
Analyse politischer Meinungen
und Erkennung von Stilfiguren

Klassifizierung basierend auf Themen und
Meinungstypen im politischen Kontext; Erkennung

von Alliterationen und Hyperbeln

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Christopher Deringer, BSc
Matrikelnummer 01529026

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Ing. Mag. Dr. Horst Eidenberger

Wien, 29. Februar 2024
Christopher Deringer Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Political Opinion Analysis and
Figure of Speech detection

Topic and opinion type classification in the
political context; alliteration and hyperbole

detection

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Christopher Deringer, BSc
Registration Number 01529026

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Ing. Mag. Dr. Horst Eidenberger

Vienna, 29th February, 2024
Christopher Deringer Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Christopher Deringer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. Februar 2024
Christopher Deringer

v

Danksagung

Diese Stelle möchte ich gerne nutzen um mich bei den Personen zu bedanken, die es mir
ermöglicht haben, an diesen Punkt zu kommen.

Ich möchte meine tiefste Dankbarkeit gegenüber meinem Betreuer Ao.Univ.Prof. Ing.
Mag. Dr. Horst Eidenberger ausdrücken, der mir während dieser Arbeit kontinuierliche
Unterstützung zukommen ließ und immer sehr zeitnah geantwortet hat wenn ich eine
Frage hatte. Ich bin sehr dankbar für das konstruktive Feedback das ich erhalten habe
und für die Freiheit die mir gewährt wurde, ohne ihn wäre diese Diplomarbeit nicht
realisiert worden.

Ein besonderer Dank gilt auch meiner Familie und ganz besonders meinen Eltern, die
mich während meines Studiums fortwährend unterstützt haben und immer ein offenes
Ohr für mich hatten. Danke, dass ihr mir diese Möglichkeit gegeben habt und stets hinter
mir gestanden seid.

Abschließend möchte ich mich bei meiner Partnerin bedanken, die stets eine Quelle der
Motivation für mich war und es immer schaffte mich aufzuheitern. Danke, dass du immer
für mich da bist.

vii

Acknowledgements

Now is the moment to express my appreciation towards the people who made it possible
for me to come to this point.

I would like to express my deepest gratitude to my supervisor Ao.Univ.Prof. Ing. Mag.
Dr. Horst Eidenberger who supported me throughout this thesis and always responded as
quickly as possible. I am very thankful for the constructive feedback that I received and
the freedom I was granted, it would not have been possible to write this thesis without
him.

I would like to extend my gratefulness to my family and especially my parents who always
supported me during my studies and have been there for me. Thank you for giving me
this opportunity and for having my back during all this time.

I wish to expand my thankfulness to my partner who was able to motivate me and cheer
me up on all occasions. Thank you for always being there for me and for the constant
support.

ix

Kurzfassung

Im Rahmen dieser Arbeit wurden vier verschiedene Probleme im Kontext von deutsch-
sprachigen politischen Aussagen und der deutschen Sprache im Allgemeinen behandelt.
Diese sind die Klassifizierung von Themen und Meinungstypen und die Erkennung von
Alliterationen und Hyperbeln. Die meisten Experimente wurden mit einem Datensatz
durchgeführt, der basierend auf den Protokollen des österreichischen Nationalrates erstellt
wurde und rund 65.000 politische Aussagen enthält.
Der gewählte Ansatz für die Themenerkennung baut auf der Extrahierung relevanter
Begriffe aus dem Wikipedia Artikel zu einem Thema auf. Die Resultate wurden händisch
evaluiert, die Genauigkeit war im Falle von den Themen "Feminismus"(36,39%) und
"Flüchtlingskrise in Europa"(19,04%) sehr niedrig, im Fall von dem Thema "Klimawan-
del"(89,02%) jedoch gut.
Der Ansatz, der für die Klassifizierung von Meinungstypen verfolgt wurde, stammt
von Othman et al. [Using NLP Approach for Opinion Types Classifier, Othman et al.,
2015] und wurde für die englische Sprache entwickelt. Das Ziel der Experimente war es
herauszufinden, ob der Ansatz auch für die deutsche Sprache funktioniert. Die Evaluierung
zeigte, dass die Genauigkeit im Falle von Meinungen im Positiv vergleichbar ist (76,60%
vs 71,00%), das war jedoch nicht der Fall für Meinungen, die den Komparative (78,30%
vs 44,00%) oder Superlativ (82,10% vs 44,00%) verwenden.
Die Erkennung von Alliterationen war erfolgreich bei der Verwendung eines Datensatzes
der 605 Alliterationen enthält, eine Genauigkeit von 99,33% wurde erreicht. Es wurden
noch drei zusätzliche Experimente auf freien Text durchgeführt, hier wurde eine durch-
schnittliche Genauigkeit von 53,83% erreicht, das Minimum war 30,00%. Der Ansatz
verwendet den Kölner Phonetik Algorithmus der von Postel [Die Kölner Phonetik - Ein
Verfahren zur Identifizierung von Personennamen auf der Grundlage der Gestaltanalyse,
Postel, 196] entwickelt wurde und kombiniert ihn mit zusätzlichen Regeln.
Für die Erkennung der Hyperbeln wurde ein existierender Ansatz für die englische Sprache,
der von Troiano et al. [A computational exploration of exaggeration, Troiano et al., 2018]
entwickelt wurde und auf semantischen Eigenschaften basiert, für die deutsche Sprache
implementiert. An das Problem wurde mit überwachtem Lernen herangegangen, es wurde
als ein binäres Klassifikationsproblem definiert. Die Resultate wurden im Hinblick auf
Genauigkeit (76,00% vs 52,23%), Trefferquote (76,00% vs 38,52%), Treffergenauigkeit
(72,00% vs 68,90%) und F1-Score (76,00% vs 41,11%) verglichen.

xi

Abstract

In the scope of this work, four different problems have been studied in the context
of German political statements and the German language in general, namely topic
classification, opinion type classification, alliteration detection, and hyperbole detection.
Most of the experiments were conducted using a dataset that was created based on
protocols of the Austrian national council containing around 65000 political statements.
The topic classification was performed by extracting topic related terms from the
Wikipedia article on a certain topic. It was manually evaluated and led to results
that leave room for improvement, as the precision regarding the topics feminism (36.39%)
and European migrant crisis (19.04%) showed. In the case of climate change, a precision
of 89.02% was achieved.
The approach that was implemented for opinion type classification is based on part-of-
speech tagging and was proposed and implemented for the English language by Othman et
al. [Using NLP Approach for Opinion Types Classifier, Othman et al., 2015]. The goal of
the experiments was to show whether the approach is applicable to the German language
as well when using a part-of-speech tagger for the German language and the respective
tags. The evaluation showed that the performance of this approach is comparable in
terms of precision in the case of the opinionated statements (76.60% vs 71.00%). It was
not the case for comparative (78.30% vs 44.00%) and superlative opinionated statements
(82.10% vs 44.00%).
In the case of alliteration detection, a precision of 99.33% was achieved on an alliteration
dataset containing 605 alliterations. Three additional experiments were performed on
free text, where an average precision of 53.83% was achieved, with 30.00% being the
worst case. The approach utilizes the Cologne Phonetics algorithm by Postel [Die Kölner
Phonetik - Ein Verfahren zur Identifizierung von Personennamen auf der Grundlage der
Gestaltanalyse, Postel, 1969] and combines it with additional rules.
For hyperbole detection, an existing approach for the English language by Troiano et
al. [A computational exploration of exaggeration, Troiano et al., 2018] based on the
computation of semantic features has been implemented for the German language. It was
defined as a supervised machine learning problem; a binary classification task. The results
were compared in terms of precision (76.00% vs 52.23%), recall (76.00% vs 38.52%),
accuracy (72.00% vs 68.90%) and F1-score (76.00% vs 41.11%). The performance was
only comparable in terms of accuracy.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Outline . 4

2 Background 7
2.1 Machine Learning . 7
2.2 Natural Language Processing (NLP) 16
2.3 Related Work . 26

3 Design 31
3.1 Research Questions . 31
3.2 Methodological Approach . 32
3.3 Experiment Design . 33
3.4 Datasets . 35

4 Experiments 39
4.1 Extracting technical terms from Wikipedia 39
4.2 Opinion Type Classification . 44
4.3 Alliteration Detection . 46
4.4 Hyperbole Detection . 55

5 Evaluation 61
5.1 Extracting technical terms from Wikipedia 61
5.2 Opinion Type Classification . 70
5.3 Alliteration Detection . 80
5.4 Hyperbole Detection . 87

xv

6 Conclusion 93

List of Figures 97

List of Tables 99

List of Algorithms 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Motivation
In recent years, the landscape of political discourse has undergone a profound transfor-
mation, propelled by the unprecedented surge of information and the growing influence
of digital platforms. This dynamic environment has given rise to critical challenges,
notably the erosion of public trust in government institutions and the pervasive spread
of misinformation and disinformation. As we navigate this complex terrain, there is an
urgent need for robust tools and frameworks that can dissect political speech, providing
valuable insights into sentiments, opinions, and the underlying narratives shaping our
socio-political landscape.

The OECD Trust Survey [OEC], which was conducted in 2021 for the first time, is
a cross-national survey which aims to measure the trust in government and public insti-
tutions. In the first edition, 22 countries including Austria participated. In the second
edition, 30 countries participate. However, the second edition of the survey does not
include Austria. The survey collected opinions on a range of questions, some of them
relating to the responsiveness of governments to public feedback.

In Austria, 41,36% of the participants said that they think it is unlikely that a public
service would be improved in response to public feedback, 37,23% said it is likely, and
18,84% were neutral on the issue, while the remaining 2,57% said they do not know. The
OECD report presented the results with the headline "Governments seen by many as
unresponsive to public feedback", which might be true in the case of Austria. To work
on an issue like this, it is worthwhile to investigate which topics are being discussed in
the national council. To solve this problem, I suggest an approach utilizing topic-based
information retrieval.

The proliferation of misinformation and disinformation further exacerbates the challenges

1

1. Introduction

faced by citizens seeking to make informed decisions. By developing a comprehensive
framework for political sentiment analysis, I aim to implement an approach to effectively
discern between factual information and opinions of varying effects. Two linguistic
elements that hold particular significance in this realm are hyperboles and alliteration,
and this thesis also aims to implement a method for reliably detecting them. Hyperboles,
characterized by exaggerated statements or claims not meant to be taken literally, are
frequently employed by political figures to emphasize a point, elicit an emotional response,
or underscore the urgency of an issue. The detection of hyperbolic expressions is crucial
as it unveils the rhetorical strategies at play, enabling a more nuanced understanding of
the speaker’s intent and the potential impact on public sentiment.

Simultaneously, alliteration, the repetition of consonant sounds at the beginning of
adjacent or closely connected words, serves as a rhetorical device that enhances the
rhythm and resonance of language. In political speech, alliteration can be strategically
utilized to amplify key messages, create memorable slogans, and reinforce a sense of
unity or urgency. By incorporating the detection of alliterative patterns into my frame-
work, I aim to unveil the stylistic choices made by politicians to craft persuasive narratives.

This thesis draws inspiration from the protocols of the Austrian National Council,
recognizing the importance of tailoring natural language processing techniques to the
specific nuances of political discourse in the Austrian context.

The intersection between political opinion analysis and figure of speech detection holds
the potential to strengthen the understanding of political communication in the sense
that rhetoric details are highlighted, which gives interesting insights into how politicians
are expressing their ideas and views. Alliterations can be used to draw attention to
certain parts of a statement, hyperboles might be used to evoke an emotional response.
Both of these rhetorical instruments could be used to influence how a certain issue is
perceived and how opinions are formed.

One example is the following sentence: "Statt Mut impft ihr den Leuten Angst ein". This
sentence is a quotation of representative Wolfgang Zanger, the statement was included in
his speech in the 58. sitting of the national council [nat]. It can be interpreted as stating
that the addressed politicians try to scare the public instead of giving them hope. The
interesting part in this context is the word "impft". The word "impft" is the inflected form
of "impfen", "impfen" stands for "to vaccinate" and could potentially lead to emotional
responses as the topic of vaccination played an important role during the COVID-19
pandemic. This type of analysis can lead to a deeper understanding of political speeches.

1.2 Problem Statement
This experimental study aims to propose further approaches for recognizing opinions and
the way they are expressed in written text with the help of various natural language
processing techniques. During an election a lot of different politicians and parties are

2

1.3. Research Questions

trying to win the favor of the voters. One important factor for the individual voting
decisions might be the opinions which are communicated by the politicians whom are
associated with a certain party. It is hard to be aware of everything that has been said
by members of a certain party, generally it is hard to identify whether the individual
politicians of a party are pulling in the same direction.

One subproblem of this larger problem is opinion type classification, where one wants
to distinguish between non-opinionated statements, opinions, comparative opinions and
superlative opinions, where the opinions are expressed with either the positive, compara-
tive or superlative form.

Figures of speech are deviating from ordinary language and have the goal to produce a
certain rhetorical effect. Two popular figures of speech are hyperbole and alliteration. It
is known that these figures of speech are sometimes used in marketing as an attempt to
win the attention of a potential customer. The hyperbole is used in the political context
as well. An automatic detection of these figures of speech would make it easier to detect
their usage and pave the way for a better understanding.

The paragraphs prior to this one state the two problems which will be the main fo-
cus of this thesis. The first problem is the opinion type classification, the second problem
is alliteration and hyperbole detection.

In addition a rule-based approach is going to be implemented which aims at providing
the capabilities to search for political statements based on their topic.

1.3 Research Questions
The following four research questions were defined to tackle the problems that were
described in the problem statement:

RQ1: How high is the precision of a rule-based approach for topic classification in political
statements using corpora extracted from Wikipedia?
This research question is answered by implementing a simple form of information
retrieval, an inverted index is created which contains political statements from the
Austrian national council protocols. The idea is to extract topic-related terms from
a Wikipedia article, which are then used to search for statements containing the
topic-related terms. The precision is calculated based on the amount of relevant
and irrelevant statements.

RQ2: How does an approach using a German tag set and a tagger for the German language,
instead of an English tag set and a tagger for the English language, for opinion
type classification in German sentences, hold up against the approach developed
by Othman et al. regarding opinion type classification in English sentences? This
question will be evaluated using precision

3

1. Introduction

Othman et al. [OHMI15] defined four different classes, namely opinionated, com-
parative opinionated, superlative opinionated and non-opinionated. The different
classes are assigned based on certain part of speech tags (POS-tags). This research
question is answered by implementing the same approach for the German language,
the precision is calculated based on whether the statement received the correct
class from the implemented algorithm.

RQ3: The Cologne phonetics algorithm can be used to transform a word into a numerical
representation depicting the underlying phonetics. Which additional constraints
need to be added so that the numerical representation resulting from the Cologne
phonetics algorithm is feasible for alliteration detection with 95 percent precision?
The third research question is answered by implementing an algorithm for allit-
eration detection which uses the Cologne phonetics algorithm by Postel [Pos69]
and additional constraints which are worked out by performing experiments on an
alliteration dataset containing 605 alliterations. The precision is calculated based
on whether the alliterations are detected or not.

RQ4: Troiano et al. developed an approach for classifying English sentences as either
hyperbolic or not. Is this approach applicable to the German language as well? This
question will be evaluated using accuracy, precision, recall and the F1-Score.
Troiano et al. [TSÖT18] developed an approach for hyperbole detection for the
English language, which uses semantic features that are computed by using pre-
trained models or specific datasets. The goal of this question is to implement the
same approach for the German language. It requires research regarding datasets and
models which are suitable for calculating the same semantic features for German
statements. It is a classification task with two classes, multiple supervised machine
learning algorithms are used and the metrics accuracy, precision, recall and F1-
score are used to evaluate the results, which are then compared to the best results
achieved by Troiano et al. [TSÖT18].

1.4 Outline
This section gives an overview regarding the remaining chapters. Chapter 2 is the
literature chapter of the thesis and contains sections on machine learning 2.1, natural
language processing 2.2 and the related work 2.3. The machine learning section 2.1
contains subsections on supervised learning 2.1.1 and deep learning 2.1.2. The supervised
learning subsection 2.1.1 is further split into by different topics, namely regression 2.1.1.1,
classification 2.1.1.2 and transformers 2.1.2.1.

The section on natural language processing contains subsections on tokenization 2.2.1,
phonetic algorithms 2.2.2, part-of-speech tagging 2.2.3, sentiment analysis 2.2.4 and
BERT 2.2.5.

4

1.4. Outline

The related work can be found in section 2.3, this section has a subsection on allit-
erations and hyperboles in marketing an politics (2.3.1), a subsection on hyperbole
detection (2.3.2) and a subsection on opinion type classification (2.3.3).

In the third chapter (3) the research questions are defined and the methodological approach
and experiment design are described. The first section (3.1) shows the requirements that
need to be fulfilled so that each research question can be answered, section 3.2 shows the
scientific methodology that is followed throughout the thesis and 3.3 describes how the
experiments are designed. Section 3.4 provides information regarding the datasets that
were created in the scope of this thesis.

The fourth chapter (4) describes the experiments that were conducted in the scope of this
thesis. Section 4.1 contains the description for the Wikipedia-based topic classification
approach that was implemented to find political statements based on the topic. It
describes the overall process that the algorithm follows and the datasets that were used

The second section (4.2) of chapter 4 describes the opinion type classification approach
that was implemented by Othman et al. [OHMI15] and shows how it can be applied to the
German language, by using a part-of-speech tagger and a tagset for the German language.
In addition it describes a rule-based approach and a dictionary-based approach, which
was implemented in addition so that the results can be compared to the results achieved
by using the approach which is based on the part-of-speech tags. Section 4.3 describes
the algorithm that was implemented for alliteration detection and section 4.4 describes
how the hyperbole detection approach by Troiano et al. [TSÖT18] was re-implemented
for the German language.

Chapter 5 contains the evaluation of all the experiments that were conducted in the
scope of this thesis. The sections in the chapter are again separated by topic. Section
5.1 shows the evaluation of the experiments regarding the Wikipedia-based approach for
topic classification, section 5.2 shows the evaluation of the three different approaches that
were implemented for opinion type classification. The third section (5.3) of chapter 5
shows the results that were achieved using the alliteration detection algorithm and section
5.4 shows the results of the hyperbole detection algorithm for the German language.

The final chapter (6) summarizes the thesis by giving answers to the research questions
and by making suggestions for future work.

5

CHAPTER 2
Background

2.1 Machine Learning
2.1.1 Supervised Learning

In machine learning, a supervised learning problem is a problem that is tackled by
providing a dataset that already contains input and output variables. According to
the book "The Elements of Statistical Learning" by Hastie, Tibshirani and Friedman
[HTFF09] it is called "supervised" as there already is an outcome variable available to
guide the learning process.

One can distinguish between two types of supervised learning tasks, one being regression
and the other one being classification. The distinction is made based on the output
[HTFF09], where regression is used in tasks with quantitative output and classification
is used in tasks with qualitative output. Both tasks can be seen as a task in function
approximation.

2.1.1.1 Regression

Regression is one of the two types of approaches that are available in supervised learning.
It is used if the input variables of a dataset are used to compute a quantitative output
variable.

One popular teaching example for a regression task uses a dataset [Wic19] about dia-
monds, which contains the four C’s of diamond quality, being carat, cut, color and clarity
and five physical measurements.

The dataset was created by Hadley Wickham [Wic19] based on data from a diamond
search engine and it contains more than 50000 entries. The dataset is included in the

7

2. Background

ggplot2 R package and it is described in the book "ggplot2: Elegant Graphics for Data
Analysis" by Hadley Wickham [WW16].

The output variable is the price of a diamond, the goal is to train a model that can
successfully calculate the price of a diamond based on the given input variables or a
subset of them.

Linear Regression The linear regression model, as shown in Hastie et al. [HTFF09],
has the form

f(X) = β0 +
p�

j=1
Xjβj (2.1)

with an input vector XT = (X1, X2, ..., Xn) and an output Y .

The assumption which is made by the model is that the regression function E(Y |X) is
linear or that a linear model can be seen as an approximation. The idea is to estimate
the coefficients β by using the available training data.

The most popular method for estimating β is least squares, where the coefficients
β = (β0, β1, ..., βp)T are picked with the intention of minimizing the residual sum of
squares (RSS) as described by Filzmoser [Fil20]:

RSS(β) =
N�

i=1
(yi − f(xi))2

RSS(β) =
N�

i=1
(yi − β0 −

p�
j=1

xijβj)2
(2.2)

2.1.1.2 Classification

Classification is the second type of approach that is available in supervised learning,
next to regression. It is used if the input variables of a dataset are used to compute a
qualitative output variable.

A popular example for a classification task, which is described in Hastie et al. [HTFF09],
is an email spam filter which is used to decide whether an email is spam or a normal
email that a person actually wants to read. There are two qualitative categories, being
C = {spam, email} and the assumption is that an input email can either be one or the
other.

Naive Bayes Naive Bayes classifiers all share the property that they assume that the
value of an input variable is independent of the value of any other input variable in regard

8

2.1. Machine Learning

of the output variable. Li and Jain [LJ98] explain it in the context of a text classification
system where C = (c1, ..., cm) are the m document classes. An unlabeled document, or
input text, D is transformed into a list of words W = (w1, ..., wd), which is then used in
the naive Bayes approach to assign a class to document D as follows:

c∗
NB = argmaxcj∈CP (cj)

d�
i=1

P (wi|cj) (2.3)

with P (cj) being the a priori probability of class cj and P (wi|cj) being the conditional
probability of word wi given class cj . In this case the underlying assumption is that each
word in the document occurs independent of every other word in the document.

This approach is yet quite simple and does not perform very well with small train-
ing sets, as the relative frequency estimate of a word will be zero if it does not appear
in any document in the training set [LJ98]. Li and Jain [LJ98] applied Laplace law of
succession, which is explained by Ristad [Ris95] in "A Natural Law of Succession", to
tackle this problem.

