
Certified Circuit Reconstruction
for QBF

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Mihai-Alexandru Weng
Matrikelnummer 12228521

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr. Stefan Szeider
Mitwirkung: Dr. Friedrich Slivovsky

Wien, 1. April 2024
Mihai-Alexandru Weng Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Certified Circuit Reconstruction
for QBF

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Mihai-Alexandru Weng
Registration Number 12228521

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Stefan Szeider
Assistance: Dr. Friedrich Slivovsky

Vienna, April 1, 2024
Mihai-Alexandru Weng Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Mihai-Alexandru Weng

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. April 2024
Mihai-Alexandru Weng

v

Acknowledgements

My deepest gratitude goes to my supervisors Prof. Dr. Stefan Szeider and Dr. Friedrich
Slivovsky for the guidance throughout my thesis. I am truly appreciative of the numerous
insightful discussions we had, delving into both theoretical and practical aspects of the
work. I deeply appreciate their patience in explaining the necessary steps and provisioning
of resources required for completion. Moreover, their prompt responses to my queries
and constructive feedback on my writing have been invaluable. Last but not least, I want
to thank you for finding this topic that I thoroughly enjoyed and pointing me toward a
research direction I would like to pursue in the future.

vii

Kurzfassung

An der Lösung von QBF sind mehrere Programme beteiligt, z. B. Vorverarbeitungstech-
niken, Proof Checker usw. Da es sich bei all diesen Schritten um Computerprogramme
handelt, können sie jedoch schwer erkennbare Fehler enthalten. Zum Beispiel können wir
einen QBF-Solver verwenden, um zu prüfen, ob eine QBF wahr oder falsch ist, aber wir
haben keine Garantie, dass die Antwort des QBF-Solvers richtig ist. Daher können wir
einen Proof-Trace anhängen, der in einem Proof-Checker als Zertifikat für das Ergebnis
des QBF-Solvers verwendet werden kann.

In dieser Arbeit konzentrieren wir uns auf ein Programm, das eine QBF in der konjunktiven
Normalform von Prenex in eine quantifizierte Schaltung im QCIR-Format transformiert.
Dieses Programm muss eine äquivalente quantifizierte Schaltung für die Eingabe-QBF
rekonstruieren. Wir wollen also eine Möglichkeit haben, die QCIR-Transformation zu
zertifizieren.

Um diese Probleme zu lösen, schlagen wir eine Methode zur Zertifizierung der Rekon-
struktion vor. Wir definieren die Bedingungen, unter denen eine Schaltung die Schal-
tungsrekonstruktion einer PCNF ist. Wir stellen ein Verfahren vor, das aus der Schaltung
QBF und ihrer Widerlegung eine Widerlegung der ursprünglichen PCNF erzeugt. Der
Beweis dient als Zertifikat für die rekonstruierte Schaltung.

In Experimenten haben wir die von verschiedenen Programmen erzeugten Schaltungsre-
konstruktionen auf Standard-QBF-Benchmarks und zufälligen Instanzen zertifiziert.

ix

Abstract

QBF solving involves several programs such as preprocessing techniques, proof checkers,
etc. But all these steps, being computer programs, can contain elusive errors. For
example, using a QBF solver we can check whether a QBF is true or false, but we don’t
have any guarantee that the answer of a QBF solver is correct. Therefore, we can attach
a proof trace that can be used in a proof checker as a certificate of the QBF solver’s
result.

In this thesis we focus on a program that takes a QBF in prenex conjunctive normal
form and transforms it into a quantified circuit in the QCIR format. This program must
reconstruct an equisatisfiable quantified circuit for the input QBF. Thus, we want to
have a way of certifying the QCIR transformation.

To address these issues, we propose a method for certifying the reconstruction. We define
conditions under which a circuit is the circuit reconstruction of a PCNF. We present a
procedure that generates a refutation of the original PCNF from the circuit QBF and its
refutation. The proof serves as a certificate of the reconstructed circuit.

In the experiments, we certified the circuit reconstructions generated by different programs
on standard QBF benchmarks and random instances.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aim of the Thesis . 2
1.2 Structure of the Thesis . 3

2 Preliminaries 5
2.1 Quantified Boolean Formulas . 5
2.2 Proofs . 7
2.3 Tseitin Transformation . 8
2.4 The Q-Resolution Proof System . 10
2.5 The QRAT Proof System . 11
2.6 Quantified Conflict-Driven Clause Learning 13
2.7 The QDIMACS Format . 15
2.8 The QCIR Format . 15

3 Certifying Quantified Circuit Reconstruction 19
3.1 Certified QCIR Reconstruction . 19
3.2 Tseitin Transformation of QCIR . 21
3.3 QRAT Proof from Q-Resolution Proof 22
3.4 Input QRAT Proof Construction . 23

4 Implementation 27
4.1 Existing Tools . 27
4.2 Procedures Implementation . 28
4.3 Workflow Scripts . 29

5 Experiments 33
5.1 Initial Testing . 33
5.2 Random Testing . 36

xiii

5.3 QBF Benchmarks . 37

6 Conclusion 41

List of Figures 43

List of Tables 45

List of Algorithms 47

Bibliography 49

CHAPTER 1
Introduction

Considering a Boolean formula we might be interested if there exists an assignment
for the expression such that its evaluation is true, in other words, we are interested in
whether a formula is satisfiable, the famous SAT problem.

An important characteristic of the SAT problem is its complexity class, NP-complete [Coo23].
A problem is said to be in NP if a given solution can be checked in polynomial time. A
problem is NP-complete if any other NP problem can be reduced to it in polynomial
time. This raises a useful application of SAT solvers, that is, their ability to solve
other NP problems, such as the traveling salesman problem, graph coloring, and so
on. Additionally, SAT solvers can be used in areas like model checking, combinational
equivalence checking [MS08].

With the success of SAT solving, we can go one step further and investigate the case where
the given formula is a quantified Boolean formula. Therefore, we get the equivalent of the
SAT problem for the quantified Boolean formulas, the QSAT problem. QSAT is PSPACE-
complete, where PSPACE is the class of problems that can be solved using a polynomial
amount of space. Besides the usual application of the problem being complete, QBF
solvers can be also used in verification and artificial intelligence applications [SBPS19].

Taking into consideration the importance of these problems, and their hard complexity
classes, there is a lot of research in developing faster and correct programs involved in
the process.

A SAT solver usually takes as an input a Boolean formula in conjunctive normal form
and gives an assignment for the satisfying assignment or a proof that confirms the SAT
instance does not have a satisfying assignment. The proof is based on a proof system, in
the case of propositional logic, this can be the resolution proof system that only includes
the resolution rule. Conflict-driven clause learning is one approach on which SAT solvers
are based and is also capable of deriving proof of unsatisfiable in case of a false instance.

1

1. Introduction

Most of the results in the SAT setting can be adapted to QSAT [BJLS21]. Similarly
to conjunctive normal form inputs of an SAT solver, there is also a prenex conjunctive
normal form for QSAT solvers. The widespread use of conjunctive normal form comes
from the transformation of any formula in an equisatisfiable conjunctive normal form,
thus making the solvers take a more specific formula input than a general formula. The
output of a QSAT solver, in case of false instances, will be a proof of unsatisfiability, as
in SAT solving, but with a different proof system. Although QBF solvers are similar in
the case of false instances, there is a difference when dealing with true instances, where
QBF solvers will also need to provide a proof. QSAT solvers can also be implemented
using a quantified version of the algorithm used in SAT solvers.

Given a proof of a QBF one needs to check that this proof is correct, thus the need for proof
checkers. The proof checker we will be using is based on the QRAT property [HSB14].
QRAT was developed to be a proof system for QBFs preprocessing, in order to get a
modified formula that is equisatisfiable with the input. But, this approach can also be
used as a refutation or satisfaction proof of the QBF.

So far we only spoke about inputs given as a prenex conjunctive normal form, but there
is another interesting format for a QBF and that is its circuit form, presented in [qci].
Sometimes, this format can be beneficial for a QBF solver as seen in [JKS16]. In the
same paper, is also presented a way in which one can get a circuit form of a QBF, which
we will call circuit reconstruction. This technique is mainly based on pattern matching
the input formula and trying to deduce which variables can be seen as gates. Additionally,
an interpolation-based circuit reconstruction has been developed in [Sli20].

Even though these tools are built on a strong mathematical foundation, this cannot
always guarantee that the implementations of the procedures do not contain errors. Thus,
without slowing down the solver’s efficiency, one can implement some part of the process
that can be trusted. For example, in [CFHH+17] a proof format was developed that can
be verified by a checker which was formally proved.

1.1 Aim of the Thesis
With the interest of non-conjunctive normal form solving [JKS16], one can apply the
transformation from prenex conjunctive normal form to a circuit form and use the solver
for the circuit input. But, how can we be sure the transformation is sound? How can we
be sure the new formula is equisatisfiable?

In this thesis, we aim to answer these questions by providing a way of certifying the
reconstruction step. Moreover, this procedure will also include a method for the proof
checking of a QCIR proof, that was currently unavailable.

In order to certify the transformation, we start by defining what a circuit reconstruction
needs to satisfy. With our definition in place, we want to show that a proof of the
input formula can be derived from the reconstructed circuit. In the end, we show that a
valid proof for the input formula can be derived by our approach if the program that

2

1.2. Structure of the Thesis

produced the circuit form of a PCNF respects the definition of a circuit reconstruction,
thus certifying the program.

Once we have proven the soundness of our procedures, we can begin to implement and
test them in the certification of a circuit converter. The testing will be based on random
QBF instances and well-known benchmarks, and if we don’t find any errors in the process
of generating the input proof, we can say that the reconstruction was correct.

This approach mainly focuses on the false QBF instances due to the open question of
transforming a Q-consensus proof to QRAT proof. Additionally, the refutational com-
pleteness of the Q-resolution proof system for prenex conjunctive normal forms [BJLS21]
is another reason for the interest in false instances of QBF.

