
Comparison of RDF Triplestores
in a Kubernetes Environment

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Markus Peter Bretterbauer, BSc
Matrikelnummer 01325562

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Reinhard Pichler

Wien, 27. Jänner 2024
Markus Peter Bretterbauer Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Comparison of RDF Triplestores
in a Kubernetes Environment

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Markus Peter Bretterbauer, BSc
Registration Number 01325562

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Reinhard Pichler

Vienna, 27th January, 2024
Markus Peter Bretterbauer Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Markus Peter Bretterbauer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Jänner 2024
Markus Peter Bretterbauer

v

Danksagung

An dieser Stelle möchte ich mich zuallererst bei meinem Betreuer Prof. Dr. Reinhard
Pichler bedanken, welcher mich bei meinen konzeptionellen Problemen beim Verfassen
der Diplomarbeit sehr gut unterstützt hat. Des Weiteren möchte ich mich für die schnelle
Erreichbarkeit und die unkomplizierten Treffen bedanken.

Weiteren Dank richte ich an Helmut Bretterbauer für seine emotionale Unterstützung
während des Schreibens dieser Diplomarbeit.

Schlussendlich möchte ich meinen Eltern Sonja Schmidt-Kloiber und Peter Bretterbauer
für ihre Unterstützung während meines gesamten Studiums bedanken.

vii

Acknowledgements

First, I want to thank my supervisor Prof. Dr. Reinhard Pichler, for his help and feedback
during writing this thesis. I further want to thank him for always being available when I
needed further advice.

I also want to thank Helmut Bretterbauer for his emotional support while writing this
thesis.

Finally, I want to thank my parents, Sonja Schmidt-Kloiber and Peter Bretterbauer for
their support during my studies.

ix

Kurzfassung

Semantische Netzwerke modellieren Konzepte (z.B. Personen) und ihre Beziehungen.
Diese Netzwerke werden häufig mithilfe des Resource Description Frameworks (RDF),
einem W3C Standard, modelliert, wodurch ein Datengraph entsteht. Ein Vorteil von
RDF ist, dass zusätzliches Wissen mittels Schlussfolgerungen beziehungsweise Regel-
Ableitungen generiert werden kann. Heutzutage speichern Systeme mehrere Terabyte
an Daten. Systeme, welche auf genau einer Maschine laufen, können mit solch großen
Datenmengen oft nicht mehr umgehen, da diese Maschinen durch ihren verfügbaren RAM
beziehungsweise ihre verfügbare Anzahl an CPU Cores limitiert sind. Es existieren bereits
Lösungen, die ihren Triplestore auf mehrere Maschinen verteilen. Deren Technologievielfalt
erschwert allerdings die anwendungsabhängige Auswahl. Manche dieser verteilten Systeme
wurden außerdem mit einer fixen Anzahl an CPU Cores und einer fixen Anzahl an Worker-
Nodes getestet, wodurch es unklar ist, wie sie sich in einem anderen Setting verhalten.
Des weiteren ist unklar, inwiefern diese Systeme auf dem weitverbreiteten Framework
für Container-Orchestrierung namens Kubernetes funktionieren und beispielsweise von
dessen Elastizitäts-Funktionen profitieren können.

In dieser Arbeit addressieren wir die Auswahl eines optimalen Triplestores für Kubernetes.
Im Zuge dessen definieren wir einen Anwendungsfall Betrugsbekämpfung. Wir spezifi-
zieren neun funktionale und drei Performanz-Kriterien für die Evaluierung. Durch eine
Literaturrecherche identifizierten wir drei vielversprechende Triplestores für die Cloud,
welche auch Regel-Ableitungen unterstützen, nämlich Apache Rya Accumulo, Apache Rya
MongoDB und SANSA-Stack, die wir in Kubernetes installieren. Schließlich evaluieren
wir diese Triplestores mit den vorher definierten Kriterien und ermitteln, inwieweit sie für
unseren Anwendungsfall geeignet sind. Für die Evaluierung der Performanz verwenden
wir die Kriterien Daten-Ladezeit, Anfrage-Antwortzeit und Antwortzeit bei nebenläufi-
gen Anfragen bei verschiedenen Datengrößen. Dabei wird auf den LUBM-Benchmark
zurückgegriffen. Schließlich analysieren wir die Vor- und Nachteile der Systeme.

Wir zeigen, dass Apache Rya MongoDB die meisten funktionalen Anforderungen hin-
sichtlich unseres Anwendungsfalls unterstützt. Beim Hinzufügen von Resourcen skaliert
Apache Rya MongoDB gut bezüglich nebenläufiger Anfragen. SANSA-Stack skaliert
generell sehr gut mit den verfügbaren Resourcen, benötigt jedoch sehr viel RAM. Apache
Rya Accumulo scheitert am Laden größerer Datensätze innerhalb einer angemessenen
Zeit, weshalb wir nicht jeden Test für diesen Triplestore durchgeführt haben.

xi

Abstract

Semantic networks are used in order to model concepts (e.g. persons) and their relations to
each other. These networks are often modelled using the Resource Description Framework
(RDF), a W3C standard, resulting in graph structured data. An advantage of using
RDF as data model is that reasoning/rule inferencing can be applied in order to infer
additional knowledge. On today’s systems the amount of data of a knowledge graph can
reach up to a few terabytes. Single machine systems reach their limits on those use cases
due to memory limits and performance constraints. Some systems already exist which
claim to have solved this issue by employing a triplestore in a distributed environment.
However, these systems use different techniques which makes it difficult to decide which
system shall be used for which use case. Also some systems are benchmarked using only
a fixed setting of CPU cores or number of workers making it difficult to predict how they
scale by altering these settings. Furthermore, it is unclear on how far these triplestores
support running on the widely used container orchestrating framework Kubernetes and
benefit from its elasticity capabilities.

In this work, we address the problem of selecting an optimal triplestore for a Kubernetes
environment. For this, we define a use case fraud detection for which we will evaluate our
candidate systems. We specify nine functional and three performance evaluation criteria
in order to be able to evaluate triplestores. By literature search, we identified three
promising triplestores for the cloud, which also support reasoning, namely Apache Rya
Accumulo, Apache Rya MongoDB and SANSA-Stack and we show how to deploy them in
a Kubernetes environment. We analyse these triplestores based on our defined functional
and performance evaluation criteria and discuss to which extent they benefit our defined
use case. In order to measure their performance, we measure the data loading time, the
query response time and the response times for concurrent queries for different data sizes
using the LUBM benchmark. Finally we analyse the advantages and drawbacks of each
system.

We show that Apache Rya MongoDB fulfills the most functional requirements regarding
our specified use case. In terms of performance, Apache Rya MongoDB scales well for
concurrent access when adding more resources. SANSA-Stack in general scales well with
more resources, however it requires a huge amount of memory. Apache Rya Accumulo
fails to load bigger datasets in a reasonable time, which is why we did not run every test
for this triplestore.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Preliminaries 7
2.1 RDF . 7
2.2 Kubernetes . 15
2.3 Triplestores . 18
2.4 Distributed Computation Methods . 21

3 Use Case: Fraud Detection 25

4 Evaluation Criteria 29
4.1 Functional Evaluation Criteria . 29
4.2 Performance Evaluation Criteria . 31

5 Candidate Systems 35
5.1 Apache Rya Accumulo . 35
5.2 Apache Rya MongoDB . 44
5.3 SANSA-Stack . 49
5.4 Further Systems . 53
5.5 Functional Discussion . 55

6 Performance Evaluation 57
6.1 Apache Rya Accumulo . 57
6.2 Apache Rya MongoDB . 62
6.3 SANSA-Stack . 71
6.4 Performance Discussion . 79

7 Conclusion and Future Work 81

xv

8 Appendix 85

Bibliography 111

CHAPTER 1
Introduction

Large Triplestores. The Resource Description Framework1 (RDF) which was proposed
by the World Wide Web Consortium (W3C) has become widely used in the last decades.
Data points in RDF are represented as subject-predicate-object triples where the predicate
describes the relation of the subject to the object. Multiple data points are possibly
interlinked what finally results in a knowledge graph. These triples are stored in specialized
databases, called triplestores.

Triplestores can be queried by a query language similar to SQL, called SPARQL Protocol
And RDF Query Language2 (SPARQL) where a query basically consists of triple patterns.
It is a standardized query language also proposed by W3C.

Finally, also reasoning can be applied to RDF data by specifying rules in order to derive
additional triples. Popular rulesets are contained in the Resource Description Framework
Schema (RDFS) and the Web Ontology Language (OWL). It is also possible to define
custom rules in order to further customize triple generation. Reasoning is in general
not trivial, for instance reasoning in OWL is undecidable [HPvH03]. However, decidable
fragments of OWL exist, for example OWL Lite, which provide a sufficient subset of
rules in order to define useful ontologies.

More and more companies, organisations (e.g. the DBPedia Association3) and even
governments (e.g. the Office for National Statistics4 from the United Kingdom) store
data in an RDF-based knowledge graph [AAH16]. The amount of triples being openly
accessible also increases steadily. In 2009 the amount of data in the Linked Open Data
Cloud5 was estimated to be around 4.7 billion triples [BHB09] and increased to around

1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/TR/sparql11-overview/
3https://www.dbpedia.org/, SPARQL: https://dbpedia.org/sparql
4http://statistics.data.gov.uk, SPARQL: http://statistics.data.gov.uk/sparql
5Statistics can be found at: https://lod-cloud.net/

1

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-overview/
https://www.dbpedia.org/
https://dbpedia.org/sparql
http://statistics.data.gov.uk
http://statistics.data.gov.uk/sparql
https://lod-cloud.net/

1. Introduction

150 trillion triples in 2020 [Opd21]. This imposes a challenge on systems which host
many triples in how to store triples efficiently and how to let users query them within a
small latency.

As the amount of data increases, single-machine triplestores become inefficient or even
unfeasible due to constraints on available main-memory and CPUs. For example, a very
popular6 single machine RDF framework is the Apache Jena framework7. Jena provides
capabilities to store and query RDF data in a triplestore called TDB1 (Triple Database).
Furthermore it supports RDFS and OWL to add extra semantics to the data. It also
implements OWL and RDFS reasoners and also supports the configuration of custom
inference rules. Finally, a SPARQL server can be deployed with Apache Jena Fuseki.
However, being a single-machine framework, it has limitations like how much data can
be held in memory due to memory restrictions on a single machine which can result in
performance degradation and server-crashes. Also TDB1 is not designed to be accessed
from multiple processes which limits its scalability. It claims to have solved the issue
with version 1.1.0 but only ”under most circumstances”8. This is a bottleneck for the
data ingestion phase because the database cannot keep up with the amount of data being
generated during this phase since data-ingestion can easily be scaled horizontally. A
system which succeeds TDB1, called TDB2 exists which improves some single machine
operations on the database. However, it is still a single-machine database and therefore
limits its ability to scale.

Furthermore, new data insertions may occur infrequently which results in wasted resources
on single-machine frameworks which usually have a fixed amount of resources allocated
and therefore cannot scale dynamically. For centralized databases currently this means
that large amounts of computational resources are reserved to be able to accelerate the
preprocessing phase in order for users to be able to search the data as soon as possible.
But after the computationally intensive data-insertion and rule-inferencing phases, the
database is mostly idle and over-provisioned until a new data-insertion job is issued. This
issue could be alleviated by deploying the system in a cloud environment which features
elasticity capabilities.

Current approaches. There have already been some approaches on how to achieve
horizontal scalability. One of them is to use NoSQL stores as a storage backend, which
sometimes offer native horizontal scalability like Apache Accumulo9 or Apache HBase10

which are based on the Apache Hadoop11 project. Other distributed NoSQL stores include
Apache Cassandra12 which does not have a dependency on Hadoop. Triplestores which
rely on such a storage backend include Apache Rya [PCR12] and CumulusRDF [Har11].

6Best open-source system on https://db-engines.com/de/ranking/rdf+store accessed at
3rd of August 2020

7https://jena.apache.org/
8https://jena.apache.org/documentation/tdb/
9https://accumulo.apache.org/

10https://hbase.apache.org/
11https://hadoop.apache.org/
12https://cassandra.apache.org/

2

https://db-engines.com/de/ranking/rdf+store
https://jena.apache.org/
https://jena.apache.org/documentation/tdb/
https://accumulo.apache.org/
https://hbase.apache.org/
https://hadoop.apache.org/
https://cassandra.apache.org/

Other systems rely on a distributed storage like the Hadoop Distributed File System
(HDFS) from the Hadoop framework. Such systems include SANSA-Stack [LSB+17]
and SHARD [RS10]. For data which is stored directly on HDFS, usually MapReduce or
recently, Apache Spark can be used to query data. SHARD for instance transforms a
SPARQL query into a MapReduce algorithm [RS10]. When relying on Apache Spark,
with Sparklify and Ontop one can transform SPARQL queries to SQL queries and directly
use Apache Spark SQL in order to query the data [SSGL19b, CCK+17]. This is used in
the SANSA-Stack framework [SSGL19a].

Also some specialized stores exist like the column store for (clustered) OpenLink Virtuoso
servers [Erl12, BEP14]. Virtuoso initially was implemented as a relational database
system and was later extended to support RDF data with SPARQL query- and inference
support [EM09].

We use a fraud-detection application where most of the data is loaded initially and then
only few insertions/updates happen afterwards. The time until the data can be queried
and also querying performance is crucial. However, it is unclear which triplestore solution
should be chosen for that use case.

In other words, there are many triplestores which are backed by different frameworks,
storage engines and supported features. Thus, it is unclear which solution should be
chosen also for other use cases. Some triplestores claim to be better than others (e.g.
Apache Rya is in general better than SHARD [PCR12]) but in many cases such evaluations
do not exist.

In one evaluation, the authors classify different systems based on their capabilities and
implementation techniques [KM15]. However, they do not cover some of the latest
developments on distributed RDF databases (e.g. SANSA-Stack). Furthermore they do
not cover performance, elasticity and workload evaluations on these databases. Therefore
they lack of giving a potential user significant criteria on when to use which triplestore
solution.

Additionally more and more companies are using Kubernetes as container orchestration
framework in order to run their applications. Since Hadoop was developed for YARN, it
is unclear how well systems which are based on Hadoop are supported in a Kubernetes
environment together with e.g. its elasticity features. In Figure 1.1 it can be seen, that
the interest in Kubernetes is increasing, while the interest in Hadoop is decreasing13.
The bump after 2020 may occur because of the COVID-19 pandemic.

Goal. The goal of this thesis is to define functional and performance evaluation criteria
in order for users to decide which system is best for various usage scenarios. Then we
select three candidate systems which we evaluate based on the aforementioned criteria.

In order to understand the different triplestores, we conduct a literature research and study
the examined systems. Then we install and configure those systems on a Kubernetes based

13https://trends.google.com/trends/explore?date=all&q=Hadoop,Kubernetes
14See footnote 13

3

https://trends.google.com/trends/explore?date=all&q=Hadoop,Kubernetes

1. Introduction

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

20

40

60

80

100

In
te

re
st

Hadoop
Kubernetes

Figure 1.1: Kubernetes and Hadoop - Interest Comparison14

cloud and identify possible pitfalls and limitations. Afterwards we use two benchmarks
in order to do performance evaluations for separate workloads and different settings
of computation resources in a Kubernetes-based cloud. The performance for different
query-shapes is benchmarked with the Lehigh University Benchmark (LUBM) [GPH05]
which already provides suitable queries together with an ontology and configurable data
sizes. Parallel access is benchmarked by using Apache JMeter which issues LUBM queries
in parallel (following [PCR12]). Finally, we decide which system fits our use case best.

Results. We find, that none of the evaluated distributed triplestores supports whole
OWL-Lite reasoning or custom inference rules, resulting in incomplete query answering
using the LUBM benchmark. However, Apache Rya with a MongoDB backend performs
well for increasing data sizes, although increasing resources does not always have a great
impact in terms of query response times except for parallel access. Furthermore, with
the MongoDB Kubernetes Operator, elasticity is (almost) natively supported. Apache
Rya with an Accumulo backend on the other hand was not able to load the LUBM 20
dataset in a reasonable time in our test settings. The SANSA-Stack system scaled very
well with the assigned resources. However, it would need much more resources than in
our test settings to become faster in querying than Apache Rya (MongoDB). Also, it
uses much more memory during our tests. Finally, although supporting SPARQL 1.1,
SANSA-Stack does not support SPARQL updates, insertions and deletions. Choosing
the optimal triplestore therefore depends on the requirements and the envisioned use
case.

Structure. This thesis is structured as follows: Chapter 2 provides the most important

4

definitions regarding RDF, Kubernetes and different database types. Then we define a
use case in Chapter 3 for which our candidate systems will be evaluated. In Chapter 4
we define functional and performance evaluation criteria in order to be able to evaluate
different systems. We present our candidate systems in Chapter 5 and evaluate them
based on the aforementioned functional evaluation criteria. A performance evaluation for
these systems is then conducted in Chapter 6. Finally, in Chapter 7 we conclude and
give an outlook on further interesting research topics.

5

CHAPTER 2
Preliminaries

2.1 RDF
The Resource Description Framework (RDF) is a W3C recommended1 data model for
describing resources and their relationships as a directed knowledge graph. It is a basic
building block for the semantic web. There are many public knowledge graphs like
DBpedia2, which provide their information in the form of RDF triples which can be
queried by using SPARQL which is described in Section 2.1.2.

2.1.1 Notation
In RDF each data point consists of a triple, namely subject, predicate and object. A
subject is a uniquely identified resource, represented by an Internationalized Resource
Identifier (IRI) or a blank node, which will be described later. The predicate, which
is also an IRI, describes the relation of the subject to an object. An object is again
an IRI or a blank node and can also be a literal. There are a variety of formats in
which RDF graphs can be represented as text like Turtle3, N-Triples4, RDF/XML5 and
N36. We will use Turtle in our example since it has a very compact syntax. In order to
standardize the usage of RDF in different domains, different vocabularies like FOAF7

emerged. In order to ease the work on defining triples, there are some keywords which
allow abbreviations in Turtle. The ”@prefix” keyword specifies abbreviations of the form
”a: ” where ”a” is a string containing letters and ”b” is an IRI. The prefix then

1https://www.w3.org/TR/rdf11-concepts/
2https://wiki.dbpedia.org/
3https://www.w3.org/TR/turtle/
4https://www.w3.org/TR/n-triples/
5https://www.w3.org/TR/rdf-syntax-grammar/
6https://www.w3.org/TeamSubmission/n3/
7http://xmlns.com/foaf/spec/

7

https://www.w3.org/TR/rdf11-concepts/
https://wiki.dbpedia.org/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TeamSubmission/n3/
http://xmlns.com/foaf/spec/

2. Preliminaries

can be used in triples by using the abbreviation instead of the whole IRI (e.g. defining
”@prefix abbr: <http://example.org#>” and using it in a subject of a triple declared with
”abbr:Example” results in ”<http://example.org#Example>”). Another abbreviation in
Turtle for the declaration of triples can be applied by using the ”;” keyword. With that
keyword one can omit the subject for subsequent predicate-object tuples allowing the
declaration of multiple predicates with their objects for one subject. An example of a
simple graph is given in Listing 2.1.

@prefix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@prefix f o a f : <http :// xmlns . com/ f o a f /0.1/> .

<http ://www. example . org /example#Bretterbauer>
rd f : type f o a f : Person ;
f o a f : givenName " Markus " ;
f o a f : familyName " Bret terbauer " .

Listing 2.1: RDF triple example (Turtle syntax)

The terms ”rdf:” and ”foaf:” represent the IRIs of the RDF and FOAF vocabulary
respectively. ”rdf:type” could be abbreviated by simply writing ”a” instead. Written-out,
the resulting triples are:

1. <http://www.example.org/example#Bretterbauer>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>

2. <http://www.example.org/example#Bretterbauer>
<http://xmlns.com/foaf/0.1/givenName> ”Markus”

3. <http://www.example.org/example#Bretterbauer>
<http://xmlns.com/foaf/0.1/familyName> ”Bretterbauer”

An alternative representation for the resulting triples can be given as a directed graph,
see Figure 2.1. In such a representation, subjects and objects are drawn as nodes, while
predicates are drawn as edges.

Finally we also mention the concept of blank nodes which ”indicate the existence of a
thing, without using an IRI to identify any particular thing”8. Blank nodes can occur
only as a subject or as an object of a triple and can be referenced only in that particular
graph in which they are defined. Therefore, referencing the ”same” blank node in another
graph would reference another blank node. These type of nodes have several purposes:
describing n-ary relationships9, describing meta-informations of a triple, hiding sensitive
information, expressing multi-relationships and defining resources for which a suitable

8https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes
9https://www.w3.org/TR/swbp-n-aryRelations/

8

https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes
https://www.w3.org/TR/swbp-n-aryRelations/

2.1. RDF

<http://www.example.org/example#Bretterbauer>

<http://xmlns.com/foaf/0.1/Person>

”Markus” ”Bretterbauer”

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/familyName><http://xmlns.com/foaf/0.1/givenName>

Figure 2.1: Triple Graph Example

URI temporarily cannot be identified but properties of that resources shall be stated
[CZCG12].

2.1.2 SPARQL
In order to query a collection of triples, W3C recommends the SPARQL10 query language.
In SPARQL one primarily defines basic triple patterns in order to query the triplestore.
More specifically, a query is constructed as follows11: First, one can define ”PREFIX”es
in order to abbreviate vocabulary domains when defining Triple Patterns (analogous to
@prefix in RDF definitions in Turtle format, see Section 2.1.1). Then follows a ”SELECT”
clause where one specifies variables which in the end contain the found results. Finally
follows a ”WHERE” clause containing Basic Graph Patterns (BGPs) which consist of
Triple Patterns (whitespace-separated list of triples). Additionally there are keywords
which modify the result e.g. by ordering it (”ORDER BY”) or by limiting (”LIMIT”)
the number of results. A complete list of result modifiers can be found in the W3C
documentation12. In order to evaluate the query, the query engine performs pattern
matching on those BGPs and assigns matches to the declared variables in the SELECT
clause.

A simple example for querying 10 persons who know another person whose first name
is ”Markus” is given in Listing 2.2. The OPTIONAL keyword means that if an object
for the property ”foaf:familyName” does exist for a subject ”?knowsMarkus”, it is also
returned, otherwise the output for the family name is simply empty. On the other hand,
omitting the OPTIONAL keyword would only print those subjects having their family
name persisted in the database. The number of results in this example is restricted to 10
using the LIMIT keyword.

10https://www.w3.org/TR/sparql11-overview/
11https://www.w3.org/TR/rdf-sparql-query/
12See footnote 11

9

https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/rdf-sparql-query/

2. Preliminaries

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ?knowsMarkus ? familyName WHERE {
?namedMarkus f o a f : givenName " Markus " .
?knowsMarkus f o a f : knows ?namedMarkus .
OPTIONAL { ?knowsMarkus f o a f : familyName ? familyName }

} LIMIT 10

Listing 2.2: SPARQL Example

Version 1.1 of SPARQL also supports aggregate functions like COUNT, MIN, MAX, etc.
in a fashion similar to SQL. Listing 2.3 for instance shows a query which outputs all
persons together with the number of other persons they are known by.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ? person (COUNT(? knows) as ?knownByCount) WHERE {
? person a f o a f : Person .
?knows a f o a f : Person .
?knows f o a f : knows ? person .

} GROUP BY ? person

Listing 2.3: SPARQL Count Example

Furthermore support for insertions, updates and deletions was added. An example for
an insertion is given in Listing 2.4 where a triple containing a gender is added to the
database using the ”INSERT DATA” keyword.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX example : <http ://www. example . org /example#>

INSERT DATA {
example : Bret te rbauer f o a f : gender " male " .

}

Listing 2.4: SPARQL Insert Example

Analogous to an insertion, a deletion is done by using the ”DELETE DATA” keyword.
Finally, an update is accomplished by using a ”DELETE/INSERT” operation. An
example is given in 2.5 where all occurrences of the given name ”Marcus” are updated to
”Markus”.

The DELETE and INSERT statements are optional although one of them must exist,
meaning that also insertions and deletions can be conditionally applied using the WHERE

10

2.1. RDF

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

DELETE { ? person f o a f : givenName " Marcus " . }
INSERT { ? person f o a f : givenName " Markus " . }
WHERE {

? person f o a f : givenName " Marcus " .
}

Listing 2.5: SPARQL Update Example

keyword.

2.1.3 Rule Systems

There are several rule systems in order to extend the expressiveness of RDF.

RDFS

The Resource Description Framework Schema13 (RDFS) extends RDF by adding a
vocabulary in order to be able to model ontologies. For instance it adds the support for
defining classes. Therefore it uses the properties ”rdfs:Class” in order to specify that a
resource is a class and ”rdfs:subClassOf” in order to define a class being a subclass of
another class. Furthermore it contains for instance several entailment rules in order to
derive subclass-information.

For example, if the triplestore contains both triples of Listing 2.6, then RDFS entailment
would infer the triple ”ex:Bretterbauer rdf:type foaf:Person” on the data (by using the
entailment pattern rdfs9 14).

RDFS also defines extensions to properties, for instance ”rdfs:range” which restricts
assigned objects for properties. To be more specific, for a property P and an object O,
”P rdfs:range O” states that when using property P in a triple, the corresponding object
must be an instance of class O. For example, ”foaf:knows rdfs:range foaf:Person” states,
that when using the property ”foaf:knows”, the corresponding object must be an instance
of class ”foaf:Person”. A similar concept is ”rdfs:domain” which similarly restricts the
subject instead of the object of a triple.

For a full list of features, we refer to the W3C recommendation15.

13https://www.w3.org/TR/rdf-schema/
14https://www.w3.org/TR/rdf11-mt/#patterns-of-rdfs-entailment-informative
15See footnote 13

11

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf11-mt/#patterns-of-rdfs-entailment-informative

2. Preliminaries

@prefix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
@prefix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
@prefix f o a f : <http :// xmlns . com/ f o a f /0.1/>
@prefix ex : <http ://www. example . org /example#>

ex : Bret te rbauer rd f : type ex : Student .
ex : Student r d f s : subClassOf f o a f : Person .