Logistic Regression Logistic Regression is a model where the probability of certain
outputs is computed based on the input which can be used to build a classifier.

Hastie et al. [HTFF09] explain it as a model that was created for the purpose of
modeling posterior probabilities of multiple classes by using linear functions under the
consideration that the posterior probabilities sum to one and are in the interval [0, 1].

The logistic regression model has the following form [HTFF09]:

log
Pr(G = 1|X = x)
Pr(G = K|X = x) = β10 + βT

1 x

log
Pr(G = 2|X = x)
Pr(G = K|X = x) = β20 + βT

2 x

...

log
Pr(G = K − 1|X = x)

Pr(G = K|X = x) = β(K−1)0 + βT
K−1x

(2.4)

where Pr(G = k|X = x) and Pr(G = K|X = x) are defined as follows:

Pr(G = k|X = x) = exp(βk0 + βT
k x)

1 + �K−1
i=1 exp(βi0 + βT

i x)
, k = 1, ..., K − 1 (2.5)

Pr(G = K|X = x) = 1
1 + �K−1

i=1 exp(βi0 + βT
i x)

. (2.6)

9

2. Background

Logistic regression models are most of the time fit by maximum likelihood, utilizing the
conditional likelihood of G given X [HTFF09]. The log-likelihood for N observations
looks like the following [HTFF09]:

l(θ) =
N�

i=1
log pgi(xi; θ) (2.7)

with pk(xi; θ) = Pr(G = k|X = xi; θ).

K-Nearest Neighbors The k-nearest neighbors (KNN) algorithm is a supervised
learning method that can be used for regression and classification. For this thesis the
focus will only be on its use for classification. An input is classified based on a majority
vote among the classes of its k nearest neighbors [HTFF09], where k is an integer. The
nearest neighbors are found based on a distance metric, a common choice is the Euclidean
distance, but there are many other options like cosine distance and Manhattan distance.

In Hastie et al. [HTFF09] the k-nearest neighbor fit for Ŷ , with Ŷ being the prediction
of the output, is defined as follows:

Ŷ = 1
k

�
xi∈Nk(x)

yi (2.8)

Linear Discriminant Analysis Linear Discriminant Analysis (LDA) is another ap-
proach which can be used if the different classes or categories are known beforehand. The
goal is to find a linear combination, which is based on the input variables, that separates
two or more categories from each other.

This explanation is taken from section 4.3 of Hastie et al. [HTFF09] where fk(x)
is the class-conditional density of X in class G = k and πk is the prior probability of
class k, with �K

k=1 πk = 1. Applying Bayes theorem leads to

Pr(G = k|X = x) = fk(x)πk�K
i=1 fi(x)πi

. (2.9)

Linear Discriminant Analysis uses Gaussian densities as class densities. In this case the
class densities are all modeled as multivariate Gaussian, the assumption is made that all
classes have a common covariance matrix Σk = Σ ∀k:

fk(x) = 1�
(2π)p|Σk|e

− 1
2 (x−µk)T Σ−1

k
(x−µk) (2.10)

10

2.1. Machine Learning

Support Vector Machine Support Vector Machines were developed by Cortes and
Vapnik [CV95]. When used for classification it is an optimization algorithm for finding a
hyperplane that separates data points based on the class they belong to.

In the case of two dimensional space the hyperplane would be a line. In this para-
graph, which is based on the explanation of Support Vector Machines by Berwick [Ber03]
and the initial paper on the subject by Cortes and Vapnik [CV95], the focus will mainly
be on the two dimensional case.

The support vectors are the data points that are closest to the hyperplane, they are the
data points influencing the optimal location of the hyperplane [Ber03].

The optimal hyperplane has the form
wT x + b = 0 (2.11)

where w is a weight vector, x is an input vector and b is a bias.

The method of optimal hyperplanes by Vapnik [Vap82], which is described in the paper by
Cortes and Vapnik [CV95], shows that the problem of constructing an optimal hyperplane
is a quadratic programming problem.

Decision Tree Tree-based methods can be applied to regression and classification
tasks, in this case the focus lies on decision trees being applied to a classification task. In
the context of classification, the features are distributed into different groups by applying
a recursive algorithm, as stated by Strobl et al.[SMT09, p. 5], based on the different
groups the class labels are added. The idea is to create a hierarchical structure which
separates the different classes in the optimal way, based on decision rules.

The following explanation is based on the description by Filzmoser [Fil20]. In the
case of classification one needs the proportion of class k observations in node m, which is
defined as follows [Fil20]:

p̂mk = 1
Nm

�
xi∈Rm

I(yi = k) (2.12)

where m is the current node, representing a region Rm with Nm observations. The
observations in node m are classified as the majority class in node m. There are different
measures of node impurity ((Qm(T)) including the misclassification error and the Gini
index, which are used to determine how the features of a dataset are split. They are
defined as follows [Fil20]:

Misclassification Error:
1

Nm

�
i∈Rm

I(yi ̸= k(m)) = 1 − p̂mk(m) (2.13)

11

2. Background

Gini index: �
k ̸=k

′
p̂mkp̂mk′ =

K�
k=1

p̂mk(1 − p̂mk) (2.14)

Random Forest Bagging or bootstrap aggregation is a technique that was developed
by Leo Breiman [Bre96] which is designed to improve the performance of machine learning
algorithms. It is the foundation for the random forest approach.

This explanation is based on the chapter about random forests by Hastie et al. [HTFF09,
p. 587]. The main idea is to average many models so that the variance can be reduced.
In the case of classification a group of trees each propose a vote for a predicted class.
The random forests approach, which was developed by Leo Breiman as well [Bre01], is a
modification of bagging where a large collection of de-correlated trees is constructed and
averaged, as described by Hastie et al. [HTFF09]. The prediction of a new point x is
made based on a majority vote, which is defined as follows:

ĈB
rf (x) = majority vote {Ĉb(x)}B

1 (2.15)

where Ĉb(x) is the class prediction of the bth random-forest tree.

Neural Network The explanations in this section are based on the book "Neural Net-
works and Deep Learning" by Aggarwal [A+18]. Neural networks are nonlinear statistical
models which are based on biological principles. They are used to solve problems in
different domains like image classification or weather forecasting and consist of neurons
that are connected to other neurons. A neuron can have multiple inputs, each input has
a weight that is associated to it.

Let x1, x2, ..., xn be the inputs, the corresponding weights for the input variables are
w1, w2, ..., wn, so the output can be defined as follows [A+18]:

y = σ(
i=n�
i=0

wixi) (2.16)

where σ is the activation function. The classical activation functions according to
Aggarwal [A+18] are listed below:

• σ(x) = sign(x) - sign function

• σ(x) = 1
1+e−v - sigmoid function

• σ(x) = e2v−1
e2v+1 - tanh function

12

2.1. Machine Learning

The neurons are then organised in some type of network, one version is the feed-forward
neural network, which was first published by Ivakhnenko and Lapa [IL+65] in 1965. The
feed-forward neural network is based on the idea of the perceptron, which was invented
by Warren McCulloch and Walter Pitts [MP43] in 1943, and the idea of a layered network
of perceptrons which was introduced by Frank Rosenblatt [Ros58] in 1958. This type of
network consists of multiple layers, one of them being the input layer, one output layer
and potentially several layers in between that are called hidden layers. From the input
layer each input is sent to every neuron in the first hidden layer, the outputs are then
again sent to the neurons in the next hidden layer. This process continues until the last
layer is reached.

One method that is often used to train a neural network is back-propagation which was
proposed by Rumelhart et al. [RHW86]. The backpropagation algorithm consists of the
following steps:

1. The pattern of the input is created and propagated forward through the network

2. The output of the network is compared to the actual expected output. The difference
between the two values is considered as an error

3. The error is propagated back from the output layer to the input layer. The weights
of the different connections between the neurons are changed based on their influence
on the error.

2.1.2 Deep Learning

Deep learning is a form of machine learning which can employ either supervised, semi-
supervised or unsupervised techniques. LeCun et al. [LBH15] formulated it as a method
that allows computational models, which are composed of multiple processing layers,
to learn representations of data with multiple levels of abstraction. Deep learning
approaches were able to improve the state-of-the-art in many different fields like speech
recognition [HDY+12], image recognition [KSH12] and natural language understanding
tasks [CWB+11]. Most of the modern deep learning models are based on multi-layered
neural networks.

2.1.2.1 Transformers

The transformer is a deep learning architecture which is based on the attention mechanism.
It was proposed by Vaswani et al. [VSP+17] in their paper "Attention Is All You Need",
this explanation is based on this paper. It formed the basis of current state-of-the-art
models like BERT and GPT-4 and follows the encoder-decoder structure.

The encoder is built out of 6 identical layers, where each layer consists of two sub-
layers. The first sub-layer implements a multi-head self-attention mechanism and the

13

2. Background

second sub-layer is a position wise fully connected feed-forward network. The decoder is
built out of 6 identical layers as well, each of them consisting of three sub-layers, being
the two sub-layers in the encoder layer and an additional layer which performs multi-head
attention on the output of the encoder stack. [VSP+17]

Figure 2.1, which is taken from Vaswani et al. [VSP+17], shows their proposed ar-
chitecture for the transformer. The basic building blocks of the transformer are the
attention blocks. The goal of an attention block is to add context related to all other
tokens to each embedded token of an input sequence. This enables the network to learn
which relationships between tokens are more relevant than others.

Figure 2.1 shows the encoder on the left side and the decoder on the right side. When
considering machine translation from English to German as an example, the encoder
receives the input, in this case the English sentence, and the decoder receives the desired
output, which would be the same sentence but in the German language in this case.

Figure 2.2 which is also taken from Vaswani et al. [VSP+17] shows a multi-head attention
block on the right side and a scaled dot-product attention block, which is a part of the
multi-head attention block, on the left. The graph shows that the scaled dot-product
attention block is utilized h times, each of the scaled dot-product attention blocks can
fulfill a different task, based on the provided weight matrices. [VSP+17]

The input of the scaled dot-product attention block subsists of queries (Q), keys (K) and
values (V). The queries and the keys are both (n × dk)-dimensional matrices and the
values are a (n × dv)-dimensional matrix where n is the amount of elements in the input
sequence (x1...xn). The attention is defined as follows:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.17)

Vaswani et al. [VSP+17] found it to be beneficial if they linearly project the queries,
keys and values h times with different learned linear projections to dk or dv dimensions,
depending on the case. They called this approach multi-head attention and defined it as
follows:

MultiHeadAttention(Q, K, V) = concat(head1, ..., headn)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i) (2.18)

with the following definitions:

14

2.1. Machine Learning

Figure 2.1: Transformer architecture by Vaswani et al. [VSP+17]

W Q
i ∈ Rdmodel×dk

W K
i ∈ Rdmodel×dk

W V
i ∈ Rdmodel×dv

W O ∈ Rhdv×dmodel

15

2. Background

Figure 2.2: Scaled Dot-Product Attention and Multi-Head Attention by Vaswani et al.
[VSP+17]

2.2 Natural Language Processing (NLP)

2.2.1 Tokenization

Tokenization is the process of separating a text into smaller chunks. In this subsection
the concept of tokenization will be explained based on the explanation by Jurafsky and
Martin in their book "Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition" [JM]. The
two most common variations are sentence tokenization and word tokenization. The
goal of sentence tokenization is the separation of a text with multiple sentences into
separate sentences, the goal of word tokenization is the separation of a text into single
words. One might start with looking at a very simple example, consider the following text:

This is a simple example text. It contains two sentences.

Now, when sentence tokenization and word tokenization is applied one after the other,
the result might look like the following:

1. This is a simple example text. It contains two sentences.

16

2.2. Natural Language Processing (NLP)

2. This is a simple example text . It contains two

sentences .

In the first step the two sentences are separated from each other, in the second step
each word is an entity, and the dot at the end of each sentence as well. This might
be different according to the implementation, this is just an example. To tokenize a
text like this a few very simple rules are already sufficient, one only needs to be able to
separate multiple sentences based on the ending dot and words based on white space.
In addition the tokenizer has to be aware of the dot as a sentence ending token and
therefore consider each dot as a separate token. This is a very trivial example, it can get
way more complicated rather quickly. One might consider the following sentence:

This sentence isn’t as simple anymore, the rules that
were applied so far would not be sufficient in this case.

The tokenizer needs to be able to consider additional special characters like comma
and apostrophe and it needs to be able to deal with the "isn’t" construct. Here it needs
to be decided how the tokenizer should handle it, theoretically there are a lot of options
like the following:

1. isn ’ t

2. is n’t

3. isn’ t

4. is not

There are a lot of further examples where a simple white space based separation is not
sufficient, for example any sentence that contains the city "New York", here it might lead
to bad search results if "York" is considered as a separate token, therefore it might be a
good idea to consider "New York" as a single token.

One approach for handling names of all kinds, for example person names, cities and
companies but also years and dates in general, is named entity recognition.

Named entity recognition has the goal to assign meaning to named entities in any
kind of text. Different implementations exist, for example rule-based systems and ma-
chine learning based systems. The problem of named entity recognition is not solved yet,

17

2. Background

the best systems achieve a F-Score of around 93% [MP98].

The following example shows a simple case where the named entity recognition worked
as expected:

in: Frank moved to New York in 2006

out: [Frank]Person moved to [New York]City in [2006]Time

In general one needs to consider that a lot of languages have a set of specific challenges.
In Chinese for example each character has a meaning on its own, in combination with
other characters the meaning can change. Chen et al. [CSQH17] used the following
sentence as an example and showed, that it could be seen as consisting of three words,
five words or even seven individual characters. In the following examples the language
code "zh" is used for Chinese and the language code "en" is used for English.

zh: 姚明进入总决赛

en: Yao Ming reaches the finals (Initial sentence)

The first version splits the sentence into three parts:

zh: 姚明 进入 总决赛

en: YaoMing reaches finals (Tokenized using Chinese Treebank)

The second version splits the sentence into five different parts:

zh: 姚 明 进入 总 决赛

en: Yao Ming reaches overall finals (Tokenized using "Peking University" segmen-
tation)

The last version splits the sentence into each of the individual characters:

zh: 姚 明 进 入 总 决 赛

18

2.2. Natural Language Processing (NLP)

en: Yao Ming enter enter overall decision game (Tokenized using character-wise
segmentation)

It turns out that the character-wise segmentation is sufficient for most NLP tasks
regarding the Chinese language [LMS+19].

2.2.2 Phonetic Algorithms

Phonetic algorithms are used to encode a word into a representation that contains some
information regarding its phonetics. One phonetic algorithm for the English language is
Soundex [Rob18] which was developed by Russell and Odell and patented in 1918. It is a
phonetic algorithm for indexing names by sound and it is used in many popular database
systems like Oracle [Soua] and PostgreSQL [Soub].

The basic idea is that a word is turned into a representation consisting of one letter
at the beginning, followed by three numbers, the conversion table can be seen in Table 2.1.

The Soundex algorithm performs the following steps:

1. All letters are turned into upper case letters, punctuation marks are removed

2. The first letter of the word is kept and ignored in the following transformations, it
is used in the end as a prefix.

3. Vowels (A, E, I, O, U), semivowels (W, Y) and the letter H are replaced with 0, as
they should be ignored in the end

4. The remaining letters are transformed based on the rules in the conversion table
which is shown in Table 2.1

5. All the occurrences of the same number next to each other, for example "11" are
replaced with just one occurrence of the number (from "11" to "1" in this case).
The number 0 is ignored, so it is still possible that there are two zeros next to each
other

6. All the zeros are removed from the result

7. The final code should have a length of four, one letter at the beginning and three
numbers following the letter. If there are not enough numbers, the remaining
numbers are filled up with zeros. If there are more than three numbers all the
numbers after the third number are removed

An example is presented in the following list:

19

2. Background

1. Consider the surname Mueller-Luedenscheidt as an example

2. In step 1 the "-" is removed, all letters are turned into upper case: MUELLER-
LUEDENSCHEIDT

3. In step 2 the first letter (M) is stored, it is not affected by the transformations in
the next steps

4. In this case there are no semivowels the letter H and all the vowels are replaced
with 0: M00LL0RL00D0NSC000DT

5. The remaining letters are replaced based on the conversion table (Table 2.1), the
result is the following: M0044064003052200033

6. Now all occurrences of the same number next to each other (except zeros) are
reduced to just one occurrence of the number: M0040640030520003

7. All zeros are removed: M4643523

8. In the last step the code is shortened to length 4: M464

Letter Code
B, F, P, V 1

C, G, J, K, Q, S, X, Z 2
D, T 3

L 4
M, N 5

R 6

Table 2.1: Conversion Table from the Soundex algorithm by Russell and Odell [Rob18]

For the German language, as well as for the English language, exist different kinds of
phonetic algorithms, Wilz [Wil05] lists multiple different phonetic algorithms, some for
the English language and some for the German language. Two of the phonetic algorithms
for the German language are cologne phonetics (Kölner Phonetik) which was developed by
Postel [Pos69] and Phonet, which has two different approaches which are both described
in this article by Michael [Mic88].

The cologne phonetics algorithm transforms a word into a numeric representation. A
central part of the algorithm is a transformation table, which is shown in Table 2.2. The
following three steps are performed in the algorithm:

1. The letters are transformed into numbers based on the rules which are specified in
the transformation table

20

2.2. Natural Language Processing (NLP)

2. For all the numbers that appear multiple times next to each other, all the appear-
ances, besides the first one, are removed

3. All zeros, besides one being at the start, are removed

To show a more concrete example, one can look at the transformation of the name Müller-
Lüdenscheidt. One has to consider that this name counts as one word in this algorithm,
as both names are connected by hyphen. This example is taken from Wikipedia [wike]:

1. Based on the transformation table, the letters are turned into the following repre-
sentation: 60550750206880022

2. Now all the numbers that are shown multiple times next to each other are reduced
to the number just showing once: 6050750206802

3. In the last step all zeros that are not the first number in the representation are
removed, in this case all zeros are removed: 65752682

Letter Context Code
A, E, I, J, O, U, Y 0

H -
B 1
P if not in front of H 1

D, T if not in front of C, S or Z 2
F, V, W 3

P if in front of H 3
G, K, Q

C if in the initial sound before A, H, K, L, O, Q, R, U or X 4
C if in front of A, H, K, O, Q, U or X, if not in front of S or Z
X if not in front of C, K or Q 48
L 5

M, N 6
R 7

S, Z
if after S or Z

C if initial sound and not in front of A, H, K, L, O, Q, R, U, X
if not in front of A, H, K, O, Q, U or X 8

D, T if in front of C, S or Z
X if after C, K or Q

Table 2.2: The transformation table of the cologne phonetics algorithm by Postel [Pos69]

21

2. Background

2.2.3 Part-of-speech Tagging

A part-of-speech tagger or a POS-tagger is a tool which is used to add certain tags to
words in a text based on grammatical rules and context or in other terms determine
the part of speech. The goal is to analyze and understand the syntactic structure of a
sentence by categorizing each word into its appropriate grammatical class.

A few examples for parts of speech in the English language are noun, adjective, verb,
pronoun, and adverb. There are different tag sets, a popular one for the English language
is the Penn tag set, which was developed in the Penn Treebank project [MSM93, Pen].
For the German language the STTS [STT95, WSJB17] and the Tiger tag set [BDH+02]
are popular. Figure 2.3 shows a simple example where POS-tagging has been applied to
a German sentence, the STTS tag set has been used. The tags that have been used in
the example are listed and described in Table 2.3, the STTS tag set contains 54 tags.

STTS-Tag Part of Speech in German Example
NE Eigenname (named entity) Hans, Berlin

VVFIN Infinitiv voll (full infinitive) gehen, ankommen
bestimmter/unbestimmter Artikel

ART (definite/indefinite article) der, die, das, ein, eine

attributives Adjektiv
ADJA (attributive adjective) [den] langen [Roman]

NN normale Nomina (common nouns) Tisch, Herr, Buch

Table 2.3: POS-Tags from the STTS tagset [WSJB17] with explanation, related to the
example

The RFTagger is a POS-tagger which was created by Schmid and Laws [SL08]. It supports
multiple languages like German, Hungarian and Russian. It is a Hidden-Markov-Model
(HMM) tagger which computes the POS tag sequence which is the most likely one for a
given word sequence.

22

2.2. Natural Language Processing (NLP)

Figure 2.3: A simple POS-tagging example in German using the STTS tag set [WSJB17]

2.2.4 Sentiment Analysis

Sentiment analysis is a text categorization task which aims at detecting the sentiment
which is expressed in a given text. In the simplest case the goal is to have a distinction
between positive and negative sentiment, some sentiment analysis tools provide a neutral
sentiment as a third option. Common scenarios where sentiment analysis is used are
product review analysis or movie review analysis.

Wankhade et al. [WRK22] published a book called "A survey on sentiment analysis
methods, applications, and challenges" in 2022, where they give an interesting overview
of the field of sentiment analysis. Figure 2.4, which is taken from Wankhade et al.
[WRK22] gives an overview of the different approaches, they separate them into lexicon
based approaches, machine learning approaches, hybrid approaches and other approaches.
The following explanations are based on the before mentioned book by Wankhade et al.
[WRK22]

Lexicon based approaches are based on the idea of a collection of tokens where each token
has a certain score which indicates whether the token is neutral, positive or negative.
This collection of tokens is a lexicon. There are different approaches for assigning a
score to a token, one might for example assign the values [-1, 0, 1] for [negative, neutral,
positive] tokens respectively or use a value range, for example the interval [-1,1]. Once a
score has been assigned to each token of a text the different scores, according to their
class, are summed up separately. After that the overall sentiment is assigned based on
the highest score among the scores. The advantage of a lexicon based approach is that
there is no training data required, a lexicon needs to be created though. A disadvantage
is that it does not work very well across different domains as the vocabulary or even the

23

2. Background

sentiment of certain words might be different.