1.2 Structure of the Thesis
This thesis is structured as follows. In Chapter 2, we briefly walk through the preliminary
concepts needed for the main result on circuit certification presented in Chapter 3 followed
by its implementation in Chapter 4.
The experiments are in Chapter 5, where we test two circuit converters on various
instances of QBFs.
In Chapter 6, we present our conclusions alongside with a view to future work.

3

CHAPTER 2
Preliminaries

In this preliminary chapter, we are going to set the building blocks needed for later
chapters without the need for prior knowledge. In all sections of this chapter, every
definition will be accompanied by its respective example, and a corresponding illustration
for each procedure.

The structure of this chapter will be as follows: we start by introducing syntax and
semantics for our formulas of interest, followed by a transformation of a generic formula
into conjunctive normal form. After that, we present two proof systems for QBFs and
show how an algorithm can solve a QBF. Lastly, we talk about the input formats a QBF
should be given in to be understood by a solver.

2.1 Quantified Boolean Formulas
A quantified Boolean formula (QBF) is an extension of propositional Boolean formula
with quantified variables. For example, (x1 ∨ x2 ∧ x3) → x4 is a propositional formula
whilst ∀x1x3∃x2x4(x1 ∨ x2 ∧ x3) → x4 is the prior formula quantified.

Every propositional formula can be represented as a QBF, by existentially quantifying
the variables. For example, from x1 ∨ x2 we get ∃x1x2(x1 ∨ x2).

In this section, the definition for QBF is given in the prenex form, where all quantifiers
appear in front of a quantifier-free formula called matrix. It can be assumed that the
matrix is in the conjunctive normal form. If the matrix is not in CNF, we can apply
the Tseitin transformation presented in Section 2.3. This transformation will produce
an equisatisfiable formula of the given input. Additionally, any generic QBF can be
transformed into the prenex conjunctive normal form.

Definition 2.1 (Literal). A literal is a Boolean variable x or its negation x. We define
var(x) = var(x) = x.

5

2. Preliminaries

Example 2.2. In formula (x ∨ y ∧ z) the literals are {x, y, z} and var(y) = y. If we want
the negation of the literal l = y, we will have l = y.

Definition 2.3 (Clause). A clause is a disjunction of literals.

Example 2.4. (x1 ∨ x2 ∨ x3) is a clause. But (y1 ∨ y2 ∧ y3) is not because it contains an
and operator, neither (z1 ∨ (z2 ∧ z3)) because the second term is not a literal.

A clause can also be represented as a set, (x1 ∨x2 ∨x3) to {x1, x2, x3}. This representation
is useful for computer programs due to its processing as a list.

Definition 2.5 (Cube). A cube is a conjunction of literals.

Example 2.6. (x1 ∧ x2 ∧ x3) is a cube. Whilst, (y1 ∧ (y2 ∨ y3)), (x1 → x2 ∧ z3) are not.

Definition 2.7 (CNF). A propositional formula is in conjunctive normal form if it
is a conjunction of clauses.

Example 2.8. x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) is in conjunctive normal form.

Definition 2.9 (QBF in PCNF). A quantified Boolean formula in prenex con-
junctive normal form is of the form

Πψ,

which consists of a CNF ψ called matrix, and a prefix Π = Q1X1 . . . QkXk, with
Qi ∈ {∃, ∀}, Qi ̸= Qi+1, and Xi pairwise disjoint sets of variables.

Example 2.10. ∀x∃y(x ∨ y) is a QBF in PCNF. A QBF that is not a PCNF is
∀x(x) → ∃y(y). Also, it is not allowed to have two consecutive quantifiers of the same
time ∀x∀y, instead ∀xy should be used.

Definition 2.11 (Quantifier Block). A quantifier block is QiXi (from Definition 2.9).
Moreover, Q1X1 is the outermost quantifier block and QkXk is the innermost
quantifier block.

A variable x is quantified at level i, if x ∈ Xi and denoted by lv(x) = i. We can
extend it for literals with lv(l) = lv(var(l)). Furthermore, we can define quant(Π, x) =
quant(Π, x) = Qi.

Example 2.12. If we have the prefix Π = ∃ab∀uv∃xyz, then the outermost block is ∃ab,
the innermost block is ∃xyz, lv(u) = 2, and quant(Π, v) = ∀.

Definition 2.13 (Substitution). Πψ[t/x] denotes the substitution of x by t.

Example 2.14. ∀xy∃z(x ∨ y) ∧ z[1/z] we get ∀xy∃z(x ∨ y) ∧ 1.

Definition 2.15 (QBF Semantics). A QBF ∀xΠψ is true if Πψ[0/x] and Πψ[1/x] are
true. A QBF ∃xΠψ is true if Πψ[0/x] or Πψ[1/x] is true.

6

2.2. Proofs

Example 2.16. ∀x(x ∨ x) is a true QBF, we have (0 ∨ 0) which evaluates to true and
(1 ∨ 1) which also evaluates to true. Another true QBF is ∃x∀y(x ∨ y) because it will be
true when we assign x to 1. A false QBF is ∀x(x), because we can take [0/x] producing
false.

Definition 2.17 (Proof system [Was22]). A proof system is a quadruple S = (Lang,
Exp, Ax, R), where Lang, Exp stands for the language and the well-formed formulas,
expression, Ax is the set of axioms in the system, and the R are the rules of inference
of S.

2.2 Proofs
In this section, we define what we mean by proof and introduce the notion of redundant
clauses. This section is mainly based on [Zel19].

Definition 2.18 (Redundant). Let ϕ be a propositional formula. A formula F is
redundant w.r.t. ϕ if ϕ ⊨ F .

A redundant formula is a formula that does not add extra information because it is true
from the context. With Definition 2.18 we can define what a proof is.

Definition 2.19 (Proof). A sequence of clauses, ending with the empty clause, that are
redundant w.r.t. ϕ.

In the following, we will list a couple of the properties that are sufficient for redundancy.

Definition 2.20 (Tautology). Let p be a propositional formula, if the formula p is true
given every assignment, then p is a tautology.

Example 2.21. (¬l ∨ l) is a tautology.

Definition 2.22 (Asymmetric tautology). Asymmetric literal addition, repeat until fix-
point is ALA(ϕ, C): ∃(C ∨ l) ∈ ϕ\{C}, then C := C ∨ ¬l. A clause C is an asymmetric
tautology w.r.t. ϕ if ALA(ϕ, C) is a tautology.

Definition 2.23 (Reverse unit propagation). A clause C is a RUP w.r.t. propositional
formula ϕ if the application of unit propagation of ¬C to ϕ derives ⊥. Where unit
propagation is a procedure that takes a set of clauses, and for each literal in the set,
eliminates the clauses that contain that literal, or removes it from the clauses that contain
its negation. The procedure repeats these steps until fix-point. An empty clause is noted
as ⊥.

The definition of asymmetric tautology is equivalent to the reverse unit propagation
definition [Zel19].

The SAT solver we will be using in this work will have as output a RUP proof, therefore,
we will illustrate this proof using an example from [HHW13].

7

2. Preliminaries

Example 2.24 (RUP proof). Given the clauses of a CNF (x1∨x2∨¬x3), (¬x1∨¬x2∨x3),
(x2 ∨ x3 ∨ ¬x4), (¬x2 ∨ ¬x3 ∨ x4), (x1 ∨ x3 ∨ x4), (¬x1 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ x2 ∨ x4) and
(x1 ∨ ¬x2 ∨ ¬x4).

We have the RUP proof: (x1 ∨ x2), (x1), (x2), ⊥. The negation of (x1 ∨ x2), will produce
the literals ¬x1 and ¬x2, using unit propagation, from the first clause we will have ¬x3.
From ¬x2 and ¬x3, we can use them in clause (x2 ∨ x3 ∨ ¬x4) and get ¬x4. But, ¬x1
and ¬x3 in (x1 ∨ x3 ∨ x4) produce x4. Therefore, with x4 and ¬x4 we get ⊥. Thus, our
clause has RUP and can be added to our list of CNF, because RUP preserves logical
equivalence.

For ¬x1, we have the previous clause (x1 ∨ x2), and get x2 by unit propagation. From
(x1 ∨ ¬x2 ∨ ¬x4), we get ¬x4. From (¬x2 ∨ ¬x3 ∨ x4), we get ¬x3. And the clause
(¬x1 ∨ ¬x3 ∨ ¬x4), produce ⊥, thus making x1 have RUP.

For ¬x2, we get x4 from (¬x1 ∨ x2 ∨ x4). From (x2 ∨ x3 ∨ ¬x4), we get x3. From
(¬x1 ∨ ¬x3 ∨ ¬x4), we get ⊥, therefore, x2 has RUP.

The last clause we check is ⊥, and its negation is true. We get x3, from (¬x1 ∨ ¬x2 ∨ x3),
x1 and x2. From (¬x2 ∨ ¬x3 ∨ x4), we get x4. From (¬x1 ∨ ¬x3 ∨ ¬x4), we get ⊥. Thus,
⊥ has RUP. Making our CNF unsatisfiable.

Definition 2.25 (Resolution tautology (blocked clause)). A clause C is a resolution
tautology w.r.t. propositional formula ϕ if:

• it is a tautology,

• or, there is a literal l ∈ C with all D ∈ ϕ that contains ¬l, by applying resolution
rule will produce a tautology.

Definition 2.26 (Resolution asymmetric tautology). A clause C is a resolution asym-
metric tautology w.r.t. propositional formula ϕ if:

• it is an asymmetric tautology,

• or, there is a literal l ∈ C with all D ∈ ϕ that contains ¬l, by applying resolution
rule will produce an asymmetric tautology.

These properties can be arranged in the hierarchy presented in Figure 2.1 based on their
preserved equivalence and their overlaps with other properties.

2.3 Tseitin Transformation
Tseitin transformation is a procedure that takes a propositional formula and computes
a new formula in conjunctive normal form that is equisatisfiable to the initial formula.
Additionally, the transformation is linear in the size of the input.

