-Interface which provides shared control and data

signals between the TAP controller and the TDRs. The control signals are
not masked yet. 28

4.3 Overview of the JTAG-TAP-EXT-Interface which provides extension signals
from the TAP controller. 29

4.4 Overview of the JTAG-TDR-Interface which provides the TDR-specific control
and data signals. The Select signal is required to mask the control signals of
the JTAG-TAP-Interface. 29

4.5 Overview of the APB-Module’s register interface. 30
4.6 Overview of the IJTAG-TAP-Interface which provides shared control and

data signals to the IJTAG subnetworks. The ExCfg and ConfigEn signals are
required to drive the custom configuration cells presented in Section 4.3.4 32

4.7 Overview of the IJTAG-TDR-Interface which provides the subnetwork-specific
control and data signals. The Error signal is driven by the error detection
units in the custom configuration cells presented in Section 4.3.4 33

4.8 Overview of the APB-Module’s HAL. 37
4.9 Overview of the IJTAG-Module-specific basic driver for the APB-Module. 38
4.10 Overview of how the Variables of a Sequence are classified into function

parameters, local variables and return parameters. Note that there can only
be one return parameter per function! . 39

5.1 Variables of the two Sequences defined in the MoT. 44
5.2 Operations of the two Sequences defined in the MoT. 44
5.3 Interface of the generated design. 47

59

List of Algorithms

4.1 Creating states of a scan schedule from operation groups. It uses the
two functions CreateWriteStream(current_sibs, next_sibs, writes) and
CreateReadStream(reads) to create the compressed sequences of a state. 40

4.2 Generating the code from the schedule states. Generation is modelled via
the code object. 41

4.3 Generation of WriteF, WriteP and Read transaction from readstream and
writestream. Generation is modelled via the code object. 42

61

Acronyms

ADC Analog Digital Converter. 21

AHB Advanced High-Performance Bus. 17, 24

APB Advanced Peripheral Bus. 17, 20, 24, 27, 30–32, 52, 53, 57

API Application Programming Interface. 11, 12, 15, 16

ATE Automated Test Equipment. 1, 21, 23, 47, 51, 52, 55

BIST Built-In Self-Test. xiii, 1, 19–21, 49

BSC Boundary Scan Chain. 6, 7, 29

CIM Computation Independent Model. 13, 14

CPU Central Processing Unit. xi, xiii, 2, 17, 20, 24, 30, 36, 47, 49, 52, 53, 55

CSC Control Status Configuration. 16, 17, 25–27, 32, 37, 43, 52, 57

DFT Design For Test. xi, xiii, 1, 3, 49

EDA Electronic Design Automation. 1, 7, 19, 20, 49, 53, 55

EI Embedded Instrument. xi, xiii, 1, 7–9, 33, 49, 55

EOL End of Line. xi, xiii, 1, 2, 18, 19, 49–51, 55, 56

FF Flip Flop. 3, 7

FIR Finite Impulse Response. 14

GUI Graphical User Interface. 11

HAL Hardware Abstraction Layer. 2, 16, 17, 26, 36, 37, 59, 74, 75

HDL Hardware Description Language. 12, 14, 15

63

Acronyms

IC Integrated Circuit. xi, xiii, 1, 3, 6, 7

ICL Instrument Connectivity Language. 9, 20, 21, 49, 50

IJTAG Integrated Joint Test Action Group. xi, xiii, 8, 19–21, 24, 25, 32, 36, 38, 43, 45,
52, 55, 57, 59

IP Intellectual Property. xi, xiii, 1, 2, 7, 9, 18–21, 24, 33, 46, 49, 53, 55, 56

IR Instruction Register. 4, 9, 24, 27, 29, 30, 43

I2C Inter-Integrated Circuit. 20, 21

JTAG Joint Test Action Group. xi, xiii, 3, 7, 19, 24–28, 31, 33, 46, 51, 55, 57, 58

LSB Least Signigicant Bit. 5, 31, 33, 34

MDA Model Driven Architecture. 9, 12–16, 57

MoD Model-of-Design. 14–16, 32, 34, 35, 45

MOF Meta-Object Facility. 12

MoF Model-of-Firmware. 17

MoT Model-of-Things. 14, 16, 17, 26, 27, 31, 32, 34, 35, 37, 38, 43–46, 50, 53, 57–59

MoV Model-of-View. 14, 15, 17

MSB Most Signigicant Bit. 5, 31–34

NRE Non-Recurring Engineering. 12

OCDS On Chip Debug System. 7, 24, 35, 58

OCL Object Constraint language. 10

OMG Object Management Group. 12

PCB Printed Circuit Board. 3, 5–7

PDL Procedural Description Language. xi, xiii, 9, 20, 21, 25, 28, 38, 49, 53, 55

PIM Platform Independent Model. 13, 14

PM Platform Model. 14

PSM Platform Specific Model. 13, 14

64

Acronyms

RSN Reconfigurable Scan Network. xi, xiii, 8, 9, 19–21, 24, 25, 27, 34, 37–39, 41, 43,
46, 47, 49, 50, 52, 53, 55

