
Automating build, deployment,
and monitoring of model-based

digital twins

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Ing. David Markusfeld, Bsc
Registration Number 01125239

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dr.rer.soc.oec. Manuel Wimmer
Assistance: Dipl.-Ing. Daniel Lehner

Vienna, 14th January, 2021
David Markusfeld Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at



Erklärung zur Verfassung der
Arbeit

Ing. David Markusfeld, Bsc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Jänner 2021
David Markusfeld

ii



Danksagung

Zuallererst möchte ich mich bei meinen Eltern bedanken, die es mir ermöglicht haben,
das zu machen was ich machen möchte und mich während meines gesamten bisheri-
gen Lebens dabei unterstützt haben. Diese Möglichkeit zu haben ist bei weitem nicht
selbstverständlich und daher um so wichtiger hervorzuheben.

Für die Unterstützung und Betreuung möchte ich mich bei Herrn Dipl.-Ing. Daniel Lehner
und Herrn Privatdoz. Mag.rer.soc.oec. Dr.rer.soc.oec. Manuel Wimmer bedanken. Vielen
Dank, für die Ratschläge und Hinweise die maßgebened dazu beigetragen haben, dass
diese Arbeit in diesem Umfang existiert.

Weiters möchte ich meiner Frau für ihre umfassende Unterstützung danken. Ohne sie
und den von ihr ausgeübten Druck wäre diese Arbeit vermutlich nicht entstanden.

Vielen Dank auch an meine Studienkollegen und Freunde, die durch ihr regelmäßiges
Nachfragen den notwendigen Druck aufrecht erhalten haben, um diese Arbeit zu beginnen
sowie sie fertigzustellen.

Abschließend bedanke ich mich bei allen Leserinnen und Lesern für Ihr Interesse an dem
Thema und den erzielten Ergebnissen.

iii



Acknowledgements

First, I want to thank my parents for offering me the possibility to do what I like to do
and for supporting me in doing that throughout my whole life. Having this possibility is
often not given, and therefore it is even more important to highlight that.

For their support and assistance I want to thank Dipl.-Ing. Daniel Lehner and Privatdoz.
Mag.rer.soc.oec. Dr.rer.soc.oec. Manuel Wimmer. Thank you very much for your advice
and hints that significantly contributed to the existence and the completeness of this
work.

Furthermore, I want to thank my wife for her extensive support. Without her and the
pressure she carried out this work would not exist.

Thanks to all my friends and colleagues who by regularly asking for the state of my thesis
created enough pressure for me to start and finish this work.

Finally, I want to thank every reader of this work for their interest into the topic and the
presented results.

iv



Kurzfassung

Die Verwendung von digitalen Zwillingen gibt Technikern die Möglichkeit das Verhalten
eines physischen Systems nachzustellen. Dadurch können verschiedene Systeme an den
digitalen Zwilling angehängt werden, um Daten automatisch zu verarbeiten und davon zu
lernen. Das ermöglicht nicht nur Echtzeitüberwachung, sondern auch Defekt-Vorhersagen
und kann die Laufzeit eines Geräts, durch automatische Anpassung verschiedener Para-
meter durch den digitalen Zwilling, verlängern. Allerdings bestehen Limitierungen in den
existierenden Entwicklungsprozessen, die zu hohen Zeitaufwänden bei der Erstellung und
der Wartung von digitalen Zwillingen führen.

1. Modelle von digitalen Zwillingen werden oft händisch entwickelt und deployt,
wodurch eine hohe Fehleranfälligkeit und manuelle Aufwände bei jeder Änderung
des physischen Systems entstehen.

2. Um die Verbindung zwischen den physischen Geräten und den digitalen Zwillingen
herzustellen, müssen Softwareroutinen im Programm des Geräts hinzugefügt werden.
Für eine erfolgreiche Kommunikation müssen außerdem Parameter korrekt einge-
stellt werden, sowie das Programm auf das Gerät übertragen und gestartet werden.
Diese Tätigkeiten werden hauptsächlich manuell und von Hand durchgeführt was
zu repetitiven Tätigkeiten mit hohem Fehlerpotential führt.

3. Weitere händische Eingriffe sind notwendig, um digitale Zwillinge und die Geräte,
die Daten an diese übertragen, kontinuierlich zu überwachen, um ungültige oder
korrupte Daten zu erkennen und gegebenenfalls zu alarmieren oder automatische
Anpassungen vorzunehmen.

In dieser Arbeit wird untersucht, inwieweit Techniken aus der Modell-getriebenen Software-
entwicklung verwendet werden können, um die bei den eben genannten Herausforderungen
auftretenden manuellen Aufwände zu reduzieren. Dazu wird eine Pipeline implementiert,
die in einer universell einsetzbaren Modellierungssprache modellierte Systeme in die
spezifischen digitalen Zwillingsmodelle und weitere Metainformationen übersetzt und der
digitalen Zwillingsplattform zur Verfügung stellt. Weiters werden Informationen für die
mit den digitalen Zwillingen verbundenen Geräte erzeugt, um die Verbindungsherstellung
zu automatisieren. Diese Informationen werden, zusammen mit der Geräte-Software,
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durch die Pipeline automatisiert, auf das jeweilige Gerät übertragen und gestartet. Das
Modell wird erweitert, sodass Monitoring-Funktionen, wie Bedingungen modelliert wer-
den können. Diese werden automatisch von der Pipeline in eine Maschinen-leserliche
Sprache übersetzt und von einer Cloud-Applikation, sowie physischen Geräten verwen-
det, um ausgetauschte Nachrichten zu überprüfen. Eine Evaluierung der Lösung zeigt,
dass die Entwicklung von digitalen Zwillingen durch die gezeigte Automatisierung stark
unterstützt wird und viele manuelle Aufwände entfallen oder durch einmalige Vorab-
Arbeiten ersetzt werden. Die Ausführungszeiten des digitalen Zwillingsmonitoring werden
anhand von 2 physischen Geräten und der Cloud-Applikation ermittelt und basierend
auf verschiedenen Parametern verglichen. Die Ergebnisse zeigen, dass durch die Pipeline
eine hohe Automatisierung der Erstellung, des Deployment und des Monitorings von
modellbasierten digitalen Zwillingen erreicht wird.



Abstract

Using model-based digital twins gives engineers the possibility to imitate the behavior
of a physical device. By doing so, various systems can be attached to automatically
learn and interpret the from the physical device received data. This not only enables
real-time monitoring and failure prediction but can also improve the devices’ lifecycle
by automatically receiving adjustment parameters from the digital twin. However,
limitations especially in the existing development processes lead to a huge amount of
time spent to set up and continuously maintain the digital twin.

1. Digital twin specific models are often created and deployed by hand, which is error
prune and requires manual efforts every time the physical device changes.

2. To have devices communicate with their digital twins, software routines need to be
included into the devices’ program. Furthermore, for a successful communication
various parameters need to be set up properly and the program needs to be
distributed to the physical devices. These tasks are mainly done manually by hand
which lead to repetitive tasks with high risk of an error.

3. Further manual work is required to continuously monitor digital twins and the
physical devices feeding data to them to detect invalid or corrupt data and alert or
automatically adjust to the occurred error.

In this thesis, it is examined to which extent Model-Driven Engineering techniques
can be used to reduce the manual efforts necessary in previously mentioned challenges.
Therefore, a pipeline is implemented which transforms systems modeled in a general-
purpose language into the digital twin platform specific language models and further
meta-information to deploy these to the digital twin platform. The generated meta-
informations are used for an automatic communication establishment between the digital
twin and its connected physical devices. This information is published to the physical
devices together with the software running on those. The models’ functionality is extended
to include monitoring functions like conditions, which are automatically transformed into
a machine-readable language and used by the physical devices and a dedicated cloud
application to monitor exchanged messages. An evaluation of the created solution shows
that the solution supports the development of digital twins by obsoleting or replacing
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manual tasks with one-time tasks. The performance of the digital twin monitoring system
is evaluated based on two physical systems and a dedicated cloud application. The
results show that by using the pipeline a high automation of creation, deployment and
monitoring of model-based digital twins is achieved.
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CHAPTER 1
Introduction

1.1 Motivation
Based on emerging technologies like Internet of Things (IoT) or Industry 4.0 [Gil16],
there is a steady increase in complexity of software and computer systems [RSK20].
Cyber-Physical Systems (CPS) represent such systems by describing highly integrated
software with physical devices [RSK20]. Digital twins (DT) are used to act as a virtual
representation of a real-life object which mirrors its behavior and its state over the objects’
lifetime [Gri15]. By doing so DT’s can help to cope with the complexity of these systems,
by visualizing, monitoring, controlling and potentially optimizing the underlying CPS
[TZLN19]. DTs are used in a vast field of scenarios respectively disciplines like smart
manufacturing [BDH+20], farming [BW19], automotive [VTBW21] and avionics [Kra16].

Building digital twins is not a trivial process and requires knowledge of the observed
objects and also of the platform digital twins are executed and running on (i.e., the
Digital Twin platform), as every platform uses its own language to define digital twins
[AK22][PLWW22]. Using a platform-neutral modeling language to model digital twins
instead can reduce complexity by leveraging Model-Driven Engineering (MDE) techniques
[LSV+21]. By using these MDE techniques the DT-platform-specific-models can be
automatically generated when needed, while still modeling a generic system model.

However, modeling digital twins is not the only task when it comes to engineering digital
twins [EBC+22]. Physical devices steadily reporting their status need to be correctly
connected to their digital twin and new, as well as modified devices, require continuous
maintenance to be able to communicate. Furthermore, infrastructure components and
intermediate systems need to be created or updated whenever the system changes. In
todays’ world, changes to software artifacts are done incremental and regularly as the
"commit early, commit often" strategy is heavily in software engineering to improve quality
and reduce risk [DMG07]. The same can be said for digital twins as models should be
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1.2. Problem Statement

developed, treated and version-controlled like source-code to follow modern software
development guidelines [BKL+12]. This leads to the necessity of automation when it
comes to later phases along the software development lifecycle (SDLC) like deployment
and maintenance.

Modern software development uses DevOps teams and processes to tackle the previously
mentioned problem, reduce silo building and improve the time between a system change
and deploying the change into the production environment [ZBC16]. This DevOps
approach can be used for CPS and DTs as well by connecting design-time to run-time
models and vice versa [CW20]. "Development" processes can use MDE tooling based on
design-time models for Continuous Integration and Continuous Delivery to always hold
models in a deployable state whether the models are the final product or an intermediate
artifact [GC19]. "Operations" processes like deployment or monitoring are intensively
used within software development, but still lack solutions for MDE and modeling in
general.

This leaves building, deploying and continuously monitoring of DTs as a complex process,
which requires knowledge and efforts from different areas of expertise.

1.2 Problem Statement
As more and more complex software systems arise, the need for digital copies imitating
the real systems state and behavior increases. Digital twins were developed not just to
imitate a systems’ state and behavior but can also use big data and machine learning
systems to further process the systems’ data and potentially gather optimizations and
predict failures. When it comes to creating digital twins, most digital twin platforms
rely on their own description language and infrastructure. Even when a system is
already modeled using a model-based approach, the resulting model (business model)
is not applicable within the digital twin platform. That means that a separate model
representing the real system, but created in the digital twin platforms’ own language
(digital twins model) needs to be created and maintained throughout the systems’ lifetime.
Whenever a new device is added, changed or replaced in the system, the corresponding
digital twin needs to be adapted as well. The different platforms offer tools to do so, but
each platform uses its own tools that are working exclusively for the certain platform.
Finally, for a systems’ device to be able to send their telemetry to its digital twin, it
must be targeted and configured to send messages to the correct target. As soon as
devices start to communicate with their corresponding digital twins, they need to be
continuously monitored to detect failures and conspicuousness early and alert or adjust
to it accordingly.

This is not a one time process as systems change over time which leads to further iterations
of not only the digital twins, but all connected and associated components. Creating and
deploying the digital twin, connecting devices to it and correctly hooking up monitoring
rules are essential and in parts complex processes. These processes are currently mostly
executed by hand in a repetitive and error-prone manner. Not only manual work but
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1.3. Methodological Approach

also the time it takes for a change to be represented in an environment is important,
as changes can be further delayed by companies’ security policies on who can access
certain resources. As a developer might not be allowed to access the digital twin platform
directly and has to wait for the operations department to enable the changes.

This shows, that the engineering of DTs in its current practice requires a lot of effort.
MDE is expected to reduce these efforts but is hardly used in this area of expertise.
Therefore, it is unknown to which extent MDE can reduce the efforts when it comes
building, deploying and monitoring DTs.

The goal of this thesis is to examine to which extent manual efforts can be reduced when
creating, deploying and monitoring model-based digital twins. This is done by comparing
the number of manual tasks necessary in a manual setup to the number of manual tasks
necessary in a MDE-supported setup when (1) creating and deploying the digital twins
to the digital twin platform, (2) connecting physical devices to their digital twins and
(3) monitoring and evaluating data of physical device and digital twin. More precisely,
this requires answering the following research questions:

RQ1: To what extent can MDE techniques be used to reduce the manual effort
for deploying digital twins?

RQ2: To what extent can MDE techniques be used to reduce the manual effort
to connect the physical devices to digital twins?

RQ3: What is the scalability in execution-time of conditions and actions
monitoring runtime data (i) on a physical device compared to (ii) in a cloud
application?

1.3 Methodological Approach
To provide a solution to the posed challenges, the Design Science Research approach is
followed. Its base was laid by Salvatore T. March and Gerald F. Smith in 1995 in “Design
and natural science research on information technology” [MS95] and is being used widely
throughout modern IT research. Newer publications regarding Design Science Research
simplify the approach down to the iteration of two activities: “designing an artifact that
improves something for stakeholders and empirically investigating the performance of an
artifact in a context” [Wie14]. While the “three-cycle view of Design Science Research”
by A. Hevner [Hev07] describes the Design Science process in a generic way, a more
specific documentation by R. Wieringa is given in his book “Design Science Methodology”
[Wie14]. Based on this the following steps describe the specific methodology used in this
work to find an answer to the problems described by the research-questions:

1. Derive goals and requirements from research questions. For each of the three
research questions posed in Section 1.2 non-functional and functional requirements
are derived.

3
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2. Propose an artifact to satisfy the posed requirements. Based on the requirements
derived in step 1 the Automation Framework for Digital Twins Development and
Operations is proposed as a solution.

3. Design use case for the proposed artifacts. To proof the feasibility of the underlying
concept an air quality sensor use-case is created that can be used within the
evaluation.

4. Evaluate the fulfillment of the posed requirements. To come up with answers to the
posed research questions, (1) a case study is executed to evaluate the automation
potential of the digital twin deployment (RQ1) and (2) the automation potential of
the physical device deployment (RQ2). (3) To evaluate scalability of the monitoring
framework running on a physical device compared to in a cloud application (RQ3),
a simulation experiment is conducted and evaluated.

5. Obtain related work from the literature. It is searched for literature that relates to
the created solution. Research is based on previously defined search questions and
keywords relating to the work and its research questions.

6. Compare the obtained results with the found related work. Solutions gathered from
the literature search are compared to the for this thesis implemented solution, using
the requirements derived in step 1.

1.4 Structure of the Thesis
The structure of this thesis is based on guidelines proposed by B. Minto [Min97]. In
Chapter 2, the theoretical background of topics addressed in this work is described.
Chapter 3 depicts the proposed solution and lists requirements to be fulfilled by the
implementation. The implementation is described in detail in Chapter 4. Chapter
5 evaluates the developed implementation and finds an answer to the posed research
questions. In Chapter 6, the created artifacts are compared against other approaches and
solutions taken from a detailed literature search. Chapter 7 concludes and summarizes
the thesis and gives an outlook on potential future work.
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CHAPTER 2
Background

This chapter is devoted to giving an overview on the theoretical background necessary to
understand and follow explanations in this work. First, Section 2.1 focuses on Model-
Driven Engineering, models in general and model transformations. Section 2.2 gives more
details on digital twins, their platforms and Microsoft Azure as an example digital twin
platform. In the last section an introduction into DevOps and DevOps processes is given.

2.1 Model-driven Engineering
Model-Driven Engineering is a software development methodology that uses models as
the central artifact throughout the process. The use of models brings with it the ability
to abstract complexity of the domain of interest[BCW12]. By doing so MDE follows the
concept of "everything is a model"[Béz05].

The main aspects of MDE are shown in Figure 2.1 and split into two dimensions, namely
the implementation (vertical) and the conceptualization (horizontal) dimension. The
vertical dimension is represented by the modeling layer, the automation layer and the
realization layer which features the transition from a model definition into a running
system. In the conceptualization dimension the process of defining various conceptual
models over different levels of abstraction using the application layer, the application
domain layer and the meta-level is described [BCW12].

2.1.1 Modeling languages and models
To be able to create a model, an abstraction of a real world object, a certain syntax
is necessary to allow common understanding and avoid misinterpretations. Modeling
languages are introduced to define elements and rules to help solve these challenges.
Commonly modeling languages allow textual as well as graphical representations of
models by making use of diagrams. Diagrams extract parts of a model relevant for a
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2.1. Model-driven Engineering

Figure 2.1: Overview of MDE methodology [BCW12]

particular graphical representation. Several diagrams can use the same element of a
model but group and display it differently to create a distinct view.

Modeling languages can be classified into two groups: General-purpose languages (GPL)
and Domain-specific languages (DSL). DSLs focus on a certain system or aspect of a
system and by doing so create high-level abstractions to reduce efforts and require fewer
details to specify a given system. General-purpose modeling languages on the other hand
allow modeling of multiple aspects within and between systems and therefore enable
more comprehensive models [BCW12].

In general, models are considered static entities used during design phases are often
neglected in later life-cycle phases. These models have been used for development in many
settings and domains and are commonly called design-time models [CW20]. Modern
engineering tries to re-use these models by enriching them with runtime information
based on the systems state and by doing so turning them into runtime models for further
usage scenarios [WMWH20].

2.1.1.1 Meta-modeling

Meta-modeling is a key functionality of MDE to further reduce the complexity of models
by introducing another level of abstraction regarding a specific real world object or
system. A model is valid regarding a given metamodel if all model elements and
the model itself conforms to it. Since the metamodel is another model, it must be
formalized by another language. These so-called meta-languages are dedicated for
defining metamodels [CFJ+16]. This principle can be further developed as seen in Figure
2.2 to a point were a meta-metamodel defines a distinct way of defining metamodels.
The Meta Object Facility (MOF) [OMGa] is a modeling standard specified by the OMG
to define metamodels for a particular domain.
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2.1. Model-driven Engineering

Figure 2.2: Model-driven-engineering pyramid [LZN+14]

2.1.1.2 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) offers such a meta-language, namely Ecore,
which can be seen as an implementation of the MOF standard. It enables meta-modeling
which allows model standards like the Unified modeling Language (UML)[OMGc] or
System modeling language (SysML)[OMGb] to be created based on EMF. EMF is an
open-source framework and one of the most used modeling languages. It is based on the
programming language Java and is part of the Eclipse open-source foundation.