8

2.3. Tseitin Transformation

Figure 2.1: Hierarchy of redundant properties [Zel19].

As stated in [MVVdB16], for each logical connective, we introduce a new variable
corresponding to its output. The new variables can replace the occurrence of a subformula,
such that each logical connective is between two variables. These equivalences T ↔ A◦B,
where ◦ is a logical connective, can be transformed into a logically equivalent CNF. In
Table 2.1, we display the clauses for the ∧ and ∨.

Logical connective Conjunctive normal form
T ↔ A ∧ B (T ∨ ¬A ∨ ¬B) ∧ (¬T ∨ A) ∧ (¬T ∨ B)
T ↔ A ∨ B (¬T ∨ A ∨ B) ∧ (T ∨ ¬A) ∧ (T ∨ ¬B)

Table 2.1: Tseitin transformation of a logical connective into its conjunctive normal form.

This transformation works as follows. Given a propositional formula ϕ, for each subformula
we introduce an equivalent Tseitin variable. For each equivalence, we add its CNF
translation to a formula ϕT . After introducing all the clauses in ϕT , ϕ is equisatisfiable
with ϕT ∧ T0, where T0 corresponds to the outermost logical connective of ϕ.

Example 2.27. If we have the formula (A∧B)∨C, first we should point out that, this is
not in CNF. We introduce a Tseitin variable for each subformula, as follows: T1 ↔ (A∧B)
and T0 ↔ (T1 ∨ C). We write the conjunctive normal form for each equivalence

φT = (T1 ∨ A ∨ B) ∧ (T1 ∨ A) ∧ (T1 ∨ B) ∧ (T0 ∨ T1 ∨ C) ∧ (T0 ∨ T1) ∧ (T0 ∨ C).

Finally, φT ∧ T0 is the transformation of the initial formula in CNF.

The reason it works is that given φ and φT ∧ T0, if φ is satisfiable, we can use the
assignment to set our Ti accordingly, and T0 is true because φ is satisfiable. In case φ is
unsatisfiable, suppose φT ∧ T0 is satisfiable, but this can’t be the case, because we can
get an assignment that should be true for φ, so φT ∧ T0 is also unsatisfiable.

9

2. Preliminaries

With the transformation for propositional formulas to CNF in place, in a QBF PCNF
setting we are raising the question of where we put the Tseitin variables in the prefix. If
we do not assign them in the quantified block, they will be treated as free variables, thus
in the outermost existential block (if the first block is universal, we just add another
existential block outside). But this has the following counter-example: ∀x(x ∧ x) that is
true while ∃t∀x(t ∨ x ∨ x) ∧ (t ∨ x) ∧ (t ∨ x) ∧ t which is false. Thus, we can form the
following claim:

Claim 2.28. Consider a QBF of form Πφ, where φ is quantifier-free formula. Πφ is
equisatisfiable with Π∃T (φT ∧ T0), where T is the set of Tseitin variables, φT is the
Tseitin transformation of subformulas and T0 is the first logical connective that is applied
to the formula. (If the last quantified block of Π is ∃, then T is appended to it.)

Proof. Similar to the propositional case, by applying the semantic Definition 2.15 of
QBF, we end up with a matrix that is formed prefixed only by the existential block of
Tseitin variables. Due to the prefix being only existential we can use the reasoning at
the propositional level, and we can use the prior sketch proof.

Logical connective Conjunctive normal form
T ↔ A1 ∧ A2 ∧ ... ∧ An (T ∨ ¬A1 ∨ ... ∨ ¬An) ∧ (¬T ∨ A1) ∧ ... ∧ (¬T ∨ An)
T ↔ A1 ∨ A2 ∨ ... ∨ An (¬T ∨ A1 ∨ ... ∨ An) ∧ (T ∨ ¬A1) ∧ ... ∧ (T ∨ ¬An)

Table 2.2: Tseitin transformation extended form.

The Tseitin transformation can be used in an extended form, presented in Table 2.2. This
form will be of use later when we will implement an and/or gate in a shorter form. To see
the proof for this extended version, for and case, we can see that if all the variables are
true, than the clause (T ∨ ¬A1 ∨ ... ∨ ¬An) is true only if T is true, in case one variable is
false, than respective (¬T ∨ Ai) will make T false, thus we have the equivalence between
T and A1 ∧ A2 ∧ ... ∧ An in conjunctive normal form. For the or case we apply the same
logic as in the previous case.

2.4 The Q-Resolution Proof System
In SAT solving, if a proposition is satisfiable, we can give a satisfying assignment. If it
is unsatisfiable, we will need to ensure it has no satisfying assignment. This is where a
proof system comes in our help. For an unsatisfiable formula, we can give the steps in a
proof system to derive a contradiction. One proof system for proposition formulas is the
resolution proof system.

In QBF solving, we have a quantified version for the prior resolution proof system.
This is presented in Figure 2.2. Q-resolution is refutationally complete for QBFs in
PCNF [BKF95]. This means if a formula is unsatisfiable, we can derive the empty clause,
by applying rules from our proof system given the formula.

10

2.5. The QRAT Proof System

Figure 2.2: Q-resolution proof system [BJLS21].

Example 2.29. ∃y∀xz∃p(y ∨ x ∨ z) ∧ p by applying only (red) for (y ∨ x ∨ z) we get
(y ∨ x) because y ≤Π x and p is not in the clause, also we can get (y ∨ z) because z needs
to be higher than existential variables and ignore the universal quantified variables, in
plus, if we apply it repeatedly we can also get (y).

Example 2.30. ∀xy∃z(x ∨ z) ∧ (y ∨ z) with (res) on those 2 clauses, we get (x ∨ y).

Example 2.31. In this example we will apply the rules to get a refutation of

∀x1x2∃y(x1 ∨ x2 ∨ y) ∧ (y ∨ x1) ∧ (y ∨ xy) ∧ y ∧ (x1 ∨ x1).

Firstly we apply (cl-init) where we get

(x1 ∨ x2 ∨ y) ∧ (y ∨ x1) ∧ (y ∨ xy) ∧ y

without last clause because that is a tautology. On the first and last clause, we can apply
(res) and get (x1 ∨ x2). On (x1 ∨ x2) we apply twice (red) and get the empty clause.
Thus, our formula is false and has a proof in the Q-resolution proof system.

2.5 The QRAT Proof System
The main objective of this work is to provide a QRAT proof for an input PCNF, where
the QRAT proof is derived from the quantified circuit of the PCNF. Thus, we dedicate
this section to explaining QRAT in detail.

QRAT was defined in [HSB14] in order to have a proof system that can prove different
types of preprocessing rules. Additionally, if we have a QRAT proof for a QBF, we can
check whether it is a valid refutation or satisfaction proof in accordance with the proof
system. In the following, we will present the definition of QRAT and the properties that
use the definition of QRAT in applications.

Definition 2.32 (Outer Resolvent). The outer resolvent of clauses C ∨ l and D ∨ l on
literal l w.r.t. quantifiers Π is:

OR(Π, C ∨ l, D ∨ l, l) = C ∪ {k | k ∈ D, lv(k) ≤ lv(l), k ̸= l}, for quant(Π, l) = ∃,

11

2. Preliminaries

and

OR(Π, C ∨ l, D ∨ l, l) = (C\{l}) ∪ {k | k ∈ D, lv(k) ≤ lv(l), k ̸= l}, for quant(Π, l) = ∀.

Example 2.33. Consider the prefix Π = ∀x1x2∃y1y2∀x3x4.

For C = (x2 ∨ x4 ∨ y1), D = (x1 ∨ x3 ∨ y1), with the existential quantifier y1 as the pivot,
we get OR = (x2 ∨ x4 ∨ y1 ∨ x1).

For C = (y1 ∨ y2 ∨ x1), D = (x2 ∨ x1), with the universal quantifier x1 as the pivot, we
get OR = (y1 ∨ y2 ∨ x2).

Definition 2.34 (Implies via unit propagation). A propositional formula ψ implies via
unit propagation a clause C, denoted by ψ ⊢1 C,

if applying unit propagation on ψ ∧ C we can derive the empty clause.

Example 2.35. Given ψ = (a ∨ b) ∧ (c ∨ d) ∧ (b ∨ d) and the clause C = (a ∨ c), the
negation of C is a ∧ c, which implies b, d, but those two with the clause (b ∨ d) will derive
the empty clause, thus our formula implies the clause C via unit propagation.

Definition 2.36 (QRAT). A clause C has QRAT on literal l ∈ C w.r.t. QBF Πψ, if
for all D ∈ ψ with l ∈ D:

ψ ⊢1 OR(Π, C, D, l).

With the QRAT definition in place, in order to make use of it we use the following
theorems, from [HSB14], that help us to transform a QBF into an equisatisfiable QBF:

Theorem 2.37 (QRAT for existential [HSB14]). Given a QBF ϕ = Π.ψ and a clause
C ∈ ψ with QRAT on existential literal l ∈ C w.r.t. QBF ϕ′ = Π′.(ψ\{C}), where Π′ is
adapted for (ψ\{C}). Then ϕ and ϕ′ are equisatisfiable.

Theorem 2.38 (QRAT for universal [HSB14]). Given a QBF ϕ = Π.ψ and a clause
C ∈ ψ with QRAT on universal literal l ∈ C w.r.t. QBF Π.(ψ\{C}). Then ϕ and
Π.(ψ\{C} ∪ {C\{l}}) are equisatisfiable.

Without going into detail, these theorems are used for checking the steps we will use in a
QRAT proof. In a QRAT proof system, we have the following operations: addition of a
clause, deletion of a clause, and universal elimination. For the addition or deletion of a
clause, the QRAT checker will check that Theorem 2.37 is respected. For the universal
elimination, Theorem 2.38 needs to be followed, or an extended universal reduction
rule can be applied. The EUR rule has a similar output as the QRAT elimination of a
universal literal, meaning that we remove the respective literal from the clause, but the
EUR rule is based on resolution paths [CH22]. As we don’t need to deep dive into the
inner workings of a checker, we omit the definition of EUR.