RTL Register Transfer Level. 9, 14, 15, 57

SFF Scannable Flip Flop. 7

SIB Segment Insertion Bit. 8, 9, 20, 24, 27, 32–34, 37, 39, 40, 44, 46, 52, 57

SoC System On Chip. xi, xiii, 1, 2, 7, 9, 17, 19, 24, 28, 35, 43, 49, 51, 52, 56, 59

SPI Serial Peripheral Interface. 17, 20

TAP Test Access Port. 3–8, 19–21, 23, 28, 29, 55, 57, 59

TCK Test Clock. 4, 5, 28, 35, 36, 50, 51, 58

TDI Test Data Input. 4, 5, 28, 50

TDO Test Data Output. 4, 5, 28, 50

TDR Test Data Register. 4–9, 20, 21, 23–25, 27–29, 31–34, 38–40, 52, 57–59

TMS Test Mode Select. 4, 5, 28, 57

ToD Template-of-Design. 14, 16

ToF Template-of-Firmware. 17

ToV Template-of-View. 15

UML Unified Modeling Language. 10, 11, 25, 26, 57

65

Bibliography

[1] B. Vermeulen, C. Hora, B. Kruseman, E.J. Marinissen, and R. van Rijsinge. Trends
in testing integrated circuits. In 2004 International Conferce on Test, pages 688–697,
2004.

[2] Manibha Sharma and Jasdeep Dhanoa. Smart logic built in self-test in soc. In
2020 5th IEEE International Conference on Recent Advances and Innovations in
Engineering (ICRAIE), pages 1–4, 2020.

[3] G. Giles. Is scan (alone) sufficient to test today’s microprocessors? not quite, but
we can’t get the job done without it. In Proceedings. International Test Conference,
pages 1197–, 2002.

[4] Paolo Bernardi, Lyl Mercedes Ciganda, Ernesto Sanchez, and Matteo Sonza Reorda.
MIHST: A hardware technique for embedded microprocessor functional on-line
self-test. IEEE Transactions on Computers, 63(11):2760–2771, 2014.

[5] R.C. Aitken. On-chip versus off-chip test: an artificial dichotomy. In Proceedings
International Test Conference 1998 (IEEE Cat. No.98CH36270), pages 1146–, 1998.

[6] Sarveswara Tammali. Industrial practices of test cost reduction: Perspective, current
design practices. In 2010 28th VLSI Test Symposium (VTS), pages 124–124, 2010.

[7] Hans Martin von Staudt and Alexios Spyronasios. Using IJTAG digital islands in
analogue circuits to perform trim and test functions. In 2015 IEEE 20th International
Mixed-Signals Testing Workshop (IMSTW), pages 1–5, 2015.

[8] Rajesh Mittal, Mudasir Kawoosa, and Rubin A. Parekhji. Systematic approach for
trim test time optimization: Case study on a multi-core rf soc. In 2014 International
Test Conference, pages 1–9, 2014.

[9] IEEE standard for test access port and boundary-scan architecture. IEEE Std
1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages 1–444, 2013.

[10] IEEE standard for access and control of instrumentation embedded within a semi-
conductor device. IEEE Std 1687-2014, pages 1–283, 2014.

67

Bibliography

[11] Kristof Van Beeck, Filip Heylen, Jan Meel, and Toon Goedemé. Comparative study
of model-based hardware design tools. 03 2010.

[12] Wolfgang Ecker, Michael Velten, Leily Zafari, and Ajay Goyal. Metasynthesis for
designing automotive socs. In 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, 2014.

[13] Wolfgang Ecker, Michael Velten, Leily Zafari, and Ajay Goyal. The metamodeling
approach to system level synthesis. In 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1–2, 2014.

[14] Liangora Research Lab. What is MDA? why considering BNPM. https://
research.linagora.com/pages/viewpage.action?pageId=3639295, 2006. Last Ac-
cessed: 12-12-2021.

[15] Frank Truyen. The fast guide to model driven architecture. https://www.omg.org/
mda/mda_files/Cephas_MDA_Fast_Guide.pdf, 2006. Last Accessed: 12-12-2021.

[16] OMG. MDA - the architecture of choice for a changing world.
http://www.omg.org/mda/, 2016. Last Accessed: 12-12-2021.

[17] John M. Siegel. Model driven architecture® (MDA): The MDA guide rev 2.0.
https://www.omg.org/mda/presentations.htm, 2014. Last Accessed: 12-12-2021.

[18] Wolfgang Ecker and Johannes Schreiner. Introducing Model-of-Things (MoT) and
Model-of-Design (MoD) for simpler and more efficient hardware generators. In 2016
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),
pages 1–6, 2016.

[19] Johannes Schreiner, Rainer Findenigy, and Wolfgang Ecker. Design centric modeling
of digital hardware. In 2016 IEEE International High Level Design Validation and
Test Workshop (HLDVT), pages 46–52, 2016.

[20] Johannes Schreiner and Wolfgang Ecker. Digital hardware design based on meta-
models and model transformations. pages 83–107, 09 2017.

[21] Zhao Han, Keerthikumara Devarajegowda, Michael Werner, and Wolfgang Ecker.
Towards a python-based one language ecosystem for embedded systems automation.
In 2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC), pages 1–7, 2019.