Listing 2.6: RDFS Example (Turtle)

OWL

The Web Ontology Language16 (OWL) further extends RDFS by providing more ex-
pressive vocabulary and entailment rules for ontology creation. It is comprised of three
sublanguages, namely OWL Lite, OWL DL and OWL Full (where OWL Lite ⊂ OWL
DL ⊂ OWL Full) which differ mainly on how a reasoner can operate on the data. For
instance, OWL Full is undecidable, therefore no complete reasoning can be guaranteed.
On the other hand, OWL DL and OWL Lite are decidable subsets of OWL [HPvH03].

OWL Lite17 is a subset of OWL which aims to provide a useful set of features while
reducing the complexity for tool developers and representing a decidable subset of OWL
Full [LN04]. It provides RDFS features together with features for stating (in-)equality of
resources and can also be used to describe property characteristics and restrictions and
also cardinality information items of associated values of a resource. For instance, an
”owl:sameAs” property, which states resource equality, can be used to state that resources
of different databases are in fact the same (e.g. database1:bretterbauer owl:sameAs
database2:bretterbauer). The property characteristic ”owl:inverseOf” states that a prop-
erty is an inverse property of another property (e.g. example:hasTeacher owl:inverseOf
example:hasStudent). Property restrictions restrict assigned values of properties. In
order to to that, one specifies a restriction as superclass of another class which defines
the restrictions which are applicable for that class. For example one could state that
object values for a property example:hasStudent must be of class example:Student by
using owl:someValuesFrom in context of a <owl:Restriction>, see Listing 2.7 for an
example. Cardinalities can be used to state that for example a subject example:Teacher
must teach at least one and at maximum thirty students using owl:minCardinality
and owl:maxCardinality in context of an <owl:Restriction>. However, in OWL Lite
cardinalities are restricted to the values ”0” and ”1”.

The OWL DL18 language contains all language features of OWL Full for which decidability
and completeness can be guaranteed. It furthermore extends OWL Lite by dropping the

16https://www.w3.org/TR/owl-ref/
17https://www.w3.org/TR/owl-features/
18https://www.w3.org/TR/owl-guide/

12

https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-guide/

2.1. RDF

@prefix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
@prefix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
@prefix owl : <http ://www. w3 . org /2002/07/ owl#>
@prefix ex : <http ://www. example . org /example#>

_: hasStudentVa luesRes t r i c t i on rd f : type owl : R e s t r i c t i o n .
_: hasStudentVa luesRes t r i c t i on owl : onProperty ex : hasStudent .
_: hasStudentVa luesRes t r i c t i on owl : someValuesFrom ex : Student .

ex : Teacher rd f : type owl : Class .
ex : Teacher r d f s : subClassOf _: hasStudentVa luesRes t r i c t i on .

Listing 2.7: OWL Restriction Example (Turtle)

cardinality constraint by allowing arbitrary numbers. For a complete list of features, see
the W3C document19.

Further fragments of OWL Full include OWL Horst (also called OWL pD*). OWL Horst
includes a subset of rules from RDFS and OWL Full while having weaker semantics than
OWL Full. Its semantic is weaker in a sense that its entailment rules are not as strict
as they are in OWL Full. For example, ”owl:sameAs” in OWL Horst is treated as an
equivalence relation instead of equality. In general, it derives less triples than OWL Full
while having a weaker computational complexity [tH05, KP15].

The LUBM benchmark we use requires OWL Lite in order for its queries to return the
complete answers [GPH05].

OWL 2

OWL 2 is an extension to OWL and is also a W3C recommendation20. It is fully
compatible with OWL, which means that OWL (1) ontologies stay valid in OWL 2.
Extensions in OWL 2 include richer datatypes, data ranges, asymmetric and reflexive
properties, etc.21 [GHM+08]. Furthermore, OWL 2 introduces the concept of Profiles
which represent subsets of the OWL 2 language in order to benefit diverse application
scenarios. It natively defines three profiles, namely OWL 2 EL, OWL 2 QL and OWL 2
RL. However, also OWL Lite can be seen as a profile in OWL 2.

The OWL 2 EL profile22 trades expressiveness with performance allowing efficient rea-
soning in very large ontologies. OWL 2 QL is designed for applications where relational
queries are used in order to search in the graph and where backward chaining is among
the most common tasks. Conjunctive query answering can be done in LOGSPACE wrt.

19https://www.w3.org/TR/owl-features/
20https://www.w3.org/TR/owl2-overview/
21A list of new features can be found at https://www.w3.org/TR/owl2-new-features/
22https://www.w3.org/TR/owl2-profiles/

13

https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-new-features/
https://www.w3.org/TR/owl2-profiles/

2. Preliminaries

the size of the data. However, the expressiveness of this profile is very limited. Finally,
OWL 2 RL offers scalable reasoning with more expressiveness. It should be particularly
used when having a rather lightweight ontology and where data operations are directly
done on RDF triples.

2.1.4 Other Rule Systems
There are further rule systems, like the generic Jena rule system where one can define
custom rules. As a simple example, the Jena rule syntax23 can be used to define a forward
chaining rule in order to derive a new triple ”b knows a” if ”a knows b” as seen in Listing
2.8.

@prefix f o a f : <http :// xmlns . com/ f o a f /0.1/> .

[knows : (?A f o a f : knows ?B) −> (?B f o a f : knows ?A)]

Listing 2.8: Inference Example

Another system where it is possible to define custom rules is the Semantic Web Rule
Language (SWRL)24 which is a proposed language for the semantic web. It combines
OWL DL and OWL Lite with the Rule Markup Language (RuleML) in order to be able
to express rules.

We also mention the Shapes Constraint Language (SHACL)25 rule system which can be
used to validate RDF graphs against a set of conditions. As an example, it can be used
to constrain the number of social security numbers for persons to exactly one, therefore
making the graph more reliable.

2.1.5 Reasoning
Reasoning or Entailment is the process of automatically deriving information from a
given knowledge base (collection of triples). In order to do this, one specifies rules on
which triple patterns must exist in a database to derive further triples.

There are basically two approaches in rule-based reasoning. One approach is called
forward chaining. In this approach, all triples are inferred and materialized before a
query is issued to the system. Forward chaining has the advantage that, compared to
backward chaining, query answering is fast since all inferred triples are already saved to
the triplestore and no further computation is needed [Rus16]. However, the process is
potentially time consuming since reasoning on the whole data needs to be done at the very
beginning after the data is loaded, resulting in a delayed access to the data. Also forward
chaining needs to be applied every time after triples are added or updated. Furthermore,

23https://jena.apache.org/documentation/inference/
24https://www.w3.org/Submission/SWRL/
25https://www.w3.org/TR/shacl/

14

https://jena.apache.org/documentation/inference/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/shacl/

2.2. Kubernetes

forward chaining may become unfeasible since potentially large datasets are derived from
comparatively few data. For instance [HZU+12] states that 33052 equivalent entities
(declared with the property ”http://www.w3.org/2002/07/owl#sameAs”) suffice to infer
over one billion triples. There are already several implementations for forward chaining
in distributed environments including the usage of MapReduce [UKOvH09, UKM+12]
and Spark jobs [KP15].

The other approach is called backward chaining where inferred triples are computed on
demand while processing a SPARQL query. This is usually done by query-rewriting
where an issued query is transformed into another query which includes the inferred
results [UvHSB11]. The advantage of this approach is that after the data is loaded,
no reasoning needs to be applied before accessing the data. Also there is no need to
infer potential triples of insertions and updates immediately since a rewritten query
automatically considers the whole dataset. However, the huge drawback of that approach
is that queries become large and potentially time consuming to answer. Furthermore
inferred triples may become computed multiple times since the resulting inferred triples
are not saved to the triplestore. Implementations of backward chaining include QueryPIE
[UvHSB11].

In order to benefit from each of the mentioned advantages and to minimize each of the
disadvantages, hybrid reasoners exist. Reasoners which use both forward- and backward-
chaining include the OWL reasoners in the Virtuoso Universal Server and the Apache
Jena project [Rus16].

2.2 Kubernetes

Kubernetes26 is an open source orchestration tool for containerized applications in a cloud
and was originally developed by Google. It eases the management of applications by
providing features like scaling, self-healing, load balancing and many others. Kubernetes
is supported by various cloud vendors like Google Cloud Platform27 (GCP), Microsoft
Azure28, Red Hat Openshift29 and Amazon AWS30. We will use the Kubernetes engine
in GCP for our evaluations.

Kubernetes basically runs containerized applications and abstracts the assignment of
computation resources. Instead of creating virtual machines with a specific configuration
by hand, one just needs to assign computation resources to Kubernetes and let the
applications define their resource configuration. Kubernetes then automatically reserves
the defined resources for the application and runs it in that setting. An example for such

26https://kubernetes.io/
27https://cloud.google.com/kubernetes-engine
28https://azure.microsoft.com/en-us/services/kubernetes-service/
29https://www.redhat.com/en/technologies/cloud-computing/openshift
30https://aws.amazon.com/eks/

15

https://kubernetes.io/
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://aws.amazon.com/eks/

2. Preliminaries

a system is the GKE Autopilot31 alleviating the user from provisioning dedicated nodes.

A Container is a virtualization which bundles all software/programs which are needed
for the intended application to run. Thus, in order to run an application in Kubernetes,
it must be wrapped into a Container-Image (e.g. with Docker32). The image must then
be uploaded into a registry and finally can be referenced in the Containers configuration
in order for the Container to run the image.

In Kubernetes, everything is created in a declarative manner. Thus, a developer chooses
what she wants and how the system shall behave, and the system tries to follow the
description, hiding the detailed implementation from the developer. Such a description/-
configuration is usually written in YAML33.

Kubernetes supports different ”objects” for deploying applications which support different
characteristics a developer can choose from.

A Pod34 is the smallest deployable unit in Kubernetes. It can host multiple containers
which run their assigned programs. Pods consume configurable amounts of virtual CPUs
(vCPUs) and memory, therefore an efficient handling of Pods is crucial in achieving a high
utilization of resources. In this thesis, the terms CPU and vCPU are used interchangeably.
For those, one defines ”resource requests” for containers in the Pods YAML configuration
and the Kubernetes system then allocates those resources from its pool of resources. The
benefit of using virtual CPUs is that one also can for instance define 0.5 vCPUs for a
Pod and thus only pay for half of a core when not much computing speed is needed.

PersistentVolumeClaims35 (PVC) can be used to request PersistentVolumes (PV) from
Kubernetes. Therefore, one basically specifies the storage capacity needed and the storage
class, which is used to support multiple storage ’qualities’ (usually in terms of speed), in
the PVC and Kubernetes tries to find a suitable PV which is then bound to the PVC.
Also different reclaiming policies are supported which indicate how the PV shall behave
when its corresponding PVC is deleted, e.g. delete the data of the PV or retain it. The
capacity of a PV does not need to be fixed, it can also be set as expandable in order to
be able to expand the capacity in the future.

Deployments36 can then be used to handle the lifecycle of Pods, starting with automatic
rollouts, replication, readiness and self-healing. For a deployment, one can also setup a
HorizontalPodAutoscaler (HPA) or a VerticalPodAutoscaler (VPA). The HPA is used to
add or remove Pods dynamically in order to fit a specified target workload, while the
VPA is used in order to dynamically set good values for CPU and memory based on
the workload of a Pod. A variation of a Deployment is a StatefulSet37 where one can

31https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-
overview

32https://www.docker.com/
33https://yaml.org/
34https://kubernetes.io/docs/concepts/workloads/pods/
35https://kubernetes.io/docs/concepts/storage/persistent-volumes/
36https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
37https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

16

https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://www.docker.com/
https://yaml.org/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

2.2. Kubernetes

specify a ”volumeClaimTemplate” in its configuration in order for (multiple) Pods to
request storage for themselves. In a Deployment on the other hand one can only request
a shared storage for all managed Pods.

To make the application reachable from within Kubernetes or from the outside world,
one needs a Service38 object. This object specifies the type of service (e.g. LoadBalancer
in order to be reached from extern or ClusterIP if it only shall be reached from within
the cloud) and the ports to which requests shall be forwarded to the application.

Finally, we mention Kubernetes Operators39, which is a pattern that aims to fully
automate the management of an application. For an operator, one creates Custom
Resource Definitions (CRD) in a declarative manner which specify application relevant
configurations. CRDs are completely user-defined and therefore there are no limitations
on what a user can declare in these. Concrete instances of CRDs are called Custom
Resources (CR). For example, a CRD could define a ”worker” property which accepts
numbers as value, representing the number of workers. Then, one can develop an operator,
which reacts on (changes to) CRs. A reaction for instance can be, that it scales up a
Deployment when the value of the ”worker” property changes from ”2” to ”3”.

Figure 2.2 shows the most important concepts used in this paper. The only physical
objects in this diagram are the Nodes which are physical machines in a Kubernetes cluster.
These nodes run several Pods which contain Containers. They also have a label assigned
in order for other objects to be able to reference them. In these containers, images are
executed. In this figure, the Pods run as parts of Deployments and StatefulSets. If a
Deployment or a StatefulSet is deleted, their managed Pods also become deleted. The
Deployment manages one PVC, while the Pods of the StatefulSet manage their own
PVCs. Finally, the Services in this example can be used in order for applications to
communicate with the Pods.

38https://kubernetes.io/docs/concepts/services-networking/service/
39https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

17

https://kubernetes.io/docs/concepts/services-networking/service/

2. Preliminaries

Figure 2.2: Kubernetes Objects Overview

2.3 Triplestores

The querying performance is a crucial aspect when choosing a triplestore. As the amount
of data increases, the response time for a query in general also increases since all matching
query patterns need to be found in the data. Also the data loading time is a relevant
aspect regarding performance for a triplestore since it indicates how much time a system
needs in order for users to start querying the data.

2.3.1 Storage

One aspect, which impacts the performance for a triplestore, is the storage backend used
in order to store data. For instance, Jena SDB stores data into an SQL database [Wil06]
[WSKR03]. Its successor, Jena TDB is a specialized storage backend which stores the
data directly on the disk. Finally, systems like Apache Rya store data in a NoSQL
database like Apache Accumulo. In this chapter we describe different approaches on how
RDF data is stored in recent systems.

18

2.3. Triplestores

Relational databases

Relational databases are the most popular40 database type. Those databases benefit
from many years of development and experience. In those databases, data is stored in
tables on which a schema is employed. A popular standardized query language for those
structural data is SQL.

NoSQL

NoSQL databases store data in a structured way, but without employing a schema on the
data. They are often used when big continuous data streams need to be saved, since they
usually have a better performance than SQL databases [JA20, LM13]. Furthermore, they
tend to be simpler to scale horizontally. However, many NoSQL stores do not support
ACID consistency. Recent developments on the other hand show that ACID compliant
NoSQL stores are possible [LSEA16].

Distributed Storage - HDFS

With the creation of Apache Hadoop, distributed storages like the Hadoop Distributed
File System (HDFS) [SKRC10] emerged. It is the open-source implementation of the
Google File System [GGL03] and is capable of storing very large datasets and provides
a fault-tolerant file system by implementing redundancy while running on commodity
hardware.

HDFS consists of NameNodes, which store metadata and provide access from clients, and
DataNodes which store the actual data. To improve durability, data is replicated three
times by default, but this is configurable. Replication does not only increase durability,
but also increases the read-performance, since data can be read from multiple disks
simultaneously.

2.3.2 Partitioning
Partitioning plays an important role when efficiently accessing data in a database. A naive
approach for storing triples is to store them into a relational table with three columns for
subject, predicate and object. However, in many use cases, many properties are queried
for one resource (star-queries), which results in a big amount of joins. An early approach
on improving the handling of star-queries is storing triples in a so-called Property Table
(PT), where the first column represents the subject and every other column all of the
known possible predicates [Wil06]. Therefore, one row stores the subject together with
every object, according to the predicate-columns of the table. This reduces the number
of joins required for a query and also helps a query optimizer to collect statistics about
the data in order to improve query ordering. However, as one can imagine, many NULL
values occur in this setup, since normally, a subject is not connected to an object for

40https://db-engines.com/en/ranking

19

https://db-engines.com/en/ranking

2. Preliminaries

every predicate which is present in the dataset. Furthermore, this approach is not very
scalable since data resides in one, possibly large, table.

A scalable approach in partitioning RDF data is Vertical Partitioning (VP) [AMMH07].
In this approach, a new table for every property in the data is generated. A table
therefore consists only of two columns, namely the subject and the object while the name
of a table represents the property. The advantage of VP is, that otherwise big tables are
divided into smaller ones and these smaller tables can be distributed to different nodes.
Furthermore the size of each table usually does not become too big which means that the
whole table can be loaded into memory. However, for some properties (e.g. the ”rdf:type”
property) the tables can still grow to a decent size. The disadvantage of this approach
is, that when querying every property for a subject, many joins, possibly across many
nodes, are needed resulting in a communication overhead. This is also true when writing
several properties for a subject.

2.3.3 Benchmarks
There are several benchmarks which are commonly used to evaluate triplestores. They
typically are able to generate datasets with adjustable sizes. One widely used benchmark
is the Lehigh University Benchmark (LUBM) which uses a university ontology [GPH05].
It consists of 14 test queries written in SPARQL. Some of these queries assume that
OWL Lite inferencing is supported in order to return the correct results. The benchmark
contains a tool, namely UBA, which is used to create data for variable university sizes.
For example, LUBM 1 (one university) contains around 100000 triples, while LUBM
50 already contains around 7 million triples [GPH05]. The performance for one of our
candidate system, Apache Rya Accumulo (see section 5.1), was evaluated with LUBM
15000 which involved 2.1 billion triples [PCR12].

Another popular benchmark is the Waterloo SPARQL Diversity Test Suite (WatDiv),
which claims to produce more realistic data for benchmarking [AHÖD14]. It supports
defining a user-defined dataset by their dataset description language41. The benchmark
contains tools for data and query generation for which one can specify the number of
query templates to be generated and also the maximum number of triple patters in the
generated queries. For basic testing, they already provide a set of 20 query templates42.
Furthermore, the data generator supports a scale factor in order to scale the number
of triples to generate. For example, the WatDiv data generator with scale factor 1 will
produce around 100000 triples. The data generated linearly scales with the scale factor
provided [AHÖD14].

Other benchmarks include the Berlin SPARQL Benchmark (BDSM) which is settled in
an e-commerce domain and the SP2Bench benchmark which uses the Digital Bibliography
& Library Project43 (DBLP) as a domain for its dataset [DKSU11].

41https://dsg.uwaterloo.ca/watdiv/watdiv-schema-tutorial
42https://dsg.uwaterloo.ca/watdiv/#tests
43https://dblp.org/

20

https://dsg.uwaterloo.ca/watdiv/watdiv-schema-tutorial
https://dsg.uwaterloo.ca/watdiv/#tests
https://dblp.org/

2.4. Distributed Computation Methods

Apple Pear Banana
Banana Peach Pear
Peach Apple Apple

Banana Peach Pear

Apple Pear Banana

Peach Apple Apple

Banana,1
Peach,1
Pear,1

Apple,1
Pear,1

Banana,1

Peach,1
Apple,1
Apple,1

Apple,1
Apple,1
Apple,1

Banana,1
Banana,1

Peach,1
Peach,1

Pear,1
Pear,1

Apple,3

Banana,2

Peach,2

Pear,2

Apple,3
Banana,2
Peach,2
Pear,2

INPUT

SPLIT

MAP SHUFFLE REDUCE

RESULT

Figure 2.3: MapReduce WordCount Example

2.4 Distributed Computation Methods

2.4.1 MapReduce

MapReduce is a highly scalable computation framework originally developed by Google
[DG04]. It basically processes key-value pairs in three steps: Map, Shuffle and Reduce.
The Map step is a user-defined function on a list of key-value pairs, which can be
computed in parallel on every connected node for the data on that node. Afterwards,
the data is ”shuffled” such that values with the same key are transported to the same
node. Finally during Reduce, a user-defined function is computed for each data point
with the same key which is again parallelisable since different keys can be computed at
different nodes. A popular example of counting words in MapReduce is given in Figure
2.3 [Läm08, DG04]. First, the input is divided into smaller subsets which are distributed
to possibly different nodes. In the Map phase, a user-defined function assigns ”1” to each
of the words, each word now being the key of its data point. Then, in the Shuffle phase,
each data point with the same key is sent to the same node, where another user-defined
function is defined, which in our case adds up the values that were assigned beforehand
in the Map phase. Finally, the resulting word-counts are collected.

An open source implementation of MapReduce is implemented in Apache Hadoop44.
Hadoop uses HDFS, which was already mentioned in Section 2.3.1, in order to store data.

However, every time when issuing a MapReduce operation, the system needs to read and
write data from and to potentially slow disks, which causes a performance bottleneck
making the framework more suitable for batch-processing than for interactive processing
[ZCF+10].

44https://hadoop.apache.org/

21

https://hadoop.apache.org/

2. Preliminaries

2.4.2 Apache Spark
In order to make processing distributed data more interactive, the Apache Spark framework
was developed [ZCF+10]. It is built around Resilient Distributed Datasets (RDDs), which
are immutable data collections. These can be held in-memory on different nodes while
providing prevention mechanisms against dataloss. Spark also supports the use of
DataFrames which are basically RDDs of structured records [AXL+15].

Data quering can be done similarly to MapReduce and HDFS can be used to load
and store data. Spark also supports a query language named Spark SQL, which is
similar to normal SQL making the system very accessible for a variety of developers
[AXL+15]. Spark SQL makes use of the known schema of DataFrames in order to
process them. For example, one can define a DataFrame collection of ”students” with a
property ”age”. DataFrames support operations to query such collections, for example in
order to query all students who are older than 25, the following Scala code can be used:
”students.where(students(”age”) > 25)” [AXL+15]. All common relational operations
(select, where, join, group-by) are supported by Spark SQL. Therefore, an SQL query
just needs to be translated into DataFrame operations in order to process a query in
Spark SQL. Furthermore, Spark Streaming was developed to support stream-processing
within Spark [ZDL+12].

When compared to MapReduce, experiments show a performance gain of one up to two
orders of magnitude [FHA18].

The architecture45 of a Spark cluster is given in Figure 2.4. The driver program contains
the main application. In this application, one must additionally specify a SparkContext
which holds Sparks cluster configuration (e.g. number of worker nodes, the image which
the worker nodes shall execute, the hostname of the cluster manager, etc.). On startup,
the driver program provides the cluster manager with its SparkContext in order for
the cluster manager to start the worker nodes. There are different cluster managers
supported by Spark, namely Standalone, Apache Mesos, Hadoop YARN and Kubernetes.
We will make use of the last one, the Kubernetes cluster manager. Thus, when the driver
program starts, it contacts the Kubernetes cluster manager which will then create Pod
objects running containerized Spark workers. Finally, when the driver program submits
a Spark application, the application is divided into single tasks which are distributed
to the worker nodes. The worker nodes execute the tasks and return the results to the
driver program.

2.4.3 Apache Flink
Apache Flink is a stream processing framework which supports both, bounded and
unbounded streams [CKE+15]. A stream is a directed acyclic graph consisting of
producers and consumers. Producers ingest data like sensor-data into the stream while

45https://spark.apache.org/docs/3.0.1/cluster-overview.html
46See footnote 45

22

https://spark.apache.org/docs/3.0.1/cluster-overview.html

2.4. Distributed Computation Methods

Figure 2.4: Spark Cluster Overview46

consumers possibly perform operations on the data or just store the data into a distributed
storage (e.g. HDFS). An important feature of Flink is the exactly one semantics such
that it is guaranteed that a data point which was ingested into the stream is processed
by it exactly once, even during node-failures.

Apart from streaming, Flink also contains libraries for graph processing and SQL-like
operations.

23

CHAPTER 3
Use Case: Fraud Detection

Fraud detection applications are gaining much interest for governments and governmental
organisations. In 2016, the European Commission estimated that around 150-170 billion
euros of value added tax were not collected by the member states of the EU. 50 billion
euros of which were allegedly defrauded by criminal organisations1,2. In 2019 the amount
was estimated to still be around 134 billion euro3. Also in other fields like healthcare, it is
estimated that alone in the USA, over 30 billion dollar were lost in 2018 due to improper
payments which also include fraud attempts [BLR+20]. Fraud detection applications
therefore are becoming increasingly important in order to be able to efficiently battle
fraud.

In Austria, the governmental Anti-Fraud Office, which operates under the Federal Ministry
of Finance4, is responsible for the fight against fraud. The Financial Police, a business
unit inside the Anti-Fraud Office, is responsible for detecting ”tax evasion, social fraud,
organised shadow economy and illegal gambling”5. Another important business office
inside the Anti-Fraud Office is Tax Investigation which is responsible for detecting
organised tax fraud by detecting and combating fraud schemes.