In Figures 2.3 and 2.4, we present an example from [HSB14] of a refutation that uses all
the available operations in a QRAT proof, addition, deletion, and universal elimination.

12

2.6. Quantified Conflict-Driven Clause Learning

p cnf 3 3
a 1 0
e 2 3 0
1 2 0
1 3 0
-2 -3 0

Figure 2.3: False QBF in QDIMACS.

-2 0
d -2 -3 0

1 0
u 1 0

0

Figure 2.4: QCIR proof for example in Figure 2.3.

The first line is adding the clause -2 to our set of clauses. The second line prefixed
with d deletes the clause -2 -3 from our set. Lastly, the u operation will delete the
clause that is followed by the symbol from the set but will reintroduce the clause without
the first literal (the literal that has QRAT), because this is how the step is defined in
Theorem 2.38 for universal elimination, we cannot only delete directly the clause as in the
existential case. Although these steps only manipulate a set of clauses, the correctness of
each step needs to be verified according to the proof system, in order to be a valid proof,
and not only a syntax manipulation. For the current example, the clause -2 has QRAT
because the outer resolvent of -2 and 1 2 is 1 -2, the negation of clause 1 -2 is -1
and 2, with unit propagation we will derive the literal 3, and -2 -3 will derive ⊥. To
delete -2 -3, we have two outer resolvents, but both of them will include -2 -3. The
negation of the clause is 2 and 3, but in our list, we already have -2 -3, thus we can use
unit propagation to derive ⊥ in both cases. Clause 1 has QRAT because we don’t have
a negation of it in the list, making it trivially true by definition. The universal reduction
line u 1 0 first is checking for the clause 1 to be in the list, because it will remove it
and add its clause without the QRAT literal, as Theorem 2.38. For QRAT checking, the
reason is exactly as before. In the end, we can add ⊥, because it is already in the list of
clauses from the universal reduction step, making it a valid QRAT refutation.

2.6 Quantified Conflict-Driven Clause Learning
In this section, we will present an algorithm that can solve a QBF instance, with the
underlying proof given in the Q-Resolution. The quantified conflict-driven clause learning
is the quantified version of CDCL used for SAT solving [ZM02]. For the propositional
problem in the satisfiable case, it’s enough to have an assignment, thus the CDCL
algorithm tries to guess an assignment that evaluates the input to true, but if the
decisions lead to a false formula, the procedure derives a clause that minimizes the search
space. In a similar way, in QCDCL, in order to prune the search space for a conflict, we

13

2. Preliminaries

learn a clause, while for a solution we learn a cube [BJLS21].

Definition 2.39 (Unit literal detection). A clause C ∈ ϕ is unit if C contains one literal,
and the literal is existentially quantified. That literal is also called a unit literal. Unit
literal detection applied to a QBF collects all unit clauses in the QBF.

Example 2.40. Let our formula be ∀x1x2∃y1∀x3∃y2(x1 ∨ x2) ∧ x3 ∧ y1 ∧ y2. Unit literal
detection gives us {y1, y2}.

Definition 2.41 (QBCP). Given a PCNF ϕ and the empty assignment A = {}. We
apply the following:

1. Apply universal reduction (UR) on ϕ[A] to get ϕ[A]′.

2. Apply unit literal detection (UL) on ϕ[A] and append the result to A.

3. Repeat from 1. Stop if A hasn’t changed, or the formula is true or false.

Example 2.42. Given ϕ = ∀x1x2∃y(x1 ∨ x2 ∨ y) ∧ (y ∨ x1) ∧ (y ∨ xy) ∧ y we apply QBCP,
we start with A empty:

• We cannot apply UR.

• From ϕ with UL, we get A = {y}.

• ϕ[1/y] = ∀x1x2(x1 ∨ x2), we apply UR on x2, and we get ϕ[1/y] = x1.

• We cannot apply UL because no existential literal is present.

• By applying UR, we get ϕ[1/y] = ⊥. Thus, we stop.

Figure 2.5: Flowchart of QCDCL [BJLS21].

14

2.7. The QDIMACS Format

In Figure 2.5, we have the flowchart of a QCDCL-based solver. The solver accepts a
PCNF input and applies unit propagation if possible. If the QBCP step produces a
conflict, then we can learn a clause, if it hasn’t detected a conflict it will make a decision
and restart unit propagation. In this work we are only interested in false PCNF, thus
when we have a solution we will backtrack and continue the algorithm, only the conflicts
will contribute to the refutation.

The scope of the work is not the solver but where the proof is derived, this proof is
generated during clause learning, where we are applying the resolution.

2.7 The QDIMACS Format
QDIMACS is a format that is used to write a PCNF in a text file. The files we will use
in our work will be composed of the following parts: the line that defines the number
of variables and clauses, the quantifier blocks that need to appear in alternating ways,
without having two existential or universal lines, and the clauses. Each line of the last two
parts must end with a 0. The variables are denoted by positive integers, and the negated
literals are denoted by negative integers. The variables that are defined in available in
the domain, but not presented in the clauses, will be considered as existential quantified
in a block before the first block of the formula. In Figure 2.6, we present a valid example
of a QDIMACS file. We can observe that 6 and 7 are free variables, as they do not
appear in the prefix. Additionally, 6 is not even present in the clauses.

p cnf 7 5
e 1 0
a 2 3 4 0
e 5 0
-5 -1 3 0
5 1 0
1 5 -4 0
-5 2 -4 -3 0
5 7 0

Figure 2.6: QDIMACS example.

In Figure 2.7 we present an invalid QDIMACS file. In the example we have three errors.
One is for having fewer clauses than the number of clauses given at the beginning.
Another error is for having two successive blocks of universal quantifiers. The last error
is caused by the last line, because the clause does not end with a 0.

2.8 The QCIR Format
The QCIR format is more general than the QDIMACS. The overall structure of QCIR is
depicted in Figure 2.8. As before, we start with the quantifier blocks, but now we can
have successive quantifier blocks with the same quantifier. Then, we have to define which

15

2. Preliminaries

p cnf 5 5
e 1 0
a 3 0
a 2 4 0
e 5 0
5 1 0
1 5 -4 0
-5 2 -4 -3 0
5 3

Figure 2.7: QDIMACS invalid example.

literal is used as the output of the circuit, and the gate definition of each variable. These
gates can be and, or, xor, ite, or another quantified circuit. A prenex quantified Boolean
formula example is available in Figure 2.9 in QCIR format.

#QCIR-G14
quant(var, ..., var)
...
quant(var, ..., var)
output(lit)
var = gate_exp
...
var = gate_exp

Figure 2.8: QCIR format [qci].

#QCIR-G14
forall(v1)
exists(v2, v3)
output(g3)
g1 = and(v1, v2)
g2 = and(-v1, -v2, v3)
g3 = or(g1, g2)

Figure 2.9: QCIR example from [qci].

∀v1∃v2v3 (v1 ∧ v2)� �� �
g1

∧ (¬v1 ∧ ¬v2 ∧ v3)� �� �
g2� �� �

g3

Figure 2.10: Formula for Figure 2.9.

The definition of QCIR is very versatile, but for this work, we can assume that the formulas
are in prenex form, and the gates we use are only of the type: and, or. Additionally,

16

2.8. The QCIR Format

suppose we have n gates in the order g1, g2, ..., gn. In our circuits, if a gate gi uses the
output of another gate, this gate must be previously defined, i.e., if gi uses the gate gj ,
then j < i.

17

CHAPTER 3
Certifying Quantified Circuit

Reconstruction

In this chapter, we tackle the main objective of the work: certiying quantified circuit
reconstruction. Given a QBF ϕ in PCNF and a QCIR converter, our goal is to verify
that the output of the converter is equisatisfiable with the given input. Restricting
our approach only to the false instances of QBF, in order to check the satisfiability
equivalence, we propose the following solution: after we apply the converter, and get the
formula ϕQCIR, we can reconstruct a refutation of ϕ from a refutation of ϕQCIR. This way,
with the input proof construction, we can ensure the soundness of the QCIR converter.

In the following, we assume that the input formula is false, and a QCIR converter gives
a circuit that uses variables from the input without the addition of other new variables.

In the first section, we present the detailed steps for the main procedure, followed by
sections that prove the soundness of our procedure.

3.1 Certified QCIR Reconstruction
Before presenting the proof construction we need to have a concise definition of what a
QDIMACS to QCIR reconstruction program does.

Definition 3.1 (QCIR reconstruction). A ϕQCIR, in QCIR format, is a QCIR recon-
struction of ϕ, in PCNF format, if all the assignments σ of ψQCIR respects:

• if σ is a satisfying assignment of ψQCIR, then ψ[σ] is satisfiable,

• if σ is a falsifying assignment of ψQCIR, then ψ[σ] is unsatisfiable,

19

3. Certifying Quantified Circuit Reconstruction

where ψQCIR, ψ are the matrices of ϕQCIR, ϕ, respectively. The prefix of ϕQCIR is the
prefix of ϕ without the missing variables.

Example 3.2. For PCNF ϕ = ∀xy∃t(x ∨ y ∨ t) ∧ (x ∨ t) ∧ (y ∨ t) ∧ t, we can have the
following QCIR reconstruction ϕQCIR = ∀xy (x ∨ y)� �� �

g

, where g = (x ∨ y).

In Table 3.1, we can check that all the assignments for ϕQCIR’s matrix respects the
Definition 3.1 making it a valid QCIR reconstruction for ϕ.

x y QCIR matrix (x ∨ y) ϕ matrix Check SAT
0 0 0 (0 ∨ 0 ∨ ¬t) ∧ t UNSAT
0 1 1 (¬1 ∨ t) ∧ t SAT t = 1
1 0 1 (¬1 ∨ t) ∧ t SAT t = 1
1 1 1 (¬1 ∨ t) ∧ (¬1 ∨ t) ∧ t SAT t = 1

Table 3.1: Truth table for Example 3.2.