Machine learning approaches use different machine learning algorithms to assign a
certain sentiment to a text. Supervised learning methods require training on a training
set, common algorithms that are used in the domain of sentiment analysis are Naive
Bayes, Support Vector Machine and Decision Tree.

A hybrid approach is a combination of machine learning approaches and lexicon based
approaches, there have been some successful implementations where a hybrid approach
was able to perform better than the separated models, but according to Wankhade et al.
[WRK22] it is still a promising research field where a lot of additional research should be
conducted.

Aspect based approaches aim at detecting different aspects of a text, so that the senti-
ment regarding each aspect can be assigned separately. In the final step the different
sentiments across the aspects are aggregated. These approaches are popular when an-
alyzing reviews, for example product reviews or hotel reviews. For a simple example
consider different aspects of a smartphone A = [camera, battery life, display, storage]
and a review R ="the camera is amazing but the battery is draining fast". This reviews
contains two different aspects, the camera and the battery life. The camera receives very
positive feedback therefore the sentiment of the "camera" aspect is positive, the battery
life receives negative feedback, therefore the "battery life" aspect has a negative sentiment.

Transfer learning is a technique where a pre-trained model is used to train a new
model. This approach is popular as it turned out that features that have been trained
for one domain are often useful for other domains as well. One model that is often used
for transfer learning is BERT, which has been developed by Devlin et al. [DCLT18] at
Google.

2.2.5 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a language model
that was developed by Devlin et al. [DCLT18] The training of BERT consists of two
steps, pre-training and fine-tuning. Both steps are shown in Figure 2.5, which is taken
from Devlin et al. [DCLT18]

The architecture of the two steps is identical besides the output layer. It is a multi-layer
bidirectional Transformer encoder based on the original Transformer that was proposed
by Vaswani et al. [VSP+17] A good example for the difference between a unidirectional
and a bidirectional approach is shown in the BERT Github repository by Devlin [ber],
where the sentence "I made a bank deposit" is discussed, with the focus being on the
word "bank".

In the case of a unidirectional approach the model would either pay attention to the
context on the left side ("I made a") or the context on the right side ("deposit"). Using the

24

2.2. Natural Language Processing (NLP)

Figure 2.4: Different approaches for sentiment analysis, taken from Wankhade et al.
[WRK22]

bidirectional approach both sides are considered, the word "bank" is therefore represented
by the context "I made a ... deposit" [ber].

BERT was pre-trained on two unsupervised tasks, namely "Masked LM" and "Next
Sentence Prediction". [DCLT18]. During the training for the "Masked LM" task some
of the input tokens were randomly replaced with either a predefined token (80%), a
random token (10%) or the unchanged token (10%). The model is trained with the tar-
get of predicting the tokens which have been replaced just based on the context [DCLT18].

The "Next Sentence Prediction" task is based on the connection of two sentences. Devlin
et al. [DCLT18] model this connection with a simple data representation that contains
three fields. Two of the fields are the sentences, the third field is the label that states
whether the second sentence is the next sentence after the first sentence or not. A simple
example for this is shown in the listing below:

• Case 1:

– Sentence A: I was going for a walk with my dog.
– Sentence B: It saw a bird and started running after it.
– label: IsNext

• Case 2:

– Sentence A: I was going for a walk with my dog.
– Sentence B: Vienna is the capital of Austria

25

2. Background

– label: NotNext

While the pre-training of BERT is expensive [ber] the fine-tuning is relatively inexpensive.
The input can be either single text or pairs of text, as shown above. This property allows
one to model many different tasks using the same pre-trained model.

BERT was able to outperform state-of-the-art models on eleven tasks at the time
it was released, in October 2019 a blog post by Google was published which stated that
BERT was incorporated into Google Search. [blo]

Figure 2.5: Overall pre-training and fine-tuning procedures for BERT by Devlin et al.
[DCLT18]

2.3 Related Work
This section aims at giving a brief overview about a selection of related work.

2.3.1 Alliteration and hyperbole in marketing and politics

Alliteration and Hyperbole are two figures of speech that find use in marketing. Davis et
al. [DBB16] show that alliterations might have a positive effect on the chance of a product
being purchased. Fox et al. [FND19] measured the impact of an ad by tracking the eye
movement of participants. Their results demonstrate the positive impact of the use of
alliteration on consumer attention. These references are included to demonstrate that
alliteration is researched in marketing and that there might be an impact on consumer
behavior.

Stuckey [Stu17] cited Walter Dean Burnham, saying that critical elections are char-
acterized by abnormally high intensity. This turns a hyperbole into a natural tactic
according to Burnham’s opinion. A hyperbole intentionally overstates the case. Even
if the audience is not fully captured by it, it might be moved a little bit more by a
hyperbolic statement in comparison to a more balanced and rational statement. They

26

2.3. Related Work

describe hyperbolic arguments as excessive and overwhelming and claim that audiences
persuaded by a hyperbole are carried along and do not inch carefully towards a conclusion.

Swartz [Swa76] conducted research regarding hyperbole in politics. He analyzed two
Bena baraza cases, hyperbole was used in both. He concluded that the hyperbole did
not work in the favor of its users. The examples used are very hyperbolic, one of two
brothers stated that he doesn’t know the man who accuses him of owing money, while
the man actually was his brother. This was interpreted as the first man not knowing
his brother anymore, as he is not behaving like a brother should, in his opinion. In the
second case the damage done to someones property was highly over-exaggerated.

Considering this, Swartz [Swa76] made some conclusions about the use of hyperbole in
politics, which will be stated in this paragraph. He suggested that the rare appearance of
hyperbole is tied to it being best-suited for situations in which there are several aspects
of reality bearing on the same value, yet affecting differently that value’s implications in
the situation. What this effectively implies, is that hyperbole is used in situations where
its user feels the need to structure reality such that certain aspects overshadow others.
In addition, it is argued that speakers might almost always feel that they must structure
reality for their listeners, if they want to gain their support, and that exaggeration is not
the only way to alter a statement for that purpose.

The discussion continues with the statement that individuals might exaggerate most in
the areas of their greatest weaknesses, speaking of their greatest areas of weaknesses
according to their own perception. Furthermore it is suggested that a hyperbole is more
likely to occur if a speaker believes that the audience has certain ethical values, which
might lead to the speaker trying to appeal to these ethical values using over exaggeration.

2.3.2 Hyperbole detection using Natural Language Processing

Troiano et al. [TS18] worked on the computational exploration of exaggeration. They
built a corpus called HYPO, containing overstatements collected on the web, validated
via crowd-sourcing. The chosen approach is classification, the set of used algorithms
includes Logistic Regression, Naive Bayes, k-Nearest Neighbors, Decision Trees, Support
Vector Machine and Linear Discriminant Analysis. Their experimental results lead
to the conclusion, that automatic hyperbole detection could be successfully executed
based on semantic features. The semantic features that they extracted are imageability,
subjectivity, unexpectedness, polarity and emotional intensity.

Tian et al. [TkSP21] published a model called HypoGen for generating hyperboles
at the clause or sentence level. The program expects an input prompt A and amis at
generating a subject B and a predicate C. The example which is listed in their work is
the following: Consider "the party is lit" as input prompt A, they would want to generate
a sentence like "the party is so lit that even the wardrobe is dancing" where "the wardrobe"
would be the subject B and "is dancing" would be the predicate C.

27

2. Background

Zhang et al. [ZW21] propose an unsupervised approach for hyperbole generation, which
uses a fine-tuned version of BART [LLG+19] and a BERT-based ranker for selecting
the best candidate. They created an open source dataset containing hyperboles in the
English language called HYPO-L, this dataset was used in this thesis as well.

Vorakitphan et al. [Vor21] published a tool called PROTECT (PROpaganda Text
dEteCTion) which focuses on propaganda technique classification. They used 14 differ-
ent propaganda techniques like flag-waving, whataboutism and exaggeration. First they
are classifying the text on the token level, where each token is either propagandist or
not. After that the propagandist tokens are classified according to the 14 propaganda
categories.

Schneidermann et al. [SHP23] performed edge and minimal description length probing
experiments on pre-trained language models in the context of hyperbolic information
being encoded in the pre-trained language models. Their results showed, that hyperbolic
information is encoded in pre-trained language models to a limited extent.

2.3.3 Opinion Type Classification

Othman et al. [OHMI15] classified sentences based on whether they are opinionated
statements, comparative opinionated statements, superlative opinionated statements
or non-opinionated statements. The main method used for this task is Part-of-Speech
(POS) Tagging using the Stanford Part-Of-Speech Tagger. The tag set used is the Penn
Treebank P.O.S Tags tag set. They worked with text written in the English language.

Yu et al. [YKD08] explored the characteristics of political opinion expression and found
that recognizing the sentiment alone is not sufficient for political opinion classification.
They compared the average sentiment level of Congressional debates to the ones found in
neutral news articles and movie reviews, where movie reviews showed higher sentiment
levels and neutral news articles showed lower sentiment levels on average. Furthermore
they analyzed how sentiment is expressed in different kinds of texts and found out, that
the choice of topics plays a very important role in the case of political opinion expression,
which is reflected in nouns, while the sentiment expression in movie reviews is more
adjective-centered. They compared the results of manual sentiment annotation and found
out, that a significant number of political opinions are expressed in a neutral tone.

Afzaal et al. [AUFF19] proposed a model called "enhanced multiaspect-based opin-
ion classification" which extracts explicit and implicit aspects from tourist reviews and
classifies the multiaspect opinions into different polarity classes. The model consists of
three different methods, namely a probabilistic co-occurrence-based method, a hierarchy-
based implicit aspect extraction method and a multiaspect opinion classification method.
The probabilistic co-occurrence-based method captures the similarities between aspects
using the co-occurrence of sentiment words with aspects, after that the similar aspects

28

2.3. Related Work

are merged into a group. The hierarchy-based implicit aspect extraction method utilizes
grammatical relationships between opinion words and aspects to create an aspect-specific
lexicon, after that a hierarchy for extracting the implicit existence of aspects in reviews
is built. An example can be seen in Figure 2.6. The multiaspect opinion classification
approach is used to generate features from reviews. Once these three steps are completed
some multilabel classification algorithms are applied to classify the multiaspect opinions
into different polarity classes.

Figure 2.6: Example of an aspect-sentiment hierarchy as described by Afzaal et al.
[AUFF19]

Liu [L+11] published a book on web data mining which includes a chapter on opinion
mining. In this chapter they defined the three basic components of an opinion as follows:

• Opinion holder: The person who communicates an opinion on something

• Entity: The entity on which the opinion is expressed by the opinion holder

• Opinion: The view, sentiment or appraisal which is communicated by the opinion
holder on the object

This chapter gave an overview over the algorithms, approaches and models that were
used in the experiments that were conducted in the scope of this work. Furthermore it

29

2. Background

presented a selection of related work. The following chapters will focus on describing the
experiments and the results that were achieved.

30

CHAPTER 3
Design

3.1 Research Questions
The first section of this chapter focuses on describing the requirements that are derived
from the research questions. The requirements need to be fulfilled so that the research
question can be answered.

RQ1: How high is the precision of a rule-based approach for topic classification in political
statements using corpora extracted from Wikipedia?
To successfully answer this research question a method for computing the precision
needs to be defined. The statements which are retrieved using the implemented
method are manually evaluated as either being relevant to the topic or not. Based
on this binary classification the precision can be calculated.

RQ2: How does an approach using a German tag set and a tagger for the German language,
instead of an English tag set and a tagger for the English language, for opinion
type classification in German sentences, hold up against the approach developed
by Othman et al. regarding opinion type classification in English sentences? This
question will be evaluated using precision
This question is answered by comparing the achieved precision to the precision
that was achieved in the experiments by Othman et al. [OHMI15]. The results of
the experiments are manually evaluated, the precision is calculated based on the
results of the manual evaluation.

RQ3: The Cologne phonetics algorithm can be used to transform a word into a numerical
representation depicting the underlying phonetics. Which additional constraints
need to be added so that the numerical representation resulting from the Cologne
phonetics algorithm is feasible for alliteration detection with 95 percent precision?

31

3. Design

The third question is answered by computing the precision on a dataset containing
605 alliterations, which was downloaded from the website of Ulrich Mehner [meh].
The results can be automatically evaluated, as it is known that all the entries
are alliterations. The precision is calculated based on the amount of detected
alliterations.

RQ4: Troiano et al. developed an approach for classifying English sentences as either
hyperbolic or not. Is this approach applicable to the German language as well? This
question will be evaluated using accuracy, precision, recall and the F1-Score.
This question is evaluated using a dataset containing hyperboles, therefore it
can be evaluated automatically. The HYPO-L dataset by Zhang et al. [ZW21]
will be used as a basis, as it is an openly available. The hyperboles need to be
translated as they are currently only available in the English language. It contains
around 3200 sentences where around 1000 are hyperboles, 200 hyperboles and
200 literal sentences are manually translated, in addition all the sentences are
machine-translated using Google Translate. The results using the 400 manually
translated sentences are compared to the results using the same 400 sentences in
their machine-translated version and to the results which are achieved on the full
machine-translated dataset. The accuracy, precision, recall and F1-Score can be
computed as we know the class of each sentence.

3.2 Methodological Approach
This section describes the methodological approach that will be followed in this thesis.
The before mentioned research questions are answered by applying one of two different
approaches. RQ2 and RQ4 will be answered by implementing an approach that has been
developed for the English language so that it can be applied to the German language.
RQ1 and RQ3 will be answered by applying evolutionary prototyping, an algorithm
will be outlined, implemented, tested and improved until it can be used to answer the
research question.

The following listing contains the methodology that is followed throughout this work:

1. Literature Research:
A literature research will be conducted which includes the following keywords among
others: natural language processing, opinion mining, sentiment analysis, opinion
type classification, topic classification, hyperbole detection, hyperbole, alliteration,
alliteration detection. The master thesis by Stefan Zaruba [Zar21] will be the first
entry point.

2. Creating datasets and working with existing datasets:
Many existing datasets will be used during this work, if not available new datasets
will be created. The first dataset that will be created is a dataset containing

32

3.3. Experiment Design

political statements extracted from the Austrian national council protocols which are
available on the website [aus]. Besides that a partly translated version of the HYPO-
L datasets, which is a dataset containing English hyperboles, will be created. 400
sentences are manually translated and every sentence of the dataset (around 3200)
will be machine-translated as well. Among the existing datasets that will be used
are the DeWaC German corpus by Baroni et al. [BBFZ09, deWa, deWb, FE13], the
German SentiWords dataset by Gatti et al. [RQH10, GGT15] and the alliteration
dataset which is published on the website of Ulrich Mehner [meh].

3. Using Natural Language Processing methods and Machine Learning
models:
Various different natural language processing methods will be used to tackle the
problem of hyperbole detection, alliteration detection, opinion type classification
and topic classification in the context of political statements. In addition pre-trained
machine learning models will be used if available and new models will be trained if
required.

4. Implementation: The code for the experiments will be written in the Python 3
programming language [VRD09], Jupyter Notebooks [KRKP+16] will be used for
the experiments and the evaluation. Libraries and existing frameworks will be used
if available. The implementation will be containerized using Docker [Mer14], so
that it is easily possible to reproduce the results.

5. Evaluation: The evaluation of the experiments will be done automatically if
possible and manually if required. The automatic evaluation will be done using
existing Python libraries, common metrics like precision, recall, accuracy and F1-
score will be used if possible. The manual evaluation will be done using doccano
[NKK+18], which is an open source data labeling tool developed by Nakayama et
al. and freely available on Github.

6. Data Analysis and Data Visualization: The results of the experiments will
be analyzed so that conclusions can be drawn and potential improvements on the
implemented approaches can be derived. Insights gathered from the data analysis
will be visualized using libraries for drawing plots, for example Matplotlib [Hun07].

3.3 Experiment Design
This section is used to describe the design of the experiments that were conducted to
answer the research questions.

To answer the first research question it was necessary to find topics which might be
discussed in the Austrian national council. Three topics were chosen, namely climate
change, feminism and the European migrant crisis. The implementation of the topic
classification approach could then be used to search for statements regarding these three

33

3. Design

topics. The retrieved statements were then manually evaluated as being either relevant
or irrelevant to the topic. Based on these two classes it was possible to compute the
precision of the approach. The data analysis was conducted based on the topic-related
terms that were extracted from the Wikipedia article, so that it is possible to see whether
the retrieved terms are generally relevant to the topic or not.

The experiments for the second question were focused on rebuilding the approach
by Othman et al. [OHMI15], they used an approach based on part-of-speech tagging.
First it was necessary to research part-of-speech tagging for the German language, find
an appropriate tag set and a tagger that supports it. After that the tags from the
tag set were matched to the tags used by Othman et al. [OHMI15] and the political
statements were tagged. The statements are then put into four different categories based
on the part-of-speech tags defined earlier, three of them being opinion types (opinion,
comparative opinion, superlative opinion) and a fourth category for statements that are
not opinionated. A small subset of the statements that were classified as containing one
of the three opinion types were manually evaluated based on whether they contain the
opinion type or not. The binary results were used to calculate the precision. In addition
two different approaches were implemented, one being rule-based and one being based
on a dictionary. The dictionary contains positive, comparative and superlative forms of
around 13.000 adjectives in the German language, it was downloaded from Wiktionary
[Wikf]. The rules that were implemented are grammatical rules for comparative and
superlative forms. The results of the two additional approaches were evaluated in the
same way as the main approach, a subset was manually evaluated.

The third research question was answered by implementing an algorithm that is able to
detect alliterations in the alliteration dataset by Ulrich Mehner [meh]. Different settings
and approaches were tried until the algorithm was able to detect more than 95% of the
alliterations in the dataset. The precison was computed automatically in this case as it
was given that the dataset contains alliterations only. In addition to that an experiment
was conducted on the political statements. A subset of the retrieved alliterations was
then manually evaluated to check how well the current algorithm would perform on any
free text. These results were used to determine problematic cases that can show up in
free text and derive potential improvements to the algorithm.

The first step to answering the fourth research question was the computation of the
semantic features which are used by Troiano et al. [TSÖT18] in their approach for
hyperbole detection. As they used specific datasets and libraries for the English language
it was necessary to research how the same semantic features can be computed for the
German language. Once the semantic features could be computed they were used in
supervised machine learning experiments using the same algorithms as Troiano et al.
[TSÖT18] and the Random Forest algorithm in addition. It was a classification task with
two classes, literal and hyperbolic. Three different dataset were used in the experiments,
they are all based on the English HYPO-L dataset by Zhang et al. [ZW21], where one of

34

3.4. Datasets

them is a full machine-translated version of the dataset, one a manually translated subset
containing 400 sentences (200 for each of the two classes) and the same subset using the
machine-translated version so that the potential impact of the machine translation could
be seen as well. The machine-translated dataset was created using Google Translate.
The experiments were conducted using 10-fold cross validation. As the dataset already
contained the classes it was possible to evaluate the experiments automatically. Precision,
recall, accuracy and the F1-score were computed and compared to the results achieved by
Troiano et al. [TSÖT18] in their experiments. In addition an experiment on statements
from a single protocol of the Austrian national council was conducted. The statements
which were classified as being hyperbolic were manually evaluated, so that the effect on
free text could be evaluated as well using precision.

3.4 Datasets
This section describes the datasets that were created in the scope of this master thesis.

The most essential dataset for this thesis contains around 65.000 political statements
that were extracted from the protocols of the Austrian national council, which are
available in the HTML format on the website [aus]. Next to the statements the dataset
contains the speaker and the party of the speaker. In some cases a speaker has been
written in different ways, therefore a dataset containing every form of every speaker was
created, these forms were then all mapped to one unique form which was then used to
map all speakers to their unique form. The party was added to each unique speaker as well.

This dataset is essential for this thesis as it provides the foundation for working on
figure of speech detection, topic classification and opinion type classification in the
context of political speech, which is the overall topic of this thesis. Some analysis was
necessary to extract the data in a clean manner as the HTML follows a unique schema.

The columns of the political statement dataset are the following:

• speaker: The speaker of the political statement

• speech: The political statement

• file: The protocol name in the format NRSITZ_{number}_PARSED, for example
NRSITZ_00087_PARSED for the parsed version of the 87. sitting.

• party: The party that the speaker belongs to

• unique_speaker: The unique speaker, this column was added for the cases where
the same politician was mentioned in slightly different ways

The following listing presents one example of the political statements dataset:

35

3. Design

• speaker: Abgeordneter Michael Bernhard

• speech: Natürlich können wir sagen, zwischen den Achtziger- und den 2020er-
Jahren ist sehr viel passiert, aber wir dürfen keinen Moment darauf stolz sein, denn
das ist in Wahrheit viel zu wenig für die vielen Jahrzehnte, die inzwischen verflossen
sind.

• file: NRSITZ_00087_PARSED

• party: NEOS

• unique_speaker: Abgeordneter Michael Bernhard

As a result of the experiments of the first research question three subsets of the political
statement dataset were created that contain the political statements that were retrieved
based on the topic classification approach and a classification for each of the statements
as either being relevant or irrelevant regarding one of the three topics. The topics are
climate change, feminism and the European migrant crisis.