2.1.2 Model Transformations
As described in Figure 2.1, transformations are, besides models and modeling languages,
another integral part of MDE. They consist of rules which describe how to transform a
certain model into another model or text. The defined rules make use of metamodels
to create the necessary references between the input and output. When executing a
transformation the input model needs to conform to the referenced input metamodel
[CFJ+16]. When translating input model A into output model B, both A and B have
to be compliant to their according metamodels. This type of transformation is called a
model to model (M2M) transformation. When producing text as an output instead, the
transformation is called a model to text (M2T) transformations [BCW12].

When using EMF, a M2M transformation uses an EMF-compliant model as an input
and output another EMF-compliant model as well. M2T transformations on the other
hand take an EMF model as input and output plain text. However, even if the output
plain text is structured and follows a certain text-based model, this does not comply to
the definition of an EMF M2M transformation as input and output must conform to an
Ecore based metamodel.
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2.1. Model-driven Engineering

2.1.2.1 ATLAS Transformation Language (ATL)

The ATLAS Transformation Language (ATL) is a model-to-model transformation lan-
guage. It offers the functionality to define rules that express how one (or more) target
models can be produced from a set of source models. It uses the inputs’ and outputs’ meta-
model to support transformation development within the Eclipse platform, to validate
defined rules and to validate inputs given during runtime.1

For usage within the Eclipse platform, the ATL Eclipse platform offers autocompletion
and other helpers during development time as well as run-configurations that simplify
running the transformation by referencing input and output documents as well as the
necessary metamodels. Additionally, ATL can use Eclipses registry to access already
registered metamodels. For the usage in a from Eclipse’s registry decoupled environment

• ATL compilation,

• EMF model registration and loading, as well as

• configuring the ATL launcher and

• launching virtual machine

needs to be implemented. To be able to run ATL based on EMF compliant models, the
given rules are compiled before being able to be processed by the ATL virtual machine.
Figure 2.3 shows an excerpt of how ATL rules are compiled to XML based asm-files
before being used by the virtual machine.

Figure 2.3: ATL compilation process2

ATL internally uses an abstraction called "virtual machines" (VM) to support not only
EMF but also other modeling languages. Currently, two VMs namely the Regular VM

1https://wiki.eclipse.org/ATL/Concepts
2https://wiki.eclipse.org/ATL/Developer_Guide
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2.2. Digital Twins

and the EMF-specific VM exist, with the strong advice to use the later one as it eliminates
performance issues when using EMF models in the Regular VM. The VM is also shown
Figure 2.4 titled as ILauncher. To be able to run the VM the according EMF models
and metamodels need to be registered and loaded using the ModelFactory as well as
IInjectors and IExtractors.

Figure 2.4: ATL Core Architecture3

2.1.2.2 Xtend

Xtend is a statically-typed programming language which translates to Java source code.
By using its Template Expressions it offers possibilities to be used as a model-to-text
(M2T) transformation language. Transformation rules are defined as Java methods offering
iterators and conditional operators to create string-templates for a given metamodel. To
be able to use a metamodel in Xtend, it has to be transformed into Java classes first.4

To be able to run the Xtend M2T transformation, EMF uses Xtext to translate the
transformation rules defined in Xtend into Java source code. Further setups need to be
created to load inputs and write outputs to a certain files and directories.

2.2 Digital Twins
The term digital twin was first used by M. Grieves in a University lecture in 2003 [Gri11].
By then the information on a physical product was immature and mostly collected by
hand in a paper-based representation [Gri15]. Almost two decades later, the handling

3https://wiki.eclipse.org/ATL/Developer_Guide
4https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#templates
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2.2. Digital Twins

of models in production processes changed a lot. Models, if not created prior to the
production, are developed in parallel and maintained throughout a products’ lifetime.

The modern DTs are no longer only a digital build plan but serve as a digital representation
of a physical system, which reflects its state and behavior. According to a study conducted
by Dalibor et al. [DJR+22] digital twins are mostly used for behavior optimization,
monitoring and validation. Together, these three categories make up more than 70% of
all fields digital twins are used in. Digital twins are used in various fields such as smart
manufacturing [BDH+20], farming [BW19], automotive [VTBW21] and avionics [Kra16].

Another very important argument brought up by Dalibor et al. [DJR+22] is that
according to their study, about 65% of the analyzed publications state that the digital
twin is developed in a separate process and not integrated into the system’ or product’
development life-cycle.

2.2.1 Digital Twin Platforms
For a digital twin to actually be able to gather or receive data from a supervised system,
not only the specific technical solution but also an environment to run it is necessary.
Digital twin platforms offer predefined structures, tooling and support to overcome the
different implementations available on the market. Lehner et al. [LPT+22] analyzes the
digital twin platforms offered by 3 major cloud providers Microsoft Azure, Amazon Web
Services and the Eclipse digital twins based on functional and non-functional requirements.
Although concepts described in this work are applicable to most Digital Twin Platforms,
the practical implementation in this thesis was done using the Microsoft Azure Digital
Twins Platform.

2.2.1.1 Azure Digital Twins Platform

The digital twin platform provided by the cloud provider Microsoft Azure Azure Digital
Twins is a digital twin platform-as-a-service middleware. It allows modeling digital twins
based on the Digital Twins Definitions Language (DTDL)5 as well as the creation and
monitoring of digital twins with the browser-based graphical user interface Azure Digital
Twins Explorer6. Figure 2.5 shows the Digital Twins Definitions Language in UML
class diagram notation. A programming interface including wrapper-libraries for various
programming-languages is available for programmatic access to the digital twins.

Furthermore, the platform offers a rich variety of cloud components to interact with
the digital twin as shown in Figure 2.6. The platform not only allows inputs using the
programming interface (API) but also via devices connected to the IoT Hub. Data egress
is possible using various predefined Azure services like big data (Azure Data Lake) and
database (Time Series Insights) as well as own programs using Azure Functions to handle
specific business logic.

5https://github.com/Azure/opendigitaltwins-dtdl
6https://explorer.digitaltwins.azure.net/
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Figure 2.5: Conceptual DTDL metamodel in UML class diagram notation

Figure 2.6: Azure Digital Twins solution overview7

Azure IoT Hub is a managed service offered by the Microsoft Azure platform. It acts
as a central message hub for Internet of Things devices and their connected applications.
It supports several messaging patterns including telemetry from the device to the cloud,
as well as cloud to device messages to control remote devices. Different services, like
machine learning or advanced analytics can be connected to messages processed via the
IoT Hub. For an IoT device to be able to communicate via the hub, it needs to be
registered to it. By using the created connection credentials, the device is now able to
securely communicate with the IoT Hub in the cloud.8

7https://docs.microsoft.com/en-us/azure/digital-twins/overview
8https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub
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2.2.2 Model-Driven Engineering for Digital Twins
Digital twin platforms already offer tooling to design and create digital twins. However,
the development, maintenance and evolution, so their change over time, still presents
challenges that need to be overcome. Bordeleau et al. [BCE+20] analyzes the main chal-
lenges and presents where and how MDE can be used to contribute to them. Seven open
research challenges are named. Two open challenges, namely the "Modeling Languages
for Digital Twins" and "Architectural Framework for Digital Twins" were picked up by
Lehner et al. [LSV+21]. In this paper a framework is introduced that offers a modeling
language and a basic architecture that should allow the reducing of effort when building
digital twins. That was done using an in AutomationML modeled system to create and
deploy necessary Azure Digital Twin resources from it.

Another challenge, proposed by Bordeleau et al. was picked up by Kirchhof et al.
[KMR+20]. In their work they propose a solution on how to integrate development of the
physical system (CPS - Cyber-physical-system) and the digital twin. MDE techniques are
used to create post-development connections (tag) between CPS and DT architecture and
vice versa. This information is used by a MDE transformation to support communication
and synchronization infrastructure between CPS and DT [KMR+20].

2.3 DevOps
DevOps, or Development and Operations is a term used in Software Engineering in
multiple different ways but quiet similar meanings. According to a study conducted by
Jabbari et al. [JbPT16] the term DevOps is defined by the combination of communication,
collaboration and team-work between development and operations teams. Additionally,
they specify that, software delivery, automated deployment, continuous integration and
quality assurance play the most important roles in DevOps. Jabbari et al. define the term
DevOps as "a development methodology aimed at bridging the gap between Development
and Operations, emphasizing communication and collaboration, continuous integration,
quality assurance and delivery with automated deployment utilizing a set of development
practices" [JbPT16].

Leite et al. define DevOps similar as "a collaborative and multidisciplinary effort within an
organization to automate continuous delivery of new software versions, while guaranteeing
their correctness and reliability". This definition puts more significance on the automated
and continuous creation and delivery of new software versions. It further categorizes
processes into the 4 quarters shown in Figure 2.7 and names frequent terms and processes
within them [LRK+19].

For this work of special interest are, amongst other things, the "delivery" processes
Continuous Integration, Continuous Delivery and Continuous Deployment, as well as the
"runtime" process Continuous Runtime Monitoring which are described in more detail in
the following.
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Figure 2.7: "DevOps overall conceptual map" by Leite et al. [LRK+19]

Continuous Integration & Continuous Delivery Continuous integration (CI) de-
scribes a process that is automatically triggered based on the change of a software artifact.
It is meant to help a software developer by creating the artifact, run predefined tests
on it and give fast or even immediate response without manual actions [DMG07]. By
using appropriate tools like source code management and build processes CI can speed
up development processes of teams and organizations and produce ready-to-use artifacts
for each change done.9

Continuous Delivery or Deployment (CD) is a later phase process in the software
development life-cycle. It contains further manual and automated tests analyzing a
components performance and usability before being able to finally be shipped to a
production slot.10

Runtime Monitoring According to Leite et al. monitoring is a big part of DevOps during
the "runtime" stage. Amongst others, performance, availability, scalability, resilience and
reliability are the main objectives to be achieved during runtime. Monitoring can be
used or is essential to achieve most of them. To do so low-level resource metrics, as well
as business metrics can be used, to alert and react upon [LRK+19].

9https://docs.gitlab.com/ee/ci/introduction/
10https://www.redhat.com/en/topics/devops/what-is-ci-cd
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CHAPTER 3
Automating Development and

Operations of Digital Twins:
Requirements and Architecture

To find an answer to the research questions posed in this thesis, a framework to significantly
reduce manual efforts when developing digital twins and the corresponding physical
devices is proposed. This section is devoted to derive requirements and propose a system
architecture for the given challenges. Section 3.1 lists requirements on how to automate
the creation and deployment of digital twins and the associated physical devices using
Model-Driven Engineering practices in a DevOps process, the requirements on how to
extend the creation and deployment of digital twins and the associated physical devices by
using design time model annotations to define runtime monitoring are shown in Section
3.2. Finally, in Section 3.3, the basic architecture and approach to solve previously
mentioned requirements is presented.

3.1 Requirements for Automating Digital Twins Creation
and Deployment

To solve the challenges of having to complete various manual steps before a change in the
digital twin model is reflected in the digital twin platform, the DT platform itself, the
physical devices and infrastructure components between those as well as various other
software artifacts need to be developed. A framework that groups and connects these
artifacts to build a solution that reduces manual effort significantly is necessary.

Any digital twin components, properties or attributes are described in a proprietary
domain-specific language, called the digital twin language. Because the format is given
by the specific digital twin platform used, there are multiple different languages which
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make it hard to switch between platforms and ecosystems. These languages, while being
somewhat similar, can currently only be used in their corresponding platform. In today’s
world of multi- and hybrid cloud solutions this is not favorable. To be able to decouple a
digital twin description from a specific platform, a high-level description (HL) using the
generic digital twin modeling language (gDTL) should be used to describe the digital
twin instead.

To be able to create required data for the use in the digital twin service, it needs to
be derived from the given high-level information. More specifically, the information
necessary to deploy a digital twin are types and instances of the twin. Furthermore,
the high-level information needs to yield information regarding the target digital twins
environment, so where the information should be deployed to (req 1.1). This information
is used to communicate with the digital twin platform, register type information and
create necessary digital twin instances in an automated way (req 1.2).

Requirements for RQ1 (automated DT deployment)

req 1.1 Automatically derive digital twin platform information from HL.

req 1.2 Digital twin can be deployed to digital twin platform automatically.

Before the digital twin platform can work on any data, this data needs to be gathered
by sensors connected to physical devices. These devices need to run specific software
to not only gather but also send the collected sensor data to a certain digital twin
instance. Connection credentials necessary for this communication need to be supplied
to each individual physical device (req 2.1). For the digital twin to be able to process
received data, information describing the sensor and which value of the sensor was sent,
needs to be added. This information needs to aligned between the digital twin and the
physical device to ensure shared understanding (req 2.2). For a high automation level, the
physical devices’ software as well as necessary configurations should be deployed to the
device automatically (req 2.3). To be able to do that on basis of the generic digital twin
language (gDTL), it needs to be extended with deployment information like addresses
and credentials.

Requirements for RQ2 (automated DT physical device communication estab-
lishing)

req 2.1 Device to digital twin connection credentials are generated, delivered automatically
and used by the devices’ software.

req 2.2 Device and digital twin use aligned property naming in communication.

req 2.3 Device software and configuration can be deployed to physical device automatically.

Using above described requirements and processes, a pipeline can be built that allows
full automation of the creation and deployment of digital twins and physical devices.
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By implementing a Continuous Integration (CI) pipeline, the transformations can be
executed on each change of the input documents and produce the necessary data for
deployment. This data can be declared as an output argument of the pipeline so that
it can be used by other pipelines. For example a Continuous Delivery pipeline can be
created so that it automatically uses the CI pipelines’ output arguments to deploy the
digital twin to a previously configured environment and the physical devices with their
according software and configuration.

3.2 Requirements for Automated Monitoring of Digital
Twins

To monitor digital twins, conditions that inspect messages exchanged between the physical
device and the digital twin should be definable. The defined conditions can have actions
attached that are executed if a message corresponds to a certain rule. To follow the same
approach as before, conditions and actions should be part of the same modeling language
the digital twin is modeled in (gDTL) (req 3.1).

To be able to process these conditions, they should be available in a machine-readable and
platform-neutral data format so that various systems and platforms can evaluate them
and execute the attached actions (req 3.2). This is necessary to be able to answer RQ3 by
implementing the conditions and actions evaluation and execution on the physical device
(req 3.3) and in the cloud infrastructure (req 3.4). Finally, delivering the machine-readable
condition data to the devices and the cloud needs to be done alongside the digital twin
and physical device deployment (req 3.5).

Requirements for RQ3 (automated DT runtime monitoring)

req 3.1 Conditions and actions can be modeled within the gDTL.

req 3.2 Conditions and actions are automatically transformed from gDTL into a machine-
readable, platform-neutral format.

req 3.3 Device controller executes conditions and actions before sending updates to digital
twin.

req 3.4 Cloud software component executes conditions and actions from the machine-
readable, platform-neutral format.

req 3.5 Conditions and actions data is published to cloud application and physical device
automatically.

Defining monitoring aspects in a design-time stage introduces a way to extend DevOps
possibilities further by delivering runtime information back to the developers. The pipeline
described in Section 3.1 enables "DevOps for digital twins" by moving responsibilities
regarding hosting and deployment towards DevOps teams. By introducing a monitoring
framework, the teams possibilities are even further extended.
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3.3 System Architecture for Automated Digital Twins
Development and Operations

In Figure 3.1, the architecture required for fulfilling the previously defined requirements
is shown. The Digital Twins Automation Framework (DTAF) and its components as
well as all targeted systems are depicted. In the following paragraphs, the interaction
between the architectures’ parts are described.

The proposed solution consists of the three artifacts used for automation, namely the
Model Transformation Engine, the Device Deployment Artifact and the Digital Twin
Deployment Artifact, a Device Controller software in a three layer architecture and cloud
infrastructure components Monitoring Service, Device Management Service and Digital
Twin Service within the digital twin platform.

The Model Transformation Engine is the main artifact and first processing point in regard
to automation. The accepted input model and transformation have to correspond to a
certain input language. More specific, the transformation provided should provide rules on
how to transform the input model into the gDTL imposed by the Model Transformation
Engine. This language shall hold all functionalities necessary to represent a digital twin,
the properties necessary to enable automation and conditions and actions (req 3.1). The
engine transforms the input model into the gDTL according to the given transformation
as well as the resulting gDTL into models & instances corresponding to the Digital Twin
Platform language (req 1.1) as well as run-time information and deploy-time information
and offer these documents as an output. The run-time information contains of information
regarding Device and digital twin aligned property naming (req 2.2) as well as Conditions
and actions available in a platform-neutral, machine-readable format (req 3.2) whereas
deploy-time information holds information on the target Device Management Service and
Digital Twin Service (req 1.1).

The Digital Twin Deployment Artifact uses the given models & instances in Digital
Twin Platform language to create the digital twin in the Digital Twin Service (req 1.1).
Furthermore, it creates the necessary device to digital twin communication credentials at
the Device Management Service (req 2.1). Finally, the Monitoring Service is supplied
with runtime-related data from the Digital Twin Deployment Artifact.

Using the Device Deployment Artifact, software and runtime-configurations like the digital
twins’ connection credentials and conditions and actions data should be transferred to
the remote devices. Furthermore, the software needs to be run on the specific device (req
2.3).

The Device Controller software initializes the Sensor Layer using run-time information
to be able to send appropriate meta-information with every message to the digital twin
(req 2.2). Before a message is sent, it has to pass through the Monitoring-Layer which
checks the message content against the condition information contained in the run-time
information (req 3.4). The Communication Layer uses the communication credentials
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3.3. System Architecture for Automated Digital Twins Development and Operations

given in the run-time information to establish a connection to the Device Management
Service to be able to communicate with the Digital Twin Service (req 2.1).

A Monitoring Service is placed along the "update" data flow, to check any message based
on the given conditions and actions run-time information in the cloud. This service
can be seen similar to the devices’ Monitoring-Layer, but as a separate infrastructure
component (req 3.3).
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CHAPTER 4
Automation Framework for Digital

Twins Development and
Operations

In this section, a framework to automate digital twins development and operations based
on the system architecture presented in Figure 3.1 is proposed. To enable automation,
a Continuous Integration (CI) and a Continuous Deployment (CD) pipeline, as well as
how the pipeline can be extended to allow DT monitoring is described in detail. In the
first section (4.1) the automated transformation of the input model into the DT model
and the setup of the pipeline both running the automated transformation and deploying
the resulting model to the DT platform is described. The deployed DT is iteratively
extended in Section 4.2, by automating the creation of configuration documents of DT
and initializing the device to DT communication. The previous setup is further extended
by the implementation of a framework for monitoring of Digital Twins in Section 4.3.

4.1 Automating the Deployment of an EMF-based Digital
Twin

To successfully deploy a DT in an automated fashion, first the input model needs to
be transformed into the DT platform specific language. Section 4.1.1 describes how
to enable the use of this transformation in a minimal environment like an automation
pipeline, the transformation execution needs to be decoupled from Eclipse IDE. How
to execute the decoupled processes in a Microsoft Azure build pipeline is described in
Section 4.1.2. The transformed models and instances corresponding to the DT platform
language then need to be uploaded into the DT platform to enable the DT. How to
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upload DT platform language model to Microsoft Azure Digital Twins service using an
Microsoft Azure deployment pipeline is shown in Section 4.1.3.