With Definition 3.1 in place, we begin by introducing a certifying method for the output
of a QCIR reconstruction program.

Algorithm 1 Procedure for input proof generation from QCIR conversion.
Input: False PCNF ϕ, QCIR converter procedure QcirConv
Output: QRAT refutation P for ϕ

1: procedure GetInputProof(ϕ, QcirConv)
2: ϕQCIR ← QcirConv(ϕ)
3: ϕTseitin, ϕDNF ← TseitinOfQcir(ϕQCIR)
4: PQ-Res ← QBFSolver(ϕTseitin, ϕDNF)
5: PQRAT ← QresToQrat(PQ-Res)
6: PInput-QRAT ← InputQratConstruction(ϕ, ϕTseitin, PQRAT)
7: return PInput-QRAT
8: end procedure

In Algorithm 1, we present the main procedure for getting a refutation of a given QBF
using its circuit reconstruction form. The first step is the application of the QCIR
reconstruction on the input QBF and get a circuit QBF ϕQCIR, respecting Definition 3.1.
In the second step, we generate the PCNF of the QBF using Tseitin transformation, this
way we introduce a variable for each of the gates, but more details will be presented in a
dedicated Section 3.2. In addition to the Tseitin transformation, which produces a CNF
of the circuit, we can also produce a DNF of the circuit. In the third step, we apply a
QBF solver based on QCDCL on the new formula, and this will produce a Q-Resolution
proof for the ϕQCIR in PCNF. Additionally, we can speed up the QCDCL solver by using
the DNF of the circuit for term learning. In the following step, with the Q-Resolution
proof we can transform it into a QRAT proof, detailed in Section 3.3. In the last step,

20

3.2. Tseitin Transformation of QCIR

with the input QBF, the QCIR in PCNF, and its QRAT proof, we can derive a QRAT
proof for the input formula.
With the proof for the input formula deducted from the QCIR, we can use it as a
certification for QCIR conversion, but more will be explained in Section 3.4.

3.2 Tseitin Transformation of QCIR

Algorithm 2 PCNF from QCIR using Tseitin transformation.
Input: QCIR formula ϕQCIR
Output: Satisfiable equivalent PCNF of input ϕTseitin, and PDNF of input ϕDNF

1: procedure TseitinOfQcir(ϕQCIR)
2: ϕTseitin ← empty formula
3: ϕDNF ← empty formula
4: for gate in ϕQCIR do
5: ϕTseitin ← ϕTseitin∪ Tseitin(gate)
6: ϕDNF ← ϕDNF∪ DNF(gate)
7: end for
8: ϕTseitin ← ϕTseitin ∪ toutput ▷ where toutput is the output gate of Tseitin encoding
9: ϕDNF ← ϕDNF ∪ t′

output ▷ where t′
output is the output gate of DNF encoding

10: return ϕTseitin, ϕDNF
11: end procedure

In Algorithm 2, we present the procedure that takes as an input a formula in QCIR
and outputs a PCNF that is equisatisfiable with the input. The procedure starts by
initializing an empty formula where we will append clauses. Then, for each gate, we
introduce a variable t, and write the CNF of the (t ↔ gate), this is the role of Tseitin
function. For simplicity, if we have a gate that takes multiple inputs, we break down
the formula for each 2 variables with auxiliary Tseitin variables, for example having the
gate a ∧ b ∧ c ∧ d we will use t1 for a ∧ b, then use t1 ∧ c for t2, etc. After we translate
all the gates, to keep a CNF that is equisatisfiable with a given formula we also need to
add the last Tseitin variable as a clause. As for the prefix, the prefix of ϕTseitin will be
the same as ϕQCIR, and each Tseitin variable will be added in the innermost existential
block. Similar to the construction of the circuit’s CNF, we construct ϕDNF to be the
circuit’s DNF. To construct this DNF, we will introduce a variable t′ for each gate. The
equivalence (t′ ↔ gate) is true iff for a set of terms is false. For an or-gate (t′ ↔ a ∨ b),
we have

(¬a ¬b t′)
(a ¬t′)
(b ¬t′).

This set of terms will evaluate to false if the assignment of {a, b, t} satisfies (t′ ↔ a ∨ b).
According to [AGS05], we can use ϕDNF = Π∀(t′

1, ..., t′
n)ψDNF ∨ t′

n, where Π is the prefix

21

3. Certifying Quantified Circuit Reconstruction

of the circuit, ∀(t′
1, ..., t′

n)ψDNF are the variables and the DNF introduced by the DNF
transformation, and t′

n will also be the output of the ϕDNF, for the term learning.

For later use in proving the main result of the transformation, we formulate the Claim 3.3
which states that Procedure 2 is sound, under the assumption that the circuit is false.

Claim 3.3. Given a QCIR ϕQCIR, Algorithm 2 produces an equisatisfiable PCNF ϕTseitin.

Proof. From Definition 2.15 we know that ∀x(F) = F [0/x] ∧ F [1/x], and similarly for
existential. We can think of each quantifier as a node in a tree, with 2 children representing
the substitution with true and false. The leaves of our tree will be free of quantifiers, and
will have an assignment for each quantified variable. If we construct the same tree for
the ϕTseitin, at the level of the ϕQCIR tree, we will have the same assignment as before,
plus the existential Tseitin variables. But this node will have the same evaluation as the
corresponding leaf in ϕQCIR, by Tseitin transformation. Therefore, ϕQCIR and ϕTseitin
are equisatisfiable.

3.3 QRAT Proof from Q-Resolution Proof

Algorithm 3 Q-resolution to QRAT proof format.
Input: Q-Resolution proof of the ϕTseitin: PQ-Res
Output: QRAT proof format from Q-resolution: PQRAT

1: procedure QresToQrat(PQ-Res)
2: PQRAT ← empty list
3: for line in PQ-Res do ▷ line is of the form (resolvent, premise1, premise2)
4: PQRAT.append(resolvent)
5: while resolvent highest level of a variable is universal do
6: PQRAT.append(universal reduction)
7: end while
8: end for
9: return PQRAT

10: end procedure

In Algorithm 3 we produce a QRAT proof from a Q-resolution proof. We start by
initializing an empty list where we will store each step of the QRAT proof. Then we
iterate through all the lines in the Q-resolution proof. Each of these lines contains the
resolvent and the premises it came from, but we are only interested in the resolvent,
because the premises should already be present at this step of the proof (either a resolvent
that was added before or as a clause in the input formula). In a QRAT proof, the QRAT
literal is in the first position, thus we need to see what literal we put in the resolvent,
by Claim 3.5 it doesn’t matter. After that, we need to check if we can apply universal
reduction, thus we check the variable that has the highest level and see if it is universal.

22

3.4. Input QRAT Proof Construction

In addition, it will be important for our implementation to know what variable is the
pivot in the Q-resolution proof. But this can be easily found using the Claim 3.4, which
states only one pivot is available between two premises.

Claim 3.4. Given a proof line from Q-resolution proof that is formed of two premises
and their resolvent, only one pivot is available between the premises. Where pivot is an
existential variable that appears positively in one clause and negatively in the other.

Proof. Suppose two literals or more are available as pivots for the resolution rule, having
the following premises C ∨ a ∨ b and D ∨ a ∨ b this cannot be the case, because if we
apply the resolution rule on one literal the other one will produce a tautology and is not
allowed by the rule, a contradiction. Thus, our supposition was false, and between 2
premises there is only one pivot.

Claim 3.5. The resolvent is QRAT with respect to any formula that includes the premises.

Proof. Our premises are of the form C ∨ p and D ∨ p. Our resolvent is C ∨ D. We want
to check that C ∨ D has QRAT on an arbitrary literal l. Thus, we want to check that
we can use implicit unit propagation to derive the outer resolvent of C ∨ D and another
clause that has l. But, the outer resolvent includes C ∨ D and if we use the negated
literals from this clause, we can apply unit propagation on the premises and derive p
and p, from where we can produce ⊥. Thus, we can apply QRAT on any literal of the
resolvent.

3.4 Input QRAT Proof Construction

Algorithm 4 QRAT proof of a QBF from its QCIR.
Input: A PCNF ϕ, a PCNF ϕTseitin that is a QCIR reconstruction of ϕ, QRAT proof

PQRAT of ϕTseitin
Output: Input QRAT proof PInput-QRAT for ϕ

1: procedure InputQratConstruction(ϕ, ϕTseitin, PQRAT)
2: toutput ▷ the Tseitin variable that corresponds to the value of the formula
3: PInput-QRAT ← empty list
4: PInput-QRAT.append(ϕTseitin\{toutput}) ▷ where toutput is the output gate of

Tseitin encoding
5: PInput-QRAT.append(SATSolver(ϕ, ϕTseitin\{toutput}, assume= {¬toutput}))
6: PInput-QRAT.append(toutput)
7: PInput-QRAT.append(PQRAT)
8: return PInput-QRAT
9: end procedure

In Algorithm 4 we present the last function used in the main procedure, which is
responsible for the proof generation of the input formula. Firstly, we need to find what

23

3. Certifying Quantified Circuit Reconstruction

Tseitin variable is set for the QCIR result because it cannot be added trivially in the
proof of the input QBF. In the remainder, we will call this variable the output gate.

The idea of this construction comes from the fact that for an unsatisfiable propositional
formula in CNF, the refutation of it is provided by a subset of its clauses. Thus, we need
to find a way to add the ϕTseitin in the proof while keeping the satisfiable equivalence,
then we can apply the proof from the ϕTseitin.

The first part of the input proof is the appending of the Tseitin variables, without the
last output gate. We can do this in a sound manner using Claim 3.6 for and-gates, and
similarly prove for or-gates. For now, we can assume the Tseitin variables are introduced
only for and/or gates, if not, one can transform a QBF circuit in a form that contains
only those 2 gates.

