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Kurzfassung

Diese Arbeit evaluiert, wie Music Source Separation (MSS) und kontextuelle Informa-
tionen genutzt werden können, um musikalische Ähnlichkeitsmaße für die automatische
Mix-Generation zu verbessern. Wir erkunden, wie MSS dem Bereich der musikalischen
Ähnlichkeitsberechnung beitragen kann, indem inkompatible Stems mittels eines re-
gelbasierten Ansatzes modifiziert werden. Weiters untersuchen wir, wie audiobasierte
Ähnlichkeitsmaße durch kontextuelle Informationen ergänzt werden können, um ein
breiteres Spektrum an Aspekten von Musik abzudecken.

Im Zuge dieser Arbeit implementieren wir ein System zur automatischen Erstellung von
DJ Mixes, welches eine Vielzahl von Musikähnlichkeitsmetriken und Music Information
Retrieval (MIR) Techniken integriert. Weiters stellen wir einen neuen Ansatz für die
Tempobestimmung von Liedern vor, welcher bei niedriger Fehlertoleranz Ansätze des
derzeitigen Standes der Technik übertrifft. Auf dieses System aufbauend, implementieren
wir zwei weitere Modelle, welche regelbasierte Stem Modifikation und kontextuelle
Informationen integrieren. Um die Leitung unserer Modelle zu evaluieren, implementieren
wir eine Webbasierte Audio-Umfrageplattform und führen eine Hörstudie mit unseren
drei Modellen und einem weiteren Modell des aktuellen Stands der Technik, welches als
Baseline dient, durch.

Die Ergebnisse der Hörstudie zeigen, dass unser Ansatz zur Liederauswahl und automati-
schen Mix Generation den derzeitigen Stand der Technik signifikant übertrifft. Weiters
zeigen wir, dass unser regelbasierter Stem Entfernung Ansatz die Qualität des generierten
Mixes signifikant erhöht. Durch unsere Ergebnisse kann jedoch keine signifikante Stei-
gerung der Qualität des Mixes durch Ergänzung musikalischer Ähnlichkeitsberechnung
durch kontextuelle Informationen nachgewiesen werden. Bis auf das Baseline-Modell, bei
dem Studienteilnehmer mit mehr Musikwissen und DJ-Erfahrung den Mix signifikant
schlechter bewertet haben, gab es bei unseren Modellen keinen signifikanten Unterschied in
den Bewertungen basierend auf dem Musikwissen oder der DJ-Erfahrung der Teilnehmer.
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Abstract

This thesis assesses how music source separation (MSS) and contextual information
can be used to improve musical similarity measures in the context of automatic music
mixing. In particular, we explore how MSS can contribute to the field of music similarity
calculation by modifying incompatible stems using a rule-based approach. Additionally,
we investigate how audio-based similarity measures can be supplemented by contextual
information to capture more aspects of music.

In this work, we propose and implement an automatic music mixing system, incorporating
a variety of music similarity measures and music information retrieval (MIR) techniques.
We also propose a novel approach for tempo detection, outperforming state-of-the-art
techniques in low error-tolerance windows. Building upon this system, we implement two
additional models, incorporating rule-based stem modification and contextual similarity.
To evaluate the performance of our models, we implement a web-based listening survey
and performed a listening experiment across our three models and a state-of-the-art
model as a baseline.

The result of the listening experiment shows that our approach to song selection and au-
tomatic music mixing significantly outperforms comparable state-of-the-art. Additionally,
we show that our rule-based stem removal approach significantly improves the quality
of a mix. Our results do, however, not indicate any improvement in the quality of the
mix by including contextual similarity to the music similarity measure. Except for the
baseline model, where participants with higher musical knowledge and DJ experience
rated the mixes significantly worse, no significant differences in ratings are found for
different musical knowledge or DJ experience across our models.
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CHAPTER 1
Introduction

Hardly anyone these days can picture a social event without the presence of a DJ, be it a
cozy company party or a big music festival. DJing has simply become an integral part of
modern entertainment and even though attempts were made to replace this role with
some more automated system, such as Automix by Spotify1, their use case is heavily
limited. At the time of writing, a DJ is still considered indispensable.

Contrary to what some people might think, DJing is more than just pressing a play
button and is, as with any other form of musical performance, a creative process. Their
skill is to seamlessly combine splices of two or more songs [Shi07], creating a unique
listening experience, which manifests itself as a mix. The mix itself heavily depends on
the particular DJ’s experience, knowledge of music, and understanding of what resonates
with the audience [BB07].

1.1 Problem Statement
Before a DJ can mix two songs, the songs need to be segmented into structural parts,
such as intro, verse, chorus, bridge, and outro. A DJ also considers if these segments
contain vocals or are purely instrumental. The structural segments can then be used to
define transition points and to prevent the clashing of incompatible sections, such as two
vocal segments.

Song selection is essential to a DJ set, setting the mood for the whole listening experience.
Timbre is considered one of the fundamental attributes DJs use for song selection and
ordering. The average timbral difference between songs in a DJ set is smaller than
compared with random electronic dance music (EDM) songs. Hence, it is usually desired
to order songs to reduce the timbral difference. This is also supported by the findings of

1https://spotify.com
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1. Introduction

Kell et al. [KT13], who also found that the timbral difference of songs in an album is the
smallest due to the songs being sonically coherent and featuring similar sound design
and instruments.

Research in this area [Pan+17] hints that models based solely on timbre perform con-
siderably worse than only rhythm-based models. Combinations thereof, however, can
drastically improve the similarity performance [SWP10]. Those models are usually evalu-
ated on the complete song and do not consider stems. Stem refers to a format of audio
files that separate the different elements of a track, such as the drums, bass, vocals, and
melody, into individual tracks or ”stems“. This separation is done using a music source
separation (MSS) technique.

On-the-fly stem generation is becoming an indispensable feature of modern DJ software.
Thus, more and more DJs are incorporating it into their live mixes. However, using
stems for automatic mix generation is unexplored and would open up new opportunities.
Publications such as [Hua+21] only evaluate the generation of a mashup by replacing
stems with each other, which is not a desired goal for an automatic mix system or live
performances.

A typical transition technique is fading out the first song while fading in the second.
During this transition period, the two songs are audible for some time. Even if the BPM
and key match perfectly and the timbral compatibility is high, a dissimilar drum pattern,
e.g., with off-beats at different times than the original track or clashing vocals, can result
in a combination that does not sound right. Removing incompatible stems of one of the
two tracks during a transition or mix would solve many problems in traditional mixing.

Less often considered by DJs is the use of contextual information for track selection.
Contextual information, such as song lyrics, contains information that audio-based
approaches cannot capture and vice versa. Since approaches such as [HDE09] have
shown that lyrics can be used to predict the mood of a song, combining audio-based and
contextual information might further improve the quality of track selection.

1.2 Aim of the Work
This thesis addresses two problems in the field of automatic music mixing. First, we aim
to solve the problem of making seemingly not-mixable songs compatible by utilizing music
source separation to extract stems and modifying them by a rule-based approach. Since
percussive elements are the defining component of rhythm, we hypothesize that removing
the drum stem of a song with low rhythmic similarity will increase the mixability of the
song. Further, we hypothesize that vocal stem removal will make song segments with
clashing vocals suitable candidates for mixing in.

As a second objective of this thesis, we will analyze if our musical similarity metric can be
improved by additionally considering contextual information. We are especially interested
in the effect of mixing song excerpts with high lyrical similarity. We hypothesize that

2



1.3. Methodological Approach

mixing song excerpts with high lyrical similarity will result in a more natural-sounding
mix and might also allow the mixing of segments with clashing vocals.

To this end, we formulate the following research questions (RQs):

• RQ1: Can the ”mixability“ of tracks be increased by selectively removing stems?
Which measures can be used to formulate rules on which stems to remove?

• RQ2: Can mixes be improved by considering contextual data such as lyrics during
the similarity computation?

Answering the first research question (RQ1) will contribute to the area of similarity
calculation and will remove certain constraints that prohibit songs from being mixed. As
for the second research question (RQ2), the results will be beneficial to improving the
accuracy of music similarity calculation.

1.3 Methodological Approach
To answer our research questions, we will closely follow the Design Science Research
Methodology (DSRM) [BHM20]. We will start by conducting a literature review to
identify the state-of-the-art in automatic music mixing, their music similarity metrics,
and music source separation techniques. The literature review results will act as the
theoretical basis for this thesis.

We will then design and implement an automatic music-mixing system incorporating
stem modification and contextual information. In total, we will design three systems: a
base model incorporating our mixability approach, a model incorporating stem modifi-
cation, and a model incorporating both stem modification and contextual information.
Additionally, we will develop a baseline model based on existing research to compare the
performance of our system.

The quality of a mix is a very subjective measure and depends on factors like music
background, taste, and understanding of rhythmic and harmonic compatibility [Hua+21].
Thus, similarity ratings between songs also lack ground truth corpora [RBH13]. We will
follow the evaluation methods from prior works [Dav+14], [Hua+21] and evaluate the
performance of our proposed solutions with subjective methods. In particular, we will
conduct a listening experiment to evaluate the performance of our system.

To evaluate the song scheduling aspect of our models in more detail, we will split the
listening experiment into two parts. In the first part, the participants will evaluate the
pair-wise mixability of the complete songs corresponding to the excerpts scheduled by
our models. In the second part, the participants will listen to the mix and evaluate each
transition’s quality.

3
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Afterward, we will conduct an exploratory data analysis to identify general trends and
patterns between the different models and the listening experiment results. To support
our findings, we will conclude a statistical analysis to test the significance of our results.

1.4 Outline
Chapter 2 provides an overview of the state-of-the-art in automatic music mixing and
builds the theoretical foundation for this thesis. Chapter 3 presents our proposed
method and the design of our automatic mixing system. In this chapter, we also address
shortcomings of the current state-of-the-art and how our methods aim to overcome those.
Chapter 4 gives insights into the implementation of our system and provides performance
metrics. Details regarding the listening experiment and the used dataset are described
in chapter 5. Chapter 6 explores the results of the listening experiment and analyzes
the data with regard to previously stated hypotheses using statistical significance tests.
Finally, chapter 7 concludes the thesis and provides an outlook on future work.

4



CHAPTER 2
State of the Art

Automatic music mixing is an ensemble of tasks and techniques from music information
retrieval (MIR). This chapter introduces the state-of-the-art research in the field of
automatic music mixing and its subfields. In doing so, we will describe naive approaches
followed by more sophisticated techniques and current state-of-the-art methods.

We will first introduce beat and key detection, which are fundamental to the scheduling
and mixing process. Afterward, we discuss automatic drum transcription to provide
the foundation for our rhythmic similarity approach. We then introduce naive and
sophisticated song segmentation approaches, followed by a detailed analysis of musical
similarity measures. Finally, we explain music source separation (MSS) techniques to
establish the foundation for our stem modification approach and give an overview of the
current state-of-the-art mix generation systems.

2.1 Beat Detection
The estimation of beat- and downbeat positions is critical for the process of beatmatching
two songs. This section gives an overview of early beat detection approaches and explores
the current state-of-the-art techniques.

2.1.1 Early Signal Processing Techniques
Early methods in beat detection relied on detecting the onsets, the beginnings of musical
notes or sounds, which are usually characterized by significant changes in the audio signal.
Ellis [Ell07] estimates a global tempo to construct a cost function and then uses dynamic
programming to predict the beats that correlate most to the tempo and moments of high
onset strength. Other approaches, such as [GM95], extract a noise component besides the
onset components and use that to detect the drum components’ onset times to increase
the reliability of the beat predictions.

5



2. State of the Art

Besides detecting onsets, other approaches are based on the harmonic and timbral
characteristics of the audio. Harmonic approaches, such as [PP11], are based on the
observation that the harmonic progressions change more often on strong beats than on
other beats. On the other hand, timbral approaches, such as [Jeh05b], are based on the
observation that alternation to the timbral content occurs more likely on downbeats and
section boundaries.

These approaches can be broken down into three steps, as depicted in Figure 2.1. First,
feature vectors are computed over the audio. Then, a beat/downbeat detection function
is derived over those feature vectors. Finally, the beat/downbeat positions are derived
with the help of a temporal model. [Dur+17]

Figure 2.1: This figure depicts the three-step beat detection process. (a) shows the
original audio signal x. (b) shows the feature vector Fi of a specific feature, in this case,
the chroma vectors. (c) illustrates the downbeat detection function d. (d) shows the
discrete downbeat position sequence s. [Dur+17]

2.1.2 Supervised Deep Learning Techniques
With the continuous success of deep learning, supervised beat-tracking approaches have
gained popularity. Böck and Schedl [BS11] proposed a new approach by employing
recurrent neural networks (RNNs), specifically a Bidirectional Long Short-Term Memory
(BLSTM) model, to detect beat locations. Durand et al. [Dur+16; Dur+17] employed
convolutional neural network (CNN) structures to obtain beats and downbeats.

Both RNN and CNNs have advantages and disadvantages in beat tracking. RNNs perform
better in modeling short- and long-term time series, whereas CNNs perform better at
extracting features in a broader range [JLL19; Fue+18]. Recent works [HCD21; CFG21]
used convolutional recurrent neural networks (CRNNs) to leverage the advantages of
RNNs and CNNs and outperform previous beat-tracking approaches. A common CRNN

6



2.2. Automatic Drum Transcription

architecture is to attach the outputs of the convolutional models to the input of the
recurrent layers [Vog+17; Fue+18; DB19].

Davies and Böck [DB19] proposed another well-performing architecture for offline beat
tracking using CNNs and Temporal Convolutional Networks (TCN).

We differentiate between offline and online beat-tracking approaches. Online approaches
are casual, meaning they solely rely on past- and present information and are usually
used for real-time beat tracking [HCD21].

Online beat tracking is usually computationally constrained, only has partial access to
data, and cannot correct previous mistakes, thus facing many unique challenges [HD21].
On the other hand, offline approaches such as [BKW16] require a time signature as input
to classify the downbeats correctly. In contrast, online approaches such as [HCD21]
automatically monitor the time signature and tempo on their own.

2.2 Automatic Drum Transcription

Automatic drum transcription (ADT) is the task of creating symbolic transcripts from
audio data. Many approaches have been proposed, yet a general solution still needs to
be provided for this problem, as reviewed by Wu et al. [Wu+18].

