
Foundations of
Bitcoin-Compatible Scalability

Protocols

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Lukas Aumayr, BSc
Registration Number 01325536

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Matteo Maffei
Second advisor: Prof. Pedro Moreno-Sanchez, IMDEA Software Institute, Spain

The dissertation has been reviewed by:

Prof. Arthur Gervais Prof. Roger Wattenhofer

Vienna, February 12, 2024
Lukas Aumayr

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Lukas Aumayr, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Februar 2024
Lukas Aumayr

iii

To my parents, Gertrud and Friedrich.

Acknowledgements

I would like to express my deep gratitude to Matteo Maffei, whose guidance throughout
my PhD has been nothing short of transformative. His relentless optimism, passion for
research, and commitment to advancing my academic and career prospects have always
lifted me up, especially during the more difficult parts of this journey. His unwavering
belief in my abilities and his consistent efforts to highlight my work have greatly enhanced
my academic progress.

Equally, I owe a great debt of gratitude to Pedro Moreno-Sanchez. When I began my
PhD journey, despite my non-cryptographic background, he offered me the invaluable
gift of the benefit of the doubt. His belief in my potential, his dedication to my best
interests, and his invaluable insights were instrumental in giving my PhD the direction
and momentum it needed. Our academic dialogues, morning runs, cherished breakfasts,
and dinners were highlights of my PhD and created lasting memories.

I also want to thank CoBloX for generously funding my PhD including my numerous
travels to conferences during my PhD, and especially Philipp Hoenisch for our engaging
discussions. His insights, especially from a more pragmatic perspective, were enlightening,
and our conversations about novel challenges were always a source of inspiration.

My collaboration and interactions with colleagues have been a cornerstone of this journey.
I extend my heartfelt thanks to Oğuzhan Ersoy, Siavash Riahi, Kristina Hostáková,
Andreas Erwig, Sebastian Faust, Kasra Abbaszadeh, Sri AravindaKrishnan Thyagarajan,
Giulio Malavolta, Iosif Salem, Stefan Schmid, Giulia Scaffino, Zeta Avarikioti, Subhra
Mazumdar, Mahsa Bastankhah, and Dionysis Zindros. Each of them has left a mark on
my work and thoughts, enriching this journey in countless ways.

A special nod to the Security and Privacy research group at TU Wien. Our combined
efforts, from rigorous discussions to light-hearted gatherings, have fostered a wonderful
academic community. I fondly remember the activities from climbing, game nights, jam
sessions, and countless other events that made my time in the group so memorable.

During my academic voyage, I had opportunities to spend time at the IMDEA Software
Institute in Madrid, the DFINITY Foundation in Zurich, and Stanford University. At
IMDEA, the camaraderie and shared leisurely pursuits with Pedro, Dimitrios Vasilopoulos,
and the rest of the group added a wonderful dimension to my stay and made it particularly
memorable. At DFINITY, I am incredibly grateful to Gregory Neven and David Derler

vii

for their enthusiasm and mentorship during my internship. My time at Stanford was
made especially memorable thanks to the great company of Giulia, Dionysis, Joachim
Neu, and Srivatsan Sridhar.

In addition, I cherish the bonds and insightful interactions I have formed with fellow
researchers during numerous conferences. These connections, though unnamed here, have
played a pivotal role in shaping my academic perspective and opening doors for future
collaborations.

Outside the confines of academia, my circle of friends has been a beacon of support and
joy. To Markus, Reinhold, Tom, David, Peter, Nici and Adrian: your consistent support,
combined with countless shared moments, made the stressful moments of this journey
bearable.

Finally, I must emphasize the fundamental role played by my family. My parents, the
unwavering pillars of support, have been the bedrock upon which this achievement stands.
The love and encouragement of my brother and sister, their spouses, my grandparents,
and my nieces have been a guiding light throughout this journey. Throughout life’s ups
and downs, my family has kept everything in perspective.

Kurzfassung

Permissionless Blockchains ermöglichen es Nutzern, die sich gegenseitig misstrauen, Geld
auf dezentrale Weise zu senden. Leider stoßen diese Blockchains auf ein Skalierbarkeits-
problem, was bedeutet, dass sie technisch nur eine vergleichsweise geringe Anzahl von
Transaktionen im Vergleich zu traditionellen, zentralisierten Systemen verarbeiten können.
Payment Channel Networks (PCNs) gehören zu den bekanntesten Lösungen, um diese
Skalierbarkeitsprobleme zu lösen.
Die Grundidee von PCNs besteht darin, Transaktionen in sogenannte Zahlungskanäle
zwischen zwei Nutzern auszulagern und diese Kanäle dann zu vernetzen, sodass jedes
Paar von Benutzern, welches durch einen Pfad von Kanälen verbunden ist, Transaktionen
durchführen kann. Der Vorteil besteht darin, dass nur die Transaktionen zum Öffnen
und Schließen dieser Kanäle in der Blockchain gespeichert werden müssen, während alle
anderen Transaktionen außerhalb der Blockchain stattfinden, wodurch der Transaktions-
durchsatz insgesamt erhöht wird. Es gibt verschiedene PCN-Protokolle, die in der Praxis
eingesetzt werden (z.B. das Lightning Network mit einem Wert von ca. 150 Mio. USD).
Aber auch diese haben eine Reihe von Problemen.
In dieser Arbeit untersuchen wir bestehende PCN-Protokolle und identifizieren Proble-
me in Bezug auf Sicherheit, Datenschutz, Effizienz und eingeschränkte Funktionalität.
Gleichzeitig stellen wir neue Protokolle vor, die diese Probleme überwinden und den
aktuellen Stand der Technik verbessern. Wir konzentrieren uns auf Bitcoin-kompatible
Lösungen, da Bitcoin nicht nur die Kryptowährung mit der größten Marktkapitalisierung
ist, sondern auch über ein begrenztes Skripting-Set verfügt, wodurch unsere Protokolle
mit vielen anderen Kryptowährungen kompatibel sind. Wir führen auch eine strenge
formale Sicherheitsanalyse unserer Protokolle durch. Konkret leistet diese Arbeit die
folgenden Beiträge.
Zuerst führen wir Sleepy Channels ein, die sichere Zahlungskanäle ermöglichen, auch
wenn Benutzer nicht durchgehend online sind. Dies ist ein bedeutender Unterschied zu
bestehenden Konstruktionen, bei denen die Gelder der Nutzer gefährdet sind, wenn
sie offline sind. Darüber hinaus verallgemeinern wir den Begriff der Zahlungskanäle
(Generalized Channels) und sorgen dafür, dass sie jede Anwendung unterstützen, die von
der zugrunde liegenden Blockchain unterstützt wird, und nicht nur Zahlungen.
Zweitens führen wir eine neue Konstruktion (Blitz) ein, die sichere Zahlungen über einen
Pfad mit mehreren Kanälen in PCNs ermöglicht und dabei die Anzahl der Interaktionen

ix

für jeden Vermittler auf eine einzige reduziert (von zwei oder mehr) und nur konstante Zeit
benötigt, anstatt linear in der Pfadlänge. Wir bieten auch die erste sichere Konstruktion
für die atomare Aktualisierung mehrerer Kanäle, die nicht auf einem Pfad liegen (Thora).

Schließlich stellen wir die erste Bitcoin-kompatible Konstruktion für virtuelle Kanäle
bereit (Bitcoin-Compatible Virtual Channels). Mit diesen virtuellen Kanälen können zwei
Benutzer über einen Vermittler einen direkten Kanal öffnen, ohne eine Öffnungs- oder
Schließtransaktion in die Blockchain aufzunehmen. Darüber hinaus analysieren wir andere
Konstruktionen für virtuelle Kanäle, identifizieren einen neuartigen Angriff und führen
eine sichere und effiziente Konstruktion ein, die über mehrere Vermittler funktioniert
(Donner).

Diese Beiträge greifen nahtlos ineinander. Gemeinsam bieten sie eine vielseitige Ad-hoc-
Lösung, die zwei beliebige Benutzer sicher miteinander verbindet, ohne einen Fußabdruck
auf der Blockchain zu hinterlassen, für Anwendungen, die über Zahlungen hinausgehen.
Diese Arbeit zielt darauf ab, das Verständnis von PCNs neu zu gestalten und allgemeinere
und effizientere Lösungen für das Skalierbarkeitsproblem zu bieten.

Abstract

Permissionless blockchains allow mutually untrusted users to transfer money in a decen-
tralized way. Unfortunately, these blockchains face a scalability problem, which means
they are technically limited to processing only a relatively small number of transactions
compared to traditional, centralized systems. Payment Channel Networks (PCNs) are
among the most prominent solutions to mitigate these scalability issues.

The basic idea of PCNs is to outsource transactions to so-called payment channels
between two users and then link these channels to form a network where any two users
connected by a path of channels can perform transactions. The advantage is that only
the transactions for opening and closing these channels need to go on the blockchain,
while any other transaction happens outside of the blockchain, thus increasing the overall
transaction throughput. Several different PCN protocols exist and are used in practice
(e.g., the Lightning Network with a value of approximately 150M USD). However, even
these have their sets of issues.

In this thesis, we investigate existing PCN protocols and identify issues in terms of
security, privacy, efficiency, and limited functionality. Simultaneously, we introduce new
protocols that overcome these issues and improve the state of the art. We focus on
Bitcoin-compatible solutions since Bitcoin is not only the largest cryptocurrency in terms
of market capitalization but also has a limited set of scripting capabilities, thus making
our protocols compatible with a large number of other cryptocurrencies as well. We also
conduct a rigorous formal security analysis of our protocols. More concretely, this thesis
makes the following contributions.

First, we introduce Sleepy Channels, enabling secure payment channels even when users
are not continuously online. This is a significant shift from existing constructions where
going offline puts users’ funds at risk. Further, we generalize the notion of payment
channels (Generalized Channels) and make them support any application that the
underlying blockchain supports rather than only payments.

Second, we introduce a new construction (Blitz) that achieves secure payments across a
path of multiple channels in PCNs while reducing the number of interactions for each
intermediary to a single one (from two or more) and takes only constant time instead of
linear in the path length. We also provide the first secure construction for atomically
updating multiple channels that are not on a path (Thora).

xi

Finally, we provide the first Bitcoin-Compatible Virtual Channel construction. These
virtual channels allow two users to open a direct channel via one intermediary without
putting an opening or closing transaction on the blockchain. We further analyze other
existing virtual channel constructions, identify a novel attack, and introduce secure and
efficient virtual channels over multiple intermediaries (Donner).

These contributions interplay seamlessly. Collectively, they offer a versatile, ad-hoc
solution connecting any two users securely without an on-chain footprint for applications
that go beyond payments. Thus, this thesis aims to reshape the understanding of PCNs
and give more general and efficient solutions to the scalability problem.

List of Publications

Papers in Conferences with Proceedings.

[ATM+22] Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pe-
dro Moreno-Sanchez, and Matteo Maffei. Sleepy Channels: Bi-directional
Payment Channels without Watchtowers. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’22, page 179–192. Association for Computing Machinery, 2022. Part of
this thesis.

[AEE+21] Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina
Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi.
Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures. In Advances in Cryptology – ASIACRYPT 2021, pages 635–
664. Springer International Publishing, 2021. Part of this thesis.

[AMSKM21] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei.
Blitz: Secure Multi-Hop Payments Without Two-Phase Commits. In 30th
USENIX Security Symposium (USENIX Security 21), pages 4043–4060.
USENIX Association, 2021. Part of this thesis.

[AAM22] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. Thora: Atomic and
Privacy-Preserving Multi-Channel Updates. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 165–178. Association for Computing Machinery, 2022.
Part of this thesis.

[AME+21] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian
Faust, Siavash Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez.
Bitcoin-Compatible Virtual Channels. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 901–918. IEEE Computer Society, 2021.
Part of this thesis.

[AMSKM23] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei.
Breaking and Fixing Virtual Channels: Domino Attack and Donner. In

xiii

30th Annual Network and Distributed System Security Symposium, NDSS
2023. The Internet Society, 2023. Part of this thesis.

[SAAM22] Giulia Scaffino, Lukas Aumayr, Zeta Avarikioti, and Matteo Maffei.
Glimpse: On-demand Light Client with Constant-size Storage for DeFi.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
733–750. USENIX Association, 2023.

Contents

Kurzfassung ix

Abstract xi

List of Publications xiii

Contents xv

1 Introduction 1
1.1 Overview of Payment Channel Networks 3
1.2 State of the Art and Limitations . 7
1.3 Methodology . 12
1.4 Contributions . 13

2 Sleepy Channels: Bi-directional Payment Channels without Watch-
towers 17
2.1 Introduction . 18
2.2 Solution Overview . 24
2.3 Preliminaries . 28
2.4 Ideal Functionality Bi-directional Channels 29
2.5 Sleepy Channels: Our Bi-Directional Payment Channel Protocol . . . 32
2.6 Performance Evaluation . 38
2.7 Conclusion . 41

3 Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures 43
3.1 Introduction . 44
3.2 Background and Solution Overview . 49
3.3 Preliminaries . 53
3.4 Generalized channels . 54
3.5 Adaptor Signatures . 59
3.6 Generalized Channel Construction . 64
3.7 Applications . 68
3.8 Performance Analysis . 71

xv

4 Blitz: Secure Multi-Hop Payments Without Two-Phase Commits 73
4.1 Introduction . 74
4.2 Background and notation . 77
4.3 Solution overview . 81
4.4 Our construction . 88
4.5 Security analysis . 93
4.6 Evaluation . 95
4.7 Related work . 98
4.8 Conclusion . 98

5 Thora: Atomic and Privacy-Preserving Multi-Channel Updates 101
5.1 Introduction . 102
5.2 Background . 105
5.3 Solution overview . 109
5.4 Construction . 114
5.5 Security analysis . 121
5.6 Evaluation . 124
5.7 Applications . 126
5.8 Discussion . 128
5.9 Conclusion . 129

6 Bitcoin-Compatible Virtual Channels 131
6.1 Introduction . 132
6.2 Background . 135
6.3 Virtual Channels . 140
6.4 Security Model and Analysis . 151
6.5 Performance evaluation . 152
6.6 Related Work . 156
6.7 Conclusion . 157

7 Breaking and Fixing Virtual Channels: Domino Attack and Donner 159
7.1 Introduction . 160
7.2 Background and notation . 165
7.3 The Domino attack . 170
7.4 Donner: Key ideas . 175
7.5 Donner: Protocol description . 177
7.6 Security analysis . 183
7.7 Evaluation and comparison . 184
7.8 Conclusion . 187

8 Conclusion and Directions of Future Research 189
8.1 Conclusion . 189
8.2 Directions for Future Work . 190

List of Figures 193

List of Tables 201

Bibliography 205

A Appendix to Chapter 2 221
A.1 UC Protocol . 221
A.2 Deployment cost . 236

B Appendix to Chapter 3 237
B.1 On the Usage of the UC-Framework 237
B.2 Schnorr-based Adaptor Signature . 240
B.3 Proof of the ECDSA-based Adaptor Signature 255
B.4 Pre-signature unforgeability . 268
B.5 Additional material to generalized channel protocol 269
B.6 Simplifying functionality description 274
B.7 Simplifying the protocol descriptions 276
B.8 Security proof . 277
B.9 Applications on top of generalized channels 283

C Appendix to Chapter 4 287
C.1 Discussion on practical deployment . 287
C.2 1-phase commits in distributed databases 289
C.3 Payment channels in more detail . 290
C.4 Preventing the race condition when the sender is irrational 291
C.5 Concrete attack scenarios (informal) 291
C.6 Timeline . 292
C.7 Communication overhead . 292
C.8 Extended simulation results . 293
C.9 Extended macros . 293
C.10 Modeling in the UC framework . 297
C.11 Discussion on security and privacy goals 316

D Appendix to Chapter 5 321
D.1 Stealth addresses . 321
D.2 UC modeling . 322
D.3 Discussion on security and privacy . 346

E Appendix to Chapter 6 349
E.1 On the usage of the UC-Framework . 349
E.2 Adaptor Signatures . 352
E.3 Additional material to ledger channels 353
E.4 Virtual Channels . 362
E.5 Wrappers for Missing Checks . 382

F Appendix to Chapter 7 403
F.1 When to use virtual channels . 403
F.2 Extended comparison and discussion 406
F.3 Operation examples . 407
F.4 Extended background . 407
F.5 Extended macros, prerequisites and protocol 410
F.6 UC modeling . 414

CHAPTER 1
Introduction

The seminal 2009 Bitcoin whitepaper [Nak09] gave rise to permissionless cryptocurrencies.
This innovative form of digital cash forgoes the need for trusted, centralized authorities
such as (central) banks, governments, or other intermediaries. Instead, anyone with a
computer connected to the Internet can participate and conduct payments in a trustless
way. This is achieved through a decentralized protocol, where participants store valid
transactions in a global, distributed, immutable ledger, typically a blockchain, and run a
consensus mechanism, where they agree on the validity and ordering of all transactions.

Existing permissionless cryptocurrencies, i.e., cryptocurrencies where everyone can become
a full protocol participant, face a scalability problem. For instance, Bitcoin is technically
limited to processing only around ten transactions per second, and it takes around one
hour for transactions to be considered finalized [CDE+16]. This is a significant gap to
more centralized payment systems, e.g., the VISA credit network can handle transaction
loads on the order of tens of thousands of transactions per second [Tri13], finalized almost
instantly.