To prepare the political statements dataset for the experiments regarding the second
research question, the RFTagger by Schmid and Laws [SL08] was used to annotate all
the statements with part-of-speech tags. The political statement dataset was extended by
one additional column called "tagged", this column contains the political statement in its
POS-tagged form. In the case of the example that was listed above, the "tagged" column
would look similar to the item presented below, the only difference being that each tag is
preceded by a \t and no white space in between (for example Natürlich\tADV). In this
listing a color and white space was added and the \t was removed to enhance readability:

• tagged: Natürlich ADV können VFIN.Mod.1.Pl.Pres.Ind wir
PRO.Pers.Subst.1.Nom.Pl.* sagen VINF.Full.- , SYM.Pun.Comma zwischen
APPR.Zwischen den ART.Def.Dat.Pl.Masc Achtziger- TRUNC.Noun und
CONJ.Coord.- den ART.Def.Dat.Pl.Fem 2020er-Jahren N.Reg.Dat.Pl.Fem
ist VFIN.Sein.3.Sg.Pres.Ind sehr ADV viel ADV passiert VPP.Full.Psp ,
SYM.Pun.Comma aber CONJ.Coord.Aber wir PRO.Pers.Subst.1.Nom.Pl.*
dürfen VFIN.Mod.1.Pl.Pres.Ind keinen PRO.Indef.Attr.-.Acc.Sg.Masc
Moment N.Reg.Acc.Sg.Masc darauf PROADV.Dem stolz ADJD.Pos
sein VINF.Sein.- , SYM.Pun.Comma denn CONJ.Coord.Denn das
PRO.Dem.Subst.-.Nom.Sg.Neut ist VFIN.Sein.3.Sg.Pres.Ind in APPR.In
Wahrheit N.Reg.Dat.Sg.Fem viel ADV zu PART.Deg wenig PRO.Indef.Subst.-
.*.*.* für APPR.Acc die ART.Def.Acc.Pl.Neut vielen PRO.Indef.Attr.-
.Acc.Pl.Neut Jahrzehnte N.Reg.Acc.Pl.Neut , SYM.Pun.Comma die
PRO.Rel.Subst.-.Nom.Pl.Neut inzwischen ADV verflossen ADJD.Pos sind
VFIN.Sein.3.Pl.Pres.Ind . SYM.Pun.Sent

36

3.4. Datasets

An additional dataset was created which contains 13.000 German adjectives in their
positive, comparative and superlative forms if available. The data was extracted from
Wiktionary [Wikf]. This dataset was used for an additional approach that was imple-
mented in the scope of research question 2. It is a simple data-driven approach where the
same opinion types (opinionated, comparative opinionated, superlative opinionated) as in
the approach by Othman et al. [OHMI15] are computed based on the occurrence of an
adjective in one of the three forms available in the dataset. If there was no comparative
or superlative form available it was replaced by "-", two example entries of the dataset
can be seen in Table 3.1:

positiv komparativ superlativ
hoch höher am höchsten

portofrei - -

Table 3.1: Two examples from the German adjectives dataset

As a result of the experiments for the second research question, there exist subsets of the
statements that were annotated by the algorithm as containing one of the three opinion
types and a binary manual evaluation.

For the fourth research question a machine-translated German version of the HYPO-L
dataset by Zhang et al. [ZW21] was created using Google Translate. In addition 400
sentences (200 for each class), were manually translated, to increase the quality of the
translation. The label 0 stands for the class "literal" and the label 1 is used for the
class "hyperbolic". One problem is that the machine translation was lacking in quality
in some cases, as the first example will show. A second problem is that the original
dataset contains a lot of idioms which cannot be translated word by word, which also is
a problem when using machine translation. There is still a need for a large manually
created or translated German hyperbole dataset, the HYPO-L dataset by Zhang et al.
[ZW21] could still be very useful as a basis. The list below will show four examples from
the dataset:

• Example 1:

– label: 0
– english: We were pelted with rotten tomatoes
– manually translated: Wir wurden mit faulen Tomaten beworfen
– machine translated: Wir waren mit faulen Tomaten ausgestoßen

• Example 2:

– label: 0
– english: She bit the thread in two

37

3. Design

– manually translated: Sie hat den Faden durchgebissen
– machine translated: Sie biss den Faden in zwei Teile

• Example 3:

– label: 1
– english: He was boiling over with indignation
– manually translated: Er kochte über vor Empörung
– machine translated: Er kochte mit Empörung

• Example 4:

– label: 1
– english: Her steadfast belief never left her for one moment
– manually translated: Ihr festgefahrener Glaube verließ sie nicht mal für

einen Moment
– machine translated: Ihr unerschütterlicher Glaube hat sie nie für einen

Moment verlassen

38

CHAPTER 4
Experiments

4.1 Extracting technical terms from Wikipedia
The idea, which led to the series of experiments described in this section, is the extraction
of technical terms from a Wikipedia article about a certain topic. The technical terms
are then used to search for political statements concerning a certain topic. The political
statements are extracted from the protocols of the Austrian national council, which are
available to the public. They are then put into an inverted index [ZM06] so that it is
possible to search for statements containing a certain term.

The pseudo code below (algorithm 4.1) shows the algorithm that was implemented for
creating the inverted index. Each document has two properties, id and text. An empty
key/value store R is created, where each word of each document’s text is inserted as a
key. Dictionaries are the key/value stores implemented in Python.

The value which is mapped to each word is an empty list. If a word is part of a document’s
text, the id of the document is added to the list. This allows for a basic full text search,
as one gets the id’s of all the documents containing a certain word, if the word is used as
the input key to the dictionary.

In this approach, the terms are extracted from the Wikipedia article based on a large
frequency list extracted from the deWaC German corpus [FE13, deWa].

The frequency list from the source [deWb] was pre-processed and a few obvious outliers
were excluded, for example words that contained only one letter, like aaaaa, or words that
contained special characters, which lead to a frequency list containing 1.121.589 words
with their respective amounts of appearance in the deWaC German corpus [FE13, deWa].
Based on these amounts and the sum of all the amounts a percentage of appearance was
calculated.

39

4. Experiments

Algorithm 4.1: Creation of a simple inverted index R
Input: Set of documents D with size(D) > 0

1 i ← 0;
2 R ← {};
3 while i < size(D) do
4 t ← tokenize(D[i].text) List of words in the text of document D[i] ;
5 k ← 0;
6 while k < size(t) do
7 w ← t[k];
8 if w not in R then
9 R[w] ← [] Empty list;

10 end
11 R[w] = R[w] + (D[i].id) Append tuple with document id of D[i] ;
12 k ← k + 1;
13 end
14 k ← 0;
15 i ← i + 1;
16 end

The percentage of appearance is then used to specify whether a word is appearing
too frequently. The value specified for these experiments is the mean of all the calculated
percentages. So if the value of a specific word is below the mean, it is considered as a
technical term.

Based on this approach the technical terms are extracted from the Wikipedia arti-
cle about a specific topic. The extracted technical terms are then used to search for
relevant speeches.

4.1.1 Process Description

The following paragraphs are going to explain the whole process with the help of an
activity diagram [JR99]Figure 4.1.

In the first step, which is called "Provide a topic as input", any topic can be entered as
input to the program. The topic needs to be the exact name of an article on Wikipedia.
If the topic exists on Wikipedia, the whole text from the Wikipedia article is downloaded
using the Wikipedia API [wikd]. In case there is no article about the topic, having
exactly the name provided as input, an error is displayed.

Before the technical terms are extracted from the article, one is able to define ad-

40

4.1. Extracting technical terms from Wikipedia

ditional terms that should definitely be considered, even if they would not be considered
according to the frequency list. It is written in a way so that every other word starting
with a word from the custom terms is also considered.

One example for this is the word "Klima" which would definitely not be considered
per default as it is used too frequently. If this word is defined as a custom term, not only
the word "Klima" is preserved but words like "Klimawandel" and "Klimakrise" as well,
even if they would not be considered according to the frequency list. This can be of great
help in cases where a lot of technical terms that are relevant to a topic would be ignored
because they are used too frequently.

After that optional step the technical terms are extracted from the article. The words are
put into a set, so that one is left with all the unique words of the article, and afterwards
every word in the set is then used as input to the frequency list. If the frequency of the
usage of a word is below the overall mean frequency value, so at least slightly below
average, the word is considered as a technical term.

All of the words that were selected above are then used as input on the previously
defined inverted index, so that all speeches containing a certain word are then retrieved.
In the best case one would only find speeches that are relevant to the topic that was
defined in the first step, but this is not realistic. The evaluation section will describe the
results of the experiments in detail.

41

4. Experiments

Provide a topic as
input

Exists on
Wikipedia?

Display error

No

Download text from
Wikipedia page

Yes
Consider custom

terms?

Define additional
terms that should be

considered

Extract technical
terms based on
frequency list

No

Yes

Extract technical
terms based on
frequency list +
custom terms

Use terms as input to
search texts in
inverted index

Texts found?
No

Return texts that
contain at least one

of the terms

Yes

Figure 4.1: Activity diagram visualizing the process that was implemented to extract the
technical terms from Wikipedia

4.1.2 Dataset Description

The dataset which was used to create the frequency list is the deWaC German corpus
introduced by Baroni et al. in 2009 [BBFZ09, FE13, deWa]. In this case deWaC stands

42

4.1. Extracting technical terms from Wikipedia

for German web corpus. It is made up of texts which were extracted from the internet.
The corpus contains more than 1.34 billion words and was created following the standards
which were defined by Kilgarriff et al. in this work [KRPA10].

Some additional datasets were derived from this corpus, one being a frequency list.
This frequency list [deWb] was the basis for the frequency list that was used to extract
the technical terms. Only a few pre-processing steps were performed, so that a few
obvious outliers were excluded from the frequency list. These outliers contain words that
consist of one letter only, like "aaaaa", words containing special characters, like "ab&"
and words containing more than 42 characters.

After all the pre-processing steps the frequency list contains 1.121.589 words with
their respective amounts of appearance in the deWaC German corpus.

The paper by Baroni et al. [BBFZ09] introduces two additional corpora, namely ukWaC
and itWaC, which stand for English web corpus and Italian web corpus respectively. The
first two letters of all three corpora describe the domain. The text that were used for the
deWaC were extracted from websites under the .de domain, texts for the ukWaC were
extracted from websites under the .uk domain and texts for the itWaC were extracted
from websites under the .it domain.

43

4. Experiments

4.2 Opinion Type Classification
This part of the thesis focuses on classifying the type of opinion communicated in a
certain text. In this experiment the approach by Othman et al. [OHMI15] is followed. In
their example, they focused on the English language and used the Stanford POS-Tagger
[TM00, TKMS03, KT04]. A POS-Tagger, or Part-Of-Speech-Tagger, is a tool that is
used to add certain tags to a part-of-speech in a text based on the definition and the
context. A part-of-speech describes certain classes of words where each word in that class
has similar grammatical properties. Common parts-of-speech are adjectives, adverbs and
nouns.

The approach by Othman et al. uses these tags to classify texts as either non-opinionated,
opinionated, comparative opinionated or superlative opinionated. Table 4.1 shows the
POS-Tags of the Stanford POS-Tagger which are used in this approach to mark a text
as one of the four classes. Table 4.2 contains a description of each tag. The Stanford
POS-Tagger uses the Penn Treebank Tag Set [MSM93, Pen] for the English language
[TKMS03, KT04]

Sentimental Category POS-Tags (Stanford)
Non-Opinionated -

Opinionated JJ
Comparative Opinionated JJR, RBR
Superlative Opinionated JJS, RBS

Table 4.1: The four different sentimental categories defined by Othman et al. [OHMI15]

The goal of this experiment is to use the approach by Othman et al. but for the
German language instead of the English language. According to Schmid and Laws [SL08],
a more fine-grained tag set is often considered more appropriate for a language with a
rich morphology, like German.

POS-Tag (Stanford) Description
JJ Adjective

JJR Adjective Comparative
RBR Adverb Comparative
JJS Adjective Superlative
RBS Adverb Superlative

Table 4.2: Used POS-Tags by Othman et al. [OHMI15] with description

44

4.2. Opinion Type Classification

For this experiment the RFTagger by Schmid and Laws [SL08] is used. It uses a tag set,
which is similar to the STTS [STT95, WSJB17] or Tiger tag set [BDH+02].

Table 4.3 shows the tags which are used in this experiment and Table 4.4 shows the
description of the tags.

Sentimental Category POS-Tags
Non-Opinionated -

Opinionated ADJA, ADJD
Comparative Opinionated ADJA.Comp, ADJD.Comp
Superlative Opinionated ADJA.Sup, ADJD.Sup

Table 4.3: Used POS-Tags in this experiment

There are different sub-forms of the tags mentioned in Table 4.4. In this experiment,
they are all treated as the form depicted in the table.

The experiment will show, however, that this method does not produce the results
we expect. Instead, a few adjustments have to be applied. This leads to two additional
approaches for finding comparative and superlative forms.

POS-Tag Description
ADJA Attributives Adjektiv
ADJD Adverbiales or prädikatives Adjektiv

ADJA.Comp Comparative form of ADJA
ADJD.Comp Comparative form of ADJD
ADJA.Sup Superlative form of ADJA
ADJD.Sup Superlative form of ADJD

Table 4.4: Description of the used POS-Tags in this experiment

The first additional approach is based on grammatical rules and regular expressions. In
this method, the idea is to formulate the grammatical rules as regular expressions so that
the regular expressions can be used to search for these patterns in the text. Table 4.5
shows the different rules which are implemented and used in the experiments.

The second additional approach is a data-driven approach. For this method, a dataset was
created by processing data from Wiktionary [Wikf]. It contains around 13.000 adjectives,

45

4. Experiments

along with their comparative and superlative forms, if available. The sets of comparative
and superlative forms are then used as corpora; if one of the words appears in a text, the
text is marked as a text containing a comparative or superlative opinion, respectively.

The major problem with the original POS-Tagging approach is a set of words which are
superlative forms, but do not - usually - express an opinion. One example that showed
up particularly often in this case is the word ’nächsten’. It is true, that this word is
a superlative form, the three forms are ’nah’, ’näher’, ’am nächsten’. In our case it is
misleading, as we are searching for opinionated statements, but the word ’nächsten’ is
used to refer to the next sitting, one example is ’In der nächsten Sitzung’.

To solve this problem, "trivial" superlatives to be ignored were gathered in a set. The
dataset used for these experiments is a dataset that had been extracted from the Austrian
parliament protocols (national council). It contains 63909 statements.

Rule Example Form
So ... wie so groß wie comparative

Nicht so ... wie nicht so groß wie comparative
Immer ...er immer größer comparative

...er als größer als comparative
Je ... desto Je größer desto comparative
Je ... umso Je größer umso comparative
am ...sten am stärksten superlative
am ...ßten am größten superlative

Table 4.5: Rules which are used in the rule-based approach

4.3 Alliteration Detection
This part of the thesis focuses on the detection of alliterations in texts. An alliteration is
a figure of speech that describes the situation in which the first letter of multiple words
that follow each other have the same sound. The words do not have to follow each other
directly, steps in between them are allowed. Two examples for an alliteration in the
German language are "Der frühe Vogel fängt den Wurm" and "Flora und Fauna".

The first example has three words with the same initial sound right after each other,
being "frühe", "Vogel" and "fängt". This example shows that it is not enough to just
focus on the first letter of a word, as different letters still can have the same sound in the
German language.

The second example shows another valid example, where the first letters of the words
"Flora" and "Fauna" have the same sound and the first letter of the word in between
("und") does not have the same sound. So if one wants to write an algorithm for detecting

46

4.3. Alliteration Detection

alliterations, one might want to include a way to detect cases where different letters
produce the same sound (as in the first example) and where there are steps of a certain
size between two or more words, where the first letter has the same sound (as in the
second example).

4.3.1 Phonetic Algorithms

To handle the first case, which is described above, an algorithm for encoding a word
into some kind of representation that gives information about its phonetics might be
helpful. One phonetic algorithm for the English language is Soundex [Rob18] which was
developed by Russell and Odell and patented in 1918. It is a phonetic algorithm for
indexing names by sound and it is used in many popular database systems like Oracle
[Soua] and PostgreSQL [Soub].

The basic idea is that a word is turned into a representation consisting of one letter at the
beginning, followed by three numbers. Letters are turned into numbers based on certain
rules, which are not explained in detail in this section. To show one concrete example, the
name "Britney" would be transformed into "BRTN" (as the letters a, e, i, o, u, y, h, and
w are removed if they are not the first letter) and then the remaining letters, after the
first letter, will be transformed into a numeric representation, which would lead to "B635"
in this case. This is a simplification as there are additional rules to follow in the algorithm.

For the German language there are different kinds of phonetic algorithms, Wilz [Wil05]
lists multiple different phonetic algorithms, some for the English language and some for
the German language. Two phonetic algorithms for the German language are cologne
phonetics (Kölner Phonetik) which was developed by Postel [Pos69] and Phonet, which
has two different approaches which are both described in this article by Michael [Mic88].

In the algorithm that was developed to execute the experiments for this thesis, the
cologne phonetics algorithm by Postel was used [Pos69]. For Python 3 there is an im-
plementation of the algorithm by Nouvertné [nou], this one was used in these experiments.

The cologne phonetics algorithm transforms a word into a numeric representation. A
central part of the algorithm is a transformation table, which is shown in Table 4.6. The
following three steps are performed in the algorithm:

1. The letters are transformed into numbers based on the rules which are specified in
the transformation table

2. For all the numbers that appear multiple times next to each other, all the appear-
ances, besides the first one, are removed

3. All zeros, besides one being at the start, are removed

47

4. Experiments

To show a more concrete example, one can look at the transformation of the name Müller-
Lüdenscheidt. One has to consider that this name counts as one word in this algorithm,
as both names are connected by hyphen. This example is taken from Wikipedia [wike]:

1. Based on the transformation table, the letters are turned into the following repre-
sentation: 60550750206880022

2. Now all the numbers that are shown multiple times next to each other are reduced
to the number just showing once: 6050750206802

3. In the last step all zeros that are not the first number in the representation are
removed, in this case all zeros are removed: 65752682

4.3.2 Algorithm which is used in the experiments

This subsection will describe the algorithm that is used in the experiments. In general
there are three parameters that the algorithm can be configured with.

The first parameter gives information on whether the cologne phonetics algorithm should
be used to find the alliteration or not. If the cologne phonetics algorithm is not used, the
alliterations are just searched based on their initial letter.

The second parameters name is "size" and specifies the size of the sublists of a text
that are considered. When setting the size to three, having the sentence "Das hier ist ein
kurzer Beispielsatz" the sublists would look like the following:

(Das hier ist), (hier ist ein), (ist ein kurzer), (ein kurzer Beispielsatz)

The procedure for generating the sublists is defined in a way where each sublist has to
have exactly the same size. The sublists are used to find an alliteration of a certain size.
If all the words in a sublist would have the same letter, or the same number if encoded
using cologne phonetics, it would be considered as an alliteration. This is restrictive, as
it would not find alliterations like "Flora und Fauna", which is a valid example. To make
the algorithm less restrictive a third parameter is added.

The third parameters name is "steps", it is a list that could theoretically contain integers
from 1 to the value of size - 1. In this example the maximum would be two, so the list
cannot have more than two elements. It defines the amount of steps that is allowed
between the first word of an alliteration and the second word of an alliteration. An
example can be shown with the following sentence: "Die Flora und Fauna beschreiben
zusammen die Natur". If the size is set to three the sublists would look like this:

(Die Flora und), (Flora und Fauna), (und Fauna beschreiben), (Fauna beschreiben
zusammen) ...

48

4.3. Alliteration Detection

If there wouldn’t be any steps specified, the algorithm would not find an alliteration, as
it is only looking for sublists where each word starts with the same letter, or in the case
of cologne phonetics with the same number. But if the steps are set to a list containing
two, like this [2], a step of two is allowed between the words as well. In that case the
sublist "(Flora und Fauna)" would contain an alliteration.

If one would set the size of the sublists to four, the list which is provided as input
to steps could contain one, two, three or any combination of the three values. If the list
is empty the stricter approach is taken, where each word needs to have the first letter or
number.

The pseudocode in algorithm 4.2 shows the procedure which is used to create the
sublists of a text. It is a simple approach which expects a list of words as its input. The
list of words is then splitted into multiple sublists containing exactly the amount of words
that was specified using the the size parameter.

Algorithm 4.2: Returns a list of sublists, each sublist has size s
Input: List of words w with size(w) > 0
Input: Integer s where s ≤ size(w)

1 Function getSublists(w, s):
2 i ← 0;
3 res ← [] Empty list ;
4 while i < (size(w) − s + 1) do
5 res ← w[i : i + s] Words from index i until index i + s are put in a sublist

and added to the result ;
6 i ← i + 1;
7 end
8 return res List of sublists of size s ;

algorithm 4.3 shows the short preprocessing routine that is applied to each sentence or
text. The text is transformed into its lowercase version, afterwards it is tokenized so that
all the words are a single entry in a list and at the end all the numbers are replaced with
strings. That is interesting for sentences that contain constructs like "Er hatte vorher 40
volle Fässer" which would be converted to "er hatte vorher vierzig volle fässer" (it would
be separated into a list, here it is just displayed as a single string for visual purposes),
which would be detected as an alliteration using the rule which is defined for code 3 in
the cologne phonetics algorithm as seen in Table 4.6.

To convert numbers into strings the python package num2words [num] is used, which
is maintained by Virgil Dupras. Its predecessor pynum2word was developed in 2003 by
Taro Ogawa, this new package is a continuation of pynum2word. It supports a lot of

49

4. Experiments

Algorithm 4.3: Returns preprocessed words from sentence
Input: String sent with size(sent) > 0

1 Function getPreprocessedWords(sent):
2 lowercase ← lower(sent);
3 words ← tokenize(lowercase);
4 nonnumeric ← replace_numbers_with_strings(words);
5 return nonnumeric;

different languages, for example, English, German, Spanish and Arabic.

algorithm 4.4 shows the whole alliteration detection algorithm. It takes four input
parameters:

• sent: A sentence or text (String)

• s: The minimum size of the detected alliterations (Integer)

• st: A list of integers describing the steps that are allowed between words in the
alliteration

• useCP: A boolean that is used for controlling whether cologne phonetics should be
used or not

In the first step the input text is preprocessed using the logic that has been defined earlier
(algorithm 4.3), all the words are then stored in the list with the name "words". If the
"useCP" boolean has been set to true, the cologne phonetics algorithm is applied to each
word in the list and the first number is taken and put into a list, which is called "letters"
in this example. If the "useCP" boolean is set to false a similar approach is taken, but
the cologne phonetics part is left out and just the first letter of each word is stored in
the list "letters".