[22] RISC-V International®. Risc-v specifications.
https://riscv.org/technical/specifications/. Last Accessed: 12-12-2021.

[23] Alan Sguigna. JTAG/boundary scan for built-in test. In 2018 IEEE AUTOTEST-
CON, pages 1–3, 2018.

68

https://research.linagora.com/pages/viewpage.action?pageId=3639295
https://research.linagora.com/pages/viewpage.action?pageId=3639295
https://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
https://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

Bibliography

[24] Ghazanfar Ali, Ahmed Badawy, and Hans G. Kerkhoff. Accessing on-chip tempera-
ture health monitors using the IEEE 1687 standard. In 2016 IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pages 776–779, 2016.

[25] Siemens. Tessent™ IJTAG fact sheet. https://static.sw.cdn.siemens.com/
siemens-disw-assets/public/3fhajguyzbra67guOlrW90/en-US/Siemens-SW-
Tessent-IJTAG-FS-82810-C3.pdf, 2021. Last Accessed: 12-12-2021.

[26] Siemens. Tessent™ MemoryBIST fact sheet. https://static.sw.cdn.siemens.com/
siemens-disw-assets/public/81225/en-US/Siemens-SW-Embedded-memory-
self-test-repair-and-debug-Tessent-MemoryBIST-FS-81225-C1, 2015. Last
Accessed: 12-12-2021.

[27] Siemens. Tessent™ LogicBIST fact sheet. https://static.sw.cdn.siemens.com/
siemens-disw-assets/public/7kVdJZfTR9JCxdNplREEpY/en-US/Siemens-SW-
tessent-logicbist-FS-82711-C2.pdf, 2020. Last Accessed: 12-12-2021.

[28] Siemens. Tessent™ MissionMode fact sheet. https://static.sw.cdn.siemens.com/
siemens-disw-assets/public/81226/en-US/Siemens-SW-In-system-test-
and-diagnosis-of-automotive-ICs-Tessent-MissionMode-FS-81226-C1, 2017.
Last Accessed: 12-12-2021.

[29] Siemens. Tessent™ MissionMode User’s Manual. Siemens.

[30] Alfred L. Crouch, Bradford G. Van Treuren, and Jeff Rearick. P1687.1: Accessing
embedded 1687 instruments using alternate device interfaces other than JTAG. In
2019 IEEE AUTOTESTCON, pages 1–7, 2019.

[31] Ahmed Ibrahim and Hans G. Kerkhoff. Towards an automated and reusable in-field
self-test solution for mpsocs. In 2016 28th International Conference on Microelec-
tronics (ICM), pages 249–252, 2016.

[32] Ahmed M. Y. Ibrahim and Hans G. Kerkhoff. An on-chip ieee 1687 network controller
for reliability and functional safety management of system-on-chips. In 2019 IEEE
International Test Conference in Asia (ITC-Asia), pages 109–114, 2019.

[33] Anton Tsertov, Artur Jutman, Konstantin Shibin, and Sergei Devadze. Ieee 1687 com-
pliant ecosystem for embedded instrumentation access and in-field health monitoring.
In 2018 IEEE AUTOTESTCON, pages 1–9, 2018.

[34] Farrokh Ghani Zadegan, Dimitar Nikolov, and Erik Larsson. On-chip fault monitoring
using self-reconfiguring IEEE 1687 networks. IEEE Transactions on Computers,
67(2):237–251, 2018.

[35] Hans Martin von Staudt. Comparator based self-trim and self-test scheme for
arbitrary analogue on-chip values. In 2010 IEEE 16th International Mixed-Signals,
Sensors and Systems Test Workshop (IMS3TW), pages 1–6, 2010.

69

https://static.sw.cdn.siemens.com/siemens-disw-assets/public/3fhajguyzbra67guOlrW90/en-US/Siemens-SW-Tessent-IJTAG-FS-82810-C3.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/3fhajguyzbra67guOlrW90/en-US/Siemens-SW-Tessent-IJTAG-FS-82810-C3.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/3fhajguyzbra67guOlrW90/en-US/Siemens-SW-Tessent-IJTAG-FS-82810-C3.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/81225/en-US/Siemens-SW-Embedded-memory-self-test-repair-and-debug-Tessent-MemoryBIST-FS-81225-C1
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/81225/en-US/Siemens-SW-Embedded-memory-self-test-repair-and-debug-Tessent-MemoryBIST-FS-81225-C1
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/81225/en-US/Siemens-SW-Embedded-memory-self-test-repair-and-debug-Tessent-MemoryBIST-FS-81225-C1
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/7kVdJZfTR9JCxdNplREEpY/en-US/Siemens-SW-tessent-logicbist-FS-82711-C2.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/7kVdJZfTR9JCxdNplREEpY/en-US/Siemens-SW-tessent-logicbist-FS-82711-C2.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/7kVdJZfTR9JCxdNplREEpY/en-US/Siemens-SW-tessent-logicbist-FS-82711-C2.pdf
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/81226/en-US/Siemens-SW-In-system-test-and-diagnosis-of-automotive-ICs-Tessent-MissionMode-FS-81226-C1
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/81226/en-US/Siemens-SW-In-system-test-and-diagnosis-of-automotive-ICs-Tessent-MissionMode-FS-81226-C1
https://static.sw.cdn.siemens.com/siemens-disw-assets/public/81226/en-US/Siemens-SW-In-system-test-and-diagnosis-of-automotive-ICs-Tessent-MissionMode-FS-81226-C1

Bibliography

[36] Hans Martin von Staudt. Trim DAC design with minimum DNL for self-trim with
self-test schemes. In 2011 IEEE 17th International Mixed-Signals, Sensors and
Systems Test Workshop, pages 19–24, 2011.