Unfortunately, these issues are a consequence of the permissionless setting and cannot
be rectified merely by increasing the number of transactions in a block or by decreasing
the block generation time. Such an approach would lead to an increase in the size of the
blockchain. On the one hand, this makes it harder and harder for users to become full
protocol participants and thus increase centralization. On the other hand, an increased
block size leads to increased latency, which, possibly together with a decreased block
generation time, makes it more likely to create diverging views of the ledger, also known
as forks [GKL15].

The scalability problem has attracted attention from academia and industry, and different
proposals exist on how to tackle this problem. New consensus mechanisms aim to
increase the transaction throughput of the blockchain directly, but drawbacks include
more centralization, a permissioned consensus, decreased security, additional assumptions,

1

1. Introduction

or not being backward compatible with existing blockchains, leading to a fork of the
network (e.g., [PKF+18,KRDO17,DFKP15,NTT22,BHK+20,MJS+14,PS17]). Another
idea, sharding, aims to enhance scalability by partitioning the network into smaller groups
(e.g., [ZMR18]). The goal of sidechains is to outsource transactions to another blockchain,
but the sidechain requires its own consensus mechanism (e.g., [BCD+14]).

In contrast to these approaches are off-chain solutions, in which the bulk of transactions
are handled outside of the blockchain on what is referred to as layer-2. This layer-
2 is built on top of the blockchain, which is then referred to as layer-1. Payment
channel networks (PCNs) [PD16] allow users to conduct off-chain payments within a
network of 2-party channels. In commit-chains or plasma [GMSR+20,KZF+18,PB17],
an operator periodically collects and submits a commitment to off-chain transactions
to the blockchain. In rollups (e.g., [Rol, ZK-]), transaction data is posted on-chain in
addition to the commitments, which leads to improved data availability, but increased
on-chain overhead. There are optimistic rollups, where there is a time window to dispute
incorrect transactions, and ZK-rollups, where the correctness of the included transactions
is proven with SNARKs.

The advantage of off-chain solutions is that they do not require modifying the underlying
consensus. They are thus compatible with existing cryptocurrencies and can be deployed
without changing existing cryptocurrencies, and the underlying consensus mechanism
does not limit their throughput because transactions are not posted on-chain. To achieve
scalability for existing blockchains, we focus on off-chain solutions in this thesis rather
than sharding, sidechains, or new consensus protocols.

Optimistic rollups (and plasma) require a long wait time (or challenge period) before users
can withdraw funds, usually 7-14 days, which allows users to dispute state commitments
before they are considered finalized [Smi23]. Furthermore, the improved data availability
of optimistic rollups again leads to an on-chain storage overhead that is linear in the
number of transactions. This limits the effectiveness of rollups as a scaling solution
to a factor of around 100x. For example, in Ethereum, rollups would enable around
4.8k transactions per second at most compared to 45 transactions per second without
rollups [But21]. ZK-rollups do not require this waiting period, as SNARKs are used to
prove the validity of state commitments, which can be expensive to compute. Due to
these drawbacks and the fact that rollups are not compatible with Bitcoin, we focus in
particular on PCNs in this thesis.

Relevance of Bitcoin-Compatible Solutions. Bitcoin and many other cryptocurren-
cies have limited scripting capabilities. That means they provide only a very limited set of
programming instructions (also known as op_codes), e.g., verifying one or multiple digi-
tal signatures or enforcing a timelock, and can host non-Turing-complete smart contracts.
This contrasts blockchains such as Ethereum, which can host (quasi-)Turing-complete
smart contracts.

We acknowledge that a significant research effort is dedicated to designing applications
built on top of these more expressive smart contracts. Such efforts either make use

2

1.1. Overview of Payment Channel Networks

of the native capabilities of blockchains such as Ethereum, or else try to bring these
capabilities to Bitcoin. Examples of the latter include the aforementioned side-chains,
constructions such as BitVM [Lin23], etc. Nonetheless, designing protocols that do
not rely on Turing-complete scripting in the underlying blockchain is of theoretical and
practical interest as well.

As of June 2023, Bitcoin alone makes up more than 48% of the total market capitalization
of cryptocurrencies, and many other cryptocurrencies are forks of Bitcoin or very similar
(e.g., Bitcoin Cash, BitcoinSV, Litecoin, Dogecoin, etc.) having the same functionality or
even more limited scripting capabilities (e.g., Monero, Ripple, etc.). This means that it
is highly relevant in practice to reduce the scripting requirements of protocols, making
them compatible with a larger number of existing and potential future cryptocurrencies.
However, identifying the minimal scripting requirements to achieve certain protocols is
also of theoretical interest.

Furthermore, having protocols rely on smart contracts with Turing-complete instructions
and more complex ways of interacting with them (e.g., events, fallback functions, etc.)
makes them harder to analyze and potentially more error-prone. These errors can be
exploited, causing immense economic damage, as exemplified in the (in)famous DAO
hack in Ethereum [Sie16].

Consensus-Agnostic Solutions. The environmental impact of Bitcoin cannot be
overlooked; its significant energy consumption and corresponding carbon footprint pose
an important challenge. The primary cause of this is Bitcoin’s underlying consensus
mechanism, Proof-Of-Work, where users expend computational power to generate blocks.
Although estimates indicate that a considerable portion of Bitcoin mining utilizes renew-
able energy sources [Cou23], the research efforts to reduce the overall power consumption
remain crucial. This has led to alternative consensus mechanisms that could poten-
tially mitigate environmental impact, such as Proof-Of-Stake (e.g., [KRDO17]) and
Proof-Of-Space [DFKP15,PKF+18].

We emphasize that even though the constructions presented in this thesis are compatible
with Bitcoin, they are agnostic to the underlying consensus. Our findings can thus be
deployed to a wide range of blockchains, including those that prioritize lower energy
consumption. Finally, we note that in Bitcoin, the processing of transactions is technically
independent of the Proof-Of-Work mechanism. Thus by boosting the transaction through-
put, our contributions could theoretically help to make Bitcoin more energy-efficient, at
least in terms of energy per transaction assuming the same total energy consumption.

1.1 Overview of Payment Channel Networks

Payment Channels. A payment channel is a two-party protocol that allows two
users, Alice and Bob, to perform off-chain transactions. Initially, Alice and Bob can
open a payment channel by locking some funds in a joint account on-chain, e.g., an
address that requires both their signatures to be spent (multisig address), in what is

3

1. Introduction

called a funding transaction. Subsequently, Alice and Bob can update the channel by
creating and exchanging transactions off-chain that spend from the funding transaction
and redistribute the funds in some new way (the new state of the channel). Finally, they
can close the channel when they no longer need it by posting the latest one of these
off-chain update transactions on the blockchain. We illustrate this in Figure 1.1.

Alice
Bob

A: 6

. . .

Blockchain

. . .

Funding
transaction

B: 4

A: 3 B: 7

Alice pays 3 coins to Bob

. . .

A: 7 B: 3

(3) close

(2) update

(1) open

Figure 1.1: Payment channel: A payment channel consists of three operations. Alice
and Bob can (1) open a payment channel by creating a funding transaction, which locks
some of their money in a shared account (multisig address). In this example, Alice puts
6 coins and Bob 4 coins into the funding transaction. They create another transaction
(state), which pays them back their coins in this initial balance distribution (A : 6, B : 4)
and then post the funding transaction on the blockchain. Then, Alice and Bob can (2)
update their channel from (A : 6, B : 4) to, e.g., (A : 3, B : 7), which represents Alice
paying 3 coins to Bob. They can continue updating their channel as often as they want.
When they are done, they finally (3) close their channel with the latest state, unlocking
their coins. Only two transactions go on-chain.

With this protocol, Alice and Bob can conduct arbitrarily many transactions, while
only two transactions end up on the blockchain, one for opening and one for closing
the channel. While this improves transaction throughput between two users, creating a
payment channel for every (potential) counterparty is infeasible because every payment
channel requires some money to be locked up in the funding transaction. This, in turn,
leads to a large number of on-chain transactions and fees, as well as opportunity costs for
the locked-up money that cannot be used otherwise or users simply not having enough
funds to even open enough channels. This is why a more clever way of connecting users
has emerged, i.e., Payment Channel Networks (PCNs).

4

1.1. Overview of Payment Channel Networks

Payment Channel Networks. The idea of PCNs is to establish a network of channels.
However, instead of connecting all pairs of users (forming a clique), a more sparse network
is formed, where typical users can have only a few channels or even a single one. The
PCN can be thought of as a graph where the nodes are users, and the edges are payment
channels. Typically, this graph is still connected, i.e., any two users can reach one another
through a path of channels. Two nodes can transact by routing payments through these
paths. This is known as multi-hop payment (MHP). The challenge here is to synchronize
these channels on the path, such that a payment is atomically carried out and no honest
user is at risk of losing their funds. This idea is illustrated in Figure 1.2. One concrete
way of implementing this in practice is shown in more detail later in Section 1.2.2 and
Figure 1.6.

A B C D

A B C D
after payment

before payment

A: 8 B: 1

A: 4 B: 5

B: 5 C: 4 C: 7 D: 2

C: 3 D: 6B: 1 C: 8

Figure 1.2: Multi-hop payment (MHP): Sender A pays 4 coins to receiver D via B and
C. The colored boxes connecting two users represent payment channels (as shown in
Figure 1.1). The first row shows the initial balance distribution of the channels. The
second row shows the desired outcome after the payment, where 4 coins were transferred
to the receiver. The challenge of MHPs is to update these channels atomically in order
to prevent honest users from losing their coins.

PCNs are a feasible scaling solution and are used in practice. Most notably, the Lightning
Network (LN) has around 16k nodes, 74k channels, and a total capacity of 5.4k BTC
(roughly 152M USD) as of April 2023. Still, there are some fundamental drawbacks to
using MHPs that essentially stem from the fact that individual payments are routed via
intermediaries [AMSKM23]: (i) the intermediary users need to be online; (ii) payments
are less reliable since intermediary users must actively partake in each individual payment;
(iii) intermediaries charge fees per payment; (iv) each hop increases the latency of the
payment, which can be up to one day per channel in the LN; (v) every intermediary learns
the value that is being transacted; and (vi) they can process only a limited number of
concurrent payments (e.g., 483 in the Lightning Network). Note that these drawbacks are
independent of the concrete MHP implementation, but come from the fact that in MHPs,
intermediaries route each individual payment. Moreover, MHPs are a synchronization
protocol for payments. One would have to design a new synchronization protocol to
realize applications in a multi-hop setting other than payments, such as Discreet Log
Contracts (DLCs) [Dry17]. This is both an inconvenience and not trivial, as seen in a
recent discussion about implementing DLCs over multiple hops [DLC21].

Virtual Channels. To overcome the drawbacks of MHPs, bypassing the intermediaries

5

1. Introduction

for individual payments is crucial. To this end, Virtual Channels (VCs) can directly
bridge the gap between two endpoints connected by a path of PCs. A VC is akin to a PC,
but it is opened off-chain on top of the existing PCN topology instead of being opened
on-chain. In other words, this approach provides the advantages of the direct connection
that PCs provide with respect to scalability, but without the associated on-chain fees for
opening and closing them.

To understand how VCs work, say that initially, two users, Alice and Carol, are connected
by one intermediary user, Bob. Alice and Carol need to coordinate with Bob, locking
some collateral in both PCs (Alice-Bob) and (Bob-Carol) for the VC. This collateral is
used to compensate honest users in case one or even both of the counterparties deviate
from the honest protocol execution. Otherwise, honest users get their own collateral
back. This VC idea can be extended to multiple intermediary users. Any intermediary
needs to be involved only in the opening and, later, the closing of the channel. However,
the two endpoints can use the VC without the involvement of intermediary users. We
illustrate this idea in Figure 1.3.

A D

A B C D

Virtual Channel

D: 2A: 3

5 5 5

Figure 1.3: Virtual Channel (VC): A VC is not funded on-chain, but built on top
of payment channels. For this, some funds of these underlying payment channels are
locked (illustrated in gray) as collateral, such that the whole VC capacity is covered
(in this example, 5 coins). This collateral is used to compensate honest users in case of
misbehavior. After successfully closing a VC, its latest balance will be reflected in the
underlying payment channels. All operations happen off-chain and while the VC is open,
the two endpoints, A and D, can transact without the involvement of the intermediaries
B and C.

Utilizing such a VC, the two endpoints can resolve the previously mentioned issues (i)-(vi).
Intuitively, this is because intermediaries are no longer part of every payment but only
part of opening and closing the VC. The endpoints can, on their own, conduct as many
off-chain transactions directly, unencumbered by the increased latency, fees, decreased
reliability, or privacy that goes along with MHPs. Furthermore, since VCs can be used
in the same way as PCs, applications that can be built on PCs, such as DLCs, can also
be built on VCs.

6

1.2. State of the Art and Limitations

1.2 State of the Art and Limitations

1.2.1 State of the Art and Limitations in Payment Channels

Once payment channels are opened, users want to exchange transactions off-chain, which
is also called updating the channel to a new state. Unfortunately, once a state has
been signed and is valid, these signatures cannot be invalidated. The main challenge
in designing payment channels is to prevent users from posting an older state, where
they would receive more money than in the current state. There exist many different
protocols with different trade-offs.

CLTV [Tod] and Spillman channels [Spi] propose unidirectional payment channels making
use of a replace by incentive mechanism to deal with old states. I.e., in a channel between
Alice and Bob, payments can only be made from Alice to Bob. Consequently, Bob always
prefers the most recent channel state and is economically disincentivized from posting an
older state. These channels have a fixed expiry set at the time of creation to prevent
funds from staying locked forever. Another mechanism to handle old states is known
as replace by timelock. This allows for bidirectional channels. Each state is time-locked
and can only be posted after a pre-defined time in the future. Subsequent states have a
timelock that is shorter by some safety time gap, such that the latest state is the one
that can be posted first in the future. An obvious drawback is the limited number of
states due to the ever-decreasing timelock.

Duplex channels [DW15] combine replace by incentive and replace by timelock and allow
for bidirectional channels but have limitations on the number of payments and require
an increased number of transactions to close the channel. Lightning channels [PD16]
are used widely in practice. They are bidirectional and support an unlimited number
of payments. The posting of old states is prevented by exchanging revocation secrets
(replace by revocation), which in turn allows honest parties to punish misbehaving parties.
This mechanism requires relative timelocks and users to be constantly online (as explained
later) and is illustrated in Figure 1.4. Other bidirectional payment channel proposals,
such as Eltoo [DRO], support bidirectional payments but have specific requirements for
compatibility with existing cryptocurrencies, e.g., by relying on new op_codes that are
as of yet not supported by Bitcoin. State channels [DFH18,DEFM19,CCF+21], which
support arbitrary conditional payments, rely on complex scripts like smart contracts
and are incompatible with UTXO-based currencies. Eltoo and state channels ensure the
latest state via replace by version: Each state is marked with a sequence number, and
only the state with the highest number is accepted.

Limitation L1 (Online Assumption). One fundamental issue with bidirectional
payment channels that allow an unbounded number of payments, such as Lightning,
Eltoo, or state channels, is that they rely on an online assumption. In other words, users
must stay online and actively monitor the blockchain in order to avoid losing their funds.
More concretely, if Alice is offline, Bob can post an old state that gives him more money
than he should have, and Alice will miss her window of punishing Bob (Lightning) or

7

1. Introduction

Alice
Bob

A: 6

. . .

Blockchain

. . .

Funding
transaction

B: 4

delay
1 day

if Bob knows
r0

A

BobAlice

A: 6 B: 4

delay
1 day

if Alice knows
r0

B

BobAlice

A: 7 B: 3

delay
1 day

if Bob knows
r1

A

BobAlice

A: 7 B: 3

delay
1 day

if Alice knows
r1

B

BobAlice

State0
A State0

B

State1
A

State1
B

If Bob tries to post the old State0
B ,

Alice has 1 day to punish him

punish

Figure 1.4: Lightning channel: In Lightning channels, there exist two versions of each
state (state duplication), one for Alice (e.g., State0

A) and one for Bob (e.g., State0
B).

When updating to a new state, Alice and Bob sample new revocation secrets r1
A and r1

B

uniformly at random, respectively. Then, they create the two versions of the new state
State1

A and State1
B, exchange the signatures of the respective state (Alice signs State1

B,
Bob signs State1

B), and then exchange the revocation secrets of the previous states r0
A

and r0
B . If Bob now tries to cheat by posting State0

B because he holds more coins than in
State1

B, there is a spending condition on his balance, and he cannot spend it right away.
Alice has one day to use r0

B to punish Bob and steal all his money. If Bob had posted
the latest state State1

B , Alice would not have known r1
B yet and could not have punished

Bob. This ensures that honest parties cannot lose their funds, but comes at the cost of
users constantly needing to monitor the blockchain to react to misbehavior, having two
versions of each state, and needing a punishment mechanism per output.