The resulting list ("letters") and the minimum size of the detected alliteration (Integer
"s") are then used as an input to the getSublists(words, size) function (algorithm 4.2), the
results are stored in a list called "sublists". In the next step the results from the previous
step are used as input to the getFilteredSublists(sublists, useCP) function (algorithm 4.5).
This step is just used if cologne phonetics was used before. It removes cases where each
number is equal to zero, or in other words, each of the words of a part of a sentence
started with the letters a, e, i, j, o, u or y, as these letters are handled by the rule which
is defined for code 0 (Table 4.6).

To show one example illustrating this process, consider the sentence at the beginning
as the following: "Ein Ai ist eine Art von Faultier". After preprocessing the sentence

50

4.3. Alliteration Detection

Algorithm 4.4: Returns true if a sentence contains an alliteration, false other-
wise

Input: String sent with size(sent) > 0
Input: Integer s
Input: List of Integers st
Input: Boolean useCP

1 Function containsAlliteration(sent, s, st, useCP):
2 result ← []
3 words ← getPreprocessedWords(sent)
4 if useCP == True then
5 letters = firstColognePhoneticsNumberOfEach(words)
6 else
7 letters = firstLetterOfEach(words)
8 if size(letters) < 2 then
9 return False

10 end
11 sublists = getSublists(words, s)
12 sublists = getFilteredSublists(sublists, useCP)
13 foreach sublist ∈ sublists do
14 if the first character of each string in sublist is equal then
15 result.add(True)
16 end
17 end
18 foreach step ∈ st do
19 if hasAlliterationAtStep(sublists, step) then
20 result.add(True)
21 end
22 end
23 return True in result

51

4. Experiments

Algorithm 4.5: Returns filtered list of sublists
Input: List of lists sublists with size(sublists) > 0
Input: Boolean useCP

1 Function getFilteredSublists(sublists, useCP):
2 if useCP == True then
3 cologne_sublists ← [];
4 foreach sublist ∈ sublists do
5 if all cologne phonetics encoded words ∈ sublist start with 0 then
6 continue;
7 else
8 cologne_sublists.add(sublist)
9 end

10 end
11 return cologne_sublists
12 else
13 return sublists
14 end

with cologne phonetics and taking the first number of each word the "letters" list would
look like this: [0,0,0,0,0,3,3]. The getSublists(words, size) method would be called with
the "letters" list as input and a size, for this example the size is defined as three. The
resulting list of sublists is the following: [(0,0,0),(0,0,0),(0,0,0),(0,0,3),(0,3,3)]. If the
getFilteredSublists(sublists, useCP) function is now applied to this list, with the "useCP"
parameter being set correctly to true, the first three sublists would be removed and the
list would look like the following: [(0,0,3),(0,3,3)]. This step is included as the letters a,
e, i, j, o, u or y could all be the reason for the value being 0, therefore one cannot decide
whether it is an alliteration or not based only on the number 0.

In the next step the first for-each loop is used (line 13) to handle each sublist in
the resulting list from the previous step. If all the elements in the sublist are equal, true
is added to the list of results which is defined in line 2 above. This is important for the
final step (line 23) which only checks whether true is included in the list of results and
returns true or false based on the result of this check.

The second for-each loop which starts in line 18 goes over the steps that are defined in the
input list "st". In the default case the list is empty. Generally it is describing whether there
are steps allowed between the same sounds in an alliteration or not. If yes, the size of the
steps can be defined, so if the list is equal to [1,2] steps of the size one and two are allowed.

For each of the steps the hasAlliterationAtStep(sublists,step) function is called (al-
gorithm 4.6). This algorithm checks whether there is the same character after the step,
so it is possible to skip characters. The sublists still have the specified size, but the

52

4.3. Alliteration Detection

Letter Context Code
A, E, I, J, O, U, Y 0

H -
B 1
P if not in front of H 1

D, T if not in front of C, S or Z 2
F, V, W 3

P if in front of H 3
G, K, Q

C if in the initial sound before A, H, K, L, O, Q, R, U or X 4
C if in front of A, H, K, O, Q, U or X, if not in front of S or Z
X if not in front of C, K or Q 48
L 5

M, N 6
R 7

S, Z
if after S or Z

C if initial sound and not in front of A, H, K, L, O, Q, R, U, X
if not in front of A, H, K, O, Q, U or X 8

D, T if in front of C, S or Z
X if after C, K or Q

Table 4.6: The transformation table of the cologne phonetics algorithm by Postel [Pos69]

alliteration could be shorter, with size - max(st) being the minimum size. True is added
to the list of results which is defined in line 2, if the criterion is fulfilled.

At the end (line 23) a check is performed on whether there is at least one occurrence of
true in the list of results. If there is at least one occurrence, the algorithm returns true,
which would mean that there is an alliteration in the text. In any other case false would
be returned.

4.3.3 Experiment setup

In this subsection the experiments that were conducted are described in more detail.
In total two different datasets were used. The first dataset consists of 605 alliterations
which were extracted from the website of Ulrich Mehner [meh]. If the website is visited
it automatically redirects to another website after a few seconds, but it is still possi-
ble to look at the alliterations for a short period of time. At the time of this writing
there might be even more alliterations than 605, as the dataset was created in August 2022.

This dataset is helpful for evaluating whether the algorithm is detecting correct al-
literations, but it does not help with evaluating the performance of the algorithm on any

53

4. Experiments

Algorithm 4.6: Returns true if one sublist has an alliteration with step st, false
otherwise

Input: List of sublists ls with size(ls) > 0 all sublists have same size
Input: Integer st where st ≤ size(ls[0]) − 2

1 Function hasAlliterationAtStep(ls, st):
2 ind_list ← 0;
3 res ← [] Empty list;
4 while ind_list < (size(ls) do
5 ind_sublist ← 0;
6 sublist ← ls[ind_list];
7 size_sublist ← size(sublist);
8 while ind_sublist < size_sublist do
9 if ind_sublist + st ≥ size_sublist then

10 ind_sublist ← ind_sublist + 1;
11 else
12 if sublist[ind_sublist] == sublist[ind_sublist + st] then
13 res.add(True);
14 end
15 ind_sublist ← ind_sublist + 1;
16 end
17 ind_list ← ind_list + 1;
18 end
19 return True in res ;
20 True if there was an alliteration considering step st

text input. For this case a dataset which contains more than 65000 statements from the
Austrian national council was used, as in other experiments in this thesis. The dataset
was created based on html protocols which are available on the website of the national
council [aus].

To get the best possible results, the results of different setups of algorithm 4.4 were
combined, so that multiple cases can be handled.

The setup for the best result on the alliteration dataset combined the results of the four
different setups shown in Table 4.7. As some of the alliterations in the dataset are not
continuous it is important to consider different step sizes as well as different sizes.

For the dataset which is consisting of political statements it was important to de-
fine stricter rules, as the rules for the alliteration dataset were way to permissive, which
was shown in the amount of statements that were marked as containing an alliteration,

54

4.4. Hyperbole Detection

which was way above 90%. The rules can be found in Table 4.8, in this case no steps in
between are allowed and the minimum size is set to four, which means that an alliteration
needs to consist of at least four consecutive words with the same first letter, or the same
first number in the case of cologne phonetics, to be counted as a valid alliteration.

Setup Uses Cologne Phonetics Size Steps
Setup 1 No 2 [1]
Setup 2 No 3 [1,2]
Setup 3 Yes 2 [1]
Setup 4 Yes 3 [1,2]

Table 4.7: Different setups of the algorithm which were combined in the best attempt
on the alliteration dataset

Setup Uses Cologne Phonetics Size Steps
Setup 1 No 4 -
Setup 2 Yes 4 -

Table 4.8: Different setups of the algorithm which were combined to search for alliterations
in the dataset of political statements

4.4 Hyperbole Detection
This part of the thesis focuses on the detection of hyperboles in texts. More precisely it
aims at reproducing part of the results that were achieved by Troiano et al. [TSÖT18]
when implementing an approach for hyperbole detection for the English language. In
these experiments the same approach is implemented for the German language.

Troiano et al. [TSÖT18] worked on the computational exploration of exaggeration.
They built a corpus called HYPO, containing overstatements collected on the web, vali-
dated via crowd-sourcing. The chosen approach is classification, the set of used algorithms
includes Logistic Regression, Naive Bayes, k-Nearest Neighbors, Decision Trees, Support
Vector Machine and Linear Discriminant Analysis. Their experimental results lead to
the conclusion, that automatic hyperbole detection could be successfully executed based
on semantic features.

4.4.1 Dataset

The dataset that was created by Troiano et al. [TSÖT18] is called HYPO and contains
three different types of sentences, being hyperboles, paraphrases and minimal units.

The previously collected hyperboles were evaluated by five annotators, if three out
of the five annotators decided that the sentence contains an exaggeration, the sentence
was kept as a hyperbole in the final dataset. In total 854 sentences were judged, 709 of
them were hyperboles in the final dataset. The annotators also collected information

55

4. Experiments

about the words that are hyperbolic in their opinion.

A paraphrase in this context is a sentence that conveys the same message as a hy-
perbolic sentence but without the exaggeration. It is practically very similar to a
hyperbolic sentence but with a few slight changes in the syntax and semantic so that it
does not contain an exaggeration anymore. The final dataset contained 709 paraphrases,
one for each hyperbole.

A minimal unit is a sentence that is not hyperbolic but contains hyperbolic words,
which were collected during the annotating process. For each hyperbole the tokens which
were selected by the majority of the annotators were chosen. These tokens were then
used by Troiano et al. to extract sentences containing these tokens from corpora like the
WaCKy corpus, which is a dump of the English Wikipedia. They selected the sentences
from the WaCKy corpus [BBFZ09] based on the editorial criteria of Wikipedia which
states that entries need to be neutral and verifiable, which leads to the conclusion that
these sentences should not be hyperbolic. If they were not successful using the WaCKy
corpus a Google search was performed. They collected 698 sentences of this category.

In general the HYPO dataset is an English dataset, so it would not fit for the pur-
pose of the experiments described in this section, as they are focusing on the German
language. The first idea was to translate the HYPO dataset to German, but the dataset
is not publicly available. Zhang et al. [ZW21] worked on similar datasets, namely
HYPO-L and HYPO-XL, while developing MOVER. HYPO-L is a manually annotated
dataset containing English sentences which are either hyperbolic or literal. The dataset
is not as complex as HYPO, as it does not contain paraphrases and minimal units. The
sentences in HYPO-L were annotated by students with proficiency in English. Two
students annotated each sentence, only if both students chose the same class, either
hyperbolic or literal, the sentence was classified as the chosen class and kept in the dataset.

In this experiment a German version of the HYPO-L dataset is used. 400 of the
sentences, 200 of each class, were manually translated. In addition all the sentences were
automatically translated using the Google Translate function in a Google Sheet document.
In the end the experiments were conducted with three different versions of the dataset:
The whole machine translated dataset, the 400 manually translated sentences and the
400 sentences that were manually translated before but with their machine translated
version.

To validate the performance on a dataset that is not related to HYPO-L at all, a
dataset containing sentences from the 58. sitting of the national council of Austria (legis-
lature XXVII) was used. The model was trained on the full machine translated version
of HYPO-L. The sentences that were classified as hyperbole were manually evaluated, so
that the precision can be calculated.

56

4.4. Hyperbole Detection

4.4.2 Semantic Features

The set of semantic features that were computed by Troiano et al. consists of imageability,
unexpectedness, polarity, subjectivity and emotional intensity.

According to the definition in the paper of Troiano et al. [TSÖT18] imageability refers to
the extent to which a word has the capacity to conjure a mental picture. Their assumption
is that speakers who hyperbolize might use words with a high value in imageability.
To compute the imageability they used a resource by Tsvetkov et al. [TBG+14] which
contains imageability ratings for 150.114 terms. For each sentence the imageability values
of all the words were averaged.

In this experiment the dataset which was developed by Köper et al. [KIW16] was
used to compute the imageability for German sentences. This dataset contains 350.000
German lemmatised words which are rated on four psycholinguistic attributes, one of
them being imageability. All ratings were calculated using a supervised learning algorithm
. During the feature engineering procedure the imageability values of each word in a
sentence were averaged.

Unexpectedness is used under the assumption that hyperboles are less predictable
expressions than literals. The idea is that words which are unexpected in a certain
context might give a hint towards them being used in a hyperbolic way. Troiano et al.
used pre-trained vectors by Mikolov et al. [MCCD13](from the Skip-gram model) and
GloVe vectors by Pennington et al [PSM14].

The idea is that the words in a hyperbolic sentence have less similar meanings, which
would mean that their vectorial representations are more distant from each other. The
words are mapped to the vector representation of the two pre-trained vector sets men-
tioned above and then the cosine distance between all possible word pairs in a sentence
are computed. The resulting features are then found in two ways, one being the average
similarity among all of the word pairs and the second one being the lowest value of the
pair similarities. This results in four values in total as they are computed for both vector
sets.

In this experiment the GloVe embeddings [gita] and the Word2Vec embeddings [gitb]
published on deepset.ai [emb] were used to compute the four unexpectedness values for
the German language.

Polarity refers to the sentiment of a statement. Troiano et al. [TSÖT18] computed
it using TextBlob [LKH+14] by Loria et al. and SentiWords [GGT15] by Gatti et al.
TextBlob is a library that can be used for multiple NLP tasks, like the computation
of sentiment. SentiWords is a dataset which contains the polarity values of 155.000
POS-tagged lemmas. The SentiWords dataset is used to compute the polarity of each

57

4. Experiments

word, afterwards they are averaged. In total there are two polarity scores: the TextBlob
score and the average of the polarity values which were gathered from the SentiWords.

As TextBlob and SentiWords are resources for the English language they needed to
be substituted. There is a library called textblob-de [kil] for the German language which
is developed by Markus Killer and there is a German version of the SentiWords dataset
[RQH10] which was published by Remus et al.

These two resource where used in the same way as the English resources were used
by Troiano et al.

Subjectivity is a value that is used to describe whether a statement expresses an opinion
or objective information. Troiano et al. used TextBlob to calculate the subjectivity.
As textblob-de does not support subjectivity yet, an alternative approach using the
mdebertav3-subjectivity-german model [hug] developed by a team of the University of
Groningen was chosen to calculate subjectivity. It was published by Folkert Leistra and
Wietse de Vries on huggingface.co and it is a fine-tuned mDeBERTa V3 model [HGC21]
which was developed for the second task of the CLEF 2023 CheckThat! Lab [cle] which
was focused on subjectivity in news articles.

Emotional intensity gives information about the strength of the sentiment. Troiano
et al. compute the sentiment using VADER, which was developed by Hutto and Gilbert
[HG14]. VADER returns four values regarding the sentiment, being pos, neu, neg and
compound, where pos stands for positive, neu for neutral and neg for negative. The
compound score gives information about the overall sentiment, and the other three values
show the level of the respective sentiment in the sentence. Unfortunately it was not clear
which of the four values was used by Troiano et al., an assumption is made that all four
of them are used.

As VADER is only applicable to sentences written in the English language, an al-
ternative approach needs to be chosen. There is a library called GerVADER, which
was developed by Tymann et al. [TLPG19] that aims at implementing VADER for the
German language. GerVADER returns the same values as VADER, all four of them were
used as a features when training the model.

4.4.3 Experiment Setup

Troiano et al. [TSÖT18] defined the task of hyperbole detection as a supervised learning
problem, more specifically as a classification task which is based on sentences. It is a
binary classification task with the classes hyperbolic and literal.

Various algorithms were used by Troiano et al. to conduct experiments using the
semantic features described above, namely Logistic Regression (LR), Naive Bayes (NB),
Linear Discriminate Analysis (LDA), k-Nearest Neighbors (KNN), Decision Trees (DT)

58

4.4. Hyperbole Detection

and Support Vector Machine (SVM). In the experiments for this thesis Random Forest
(RF) was used in addition. The implementations of all the mentioned machine learn-
ing algorithms in the scikit-learn package , which was developed by Pedregosa et al.
[PVG+11], were used to train, test and evaluate the models.

A 10-fold cross validation was performed on the experiments which were conducted
with the translated HYPO-L dataset, the results were evaluated using accuracy, precision,
recall and the F1-score.

The experiment with the dataset containing the political statements was manually
evaluated and the precision was computed based on the results of the manual evaluation.
For this experiment random forest was used as a classifier.

59

CHAPTER 5
Evaluation

5.1 Extracting technical terms from Wikipedia
The following section presents the results that were achieved by using the frequency-based
approach for finding technical terms in a Wikipedia article. Three different topics were
chosen, namely the European migrant crisis, climate change and feminism. The target
was finding as many relevant speeches as possible, by searching the collection using the
technical terms extracted from the Wikipedia article.

The results are visualized using bar charts. The bar charts are used to visualize the
amount of relevant and irrelevant speeches that were returned and to show the amount of
texts containing a certain technical term. The latter are ordered by amount and the ten
terms with the highest amount of texts are shown. The plots visualize the data for three
different sets of texts, namely for all texts, for all relevant texts and for all irrelevant
texts.

5.1.1 Topic: European migrant crisis

The following subsection gives an evaluation of the results which were achieved using the
frequency-based approach when trying to find technical terms which are then used to
find speeches that are relevant to the European migrant crisis. The Wikipedia article
used can be found here [wikc].

The first plot Figure 5.1 shows the amount of relevant and irrelevant speeches retrieved
from the corpus. The speeches were manually evaluated on whether they are relevant to
the topic or not.

In this case it is notable, that a lot of speeches were found, in total more than 3000
speeches. Only around one sixth of the speeches were actually found to be relevant to the

61

5. Evaluation

R
e
le

v
a
n
t

Ir
re

le
v
a
n
t

0

500

1000

1500

2000

2500

Amount of relevant and irrelevant speeches found (Topic = Asyl)

Figure 5.1: Value counts of relevant and irrelevant speeches (Topic = European Migrant
Crisis)

topic, which is a bad result for this approach, as only every sixth speech that is presented
to the end user would actually be relevant.

To get a better picture of why the irrelevant speeches were found, a data analysis
on the technical terms retrieved from the Wikipedia article was conducted.

The Wikipedia article that had been used was not read before, such that the results are
not based on a particularly well-suited article. In this case the article about the European
migration crisis includes some information about the pandemic caused by COVID-19,
which leads to a problem in that specific case, as many speeches in the corpus revolve
around this topic.

The second bar plot Figure 5.2 shows the amount of speeches containing a specific
technical term, ordered by amount. The first ten entries are displayed in the plot. It
becomes evident here that "Pandemie" - a word which is mostly included in speeches
that are irrelevant to the topic - is included in over 1000 speeches. In other words, the
technical term is present in around every third speech which was retrieved. This is
already more than five times as frequent as the second technical term, which is also
mostly included in irrelevant speeches.

This strengthens the conclusion, that this word has a big impact on the result on
this specific corpus, as it includes a lot of speeches revolving around this topic.

The third bar plot Figure 5.3 shows the amount of relevant speeches containing a specific
technical term, ordered by amount. The first ten entries are displayed in the plot. Here

62

5.1. Extracting technical terms from Wikipedia

P
a
n
d
e
m

ie

C
o
ro

n
a
v
ir

u
s

A
s
y
l

M
in

d
e
s
ts

ic
h
e
ru

n
g

L
a
n
d
-

E
U

-E
b
e
n
e

E
U

-K
o
m

m
is

s
io

n

S
o
b
o
tk

a

G
e
s
e
tz

e
s
p
a
k
e
t

F
lü

c
h
tl

in
g
e

term

0

200

400

600

800

1000

Amount of texts containing a certain word (Top 10) (Topic = Asyl)

amount

Figure 5.2: Amount of texts containing a specific word (Top 10) (Topic = European
Migrant Crisis)

one can see, that they are all relevant to the topic and that the frequency is generally
very low when compared to the the frequency of the word "Pandemie".

The fourth bar plot Figure 5.4 shows the amount of irrelevant speeches containing a
specific technical term, ordered by amount. The first ten entries are displayed in the plot.
Here one can again see the strong impact of the word "Pandemie".

5.1.2 Topic: Climate Change

The following subsection gives an evaluation of the results which were achieved using
the frequency-based approach when trying to find technical terms which are then used
to find speeches that are relevant to climate change. The Wikipedia article used can be
found here [wika].

The first plot Figure 5.5 shows the amount of relevant and irrelevant speeches retrieved
from the corpus. The speeches were manually evaluated on whether or not they are
relevant to the topic.

In this case the method performed very well, as 89,03 percent of all retrieved speeches are
relevant to the chosen topic. The following plots will give some insight to the technical
terms that were extracted from the Wikipedia article.