Claim 3.6. Let ϕ be a QBF. For a new variable t the clauses t ∨ a ∨ b, t ∨ a and t ∨ b
can be added subsequently as a QRAT step to ϕ with the QRAT literal t.

Proof. The first clause, t ∨ a ∨ b, can be added because t is not found in the formula,
thus respecting the QRAT property.

Due to t having the highest level, this will make the literals a and a to appear in the
outer resolvent of t ∨ a and t ∨ a ∨ b. This outer resolvent is contradictory, thus the clause
t ∨ a is QRAT on t.

Similarly, t ∨ b can be added to the proof.

With the added Tseitin clauses to the proof, it remains to add the output gate. This
cannot be added trivially as in previous clauses, and it will be needed the use of a SAT
solver to produce the QRAT steps. Using Claim 3.7, we can always have a proof for the
output gate if ϕQCIR is the QCIR reconstruction of the input ϕ. Calling a SAT solver,
we can generate a proof in the RUP proof system. This proof can be appended to our
proof because a clause that has RUP also has QRAT on any literal due to outer resolvent
containing the clause that has RUP, thus producing the ⊥ using unit propagation.

Claim 3.7. Let ϕ be a PCNF, and PCNF ϕTseitin that is the CNF encoding of the QCIR
reconstruction ϕQCIR of ϕ. We have ψ, (ψTseitin\{toutput}) ⊨ toutput, where toutput is the
output gate of ϕTseitin, and ψ, ψTseitin are the matrices for ϕ, ϕTseitin, respectively.

Proof. Suppose there is a satisfying assignment σ for ψ, that makes toutput false. From
the QCIR reconstruction Definition 3.1 we have σ is also a satisfying assignment for
ϕQCIR, where ϕQCIR is the circuit of ϕTseitin. But, toutput ↔ ϕQCIR that translates to
0 ↔ 1, contradiction. Thus, ψ, (ψTseitin\{toutput}) ⊨ toutput.

The last part that needs to be added is the proof of the added ϕTseitin. Having already
the clauses from ϕTseitin, we can append the proof and solve this subset to get the empty
clause to derive the refutation. The QRAT proof checker when checking for the refutation

24

3.4. Input QRAT Proof Construction

will skip the redundancy checking for deletion line, thus after the ϕTseitin appending to
the output we can delete the lines from the ϕ and making the proof more clearly on this
subset of clauses, ϕTseitin.

Finally, with Procedure 1 we can derive an input proof, this proof must be a valid proof
for the input QBF if it has been derived from the QCIR reconstruction. Thus, we have a
way of testing circuit conversion on different QBFs and certifying its reconstruction.

25

CHAPTER 4
Implementation

This chapter is dedicated to describing the implementation steps for the procedures in
Chapter 3 with the respective auxiliary information, the usage of the already existent
tools like QBF solver, checker, and the helper scripts used for the experiment.

4.1 Existing Tools
The first tool needed in our process is certainly a QBF solver. The solver we have
chosen to use is MiniQU [Sli22]. This solver is based on QCDCL, however, instead of
producing the proof in the Q-resolution proof system, it is using a variant of it named
QU-resolution. The difference between QU-resolution and its former is its ability to
apply the resolution rule even on a universal quantified variable [BCJ19]. Fortunately,
the use of this new proof system does not prevent us from using the same reasoning. We
can keep the same approach because in QU-resolution we still have the condition of not
producing tautologies in the resolvent, which our Claims 3.4 and 3.5 are based on. The
input formats accepted by the solver are the QDIMACS and QCIR, but for our usage,
we will only be interested in the QDIMACS format. As for the output, each line of the
proof trace has the form shown in Figure 4.1. The ID it’s an identifier used by the solver
to know which clause it is referring to, followed by the TYPE of the formula. For the
type, we are only interested in types that are equal to 0, because 0 stands for a clause,
the other type for formula is a cube, but cubes are used for the satisfiable case, and for
our scope we are going to use only the clauses for refutation. In LIT* we are expressing
our clause by enumerating its literals, the * is used to denote that we can have zero or
more literals. In the end, we write the premises needed to derive the resolvent. Here,
PREMISE_ID* is given in a compact form, meaning that, we apply resolution on the
first two, then apply it on the intermediate resolvent with the next premise, and so on.
An example of this repeated application of resolution can be seen in Figure 4.2, where n
is the number of premises, and RID is the clause found in LIT*.

27

4. Implementation

ID TYPE LIT* 0 PREMISE_ID* 0

Figure 4.1: MiniQU output format.

P1 P2 res
R1 P3 res

... Pn res
RID

Figure 4.2: Resolution from MiniQU output.

With the proof from a solver, we want to transform it into a QRAT proof. For this task,
we are going to use a Python program. This program, ToQRAT, takes as an input of a
similar form as the MiniQU output, given in Figure 4.1, and produces a translation to
a QRAT proof. The procedure that is implemented in the program is exactly the one
explained in Algorithm 3. Besides the procedure, the program also included the code
needed for parsing the formula and throwing errors in case the transformation was not
feasible.

The circuit reconstruction program we want to test is qcir-conv [JKS16]. As illustrated
in [JKS16], this convertor is looking for patterns in QDIMACS. If a pattern is found, then
it can use a gate variable in the new QCIR instead of a bounded variable in QDIMACS.
An important flag we need to add to the invocation of the program is -keep-varnames.
This flag adds in the comments of the QCIR the mapping of the new circuit variables to
the old variable in the QDIMACS.

As for the proof checker, we will be using qrat-trim presented alongside the QRAT
proof system in [HSB14]. This program accepts as inputs a QDIMACS and a proof in
QRAT, and by default, it will check for refutation, there is also a flag that will check the
proof for satisfiability. The checker does not verify each line and check if the operation is
sound for QRAT, instead, it starts from an empty clause and starts checking the lines
in reverse order and takes only the lines it needs for the proof. If the proof is a valid
refutation of the input it will print the word VERIFIED. An important note to be added,
in case we make an automated system that checks the exit code of the program to be
0 this code can also be found while the program has a mismatch of the clauses (a miss
match can occur when we delete a clause that is not present).

4.2 Procedures Implementation
With the existing tools present, we know need to implement what is missing from
the process. The procedures that are missing are the Tseitin transformation of QCIR,
Algorithm 2, and the input QRAT proof construction, Algorithm 4. We chose to
implement both of them in Python.

For the circuit form to conjunctive normal form, we take a QCIR as input and output

28

4.3. Workflow Scripts

an equisatisfiable QDIMACS. This QCIR besides the usual definition also contains
the comments with the input variable notation which we need to take into account.
Looping through the gates we introduce a Tseitin variable for each gate. Our input
is a form where the only used gates are and-gates and or-gates. For example, given
a gate of form and(2, 4, 6), we will introduce a variable t_1 = and(2, 4) and
t_2 = and(t_1, 6), where t_2 is the variable for the gate. For an or-gate a similar
approach can be employed. For the naming variables in the new QDIMACS we will
rename each variable in the QCIR to {1, 2, ..., number of QCIR variables}, and the Tseitin
variables to {number of QCIR variables + 1, ..., last Tseitin gate}. For the construction
of the QDIMACS file, we will append at the beginning of the file the comments for the
translation of our variables to the input variables, and also mark the beginning of the
Tseitin variables. We also need to append the Tseitin variable of the circuit output gate
to the formula to keep the satisfiablility equivalence between input and output.

We improved the last procedure by using the extended version of the Tseitin transforma-
tion. Using the extended form, for a gate in the QCIR format we are introducing only
one Tseitin variable for it, therefore, reducing the number of clauses used in the CNF
encoding of the circuit. We will call this extended version the long encoding, while the
previous one will be called the short encoding.

The final step in our process is the input proof construction. For this program we
take as inputs: the input QDIMACS, the Tseitin converted circuit QDIMACS pro-
duced from the QCIR version of the input QBF, and a QRAT proof for the circuit
QDIMACS. For the output, we want a QRAT proof for the input QDIMACS. To con-
struct the required QRAT proof, we start by appending the lines from the Tseitin
converted circuit QDIMACS to the proof, without the variable for the output, according
to the mapping to the input QDIMACS variable naming. The Tseitin variables will
start from the (input number of variables + 1). For testing purposes we also
make sure that the output gate is mapped to the first element after the variables, i.e.,
(input number of variables + 1). In order to successfully append the output
Tseitin variable to the proof, we need to derive the proof from the input QDIMACS
clauses and the Tseitin clauses from circuit QDIMACS. Thus, we will make a call to a
SAT solver with these clauses, and negation of the output variable. The output of this
SAT solver call will produce a proof that we can append to the input proof we want
to construct, and not forget to add the output gate variable to this proof too. In case
the previous call is satisfiable, our program will stop its execution because it means the
reconstruction was not valid. The last step of this procedure is the addition of the QRAT
proof from the input with the mapping to the input variables.

4.3 Workflow Scripts
Having all of these tools we want to automate the process of certifying a circuit recon-
struction program. The program we will want to check is qcir-conv [JKS16]. Thus, we
wrote a Bash script that takes as an input a QDIMACS, applies this conversion, generates

29

4. Implementation

the input proof according to Procedure 1, and lastly, uses the qrat-trim [HSB14] to
check if the produced proof is a valid proof for the input QDIMACS, thus certifying the
conversion. To pass information from one step to the next step, we will save the output of
each step in a temporary file. This script is described in the flowchart form in Figure 4.3,
where we have the steps used for the input proof construction, and in Figure 4.4, where
we check if the proof can be used as a valid certification of the circuit conversion.

In Figure 4.3, we can also have the possibility to derive a DNF form from QCIR for the
QBF solver. This DNF is not used in the proof generation, but it can speed up the QBF
solver that uses term learning. Term learning helps by pruning the satisfiable search
space [GNT06].

With all procedures defined, we will be testing their functionality and their application
for certification in the following Chapter 5.