8

1.2. State of the Art and Limitations

enforcing the latest state (State channels, Eltoo). This is in contrast to sending funds on
the blockchain itself, where users can go safely offline. To overcome this drawback, users
can outsource this monitoring to a third party, a watchtower [Unl, KNW19, ALS+18,
MBB+19a,ATLW20,MSYS21], which is either trusted or needs to lock up collateral for
every channel that is watched over, which does not scale well. Therefore, we can ask the
following question. Can we get rid of the online assumption in bidirectional payment
channels that support an unlimited number of payments without employing watchtowers?

Limitation L2 (Generalizing Channel Functionality). Another fundamental gap is
that there exist essentially two categories of channel constructions: (i) application-specific
channels (e.g., payment channels), which offer a functionality that is specifically tailored
to one application (e.g., payments) and is strictly weaker than the scripting capabilities of
the underlying blockchain; and (ii) state channels, which offer the functionality for Turing-
complete smart contracts, but are in turn only compatible with blockchains supporting
Turing-complete scripting. We propose the following research question. Can we construct
channels that are application-agnostic while not relying on Turing-complete scripting, yet
lifting the given scripting capabilities of a blockchain (layer-1) to the off-chain channel
setting (layer-2)?

1.2.2 State of the Art and Limitations in Payment Channel Networks

To achieve MHPs, two approaches exist: (i) protocols that proceed in one round of
communication but lack security guarantees and (ii) protocols that proceed in two or
more rounds. The second round ensures that honest users are not at risk of losing their
funds but also increases communication and, thereby, the chances for errors, e.g., due to
offline users. By round of communication, we mean pair-wise, sequential communication
from sender to receiver (or vice-versa). Since one-round protocols put user funds at risk,
two-round protocols are used in practice.

The most prominent protocol is based on HTLCs, i.e., Hash Time Locked Contracts or
sometimes Hashed TimeLock Contracts (see Figure 1.5), as for instance, implemented
in the Lightning Network [PD16]. On a high level, each channel on the path locks the
payment amount as collateral in an HTLC (round 1), which is a simple smart contract
that gives the money to the user closer to the receiver (right user) if she knows a pre-image
of a hash, or else to the user closer to the sender (left user) after some time expires. Then,
this pre-image is passed from right to left (round 2), resolving the HTLCs and finalizing
the payment. We illustrate this in Figure 1.6.

To give users enough time to propagate the pre-image, the timelocks on these HTLCs
need to grow from right to left. This means that asymptotically, the timelocks on the
collateral (collateral lock time) are linear in the path length, something that is undesirable
because it incurs high opportunity costs. [MBB+19b] is an MHP construction that has
constant collateral lock time but requires Turing-complete smart contracts. [JLT21] is
Bitcoin-compatible and has a logarithmic collateral lock time.

9

1. Introduction

Alice
Bob

Funding
transaction

A: 3 B: 3

Alice locks 4 coins in an HTLC(4, y, t),
conditioned on y and t = 2 days

A: 7 B: 3

HTLC: 4

after
2 days

if Bob knows r,
s.t. H(r) = y

BobAlice

Figure 1.5: Hash Time Locked Contract (HTLC): This example shows an HTLC inside
the channel of Alice and Bob. Here, Alice and Bob create and update their payment
channel to a new state, where Alice locks 4 of her coins in an HTLC, conditioned on y
and t = 2days. These 4 coins can be spent either by Bob, if Bob knows a pre-image r,
such that H(r) = y, or else by Alice, after 2days.

Additionally, all HTLCs are conditioned on the same hash, which is based on a pre-image
chosen by the receiver, which in turn leads to privacy and security issues. [MMSK+17]
and [MMS+19] try to address these issues by re-randomizing this secret (on a high level).

Limitation L3 (Secure Payments in Single Round). Up to this point, it was
unknown whether it is possible to consolidate the communication-efficient and less error-
prone (due to offline users) one-round MHPs with the security of two or more round
MHPs. Ideally, such a construction also has a constant collateral lock time. Therefore,
we pose the following question. Is it possible to perform secure multi-hop payments in a
single round of communication?

Limitation L4 (Multi-Channel Updates). MHPs can only be used to update
channels on a path. However, some applications, e.g., crowdfunding, mass payments, or
transaction aggregation [TYA+22], require atomically updating arbitrary channels (i.e.,
not forming a path). [EMSM19] tries to address this issue but falls short as it is vulnerable
to channel closure attacks, as pointed out in [JLT21], which can result in honest users
losing their funds. So far, no construction has achieved this securely. Therefore, we ask
the following research question. Can we atomically update multiple channels that are not
necessarily aligned on a path?

1.2.3 State of the Art and Limitations in Virtual Channels

Virtual channels (VCs) were first introduced in [DEFM19] for Ethereum-like cryptocur-
rencies, i.e., cryptocurrencies that support Turing-complete smart contracts. With this
construction, users can construct a VC over one intermediary user on top of two state

10

1.2. State of the Art and Limitations

A B C D

A B C D

A B C D

(3) Parties sequentially lock money in HTLCs →

HTLC(4, y, 3) HTLC(3.9, y, 2) HTLC(3.8, y, 1)

(1) D samples r ←$ {0, 1}λ

(2) D sends y := H(r) to A

(4) Parties sequentially unlock the HTLCs ←

Figure 1.6: Lightning payment: Sender A pays 4 coins to receiver D via B and C. The
colored boxes connecting two users represent payment channels (as shown in Figures 1.1
and 1.5). The first row shows the initial balance distribution of the channels. The last
row shows the desired outcome, where 4 coins were transferred to the receiver. These
updates should occur atomically. In the case of Lightning-based HTLC payments, this is
achieved in four steps. (1) D samples a uniformly random string r, and (2) sends its hash
y := H(r) to A. Then, in step (3), parties lock 4 coins in an HTLC, sequentially from
left to right. B and C each charge 0.1 fee in this example, thus forward only 3.8 and 3.9
coins, respectively. In step (4), after creating all HTLCs, D knowing r can unlock his
HTLC with C, claiming the coins and revealing r to C, who can continue in the same
way until all HTLCs are unlocked. Due to the increasing timelocks (1, 2, and 3 days,
respectively), each user has enough time to propagate r. Users are incentivized to unlock
the HTLC. If something goes wrong before step (3) is completed, or if D chooses not
to reveal r, the HTLCs are reverted after the timelocks expire. Thus, the payment is
atomic.

channels. Later, in [DFH18], they were refined to support multiple intermediaries and
in [DEF+19b] to support multi-party channels.

Limitation L5 (Bitcoin-Compatible Virtual Channels). Designing VCs in a secure
way is challenging. They involve three (or more) parties, which are possibly malicious or
even colluding. In the aforementioned Ethereum-based constructions [DEFM19,DFH18,
DEF+19b], Turing-complete smart contracts take care of conflict resolution in case of a
dispute on what is the latest state of the VC. Up to this point, it was unknown if VCs
could be constructed on blockchains with more limited scripting capabilities, e.g., Bitcoin.
Thus, the state of the art begs the following research question. Is it possible to construct
virtual channels in Bitcoin?

Limitation L6 (Domino Attack). It turns out that there are Bitcoin-compatible

11

1. Introduction

VC constructions, as shown by our work [AME+21] and concurrently by [JLT20].
While [AME+21] provides two constructions for VCs over one intermediary, [JLT20]
provides a construction over multiple intermediaries but is built on payment channels
with limited lifetime and thus not compatible with Lightning Network channels. [KL]
introduces a more efficient construction, but requires an op_code not supported in
Bitcoin. As it turns out, these VC constructions share a common design paradigm, which
unfortunately leads to a severe new attack, which we name Domino attack. This attack
allows an attacker to shut down the underlying PCN. Given this state of the art, we
propose the following research question. Can we construct Bitcoin-compatible virtual
channels over multiple hops and be secure against the Domino attack?

1.3 Methodology
These issues pose a unique set of challenges; to overcome them, we need to design novel,
distributed protocols that combine cryptographic primitives with on-chain adjudication
provided by the scripting enabled by the underlying cryptocurrency. Due to our focus on
limited scripting capabilities, we cannot rely on Turing-complete smart contracts, which
execute complex logic and checks but are instead less expressive and can only perform
simpler checks. Thus, we need to ensure a majority of our logic in some other way, e.g.,
cryptographically with adaptor signatures.

Applications built on top of blockchains are inherently critical as they are related to
money. To deal with this, a formal approach is necessary. Therefore, we define security
and privacy properties for our protocols, formalize the protocols, and rigorously prove
that the protocols achieve these properties.

Formalizing complex protocols is not trivial, especially since, in our case, the mutually
untrusted protocol parties not only interact with themselves but with other protocols, e.g.,
blockchain or payment channel protocols. One approach to formalizing protocols in such
a composable way is the Universal Composability (UC) framework [Can01,CDPW07],
which we use for our protocols [AMSKM21, AMSKM23, AME+21, AEE+21, ATM+22,
AAM22,SAAM23]. This framework allows us to formalize protocols in a way such that
security and privacy properties are preserved when composed with other protocols, which
is known as universal composition.

Applying the UC framework consists of defining an ideal functionality that acts as
a trusted third party and defines the idealized behavior of the protocol, as well as a
real-world protocol representing the actual protocol. The objective is then to show
that the real-world protocol and the ideal protocol based on the ideal functionality are
computationally indistinguishable to an outside environment. This means any attack
that can be carried out in the real world is likewise possible in the ideal world. This is
accomplished by defining a simulator that converts any attack on the real-world protocol
into an attack on the ideal functionality. Employing the UC framework requires formal
definitions of both the real-world protocol and the ideal functionality and demonstrating
their computational indistinguishability through the use of said simulator.

12

1.4. Contributions

Complementing this approach, we also describe an attack against existing protocols [AM-
SKM23], where we ensure to (i) clearly demonstrate the attack process and (ii) determine
if it constitutes an attack on the model itself or a flaw in the proof. In the case of the
attack we find in [AMSKM23], it is an attack on the model. We rely on game-based
proofs to formalize and prove adaptor signatures in [AEE+21].

Experimental Evaluation and Simulations. To show the practical viability of
our work, we try to incorporate evaluations and simulations wherever appropriate. For
example, for protocols, we generally develop open-source proof-of-concept prototypes to
demonstrate compatibility with (for instance) Bitcoin and to measure and compare the
cost in terms of computation, communication, and fees against existing protocols. For
attacks, algorithms, or to analyze how a protocol might perform in practice [AMSKM21,
AMSKM23], we simulate the impact on a real-world data snapshot. We provide these
tools on GitHub, along with the data they operate on, to ensure reproducibility.

1.4 Contributions

1.4.1 Sleepy Channels: Bi-directional Payment Channels without
Watchtowers

In Chapter 2, which presents [ATM+22], we address L1. We provide a protocol that gets
rid of the online assumption that is present in existing bidirectional payment channel
constructions with unlimited payments. Instead of having to be online constantly (e.g.,
at least once per day in Lightning) and watching out for misbehavior, parties can safely
go offline for extended periods of time and come online only once at a pre-scheduled time.

Additionally, we eliminate the requirement for relative timelocks, which means that the
scheme is compatible with a wide range of cryptocurrencies. Theoretically, the necessary
absolute timelocks could be replaced with timelock puzzles [RSW96], making the scheme
compatible with any blockchain that supports digital signatures.

We evaluate the performance of this protocol with a proof-of-concept implementation.
Further, we analyze the security of the scheme in the UC framework.

1.4.2 Generalized Channels from Limited Blockchain Scripts and
Adaptor Signatures

In Chapter 3, which presents [AEE+21], we address L2. We present a novel and general
protocol for channels that is compatible with Bitcoin and allows to host any application
that can also be encoded with the underlying scripting language. In other words, anything
that can be hosted on layer-1 in Bitcoin can be deployed on layer-2 with these new
channels.

We further improve efficiency (i) in terms of on-chain overhead in case of a dispute (from
linear in the number of applications to constant), (ii) in terms of nested applications (from

13

1. Introduction

exponential to linear in the number of recursions), and (iii) in terms of off-chain storage
overhead. We achieve this by removing the need for state duplication (cf. Figure 1.4).

To still be able to identify who published the state without relying on a duplicate state, we
employ adaptor signatures. Poelstra has recently introduced this cryptographic primitive
in a mailing list [Poe], but we formalize it for the first time.

We further prove the security of this protocol in the UC framework and evaluate the
protocol’s performance and compatibility with a proof-of-concept implementation.

1.4.3 Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

In Chapter 4, which presents [AMSKM21], we address L3. For the first time, we present a
secure multi-hop update protocol that proceeds in one round of communication. Instead
of propagating a secret like in traditional multi-hop payment schemes such as HTLC-based
payments or [MMS+19], we synchronize the channels with a transaction that acts as
a global event. In addition to ensuring that honest users do not lose their funds, the
scheme is also secure against the wormhole attack [MMS+19].

We implement a proof-of-concept implementation to evaluate the protocol’s performance
and showcase its compatibility with Bitcoin and the Lightning Network. Additionally,
we analyze the security and privacy of the scheme in the UC framework.

1.4.4 Thora: Atomic and Privacy-Preserving Multi-Channel Updates

In Chapter 5, which presents [AAM22], we address L4. We provide a protocol for
atomically updating multiple channels on any topology, in particular also ones that are
not a path.

In contrast to [EMSM19], we provide atomicity and value privacy. Further, our construc-
tion does not rely on Turing-complete smart contract capabilities, like [MBB+19b]. To
this end, we enable for the first time applications that rely on non-path atomic updates
of channels, e.g., crowdfunding applications.

To analyze the security and privacy, we model our protocol in the UC framework. To show
compatibility with Bitcoin and evaluate the on- and off-chain overhead, we implement a
proof of concept.

1.4.5 Bitcoin-Compatible Virtual Channels

In Chapter 6, which presents [AME+21], we address L5. We provide a construction that
enables virtual channels in Bitcoin and other cryptocurrencies with limited scripting
capabilities for the first time.

We present two constructions: virtual channels with validity (limited lifetime) and without
validity (unlimited lifetime). Both constructions work via one intermediary and have
some slightly different properties. We formally model these constructions in the UC
framework to analyze security.

14

1.4. Contributions

We implement a proof-of-concept implementation that shows the compatibility with
Bitcoin and Lightning Network channels. Further, we conduct an evaluation measuring
the on-chain and off-chain overhead.

1.4.6 Breaking and Fixing Virtual Channels: Domino Attack and
Donner

In Chapter 7, which presents [AMSKM23], we address L6. We analyze existing Bitcoin-
compatible virtual channel constructions [AME+21, KL, JLT20], find a new attack on
these constructions, and introduce a novel construction that is secure against it.

In particular, we identify a common design in these constructions: The virtual channel is
funded from the underlying payment channels. The novel attack, which we name Domino
attack, is a direct consequence of this design. The attack is so severe that it allows an
adversary to shut down the underlying PCN itself. We conduct a simulation of this
attack on the LN to show the damage that an attack could cause. We also discuss other
shortcomings, such as only supporting a single intermediary, latency, linear overhead on
the blockchain, non-constant per-user storage overhead, and unfair fee models.

We then introduce Donner, a new virtual channel construction that uses a different
design. Donner not only overcomes these drawbacks but also provides security against
the Domino attack. To analyze the security and privacy of Donner, we formalize the
construction in the UC framework.

We implement a proof-of-concept implementation that shows the compatibility of Donner
with Bitcoin and measures its on-chain costs. Donner is also compatible with Lightning
Network payment channels.

15

CHAPTER 2
Sleepy Channels: Bi-directional

Payment Channels without
Watchtowers

Abstract

Payment channels (PC) are a promising solution to the scalability issue of cryptocurrencies,
allowing users to perform the bulk of the transactions off-chain without needing to post
everything on the blockchain. Many PC proposals, however, suffer from a severe limitation:
Both parties need to constantly monitor the blockchain to ensure that the other party did
not post an outdated transaction. If this event happens, the honest party needs to react
promptly and engage in a punishment procedure. This means that prolonged absence
periods (e.g., a power outage) may be exploited by malicious users. As a mitigation, the
community has introduced watchtowers, a third-party monitoring the blockchain on behalf
of off-line users. Unfortunately, watchtowers are either trusted, which is critical from a
security perspective, or they have to lock a certain amount of coins, called collateral, for
each monitored PC in order to be held accountable, which is financially infeasible for a
large network.

We present Sleepy Channels, the first bi-directional PC protocol without watchtowers (or
any other third party) that supports an unbounded number of payments and does not
require parties to be persistently online. The key idea is to confine the period in which
PC updates can be validated on-chain to a short, pre-determined time window, which
is when the PC parties have to be online. This behavior is incentivized by letting the
parties lock a collateral in the PC, which can be adjusted depending on their mutual trust
and which they get back much sooner if they are online during this time window. Our
protocol is compatible with any blockchain that is capable of verifying digital signatures

17

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

(e.g., Bitcoin), as shown by our proof of concept. Moreover, our experimental results
show that Sleepy Channels impose a communication and computation overhead similar
to state-of-the-art PC protocols while removing the watchtower’s collateral and fees for
the monitoring service.