The second bar plot Figure 5.6 shows the amount of speeches containing a specific
technical term, ordered by amount. The first ten entries are displayed in the plot. Here
one can see, that the first eight technical terms are relevant to climate change in many

63

5. Evaluation

A
s
y
l

F
lü

c
h
tl

in
g
e

A
s
y
l-

A
s
y
lw

e
rb

e
r

A
s
y
lv

e
rf

a
h
re

n

F
lü

c
h
tl

in
g
e
n

A
s
y
lp

o
li
ti

k

A
s
y
la

n
tr

ä
g
e

A
s
y
ls

y
s
te

m

F
lü

c
h
tl

in
g
s
k
o
n
v
e
n
ti

o
n

term

0

20

40

60

80

100

Amount of relevant texts containing a word (Top 10) (Topic = Asyl)

amount

Figure 5.3: Amount of relevant texts containing a specific word (Top 10) (Topic =
European Migrant Crisis)

P
a
n
d
e
m

ie

C
o
ro

n
a
v
ir

u
s

M
in

d
e
s
ts

ic
h
e
ru

n
g

L
a
n
d
-

E
U

-E
b
e
n
e

S
o
b
o
tk

a

G
e
s
e
tz

e
s
p
a
k
e
t

E
U

-K
o
m

m
is

s
io

n

E
U

-R
ic

h
tl

in
ie

L
o
p
a
tk

a

term

0

200

400

600

800

1000

Amount of irrelevant texts containing a word (Top 10) (Topic = Asyl)

amount

Figure 5.4: Amount of irrelevant texts containing a specific word (Top 10) (Topic =
European Migrant Crisis)

64

5.1. Extracting technical terms from Wikipedia

R
e
le

v
a
n
t

Ir
re

le
v
a
n
t

0

100

200

300

400

500

600

700

800

Amount of relevant and irrelevant speeches found (Topic = Climate)

Figure 5.5: Value counts of relevant and irrelevant speeches (Topic = Climate Change)

K
li
m

a
s
c
h
u
tz

K
li
m

a
k
ri

s
e

K
li
m

a

K
li
m

a
w

a
n
d
e
l

K
li
m

a
w

a
n
d
e
ls

C
O

2
-E

m
is

s
io

n
e
n

K
li
m

a
s
c
h
u
tz

m
a
ß
n
a
h
m

e
n

C
O

2
-A

u
s
s
to

ß

O
tt

o

F
a
k
te

n
la

g
e

term

0

100

200

300

400

Amount of texts containing a certain word (Top 10) (Topic = Climate)

amount

Figure 5.6: Amount of texts containing a specific word (Top 10) (Topic = Climate
Change)

cases, "Klimakrise", "Klima" and "Klimawandel" were used in the social climate context
as well.

The third bar plot Figure 5.7 shows the amount of relevant speeches containing a specific
technical term, ordered by amount. The first ten entries are displayed in the plot.
The technical term "Klimaschutz" performed best, as the amount of relevant speeches

65

5. Evaluation

K
li
m

a
s
c
h
u
tz

K
li
m

a
k
ri

s
e

K
li
m

a
w

a
n
d
e
l

K
li
m

a

K
li
m

a
w

a
n
d
e
ls

C
O

2
-E

m
is

s
io

n
e
n

K
li
m

a
s
c
h
u
tz

m
a
ß
n
a
h
m

e
n

C
O

2
-A

u
s
s
to

ß

Tr
e
ib

h
a
u
s
g
a
s
e

K
li
m

a
s

term

0

100

200

300

400

Amount of relevant texts containing a word (Top 10) (Topic = Climate)

amount

Figure 5.7: Amount of relevant texts containing a specific word (Top 10) (Topic =
Climate Change)

containing it is higher as for any other technical term and because the total amount of
speeches containing the term is nearly equal to the amount of relevant speeches containing
it.

The third bar plot Figure 5.8 shows the amount of irrelevant speeches containing a
specific technical term, ordered by amount. The first ten entries are displayed in the plot.
This plot shows the note-worthy result, that even words like "Klimaschutzmaßnahmen"
and "Klimaschutz" are used in a social climate context, as the speeches containing them
were irrelevant to climate change. In this experiment, it was possible to get good results
by focusing on single words only, but even in such a case, it still shows that context plays
an important role.

5.1.3 Topic: Feminism

The following subsection gives an evaluation of the results which were obtained using the
frequency-based approach when applied to feminism. The Wikipedia article used can be
found here [wikb].

The first plot Figure 5.9 shows the amount of relevant and irrelevant speeches retrieved
from the corpus. The speeches were manually evaluated on whether they are relevant to
the topic or not.

This plot shows that the total amount of retrieved speeches is way lower than the
amount of speeches retrieved for the two other topics. A possible reason is the amount of
words related to feminism that are very commonly found in the speeches of the national

66

5.1. Extracting technical terms from Wikipedia

K
li
m

a

O
tt

o

G
e
o
d
y
n
a
m

ik

Z
e
n
tr

a
la

n
s
ta

lt

F
a
k
te

n
la

g
e

Z
e
it

v
e
rl

a
u
f

K
li
m

a
s
c
h
u
tz

K
a
u
s
a
lz

u
s
a
m

m
e
n
h
a
n
g

U
S
-a

m
e
ri

k
a
n
is

c
h
e
n

A
e
ro

s
o
le

term

0

5

10

15

20

Amount of irrelevant texts containing a word (Top 10) (Topic = Climate)

amount

Figure 5.8: Amount of irrelevant texts containing a specific word (Top 10) (Topic =
Climate Change)

council, such as "Frau", which appears in sentences like "Wie Frau Muster bereits erwähnt
hat" that may appear in any context. These words are excluded from the technical
terms as they are above the cut-off frequency threshold. Still, they could be included
in highly-relevant speeches as well, if they contain passages like "Rechte der Frau". The
general result is not as bad as for the topic "European migrant crisis" but there are still
close to twice as many speeches that are irrelevant. The following plots show which
technical terms were used to retrieve the speeches.

Figure 5.10 shows the amount of speeches containing a specific technical term, Figure 5.11
shows the amount of relevant speeches containing a specific technical term and Figure 5.12
shows the amount of irrelevant speeches containing a specific technical term. The results
are always ordered descending by amount and the first ten entries are displayed in each
plot.

67

5. Evaluation

R
e
le

v
a
n
t

Ir
re

le
v
a
n
t

0

50

100

150

200

Amount of relevant and irrelevant speeches found (Topic = Feminism)

Figure 5.9: Value counts of relevant and irrelevant speeches (Topic = Feminism)

U
m

w
e
lt

-

L
e
b
e
n
s
re

a
li
tä

t

F
ra

u
e
n
-

To
m

a
s
e
ll
i

K
u
lt

u
r-

In
it

ia
to

ri
n
n
e
n

F
ra

u
e
n
g
e
s
u
n
d
h
e
it

N
u
s
s
b
a
u
m

A
k
ti

v
is

ti
n
n
e
n

M
e
n
s
c
h
e
n
-

term

0

5

10

15

20

25

30

35

40

Amount of texts containing a certain word (Top 10) (Topic = Feminism)

amount

Figure 5.10: Amount of texts containing a specific word (Top 10) (Topic = Feminism)

68

5.1. Extracting technical terms from Wikipedia

F
ra

u
e
n
-

F
ra

u
e
n
g
e
s
u
n
d
h
e
it

L
e
b
e
n
s
re

a
li
tä

t

B
a
c
k
la

s
h

A
k
ti

v
is

ti
n
n
e
n

N
u
s
s
b
a
u
m

F
ra

u
e
n
p
e
rs

p
e
k
ti

v
e

H
o
m

o
p
h
o
b
ie

G
e
s
c
h
le

c
h
ts

m
e
rk

m
a
le

In
it

ia
to

ri
n
n
e
n

term

0

5

10

15

20

25

30

Amount of relevant texts containing a word (Top 10) (Topic = Feminism)

amount

Figure 5.11: Amount of relevant texts containing a specific word (Top 10) (Topic =
Feminism)

U
m

w
e
lt

-

To
m

a
s
e
ll
i

K
u
lt

u
r-

L
e
b
e
n
s
re

a
li
tä

t

In
it

ia
to

ri
n
n
e
n

N
u
s
s
b
a
u
m

A
k
ti

v
is

ti
n
n
e
n

M
e
n
s
c
h
e
n
-

S
k
a
n
d
a
li
s
ie

ru
n
g

Tr
a
g
is

c
h
e

term

0

5

10

15

20

25

30

35

40

Amount of irrelevant texts containing a word (Top 10) (Topic = Feminism)

amount

Figure 5.12: Amount of irrelevant texts containing a specific word (Top 10) (Topic =
Feminism)

69

5. Evaluation

5.2 Opinion Type Classification

N
o
n
-O

p
in

io
n
a
te

d

O
p
in

io
n
a
te

d

C
o
m

p
a
ra

ti
v
e
 O

p
in

io
n
a
te

d

S
u
p
e
rl

a
ti

v
e
 O

p
in

io
n
a
te

d

Categories

0

10000

20000

30000

40000

A
m

o
u
n
t

Comparision of the two POS-Tag based approaches

POS-Tags

POS-Tags + Filter

Figure 5.13: Comparison of the results of the two POS-Tag based approaches

This section presents the results that were gathered while implementing the approaches
for opinion type classification, which are described in the experiment section above.
Two approaches were implemented for detecting opinionated texts and three different
approaches were implemented for the detection of comparative and superlative opinionated
texts.

To be able to compare the results of the different approaches a manual evaluation was
conducted. The goal was to classify the statements that were tagged as opinionated, as
either opinionated or not. As there were way to many statements, which were classified
as opinionated, only a subset of 200 statements per method was evaluated. The 200
statements were selected randomly. It needs to be said that the manual evaluation
introduces a bias as it was only conducted by one person.

Table 5.1 gives a short overview of the precision of the different methods, the results are
explained in more detail in the following subsections.

5.2.1 Approach 1: POS-Tagging using the RFTagger

The POS-Tagging approach, which was implemented following the approach by Othman
et al. [OHMI15], was implemented for all three opinion types.

Figure 5.13 shows the results (category = "POS-Tags") that were achieved by naively
searching for the respective tags. After analyzing the words that were tagged the most
often, some words showed up, that would give the impression, that they are only used in
greetings. As all of the texts are extracted from parliament protocols, this often is the

70

5.2. Opinion Type Classification

Approach Precision
POS-Tagging Opinionated 71%
Data-Driven Opinionated 67%

POS-Tagging Comparative Opinionated 44%
Data-Driven Comparative Opinionated 36%
Rule-Based Comparative Opinionated 33.5%
POS-Tagging Superlative Opinionated 44%
Data-Driven Superlative Opinionated 65%
Rule-Based Superlative Opinionated 78%

Table 5.1: Results of the approaches that were manually evaluated

case, as many of the texts start with a greeting. To handle this case, another set of words
was created. This time, the words were the ones that showed up most often and gave the
impression that they are part of a greeting. After that, a filter was implemented with the
task of filtering out statements were each tagged word belongs to the aforementioned set.
This step was performed for each tag and led to a significant reduction of superlative
opinionated statements, which is shown in Figure 5.13 (category = "POS-Tags + Filter").

POS-Tagging: Manual Data Evaluation Figure 5.14 shows the amount of opin-
ionated and non-opinionated statements in the sample containing 200 statements that
were classified as opinionated based on the POS-Tagging approach. Around 140 out of
200 statements are truly opinionated, which leads to a precision of around 0.7 - One has
to consider that 44578 out of 63909 statements were classified as opinionated by this
approach, so 200 statements is a tiny sample in this case.

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

120

140

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Positive - POS)

Figure 5.14: Opinionated and Non-Opinionated Statements (POS-Tagging)

Figure 5.15 shows the amount of comparative opinionated statements and non-opinionated

71

5. Evaluation

statements based on the manual evaluation. Here one can see that there are around 55%
non-opinionated statements.

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Comparative - POS)

Figure 5.15: Comparative Opinionated and Non-Opinionated Statements (POS-Tagging)

Figure 5.16 which shows the results of the evaluation of the POS-Tagging approach when
applied to finding superlative opinionated statements, surprisingly shows exactly the
same result as Figure 5.15, where around 55% of the manually evaluated statements are
non-opinionated.

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Superlative - POS)

Figure 5.16: Superlative Opinionated and Non-Opinionated Statements (POS-Tagging)

72

5.2. Opinion Type Classification

5.2.2 Approach 2: Data-Driven Approach

For this approach, a dataset containing adjectives in three forms (positives, comparatives,
superlatives) ,if available, was created using the data from Wiktionary [Wikf].

After that, five sets were created. Set P contains all the positive forms from the
dataset, Set PD contains all the positive forms and their declensions. Set C contains all
comparative forms from the dataset and Set CD contains the comparative forms and
their declensions. Set S contains all superlative forms from the dataset. All the sets and
their respective amount of words are shown in Table 5.2. The sets of words to ignore,
which were defined in approach 1, were considered and the words were removed from
the respective sets. Figure 5.17 shows the amount of statements that were marked as

Set Name Amount of Words
Set P (Positives) 13702

Set S (Superlatives) 5717
Set C (Comparatives) 5705

Set PD (Positives and Declensions) 82170
Set CD (Comparatives and Declensions) 34229

Table 5.2: Sizes of the sets which are used in the data-driven approach

opinionated statements using different setups. All of the setups return a list of booleans,
therefore it is possible to combine them using logical operators. If only one setup is
mentioned (for example Set P) only the amount of statements which were marked as
opinionated using Set P are considered. The logical operators used are the AND operator
∧ and the OR operator ∨.

The first observation one can make is that the set-based methods find way more sentences
containing an adjective in positive form than the tag-based methods. When combining
one of the sets with the results from the tag-based method (without filter) using the
logical AND operator the amount is only slightly less than when using the tag-based
method (without filter) alone. On the other hand, when combined using a logical OR
operator, the amount of statement increases significantly.

Figure 5.18 shows the amount of statements that were marked as comparative opinionated
statements using the same methods as described above but with the tags ADJD.Comp
and ADJA.Comp and using the two sets Set C and Set CD which were generated using
the Wiktionary dataset as well.

In this case the set-based methods find way more statements than the tag-based methods,
but once they are combined with an AND operator they return less statements although
both sets contain a significant amount of comparative forms. This is a similar result to
the one that was observed in Figure 5.17.

73

5. Evaluation

P
O

S
-T

a
g
s

 S
e
t

P

P
O

S
-T

a
g
s

 S
e
t

P
D

P
O

S
-T

a
g
s
 +

 F
il
te

r

P
O

S
-T

a
g
s

S
e
t

P

S
e
t

P
D

P
O

S
-T

a
g
s

 S
e
t

P

P
O

S
-T

a
g
s

 S
e
t

P
D

Approaches

0

10000

20000

30000

40000

50000

60000

A
m

o
u
n
t

Data-driven approaches vs POS-Tag approach (Positive)

Figure 5.17: Results of the data-driven approach (positives)

Figure 5.19 shows the results that were achieved when applying the same approach
to find superlative words. Here, the set-based method finds way less statements than
the tag-based method. This may be the case because the tag-based method marked a
lot of words as superlatives where the context reveals that it is not used to express an
opinion. Examples are ’nächster’, ’nächstes’ and ’Hochgeschätzter’. All of these words
are excluded from Set S.

Data-Driven: Manual Data Evaluation The results shown in Figure 5.20 are very
similar to the ones shown in Figure 5.14, so in this regard the POS-Tagging approach
and the data-driven approach seem to perform quite similar.

Figure 5.21 shows similar results to Figure 5.15 with a slight increment in non-opinionated
statements.

One can see in Figure 5.22 that this approach performs better than the POS-Tagging
approach (Figure 5.16). This might be related to the pre-filtering that has already
been done, where some obvious words like "nächsten" were removed from the set before
classifying the statements.

74

5.2. Opinion Type Classification

P
O

S
-T

a
g
s

 S
e
t

C

P
O

S
-T

a
g
s
 +

 F
il
te

r

P
O

S
-T

a
g
s

 S
e
t

C
D

P
O

S
-T

a
g
s

S
e
t

C

S
e
t

C
D

P
O

S
-T

a
g
s

 S
e
t

C

P
O

S
-T

a
g
s

 S
e
t

C
D

Approaches

0

5000

10000

15000

20000

A
m

o
u
n
t

Data-driven approaches vs POS-Tag approach (Comparative)

Figure 5.18: Results of the data-driven approach (comparative)

P
O

S
-T

a
g
s

 S
e
t

S

S
e
t

S

P
O

S
-T

a
g
s
 +

 F
il
te

r

P
O

S
-T

a
g
s

P
O

S
-T

a
g
s

 S
e
t

S

Approaches

0

1000

2000

3000

4000

5000

A
m

o
u
n
t

Data-driven approaches vs POS-Tag approach (Superlative)

Figure 5.19: Results of the data-driven approach (superlative)

75

5. Evaluation

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

120

140

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Positive - Data)

Figure 5.20: Opinionated and Non-Opinionated Statements (Data-Driven)

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

120

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Comparative - Data)

Figure 5.21: Comparative Opinionated and Non-Opinionated Statements (Data-Driven)

76

5.2. Opinion Type Classification

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

120

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Superlative - Data)

Figure 5.22: Superlative Opinionated and Non-Opinionated Statements (Data-Driven)

5.2.3 Approach 3: Rule-Based Approach with regular expressions

The rule-based approach was only applied for finding comparative or superlative state-
ments. All the rules, which can be found in Table 4.5, were implemented using regular
expressions.

One important constraint was added while experimenting with the rule-based approach.
There was a problem with the rules considering "immer ...er" and "...er als", as this rule
also gets triggered in cases like "immer wieder" and "wieder als" where it would not count
as comparative. To prevent this from happening, the procedure was extended so that one
of the sets containing comparatives (Set C or Set CD) can be added. The String which
is found using the regular expression is then separated and a lookup is performed to find
out whether the word is part of the set. If that is the case it is marked as a comparative,
else it is ignored.

They are again compared to the tag-based method. Figure 5.23 shows the results
of the different rule-based approaches that were executed to find comparative statements.
The discrepancy between the different approaches is noteworthy; the tag-based approach
finds around 8600 statements, while the rule-based approach with the set-based con-
straints finds below 2000 statements in both cases. When both approaches are combined
with an AND operator, below 800 statements are found in both cases.

Figure 5.24 shows the results of the rule-based approach applied to finding superlative
statements. The tag-based approach again finds significantly more superlative statements

77

5. Evaluation

P
O

S
-T

a
g
s

 (
R

u
le

s
e
t

C

 S
e
t

C
)

P
O

S
-T

a
g
s

 (
R

u
le

s
e
t

C

 S
e
t

C
D

)

P
O

S
-T

a
g
s

 R
u
le

s
e
t

C

R
u
le

s
e
t

C

 S
e
t

C

R
u
le

s
e
t

C

 S
e
t

C
D

R
u
le

s
e
t

C

P
O

S
-T

a
g
s
 +

 F
il
te

r

P
O

S
-T

a
g
s

P
O

S
-T

a
g
s

 (
R

u
le

s
e
t

C

 S
e
t

C
)

P
O

S
-T

a
g
s

 (
R

u
le

s
e
t

C

 S
e
t

C
D

)

P
O

S
-T

a
g
s

 R
u
le

s
e
t

C

Approaches

0

2000

4000

6000

8000

10000

A
m

o
u
n
t

Rule-based approaches vs POS-Tag approach (Comparative)

Figure 5.23: Results of the rule-based approach (comparative)

than the rule-based approach. Curiously, the rule-based approach finds superlative
statements that were not found using the tag-based approach, as there are 477 in total
but only 383 when they are combined with the results of the tag-based approach using
the AND operator.

P
O

S
-T

a
g
s

 R
u
le

s
e
t

S

R
u
le

s
e
t

S

P
O

S
-T

a
g
s
 +

 F
il
te

r

P
O

S
-T

a
g
s

P
O

S
-T

a
g
s

 R
u
le

s
e
t

S

Approaches

0

1000

2000

3000

4000

5000

A
m

o
u
n
t

Rule-based approaches vs POS-Tag approach (Superlative)

Figure 5.24: Results of the rule-based approach (superlative)

Rule-Based: Manual Data Evaluation Figure 5.25 shows that this rule-based
approach performed slightly worse than the other two approaches. Here one needs to

78

5.2. Opinion Type Classification

consider that this is the approach without additional filters.

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

120

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Comparative - Rule)

Figure 5.25: Comparative Opinionated and Non-Opinionated Statements (Rule-Based)

Figure 5.26 shows that the performance using this approach is better than the perfor-
mance achieved by the POS-Tagging approach and the data-driven approach as shown in
Figure 5.16 and Figure 5.22.

Opinionated Non Opinionated

Categories

0

20

40

60

80

100

120

140

160

A
m

o
u
n
t

Opinionated vs Non Opinionated Samples (Superlative - Rule)

Figure 5.26: Superlative Opinionated and Non-Opinionated Statements (Rule-Based)

79

5. Evaluation

Correctly detected Not detected
0

100

200

300

400

500

600

A
m

o
u
n
t

Amount of detected and undetected alliterations in alliteration dataset

Figure 5.27: Amount of detected and undetected alliterations in the alliteration dataset

5.3 Alliteration Detection
This section presents the results that were gathered while conducting the experiments
regarding the detection of alliterations, which are described in the experiments section
above.

Two different datasets were used to evaluate the algorithm, one of them consists of
alliterations and one consists of political statements. The first one was used to evaluate
whether the algorithm is able to detect correct alliterations.

The second dataset was used to see whether the algorithm can detect alliterations
in plain text. A subset of the results were manually annotated as there is no information
about whether there are alliterations in the dataset or not. It was not possible to
manually annotate all the results as the algorithm detected way to many cases, although
the configuration Table 4.8 was strict compared to the configuration defined for the
alliteration dataset Table 4.7

5.3.1 Alliteration Dataset

Figure 5.27 shows the results that were achieved when using the detection algorithm
on the alliterations dataset. In this case the performance was very good as 601 out of
605 alliterations were detected. The only alliterations that were not detected are four
examples of alliteration by word combination, as the algorithm does not consider the
possibility that there is an alliteration in a single word. The four examples are "habhaft",
"Linkliste", "Wendewinkel" and "Diridari".

80

5.3. Alliteration Detection

5.3.2 Political Statement Dataset

The following plots show the results of the experiments using the dataset consisting of
political statements.

The results are separated into four different sets:

• standard

• cologne phonetics

• both

• none

The algorithm was configured so that it would return one of four results per statement.
The four different options are standard, cologne phonetics, both or none. If the algorithm
returns "standard" it means that the alliteration was detected based on the first letter
only. The option "cologne phonetics" stands for alliterations that were only detected
because of the numeric representation of the letters. The other two options are either
both of the previous ones or none of them. 200 statements were manually evaluated for
the sets "standard", "cologne phonetics" and "both".