As previously highlighted, it is advisable to model the input-model of a Digital Twin in a
generic Digital Twin Language (gDTL). This modeling language needs to hold all the
information necessary to produce a Digital Twin Language based document for a Digital
Twin Platform. To satisfy the proposed challenges, the implementations proposed by
Lehner et al. [LSV+21] were used and further adopted to automate the deployment of
DTs. The implemented AML4DT framework introduces an EMF-based Azure DTDL
abstraction language named DTML, which can be seen as a specific implementation of
gDTL that will be used within this work. DTML can be transformed into JSON-based
Azure DTDL documents using the provided AutomationML (AML) to DMTL (AML2DT)
model-to-model (M2M) transformation defined in the Atlas Transformation Language
(ATL), as well as an ATL model-to-text (M2T) transformation.

According to the Automation Framework (DTAF) proposed in this work and shown in
Figure 3.1, the AML2DT transformation is used together with DTML as the input of the
framework used by the Model Transformation Engine. This engine also makes use of the
existing M2T transformation to produce digital twin documents according to the Digital
Twin Platform Language which is Azures’ Digital Twins Definition Language (DTDL).
While the general solution described in Section 3.3 is applicable to multiple digital twin
platforms, an explicit implementation for the Microsoft Azure platform is created in
the following chapters.

4.1.1 Decoupling Model Transformation from Eclipse IDE
As the model transformations taken from the AML4DT framework [LSV+21] already
provide most of the logic and functionality needed, the main challenge is to provide
further automation. Most EMF related tools and languages rely heavily if not exclusively
on the Eclipse Integrated Development Environment (IDE). To be able to use (1) M2M
transformation using Atlas Transformation Language (ATL) as well as (2) M2T translation
using Xtext/Xtend both of these languages need to be made callable outside the Eclipse
environment as it is not feasible to use Eclipse processes as part of a pipeline. It is not
an option to run Eclipse in a pipeline environment because: (1) Pipelines are usually
executed to run on a very slimmed down computer that does not have a GUI environment.
(2) Eclipse does not offer a simple way to script ATL or Xtext/Xtend execution without
Eclipse running. The fact that there is very little to no support of automation is very
surprising, given the amount of engineers working with Eclipse and its environment. But
it shows that the field of Model-Driven Engineering still has huge potential when it comes
to further automation.

The M2M transformation language ATL defines its rules in atl files which are not
executable on their own. A run configuration needs to be created where input and output
models as well as the atl files to use are defined. More complex transformations may
be split up into a main ATL module with multiple submodules to decrease complexity
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Figure 4.1: ATL execution configuration in Eclipse

and increase readability of the transformation. If so then all modules or files need to be
mentioned in the configuration as well. An example ATL configuration for Eclipse is
depicted in Figure 4.1 (note: submodules are configured in the Advanced tab).

Using an according run configuration lets Eclipse use the ATL plugin to execute the
transformation. The ATL plugin not only requires Eclipse for the configuration and
execution, but also uses Eclipses’ Package Registry. The Package Registry is where
EMF registers metamodels to be globally usable within Eclipse. When loading a project,
Eclipse searches for all ecore files and register them into its registry automatically.

Eclipse uses a generic plugin system for every extension that is used within. These plugins
contain the necessary libraries (JARs) to fulfill their goal but have an arbitrary interface
to Eclipse which makes it unusable for automation. To be able to execute model-to-model
transformations based on ATL a separate interface to control ATL configuration needed
to be created. For simple and generic usability this interface is designed as a Command
Line Interface (CLI).

Looking at the ATL architecture diagram depicted in Figure 2.4 the newly created CLI
needs to use the ModelFactory to create and inject Models and ReferenceModels that
represent EMF resources like metamodels and their instances. These are then used by
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the ATL Launcher to execute the transformation.

Furthermore, an ATL transformation first need to be compiled into the ASM format
to be accepted as an input by the ATL Virtual Machines (VM). The ASM format is
an assembly language that ATL uses to improve performance and remove references to
arbitrary modeling languages. ATL supports multiple Virtual Machines (VM) which are a
generic approach to decouple the generic models from the transformation implementation.
Two VMs exist whereas the EMF-specific VM is the newer and more performant one1.
Eclipse also compiles ATL files to ASM files on-the-fly whenever an ATL file is changed
and saved.

To sum everything up, the new application work needs to do the following to be seen as
a general reusable ATL executor

• Load and register metamodels (Reference Model in ATL)

• Load and inject input models with assigned metamodels

• Create or load (if it is an INOUT model) and inject output models with assigned
metamodel

• Create ATL virtual machine and assign IN, OUT and INOUT models

• Compile not yet compiled ATL files

• Run ATL Launcher in EMFVM

• Write results into output models

• Unload models and clean up unmanaged resources.

The full implementation is published and publicly available on GitHub2 together with
further documentation and examples.

After finding a solution for executing ATL transformations detached from Eclipse, the
result, an DTML conform model must be transformed further into the Azure DTDL
format. To do so, Lehner et al. [LSV+21] implemented a model-to-text transformation
(M2T) based on Xtend3. One could argue that Azure DTDL is just another metamodel
and therefore a model-to-model (M2M) transformation is the better choice, but EMF
declares M2M to always output a model that is conforms to a certain EMF metamodel,
which is not the case since Azure DTDL is a JSON text-based format. Using the given
Xtend transformation rules the ATL tasks’ output can be transformed into a valid Azure
DTDL document. In Eclipse this is again done using a proprietary language called
Modeling Workflow Engine (MWE). Using MWE you can specify source and target

1https://wiki.eclipse.org/ATL/Developer_Guide#EMF-specific_VM
2https://github.com/SirSeven/at.davemar.emf-tool
3https://www.eclipse.org/xtend/
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folders and reference the transformation itself. This is where Xtend and ATL differ,
while ATL compiles its rules into proprietary asm files, Xtend translates them into Java
code. From that, it can be said that Xtend is a dialect of Java, which makes it easy
translatable.

The initial plan to solve this challenge was to create a ubiquitous solution just like for
ATL. But creating a CLI that takes Xtend rules and by using them transforms a specified
model into any text has a major disadvantage. To do so someone needs to first translate
Xtend rules to Java code and then compile this Java code into JVM executable bytecode.
Using a generic program you are able to then load and execute the compiled Java rules
using the Java ClassLoader. The problem is, this is not only complicated and obviously
also dangerous as it can seriously harm your system as you have no control over what is
actually executed.

When realizing that the unknown code is executed in a Platform as a Service (PaaS)
pipeline a foreigners’ system, the idea was neglected, and another simpler solution was
developed. A simple yet effective solution to this challenge was the assumption was
that the transformation from DTML to Azure DTDL once finished, should be not need
to be changed very often, since source as well as target metamodels can be seen as
static. So the new plan was to simply use the translated Java code and build it into an
executable. This executable needs to accept an input and output file path, whereas the
input needs to be a valid DTML model. By doing so, an executable is created that is
not configurable to which rules it executes, the transformation rules can be seen as hard
coded into the application. This is where the Eclipse platform comes into play again.
The MWE configuration specifies these parameters and Eclipse uses them on-the-fly to
execute a compiled Java program. While this is a feasible solution, it comes with a lot of
overhead and a simple public static void main() should do the trick here as well. Listing
4.1 shows an excerpt of the logic to execute a Java translated Xtend transformation.4

Using project management tool Gradle the program is compiled into an executable jar
and can be used by the pipeline. In case there is a change in the transformation rules,
the Xtend to Java translation has to be done in Eclipse and the generated code has to
be moved into the Gradle solution. In another step this manual process could potentially
be eliminated.

4.1.2 Using a build pipeline to automatically execute transformations
After having set up applications to transform an AML model into a valid Azure DTDL
document, these applications are bundled up to assemble the Model Transformation
Engine and are executed automatically for each incremental change to the model. As the
solution is already relying on Microsoft Azure for Platform as a Service (PaaS) services
like Azure Digital Twin Service (ADTS), the pipeline needed for automation is also
hosted using a Microsoft Azure service, called Azure DevOps. Azure DevOps offers project

4https://github.com/SirSeven/at.davemar.dipl.xtext.dtdl
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Listing 4.1: Except of Java Xtend transformation runner
protected void runGenerator(final String string, final String outputPath) {

final ResourceSet set = this.resourceSetProvider.get();
Resource.Factory.Registry.INSTANCE

.getExtensionToFactoryMap()

.put("∗", new XMIResourceFactoryImpl());
set.getPackageRegistry().put(DTMLPackage.eNS_URI, DTMLPackage.eINSTANCE);
final Resource resource = set.getResource(URI.createFileURI(string), true);
final List<Issue> issues = this.validator

.validate(resource, CheckMode.ALL, CancelIndicator.NullImpl);
...
...
this.generator.generate(resource, this.fileAccess, context);

}

and code management services alongside pipelines and artifact servers. For better public
availability, the repository is hosted on GitHub5.

deps
meta-models

CAEX
DTML

scripts
transformations

m2m
sources

client
sensors
sensor_value
telemetry_services

work
instance-configs
instances
schemas

The listing above shows all files that are necessary for the pipeline execution and are
therefore checked into the repository. As there is no well known approach for dependency
management within Model-Driven Engineering or rather EMF solutions, all dependencies
need to be checked in to the repository. A better approach is to download them from
a package manager when needed during development and build time, just like Maven
repositories work. Included with the pipeline, is a YAML document (azure-pipelines.yml)

5https://github.com/SirSeven/at.davemar.dipl.pipeline
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Listing 4.2: Pipeline Model-to-Model transformation command
− task: Bash@3
displayName: ’run ATL−transformation (m2m)’
inputs:

targetType: ’inline’
script: ’java −jar $(build.SourcesDirectory)/deps/emf−tool−1.0.1−SNAPSHOT−all.jar atl

→ −mm CAEX_Any_Type=$(build.SourcesDirectory)/deps/meta−models/CAEX/
→ GenericAnyType.ecore −mm CAEX=$(build.SourcesDirectory)/deps/meta−
→ models/CAEX/CAEX30.ecore −mm DTDL=$(build.SourcesDirectory)/deps/meta
→ −models/DTML/dTML.ecore −i IN:CAEX=$(build.SourcesDirectory)/sources/
→ davids_place.xmi −o:DTDL=$(build.ArtifactStagingDirectory)/model.dtml $(
→ build.SourcesDirectory)/deps/transformations/m2m/main.atl $(build.
→ SourcesDirectory)/deps/transformations/m2m/transformClasses.atl $(build.
→ SourcesDirectory)/deps/transformations/m2m/transformInstances.atl’

Listing 4.3: Pipeline Model-to-Text transformation command
− task: Bash@3
displayName: ’run XTEXT−transformation (m2t)’
inputs:

targetType: ’inline’
script: ’java −jar $(build.SourcesDirectory)/deps/at.davemar.dipl.xtext.dtdl−1.0.4−all.jar

→ $(build.ArtifactStagingDirectory)/model.dtml $(build.ArtifactStagingDirectory)/’

that Azure DevOps uses as a pipeline description. By including the build definition with
the repository, this allows any build to be reproducible any time in the future.

As everything has already been set up and prepared for a straight forward pipeline
execution, the build definition itself is simple. First we need to install Java to the
pipeline machine (agent). Java version 11 was the newest available version by the time
the pipeline was created. After Java is installed, the Bash task is used to run the
model transformations using the java -jar command (Listings 4.2 and 4.3 depict the
detailed commands). Finally, the results are published to the pipelines artifacts using
the PublishBuildArtifacts command to make them usable in the following deployment
process. Figure 4.2 shows the artifacts that are published by the pipeline.

4.1.3 Automatically Deploying Digital Twins to Digital Twin Platform
In 4.1.2 all necessary steps to output valid DTDL files through a build pipeline were
taken. This section focuses on creating the Digital Twin Deployment Artifact which uses
the created DTDL documents and deploys them to the Azure Digital Twins service to
create digital twins.

The Azure Digital Twins service defines 4 different types of content within each and
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Figure 4.2: Artifacts published by pipeline

every digital twin: (1) Properties, a content type for static data where more read than
write operations are performed. (2) Telemetries for highly dynamic values like sensor
values. (3) Relationships to other digital twins to be able to build twin graphs of entire
environments, (4) and Components which are contained relationships and make reusing
of DTs possible. To define a digital twin, a DTDL conform definition needs to be passed
to ADT, with which it can verify a twins’ integrity and check twin updates for validity.
It also enables ADT to publish certain events for proper post-processing whenever a twin
changes.

There are different ways of passing the definitions to ADT. There is a drag- & drop
solution to uploading DTDL files sequentially or a full directory in the Azure Digital
Twins Explorer6, alternatively an HTTP API exists which is also used in the offered
.NET and Java SDKs. The third option is to use the Azure Powershell module azure-iot.
For the use in a pipeline both HTTP API and Powershell module are applicable, with
the benefit of Powershell to already have a simplified interface. As Azure Powershell
runs platform independent and is available for all major operating systems7, it is the

6https://docs.microsoft.com/en-us/azure/digital-twins/concepts-azure-digital-twins-explorer
7https://docs.microsoft.com/en-us/powershell/azure/what-is-azure-powershell
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better choice for usage in this work.

As shown in Figure 4.2, the Xtend transformation outputs »schemas« and »instances«.
Schemas are deployed first using:

Listing 4.4: Creation of digital twin models in Azure Digital Twin service
az dt model create −−from−directory $modelFilesFolder

only after that the instances can be created. To do so, we need to iterate each file in the
instances folder and use:

Listing 4.5: Creation of digital twin instance in Azure Digital Twin service
az dt twin create −−twin−id $DTId −−dtmi $DTModelId −−properties

→ $serializedModelProperties

Additionally, if instances contain relationships, those need to be created as well. Therefore,
we have to iterate over each relationship and run:

Listing 4.6: Creation of digital twin relation in Azure Digital Twin service
az dt twin relationship create −−relationship−id $relationshipId −−relationship

→ $relationshipName −−source $DTId −−target $relationshipTargetId

To be able to execute the commands listed above, a certain resource in Azure needs
to be targeted as there could be multiple Azure Digital Twin services running within
your account. To identify those two the commands uses the attributes -n to determine
the given name of the resource in Azure, while –resource-group points to a certain, as
the name says, resource-group, which is a functionality of Azure to structure costs and
belonging of a certain resource.

−n $ADTResource.name −−resource−group $ADTResource.resourceGroup

To make this information available during deployment multiple options exist. A static
configuration of the necessary values in the deployment script or pipeline can be used
but comes with the disadvantage that script and or pipeline can not be reused without
changes. To prevent this a new property was added to the DTML metamodel. The
AzureResource class was added and holds resource-group and name of an Azure resource.
It is contained by DigitalTwinEnvironment to not interfere with any digital twins.

By adopting the DTML metamodel, changes to the ATL and Xtend transformations
of the initial AML4DT[LSV+21] framework are necessary as well. As implementing
meta-information like the Azure resource information into AML is complicated, the
setting is hard-coded in the transformation and the AML model stays untouched. Listing
4.7 shows the added transformation rule to create the AzureResource class. For the
deployment script to work with the information, the Xtend transformation is extended
to produce another JSON file (see Figure 4.2: azureConfig.json), which is then read and
used at the deployment (Deployment-time information according to Figure 3.1).
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Listing 4.7: Additions to DigitalTwinEnvironment to include the digital twin AzureRe-
source
dtdl: DTDL!DigitalTwinEnvironment (

name <− caex.cAEXFile.fileName.toString(),
...
digitalTwinsResource <− thisModule.newAzureResource(’at−davemar−master−thesis’,’

→ master−thesis’,’azureDigitalTwins’),
...

)

After adding and using the Azure resource information in the deployment script, the
script is added to the pipeline’s repository8 to be version-controlled and available for
each deployment. Now finally the pipeline can be created to automatically deploy the
created model files to the ADT service. Release pipelines in Azure DevOps are defined
differently than the build pipelines used in Section 4.1.2. Any release pipeline can have
multiple artifacts and stages, whereas artifact sources can be build pipelines or code
repositories. A stage is a logical grouping of jobs and tasks to support development,
testing, staging and production tenants. For the digital twin release pipeline we only
need a single artifact source which is the build pipeline. The build pipelines’ artifacts
already hold all digital twin documents as well as the scripts necessary for the execution.
This could be a potential future optimization to remove the scripts from the models
repository and retrieve them from a different source during deploy time. By doing so,
this reduces dependencies and can improve maintenance work.

A single stage »Stage 1« with an agent job is introduced. The agent job was configured
to run from the Azure Pipelines agent pool and run of an ubuntu-latest image. This
instructs Azure DevOps to use an agent from their hosted agents pool which makes having
your own build agent needless. Within this agent the previously defined script should be
executed. For the script to work an established Azure CLI needs to be existent, which
makes sense as you don’t want to deal with credentials and login here. Azure Pipelines
offers a specific pre-defined step »Azure CLI« for that, where an Azure Subscription can
be selected to which it should automatically connect to. Using the CLI step, a script,
to be executed on the agent, can be picked, and the appropriate arguments are taken
from the selected build pipeline artifacts using the placeholder _at.davemar.dipl.pipeline.
As the script is using functionality of Azure Digital Twins, another step installing the
according Azure CLI module, is needed. Listing 4.8 shows the by the pipeline executed
commands. As release pipelines are not version-controlled within a repository but rather
the Azure Pipeline platform stores them, an export of the pipeline is attached to the
GitHub repository9.

8https://github.com/SirSeven/at.davemar.dipl.pipeline/blob/master/deps/scripts/deploy-digital-
twin.ps1

9https://github.com/SirSeven/at.davemar.dipl.pipeline
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Listing 4.8: Azure release pipeline commands
az extension add −−name azure−iot
$(System.DefaultWorkingDirectory)/_at.davemar.dipl.pipeline/scripts/deploy−digital−twin.

→ ps1 ‘
$(System.DefaultWorkingDirectory)/_at.davemar.dipl.pipeline/artifacts/azureConfig.json ‘
$(System.DefaultWorkingDirectory)/_at.davemar.dipl.pipeline/artifacts/schemas ‘
$(System.DefaultWorkingDirectory)/_at.davemar.dipl.pipeline/artifacts/instances ‘
$(System.DefaultWorkingDirectory)/_at.davemar.dipl.pipeline/artifacts/instance−configs ‘
$(System.DefaultWorkingDirectory)/_at.davemar.dipl.pipeline/artifacts/validators.json

4.2 Automating the Connection Establishment of Digital
Twins and Physical Devices

Digital twins are useless without physical devices producing data and sending this data to
the DT. How to create such a DT in a model-based manner and how it can be deployed
automatically was shown in the previous section. This section uses an already deployed
and setup digital twin from Section 4.1. For a successful DT setup, physical devices,
digital twins and the connection between them must be created and maintained. This
section focuses on automation potential when it comes to connecting a physical device
to its digital twin counterpart. In Section 4.2.1 the communication architecture and
infrastructure is introduced and areas of interest are listed. Section 4.2.2 introduces a
solution on how to establish the connection between physical devices and digital twins.
Section 4.2.3 shows necessary tasks to be able to assign updates sent by the physical
device to a specific digital twin component within Azure Digital Twins. To automate the
previously mentioned steps, Section 4.2.4 focuses on how to automatically deploy the
necessary software components and configurations.