[37] Timotei Muresan. Pre-silicon verification environment for virtual test simulation of
IJTAG-based testing. Bachelor’s thesis, FH Joanneum, 2021.

70

APPENDIX A
Source Code

A.1 Hardware Abstraction Layer
JTAG_HAL.h

1 #ifndef _JTAG_HAL_H_
2 #define _JTAG_HAL_H_
3
4 // AUTO GENERATED CODE //
5 /**/
6 /**
7 * @file JTAG_HAL.h
8 * @author pircher
9 * @date 11:02:51 27/12/2021

10 * @version 1.0
11 * HAL File containing bit field mapping with
12 * predefined function to access bit fields
13 */
14 #include <stdint.h>
15 #include "types.h"
16 #include "csr.h"
17
18 /**
19 * Interface: APB2TDR
20 */
21
22 //
23 //Connected to Address Bus with Width: 16
24 //Data Bus Width: 16
25 //Selected Byte Order: Little
26 //Addressable Unit: 16
27
28 /**
29 * Register: InstructionReg_JTAG
30 * The value contained at the given address, so the data starts at 0xe80.
31 */
32
33 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
34 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
35 #define INSTRUCTIONREG_JTAG_16_0 *(volatile uint16_t*) (0xe80)
36 //Bitfield: 0 // T, T, T, T; [8]
37 #define INSTRUCTION_JTAG_16_MASK 255
38 #define INSTRUCTION_JTAG_16_SHIFT 0
39
40 /**
41 * Register: ActionReg_JTAG
42 * The value contained at the given address, so the data starts at 0xe82.
43 */

71

A. Source Code

44
45 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
46 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
47 #define ACTIONREG_JTAG_16_0 *(volatile uint16_t*) (0xe82)
48 //Bitfield: 0 // F, T, T, T; [2]
49 #define ACTION_JTAG_16_MASK 3
50 #define ACTION_JTAG_16_SHIFT 0
51
52 /**
53 * Register: WriteFReg_JTAG
54 * The value contained at the given address, so the data starts at 0xe84.
55 */
56
57 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
58 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
59 #define WRITEFREG_JTAG_16_0 *(volatile uint16_t*) (0xe84)
60 //Bitfield: 0 // F, T, T, F; [16]
61 #define WRITEF_JTAG_16_MASK 65535
62 #define WRITEF_JTAG_16_SHIFT 0
63
64 /**
65 * Register: WritePReg_JTAG
66 * The value contained at the given address, so the data starts at 0xe86.
67 */
68
69 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
70 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
71 #define WRITEPREG_JTAG_16_0 *(volatile uint16_t*) (0xe86)
72 //Bitfield: 0 // F, T, T, F; [16]
73 #define WRITEP_JTAG_16_MASK 65535
74 #define WRITEP_JTAG_16_SHIFT 0
75
76 /**
77 * Register: ReadReg_JTAG
78 * The value contained at the given address, so the data starts at 0xe88.
79 */
80
81 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
82 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
83 #define READREG_JTAG_16_0 *(volatile uint16_t*) (0xe88)
84 //Bitfield: 0 // T, F, F, T; [16]
85 #define READ_JTAG_16_MASK 65535
86 #define READ_JTAG_16_SHIFT 0
87
88 /**
89 * Register: ControlReg_JTAG
90 * The value contained at the given address, so the data starts at 0xe8a.
91 */
92
93 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
94 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
95 #define CONTROLREG_JTAG_16_0 *(volatile uint16_t*) (0xe8a)
96 //Bitfield: 0 // T, T, T, F; [1]
97 #define CONTROL_JTAG_16_MASK 1
98 #define CONTROL_JTAG_16_SHIFT 0
99

100 /**
101 * Register: StatusReg_JTAG
102 * The value contained at the given address, so the data starts at 0xe8c.
103 */
104
105 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
106 //Contained Bitfields: Position // SwRd, SwWr, HwRd, HwWr; [Size];
107 #define STATUSREG_JTAG_16_0 *(volatile uint16_t*) (0xe8c)
108 //Bitfield: 0 // T, F, F, T; [1]
109 #define STATUS_JTAG_16_MASK 1
110 #define STATUS_JTAG_16_SHIFT 0
111
112
113 /**
114 * Struct with all function pointers used to access bitfields of JTAG
115 */
116 typedef struct JTAG_HAL_Config {