A criminal process is started when someone reports a potential crime to the authorities or
when the authorities themselves become aware of a potential crime6. During preliminary

1https://www.euractiv.com/section/euro-finance/news/commission-
revolutionises-vat-to-tackle-fraud/

2https://www.europarl.europa.eu/RegData/etudes/STUD/2021/697019/IPOL_
STU(2021)697019_EN.pdf

3https://ec.europa.eu/taxation_customs/news/vat-gap-eu-countries-lost-
eu134-billion-vat-revenues-2019-2021-12-02_en

4https://www.bmf.gv.at/en/the-ministry/internal-organisation/Anti-Fraud-
Office-.html

5See footnote 4
6https://www.oesterreich.gv.at/themen/dokumente_und_recht/strafrecht/1/

Seite.2460103.html

25

https://www.euractiv.com/section/euro-finance/news/commission-revolutionises-vat-to-tackle-fraud/
https://www.euractiv.com/section/euro-finance/news/commission-revolutionises-vat-to-tackle-fraud/
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/697019/IPOL_STU(2021)697019_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/697019/IPOL_STU(2021)697019_EN.pdf
https://ec.europa.eu/taxation_customs/news/vat-gap-eu-countries-lost-eu134-billion-vat-revenues-2019-2021-12-02_en
https://ec.europa.eu/taxation_customs/news/vat-gap-eu-countries-lost-eu134-billion-vat-revenues-2019-2021-12-02_en
https://www.bmf.gv.at/en/the-ministry/internal-organisation/Anti-Fraud-Office-.html
https://www.bmf.gv.at/en/the-ministry/internal-organisation/Anti-Fraud-Office-.html
https://www.oesterreich.gv.at/themen/dokumente_und_recht/strafrecht/1/Seite.2460103.html
https://www.oesterreich.gv.at/themen/dokumente_und_recht/strafrecht/1/Seite.2460103.html

3. Use Case: Fraud Detection

proceedings, authorities try to collect enough evidence in order to prove the crime. For
this, a search and seizure procedure can be executed during which evidences regarding
the crime, like documents and message protocols (e.g. e-mails and chats), are collected7.
Investigators then examine these evidences in order to prove the crime. When the
investigations show that indeed a crime was committed, the authorities bring a charge
against the accused subject. During the following trial, the authorities submit their
collected evidences in order to prove the crime. Finally, the court decides if the accused
subject is guilty based on the evidence provided.

Since data for such legal cases can reach up to some terabytes (for example, 12 terabytes
of data were seized during the investigations for the Wirecard bankruptcy [Kob]), this
data is preprocessed in order for investigators to be able to browse through the data more
efficiently. Relevant data can be all sorts of documents like bills, e-mails, conversation logs,
chats (from diverse chat-platforms and different mobile devices) and other unstructured
data. In order to combine all that data into one coherent view, software like Intella8 is used
in order to automatically extract all sorts of information from this (semi-/unstructured)
data and further construct a knowledge graph which then can be efficiently browsed and
queried by investigators. Such a knowledge graph is typically stored in a triplestore.

Common tasks in order to construct a knowledge graph include entity extraction, where
entities like persons or organisations are automatically extracted from text data and
relationship extraction, which links entities to other entities for instance by simple pattern
matching or natural language processing of text data [LQHL17, DGPN13].

For our use case of an application used for ”Fraud Detection”, we define the following
requirements:

1. Application and Framework
There exists a standalone application which uses the popular9 Apache Jena frame-
work for storing a knowledge graph as RDF into a triplestore. It therefore is
desirable that a distributed triplestore also uses this framework in order to ease
the adaption of the existing source code.

2. Data Changes
Based on new insights, investigators are able to dynamically update the data
while they are investigating. They need to have access to the most recent data
because outdated information may not accurately reflect the current state of affairs.
Therefore, any changes to the data, such as insertions, updates, or deletions based
on new insights, must be immediately reflected in subsequent requests in the dataset.
Furthermore, since reasoning is applied to the data, it is also important that the
reasoner always has access to the latest data. This ensures that the most accurate

7https://www.oesterreich.gv.at/themen/dokumente_und_recht/strafrecht/5/
Seite.2460404.html

8https://www.vound-software.com/pro
9https://db-engines.com/de/ranking/rdf+store

26

https://www.oesterreich.gv.at/themen/dokumente_und_recht/strafrecht/5/Seite.2460404.html
https://www.oesterreich.gv.at/themen/dokumente_und_recht/strafrecht/5/Seite.2460404.html
https://www.vound-software.com/pro
https://db-engines.com/de/ranking/rdf+store

and up-to-date insights are used in the investigation process. The data storage
system therefore must be designed in a way that it can quickly and accurately reflect
changes, ensuring that investigators always have the most current and relevant
data at their disposal.

3. Reasoning
In order to derive further information from the existing dataset, reasoning is
applied. We define, that OWL Lite support is sufficient. This language fragment
contains RDFS features like classes and properties together with basic inferencing
for sub-classes and sub-properties. It also provides more advanced constructs
in order to build ontologies suitable for investigations. Furthermore, the ability
for investigators to create custom inference rules is crucial, as it allows them to
automate the creation of information needed for their investigations.

4. Parallel Access
Possibly multiple investigators are accessing the data in parallel in order to speed
up the investigation. Therefore the triplestore needs to be able to handle parallel
access without (much) performance degradation. However, since it is a private
system, the number of concurrent accesses to the triplestore is limited.

The existing system shall be transformed into a distributed system in a Kubernetes cloud,
since cloud environments have the following, non exhaustive list of characteristics:

1. Elasticity
Cloud environments provide the ability to easily scale up or down based on the
current workload. This applies to both, assigned CPUs and number of workers.
Adding more resources, for instance, is relevant when reasoning is applied to the data
in order to complete this step faster. Furthermore, the workload increases if many
investigators access the system concurrently. Elasticity ensures that the system
maintains acceptable performance characteristics even if the workload increases.

2. Cost
Cloud services typically charge customers based on the resources assigned. Therefore,
if the workload is low for a specific case, together with the aforementioned scalability
feature, it is possible to save costs by scaling down the resources.

3. Reliability
The cloud infrastructure typically provides self-healing features in order to auto-
matically recover applications from a failure state.

27

CHAPTER 4
Evaluation Criteria

We aim to provide assistance in selecting a system for managing large triplestores, with
regard to the use case defined in Chapter 3. Due to our use case, we are only considering
systems that support OWL-Lite. Furthermore, the source code of these systems needs to
be open-source.

In this chapter, functional and performance evaluation criteria will be identified and
discussed in order to evaluate systems. In Section 4.1 we will discuss functional evaluation
criteria, which determine the characteristics of a system, such as its support for SPARQL,
its support for reasoning and the availability of good documentation. Furthermore, in
Section 4.2 we will identify important metrics in order to measure the performance of a
system. Examples are data load time, query time, and queries per seconds in a concurrent
access of the triplestore.

4.1 Functional Evaluation Criteria
In order for users and developers to decide, which triplestore they shall employ, some
criteria need to be defined in order to be able to make an informed choice. We identified
the following functional evaluation criteria for people to decide which triplestore shall be
used for their specific use cases.

1. Framework [KM15]
The software framework, that a software product is using, provides the foundation
for developing software applications on top of it. The choice of framework used by
a triplestore is relevant for projects that already use a specific framework to build
their existing solution. This can ease integration and reduce development time, as
well as make it more efficient for the developers to continue using a framework they
are already familiar with.

29

4. Evaluation Criteria

2. Documentation
In order to be able to use, adapt and extend the system, the amount and quality
of the available documentation is crucial. A survey1 carried out by GitHub in
2017 found out, that ”incomplete or confusing documentation” is the number one
problem encountered in open source software. Good documentation therefore can
reduce time and cost in order to be able to use and extend the software. Bad
documentation, on the other hand, may even deter potential users from wanting
to use the product. Furthermore, it may reduce the product’s live span since less
developers may be willing to put effort in maintaining or extending the source
code2.

3. Storage
The choice of a storage backend used in a software product is important because
each backend has its own advantages and trade-offs. For example, some backends
support high availability while others support high consistency. The choice can
have significant implications for the performance, scalability and reliability of the
software product. Furthermore, also other features, such as support for (automated)
backups and licence fees, may also be important for users of a triple store.

4. SPARQL Support
The supported SPARQL version is important for triplestores because it determines
the expressiveness and capabilities of the queries that can be evaluated. SPARQL
1.0 supports significantly fewer features than SPARQL 1.1. Since version 1.1 it is
possible to insert, update and delete data from the store. Furthermore, aggregate
functions are not supported in version 1.0, which restricts the ability to write
complex queries (see Section 2.1.2). Therefore, this criterion is relevant depending
on the use case in mind. Furthermore, systems may have limited support for
different SPARQL features.

5. Reasoning Fragment
The supported reasoning fragments determine which information can be derived
from the given knowledge base. Systems may support multiple reasoning fragments
out-of-the-box, allowing users to decide which reasoning fragment to apply to their
data. Users may want to decide which reasoning fragment shall be applied on the
data, as different use cases may have time constraints for the triplestore to become
accessible (forward chaining) or for queries to return results (backward chaining),
see Section 2.1.5.

6. Support for Custom Inference Rules
The support for custom inference rules allows users to create rules specialized for
their use case. This allows users to infer new information from existing data based
on their specific needs. For instance, when a knowledge graph contains triples for

1https://opensourcesurvey.org/2017/
2https://opensource.googleblog.com/2018/10/building-great-open-source-

documentation.html

30

https://opensourcesurvey.org/2017/
https://opensource.googleblog.com/2018/10/building-great-open-source-documentation.html
https://opensource.googleblog.com/2018/10/building-great-open-source-documentation.html

4.2. Performance Evaluation Criteria

bills and money transactions, one could formulate a rule which states that if there
is a transaction for a bill, then the bill has been paid.

7. Compression
Compression can affect the performance and storage requirements of a system. By
reducing the size of the data that needs to be stored and retrieved, compression
can alleviate the amount of required storage and improve the performance of the
system. This means that slow I/O operations only have to retrieve smaller amounts
of data, which can make it faster to access and query the data.

8. Ease of Deployment
Ease of deployment directly impacts the time required to integrate the system into
an existing infrastructure. We use Kubernetes as container orchestration framework.
The evaluated systems may already provide a deployment option on Kubernetes. If
they do not, we identify the pitfalls when adapting them for Kubernetes.

9. Elasticity
Elasticity refers to the ability of a system to dynamically scale its resources based on
the current workload. This can help to ensure that the system’s performance does
not degrade during a sudden increase in workload. Furthermore, cloud providers
charge customers for allocated resources, so efficient resource utilization may be
crucial in order to minimize costs. Therefore it is important to evaluate whether a
system is capable of scaling dynamically.

4.2 Performance Evaluation Criteria
We use the popular Leheigh University Benchmark (LUBM) [GPH05] for data generation
and performance evaluations. It comprises a university ontology with configurable data
sizes and is used in order to test various query shapes against the data in order to
evaluate the performance of triplestores. LUBM includes a flexible data generator called
UBA. This tool allows users to specify the number of universities for which they want to
generate data. For example, one could configure it to generate data for 20 universities.
We use an enhanced version3 which allows parallelism during data generation in order to
improve the data generation performance. Furthermore it supports the generation of data
in different formats like N-Triples. We use the default configuration with index=0 and
seed=0. We choose this benchmark over WatDiv or BDSM since it specifically assumes
OWL Lite support which is required by our use case.

In order to determine the performance of a system, we use the following metrics.

1. Data load time [PCR12].
Here we measure the data ingestion time up to the moment when the system becomes
available for querying. This may also include the time needed for reasoning on the

3https://github.com/rvesse/lubm-uba

31

https://github.com/rvesse/lubm-uba

4. Evaluation Criteria

data. Due to different partitioning strategies and possible network-communication
between the nodes, this test is also relevant when determining the scaling factor
when increasing the number of worker nodes. In order to do this, we will use the
system’s web endpoint for inserting data and measure the time until the request
is completed. This endpoint will be accessed from a separate Pod in Kubernetes,
where the LUBM data, which will be stored in the triplestore, will also be located.

2. Query time [SGK+19][PMNH18].
Here we measure the average and median query time with standardized queries in
order to measure the system’s response times. For that we use the UBT tool of the
LUBM benchmark. During the test, the queries are executed sequentially and the
average and the median response time of 5 requests per query is taken (following
[SGK+19]). The test will be issued from a separate Pod accessing the triplestores
web-endpoint.

3. Queries per second and latency [PCR12][SD17].
This metric simulates a concurrent triplestores access from multiple clients in order
to evaluate how the system performs under stress when multiple requests are issued
simultaneously. We choose 8 as the number of parallel clients, which was also
the setup in [PCR12]. We will use Apache JMeter in a separate Pod in order to
simulate concurrent client requests to the triplestore.

We will measure several non-functional metrics in order to determine the footprint of
the triplestores while the aforementioned tests are performed. To do this, we use the
Kubernetes metrics4 of GCP’s cloud monitoring to take our measurements. GCP provides
a dashboard to examine the observed metrics and also offers an option to download a
metric in a specific time frame. Each data point is measured in a 1 minute interval.

1. Network communication (peak) [PMNH18].
In a distributed triplestore, data is stored across multiple nodes and communication
between these nodes may be required for storing and querying the data. As a result,
the amount of network communication needed by a triplestore is an important
criterion to consider when evaluating its performance. In GCP, we use the
”kubernetes.io/pod/network/sent_bytes_count” metric, which measures the bytes
sent during a specific interval.

2. Memory usage (peak) [PMNH18].
Memory usage can affect the performance and scalability of a distributed triplestore.
Each node in the system has its own memory limitations. Depending on how much
data is stored in-memory on a node, it may need to swap data in and out of disk
storage, which can significantly slow down its operations. In extreme cases, a node
may even run out of memory and crash. As the size of the data stored in the

4https://cloud.google.com/monitoring/api/metrics_kubernetes

32

https://cloud.google.com/monitoring/api/metrics_kubernetes

4.2. Performance Evaluation Criteria

triplestore grows, the memory requirements for storing and processing data may
also increase. Measuring the memory usage during the execution of our benchmarks
can provide valuable information about the system’s performance and scalability.
For measuring the memory usage, we use the
”kubernetes.io/container/memory/used_bytes” metric in GCP in order to deter-
mine the memory usage during a test.

3. Storage size [RDE+07].
This metric is used since storage is also a cost factor for a system. Triplestores
may improve their performance by storing data multiple times or by providing
exhaustive indexing. Some systems may also support data compression to reduce
storage requirements. Determining the needed storage for a triplestore is there-
fore an important value to consider. We measure this value by observing the
”kubernetes.io/pod/volume/used_bytes” metric in GCP.

For a detailed performance comparison, the systems will be compared using the following
setups:

1. LUBM 1 and 20 [SSGL19b].
We will use LUBM with 1 and 20 universities in order to evaluate how each
triplestore will adapt to various data sizes. Larger datasets will not be evaluated
since our candidate systems already claim that they can be used for large datasets
(see Sections 5.1, 5.2 and 5.3). Also, large data sizes would be infeasible when
evaluating with only few and weak worker nodes whose settings will be introduced
in the next items. We use the N-Triples format for the generated files. The data
size of these LUBM settings is given in Table 4.1. It can be seen, that both in
terms of the number of triples and size, the LUBM 20 dataset is about 27 times
bigger than the LUBM 1 dataset.

2. Number of worker nodes: 1, 2 and 4 [SGK+19].
Testing the horizontal scalability of a distributed triplestore by performing tests on
1, 2 and 4 worker nodes for each LUBM dataset can help to determine how well
the system scales in terms of performance when adding more workers. If a system
scales well, it may be desirable to add more worker nodes in order to improve
performance, depending on the use case.

3. CPU cores: 1, 2 and 4 [Daw16].
The vertical scalability of a triplestore is evaluated by varying the number of CPU
cores of each worker. This allows us to evaluate how well the system scales in terms
of performance when adding more cores to each node. In some cases, horizontal
scaling may result in the network communication between nodes reaching the
network’s upper limit capacity. To mitigate this, it is possible to scale vertically
by adding more cores to worker nodes. Also here, if a system scales well vertically,
adding CPU cores to workers may be desirable depending on the use case. We
evaluate configurations with 1, 2 and 4 cores.

33

4. Evaluation Criteria

LUBM Triple Count Size
1 103076 18MB
20 2781362 491MB

Table 4.1: LUBM data sizes

Each node will have assigned as much memory, as the framework documentation of
each system suggests. When we encounter out-of-memory errors, we adjust the assigned
memory and repeat that test.

In order to measure the performance of parallel clients, we use Apache JMeter5 which
can issue our queries in parallel by using threads.

We perform our performance measurements in the Google Kubernetes Engine (GKE) in
an ”autopilot” cluster. We chose the compute class for our cluster to be ”Scale-Out” in
order to be able to choose our CPU platform6. To the end, we configure our cluster to use
AMD EPYC 7B137 with a base frequency of 2.45GHz by setting the CPU architecture
to ”amd64”. Furthermore, GKE specifies no limit for the network bandwidth between
internal nodes8.

5https://jmeter.apache.org/
6https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-

compute-classes
7https://cloud.google.com/compute/docs/cpu-platforms
8https://cloud.google.com/vpc/docs/quota#per_instance

34

https://jmeter.apache.org/
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-compute-classes
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-compute-classes
https://cloud.google.com/compute/docs/cpu-platforms
https://cloud.google.com/vpc/docs/quota#per_instance

CHAPTER 5
Candidate Systems

5.1 Apache Rya Accumulo
Apache Rya is a distributed RDF store which is based upon a NoSQL store such as
Apache Accumulo or MongoDB. It was promoted1 to a Top-Level Project of the Apache
Software Foundation in September 2019 and therefore is a very promising triplestore
solution. We will use Accumulo as backend in this chapter which is the original storage
backend for Rya (RDF y(and) Accumulo2).

It has been shown that Rya can answer most LUBM queries for the LUBM 15000
dataset in under a second even with multiple clients accessing the store concurrently
[PCR12, PCR15]. However, they used a strong setting with 10 Hadoop DataNodes and
10 Accumulo Tablet Servers, each node having 8 cores with 16GB of memory. Thus it
occupies many computing resources even when the store is not being accessed.

5.1.1 Storage
Accumulo3 is a distributed NoSQL store which is modeled after Googles Bigtable [PCR12].
It uses tables to store key-value pairs and uses HDFS as underlying storage. Also data
compression is supported.

Each row in an Accumulo table is lexicographically sorted by key, enabling fast retrieval
of a row [KAB+14]. In order to distribute the data on different nodes, tables are split
into possible multiple sub-tables, called tablets. These tablets are finally distributed
across the available HDFS DataNodes.

1https://blogs.apache.org/foundation/entry/the-apache-software-foundation-
announces56

2https://github.com/apache/rya#overview
3https://accumulo.apache.org/1.10/accumulo_user_manual.html

35

https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces56
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces56
https://github.com/apache/rya#overview
https://accumulo.apache.org/1.10/accumulo_user_manual.html

5. Candidate Systems

In order to create rows for Accumulo in Rya, RDF data points are translated to key-value
pairs according to Table 5.1 [PCR12]. Hence the whole triple is saved into the Row ID part
of the key. The Qualifier and Value fields stay empty. The benefit of storing the whole
data in the Row ID is that Accumulo sorts and partitions its data based on that column.
This results in a faster access for data which is probable to be accessed together. For
instance all triples regarding a subject ”<http://example.org/example#Bretterbauer>”
are stored in close proximity because of the lexicographical ordering of the Row ID.
Furthermore because of the grouping based on the Row ID, those triples also have a high
probability to be stored on the same tablet server. An example of data partitioning can be
seen in Figure 5.1. There, a single table is split into four tablets, where it is ensured that
all columns for a particular row can be found on the same tablet. These tablets are then
persisted on (possibly) different Tablet Servers. Finally Rya employs three table indices,
namely SPO, POS, OSP in order to improve querying performance. These indices are
easily created by ordering ”subject,predicate,object,type” in the Row ID according to
the given index. For example, the Row ID for the POS (= Predicate-Object-Subject)
table index is built by concatenating ”predicate,object,subject,type”.

Key
ValueRow ID Column TimestampFamily Qualifier Visibility

subject,predicate,object,type graph name visibility timestamp

Table 5.1: Key-Value pair in Accumulo [PCR12]

Accumulo basically consists of three components, a master server, at least one tablet
server and at least one garbage collector. An architecture diagram can be found in Figure
5.2 [PKAS17].

The master server is basically responsible for balancing the load across potentially multiple
Tablet Servers5. This is done by distributing tablets to different Tablet Servers. It also
handles client requests for creating, editing and deleting tables. Furthermore the master
server is responsible for reacting to failures in Tablet Servers and for their recovery.

Tablet Servers represent the worker nodes and are responsible for managing a subset of
all tables. They basically handle writes and reads from clients. Writes are performed
initially in a write-ahead log in order to be able to recover from node failures. This log is
periodically flushed to HDFS.

Zookeeper maintains configuration information and provides distributed synchronization.
It is also used to distribute6 a secret key to the master and tablet servers. Accumulo
services require this secret to create and verify delegation tokens. These tokens are

4https://accumulo.apache.org/1.10/accumulo_user_manual.html#_data_
management

5https://accumulo.apache.org/1.10/accumulo_user_manual.html#_architecture
6https://accumulo.apache.org/1.10/accumulo_user_manual.html#_delegation_

tokens_2

36

https://accumulo.apache.org/1.10/accumulo_user_manual.html#_data_management
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_data_management
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_architecture
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_delegation_tokens_2
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_delegation_tokens_2

5.1. Apache Rya Accumulo

Figure 5.1: Accumulo Data Distribution4

needed for authentication and authorization of users. The master for instance requires to
know whether a user is authorized to create or delete tables, while tablet servers need to
know if a user is allowed to write data.

Further components include garbage collectors which periodically identify files in HDFS
which are no longer needed and delete them from the system. One can also deploy
tracers and monitors where tracers write timing information to Accumulo tables and
monitors provide statistics about the Accumulo database. Finally, clients can interact
with Accumulo over Zookeeper.

5.1.2 Query- and Inferencing

Query processing in Rya is done by using the Eclipse RDF4J framework, which is the
successor of the OpenRDF Sesame framework [PCR12]. For simple querying, a SPARQL
query is translated into a query evaluation plan and the best suited index-table(s) to
lookup from are selected.

For example, when querying all students who study computer science at TU Vienna,
one could formulate the SPARQL given in Listing 5.1. The resulting query pattern
for the first part of the query is (*,ex:studiesAt,ex:TUVienna) and for the second
part (*,rdf:type,ex:ComputerScienceStudent). Due to the query patterns being (*,p,o),

37

5. Candidate Systems

Figure 5.2: Accumulo Architecture Overview [PKAS17]

Accumulos POS table is used [PCR12]. First, a range scan on the key ”ex:studiesAt,
ex:TUVienna” is performed on that table where all students, which study at TU Vienna,
are returned. Then, a simple scan for row-existence is performed for all students since
the pattern becomes (?student,p,o), where ?student is a bound variable from the previous
step. These queries are thus performed on the SPO table.

PREFIX ex : <http :// example . org/>

SELECT ? student WHERE {
? student ex : s tud ie sAt ex : TUVienna .
? student a ex : ComputerScienceStudent .

}

Listing 5.1: SPARQL Example

The tablet servers of Accumulo process requests using an iterator framework which also
allows tablet servers processing entries in parallel [SOTY13]. The (filtered) results of all
tablet servers are sent and and finally combined at Rya.

Further query performance improvements are accomplished by using parallel joins and
also a ”Batch Scanner” was implemented, which improves access of tables. Also statistics
about data in order to improve the ordering of joins are collected.

When data is loaded into Rya, it triggers MapReduce jobs in order to infer additional

38

5.1. Apache Rya Accumulo

relationships and stores the resulting triples into the database [PCR15]. These jobs run
as long as new relationships are found and terminate otherwise. Furthermore, query
expansion is used for some inferencing rules during querying.

An alternative to using MapReduce was proposed in [PCR15]. They extend the TinkerPop
Blueprints implementation of the OpenRDF Sesame Api in order to construct and cache
the resulting inferred graph in-memory at the master node of Rya. Apache TinkerPop7

is a graph computing framework which uses Gremlin as query language. This reduces
the amount of time needed for finding relationships in the data since Accumulo does not
need to be queried and query expansion can be done locally.

Rya exposes endpoints to load and to query (via SPARQL) data. In order to import
data in the N-Triples format, we use the endpoint ”/web.rya/loadrdf?format=N-Triples”.
The data itself is sent via a POST request and with ”Content-Type: text/plain” to this
endpoint. Querying is done using the endpoint ”/web.rya/queryrdf?query.infer=true&
query=<URL-encoded query>”. The path states that inferencing is enabled during
querying.

5.1.3 Deployment

In order to deploy the system we must consider the following components: Apache
Zookeeper, Apache Hadoop, Apache Accumulo and finally Apache Rya. Rya, in time of
this writing in version 4, only supports Accumulo in version 1, which itself only supports
Hadoop in version 2.

We use the already dockerized Apache Zookeeper 3.48 without modifications. For HDFS
in version 2, we use the Hadoop-Stack Docker images from the Big Data Europe initiative9

and translated their ”docker-compose.yml” into corresponding Kubernetes objects. The
default heap size for Hadoop DataNode is 1GB, therefore we set the memory for that Pod
to 1GB and the number of vCPUs to 0.25 since each core should be able to handle up to
4 disks10. They define volumes for NameNodes, DataNodes and history servers, therefore
we create StatefulSets for those services. For the other services, we create Deployments.
Furthermore they define port bindings which we translate into Kubernetes Services.
The service object for the NameNode as example is given in Listing 5.2. Additionally
they define ”SERVICE_PRECONDITION”s in that YAML file, which we translate into
Kubernetes init-containers in order to check if the preconditioned service has already
been started. This is done by utilizing the BusyBox docker image in version 1.3211

by issuing a simple nslookup for the preconditioned service. An example for such an
init-container is given in Listing 5.3.