4.2.1 Digital Twin Communication Architecture
In the previous chapter, the creation of a digital twin definition and deployment to
the Digital Twin Platform (DTP) is discussed. By doing so, the structure of messages
accepted by the digital twin is defined. Also names given to components, properties and
telemetries have to be reused by the physical device when communicating, otherwise
messages are rejected by the DT. To successfully send a device update to the Digital
Twin Service (DTS), not only names and structures have to match, but rather a mapping
between any DT telemetry and the value of a physical sensor connected to the device
has to be set up.

Before the mapping can be used, the physical device needs to establish a connection to
the public endpoint of the DTS to send device updates. Using Microsoft Azure, this
could be done directly, which means the devices’ software needs to include Azure Digital

30



4.2. Automating the Connection Establishment of Digital Twins and Physical Devices

Twin Service specific code, or using Microsofts’ recommended way10, by connecting to
the Azure IoT Hub and sending device updates to the hub instead. This, of course, also
requires specific code for communicating with the IoT Hub but offers a good layer of
abstraction as IoT Hub messages can be reused throughout the Azure universe. This layer
of abstraction on the other hand requires an additional software component to translate
IoT Hub messages to updates within the Azure Digital Twins service. Figure 4.3 shows
the described setup using Azure IoT Hub, Azure Digital Twins service and an Azure
Functions application used for the translation. According to the system architecture
proposed in Figure 3.1 the Azure IoT Hub represents the Device Management Service
that also offers additional message flow systems. The Function application created is
represented by the Monitoring Service which is described in more detail in Section 4.3.

PublishIotHub
Message

Device Azure Digital Twins
:Digital Twins Service

IotHubDeviceTelemetry
Event

IoT Hub
:DeviceManagementSystem

PublishComponentTelemetry

AzureDigitalTwin
BridgeFunction
:Azure Functions

App

direct call
event

Azure
Infrastructure
Component

Custom
Component

Legend

Figure 4.3: Device to Digital Twin communication flow

Based on the Python client and C# Azure Functions application forked from a group of
researchers from the Christian Doppler Laboratory for Model-Integrated Smart Produc-
tion11 lead by Daniel Lehner12[GJT+21], adaptions and improvements should be found,
to improve automation in the previously mentioned areas.

4.2.2 Automated Device Management Service Registration and
Connection-String Generation

To automatically connect a physical device with its digital counterpart we need to:
(1) derive physical devices from the DTDL or DTML description. (2) register each
device at the Device Management Service, in this case the Azure IoT Hub; (3) adapt
the client controller program to read and use the connection-string from a configuration
file; (4) generate a connection-string for every device and write it into device specific
configuration-files.

For the first task, DTML is extended by a subclass of the DigitalTwin class called Device
to explicitly mark physical devices. To process this information accordingly, the Xtend

10https://learn.microsoft.com/en-us/azure/digital-twins/concepts-data-ingress-egress#data-ingress
11https://cdl-mint.se.jku.at/
12https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar
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model-to-text transformation was extended to create an empty configuration file for each
physical device. This file is subsequently filled with the connection-string information
itself. Figure 4.4 shows the extended metamodel.

Figure 4.4: Extended conceptual DTML metamodel in UML class diagram notation
[LSV+21]

The next step is to adapt the Digital Twin Deployment artifact (i.e., the deployment
script) to register each identified device, for which now separate files exist, create a
registration in the Azure IoT Hub, extract the primary connection-string and write it
into the prepared configuration file (Run-time information according to the proposed
system architecture in Figure 3.1). As the deployment script already has to iterate each
DT instance (all files from the "instances" folder see Figure 4.2), if a configuration file for
a certain DT exists, use the Azure IoT Hub command:

Listing 4.9: Creation of a device in the Azure IoT Hub service.
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az iot hub device−identity create −−device−id $DigitalTwinId

to create the device. The connection-string is not a result of the previous command but
needs to rather be requested explicitly. This is done using the command:

Listing 4.10: Extraction of the connection-string for a certain device in the Azure IoT
Hub service.

az iot hub device−identity connection−string show −−device−id $DigitalTwinId

Finally, the client’s controller program needs to be adapted to use the connection-string
from a provided JSON file, rather than using a hard-coded one. To do so, the Python
program was extended by a new main method that takes a file path as an argument.
This file is read at the startup and the config[’connectionStrings’][’azureIoTHub’] property
is used to initialize the Azure IoT Hub connection.13

4.2.3 Mapping components from physical devices to Digital Twins
When deploying a DTDL model to Azure Digital Twins, every digital twin and its
properties, telemetries and further nested components have names attached to them.
This is necessary to uniquely identify each one, but also means that an update sent by a
physical device, must also use the exact same name for the property it wants to update.
Update requests are incremental changes rather than representing the whole device state,
as some data changes very often while other data does not. So instead of sending big
messages including unchanged data, only the changed properties are reported to the DT
to keep the message size low. As described in the previous chapter the device does not
communicate with the digital twin service directly but rather to a middleware called the
IoT Hub. The IoT Hub emits messages to a connected Azure Functions application that
needs to transform the messages’ content and publish an update to Azure Digital Twins.
Figure 4.3 shows the data flow from device to the digital twin.

For a successful device to digital twin communication the following tasks need to be
done: (1) create property name mapping from DT model; (2) use it for device controller
initialization; (3) define contract between device and Azure Functions application (4) and
set up Azure Functions application to transform incoming messages to Azure Digital
Twins updates.

First off the structure of the device controller code needs to be adapted to be able
to dynamically initialize connected sensors. This change introduces the in system
architecture figure (3.1) referenced Sensor Layer. It is assumed that a device can have
multiple sensors which can yield multiple values. To be able to represent that within
the software new interfaces and classes were created for sensors. The ISensor interface
is the central element of the restructuring and offers methods to get name, data and a

13https://github.com/SirSeven/DigitalTwin_Airquality_For_Covid_Risk_Assessment
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timestamp from each sensor. This paired with SensorValueExtractors sets up the naming
structure corresponding to a digital twin. Figure 4.5 shows the new generic architecture
in form of a UML class diagram together with 3 specific sensor implementations for air
quality sensors.

<<Interface>> 
ISensor

+ name: string

+ refresh(): void 
+ get_data(sensorValueType): double
+ get_name(): string
+ get_data_timestamp(): datetime

DHT11Sensor

- port: int
+ temperature: double
+ humidity: double

CsvValuesSensor

- filepath: string
+ temperature: double
+ humidity: double

<<Enumeration>> 
SensorValueType

TEMPERATURE = 1
CO2 = 2
HUMIDITY = 3
...

uses

SensorValueExtractor

- sensor: ISensor
- propertyName: string
- sensorValueType:  
  SensorValueType

+ getValue(): object

CCS811Sensor

- port: int
+ temperature: double
+ co2: double
+ tvoc: double

DeviceSensorService

- sensors: ISensor[]
- sensorValueExtractors:  
 SensorValueExtractor[]

+ sendDeviceTelemetry(): void

initializes

n

initializes 1n
Main

uses
1 n

Figure 4.5: Client software architecture diagram in UML class diagram notation repre-
senting the device controllers’ Sensor Layer with 3 example sensor implementations for
air quality sensors

To instantiate the new components accordingly the DT model needs to be used by the
application. At startup, it loads the model, interprets it and constructs the necessary
objects needed for correct communication. When using modern day software engineering
practices this DT model should be in JSON format. The Azure DTDL could be used
directly, as it is already using JSON, but cannot be easily extended. That means that
information necessary for the physical device like "to which port" a certain sensor is
connected, needs to be added to a comment field. While this could be a solution, it is also
not very pretty as a lot of information in DTDL, like DTID or reference to the model, is
only needed for the digital twin and not for the physical twin. A more favorable approach
is to create a separate structure from the DTML which only holds the information
necessary for the physical device.

Besides the naming, the initialization structure needs to provide certain information
necessary for the initialization like the Class and the containing Module that should be
instantiated for this sensor. This is of course very dependent on the implementation of
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Listing 4.11: Xtend - JSON serialization helper
public static String escapeJson(String raw) {

String escaped = raw;
escaped = escaped.replace("\\", "\\\\");
escaped = escaped.replace("\"", "\\\"");
escaped = escaped.replace("\b", "\\b");
escaped = escaped.replace("\f", "\\f");
escaped = escaped.replace("\n", "\\n");
escaped = escaped.replace("\r", "\\r");
escaped = escaped.replace("\t", "\\t");
return escaped;

}

the device code and therefore not generally usable. Additionally, various meta-data only
interesting for the certain sensor constructor should be held dynamically. The DHT11
sensor implementation for instance needs information on to which port the physical
component is connected to. A created testing-sensor implementation (the CsvValuesSensor)
reads the values it is emitting from a csv-file and therefore needs to be provided with a
certain path to this file.

To store metadata needed by the physical device, the DTML metamodel needs to be
extended. This is where the generic nature of DTML becomes problematic. Sensors
or actors are not defined as such in DTML, but can be represented as components,
relations to another digital twin or properties and telemetries directly attached to a
digital twin. While using an assumption could make it possible to find a clear mapping,
another idea was followed. This involves adding a generic string property to the Device
class that holds the device initialization JSON. This introduces big disadvantages like
double maintenance, serialization and de-serialization efforts. Having to manipulate a
compressed JSON and keeping it up to date with the rest of the model is a downside and
should be tackled in the future. The JSON added to the device class is written into the
previously (see Section 4.2.1) prepared empty configuration file. Another smaller issue is
the serialization of JSON into a JSON file. For that not only the Xtend transformation
had to be extended but the script to write the connection-string had to be touched
again. A helper class, shown in Listing 4.11, was added to the transformation to replace
characters in the textual JSON object

After having set up the transformation and adapted the script, the devices can initialize
their internal system appropriately. Sending the data to the IoT Hub requires implement-
ing another contract that is used between the physical device, the IoT Hub and the Azure
Functions application. This contract requires holding information of the component path,
i.e., the components name plus the property that it wants to update, the properties
value and a certain timestamp when the value changed. This contract is represented
through the SensorValueExtractor and is sent JSON serialized into the IoT Hub. Each
message can only hold update information on a single property. If a sensor emits multiple
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Listing 4.12: C# - Azure Digital Twin bridge function
[Function(nameof(AzureDigitalTwinBridgeFunction))]
public async Task Run([EventGridTrigger] EventGridEvent eventGridEvent)
{

var iotHubDeviceTelemetryEventData = eventGridEvent.Data.ToObjectFromJson<
→ IotHubDeviceTelemetryEventData>();

string deviceId = iotHubDeviceTelemetryEventData.SystemProperties["iothub−connection
→ −device−id"];

IoTHubMessage? iotHubMessage = iotHubDeviceTelemetryEventData.ToIoTHubMessage
→ ();

if (!string.IsNullOrWhiteSpace(deviceId) && iotHubMessage != null)
{

IDictionary<string, object> telemetries = new Dictionary<string, object>() {
{

iotHubMessage.ComponentPropertyName,
iotHubMessage.ComponentPropertyValue

}
};
await this.digitalTwinsClient.PublishComponentTelemetryAsync(

deviceId,
iotHubMessage.ComponentId,
null,
JsonSerializer.Serialize(telemetries),
iotHubMessage.Timestamp);

}
}

}

properties, multiple messages have to be sent. The device identifier itself is already part
of the IoT Hub connection, so it does not need to be part of the message.

The Azure IoT Hub has various options to egress incoming information from IoT devices.
The probably most flexible is to use an Azure Functions application. This application
should deserialize the incoming message, transform it into a valid Azure Digital Twins
update message and send it. As all information is already part of the previously defined
contract, no further information is necessary. Listing 4.12 shows an excerpt of the
mapping logic defined in the Azure Functions application.

After adapting the function application, the communication flow is ready, and the device
can use the provided structure via a configuration file (adapted run-time information)
and construct all necessary classes needed for a successful update of the already deployed
digital twin.
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4.2.4 Automated client artifact deployment to physical devices
This subsection focuses on the automation potential for deploying artifacts to the physical
device. Any device that should be automatically deployed is annotated in the DTML
model, which results in a configuration file being generated holding connection credentials
as described in Section 4.2.2 and the data structure needed to instantiate connected
sensors described in Section 4.2.3. As the software was prepared to work based on the
configuration, it could be seen as a static artifact that is deployed to device only once
when it is set up. Therefore, copying the configuration to an already running device is
the bare minimum requirement. As the current implementation does not support a file
watcher that watches the configuration file and on update trigger a re-initialization of
the program, it is also necessary to restart the application on the device. This leads to
the conclusion that a file-copy, independently of what ever protocol used, is insufficient,
and a remote execution shell needs to connected and used anyway.

Although previously assumed that the devices’ controller software does not change during
its’ lifetime, when adding another sensor to it, the software needs to be extended as the
sensor needs to be implemented. This implies that it might still be necessary to transfer
the controller software plus configuration to the device in most cases. It is feasible to
instead of deploying the software each and every time, instead an auto-update routine
could be added to the code. The issue with that is, that these use polling intervals to
check for new software versions and in this time the digital twin might have changed, and
the software is still lacking these changes. The same can be said for a cloud-stored device
configuration, where no immediate update is triggered, but a polling interval is used.

So deploying a package including the controller software and the configuration seems to
be the most appropriate way. The DTML model has no limitation on devices or device
types, i.e., device A could run software A and device B could run a totally different
software B while both software packages use the same configuration format. This might
sound unlikely, but internet-of-things devices are offered using different hardware and
can often run different programming languages as well. The DTML model therefore
must offer not only indicate where to deploy the software to, but also what software.
Representing this information in an according EMF structure to extend the DTML
metamodel is, because of the many variants, unfeasible. Instead, a generic script_to_run
property was added to the Device class which can then be executed when deploying.

The script_to_run property can hold what ever script that the operating system it
runs on can execute. It can target different software packages and might also hold the
necessary deployment information like IP-address usernames and passwords to connect.
By doing so all the information necessary is located in the model and an external script
has to hold different deployment mechanisms like copying using secure-copy (scp) and
secure-shell (ssh) or others. A huge issue that this solution brings with it, is that
credentials are unmasked and unprotected written into the model. This can cause major
security breaches in secure environments.

Another big concern is reachability of the devices. For small scale environments like test-
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Listing 4.13: script_to_run example for testing purposes
python sources\copy−deploy.py ignoredIP ignoredUser ignoredPwd sources\client (

→ configurationFileLocation)

Listing 4.14: Excerpt of the python deploy script
datetime_str = datetime.now().strftime("%Y−%m−%dT%H%M%S.%f")
host = f"C:\\Temp\\py−test−{datetime_str}"

print(f"Copying␣files␣from␣{scriptFolderPath}␣to␣{host}");

if not os.path.exists(host):
os.makedirs(host)

shutil.rmtree(host)
shutil.copytree(scriptFolderPath, host)
shutil.copy(configFilePath, host+os.sep+"config.json")

call([’python’, scriptFolderPath+os.sep+mainExecutable, configFilePath, host+os.sep+"config.
→ json"])

labs a IoT device can be made publicly available via a remote-shell, but with increasing
security concerns, not actively monitored computers should not be publicly reachable,
not even talking about a remote-shell. Firewalls and other network hardware should
block incoming connections to these devices, although they might not be the biggest
target, the can open the door into a private network. This makes deploying anything to
these devices hard and a security concern. Azure DevOps provides a possible solution
by adding a private agent to the pipelines’ execution pool, that can run in the company
network and access devices without them being publicly exposed.

Although security concerns persist, a test setup was created that deploys and runs software
and configuration to a work-directory. The, in reference to the system-architecture, Device
Deployment Artifact was realized by extending the pipelines’ deployment script to start
a background job executing the given script_to_run for each physical device identified
form the DTML model. Listing 4.13 shows the used statement executing a python
deploy-script (Listing 4.14 shows excerpts of it) with an IP-address, username, password
and the location to the software of the client. Through the pipelines script, the location
of the configuration file is appended as another argument.

The arguments for IP-address, username and password are ignored here as the deployment
is done only on the local machine, but the script can be extended to deploy to a remote
target. The python deploy-script was developed to copy the provided software folder to a
temporary folder and execute it there.
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Using the given deployment-script in an Azure DevOps pipeline is not possible, as it
cannot spawn background-tasks and also stops any execution after a few seconds.

4.3 Automating the Monitoring of Digital Twins
This section is dedicated to designing and implementing a solution for active monitoring
and acting based on a model-based digital twin. As described in the previous sections,
DTs are described using gDTL. gDTL is later transformed into the digital twin platform
(DTP) specific model as well as used for creating necessary device information. The
same gDTL document should be used to define conditions on properties and telemetries.
These conditions are used during runtime to trigger certain actions. While Sections
4.1 and 4.2 focused on setting up physical devices, digital twins and connection them,
the following sections define conditions and actions to evaluate the data exchanged
between those two parties. In Section 4.3.1 it is described how conditions and actions
can be modeled within gDTL and how and in which platform-neutral language they are
translated. The deployment of the translated conditions to digital twin and physical
devices is described in Section 4.3.2. Section 4.3.3 discusses the usage of these conditions
along the communication flow and lists possibilities, advantages and disadvantages based
on real-world examples.

4.3.1 Modeling Conditions
To express conditions against a DT’s definition, gDTL should be used, as it already
contains all necessary DT properties. gDTL is based on EMF and can therefore use EMF
tools for modeling. On the other hand, the defined structures in gDTL might not be
optimal for parsing and executing conditions. Therefore, a certain optimized intermediate
language has to be selected and a transformation into the intermediate language needs
to be created.

Conditions describe relationships between two or more values, connected using equality
operators. Values used in a condition can be static or dynamic, whereas dynamic values in
this case describe a certain variable or property of a digital twin. If a condition compares
a variable against a static value, it is called unary. If two variables are compared, a
binary condition is present. More complex conditions can hold multiple variables and
values connected by the logic terms »and«, »or« and »not«. In theory, there are more
logical operations, but these can be constructed from above-mentioned terms.

For this exemplary implementation conditions are restricted to exactly two values, whereas
only one values is a reference to a digital twin value (unary). This has multiple reasons,
(1) it reduces implementation complexity as only one value from a digital twin is compared
to a static value. (2) As discussed in Section 4.2.3 each property or telemetry change is
sent individually and therefore accessing other values of a certain digital twin, can be
problematic as it might no longer be available or outdated. (3) Azure Digital Twins do
not store the values of »telemetry« properties. Therefore, a secondary system needs to
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hold the state of these properties and needs to be queried in case of binary or higher
degree conditions. Allowing ternary conditions creates the need of using logic operators
»and«, »or« and »not« which further increase complexity. With the latter described
solution multiple conditions on one property can be defined and are »and« connected
all the time. An »or« solution is not implemented and might be a future addition if
necessary.