72

A.1. Hardware Abstraction Layer

117 void (*INSTRUCTION_WRITE) (uint8_t Instruction);
118 uint8_t (*INSTRUCTION_READ) (void);
119 void (*ACTION_WRITE) (uint8_t Action);
120 void (*WRITEF_WRITE) (uint16_t WriteF);
121 void (*WRITEP_WRITE) (uint16_t WriteP);
122 uint16_t (*READ_READ) (void);
123 void (*CONTROL_WRITE) (bool Control);
124 bool (*CONTROL_READ) (void);
125 bool (*STATUS_READ) (void);
126 } JTAG_HAL_Config;
127
128 extern JTAG_HAL_Config JTAG_HAL; /**< Handler pointing to all Bitfield Sequences*/;
129
130 /**
131 * Access Function: SIMPLE
132 * Write INSTRUCTION_JTAG, on INSTRUCTIONREG_JTAG_16_0
133 * @param Instruction_JTAG
134 * @return void
135 **/
136 static inline void INSTRUCTION_WRITE_JTAG(uint8_t Instruction_JTAG) __attribute__((always_inline));
137
138 /**
139 * Access Function: SIMPLE
140 * Read INSTRUCTION_JTAG, on INSTRUCTIONREG_JTAG_16_0
141 * @param
142 * @return uint8_t
143 **/
144 static inline uint8_t INSTRUCTION_READ_JTAG() __attribute__((always_inline));
145
146 /**
147 * Access Function: SIMPLE
148 * Write ACTION_JTAG, on ACTIONREG_JTAG_16_0
149 * @param Action_JTAG
150 * @return void
151 **/
152 static inline void ACTION_WRITE_JTAG(uint8_t Action_JTAG) __attribute__((always_inline));
153
154 /**
155 * Access Function: SIMPLE
156 * Write WRITEF_JTAG, on WRITEFREG_JTAG_16_0
157 * @param WriteF_JTAG
158 * @return void
159 **/
160 static inline void WRITEF_WRITE_JTAG(uint16_t WriteF_JTAG) __attribute__((always_inline));
161
162 /**
163 * Access Function: SIMPLE
164 * Write WRITEP_JTAG, on WRITEPREG_JTAG_16_0
165 * @param WriteP_JTAG
166 * @return void
167 **/
168 static inline void WRITEP_WRITE_JTAG(uint16_t WriteP_JTAG) __attribute__((always_inline));
169
170 /**
171 * Access Function: SIMPLE
172 * Read READ_JTAG, on READREG_JTAG_16_0
173 * @param
174 * @return uint16_t
175 **/
176 static inline uint16_t READ_READ_JTAG() __attribute__((always_inline));
177
178 /**
179 * Access Function: SIMPLE
180 * Write CONTROL_JTAG, on CONTROLREG_JTAG_16_0
181 * @param Control_JTAG
182 * @return void
183 **/
184 static inline void CONTROL_WRITE_JTAG(bool Control_JTAG) __attribute__((always_inline));
185
186 /**
187 * Access Function: SIMPLE
188 * Read CONTROL_JTAG, on CONTROLREG_JTAG_16_0
189 * @param

73

A. Source Code

190 * @return bool
191 **/
192 static inline bool CONTROL_READ_JTAG() __attribute__((always_inline));
193
194 /**
195 * Access Function: SIMPLE
196 * Read STATUS_JTAG, on STATUSREG_JTAG_16_0
197 * @param
198 * @return bool
199 **/
200 static inline bool STATUS_READ_JTAG() __attribute__((always_inline));
201
202 inline void INSTRUCTION_WRITE_JTAG(uint8_t Instruction_JTAG) {
203 INSTRUCTIONREG_JTAG_16_0 = (Instruction_JTAG & INSTRUCTION_JTAG_16_MASK);
204 }
205
206 inline uint8_t INSTRUCTION_READ_JTAG() {
207 return (INSTRUCTIONREG_JTAG_16_0 & INSTRUCTION_JTAG_16_MASK);
208 }
209
210 inline void ACTION_WRITE_JTAG(uint8_t Action_JTAG) {
211 ACTIONREG_JTAG_16_0 = (Action_JTAG & ACTION_JTAG_16_MASK);
212 }
213
214 inline void WRITEF_WRITE_JTAG(uint16_t WriteF_JTAG) {
215 WRITEFREG_JTAG_16_0 = (WriteF_JTAG & WRITEF_JTAG_16_MASK);
216 }
217
218 inline void WRITEP_WRITE_JTAG(uint16_t WriteP_JTAG) {
219 WRITEPREG_JTAG_16_0 = (WriteP_JTAG & WRITEP_JTAG_16_MASK);
220 }
221
222 inline uint16_t READ_READ_JTAG() {
223 return (READREG_JTAG_16_0 & READ_JTAG_16_MASK);
224 }
225
226 inline void CONTROL_WRITE_JTAG(bool Control_JTAG) {
227 CONTROLREG_JTAG_16_0 = (Control_JTAG & CONTROL_JTAG_16_MASK);
228 }
229
230 inline bool CONTROL_READ_JTAG() {
231 return (CONTROLREG_JTAG_16_0 & CONTROL_JTAG_16_MASK);
232 }
233
234 inline bool STATUS_READ_JTAG() {
235 return (STATUSREG_JTAG_16_0 & STATUS_JTAG_16_MASK);
236 }
237
238 static inline void initJTAG(void) {
239 INSTRUCTIONREG_JTAG_16_0 = 0;
240 ACTIONREG_JTAG_16_0 = 0;
241 WRITEFREG_JTAG_16_0 = 0;
242 WRITEPREG_JTAG_16_0 = 0;
243 READREG_JTAG_16_0 = 0;
244 CONTROLREG_JTAG_16_0 = 0;
245 STATUSREG_JTAG_16_0 = 0;
246 }
247
248 #endif