7https://tinkerpop.apache.org/
8https://hub.docker.com/_/zookeeper
9https://github.com/big-data-europe/docker-hadoop

10https://accumulo.apache.org/1.10/accumulo_user_manual.html#_hardware
11https://hub.docker.com/_/busybox

39

https://tinkerpop.apache.org/
https://hub.docker.com/_/zookeeper
https://github.com/big-data-europe/docker-hadoop
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_hardware
https://hub.docker.com/_/busybox

5. Candidate Systems

kind : S e rv i c e
ap iVers ion : v1
metadata :

name : namenode
l a b e l s :

k8s−app : namenode
spec :

por t s :
− name : tcp −9870−9870−ngr2r

p ro to co l : TCP
port : 9870
targe tPor t : 9870

− name : tcp −9000−9000−b8kj4
p ro to co l : TCP
port : 9000
targe tPor t : 9000

− name : tcp −50070−50070
p ro to co l : TCP
port : 50070
targe tPor t : 50070

s e l e c t o r :
k8s−app : namenode

type : Cluster IP
c l u s t e r I P : " None "
s e s s i o n A f f i n i t y : None

Listing 5.2: NameNode Service

To deploy Accumulo, we download version 1.10 and encapsulated it into a docker
image together with Java 8, Zookeeper 3.6.2 (client) and Hadoop. As base image we
choose ”centos:7”12. Hadoop and Zookeeper are needed inside the image since the root
directories of those frameworks are referenced in Accumulos ”/conf/accumulo-site.xml”
and ”/conf/accumulo-env.sh”. During the docker-build we also build Accumulos native
library for performance improvements13. We configured accumulo to use up to 3GB
of heap-storage per instance. Furthermore, since we only need to be able to scale the
workers, we encapsulated all accumulo-components, except for the tablet-server (slave)
into a single docker image. For the tablet server, another docker image was created.
Their difference lies in their startup and the specification of the location of other services.
For Accumulo one specifies the hostnames of all slaves in a dedicated ”slaves” file. In
order for that to be configurable in Kubernetes, we create another ConfigMap which

12https://hub.docker.com/_/centos
13https://accumulo.apache.org/1.10/accumulo_user_manual.html#_native_map

40

https://hub.docker.com/_/centos
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_native_map

5.1. Apache Rya Accumulo

ap iVers ion : apps/v1
kind : S t a t e f u l S e t
metadata :

spec :
template :

spec :
i n i t C o n t a i n e r s :
− name : i n i t −datanode

image : ’ busybox : 1 . 3 2 ’
command :

− sh
− ’−c ’
− >−

u n t i l nslookup namenode ;
do echo wai t ing f o r namenode ; s l e e p 2 ;
done

(. . .)

Listing 5.3: Init-Container example

is injected into the master node of accumulo. Furthermore, since the accumulo-slave
is configured for up to 3GB heap usage, the slave-pods memory is set to 3.5GB. The
number of cores for the slave-pods are varied during the tests. Finally, we assigned one
core and 1GB of memory to the collection of accumulo-components, since most of the
work should be done by the slaves.

For Rya, we download version 4.0.1 and compile it with JDK 8. The resulting ”.war”
file is encapsulated into a docker container together with Zookeeper 3.6.2. As base
image we choose ”tomcat:jdk8”14 since the .war file needs to be deployed in a web-server.
Furthermore JDK 8 is included in that base image. We also modified the startup of
the tomcat server by setting ”-Xms512m” and ”-Xmx16384m" in order to allow the
application to use 512MB up to 16GB of memory. The upper limit was a setting used by
[PCR12]. Furthermore we set the number of cores to 2. In Kubernetes we also specified
an init-container for Rya in order to wait for all accumulo-slaves to be ready. This is
necessary since Rya creates all tables during startup and no rebalancing occurs when a
new slave is being started afterwards.

The resulting Kubernetes deployment schema is depicted in Figure 5.3. However, for
the purpose of simplification, we omitted the corresponding Kubernetes objects for
the remaining Hadoop and Zookeeper components in that diagram. The Apache Rya
webserver is connected to the Accumulo master node over the corresponding Service
object. The Accumulo master reads from its attached ConfigMap the hostnames of the

14https://hub.docker.com/_/tomcat

41

https://hub.docker.com/_/tomcat

5. Candidate Systems

Accumulo slaves and connects to them also via the regarding Service object. Finally, the
slaves connect to the Hadoop DataNodes (by fetching the hostnames from Zookeeper)
which all have PersistedVolumeClaim objects assigned. Finally, PersistedVolumes are
assigned to match the requirements of the PersistedVolumeClaims where the data of the
DataNodes is stored.

Figure 5.3: Apache Rya Accumulo Deployment

5.1.4 Functional Evaluation
In this section we evaluate the functional characteristics of Apache Rya Accumulo,
according to our definition in Section 4.1.

1. Framework
The system uses the Eclipse RDF4J framework as foundation to process RDF data.
Therefore, the currently used system of our use case would need to be adapted in
order to support also the RDF4J framework.

2. Documentation
The documentation15 of Apache Rya contains useful examples on how to deploy,
load and query data. Also source code examples are provided. Therefore, we find
the documentation of this system to be useful.

3. Storage
Apache Accumulo uses Hadoop as background storage, which is a highly consistent16

framework. That means that always the latest data is seen by a user of the system.
Also, regarding partition tolerance, the NameNodes and DataNodes are designed

15https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/
markdown/index.md

16https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-common/
filesystem/introduction.html#Consistency

42

https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/markdown/index.md
https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/markdown/index.md
https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-common/filesystem/introduction.html#Consistency
https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-common/filesystem/introduction.html#Consistency

5.1. Apache Rya Accumulo

to be highly available17, which means that the system continues to function even
when some nodes cannot communicate among themselves any more. However,
regarding availability, the system does not always guarantee an answer to a request18.
Regarding our use case this would meet our requirements.

4. SPARQL Support
Apache Rya fully supports SPARQL 1.1 [PCR15]. Therefore there are no limitations
for our use case.

5. Reasoning Fragment
Apache Rya only supports simple reasoning including seven rules19. For our use
case, at least OWL-Lite support is required.

6. Support for Custom Inference Rules
Apache Rya Accumulo does not support custom inference rules. In order to support
them, one could extend the InferenceEngine20 in Rya.

7. Compression
Data compression is supported for Apache Rya Accumulo21. The supported22

compression types are: gz23, snappy24 and lzo25. Therefore it is assumed, that data
can be stored in a compact form.

8. Ease of Deployment
Apache Rya Accumulo is relatively hard to deploy, which also lies in the amount
of components working together. As described in Section 5.1.3 there are four
independent software products involved, namely Apache Zookeeper, Apache Hadoop,
Apache Accumulo and Apache Rya itself. Together with several version requirements
of the components among themselves in the deployment, it can be quite cumbersome
to do it successfully. Even more, as each of these components needs at least one
Kubernetes object in order to function. Therefore, it is not easy to be deployed in
Kubernetes.

9. Elasticity
Finally, when evaluating the elasticity characteristic of the system, we find that it

17https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithNFS.html

18https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-common/
filesystem/introduction.html#Operations_and_failures

19https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/
markdown/sm-infer.md

20https://github.com/apache/rya/blob/master/sail/src/main/java/org/apache/
rya/rdftriplestore/inference/InferenceEngine.java

21https://accumulo.apache.org/1.10/accumulo_user_manual.html#_introduction
22https://accumulo.apache.org/1.10/accumulo_user_manual.html#_table_file_

compress_type
23https://www.gnu.org/software/gzip/
24http://google.github.io/snappy/
25http://www.oberhumer.com/opensource/lzo/

43

https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-common/filesystem/introduction.html#Operations_and_failures
https://hadoop.apache.org/docs/r3.3.6/hadoop-project-dist/hadoop-common/filesystem/introduction.html#Operations_and_failures
https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/markdown/sm-infer.md
https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/markdown/sm-infer.md
https://github.com/apache/rya/blob/master/sail/src/main/java/org/apache/rya/rdftriplestore/inference/InferenceEngine.java
https://github.com/apache/rya/blob/master/sail/src/main/java/org/apache/rya/rdftriplestore/inference/InferenceEngine.java
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_introduction
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_table_file_compress_type
https://accumulo.apache.org/1.10/accumulo_user_manual.html#_table_file_compress_type
https://www.gnu.org/software/gzip/
http://google.github.io/snappy/
http://www.oberhumer.com/opensource/lzo/

5. Candidate Systems

somewhat lacks to be able to dynamically scale because of the following reasons.
Accumulo stores the hostnames of all tablet servers in a single slaves-file (see Section
5.1.3) which is injected into the master node of Accumulo. Thus the number (and
hostnames) of the tablet servers needs to be known beforehand and cannot be
adapted dynamically. For up- and downscaling this means, that the hostnames
would need to be adapted in that file and the Accumulo’s master node would need to
react to changes in this file. Accumulo 2 already implements such a functionality26.
It also implements enhancements like rebalancing the tablets of the tablet servers
on such cases. Thus it seems to be sufficient to let Apache Rya support Accumulo
2. Then, the master- and worker nodes need to access a shared volume with that
slaves-file (in Accumulo 2 it is called ”tservers”) and upon worker creation and
deletion the file needs to be updated, based on the Pods DNS hostname.

As a summary, the triplestore supports many functional features we require for our use
case. It has good documentation, suitable storage characteristics, SPARQL 1.1 support
and support for data compression. However, it lacks functionality in several aspects for
our use case. First, our source code would need to be adapted to support RDF4J. It does
not support all OWL-Lite rules and also does not support custom inference rules. The
triplestore itself is scalable in terms of adding worker nodes and storage, but it lacks the
elasticity feature because of the aforementioned reason. Furthermore, the deployment of
the system presents a significant challenge.

5.2 Apache Rya MongoDB
Analogous to Chapter 5.1, in this chapter we will again analyse Apache Rya, but this time
with a MongoDB backend. The advantage of using MongoDB in a Kubernetes context is
that it does not rely on Hadoop components and Zookeeper which also incorporate a
specific order on which the components need to be started. Furthermore, with Kubernetes
Service objects, another concept on how to address applications, namely via hostnames,
is available instead of using Zookeeper. There has been no performance evaluation on
Rya with MongoDB to the best of our knowledge.

5.2.1 Storage
MongoDB is an ACID compliant NoSQL document store which is developed by MongoDB
Inc. [MMW+21]. It stores its documents in the BSON format, which is an extension
and binary representation of the popular JSON format. An example27 of a document is
given in Listing 5.4. A document is uniquely identified by an ObjectId and can contain
multiple embedded documents [MTS+21]. The embedded sub-document in the example
is the ”personalinfo” part. In order to reference the student from the example in another

26https://accumulo.apache.org/docs/2.x/administration/in-depth-install
27https://docs.mongodb.com/manual/core/data-modeling-introduction/#document-

structure

44

https://accumulo.apache.org/docs/2.x/administration/in-depth-install
https://docs.mongodb.com/manual/core/data-modeling-introduction/#document-structure
https://docs.mongodb.com/manual/core/data-modeling-introduction/#document-structure

5.2. Apache Rya MongoDB

document, one just needs to include: student_id: ObjectId(”a12bc28dffa13315bcca1a25”)
into the other document, where ”student” (in student_id) is the name of the document
and the value is the ObjectId of the entry.

Document: student

{
_id: ObjectId("a12bc28dffa13315bcca1a25"),
studentnumber: "01325562",
personalinfo: {
firstname: "Markus",
lastname: "Bretterbauer"

}
}

Listing 5.4: MongoDB Embedded Documents Example

Apache Rya MongoDB stores triples by assigning the relevant triple parts to corresponding
keys28, see for example in Listing 5.5. Also some more fields are stored, like the hash-
value of the corresponding subject value, but we omit these for simplicity reasons. The
”<idValue>” is basically generated by concatenating subject, predicate and object of the
triple. The result is then converted into a string representation of the hexadecimal values
of each byte of the concatenated string. The other ”<value>”s represent the corresponding
parts of the triple. For more details we refer to the SimpleMongoDBStorageStrategy.java
file of the source code29.

{
_id: ObjectId("<idValue>"),
subject: "<value>",
predicate: "<value>",
object: "<value>",
(...)

}

Listing 5.5: MongoDB Triple Document

Apache Rya MongoDB also creates three indices30. for its data, namely SPO, POS
and OSP in order to improve querying performance. For this, MongoDB provides a
”createIndex()” operation which takes the keys to build an index for as arguments (e.g.

28https://github.com/apache/rya/blob/master/dao/mongodb.rya/src/main/java/
org/apache/rya/mongodb/dao/SimpleMongoDBStorageStrategy.java

29See footnote 28
30See footnote 28

45

https://github.com/apache/rya/blob/master/dao/mongodb.rya/src/main/java/org/apache/rya/mongodb/dao/SimpleMongoDBStorageStrategy.java
https://github.com/apache/rya/blob/master/dao/mongodb.rya/src/main/java/org/apache/rya/mongodb/dao/SimpleMongoDBStorageStrategy.java

5. Candidate Systems

”subject”, ”predicate” and ”object”). The values of these fields are then sorted in ascending
order and stored in a B-tree for faster access.

Documents are aggregated to form a collection, which is comparable to a table in relational
databases. These collections however do not need to follow a specific schema. A database
finally contains potentially multiple collections.

A MongoDB cluster is comprised of a primary node, secondary nodes and an arbiter node
[MMW+21], see Figure 5.4. When issuing a write operation to MongoDB, the primary
node writes the data and all secondary nodes will replicate the write in order to achieve
high availability. The arbiter node is responsible for selecting a new master node in case
the current master fails.

Figure 5.4: MongoDB Cluster [MMW+21]

MongoDB has support for a concept called sharding where the data is divided into subsets
and these are then distributed across multiple shards [MMW+21]. The big advantage
of sharding is that when requesting data which resides on a single shard, the system
only has to lookup a subset of the data decreasing the response time31. Also the overall
storage usage is decreased since it is not necessary for each shard to hold the whole
dataset and an arbitrary number of shards can be added to the system. A disadvantage
of sharding is that queries are more complex to handle across multiple shards and there
needs to be a server which merges all the results into a single result set.

5.2.2 Query- and Inferencing

Since Apache Rya MongoDB also uses the Eclipse RDF4J framework, we refer to Section
5.1.2 for details on query building and index selection. Analogous to Apache Rya
Accumulo, Apache Rya MongoDB uses iterators32 in order to collect the results of a

31https://www.mongodb.com/features/database-sharding-explained
32https://github.com/apache/rya/tree/master/dao/mongodb.rya/src/main/java/

org/apache/rya/mongodb/iter

46

https://www.mongodb.com/features/database-sharding-explained
https://github.com/apache/rya/tree/master/dao/mongodb.rya/src/main/java/org/apache/rya/mongodb/iter
https://github.com/apache/rya/tree/master/dao/mongodb.rya/src/main/java/org/apache/rya/mongodb/iter

5.2. Apache Rya MongoDB

query. The web endpoint in order to load and query data is also the same as with Apache
Rya Accumulo.

However, the documentation itself lacks information on how Apache Rya MongoDB
exactly handles joins and how it performs inferencing.

5.2.3 Deployment
For the deployment of MongoDB, we use the official MongoDB Community Kubernetes
Operator33. For the database instances, it can use every MongoDB docker instance34

available. Furthermore it features the creation of replica sets together with up- and
downscaling. The operator is even able to scale the replica sets during reads and writes.
However, sharded clusters are currently not supported by the MongoDB Community
Kubernetes Operator.

In order to connect Apache Rya to the MongoDB instance, we adapt its configuration
according to its manual35. However, the inferencing parameters during querying seemed
not to work by the same means as for the Accumulo database backend, thus we modified
the source code a little in order to apply inferencing on all queries by default.

For our scaling measurements, we alter the ”members” field (1/2/4) in the
MongoDBCommunity Custom Resource36 and also specify resource requests and limits
(cpu: 1/2/4, memory: 3000M) for the ”mongod” container. However, we did not override
the resources for the ”mongodb-agent” container.

The deployment scheme can be seen in Figure 5.5. The Deployment of the MongoDB
Kubernetes Operator directly manages the Statefulset object according to the beforehand
mentioned MongoDBCommunity Custom Resource. This Statefulset creates associated
Pods according to its configuration and finally Rya is accessing this Pods via the MongoDB
Service object.

5.2.4 Functional Evaluation
In this section we evaluate the functional characteristics of Apache Rya MongoDB,
according to our definition in Section 4.1.

1. Framework
Analogously to Apache Rya Accumulo this system uses the Eclipse RDF4J frame-
work as foundation to process RDF data so the currently used system of our use
case would need to be adapted.

33https://github.com/mongodb/mongodb-kubernetes-operator/blob/v0.7.1/README.
md

34https://hub.docker.com/_/mongo/
35https://github.com/apache/rya/tree/rya-4.0.1-rc1
36https://github.com/mongodb/mongodb-kubernetes-operator/blob/master/

config/samples/mongodb.com_v1_mongodbcommunity_specify_pod_resources.yaml

47

https://github.com/mongodb/mongodb-kubernetes-operator/blob/v0.7.1/README.md
https://github.com/mongodb/mongodb-kubernetes-operator/blob/v0.7.1/README.md
https://hub.docker.com/_/mongo/
https://github.com/apache/rya/tree/rya-4.0.1-rc1
https://github.com/mongodb/mongodb-kubernetes-operator/blob/master/config/samples/mongodb.com_v1_mongodbcommunity_specify_pod_resources.yaml
https://github.com/mongodb/mongodb-kubernetes-operator/blob/master/config/samples/mongodb.com_v1_mongodbcommunity_specify_pod_resources.yaml

5. Candidate Systems

Figure 5.5: Apache Rya MongoDB Deployment

2. Documentation
The documentation of Apache Rya MondoDB also includes examples on how to
configure Apache Rya with a MongoDB backend. Therefore the documentation
also provides adequate information on how to install the system. However, there is
very sparse documentation how Apache Rya exactly behaves with the MongoDB
backend.

3. Storage
MongoDB per default is a strongly consistent storage37, which means, that writes are
immediately seen by users. Furthermore, if the primary node does not communicate
with its secondary nodes for a given period of time, a new primary nodes becomes
elected38, making it partition tolerant. However, it is not guaranteed that the
system always answers a request since no upper limit on how long the election
process, in order to elect a new primary node in case of a failure, is defined39. This
would meet our requirements defined in our use case.

4. SPARQL Support
MongoDB does not limit Apache Ryas support for SPARQL 1.1. Therefore it
supports our use case.

5. Reasoning Fragment & Support for Custom Inference Rules
Regarding the supported reasoning fragments and the support for custom rules, the
same statements presented for Apache Rya Accumulo in Section 5.1.4 also apply
for this system. Therefore, further development is needed in order to support our
use case.

37https://www.mongodb.com/jepsen
38https://www.mongodb.com/docs/manual/replication/#automatic-failover
39See footnote 38

48

https://www.mongodb.com/jepsen
https://www.mongodb.com/docs/manual/replication/#automatic-failover

5.3. SANSA-Stack

6. Compression
Data compression is supported40 by MongoDB. The supported compression types
are: snappy41, zlib42 and zstd43. Therefore, data can be stored in a compact form.

7. Ease of Deployment
Compared to the Accumulo backend, Apache Rya MongoDB is much easier to
configure and to deploy because of the existence of the MongoDB Community
Kubernetes Operator44. However, not all features are supported by this operator.
For instance, sharding is only supported with the MongoDB Enterprise Kubernetes
Operator45.

8. Elasticity
Finally, regarding the elasticity feature, the MongoDB Community Kubernetes
Operator already supports dynamic horizontal scaling of workers46. Therefore, one
should only need to define a Kubernetes Horizontal Pod Autoscaler in order to
support elasticity.

As a summary, this system provides suitable storage characteristics, SPARQL 1.1 support,
and support for data compression. Furthermore it is quite easy to deploy and has built-in
support for elasticity. However, it lacks documentation and we also would need to
adapt our source code in order to support RDF4J. Furthermore only limited reasoning
capabilities are supported by the system.

5.3 SANSA-Stack
SANSA-Stack ”is a big data engine for scalable processing of large-scale RDF data”47

which uses Apache Spark and Apache Flink in order to distribute the data for various
operations in order to achieve horizontal scalability [LSB+17]. It combines frameworks
from the distributed machine learning field with frameworks from the semantic technology
field in order to get the benefits of both like horizontal scalability and RDF modelling
(see Figure 5.6).

The framework consists of several libraries in order to handle RDF data. These are called
Read/Write RDF/OWL Library, Querying Library, Inference Library, Machine Learning
Library and Datalake Library. It uses HDFS (or a local file system) as storage, but
also SQL-, NoSQL- and other custom data-sources can be used by utilizing its Datalake
Library [MGS+19].

40https://www.mongodb.com/docs/v4.4/core/wiredtiger/#compression
41http://google.github.io/snappy/
42http://www.zlib.net/
43https://github.com/facebook/zstd
44https://github.com/mongodb/mongodb-kubernetes-operator
45https://github.com/mongodb/mongodb-enterprise-kubernetes
46https://github.com/mongodb/mongodb-kubernetes-operator#supported-features
47http://sansa-stack.net/

49

https://www.mongodb.com/docs/v4.4/core/wiredtiger/#compression
http://google.github.io/snappy/
http://www.zlib.net/
https://github.com/facebook/zstd
https://github.com/mongodb/mongodb-kubernetes-operator
https://github.com/mongodb/mongodb-enterprise-kubernetes
https://github.com/mongodb/mongodb-kubernetes-operator#supported-features
http://sansa-stack.net/

5. Candidate Systems

Figure 5.6: SANSA-Stack Vision [LSB+17]

5.3.1 Storage, Query- and Inferencing

By using the Read/Write Library, one can store and read RDF data to and from HDFS
(and other sources using its Datalake library). Several serialization formats are supported,
like N-Triples, RDF/XML, N quad and Turtle. Data is directly written to HDFS in the
specified format. Also data partitioning can be performed with this library. By default,
vertical partitioning is applied on the data [LSB+17].

The Querying Library consists of methods in order to transform SPARQL queries into
Spark and Flink programs, which can be natively executed by these programs [LSB+17].
These transformations are basically SPARQL-to-SQL transformations based on the SQL
dialects used by Spark and Flink. For these transformations, SANSA can use Sparqlify
(SPARQL 1.0) and Ontop48 (SPARQL 1.1) [SSGL19a].

The Inference Library is used in order to apply forward reasoning on the data. Currently
RDFS and OWL-Horst rulesets are supported but it is planned to also support more
subsets of OWL [LSB+17]. Lastly, the Machine Learning Library encompasses algorithms

48https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.7.1

50

https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.7.1

5.3. SANSA-Stack

which are designed for graph analysis. However, this library falls outside the scope of
relevance for the present thesis.

5.3.2 Deployment
In order to deploy a SANSA-Stack application on Kubernetes, we again deploy Apache
Hadoop from the BDE project (analogous to Section 5.1.3) on Kubernetes. For the
SANSA-Stack itself we develop a simple web service which provides the needed function-
ality (storing and querying data) using the SANSA-Stack libraries. It also functions as
the Spark driver which creates and manages Spark executors. We use the SANSA-Stack
libraries in the latest version available during the writing of this thesis, namely 0.8.0-RC1.
As dependencies we need Apache Spark 3.0.1 and the Scala library in version 2.12.10.

Figure 5.7 shows a schematic picture of our SANSA-Stack deployment. The web service
will contact the cluster manager (in our case it uses the Kubernetes API) in order to
create Spark executors, the worker nodes, during its startup. For the executors, we need
to create another Docker image, a Spark image with the required dependencies of the
SANSA-Stack libraries in its class path. The number of executors and their number
of vCPU cores is varied during the experiments. However, determining the amount of
needed memory is not trivial in Spark, especially during inferencing and parallel querying.
We will go into detail on this in Section 6.3. Again, the other Hadoop components were
omitted in this image for the sake of simplicity.

Figure 5.7: SANSA-Stack Deployment

5.3.3 Functional Evaluation
In this section we evaluate the functional characteristics of SANSA-Stack according to
our definition in Section 4.1.

51

5. Candidate Systems

1. Framework
SANSA-Stack uses the Jena framework in order to process RDF data. Since in our
use case we also use Jena, we may easily be able to integrate this system into the
existing code.

2. Documentation
The documentation of this system provides useful examples on how to load and
query data. Source code examples are provided. However, almost no documentation
is given on how to deploy the system in general and specifically in a Kubernetes
environment.

3. Storage
Hadoop is a highly consistent framework with high partition tolerance (see Section
5.1.4) which is very suitable for our use case.

4. SPARQL Support
Although SANSA-Stack supports SPARQL 1.1 by using Ontop, a SPARQL to SQL
rewriter, insertions, updates and deletions via SPARQL are not supported by the
system. This would need to be implemented for our use case.

5. Reasoning Fragment
The system supports RDFS and OWL-Horst rule sets but not OWL Lite. Therefore
we would need to extend the systems capabilities.

6. Support for Custom Inference Rules
SANSA-Stack does not support custom inference rules. But there may be support
for custom rules by extending the given rule sets49. However, it is uncertain if this
would work50.

7. Compression
Data compression is supported51 by SANSA-Stack, although it is not specified
to which extent. However, it is therefore assumed, that data can be stored in a
compact form.

8. Ease of Deployment
SANSA-Stack is very hard to deploy since also here many components are working
together, namely Apache Zookeeper, Apache Hadoop, Apache Spark and SANSA-
Stack itself. Furthermore, there are very strict specifications on which versions of
each component to use. Furthermore, as mentioned earlier, the documentation for
deploying the system is almost inexistent. Therefore, it is very difficult to deploy
the system in Kubernetes.

49https://github.com/SANSA-Stack/SANSA-Stack/blob/v0.8.0-RC1/sansa-
inference/sansa-inference-common/src/main/scala/net/sansa_stack/inference/
rules/RuleSets.scala

50https://github.com/SANSA-Stack/SANSA-Stack/issues/112
51https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.6.0

52

https://github.com/SANSA-Stack/SANSA-Stack/blob/v0.8.0-RC1/sansa-inference/sansa-inference-common/src/main/scala/net/sansa_stack/inference/rules/RuleSets.scala
https://github.com/SANSA-Stack/SANSA-Stack/blob/v0.8.0-RC1/sansa-inference/sansa-inference-common/src/main/scala/net/sansa_stack/inference/rules/RuleSets.scala
https://github.com/SANSA-Stack/SANSA-Stack/blob/v0.8.0-RC1/sansa-inference/sansa-inference-common/src/main/scala/net/sansa_stack/inference/rules/RuleSets.scala
https://github.com/SANSA-Stack/SANSA-Stack/issues/112
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.6.0

5.4. Further Systems

9. Elasticity
Elasticity is not fully supported by SANSA-Stack. Spark currently does not
support dynamic resource allocation52. Therefore one needs to specify the number
of cores and workers beforehand. The Spark Context then is created based on this
configuration and is currently not changeable. However, according to their website
this is a planned feature.