While high accuracies have been achieved for detecting isolated drum hits, classifying
multiple drum hits that occur simultaneously poses another challenge. This is further
complicated when multiple instruments are combined, creating a polyphonic mix. [SSH16]

ADT systems can be mostly categorized into the following categories: segment and classify,
separate and detect, match and adapt, and deep neural network (DNN)-based approaches.
Segment and classification methods divide audio into segments using information derived
from beat tracking. Afterward, features are extracted from those segments, and the drum
instruments are classified over these segments. Match and adapt approaches associate
instruments with pre-determined templates and iteratively update these templates to
match the recording’s spectral character. Separate and detect methods focus on separating
the music signal into individual drum sources before identifying the onsets of each source.
[Wu+18; GR08]

DNN-based approaches mostly consist of three steps, as depicted in Figure 2.2. First,
features are extracted from the audio, then fed into a trained DNN model. The activations
of the output layer of the DNN are then peak-picked to obtain the individual drum
onsets.

Southall et al. [SSH16] proposed a DNN-based approach that uses a RNN and achieves
state-of-the-art performance on drum-solo audio but lacks accuracy in polyphonic audio.
Later on, CNN and CRNN architectures were proposed by Vogl et al. [Vog+17; Vog+17]
and Southall et al. [SSH17] with high accuracy also in polyphonic audio.

7



2. State of the Art

Figure 2.2: Illustrations of the three-step DNN-based ADT approach. After extracting
features from the audio, the features are fed into three separate DNNs, one for each drum
instrument. The activations of the output layer of the DNNs are then peak-picked to
obtain the individual drum onsets. [SSH16]

Wei et al. [WWS21] proposed a beat-informed CNN architecture that leverages a state-of-
the-art beat tracker to make a beat-informed prediction. This model currently achieves
state-of-the-art performance on polyphonic audio.

2.3 Key Detection
Classifying the musical key in a musical piece is fundamental to mixing two songs, as
it ensures harmonic compatibility between those songs. Mixing songs with a harmonic-
compatible key avoids dissonance and allows for smooth transitions and a more cohesive
sound. This section will first give some musical theory background regarding musical
keys and their compatibility based on [Lai16]. Afterward, we will discuss current state-
of-the-art approaches for key detection.

2.3.1 Music Theory
Musical notes are the fundamental units of sound in music and are characterized by their
pitch, which is determined by their frequency. An octave is the interval between a note
and another with double or half its frequency. For example, if a note has a frequency of
440 Hz, such as A4, the note an octave above it would be A5 with 880 Hz. Despite the
pitch difference, notes separated by an octave are perceived as having the same tonal
quality.

In Western music, the twelve-tone equal temperament system is mainly used, where
an octave is divided into twelve equally tempered parts. This division forms the basic
framework for musical scales, the sequences of notes ordered by pitch. The interval
between adjacent notes is also called semitones or half-steps. The major and minor scales
in Western music are the most commonly used scales. Each of those scales consists of
seven distinct notes with specified intervals. For example, the major scale follows the

8



2.3. Key Detection

semitone interval pattern 2-2-1-2-2-2-1. Therefore, the C major scale would consist of
the tones C-D-E-F-G-A-B-C.

A musical piece’s key is the scale used as a basis for the played notes. It establishes the
basis for how harmonies interact within the composition and affects how individual notes
and chords work together. We have already introduced the concept of an octave with a
12-semitone distance. Due to their harmonically stable and pleasing sound, octaves and
the so-called perfect fifth are called perfect consonance. A perfect fifth is an interval of
seven semitones. Another harmonically compatible key relation is keys that are relative.
Relative keys such as F major and D minor share the same key signature, thereby being
considered harmonically compatible. Figure 2.3 illustrates those relations. Adjacent keys
in a scale are separated by a perfect fifth. Adjacent keys (up or down) are relative.

E
Major B

Major

F#
Major

D-Flat
Major

A-Flat
Major
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MajorB-Flat
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Figure 2.3: The circle of fifths - also known as Camelot Wheel using a different key-coding
[Mix] - is widely used by DJs to find a key-compatible song to mix.

2.3.2 State of the Art
One of the most common approaches to key detection was based on a template-matching
principle. First, a time-frequency representation of the audio is extracted. Afterward, this
representation undergoes a process to filter out irrelevant information and is converted
into a pitch-class profile (PCP) or chromagram. The chromagram is a vector that
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2. State of the Art

encapsulates the intensity of each semitone of the chromatic scale at a given time frame.
These chroma vectors are then accumulated over time, creating a comprehensive feature
vector. The key is then derived by matching each key’s template vector with the feature
vector. The challenge with key templates is that they differ for musical genres. This
leads to key detection systems performing well on genres they were designed for and
poorly on others. [Far+16; FJH17]

A notable template-matching-based approach is KeyFinder [Sha11], largely due to its
available open-source implementation. Faraldo et al. [FJH17] improved upon KeyFinder
by utilizing a multi-profile template-matching system for key classification.

Mahieu [Mah16] proposed key detection architectures based on supervised learning. The
system takes a chroma feature vector as input and returns the key. The best-performing
architecture proposed by the author consists of two layers. The first layer contained a
softmax classifier to determine dominant notes. In the second layer, logistic regression
classifiers were used to classify the key using the determined dominant notes as input.
However, with an accuracy of around 58%, this approach could not outperform KeyFinder.

A notable advancement was made with the CNN-based key detection method proposed
by Korzeniowski and Widmer [KW18]. The model was trained using short audio snippets
rather than complete songs to better generalize across genres. The result is a genre-
agnostic key classifier with state-of-the-art performance across various genres.

With the gaining popularity of transformer models and their encoder/decoder architec-
tures in large language models (LLMs), the focus is increasingly shifting towards music
understanding. As introduced by Li et al. [LI+24], the MERT model exemplifies this shift.
It integrates advanced transformer architectures, combining deep acoustic understanding
with self-supervised learning, reaching state-of-the-art performance in many MIR tasks.
While this model did not outperform the current state-of-the-art by Korzeniowski and
Widmer [KW18], it offers a promising direction for future developments in key detection
techniques.

2.4 Song Segmentation
Song segmentation is the task of dividing a song into musically meaningful segments. It is
essential in DJ mixing as it helps to find suitable transition points, also referred to as cue
points, to mix two or more songs. This task usually involves two steps: (i) detecting the
segment boundaries and (ii) classifying the segments into musically meaningful categories
(labeling), such as verse, chorus, bridge, etc.

Foote [Foo00] proposed the first approach that worked reliably on any audio source,
regardless of complexity, by extracting Mel-frequency cepstral coefficients (MFCCs)
and then computing a self-similarity matrix over them. This approach is based on the
observation that the repetition of musical patterns is a common characteristic of music.
Local self-similarity and cross-similarity are computed over past and future time frames
to detect repeating patterns. Segment boundaries will have a high self-similarity and
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low cross-similarity, whereas boundaries within a segment will have low self-similarity
and high cross-similarity. Although its performance was surpassed by more recent works,
such as [NB14; Ser+14], it is, due to its simplicity, still widely used by more recent works
in the automatic mashup generation field, such as [Dav+14; VD18].

Nieto and Bello [NB14] extracted chroma vectors (cf. subsection 2.3.2) to capture the
harmony of the song. Then, 2D-Fourier Magnitude Coefficients (2D-FMC) segments
are computed using a magnitude 2D-Fourier transform over the chroma vectors. These
resulting feature segments are invariant to key, phase shift, and local tempo changes.
Finally, the segments are clustered using k-means, with the Bayesian Information Criterion
used to determine the optimal number of clusters.

Serrà et al. [Ser+14] proposed a boundary detection method that computes a novelty
curve over the audio’s computed structure features. Structural features capture both local
and global characteristics of an audio signal. By examining the relationships of each time
frame in the audio with all others in the same series, these features provide a detailed,
frame-wise representation that captures the overall structural characteristic of the time
series [Ser+12; Ser+14]. The resulting segments are then labeled using a three-step
approach. First, similar segments are grouped together. Then, dynamic thresholding
is employed to determine which segments are similar to share the same label. Finally,
a transitiveness constraint is applied to ensure that if two segments are similar to a
third one, they should also be similar to each other. This step is crucial to maintaining
consistent labeling, as it prevents contradictory or inconsistent labeling of segments with
similar characteristics.

Recent works rely on deep learning approaches to detect segment boundaries and label
segments. Many well-performing CNN-based approaches have been proposed in the past
[GSU14; McC19; Won+20].

The current state-of-the-art approach employs a transformer-based architecture [WHS22].
Transformer-based models require large amounts of data to train on. Since the available
datasets for song segmentation are small, transformer-based models have not previously
been used for song segmentation. The authors have overcome this limitation by employing
an adapted version of the spectral transformer-in-transformer (SpecTNT) architecture
[Lu+21]. SpecTNT differs from conventional transformer models in its unique spectral
and temporal data handling. Unlike standard transformers, which typically process
sequential data, SpecTNT incorporates two encoders: a spectral encoder and a temporal
encoder. The spectral encoder extracts spectral features, such as timbre or harmony,
in the form of embeddings for each time step. The temporal encoder then exchanges
those spectral embeddings along the time axis, capturing structural information of the
audio. In contrast to other segmentation approaches that assign an abstract label to each
segment, such as ’A’, ’B’, ’C’, etc., SpecTNT assigns a semantic meaningful label, such
as ’verse’, ’chorus’, ’bridge’, etc. to each segment, offering more meaningful labeling.
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2.5 Music Similarity
Playlist generation with an inherent sequential ordering and song selection and its ordering
for a mix mainly rely on the audio similarity between songs [KT13; Fle+08]. The most
prominent musical similarity types used in the context of automatic mashup systems
[Dav+14; VD18] are rhythmic and timbral similarity. This section will give a more
detailed overview of those similarity types and introduce how contextual similarity can
be used to improve the performance of automatic mashup generation.

2.5.1 Rhythmic Similarity
A common rhythmic descriptor are the Fluctuation-Patterns (FPs). They measure the
periodicity of the loudness per frequency band and model characteristics of the audio
signal, which can not be captured by using a spectral representation [Pam06]. Pohle et
al. [Poh+09] proposed two modifications to the FP approach, the Onset Patterns (OPs)
and the Onset Coefficients (OCs) and proposed a unified algorithm that included timbral
information to improve the performance of rhythmic extraction.

Rocha et al. [RBH13] used event density, fluctuation patterns and rhythm patterns to
model rhythmic similarity. The authors defined event density as the average frequency of
events, such as the amount of onsets per second, and computed them over four frequency
bands. Following the modifications of Pohle et al. [Poh+09], the authors utilized the
likely onsets from the Onset Pattern approach to extract patterns resistant to tempo
changes. The onsets are detected over four frequency bands, and four rhythmic patterns
are extracted from each band over different measure lengths, resulting in 16 rhythmic
patterns.

Figure 2.4: Example of the most typical (even) drum patterns found in EDM [But06, p.
82] [PBH14].

Panteli et al. [PBH14; Pan+17] proposed an approach that works similarly to the rhythm
patterns approach by Rocha et al. [RBH13]. It builds upon the same concept that there
is a repeating rhythmic pattern in EDM songs (e.g., Figure 2.4) from which rhythmic
characteristics can be derived. Since the rhythmic patterns usually consist of multiple
instruments, the authors proposed to split the audio into so-called rhythm streams.
Ryhthm streams is a more informed approach than the one by Rocha et al. [RBH13],
which uses a fixed number of frequency bands to extract the rhythmic patterns. Then,
the underlying rhythm of each rhythmic stream is characterized using the repetition
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of the rhythmic sequences, the metrical distribution, and the attack shape to classify
percussive and non-percussive instruments. The rhythmic characteristics of the song are
then represented by constructing a feature vector out of the rhythmic characteristics
of each rhythmic stream. Using their constructed feature vectors, the authors used the
cosine distance to compute the similarity between the two songs.

Davies et al. [Dav+14] used a different approach in their automatic mashup system.
Instead of extracting rhythmic patterns of different instruments, the authors extracted
kick and snare drum onsets using the approach of Robertson et al. [RSD13]. The detected
kick and snare drum onsets are then quantized at 12 equally spaced positions over each
beat and stacked into a 24-dimensional feature vector. The similarity between the two
songs is computed using the cosine similarity between the two feature vectors.

2.5.2 Timbral Similarity

Timbre has been identified as the key factor in determining the order and selection of
songs in a playlist. Similarly, timbre plays a crucial role in DJ mixes. It was observed
that songs in DJ mixes tend to be more similar regarding timbre compared to a random
assortment of EDM songs, though they are not as similar as those found within an
individual album. [KT13]

Timbre is perceived as a multidimensional phenomenon and represented in terms of timbral
spaces [Pee+11]. Most approaches proposed so far are based upon multidimensional
scaling (MDS) to map perceived psychoacoustic timbral features to a geometric space of
as few dimensions as possible [BM08]. Spectral centroid, attack time, and irregularities in
the spectral envelope have been found to be the primary components of timbre [Cac+05].
Following this definition, timbre was modeled using various approaches.

Pohle et al. [Poh+09] described timbre using MFCCs, spectral contrast coefficients, and
the descriptors Harmonicness and Attackness, where the latter two capture the harmonic
and percussive characteristics of the audio signal. Rocha et al. [RBH13] and Panteli et al.
[Pan+17] considered timbre as the perception of the polyphonic texture and modeled the
similarity through the following three types of features. MFCCs were used to represent
the spectral envelope and spectral flatness was computed to describe the tonal character.
The authors additionally incorporated “dirtiness” (also referred to as auditory roughness)
as it is an essential part of EDM music and is believed to be explained by the de-tuning
that producers apply to their synthesizer sounds.

2.5.3 Contextual Similarity

Besides audio-based information, contextual information proved beneficial in music
recommendation tasks, even outperforming audio-based approaches in certain settings
[VP20]. Contextual information also enables capturing moods and topics, opening up
the possibility for more meaningful song recommendations.
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Knees et al. [KS13] categorized contextual similarity approaches into three categories: text-
retrieval based, co-occurrence based and user ratings or listening habits based. Approaches
based on text retrieval use web texts, collaborative tags, or song lyrics as primary data
sources. Co-occurrence methods, on the other hand, employ resources such as page
counts, playlists, microblogs, and peer-to-peer networks. Finally, strategies focusing on
user ratings or listening habits typically utilize collaborative filtering techniques.

We will focus on song lyrics-based text-retrieval approaches, as song lyrics are easy to
obtain and have proven to improve performance when combined with audio features
[WSW21].