This chapter presents the results of a collaboration with Sri AravindaKrishnan Thyagarajan,
Giulio Malavolta, Pedro Moreno-Sanchez, and Matteo Maffei, which was published at
the ACM Conference on Computer and Communications Security (CCS) in 2022 under
the title "Sleepy Channels: Bi-directional Payment Channels without Watchtowers". Sri
AravindaKrishnan Thyagarajan and I contributed equally to this work and are considered to
be co-first authors. I contributed to the design of the construction, which was a joint effort
with the other co-authors. Sri AravindaKrishnan Thyagarajan is responsible for writing
the protocol and the comparison to related work. I am responsible for the formalization of
the protocol, the ideal functionality, the implementation of a proof-of-concept, evaluation,
and conducting the experiments, as well as the proof. Pedro Moreno-Sanchez, Giulio
Malavolta, and Matteo Maffei were the general advisors and contributed with continuous
feedback.

2.1 Introduction

Bitcoin has put forward an innovative payment paradigm both from the technical and
the economical point of view. A permissionless and decentralized consensus protocol is
leveraged to agree on the validity of the transactions that are afterwards added to an
immutable ledger. This approach, however, severely restricts the transaction throughput
of decentralized cryptocurrencies. For instance, Bitcoin supports about 10 transactions
per second and requires confirmation times of up to 1 hour.

Payment channels (PC) [PD16] have emerged as one of the most promising scalability
solutions. A PC enables an arbitrary number of payments between users while only two
transactions are required on-chain. The most prominent example, currently deployed
in Bitcoin, is the Lightning Network (LN) [Liga], which at the time of writing hosts
bitcoins worth more than 130M USD, in a total of more than 19k nodes and more than
81k channels.

In a bit more detail, a PC between Alice and Bob is created with a single on-chain
transaction open-channel, where users lock some of the coins into a shared output
controlled by both users (e.g., requiring a 2-of-2 multisignature), effectively depositing
their coins and creating the channel. Both users additionally make sure that they can
get their coins back at a mutually agreed expiration time. After the channel has been
successfully opened, they can pay each other arbitrarily many times by exchanging
authenticated off-chain messages representing updates of their share of coins in the shared
output. The PC can be finally closed by including a close-channel transaction on-chain
that effectively submits the last authenticated distribution of coins to the blockchain (or
after the PC has expired).

18

2.1. Introduction

Issue with bidirectional channels. While the initial versions of payment channels
were unidirectional (i.e., only payments from Alice to Bob were allowed), several designs
for bi-directional payment channels have been proposed so far. The technical crux of
these protocols is to ensure that no coins are stolen between the mutually untrusted Alice
and Bob. To illustrate the problem, imagine that the current balance of the channel bal
is {Alice:10, Bob:5 }. Alice pays 3 coins to Bob, moving the channel balance to bal’ as
{Alice:7, Bob:8}. At this point, Alice benefits from bal while Bob would benefit if bal’ is
the one established on-chain.

The different designs of bi-directional payment channels available so far provide alternative
solutions for this crucial dispute problem (see Table 2.1). One approach consists on
leveraging the existence of Trusted Execution Environment (TEE) at both Alice and
Bob [LEPS16]. This approach, however, adds a trust assumption that goes against the
decentralization philosophy of cryptocurrencies and it is unclear whether it holds in
practice [CCX+19,VBOM+19]. Another approach consists on relying on a third-party
committee [AKKWZ21,CCF+21] to agree on the last balance accepted by Alice and Bob.
Again, this adds an additional assumption on the committee, and current proposals work
only over smart contracts as those available in Ethereum.

The most promising approach in terms of reduced trust assumptions and backwards
compatibility with Bitcoin, which is the one implemented in the LN, is based on the
encoding of a punishment mechanism that allows Alice (or Bob) rescue all the coins in
a channel if Bob (or Alice) attempts to establish a stale or outdated balance on-chain.
Following with the running example, after the balance bal′ is established, Alice and Bob
exchange with each other a revocation key associated to bal that effectively allows one of
the parties to get all the coins from bal if it is published on-chain by the other party.

In detail, imagine that after bal′ has been agreed and bal has been revoked, Alice (the
case with Bob is symmetric) attempts to close the channel with balance bal. As soon
as bal is added on-chain, a small punishment time δ is established within which Bob
can transfer all coins in bal to himself with the corresponding revocation key. After δ
has expired, bal is established as final. This mechanism with time δ is called relative
timelock1 in the blockchain folklore (i.e., relative to the time bal is published).

The reader might ask at this point: And what happens if Bob does not monitor the
blockchain on time (e.g., Bob crashes or he is offline) to punish the publishing of bal?
In that case, Alice effectively manages to publish an old state that would be more
beneficial for her. Therefore, the above mechanism makes an important requirement for
the channel users: Both Alice and Bob have to be online persistently to ensure that if
one of them cheats, the other can punish within δ. However, if Alice and Bob are regular
users, it is highly likely that they go offline sporadically if not for prolonged periods of
time. Moreover, existing currencies like Monero do not possess the capability for relative
timelock in their script, and therefore the approach falls short of backwards compatibility
with some prominent currencies.

1This can be realized via checkSequenceVerify (CSV) script available in Bitcoin.

19

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

The role of watchtowers. In order to avoid this problem, honest users (Bob in
our running example) can rely on a third party, called Watchtower, that does the
punishing job on his behalf. Several watchtower constructions have been proposed so
far [Unl,ATLW20,KNW19,MSYS21,MBB+19a,ALS+18], but they all share the same
fundamental limitation: watchtowers are either trusted, which is critical from a security
perspective, or they have to lock a certain amount of coins, called collateral, for each
monitored channel in order to be held accountable, which is financially infeasible for a
large network.

Given this state of affairs, in this work, we investigate the following question: Is it
possible to design a secure, and practical payment channel protocol that does not require
channel parties to be persistently online, nor additional parties (not even watchtowers)
or additional trust assumptions, and is backwards compatible (no complex scripts) with
current UTXO-based cryptocurrencies?

Table 2.1: Comparison among payment channel approaches. We do not consider [AKKWZ21,CCF+21]
as they rely on third-party committees with additional trust assumptions. Online assumption refers to
the honest user being online for revocation of an old state on-chain. Unrestricted lifetime means the
protocol does not require users to close the channel before a pre-specified time. Unbounded payments
refer to channel users making any number of payments while the channel is open. In terms of scripts,
DS refers to digital signatures, SIGHASH_NOINPUT refers to a specific signature scheme [DRO], Seq.
number refers to attaching a state number to a transaction and verifying if it is greater or smaller than
the current height of the blockchain. In the case of Duplex [DW15], d is the number of payments made in
the channel. LRS refers to the Linkable Ring Signature scheme used in Monero [TMSS22], and DLSAG
refers to the transaction scheme proposed in [MSBL+20].

Bi-directional Pre-schedule
online

Unrestricted
lifetime

Unbounded
payments Script requirements1

Spillman [Spi] ✗ ✓ ✗ ✓ DS
CLTV [Tod] ✗ ✓ ✗ ✓ DS + CLTV

Duplex [DW15] ✓ ✓2 ✗ ✗ DS + CLTV
Eltoo [DRO] ✓ ✗ ✓ ✓ DS + CSV + SIGHASH_NOINPUT + Seq number

Lightning [Liga] ✓ ✗ ✓ ✓ DS + CSV
Generalized [AEE+21] ✓ ✗ ✓ ✓ DS3 + CSV

Paymo [TMSS22] ✗ ✓ ✗ ✓ Monero’s LRS + CLTV
DLSAG [MSBL+20] ✗ ✓ ✗ ✓ DLSAG + CLTV
Teechan [LEPS16] ✓ ✓ ✓ ✓ DS + TEE

This work ✓ ✓ ✗ ✓ DS + CLTV
This work+ [TBM+20] ✓ ✓ ✗ ✓ DS

1: Requiring less script capabilities from the blockchain results in better compatibility with currencies,
and better on-chain privacy (fungibility).

2: This requires that the transactions of the first level of the tree use CLTV instead of CSV.
3: The digital signature scheme used must have adaptor signature [AEE+21] capability.

2.1.1 Our Contribution

In this work, we answer this question in the affirmative. We design Sleepy Channels, a
new bi-directional payment channel protocol (Section 2.5) that does not require either of
the channel parties to be persistently online, and therefore does not require the services
of a watchtower. Our protocol allows users to schedule ahead of time when they have to
come online to validate possible channel updates. This requirement is present even in

20

2.1. Introduction

the watchtower proposals [Unl,ATLW20,KNW19,MSYS21,MBB+19a,ALS+18], where
the users are required to come online before a specific time to ensure the watchtower has
acted correctly. Moreover, our protocol does not make use of any complex script and is
therefore backwards compatible with existing UTXO-based cryptocurrencies, many of
which can avail bi-directional payment channels without additional trust assumptions for
the very first time.

At the core of our Sleepy Channels protocol, we have a novel collateral technique that
plays a dual role: (1) Enables the punishment of a misbehaving channel user within a
predetermined time, irrespective of when the cheating exactly takes place. In technical
terms, we no longer require relative timelocks (CSV). (2) Incentivises a channel user to
cooperate in closing the channel if the other channel user wishes to do so. Our collateral
technique requires both users to lock some amount of collateral each (same or different
amounts for the two users), whose exact value is determined by the level of trust between
the users: A high trust level means low collateral, while a low trust level means high
collateral.

Our protocol only involves signature generation on mutually agreed transactions, along
with the use of verifiable timed signatures [TBM+20,TMSS22] for achieving backward
compatibility with existing currencies, especially privacy-preserving currencies like Monero
for the first time. With the aid of techniques from [TBM+20,TMSS22], the transactions in
our protocol look exactly the same as any other regular transaction in the currency, thereby
ensuring high fungibility. If the currency already supports checkLockTimeVerify
(CLTV) script2, then our protocol only requires signature generation.

We formally prove the security of our Sleepy Channels protocol in the Universal Compos-
ability (UC) [Can00] framework. For this, we design an ideal functionality (in Section 2.4)
that captures a bi-directional payment channel with the same security and efficiency
guarantees as the functionality from [AEE+21], except that we achieve delayed finality
with punish. This notion guarantees that until some time T, an honest party can receive
coins according to either the latest payment state or all the coins from the channel (if
the other misbehaves). Due to space constraints, the formal protocol description and the
security analysis in the UC framework can be found in Appendix A.1.

We evaluate the performance of our Sleepy Channels protocol in the presence of CLTV and
our results show that the time and communication cost are in line with the highly efficient
protocols used in Lightning Network (LN) [Liga]. We further conduct two simulation
experiments. In the first, we measure how much centralized collateral watchtower service
providers need to allocate, in order to serve a certain percentage of the LN. We analyze
watchtower proposals that fully collateralize the channels, e.g., [ATLW20, MSYS21,
MBB+19a]. For 30% of the LN, this amounts to around 890 BTC (or roughly 39M USD)
of collateral. For Sleepy Channels, on the other hand, the collateral is distributed, without
the need of a central entity owning this amount of money. In the second experiment,

2The script (available in Bitcoin) sets a transaction to be valid only after some pre-specified height (t)
of the blockchain. That is, the transaction is set to be valid only after some point in time in the future.

21

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

we measure the channels at risk of having their funds stolen given a chance of failing to
come online once a day over a given time period. Using LN channels over a one-month
period, for a chance of 0.1% there are 5k channels at risk, for a chance of 1% there are
49k channels at risk (roughly 60% of LN). For Sleepy Channels over the same period,
there are around 97% fewer channels at risk.

2.1.2 Related Work

Below, we discuss and compare other prior works that are relevant to our work.

Comparison to other payment channel protocols. CLTV [Tod] and Spillman [Spi]
proposed uni-directional payment channels between Alice and Bob where payments could
only be made to Bob and thus the balance of Bob only increases. Therefore there was
no payment revocation as Bob always preferred the most recent payment. Moreover,
the channel had a fixed expiry that is set at the time of the channel creation. Duplex
channels [DW15] support bi-directional channels but only support a limited number
of payments as with each successive payment, the lifetime of the channel decreases.
Moreover, the protocol requires log d number of transactions to close the channel where d
is the number of payments made. Other payment channel proposals typically require only
one transaction to close. Eltoo [DRO] also supports bi-directional payments but requires a
special signature scheme like SIGHASH_NOINPUT, relative timelocks (CSV), and related
scripts, and therefore is not compatible with several of the existing currencies, including
Bitcoin itself. Lightning channels [Liga] are the most popular channels currently in use
that support bi-directional payments but require relative timelocks (CSV). Generalized
channels [AEE+21] support bi-directional payments but again require relative timelocks
(CSV). More importantly, they require the underlying signature scheme to support adaptor
signatures [AEE+21] capability3. Paymo [TMSS22] and DLSAG [MSBL+20] are proposals
tailored for Monero that only support uni-directional payments. Teechan [LEPS16] is
a bi-directional payment channel proposal but requires both users to possess TEEs. A
summary of the comparison is presented in Table 2.1.

Payment channels that support arbitrary conditional payments are referred to as state
channels [DFH18,DEFM19,CCF+21] and require complex scripts like smart contracts
and are incompatible with UTXO-based currencies. Bi-directional payments can also be
realized by making use of the smart contract support of a third ledger (like Ethereum)
via ZK-Rollups [ZK-]. However, the solutions available are far from ideal either due to
high computational costs off the chain or high costs on-chain in terms of gas costs or
transaction fees [Cry]. Moreover, zk-rollups rely on a coordinator for liveness, meaning
that if the coordinator goes offline, every user must submit a punishment transaction
on-chain, which is costly, effectively closes all channels and largely increases the overhead
on-chain. Finally, such a coordinator is in the position to observe every single transaction

3Recently it was shown that deterministic signatures do not possess adaptor signature capabili-
ties [EFH+21], that includes signature schemes like BLS.

22

2.1. Introduction

between any two users (thus largely limiting their privacy) and decide whether to process
such transactions or censor them instead.

Additionally, the payment channel proposals can be compared based on the number of
transactions it requires to close a channel. For comparable security, we consider the
prior payment channel protocols to be supported by the state-of-the-art watchtower
proposal [MSYS21]. We have that when parties are honest and trustful of each other,
prior works require 2 transactions to close a channel (one to close the channel and one
for watchtower collateral), while Sleepy Channels require only 1 transaction. In the case
where parties are honest and distrustful, prior works require in total 3 transactions to
close the channel same as Sleepy Channels if parties wish for a fast closure. A notable
exception is Duplex which requires log d. In case where parties are dishonest and in the
worst case, prior works like Duplex require log d, Eltoo requires 5, Lightning requires
4, and generalized channels requires 5 transactions in total. Sleepy channels on the
other hand require only 3 transactions in total. Here total refers to the total number of
transactions to misbehave, punish, and close the channel.

Advantages over watchtowers. As discussed above, parties may avail the services of a
third party like a watchtower. Monitor [Unl] is a watchtower proposal requiring no special
scripts. However, an offline watchtower is not penalized and may even get rewarded if a
revoked payment is successful on-chain. DCWC [ALS+18] is another such proposal that
fails to penalize an offline watchtower where the honest user ends up losing coins as a
revoked payment is posted on the chain. Outpost [KNW19] requires an OP_RETURN
script and also requires the channel user (hiring the watchtower) to pay the watchtower
for every channel update. The OP_RETURN script (available in Bitcoin) is used to enter
arbitrary information of limited size into a transaction. This however increases the size of
the transaction thus requiring a transaction higher fee, and also affects the fungibility of
the coins involved in the transaction. PISA [MBB+19a] heavily relies on smart contract
support and also requires the watchtower to lock large collateral (equal to the channel
capacity) along with the channel. Cerberus channels [ATLW20] and FPPW [MSYS21]
are recent proposals that suffer from the problem of revealing the channel balance to the
watchtower per update and therefore lack balance privacy. Similar to PISA, they also
require the watchtower to lock large collateral along with the channel.

All of the above watchtower proposals also fundamentally lack channel unlinkability as
the watchtower can clearly track channel-related transactions on-chain. Except for PISA,
all of the above proposals still require relative timelocks (CSV), which can be replaced
with absolute timelocks (CLTV) at the expense of restricted lifetimes for the channels.
To incentivize watchtowers, the above protocols require the users to pay a one-time
or a persistent fee to the watchtower even if the users behave honestly. On the other
hand, users of Sleepy Channels do not lose any coins under honest behaviour as they are
guaranteed to get back their collateral.

23

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

txF

f

txA
Pay

vB

vA

B

A

OutputA

+∆

B
Upon revocation

... analogous for B

ChAB

Figure 2.1: The transaction flow of LN channel between A and B. Rounded boxes represent
transactions, rectangles within represent outputs of the transaction: here vA + vB = f . Incoming
arrows represent transaction inputs, while outgoing arrows represent how an output can be spent.
Double lines from transaction outputs indicate the output is a shared address. A single line from
the transaction output indicates that the output is a single party address. We write the timelock
(∆) associated with a transaction over the corresponding arrow.

2.2 Solution Overview

In this section, we give a high-level overview of our construction. We start by reviewing
the state of the art in payment channels, i.e., those employed in the Lightning Network
(LN) [Liga], illustrating its limitations, and, based on that, gradually introducing our
solution. Our solution consists of a base solution that removes the need for users to
constantly be online and an optional extension that aims to disincentivize users from
blocking funds in the case that they are online.