As a summary regarding our given use case, the system uses the required framework, it
has good documentation regarding its usage, suitable storage characteristics and support
for data compression. However, it lacks deployment documentation, full SPARQL 1.1
support, insufficient inferencing support, it is very difficult to deploy and lacks the
elasticity feature.

5.4 Further Systems
Apart from the mentioned candidate triplestores, there has already been much effort
in creating distributed triplestores. For example, the open-source triplestore Halyard53

uses Apache HBase, which is a NoSQL database for Hadoop [SN16], as storage backend.
It uses the Eclipse RDF4J framework which supports SPARQL 1.1 queries. The store
supports rule inferencing over RDFS. It has been shown that Halyard supports handling
petabytes of RDF data. However, the last commit54 for this project has been on 5th of
December 2019. Therefore this project seems to have been discontinued.

Another open-source distributed triplestore is 4store55 [HLSL09]. It is comprised of
processing nodes which handle parsing of RDF data and SPARQL 1.0 queries, and
(multiple) storage nodes which contain non-overlapping portions of the whole data. It
supports backward reasoning on a subset of RDFS [SCH+11]. Furthermore it has been
shown that this triplestore can handle up to 15 billion triples. However, this project
seems also to have been discontinued since the last commit56 was issued at 28th of March
2017.

The last open-source distributed triplestore we found is CumulusRDF [Har11]. This
triplestore’s backend is Apache Cassandra, another distributed NoSQL database. The
system supports SPARQL 1.1 queries, but no information about reasoning capabilities
could be found. Also this project seems to have been discontinued. The last commit57

was issued at 14th of April 2016.

Proprietary distributed triplestores include Amazon Neptune58 [BCG+18]. It is a cloud
52https://spark.apache.org/docs/3.0.1/running-on-kubernetes.html#kubernetes-

features
53https://github.com/Merck/Halyard
54https://github.com/Merck/Halyard/commits/master
55https://github.com/4store/4store
56https://github.com/4store/4store/commits/master
57https://github.com/cumulusrdf/cumulusrdf/commits/master
58https://aws.amazon.com/neptune/

53

https://spark.apache.org/docs/3.0.1/running-on-kubernetes.html#kubernetes-features
https://spark.apache.org/docs/3.0.1/running-on-kubernetes.html#kubernetes-features
https://github.com/Merck/Halyard
https://github.com/Merck/Halyard/commits/master
https://github.com/4store/4store
https://github.com/4store/4store/commits/master
https://github.com/cumulusrdf/cumulusrdf/commits/master
https://aws.amazon.com/neptune/

5. Candidate Systems

service which is hosted on Amazon Web Services (AWS) and supports SPARQL 1.1.
According to the authors, this triplestore is capable to scale for more than 100 billion
triples. However, also no information about the support for reasoning could be found for
this triplestore.

Another proprietary distributed system is Virtuoso Universal Server, a hybrid database
system which supports storing multiple data formats like relational data as well as
(schema-less) RDF data [Erl12]. It supports SPARQL as well as reasoning for a subset of
OWL59. A Virtuoso cluster consists of shared-nothing servers in order to be able to scale
out. It has been shown that Virtuoso can handle terabytes of RDF triples. Also a free
version for this database exists, however clustering is only supported in the proprietary
version.

Stardog60 is another proprietary distributed triplestore system. It is a specialized system
consisting of (multiple) Stardog Servers and Zookeeper instances61. Zookeeper is respon-
sible to maintain a list of cluster members. Clients access the Stardog servers through a
load balancer. This triplestore supports SPARQL 1.1 and reasoning for several OWL2
profiles. A Kubernetes deployment option is available62.

GraphDB63 is a proprietary, scalable RDF database for which a Kubernetes deployment
option is available. The triplestores architecture is a master-worker system where the
master is responsible to act as a load balancer between the clients who access the
triplestore and the worker nodes. It is also responsible to ensure that the data is
consistent between all workers. It supports SPARQL 1.1 together with reasoning on the
OWL Horst fragment.

AllegroGraph64 is a proprietary distributed triplestore which has a Kubernetes deployment
option. It supports SPARQL 1.1 and reasoning for a subset of OWL65 (e.g. OWL 2
RL, RDFS). In this triplestore, the data is sharded and stored in (multiple) specialized
servers.

AnzoGraph66 is a proprietary, horizontally scalable in-memory graph database67. The
triplestore is comprised of master and worker nodes which access a shared storage (i.e.
NFS). A deployment option for Kubernetes is available. It supports SPARQL 1.1 together
with reasoning on a subset of OWL 2 RL.

MarkLogic68 is a distributed multi-model database, which is capable of storing RDF triples
(together with documents like JSON/XML or even relational data). It is comprised of

59http://docs.openlinksw.com/virtuoso/rdfsparqlruleintro/
60https://www.stardog.com/
61https://docs.stardog.com/
62https://github.com/stardog-union/helm-charts
63https://www.ontotext.com/products/graphdb/
64https://allegrograph.com/
65https://allegrograph.com/products/allegrograph/
66https://cambridgesemantics.com/anzograph/
67https://docs.cambridgesemantics.com/anzograph/v2.5/userdoc/home.htm
68https://www.marklogic.com/

54

http://docs.openlinksw.com/virtuoso/rdfsparqlruleintro/
https://www.stardog.com/
https://docs.stardog.com/
https://github.com/stardog-union/helm-charts
https://www.ontotext.com/products/graphdb/
https://allegrograph.com/
https://allegrograph.com/products/allegrograph/
https://cambridgesemantics.com/anzograph/
https://docs.cambridgesemantics.com/anzograph/v2.5/userdoc/home.htm
https://www.marklogic.com/

5.5. Functional Discussion

database servers which store the actual data and middleware servers which communicate
with the database servers and receive requests via a REST API. It supports SPARQL 1.1
together with inferencing on RDFS and OWL Horst.

Finally, we mention Dydra69 which is a cloud-based database platform. It is hosted by
Datagraph GmbH. It supports SPARQL 1.1 but no information about reasoning could
be found.

5.5 Functional Discussion
Our functional evaluations of our candidate systems show that none of these systems
fulfills every functional evaluation criterion, as seen in Table 5.2. Apache Rya MongoDB
fulfills five criteria (plus two partially) out of nine, followed by Apache Rya Accumulo,
which fulfills four criteria (plus one partially) out of nine. SANSA-Stack only fulfills three
out of nine evaluation criteria. However, it partially fulfills three additional criteria.

All of our candidate systems have strongly consistent storage with high partition tolerance.
Furthermore, all support data compression techniques in order to improve performance
and storage requirements. On the other hand, none of our candidate systems support
custom inference rules and also OWL Lite is not fully supported which limits the reasoning
capabilities for our use case.

Apache Jena, our framework of choice, is only used by SANSA-Stack. The other two
systems use Eclipse RDF4J. To support the Jena framework in these cases, we would
need to adapt the source code.

Regarding the documentation, only Apache Rya Accummulo has good documentation
regarding all aspects. The documentation for Apache Rya MongoDB lacks describing its
behavior with the MongoDB backend. The documentation of SANSA-Stack completely
lacks information on how to deploy the system in general.

SPARQL 1.1 support is given for all systems. However, with SANSA-Stack it is not
possible to perform insert, update, and delete queries with its SPARQL implementation.
This feature would need to be added for our defined use case.

Of our candidate systems, only Apache Rya MongoDB was easy to deploy because it
involves only few components and there are already Kubernetes Operators available in
order to further ease the deployment of the system. Apache Rya Accumulo and SANSA-
Stack on the other hand both involve many different components with a specific version
requirement for these components. Furthermore, SANSA-Stack, as already mentioned,
delivers no information on how to deploy the system making these two systems difficult
to deploy.

Finally, the elasticity feature is only supported by Apache Rya MongoDB by its MongoDB
Community Kubernetes Operator. Apache Rya Accumulo currently does not support

69https://docs.dydra.com/dydra

55

https://docs.dydra.com/dydra

5. Candidate Systems

elasticity, however it may become supported when it starts supporting Accumulo in version
2. Support for elasticity is also planned in a later version of Spark and SANSA-Stack.

We conclude, that Apache Rya MondoDB is our framework of choice regarding its
functional evaluation since it fulfills the most criteria, followed by Apache Rya Accumulo
and finally SANSA-Stack.

Apache Rya Accumulo Apache Rya MongoDB SANSA-Stack
Framework X X ✓

Documentation ✓ ∼ ∼
Storage ✓ ✓ ✓

SPARQL Support ✓ ✓ ∼
Reasoning Fragment ∼ ∼ ∼

Support for Custom Inference Rules X X X
Compression ✓ ✓ ✓

Ease of Deployment X ✓ X
Elasticity X ✓ X

Table 5.2: Summary Functional Evaluation

56

CHAPTER 6
Performance Evaluation

In this chapter we present the performance evaluation results of our observed systems.
As already mentioned in Section 4.2, we use the Kubernetes metrics1 of GCPs cloud
monitoring in order to collect our measurements. When measuring the network communi-
cation, we use the ”kubernetes.io/pod/network/sent_bytes_count” metric. It measures
the bytes sent during a specific interval. The memory usage is determined by using the
”kubernetes.io/container/memory/used_bytes” metric. For the used storage, we use the
”kubernetes.io/pod/volume/used_bytes” metric. Each data point was measured in a 1
minute interval. All tests are conducted within the cloud in order to be independent
from a network connection to the cloud.

6.1 Apache Rya Accumulo
Evaluation results for the loading times during the load of the LUBM datasets are given
in Figure 6.1. The raw results, which also contain memory-usages, storage-sizes and the
network-communication peaks, are given in Table 8.1 in the Appendix. As one can see,
the loading time does not benefit when we increase the number of cores or the number
of workers. The more workers we add, the more likely it is that the loading time even
increases about linearly with the number of workers. The reason for the increase seems
to be based in the splitting of its tables into tablets. In Table 6.1, in which we show the
LUBM 1 experiment with 2 workers having 2 cores each, the tablets are distributed evenly
across the nodes (accumulo-slave-0 with 5 tablets and accumulo-slave-1 with 4 tablets).
However, all entries for each index (SPO, POS, OSP) were transferred to the second
tablet server which results in the second tablet server holding all the data whereas the
first tablet server holding no data (except for some metadata information). In contrast
to Table 6.2, which shows the experiment with 2 workers having 4 cores each, the tablets

1https://cloud.google.com/monitoring/api/metrics_kubernetes

57

https://cloud.google.com/monitoring/api/metrics_kubernetes

6. Performance Evaluation

were distributed differently. One is holding 6 tablets while the other one is holding only
3. However, the data is distributed more evenly since one tablet seems to hold one and
the other tablet holding two indices. The loading time however seems to become higher,
the more distributed the data becomes (2 workers with 2 cores have a loading time of
1441s, while 2 workers with 4 cores have a loading time of 2687s).

The memory usage during loading however does not depend on the splitting of the tables
onto tablet servers, see Figure 6.2 (or Table 8.1 in the Appendix). It mostly depends on
the number of workers used in the experiments. For LUBM 1, the memory consumption
increases about 22% when increasing the number of workers from one to two and about
31% when increasing the number of workers from two to four in the two-core setting.

In terms of consumed storage, it first about doubles when increasing the number of
workers from one to two and about 68% when increasing the number of workers from two
to four (see Table 8.1). This is probably due to the default replication factor of three.
The number of cores again do not affect the consumed storage.

Interestingly, the network communication does not seem to become greatly affected when
we change the number of workers or the number of cores (see Table 8.1). However, the
variation of network communication results in the four-worker setting is quite high.

For the LUBM 20 dataset we conducted only few experiments since the loading time in
the best case was already about 10 hours and even increased to about 30 hours when
testing with four workers. In the original paper, data ingestion into the system was
achieved using Accumulo’s Bulk Import MapReduce job [PCR12]. We, on the other
hand, use the already provided web REST endpoint2 for loading the data since it seems
to be the standard way for Accumulo to load data over the web. This may explain the
very long loading times in our experiments.

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

LUBM 1

Lo
ad

in
g

T
im

e
(s

)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

0.5

1

·105

LUBM 20

Lo
ad

in
g

T
im

e
(s

)

Figure 6.1: Apache Rya Accumulo: Loading Data - Loading Time

2https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/
markdown/loaddata.md#web-rest-endpoint

58

https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/markdown/loaddata.md#web-rest-endpoint
https://github.com/apache/rya/blob/master/extras/rya.manual/src/site/markdown/loaddata.md#web-rest-endpoint

6.1. Apache Rya Accumulo

Server Hosted Tablets Entries
Tablet Server 1 5 187
Tablet Server 2 4 302.51K

Table 6.1: Apache Rya Accumulo: 2 Workers 2 Core

Server Hosted Tablets Entries
Tablet Server 1 6 101.11K
Tablet Server 2 3 201.68K

Table 6.2: Apache Rya Accumulo: 2 Workers 4 Cores

1 Worker
2 Worker

4 Worker
0

5

10

LUBM 1

M
em

or
y

U
sa

ge
(G

B)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

5

10

15

20

LUBM 20

M
em

or
y

U
sa

ge
(G

B)

Figure 6.2: Apache Rya Accumulo: Loading Data - Memory Usage

The querying results for LUBM 1 and LUBM 20 are shown in Figures 6.3 and 6.4
respectively. As we mentioned earlier, for the LUBM 20 dataset only few experiments
were conducted because of the very long data loading times. For the detailed results, we
refer to the Appendix (Tables 8.2 to 8.15). For the LUBM 1 dataset it seems that no
setting is clearly the best. Two cores however often seem to clearly benefit the query
performance for this dataset which can be seen at the results for the queries: 1, 3, 5,
7, 8, 10, 11, 12, and 13. Four cores in some cases even seem to increase the response
time compared to one core. However, when we look at the few results for the LUBM 20
dataset, we see that increasing the worker nodes clearly reduces the query response time
for most of the queries when having one core assigned. The queries 2, 5, 7, 8, 9, 10 and
13 however timed out after one hour.

We also measure the memory consumption during the whole run of the benchmark. The
results for the LUBM 1 dataset can be found in Figures 6.5 and 6.6. Adding more cores to
a single worker configuration affects the memory consumption only a little bit. However,
adding more workers to a single core configuration results in a clearly visible increase in
memory consumption.

We also conducted an experiment to show how the number of HDFS DataNodes affect the

59

6. Performance Evaluation

1 Worker
2 Worker

4 Worker
0

100

200

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

200
400
600
800

Query 3
R

es
po

ns
e

T
im

e
(m

s)
1 Worker

2 Worker
4 Worker

0
0.5

1
1.5

2
·104

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

1

2

3

·105

Query 5

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

300

Query 6

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

6
·105

Query 7
R

es
po

ns
e

T
im

e
(m

s)

1 Worker
2 Worker

4 Worker
0
2
4
6
8

·105

Query 8

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

300

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

·105

Query 13

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

300

Query 14

R
es

po
ns

e
T

im
e

(m
s)

Figure 6.3: Apache Rya Accumulo: LUBM 1 Median Query Response Times

60

6.1. Apache Rya Accumulo

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

1.5

·104

Query 3
R

es
po

ns
e

T
im

e
(m

s)
1 Worker

2 Worker
4 Worker

0

1

2

·106

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Core

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

Query 6

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

1.5
·104

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

·104

Query 11
R

es
po

ns
e

T
im

e
(m

s)

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

Query 14

R
es

po
ns

e
T

im
e

(m
s)

Figure 6.4: Apache Rya Accumulo: LUBM 20 Median Query Response Times

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

8

10

12

Minutes

M
em

or
y

U
sa

ge
(G

B) 1 Core
2 Core
4 Core

Figure 6.5: Apache Rya Accumulo: LUBM 1 - 1 Worker Memory Usage

61

6. Performance Evaluation

0 50 100 150 200 250 300 350 400

8
10
12
14

Minutes

M
em

or
y

U
sa

ge
(G

B) 1 Worker
2 Worker
4 Worker

Figure 6.6: Apache Rya Accumulo: LUBM 1 - 1 Core Memory Usage

response times of queries (see Table 8.16 in the Appendix). Each row contains the query
and its average- and median response times for one and two DataNodes. In [PCR12] the
amount of worker nodes and data nodes were equal, each also having the same amount
of CPU cores assigned. However, we set the number of cores for a DataNode to 0.25,
because a DataNode with one core can handle up to 4 disks3 and a datanode in our
setting has exactly one disk assigned. The experiment shows that scaling the datanode
alongside the worker nodes results in slower response times for most of the queries. Also,
the storage size increases with the DataNodes which can be seen in Table 8.1. Since
storage is cheap and in order to be comparable to the original measurements, we still
increase the number of DataNodes together with the number of worker nodes.

We do not measure the queries per second performance here, since the overlong loading
times for bigger datasets already makes this system unsuitable for our use case.

6.2 Apache Rya MongoDB
In order to load the data, we use the same endpoint as for the evaluation with the Apache
Accumulo backend.

The result of loading a LUBM 1 and a LUBM 20 dataset into the triplestore can be seen
in Figure 6.7. The raw data can be found in the Appendix (Table 8.17). The increase in
the dataset size from LUBM 1 to LUBM 20 results in a much higher loading time. For
example, when comparing the highest loading times, the loading time for the LUBM 20
dataset is about 60 times higher when having four workers with one core although the
dataset being only 27 times bigger (see Section 4.2). When comparing the least loading
times, it is still a 38 times increase when having one worker with four cores.

Generally it can be seen, that adding more cores to the system results in a reduced
loading time. On the other hand, adding more workers results in a higher loading time.
However, when we look at the settings of four cores for each number of workers, we see
that the loading times almost equalize. For example, in the LUBM 1 dataset, one worker

3https://accumulo.apache.org/1.10/accumulo_user_manual.html#_hardware

62

https://accumulo.apache.org/1.10/accumulo_user_manual.html#_hardware

6.2. Apache Rya MongoDB

1 Worker
2 Worker

4 Worker
0

50

100

LUBM 1

Lo
ad

in
g

T
im

e
(s

)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

6,000

LUBM 20

Lo
ad

in
g

T
im

e
(s

)

1 Core
2 Core
4 Core

Figure 6.7: Apache Rya MongoDB: Loading Data - Loading Time

1 Worker
2 Worker

4 Worker
0

2

4

6

LUBM 1

M
em

or
y

U
sa

ge
(G

B)

1 Worker
2 Worker

4 Worker
0

10
20
30
40

LUBM 20

M
em

or
y

U
sa

ge
(G

B)
1 Core
2 Core
4 Core

Figure 6.8: Apache Rya MongoDB: Loading Data - Memory Usage

with one core needs 68 seconds to load the data, while four workers need 100 seconds
which is a 47% increase. However, one worker with four cores needs 65 seconds to load
the data, whereas four workers with four cores need only 70 seconds which results in
only an 8% increase of loading time. Similarly, in the LUBM 20 dataset the increase of
loading time reduces from 103% to 17%.

The memory usage only slightly increases with the number of cores, see Figure 6.8 (or
Table 8.17 in the Appendix). The highest increase can be seen in the settings of four
workers when comparing one core per worker with four cores per worker which is about
15% for the LUBM 1 and LUBM 20 datasets. The increase of memory usage is higher
when we increase the number of workers. For the highest memory usages (4 worker 4
cores), the increase between one and four workers amounts to about 59% for the LUBM
1 dataset and to 154% for the LUBM 20 dataset.

An almost linear increase can be seen in the storage size when we observe the number of
workers. When we increase the number of cores, still a small increase of storage size can

63

6. Performance Evaluation

be seen.

Finally, when we observe the network communication, the amount of data transferred
mostly correlates with the number of workers. For the two cores settings, the increase
of network communication amounts to about 28% between one and two workers and to
about 77% between two and four workers for the LUBM 1 dataset. The differences for
the LUBM 20 datasets are 30% and 76% respectively. We chose the setting with two
cores since variating the number of cores results in an inconsistent increase or decrease
in terms of transmitted bytes per second.

The results for the query median response time evaluation for the LUBM 1 and LUBM
20 datasets are given in Figures 6.9 and 6.10 respectively. The raw results are again
given in the Appendix (Tables 8.18 to 8.31).

The results for LUBM 1 show that there are queries which clearly benefit by adding more
cores to the system (queries 5, 8, 10 and 13). For example, for query 5 one can reduce
the query response time by about 23% when assigning four cores instead of one core to
the setting with four workers. However, most of the queries finally benefit when having
four cores assigned (queries 3, 4, 5, 6, 7, 8, 10, 11, 12 and 13). Using more workers in the
system most of the times increases the query response times.

In terms of memory consumption during querying, Figure 6.11 shows for the LUBM 1
dataset that adding more cores to a system with one worker hardly affects the amount of
memory used by the system for our test run. However, there is a visible increase when
adding more workers to a system with one core, see Figure 6.12. The LUBM 20 runs
show a slight increase of memory usage when adding more cores (Figure 6.13) and an
even bigger increase when adding more workers (Figure 6.14).

Finally, we present our evaluations when issuing parallel requests to Rya. As stated in
Section 4.2, we use 8 parallel clients each issuing 63 requests which makes in total 504
requests per query. For the LUBM 1 dataset we chose queries 1, 3, 4, 10, 11, 12 and 14
since they have a reasonable response time. We tested the weakest against the strongest
configuration in order to emphasise the differences. The results for the LUBM 1 dataset
can be seen in Figure 6.15. Contrary to sequentially executing the queries, executing (the
same query) in parallel hugely benefits the median response time by adding more cores
and workers. The median response times are more than halved and the throughputs are
more than doubled in the stronger configuration. For example, the median response time
of ”Query 4” can be reduced from 16618ms to 5306ms, which is a reduction of 68% and
the throughput is increased from 0.48 queries per second to 1.5 queries per second which
is an increase of 213%. The median response time for ”Query 14” on the other hand
increased from 400ms to 414ms which is a slight increase of about 4% but the throughput
still increased from 17.87 queries per second to 18.55 queries per second. For the LUBM
20 dataset, we removed queries 3 and 4 since their response time is too long for this test
and added query 6 instead. Also here, some of the queries hugely benefit by adding more
resources, see Figure 6.16. However, the median response times and throughputs of query
6 and 14 even suffer by adding more resources. For example, the median response time

64

6.2. Apache Rya MongoDB

1 Worker
2 Worker

4 Worker
0

100

200

300

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

500
1,000
1,500
2,000

Query 3

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

0.5

1
·105

Query 5

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

300

Query 6

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

·106

Query 7

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

1.5
·105

Query 8

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

500

1,000

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

·105

Query 13

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

100

200

300

Query 14

R
es

po
ns

e
T

im
e

(m
s)

Figure 6.9: Apache Rya MongoDB: LUBM 1 Median Query Response Times

65

6. Performance Evaluation

1 Worker
2 Worker

4 Worker
0

2,000
4,000
6,000
8,000

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

6

·104

Query 3
R

es
po

ns
e

T
im

e
(m

s)
1 Worker

2 Worker
4 Worker

0
2
4
6
8

·104

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

1

2

·106

Query 5

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

Query 6

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

·104

Query 10
R

es
po

ns
e

T
im

e
(m

s)

1 Worker
2 Worker

4 Worker
0

1,000

2,000

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

50
100
150
200

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

·106

Query 13

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1,000
2,000
3,000
4,000

Query 14

R
es

po
ns

e
T

im
e

(m
s)

Figure 6.10: Apache Rya MongoDB: LUBM 20 Median Query Response Times

66

6.2. Apache Rya MongoDB

0 50 100 150 200 250 300 350 400
2

4

6

8

Minutes

M
em

or
y

U
sa

ge
(G

B) 1 Core
2 Core
4 Core

Figure 6.11: Apache Rya MongoDB: LUBM 1 - 1 Worker Memory Usage

0 50 100 150 200 250 300 350 400 450
2

4

6

8

10

Minutes

M
em

or
y

U
sa

ge
(G

B) 1 Worker
2 Worker
4 Worker

Figure 6.12: Apache Rya MongoDB: LUBM 1 - 1 Core Memory Usage

for ”Query 10” decreased from 247113ms to 66809ms which is a decrease of about 73%
and the throughput increased from 0.03 queries per second to 0.12 queries per second.
However, the response time for ”Query 14” increased from 10099ms to 12062ms which is
an increase of 19%. The throughput also decreased from 0.78 queries per second to 0.66
queries per second which is a decrease of 15%.

67

6. Performance Evaluation

0 50 100 150 200 250 300 350 400 450 500 550
8

10

12

14

Minutes

M
em

or
y

U
sa

ge
(G

B)

1 Core
2 Core
4 Core

Figure 6.13: Apache Rya MongoDB: LUBM 20 - 1 Worker Memory Usage

0 50 100 150 200 250 300 350 400 450 500 55010

20

30

Minutes

M
em

or
y

U
sa

ge
(G

B)

1 Worker
2 Worker
4 Worker

Figure 6.14: Apache Rya MongoDB: LUBM 20 - 1 Core Memory Usage

68

6.2. Apache Rya MongoDB

1 Worker
4 Worker

0
500

1,000
1,500
2,000

Query 1
R

es
po

ns
e

T
im

e
(m

s)

1 Worker
4 Worker

0

5

10

Query 1

Q
ue

rie
s

/
s

1 Core
4 Core

1 Worker
4 Worker

0

0.5

1

1.5

·104

Query 3

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.5

1

1.5

Query 3
Q

ue
rie

s
/

s

1 Worker
4 Worker

0

0.5

1

1.5

·104

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.5

1

1.5

Query 4

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

2,000

4,000

6,000

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0
1
2
3
4

Query 10

Q
ue

rie
s

/
s

1 Worker
4 Worker

0
200
400
600
800

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0
5

10
15
20

Query 11

Q
ue

rie
s

/
s

1 Worker
4 Worker

0
200
400
600
800

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

10

20

Query 12

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

200

400

Query 14

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

5

10

15

20

Query 14

Q
ue

rie
s

/
s

Figure 6.15: Apache Rya MongoDB: LUBM 1 Parallel Queries

69

6. Performance Evaluation

1 Worker
4 Worker

0

2

4

6

8
·104

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0
0.1
0.2
0.3
0.4

Query 1

Q
ue

rie
s

/
s

1 Core
4 Core

1 Worker
4 Worker

0

0.5

1

·104

Query 6

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.2

0.4

0.6

0.8

Query 6

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

1

2

·105

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.05

0.1

Query 10

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

2,000

4,000

6,000

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.5

1

1.5

Query 11

Q
ue

rie
s

/
s

1 Worker
4 Worker

0
200
400
600
800

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

10

20

Query 12

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

0.5

1

·104

Query 14

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0
0.2
0.4
0.6
0.8

Query 14

Q
ue

rie
s

/
s

Figure 6.16: Apache Rya MongoDB: LUBM 20 Parallel Queries

70

6.3. SANSA-Stack

6.3 SANSA-Stack
The results of loading the LUBM 1 and LUBM 20 datasets are given in Figure 6.17. The
raw results can be seen in the Appendix (Table 8.32). It can be seen that the loading
time benefits from both, more workers and more cores. Fixating the number of workers
to one for the LUBM 1 dataset results in an about 20% loading time decrease when using
two cores instead of one and again about 38% when further increasing the cores from
two to four. Also when fixating the number of cores to one, the decrease of loading time
is about 14% and about 8% when increasing the number of workers from one to two
and from two to four respectively. The overall decrease from the weakest setting to the
best is about 50%. The relative decrease in loading time is even bigger when observing
the LUBM 20 dataset. Fixating the number of workers to one results in a loading time
decrease of about 40% and 41% when increasing the number of cores from one to two
and two to four respectively. Fixating the number of cores to one we see a decrease of
about 45% and again of about 27% when increasing the number of workers from one to
two and from two to four respectively. For the LUBM 20 dataset, the overall reduction
of loading time which we could observe for our settings is about 81%.