Early approaches, such as Mahedero et al. [Mah+05], relied on a standard TF-IDF
approach in combination with the cosine similarity measure to compute the similarity
between lyrics of two songs. Other early approaches tried to reveal topic clusters [KKP08]
or classify songs into genres [MNR08] or moods [HDE09].

With the advancement of natural language processing (NLP) techniques, more sophisti-
cated approaches incorporating the lyrics’ semantic meaning have been proposed. Much
of the recent work in semantic text similarity is based on learning word vector represen-
tations using neural language models. Those word vectors are fed into a neural network
to capture the semantic relationships between words. [WSW21]

Word vectors, or word embeddings, project words from a sparse 1-of-V encoding (where V
is the vocabulary size) to a dense, lower-dimensional vector space through hidden layers.
This process effectively extracts and encodes semantic features of words. Semantically
similar words are positioned closer to each other in this reduced vector space, as measured
by Euclidean or cosine distance. [Kim14]

One of the most prominent approaches for word embedding learning was the Word2Vec
technique [Mik+13b; Mik+13a]. It uses a continuous bag-of-words (CBOW) or a skip-
gram model to obtain word embeddings. The CBOW model predicts a word by first
masking it and then predicting it based on its surrounding context. The Skip-gram model
inverts this task by predicting context words given a specific target word. [Mik+13b;
SWB20]

Recently, transformer-based models have become the state-of-the-art approach for NLP
tasks [VTH23]. Reimers and Gurevych [RG19] proposed a transformer-based model
called Sentence-BERT (SBERT). SBERT builds upon the pre-trained BERT model
by fine-tuning it on a siamese and triplet network architecture to learn semantically
meaningful sentence embeddings. Semantic similarity of sentences is then computed
using cosine similarity between the sentence embeddings.

2.6 Music Source Seperation
Music source separation (MSS) separates a music signal into its components, so-called
stems. Recently, work in MSS focused on separating a song into four stems: vocals, drums,
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bass, and other [Mit+22]. The recent adaptation of music source separation (MSS) in
DJ software, such as by Serato1, marks a shift in mixing techniques. Traditional mixing
techniques are complemented by new techniques that isolate certain stems, opening up
new creative possibilities for DJs.

MSS approaches either work on the spectrogram or the waveform domain, with recent
trends showing a blend of both [Déf21; RMD23]. Traditional approaches were primarily
based on unsupervised methods, whereas recent approaches rely entirely on supervised
deep learning techniques [Déf+21].

Spectrogram-based approaches initially utilized simple networks and progressed to more
advanced multi-scale CNN and RNN architectures [TGM18]. Notable developments
include MMDenseLSTM [TGM18] and D3Net [TM21], which employ dilated convolutions
with dense connections. Spectrogram-based models have had state-of-the-art performance
in MSS for a long time but have recently been surpassed by waveform-based models
[Déf+21]. Waveform-based approaches deal directly with raw audio waveforms. Initial
models in this domain, such as Wave-U-Net [Jan+17], were adapted from spectrogram
models [SED18] but have generally shown less success compared to their spectrogram
counterparts [Déf+21].

Recently, waveform-based approaches, such as the initial Demucs model [Déf+21], have
shown state-of-the-art performance in MSS. The initial Demucs model features a U-Net
architecture with a convolutional encoder and decoder linked by bidirectional LSTM
layers. This structure facilitates learning from the raw input waveform to generate
waveforms for each source, focusing on music synthesis rather than masking approaches.
Demucs has shown superior performance in terms of Signal-to-Distortion Ratio (SDR)
and naturalness of audio in human evaluations, especially excelling in separating bass
and drums.

Défossez [Déf21] improved upon the Demucs architecture by introducing a hybrid model
that combines spectrogram and waveform domains. It features dual branches for process-
ing both time-domain and frequency-domain aspects. The model integrates compressed
residual branches, dilated convolutions, LSTM layers, and local attention mechanisms.

Rouard et al. [RMD23] further improved the Demucs architecture by introducing the
Hybrid Transformer Demucs (HT Demucs), a model that replaces the inner layers
with a cross-domain Transformer Encoder. This architecture incorporates cross-domain
Transformer Encoders, enhancing spectral and temporal information processing. This
approach enhances spectral and temporal information processing, improving performance
and higher Signal-to-Distortion Ratio (SDR) values. Figure 2.5 depicts the architecture
of the HT Demucs model.

1https://serato.com/dj/pro/stems

15

https://serato.com/dj/pro/stems


2. State of the Art

Figure 2.5: Illustration of the hybrid transformer Demucs architecture. The architecture
consists of two parallel stages. The input waveform is processed by a temporal encoder and
simultaneously transformed into its spectral representation using the short-time Fourier
transform (STFT) and processed by a spectral encoder. Spectral encoders are prefixed
with a Z, whereas temporal encoders are prefixed with a T. These two representations
are fed into a Cross-domain Transformer Encoder using interleaved Transformer Encoder
layers and cross-attention Encoder layers. Temporal and spectral decoders then process
the output of the Cross-domain Transformer Encoder. The output spectrogram is then
transformed back into the waveform dimension using the inverse-STFT (ISTFT) and
summed with the output of the waveform outputs of the other stage, giving the final
model output. [RMD23]
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2.7 Automatic Mix Generation
Jehan [Jeh05a] proposed an automated DJ system capable of beat matching on downbeats
and transitioning to the next song on rhythmically similar segments. The system assesses
rhythmic similarity by computing rhythmic patterns and uses a simple time-stretching
algorithm for tempo matching. However, the proposed system does not incorporate
harmonic or timbral information or implement automatic track selection or ordering.

Lin et al. [LLT09] improved upon Jehan’s [Jeh05a] work by incorporating pitch infor-
mation and introducing a method for automatic track selection and ordering. First, the
songs that are too dissimilar from the rest are filtered out to avoid mixing songs that differ
too much from each other and to reduce the computational complexity. The dissimilarity
measure is based on the loudness, tempo, and pitch information, using simple chroma
features to capture the pitch. The transition point is then determined by considering
rhythmic and chroma features. The system additionally allows mixing songs with heavily
differing tempi by calculating the transition length based on the tempi difference and
gradually adjusting the tempo during the transition to the tempo of the following song.

Ishizaki et al. [IHT09] proposed a method for reducing discomfort when mixing songs
with heavily differing tempi in his automatic DJ system. A naive DJ method would
be to adjust the following song’s tempo to the previous song’s tempo. However, with
significantly differing tempi, such a tempo adjustment would lead to a degradation in
audio quality and, thus, discomfort for the listener. To avoid this, the authors proposed
using an intermediate tempo between the two songs, spreading the discomfort of the
tempo adjustment over the two songs.

Davies et al. proposed AutoMashUpper (AMU) [Dav+14], an automatic mashup system
that mixes songs using a mashability estimate over phrase-level segments of songs. The
authors employ snare and kick drum onset detection functions to estimate the beat and
tempo of songs. Downbeats are estimated using spectral information and additional
information on the drum onsets. The authors estimate the mashability of two songs
independently per section by employing a structural segmentation approach based on
Foote [Foo00], as described in section 2.4. The mashability measure consists of three
components: rhythmic similarity, harmonic similarity, and spectral balance. The rhythmic
similarity is computed using an implicit representation of rhythm by using the rhythmic
information obtained from the snare and kick drum onset detection function. This differs
from previous approaches described in subsection 2.5.1 that extract rhythmic patterns.
The snare and kick drum onset detection function are then quantized over 12 equally
spaced beat positions and stacked into a 24-dimensional feature vector. The rhythmic
similarity is then computed over all the beat shifts of the next song by computing the
cosine similarity between the feature vector of the current song segment and the feature
vector of the next song across all beat shifts. The harmonic similarity is computed
similarly. A beat synchronous chromagram is computed for each song. Then, in addition
to computing the harmonic similarity over all beat shifts, the harmonic similarity is
computed over all possible key shifts. This allows determining the key shift to achieve
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the highest harmonic similarity. The spectral balance measure ensures a balanced mix
by computing the perceived loudness across three frequency bands and all beat shifts.
Combining these three similarity measures and determining the beat with the maximal
similarity across all beat shifts determines the starting point of the next song. Finally,
songs are mixed by first beat matching the song segments, pitch shifting using the key
shift value obtained during the harmonic matching stage, and adjusting the loudness to
create a balanced mix.

Hiari et al. [HDM15; HDM16] proposed an automatic DJ system based on latent topic
modeling and beat similarity for song selection and cue point estimation. The authors
proposed a method to map chroma features to a textual description, called ChromaWords.
Then a generative statistical model, latent Dirichlet allocation (LDA) [BNJ03], is used
to create a topic model of songs of various genres by using the ChromaWords as input.
The similarity between two songs is then computed by segmenting a song and comparing
each segment’s latent topics to the other song’s latent topics. The second similarity
feature, beat similarity, is computed by detecting peaks under the 500 Hz frequency band,
assuming that the rhythm is expressed using bass and drum sounds, and comparing the
peak distances between two song segments.

Huang et al. [Hua+21] proposed a mashup system that uses isolated stems of different
songs to create a mashup. Unlike the previously described automated mixing systems,
this approach focuses on mixing a combination of stems, ensuring that each stem type is
used only once. Stems are separated using an in-house music source separation model.
The stems are then used to train a machine learning model to predict the compatibility
of stems based on self-supervised and semi-supervised methods. The model was trained
using stems from the same songs as positive examples, and combinations of stems from
different songs with unadjusted tempo and key as negative examples. The model was
additionally trained using ”average“ examples using combinations of stems with matching
tempo and key. The system was evaluated using a listening test with AMU as a baseline
and proved to outperform AMU in most aspects when calculating compatibility between
stems.
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CHAPTER 3
Proposed Method

This chapter outlines the proposed method for our automatic music-mixing system. In
section 3.1, we detail our beat and tempo detection algorithm and explain why our
proposed algorithm is more suitable for our task than other state-of-the-art algorithms.
We support our claims by presenting a benchmark and comparing our tempo estimation
algorithm with other state-of-the-art algorithms.

In section 3.2, we explain how we divide a song into musically meaningful segments,
which we will later use to transition between songs. Section 3.3 is the core of this work,
where we detail our music similarity and mixability calculations and song scheduling
algorithm. In addition to audio-based similarity measures, we incorporate contextual
similarity and capture the semantic meaning of music.

In section 3.4, we detail the rules for applying our stem modification algorithm and
propose our vocal segment detection approach. We then explain our mixing process
in section 3.5, including the design of our equalization filters, their application during
transitions, and our process of modifying individual stems based on previously established
rules.

3.1 Beat and Tempo Detection
Most of the EDM music is characterized by a constant tempo. Popular DJ software,
such as Serato1 and Rekordbox 2 build upon this very assumption and estimate an evenly
spaced beat grid that allows for simplified alignment of beats of two or more songs.

We will build our beat and tempo detection pipeline upon the same fixed beat grid
approach. To build a beat grid, we need two types of information: the song’s tempo

1https://serato.com
2https://rekordbox.com
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and the location of the first downbeat, as song segments usually start at the beginning
of a downbeat. We derive the beat positions, including the beat types (first-, second-,
third- and fourth beat) using the state-of-the-art beat tracking system BeatNet [HCD21].
BeatNet returns only the beat positions that are characterized by audio features and
returns no or fewer beat positions during silent parts or low-energy parts of the song.
Calculating the tempo by averaging the inter-beat intervals, represented as

bpm = 60qn≠1
i=1 ti+1≠ti

n≠1

, (3.1)

where ti is the timestamp of the i-th beat and n is the number of beats, can lead to
octave errors (1

2 , 1
3 , 2, 3 multiple of the tempo). Specifically, the problematic tempos are

the 1
3 and 3 multiples of the true tempo for non-duple meter music.

Using a rounded median of the inter-beat intervals

bpm = 60
Median(Δt) (3.2)

where Δti = ti+1 ≠ ti for i = 1, 2, . . . , n ≠ 1 and ti are the timestamps of the beat with
the median inter-beat intervals rounded to two decimal places, proved to be slightly more
reliable, although still showing similar problems as the averaging approach.

To solve the octave error problem, we model the beat grid estimation as a 2-dimensional
constrained minimization problem. Given the detected beat timings ti, where i =
1, 2, . . . , n. Note that some beats might be missing due to detection errors. We want to
find the optimal first downbeat position g1 and the tempo bpm such that the beat positions
of the constructed beat grid gj are evenly spaced and that the average difference between
the detected beat positions ti and the estimated beat grid positions gj is minimized.

Algorithm 3.1 describes the beat grid estimation algorithm in detail. The algorithm
first estimates the tempo using the median of the inter-beat intervals and then performs
a global search to find a good solution. The global search utilizes the dual annealing
algorithm, a variant of the simulated annealing algorithm, that is paired with a local
search algorithm for accepted solutions [Xia+13]. As a local search algorithm, we use
the L-BFGS-B algorithm, a version of the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm that supports bound-constrained optimization [BPN96; Zhu+97].
As an objective, we calculate the mean of the minimum absolute differences between
each estimated beat grid position gi and all detected beat positions tj . The median
tempo is usually a good initial guess, but since we are doing a global search with loose
boundaries, we might discard valid solutions close to the initial guess. Therefore, we
additionally perform a refined optimization with restricted boundaries around the initial
guess. Since the offset of the solution can be more than a beat duration away from the
true first downbeat position, we shift the estimated beat grid to the left and perform
local optimization over the offset position using the L-BFGS-B algorithm again.
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Algorithm 3.1: Beat Grid Estimation Using 2D Constrained Minimization
Input : Detected beats ti, where i = 1, 2, . . . , n

Output : Beat grid gj , where j = 1, 2, . . . , m

1 tempo_estimate Ω estimate_tempo_median(ti);
2 boundaries Ω (0, 60

tempo_estimate ◊ 1.4), (60, tempo_estimate ◊ 1.15);
3 init_guess Ω (t1, tempo_estimate);
// Global search to find a good solution

4 objective, offset, bpm Ω dual_annealing_l_bfgs_b(ti, boundaries, init_guess);
// Refined optimization with restricted boundaries

5 boundaries_restricted Ω (0, 60
tempo_estimate ◊ 1.05), (tempo_estimate / 1.05,

tempo_estimate ◊ 1.05);
6 objective_r, offset_r, bpm_r Ω dual_annealing_l_bfgs_b(ti,

boundaries_restricted, init_guess);
7 if objective_r < objective then
8 objective, offset, bpm Ω objective_r, offset_r, bpm_r;
9 endif
// Local optimization for downbeat position

10 beat_duration Ω 60
bpm ;

11 offset_bounds Ω (0, 60
tempo_estimate ◊ 1.4);

12 offset_cand Ω offset - beat_duration;
13 while offset_cand Ø 0 do
14 objective_offset, offset_new Ω local_minimize_l_bfgs_b(ti, offset_bounds,

offset_cand, bpm);
15 if objective_offset < objective then
16 objective, offset Ω objective_offset, offset_new;
17 endif
18 offset_cand Ω offset_cand - beat_duration;
19 endw
20 gj Ω offset + j ◊ 60

bpm for j = 1, 2, . . . , m;
21 return gj ;
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3.1.1 Benchmark

We selected the GiantSteps dataset [Kne+18; SM18] to evaluate the performance of
our beat grid and tempo estimation algorithm, as neither BeatNet [HCD21] nor current
state-of-the-art tempo estimations such as by Böck and Davis [BD20] have been trained
on this dataset. The metrics Accuracy 1 and Accuracy 2, as defined by Gouyon et al.
[Gou+06], are mainly used to evaluate the performance of tempo estimation algorithm
[BD20; FP19; Kne+18]. Accuracy 1 measures the percentage of correctly estimated
tempos within a tolerance of 4% of the ground truth tempo. Accuracy 2 is similar to
Accuracy 1, but allows for octave errors (1

2 , 1
3 , 2, 3 multiple of the tempo).