Listing 1: Header file of the APB-Mopdule’s HAL generated by MetaFirm.
JTAG_HAL.c

1 // AUTO GENERATED CODE //
2 #include "JTAG_HAL.h"
3
4 JTAG_HAL_Config JTAG_HAL = {
5 INSTRUCTION_WRITE_JTAG,
6 INSTRUCTION_READ_JTAG,
7 ACTION_WRITE_JTAG,
8 WRITEF_WRITE_JTAG,

74

A.2. Basic Driver

9 WRITEP_WRITE_JTAG,
10 READ_READ_JTAG,
11 CONTROL_WRITE_JTAG,
12 CONTROL_READ_JTAG, STATUS_READ_JTAG
13 };

Listing 2: Source file of the APB-Mopdule’s HAL generated by MetaFirm.

A.2 Basic Driver
JTAG.h

1 #ifndef _JTAG_H_
2 #define _JTAG_H_
3
4 // AUTO GENERATED CODE //
5 /**/
6 /**
7 * @file JTAG.h
8 * @author pircher
9 * @date 11:07:02 27/12/2021

10 * @version 1.0
11 * Authors: Clemens Pircher
12 * Driver for APB-Module to control attached IJTAG-Module
13 */
14 #include "BitfieldOperations.h"
15 #include "JTAG_HAL.h"
16 #include "stdint.h"
17 #include "SystemConfig.h"
18 #include "types.h"
19
20 /**
21 * Select IJTAG TDR
22 **/
23 void JTAG_Select_IJTAG();
24
25 /**
26 * Select EXCFG TDR
27 **/
28 void JTAG_Select_EXCFG();
29
30 /**
31 * Select SIB TDR
32 **/
33 void JTAG_Select_SIB();
34
35 /**
36 * Perform Capture action
37 **/
38 void JTAG_Capture();
39
40 /**
41 * Perform Update action
42 **/
43 void JTAG_Update();
44
45 /**
46 * Full Shift
47 * @param data ['data to be shifted']
48 **/
49 void JTAG_ShiftF(uint16_t data);
50
51 /**
52 * Partial Shift with Padding
53 * @param data ['data to be shifted']
54 * @param count ['number of bits to be shifted']
55 **/
56 void JTAG_ShiftP(uint16_t data, uint8_t count);
57
58 /**
59 * Shift specified number of bits from a byte array

75

A. Source Code

60 * @param wdata ['pointer to the input data']
61 * @param count ['number of bits to be shifted']
62 **/
63 void JTAG_ShiftData(uint16_t *wdata, uint16_t count);
64
65 /**
66 * Full Shift
67 * @param data ['data to be shifted']
68 **/
69 uint16_t JTAG_ShiftF_R(uint16_t data);
70
71 /**
72 * Partial Shift with Padding
73 * @param data ['data to be shifted']
74 * @param count ['number of bits to be shifted']
75 **/
76 uint16_t JTAG_ShiftP_R(uint16_t data, uint8_t count);
77
78 /**
79 * Shift specified number of bits from a byte array
80 * @param wdata ['pointer to the input data']
81 * @param rdata ['pointer for the output data']
82 * @param count ['number of bits to be shifted']
83 **/
84 void JTAG_ShiftData_R(uint16_t *wdata, uint16_t *rdata, uint16_t count);
85
86 /**
87 * Wait for ongoing operations to finish
88 **/
89 void JTAG_Wait();
90

Listing 3: Basic functions in header file of the IJTAG-Module-specific driver for the
APB-Mopdule generated with the presented Firmware generation flow.

JTAG.c
1 // AUTO GENERATED CODE //
2 /**/
3 /**
4 * @file JTAG.c
5 * @author pircher
6 * @date 11:07:02 27/12/2021
7 * @version 1.0
8 * Authors: Clemens Pircher
9 * Driver for APB-Module to control attached IJTAG-Module

10 */
11 #include "JTAG.h"
12
13 /**
14 * Select IJTAG TDR
15 **/
16 void JTAG_Select_IJTAG(){
17 JTAG_HAL.INSTRUCTION_WRITE(8);}
18
19 /**
20 * Select EXCFG TDR
21 **/
22 void JTAG_Select_EXCFG(){
23 JTAG_HAL.INSTRUCTION_WRITE(10);}
24
25 /**
26 * Select SIB TDR
27 **/
28 void JTAG_Select_SIB(){
29 JTAG_HAL.INSTRUCTION_WRITE(9);}
30
31 /**
32 * Perform Capture action
33 **/
34 void JTAG_Capture(){