1 Worker
2 Worker

4 Worker
0

50

100

LUBM 1

Lo
ad

in
g

T
im

e
(s

)

1 Worker
2 Worker

4 Worker
0

500

1,000

LUBM 20

Lo
ad

in
g

T
im

e
(s

)

1 Core
2 Core
4 Core

Figure 6.17: SANSA-Stack: Loading Data - Loading Time

The memory usage during loading the data increases greatly with the number of workers
and also with the number of cores, see Figure 6.18 (or Table 8.32 in the Appendix). For
example, for the LUBM 1 dataset, the memory consumption of the best performing
four-worker setting increased about 14% when using two cores instead of one. Increasing
the cores to four, the memory consumption further increased about 23%. The increase
was even more drastic for the LUBM 20 dataset. There, the increase amounts to about
132% when using two cores instead of one and increases another 26% when using four
cores instead of two. In all of our loading experiments, the last setting used the highest
amount of memory, namely about 122GB. Overall, the difference in memory consumption
between the weakest and the strongest setting amounts to 335% for the LUBM 20 dataset.

Analogous to Apache Rya Accumulo, the consumed storage increases almost linearly

71

6. Performance Evaluation

1 Worker
2 Worker

4 Worker
0

5

10

15

LUBM 1

M
em

or
y

U
sa

ge
(G

B)

1 Worker
2 Worker

4 Worker
0

50

100

LUBM 20

M
em

or
y

U
sa

ge
(G

B)

1 Core
2 Core
4 Core

Figure 6.18: SANSA-Stack: Loading Data - Memory Usage

with the number of workers. The network communication underlies high fluctuations but
generally also mostly increases with the number of workers.

The results for the median query response time experiments for the LUBM 1 and LUBM
20 datasets are given in Figures 6.19 and 6.20 respectively. The raw results of the
experiments are given in the Appendix (Tables 8.33 to 8.46). The query response times
of all queries clearly benefit from both, an increased number of cores and workers. For
instance, for ”Query 4” in the LUBM 1 dataset, the median response time for the system
with 1 worker decreased about 34% when using two cores instead of one and again by
about 43% when using four cores instead of two. When we fixate the number of cores
to one, we see a decrease of about 31% and about 33% when we increase the worker
from one to two and four respectively. The overall response time reduction which could
be achieved for this query by adding more resources is about 65%. For the LUBM 20
dataset, the overall reduction which could be achieved by adding more resources even
was about 86%. Thus, this system is highly scalable both, in terms of the number of
workers and the number of cores.

The memory consumption during some LUBM 1 querying benchmark runs can be found
in Figures 6.21 and 6.22. The memory consumption increase by adding more cores closely
resembles the memory consumption when adding more workers. About the same holds
for the memory consumptions for the LUBM 20 benchmarks, which can be found in
Figures 6.23 and 6.24.

The measurements of the parallel access to the triplestore for LUBM 1 are given in
Figure 6.25. The differences between using one worker with one core each and four
workers with four cores each is huge. For example, the median response time for ”Query
1” is reduced from 50826ms to 5844ms which amounts to a reduction of 88.5%. The
throughput analogously is more than 8 times higher than in the weaker configuration.
This response time and throughput behaviour can be seen in all the executed queries.
When we perform the same experiment for the LUBM 20 dataset, many Pods go out of

72

6.3. SANSA-Stack

1 Worker
2 Worker

4 Worker
0

2,000
4,000
6,000
8,000

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

6
·104

Query 2
R

es
po

ns
e

T
im

e
(m

s)
1 Worker

2 Worker
4 Worker

0

2,000

4,000

Query 3

R
es

po
ns

e
T

im
e

(m
s)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

2,000

4,000

6,000

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

Query 5

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

4,000

Query 6
R

es
po

ns
e

T
im

e
(m

s)

1 Worker
2 Worker

4 Worker
0

0.5

1

1.5
·104

Query 7

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

1.5

·104

Query 8

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

6
·104

Query 9

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

·104

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2,000

4,000

Query 13

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1,000

2,000

3,000

Query 14

R
es

po
ns

e
T

im
e

(m
s)

Figure 6.19: SANSA-Stack: LUBM 1 Median Query Response Times

73

6. Performance Evaluation

1 Worker
2 Worker

4 Worker
0

1

2

3

·104

Query 1

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

6
·105

Query 2

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

3

·104

Query 3

R
es

po
ns

e
T

im
e

(m
s)

1 Core
2 Core
4 Core

1 Worker
2 Worker

4 Worker
0

2

4

6
·104

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

3

·104

Query 5

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

·104

Query 6

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

·105

Query 7

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

1.5 ·105

Query 8

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

2

4

6
·105

Query 9

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

3

·104

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

3

·104

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

0.5

1

·105

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

3

·104

Query 13

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
2 Worker

4 Worker
0

1

2

·104

Query 14

R
es

po
ns

e
T

im
e

(m
s)

Figure 6.20: SANSA-Stack: LUBM 20 Median Query Response Times

74

6.3. SANSA-Stack

0 10 20 30 40 50 60 70 80 90 100

10

20

30

Minutes

M
em

or
y

U
sa

ge
(G

B)

1 Core
2 Core
4 Core

Figure 6.21: SANSA-Stack: LUBM 1 - 1 Worker Memory Usage

0 10 20 30 40 50 60 70 80 90 100

10

20

30

Minutes

M
em

or
y

U
sa

ge
(G

B)

1 Worker
2 Worker
4 Worker

Figure 6.22: SANSA-Stack: LUBM 1 - 1 Core Memory Usage

0 20 40 60 80 100 120 140 160 180 200 220 240

30

40

50

Minutes

M
em

or
y

U
sa

ge
(G

B) 1 Core
2 Core
4 Core

Figure 6.23: SANSA-Stack: LUBM 20 - 1 Worker Memory Usage

75

6. Performance Evaluation

0 20 40 60 80 100 120 140 160 180 200 220 240

30

40

50

Minutes

M
em

or
y

U
sa

ge
(G

B) 1 Worker
2 Worker
4 Worker

Figure 6.24: SANSA-Stack: LUBM 20 - 1 Core Memory Usage

memory for some queries, making the test for the specific query unreliable. The results
for the tests were no worker went out of memory can be seen in Figure 6.26. In general
we can see here again, that adding more resources results in much faster response times.
However, GKE limits4 the amount of assignable memory to a Pod regarding its assigned
CPU cores. Therefore, the tests for queries 3, 10 and 11 resulted in out-of-memory errors
in the case of assigning only one core.

4https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-
resource-requests#compute-class-min-max

76

https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-resource-requests#compute-class-min-max
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-resource-requests#compute-class-min-max

6.3. SANSA-Stack

1 Worker
4 Worker

0

2

4

·104

Query 1
R

es
po

ns
e

T
im

e
(m

s)

1 Worker
4 Worker

0

0.5

1

Query 1

Q
ue

rie
s

/
s

1 Core
4 Core

1 Worker
4 Worker

0

2

4

·104

Query 3

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.5

1

1.5

Query 3
Q

ue
rie

s
/

s

1 Worker
4 Worker

0

2

4

6

8
·104

Query 4

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0
0.2
0.4
0.6
0.8

Query 4

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

2

4

·104

Query 10

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.5

1

1.5

Query 10

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

2

4

·104

Query 11

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.5

1

1.5

Query 11

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

0.5

1

1.5
·105

Query 12

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.2

0.4

Query 12

Q
ue

rie
s

/
s

1 Worker
4 Worker

0
1
2
3
4

·104

Query 14

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0
0.5

1
1.5

2

Query 14

Q
ue

rie
s

/
s

Figure 6.25: SANSA-Stack: LUBM 1 Parallel Queries

77

6. Performance Evaluation

1 Worker
4 Worker

0
1
2
3
4

·105

Query 1
R

es
po

ns
e

T
im

e
(m

s)
1 Worker

4 Worker
0

0.1

0.2

0.3

Query 1

Q
ue

rie
s

/
s

1 Core
4 Core

4 Worker
0

1

2

3
·104

Query 3

R
es

po
ns

e
T

im
e

(m
s)

4 Worker
0

0.1

0.2

0.3

Query 3
Q

ue
rie

s
/

s

4 Worker
0

1

2

3 ·104

Query 10

R
es

po
ns

e
T

im
e

(m
s)

4 Worker
0

0.1

0.2

0.3

Query 10

Q
ue

rie
s

/
s

4 Worker
0

1

2

·104

Query 11

R
es

po
ns

e
T

im
e

(m
s)

4 Worker
0

0.1

0.2

0.3

Query 11

Q
ue

rie
s

/
s

1 Worker
4 Worker

0

1

2

·105

Query 14

R
es

po
ns

e
T

im
e

(m
s)

1 Worker
4 Worker

0

0.2

0.4

Query 14

Q
ue

rie
s

/
s

Figure 6.26: SANSA-Stack: LUBM 20 Parallel Queries

78

6.4. Performance Discussion

6.4 Performance Discussion
Our performance evaluations show, that Apache Rya Accumulo has by far the poorest
loading time performance compared to Apache Rya MongoDB and SANSA-Stack. In
some configurations, Apache Rya Accumulo requires nearly one hour to load the LUBM
1 dataset, whereas Apache Rya MongoDB and SANSA-Stack both complete loading the
LUBM 1 dataset in less than two minutes. For the LUBM 20 dataset, the loading time for
Apache Rya Accumulo increases to almost 30 hours, in contrast to one hour and 40 minutes
for Apache Rya MongoDB and 19 minutes for SANSA-Stack. Additionally, Apache Rya
Accumulo’s loading performance declines when scaling along with available resources,
including both the number of cores and workers, which generally decrease the loading
performance. On the other hand, Apache Rya MongoDB’s loading performance generally
improves when adding more resources. However, the most significant improvement
in loading time when adding resources is observed with SANSA-Stack. Due to the
unacceptable loading times for Apache Rya Accumulo for the LUBM 20 dataset, we did
not conduct the data-loading test for all configurations and also skipped the experiments
regarding concurrent access.

When comparing the response times for the individual LUBM queries, Apache Rya
Accumulo performs comparably to Apache Rya MongoDB. For the LUBM 1 dataset there
are queries (for instance for Query 10) in which Apache Rya Accumulo answers around
four times faster than Apache Rya MongoDB and vice versa (for instance, for Query 8).
When comparing them for the LUBM 20 dataset, Apache Rya Accumulo is generally
faster than Apache Rya MongoDB. However, a significant drawback is that Apache Rya
Accumulo times out after one hour when answering Queries 5 and 13 while Apache Rya
MongoDB can answer them. Nonetheless, there are LUBM queries that both systems
cannot answer within one hour. When comparing both systems to SANSA-Stack for
the LUBM 1 dataset, they are faster answering most queries than SANSA-Stack. Some
queries however can be answered significantly faster by SANSA-Stack, for instance Query
7. For larger datasets, SANSA-Stack is considerably faster than both systems. Moreover,
SANSA-Stack can answer all LUBM queries in under one hour. However, this could also
be due to the different reasoning support of our candidate systems and SANSA-Stack
being an in-memory system.

In our tests for query response times regarding the scaling of cores and workers, Apache
Rya Accumulo primarily benefits when using the LUBM 20 dataset, whereas the response
times for Apache Rya MongoDB do not seem to improve significantly when adding more
resources. On the other hand, the response times for SANSA-Stack greatly improve when
adding more resources.

Finally, when issuing concurrent requests, the individual response times for Apache
Rya MongoDB seem to improve when adding more resources. The same holds true for
SANSA-Stack.

However, SANSA-Stack comes with a significant drawback. It requires a substantial
amount of memory to function. Figure 6.27 shows the maximum memory usage for all

79

6. Performance Evaluation

compared systems in the ”4 worker with 4 cores each” setting during our LUBM query
test runs. For the LUBM 1 dataset, the maximum memory consumption of SANSA-Stack
is nearly eight times higher than that of Apache Rya MongoDB. This difference decreases
to 3.5 times for the LUBM 20 dataset. Since we did not run the query tests with this
setting for Apache Rya Accumulo for the LUBM 20 dataset, this test is omitted in
the figure. During our benchmark runs, it occasionally happened that workers crashed
because they ran out of memory. This was due to the fact that we had to predefine the
amount of memory allocated to the workers, which did not always align with the actual
memory requirements. However, Spark always successfully recovered and the issued
queries even returned the correct answers also during restarts of workers. The runs in
which out-of-memory errors occurred still had to be repeated with increased memory
resources in order to ensure more consistent measurements.

The determination of the superior system for our performance evaluation between Apache
Rya MongoDB and SANSA-Stack is inconclusive. Apache Rya MongoDB offers decent
data loading and querying performance, combined with reasonable memory requirements.
On the other hand, SANSA-Stack scales better with the available resources and can
answer all queries without any timeouts. It also performs better with larger datasets than
Apache Rya MongoDB. However, it consumes significantly more memory than Apache
Rya MongoDB. Apache Rya Accumulo fails to meet our performance requirements due
to its excessively long data loading durations.

0
20
40
60
80

LUBM 1

M
em

or
y

U
sa

ge
(G

B)

0

50

100

150

LUBM 20

M
em

or
y

U
sa

ge
(G

B)

Rya Accumulo
Rya MongoDB
SANSA-Stack

Figure 6.27: Query Memory Usage Comparison - 4 Worker 4 Core

80

CHAPTER 7
Conclusion and Future Work

This thesis addresses the challenge of selecting an optimal, large-scale, open source
triplestore system with reasoning capabilities, specifically for the Kubernetes container
orchestration framework. We evaluate our candidate systems with respect to the ”fraud
detection” use case, which we consider a typical application for large triplestores.

First, we defined the use case fraud detection and the requirements of a system for
battling fraud. This includes the used framework, the required behavior of the storage
when data changes occur, the necessary reasoning support and the access characteristics.
We further described how a standalone system can benefit when migrating to a distributed
setting in a cloud environment.

Then, we defined functional and performance evaluation criteria in order to evaluate
distributed triplestores for general use cases. The defined functional evaluation criteria
include the used framework, the available documentation, the storage characteristics,
SPARQL support, the supported reasoning fragment together with the support for custom
inference rules, its support for compression, the ease of deployment and elasticity support.
We defined general performance criteria on how to evaluate distributed triplestores,
including data load time, query time and queries per second and latency when concurrently
accessing the triplestore. Also we defined metrics to observe like memory usage, storage
size and network communication. Finally we described our test setups for the evaluation
of our candidate systems which include different setups for the number of cores, the
number of workers and the used datasets.

By conducting a literature research, we identified and evaluated the most recent open-
source distributed triplestores. There have already been some attempts on developing
open-source systems for distributed triplestores. The only projects which are in active
development are Apache Rya and the SANSA-Stack to the best of our knowledge. Other
systems like Halyard and CumulusRDF exist, but development seems to have discontinued

81

7. Conclusion and Future Work

according to their last commit dates1,2. For none of our candidate systems there is an
out-of-the box deployment option for Kubernetes available.

We evaluated Apache Rya with both, an Apache Accumulo and a MongoDB backend.
Accumulo uses Hadoop as backend framework and storage, while MongoDB is a NoSQL
database. We also evaluated the SANSA-Stack framework which uses Apache Spark
for its operations. We showed how those systems can be deployed in a Kubernetes
environment. Then we conducted a functional evaluation for these triplestores.

We found, that none of these triplestores fulfills every functional requirement for our
defined use case. Apache Rya MongoDB fulfills the most requirements. Both Apache
Rya Accumulo and Apache Rya MongoDB are built upon the Eclipse RDF4J framework,
while SANSA-Stack is implemented using the Jena framework which fits our described
use case. The best documentation available comparing these systems is provided for
Apache Rya Accumulo, while the other systems lack descriptions of their behavior or
instructions on how to deploy them. All of our candidate systems use consistent, partition
tolerant storage. A lack of SPARQL support is only observed for SANSA-Stack since it
does not allow insert, update and delete requests. None of the observed systems fully
supports OWL Lite, nor allows rule-inferencing for custom rules. Storage compression
techniques are applied for all of the evaluated systems. Apache Rya MongoDB is the only
system that is easy to deploy due to the availability of a MongoDB Kubernetes Operator,
while the other systems are particularly difficult to deploy because of the quantity of
the involved systems together with their specific version requirements and, especially
regarding SANSA-Stack, the lack of documentation regarding deployment. The elasticity
feature is only present for Apache Rya MongoDB, however, for the other systems, this
feature is planned.

We evaluated our candidate systems regarding the aforementioned performance criteria.
For Apache Rya we observed that the MongoDB backend for Apache Rya performs
similar to the Accumulo backend regarding query response time. However, in our test
settings, Accumulo particularly fails when loading the system in an acceptable duration,
especially when the number of workers increases. We observed data loading times for
the LUBM 20 dataset of around 30 hours with four workers, which is why we did not
evaluate Apache Rya Accumulo for the LUBM 20 dataset with the two-core and four-core
setting. Apache Rya does not scale well when adding more resources to the system
except for parallel access. The evaluation of SANSA-Stack shows, that the performance
of SANSA-Stack is worse than that of Apache Rya with the MongoDB backend for most
queries when assigning only one core and one worker. However, SANSA-Stack scales well
in terms of performance when adding more resources. Thus it outperforms Apache Rya
especially for larger datasets having more cores and workers assigned. A huge drawback
for SANSA-Stack is that it needs much more memory than the other systems.

Our triplestore of choice regarding our use case is therefore Apache Rya MongoDB since it
1https://github.com/Merck/Halyard
2https://github.com/cumulusrdf/cumulusrdf

82

https://github.com/Merck/Halyard
https://github.com/cumulusrdf/cumulusrdf

fulfills the most functional evaluation criteria and has decent performance with reasonable
memory requirements.

In order to improve those systems, we suggest the support for custom inference rules.
Furthermore, when using SANSA-Stack, the support for dynamically altering the stored
triples with SPARQL is a required feature. Finally, a Kubernetes Operator should be
created in order to provide a convenient deployment option on Kubernetes and in order
to allow Kubernetes to efficiently manage the systems.

The limitation of this work is, that we did not test for larger datasets than LUBM 20 and
larger configurations than four cores and four workers. Some of these evaluations were
already conducted for Apache Rya Accumulo ([PCR12, PCR15]), but no performance
evaluations were found for Apache Rya MongoDB and SANSA-Stack. Therefore it is
unclear how more hardware resources would affect loading and query times. However, our
evaluations especially show the scaling characteristics of the candidate systems, which
are particularly relevant for optimizing costs in a cloud environment.

Future work could evaluate these systems in also larger settings in order to observe if their
performance characteristics change having more cores or workers assigned. Furthermore
regarding Apache Rya MongoDB, since sharding is not supported by the MongoDB
Community Kubernetes Operator, we suggest conducting experiments with the MongoDB
Enterprise Kubernetes Operator, where sharding is supported. Finally, we suggest that
our evaluated systems should implement OWL Lite support and custom rule inferencing.

83

CHAPTER 8
Appendix

LUBM #Nodes CPU Loading Time Memory usage (peak) Storage size Network Communication (peak)

1

1
1 1440s 7974952960 105463808 307000,727929304
2 1440s 7946125312 103780352 345342,115073072
4 1441s 8000950272 105443328 294565,814875181

2
1 2430s 9723092992 211165184 285068,391538227
2 1441s 9319403520 210870272 374823,528877659
4 2456s 9902333952 211197952 282558,913088357

4
1 3534s 12416897024 354668544 193447,479575813
2 2162s 12210991104 354430976 412750,248592362
4 3519s 12887072768 354463744 345250,500427719

20

1
1 40062s 13273423872 1862766592 349966,49010586
2 Not tested
4 Not tested

2
1 59749s 14108393472 1850679296 311832,650542109
2 Not tested
4 Not tested

4
1 108265s 18211215770 536588288 279910,482742213
2 Not tested
4 Not tested

Table 8.1: Apache Rya Accumulo: Loading Data

85

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 340ms/262ms 110652,189888332
2 218ms/118ms 119471,637110507
4 266ms/190ms 113735,540994465

2
1 334ms/204ms 142469,620592019
2 261ms/124ms 128196,1304059
4 364ms/201ms 122213,970291005

4
1 362ms/236ms 114938,621235416
2 243ms/116ms 129656,574557054
4 307ms/171ms 134778,204189425

20

1
1 3166ms/2868ms
2 Not tested
4 Not tested

2
1 2087ms/2016ms
2 Not tested
4 Not tested

4
1 3695ms/3168ms
2 Not tested
4 Not tested

Table 8.2: Apache Rya Accumulo: LUBM Query 1

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 Timeout 43093170,9269924
2 Timeout 42242534,9719198
4 Timeout 48397092,6468884

2
1 Timeout 53463196,2128541
2 Timeout 58103709,1887223
4 Timeout 56800203,8377365

4
1 Timeout 49412779,3605122
2 Timeout 71759927,8797756
4 Timeout 63613084,1963508

20

1
1 Timeout
2 Not tested
4 Not tested

2
1 Timeout
2 Not tested
4 Not tested

4
1 Timeout
2 Not tested
4 Not tested

Table 8.3: Apache Rya Accumulo: LUBM Query 2

86

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 523ms/435ms 762758,152589176
2 447ms/428ms 859822,334431946
4 507ms/460ms 804939,466408188

2
1 764ms/806ms 692375,764832282
2 476ms/428ms 806531,066607459
4 565ms/533ms 860789,631972605

4
1 542ms/515ms 821453,751813999
2 459ms/440ms 955739,372512881
4 654ms/557ms 1021493,2060913

20

1
1 17967ms/17817ms
2 Not tested
4 Not tested

2
1 15987ms/16113ms
2 Not tested
4 Not tested

4
1 15025ms/15074ms
2 Not tested
4 Not tested

Table 8.4: Apache Rya Accumulo: LUBM Query 3

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 16993ms/16894ms 27243471,6435691
2 18627ms/18726ms 27069700,7935753
4 17514ms/17612ms 22864391,7439025

2
1 18288ms/18480ms 31580598,5849171
2 16190ms/16232ms 23355124,4544782
4 19883ms/19803ms 22963180,0631264

4
1 18387ms/18632ms 26211043,5804908
2 17966ms/18050ms 25774928,0558132
4 17092ms/17098ms 26566382,3624026

20

1
1 2261088ms/2259958ms
2 Not tested
4 Not tested

2
1 2121573ms/2136241ms
2 Not tested
4 Not tested

4
1 1096298ms/1123997ms
2 Not tested
4 Not tested

Table 8.5: Apache Rya Accumulo: LUBM Query 4

87

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 293920ms/298089ms 45016039,0084263
2 289427ms/288694ms 40091420,0375215
4 323173ms/322521ms 36095569,6065421

2
1 325027ms/320622ms 43134226,0811849
2 299648ms/299681ms 49144535,3712632
4 337203ms/339311ms 36851183,9587443

4
1 338645ms/335473ms 35407290,2562849
2 277021ms/287251ms 49656139,1697948
4 285292ms/287499ms 50674455,758243

20

1
1 Timeout
2 Not tested
4 Not tested

2
1 Timeout
2 Not tested
4 Not tested

4
1 Timeout
2 Not tested
4 Not tested

Table 8.6: Apache Rya Accumulo: LUBM Query 5

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 353ms/297ms 148381,042051223
2 279ms/186ms 169086,534260674
4 289ms/213ms 118070,851902265

2
1 352ms/219ms 166104,02174493
2 300ms/212ms 161168,560126121
4 320ms/214ms 141937,941337047

4
1 334ms/206ms 150525,481986534
2 307ms/222ms 178591,190865433
4 305ms/224ms 149265,952738316

20

1
1 3440ms/3045ms
2 Not tested
4 Not tested

2
1 2012ms/1593ms
2 Not tested
4 Not tested

4
1 2074ms/1694ms
2 Not tested
4 Not tested

Table 8.7: Apache Rya Accumulo: LUBM Query 6

88

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 486808ms/487118ms 43307179,5824119
2 472915ms/471012ms 44451481,6544599
4 523121ms/522249ms 39489792,7810117

2
1 568705ms/566572ms 37939066,8073298
2 498355ms/498892ms 41369279,570527
4 564852ms/567005ms 39938438,5665566

4
1 580319ms/576033ms 36039346,7726836
2 480880ms/479546ms 43838648,9439807
4 549454ms/547491ms 40089879,6786588