Slight deviations in the estimated tempo lead to significant errors in the beat grid
estimation. To compare the performance of our tempo estimation algorithm for small
tolerance windows, we define Accuracy 1 and Accuracy 2 for the tolerance windows of
1% and 0%.

Table 3.1 shows the comparison of our tempo estimation algorithm with the state-of-the-
art tempo estimation algorithm by Böck and Davis [BD20] on the GiantStep. While
our algorithm does not outperform the state-of-the-art algorithm for the 4% tolerance
window, it demonstrates better performance for the 1% and 0% tolerance windows.

Böck and Davis [BD20] Ours
Accuracy 1 (4%) 87.29 82.30
Accuracy 1 (1%) 67.02 69.59
Accuracy 1 (0%) 0.15 19.97
Accuracy 2 (4%) 96.97 90.77
Accuracy 2 (1%) 74.38 76.70
Accuracy 2 (0%) 0.45 24.51

Table 3.1: Comparison of our tempo estimation algorithm with a state-of-the-art tempo
estimation algorithm by Böck and Davis [BD20] on unseen data from the GiantSteps
dataset.

Figure 3.1 further visualizes the comparison of the two algorithms for errors below 4%.
Up until around 162 samples out of 661, our algorithm predicted the tempo with 0%
error, whereas Böck and Davis’ algorithm had an average error of 0.184% and a median
error of 0.20%. After 207 samples, the current accuracy of our algorithm per sample
decreases below Böck and Davis’ algorithm but stays nearly constant until ≥ 500 samples,
surpassing Böck and Davis below the 1% error window.

Since the accuracies for the 0% and 1% tolerance windows are more important for the
beat grid estimation, we conclude that our tempo estimation algorithm is more suitable
for the beat grid estimation than Böck and Davis’.
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Figure 3.1: Comparison of our tempo estimation algorithm with a state-of-the-art tempo
estimation algorithm by Böck and Davis [BD20] on the GiantSteps dataset for errors
below 4%.

3.2 Structural Segmentation
Music transitions sound most pleasing when performed at musically meaningful positions
of a song, such as the beginning of a bridge, chorus, verse, etc. We will use boundary
detection and labeling algorithms to group similar segments together and detect these
musically meaningful positions.

We found that the boundary detection algorithm by Serrà et al. [Ser+14], as described
in section 2.4, performed most accurately on EDM music. In addition, the labeling
approach by Nieto and Bello [NB14] (cf. section 2.4) performed best on the segments
detected by Serrà et al.’s approach. The implementation of MSAF [NB16] was used
for both algorithms. Figure 3.2 shows the result of the segmentation algorithm on a
popular EDM song. The boundary detection algorithm separated the song into nine
segments. The labeling algorithm grouped the segments into four groups, as depicted by
the different colors in the figure. The intro segment (first, visualized in purple) has the
same label as two other segments, for which we can conclude that they are similar in
terms of their musical content. The outro segment (last, visualized in blue) is also evident.
Classifying the remaining segments into structural segments (chorus, verse, bridge, etc.)
would require a rule-based approach, which would differ for each sub-genre. Thus, we
will not attempt to classify the structural segments and leave this task to the similarity
algorithm, which will choose the best-fitting segment for the transition.

In electronic music, segments typically start and end at downbeat positions. We, therefore,
first quantize the detected segment boundaries to the nearest beat position. To counteract
segment boundaries that have been detected one beat too early or too late, we shift them
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Figure 3.2: Song segments where the boundaries were detected by Serrà et al.’s algorithm
[Ser+14] and the segments were labelled by Nieto and Bello’s algorithm [NB14]. Segments
are separated by a vertical line. The color of the segments represents the label of the
segment. The song is Falling by Camo & Krooked.

by one beat position to the nearest downbeat. Boundaries that start or end at the third
beat positions will not be shifted, as the cause of it might have multiple reasons, such as
errors in the downbeat detection, time signature estimation, or different song structures.

Although mixing intros of songs with outros is a straightforward way of transitioning
whole songs, we will abstain from this practice as we aim for a more energetic mix. Thus,
we penalize intro and outro segments by the factor 0.5, which is then multiplied by
the similarity measure. The progression of the energy level is a task for the similarity
measure. We assume that low-energy and high-energy segments will not be mixed and
thus will not differentiate between other segment types.

3.3 Music Similarity
In this section, we will propose and detail our music similarity and mixability calculations
and song scheduling algorithm.

3.3.1 Rhythmic Similarity
The rhythmic similarity was modeled in various ways in the literature, as described in
subsection 2.5.1. A common approach is to use onset detection functions for specific
instruments. Besides being an essential component in audio similarity, we hypothesize
that the rhythm is a measure that can also be used to detect the accuracy of the beat
grid estimation. A low rhythmic similarity score could indicate a tempo error and, thus,
a beat grid error.

We believe that the drums are the primary rhythmic component in EDM music. Instead
of relying on onset detection functions, which have poor performance in polyphonic audio,
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we decided to use the drum transcription system by Southall et al. [SSH16; SSH17] to
extract drum patterns from the audio. To be able to detect different kinds of rhythm
patterns besides the classical ”straight“ pattern, such as ”swing“, ”shuffle“ or ”offbeats“
which are a primary component in EDM subgenres such as drum and bass, we follow the
AutoMashUpper (AMU) approach of Davies et al. [Dav+14] and sub-divide the beat
grid into 12 equally spaced intervals. We then detect the kick, snare, and hi-hat drum
positions and quantize them over the sub-beat grid. By stacking the kick, snare, and
hi-hat information on top of each other, we obtain a 3-dimensional binary vector Rn for all
songs n of length K ú12, where K is the number of beat positions of a song. The rhythmic
similarity is then calculated between phrase sections p of the seed song s and a candidate
song c for all the beat shifts k beat shifts of c. While AMU used cosine-similarity as
a rhythmic similarity measure, we decided to employ a stricter similarity measure to
capture dissimilarities in the drum patterns. Thus, we define the similarity measure as
the average of the sub-beat positions where the drum patterns of the seed song section
and the candidate song section match.
For each drum vector Rs,p,d within phrase section p of the seed song s, where d œ 1, 2, 3
denotes the drum vector dimensions corresponding to the kick, snare, and hi-hat, we
compute the average number of matching sub-beat positions l over all beat shifts k
against all candidate songs c. The overall rhythmic similarity MR,s(k) is then derived by
averaging the similarities obtained across the three drum dimensions d,

MR,c(k) = 1
3

3ÿ
d=1

A
1
m

mÿ
l=1

Rs,p,d,l = Rc,k,d,l

B
, (3.3)

where m is the length of the drum vector Rs,p of the phrase section in the seed song.

3.3.2 Timbral Similarity
Songs played in a DJ set have been identified to be similar in terms of their timbral
content [KT13]. To model the timbral component, we will follow the approach of Rocha
et al. [RBH13] and Panteli et al. [Pan+17]. Our timbral component will consist of Mel-
frequency cepstral coefficients and the auditory descriptors: spectral flatness and dirtiness.
We will use the MFCCs to represent the spectral envelope of the audio. Analogous to
Panteli et al., we will use the first 20 MFCCs, following Aucouturier et al. [APS05],
who found this number to optimally balance capturing the broad shape of the spectral
envelope without over-focusing on finer spectrum details. The MFCCs are computed in
half-overlapping frames of 1 beat duration and averaged over all frames.
Spectral flatness is a feature that reflects the tonal character and compression potential
in the audio coding of an audio signal [HAH01]. It measures how smooth or spiky a
signal’s spectrum distribution is by calculating the ratio between its geometric mean and
arithmetic mean [LT07]. We compute the spectral flatness in half-overlapping frames of 1
beat duration and then average it over all frames. The computation is done over four
equally spaced frequency bands within the 300 to 6000 Hz range [HAH01].
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Dirtiness (or auditory roughness) is a feature that reflects the de-tuning that producers
apply to their synthesizer sounds. In contrast to Panteli et al., who used the algorithm
by Vassilakis [Vas01], we decided to use the more recent approach [Vas07] by the same
author, which outperforms the previous model. We then computed the dirtiness over the
same frequency bands as the spectral flatness.

By stacking the MFCCs, spectral flatness, and dirtiness information on top of each other,
we obtain a 28-dimensional vector Tn,p for a song n and phrase section p. Due to the
computational demand of the timbre calculation, it was infeasible to calculate the timbral
component for all beat shifts k of the candidate song c, similar to the rhythmic similarity
(c.f. subsection 3.3.1). We believe that the timbral component is more or less constant
over phrase sections and thus calculate the timbral component over each phrase section
p of the candidate song c. The timbral similarity is then calculated by computing the
cosine-similarity between the timbral component Ts,p of phrase section p of seed song s
and the timbral component Tc,q of all phrase sections q of candidate song c,

MT,c(q) = Ts,p · Tc,q

ÎTs,pÎÎTc,qÎ . (3.4)

3.3.3 Key Similarity
Harmonic compatibility is essential when mixing songs, as it avoids dissonance and leads
to a more pleasing blend.

We decided to use the key detection algorithm KeyFinder [Sha11] due to its open-source
availability and good performance compared to recent state-of-the-art key detection
algorithms. Additionally, we will incorporate pitch shifting in the song selection process
to be more flexible and less constrained by the harmonic aspect of the songs. Pitch-
shifting algorithms, however, can hurt the quality of audio as they introduce a variety
of artifacts. These artifacts include detuning, where specific frequencies are shifted a
bit more than others, and clipping, where a signal that exceeds the maximum value is
cut off at its maximum, among other problems mentioned by Royer [Roy19]. Figure 3.3
illustrates the clipping issue on two pitch-shifted audio excerpts by 1 and 2 semitones
using the popular pitch shifting algorithm RubberBand3. Instead of allowing clipping and
thus introducing even more issues, such as the generation of high-frequency components
[Roy19], RubberBand normalized the audio to match the maximum amplitude of the
signal where the clipping occurred. This, however, leads to a loss of the original audio’s
dynamics and, thus, a loss of audio quality.

We will base our key similarity measure on the wheel of fifths (cf. subsection 2.3.1). We
define a harmonic key distance measure DK1(K2) as the minimum semitone distance
between two keys K1 and K2 on the wheel of fifths. The key similarity measure MK,c is
then defined as follows,

3https://breakfastquay.com/rubberband
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Figure 3.3: A three seconds excerpt from 03:66-06:66 of the song Falling by Camo &
Krooked pitch shifted by 1 and 2 semitones using the pitch shifting algorithm RubberBand.
The top plot shows the original audio, transformed into mono. The middle plot depicts
the waveform of the original audio after pitch shifting by 1 semitone. The bottom plot
shows the waveform of the original audio after pitch shifting by 2 semitones.

MK,c =
I

1, if DKs(Kc) = 0
DKs(Kc)≠1, otherwise

, (3.5)

where DKs(Kc) is the key distance between the key Ks of the seed song s and the key
Kc of the candidate song c.

3.3.4 Harmonic Similarity
Harmonic content changes throughout a song and thus needs to be reflected in the
similarity measure. We will complement our key similarity measure with a beat-wise
harmonic similarity measure by following the approach of Davies et al. [Dav+14] and
calculate the harmonic similarity between beat-synchronous chromagrams C“ . We
calculate beat-synchronous chromagrams Cc,k across all beat shifts k over all candidate
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songs c. The harmonic similarity is then computed by calculating the cosine-similarity
between the beat-synchronous chromagram Cs,p,q of the phrase section p of seed song s
over all rotational key shifts q and the beat-synchronous chromagram Cc,k of all beat
shifts k for all candidate songs c,

Hc(q, k) = Cs,p,q · Cc,k

ÎCs,p,qÎÎCc,kÎ . (3.6)

To improve the computational efficiency, we also followed the 2D-correlation approach of
Davies et al. [Dav+14] to compute the harmonic similarity over all rotational key shifts
q and beat shifts k more efficiently. To obtain the final harmonic similarity measure
MH,c(k), we take the maximum harmonic similarity over all rotational key shifts q for all
beat shifts k of the candidate song c,

MH,c(k) = max
q

(Hc(q, k)) . (3.7)

3.3.5 Spectral Balance

To ensure a balanced mix, we follow the approach by Davies et al. [Dav+14] and
compute the spectral balance of the audio. We calculate the spectral representation
L by computing the perceived loudness in a beat-synchronous fashion across the three
frequency bands: the low band (< 220 Hz), the mid band (220 ≠ 1760 Hz), and the high
band (> 1760 Hz). We then compute spectral flatness —k for every beat shift k of the
candidate song c by averaging the spectral representations Ls,p of the phrase section p of
the seed song s and the spectral representation Lc,k for the beat shift k of the candidate
song c, over the beat dimension,

—k = 1
Kp

Kpÿ
k=1

Ls,p ≠ Lc,k, (3.8)

where Kp is the number of beats in the phrase section p.