Before being able to implement a program executing any conditions, solutions for
(1) modeling conditions in gDTL (2) and serializing and interpreting modeled conditions
have to be found. Both modeling and serialization rely on each other heavily, therefore
this decision is very important. For this work, different languages were evaluated to find
a good candidate to model and execute conditions. The next paragraphs list various
solutions and specify advantages and disadvantages for each.

4.3.1.1 Epsilon Validation Language (EVL)

The Epsilon Validation Language (EVL) is a validation language extending EMF by
using metamodels and allowing the creation of basic and complex conditions in an
arbitrary language [KPP08b]. Based on given metamodels, conditions can be created
easily even with IDE support when using Eclipse. EVL additionally allows the definition
of (error)messages and guards which make it very flexible when creating conditions. EVL
uses separate documents and by doing so adds a separate layer on top of the DTML
metamodel. To evaluate a certain condition a metamodel conform model must be created
and loaded using the EMF class loader. The EVL document can then be read and
interpreted using the EVL java-libraries. This is somewhat problematic as updates from
the device to the digital twin only contain a single property and not the full device state,
and therefore a full model cannot be created. Furthermore, the current DTML is not
designed to be instantiated with runtime data. Another issue, although minor, is that the
current Azure Functions applications are written in C# and EVL needs a Java runtime
to be executed. This means that another separate application needs to be put in place
to execute the EVL rules. The positive side is, that EVL documents can be interpreted
and do not need compilation, which means that a similar approach to ATL (see Section
4.1.1) can be implemented.

4.3.1.2 Eclipse VIATRA

Another option to define conditions for the given use-case, is Eclipse VIATRA (VIATRA)
[VP04]. VIATRA is another Java dialect making use of EMF metamodels to describe
conditions and transformations. The Eclipse IDE can support the creation of basic
to highly complex conditions when the according plugin is installed. Conditions and
transformations can be created separately and are saved as dedicated files, therefore add
the desirable additional layer on top of the DTML metamodel. Using the conditions can
be tricky as VIATRA needs to be compiled to Java first and then loaded using a Java class
loader. Just as with the Xtext translation (see Section 4.1.1) this is not a recommended
solution as it introduces security threads. Another issue is that, again just like with the
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Xtext solution, VIATRA takes an EMF model as input. As already described in the
previous section, incremental device update data is insufficient to create a full model
which leads to a new challenge when executing the VIATRA conditions. VIATRA just
as EVL needs a Java runtime to be executed and therefore does not work very well with
the already in-use C# Azure Functions applications. A separate application needs to be
created for running the conditions in the cloud. For running the conditions on a device,
this requires every device to be able to run Java, which some microcontroller might not
be able to.

4.3.1.3 JSON-Schema

With EVL and VIATRA having potential blockers in regard to the execution, a more
execution focussed solution is the usage of JSON -schema. JSON-schema is primarily
used to define the structure of a JSON document. In some ways it can be compared
to an EMF metamodel but for JSON files. There are many libraries in various coding
languages to verify if a JSON -document corresponds to a certain JSON -schema and
the schema is stored as another JSON file so transportation and execution in different
environments is not a problem. To actually model the conditions two options exist:
(1) create and maintain JSON -schema document separately from DTML model. Changes
to the metamodel are not reflected by the schema as long as it is not changed accordingly.
(2) Create arbitrary conditions definition modeling possibilities in DTML, and dynamically
generate JSON -schema from it at build time. The first solution can be compared to what
is created with EVL and VIATRA, but these bring in way better tool support and have
their documents and the EMF metamodel connected someway, while the JSON -schema
is a totally detached. Solution two creates the need of an arbitrary language to create
conditions inside DTML, but eliminates double maintenance completely by serializing
valid schema documents from the model. Representing conditions using JSON -schema
only allows very basic conditions, as it is not designed to hold complex conditions.
Typical operators supported are »maximum« and »minimum« for number data types
and »maxLength«, »minLength« and »pattern« for string data. Additionally, each and
every property can be made optional. As JSON -schema also validates whole documents,
which, as described before, is a challenge when working with incremental device updates,
the optional flag can be used to suppress errors. Another worked-around could be to
break each property into a separate document with its defining schema instead of having
only one big schema.

4.3.1.4 JSONPath

JSONPath is another candidate to be used to define conditions, although its primary
purpose is the search of certain nodes within a JSON document. This can be used
by defining the search term accordingly to generate a does a node that evaluates query
X = true exist statement, which states if the condition is hit or not. A JSONPath
query can be seen as a separate document, but is usually only a few characters long
and offers proper equality operators like »largerThan«, »smallerThan«, »equals« and
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»notEquals«. Regular expressions are sometimes also supported, but this depends on the
library or implementation used. Libraries for executing JSONPath exist for all common
programming languages, although, not always well maintained. To be able to run the
same condition on multiple platforms along the digital twin communication flow, the same
JSON structure has to be applied to the data, and conditions might need some tweaks
as every library implements JSONPath slightly different. The creation of JSONPath
conditions could be done the same ways as JSON -schema, but generation is way simpler
here as only short strings need to be generated instead of full documents.

4.3.1.5 Designing and transforming Conditions and Actions

After an evaluation of the previously mentioned languages, JSON-path was selected.
Although EMF extension solutions like EVL and VIATRA offer the best experience
when creating conditions by using already provided tooling within the Eclipse Platform,
the most important part is ease of execution and this is where those solutions are less
appropriate given the current scenario. The simplest execution is given when using the
JSON-path solution. JSON-path is especially suiting as it reduces the implementation
time as libraries already exist. This implies that conditions will generally be designed in
DTML and then transformed into JSON-path queries for execution. For that an abstract
Condition class was introduced and extended by a UnaryCondition. An »UnaryCondition«
always references a certain operation and a value against which a telemetry or property
value should be checked. Figure 4.6 excerpts the newly added classes to model conditions
within DTML.

Additionally, each condition has a reference to one or more ConditionActions and a flag
indicating whether after a condition was hit, it should be continued. Each action added
to DTML needs its own implementation on the certain communication flow stage. For
this work a basic LogAction was implemented that writes a certain log when the action
is executed. For that, the »LogAction« holds a certain »LogLevel« and the »Message«
itself. The reference implementation of actions is also shown in Figure 4.6.

For execution simplicity all conditions and actions of a certain DTML »Interface« (digital
twin or device) are serialized into a JSON array, so that if a message from device A
is processed, all rules of device A can directly be accessed and executed. The Xtend
transformation is extended to output all conditions and connected actions into another
output file which can then be further processed when deploying. Listing 4.15 excerpts
the xtext transformation to correctly output the conditions and Listing 4.16 shows an
example of the resulting JSON structure which is exposed as run-time information in
the pipeline.

4.3.2 Deploying conditions and actions to Device and Digital Twin
After successful serialization the conditions and actions configuration file needs to be made
available to processing points along the communication flow. The communication flow is
depicted in Figure 4.3 and shows that the device itself as well as the Azure Functions
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Figure 4.6: DTML condition modeling capabilities in UML class diagram notation

application (AzureDigitalTwinsBridgeFunction) could be a potential processing point.
Some future work might also look into a "post-storage" execution, where temporal data
could be accessed and worked on. This work further focuses on execution of conditions
and actions on (1) the Azure Functions application that maps Azure IoT Hub messages
to Azure Digital Twins messages, (2) and the IoT device that communicates with the
IoT hub. While the implementation of conditions and actions are special to a specific
component, the deployment of the configuration might be reusable in other cases as well.

Before any implementation can run conditions or actions on certain incoming messages,
the components must be made supplied with the serialized information. In case of the IoT
device this is pretty straight forward. As described in Section 4.2.4, one configuration file
is already transferred to the device and the application running on it has to be restarted.
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Listing 4.15: Xtext transformation for conditions and actions
<FOR i : 0..<interfaces.size>

<val interface = interfaces.get(i)>
<val typeConditions = interface.contents.filter[content|content instanceof Condition]>
<IF typeConditions.size > 0>

<IF firstWritten>,<ENDIF>"<interface.displayName>": [
<FOR j : 0..<typeConditions.size>
<var condition = typeConditions.get(j) as Condition>

{
"jsonPathQuery": <condition.generateJsonPathCondition>,
"continue": <condition.continue>,
"actions": [

<FOR k : 0..<condition.actions.size>
<condition.actions.get(k).serialize><IF(k < condition.actions.size − 1)

→ >,<ENDIF>
<ENDFOR>

]
}<IF(j < typeConditions.size − 1)>,<ENDIF>

<ENDFOR>
]<{firstWritten = true; ""}>

<ENDIF>
<ENDFOR>

By adapting the deployment script to accept another argument, the file holding the
serialized conditions and actions, the file is added to the copied files and as an argument
to the Python program that is started on the device. Listing 4.17 shows the adapted
script.

Using the same solution to deploy the condition information to the Azure Functions
(Monitoring Service) application is not feasible, because the internal storage of an Azure
Functions application, where configuration files are usually placed, is not accessible. Other
environments using Kubernetes could update the referenced secret or config map and
restart their application to read the updated configuration. Using a different configuration
provider (an external service) for the functions application and restarting it whenever
the configuration changes, is feasible, but the functions’ application should be completely
independent and should not need to be restarted each time a model changes.

Using the C# options pattern, an application can make use of so called IOptionMonitor
→ <T>s which can be used to check for changed configurations. This together with
a cloud based configuration management system that is updated from the deployment
script, can provide an up-to-date configuration to the application. In the Azure ecosystem
this service is called Azure App Configuration. It offers basic key value storage and a
ready-made library to use with C# applications. Listing 4.18 shows the setup of the
IConfigurationBuilder.
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Listing 4.16: Serialized conditions and actions example
{

"Validators": {
"Sensor": [

{
"jsonPathQuery": "$.[?(@.Property==’co2Value’&&@.Value>=100)]",
"continue": true,
"actions": [

{
"type": "LogActionImpl",
"config": {

"logLevel": "Warning",
"message": "Critical threshold reached"

}
}

]
},
{

"jsonPathQuery": "$.[?(@.Property==’type’&&@.Value!=’CCS811’ )]",
"continue": false,
"actions": []

}
]

}
}

Listing 4.17: script_to_run example with conditions and actions file
python sources\copy−deploy.py ignoredIP ignoredUser ignoredPwd sources\client (

→ configurationFileLocation) (conditionsFileLocation)

After registering the Azure App Configuration provider, the application can use the
IOptionMonitor<T> to refresh the configuration and get the current configuration value.
For the configuration refreshing to correctly work a sentinel has to be defined. This
is needed to reduce reads on the Azure App Configuration by reading and comparing
only the as sentinel declared key instead of comparing the whole configuration. It has
to be said that although a refresher was implemented, the configuration values are still
cached for at least 5 minutes (configured in 4.18) to reduce load on the configuration
management system.

Finally, after having the Azure Functions application set up to work with Azure App
Configuration the deployment script needs to be adapted to deploy the file holding the
serialized condition information into the cloud service and change the sentinel key so that
the application informed of the change. As the deployment script was already written in
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Listing 4.18: C# application setting up an Azure App Configuration configuration
provider
configurationBuilder

.SetBasePath(builderContext.HostingEnvironment.ContentRootPath)

.AddJsonFile("appsettings.json", false, false)

.AddJsonFile("appsettings.development.json", true, false)

.AddAzureAppConfiguration(options =>
{

TokenCredential credential = builderContext.HostingEnvironment.IsDevelopment()
? new DefaultAzureCredential(true)
: new ManagedIdentityCredential(connectionString);

options
.Connect(connectionString)
.ConfigureRefresh(refreshOptions =>
{

refreshOptions
.Register("Validators:Settings:Sentinel", true)
.SetCacheExpiration(TimeSpan.FromMinutes(5));

});
});

Listing 4.19: Conditions and actions deployment script for Azure App Configuration
az appconfig kv import ‘

−s file ‘
−−format json ‘
−−path $validatorsConfigFile ‘
−−separator : ‘
−−content−type application/json ‘
−y ‘
−name $appConfigurationResource.name

az appconfig kv set ‘
−−key Validators:Settings:Sentinel ‘
−−value $(Get−Date −Format "o") ‘
−y ‘
−n $appConfigurationResource.name

PowerShell, the Azure App Configuration PowerShell commands were used. To target
the correct Azure resource the already added DTML class »AzureResource« was used.
The necessary commands to upload the configuration from a file and set the sentinel
value accordingly can be found in Listing 4.19.
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Listing 4.20: Application Insights query
union traces
| where operation_Name == ’AzureDigitalTwinBridgeFunction’
| where customDimensions.[’LogLevel’] == ’Warning’
| where message == ’Critical threshold reached’
| project

timestamp,
appName,
operation_Name,
message,
logLevel = customDimensions.[’LogLevel’]

4.3.3 Evaluating conditions on Device and Microsoft Azure Platform
To execute the previously serialized and supplied JSON -path queries on every message,
both the devices’ Python application and the Azure Functions application need to be
adapted. Before both of these applications send their messages to next stage, the
conditions need to be evaluated, and if a condition is hit, its actions must be executed.
For this example only one action, the LogAction, was implemented.

Whenever the applications needs to check conditions, they: (1) Retrieve all conditions
for the given DT component identified by the message. (2) Create a queryable JSON
message based on the message content. (3) Execute conditions one by one and, if
match was found, trigger related actions. To execute JSON -path queries the C#
Azure Functions application uses the Json.NET 14, while the Python client uses the
jsonpath_ng15 implementation and introduces the in the system-architecture Monitoring-
Layer named software component. To execute only as JSON specified actions, both
applications implement specific action parser. The parsers use the actions’ name to
identify the according class in the program. Arguments denoted in the conditions and
actions JSON (see Listing 4.16), are passed to the according class for further processing,
but implementations can use these differently. The »LogLevel« information for instance,
is unused in the Python implementation.

Writing logs is a very simple use-case and not sufficient for most real-life usages, but by
adding another Azure Cloud feature on top of the logs, a simple but powerful alerting
system can be built. Logs and further metadata produced by any Azure Functions
application is automatically collected and written into the so-called Application Insights.
This service can be used to create various alerts based on email, text messages, webhooks
and many more. For a very basic example the defined log message "Critical Threshold"
(shown in Listing 4.16) was used to create an alert rule that sends an email when the log
is written. Listing 4.20 shows the query that was evaluated by Application Insights.

14https://www.newtonsoft.com/json
15https://github.com/h2non/jsonpath-ng
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Alert rules also require configuration of an aggregation time span, the threshold value
which the query result count should be checked against and the evaluation frequency.
Finally, a certain notification method needs to be chosen and configured.
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CHAPTER 5
Evaluation

In this chapter, the evaluation of the Digital Twins Automation Framework (DTAF) is
presented in order to answer the research questions posed in Section 1.2. In Section 5.1
the necessary evaluation tasks to validate the requirements, derived from the research
questions, (as listed in Sections 3.1 and 3.2) are pointed out. Section 5.2 shows a case
study that analyzes the automation potential of a digital twin based on an air quality
sensor example to answer research questions 1 and 2. To answer the third research
question in Section 5.3, the scalability of the monitoring framework is compared based on
its usage on the device or in the cloud. The gathered arguments are discussed to answer
the research questions in Section 5.4.

5.1 Mapping of Requirements to Evaluation Tasks
In Chapter 3, requirements to be met to allow answering the posed research questions are
described. In this section, it is reviewed to which extent the requirements are fulfilled by
the implementation described in Chapter 4. The fulfillment of the proposed requirements
is validated by connecting each requirement to an evaluation task that is executed to
evaluate the particular requirement. This mapping is presented in Table 5.1.
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RQ Goal Requirement Evaluation

RQ 1 Automation Automatically derive DT platform information
from HL-information Case Study

DT can be deployed to digital twin platform
automatically

RQ 2 Automation
Device to DT credentials are generated and
used by devices Case Study
Device and DT use aligned property naming in
communication
Device software and configuration can be de-
ployed to physical device automatically

RQ 3 Scalability

Conditions and actions can be modeled within
the digital twin modeling language Simulation

ExperimentConditions and actions are transformed into
machine-readable format
Cloud software component can execute condi-
tions and actions
Device controller component can execute con-
ditions and actions

Table 5.1: Mapping of requirements to evaluation tasks.

To validate the RQ1 and RQ2 derived requirements, a case study is conducted following
the guidelines of Runeson & Höst [RH09]. The execution and results of the corresponding
evaluation are described in Section 5.2.3.1 and Section 5.2.3.2.

To analyze the requirements of RQ3, two simulation experiments are conducted. The
first simulation experiment targets the created monitoring framework solution running on
the IoT device and is described within Section 5.3.2. The second simulation experiment
which is evaluating monitoring in a cloud application is described in Section 5.3.3. In
Section 5.3, a brief introduction and description of the varied parameters as well as the
execution is given.

5.2 Evaluation of Automation Potential of Digital Twin
Deployment

By using a case study, the applicability of the approach is shown based on a particular
scenario. The used scenario is described in Section 5.2.1. The executed evaluation cases
and used metrics are described in Section 5.2.2 and finally, based on this scenario, a use
case is created, described and evaluated for RQ1 and RQ2 in Section 5.2.3.1.
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5.2.1 Air quality sensor scenario
A scenario is created based on air quality sensors [GJT+21]. Each sensor is connected to
a »Controller« which is located in a certain »Room«. Other than »Sensor«s, a controller
might also have alarms connected to it. »Sensor«s can gather certain values from the
real-world environment and use them for calculations regarding the air quality. If the air
quality is insufficient a notification can be given to the room using an alarm. Figure 5.1
visualizes the scenarios baseline and possibilities.

Figure 5.1: Graphical representation of the scenarios baseline

As the scenarios’ hardware was not physically available for evaluation, to be able to
still validate the approach, the physical controllers and sensors were replaced by locally
executed controller software using a test-sensor reading sensor data from a file. The data
in the file was collected over a timespan of seven days from an SCD30 sensor in a real
world scenario, when almost two persons were working in room during daytime. The file
and test-data was taken from the "Indoor AirQuality Digital Twin"1.

The predefined digital twin is defined as: a building holding 3 rooms (Lobby100,
Room101, Room102) with separate controllers (Raspberry1, Raspberry2, Raspberry3)
which were all equipped with a CO2 sensor. Figure 5.2 shows the mentioned setup in the
UML object diagram notation.

1https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar
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Figure 5.2: Predefined digital twin setup in UML object diagram notation

The basic documents and software artifacts were taken from the "Indoor AirQuality
Digital Twin"2 example, and adapted, improved, and extended for this use case.

5.2.2 Settings, evaluation cases, and metrics
In this subsection gives an overview on the evaluation settings, the evaluation cases and
the metrics which are used to evalute the automation potential of digital twin deployment.

5.2.2.1 AML4DT and pipeline settings

To investigate the required effort for setting up a digital twin environment and evaluate
RQ1 and RQ2, the following two setting were deployed and compared.