20

1
1 Timeout
2 Not tested
4 Not tested

2
1 Timeout
2 Not tested
4 Not tested

4
1 Timeout
2 Not tested
4 Not tested

Table 8.8: Apache Rya Accumulo: LUBM Query 7

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 768542ms/772319ms 40391653,0877632
2 745606ms/742050ms 47689722,0205612
4 776481ms/776890ms 46426374,4643879

2
1 750151ms/760091ms 53450662,9381631
2 703522ms/701203ms 54067077,9126318
4 771960ms/772471ms 49554355,2427148

4
1 773778ms/772707ms 44597789,7338796
2 711792ms/710388ms 50708636,1592896
4 722785ms/717887ms 53590807,0070549

20

1
1 Timeout
2 Not tested
4 Not tested

2
1 Timeout
2 Not tested
4 Not tested

4
1 Timeout
2 Not tested
4 Not tested

Table 8.9: Apache Rya Accumulo: LUBM Query 8

89

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 Timeout 25476044,3018071
2 Timeout 26789491,5563976
4 Timeout 23509629,0095953

2
1 Timeout 22811609,3556631
2 Timeout 25645569,1241769
4 Timeout 22694756,2067612

4
1 Timeout 22720485,3760204
2 Timeout 27091225,1760622
4 Timeout 22846454,7892069

20

1
1 Timeout
2 Not tested
4 Not tested

2
1 Timeout
2 Not tested
4 Not tested

4
1 Timeout
2 Not tested
4 Not tested

Table 8.10: Apache Rya Accumulo: LUBM Query 9

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 250ms/196ms 265101,376153812
2 237ms/171ms 303370,624416173
4 242ms/200ms 232340,589545299

2
1 252ms/197ms 330927,078570588
2 231ms/183ms 279313,455261671
4 272ms/222ms 304435,983241573

4
1 246ms/221ms 205232,155006103
2 213ms/162ms 333479,977681532
4 231ms/184ms 323385,767702771

20

1
1 16222ms/16084ms
2 Not tested
4 Not tested

2
1 13548ms/13316ms
2 Not tested
4 Not tested

4
1 12285ms/11918ms
2 Not tested
4 Not tested

Table 8.11: Apache Rya Accumulo: LUBM Query 10

90

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 339ms/255ms 54448,3300581072
2 249ms/221ms 65636,7475932081
4 349ms/291ms 60627,4938358032

2
1 317ms/271ms 68447,6398508332
2 298ms/253ms 60776,2094503487
4 338ms/294ms 66836,9995401283

4
1 324ms/272ms 77488,3179594939
2 262ms/204ms 92683,8217479473
4 367ms/295ms 66500,8939581605

20

1
1 22093ms/23006ms
2 Not tested
4 Not tested

2
1 16091ms/14969ms
2 Not tested
4 Not tested

4
1 11011ms/11491ms
2 Not tested
4 Not tested

Table 8.12: Apache Rya Accumulo: LUBM Query 11

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 244ms/193ms 55845,1117899279
2 230ms/191ms 61245,7338215324
4 321ms/263ms 59255,4649750063

2
1 301ms/256ms 81645,0394213954
2 269ms/221ms 56618,7490933469
4 309ms/264ms 70786,8870926279

4
1 304ms/259ms 32664,0957464501
2 231ms/186ms 75894,6581628564
4 293ms/260ms 66224,5033234814

20

1
1 3076ms/3372ms
2 Not tested
4 Not tested

2
1 2620ms/2609ms
2 Not tested
4 Not tested

4
1 938ms/882ms
2 Not tested
4 Not tested

Table 8.13: Apache Rya Accumulo: LUBM Query 12

91

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 413211ms/411009ms 32560652,3749952
2 384661ms/382491ms 37172668,2412753
4 428729ms/438621ms 37290463,7981141

2
1 413270ms/417699ms 42112368,6626268
2 383921ms/382296ms 44658390,9736003
4 451453ms/455457ms 38553312,3364641

4
1 422309ms/426473ms 29588597,520496
2 365419ms/378644ms 50570086,1202489
4 394412ms/404597ms 39023901,6368894

20

1
1 Timeout
2 Not tested
4 Not tested

2
1 Timeout
2 Not tested
4 Not tested

4
1 Timeout
2 Not tested
4 Not tested

Table 8.14: Apache Rya Accumulo: LUBM Query 13

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 339ms/213ms 145161,526132728
2 339ms/212ms 165009,704754316
4 353ms/219ms 111464,603685582

2
1 338ms/284ms 118622,715930658
2 317ms/212ms 117702,246013447
4 288ms/216ms 143049,742084132

4
1 271ms/184ms 157493,505392268
2 318ms/209ms 170221,873609354
4 302ms/213ms 147539,196107679

20

1
1 5062ms/5241ms
2 Not tested
4 Not tested

2
1 3832ms/3894ms
2 Not tested
4 Not tested

4
1 1821ms/1458ms
2 Not tested
4 Not tested

Table 8.15: Apache Rya Accumulo: LUBM Query 14

92

Query 1 DataNode 2 DataNodes
1 309ms/210ms 334ms/204ms
3 492ms/458ms 764ms/806ms
4 17373ms/17412ms 18288ms/18480ms
5 286264ms/286083ms 325027ms/320622ms
6 278ms/202ms 352ms/219ms
7 463658ms/463986ms 568705ms/566572ms
8 648650ms/646602ms 750151ms/760091ms
10 242ms/182ms 252ms/197ms
11 304ms/243ms 317ms/271ms
12 250ms/211ms 301ms/256ms
13 374179ms/369592ms 413270ms/417699ms
14 305ms/203ms 338ms/284ms

Table 8.16: Apache Rya Accumulo HDFS DataNodes Comparison, 2 Worker Nodes, 1
Core

LUBM #Nodes CPU Loading Time Memory usage (peak) Storage size Network Communication (peak)

1

1
1 68s 4340326400 439369728 1302820,6931661
2 69s 4334477312 453038080 1953068,21854447
4 65s 4374806528 458264576 1716130,61778304

2
1 77s 5032648704 907685888 2427356,57638691
2 84s 4872949760 918110208 2507574,57576804
4 69s 4961943552 920891392 2261177,04580166

4
1 100s 6037192704 1817161728 3140445,28102813
2 83s 6571970560 1807040512 4429971,82317289
4 70s 6968836096 1813286912 4379663,99717526

20

1
1 2967s 14588370944 3429859328 2336163,7059455
2 2662s 15303348224 3444846592 2124875,07069863
4 2458s 15547527168 3540492288 2279904,12580098

2
1 3700s 21741756416 6505222144 2588678,88911067
2 3426s 22667374592 6617493504 2755691,56773982
4 2988s 23247155200 6679003136 2785289,18904595

4
1 6033s 34521821184 12139347968 2991615,52290344
2 3136s 38847557632 13500780544 4860525,73328698
4 2873s 39539056640 13957869568 4801100,34320181

Table 8.17: Apache Rya MongoDB: Loading Data

93

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 365ms/221ms 136955,761982904
2 342ms/211ms 149049,781905566
4 387ms/238ms 84875,2437947993

2
1 374ms/219ms 121410,84044215
2 393ms/276ms 104962,852234319
4 324ms/204ms 144175,275496564

4
1 350ms/242ms 104764,700253609
2 377ms/270ms 144595,676297685
4 349ms/229ms 140616,857534029

20

1
1 8376ms/6747ms 3343348,40676462
2 8194ms/6599ms 2127651,36821752
4 6311ms/5023ms 2539834,21083876

2
1 7452ms/5940ms 2711758,25326666
2 10264ms/7844ms 3524329,80948824
4 7554ms/6241ms 2410599,31628869

4
1 8741ms/6844ms 2941825,23905881
2 8100ms/6431ms 2888968,04678308
4 8801ms/7328ms 3021095,5724748

Table 8.18: Apache Rya MongoDB: LUBM Query 1

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 Timeout 2519794,20701836
2 Timeout 2463513,63702613
4 Timeout 2584611,71190445

2
1 Timeout 2359869,42070276
2 Timeout 2013771,53525652
4 Timeout 2399328,17766255

4
1 Timeout 2434305,24311539
2 Timeout 2185566,46786417
4 Timeout 2510418,95259194

20

1
1 Not tested
2 Not tested
4 Not tested

2
1 Not tested
2 Not tested
4 Not tested

4
1 Not tested
2 Not tested
4 Not tested

Table 8.19: Apache Rya MongoDB: LUBM Query 2

94

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 1675ms/1650ms 3269086,24430871
2 1649ms/1576ms 3315838,76905641
4 1689ms/1629ms 3231407,22016674

2
1 1691ms/1689ms 3231002,72904836
2 1963ms/1870ms 3086799,66014197
4 1489ms/1405ms 3366644,69641175

4
1 2038ms/2000ms 2707153,12194204
2 1742ms/1716ms 2723350,58458461
4 1645ms/1591ms 3009432,12484649

20

1
1 60447ms/60400ms 9091254,22119593
2 60312ms/59950ms 8039782,78066853
4 45339ms/46359ms 10135664,6077795

2
1 55055ms/54717ms 8771044,02150533
2 66182ms/66750ms 7810555,49598149
4 58874ms/58127ms 8848524,85307248

4
1 63746ms/63053ms 8128512,87086741
2 57771ms/57111ms 9304243,57807995
4 64220ms/64017ms 7947287,02472985

Table 8.20: Apache Rya MongoDB: LUBM Query 3

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 2438ms/2387ms 2637236,66562088
2 2544ms/2507ms 2374725,99102024
4 2420ms/2360ms 2525343,7651423

2
1 2557ms/2511ms 2490742,75403019
2 2659ms/2633ms 2421374,43151614
4 2290ms/2244ms 2700690,56121627

4
1 2888ms/2860ms 2330330,72341312
2 2705ms/2697ms 2252467,46110231
4 2346ms/2331ms 2437486,35378082

20

1
1 81379ms/81400ms 2451374,07007163
2 78085ms/78041ms 2565548,44271189
4 68324ms/67184ms 3008171,80940515

2
1 68922ms/69249ms 2838180,30073598
2 80474ms/80316ms 2549412,35103479
4 78158ms/77908ms 2588470,58188942

4
1 76887ms/76661ms 2812760,47056939
2 71814ms/72009ms 2853143,99368111
4 72202ms/71994ms 2791315,03930661

Table 8.21: Apache Rya MongoDB: LUBM Query 4

95

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 81928ms/84696ms 4677384,92179356
2 76723ms/76621ms 4914949,17737786
4 74082ms/74137ms 5383136,89057516

2
1 79053ms/79501ms 4743283,76440674
2 80489ms/80354ms 4863216,82016697
4 75667ms/75581ms 4972100,10240849

4
1 94683ms/96818ms 4095028,82615256
2 82102ms/81996ms 4694816,10601333
4 74626ms/74282ms 5001782,58689911

20

1
1 2553195ms/2550530ms 2546249,04960453
2 2541732ms/2537961ms 2387990,53405188
4 2192389ms/2178086ms 2819858,15752795

2
1 2237474ms/2239400ms 2704885,85238862
2 2584368ms/2581007ms 2385606,95052436
4 2491054ms/2491504ms 2622443,38352121

4
1 2472008ms/2476355ms 2448702,85691262
2 2346615ms/2340410ms 2613895,11118982
4 2377259ms/2370082ms 2748703,38760926

Table 8.22: Apache Rya MongoDB: LUBM Query 5

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 418ms/304ms 2342100,63688442
2 342ms/247ms 3023336,63962908
4 344ms/259ms 2752271,51650953

2
1 316ms/212ms 2545735,27831662
2 309ms/239ms 2587364,66592729
4 282ms/206ms 2376006,32087106

4
1 364ms/284ms 2319604,55383563
2 355ms/273ms 2235554,43223721
4 276ms/190ms 2331219,7325818

20

1
1 4220ms/3927ms 8541141,65764212
2 3792ms/3819ms 7572822,18656589
4 4044ms/4186ms 5880707,74792671

2
1 3841ms/3393ms 7445704,15050764
2 4355ms/4101ms 6654808,28426898
4 4128ms/3481ms 8714242,15954032

4
1 3846ms/3398ms 7879979,83448959
2 3923ms/3534ms 7709444,2572839
4 4160ms/3781ms 6997136,24598095

Table 8.23: Apache Rya MongoDB: LUBM Query 6

96

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 2037909ms/2057472ms 14697314,2893539
2 2099895ms/2119559ms 14733179,8919973
4 2046898ms/2051196ms 14819682,1580444

2
1 2358421ms/2362478ms 14749970,2142217
2 2333756ms/2340971ms 13677128,946793
4 1812895ms/1810744ms 17316147,6343472

4
1 2641297ms/2620506ms 12111158,7143456
2 2327775ms/2293966ms 13065179,924067
4 1989323ms/1982799ms 14834122,8116925

20

1
1 Not tested
2 Not tested
4 Not tested

2
1 Not tested
2 Not tested
4 Not tested

4
1 Not tested
2 Not tested
4 Timeout

Table 8.24: Apache Rya MongoDB: LUBM Query 7

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 125388ms/124984ms 5576824,32699673
2 136956ms/135329ms 4404504,8589746
4 118262ms/118184ms 4918015,27574762

2
1 138720ms/138396ms 4388154,14452728
2 153153ms/152681ms 3982054,78787111
4 130353ms/132596ms 4638144,67350759

4
1 151042ms/151048ms 3974182,13713269
2 146637ms/146206ms 4004685,90277627
4 124719ms/124907ms 4660250,6514517

20

1
1 Not tested
2 Not tested
4 Not tested

2
1 Not tested
2 Not tested
4 Not tested

4
1 Not tested
2 Error occurred
4 685112ms/697311ms

Table 8.25: Apache Rya MongoDB: LUBM Query 8

97

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 Timeout 50639255,4415597
2 Timeout 47877089,5035284
4 Timeout 50480307,9227594

2
1 Timeout 47309901,203827
2 Timeout 49325510,8390949
4 Timeout 50192809,4207847

4
1 Timeout 49654413,1401307
2 Timeout 43648160,3431275
4 Timeout 44333507,8084431

20

1
1 Not tested
2 Not tested
4 Not tested

2
1 Not tested
2 Not tested
4 Not tested

4
1 Not tested
2 Not tested
4 Not tested

Table 8.26: Apache Rya MongoDB: LUBM Query 9

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 861ms/868ms 47954433,2954167
2 791ms/713ms 42958048,1319759
4 696ms/647ms 43513781,0808759

2
1 795ms/765ms 43742370,8920082
2 893ms/870ms 40887407,1553253
4 632ms/592ms 44413344,5619527

4
1 1080ms/1068ms 43193241,3262154
2 812ms/763ms 41745158,6779297
4 706ms/685ms 40775130,2214301

20

1
1 19910ms/20033ms 7443516,47172824
2 20141ms/19759ms 6246143,8340605
4 15541ms/15611ms 7252663,82980093

2
1 19483ms/19389ms 6031704,68393311
2 23155ms/22883ms 6952167,54128568
4 20717ms/20278ms 7055984,59104539

4
1 22267ms/22889ms 6163076,24307005
2 22180ms/20616ms 6992039,25872083
4 23622ms/23517ms 6956122,95615508

Table 8.27: Apache Rya MongoDB: LUBM Query 10

98

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 296ms/200ms 47765140,7534747
2 301ms/226ms 46906097,1458241
4 241ms/185ms 45229280,5752283

2
1 283ms/223ms 43662597,2439706
2 299ms/258ms 43612096,6996962
4 269ms/237ms 40525402,7575994

4
1 283ms/236ms 44752865,2830721
2 288ms/235ms 43021502,2477167
4 251ms/212ms 40397776,4259194

20

1
1 2311ms/2425ms 497172,306398477
2 2010ms/1910ms 418557,234428887
4 1891ms/1821ms 357256,049896656

2
1 1980ms/1904ms 413101,346135914
2 2147ms/1898ms 591624,691455805
4 2060ms/1914ms 510149,427153526

4
1 1987ms/1845ms 459967,484871172
2 1876ms/1718ms 422531,398389347
4 1943ms/1800ms 394135,905496269

Table 8.28: Apache Rya MongoDB: LUBM Query 11

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 220ms/183ms 44931735,9272209
2 237ms/200ms 40590497,9583637
4 185ms/154ms 44072264,9569635

2
1 228ms/205ms 44796108,3000057
2 236ms/210ms 44810404,7181532
4 219ms/195ms 41835428,6950643

4
1 234ms/195ms 47379371,3920447
2 232ms/196ms 41079702,7889945
4 218ms/171ms 38470861,9047317

20

1
1 229ms/178ms 27131,9311823688
2 218ms/174ms 21947,4197483541
4 219ms/177ms 19234,3118245674

2
1 211ms/167ms 25673,6283959865
2 247ms/197ms 33381,0408310942
4 214ms/188ms 32061,3256713258

4
1 211ms/179ms 41807,5079771694
2 195ms/164ms 40473,9720279793
4 214ms/185ms 40900,8243713257

Table 8.29: Apache Rya MongoDB: LUBM Query 12

99

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 98197ms/98210ms 45419674,6171273
2 101941ms/101057ms 46354076,5998821
4 84811ms/85051ms 49052506,7277415

2
1 107749ms/107471ms 46744319,7251503
2 109062ms/105825ms 47177547,0669564
4 94011ms/92898ms 45752717,8346743

4
1 131269ms/132389ms 42171382,8323031
2 111295ms/111789ms 43064459,6105818
4 93305ms/91779ms 41099399,6342401

20

1
1 2716423ms/2717166ms 2608201,41389611
2 2682252ms/2668077ms 2430049,03312238
4 2324683ms/2330832ms 2927146,78536985

2
1 2384449ms/2386296ms 2726723,9390317
2 2705016ms/2699740ms 2524773,41868955
4 2568054ms/2561520ms 2800484,19451476

4
1 2652388ms/2671752ms 2579080,29265448
2 2500734ms/2495277ms 2699549,01028574
4 2438669ms/2439684ms 2892080,68099369

Table 8.30: Apache Rya MongoDB: LUBM Query 13

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 379ms/268ms 43723103,5576159
2 376ms/285ms 46853570,8349834
4 309ms/269ms 46848784,5947482

2
1 330ms/201ms 49629329,5588675
2 375ms/286ms 49920966,9503264
4 308ms/232ms 44250117,0459405

4
1 314ms/207ms 42975055,0115523
2 347ms/282ms 43925388,5646074
4 291ms/214ms 38411708,6694044

20

1
1 4121ms/3877ms 6097051,28026586
2 3835ms/3188ms 7582771,10447894
4 3592ms/3274ms 6105243,67825752

2
1 4044ms/3902ms 7453972,74271396
2 3985ms/3350ms 10064967,4890475
4 3820ms/3337ms 7578596,06697413

4
1 3708ms/3286ms 6287822,28250223
2 3840ms/3484ms 7003706,51211377
4 4033ms/3699ms 7007934,17259532

Table 8.31: Apache Rya MongoDB: LUBM Query 14

100

LUBM #Nodes CPU Loading Time Memory usage (peak) Storage size Network Communication (peak)

1

1
1 102s 5529919488 56164352 1442421,92817144
2 82s 9567404032 63258624 1022987,07937882
4 51s 9334587392 63242240 1724170,17452415

2
1 88s 6954217472 126484480 3435404,20880214
2 60s 9445199872 139104256 3898822,48325863
4 51s 10445852672 124837888 3869730,94104516

4
1 81s 11181125632 241725440 3273918,14567899
2 59s 12752384000 225091584 4213914,55112675
4 51s 15700897792 225533952 5090040,17310004

20

1
1 1149s 28154044416 715661312 14575578,5022696
2 694s 40923213824 691200000 13634798,7621221
4 411s 44824068096 691220480 17202175,4383775

2
1 631s 43549376512 1431318528 29369493,0338758
2 424s 61316096000 1431367680 27081102,6316787
4 268s 65593061376 1382612992 30839833,6014025

4
1 458s 41782460416 2111492096 33511184,5477478
2 267s 96843898880 2185142272 43981292,5918687
4 215s 122339913728 2185551872 53848230,7222331

Table 8.32: SANSA-Stack Loading Data

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 14339ms/8205ms 2495381,58737327
2 9261ms/4863ms 867550,522111752
4 5602ms/2359ms 2912969,44403835

2
1 10566ms/5015ms 3605274,94140156
2 5454ms/3257ms 3038714,62801133
4 4213ms/2405ms 1812252,78956578

4
1 8353ms/3794ms 2868911,73619213
2 6131ms/3734ms 2612872,28389436
4 3729ms/2139ms 2503078,68738697

20

1
1 79546ms/34919ms 11987938,1279602
2 47153ms/22100ms 20779686,8351557
4 29015ms/9587ms 29570003,1517028

2
1 42268ms/17532ms 22980199,0873366
2 25380ms/11410ms 25119273,771702
4 15572ms/8005ms 32178558,3788683

4
1 33877ms/18214ms 29340121,7496039
2 14358ms/6409ms 41419995,2796473
4 9437ms/4469ms 33480042,5634029

Table 8.33: SANSA-Stack: LUBM Query 1

101

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 101338ms/63038ms 3677858,42402121
2 65138ms/42287ms 7125288,74910138
4 34942ms/24907ms 9916127,92397149

2
1 67125ms/38926ms 6653910,62695076
2 40998ms/29237ms 10803006,8817199
4 28502ms/20923ms 14149577,1717669

4
1 48437ms/29104ms 8231224,04951853
2 34895ms/22583ms 11672745,7570307
4 26058ms/21338ms 16799519,6904768

20

1
1 587747ms/570856ms 11439127,7922541
2 320728ms/301653ms 14521747,5538566
4 151276ms/141969ms 26104569,3804879

2
1 306684ms/278891ms 20463586,0436843
2 177057ms/164717ms 26549306,0376723
4 108020ms/100290ms 31162338,3128211

4
1 232928ms/213213ms 26423194,049269
2 103584ms/94705ms 38825634,4612809
4 73009ms/68707ms 48602279,3145918

Table 8.34: SANSA-Stack: LUBM Query 2

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 5711ms/5063ms 1154560,53318338
2 3515ms/3009ms 696509,819471174
4 2012ms/1726ms 1601692,86522079

2
1 3873ms/3079ms 1342082,28261702
2 2332ms/2079ms 1606652,21167155
4 1533ms/1321ms 1120549,01040025

4
1 2223ms/1762ms 1525252,3300819
2 1823ms/1630ms 1581828,55649756
4 1840ms/1432ms 1687216,4094863

20

1
1 45190ms/34447ms 10240417,7142224
2 28359ms/22116ms 10640373,0180557
4 12444ms/9407ms 12442919,5545704

2
1 22392ms/16788ms 11242465,5609034
2 13302ms/10065ms 9861407,77554696
4 8850ms/7089ms 11245409,2405144

4
1 20678ms/16884ms 13109177,8425588
2 7756ms/5944ms 12356344,7559766
4 4865ms/3941ms 14245380,3888508

Table 8.35: SANSA-Stack: LUBM Query 3

102

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 12211ms/7035ms 2992887,83705179
2 7570ms/4677ms 1372153,98764653
4 4106ms/2682ms 4093956,00201962

2
1 8276ms/4856ms 4098242,32652979
2 4557ms/3131ms 3129513,30207763
4 3210ms/2417ms 2363285,88224412

4
1 5410ms/3275ms 3721133,0059273
2 4057ms/2661ms 3831939,77459848
4 3235ms/2457ms 3272176,41673161

20

1
1 97303ms/55408ms 12288117,9679419
2 55531ms/33003ms 21608957,2129321
4 31735ms/14565ms 26841473,7501516

2
1 50127ms/27206ms 23904152,2049459
2 28773ms/16826ms 30170540,6581861
4 17491ms/10610ms 34425819,3790103

4
1 35890/23942ms 35038352,0798031
2 16572ms/10162ms 32838042,5789704
4 10879ms/7714ms 43948945,3806678

Table 8.36: SANSA-Stack: LUBM Query 4

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 4632ms/4603ms 552708,117749289
2 3178ms/2941ms 658451,889719888
4 1607ms/1605ms 903159,16495858

2
1 3140ms/3101ms 637520,636398128
2 2454ms/2007ms 856802,404192299
4 1678ms/1384ms 967779,699932039

4
1 2113ms/1971ms 748391,890371216
2 1994ms/1734ms 1071522,16874328
4 1251ms/1230ms 1093602,9940922

20

1
1 35683ms/35760ms 2379674,46243117
2 22276ms/22165ms 3748773,66067343
4 10346ms/10335ms 5242682,65565581

2
1 19056ms/18904ms 4231498,38427144
2 11446ms/10672ms 3767552,8649109
4 7166ms/7117ms 4868602,94594521

4
1 15787ms/15758ms 4627823,49527721
2 6206ms/6161ms 6306564,93978829
4 4031ms/3985ms 4593207,316082

Table 8.37: SANSA-Stack: LUBM Query 5

103

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 3964ms/3732ms 520542,256482143
2 2583ms/2399ms 490159,125489977
4 1665ms/1476ms 667369,75184184

2
1 3337ms/3296ms 492172,011670426
2 1667ms/1580ms 542953,8282665
4 1168ms/1126ms 621903,082583487

4
1 2459ms/2434ms 624129,017546244
2 1597ms/1595ms 657266,024927765
4 1072ms/1036ms 742773,332680927

20

1
1 25004ms/25056ms 2237402,01983455
2 14540ms/14346ms 3146271,10583885
4 6625ms/6367ms 4083928,50254555

2
1 14362ms/13992ms 3487171,89886202
2 8604ms/8424ms 3672803,66802508
4 5535ms/5392ms 4610075,00062863

4
1 11314ms/10740ms 3833788,99208415
2 4938ms/4633ms 5252624,4995814
4 3450ms/3164ms 4938381,29385017

Table 8.38: SANSA-Stack: LUBM Query 6

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 18610ms/14275ms 2070673,32612768
2 12012ms/9489ms 2739226,33577578
4 6280ms/5103ms 3991813,00100232