The spectral balance measure ML,c(k) is then defined as follows,

ML,c(k) = 1 ≠ std(—k). (3.9)

3.3.6 Contextual Similarity

Mixing songs at positions with similar lyrics is a transition technique that makes the
transition, independently of audio-based similarity, more seamless. This technique is
commonly executed by playing a repeated phrase of the first song and then mixing in
the second song with a similar vocal phrase.
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We will use the Genius API4 to obtain the lyrics of a given song. We found Genius to be
the most complete, free-to-use source for lyrics. At the time of writing, no freely available
API provided lyrics synced with the audio.

Since the lyrics are not synced with the audio, we will consider the lyrics as a whole
and not in a beat-synchronous fashion. Because lyrics sometimes heavily differ for
each paragraph, we find classical textual similarity measures such as TF-IDF or BM25
unsuitable for our task. Instead, we will capture the lyrics’ similarity by extracting the
whole lyrics’ semantic meaning.

We will use Reimers and Gurevych [RG19] approach (cf. subsection 2.5.3) to compute
sentence embeddings over all sentences of the lyrics. To accelerate the computation, we
pre-compute all sentence embeddings Cn over the lyrics of all songs n. The similarity
measure MC,c is then calculated by computing the cosine-similarity between the sentence
embedding Cs of the seed song s and the sentence embedding Cc of the candidate song c,

MC,c = Cs · Cc

ÎCsÎÎCcÎ . (3.10)

3.3.7 Mixability
We compute the beat-wise mixability for a candidate song c against the phrase section p
of the seed song s by combining the weighted similarity measures of rhythm, timbre, key,
harmony, and spectral balance, as follows:

Mc(k) = ÊRMR,c(k) + ÊT MT,c(q) + ÊKMK,c + ÊHMH,c(k) + ÊLML,c(k), (3.11)

where q is the phrase section of c corresponding to the beat shift k. The mixability
measure considers the 64 beats after the phrase section p of the seed song s instead of the
entire phrase section p. This forward-moving approach enables us to maintain the song’s
dynamics by focusing on the upcoming segments instead of past segments. Through
extensive, informal testing, we found the following weights to give the most pleasing
results: ÊR = 0.3, ÊT = 0.75, ÊK = 0.2, ÊH = 0.2, and ÊL = 0.1.

To incorporate the contextual similarity measure, we extend the audio-based mixability
measure Mc(k) by the contextual similarity measure MC,c with the weight ÊC = 0.25, as
follows:

M Õ
c(k) = Mc(k) + ÊCMC,c. (3.12)

Our initial experiments showed that choosing the transition point by selecting the beat
shift k with the highest mixability score, such as done by Davies et al. [Dav+14], did not
lead to the most pleasing results. Songs were transitioned at non-downbeat positions
or unnatural downbeat intervals (e.g., 7, 9, 15, 17 downbeats), leading to a misaligned
mix. To counteract this, we consider only beat shifts k that correspond to the segment
boundary q of the candidate songs c and calculate the transition (cue) point as follows,

4https://genius.com
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kcue(c) = arg max
kœq

Mc(k). (3.13)

We also record the harmonic and rhythmic similarity at the transition point, and will
use this information to improve the equalization in the mixing process,

hcue(c) = MH,c(kmax(c)), (3.14)

rcue(c) = MR,c(kmax(c)). (3.15)

We compute the song schedule by selecting the candidate song c with the highest
mixability and extract the phrase section p for c. The phrase section p is played until the
corresponding segment boundary q of c is reached, but at least for ⁄minPlay. We found
that a ⁄minPlay value of 55 seconds leads to a good balance between how long a song is
played and how often songs are changed. We then select the phrase section p of c as the
seed phrase section and repeat the process until the desired length of the mix is reached.

A visualization of the mixability and its features per beat shift for a given candidate
song is depicted in Figure 3.4. The timbral feature is computed over segments and thus
constant over them. The key similarity is constant over all beat shifts, as it is computed
over the whole song. Notable are the peaks in the rhythmic similarity every four beats,
which are explained by the alignment of the drum pattern of both songs on the downbeat.

Rhythmic similarity 
Harmonic similarity 
Spectral balance 
Timbral similarity 
Key similarity 
Mixability

Figure 3.4: Mixability and its features per beat shift for a candidate song.
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3.4 Rule-based Stem Modification
Mixing two songs is a challenging task involving multiple steps. The beat-matching
process is one of the most important steps, which, if done incorrectly, can lead to a
displeasing mix. Beat-matching aligns the beats of two song excerpts to be played in sync.
As we already found out in subsection 3.1.1, our tempo estimation algorithm predicts
the tempo of only 25% of songs with perfect accuracy. Slight errors in tempo estimation
can lead to misalignments in the beat grid, leading to a slightly off-beat mix. Another
important rule in mixing is to mix song excerpts that both contain vocals with care or
to avoid mixing them altogether, as vocal clashing can similarly lead to a reduced mix
quality.

To counteract these two cases, we will separate the individual audio stems of the songs and
remove the troubling stems based on a rule-based approach. We will use the pre-trained
HT Demucs model [RMD23; Déf+21] (cf. section 2.6) to separate the audio into the four
stems: vocals, drums, bass, and other. Based on the rhythmic similarity value rcue(c) of
the candidate song c at the transition point, we will employ drum stem modifications
to counteract slight tempo errors and drum pattern incompatibilities, as later in-detail
described in section 3.5. Based on several experiments, we found that applying the drum
stem modification procedure at a rhythmic threshold below rthresh = 0.95 leads to the
most pleasing results.

We take a similar approach to the vocal segments of the songs. First, we have to detect
the vocal segments in the song. Instead of relying on RNN [LSW18] or CNN [YLL21]
architectures for vocal detection over polyphonic audio, we will use the vocal stem
obtained from the MSS step to detect the presence of vocals. We detect vocal segments
by splitting the vocal stem into boundaries on ”silent“ sections that persist for one second
or longer and where the loudness is below -40 dBFS. We then filter out every vocal
segment shorter than 400ms, as we assume that vocals present in such short segments
are not the main vocals of the song and, thus, do not interfere with the mix. If the
vocals during the transition intersect for more than two seconds, we apply a vocal stem
modification procedure to counteract vocal clashing (cf. section 3.5).

3.5 Mixing
The mixing pipeline consists of multiple stages to ensure a high-quality mix and good
generalization on various songs. To achieve a good generalization of transition quality, we
define the transition length as 16 downbeats. The transition starts with eight downbeats
before the song’s end and ends with eight downbeats after the transition point of the
current song. We apply various equalization techniques and stem modification procedures
described in the following sections to ensure a smooth transition.

Before transitioning, we first need to bring the loudness of each song to a consistent
level. We achieve this by measuring the perceived loudness of an audio and adjusting
its gain to ≠14 LUFS. To calculate the perceived loudness, we use the ITU-R BS.1770-
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4 algorithm [Int15], which analyzes the energy of the audio over time, using specific
frequency weighting and temporal integration to account for human hearing sensitivity.
We then beat-match the song by time-stretching the audio to the same tempo as the
previous song. To avoid a loss in the song’s dynamic due to too big tempo changes, we
only consider songs with a time-stretching factor of ±8% as candidates. Afterward, we
pitch-shift the audio to the harmonically compatible key, as computed during the key
similarity step in subsection 3.3.3. Time stretching and pitch shifting is done utilizing
the RubberBand5 algorithm.

3.5.1 Filter Design

Selecting the right filter type is crucial for the quality of the equalization process. An
ideal filter would have a perfectly flat passband and an infinitely sharp cutoff, completely
attenuating all frequencies outside the desired range without introducing phase distortion.
However, such filters do not exist due to physical limitations and the principles of causality.
Furthermore, achieving complete frequency blocking and instantaneous signal response is
impossible, as it would require an infinite impulse response and, if implemented digitally,
an infinite number of coefficients. [Dro07a] [Orf96, Chapter 10]

Since the ideal filter can not be realized, we must take a trade-off between a small
transition band of the filter, referred to as steep roll-off, and a favorable phase response
[Dro07b]. We consider a linear (flat) phase response as the most favorable one, as their
phase delay is independent of frequency, meaning that all frequency components of the
signal are delayed by the same amount of time, preserving the shape of the waveform
[Orf96, Chapter 6].

Table 3.2 depicts the different trade-offs of common filter types based on [Dro07b]. The
Bessel and Elliptic filters are on the extreme end of the trade-off spectrum. The Bessel
filter achieves a maximally flat phase response at the cost of a steep roll-off. The Elliptic
filter, on the other hand, achieves a very steep roll-off at the cost of ripples in both the
passband and stopband. The Chebyshev filter only has a ripple on either the passband
or the stopband, but not on both, at the cost of a less steep roll-off than the Elliptic
filter. The Butterworth filter is in the middle of the trade-off spectrum, with a moderate
roll-off and a moderate phase response.

Filter Roll-off Phase response
Bessel ≠ ++
Butterworth ± ±
Chebyshev + ≠
Elliptic ++ ≠≠

Table 3.2: Overview of different filter types’ roll-off and phase response characteristics.

5https://breakfastquay.com/rubberband
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We will utilize the Butterworth filter, as it has a moderate roll-off and a moderate
phase response, which is a good compromise for the equalization process. A low-pass
Butterworth filter is characterized by the magnitude-squared frequency response

|H(Ω)|2 = 1

1 +
1

Ω
Ωc

22N
, (3.16)

where N is the order of the filter and Ωc is the cutoff frequency, characterized by a ≠3dB
attenutation [PM95]. The frequency response of a low-pass Butterworth filter for the
first seven orders and a cutoff frequency of 2800 Hz is depicted in Figure 3.5. We decided
to use a 5th-order Butterworth filter, as it has a steeper roll-off compared to lower orders
and does not attenuate lower frequencies as much as lower orders while still having a
moderate phase response.

Figure 3.5: Frequency response of a low-pass Butterworth filter for the first 7 orders and
a cutoff frequency of 2800 Hz.

Most DJ mixers have a three-band equalizer for the low, mid, and high frequencies. We
model our low-frequency filter as a low-pass filter with a cutoff frequency of 140 Hz
and model our high-frequency filter as a high-pass filter with a cutoff frequency of 2800
Hz. To attenuate the mid frequencies, we use a band-stop filter with a stopband of
140 Hz to 2800 Hz. Figure 3.6 depicts the frequency response of our low-, mid- and
high-shelving filters. Even though the cutoff frequencies have a maximal attenuation of
≠6dB in case of the simultaneous application of either low- and high-frequency filter in
combination with the mid-frequency filter, we decided not to enlarge the stopband of the
mid-frequency filter. If we had enlarged the stopband, it would have over-attenuated the
low and high frequencies, leading to a more complex equalization process. Furthermore,
we will apply the mid-filter only to partly attenuate mid frequencies in specific scenarios,
as described in the following sections. Thus, there is no need to enlarge the stopband of
the mid-frequency filter.
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Figure 3.6: Frequency response of the low-, mid- and high-shelving filters.

When mixing songs, a DJ applies equalization in a time-varying way by turning the
low, mid, and high equalization knobs over time, in the case of a three-band equalizer.
Instead of directly applying our filters to the audio signal, which could introduce sudden
and unpleasant changes to the audio, we will transform our filters into linear time-
varying shelving filters, emulating the real-world equalization process. To achieve this
computationally efficiently, we apply a shelving filter with maximal gain attenuation on
the audio signal by employing a passband and stopband filter and mixing the original and
filtered audio signal linearly. Our algorithm to apply a time-linear Butterworth shelving
filter to the audio signal for a given start gain factor s and end gain factor e, where 0
is complete attenuation, and 1 is no attenuation, is depicted in algorithm 3.2 After the
time-linear filter is applied, we normalize the audio to prevent clipping caused by the
filter’s phase response.

Algorithm 3.2: Time linear Butterworth shelving filter algorithm
Input : Audio y, Filter f , Start factor s, End factor e
Output : Equalized audio yeq

1 yeq Ω f(y);
2 for i Ω 1 to |y| do
3 b Ω 1 ≠ s + (s ≠ e) ◊ i

|y| ;
4 yeq[i] Ω (1 ≠ b) ◊ y[i] + b ◊ yeq[i];
5 endfor
6 yeq Ω normalize(yeq);
7 return yeq;

3.5.2 Equalization

Equalization techniques differ across music genres, depending on the song dynamics and
the DJ’s personal taste. We propose a generic equalization approach to resolve the most
common issues in mixing EDM music.
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A common technique in mixing EDM music is the ”bass-swap“. When mixing two songs
with strong basslines, the basslines can clash and lead to a ”muddy“ mix. The newly
introduced song is mixed in with heavily attenuated bass frequencies to counteract this.
On the point where the newly introduced song is planned to become dominant, the bass
frequency attenuation is swapped with the one that was already playing. The same
technique is commonly applied to the high frequencies but with lower attenuation, as the
high frequencies are commonly less dominant. Equalizing the mid frequencies heavily
depends on the song itself and if the mid frequencies ”clash“. [Ste10, Chapter 16]

We designed the equalization process using that information, as depicted in Figure 3.7.
The song that is to be mixed is introduced over four downbeats. During this time, the
bass frequencies are heavily attenuated. The highs, on the other hand, are continuously
increased over the four downbeats. Four downbeats before the transition point, the high
frequencies are further increased while the bass frequencies are only slightly increased.
Half a beat before the transition point, we bass swap the two songs until the transition
point and switch the high frequencies. The high and low frequencies of the song to be
mixed out are then slightly decreased until four downbeats after the transition and kept
constant until the end. During the last four downbeats, the song fades out by decreasing
its gain.

Figure 3.7: Equalization applied to both audio excerpts, in case of low rhythmic similarity,
low timbral similarity and no drum stem modification.

Since we extracted a variety of information about the audio during our mixability
calculation stage, we can improve the equalization process by detecting problematic
frequency ranges and treating the separate song stems differently. We consider mid
frequencies of songs with a dissimilar timbre, i.e., timbral similarity below tthresh = 0.95,
as clashing and reduce the mid frequencies of the song that is currently playing, shifting
the focus on the mid frequencies to the new song. During the half beat until the transition
point, we attenuate the mid frequencies to half of the original gain to prevent ”muddiness“
in the mix. We additionally assume that rhythmically similar songs are less likely to
clash in the lower frequencies and thus need less attenuation in the bass frequencies. We
realize this by using slightly less attenuation in the bass frequencies of the song that is
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to be mixed in and even less attenuation in the bass frequencies for the song that is to
be mixed out. This preserves more of the original song’s dynamics and leads to a more
pleasing mix. Finally, we also assume that songs with an attenuated drum stem need
even less equalization in the high frequencies, as drums, especially hi-hats, are a primary
contributor to the high frequencies. We, therefore, introduce the high frequencies of the
song that are to be mixed in earlier and with less attenuation. Figure 3.8 depicts this
equalization process for the case of high rhythmic similarity, low timbral similarity, and
the application of drum stem modification.