The AML4DT setting is based on the AML4DT framework proposed by Lehner et al.
[LSV+21] where the input AML model needs to be processed by an ATL transformation
using Eclipse. The resulting DTML file needs to be further processed by the Xtext/Xtend
transformation to produce Azure DTDL type and instance documents. Next the DTDL
types need to be uploaded to the Azure Digital Twin service, followed by the creation
of each digital twin. Finally, the relationships between the digital twins are set up.
To set up and connect the physical devices to the Digital Twin, the setting is based
on the implementations from Indoor AirQuality Digital Twin3, where a Python based
Raspberry Pi controller implementation and an Azure Functions application is provided.
This implementation is prototypical and does not by default support multiple devices

2https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar
3https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar
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or an external sensor configuration. Using these software components, the controller is
connected to the Azure IoT Hub using a predefined (hard-coded) connection string. To
be able to connect to the IoT-Hub, the device first needs to be registered, and it has
to be supplied with the connection string that was created by the IoT Hub. Necessary
aligned property-name mappings between device and digital twin need to be registered
at the device as well as in the Azure Functions application. After adding the name
mappings to the code of the Azure Function application, it needs to be deployed to the
cloud infrastructure. Finally, the prepared device controller code needs to be deployed to
each an every device and executed there.

Using the pipeline implemented in this work (pipeline setting) the AML4DT approach
and its artifacts are optimized and automated using the in this work implemented pipeline.
First, the build-pipeline (Continuous Integration) needs to be created and configured
based on the setup file published in this work. The pipeline is linked to a certain Git
repository and automatically triggers on a change. Necessary build-artifacts need to be
manually added to the pipeline to be able to execute it. Changes to the input documents
need to be made to target certain Azure Digital Twin service and Azure IoT Hub resources.
Next, the build pipeline (Continuous Deployment) can be created based upon documents
published in this work. After these one-time tasks are done, the input documents need
to be adapted to identify physical devices within it, and add deployment credentials and
the aligned DT-to-device naming mappings to each of them.

5.2.2.2 Evaluation cases

Based upon these settings, the following evaluation cases are performed to investigate
the required effort for initial deployment as well as changes to the system over time. All
evaluation cases are evaluated for RQ1 and RQ2 based on different steps.

• Evaluation Case 1 (EC1): Deploy predefined DT. The predefined digital twin
(described in Figure 5.2) is used and deployed to the Azure Digital Twin service
and physical devices.

• Evaluation Case 2 (EC2): Adding a new raspberry. This case builds upon EC1 and
a new air quality controller (Raspberry4) is added to the system, holding a CO2
sensor. The new controller is added to an existing room (Room101). Figure 5.3a
shows the adapted UML object/class diagram of the digital twin used in EC2.

• Evaluation Case 3 (EC3): Moving a raspberry. The third case adapts EC2 by
moving an existing controller (Raspberry4) from one room (Room101) to a new
room (Restaurant). Figure 5.3b shows the adapted UML object/class diagram of
the digital twin used in EC2.
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Figure 5.3: Adapted digital twins for Evaluation Case 2 (EC2) and Evaluation Case 3
(EC3) in UML object diagram notation

5.2.2.3 Evaluation metrics

To evaluate the manual effort necessary to deploy the described evaluation cases, three
metrics are used which are measured in the manual actions unit. A manual action
represents any task that has to be executed by the operator by hand. Manual actions
might not represent the real count of activities an operator has to perform, but are rather
grouped to represent a certain functionality. e.g., the manual action "transform AML
model to DTDL" counts as 2 actions, as two transformations, both the ATL and then
the Xtext transformation, need to be executed, but ignores the fact that transformations
cannot be executed within one click. In general, manual actions are counted as if an
expert user executes them frequently and knows how to execute them efficiently.

The infrastructure actions metric summaries all actions taken to configure specific
infrastructure and services necessary for a certain setting. This can be one-time but also
reoccurring actions that might be done during design or deploy-time. This metric only
counts actions that are specific to a defined setting. General infrastructure actions all
settings rely on, are not taken into consideration.

Metric model manipulations describes the changes necessary to the input model for the
pipeline to process it correctly. These are mostly meta-information needed for deployment.
Model manipulations might be necessary just a single time in a systems’ lifetime, or
be coupled to a certain action that is done within the input documents (evaluation).
All model manipulation changes are done during design-time, so prior to any build or
deployment actions.

The metric deployment actions count all actions that are done during the "build-time" or
"deploy-time" and don’t fit into the two previously described categories. These actions
are repetitive actions that need to be executed with every deployment.

54



5.2. Evaluation of Automation Potential of Digital Twin Deployment

5.2.3 Results
In the following, the results of the case study is presented. First the results regarding
RQ1 are in detail described for both the Pipeline and AML4DT settings, followed by
the results of the RQ2 evaluation. The results are summarized and presented in Table
5.2.

Setting Pipeline AML4DT
infra model deploy infra model deploy

RQ1 (Deploy digital twin)
EC1: Deploy initial setup 3 1 0 0 0 15
EC2: Adding a new raspberry 0 0 0 0 0 5
EC3: Moving a raspberry 0 0 1 0 0 3
Sum RQ1 3 1 1 0 0 23

RQ2 (Connect & deploy physical devices)
EC1: Deploy initial setup 0 8 0 6 0 18
EC2: Adding a new raspberry 0 2 0 2 0 6
EC3: Moving a raspberry 0 0 0 0 0 0
Sum RQ2 0 10 0 8 0 24
Sum total 3 11 1 8 0 47

Table 5.2: Count of manual actions necessary to complete evaluation cases in infrastructure
actions (infra), model manipulations (model) and deployment actions (deploy)

5.2.3.1 Results for RQ1

AML4DT setting

In the AML4DT setting, no infrastructure actions (0) are necessary as according to the
previously defined metrics (see Section 5.2.2.3) only for this setting specific actions are
counted. The necessary Azure Digital Twin service instance and other infrastructure
setup is created up front and therefore not counted towards infrastructure actions. No
(0) model manipulations are necessary either as the model that is going to be used is
the predefined digital twin described in Section 5.2.1 which does not need any adaptions.
As a preparation for the deployment the AML model needs to be transformed into the
necessary DTDL documents using the ATL and Xtext/Xtend transformations (2 actions).
After that all types need to be uploaded to the Azure Digital Twin service (1 action)
just then the necessary instances can be created. Creating each systems’ entity needs 1
manual action (9x1 actions). While entities that are contained within another (sensor in
air quality controller) are directly referenced to their parent, the 3 air quality controllers
need to be referenced to the rooms separately which needs another 1 action each (3x1
actions). All these actions together total 15 deployment actions for the AML4DT setting
evaluating EC1.
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When evaluating EC2, no infrastructure actions (0) (no changes to the infrastructure
necessary) or model manipulations (0) besides the general adaption of EC2 are necessary.
For a successful deployment, transformations need to be executed (2 actions). No new
types were defined therefore a new upload is not necessary. The new air quality controller
as well as its sensor needs to be created (2 actions). Finally, the new air quality controller
can be referenced to the containing room (Room101) (1 action), totaling in 5 deployment
actions.

The evaluation of EC3 results in 3 deployment actions dividing in the creation of a new
room (1 action), removing the relationship between the air quality controller (1 action)
and room and the creation of a relationship between the new room and the air quality
controller (1 action). Changes to infrastructure or model manipulations are not necessary.

Pipeline setting

Before being able to use the pipeline for EC1 the pipeline needs to be set up. For this
task 3 infrastructure actions and 1 model manipulation are necessary. As described, the
repository needs to be complemented by necessary pipeline scripts and applications (1
action) before the build (1 action) and release (1 action) pipeline is created. Finally,
the input model is extended to hold a reference to the Azure Digital Twin service (1
action). During deployment the pipeline makes any manual actions obsolete resulting in
0 deployment actions.

EC2 evaluation leads to no (0) more model manipulation actions, besides the general
model adaption of EC2. No (0) infrastructure actions need to be executed either, as
the deployment script redefines all existing digital twin instances and create the new
entities. 0 deployment actions are needed since the pipeline takes over any steps during
the deployment.

When evaluating EC3, some deployment actions need to be executed before the deployment
is done. As the deployment script is not capable of deleting or adapting existing
relationships, either the single relationships or all whole digital twin instances need to be
removed (1 action) prior to its execution. No more (0) model manipulations are necessary
as all adaption was already done in EC1. No (0) infrastructure actions are necessary as
the pipeline takes over all tasks during the deployment.

5.2.3.2 Results for RQ2

AML4DT setting

Using the AML4DT setting, devices need to be identified first. In the given scenario each
"controller" represents a physical device needing deployment. For the controllers to be
able to connect to the cloud infrastructure, they need to be registered at the IoT Hub (1
action) and the associated connection string needs to be extracted (1 action) first. These
2 actions count towards the infrastructure actions totaling in 6 actions. The extracted
IoT Hub connection string needs to be added to the device code (1 action), as well as
the name mapping between the devices’ sensor values and DT properties (1 action).
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These mappings also need to be made available to the cloud application (1 action). After
the setup is done, the cloud application (1 action) and the physical devices need to be
deployed (1 action) and the software needs to be executed (1 action) on the devices. For
the given use case 6 deployment actions per controller have to be performed, resulting
in 18 deployment actions when evaluation EC1. No model manipulations are necessary
using this setting.

The evaluation of EC2 results in another 2 infrastructure actions including the regis-
tration of the new device at the IoT Hub and the connection string extraction, 0 model
manipulations (no changes to the model necessary besides the general EC2 change) and
6 deployment actions as just as for EC1 adaptions to the devices and cloud applications
code need to be made, and both applications need to be deployed to their according
targets.

Executing the use case for the AML4DT setting and EC3 results in 0 infrastructure
actions, 0 model manipulations (no changes to the model necessary besides the general
EC3 change) and 0 deployment actions. No changes are necessary as the "room" layer
used in the scenario does not have any influence on the software running on the device
or in the cloud infrastructure.

Pipeline setting

Before the created pipeline can be used to automatically create devices at IoT Hub
devices and connection strings are extracted some up-front settings need to be made to
the input files. To determine a certain Azure IoT Hub instance, a AzureResource must
be set to the specific instance the devices should be created at (1 action). Furthermore,
all physical devices need to be identified and marked (1 action) for automatic processing.
Next, for each device the DT property to device sensor values mapping (1 action) needs
to be added to the input documents as well as deployment details like connection details
(1 action). These tasks are all count towards model manipulations and total at 8 for
EC1 - 2 actions up front plus 2 per physical device. No (0) infrastructure actions and (0)
deployment actions are necessary to achieve the goal of EC1 as the pipeline is already
set up and takes over all tasks necessary for the deployment.

As evaluating evaluation case 2 (EC2 ) is building upon EC1, only the newly added
controller needs to be configured. Just like in EC1, the input documents need to be
adapted to contain the DT property mapping (1 action) and deployment information (1
action) for the new device. After these 2 model manipulations no more (0) infrastructure
actions or (0) deployment actions are necessary. No infrastructure actions and deployment
actions are needed since the pipeline is already set up and takes over any steps during
the deployment.

Just like in the AML4DT EC3 evaluation, no efforts are necessary in the Pipeline EC3
evaluation. The already in EC2 defined property mappings are untouched as long as
no names changes, which is assumed. No infrastructure actions and deployment actions
are needed since the pipeline is already set up and takes over any steps during the
deployment.
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5.3 Evaluation of Scalability of Monitoring Execution
Time

This section is devoted to providing information about the scalability of the created
artifacts in regard to modeled conditions and associated actions. The scalability is
evaluated based on two experiments which measure execution times of monitoring rules
on data exchanged between physical device and Digital Twin. The first experiment will
measure the execution times of the monitoring rules on the physical device, the second
experiment measures the execution times of the monitoring rules in a cloud application.
Separate experiments are necessary as both tested monitoring rule engines differ in their
setup and need to be executed in different ways. In Section 5.3.1 the experiments’ scenario
and parameters are described. The two experiments are conducted using the identified
parameters and their effect on the performance of the conditions and actions framework
used on a physical device (Section 5.3.2) and in a cloud application (Section 5.3.3).

5.3.1 Scenario parameters and setup
This section discusses parameters influencing the execution time or message throughput
(how many messages can be processed per second) of the conditions and actions framework
implemented in Section 4.3. As execution times of simple monitoring rules can reach
sub-millisecond can be hardly measured, it is better to measure in message throughput
rather the pure execution time. Message throughput and execution time are negatively
correlated and can therefore be calculated from each other value. To be able to identify
parameters influencing the performance, the physical devices software and the cloud
application running the monitoring framework needs to be analyzed.

Two different experiments running the same conditions, the same data and therefore
the same parameters should be used to evaluate the message throughput. For these
experiments two different applications are built, one application executing monitoring
rules on the physical device, one application for the cloud based monitoring rule execution.
To ensure the comparability between both application each data record sent from a
device to the digital twin or rather the cloud application always holds a single data
entry indicating the device and sensor name, the sensor value name and the sensor value
itself. This implies that a condition may only target a single sensor and sensor value
at a time as already described in Section 4.3. This means that for a condition to be
evaluated, it must target the sensor of currently processed message (e.g., device "Rasp1"s
sensor "DHT11" yielded a new "temperature" value - a condition targeting "Rasp1"s
"CCS811" sensor "temperature" is not evaluated). All conditions that target the according
sensor are evaluated regardless of the sensor value targeted (e.g., device "Rasp1"s sensor
"DHT11" yielded a new "temperature" value - a condition targeting "Rasp1"s "DHT11"
sensors "humidity" value is evaluated). All associated actions are executed as soon as the
condition evaluates positively and therefore to test the performance influence of actions,
at least one (1) condition must be met.
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This leads to 3 parameter variations that influence the throughput of the monitoring
framework:

• The number of conditions not applicable based on the processed message. Varying
this number gives an indication on how well conditions are filtered based on the
targeted sensor.

• The number of conditions applicable based on the processed message. This number
gives an indication on how well the conditions’ execution time scales.

• The number of actions associated with a condition. As actions are only interpreted
and executed if a certain condition evaluates to true the only meaningful variation
is varying actions on a single positively evaluated condition.

To be able to scale conditions and actions for a given test-set, one condition and one
action are created and manually duplicated (copied and pasted) to create the defined
amount necessary for the test-set. The created test-sets are used in both experiments to
show the general usability of the selected format. The designed condition, visible as an
example in Listing 5.1, queries the given message structure for a temp property with a
value higher than 1. The example data used only provides values higher than that which
in this case always triggers the associated actions. The used action makes use of the
DelayActionImpl which imitates a generic IO operation. A full example of a test-set is
given in the following listing. It shows the 0-1-10 test-set containing zero non-applicable
conditions, one applicable condition and ten actions.

5.3.2 Experiment I - Scalability of monitoring framework on an IoT
device

The impact of the identified parameters on the throughput on the physical device is
evaluated by performing a simulation experiment. The latter described computers run
the in Section 4.2 described device controller implementation to gather sensor data,
process them using the monitoring framework and finally send them to the digital twin.
Subsequently, described adoptions have been made to the application to be able to
examine its raw performance.

To simplify the setting, the experiment gathers a single sensors’ value only. Based on the
device controller implementation described in Section 4.3, it handles multiple sensors
one after another. The same is true for multiple values of a sensor. For this experiment
the values from the sensors are gathered continuously, so as soon as a message is done
processing another sensor value is gathered and processed. Therefore, adding further
sensors or sensor values does not influence the performance of the framework. Therefore,
a single device Rasp1 is configured to continuously gather its sensor TestSensors’ property
temp and send it to its digital twin. As no physical hardware was available at the time
of testing and also to eliminate external influence, the application is configured to use
the implemented CsvValuesSensor test-sensor as the TestSensor ’s implementation and
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Listing 5.1: 0-1-10 test-set used in experiment I and II
{

"validators":{
"TestSensor": [

{"jsonPathQuery": "$[?(@.Property==’temp’&&@.Value>=1)]", "continue": true, "
→ actions": [

{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}},
{"type": "DelayActionImpl", "config": {"delayInMilliseconds": 10}}

]}]
}

}

use the in Section 5.2.1 described sensorData.csv instead. Based on this the following
input parameters are varied to measure the impact on the systems’ throughput: (1) For
the number of conditions: (1) the number of conditions not targeting "TestSensor" (not
applicable), (2) the number of conditions targeting "TestSensor" (applicable). (2) The
number of actions associated with every "TestSensor" targeting condition.

The device controller implementation used to evaluate the functionality of message transfer
uses the AzureIoTHubService to transmit messages to the Azure IoT Hub. The resulting
IO (input-output) communication process can influence the measured performance
significantly and therefore the service is replaced with the service DelayedTelemetryService
using a static delay of 10 milliseconds instead. This means that the throughput per
second should be close to 100 messages per second when not evaluating any conditions.
This value is compared to the real world value using 0 conditions, ramping up to 100
conditions in steps of 10. The same set of data is used when varying the condition
associated actions. Table 5.3 shows the used parameters in detail.

To test the general performance impact of executing actions, a single action has to
be executed each and every time. Using a real action, communicating to external
systems, results in unpredictable performance. To eliminate external factors a simple
"DelayAction" is introduced which delays the execution by 10 milliseconds mocking an
external communication. In all the following experiments this action is used to measure
the performance impact.

To measure the amount of processed messages, the application is extended by a simple
counter that is increased for each message processed. 10 minutes after being launched,
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Name of setting # conditions
non-applicable

# conditions
applicable

# actions in ap-
plicable condi-
tions

vary non-applicable con-
ditions

10-100 0 0

vary applicable condi-
tions

0 10-100 0

vary actions 0 1 10-100

Table 5.3: Parameters used to evaluate the monitoring frameworks performance on the
physical device

the program is manually terminated and outputs the counter as well as the exact time
it was running. These values are used to determine the throughput in messages per
second. Each setting is repeated for 5 times to gather reliable data. Additionally, the
experiment is executed on two different hardware setups to gather information on the
vertical scalability of the application. As no IoT hardware is available two different but
more powerful system setups are used. Hardware setup 1 (Desktop) runs an Intel® Core™
i7-8700 CPU and 32 GB DDR4 RAM memory. Setup 2 (Notebook) runs an Intel® Core™
i7-3517U CPU and 10 GB DDR3 RAM memory.

5.3.2.1 Results analysis

To analyze the results of the simulation runs, a specific procedure is used for each setting:
(1) The box plot notation is used to visualize the message throughput of each value over
5 simulation runs. All settings box plots are displayed in a single graph. The results of
each device the experiments were done are presented in separate plots. This visualization
is used to (1) check plausibility of the results in general and (2) get an impression on
the influence of the parameter on the throughput. (2) Two functions are constructed
and approximated for each setting and device to describe the relationship between the
size of the varied parameter and the measured execution time. The first function uses
linear approximation by using two coefficients, one representing the slope and the other
representing the intercept. The second function approximates the real data using a
third coefficient representing the squared slope. (3) The functions are analyzed to find a
formulation of the impact of the particular varied parameter on the throughput of the
conditions and actions framework. The two functions are compared based on the root
mean squared error (RSME) value. The function that produces better approximation
based on the given data, is used to represent the prediction. If the RSME values equal,
the linear function is chosen as it provides reduced complexity.