2
1 11557ms/8992ms 3065453,08383996
2 7715ms/6406ms 3100933,76494745
4 5217ms/4638ms 3755743,32237851

4
1 8313ms/7038ms 2739947,36568639
2 6264ms/5372ms 3961559,1248445
4 5406ms/4510ms 5439925,69908238

20

1
1 132416ms/125057ms 7991988,84833546
2 84681ms/79916ms 12201388,0362817
4 36821ms/33992ms 15436962,9352183

2
1 69974ms/64851ms 13086488,5822233
2 41852ms/39177ms 12712133,5704921
4 26750ms/25914ms 17210318,6573723

4
1 57440ms/55278ms 13024484,5857013
2 22305ms/21171ms 23696062,9131857
4 14908ms/13555ms 22901805,8844563

Table 8.39: SANSA-Stack: LUBM Query 7

104

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 16182ms/16490ms 1601391,22862088
2 11262ms/11054ms 2552202,04966405
4 5857ms/5795ms 3320609,19790012

2
1 10172ms/9921ms 2186760,17647531
2 6887ms/6646ms 3008436,85958055
4 5260ms/5186ms 3501543,02134466

4
1 7349ms/7485ms 2938459,96287078
2 5676ms/5767ms 3811098,24248926
4 4558ms/4456ms 4236924,21467031

20

1
1 136259ms/136997ms 2370703,958233
2 76969ms/78998ms 4447835,83252583
4 34545ms/34624ms 9625545,71415499

2
1 73038ms/73550ms 5679514,76067321
2 43591ms/42611ms 9603197,13864304
4 24882ms/24907ms 15569688,8088328

4
1 53648ms/54501ms 8348205,9542526
2 24477ms/24080ms 18572834,7881652
4 16369ms/16472ms 22743298,5758818

Table 8.40: SANSA-Stack: LUBM Query 8

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 72213ms/59562ms 3056166,92330204
2 47709ms/40103ms 4600538,17835142
4 26124ms/22945ms 9024771,28491825

2
1 46834ms/40664ms 4923568,11751164
2 30070ms/25364ms 8562683,06087256
4 21142ms/18235ms 11294541,2246019

4
1 31865ms/27385ms 7211330,21734858
2 26112ms/23784ms 11054745,3920012
4 19378ms/17283ms 16192123,1730062

20

1
1 561694ms/556405ms 7200862,3229212
2 293284ms/289926ms 10530519,3912947
4 136972ms/134694ms 17341316,8472034

2
1 301483ms/298656ms 12587800,7549032
2 171179ms/165461ms 13936286,1510468
4 100166ms/96661ms 26152516,9827094

4
1 211662ms/205885ms 16103902,9448193
2 99619ms/100061ms 30583274,4197032
4 67034ms/66593ms 38259702,4198761

Table 8.41: SANSA-Stack: LUBM Query 9

105

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 4834ms/4747ms 629274,338477849
2 3070ms/3099ms 766264,424522223
4 1613ms/1593ms 1015801,35011845

2
1 3118ms/3079ms 743260,705669509
2 2048ms/2008ms 880802,291086888
4 1539ms/1428ms 914850,020291169

4
1 2137ms/2047ms 798642,724925841
2 1783ms/1783ms 755302,182800727
4 1332ms/1223ms 1220532,41635919

20

1
1 34163ms/34109ms 2206541,29834259
2 22152ms/22099ms 3690751,17954012
4 9553ms/9428ms 5309954,1977485

2
1 19164ms/19243ms 3947866,20451657
2 10493ms/10453ms 3713435,05705063
4 7696ms/7673ms 4869369,7132966

4
1 16007ms/16037ms 4368935,58806451
2 6298ms/6065ms 6145225,57599801
4 4538ms/4340ms 5439639,11815674

Table 8.42: SANSA-Stack: LUBM Query 10

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 4406ms/4333ms 511458,177139896
2 2849ms/2819ms 678051,367095816
4 1666ms/1545ms 898293,585804383

2
1 2845ms/2798ms 675756,232451663
2 1785ms/1812ms 779464,660856768
4 1351ms/1255ms 806488,003356865

4
1 1715ms/1738ms 617344,140414167
2 1493ms/1489ms 926991,251446128
4 1232ms/990ms 939965,785577755

20

1
1 32834ms/32586ms 2261221,05027386
2 18131ms/18194ms 3112322,29109496
4 7786ms/7746ms 4348748,18195972

2
1 17906ms/17926ms 3694029,22512221
2 9883ms/9778ms 3764785,35528651
4 5680ms/5649ms 4927302,71617643

4
1 13013ms/12916ms 3306436,4981586
2 5865ms/5786ms 3684849,42745276
4 3758ms/3801ms 5015095,7283231

Table 8.43: SANSA-Stack: LUBM Query 11

106

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 13770ms/13223ms 1377148,10160144
2 9067ms/8804ms 2266405,8167108
4 5498ms/5164ms 3186922,3834235

2
1 8732ms/8895ms 1475221,38964588
2 5999ms/5921ms 2296080,33504958
4 4784ms/4261ms 2808626,13481941

4
1 5551ms/5536ms 2169051,02460966
2 5143ms/4848ms 3230540,13988307
4 4346ms/3822ms 3615695,5513029

20

1
1 112473ms/111673ms 2696074,53933473
2 71582ms/70479ms 4858370,5906871
4 31033ms/30942ms 10840215,447151

2
1 59690ms/60729ms 5298836,48473577
2 34034ms/34496ms 7905465,28431223
4 28630ms/28358ms 10549026,4008102

4
1 48885ms/48725ms 6805615,73139439
2 19809ms/20169ms 12189134,6099048
4 13408ms/13229ms 14336663,5559989

Table 8.44: SANSA-Stack: LUBM Query 12

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 4892ms/4252ms 1206303,1206153
2 3121ms/2673ms 701518,515251984
4 1698ms/1465ms 1051580,93620636

2
1 3340ms/2716ms 1574358,81894028
2 2055ms/1812ms 1436254,61329568
4 1425ms/1228ms 1053812,1767783

4
1 2051ms/1664ms 1348223,68963789
2 1731ms/1391ms 1275639,61928854
4 1328ms/1102ms 1765071,58820156

20

1
1 43468ms/32668ms 8567086,84994654
2 24887ms/18155ms 8021078,09640238
4 11122ms/7809ms 14920293,0464032

2
1 23515ms/17905ms 10559395,0989329
2 13000ms/9928ms 11274874,0719658
4 7989ms/5948ms 11800741,6224488

4
1 17448ms/13282ms 10544349,84655
2 8654ms/5987ms 10575495,6757433
4 4791ms/3878ms 13564889,7169469

Table 8.45: SANSA-Stack: LUBM Query 13

107

8. Appendix

LUBM #Nodes CPU Query time average/median Network Communication (peak)

1

1
1 3735ms/3631ms 403081,277348628
2 2483ms/2412ms 531686,611568046
4 1276ms/1232ms 424993,30879698

2
1 2665ms/2557ms 573241,366427509
2 1671ms/1571ms 632099,772817458
4 1080ms/1003ms 637060,262616723

4
1 1748ms/1723ms 621778,125126033
2 1318ms/1269ms 561395,477577906
4 912ms/811ms 866952,246632068

20

1
1 25241ms/25173ms 2265035,7629269
2 14349ms/14022ms 3538685,36312557
4 6477ms/6210ms 4076708,14369514

2
1 14317ms/14448ms 2982212,64465444
2 8339ms/8301ms 4490006,80100038
4 5643ms/5343ms 3859976,53525898

4
1 10898ms/10932ms 4453711,28339243
2 5426ms/5433ms 5140770,40851332
4 3294ms/3219ms 4124916,02964805

Table 8.46: SANSA-Stack: LUBM Query 14

108

Query 1 DataNode 2 DataNodes
1 9561ms/4345ms 8818ms/4061ms
2 60862ms/35628ms 58967ms/35050ms
3 3351ms/2623ms 3084ms/2570ms
4 7154ms/4698ms 6944ms/4283ms
5 2548ms/2508ms 2942ms/2968ms
6 2525ms/2869ms 2456ms/2638ms
7 11099ms/9265ms 10053ms/8031ms
8 9237ms/9150ms 8931ms/8913ms
9 41493ms/34144ms 39007ms/32310ms
10 2698ms/2667ms 2707ms/2638ms
11 2388ms/2389ms 2531ms/2537ms
12 7526ms/7325ms 7526ms/7510ms
13 2680ms/2258ms 2721ms/2264ms
14 2135ms/1991ms 2133ms/2195ms

Table 8.47: SANSA-Stack HDFS DataNodes Comparison, 2 Worker Nodes, 1 Core

109

Bibliography

[AAH16] Witold Abramowicz, Sören Auer, and Tom Heath. Linked data in business.
Bus. Inf. Syst. Eng., 58(5):323–326, 2016.

[AHÖD14] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversi-
fied stress testing of RDF data management systems. In Peter Mika, Tania
Tudorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny
Vrandecic, Paul Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A.
Goble, editors, The Semantic Web - ISWC 2014 - 13th International Seman-
tic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Part I, volume 8796 of Lecture Notes in Computer Science, pages 197–212.
Springer, 2014.

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollen-
bach. Scalable semantic web data management using vertical partitioning.
In Proceedings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007, pages 411–422.
ACM, 2007.

[AXL+15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark SQL: relational data processing in
Spark. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1383–1394. ACM, 2015.

[BCG+18] Bradley R. Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh
Khandelwal, Yigit Kiran, Sainath Mallidi, Bruce McGaughy, Mike Personick,
Karthik Rajan, Simone Rondelli, Alexander Ryazanov, Michael Schmidt,
Kunal Sengupta, Bryan B. Thompson, Divij Vaidya, and Shawn Wang.
Amazon Neptune: Graph data management in the cloud. In Marieke van
Erp, Medha Atre, Vanessa López, Kavitha Srinivas, and Carolina Fortuna,
editors, Proceedings of the ISWC 2018 Posters & Demonstrations, Industry
and Blue Sky Ideas Tracks co-located with 17th International Semantic Web
Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018,
volume 2180 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

111

[BEP14] Peter A. Boncz, Orri Erling, and Minh-Duc Pham. Experiences with Virtuoso
cluster RDF column store. In Linked Data Management, pages 239–259.
Chapman and Hall/CRC, 2014.

[BHB09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story
so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[BLR+20] Theodora S. Brisimi, Vanessa López, Valentina Rho, Marco Luca Sbodio,
Gabriele Picco, Morten Kristiansen, John Segrave-Daly, and Conor Cullen.
Ontology-guided policy information extraction for healthcare fraud detection.
In Louise Bilenberg Pape-Haugaard, Christian Lovis, Inge Cort Madsen,
Patrick Weber, Per Hostrup Nielsen, and Philip Scott, editors, Digital
Personalized Health and Medicine - Proceedings of MIE 2020, Medical
Informatics Europe, Geneva, Switzerland, April 28 - May 1, 2020, volume
270 of Studies in Health Technology and Informatics, pages 879–883. IOS
Press, 2020.

[CCK+17] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov,
Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao.
Ontop: Answering SPARQL queries over relational databases. Semantic
Web, 8(3):471–487, 2017.

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache Flink™: Stream and batch processing
in a single engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[CZCG12] Lei Chen, Haifei Zhang, Ying Chen, and Wenping Guo. Blank nodes in
RDF. J. Softw., 7(9):1993–1999, 2012.

[Daw16] Omer Dawelbeit. Investigating elastic cloud based RDF processing. PhD
thesis, University of Reading, Berkshire, UK, 2016.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. In 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, December
6-8, 2004, pages 137–150. USENIX Association, 2004.

[DGPN13] Francesco Draicchio, Aldo Gangemi, Valentina Presutti, and Andrea Gio-
vanni Nuzzolese. FRED: from natural language text to RDF and OWL
in one click. In Philipp Cimiano, Miriam Fernández, Vanessa López, Ste-
fan Schlobach, and Johanna Völker, editors, The Semantic Web: ESWC
2013 Satellite Events - ESWC 2013 Satellite Events, Montpellier, France,
May 26-30, 2013, Revised Selected Papers, volume 7955 of Lecture Notes in
Computer Science, pages 263–267. Springer, 2013.

[DKSU11] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian
Udrea. Apples and oranges: a comparison of RDF benchmarks and real RDF

112

datasets. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and
Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece, June
12-16, 2011, pages 145–156. ACM, 2011.

[EM09] Orri Erling and Ivan Mikhailov. Virtuoso: RDF support in a native RDBMS.
In Roberto De Virgilio, Fausto Giunchiglia, and Letizia Tanca, editors,
Semantic Web Information Management - A Model-Based Perspective, pages
501–519. Springer, 2009.

[Erl12] Orri Erling. Virtuoso, a hybrid RDBMS/graph column store. IEEE Data
Eng. Bull., 35(1):3–8, 2012.

[FHA18] Md. Nowraj Farhan, Md. Ahsan Habib, and Arshad Ali. A study and
performance comparison of MapReduce and Apache Spark on Twitter data
on Hadoop cluster. International Journal of Information Technology and
Computer Science, 10:61–70, 07 2018.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003, pages 29–43. ACM, 2003.

[GHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter F.
Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. J.
Web Semant., 6(4):309–322, 2008.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Semant., 3(2-3):158–182, 2005.

[Har11] A. Harth. CumulusRDF: Linked data management on nested key-value
stores. 2011.

[HLSL09] Steve Harris, Nick Lamb, Nigel Shadbolt, and Garlik Ltd. 4store: The
design and implementation of a clustered RDF store. Proc. SSWS, 01 2009.

[HPvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: the making of a web ontology language. J. Web
Semant., 1(1):7–26, 2003.

[HZU+12] Aidan Hogan, Antoine Zimmermann, Jürgen Umbrich, Axel Polleres, and
Stefan Decker. Scalable and distributed methods for entity matching, con-
solidation and disambiguation over linked data corpora. J. Web Semant.,
10:76–110, 2012.

[JA20] Benymol Jose and Sajimon Abraham. Performance analysis of NoSQL and
relational databases with MongoDB and MySQL. Materials Today: Pro-
ceedings, 24:2036–2043, 2020. International Multi-conference on Computing,

113

Communication, Electrical & Nanotechnology, I2CN-2K19, 25th & 26th
April 2019.

[KAB+14] Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Chansup
Byun, Vijay Gadepally, Matthew Hubbell, Peter Michaleas, Julie Mullen,
Andrew Prout, Albert Reuther, Antonio Rosa, and Charles Yee. Achieving
100, 000, 000 database inserts per second using Accumulo and D4M. In IEEE
High Performance Extreme Computing Conference, HPEC 2014, Waltham,
MA, USA, September 9-11, 2014, pages 1–6. IEEE, 2014.

[KM15] Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. VLDB J.,
24(1):67–91, 2015.

[Kob] OLG Koblenz. Beschluss vom 30.03.2021 - 5 ws 16/21.

[KP15] Je-Min Kim and Young-Tack Park. Scalable OWL-Horst ontology reasoning
using SPARK. In 2015 International Conference on Big Data and Smart
Computing, BIGCOMP 2015, Jeju, South Korea, February 9-11, 2015, pages
79–86. IEEE Computer Society, 2015.

[Läm08] Ralf Lämmel. Google’s MapReduce programming model - revisited. Sci.
Comput. Program., 70(1):1–30, 2008.

[LM13] Yishan Li and Sathiamoorthy Manoharan. A performance comparison of
SQL and NoSQL databases. pages 15–19, 08 2013.

[LN04] Thorsten Liebig and Olaf Noppens. OntoTrack: Combining browsing and
editing with reasoning and explaining for OWL Lite ontologies. In Sheila A.
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, The
Semantic Web - ISWC 2004: Third International Semantic Web Confer-
ence,Hiroshima, Japan, November 7-11, 2004. Proceedings, volume 3298 of
Lecture Notes in Computer Science, pages 244–258. Springer, 2004.

[LQHL17] Hao Lian, Zemin Qin, Tieke He, and Bin Luo. Knowledge graph construction
based on judicial data with social media. In 14th Web Information Sys-
tems and Applications Conference, WISA 2017, Liuzhou, Guangxi Province,
China, November 11-12, 2017, pages 225–227. IEEE, 2017.

[LSB+17] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus
Stadler, Ivan Ermilov, Simon Bin, Nilesh Chakraborty, Muhammad Saleem,
Axel-Cyrille Ngonga Ngomo, and Hajira Jabeen. Distributed semantic
analytics using the SANSA stack. In The Semantic Web - ISWC 2017 - 16th
International Semantic Web Conference, Vienna, Austria, October 21-25,
2017, Proceedings, Part II, volume 10588 of Lecture Notes in Computer
Science, pages 147–155. Springer, 2017.

114

[LSEA16] Ayman E. Lotfy, Ahmed I. Saleh, Haitham A. El-Ghareeb, and Hesham A.
Ali. A middle layer solution to support ACID properties for NoSQL databases.
J. King Saud Univ. Comput. Inf. Sci., 28(1):133–145, 2016.

[MGS+19] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören
Auer, and Jens Lehmann. Squerall: Virtual ontology-based access to het-
erogeneous and large data sources. In Chiara Ghidini, Olaf Hartig, Maria
Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime
Lefrançois, and Fabien Gandon, editors, The Semantic Web - ISWC 2019
- 18th International Semantic Web Conference, Auckland, New Zealand,
October 26-30, 2019, Proceedings, Part II, volume 11779 of Lecture Notes in
Computer Science, pages 229–245. Springer, 2019.

[MMW+21] Pedro Martins, Francisco Morgado, Cristina Wanzeller, Filipe Sá, and
Maryam Abbasi. MongoDB, Couchbase, and CouchDB: A comparison. In
Álvaro Rocha, Hojjat Adeli, Gintautas Dzemyda, Fernando Moreira, and Ana
Maria Ramalho Correia, editors, Trends and Applications in Information
Systems and Technologies - Volume 2, WorldCIST 2021, Terceira Island,
Azores, Portugal, 30 March - 2 April, 2021, volume 1366 of Advances in
Intelligent Systems and Computing, pages 469–480. Springer, 2021.

[MTS+21] Antonios Makris, Konstantinos Tserpes, Giannis Spiliopoulos, Dimitrios
Zissis, and Dimosthenis Anagnostopoulos. MongoDB vs PostgreSQL: A
comparative study on performance aspects. GeoInformatica, 25(2):243–268,
2021.

[Opd21] Andreas L. Opdahl. Knowledge graphs and natural-language processing.
CoRR, abs/2101.06111, 2021.

[PCR12] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a scalable
RDF triple store for the clouds. In 1st International Workshop on Cloud
Intelligence (colocated with VLDB 2012), Cloud-I ’12, Istanbul, Turkey,
August 31, 2012, page 4. ACM, 2012.

[PCR15] Roshan Punnoose, Adina Crainiceanu, and David Rapp. SPARQL in the
cloud using Rya. Inf. Syst., 48:181–195, 2015.

[PKAS17] Dr. Yusuf Perwej, Bedine Kerim, Mohammed Adrees, and Osama Sheta.
An empirical exploration of the Yarn in big data. International Journal of
Applied Information Systems (IJAIS) – ISSN : 2249-0868 , Foundation of
Computer Science FCS, New York, USA, Volume 12:Page 19– 29, 12 2017.

[PMNH18] Anthony Potter, Boris Motik, Yavor Nenov, and Ian Horrocks. Dynamic
data exchange in distributed RDF stores. IEEE Trans. Knowl. Data Eng.,
30(12):2312–2325, 2018.

115

[RDE+07] Kurt Rohloff, Mike Dean, Ian Emmons, Dorene Ryder, and John Sumner.
An evaluation of triple-store technologies for large data stores. In On the
Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, OTM
Confederated International Workshops and Posters, AWeSOMe, CAMS,
OTM Academy Doctoral Consortium, MONET, OnToContent, ORM, Per-
Sys, PPN, RDDS, SSWS, and SWWS 2007, Vilamoura, Portugal, November
25-30, 2007, Proceedings, Part II, volume 4806 of Lecture Notes in Computer
Science, pages 1105–1114. Springer, 2007.

[RS10] Kurt Rohloff and Richard E. Schantz. High-performance, massively scalable
distributed systems using the MapReduce software framework: the SHARD
triple-store. In SPLASH Workshop on Programming Support Innovations
for Emerging Distributed Applications (PSI EtA - ΨΘ 2010), October 17,
2010, Reno/Tahoe, Nevada, USA, page 4. ACM, 2010.

[Rus16] Michael Ruster. Large-scale reasoning with OWL. CoRR, abs/1602.04473,
2016.

[SCH+11] Manuel Salvadores, Gianluca Correndo, Steve Harris, Nick Gibbins, and
Nigel Shadbolt. The design and implementation of minimal RDFS back-
ward reasoning in 4store. In Grigoris Antoniou, Marko Grobelnik, Elena
Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leen-
heer, and Jeff Z. Pan, editors, The Semanic Web: Research and Applications
- 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete,
Greece, May 29 - June 2, 2011, Proceedings, Part II, volume 6644 of Lecture
Notes in Computer Science, pages 139–153. Springer, 2011.

[SD17] Daniel Seybold and Jörg Domaschka. Is distributed database evaluation
cloud-ready? In New Trends in Databases and Information Systems - ADBIS
2017 Short Papers and Workshops, AMSD, BigNovelTI, DAS, SW4CH,
DC, Nicosia, Cyprus, September 24-27, 2017, Proceedings, volume 767 of
Communications in Computer and Information Science, pages 100–108.
Springer, 2017.

[SGK+19] Gezim Sejdiu, Damien Graux, Imran Khan, Ioanna Lytra, Hajira Jabeen,
and Jens Lehmann. Towards a scalable semantic-based distributed approach
for SPARQL query evaluation. In Semantic Systems. The Power of AI
and Knowledge Graphs - 15th International Conference, SEMANTiCS 2019,
Karlsruhe, Germany, September 9-12, 2019, Proceedings, volume 11702 of
Lecture Notes in Computer Science, pages 295–309. Springer, 2019.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The Hadoop distributed file system. In IEEE 26th Symposium on Mass
Storage Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA,
May 3-7, 2010, pages 1–10. IEEE Computer Society, 2010.

116

[SN16] Adam Sotona and Stefan Negru. How to feed Apache HBase with petabytes
of RDF data: An extremely scalable RDF store based on Eclipse RDF4J
framework and Apache HBase database. In Proceedings of the ISWC 2016
Posters & Demonstrations Track co-located with 15th International Semantic
Web Conference (ISWC 2016), Kobe, Japan, October 19, 2016, volume 1690
of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[SOTY13] Scott M. Sawyer, B. David O’Gwynn, An Tran, and Tamara Yu. Understand-
ing query performance in Accumulo. In IEEE High Performance Extreme
Computing Conference, HPEC 2013, Waltham, MA, USA, September 10-12,
2013, pages 1–6. IEEE, 2013.

[SSGL19a] Claus Stadler, Gezim Sejdiu, Damien Graux, and Jens Lehmann. Querying
large-scale RDF datasets using the SANSA framework. In Proceedings
of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry,
and Outrageous Ideas) co-located with 18th International Semantic Web
Conference (ISWC 2019), Auckland, New Zealand, October 26-30, 2019,
volume 2456 of CEUR Workshop Proceedings, pages 285–288. CEUR-WS.org,
2019.

[SSGL19b] Claus Stadler, Gezim Sejdiu, Damien Graux, and Jens Lehmann. Sparklify:
A scalable software component for efficient evaluation of SPARQL queries
over distributed RDF datasets. In The Semantic Web - ISWC 2019 - 18th
International Semantic Web Conference, Auckland, New Zealand, October
26-30, 2019, Proceedings, Part II, volume 11779 of Lecture Notes in Computer
Science, pages 293–308. Springer, 2019.

[tH05] Herman J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF schema and a semantic extension involving the OWL
vocabulary. J. Web Semant., 3(2-3):79–115, 2005.

[UKM+12] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen,
and Henri E. Bal. WebPIE: A web-scale parallel inference engine using
MapReduce. J. Web Semant., 10:59–75, 2012.

[UKOvH09] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen.
Scalable distributed reasoning using MapReduce. In Abraham Bernstein,
David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico
Motta, and Krishnaprasad Thirunarayan, editors, The Semantic Web - ISWC
2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly,
VA, USA, October 25-29, 2009. Proceedings, volume 5823 of Lecture Notes
in Computer Science, pages 634–649. Springer, 2009.

[UvHSB11] Jacopo Urbani, Frank van Harmelen, Stefan Schlobach, and Henri E. Bal.
QueryPIE: Backward reasoning for OWL Horst over very large knowledge
bases. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham

117

Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist, editors,
The Semantic Web - ISWC 2011 - 10th International Semantic Web Con-
ference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I, volume
7031 of Lecture Notes in Computer Science, pages 730–745. Springer, 2011.

[Wil06] Kevin Wilkinson. Jena property table implementation. 11 2006.

[WSKR03] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds.
Efficient RDF storage and retrieval in Jena2. In Proceedings of SWDB’03,
The first International Workshop on Semantic Web and Databases, Co-located
with VLDB 2003, Humboldt-Universität, Berlin, Germany, September 7-8,
2003, pages 131–150, 2003.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA,
USA, June 22, 2010. USENIX Association, 2010.

[ZDL+12] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica.
Discretized streams: An efficient and fault-tolerant model for stream pro-
cessing on large clusters. In 4th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’12, Boston, MA, USA, June 12-13, 2012. USENIX
Association, 2012.

118

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	RDF
	Kubernetes
	Triplestores
	Distributed Computation Methods

	Use Case: Fraud Detection
	Evaluation Criteria
	Functional Evaluation Criteria
	Performance Evaluation Criteria

	Candidate Systems
	Apache Rya Accumulo
	Apache Rya MongoDB
	SANSA-Stack
	Further Systems
	Functional Discussion

	Performance Evaluation
	Apache Rya Accumulo
	Apache Rya MongoDB
	SANSA-Stack
	Performance Discussion

	Conclusion and Future Work
	Appendix
	Bibliography