Figure 3.8: Equalization applied to both audio excerpts, in case of high rhythmic similarity,
high timbral similarity and drum stem modification.

3.5.3 Stem Equalization
Mixing rhythmically incompatible songs is usually implicitly avoided by the rhythmic
component of our mixability measure. However, since the rhythmic component is only
one of many components, a song with an incompatible drum pattern may be selected for
mixing. Excluding these songs from the scheduling process would significantly reduce
the variety of songs that can be mixed together. We, therefore, introduce a drum stem
modification procedure to counteract rhythmic incompatibility and consider songs with a
rhythmic similarity below rthresh = 0.95 as rhythmically incompatible. We counteract the
audibility of clashing incompatible drum patterns by introducing the new song without
the drum stem and introducing the drum stem gain to 80% until half a beat before the
transition point. While doing so, we also attenuate the drum stem of the song that is
currently playing to limit the combined drum components gain to around 110% during
the transition. During the same half-beat duration in which the bass swap takes place,
we reintroduce the drum stem to its original gain while slowly fading out the drum stem
of the song to be mixed out without fully attenuating it to prevent phase distortion.

We apply the same principle to the vocal stems to prevent vocal clashing. We decided
to attenuate the vocals of the currently playing song, as we believe that the vocals
of the song that is to be mixed in are more important in creating a more coherent
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transition. Therefore, we attenuate the vocals of the current song playing entirely
until four downbeats before the transition point. The vocals during the four downbeat
attenuation period should clash only minimally, as the song to be mixed in is already
introduced in a highly attenuated way. The drum stem and vocal removal filters are
depicted in Figure 3.9.

Figure 3.9: Equalization applied to the vocal and drum stems to prevent vocal clashing
and enable mixing of rhythmically incompatible songs.

3.6 Models
In section 3.4, we proposed our rule-based stem modification approach, and in subsec-
tion 2.5.3, we introduced contextual information into our mixability measure. Given the
assumption that stem modification mainly improves upon the mixing process without
necessarily changing the song schedule, we define the following three models to assess
the contribution of each approach:

• Mosaikbox (MBbase) - Our base model, without the stem modification and contextual
information.

• Mosaikbox + Stem Modification (MBstem) - Our model with the stem modification
approach.

• Mosaikbox + Stem Modification + Contextual Information (MBfull) - Our model
with both the stem modification and contextual information approach.

3.6.1 Baseline
To ensure that our base model MBbase is a good starting point for the evaluation, it
needs to be compared to a baseline model. We chose AutoMashUpper (AMU) by Davies
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et al. [Dav+14] as our baseline model, as it is the most similar state-of-the-art approach
that works on audio-based similarity measures.

To ensure a fair comparison of the models, we replace outdated components of AMU
with more recent state-of-the-art approaches, as used in our approach. In particular, we
replace their beat tracking and percussion detection approach with our approaches and
utilize our mixing procedure to create the mix. This improved version of AMU shifts
the focus of the evaluation to the song scheduling and removes the negative influence of
mismatched beats.

38



CHAPTER 4
Implementation

This chapter provides insights into the implementation of our automatic music-mixing
models. We will first give an overview of the used technologies and frameworks in
section 4.1. Then, we will discuss design decisions regarding our software architecture in
section 4.2. To give insights into the runtime of our system and possible bottlenecks, we
will provide performance metrics in section 4.3. Finally, we will present and explain the
web-based user interface for the automatic mix generation in section 4.4. The complete
source code of the implementation is available on GitHub1.

4.1 Packages and Frameworks
Due to the wide availability of packages and DNN models, we decide to use Python
3.11 as the main programming language for the project. We use a variety of packages
for the song analysis and scheduling procedure. For the loading of audio files and the
computation of the STFT, MFCCs, and chromagrams we use librosa 0.10.1 [MMF+23].
For data manipulation, we utilize numpy 1.23.5. The segmentation, specifically the
boundary detection and segment labeling, is realized using MSAF 0.1.80 [NB16]. To
improve the accuracy of the segmentation, we supply MSAF with our beat grid using
JAMS 0.3.4 and disable its internal beat tracking. Beat positions are derived using a
slightly modified version2 of BeatNet 1.1.0 to ensure compatibility with other packages.
For ADT we utilize ADTLib 2.1.2 3 with its madmom dependency bumped to the commit
0551aa8 to fix a variety of incompatibilities. Lyrics are retrieved using the Genius
API client lyricsgenius with its version bumped to the commit aac9dad to be able to
strip metadata from the response. The semantic similarity between the lyrics is then
computed using sentence-transformers 2.3.1 [RG19]. Stems are separated using Demucs

1https://github.com/robaerd/mosaikbox
2https://github.com/robaerd/BeatNet
3https://github.com/CarlSouthall/ADTLib
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4.0.1 [Déf21]. The key of the song is estimated using the C++ implementation of the
KeyFinder [Sha11] algorithm from libkeyfinder 4.

For mixing song excerpts we utilize pydub 0.25.1. As a digital signal processing (DSP)
library for the filter creation, we use scipy 1.11.4. For loudness normalization, we use
pyloudnorm 0.1.1 which implements the ITU-R BS.1770-4 standard. Pitch shifting
and time stretching are realized using pyrubberband. Due to dependency issues with the
currently published pip package, we bumped the version to the commit 10634aa to
establish compatibility.

4.2 Software Architecture

Our architecture is designed with scalability and maintainability in mind. Since an
important component of our system is available only as a C++ library, we employ a
combination of a layered and service-oriented architecture. This enables us to have a
”core“ system that contains the most important functionality and bridges the gap to
the C++ library. Additionally, we can outsource resource-demanding tasks to separate
services for horizontal scalability.

4.2.1 Core System

The Python ”core“ system is designed using a classical 3-layer architecture and is exposed
as a REST API using FastAPI. The system consists of three main procedures: the song
analysis, the scheduling, and the mixing.

During the song analysis, as much pre-computation as possible is performed to avoid
redundant computation in the scheduling process. First, for each of the songs, we
download its lyrics and perform the four stems separation. Then, we compute the key,
the beat grid, the segments, and their timbre vectors, the semantic lyrics embeddings,
transcribe the percussions and detect vocal segments of the audio for all songs in parallel.
The results are then stored on the file system and will be used by the scheduling procedure.

The scheduling procedure compares each currently scheduled song with all other remaining
songs and selects the song excerpt with the highest mixability as the succeeding song.
We use a combination of in-memory and on-disk caching to speed up the loading and
time-stretching of audio files. Additionally, we cache intermediate results of the mixability
computation, such as the beat synchronous chroma vectors.

The mixing procedure takes the song schedule as input, which contains all the necessary
mixability scores to make rule-based mixing decisions, and sequentially creates the final
mix. The mix is then exported and made available to the user as an MP3 file with a
bitrate of 320 kbps and a sample rate of 44.1 kHz.

4https://github.com/mixxxdj/libkeyfinder
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4.2.2 KeyFinder Service
To make the C++ implementation of the KeyFinder algorithm available to our Python
system, we model it as a separate service. The service is written in C++ and exposes a
remote procedure call (RPC) interface to the core system. Since our core system accepts
various audio formats, we send the pulse-code modulation (PCM) encoded audio data to
the service to reduce additional audio decoding dependencies.

The service then computes the key using the libkeyfinder library, converts it into the
Camelot notation, and sends it back to the core system.

We use gRPC as the communication protocol due to its efficient communication and
programming language agnostic nature. The proto file containing the service definition is
shown in Listing 4.1.

1 syntax = "proto3";
2 package keyfinder;
3
4 message KeyRequest {
5 bytes pcm_data = 1;
6 int64 channels = 2;
7 int64 frame_rate = 3;
8 }
9

10 message KeyResponse {
11 string key = 1;
12 }
13
14 service KeyFinder {
15 rpc GetKey (KeyRequest) returns (KeyResponse);
16 }

Listing 4.1: Protobuf definition for KeyFinder service

4.3 Performance
Although the song analysis procedure is computationally expensive, it has a linear runtime
and offers a parallelism degree of n, where n is the number of songs to be analyzed. Since
we compare each song with all other available songs during the scheduling procedure, we
would need to compute the similarity between n(n+1)

2 songs, leading to a time complexity
of O(n2). Even though there are various ways to reduce the time complexity, they all
come at the cost of the optimality of the mix. Thus, we decided to consider the quadratic
runtime and compute the optimal mix. Approaches to reduce the time complexity at the
cost of the optimality of the mix include:

• Randomly sample k songs out of the available n songs and compute the similarity
between all k songs. Repeat until n songs are scheduled. This leads to a linear
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runtime of O(k) ◊ n
k = O(n).

• Select the top m songs with the highest mixability score instead of comparing all
songs with each other, resulting in a linear time complexity of O(n+nm

2 ) = O(n).

To give an overview of the runtime in a real-world setting, we randomly sample sets of 5,
10, 15, 20, 25, and 30 EDM songs and compute a mix, using all these songs with our
MBfull model. We repeat the experiment five times to ensure stable results and take the
average runtime. The computation is carried out on a MacBook Pro with an M1 Max
and 32 GB of memory. The results are depicted in Figure 4.1.

Figure 4.1: Runtimes of the song analysis, scheduling, and mixing procedures for different
amounts of songs.

We can see the linear growth of the runtime for the song analysis and the mixing
procedure and the quadratic runtime growth of the scheduling procedure. Contrary
to our expectations, the song analysis is the most demanding task until a mix of 30
songs. This suggests that, given a reasonable amount of n songs, further performance
improvements could be achieved by vertical scaling, specifically by using more CPU cores
and GPUs to speed up the song analysis procedure.

4.4 Frontend
We develop a web-based frontend, using Vue.js to allow users to interact with our auto-
mixing system. The initial mixing page screenshot is depicted in Figure 4.2. On the
left panel, the user can upload songs that should be included in the mix. On the right
panel, the user can configure the model to be used for the mix generation. The user
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can also select the baseline AMU model for evaluation purposes. Our model Mosaikbox
can be configured to use contextual information and stem modification. For the stem
modification configuration, the user can choose between combinations of vocal removal
in case of vocal clashing and drum removal in case of percussive incompatibilities.

Figure 4.2: Screenshot of frontend after uploading songs.

Once clicking the ”Generate Mix“ button, the user is asked to select the initial song the
mix should start with, as depicted in Figure 4.3. Afterward, the mix generation process
is started, and a progress bar that indicates the current stage of the mix generation is
displayed.

Figure 4.4 shows the user interface upon completion of the mix generation. The user is
presented with a song schedule that visualizes the mix using the analogy of two turntables
(decks), labeled ”Deck 1“ and ”Deck 2“. This view simulates a real-world DJ setup
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Figure 4.3: Screenshot of the frontend during the song selection step.

with two decks alternating in playing song excerpts. The horizontal overlap between
song excerpts depicts the transition overlap, i.e., the time when both songs are playing
simultaneously. Hovering over a song in the schedule reveals the song title together with
the start and end time of the song excerpt.

Moreover, the user is presented with a visualization of the mix as a waveform, an
integrated audio player for listening, and the option to download the mix. Clicking on a
song within the schedule navigates the audio player to the corresponding transition point
in the mix. Further, the user can access details about the selected song excerpt in the
lower left panel. The details include mixability scores, key and tempo information. For
instance, the screenshot demonstrates that the selected song ”Yussi - Right Now“ was
pitch-shifted by +2 semitones from the original key AZ-Minor to BZ-Minor, or in the
Camelot notation, from 1A to 3A. Additionally, it highlights that the tempo remained
unchanged.
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Figure 4.4: Screenshot of the frontend after the mix generation finished.
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CHAPTER 5
Listening Experiment

Due to the subjective nature of mixes [Hua+21] and the lack of ground truth corpora
for similarity ratings between songs [RBH13], we will evaluate the performance of our
proposed solutions with subjective methods. In particular, we will conduct a listening
experiment to evaluate the performance of our system.

This chapter outlines the setup of our listening experiment. In section 5.1 we describe
the survey structure and present the user interface for the listening experiment. We
then detail our data acquisition and the sampled dataset used for the mix generation in
section 5.2. Finally, we present the generated song schedule of all models in section 5.3.

5.1 Setup
To assess how musical knowledge influences the evaluation, we first ask the participants
about their musical background and whether they have any prior experience in DJing. We
split the following survey for each model into two parts. In the first part, we gather song-
pair compatibility (SPC) ratings by asking the participants to rate how well individual
songs that the models have mixed, fit together. This allows us later on to compare the
song selection of the models to the collected SPC ratings. For all pairs of songs, the
participants are asked to assess the compatibility based on the following categories:

• Timbre: Are the songs similar regarding timbre?

• Rhythm: Do the songs have a similar rhythmic pattern?

• Harmony: Do the songs have a similar harmonic structure?

• Overall Mixable: Are the songs overall mixable?
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In the second part, the participants are presented with the generated mix of a model
and are asked to rate the overall quality of each transition of the mix on a scale of 1
(awful) to 5 (excellent). The models are presented in random order to prevent bias from
the order of presentation. Further, no information about the model type is given to the
participants.

5.1.1 User Interface

We developed a web-based user interface for the listening experiment to streamline the
evaluation process. To minimize the cognitive load on the participants and to speed up
the evaluation process, we designed the user interface with simplicity in mind.

The user is first presented with a short introductory text, explaining the purpose of the
listening experiment and its structure. After the introduction, the user is asked for their
musical background and DJing experience. For each of the four models, the user is then
presented with binary questions to evaluate the compatibility of the song pairs, as shown
in Figure 5.1. The integrated waveform audio player can be used to listen to the song
excerpts and quickly jump to specific parts of the song.

After all song pairs of a model are evaluated, the user is presented with the generated
mix of the model, as depicted in Figure 5.2. It is possible to jump between transitions
by clicking on the respective scheduled song excerpt in the mix timeline. Unlike in
the mixing interface, the user cannot view any information about the scheduled song
excerpt, such as mixability score or pitch shift. This is to prevent further bias from the
participants and to ensure a fair evaluation. In the evaluation box below the mix timeline,
the user can rate the quality of the transition on a scale of 1 (awful) to 5 (excellent).