When varying the number of non-applicable conditions (simulating setting vary non-
applicable conditions), so conditions that are not getting evaluated as the target property
differs to the message that is being processed, the following results can be obtained. As
shown in the Figures 5.4 the simulation yields very little to no effect of this parameter
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Simulation setting Notebook Desktop
RMSE linear RMSE

squared
RMSE linear RMSE

squared
vary non-applicable con-
ditions

0.14 0.14 0.05 0.03

vary applicable condi-
tions

0.4 0.29 1.89 0.89

vary actions 1.32 0.7 0.88 0.47

Table 5.4: List of simulation settings with the associated RMSE values

on the total throughput. In case of the Notebook hardware this assumption is backed by
a linear regression line with a slope of

5.6 ∗ 10-4 ∗ x

where x is the number of conditions. The linear regression as well as the quadratic
approximation function resulted in a RMSE of 0.14, this leads to selecting the linear
regression in the case of the Notebook simulation. While the first simulation resulted in
values close to the mathematical possible 100 messages per second, running the experiment
on the Desktop hardware which runs significantly newer and better hardware results
in very poor values. While the values behave somewhat similar to the previous run in
relation to varying the number of conditions, the overall results are lower by one third
and are also more spread. As this result is surprising, the experiment was repeated after
restarting the machine but the same results yielded. Because of the spread values, the
RSME of the linear approximation is 0.05 and therefore higher than an approximation
with 3 coefficients resulting in 0.03. The 3-coefficient regression line is used which uses

−4, 1 ∗ 10-5 ∗ x2 + 7, 8 ∗ 10-3 ∗ x (5.1)

as slope. As in the Notebook experiment the influence of the tested parameter is very
low and can be mostly neglected in relation to the execution time or throughput. More
information on possible issues for the lower message rates on the more powerful hardware
can be found in the Discussion Section 5.4.

62



5.3. Evaluation of Scalability of Monitoring Execution Time

(a) Hardware: Notebook (b) Hardware: Desktop

Figure 5.4: Experiment I: visualization of simulation runs for vary number of non-
applicable conditions

An analysis of the simulation setting vary applicable conditions produces the following
results. The plots shown in Figure 5.5 show the graphical results for both hardware
settings. Both plots show a significant influence of the varied parameter on the execution
time. This is backed by the regression lines. For the different hardware settings Table
5.3 shows the different RMSE values. Both settings use a quadratic estimation function
with slope

−1.9 ∗ 10-3 ∗ x2 + 8.8 ∗ 10-2 ∗ x (5.2)

for the Desktop setting and

3.1 ∗ 10-4 ∗ x2 − 2.7 ∗ 10-1 ∗ x (5.3)

for the Notebook setting as the RMSE is lower compared to the linear value. While the
linear approximation is very close using the Notebook hardware, the Desktop hardware
again shows very spread results that definitely show a more than linear impact. As the
Desktop hardware already showed weird results in the first setting, the analysis focuses
more on the Notebook results. It can be said that there is a significant impact on the
performance, but the influence is still linear.
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(a) Hardware: Notebook (b) Hardware: Desktop

Figure 5.5: Experiment I: visualization of simulation runs for vary number of applicable
conditions

The simulation of setting vary actions yields the following results. Varying the number of
actions that are executed significantly impacts the overall performance. Both hardware
settings show comparable results with quadratic estimation functions. The impact itself
very much depends on which action is triggered. Evaluating the impact besides the used
DelayAction based on the Notebook hardware, shows that the average execution time with
no conditions and no actions was 10.34ms. Subtracting the 10 milliseconds delay that
are caused by the replacement of AzureIoTHubService this results in a delay-adjusted
execution time of 0.34ms per message. Doing the same calculations for each set of the
vary actions setting, results increase by an average of 0.31ms per executed action when
neglecting all introduced delays. Table 5.5 shows an excerpt of the detailed calculations
for 1 condition and n actions. The plots for both devices with the according regression
lines are shown in Figure 5.6 and show the exponential impact of actions on the overall
message throughput. The slopes for Desktop respectively Notebook setting are as follows:

1 ∗ 10-3 ∗ x2 − 1.6 ∗ 10-1 ∗ x (5.4)

for the Desktop setting and

1.5 ∗ 10-3 ∗ x2 − 2.3 ∗ 10-1 ∗ x (5.5)

for the Notebook setting.
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(a) Hardware: Notebook (b) Hardware: Desktop

Figure 5.6: Experiment I: visualization of simulation runs for vary number of actions

# actions Throughput
(msg/s)

Execution
time (ms)

delay-adjusted
execution time

(ms)

Influence of
action

(ms/action)
0 95.45 10.48 0.48 n.a.
10 8.82 113.40 3.40 0.34
50 1.90 526.32 16.32 0.33
100 0.96 1041.67 31.67 0.32

Table 5.5: Calculation details for delay-adjusted execution-time influence of actions based
on Laptop hardware results

5.3.3 Experiment II - Scalability of monitoring framework in a
server-less cloud application

The impact of the identified parameters on the message-throughput based on the Moni-
toring Service application in the cloud is evaluated by performing a second simulation
experiment. The application is deployed to Azure Functions using the "consumption"
plan. To produce measurable data a single physical device is adapted and used to send
10 updates continuously. The client Rasp1 is configured to gather its sensor TestSensors’
property temp and send it to its digital twin. As no physical hardware was available at
the time of testing and to eliminate external influence, the client is configured to use
the CsvValuesSensor test-sensor as the TestSensor ’s implementation and use data from
sensorData.csv.
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Name of setting # conditions
non-applicable

# conditions
applicable

# actions in ap-
plicable condi-
tions

vary non-applicable con-
ditions

10-100 0 0

vary applicable condi-
tions

0 10-100 0

vary actions 0 1 10-100

Table 5.6: Parameters used to evaluate the monitoring frameworks performance in the
server-less cloud application

The throughput is calculated by using the cloud applications’ execution times of all 10
messages as presented by the Azure ApplicationInsights service. These execution times
are compared to the total time taken to process all 10 updates by analyzing the first and
last timestamp of the series. This is done to determine the parallelism of the application.
Based on the messages produced by the Rasp1 client the following input parameters
are varied to measure the impact on the systems’ throughput: (1) For the number of
conditions: (1) the number of conditions not targeting "TestSensor" (not applicable),
(2) the number of conditions targeting "TestSensor" (applicable). (2) The number of
actions associated with every "TestSensor" targeting condition.

Due to the nature of the hosting of the application a different strategy then before has to
be followed. Cloud native applications come with advantages but also with disadvantages
such as that the applications get torn down after not being in use for a while. This leads
to the need of a "warm up". More specifically the function needs to be called a few times
before the test starts.

To be able to focus on the performance of the condition evaluation and actions execution,
the component to transform and forward the received messages to the digital twin service
is replaced by a 10 milliseconds delay. This means that the throughput per second should
be close to 100 messages per second when not evaluating any conditions. This value is
compared to the real world value using 0 conditions, ramping up to 100 conditions in
steps of 10. The same set of data is used when varying the condition associated actions.
Table 5.6 shows the used parameters in detail.

To test the general performance impact of executing actions, a similar solution to the
one used in experiment I is used which replaces the real action by a "DelayAction" which
delays the execution by 10 milliseconds.

5.3.3.1 Results analysis

To analyze the results of the simulation runs a similar process to before is used. Once
more the box plot notation is used to visualize the message throughput of each setting
over 10 messages. All box plots are presented in a single graph. The throughput is
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Simulation setting RMSE linear RMSE squared
vary non-applicable con-
ditions

6.80 5.49

vary applicable condi-
tions

6.19 6.17

vary actions 1.03 0.5

Table 5.7: List of simulation settings with the associated RMSE values for experiment II

calculated for each result using the following formula messagethroughputpersecond =
1000/executiontimeinmilliseconds on the gathered data records. Again functions to
describe the relationship between the size of the varied parameter and the measured
results are constructed. This relationship is represented based on the execution time of
each run and not the total execution time of n runs and therefore ignores parallelism.
Linear approximation is compared to squared approximation using the root mean squared
error (RMSE). The function that provides the better result is added to the box plot
diagram. If linear and quadratic approximation yield the same RMSE the linear function
is chosen.

After the analysis of the influence of the varied parameter itself, an additional analysis
regarding parallelism is conducted. To support argumentation a horizontal bar chart is
used to visualize starting times and execution times of each of the 10 executions of the
setting with the biggest parameter number.

Table 5.7 shows the yielded RMSE values for the given settings. The bold written value
indicates the littler error and therefore better approximation. This approximation is used
in the according diagram presented beneath.

When varying the number of non-applicable conditions (simulation setting vary non-
applicable conditions), more precisely conditions that are not evaluated as the targeted
property differs to the one contained in the processed message, the following can be
obtained. As shown in the Figure 5.7 the simulation yields, although results are very
spread, that there is no visible effect of this parameter on the total throughput. This
is backed by the squared approximation results yielding a slope of 0.004545 ∗ x2 −
0.4837 ∗ x which shows a decrease in performance from parameter size of 0 until 50, but
increases afterwards again. With an RMSE of 5.49 the squared regression offers a better
approximation than the linear and is therefore chosen as representative.

Comparing the results to those from experiment I, it can be seen that there are more and
worse outliers even though extensive preparation was carried out. The pure throughput is
lower than on the physical devices which is not surprising given the not very representative
hardware used in the first experiment. More detailed discussion on the comparison
between local and cloud execution is conducted in Section 5.4.

An analysis of the simulation setting vary applicable conditions produces the following
results. The plot shown in Figure 5.8 show the graphical results. Again results are widely
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Figure 5.7: Experiment II: visualization of message throughput of vary non-applicable
conditions on the cloud application

spread with outliers, but closer than in the execution of the first setting. Comparing
the results to the first setting a very similar average execution time of all results can be
obtained (29.18 msg/s in setting vary non-applicable conditions to 29.74 msg/s in the
second setting). The results show no influence of the parameter on the runtime. This
is backed by the regression line. The slope of the used regression line is 0.0006231x2 −
0.06802 ∗ x which is almost linear. Nevertheless, the setting uses a quadratic estimation
function as the RMSE is lower. In comparison to experiment I, it is very interesting to
see that there is no influence, although a comparable logic is in place. The lookup and
execution of JSONPath-based conditions seems to be better implemented and works with
less/not measurable influence based on the tested numbers.

The simulation of setting vary actions yields the following results. Varying the number of
actions that are executed impacts the overall performance. The executed setting shows
comparable results with quadratic estimation functions. The approximated function
yields the smallest RMSE of the test series (0.5) which indicates a good assumption. The
plot with the according regression line is shown in Figure 5.9 and shows the exponential
impact of actions on the overall message throughput. This is not surprising as every
action adds another 10 milliseconds delay when executed.

Finally, the parallelization of the execution is analyzed by comparing the execution start
and end times of each of the settings’ biggest run. More precisely this is the run having
the highest parameter count of the variation. So for the vary non-applicable conditions
setting this is 100-0-0 execution run regarding parameter sizes listed in Table 5.6. In the
vary applicable conditions setting the 0-100-0 and for the last setting vary actions the
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Figure 5.8: Experiment II: visualization of message throughput of vary number of
applicable conditions on the cloud application

Figure 5.9: Experiment II: visualization of message throughput of vary number of actions
setting on the cloud application

0-1-100 run is shown in Figure 5.10 and analyzed in the following.

Based on the data presented in the first diagram, it can be seen that the Azure platform
creates multiple instances of the application and uses those to parallel processes messages
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(a) 100-0-0 in setting vary non-
applicable conditions

(b) 0-100-0 in setting vary ap-
plicable conditions

(c) 0-1-100 in setting vary ac-
tions

Figure 5.10: Experiment II: visualization of relative execution start time and execution
time

in every setting. The time span it takes to schedule a new instance seems to be around 200
milliseconds in optimal situations. Based on the 10 messages sent by the client no more
than 4 instances were scheduled in parallel. The first diagram also shows the inefficiency
of the horizontal scaling of the platform and the function implementation it-self. An
application continuously processing messages could process the messages faster. The
0-100-0 setting presented in the second diagram shows that starting additional instances
can even take up to 600 milliseconds and up to 4 parallel instances can be scheduled.
Only the last setting (0-1-100 ) shows the advantage of parallelization as the execution
times grow up towards 1 second for each run and all messages get processed in parallel at
some point in time. Instead of an execution time of 10 ∗ 1second the total execution time
is only about 1.8seconds. More details are discussed in the next chapter when comparing
the results against experiment I.

5.4 Discussion
In the first chapter, three research questions were stated. The goal of this subsections is
to give an answer to each of those based on data gathered from the software artifacts
created in this thesis.

RQ1: To what extent can MDE techniques be used to reduce the manual effort
for deploying Digital Twins? The use case to determine the automation potential
was conducted in Section 5.2.3.1 and yields the following results. All necessary steps
can be, with very little preceding efforts, automated using a combination of scripts and
applications. In detail these are:

• Transforming existing models into digital twin platform specific documents.

• Uploading necessary type definitions to the digital twin platform.

• Creating all digital twins instances in the digital twin platform.

70



5.4. Discussion

To enable the automation of above-mentioned tasks, some setup needs to be made
preemptive or within the first run.

(1) Identify and specify a certain Azure Digital Twin service instance in the AML
model and transformation. (2) Add necessary scripts and applications to the repository
containing the AML model. (3) Set up a build pipeline to automatically execute the
transformations. (4) Set up a release pipeline to automatically deploy data to the selected
Azure Digital Twin service instance.

Using the described framework and pipeline most of the digital twin deployment can be
automated. From 23 actions necessary to be processed in the AML4DT setting, only 5
need to be executed using the pipeline setting (-78.26%) when considering all 3 evaluation
cases. The remaining tasks can be split into two groups. The first one are one-time setup
tasks (3 actions) that are needed to take advantage of the pipeline features. These tasks
have been eased up as much as possible by providing generic and predefined pipeline
definitions but still require manual effort. The second group are repetitive actions that
the framework or pipeline currently does not support. Currently, the evolution of models
and the according co-evolution of the digital twin are the not supported when using the
pipeline and therefore make manual actions (2 actions) like the deletion of a digital twin
necessary. The given numbers might not be accurate for all possible scenarios but with
an evolving scenario the pipeline can be further improved to support more and more
cases.

RQ2: To what extent can MDE techniques be used to reduce the manual effort
to connect the physical devices to Digital Twins? To determine the automation
potential of RQ2 a case study executed in Section 5.2.3.2. The results show that most
steps can be automated with minor one-time efforts. Extending the implementation from
RQ1 the following steps can be fully automated:

• Identify physical devices based on predefined markers and create IoT hub registra-
tions for them.

• Extract connection credentials and serve in machine-readable format.

• Extract mapping for physical device to digital twin components and properties to
ensure proper naming.

• Serve connection credentials and name-mapping to device on a configuration injec-
tion basis.

To enable the automation for the listed tasks, again prerequisites need to be completed.
The necessary tasks are based upon already done tasks for RQ1, if the setup for RQ1 was
not yet performed, tasks from both lists need to be executed. Some of the following tasks
might only need a one time set up, others need maintenance when certain features change.
The frequency of these changes is denoted specifically in the following enumeration.
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(1) Identify and specify a certain Azure IoT Hub instance in the AML model or transfor-
mation. (2) Mark physical devices within the AML model and transformation. (3) Add
physical device to digital twin name-mapping information to AML model and transfor-
mation.

Besides the listed tasks, the deployment (i.e., transfer of application and configuration)
to the device can technically be done fully automated, but concerns regarding security
arise. As IoT devices are rarely monitored and even less updated, opening access through
secure shell (SSH) is a very big security problem. Because of that IoT devices are often
hidden behind network infrastructure and therefore not accessible from a server situated
in the cloud. Although there are solutions ready to make IoT devices available while
still maintaining the security, settings like that should still be used carefully and need
deeper investigation. Besides accessibility and availability of the remote devices, another
concern is the insecure storage of device credentials within the pipelines input data
version-controlled within a Git repository. Even with solutions presented in this thesis, it
is stated multiple times that automatic deployment to remote locations should not be
used without further improvements to the security.

Using the framework and pipeline created in this thesis the number of manual actions
necessary to connect and deploy physical devices could be reduced from 32 when using
the AML4DT setting, to only 10 (-68.75%) considering all 3 evaluation cases. The
remaining 10 tasks distribute between configuring deployment information and setting
up a valid digital twin to device sensor name mapping. Both the physical devices’ and
the cloud applications code could be improved making no more code changes necessary
when the system changes which reduces the necessary actions drastically.

RQ3: What is the scalability in execution-time of conditions and actions
monitoring runtime data (i) on a physical device compared to (ii) in a cloud
application To compare the scalability in execution-time of the created monitoring
framework executed (1) on a physical device and (2) in a cloud hosted server-less
application a simulation experiment with 2 parameters varied in 3 ways is executed.
In general, it must be said that due to the widespread results of experiment II, which
reasons are later discussed, the data produced has to be used with caution and is only of
limited value.

The results show no influence of the parameter size when varying the number of not
applicable conditions (setting vary non-applicable conditions) on the execution time, on
either physical device or the cloud application. This implies that the conditions’ lookup
per sensor, implemented into both applications works good and achieves its goal.

It is obvious that the vary actions setting, always produces an impact on the execution
time no matter if run in the cloud or locally. The impact besides the IO simulation 10
milliseconds delay is as little as 0.31ms per action based on the data shown in Table 5.5.
This implies that the majority of execution time influence is produced by the action itself
and shows how important it is to optimize the performance of every action.

The setting when applicable conditions are varied (vary applicable conditions setting)
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yields different results on the physical devices and the cloud application. While executing
JSON-path queries on the physical device impacts the overall performance, the cloud
application on the other hand showed no impact given the number of the conditions
used. As discussed in the previous section, this indicates that the general execution of
JSON-path queries is more performant using the C# implementation than the Python
equivalent. As both implementations always execute all conditions no matter if they
evaluate positively or not, the libraries used to execute the created conditions make
the biggest difference in the created implementations. Another reason for the cloud
application to show no measurable influence, might be due to the outliers and general
deviation of the results.

Before evaluating outliers and deviation reasons, another aspect that was evaluated is the
affect of the used hardware to evaluate conditions. It could be seen that older hardware
(Laptop hardware) performed significantly better than newer and more powerful hardware.
This is probably a problem of power-optimization, where the modern processor reduced
CPU clock speed to reduce power consumption which resulted in less message throughput.
Comparing this results to the unknown hardware used in the cloud setup, the Desktop
hardware still produced 180.81% the throughput but was still far from the throughput
the Laptop hardware was able to achieve (269.84% more msg/s). Another important
difference is, that the cloud setup always queues each and every message that is sent by
the client and can scale better from there. Furthermore, the cloud application was run in
the "consumption" tier4 which is free and therefore does not offer dedicated hardware
which could improve performance significantly.