Lightning channels. Two parties A and B lock up some money in a joint address (or
channel) ChAB , as described in Figure 2.1. They can perform payments to each other by
exchanging payment transactions txPay, which commit to an updated balance of both
users, vA for A and vB for B in this case. Party A gets a signed transaction txA

Pay, while
party B gets a signed transaction txB

Pay, both of which reflect the above payment state.
In order for this mechanism to be secure, the parties need to revoke the previous state
whenever an update is performed. This is done by exchanging a punishment transaction
that gives the balance of the cheating user to the honest user, should the former try to
post an old (revoked) state. To give precedence to the punishment transaction, if party
A posts txA

Pay, it is forced to wait for a relative timelock of ∆ (in practice, one day) until
it can spend the balance vA, in order to give time to the other party B to punish. Notice
that party B can spend its balance vB immediately after txA

Pay is posted. On the other
hand, we have the analogous case for party B with the transaction txB

Pay.

With this mechanism in place, a party that wants to prevent being cheated on needs to
be online constantly throughout the lifetime of the channel and monitor the blockchain
for old states. If it does, it has ∆ time units immediately after the posting of txPay
to perform the punishment. One workaround for this problem is to employ a trusted
third party, a Watchtower, which takes over the responsibility of monitoring the ledger,
thereby allowing a party to safely go offline. As pointed out previously, this approach has

24

2.2. Solution Overview

fundamental drawbacks such as the need for the Watchtower to lock up coins for each
channel that it watches over, besides the fees requested by the Watchtower for its service.

Attempt to remove relative timelock. To drop the requirement for users to constantly
be online, an attempt is to replace the relative timelock of ∆ time units in Figure 2.1
with an absolute timelock until time T. This is done by specifying T as a block height
using the CLTV script. In other words, the party A that posts a state txA

Pay has to wait
until time T (irrespective of when txA

Pay is posted on the chain) before it can retrieve
the funds vA. This allows B to safely go offline during the channel lifetime and only
come back shortly before T to check if an old state was posted by A. We note that this
is completely symmetric: A can safely go offline until shortly before T and then check
whether or not B has posted an old state txB

Pay. However, this naive attempt punishes
honest parties that wish to close their channels. That is, in the case where an honest
party, w.l.o.g. say A, posts the latest state, it still needs to wait until time T before
having access to its funds vA. This could be undesirable as T could span several weeks.

Counter-party confirmation. While it is true that B (the counter-party) can safely
go offline until shortly before T, this is of course optional and one could think of cases
where B is not offline. In the case that B is online, B can go ahead and confirm that A
did not misbehave, i.e., A posted the latest state. So if B is online and decides to retrieve
its funds vB (thereby implicitly confirming the state dictated by txA

Pay), A’s funds should
be automatically unlocked as well.

We can implement this improvement as shown in Figure 2.2 where the counter-party
B can confirm a payment transaction thus enabling party A to immediately retrieve
its funds vA and not wait until T. To do this, after A posts the state txA

Pay, B has the
option (in the case B is online) to post the transaction txA,B

Fpay (along with a signature
on it) which lets A unlock its funds immediately by means of posting the transaction
txA∗

Fpay (along with a signature on it). Another way to think of this is that by unlocking
B’s funds using txA,B

Fpay, B gives a confirmation that txA
Pay is indeed the latest state. On a

technical level, the parties A and B would create a fast unlock transaction txA∗
Fpay that

can be spent if B puts its transaction txA,B
Fpay, using an output thereof as input. With

this improvement, A’s money vA either stays locked until T if B is offline or A’s money
becomes unlocked as soon as B spends its output vB, in case B is online before T.

2.2.1 Extension: Incentivizing a fast unlock

In the above solution, note that the balance vB that B committed to in the latest state
can be very small or even 0, such that the incentive for B to give this fast confirmation
is small or nonexistent. This leaves A to wait for a potentially long time (until T) and
opens the door to Denial-of-Service (DoS) attacks from B.

To avoid a situation where B is online, but has no or little incentive to unlock its funds
and thereby let A unlock its channel balance early, we add the following extension (as
described in Figure 2.3). To add an incentive for B to unlock early, we let B add a

25

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

txF

f

txA
Pay

vA

vB

txA,B
Fpay
ϵ

vB − ϵ B

ExitChA

txA∗
Fpay

vA + ϵ A

A

SleepyChA

≥ T

B
Upon revocation

Fast finish

... analogous for B

ChAB

Figure 2.2: Transaction flow of our base solution. Here double lines from transaction outputs
indicate that the output is a 2-party shared address between A and B. A single line from the
transaction output indicates that the output is a single party address. We have vA + vB = f and
ϵ is some negligible amount of coins.

collateral of amount c. For simplicity, let c be equal to the channel capacity f . B’s
collateral is locked in such a way that it remains locked until B gives a fast confirmation
for unlocking A’s coins. Note that A’s coins are now guaranteed to be smaller (or equal
in the worst case) to the amount of coins B has locked. This means that a malicious B
that is online and attempts to perform a DoS attack on A, ends up locking at least as
many coins from itself until T. Also note that for the case where A posts an old state, B
can first punish and then immediately unlock his coins plus collateral. Analogously, A
puts the same amount c as a collateral for the symmetric case. Later in Section 2.5.2, we
discuss scenarios where the two parties may lock different amounts of collateral each.

Making the collateral dynamic. We further refine this solution by changing c from
the total capacity of the channel f to a parameter chosen by both parties of the channel.
Depending on the level of trust between the two parties, the value of c can be anything
from 0 up to f . We note that setting c = 0 yields the base solution. Once the two parties
agree on a value for c, during the funding of the channel, they can fund the channel with
the total channel capacity f plus the additional collateral 2c (c from each party). Note
that the payments are still made with the channel capacity of f and the collateral coins
2c are only used as an incentive for the fast closing of channels. And after the closing,
both parties A and B get back their original collateral amounts of c coins each.

There is still one problem left though. Again, if the balance of B is 0 and A’s balance is
the capacity of the channel f , then B can lock up c coins and will lock up c + f coins of
A before the fast confirmation. In a final improvement, we resolve this issue by refining
the transaction txA

Pay so that A gets back its part of the collateral immediately. This
is safe since the collateral serves merely the purpose of incentivizing the counter-party

26

2.2. Solution Overview

txF

f + 2c

txA
Pay

c

vA

vB + c

A

txA,B
Fpay
ϵ

vB + c − ϵ B

ExitChA

txA∗
Fpay

vA + ϵ A

A

SleepyChA

≥ T

B
Upon revocation

Fast finish

... analogous for B

ChAB

Figure 2.3: Transaction flow of the extension to our protocol. Again, vA + vB = f and ϵ is some
negligible amount of coins. The collateral c can be chosen as a value 0 ≤ c ≤ f . For c = 0, we get
Figure 2.2.

(in this case B), to acknowledge that the transaction indeed corresponds to the latest
channel state. Note that the posting party A only unlocks its collateral right away and
not its channel balance set by txA

Pay. Indeed, in the extreme case, if A posts txA
Pay on the

chain, A can redeem its collateral c immediately while B locks up c coins and A locks up
only f coins. If c = f , notice that B has locked the same amount of coins as A, which
discourages B from launching a DoS attack on A.

Overcoming the drawbacks. With the presented constructions (Figure 2.2 and
Figure 2.3), we indeed manage to achieve bidirectional channels with unbounded payments
without the need for users to constantly be online and monitor the blockchain. We offer
our base solution and our extension, which puts an additional incentive on the other user
to confirm states early in case they happen to be online. However, in both solutions,
they can safely go offline and can come back only shortly before the pre-defined lifetime
T of the channel. Further, our construction requires only digital signatures and absolute
timelocks in the form of CLTV.

We wish to emphasize that a similar requirement of A (or B) going online shortly before T
is present even in the watchtower proposals [Unl,ATLW20,KNW19,MSYS21,MBB+19a,
ALS+18]. In that case, the hiring (channel) user Bob, is required to come online at a
specific point in time T to check if the watchtower performed according to the protocol
specification. That is, check if the watchtower indeed punished a misbehaving A correctly.

Timelock independence and compatibility. The absolute timelock in the form
of CLTV makes the protocol not compatible with currencies like Monero where the
CLTV script is not supported. However, the requirement of CLTV script in Sleepy
Channels can be removed by making use of timed payments through verifiable timed

27

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

signatures (VTS) [TBM+20]. This makes Sleepy Channels applicable in a wider range of
currencies as it only requires a digital signature script for cryptographic authentication
from the underlying currency. For the case of Monero, making use of a variation of VTS
from [TMSS22] for linkable ring signatures (instead of a standard digital signature), we
can realize timed payments and thus a bi-directional payment channel in the form of
Sleepy Channels for the first time. We discuss more details of the same in Section 2.5.

2.3 Preliminaries

We denote by n ∈ N the security parameter and by x ← A(in; r) the output of the
algorithm A on input in using r ← {0, 1}∗ as its randomness. We often omit this
randomness and only mention it explicitly when required. We consider probabilistic
polynomial time (PPT) machines as efficient algorithms.

Universal composability. We model security in the universal composability framework
with global setup [CDPW07], which lets us model concurrent executions. We consider a
set of parties P = {P1, . . . , Pn} that is running the protocol. Further, we assume static
corruptions, where the adversary A announces at the beginning which parties it corrupts.
We denote the environment by E , which captures anything that happens “outside the
protocol execution”. We model synchronous communication by using a global clock Fclock

capturing execution rounds. We assume authenticated communication with guaranteed
delivery between users, as in FGDC .

For a real protocol Π and an adversary A we write EXEC Π,A,E to denote the ensemble
corresponding to the protocol execution. For an ideal functionality F and an adversary
S we write EXEC F ,S,E to denote the distribution ensemble of the ideal world execution.

Definition 1 (Universal Composability). A protocol τ UC-realizes an ideal functionality
F if for any PPT adversary A there exists a simulator S such that for any environment
E the ensembles EXEC τ ,A,E and EXEC F ,S,E are computationally indistinguishable.

Digital signatures. A digital signature scheme DS, lets a user authenticate a message
by signing it with respect to a public key. Formally, we have a key generation algorithm
Gen(1n) that takes the security parameter 1n and outputs the public/secret key pair
(pk, sk), a signing algorithm Sign(sk, m) that inputs sk and a message m ∈ {0, 1}∗ and
outputs a signature σ, and a verification algorithm Verify(pk, m, σ) that outputs 1 if σ is
a valid signature on m under the public key pk, and outputs 0 otherwise. We require
the standard notion unforgeability for the signature scheme [GMR88]. A stronger notion
of strong unforgeability for the signature scheme was shown to be equivalent to the UC
formulation of security [BH04].

2-Party computation. The aim of a secure 2-party computation (2PC) protocol is for
the two participating users P0 and P1 to securely compute some function f over their
private inputs x0 and x1, respectively. Apart from output correctness, we require privacy,
i.e., the only information learned by the parties in the computation is the one determined

28

2.4. Ideal Functionality Bi-directional Channels

by the function output. Note that we require the standard security with aborts, where the
adversary can decide whether the honest party will receive the output of the computation
or not. In other words, we do not assume any form of fairness or guaranteed output
delivery. For a comprehensive treatment of the formal UC definition, we refer the reader
to [Can00]. In this work, we make use of 2-party signing key generation (ΓJKGen) and
2-party signature generation (ΓSign) protocols [Lin21,GJKR99,BDN18].

Blockchain and transaction scheme. We assume the existence of an ideal ledger
(blockchain) functionality L [MMSK+17, MMS+19, AEE+21] that maintains the list
of coins currently associated with each address (denoted by addr) and that we model
as a trusted append-only bulletin board. The corresponding ideal functionality FB
maintains the ledger L locally and updates it according to the transactions between
users. Transactions are generated by the transaction function tx: A transaction txA that
is generated as txA := tx([addr1, . . . , addrn], [addr′

1, . . . , addr′
m], [v1, . . . , vm]), such that it

transfers all the coins (say v coins) from the source addresses [addr1, . . . , addrn] to the
destination addresses [addr′

1, . . . , addr′
m] such that v1 coins are sent to addr′

1, v2 coins are
sent to addr′

2 and so on, where v1 + v2 + · · · vm = v. Addresses are typically public keys
of digital signature schemes and the transaction is authenticated with a valid signature
with respect to each of the source addresses [addr1, . . . , addrn] (as the public keys). We
consider Unspent Transaction Output (UTXO) model where an address is tied to the
transaction that creates it and is spendable (used as input to a transaction) exactly once,
like in Bitcoin, Monero, etc.

2.4 Ideal Functionality Bi-directional Channels

We define an ideal functionality FL that closely follows the bi-directional payment
functionality defined in [AEE+21]. In fact, our functionalitiy captures the same security
and efficiency notions, except that we achieve delayed finality with punish, which means
that the channel owner has the guarantee that until time T, the time until which the
latest state is locked, either that state or one that gives all the money to the honest party
can be enforced on the ledger. Whenever one party tries to close the channel with the
latest state, the other party can safely be offline until before T, but if it stays online is
incentivized to confirm it before T, thereby unlocking not only the state but also their
collateral c. We present the ideal functionality for our solution with extension and note
that setting c = 0 yields the functionality for the base solution without collateral.

Specific notation. We abbreviate γ as an attribute tuple containing the following
information γ := (γ.id, γ.users, γ.cash, γ.st, γ.T, γ.c), where γ.id ∈ {0, 1}∗ is the channel
identifier, γ.users defines the two users of the channel, γ.cash ∈ R≥0 the total capacity,
γ.st the list of outputs (addresses and values) in, γ.T ∈ R≥0 defines the lifetime of the
channel, and γ.c ∈ R≥0 the collateral of the channel.

We denote by m
τ−→ P the output of message m to party P in round τ . Similarly, m

τ←− P denotes the input of message m in round τ . A message m generally consists of

29

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

(MESSAGE-ID, parameters). For better readability, we omit session identifiers in messages.
In our communication model, messages sent between parties are received in the next
round, i.e., if A sends a message to B in round τ , B will receive it in round τ + 1.
Messages sent to the environment, the simulator S or to FL are received in the same
round.

Description. As we do not consider privacy notions, we say that F implicitly forwards
all messages to the simulator S. Note that FL cannot create signatures or prepare
transaction ids. It expects S to perform these tasks, e.g., expecting a transaction of a
certain structure to appear on the ledger, and outputting ERROR, if this does not happen.
Similarly, whenever the functionality expects S to provide or set a value, but S does not
do it, the functionality implicitly outputs ERROR, where all guarantees are potentially
lost. Hence, we are interested only in protocols that realize F , but never output ERROR.

FL interacts with a ledger L(∆, Σ, V) parameterized over a given upper bound ∆, after
which valid transactions are appended to the ledger, a signature scheme Σ and a set V,
defining valid spending conditions, including signature verification under Σ and absolute
timelocks. FL can see the transactions on the ledger and infer ownership of coins.
Following [AEE+21], we keep the functionality FL description generic, by parameterizing
it over Tp and k, both of which are independent of ∆. Tp is an upper bound on the
number of consecutive off-chain communication rounds between two users, while k defines
the number of states that a channel has. We present a protocol later, where k = 2. Both
Tp and ∆ are defined as upper bounds. If the actual values are less, S implicitly informs
FL of these values.

The ideal functionality keeps a map Γ, which maps the id of an existing channel to the
channel tuple γ representing the latest state and the address of the funding transaction,
ChAB. Note that during an update, there may be two states that are active {γ, γ′}.
We give a formal description of FL(∆,Σ,V)

L (which we abbreviate as FL) in Figure 2.4.
Following, we explain our functionality in prose and argue inline, why certain security
and efficiency goals hold.

Create. When both parties of channel γ send a message (CREATE, γ, tidP) to FL within
Tp rounds, FL expects a funding transaction to appear on L within ∆ rounds, spending
both inputs tidA and tidB and holding γ.cash + 2γ.c coins. The channel funding address
ChAB is stored in Γ and CREATED is sent to both parties.

Update. One party P initiates the update with (UPDATE, id, −→
θ , tstp), where id refers

to the channel identifier, −→
θ represents the new state (e.g., coin distribution or other

applications that work under delayed finality with punish) and tstp denotes the time
needed to setup anything that is built on top of the channel. First, the parties agree on
the new state. For this, S informs FL of a vector of k transactions. Both parties can
abort here by P not sending SETUP–OK and Q not sending UPDATE–OK. When P receives
UPDATE–OK, they move on to the revocation. FL expects a message REVOKE from both
parties, and in the success case, UPDATED is output to both parties. In case of an error,

30

2.4. Ideal Functionality Bi-directional Channels

Ideal Functionality FL(Tp, k)

Create: Upon (CREATE, γ, tidA)
τ0←− A, distinguish:

Both agreed: If already received (CREATE, γ, tidB)
τ←− B, where τ0 − τ ≤ Tp: If txF := tx([tidA, tidB], ChAB ,

γ.cash + 2γ.c) for some address ChAB appears on L in round τ1 ≤ τ + ∆ + Tp, set Γ(γ.id) := ({γ}, ChAB) and
(CREATED, γ.id)

τ1−→ γ.users. Else stop.

Wait for B: Else wait if (CREATE, id)
τ≤τ0+Tp←−−−−−−− B (then, “Both agreed” option is executed). If such a message is not

received, stop.