At the end of the survey, the users are asked to provide an optional email address to
receive the results of the listening experiment.

5.1.2 Implementation

The user interface was implemented using Vue.js, reusing components from the mixing
interface, and SurveyJS as a survey framework. The Python backend was extended to
support the evaluation of the models, and survey results were stored in a MongoDB
NoSQL database. Due to the length of the survey, we are continuously saving the
participants’ progress and offer the possibility to continue the survey later in case any
issues from the participants’ side arise. The application was deployed on a VPS and
made accessible to the participants via a public URL. To reduce the load on the server
and improve response time, we used a content delivery network (CDN) to cache the audio
files and serve them to the participants from edge locations.
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Figure 5.1: Screenshot of the user interface for the evaluation of song pairs.
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Figure 5.2: Screenshot of the user interface for the evaluation of the generated mix.
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5.2 Dataset

Due to the tempo ”lock-in“, only songs with a tempo tolerance of maximum ±8% are
considered. This commonly results in a genre ”lock-in“ as well, as songs of the same genre
usually have a similar tempo. We, therefore, focus on one genre instead of including a
wide variety of genres, which the tempo tolerance would rule out. Based on the musical
tastes of potential participants, we decided to focus on the drum and bass genre (DnB).
This gives the evaluation more weight and relevance, as the participants are likely more
familiar with music and mixes of this genre.

We collected a dataset of 250 songs from the most popular DnB playlists on Tidal
(e.g., ”Super Sharp“) and Spotify (e.g. ”Drum and Bass Top 100“). As previously
benchmarked in section 4.3, using all 250 songs for the mix generation is infeasible due to
the exponential growth of the search space. We, therefore, randomly sampled 16 songs
from this collection and used them as input for the mix generation of the models. The
16 songs are depicted in Table 5.1.

Title Artist Length
Chant 1991 03:45
Champion (Andromedik Remix) Andromedik 03:27
The Edge of Time Break 05:21
Dissolve me (feat. klei) Camo & Krooked 03:30
Flashback Cartoon 02:26
Breathing (fabric VIP Mix) Chase & Status 04:01
Back & Forth Circumference 03:04
So Much in Love (Sub Focus Remix) D.O.D 03:56
Bittersweet Goodbye (Lense Remix) Issey Cross 03:21
Light it Up Kanine 03:41
Cola Murdock 03:22
People Of Eve (Tom Finster Remix) Rohaan 02:51
Same Old Song Vibe Chemistry 03:19
Infinity (feat. ILIRA iiola & Tom Cane) Wilkinson 03:34
This Moment Wilkinson 03:38
Right Now Yussi 03:38

Table 5.1: The dataset of 16 randomly sampled songs used for the mix generation of the
models.

5.3 Mix Generation

To highlight the song selection aspect of the models and keep the survey at an acceptable
length, we used a top-k approach for the song selection instead of forcefully mixing all 16
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songs and thus taking bad scheduling into account. In particular, we use the first eight
songs of the song schedule for the mix generation of the models.

As the starting song for all mixes, we select the song ”Champion (Andromedik Remix) -
Andromedik“ by randomly sampling from the dataset. Maintaining the same starting
song for all models ensures a fair comparison of the song selection of the models.

All songs are provided in lossless quality (ALAC format) and 44.1kHz sample rate as
input to the models. The resulting generated mix of each model is then converted to a
320kbps MP3 file for evaluation to achieve a reasonable file size and to ensure consistent
audio quality across all models.

The generated schedule of the AMU baseline model is depicted in Table 5.2. The schedule
of the MBbase and MBstem model is depicted in Table 5.3. The schedule of the MBfull
model is depicted in Table 5.4. The start and end times of the song excerpts indicate the
transition point of the individual songs, i.e., the time the switch from one song to another
occurs. To derive a transition’s actual start and end time, eight downbeats would need
to be subtracted/added to the start/end time of the song excerpt (cf. section 3.5).
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Song Mix-
ability

Start
time

End
time

Original
tempo

Target
tempo

Key
shift

Andromedik - Champion (Andromedik Remix) - 0.000 78.621 174 174 0
Issey Cross - Bittersweet Goodbye (Lens Remix) 0.770 113.103 180.690 174 174 -4
Wilkinson - Infinity (feat. ILIRA iiola & Tom Cane) 0.745 33.103 97.931 174 174 -1
Camo & Krooked - Dissolve Me (feat. Klei) 0.760 27.586 91.034 175 174 -5
Cartoon - Flashback 0.713 37.241 116.552 174 174 4
Circumference - Back & Forth 0.726 107.586 151.724 172 174 -1
Rohaan - People Of Eve (Tom Finster Remix) 0.727 89.709 153.157 172.1 174 6
Wilkinson - This Moment 0.690 13.103 217.931 174 174 2

Table 5.2: The song schedule of the AMU baseline model.

Song Mix-
ability

Start
time

End
time

Original
Tempo

Target
Tempo

Original
Key

Target
Key

Key
shift

Andromedik - Champion (Andromedik Remix) - 0.000 108.966 174 174 1A 1A 0
Wilkinson - Infinity (feat. ILIRA iiola & Tom Cane) 2.763 31.724 97.931 174 174 8A 1A -1
Kanine - Light It Up 2.756 75.862 152.414 174 174 6A 1A 1
Yussi - Right Now 2.758 55.862 133.103 174 174 1A 1A 0
Chase & Status - Breathing (fabric VIP Mix) 2.731 143.750 215.474 175 174 6A 1A 1
Break - The Edge of Time (Workforce Remix) 2.654 69.302 146.543 172 174 6A 1A 1
Murdock - Cola 2.631 131.894 179.480 174 174 7A 12A -1
Camo & Krooked - Dissolve Me (feat. klei) 2.620 116.552 209.516 175 174 7B 12B -1

Table 5.3: The song schedule of the MBbase and MBstem models.

Song Mix-
ability

Start
time

End
time

Original
tempo

Target
tempo

Original
key

Target
key

Key
shift

Andromedik - Champion (Andromedik Remix) - 0.000 108.966 174 174 1A 1A 0
Wilkinson - Infinity (feat. ILIRA iiola & Tom Cane) 2.763 31.724 97.931 174 174 8A 1A -1
Murdock - Cola 2.784 90.514 179.480 174 174 7A 12A -1
Vibe Chemistry - Same Old Song 2.854 97.241 165.517 174 174 4A 11A 1
D.O.D - So Much in Love (Sub Focus Remix) 2.958 21.379 77.241 175 174 11A 11A 0
Wilkinson - This Moment 2.831 143.448 198.621 174 174 4A 11A 1
Circumference - Back & Forth 2.875 33.103 153.103 172 174 4A 11A 1
Chase & Status - Breathing (fabric VIP Mix) 2.711 154.784 240.984 175 174 6A 11A -1

Table 5.4: The song schedule of the MBfull model.
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CHAPTER 6
Results and Discussion

This chapter summarizes the results of the listening experiment. We first conduct an
exploratory analysis to identify general trends and patterns between the different models
and the listening experiment results. We then test the significance of our results to
support our observations. Finally, we conclude our findings from the data and discuss
the implications of our results.

For the sake of transparency, it is worth mentioning that the participants of the listening
experiment were mainly academics aged 23-30, with a majority having backgrounds
in STEM (science, technology, engineering, and math) and economics, and most were
familiar with the drum and bass genre. The raw results of the listening experiment are
available on GitHub1.

6.1 Exploratory Analysis
To get a deeper understanding of the results of the listening experiment, we conduct
an exploratory analysis. This analysis will serve as a basis for establishing hypotheses
regarding the performance of our models and the relationships between them.

6.1.1 Musical Knowledge and Experience

In total, 28 participants took part in the listening experiment, of which 8 had prior
experience in DJing. Most participants stated they have an intermediate or advanced
understanding of music theory and its concepts. In contrast, 10 participants stated they
have little to no understanding of music concepts, with none rating themselves as experts.
The participants’ musical knowledge distribution is depicted in Figure 6.1.

1https://github.com/robaerd/mosaikbox-survey-results
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Figure 6.1: Ratio of participants with and without DJing experience and the distribution
of the participants’ musical knowledge.

6.1.2 Song-Pair Compatibility (SPC)
The average SPC ratings for all models, averaged over all transitions, are depicted in
Table 6.1.

Model Timbre Rhythm Harmony Overall Mixable
AMU 0.459 0.515 0.429 0.628
MBbase, stem 0.474 0.643 0.515 0.658
MBfull 0.500 0.628 0.551 0.719

Table 6.1: The average SPC ratings for all models, averaged over all transitions.

Since the song schedule of our base model MBbase and our model with stem modification
MBstem is the same, we will refer to both models as MBbase, stem in the following. All of
our models received a better average rating over all aspects compared to the baseline
model AMU. Additionally, a strong improvement can be observed for all our models’
rhythm and timbral aspects compared to AMU. MBfull received the highest average
SPC ratings across all rating aspects except for rhythm, where it was outperformed by
MBbase, stem.

A visualization and further correlation analysis of the SPC ratings over individual results
is depicted in Figure 6.2. We can observe that the song pairs for AMU have a U-shaped
distribution. Furthermore, 5 out of 7 song pairs proved to have a dominant rhythmic
aspect, corresponding to the higher weighting of the rhythm in the mixability calculation,
compared to our models. The poor harmonic compatibility is surprising, given that
AMU’s main mixability component is based on harmonic similarity. Harmony and rhythm
correlate very highly with the overall mixability, which matches the high weighting of
both aspects in the mixability component of AMU. What is also interesting to observe is

56



6.1. Exploratory Analysis

the high correlation between timbre and overall mixability, even though timbre is not
part of the mixability component of AMU. Additionally, timbre is highly correlated with
harmony, which might explain the high correlation with overall mixability.

Figure 6.2: The individual SPC ratings, averaged over each transition for all models (left)
and the correlation between the SPC ratings (right).

MBbase, stem achieved higher scores on individual SPC ratings compared to AMU and
MBfull, but was followed by SPC ratings with significantly lower scores. Both timbre
and harmony are very highly correlated with overall mixability, which matches the
high weighting of the timbre and harmony aspects in the mixability component of
MBbase, stem. We also observe a high correlation between the rhythm and the overall
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mixability, matching the weighting of the rhythm aspect in the mixability component of
MBbase, stem.

The trend of MBfull is less variable than that of the other models. Notably, the overall
mixability remains high even if timbre, harmony, and rhythm are rated lower, indicating
the contribution of the additional contextual information to the mixability of the songs.
This is also reflected in the lower correlation between timbre and harmony with the
overall mixability compared to the other models.

In all models, we can observe a high correlation between timbre and harmony, while
timbre and rhythm were only moderately correlated.

6.1.3 Transition Ratings
The average transition ratings calculated over all models’ transitions are depicted in
Table 6.2. AMU received the lowest average transition rating, while MBstem received the
highest. To our surprise, the extension MBfull received a similar rating to MBbase.

Model Average Transition Rating
AMU 2.571
MBbase 3.097
MBstem 3.469
MBfull 3.036

Table 6.2: The average transition ratings for all models.

Figure 6.3 additionally depicts the frequency of the ratings for each transition by the
bubble size. All transitions’ average SPC ratings are plotted as a dotted line. To make
the average SPC ratings comparable with the transition ratings, we mapped the SPC
scale 0-4 to our 1-5 rating scale.

We can observe that the transition ratings for AMU are roughly aligned with the average
SPC ratings, except for the first and sixth transitions, where the transition underperforms
the expected SPC rating. It is also worth noticing that very few transitions received a
rating of 5, while a significant number received a rating of 1.

The transition ratings for MBbase also follow the trend of the average SPC ratings,
significantly outperforming them during the first four transitions. The fourth and sixth
transitions follow the trend of the average SPC ratings and experience a substantial
drop in the transition ratings, receiving an average rating of 2.25 and 1.71, respectively.
Notable is the increase in 4 and 5 ratings across the first transitions.

Since MBstem should improve upon rhythmic and vocal incompatibilities during the
transitions, we expected an overall increase in the transition ratings compared to MBbase.
However, we can observe a slight decrease in the transition ratings during the first two
transitions. We can notice an increase in the transition ratings on all the other transitions.
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Figure 6.3: The transition ratings for each transition over all models. The size of the
bubbles represents the number of ratings for the respective transition. Each transition’s
average rating and the SPC are depicted as a line.
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Most notable is the shift from 1 and 2 ratings to 3 and 4 ratings, such as for the fourth
and sixth transition.
The transition ratings for MBfull do not follow the trend of the average SPC ratings and
mostly underperform them. However, similarly to the average SPC ratings, the transition
ratings for MBfull are less variable than the other models. Notable is the downward trend
of the transition ratings. The first transitions received more positive ratings, while the
ones from the second half tended to get lower ratings as the mix progressed.

6.1.4 Relationship between Song Pair Compatibility and Transition
Ratings

We performed a correlation analysis to investigate the relationship between the SPC and
the transition ratings. The results of the correlation analysis are depicted in Figure 6.4.

Figure 6.4: Correlation between the transition and the SPC ratings for all models.

We can observe similar, moderately strong correlation values across all aspects of the
SPC and the transition ratings for AMU, with Pearson coefficients ranging from 0.55 to
0.68.
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Our base model MBbase received a very strong correlation between all aspects except
timbre and rhythm. This is especially interesting since timbre and rhythm are the main
components of our mixability estimation. Also worth noting is the strong correlation
between overall mixability and transition ratings, with a Pearson correlation coefficient
of 0.90.

The correlation between all aspects of the SPC and the transition ratings for MBstem
dropped compared to MBbase. This matches our expectations based on the observations
in subsection 6.1.3, where the transition for MBstem received significantly better ratings
compared to MBbase and its SPC ratings.

For MBfull, we can observe a weak negative correlation between timbre and transition
ratings. We observe a weak or nonexistent correlation with the transition ratings for all
other aspects. This is especially interesting since the contextual weighting factor ÊC is
set to a lower value compared to other similarity metrics of our mixability estimation.
However, the negative correlation between timbre and transition ratings, along with the
particularly weak correlation between the transition ratings and other aspects, might
also suggest that the contextual weight is too high.

6.1.5 Differences in Experience and Musical Knowledge
We observed a substantial difference in the transition ratings between participants with
and without DJing experience, as well as among those with different musical knowledge.
Figure 6.5 visualizes the transition ratings for each transition over all models, separated
by the participants’ DJing experience and musical knowledge. The figure additionally
depicts the confidence interval for each transition rating.