Using the "consumption" tier might be one reason for the poor performance of the
cloud application compared to the performance achieved on the physical device. When
running applications using Azure Functions "consumption" tier, hardware and generally
resources are shared amongst multiple and even foreign applications. This can lead to
very different results within seconds as runs might be scheduled to different physical
machines and or the load of a machine changed as new functions were started. This is a
big disadvantage if stable performance is necessary and can only be fixed by upgrading
to a paid plan. Another factor that underlines this argument is the way Azure Functions
applications are designed and ran. There is no continuously running process waiting
for messages, but most parts of the application are torn down and started up again
with every message which associated with the unsteady performance when using shared
resources, can increase outliers even more.

However, it can be shown that parallelization can improve the overall performance by
a lot as shown by Figure 5.10. As previously discussed, the horizontal scaling used
by Azure Functions has a very good influence on the total time needed to process all
message, when execution times increase. For small execution times it is generally not
advisable as the scheduling algorithm takes 100-300 milliseconds to schedule. Azure
Functions offers the functionality of batch-processing which creates a solution improving

4https://azure.microsoft.com/en-us/pricing/details/functions/
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the overall execution time of the vary non-applicable conditions and vary applicable
conditions setting but worsen performance in the vary actions setting as long as no local
threading is implemented.

Which option to prefer depends on the requirements. In general the cloud application
should be able to be tuned to perform at least as good as the Desktop hardware. As
hardware resources are usually very limited on typical IoT devices collecting sensor data
and reporting it to their digital twins, it can be said that running conditions in the cloud
application is more desirable. It also offers a good separation of concerns compared to
the devices’ implementation. Nevertheless, if performance is most important and latency
is considered as well, the execution on the physical IoT device might be better.

5.5 Limitations and Threads to validity
The validity of research deals with the question of how the conclusions might be wrong.
In non-technical terms validity is concerned with "How any result might be wrong".
Validity is not something that can be proven or guaranteed, but is rather a goal that
is tried to be achieved. For quantitative research in software engineering Wohlin et al.
[WHH03] define four types of validity threads which are discussed for the context of this
work in the following.

Conclusion Validity: "Does the treatment/change we introduced have a statistically
significant effect on the outcome we measure?" The applied solution shows significant
influence in the observed results. The in Section 5.2.3 displayed numbers show an overall
improved result that can be attributed to the introduced changes. As these resulting
numbers are compared to those of the reference implementation which also acts as the
base implementation in this thesis it can be said that the changes introduced in this
thesis have a direct influence on the results.

Internal Validity: "Did the treatment/change we introduced cause the effect on the
outcome? Can other factors also have had an effect?" It can’t be ruled out that other
factors might have had impact on the gathered results. For RQ1 (creation, deployment
model-driven DT) and RQ2 (connecting DT and device) the external influence can be
neglected based on the defined "manual task" definition, as it compared the same process
with two different approaches. Regarding RQ3 (monitoring DT data), when measuring
execution time external factors can influence the result significantly. Doing multiple
runs within each experiment and statistical methods like average and mean were used
to try to eliminate or reduce external influence. A good example for external influence
was already discussed in the last section as potentially faster hardware delivered lower
execution-times.

Construct Validity: "Does the treatment correspond to the actual cause we are inter-
ested in? Does the outcome correspond to the effect we are interested in?" In all cases the
achieved outcome corresponds to the effect we are interested in. For RQ1 (creation, de-
ployment model-driven DT) and RQ2 (connecting DT and device) the created framework
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(DTAF) (treatment) shows the expected effect by reducing manual efforts when creating
and deploying digital twins and the connected physical devices. While the proposed
solution shows an improvement in comparison to the original solution, it might not be
the only solution to the posed question. Other solutions might even further improve the
situation. The solution implemented to monitor data exchanged between physical device
and DT (RQ3) while fulfilling the need to monitor DT data, might not be generally
applicable and represents just a single solution of many.

External validity: "Is the cause and effect relationship we have shown valid in other
situations? Can we generalize our results? Do the results apply in other contexts?" The
research conducted in this thesis shows once again that using Continuous Integration and
Delivery (CI/CD) and automation in general helps to reduce manual efforts. Automation
is generally defined as the use of technology and machinery to perform tasks with reduced
human intervention. CI/CD on the other hand enables the usage of automation during
specific phases of the Software Lifecycle. The proposed solution uses CI/CD and therefore
automation to allow different input models and still produce the observed improvements.
Some parts of the solution like the ATL execution CLI (Section 4.1.1) for instance can
also be generally reused even in non-digital Twin scenarios. Other parts of the solution
are very specific and may not be able to be reused.
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CHAPTER 6
Related Work

In this thesis, multiple artifacts are developed. The combination of these artifacts define
a workflow to automatically create the necessary digital twins and physical device data,
but also to deploy them to a certain target environment and enable automatic validation
of data sent to the digital twin. All of this is done with the goal of high automation and
reducing manual effort. This chapter compares the results from the previous chapters to
related approaches found in the literature.

To be able to compare related results an adequate literature research is conducted using
online literature databases. Returned results are evaluated ordered by applicability, and
then, the most suitable literature is summarized and used for comparison.

Digital twins are not created by only defining the digital twins describing document
(digital twin model) but need to be created within or as a platform which provides
interfaces to interact with the digital twin. To interact with a certain digital twin
or digital twin platform, usually certain configurations have to be done on physical
devices. These configurations consist of certain endpoints, authentication parameters
and identifiers which connect physical devices to a digital twin instance. All these
steps have to be taken into account when searching for comparable literature. The
conducted literature research can be grouped into the following areas automated digital
twin model creation, twin deployment, twin connection establishing and digital twin data
monitoring. A short summary of each identified research together with a comparison to
the implemented Digital Twin Automation Framework (DTAF) of this thesis is given in
the next paragraphs.

Garcia et al. [GC19] highlights the integration of MDE artifacts in Continuous Software
Engineering (CSE) as a beneficial situation for all software practitioners. In their work,
they are covering two levels of MDE integration into modern continuous deployment (CD)
pipelines. First the integration of modeling artifacts as standalone executable components
and secondly an MDE artifact as the target of the CD where model-to-model and model-
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to-text transformations are used to generate the final artifact. An example using ATL and
MOFScript was given to transform a certain input model to an HTML1 page. Further
research was done regarding the evolution of metamodels and co-evolution and their
corresponding models. The CD pipeline was extended to automatically detect changes
and calculate whether the changes done would have breaking or non-breaking character.
Breaking changes could then be either automatically solved by co-evolving the associ-
ated models and transformations, or trigger manual interaction to co-evolve manually.
Comparison to DTAF: Both Garcia et al. in their work and this work point out the
"weakness" of MDE and its high coupling to its tools. EMF and extensions to EMF are
closely coupled to not only the Eclipse project, but also the Eclipse IDE runtime, which
makes it hard to use in automated environments like CD pipelines. The solution used by
Garcia et al. uses a similar approach utilizing Jenkins2 and Java commands in batch
scripts to execute transformations. The solution of this work described in Section 4.1.1
is more advanced regarding the external libraries necessary using Maven dependencies,
and in general, more up to date. The ATL transformation engine created in this work is
independent of the Eclipse runtime and can be reused with more ease.

With MDCI García Díaz et al. [GDPCL12] proposes a process in which the continuous
integration practice can be applied to model-driven software developments in an effective
way. The creation of MDCI was mainly reasoned by the usage of continuous integration
(CI) tools due to their benefits of cost and risk reduction and the usage of MDE in general
to reduce risk and improve a product’s quality. In their work, a solution using multiple ver-
sion controlled repositories namely Domain repository, Application repository and Models
repository combined with a CI tool and an incremental model generator was proposed
to evaluate (1) the number of generated artifacts, (2) the size of such artifacts, (3) the
generation time of the artifacts, and (4) the deployment time to a production environment.
Comparison to DTAF: While the MDCI implementation is not described in detail, the
evaluation and its results are of interest and can be compared. The evaluation compares
traditional MDE without version control and CI against MDE with continuous integration.
In all conducted case studies using MDE without the usage of a CI pipeline created
more artifacts, with a larger size and both the generation time and the deployment time
was significantly higher. This can be compared to the manual tasks reduction derived
in Section 5.2 where around 78% of the necessary actions could be removed due to
automation.

In Kirchhof et al. [KMR+20], a cyber-physical-system (CPS) with the correspond-
ing DT is created using MontiArc3 and MontiGem4. To create and connect the cre-
ated CPS and DT the following 4 steps are done: (1) develop the CPS architecture,
(2) develop digital twins information system (DTIS), (3) connect CPS properties with
DTIS attributes (tagging), (4) use tags to generate communication and synchroniza-
tion infrastructure. Using specific information (tags) in the CPS and DTIS models

1https://html.spec.whatwg.org/
2https://www.jenkins.io
3https://github.com/MontiCore/montiarc
4https://www.se-rwth.de/projects/#MontiGem
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common parts can be identified. These common parts identify necessary informa-
tion that is needed in both systems to enable communication and keep systems in
sync. Using model-to-model transformations and previously mentioned tools Mon-
tiArc and MontiGemprovide a very efficient solution to prototype and create DTs.
Comparison to DTAF: The solution proposed by Kirchof et al. shows different tooling
to solve a similar problem. The usage of two dedicated models and a corresponding
tagging to match information together can be seen superior to the solution implemented
in this work. As described in Section 4.2.3 the disadvantages or shortcomings of the
proposed solution due to name mapping and the resulting complexity can be overcome by
such a solution. On the other hand is the complexity of generating dedicated interfaces
and endpoints for all DTIS (which can be compared to deployed digital twin models)
high, in comparison to generating a model based on a certain language (Azure Digital
Twins Definition) and following a certain contract when exchanging data between digital
twin and physical device such as proposed in Section 4.2.3.

Michael and Wortmann [MW21] extend the work of Kirchhof et al. by envision-
ing how to use a model-driven low-code approach for configuring digital twins in a
Low-Code Development Platform (LCDP). MontiArc and MontiGem are technolo-
gies to not only create the digital twins but also a complete digital twin cockpit
(DTC) offering operations to analyze and adapt values of a digital twin. To do so,
it relies on model-to-model and model-to-text transformations to generate various
artifacts as well as source code to run a digital twin. Instead of using one of the
various available digital twin platforms, this solution can run platform independent.
Comparison to DTAF: A digital twin cockpit can be visualized using the Azure Digital
Twin Explorer when using the Azure Digital Twins Platform. But it is not possible to
integrate any monitoring or alerts into it. The DTC on the other hand could potentially
be extended to not only show value of digital twins but also create rules and alerts. These
rules and alerts could integrate more nicely into the platform than the proposed solution
of this work.

Ejersbo et al. [ELFE23] researched another aspect of digital twin deployment by analyzing
and proposing a solution how to replace a digital twin during runtime without requiring
to shut down the operation of the DT or the underlying CPS. A "model swap mechanisms"
is proposed to integrate new models during runtime without service interruption, by using
an orchestrator to swap between multiple DT instances. Tests conducted using a Desktop
Robotti5 robot prototype show the exchange of the DT feeding data into the robot during
runtime. The mechanism makes use of synchronization, step and swap conditions to
align the different DT instances and enable a smooth transition. Dobaj et al. [DRK+22]
takes this idea a step further and evaluates different software deployment strategies for
digital twins enabling zero downtime but also real-traffic testing and user targeting. To
achieve this, Dobaj et al. not only use CI/CD pipelines but also modularization to
address technical evolution, interoperability and the ability to independently continuously
develop operations and management functions. To enable A/B testing scenarios with

5https://gitlab.au.dk/desktop_robotti
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digital twins, a complex data-flow model was designed which uses a management digital
twin that gives control input to the physical system which will then forward business
data to the according digital twin to process the information in a time-synchronous
operation. This is done to enable comparability of both A and B-path of this solution.
Comparison to DTAF: Ejersbo et al. use advanced CI/CD pipelines to deploy digital
twins like proposed in this work, but take this solution not only one but many steps
further by integrating digital twin evolution, deployments without interruption, A/B
testing and many more features. Many modern systems rely on A/B testing to verify
and validate new developments or functionality.

Gautham et al. [GJRE21] propose a DevOps process using model-based design and
engineering for a tighter integration of design verification activities and runtime monitoring
properties. More precisely validation conditions were derived from design time models and
used during runtime to monitor the system while running. The work focuses heavily on
how to (re-)build requirements based upon an executable model and by doing so creating
and/or improving conditions for runtime verification by applying a DevOps workflow.
Comparison to DTAF: The methodology proposed by Gautham et al. [GJRE21]
differs a lot to the implementations done in this work. Specifically how conditions are
derived from the design time model and are improved and extended using the DevOps
workflow is a great addition. Using this process as a post model creation iterative
approach could enable another layer of work-sharing and have teams specifically focus on
runtime verification. It has to be said that the verification solution implemented in this
work is superficial and not real-world relevant. Building constraints in Object Constraint
Language (OCL) or using other MDE verification techniques would greatly improve the
proposed solution.

A complete digital twin deployment stack is proposed by Hugues et al. [HHHY20]. An
SysML input model is used as an abstraction of a system to monitor humidity and
temperature in multiple points of a building. The system shall collect the data and
store it in a central place. It should further detect and report errors in the reported
data and monitor the systems’ health status and report issues. The SysML model is
refined into a AADL6 model. To enable verification and validation the given requirements
are used to create ALISA7 verification rules which integrate to the AADL model. In a
CI/CD pipeline these artifacts are transformed using model transformations to build a
deployable artifact including the digital twin source code, the monitoring functions and
rules created via ALISA rules. Using the GitLab8 DevOps CI/CD pipeline the generated
source code is compiled, containerized and deployed to the Microsoft Azure platform.
Comparison to DTAF: The goal and used methodology are pretty much comparable
to the approach expelled in this work. Details like the used modeling languages and
technologies vary but the main part, the pipeline, is comparable. Again a different
solution for validation and verification is used which shows that there are other and

6http://www.openaadl.org/
7https://github.com/osate/osate2/tree/master/alisa
8https://about.gitlab.com/
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better integrated solutions available. However, Hugues et al. [HHHY20] work covers only
the digital twin creation and deployment, not the deployment and configuration of the
associated physical device.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion
The steady increase in complexity of software and computer systems requires new solutions
to simulate, monitor and optimize these systems. Digital twins step in to fulfill this need,
however their creation and maintenance requires manual tasks to be performed with each
change to the real world system.

In this thesis, the aim was to analyze to which extent a model-driven approach can be
used to reduce manual efforts for creation, deployment and configuration of digital twins.
Additionally, the execution time of monitoring rules executed on physical devices was
compared to those of a cloud application. Therefore, multiple artifacts were developed and
combined in a DevOps pipeline to enable high automation. The first artifact transforms a
given model into an Azure Digital Twins Definition model and creates the digital twin in
the Azure Digital Twins Platform. The second artifact generate necessary configurations
and creates Azure IoT Hub connection credentials for all associated physical devices.
Additionally, the created configurations can be automatically deployed to the device
together with the necessary controller software to send real-time data to the Azure
Digital Twins service. Finally, a monitoring framework was created that is based up
upon conditions and actions. To be able to define these conditions and actions, the
input model was adapted, and the transformation was extended to automatically build
monitoring conditions in JsonPath. These JsonPath conditions and associated actions are
evaluated in the device controller software and Azure Digital Twins platform to compare
the performance scalability.

An evaluation of the created artifacts yielded the following results. The pipeline combining
creation of the digital twins and configuration of the physical devices reduced the manual
efforts by 78% and 68% considering all executed evaluation cases. To profit from these
improvements only minor changes to the input model were necessary.
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The performance experiments to determine monitoring execution performance were
conducted on two different physical devices and in the Microsoft Azure cloud infras-
tructure. Different implementations of JsonPath evaluators were used due to different
programming languages used. Three different settings were applied to investigate which
parameter variation results in which performance impact. The results show that varying
non-applicable conditions or executed actions does not significantly affect the overall
performance. However, the third scenario (varying the count of applicable conditions)
showed performance impact on the physical devices while the cloud application showed
no impact. As different libraries and programming languages were used, this can be seen
as the source of this difference in performance.

Compared to other approaches investigated, the created pipeline and underlying artifacts
offer a "full" solution, while most researches investigate a particular area. In various areas
there are other solutions available which might be superior to the created solution when
it comes to usability or complexity.

7.2 Future Work
In this section, directions for future work are proposed.

Model evolution- and co-evolution: The proposed pipeline is only capable of creating
digital twins. Due to the nature of cyber-physical systems and their models these evolve
over time which makes supporting model evolution and co-evolution in the pipeline
necessary. Various research [KSW19][LGWC21] was already conducted in this direction
and should be realized in the pipeline.

Model package management: Package management has important role in software
engineering offering the version-controlled access to internal and external libraries. When
working within Model-Driven Engineering models can usually be referenced locally in a
registry (EMF) or externally via file URLs. This puts the developer into charge when
it comes to accessing these models and handling multiple versions. To reduce coupling
and enable access to certain versions of metamodels, a Maven Repository1 or NuGet2

like solution should be implemented and introduced. By doing so, the repository of a
certain model would be reduced down to the "real" unit of work. Reusability could also
be drastically improved.

Model project build tool: In software engineering build tools play a big role especially
when it comes to automation and reproducible builds in continuous integration (CI)
and continuous delivery (CD) pipelines. While project management and build tools
like Maven and Gradle can be used in EMF projects to manage dependencies, there
are currently no plugins to support EMF language features. Introducing predefined
build tasks for Maven or Gradle could ease up or even make scripting in CI/CD pipeline
obsolete. Weghofer[Weg17] showed how operations can be simplified by using his Moola

1https://maven.apache.org/repository/index.html
2https://www.nuget.org/
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framework. Another approach was proposed by Kolovos et al. [KPP08a] where the
Apache Ant build tool was extended by epsilon tasks to load, transform or merge models.

Digital twin communication layer: This thesis proposed a digital twin that is
integrated into the physical device. This solution is simple and fast but is typically
an unwanted situation in real-world scenarios. As real-world systems usually consist
of lots of different devices that are not only developed in-house, integrating a digital
twin communication layer into third-party software is hardly ever possible. Therefore,
different alternative solutions should be proposed, developed and evaluated. Existing
communication within cyber-physical systems could be proxied or duplicated so that a
middleware could be used to extract and send the necessary information to the digital
twins’ data. This solution should be able to understand and communicate using different
state-of-the-art protocols like HTTP, MQTT, ModBus and others.

Multi-layer modeling: Current Model-Driven Engineering approaches make use of a
single model and metamodel to express all characteristics of a certain real-world entity. In
this thesis, an existing model describing a real-world system was extended by (1) digital
twin communication credentials, (2) digital twin and digital twin property naming and
(3) monitoring rules and associated actions. This information does not necessarily belong
to the same level or layer of the model and should be moved to a different level of
abstraction. More precisely a different model that is built upon the existing model that
describes the real-world system. By doing so engineers from different areas can work on
their part of the whole independently of others and enable parallelization, and by that,
more efficient work. García Díaz et al. [GDPCL12] propose a multi repository setup
where a similar approach is chosen which could be adopted and enhanced to improve
usability and separate different concerns within MDE.
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