Figure 5.28 shows the overall results. With the hard restriction that an alliteration
must contain at least four words without any steps in between the amount of detected
alliterations went down drastically, without the restriction regarding the steps in between
around 22.000 statements were marked as containing an alliteration.

During the manual evaluation of the first of the three sets a few edge cases showed up,
they were invalid alliterations but the algorithm would detect them as alliterations. After
that few rules were defined, which were considered when deciding whether an alliteration
is valid or not, they are listed below. The algorithm could be improved by implementing
logic which could deal with these cases. The examples are all taken from the political
statements.

• An alliteration should only be considered if it is inside of a single sentence

– Example: einen Entschließungsantrag ein. Er lautet

• If there are words which are separated by hyphen they should be considered
separately

– Example: aller AMA-Gütesiegelprodukte ausschließlich auf

• The initial sound of the words must not be different, even if the first letter is the
same

81

5. Evaluation

None Cologne Phonetics Both Standard
0

10000

20000

30000

40000

50000

60000

A
m

o
u
n
t

Amount of each different set detected by the algorithm

Figure 5.28: Amount of each of the sets detected by the algorithm in the political
statements dataset

– Example: nicht nur sich selbst schützt, sondern
– Example: es ein extrem erfreuliches

• Repetitions should not be considered

– Example: in Österreich zugelassen sind, sind sicher, sind
– Example: vollkommen verständlich, vollkommen verständlich

• Alliterations consisting of one unique word only should not be considered

– Example: impfen, impfen, impfen, impfen
– Example: Ja, ja, ja, ja

5.3.2.1 Standard

Figure 5.29 shows the results of the manual evaluation of the statements where an
alliteration was found based on the standard method. In this case around 130 out of
200 cases were valid alliterations. The rules defined above were considered, they were
responsible for the invalid cases.

The most common sets of letters that occurred in the standard set are shown in Figure 5.30.
The set of letters for the detected alliteration was computed in the algorithm and appended
to the dataset so that it can be used for the evaluation. Here it is interesting to see,
that there is only a tiny amount of sets, containing the letters a, e, i, u, h and j. The
reason for that is that code 0 and code - (from the cologne phonetics transformation table

82

5.3. Alliteration Detection

Alliteration No Alliteration

Categories

0

20

40

60

80

100

120

140

A
m

o
u
n
t

Amount of alliterations (standard)

Figure 5.29: Amount of detected and undetected alliterations in the political statement
dataset (standard)

{
'a

'}

{
'u

'}

{
'e

'}

{
'i
'}

{
'h

'}

{
'j
'}

{
'

'}

Letter combination

0

10

20

30

40

50

60

70

80

A
m

o
u
n
t

Most common combinations (standard)

Alliteration

No Alliteration

Figure 5.30: Most common sets of letters (standard)

Table 4.6) were ignored as they cannot be used to detect alliterations. The alliterations
based on words starting with one of these letters were the only ones that only showed up
using the standard method, where only the initial letters were combined. All the others
either showed up with cologne phonetics only or with both ways.

83

5. Evaluation

Alliteration No Alliteration

Categories

0

20

40

60

80

100

120

140

A
m

o
u
n
t

Amount of alliterations (cologne)

Figure 5.31: Amount of detected and undetected alliterations in the political statement
dataset (cologne)

5.3.2.2 Cologne Phonetics

Figure 5.31 shows the results of the manual evaluation of the statements where an
alliteration was found based on the cologne phonetics method. In this case more than
140 out of 200 cases were invalid alliterations, which is more than two thirds and a
bad result compared to the results of the standard method. The following list presents
negative and positive examples for a few of the transformation rules which are defined
in Table 4.6, these examples might lead to the conclusion that a similar algorithm like
cologne phonetics could be developed, which focuses on alliterations only, but it might
turn out to be very difficult to find the full set of rules that needs to be considered. The
examples are taken from the political statements.

• Negative examples for rule number 3 (f, v, w and p if before h)

– Example: fangen wir wieder von vorne an
– Example: vor Wahlen wieder Wahlzuckerl verteilen wollen

• Positive examples for rule number 3 (f, v, w and p if before h)

– Example: für viele Frauen, für viele Familien
– Example: Fremdübernahmen von Firmen vollzogen

• Negative example for rule number 8 (Table 4.6)

– sich zum Ziel setzt

84

5.3. Alliteration Detection

{
'3

'}

{
'2

'}

{
'8

'}

{
'6

'}

{
'4

'}

{
'3

',
 '
2
'}

{
'3

',
 '
8
'}

{
'8

',
 '
2
'}

Letter combination

0

10

20

30

40

50

60

70

80

A
m

o
u
n
t

Most common combinations (cologne)

Alliteration

No Alliteration

Figure 5.32: Most common sets of numbers (cologne)

– dass der Thinktank Think

Figure 5.32 shows the most common sets of numbers that showed up in the statements.
It is interesting to see that only rule 2 led to valid alliterations in most of the cases, while
all of the other significant ones led to invalid alliterations in most of the cases.

5.3.2.3 Both

The results of the manual evaluation of the statements where an alliteration was found
based on the cologne phonetics method and the standard method are shown in Figure 5.33.
The performance in this case is comparable to the performance of the standard method.

The plot in Figure 5.34 shows the most common letter + number sets and the amount of
valid and invalid alliterations. Here it is interesting to see that there are so many invalid
alliterations based on the letter "s", they are mostly related to the rule "The initial sound
of the words must not be different, even if the first letter is the same", as the first number
of the cologne phonetics encoding does not change if the letter "s" is in front of "p", "t"
or "ch". One solution could be the consideration of multiple numbers of the cologne
phonetics encoding, not just the first one.

85

5. Evaluation

Alliteration No Alliteration

Categories

0

20

40

60

80

100

120

A
m

o
u
n
t

Amount of alliterations (both)

Figure 5.33: Amount of detected and undetected alliterations in the political statement
dataset (both)

{
'd

',
 '
2
'}

{
'3

',
 '
w

'}

{
's

',
 '
8
'}

{
'6

',
 '
m

'}

{
'3

',
 '
f'
}

{
'3

',
 '
v
'}

{
'l
',
 '
5
'}

{
's

',
 '
6
',
 '
8
'}

{
'a

',
 '
2
'}

{
'n

',
 '
6
'}

Letter combination

0

10

20

30

40

50

60

70

A
m

o
u
n
t

Most common combinations (both)

Alliteration

No Alliteration

Figure 5.34: Most common sets of numbers (both)

86

5.4. Hyperbole Detection

machine all machine 400 manually 400
LR 0.689092 0.6350 0.6700
KNN 0.644471 0.5875 0.6375
NB 0.667395 0.6425 0.6400
DT 0.600736 0.6300 0.5975
SVM 0.686295 0.6675 0.6875
LDA 0.689097 0.6375 0.6675
RF 0.668928 0.6675 0.6525

Table 5.3: Mean accuracy which was achieved with 10-fold cross validation

5.4 Hyperbole Detection
This section presents the results that were gathered while conduction the experiments
regarding hyperbole detection, which are described in the experiments section above.

Two different kinds of datasets were used to evaluate the approach. The first kind
of dataset was a translated version of the HYPO-L dataset. The HYPO-L dataset was
created by Zhang et al. [ZW21]. The whole dataset was translated using the Google
Translate function provided in Google Sheets. 400 sentences of the HYPO-L dataset were
manually translated as well.

The experiments were conducted using three different datasets: The whole machine
translated HYPO-L dataset, the subset with the 400 manually translated sentences and
the same subset but with the respective machine translation, so that the performance
can be compared.

The second kind of dataset contained political statements which were extracted from a
protocol of the Austrian national council.

5.4.1 Translated HYPO-L dataset

This subsection describes the results that were achieved when using the whole machine
translated HYPO-L dataset and the two subsets (machine translated and manually
translated).

Table 5.3 shows the mean accuracy that was achieved by the different algorithms on the
three different datasets when applying 10-fold cross validation. It is interesting to see
that Support Vector Machine (SVM) had the best performance in two cases and was
also quite close to the best performance in the third case. Generally all of the algorithms
had a mean accuracy above 0.58 which is slightly better than random. The best mean
accuracy that was achieved by Troiano et al. [TSÖT18] is 0.72, so the results are not as
good but still in a 3% range in the best case (0.689 LDA).

87

5. Evaluation

machine all machine 400 manually 400
LR 0.522323 0.632866 0.659049
KNN 0.395776 0.582831 0.626145
NB 0.464290 0.657486 0.621646
DT 0.366243 0.635871 0.603195
SVM 0.496337 0.692868 0.672423
LDA 0.520421 0.641219 0.651457
RF 0.443829 0.664046 0.657090

Table 5.4: Mean precision which was achieved with 10-fold cross validation

machine all machine 400 manually 400
LR 0.099307 0.635 0.725
KNN 0.263139 0.630 0.670
NB 0.370327 0.595 0.715
DT 0.385228 0.610 0.610
SVM 0.087416 0.605 0.740
LDA 0.123168 0.615 0.740
RF 0.242198 0.685 0.655

Table 5.5: Mean recall which was achieved with 10-fold cross validation

The data in Table 5.4 shows the mean precision that was achieved when applying 10-fold
cross validation. One can see that the performance on the full machine translated
HYPO-L dataset was rather low with 0.52 being the best value. The mean precision
was way higher in the other two cases, with 0.69 and 0.67 as the highest values, but this
could also be due to the smaller size of the dataset. It is interesting to see, that SVM,
which had the highest mean precision, performs better on the machine translated subset
then on the manually translated subset. The best mean precision that was achieved by
Troiano et al. was 0.76, so in that case the results are not comparable.

The next table, Table 5.5, shows the mean recall that was achieved when applying 10-fold
cross validation. The performance on the full machine translated HYPO-L dataset was
quite bad, with 0.385 being the highest mean recall. SVM and LDA both had a quite
good mean recall on the manually translated subset though (0.74). When comparing
the results to the best mean recall that was achieved by Troiano et al. (0.76) they are
only comparable when considering the performance when using the manually translated
dataset, in the two other cases, especially when using the full machine translated dataset,
they are not comparable.

Table 5.6 shows the mean f1-score that was achieved when applying 10-fold cross validation.
The performance on the full machine translated dataset is low with 0.41 being the highest
mean f1-score. When using the two subsets the highest mean f1-score was moderately
high, with 0.67 and 0.70 being the best values. The best mean f1-score that was achieved
by Troiano et al. was 0.76 - when looking at the performance on the full machine

88

5.4. Hyperbole Detection

machine all machine 400 manually 400
LR 0.166267 0.632089 0.688706
KNN 0.315328 0.603822 0.645403
NB 0.411136 0.621979 0.661793
DT 0.375204 0.619045 0.604268
SVM 0.147001 0.643456 0.703524
LDA 0.198310 0.625849 0.689583
RF 0.312876 0.673094 0.653529

Table 5.6: Mean F1-score which was achieved with 10-fold cross validation

translated dataset the performance is not comparable.

5.4.2 Political Statements Dataset

This subsection describes the results that were achieved when using the political state-
ments dataset. Random Forest (RF) was used as an algorithm. The model got trained
on the whole machine translated HYPO-L dataset using the semantic features described
above. The feature engineered version of the political statements dataset was then used
as a test dataset.

The approach was to manually annotate all the statements that were classified as
being hyperbolic, so that the precision could be calculated.

Figure 5.35 shows the amount of statements that were classified as either literal or
hyperbolic when using the model that was trained on the full machine translated HYPO-
L dataset. 98 Statements were classified as hyperbolic, 1229 were classified as literal. The
hyperbolic statements were manually evaluated so that the precision of the algorithm
could be calculated.

The plot in Figure 5.36 shows the amount of hyperboles that were found based on the
manual evaluation. As only one person was evaluating the statements the result contains
a bias. 22 Statements were classified as being hyperbolic, the other 76 statements were
classified as literal. This leads to a precision of 22%. The following paragraphs will show
a few interesting examples for hyperboles and literal statements that were classified as
being hyperbolic.

The following list will show a few examples that are hyperboles according to the annotator,
the reasoning behind the decisions will be explained below.

1. Da hat anscheinend alleine das Einbringen der Petition beim Gesundheitsminister
Wunder bewirkt.

2. Wer will, dass die Welt so bleibt, wie sie jetzt ist, der will nicht, dass sie bleibt.

89

5. Evaluation

literal hyperbolic

Categories

0

200

400

600

800

1000

1200

A
m

o
u
n
t

Amount of hyperboles based on classification (political dataset)

Figure 5.35: Amount of hyperboles based on the classification (political dataset)

literal hyperbolic

Categories

0

10

20

30

40

50

60

70

A
m

o
u
n
t

Amount of hyperboles after annotation (political dataset)

Figure 5.36: Amount of hyperboles based on the manual evaluation (political dataset)

90

5.4. Hyperbole Detection

3. Zu Tode gefürchtet ist auch gestorben!

4. Den Menschen habt ihr die Zuversicht genommen, die sind alle depressiv, und
schuld daran sind unter anderem diese Masken, eure Verordnungen, bei denen sich
keiner auskennt.

5. Die Menschen laufen alle nur mehr apathisch herum.

6. Statt Mut impft ihr den Leuten Angst ein.

7. Wer heute einmal keine Maske trägt dafür kann er eine medizinische Begründung
haben oder nicht , ist sowieso schon böse.

8. Das ist eine schreiende Ungerechtigkeit.

Statement 1 claims that handing in a petition worked wonders, with is interpreted as
being hyperbolic as it did not really cause any wonders. It is an idiom that might have
been used to put more weight on the act of handing in a petition.

Statement 2 seems to be a bit of an exaggeration as it expresses the thought that
people who want the world to stay the way it is now would not mind if it would not exist
at all anymore.

Statement 3 is a quote by Johann Nestroy that was used in one of the speeches. The
literal meaning is that being feared to death is the same as being dead, the interpretation
in the context of this work is that having a lot of fear in the daily life could be seen
as being dead as well. Using this interpretation the statements could be seen as hyperbolic.

Statement 4 claims that the people which are being talked to by the speaker took
all the hope from the people, potentially by implementing some new guidelines like the
lockdown during the COVID-19 pandemic, and that all the people are depressive. This
is interpreted as an exaggeration as there are no statistics or studies claiming that 100%
of people in Austria were depressive.

Statement 5 is similar to statement 4 as it claims that all people are running around
apathetic, which is interpreted as an exaggeration as well.

Statement 6 claims that someone is injecting fear into people’s minds. The word "impfen"
is most commonly used as a medical term (vaccinate), therefore this is interpreted as
being metaphorical and exaggerated.

The speaker who included statement 7 in their speech claims that there are people
who think that if someone who does not wear a surgical mask, most likely during the
COVID-19 pandemic, is automatically evil, does not matter whether they have medical
reasons or not. The part "ist sowieso schon böse" is interpreted as a slight exaggeration,

91

5. Evaluation

as it might convey the idea that this is the general opinion, which is not only expressed
by some people but actually the majority of people.

Statement 8 is interpreted as an exaggeration as "schreiende Ungerechtigkeit" stands for
"screaming injustice", which puts stronger emphasis on the injustice.

92

CHAPTER 6
Conclusion

During the experiments that were conducted in the scope of this master thesis multiple
approaches for analyzing political statements were explored, one being relevant to the
task of topic classification, one that focuses on opinion type classification and two different
types of figure of speech detection, the detection of alliterations and hyperboles. All of
these approaches were implemented for the German language. The insights that were
gathered as a result of the experiments allow the following research questions to be
answered:

RQ1: How high is the precision of a rule-based approach for topic classification in political
statements using corpora extracted from Wikipedia?
The results of the experiments using three different topics (climate change, feminism,
European migrant crisis) show that the precision can vary in a strong way between
the different topics. In the case of climate change the approach showed promising
results with a precision of 89,03%, in the case of feminism the precision was 36,39%
and in the case of the European migrant crisis the precision was 19,04%. Following
the experiments a data analysis was conducted which showed some of the underlying
problems.

RQ2: How does an approach using a German tag set and a tagger for the German language,
instead of an English tag set and a tagger for the English language, for opinion
type classification in German sentences, hold up against the approach developed
by Othman et al. regarding opinion type classification in English sentences? This
question will be evaluated using precision
This question was evaluated based on the achieved precision by Othman et al.
[OHMI15] regarding the classification of the three opinion types they used (opinion,
comparative opinion, superlative opinion). In the case of the standard opinion the
precision was comparable, 76,6% precision were achieved by Othman et al. and

93

6. Conclusion

71% precision were achieved by this implementation. In the case of the comparative
and superlative opinion the results were not comparable. Othman et al. achieved
78,3% precision regarding comparative opinions, this implementation achieved
only 44% precision. Superlative opinions were classified with 82,1% precision by
Othman et al. while this implementation only achieved a precision of 44%. The
two additional approaches that were implemented and the data analysis provided
interesting insights regarding the improvement of this implementation.

RQ3: The Cologne phonetics algorithm can be used to transform a word into a numerical
representation depicting the underlying phonetics. Which additional constraints
need to be added so that the numerical representation resulting from the Cologne
phonetics algorithm is feasible for alliteration detection with 95 percent precision?
The algorithm which was implemented for detecting alliterations achieved a very
high precision (99,33%) on the alliteration dataset by Ulrich Mehner [meh] which
contains 605 alliterations. The successful setup combined a phonetic approach
using the Cologne Phonetics algorithm with a simple approach which is based on
the words starting with the same letter. In addition the algorithm was written
in a way so that it is flexible regarding gaps between words and the length of an
alliteration. These constraints allow the detection of alliterations like "Brot und
Butter" and "Der frühe Vogel gibt frohe Töne von sich".

Additional experiments were performed on the political statements dataset, the
three different setups that were tested and manually evaluated achieved lower
precision (65%, 30% and 66,5%) and provided interesting insights into additional
constraints that can be added and tested in future work.

RQ4: Troiano et al. developed an approach for classifying English sentences as either
hyperbolic or not. Is this approach applicable to the German language as well? This
question will be evaluated using accuracy, precision, recall and the F1-Score.
To answer this question, the same approach that Troiano et al. [TSÖT18] im-
plemented for the English language was implemented for the German language.
Precision, recall, accuracy and F1-Score were calculated based on the achieved
results and compared to the best results achieved by Troiano et al. [TSÖT18] across
their experiments. The accuracy is comparable, the best results are between 66,75%
and 68,90%, while the best result by Troiano et al. is 72%. In the three other
cases the best results are not comparable, especially when using the large machine
translated version of the HYPO-L dataset (the original dataset was published by
Zhang et al. [ZW21]), in this case the best results for precision (52,23%), recall
(38,52%) and F1-Score (41,11%) were far below the best results that were achieved
by Troiano et al. [TSÖT18] (precision = 76%, recall = 76%, F1-Score = 76%).

Future Work As a result of the data analysis that was performed during the evaluation
of the experiments multiple interesting factors were found that could be made use of in

94

future work.

Regarding topic classification it would be very interesting to see the effect that a large
language model like GPT-4 [AAA+23] would have when being used instead of the method
that was implemented for extracting topic-related words from a Wikipedia article. The
general approach with the inverted index could still be used but the topic-related words
could be generated using a tool like the ChatGPT API. A tiny example which is displayed
in Figure 6.1 shows the potential of this approach, this could lead to a lot of time being
saved when searching for political statements regarding a certain topic.

Figure 6.1: A simple example for a prompt that could be used to generate topic-related
words using ChatGPT

The evaluation of the experiments that were conducted regarding opinion type classi-
fication showed that it might make sense to create a separate list of comparative and
superlative forms that are not used for expressing an opinion in many cases, for example
the superlative form of "nah" (am nächsten), which was used to speak about a future
sitting in most of the political statements that were analyzed. This dataset in combina-
tion with a rule-based approach which covers the grammatical rules for comparatives
and superlatives and the part-of-speech based approach could lead to a better performance.

95

6. Conclusion

In the case of alliteration detection a few insights were gained during the data analysis
of the results that were achieved on free text. One important improvement could be the
implementation of a few additional rules like a restriction for the amount of stop words per
alliteration and the exclusion of alliterations that contain the same word multiple times.
These simple rules could already increase the precision on free text but it would still
not be enough to solve the problem related to the phonetic aspect of an alliteration. In
this regard it would be interesting to implement a simpler form of the Cologne phonetics
algorithm by Postel [Pos69] which focuses on alliterations in the German language.

The results of the hyperbole detection approach could be improved by creating a specific
hyperbole dataset for the German language. In addition it might be interesting to
distinguish between hyperboles that were spoken, for example in public debates, and
hyperboles that were extracted from literature, as they might have different characteris-
tics. ChatGPT could be useful in the regard of the dataset creation as well, as it could
be used to generate hyperboles which could later be crowd evaluated as either being a
realistic hyperbole example or not.

96

List of Figures

2.1 Transformer architecture by Vaswani et al. [VSP+17] 15
2.2 Scaled Dot-Product Attention and Multi-Head Attention by Vaswani et al.

[VSP+17] . 16
2.3 A simple POS-tagging example in German using the STTS tag set [WSJB17] 23
2.4 Different approaches for sentiment analysis, taken from Wankhade et al.

[WRK22] . 25
2.5 Overall pre-training and fine-tuning procedures for BERT by Devlin et al.

[DCLT18] . 26
2.6 Example of an aspect-sentiment hierarchy as described by Afzaal et al.