76

A.2. Basic Driver

35 JTAG_HAL.ACTION_WRITE(1);}
36
37 /**
38 * Perform Update action
39 **/
40 void JTAG_Update(){
41 JTAG_HAL.ACTION_WRITE(2);}
42
43 /**
44 * Full Shift
45 * @param data ['data to be shifted']
46 **/
47 void JTAG_ShiftF(uint16_t data){
48 JTAG_HAL.WRITEP_WRITE(data);}
49
50 /**
51 * Partial Shift with Padding
52 * @param data ['data to be shifted']
53 * @param count ['number of bits to be shifted']
54 **/
55 void JTAG_ShiftP(uint16_t data, uint8_t count){
56 uint16_t ret; /**< return variable*/;
57 uint8_t pad_width; /**< number of padding bits required*/;
58 pad_width = (16 - count);
59 uint16_t data_padded; /**< padded data*/;
60 data_padded = ((data << pad_width) | (1 << (pad_width - 1)));
61 JTAG_HAL.WRITEP_WRITE(data_padded);
62 }
63
64 /**
65 * Shift specified number of bits from a byte array
66 * @param wdata ['pointer to the input data']
67 * @param count ['number of bits to be shifted']
68 **/
69 void JTAG_ShiftData(uint16_t *wdata, uint16_t count){
70 uint16_t num_groups; /**< number of write transactions required*/;
71 num_groups = (count >> 4);
72 uint8_t last_count; /**< number of bits in the last transaction*/;
73 last_count = (count & 0x0F);
74 if (last_count){
75 num_groups = (num_groups - 1);
76 };
77 uint16_t cur_group; /**< */;
78 while((cur_group < num_groups)){
79 JTAG_ShiftF(*(wdata+cur_group));
80 (cur_group++);
81 };
82 if (last_count){
83 JTAG_ShiftP(*(wdata+cur_group), last_count);
84 };
85 }
86
87 /**
88 * Full Shift
89 * @param data ['data to be shifted']
90 **/
91 uint16_t JTAG_ShiftF_R(uint16_t data){
92 JTAG_HAL.WRITEP_WRITE(data);
93 return JTAG_HAL.READ_READ();
94 }
95
96 /**
97 * Partial Shift with Padding
98 * @param data ['data to be shifted']
99 * @param count ['number of bits to be shifted']

100 **/
101 uint16_t JTAG_ShiftP_R(uint16_t data, uint8_t count){
102 uint16_t ret; /**< return variable*/;
103 uint8_t pad_width; /**< number of padding bits required*/;
104 pad_width = (16 - count);
105 uint16_t data_padded; /**< padded data*/;
106 data_padded = ((data << pad_width) | (1 << (pad_width - 1)));
107 JTAG_HAL.WRITEP_WRITE(data_padded);

77

A. Source Code

108 ret = (JTAG_HAL.READ_READ() >> pad_width);
109 return ret;
110 }
111
112 /**
113 * Shift specified number of bits from a byte array
114 * @param wdata ['pointer to the input data']
115 * @param rdata ['pointer for the output data']
116 * @param count ['number of bits to be shifted']
117 **/
118 void JTAG_ShiftData_R(uint16_t *wdata, uint16_t *rdata, uint16_t count){
119 uint16_t num_groups; /**< number of write transactions required*/;
120 num_groups = (count >> 4);
121 uint8_t last_count; /**< number of bits in the last transaction*/;
122 last_count = (count & 0x0F);
123 if (last_count){
124 num_groups = (num_groups - 1);
125 };
126 uint16_t cur_group; /**< */;
127 while((cur_group < num_groups)){
128 *(rdata+cur_group) = JTAG_ShiftF_R(*(wdata+cur_group));
129 (cur_group++);
130 };
131 if (last_count){
132 *(rdata+cur_group) = JTAG_ShiftP_R(*(wdata+cur_group), last_count);
133 };
134 }
135
136 /**
137 * Wait for ongoing operations to finish
138 **/
139 void JTAG_Wait(){
140 while(JTAG_HAL.STATUS_READ()){
141 };
142 }
143

Listing 4: Basic functions in source file of the IJTAG-Module-specific driver for the
APB-Mopdule generated with the presented Firmware generation flow.

A.3 Custom Driver
JTAG.h

90
91 /**
92 * Sets a new trim value.
93 * @param trim_value ['Input variable trim_value (10 bits)']
94 **/
95 void set_trim_value(uint16_t trim_value);
96
97 /**
98 * Sets a new trim value. (CONFIG ONLY)
99 **/

100 void set_trim_value_config();
101
102 /**
103 * Gets the current comparator output.
104 **/
105 uint8_t get_comparator_result();
106
107 #endif

Listing 5: Cumstom functions in header file of the IJTAG-Module-specific driver for the
APB-Mopdule generated with the presented Firmware generation flow.