30

4.3. Workflow Scripts

Input QBF in QDIMACS

QCIR reconstruction

QBF in QCIR format

Tseitin encoding of QCIR

CNF encoding of QCIR DNF encoding of QCIR

QBF solver

Q-resolution proof

Q-resolution to QRAT

QRAT proof

Input proof construction

Proof of input QBF

Figure 4.3: Proof generation flowchart. 31

4. Implementation

QRAT proof checker

Input QBF in QDIMACS Proof of input QBF

Valid proof?

Valid reconstruction. Invalid reconstruction.

Yes No

Figure 4.4: QCIR reconstruction certification flowchart.

32

CHAPTER 5
Experiments

In this chapter, we will present the methods we used to check a circuit reconstruction and
the correctness of our implementation. The first section is dedicated to manually testing
our procedures, and verifying the output of each step. The second and last sections are
assigned for certifying the transformation from QDIMACS to QCIR, using randomly
generated tests and common benchmarks.

5.1 Initial Testing
The basic test we will use to check our implementation is the QBF

∀x1x2∃y3(x1 ∨ x2 ∨ y3) ∧ (x1 ∨ y3) ∧ (x2 ∨ y3) ∧ y3,

with QDIMACS format in Figure 5.1.

p cnf 3 4
a 1 2 0
e 3 0
1 2 -3 0
-1 3 0
-2 3 0
3 0

Figure 5.1: Single or-gate example in QDIMACS.

The first step we need to do is the application of the circuit reconstruction program to the
QBF. The output is presented in Figure 5.2. We can see that the variable y3 corresponds
to an or gate definition, thus excluding it from the input variables. The last clause y3 in
QBF, in the QCIR maps to the circuit output. Furthermore, at the beginning of the file,

33

5. Experiments

#QCIR-G14

#VarName 2 : v1
#VarName 4 : v2

forall(2, 4)
output(102)

102 = or(2, 4)

Figure 5.2: QCIR reconstruction of Figure 5.1.

we can notice the VarName introduction, where the first index corresponds to the QCIR
variable and the second number denotes the input variable in the QDIMACS.

The second step is the transformation of QCIR to QDIMACS by introducing the Tseitin
variables for each gate. Presented in Figure 5.3, the comment lines, starting with c, are
the extra information we need in the reconstruction. The pair of new variables with the
input variable, and the starting position of the Tseitin variables. The next line specifies
the number of variables and clauses. Followed by the quantifier blocks, and the clauses.
The last clause will always be the variable that corresponds to the output Tseitin variable.

c VarOld 1 : 1
c VarOld 2 : 2
c TseitinStart 3
p cnf 3 4
a 1 2 0
e 3 0
1 2 -3 0
-1 3 0
-2 3 0
3 0

Figure 5.3: PCNF encoding of the QCIR.

In the third step, we use the QBF solver to get a solution for the previous step’s output.
In the left part of Figure 5.4, we have the trace generated by the solver in the Q-resolution
proof system, the line denotes the application of the resolution rule on the first and
fourth clause and gets the empty clause, with the use of universal reduction rule. In the
following step, we translate the Q-resolution proof to the QRAT proof on the right of
Figure 5.4. Checking each line of the QRAT translation, we can see that it starts with
the first clause in the premises and the next line is the resolvent. The last two lines
are the application of the universal reduction for the QRAT. The addition of the empty
clause in the QRAT proof is optional, because the checker when checking for a refutation
already starts from the empty clause, and reads the QRAT proof backward.

34

5.1. Initial Testing

Q-resolution QRAT
5 0 0 1 4 0 1 2 -3 0

1 2 0
u 2 1 0
u 1 0

Figure 5.4: Q-resolution proof of the QBF in Figure 5.3, left. QRAT proof translation,
right.

The last step is the QRAT proof generation for the input QDIMACS. With input
QDIMACS, its PCNF form of the QCIR, and the corresponding proof of the CNF in
QRAT. Figure 5.5 presents the proof for the current example. This proof is composed of
3 parts: the introduction of the Tseitin variables, in color blue, which we can introduce
using Claim 3.6, then we use an SAT solver call to produce a proof for the addition of the
output variable gate, in color yellow with last line being the output, finally, we append
the QRAT proof, in color red, this is possible because we introduced in an equisatisfiable
way the clauses needed to use this proof from the input, and we get a proof for the input
QDIMACS.

-4 2 1 0
4 -1 0
4 -2 0
4 0
4 0
1 2 -4 0
1 2 0
u 2 1 0
u 1 0

Figure 5.5: Input QRAT proof.

With the produce input proof, we can notice that the introduction of the output gate
was trivial, and if we use a checker we can see that we can use only the QRAT from the
input to check the input formula. Thus, we can ask: do we really need the SAT call to
introduce the output gate? And, Is the input proof enough for the input QDIMACS?

In order to answer these questions we propose the following methods. Firstly, we will
manually check if the input QRAT is enough. Secondly, we check if we don’t need the
proof generated by the SAT. As the test is not relevant, we check these methods, and we
will see that it will fail, indicating that all the steps are needed for the final output.

One interesting error that was made in the first implementation of the program, was
the wrong ordering of the Tseitin translation, not having the QRAT variable on the first
position. As we didn’t know from Figure 5.5 which part had the error, the translation, or
the introduction of the input gate, we manually included the output gate as an assumption
in the input QBF, this is the reason we made the output gate to be the first available

35

5. Experiments

variable to be easier to be included in the QBF, and use the checker, and saw that it is
still failing.

For the following sections, with the implementation we have, assuming we don’t have any
error, we can use our procedure to test qcir-conv [JKS16] using different false QBFs
as input and check that it is successfully producing QRAT refutations.

5.2 Random Testing
For random testing, we will use the script we made that calls the random QBF generator
QBFuzz [BLB10]. This random generator accepts as parameters the number of variables
and the number of clauses for the QBF.

Number of
variables

Number of
clauses

Number of
tests

Number of
failed tests

5 10 58 8
50 200 141 4
80 350 70 1
150 500 80 1
300 1000 84 2

Table 5.1: Benchmark of qcir-conv [JKS16] using randomly generated QBFs and
MiniQU [Sli22] solver.

In Table 5.1, we have the columns for the random generator, and then we generate a
number of unsatisfiable instances. With the unsatisfiable QBF, we run them through
the script to get the input proof. As we can see in the results Table 5.1, we have failed
tests. Upon examining these tests, all the errors come from the step where we transform
a Q-resolution proof to QRAT proof because the Q-resolution proof uses a clause ID
that is already in the input, making it a problem that came from the QBF solver. Using
another solver this problem is fixed. An explanation for why this can happen is that the
MiniQU [Sli22] is simplifying some duplicate lines making the formula shorter and using
the ID of already existing clauses in the input file. Therefore, we will repeat the same
experiment using a simple QBF solver that is also based on QCDCL, and the output
has the same format, but the proof system is Q-resolution. We will call this solver the
Basic QCDCL solver. In the case of the Basic QCDCL solver presented in Table 5.2, the
reason for failed tests is the timeout of the solver. Additionally, for the Basic QCDCL
solver, we can extend it to accept a DNF to speed up the search with term learning.

Besides qcir-conv [JKS16], we can also use a different for testing circuit reconstruction.
Unique [Sli20] is an interpolation-based circuit reconstruction. Because MiniQU [Sli22]
produces wrong proofs using our pipeline, we will use only the Basic QCDCL solver when
we test unique. In the experiment presented in Figure 5.3 we have again only failed
instances due to timeout.

36

5.3. QBF Benchmarks

Number of
variables

Number of
clauses

Number of
tests

Number of
failed tests

5 10 56 0
50 200 81 0
80 350 172 1
150 500 170 6
300 1000 168 2

Table 5.2: Benchmark of qcir-conv [JKS16] using randomly generated QBFs and Basic
QCDCL solver.

Number of
variables

Number of
clauses

Number of
tests

Number of
failed tests

5 10 109 0
50 200 165 0
80 350 173 0
150 500 169 5
300 1000 170 0

Table 5.3: Benchmark of unique [Sli20] using randomly generated QBFs and Basic
QCDCL solver.

5.3 QBF Benchmarks
As random generating may miss some edge cases, in this section we will use various tests
from the QBF solving competitions. In this experiment, we will use inputs used in the
2017, 2019, and 2022 competitions. As these tests are quite large and hard to solve, we
will select a part of them. For this selection, we will use the MiniQU [Sli22] solver to
check if the QBF is unsatisfiable, and also we will set a timeout of 2 seconds for the
solver. We will use this timeout for sorting the tests because the CNF encoding will also
grow the formula. The number of tests used from each year is displayed in Figure 5.4.

QBF benchmark Number of tests Verified instances
with 10 seconds timeout

2022 14 14
2019 52 2
2017 8 0

Table 5.4: Benchmark of qcir-conv [JKS16] using inputs from QBF competition - long
encoding with timeout 10 seconds.

For the first attempt displayed in Table 5.4, where we set a timeout of 10 seconds on our
verification script. For the successfully finished tests, all the input proofs are valid for
their inputs. As we implemented a long version of CNF encoding for each gate variable,
slow verification is expected. Most of the time for the tests that timeout is spent in the

37

5. Experiments

SAT solver call. One reason is that the input of the SAT call is quite large, including the
Tseitin clauses and the input clauses.

QBF benchmark Number of tests Verified instances
with 20 seconds timeout

2022 14 14
2019 52 6
2017 8 0

Table 5.5: Benchmark of qcir-conv [JKS16] using inputs from QBF competition - long
encoding with timeout 20 seconds.

In the second attempt, Table 5.5, we doubled the time used for a timeout in order to give
the SAT call more time to the instance. From the results, we can observe that we had
an increase in the number of solved instances. It is important to notice that we haven’t
got a test that failed by having a satisfiable instance when we derive the proof for the
output gate or an invalid QRAT proof for the input instance, therefore, we can assume
that with sufficient computational power and enough time, the SAT call will find a proof
for the remaining tests.