Update: Upon (UPDATE, id, −→
θ , tstp)

τ0←− A, parse ({γ}, ChAB) := Γ(id), set γ′ := γ, γ′.st := −→
θ :

1. In round τ1 ≤ τ0 + Tp, let S define −→tid s.t. |−→tid| = k. Then (UPDATE–REQ, id, −→
θ , tstp, −→tid)

τ1−→ B and (SETUP, id, −→tid)
τ1−→

A.
2. If (SETUP–OK, id)

τ2≤τ1+tstp←−−−−−−−− A, then (SETUP–OK, id)
τ3≤τ2+Tp−−−−−−−→ B. Else stop.

3. If (UPDATE–OK, id)
τ3←− B, then (if B honest or instructed by S) send (UPDATE–OK, id)

τ4≤τ3+Tp−−−−−−−→ A. Else distinguish:

• If B honest or if instructed by S, stop (reject). Else set Γ(id) := ({γ, γ′}, ChAB), run L–ForceClose(id) and stop.

4. If (REVOKE, id)
τ4←− A, send (REVOKE–REQ, id)

τ5≤τ4+Tp−−−−−−−→ B. Else set Γ(id) := ({γ, γ′}, ChAB), run L–ForceClose(id)
and stop.

5. If (REVOKE, id)
τ5←− B, Γ(id) := ({γ′}, ChAB), send (UPDATED, id, −→

θ)
τ6≤τ5+Tp−−−−−−−→ γ.users and stop (accept). Else set

Γ(id) := ({γ, γ′}, ChAB), run L–ForceClose(id) and stop.

Close: Upon (CLOSE, id)
τ0←− A, distinguish

Both agreed: If already received (CLOSE, id)
τ←− B, where τ0 − τ ≤ Tp, let ({γ}, ChAB) := Γ(id) and distinguish:

• If txc := tx(ChAB , [outA, outB], [γ.c + γ.st.balance(A), γ.c + γ.st.balance(B)]) appears on L in round
τ1 ≤ τ0 + ∆, set Γ(id) := ⊥, send (CLOSED, id)

τ1−→ γ.users and stop.

• Else, if at least one of the parties is not honest, run L–ForceClose(id). Else, output (ERROR)
τ0+∆−−−−→ γ.users

and stop.

Wait for B: Else wait if (CLOSE, id)
τ≤τ0+Tp←−−−−−−− B (in that case “Both agreed” option is executed). If such a message

is not received, run L–ForceClose(id) in round τ0 + Tp.

Punish: (executed at the end of every round τ0) For each (X, ChAB) ∈ Γ check if L contains a transaction
txA

Pay,i := tx(ChAB , oC , vC) for some addresses oC and some values vC , s.t.
v∈vC

= γ.cash and one address o ∈ oC

belongs to A with the corresponding value v ∈ vC = γ.c for some A ∈ γ.users and B ∈ γ.users \ {A}. If yes, then define
L := {γ.st | γ ∈ X} and distinguish:

Punish: If B is honest and txA
Pay,i does not correspond to the most recent state in X, txB

Pnsh,i := tx(o ∈ oC , oP ,
γ.st.balance(A)), where oP is an address controlled by B, appears on L in round τ1 ≤ τ0 + ∆. Afterwards, in
round τ2 ≤ τ1 + ∆ a transaction txA,B

Fpay,i := (o ∈ oC , oS , vS), for some addresses oS and corresponding values vS

where one address o ∈ oS belongs to B and the corresponding value of o is γ.st.balance(B) + γ.c − ϵ, appears
on L, set Γ(id) = ⊥, send (PUNISHED, id)

τ2−→ B and stop.
Close: Either Γ(id) = ⊥ before round τ0 + ∆ (channel was peacefully closed) or after round τ1 ≤ τ0 + ∆ a transaction

txA,B
Fpay,i := (o ∈ oC , oS , vS), for some addresses oS and corresponding values vS where one address o ∈ oS

belongs to B and the corresponding value of o is γ.st.balance(B) + γ.c − ϵ, appears on L before a transaction
txA∗

Fpay,i := ([o ∈ oC , o′ ∈ oS], oF , γ.st.balance(A) + ϵ) where address oF of A appears on L. Set Γ(id) := ⊥ and

send (CLOSED, id)
τ2≤τ1+∆−−−−−−−→ γ.users. Else, transaction txA,A

Fpay,i := tx(o ∈ oC , oE , γ.st.balance(A)) where address

oE of A appears on L in round τ3 ≤ γ.T + ∆. Set Γ(id) := ⊥ and (CLOSED, id)
τ3−→ γ.users and stop.

Error: Otherwise (ERROR)
τ0+∆−−−−→ γ.users.

Subprocedure L–ForceClose(id): Let τ0 be the current round and (γ, tx) := Γ(id). If within ∆ rounds tx is still an

unspent transaction on L, then (ERROR)
τ0+∆−−−−→ γ.users and stop. Else, latest in round γ.T + ∆, m ∈ {CLOSED, PUNISHED,

ERROR} is output via Punish.

Figure 2.4: Ideal Functionality

31

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

the L–ForceClose subprocedure is executed, which expects the funding transaction of
the channel to be spent within ∆ rounds.

Close. Either party can initiate a channel’s closure by sending (CLOSE, id) to FL. If
the other party sends the same message within Tp rounds, FL expects a transaction
representing the latest state of the channel to appear on the ledger within ∆ rounds.
Should only one party request the closure or in case one party is corrupted, FL expects
either a transaction representing the latest state of the channel or an older state, followed
by a punishment (see Punish). If the funding transaction remains unspent, outputs
ERROR.

Punish. To give honest parties the guarantee that either the most recent state of the
channel which is locked until at most time T can be enforced on L, or the honest party
can get all coins (minus the other party’s collateral), we need the punish phase. This
check is executed in each round. We can model this in the UC framework, by expecting
E to pass the execution token in every round. If E fails to do that, FL outputs an error
the next time it has the execution token. Whenever the funding transaction of any
open channel γ in Γ is spent, FL expects either a transaction that spends the coins in
accordance to the latest state of γ, or a transaction giving γ.cash+γ.c coins to the honest
party. Else, ERROR is output. In the case that a transaction in accordance with the
latest state of γ appears on the ledger, either the funds of the party that has posted the
transaction are locked until T (after which a transaction claiming them appears) or the
other party unlocks them beforehand by unlocking their own funds and collateral. In
the latter case, the other party loses the negligible amount ϵ (which we say is a system
parameter in R≥0 for a ledger L) to the first party.

2.5 Sleepy Channels: Our Bi-Directional Payment
Channel Protocol

In this section, we describe our Sleepy Channel protocol for realizing bi-directional
payment channels for a currency whose transaction scheme makes use of the signature
scheme ΠDS for authentication. For simplicity, we assume the transaction scheme lets
verify transaction timeouts4, meaning that a transaction is considered valid only if it
is posted after a specified timeout T has passed. We discuss in Section 2.5.2 how we
can remove this assumption from the transaction scheme. We additionally make use of
2-party protocols whose functionality we describe below.

2-Party key generation. Parties A and B can jointly generate keys for a signature
scheme ΠDS. We denote this interactive protocol by ΓJKGen. It takes as input the public
parameters pp from both parties and outputs the joint public key pk to both parties and
outputs the secret key share skA to A and skB to B.

4Realizable through the locktime script that is available in Bitcoin.

32

2.5. Sleepy Channels: Our Bi-Directional Payment Channel Protocol

2-Party signing. Parties A and B having a shared key can jointly sign messages with
respect to the signature scheme ΠDS. We denote this interactive protocol by ΓSign. It
takes as input the message m and the shared public key pk from both parties and secret
key shares skA and skB from A and B, respectively. The protocol outputs the signature
σ (to one of the parties), such that ΠDS.Verify(pk, m, σ) = 1.

We can instantiate both 2-party protocols (ΓJKGen or ΓSign) with efficient interactive
protocols for specific signature schemes of interest. If the currencies use ECDSA signatures,
Schnorr signatures or BLS signatures [BLS01, Chi] for transaction authentication, we
can instantiate ΓJKGen and ΓSign with protocols from [Lin21], [GJKR99], or [BDN18],
respectively. Monero uses a linkable ring signature scheme [TMSS22, MSBL+20] for
authentication and the corresponding tailored 2-party protocols for key generation and
signing are described in [TMSS22].

2.5.1 Our Protocol

We consider parties A and B already have an open channel ChAB which is a shared public
key pkAB (between A and B) and the corresponding secret key skAB is shared among
the parties. Parties can make multiple payments using the channel (in either direction)
and confirm the final payment state on the chain. However, after each payment, the
payment state of the channel is updated and accordingly old states are revoked. The
formal description of the protocol can be found in Figure 2.5.

High Level Overview

We present below the intuition for our protocol in prose and refer to Figure 2.3 in
Section 2.2 for the transaction flow of the construction.

Payment. For each payment from the channel ChAB, parties generate two versions of
transactions, txA

Pay and txB
Pay, one version under the control of party A and the other in

the control of party B. By “under control”, we mean that in party A’s version, A has
the necessary signatures to post the payment transaction txA

Pay. Analogously, B has the
necessary signature to post the payment transaction txB

Pay. Both of these transactions
spend from ChAB. In contrast to prior bi-directional protocols, both versions have an
important asymmetry in the coin distribution among the parties.

In more detail, the channel ChAB holds in total f + 2c coins where f is the payment
capacity among the parties, while 2c is the collateral amount locked by both parties
A and B with c coins from each. The value of c is agreed upon by the parties locally
before they open the channel and are returned to the respective parties at the close
of the channel. Consider a payment where A’s balance is vA and B’s is vB such that
vA + vB = f . The payment transaction txA

Pay splits the funds of ChAB in the following
way: (1) c coins to an address fully controlled by A, (2) vA coins to a shared address
between A and B referred to as the sleepy channel SleepyChA, and (3) vB + c coins to a
shared address between A and B referred to as the exit channel ExitChA.

33

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

Notice that A can immediately get c coins from output (1). To spend from output (2) (the
sleepy channel SleepyChA) which is a shared address, parties sign 2 different transactions.

1. Transaction txA,A
Fpay, that transfers vA to an address of A, but is valid only after a

timeout T.

2. Transaction txA∗
Fpay, that spends from SleepyChA and an auxiliary address auxA (contains

ϵ coins as output in txA,B
Fpay, see below) that is also a shared address between A and B.

The transaction transfers vA coins from SleepyChA and ϵ (a negligible amount) from
auxA, to an address of A.

The signatures on both of the above transactions are possessed by A and not B.

To spend from output (3) (the exit channel ExitChA) which is a shared address, parties
sign a transaction txA,B

Fpay that transfers ϵ coins to the auxiliary address auxA and vB +c−ϵ
coins to an address of B. Notice that B’s balance vB and its collateral c (minus a
negligible amount ϵ) are transferred together to B’s address. In contrast to output (2),
the signature on txA,B

Fpay is only available with B and not A. The version for B following
txB

Pay is analogous to what we saw above except the roles are reversed.

Close. To close the channel with this payment state, we have two scenarios where either
both parties are responsive, or one of them is unresponsive. For simplicity, we consider
A as the party closing the channel and B is either responsive or not. If B is responsive,
party A posts txA

Pay with the corresponding signature that it has, on the blockchain.
Since B is responsive, it posts the transaction txA,B

Fpay spending from ExitChA with the
corresponding signature that it has, on the blockchain. Note that B now retrieves its
balance vB and collateral c, while one of the outputs of the transaction is auxA. Now
party A can finish the payment fast, by posting the transaction txA∗

Fpay that spends from
SleepyChA and auxA simultaneously, thus retrieving its balance vA (plus some ϵ). Recall
that A can already retrieve its collateral c by itself.

In the latter case where B is unresponsive, party A posts txA
Pay on the blockchain as

above. Now, A waits until the timeout T and posts the transaction txA,A
Fpay that retrieves

vA coins from SleepyChA to itself. Party B can retrieve vB + c − ϵ coins from ExitChA

anytime it wishes.

Payment revocation and punishment. When the parties want to revoke the payment,
they together generate a punishment transaction txA

Pnsh that spends from SleepyChA to
an address of B. The parties generate a signature on this transaction such that B holds
the signature. Similar punishment transaction and signature are generated in B’s version
where A holds the signature for the transaction. In total, the parties have three different
transactions spending from the sleepy channel SleepyChA.

If party A misbehaves, and posts txA
Pay after it has been revoked, party B has until

timeout T to punish this behavior by posting txA
Pnsh and the corresponding signature.

34

2.5. Sleepy Channels: Our Bi-Directional Payment Channel Protocol

This results in B getting the vA coins. Party B then posts the transaction txA,B
Fpay spending

from ExitChA retrieving vB + c − ϵ. In effect, A only gets its collateral back, while B is
able to retrieve the entire payment capacity f and its own collateral c.

Security

In this section, we state our main theorem and we informally outline the main steps
our our analysis. In Appendix A.1 we give a formal description of our Sleepy Channels
protocol Π in the UC framework. It differs from the protocol Π′′ in Section 2.5 in that the
cryptographic protocols for 2-party key generation and 2-party signing are substituted
by the corresponding ideal functionalities. This is captured by the following Lemma.

Lemma 1. Let ΓJKGen be a UC-secure 2-party key-generation protocol and let ΓSign be a
UC-secure 2-party signing protocol. Then the protocols Π and Π′′ are computationally
indistinguishable from the point of view of the environment E.

In Appendix A.1.1 we describe a simulator S that interacts with the ideal functionality
F (defined in Section 2.4), whereas the environment interacts with ϕF (the ideal protocol
for F). Then in Appendix A.1.2 we show that any attack that can be carried out against
Π can also be carried out against ϕF . This allows us to state the following theorem.

Theorem 1. The protocol Π UC-realizes the the ideal functionality FL.

2.5.2 Discussion

In this section, we discuss key aspects of our collateral requirement and describe extensions
of our protocol that make it applicable in a wider class of settings.

Collateral as incentive. Observe that the collateral of the party initiating the closing
is retrieved by that party during the closing, irrespective of a cheating event. This is
because the purpose of the collateral in the Sleepy Channels protocol is to incentivize
fast closure of the channel by the other party if one of the parties wishes to close the
channel and the other party happens to be online. Notice that if party A wishes to close
the channel with an unrevoked payment, it posts the corresponding payment transaction
txA

Pay on the chain. Now, A immediately retrieves its collateral c, while A’s channel
balance vA, and B’s channel balance and collateral, i.e., vB + c are still lying unspent
in the outputs of txA

Pay. If the value of c is high enough, party B is discouraged from
launching a DoS attack on A: where party B does not retrieve the coins from ExitChA

and lets party A wait until the timeout T to get vA back. To see this, if party B attempts
to launch the DoS attack on A, party B itself locks vB + c − ϵ coins in ExitChA until T.
On the other hand, if B retrieves its coins from ExitChA immediately, party A also can
retrieve its coins from SleepyChA immediately with the aid of auxA.

The value of c is determined by the level of trust between A and B. If both parties
completely trust each other, the collateral c is set to 0. In the worst case where they do

35

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

Parties A and B have a payment channel ChAB with capacity f + 2c and secret key share for the channel are skA
Ch,AB

and skB
Ch,AB for party A and B, respectively. Here f denotes the payment capacity of the channel and c is the

collateral that a party allocates for the channel. Parties additionally have a refund transaction
txrfnd := tx(ChAB , [pkA, pkB], [vA + c, vB + c]) and the corresponding signature σrfnd with respect to ChAB , where
vA + vB = f and pkA and pkB are some public keys of A and B, respectively.
Address Generation:
1. Parties generate the following key pairs using ΠDS.Gen(1n)

• Party A generates pkCPay,A, skCPay,A , (pkpun,A, skpun,A), (pkfp,A, skfp,A) and (pkffp,A, skffp,A)
• Party B generates pkCPay,B , skCPay,B , (pkpun,B , skpun,B), (pkfp,B , skfp,B) and (pkffp,B , skffp,B)

2. Parties run ΓJKGen to generate shared addresses: SleepyChA, SleepyChB , ExitChA, ExitChB , auxA, auxB .

i-th Payment: For the i-th payment where vA,i and vB,i are the balance of A and B, respectively with
f = vA,i + vB,i, the parties do the following:
Payment Transactions: Generate payment transactions
txA

Pay,i := tx ChAB , [pkCPay,A, SleepyChA, ExitChA], [c, vA,i, vB,i + c] and

txB
Pay,i := tx ChAB , [pkCPay,B , SleepyChB , ExitChB], [c, vB,i, vA,i + c]

Punishment Transactions: Generate txA
Pnsh,i := tx SleepyChA, pkpun,B , vA,i and txB

Pnsh,i := tx SleepyChB , pkpun,A, vB,i

Finish-Payment Transactions:

1. Generate txA,A
Fpay,i := tx SleepyChA, pkfp,A, vA,i and txB,B

Fpay,i := tx SleepyChB , pkfp,B , vB,i both timelocked until
time T.

2. Generate another set of faster finish-pay transactions txA,B
Fpay,i := tx ExitChA, [pkffp,B , auxA], [vB,i + c − ϵ, ϵ] and

txB,A
Fpay,i := tx ExitChB , [pkffp,A, auxB], [vA,i + c − ϵ, ϵ] .