JTAG.c
143
144 /**

78

A.3. Custom Driver

145 * Sets a new trim value.
146 * @param trim_value ['Input variable trim_value (10 bits)']
147 **/
148 void set_trim_value(uint16_t trim_value){
149 //+----------------------------+;
150 //| Create all local variables |;
151 //+----------------------------+;
152 uint16_t _tempw; /**< */;
153 uint16_t _tempr; /**< */;
154
155 //+-------------------------+;
156 //| Perform scan operations |;
157 //+-------------------------+;
158 //Select Subnetworks for Apply 0;
159 JTAG_HAL.INSTRUCTION_WRITE(9);
160 JTAG_HAL.WRITEP_WRITE(0b1000111111111111);
161 JTAG_HAL.ACTION_WRITE(2);
162
163 //Access TDRs for Apply 0;
164 JTAG_HAL.INSTRUCTION_WRITE(8);
165 _tempw = 0b0101111111111111;
166 JTAG_HAL.WRITEP_WRITE(_tempw);
167 JTAG_HAL.ACTION_WRITE(2);
168
169 //Already selected Subnetworks for Apply 1;
170
171 //Access TDRs for Apply 1;
172 JTAG_HAL.ACTION_WRITE(1);
173 _tempw = (0b0000000000000111 | (((trim_value & 1023) << 1) << 4));
174 JTAG_HAL.WRITEP_WRITE(_tempw);
175 JTAG_HAL.ACTION_WRITE(2);
176 }
177
178 /**
179 * Sets a new trim value. (CONFIG ONLY)
180 **/
181 void set_trim_value_config(){
182 //+--------------------------+;
183 //| Apply all configurations |;
184 //+--------------------------+;
185 //Select Subnetworks;
186 JTAG_HAL.INSTRUCTION_WRITE(9);
187 JTAG_HAL.WRITEP_WRITE(0b1000111111111111);
188 JTAG_HAL.ACTION_WRITE(2);
189 //Enable all SIBs;
190 JTAG_HAL.INSTRUCTION_WRITE(10);
191 JTAG_HAL.WRITEP_WRITE(0b0101111111111111);
192 JTAG_HAL.ACTION_WRITE(2);
193 //Update Config TDRs and disable all SIBs;
194 JTAG_HAL.WRITEP_WRITE(0b0000000000000111);
195 JTAG_HAL.ACTION_WRITE(2);
196 }
197
198 /**
199 * Gets the current comparator output.
200 **/
201 uint8_t get_comparator_result(){
202 //+----------------------------+;
203 //| Create all local variables |;
204 //+----------------------------+;
205 uint16_t _tempw; /**< */;
206 uint16_t _tempr; /**< */;
207 uint8_t result; /**< Output variable result (1 bits)*/;
208
209 //+-------------------------+;
210 //| Perform scan operations |;
211 //+-------------------------+;
212 //Select Subnetworks for Apply 0;
213 JTAG_HAL.INSTRUCTION_WRITE(9);
214 JTAG_HAL.WRITEP_WRITE(0b1000111111111111);
215 JTAG_HAL.ACTION_WRITE(2);
216
217 //Access TDRs for Apply 0;

79

A. Source Code

218 JTAG_HAL.INSTRUCTION_WRITE(8);
219 _tempw = 0b1001111111111111;
220 JTAG_HAL.WRITEP_WRITE(_tempw);
221 JTAG_HAL.ACTION_WRITE(2);
222
223 //Already selected Subnetworks for Apply 1;
224
225 //Access TDRs for Apply 1;
226 JTAG_HAL.ACTION_WRITE(1);
227 _tempw = 0b0000111111111111;
228 JTAG_HAL.WRITEP_WRITE(_tempw);
229 _tempr = (JTAG_HAL.READ_READ() >> 13);
230 JTAG_HAL.ACTION_WRITE(2);
231 return result;
232 }

Listing 6: Custom functions in source file of the IJTAG-Module-specific driver for the
APB-Mopdule generated with the presented Firmware generation flow.

A.4 Trim Routine
main.c

1 /**
2 * @file main.c
3 * @author Clemens Pircher
4 * @brief
5 * @version 1.0
6 * @date 2021-12-27
7 */
8
9 #include "JTAG.h"

10
11 void main(void)
12 {
13 uint16_t trim_min = 0;
14 uint16_t trim_max = 1023;
15
16 uint16_t trim_current;
17
18 while (trim_max - trim_min > 2)
19 {
20 trim_current = (trim_min + trim_max) >> 1;
21 set_trim_value(trim_current);
22 set_trim_value_config();
23
24 uint8_t result = get_comparator_result();
25
26 if (result > 0)
27 trim_max = trim_current;
28 else
29 trim_min = trim_current;
30 }
31 }

Listing 7: The source code of the trim routine that makes use of the custom driver.

80

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Objectives

	Background
	Scan Chain Architecture
	Automated Code Generation
	SoC Architecture

	Related Work
	Self-Testing via Scan Chains
	Trimming and Configuration via Scan Chains

	Design Implementation
	Design Requirements and Structure
	Design Metamodel
	Hardware Generation
	Firmware Generation

	Methodology Showcase
	Discussion and Outlook
	Summary
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography
	Source Code
	Hardware Abstraction Layer
	Basic Driver
	Custom Driver
	Trim Routine