QBF benchmark Number of tests Verified instances
with 20 seconds timeout

2022 14 14
2019 52 21
2017 8 0

Table 5.6: Benchmark using inputs from QBF competition - short encoding with timeout
20 seconds.

Lastly, in Table 5.6 we experiment using the short encoding of the Tseitin transformation,
instead of adding a variable for each operation, we add the variable only for the gate. In
this attempt, we achieved a massive increase in the solved instances from 2019.

QBF
benchmark

Number
of tests

Verified instances
qcir-conv

Verified instances
qcir-conv

with term learning

Verified instances
unique

2022 14 14 14 11
2019 52 19 38 10
2017 8 1 2 1

Table 5.7: Benchmark of qcir-conv [JKS16] and unique [Sli20] for inputs from QBF
competition with 5 minutes timeout.

In Table 5.7, we present a run where we check our certified procedure with longer timeout
on QBF competition benchmarks, with two circuits convertors, qcir-conv [JKS16] and

38

5.3. QBF Benchmarks

unique [Sli20]. Due to the use of unique, we will need to use the Basic QCDCL solver.
In this evaluation, we find that unique cannot convert two instances. In the rest of
the failed cases, the checking was not finished due to the QBF solver or the SAT solver
being stopped after the timeout. Moreover, if we use the Basic QCDCL solver with term
learning, we can see that it has a positive effect on the speed of the verification.

With all the experiments done, besides the failed instances that we already discussed,
we can assume our implementation can be used as a valid certification for a QCIR
reconstruction.

39

CHAPTER 6
Conclusion

In this chapter, we present the conclusion of this work. The aim of the thesis was to
provide a way of certifying quantified circuit reconstruction for QBF. In order to achieve
this goal we broke it into two parts. Firstly, we presented a procedure that given a QBF
in conjunctive normal form, and a circuit reconstruction program, produces a proof for
the QBF input from its reconstruction. Secondly, we show that the ability to produce the
proof for the input formula following the procedure is possible if the program of circuit
reconstruction respects our definition of circuit, thus serving us as a certification of the
transformation. Finally, using Claims 3.3 and 3.6, we provide a method for generating a
proof for a QCIR that can be used by a proof checker to verify the answer of the QCIR
solver.

On the practical side, we implemented it and tested it on circuit reconstruction programs.
We wrote exactly the steps used in the theory part in order to produce an input proof.
For the experiment, given this input proof and the original PCNF, we run them through
a proof checker to see if the proof really is a refutation of the QBF. If we find a test that
produces an input proof that cannot verify the refutation of the input or a failed step in
the proof generation procedure, based on the defined claims in the theory, then we can
claim the circuit reconstruction failed. Otherwise, we can conclude that the program for
circuit reconstruction works as intended.

For future work, we are planning to formally verify our implementation of the pipeline.
This way we can be sure that we don’t have any errors in our implementation. A possibility
of achieving this goal is by the usage of theorem provers. Similar work has been done
in [CFHH+17], where a proof checker was developed in Coq, and also in [BNAH23], where
Lean4 was used in an analogous way for certification of model counting. Furthermore,
we want to extend our procedures to proofs of true QBF.

41

List of Figures

2.1 Hierarchy of redundant properties [Zel19]. 9
2.2 Q-resolution proof system [BJLS21]. 11
2.3 False QBF in QDIMACS. 13
2.4 QCIR proof for example in Figure 2.3. 13
2.5 Flowchart of QCDCL [BJLS21]. 14
2.6 QDIMACS example. 15
2.7 QDIMACS invalid example. 16
2.8 QCIR format [qci]. 16
2.9 QCIR example from [qci]. 16
2.10 Formula for Figure 2.9. 16

4.1 MiniQU output format. 28
4.2 Resolution from MiniQU output. 28
4.3 Proof generation flowchart. 31
4.4 QCIR reconstruction certification flowchart. 32

5.1 Single or-gate example in QDIMACS. 33
5.2 QCIR reconstruction of Figure 5.1. 34
5.3 PCNF encoding of the QCIR. 34
5.4 Q-resolution proof of the QBF in Figure 5.3, left. QRAT proof translation,

right. 35
5.5 Input QRAT proof. 35

43

List of Tables

2.1 Tseitin transformation of a logical connective into its conjunctive normal form. 9
2.2 Tseitin transformation extended form. 10

3.1 Truth table for Example 3.2. 20

5.1 Benchmark of qcir-conv [JKS16] using randomly generated QBFs and MiniQU [Sli22]
solver. 36

5.2 Benchmark of qcir-conv [JKS16] using randomly generated QBFs and Basic
QCDCL solver. 37

5.3 Benchmark of unique [Sli20] using randomly generated QBFs and Basic
QCDCL solver. 37

5.4 Benchmark of qcir-conv [JKS16] using inputs from QBF competition - long
encoding with timeout 10 seconds. 37

5.5 Benchmark of qcir-conv [JKS16] using inputs from QBF competition - long
encoding with timeout 20 seconds. 38

5.6 Benchmark using inputs from QBF competition - short encoding with timeout
20 seconds. 38

5.7 Benchmark of qcir-conv [JKS16] and unique [Sli20] for inputs from QBF
competition with 5 minutes timeout. 38

45

List of Algorithms

1 Procedure for input proof generation from QCIR conversion. 20
2 PCNF from QCIR using Tseitin transformation. 21
3 Q-resolution to QRAT proof format. 22
4 QRAT proof of a QBF from its QCIR. 23

47

Bibliography

[AGS05] Carlos Ansótegui, Carla P Gomes, and Bart Selman. The achilles’ heel of
qbf. In AAAI, volume 2, pages 2–1, 2005.

[BCJ19] Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. New resolution-based
qbf calculi and their proof complexity. ACM Transactions on Computation
Theory (TOCT), 11(4):1–42, 2019.

[BJLS21] Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing, and Martina Seidl. Quan-
tified boolean formulas. In Handbook of Satisfiability, pages 1177–1221. IOS
Press, 2021.

[BKF95] Hans Kleine Buning, Marek Karpinski, and Andreas Flogel. Resolution for
quantified boolean formulas. Information and computation, 117(1):12–18,
1995.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing
and debugging of sat and qbf solvers. In Theory and Applications of
Satisfiability Testing–SAT 2010: 13th International Conference, SAT 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings 13, pages 44–57. Springer,
2010.

[BNAH23] Randal E Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn JH Heule.
Certified knowledge compilation with application to verified model counting.
In 26th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[CFHH+17] Luís Cruz-Filipe, Marijn JH Heule, Warren A Hunt, Matt Kaufmann, and
Peter Schneider-Kamp. Efficient certified rat verification. In Automated
Deduction–CADE 26: 26th International Conference on Automated Deduc-
tion, Gothenburg, Sweden, August 6–11, 2017, Proceedings, pages 220–236.
Springer, 2017.

[CH22] Leroy Chew and Marijn JH Heule. Relating existing powerful proof systems
for qbf. In 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

49

[Coo23] Stephen A Cook. The complexity of theorem-proving procedures. In Logic,
Automata, and Computational Complexity: The Works of Stephen A. Cook,
pages 143–152. 2023.

[GNT06] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Clause/term resolution and learning in the evaluation of quantified boolean
formulas. Journal of Artificial Intelligence Research, 26:371–416, 2006.

[HHW13] Marijn JH Heule, Warren A Hunt, and Nathan Wetzler. Trimming while
checking clausal proofs. In 2013 Formal Methods in Computer-Aided Design,
pages 181–188. IEEE, 2013.

[HSB14] Marijn JH Heule, Martina Seidl, and Armin Biere. A unified proof system
for qbf preprocessing. In International Joint Conference on Automated
Reasoning, pages 91–106. Springer, 2014.

[JKS16] Charles Jordan, Will Klieber, and Martina Seidl. Non-cnf qbf solving
with qcir. In Workshops at the Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[MS08] Joao Marques-Silva. Practical applications of boolean satisfiability. In 2008
9th International Workshop on Discrete Event Systems, pages 74–80. IEEE,
2008.

[MVVdB16] Wannes Meert, Jonas Vlasselaer, and Guy Van den Broeck. A relaxed tseitin
transformation for weighted model counting. In Proceedings of the Sixth
International Workshop on Statistical Relational AI (StarAI), pages 1–7,
2016.

[qci] QCIR-G14: A Non-Prenex Non-CNF Format for Quantified Boolean For-
mulas. QBF Gallery 2014.

[SBPS19] Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on
applications of quantified boolean formulas. In 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), pages 78–84. IEEE,
2019.

[Sli20] Friedrich Slivovsky. Interpolation-based semantic gate extraction and its
applications to qbf preprocessing. In International Conference on Computer
Aided Verification, pages 508–528. Springer, 2020.

[Sli22] Friedrich Slivovsky. Quantified cdcl with universal resolution. In 25th
International Conference on Theory and Applications of Satisfiability Testing
(SAT 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.

[Was22] Anita Wasilewska. Lecture notes in cse 541: Logic for computer science.
Stony Brook University, 2022.

50

[Zel19] Aleksandar Zeljić. Lecture notes in cs 357: Advanced topics in formal
methods. Stanford University, 2019.

[ZM02] Lintao Zhang and Sharad Malik. Conflict driven learning in a quanti-
fied boolean satisfiability solver. In Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design, pages 442–449, 2002.

51

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Thesis
	Structure of the Thesis

	Preliminaries
	Quantified Boolean Formulas
	Proofs
	Tseitin Transformation
	The Q-Resolution Proof System
	The QRAT Proof System
	Quantified Conflict-Driven Clause Learning
	The QDIMACS Format
	The QCIR Format

	Certifying Quantified Circuit Reconstruction
	Certified QCIR Reconstruction
	Tseitin Transformation of QCIR
	QRAT Proof from Q-Resolution Proof
	Input QRAT Proof Construction

	Implementation
	Existing Tools
	Procedures Implementation
	Workflow Scripts

	Experiments
	Initial Testing
	Random Testing
	QBF Benchmarks

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