[AUFF19] . 29

4.1 Activity diagram visualizing the process that was implemented to extract the
technical terms from Wikipedia . 42

5.1 Value counts of relevant and irrelevant speeches (Topic = European Migrant
Crisis) . 62

5.2 Amount of texts containing a specific word (Top 10) (Topic = European
Migrant Crisis) . 63

5.3 Amount of relevant texts containing a specific word (Top 10) (Topic = Euro-
pean Migrant Crisis) . 64

5.4 Amount of irrelevant texts containing a specific word (Top 10) (Topic =
European Migrant Crisis) . 64

5.5 Value counts of relevant and irrelevant speeches (Topic = Climate Change) 65
5.6 Amount of texts containing a specific word (Top 10) (Topic = Climate Change) 65
5.7 Amount of relevant texts containing a specific word (Top 10) (Topic = Climate

Change) . 66
5.8 Amount of irrelevant texts containing a specific word (Top 10) (Topic =

Climate Change) . 67
5.9 Value counts of relevant and irrelevant speeches (Topic = Feminism) . . . 68
5.10 Amount of texts containing a specific word (Top 10) (Topic = Feminism) 68
5.11 Amount of relevant texts containing a specific word (Top 10) (Topic = Femi-

nism) . 69
5.12 Amount of irrelevant texts containing a specific word (Top 10) (Topic =

Feminism) . 69

97

5.13 Comparison of the results of the two POS-Tag based approaches 70
5.14 Opinionated and Non-Opinionated Statements (POS-Tagging) 71
5.15 Comparative Opinionated and Non-Opinionated Statements (POS-Tagging) 72
5.16 Superlative Opinionated and Non-Opinionated Statements (POS-Tagging) 72
5.17 Results of the data-driven approach (positives) 74
5.18 Results of the data-driven approach (comparative) 75
5.19 Results of the data-driven approach (superlative) 75
5.20 Opinionated and Non-Opinionated Statements (Data-Driven) 76
5.21 Comparative Opinionated and Non-Opinionated Statements (Data-Driven) 76
5.22 Superlative Opinionated and Non-Opinionated Statements (Data-Driven) 77
5.23 Results of the rule-based approach (comparative) 78
5.24 Results of the rule-based approach (superlative) 78
5.25 Comparative Opinionated and Non-Opinionated Statements (Rule-Based) 79
5.26 Superlative Opinionated and Non-Opinionated Statements (Rule-Based) . 79
5.27 Amount of detected and undetected alliterations in the alliteration dataset 80
5.28 Amount of each of the sets detected by the algorithm in the political statements

dataset . 82
5.29 Amount of detected and undetected alliterations in the political statement

dataset (standard) . 83
5.30 Most common sets of letters (standard) 83
5.31 Amount of detected and undetected alliterations in the political statement

dataset (cologne) . 84
5.32 Most common sets of numbers (cologne) 85
5.33 Amount of detected and undetected alliterations in the political statement

dataset (both) . 86
5.34 Most common sets of numbers (both) . 86
5.35 Amount of hyperboles based on the classification (political dataset) 90
5.36 Amount of hyperboles based on the manual evaluation (political dataset) 90

6.1 A simple example for a prompt that could be used to generate topic-related
words using ChatGPT . 95

98

List of Tables

2.1 Conversion Table from the Soundex algorithm by Russell and Odell [Rob18] 20
2.2 The transformation table of the cologne phonetics algorithm by Postel [Pos69] 21
2.3 POS-Tags from the STTS tagset [WSJB17] with explanation, related to the

example . 22

3.1 Two examples from the German adjectives dataset 37

4.1 The four different sentimental categories defined by Othman et al. [OHMI15] 44
4.2 Used POS-Tags by Othman et al. [OHMI15] with description 44
4.3 Used POS-Tags in this experiment . 45
4.4 Description of the used POS-Tags in this experiment 45
4.5 Rules which are used in the rule-based approach 46
4.6 The transformation table of the cologne phonetics algorithm by Postel [Pos69] 53
4.7 Different setups of the algorithm which were combined in the best attempt

on the alliteration dataset . 55
4.8 Different setups of the algorithm which were combined to search for allitera-

tions in the dataset of political statements 55

5.1 Results of the approaches that were manually evaluated 71
5.2 Sizes of the sets which are used in the data-driven approach 73
5.3 Mean accuracy which was achieved with 10-fold cross validation 87
5.4 Mean precision which was achieved with 10-fold cross validation 88
5.5 Mean recall which was achieved with 10-fold cross validation 88
5.6 Mean F1-score which was achieved with 10-fold cross validation 89

99

List of Algorithms

4.1 Creation of a simple inverted index R 40

4.2 Returns a list of sublists, each sublist has size s 49

4.3 Returns preprocessed words from sentence 50

4.4 Returns true if a sentence contains an alliteration, false otherwise . . . 51

4.5 Returns filtered list of sublists . 52

4.6 Returns true if one sublist has an alliteration with step st, false otherwise 54

101

Bibliography

[A+18] Charu C Aggarwal et al. Neural networks and deep learning. Springer,
10(978):3, 2018.

[AAA+23] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[AUFF19] Muhammad Afzaal, Muhammad Usman, Alvis CM Fong, and Simon Fong.
Multiaspect-based opinion classification model for tourist reviews. Expert
Systems, 36(2):e12371, 2019.

[aus] Austria national council: Protocols. https://www.parlament.gv.at/
recherchieren/protokolle/. Accessed: 2023-10-05.

[BBFZ09] Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta.
The wacky wide web: a collection of very large linguistically processed
web-crawled corpora. Language resources and evaluation, 43:209–226, 2009.

[BDH+02] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The tiger treebank. In Proceedings of the workshop on treebanks and
linguistic theories, volume 168, pages 24–41, 2002.

[ber] Jacob devlin: Bert github repository. https://github.com/
google-research/bert. Accessed: 2024-02-21.

[Ber03] Robert Berwick. An idiot’s guide to support vector machines (svms).
Retrieved on October, 21:2011, 2003.

[blo] Google blog article: Understanding searches better than
ever before. https://blog.google/products/search/
search-language-understanding-bert/. Accessed: 2024-02-
21.

[Bre96] Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

[Bre01] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

103

https://www.parlament.gv.at/recherchieren/protokolle/
https://www.parlament.gv.at/recherchieren/protokolle/
https://github.com/google-research/bert
https://github.com/google-research/bert
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/

[cle] Checkthat! lab at clef 2023. https://checkthat.gitlab.io/
clef2023/task2/. Accessed: 2023-10-30.

[CSQH17] Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing Huang. Adversar-
ial multi-criteria learning for chinese word segmentation. arXiv preprint
arXiv:1704.07556, 2017.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20:273–297, 1995.

[CWB+11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of machine learning research, 12(ARTICLE):2493–2537,
2011.

[DBB16] Derick F Davis, Rajesh Bagchi, and Lauren G Block. Alliteration alters:
Phonetic overlap in promotional messages influences evaluations and choice.
Journal of Retailing, 92:1–12, 2016.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[deWa] Website that describes the dewac corpus. https://www.sketchengine.
eu/dewac-german-corpus/. Accessed: 2023-03-23.

[deWb] Website that provides the frequency list. https://wacky.sslmit.
unibo.it/doku.php?id=frequency_lists. Accessed: 2023-03-23.

[emb] Embeddings described on deepset.ai. https://www.deepset.ai/
german-word-embeddings. Accessed: 2023-10-27.

[FE13] Gertrud Faaß and Kerstin Eckart. Sdewac–a corpus of parsable sentences
from the web. In Language Processing and Knowledge in the Web: 25th
International Conference, GSCL 2013, Darmstadt, Germany, September
25-27, 2013. Proceedings, pages 61–68. Springer, 2013.

[Fil20] Peter Filzmoser. Advanced methods for regression and classification - lecture
notes, 2020.

[FND19] Alexa K Fox, Chinintorn Nakhata, and George D Deitz. Eat, drink, and
create content: a multi-method exploration of visual social media marketing
content. International Journal of Advertising, 38:450–470, 2019.

[GGT15] Lorenzo Gatti, Marco Guerini, and Marco Turchi. Sentiwords: Deriving
a high precision and high coverage lexicon for sentiment analysis. IEEE
Transactions on Affective Computing, 7(4):409–421, 2015.

104

https://checkthat.gitlab.io/clef2023/task2/
https://checkthat.gitlab.io/clef2023/task2/
https://www.sketchengine.eu/dewac-german-corpus/
https://www.sketchengine.eu/dewac-german-corpus/
https://wacky.sslmit.unibo.it/doku.php?id=frequency_lists
https://wacky.sslmit.unibo.it/doku.php?id=frequency_lists
https://www.deepset.ai/german-word-embeddings
https://www.deepset.ai/german-word-embeddings

[gita] Gitlab: Glove embeddings. https://gitlab.com/deepset-ai/
open-source/glove-embeddings-de. Accessed: 2023-10-27.

[gitb] Gitlab: Word2vec embeddings. https://gitlab.com/deepset-ai/
open-source/word2vec-embeddings-de. Accessed: 2023-10-27.

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Tara N Sainath, et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal process-
ing magazine, 29(6):82–97, 2012.

[HG14] Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for
sentiment analysis of social media text. In Proceedings of the international
AAAI conference on web and social media, volume 8, pages 216–225, 2014.

[HGC21] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving de-
berta using electra-style pre-training with gradient-disentangled embedding
sharing. arXiv preprint arXiv:2111.09543, 2021.

[HTFF09] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: data mining, inference, and
prediction, volume 2. Springer, 2009.

[hug] Huggingface: mdebertav3-subjectivity-german model. https:
//huggingface.co/GroNLP/mdebertav3-subjectivity-german.
Accessed: 2023-10-30.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
& Engineering, 9(3):90–95, 2007.

[IL+65] Aleksĕı Grigorevich Ivakhnenko, Valentin Grigorévich Lapa, et al. Cybernetic
predicting devices. (No Title), 1965.

[JM] Daniel Jurafsky and James H Martin. Speech and language processing: An
introduction to natural language processing, computational linguistics, and
speech recognition.

[JR99] G. Booch J. Rumbaugh, I. Jacobson. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[kil] Markus killer: textblob-de. https://github.com/markuskiller/
textblob-de. Accessed: 2023-10-27.

[KIW16] Maximilian Köper and Sabine Schulte Im Walde. Automatically generated
affective norms of abstractness, arousal, imageability and valence for 350
000 german lemmas. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), pages 2595–2598, 2016.

105

https://gitlab.com/deepset-ai/open-source/glove-embeddings-de
https://gitlab.com/deepset-ai/open-source/glove-embeddings-de
https://gitlab.com/deepset-ai/open-source/word2vec-embeddings-de
https://gitlab.com/deepset-ai/open-source/word2vec-embeddings-de
https://huggingface.co/GroNLP/mdebertav3-subjectivity-german
https://huggingface.co/GroNLP/mdebertav3-subjectivity-german
https://github.com/markuskiller/textblob-de
https://github.com/markuskiller/textblob-de

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla,
Carol Willing, and Jupyter development team. Jupyter notebooks - a
publishing format for reproducible computational workflows. In Fernando
Loizides and Birgit Scmidt, editors, Positioning and Power in Academic
Publishing: Players, Agents and Agendas, pages 87–90, Netherlands, 2016.
IOS Press.

[KRPA10] Adam Kilgarriff, Siva Reddy, Jan Pomikálek, and PVS Avinesh. A corpus
factory for many languages. In LREC, 2010.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

[KT04] Christopher D. Manning Kristina Toutanova. Stanford pos-tagger descrip-
tion. https://nlp.stanford.edu/software/tagger.html, 2004.
Accessed: 2023-01-07.

[L+11] Bing Liu et al. Web data mining: exploring hyperlinks, contents, and usage
data, volume 1. Springer, 2011.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[LJ98] Yong H Li and Anil K Jain. Classification of text documents. The Computer
Journal, 41(8):537–546, 1998.

[LKH+14] Steven Loria, Pete Keen, Matthew Honnibal, Roman Yankovsky, David
Karesh, Evan Dempsey, et al. Textblob: simplified text processing. Secondary
TextBlob: simplified text processing, 3:2014, 2014.

[LLG+19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrah-
man Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart:
Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[LMS+19] Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong Han, Arianna Yuan, and
Jiwei Li. Is word segmentation necessary for deep learning of Chinese
representations? In Anna Korhonen, David Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3242–3252, Florence, Italy, July 2019.
Association for Computational Linguistics.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

106

https://nlp.stanford.edu/software/tagger.html

[meh] Ulrich mehner: Collection of alliterations. https://www.mehner.info/
html/alliteration.html. Accessed: 2023-10-01.

[Mer14] Dirk Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239):2, 2014.

[Mic88] Jörg Michael. Nicht wörtlich genommen–schreibweisentolerante suchroutinen
in dbase implementiert. c’t Magazin für Computer und Technik, 10:126–131,
1988.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5:115–133, 1943.

[MP98] Elaine Marsh and Dennis Perzanowski. Muc-7 evaluation of ie technology:
Overview of results. In Seventh Message Understanding Conference (MUC-
7): Proceedings of a Conference Held in Fairfax, Virginia, April 29-May 1,
1998, 1998.

[MSM93] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building
a large annotated corpus of english: The penn treebank. 1993. Computational
linguistics, 1993.

[nat] 58. protocol of the austrian national council. https://www.parlament.
gv.at/dokument/XXVII/NRSITZ/58/fnameorig_878722.html.
Accessed: 2024-01-24.

[NKK+18] Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasufumi Taniguchi,
and Xu Liang. doccano: Text annotation tool for human, 2018. Software
available from https://github.com/doccano/doccano.

[nou] Nouvertne: Cologne phonetics implementation. https://pypi.org/
project/cologne-phonetics/. Accessed: 2023-09-21.

[num] pypi: num2words library. https://pypi.org/project/num2words/.
Accessed: 2023-09-26.

[OEC] OECD trust survey. https://www.oecd.org/governance/
trust-in-government/. Accessed: 2023-12-08.

[OHMI15] Mahmoud Othman, Hesham Hassan, Ramadan Moawad, and Amira M
Idrees. Using nlp approach for opinion types classifier. 2015.

[Pen] Penn treebank tagset. https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html. Accessed: 2023-01-
07.

107

https://www.mehner.info/html/alliteration.html
https://www.mehner.info/html/alliteration.html
https://www.parlament.gv.at/dokument/XXVII/NRSITZ/58/fnameorig_878722.html
https://www.parlament.gv.at/dokument/XXVII/NRSITZ/58/fnameorig_878722.html
https://pypi.org/project/cologne-phonetics/
https://pypi.org/project/cologne-phonetics/
https://pypi.org/project/num2words/
https://www.oecd.org/governance/trust-in-government/
https://www.oecd.org/governance/trust-in-government/
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

[Pos69] Hans Joachim Postel. Die kölner phonetik. ein verfahren zur identifizierung
von personennamen auf der grundlage der gestaltanalyse. IBM-Nachrichten,
19:925–931, 1969.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pages 1532–
1543, 2014.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[Ris95] Eric Sven Ristad. A natural law of succession. arXiv preprint cmp-
lg/9508012, 1995.

[Rob18] C Russell Robert. The soundex coding system. Patent No. US1261167,
1918.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[RQH10] Robert Remus, Uwe Quasthoff, and Gerhard Heyer. Sentiws-a publicly
available german-language resource for sentiment analysis. In LREC, 2010.

[SHP23] Nina Schneidermann, Daniel Hershcovich, and Bolette Pedersen. Probing for
hyperbole in pre-trained language models. In Vishakh Padmakumar, Gisela
Vallejo, and Yao Fu, editors, Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 4: Student Research
Workshop), pages 200–211, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[SL08] Helmut Schmid and Florian Laws. Estimation of conditional probabilities
with decision trees and an application to fine-grained pos tagging. In Pro-
ceedings of the 22nd International Conference on Computational Linguistics
(Coling 2008), pages 777–784, 2008.

[SMT09] Carolin Strobl, James Malley, and Gerhard Tutz. An introduction to recur-
sive partitioning: rationale, application, and characteristics of classification
and regression trees, bagging, and random forests. Psychological methods,
14(4):323, 2009.

108

[Soua] Oracle: Soundex algorithm. https://docs.oracle.com/cd/B19306_
01/server.102/b14200/functions148.htm. Accessed: 2023-09-21.

[Soub] Postgres: Soundex algorithm. https://www.postgresql.org/docs/
9.1/fuzzystrmatch.html. Accessed: 2023-09-21.

[STT95] Anne Schiller, Simone Teufel, and Christine Thielen. Guidelines f ur das
tagging deutscher textcorpora mit stts. Universität Stuttgart, Universität
Tübingen, Germany, 1995.

[Stu17] Mary E Stuckey. American elections and the rhetoric of political change:
Hyperbole, anger, and hope in us politics, 2017.

[Swa76] Marc J Swartz. Hyperbole, politics, and potent specification: the political
uses of a figure of speech. Language and Politics, pages 100–116, 1976.

[TBG+14] Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric Nyberg, and Chris
Dyer. Metaphor detection with cross-lingual model transfer. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 248–258, 2014.

[TKMS03] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In
Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics,
pages 252–259, 2003.

[TkSP21] Yufei Tian, Arvind krishna Sridhar, and Nanyun Peng. Hypogen: Hyperbole
generation with commonsense and counterfactual knowledge, 2021.

[TLPG19] Karsten Tymann, Matthias Lutz, Patrick Palsbröker, and Carsten Gips.
Gervader-a german adaptation of the vader sentiment analysis tool for social
media texts. In LWDA, pages 178–189, 2019.

[TM00] Kristina Toutanvoa and Christopher D Manning. Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger. In 2000 Joint
SIGDAT conference on Empirical methods in natural language processing
and very large corpora, pages 63–70, 2000.

[TSÖT18] Enrica Troiano, Carlo Strapparava, Gözde Özbal, and Serra Sinem Tekiroğlu.
A computational exploration of exaggeration. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages
3296–3304, 2018.

[TS18] Enrica Troiano, Carlo Strapparava, Gözde Özbal, and Serra Sinem Tekiroğlu.
A computational exploration of exaggeration. pages 3296–3304, 2018.

[Vap82] V Vapnik. Estimation of dependences based on empirical data berlin, 1982.

109

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions148.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions148.htm
https://www.postgresql.org/docs/9.1/fuzzystrmatch.html
https://www.postgresql.org/docs/9.1/fuzzystrmatch.html

[Vor21] Vorakit Vorakitphan. Fine grained classification of polarized and propagan-
dist text in news articles and political debates. PhD thesis, Université Côte
d’Azur, 2021.

[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[Wic19] Hadley Wickham. Dataset: Diamonds from hadley’s ggplot2, October 2019.

[wika] German wikipedia article about climate change. https://de.wikipedia.
org/wiki/Klimawandel. Accessed: 2023-02-05.

[wikb] German wikipedia article about feminism. https://de.wikipedia.
org/wiki/Feminismus. Accessed: 2023-02-05.

[wikc] German wikipedia article about the european migrant crisis 2015/2016.
https://de.wikipedia.org/wiki/FlÃijchtlingskrise_in_
Europa_2015/2016. Accessed: 2023-02-05.

[wikd] German wikipedia article about the wikipedia api. https://de.
wikipedia.org/wiki/Wikipedia:Technik/Datenbank/API. Ac-
cessed: 2023-04-14.

[wike] Wikipedia: Cologne phonetics. https://de.wikipedia.org/wiki/
KÃűlner_Phonetik. Accessed: 2023-09-21.

[Wikf] Wiktionary: Collection of german adjectives. https://de.wiktionary.
org/wiki/Kategorie:Adjektiv_(Deutsch). Accessed: 2023-01-07.

[Wil05] Martin Wilz. Aspekte der kodierung phonetischer ähnlichkeiten in deutschen
eigennamen. Master’s thesis, Universität zu Köln, Köln, 2005.

[WRK22] Mayur Wankhade, Annavarapu Chandra Sekhara Rao, and Chaitanya
Kulkarni. A survey on sentiment analysis methods, applications, and
challenges. Artificial Intelligence Review, 55(7):5731–5780, 2022.

[WSJB17] Swantje Westpfahl, Thomas Schmidt, Jasmin Jonietz, and Anton Borling-
haus. Stts 2.0. guidelines für die annotation von pos-tags für transkripte
gesprochener sprache in anlehnung an das stuttgart tübingen tagset (stts).
2017.

[WW16] Hadley Wickham and Hadley Wickham. Data analysis. Springer, 2016.

[YKD08] Bei Yu, Stefan Kaufmann, and Daniel Diermeier. Exploring the characteris-
tics of opinion expressions for political opinion classification. 2008.

110

https://de.wikipedia.org/wiki/Klimawandel
https://de.wikipedia.org/wiki/Klimawandel
https://de.wikipedia.org/wiki/Feminismus
https://de.wikipedia.org/wiki/Feminismus
https://de.wikipedia.org/wiki/Flüchtlingskrise_in_Europa_2015/2016
https://de.wikipedia.org/wiki/Flüchtlingskrise_in_Europa_2015/2016
https://de.wikipedia.org/wiki/Wikipedia:Technik/Datenbank/API
https://de.wikipedia.org/wiki/Wikipedia:Technik/Datenbank/API
https://de.wikipedia.org/wiki/Kölner_Phonetik
https://de.wikipedia.org/wiki/Kölner_Phonetik
https://de.wiktionary.org/wiki/Kategorie:Adjektiv_(Deutsch)
https://de.wiktionary.org/wiki/Kategorie:Adjektiv_(Deutsch)

[Zar21] Stefan Zaruba. Using Natural Language Processing to Measure the Consis-
tency of Opinions Expressed by Politicians. PhD thesis, Wien, 2021.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM
computing surveys (CSUR), 38(2):6–es, 2006.

[ZW21] Yunxiang Zhang and Xiaojun Wan. Mover: Mask, over-generate and rank
for hyperbole generation. arXiv preprint arXiv:2109.07726, 2021.

111

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Outline

	Background
	Machine Learning
	Natural Language Processing (NLP)
	Related Work

	Design
	Research Questions
	Methodological Approach
	Experiment Design
	Datasets

	Experiments
	Extracting technical terms from Wikipedia
	Opinion Type Classification
	Alliteration Detection
	Hyperbole Detection

	Evaluation
	Extracting technical terms from Wikipedia
	Opinion Type Classification
	Alliteration Detection
	Hyperbole Detection

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