Participants with DJ experience rated the transitions of AMU considerably lower than
those without DJing experience. The average transition ratings for participants with
DJing experience are 2.054 and 2.779 for those without. This trend is consistent with
the visualization across nearly all transitions. A similar trend is observable for musical
knowledge. Participants with less musical knowledge rated the transitions by the AMU
model more favorably than those with more musical knowledge. A significant decline in
ratings is observable in participants with advanced musical knowledge.

The MBbase model was rated similarly by participants with and without DJing experience
for all transitions with the exception of the fourth, sixth, and seventh. For these
transitions, participants with DJing experience gave around a whole step lower ratings
than those without DJing experience. Remarkable is the smaller confidence interval for
negative ratings compared to positive ratings by participants with DJ experience and
the consensus on a 1 rating for the sixth transition. Participants with advanced musical
knowledge rated the transitions similarly to participants with DJ experience, except for
the sixth transition, where they awarded a slightly higher rating.

Participants with DJing experience rated all transitions significantly better than the
MBbase model. While participants without DJing experience rated most of the transitions
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Figure 6.5: Averaged transition ratings over all models for participants with and without
DJing experience (left) and participants with different musical knowledge (right).
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higher compared to the MBbase model, the increase in ratings is less significant compared
to participants with DJing experience. What is interesting to observe is the significantly
higher confidence interval for participants with advanced musical knowledge. On average,
participants with advanced musical knowledge rated the transitions lower than participants
with DJ experience.

The ratings decline more steeply for participants with DJing experience compared to
those without throughout the mix for the MBfull model. This is also reflected by the
participants with intermediate and advanced musical knowledge, whose ratings decline
more steeply than those with basic musical knowledge.

6.2 Statistical Significance
Before we can draw any conclusions from the results, we need to test if there is a significant
difference between the performance of the models.

6.2.1 Overall Performance
To form an overall conclusion on model performance, we aggregated transition ratings
for each model. A Shapiro-Wilk test for the normality of the transition ratings for each
model reveals that the transition ratings are not normally distributed. Corresponding
p-values of all models for the Shapiro-Wilk test are p < 0.00001.

Next, we perform a Kruskal-Wallis test to look for significant differences between the
transition ratings of the models. The Kruskal-Wallis test reveals a significant difference
between the four models with p < 0.00001.

We perform a Mann-Whitney U test for the following model pairs to further investigate
the differences between the models. We start by comparing all our models against the
baseline AMU model to verify the hypothesis that our models outperform the baseline
model. To evaluate the effect of stem modification, we then compare MBstem against
our base model MBbase. Finally, to conclude the effect of the additional contextual
information, we compare MBfull against the base model MBbase and our model with stem
modification MBstem. In total, we will conduct 6 Mann-Whitney U tests.

When performing multiple hypothesis tests, the likelihood of committing a Type I error,
where a null hypothesis is incorrectly rejected, increases significantly with the number
of tests performed [Sha95]. This increase in the error probability can lead to wrong
conclusions about the significance of the results. To counteract this, we will apply the
Holm-Bonferroni correction [Hol79] to adjust the p-values of the Mann-Whitney U tests.
The Holm-Bonferroni correction can be seen as a sequential Bonferroni correction, where
the p-values are ordered in ascending order and then adjusted stepwise. Compared to
the Bonferroni correction, the Holm-Bonferroni correction achieves the same Type I error
rate while reducing the Type II error rate, where a valid null hypothesis is incorrectly
rejected [HB90].
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6. Results and Discussion

We compute the adjusted p-values as follows,

p̂i = max
jÆi

(min (pj · (m ≠ j + 1), 1)) , (6.1)

where m is the number of tests performed and pj is the p-value of the j-th test sorted in
ascending order.

Let F (u) and G(u) be the underlying cumulative distribution functions of the transition
ratings of the models Model 1 and Model 2, respectively. We test for the alternative
hypothesis that the distribution of Model 1 is stochastically greater than the distribution
of Model 2, i.e., F (u) < G(u), for all u. We reject the null hypothesis if the adjusted
p-value p̂ is less than the significance level – = 0.05. The results of the Mann-Whitney U
test and the adjusted p-values are depicted in Table 6.3.

Model 1 (F) Model 2 (G) p̂-valueF (u)<G(u)

MBbase AMU 0.00014
MBstem AMU 0.00000 (1.2696e-11)
MBfull AMU 0.00019
MBstem MBbase 0.00991
MBfull MBbase 1.00000
MBfull MBstem 1.00000

Table 6.3: Corrected p-values of the Mann-Whitney U tests testing if any of the models
significantly outperforms another model.

From the results, we can conclude that our models MBbase, stem, full significantly outper-
form the baseline model AMU. We can also conclude that stem modification significantly
improves the transition ratings of our base model MBbase. We failed to reject the null
hypothesis for the MBfull model. We thus cannot conclude that additional contextual
information leads to any significant improvement in the transition ratings.

6.2.2 Differences in SPC and Transition Ratings
In subsection 6.1.3, we observed that average SPC ratings for all models have a similar
trend to the average transition ratings. Furthermore, we found in subsection 6.1.4 that
there is a strong correlation between SPC and transition ratings for the three models
MBbase, stem and AMU and no correlation for the MBfull model. To draw any conclusion
from these observations, we need to test whether there is a significant difference between
the SPC and the transition ratings of the models.

We calculate the overall SPC ratings for each transition by summing the average SPC
aspects of the corresponding song pairs and map the scale 0-4 to our 1-5 rating scale.
Since we have seven transitions, our sample size is too small to conclude the normality of
the SPC or transition ratings. Thus, we choose to perform a Mann-Whitney U test to
test for significant differences between the SPC and the transition ratings of the models.

64



6.2. Statistical Significance

Our null hypothesis is that the SPC and the transition ratings of the models are equal,
i.e., F (u) = G(u), for all u. To account for Type I errors, we employ the Holm-Bonferroni
correction again and adjust the p-values of the Mann-Whitney U tests. We reject the
null hypothesis if the adjusted p-value p̂ is less than the significance level – = 0.05.

The results of the Mann-Whitney U test and the adjusted p-values are shown in Table 6.4.
We failed to reject the null hypothesis for all models and thus cannot conclude any
significant difference between the SPC and the transition ratings of the models.

Model p̂-value
AMU 0.83450
MBbase 1.00000
MBstem 1.00000
MBfull 0.83450

Table 6.4: Corrected p-values of the Mann-Whitney U tests testing for significant
differences between the SPC ratings and the transition ratings of the models.

6.2.3 DJ Experience
Based on the results of the exploratory analysis, we hypothesize that there is a significant
difference in the transition ratings between participants with and without DJing expe-
rience. In particular, we suggest that those with DJing experience rate the transitions
significantly lower compared to those without.

We tested again for the normality of the transition ratings using a Shapiro-Wilk test. We
found that the transition ratings are not normally distributed with a p-value of p < 0.0001
for all models. We then carried out a Mann-Whitney U test to evaluate the alternative
hypothesis that F (u) > G(u), for all u, where F (u) and G(u) represent the underlying
cumulative distribution functions of the transition ratings from participants with and
without DJing experience, respectively. To account for Type I errors, we again employ
the Holm-Bonferroni correction and adjust the p-values of the Mann-Whitney U tests.
We reject the null hypothesis if the adjusted p-value p̂ is less than the significance level
– = 0.05.

The results of the Mann-Whitney U test and the adjusted p-values are displayed in
Table 6.5. We reject the null hypothesis only for the AMU model. We thus can only
conclude that participants with DJing experience rate the transitions by the AMU model
significantly worse than those without.

6.2.4 Musical Knowledge
To further investigate variations in transition ratings, we hypothesize a significant
difference exists among participants with differing levels of musical knowledge. We
conduct a Kruskal-Wallis test over all models to test for significant differences between
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6. Results and Discussion

Model p̂-value
AMU 0.00017
MBbase 0.10840
MBstem 0.67239
MBfull 0.56869

Table 6.5: Corrected p-values of the Mann-Whitney U test, testing the alternative
hypothesis that participants with DJing experience rated the transitions significantly
worse than those without DJing experience.

the transition ratings of participants with different musical knowledge. To address Type
I errors resulting from multiple comparisons, we once again utilize the Holm-Bonferroni
correction and adjust the p-values of the Kruskal-Wallis test. We reject the null hypothesis
if the adjusted p-value p̂ is less than the significance level – = 0.05.

The results of the Kruskal-Wallis test and the adjusted p-values are depicted in Table 6.6.
We reject the null hypothesis for the baseline model AMU. We thus can conclude that
there is a significant difference for AMU in the transition ratings between participants
with different musical knowledge.

Model p̂-value
AMU 0.00009
MBbase 1.00000
MBstem 1.00000
MBfull 1.00000

Table 6.6: Corrected p-values of the Kruskal-Wallis test, testing for significant differences
between the transition ratings of participants with varying musical knowledge.

To investigate these differences in more depth, we perform a pairwise Mann-Whitney U
test to determine which groups significantly differ by testing for the alternative hypothesis
that F (u) ”= G(u), for at least one u. We again employ the Holm-Bonferroni correction
and use the significance level – = 0.05. The results of the Mann-Whitney U test and the
adjusted p-values are displayed in Table 6.7. We can conclude that a significant difference
exists for participants across all musical knowledge levels for the AMU model.

To further examine the differences, especially regarding which musical knowledge levels
rated the transitions more or less favorably, we compare the mean ranks of the transition
ratings. Participants with novice, intermediate, and advanced musical knowledge received
mean ranks of 118.79, 96.14, and 69.40, respectively. Therefore, we can conclude that
participants with novice musical knowledge rated the transitions of AMU significantly
better than those with intermediate and advanced musical knowledge. Additionally,
participants with intermediate musical knowledge rated the transitions significantly more
favorably than those with advanced musical knowledge.
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6.3. Discussion

Model 1 (F) Model 2 (G) p̂-valueF (u) ”=G(u)

AMUNovice AMUIntermediate 0.01696
AMUNovice AMUAdvanced 0.00000
AMUIntermediate AMUAdvanced 0.01696

Table 6.7: Corrected p-values of the Mann-Whitney U tests testing for significant
differences between the transition ratings of participants with different musical knowledge
for the AMU model.

6.3 Discussion
The outcomes of the listening experiment and the statistical significance tests offer us
valuable insights regarding the performance of our models. We will summarize these
findings in the following section before addressing our research questions.

Apart from the baseline model AMU, we could not derive any difference in ratings across
music knowledge levels or DJing experience. For the baseline model alone, we determine
that the more experienced participants rated the transitions significantly worse than the
less experienced ones. We will therefore not make distinctions based on levels of musical
knowledge or DJ experience in the subsequent discussion.

Our SPC ratings give us a good indicator of the potential compatibility and mixability of
songs. After comparing the SPC ratings to the transition ratings, we found no significant
difference between the two rating categories. We further successfully identified and
matched correlating aspects of SPC to the mixability estimates of our models.

Let us now consider the overall performance of our models. All of our models significantly
outperformed the baseline model AMU. Using our model with stem modification MBstem
greatly improved the transition ratings compared to our base model MBbase. This leads
us to conclude our first research question (RQ1) that stem modification significantly
improves the overall quality of a mix. Additionally, we discovered that using the rhythmic
compatibility from our mixability measure and the vocal intersection duration is sufficient
to formulate effective rules for stem removal (cf. section 3.4).

We were not able to prove that the additional contextual information of our model
MBfull significantly improves the transition ratings compared to our models MBbase or
MBfull. Even though the overall mixability and rhythm aspects of the SPC ratings were
higher than those of the other models, timbre and harmony were rated lower. As already
hypothesized in subsection 6.1.3, we believe we set the contextual weighting factor ÊC

too high. Another reason for the poor performance of the MBfull model might be that
contextual relevance differs between genres of music. Since we only evaluated our models
on one genre, we cannot conclude that the additional contextual information is not useful
for other genres of music. We therefore conclude our second research question (RQ2)
that we could not prove that the additional contextual information significantly improves
the overall quality of a mix.
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CHAPTER 7
Conclusion

In this thesis we present a novel automatic music-mixing framework that surpasses
existing state-of-the-art automatic music-mixing systems. This approach differs from
existing systems by employing state-of-the-art MIR techniques and incorporating a more
comprehensive mixability measure that captures additional audio aspects to better match
the actual DJ music selection techniques. As part of this framework, we proposed a novel
beat-grid estimation algorithm that serves as a foundation for various sub-tasks in the
automatic music-mixing process.

We implemented a rule-based stem modification approach to answer our first research
question, whether the mixability of tracks can be increased by selectively removing stems,
and if so, what measures can be used to formulate such rules. Using rhythmic similarity
and vocal intersection as measures to define stem modification rules, we showed that our
stem modification approach significantly improves the quality of the mix and increases
the mixability of tracks. To answer our second research question, whether contextual
information such as lyrics can be used to improve the quality of the mix, we incorporated
the semantic similarity of the lyrics into our mixability calculation. However, this proved
to have no significant impact on the quality of the mix.

Given the challenges of objectively assessing music mix quality, we were constrained to
opt for a subjective evaluation, which entailed certain limitations. A particular restriction
was the limited amount of mixes that could be evaluated due to the time commitment
required from the participants. Participants reported spending 45 - 60 minutes on the
survey, which made evaluating additional mixes infeasible. To collect enough data to
draw meaningful conclusions, we had to limit the mix to one genre, which may have
introduced a certain bias. Additionally, the homogeneity of participant’s demographic
backgrounds (cf. chapter 6), may have further compounded this bias.

We consider the song segmentation one of the primary limitations of our mixing system,
as it sometimes predicted song boundaries to end either too early or too late. Although
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7. Conclusion

our stem modification approach made the sudden changes in the mix less noticeable,
we believe that a more accurate song segmentation algorithm, such as by Wang et al.
[WHS22], would improve the overall quality of the mix. Apart from this limitation,
our work shows possibilities for improvement and future work in many areas. For
instance, incorporating a feature that captures a song excerpt’s perceived intensity and
activity could improve the scheduling aspect, enabling the mixing system to account
for breaks and build-ups. Moreover, since the quality of a mix is highly dependent on
personal preference, we believe that our mixability measure could be further improved by
incorporating similarity measures obtained by collaborative filtering techniques. Finally,
a more sophisticated transition model supporting different transition techniques, such as
double drops, switch, filter fade, or popular effects, such as reverb and dub echo might
further improve the overall quality of the mix.
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