3. Generate a set of enabler transactions txA∗
Fpay,i := tx [SleepyChA, auxA], pkfp,A, vA,i + ϵ and

txB∗
Fpay,i := tx [SleepyChB , auxB], pkfp,B , vB,i + ϵ that enable a faster finish-payment.

Signature Generation: Parties generate signatures on transactions by running the interactive protocol ΓSign in each step.
In case one of the parties aborts at any step, the other party closes the channel with the (i − 1)-th payment state.
1. Party A receives signature σA,A

Fpay,i on transaction txA,A
Fpay,i under the shared key SleepyChA. Party B receives signature

σB,B
Fpay,i on transaction txB,B

Fpay,i under the shared key SleepyChB .
2. Party A receives signatures σSleepyCh,A, σaux,A on the transaction txA∗

Fpay,i with respect to the shared keys SleepyChA

and auxA, respectively. Party B receives signatures σSleepyCh,B , σaux,B on the transaction txB∗
Fpay,i with respect to

the shared keys SleepyChB and auxB , respectively.
3. Party A receives signature σB,A

Fpay,i on the transaction txB,A
Fpay,i under the shared key ExitChB . Party B receives

signature σA,B
Fpay,i on the transaction txA,B

Fpay,i under the shared key ExitChA.
4. Party A receives signature σA

Pay,i on the transaction txA
Pay,i under the shared key ChAB . Party B receives signature

σB
Pay,i on the transaction txB

Pay,i under the shared key ChAB .

Revocation: To revoke the i-th payment, parties jointly generate signatures by running the interactive protocol ΓSign:
Generate signature σA

Pnsh,i on the punishment transaction txA
Pnsh,i (party A receives σA

Pnsh,i as output and gives it to B)
and signature σB

Pnsh,i on the punishment transaction txB
Pnsh,i (party B receives σB

Pnsh,i as output and gives it to A). If
during the revocation either party aborts, the non-aborting party immediately closes the channel with the most recent
unrevoked payment.

Channel Closing: Either party can close the channel ChAB with the j-th unrevoked payment. To do this:
1. Party A posts txA

Pay,j , σA
Pay,j on L. This is followed by one of the two cases:

a) Fast finish: Party B posts txA,B
Fpay,i, σA,B

Fpay,i on L, and party A posts txA∗
Fpay,i, σA∗

Fpay,i on L for fast finish
b) Lazy finish: If not, A can post txA,A

Fpay,i, σA,A
Fpay,i on L after timeout T

2. Analogously, party B can post txB
Pay,j , σB

Pay,j on L. This is followed by one of the two cases:
a) Fast finish: Party A posts txB,A

Fpay,i, σB,A
Fpay,i on L, and party B posts txB∗

Fpay,i, σB∗
Fpay,i on L for fast finish

b) Lazy finish: If not, B can post txB,B
Fpay,i, σB,B

Fpay,i on L after timeout T

Punishing Revoked payments: If A posts the j-th revoked payment txA
Pay,j on L, B can post the punishment

transaction txA
Pnsh,i, σA

Pnsh,i on L before the absolute timeout T. If B posts the j-th revoked payment txB
Pay,j on L, A

can post txB
Pnsh,i, σB

Pnsh,i on L before the absolute timeout T.

Figure 2.5: Sleepy Channel protocol - Payment setup, payments, closing, and punishment

36

2.5. Sleepy Channels: Our Bi-Directional Payment Channel Protocol

not trust each other at all, the collateral is set to be equal to the payment capacity, i.e.,
c = f and have vA ≤ vB + c − ϵ when ϵ ≈ 0. This means that during the DoS attack,
party B locks at least the same amount of coins in ExitChA as party A does in SleepyChA.
Therefore, by not letting A spend its coins until timeout T, party B also can not spend
at least the same amount of coins until timeout T.

Asymmetric collateral. Consider the case where A has significantly more money than
party B (e.g., A is a merchant and B is one of A’s customers). In this case, party A
may be able to easily afford to lock a collateral value c (same as B) to prevent party
B from getting its coins back before time T. To account for this apparent disparity in
the financial strength between parties A and B, we can instantiate our Sleepy Channels
with both parties locking different amounts of collateral. In our example, party A and
party B open their channel in such a manner that A locks collateral amount cA that is
higher than the collateral amount cB locked by party B. cA could theoretically even be
larger than the full channel capacity. This strongly discourages party A (i.e., more than
when using smaller or equal collateral to that of B) from denying party B a fast channel
closure. We note that our Sleepy Channels protocol is flexible in how the parties set each
other’s collateral before opening their channel.

Punishment cost. Note that if party A misbehaves and posts a revoked payment on
the chain, party B has until time T to punish this behavior on the chain. It is possible
that the punishment transaction posted by B costs more in terms of transaction fee than
what it stands to gain after the punishment if, for example, the revoked payment is a
very small coin transfer. To account for that, A (i.e., the party creating and funding the
channel) can unconditionally include a certain amount for B to cover such transaction
fees, as it is currently implemented in the Lightning Network [dev]. We emphasize that
this is an issue that is present throughout off-chain solutions [DW15,DRO,Liga,AEE+21]
including ZK-rollups [ZK-].

TimeLock script independence. The curious reader may wonder whether our protocol
achieves the sought-after goal of (bi-directional) payment channels needing only the
signature verification script from the underlying blockchain. Although we remove the
dependency on relative timelock scripts, our protocol still relies on absolute timelock scripts
(see point 1 in finish-payment transactions Figure 2.5) to guarantee the closure of the
channel after some (fixed) time T. Thus a natural question is whether one can construct
bidirectional payment channels without relying on time-lock scripts at all. It turns out
that, if one is willing to rely on time-lock puzzles [RSW96], we can avoid the dependence
on timelock scripts entirely. As it was shown in prior works [TBM+20,TMSS22], absolute
time-locks5 can be simulated using verifiable timed signatures (VTS): VTS allow one to
encapsulate a signature on a message for a pre-determined amount of time T. At the same
time, the party who is solving the puzzle, is guaranteed that the signature recovered after

5Crucially, this transformation does not work for the relative time-lock logic, since there the time
depends on some event which is triggered by the attacker and thus one cannot set the time parameter of
the VTS ahead of time.

37

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

time T is a valid one. Parties are required to perform persistent background computation
for the lifetime of the channel. However, for currencies like Monero where we do not
have any timelock script, we do not know of any other viable mechanism other than the
one using VTS from [TMSS22]. A recent work [TGB+21] has enabled parties to securely
outsource this computation to a decentralized network thereby removing any sort of
computational load on the parties.

Extending lifetime and capacity of the channel. In contrast to Lightning Network
channels, the channel ChAB between A and B is time-bounded because of the bound
required in Sleepy Channels. More precisely, parties have to close the channel ChAB before
the timeout T that are set on the finish-payment transactions txA,A

Fpay,i and txB,B
Fpay,i that

spend from SleepyChA and SleepyChB, respectively. However, if both parties cooperate,
they can easily extend their channel duration by transferring the coins from the current
channel ChAB to a new channel Ch′

AB (shared between A and B) in accordance with the
latest channel balance that the parties had in ChAB. In other words, parties can post a
single transaction on the blockchain anytime before T to transfer the coins from ChAB

to Ch′
AB . The channel balance of the parties in Ch′

AB is set according to the most recent
payment state between them in the channel ChAB . A similar procedure is adopted in the
Splicing protocol [Rus18] of Lightning Network where users can periodically increase or
decrease their channel capacity on-chain without violating any payments already made.
Our Sleepy Channel protocol apart from extending the channel lifetime, can also update
the channel capacity with this approach.

2.6 Performance Evaluation

We evaluated a proof of concept to show (i) correctness of our scheme, (ii) compatibility
with Bitcoin, and (iii) on- and off-chain transaction overhead. The source code is available
at [Gita].

Implementation subtleties. There are several approaches on how Sleepy Channels can
be implemented, given the scripting functionality of, say, Bitcoin. For instance, timelocks
can be enforced either at a single transaction output or for the whole transaction, 2-
party signing can be replaced with a multisig script (for a blow-up in the transaction
size) and revocation can be done via exchanging a hash secret, a private key or a signed
punishment transaction upon revoking an old state. In this section, we follow our protocol
as in Figure 2.5 and use transaction level timelocks, 2-party signing and exchange signed
punishment transactions for revocation.

Deploying the transactions. Now we describe the transactions used in Sleepy Channels
and we refer the reader to Table A.1 in Appendix A.2 for the details on transaction sizes
and their cost in terms of on-chain fees. We also give a pointer to the corresponding
transactions deployed in the Bitcoin testnet, thereby demonstrating the backwards
compatibility of Sleepy Channels.

38

2.6. Performance Evaluation

The first step in Sleepy Channels is building a funding transaction txF [Fun]. Built on
top of the funding, we look at A’s commitment (or state) transaction txA

Pay,i [Payb] and
note that the transactions for B are symmetric. When A puts the current state on the
ledger, there are two ways how A can claim its money. On the one hand, if B unlocks
its own funds by putting txA,B

Fpay,i [Payc], then A can claim its funds with txA∗
Fpay,i right

away [Paya]. On the other hand, after the lifetime expires, A can unilaterally claim its
funds with txA,A

Fpay,i. If A puts an old state, then B can punish A via txA
Pnsh,i. Finally, two

users can close their channel honestly with a transaction, where both funds are unlocked
right away.
We find that for opening a channel in Sleepy Channels, the two parties together need
to put 338 bytes on-chain and exchange 2026 bytes (8 transactions off-chain). For
each subsequent update, the two parties need to exchange 2408 bytes (10 transactions
off-chain). The closing and punishment happen on-chain. For the closing, there are three
options. Either they close honestly (225 bytes, 1 tx), or one party closes unilaterally
and unlocks its funds after the timelock expires (449 bytes, 2 tx), or one party closes
unilaterally and the other one unlocks the funds right away (823 bytes, 3 tx). The
punishment case requires 450 bytes and 2 transactions.

Comparison to LN. As for our construction, the LN channel functionality can be
implemented with subtle differences, resulting in different outcomes. The funding
transaction of LN is identical to ours, except that it locks no additional collateral.
The commitment transactions differ, as they have one fewer output, and therefore only
226 bytes. Moreover, in LN there are no fast finish transactions. This totals to 338
bytes on-chain and exchanging 832 bytes (4 transactions) for opening a LN channel. For
updating, the users exchange 1214 bytes (6 transactions). Note that the honest, the
unilateral close, and the punishment in sleepy channels are identical to LN, both in terms
of transaction structure and in size.

Overhead. The Sleepy Channels protocol does not require costly cryptography. It
requires computing and verifying signatures locally, 2-party signing, and a maximum
off-chain communication in the order of 103 bytes for each operation. The computational
time can be expected to be negligible on even commodity hardware; the communication
is limited only by network latency.

2.6.1 Simulation

We perform some additional experiments with respect to a recent snapshot of LN (January
2022). In this snapshot, there are 81k channels, 19k channel nodes, and a total capacity
of 2990 BTC. As the balance distribution of each channel is unknown, we assume that it
is split evenly between the two users. The source code of our simulation experiments
including the snapshot is available at [Gitb]. We repeat the experiments 100 times for
each and plot the average and standard deviation.

Watchtower collateral. We investigate the collateral a watchtower service needs to
provide, in order to cover their customers should they go offline. We analyze watchtower

39

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

constructions that fully collateralize the channels, e.g., [ATLW20,MSYS21,MBB+19a].
For this, we randomly sample a percentage of nodes that wish to employ a watchtower, and
based on their balances in their channels, we plot the amount of collateral in Figure 2.6.
This amount rises linearly with the amount of users that wish to employ a watchtower.
If 30% of all users do so, (i) the watchtower service needs to lock up approximately 890
BTC and (ii) users need to pay fees for that, even if there are no disputes. Currently, this
total capacity that has to be available to the watchtower service as collateral amounts to
roughly 39M USD.

0 5 10 15 20 25 30
0

200
400
600
800

1,000

% of channels employing a watchtower

C
ol

la
te

ra
l(

BT
C

)

Figure 2.6: Results of the first simulation.

Risk of failing to go online. We simulate the risk of users having to periodically
monitor the blockchain in LN. In LN, the time frame for punishment is one day (144
blocks). I.e., in this time users need to come online at least once and check whether or
not the other party tried to cheat. In our setting, we investigate a time period of 30 days
with users trying to come online each day.

In our simulation, we assume that there is a certain chance that users fail to come online
and monitor the blockchain in a given time frame, e.g., due to power outages, DoS attacks,
etc. We further assume that neighboring nodes will notice this; a realistic assumption
due to the ping and pong messages [Ligb] of the LN. We assume that neighboring nodes
want to maximize their profits and will exploit such a case by putting an old state and
thereby, potentially stealing funds of the offline user.

The Sleepy Channels protocol would not fully prevent this behavior, but reduce it
significantly. That is, for a given period of time, in this simulation 30 days, the users
need to come online only once, e.g., before the channel expires. They can of course fail to
come online there with the same probability, but this event occurs only once instead of
30 times. Obviously, the longer this time span is, the greater the chances for LN nodes is
to miss at least one of these intervals, while for Sleepy Channels it remains the same.
For 30 days, only about 3% of the channels are at risk for Sleepy Channels compared to
LN, for any given chance of missing the online check.

In Figure 2.7 we plot the number of channels that are at risk for a given chance that a user
will fail to come online in each interval, once for each the LN and Sleepy Channels. The
y axis is shown in a logarithmic scale. Over a one-month period, there are 5k channels

40

2.7. Conclusion

(0.1% chance) and 49k (1% chance) channels at risk (roughly 60% of the LN) for LN
channels. For Sleepy Channels, these numbers are 170 channels (0.1% chance) and 1.9k
channels (1% chance).

0.002 0.004 0.006 0.008 0.01
5

50

500

5,000

50,000

Chance of failing to come online at least once per day

C
ha

nn
el

s
at

ris
k

Figure 2.7: Results of the second simulation. (Blue = LN, Red = Sleepy Channels)

2.7 Conclusion
Payment channels are one of the most promising payment solutions for blockchain-
based cryptocurrencies. Despite their large adoption, many such proposals suffer from
limitations, such as requiring the parties to be constantly online and monitor the network,
or outsourcing this task to third parties (e.g., watchtowers). In this work, we propose
a new payment channel architecture (Sleepy Channels) that supports bi-directional
payments and does not require the parties to be persistently online. The protocol is
backward compatible with many existing currencies (e.g., Bitcoin, Monero. . .) and relies
on lightweight cryptographic machinery. Our performance evaluation shows that the
protocol is efficient enough to be adopted in large payment ecosystems (such as the
Lightning Network). An interesting open question is whether our techniques are also
applicable to account-based currencies, rather than UTXO-based currencies.

Acknowledgments

This work has been also partially supported by Madrid regional government as part
of the program S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the
European Union, by grant IJC2020-043391-I/MCIN/AEI/10.13039/501100011033 and
European Union NextGenerationEU/PRTR, by SCUM Project (RTI2018-102043-B-I00)
MCIN/AEI/10.13039/501100011033/ERDF A way of making Europe, and by the project
HACRYPT. This work was also partially supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research (grant agreement 771527-
BROWSEC), by the Austrian Science Fund (FWF) through the projects PROFET (grant
agreement P31621), by the Austrian Research Promotion Agency (FFG) through the
COMET K1 SBA and COMET K1 ABC, by the Vienna Business Agency through the
project Vienna Cybersecurity and Privacy Research Center (VISP), by the Austrian
Federal Ministry for Digital and Economic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler Research Association through
the Christian Doppler Laboratory Blockchain Technologies for the Internet of Things

41

2. Sleepy Channels: Bi-directional Payment Channels without Watchtowers

(CDL-BOT) and by CoBloX Labs. This work was further partially supported by the
German Federal Ministry of Education and Research BMBF (grant 16K15K042, project
6GEM). The work was also funded through the support of THE DAVID AND LUCILLE
PACKARD FOUNDATION - Award #202071730, SRI INTERNATIONAL - Award
#53978 / Prime: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY - Award
#HR00110C0086, NATIONAL SCIENCE FOUNDATION - Award #2212746.

42

CHAPTER 3
Generalized Channels from

Limited Blockchain Scripts and
Adaptor Signatures

Abstract
Decentralized and permissionless ledgers offer an inherently low transaction rate, as a
result of their consensus protocol demanding the storage of each transaction on-chain.
A prominent proposal to tackle this scalability issue is to utilize off-chain protocols,
where parties only need to post a limited number of transactions on-chain. Existing
solutions can roughly be categorized into: (i) application-specific channels (e.g., payment
channels), offering strictly weaker functionality than the underlying blockchain; and (ii)
state channels, supporting arbitrary smart contracts at the cost of being compatible only
with the few blockchains having Turing-complete scripting languages (e.g., Ethereum).

In this work, we introduce and formalize the notion of generalized channels allowing
users to perform any operation supported by the underlying blockchain in an off-chain
manner. Generalized channels thus extend the functionality of payment channels and
relax the definition of state channels. We present a concrete construction compatible with
any blockchain supporting transaction authorization, time-locks, and constant number
of Boolean ∧ and ∨ operations – requirements fulfilled by many (non-Turing-complete)
blockchains including the popular Bitcoin. To this end, we leverage adaptor signatures –
a cryptographic primitive already used in the cryptocurrency literature but formalized as
a standalone primitive in this work for the first time. We formally prove the security of
our generalized channel construction in the Universal Composability framework.

As an important practical contribution, our generalized channel construction outperforms
the state-of-the-art payment channel construction, the Lightning Network, in efficiency.

43

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

Concretely, it halves the off-chain communication complexity and reduces the on-chain
footprint in case of disputes from linear to constant in the number of off-chain applications
funded by the channel. Finally, we evaluate the practicality of our construction via a
prototype implementation and discuss various applications including financially secured
fair two-party computation.
This chapter presents the results of a collaboration with Oğuzhan Ersoy, Andreas Erwig,
Sebastian Faust, Kristina Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash
Riahi, which was published at the 27th Annual International Conference on the Theory and
Application of Cryptology and Information Security (Asiacrypt) in 2021 under the title
"Generalized Channels from Limited Blockchain Scripts and Adaptor Signatures". I am
responsible for writing a proof-of-concept implementation, deploying and testing the scheme
on the Bitcoin testnet, designing and conducting the experiments and measurements as
well as comparison to the Lightning Network. Further, I contributed to the write-up of the
paper. Kristina Hostáková proposed the concept of generalized channels and is responsible
for the ideal functionality. Oğuzhan Ersoy and Kristina Hostáková are responsible for
the application section. Siavash Riahi is responsible for formalizing adaptor signatures.
Siavash Riahi and Andreas Erwig are responsible for the security proofs. Pedro Moreno-
Sanchez, Sabastian Faust, and Matteo Maffei were the general advisors and contributed
with continuous feedback.

3.1 Introduction
One of the most fundamental technical challenges of decentralized and permissionless
blockchains is scalability. Since transactions are processed via a costly distributed
consensus protocol run among a set of parties (so-called miners), transaction throughput
is limited and transaction confirmation is slow. There has been a plethora of work on
improving the scalability of blockchains, with off-chain protocols being one of the most
promising solutions.
Intuitively, off-chain protocols build a second layer over the blockchain (often referred
to as the layer-1) by allowing the vast majority of transactions to be processed directly
between the involved participants, with the blockchain being used only in the initial
setup and in case of disputes, thereby drastically improving transaction throughput and
confirmation time.
While there exists a large variety of different off-chain (or layer-2) solutions (see,
e.g., [BSA+17,WSNH19,GMSR+20,JKLT19] and many more), payment channels [Bit18,
DW15,PD16] are by far the most prominent one. Intuitively, a payment channel works
in three phases. First, the two users open a channel by locking a certain amount of
coins on-chain into an account controlled by both users. Then they perform an arbitrary
amount of payments by exchanging authenticated messages off-chain. Finally, they close
the channel by announcing the outcome of their trades to the ledger.

Off-chain computations in ethereum. Ethereum supports on-chain transactions
specified in a Turing-complete scripting language, which enables the execution of arbitrarily

44

3.1. Introduction

complex programs, also called smart contracts, thereby going beyond simple payments.
The underlying blockchain is organized accordingly in the account-based model, in
which the balance associated with an account is explicitly stored in its memory and
programmatically updated via smart contracts. By leveraging the expressiveness of
Turing-complete scripting languages, payment channels can be generalized into so-called
state channels [MBB+19b,DFH18,DEF+19b], whose functionality goes far beyond simple
payments. Namely, state channels enable users to execute arbitrarily complex smart
contracts in an off-chain manner, thereby making their execution faster and cheaper.

Turing-complete vs restricted scripting. The majority of current blockchains (e.g.,
Bitcoin, Zcash, Monero, and Cardano’s ADA) only support a restricted scripting language
and are based on the Unspent Transaction Output (UTXO) model: intuitively, they
enable a restricted class of transactions, possibly conditioned to some events, that transfer
money from an unspent transaction to a new unspent transaction. There are several
reasons behind the choice of a limited scripting language. First, the simplicity of design
and usage, which is believed to be beneficial for security: countless examples of smart
contract vulnerabilities on Ethereum show that complex contract logic and increased
expressiveness pave the way for critical bugs, which may have severe consequences for the
stability of the underlying currency as shown by the infamous DAO hack [Sie16]. Second,
blockchains with simple transaction logic are less costly to maintain: this is important as
transaction execution is done by many parties and even normal users. Finally, restricted
scripting languages are expressive enough to encode many interesting computations (e.g.,
lotteries [ADMM16], auctions [DDM+18], and more [BK14,KB14,BZ18]).

Unfortunately, current state channel constructions are not applicable without a Turing-
complete scripting language, thereby excluding the majority of blockchains. In this
work, we investigate the following question: Can we generically lift any transaction
logic offered by layer-1 to layer-2 even for blockchains with restricted transaction logic?
Besides its practical importance, we believe that this question is theoretically interesting.
It may constitute a first step towards a more general research agenda exploring the
feasibility (or impossibility) of generic off-chain computation from blockchains with
limited expressiveness.

3.1.1 Our contribution

Our main contribution is to put forward the notion of generalized channels – a generic
extension of payment channels to support off-chain execution of arbitrary transaction logic
supported by the underlying blockchain. State channels can hence be seen as a special
case of generalized channels for blockchains with Turing-complete scripting languages.
We briefly outline our main contributions below. A technical overview of our construction
is given in Section 3.2.

Generalized Channels. We show that if the underlying UTXO-based blockchain
supports transaction authorization, time-locks, and basic Boolean logic (constant number

45

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

of ∧, ∨ operations), then any transaction logic available on layer-1 can be lifted to layer-2
securely and generically.

As most cryptocurrencies, including the by far most prominent Bitcoin, satisfy the
assumptions of our construction, they can benefit from generalized channels as a scalability
solution. This, in particular, implies that our construction directly enables us to execute
any Bitcoin transaction off-chain. Moreover, we stress that our construction can also
be deployed over any blockchain that can simulate a UTXO-based system, which, in
particular, includes blockchains with support for Turing-complete smart contracts, e.g.,
Ethereum or Hyperledger Fabric [ABB+18].

A novel revocation mechanism for Generalized Channels. The main techni-
cal challenge in our generalized channel design is to propose an efficient mechanism
for old channel state revocation while putting minimal assumptions on the scripting
language of the underlying blockchain. The state-of-the-art approach, put forward by
the Lightning Network [PD16], uses a punishment mechanism that allows the cheated
party to claim all coins from the channel. As we argue, a straightforward generalization
of the Ligthning-style revocation is unsuitable for generalized channels. Firstly, the
blockchain communication complexity in case of misbehavior depends on the number
of parallel conditional payments funded by the channel. This significantly increases the
blockchain overhead when processing a punishment (if triggered). Secondly, the security
of the revocation mechanism relies on state duplication, hence each off-chain transaction
funded by the channel has to be performed twice (once on each duplicate). This is
particularly problematic when channels are built on top of channels [EMSM19] as the
off-chain communication complexity grows exponentially with the number of channel
layers.

To overcome these drawbacks, we design a novel revocation mechanism reducing the
on-chain complexity in case of a dispute from linear to constant, and the off-chain
communication complexity from exponential to linear.

Formalization of adaptor signatures. A key idea of our novel revocation mechanism
is to utilize an adaptor signature scheme [Poe17] – a cryptographic primitive introduced
by the cryptocurrency community to tie together the authorization of a transaction and
the leakage of a secret value. Although adaptor signatures have been used in previous
works (e.g. [MMS+19,Fou19,MSK]), a formal definition has never been presented. We
fill this gap by providing the first formalization of adaptor signatures and their security
(in terms of cryptographic games), and proving that ECDSA and Schnorr-based schemes
satisfy our notions. We believe that our formalization and security analysis of adaptor
signatures is of independent interest (see details on the impact of our work below).

Formalization of Generalized Channels. In order to formally define the security
guarantees of a generalized channel protocol, we utilize the extended Universal Compos-
ability model allowing for global setup (the GUC model for short) put forward by Canetti
et al. [CDPW07]. More precisely, we model the money mechanics of a UTXO-based
blockchain via a global ledger ideal functionality and provide an ideal specification of a

46

3.1. Introduction

generalized channel protocol via a novel ideal functionality. Thereafter, we prove that our
generalized channel construction satisfies this ideal specification. The key challenges of
our security analysis are to ensure the consistency of timings imposed by the blockchain
processing delay and to ensure that no honest party can ever lose coins by participating
in a channel.

Evaluation and applications. We implemented our protocols and conducted an
experimental evaluation, demonstrating how to use generalized channels as a building
block for popular off-chain applications like payment routing through a payment channel
network (PCN) [PD16,MMSK+17,MMS+19] and channel splitting [EMSM19]. Concretely,
our evaluation demonstrates that, already when routing one payment through a channel,
the amount of blockchain fees in case of a dispute is reduced by 28% compared to the
state-of-the-art Lightning network solution. In practice, there have been cases of disputes
in channels with 50 concurrent payments [lnc20], which currently costs 553.66 USD in
fees to resolve in Lightning and only 17.47 USD with generalized channels. For channel
splitting, we reduce the transactions to be exchanged off-chain per sub-channel from
exponential to constant.

Moreover, we discuss how to use generalized channels to realize the Claim-or-Refund
functionality of Bentov and Kumaresan [BK14]. This functionality, can be used to build a
fair two-party computation protocol over Bitcoin, where fairness is achieved by financially
penalizing malicious parties. Realizing the Claim-or-Refund functionality, in particular,
implies that generalized channels allow parties to execute any two-party computation
off-chain.

Impact of our work. Our work has resulted in several interesting follow-up works.
In the case of adaptor signatures, Esgin et al. [EEE20] and Tairi et al. [TMSM21b]
have proposed adaptor signature constructions secure against adversaries with quantum
computing power which allows for payment channels or atomic swaps in post-quantum
secure blockchains. Recently, Erwig et al. [EFH+21] showed how to generically build
single and 2-party adaptor signatures from identification schemes. All these works follow
our definition of adaptor signatures that we put forth in this work. Our generalized
channels have also been used as a basis for virtual channel constructions in [AME+21]
and have recently been extended to support fair and privacy-preserving watchtowers by
Mirzaei et al. [MSYS21]. We will talk in more details about some of these follow-up
works in Section 3.7.

3.1.2 Other related work

We briefly discuss related work on off-chain protocols and adaptor signatures, where the
latter is an important building block in our construction.

Off-chain protocols. As already mentioned before, there has been an extensive
line of work on various types of payment channels [Bit18, DW15, PD16] and payment
channel networks (PCNs) [PD16,MMSK+17,MMS+19]. However, these constructions

47

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

only support simple payments and do not extend to support more complex transaction
logic. The authors in [KL19] provide a formalization of the Lightning Network (LN) in
the UC framework. This formalization is, however, tailored to the details of the current
LN and cannot be leveraged to formalize generalized channels as we propose here. Most
related to our work is the research on state channels [MBB+19b, DFH18, DEF+19b],
as these constructions allow to lift any transaction logic supported by the underlying
blockchain off-chain. However, state channels crucially rely on the underlying blockchain
to support smart contracts and hence do not work for blockchains with restricted scripting
language. Finally, eltoo [DRO] is a payment channel construction that does not rely
on a punishment mechanism, yet requires Bitcoin to adapt a new scripting command
(op-code). This op-code, however, has not been included in Bitcoin’s scripting language
in the past due to security concerns. In the case of address reuse or lazy wallet designs,
funds can be stolen by replaying transactions [Tra]. Moreover, the security of the eltoo
protocol has not been formally proven and it only supports simple payments.

Apart from payment and state channels, numerous other solutions have been proposed in
order to perform heavy on-chain computation off-chain. For instance, various previous
works (e.g., [DEF+19a,CZK+19,KMS+16]) focus on realizing on-chain functionality off-
chain by using Trusted Execution Environments which, however, inherently add additional
trust assumptions that may not hold in practice (e.g., [BMD+17,CCX+19,BMW+18]).
A proposal to remove these assumptions is to use MPC protocols [BK14,KB14], which
however require collateral linear in the number of conditional payments. In contrast,
generalized channels only require constant collateral for the execution of an arbitrary
number of such payments. There have been proposals to remedy the collateral requirement
in MPC protocols [BKM17,KB16,KMB15] but they are incompatible with many existing
UTXO blockchains, including Bitcoin.1

Adaptor Signatures. Poelstra [Poe17] introduced the notion of adaptor signatures
(AS), which intuitively allows to create partial signatures whose completion is conditioned
on solving a cryptographic hard problem – a feature that has been proven useful in
off-chain applications such as PCNs [MMS+19] and payment-channel hubs [TMSM21a].
For instance, Malavolta et al. [MMS+19] use AS as a building block to define and
realize multi-hop payments in PCNs. Moreover, AS have been used as an off-the-shelf
cryptographic building block for multi-path payments [EFHR20] and Monero-compatible
PCNs [TMSS22]. Banasik et al. [BDM16] construct a scheme satisfying a similar notion
to AS in order to allow two parties to exchange a digital asset using cryptocurrencies
that do not support Turing-complete programs. None of these works, however, define
AS as a stand-alone primitive. Concurrently to our work, Fournier [Fou19] attempts
to formalize AS as an instance of one-time verifiable encrypted signatures [BGLS03].
Yet, the definition of [Fou19] is weaker than the one we give in this work and does not
suffice for the channel applications. Also concurrent to this work, Thyagarajan and
Malavolta [TM21] define lockable signatures. While similar to AS in spirit, lockable

1These solutions require the underlying blockchain to either support verification of signatures on
arbitrary messages or Turing-complete smart contracts.

48

3.2. Background and Solution Overview

signatures are a weaker primitive as the partial signature must be created honestly (e.g.,
through MPC) and the solution to the cryptographic hardness problem must be known
beforehand. On the other hand, lockable signatures can be built from any signature
scheme while AS cannot be constructed from unique signatures [EFH+21].

3.2 Background and Solution Overview

Blockchain transactions. We focus on blockchains based on the Unspent Transaction
Output (UTXO) model, such as Bitcoin. In the UTXO model, coins are held in outputs.
Formally, an output θ is a tuple (cash, φ), where cash denotes the amount of coins
associated with the output and φ defines the conditions (also known as scripts) that need
to be satisfied to spend the output.

A transaction transfers coins across outputs meaning that it maps (possibly multiple)
existing outputs to a list of new outputs. The existing outputs that fund the transactions
are called transaction inputs. In other words, transaction inputs are those tied with
previously unspent outputs of older transactions. Formally, a transaction tx is a tuple of
the form (txid, input, output, Witness), where txid ∈ {0, 1}∗ is the unique identifier of tx
and is calculated as txid := H([tx]), where H is a hash function modeled as a random
oracle and [tx] is the body of the transaction defined as [tx] := (input, output); input is a
vector of strings identifying all transaction inputs; output = (θ1, . . . , θn) is a vector of new
outputs; and Witness ∈ {0, 1}∗ contains the witness allowing to spend the transaction
inputs.

To ease the readability, we illustrate the transaction flows using charts (see Figure 3.1
for examples). We depict transactions as rectangles with rounded corners. Doubled-
edge rectangles represent transactions published on the blockchain, while single-edge
rectangles are transactions that could be published on the blockchain, but they are not
(yet). Transaction outputs are depicted as a box inside the transaction. The value of the
output is written inside the output box and the output condition is written above the
arrow coming from the output.

Conditions of transaction outputs might be fairly complex and hence it would be cum-
bersome to spell them out above the arrows. Instead, for frequently used conditions, we
define the following abbreviated notation. If the output script contains (among other
conditions) signature verification w.r.t. some public keys pk1, . . . , pkn on the body of the
spending transaction, we write all the public keys below the arrow and the remaining
conditions above the arrow. Hence, information below the arrow denotes “who owns the
output” and information above denotes “additional spending conditions”. If the output
script contains a check of whether a given witness hashes to a predefined h, we express
this by writing the hash value h above the arrow. Moreover, if the output script contains
a relative time-lock, i.e., a condition that is satisfied if and only if at least t rounds passed
since the transaction was published, we write “+t” above the arrow. Finally, if the output
script φ can be parsed as φ = φ1 ∨ · · · ∨ φn for some n ∈ N, we add a diamond shape

49

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

tx

x1

x2

h

pkA

+t

pkA, pkB

tx′ x

φ1

φ2

φ3

Figure 3.1: (Left) tx is published on the blockchain. The output of value x1 can be spent
by a transaction containing a preimage of h and signed w.r.t. pkA. The output of value
x2 can be spent by a transaction signed w.r.t. pkA and pkB but only if at least t rounds
passed since tx was accepted by the blockchain. (Right) tx′ is not published yet. Its only
output can be spent by a transaction whose witness satisfies φ1 ∨ φ2 ∨ φ3.

to the corresponding transaction output. Each of the sub-conditions φi is then written
above a separate arrow.

Payment channels. A payment channel [PD16] enables several payments between two
users without submitting every single transaction to the blockchain. The cornerstone of
payment channels is depositing coins into an output controlled by two users, who then
authorize new deposit balances in a peer-to-peer fashion while having the guarantee that
all coins are refunded at a mutually agreed time.

First, assume that Alice and Bob want to create a payment channel with an initial deposit
of xA and xB coins respectively. For that, Alice and Bob agree on a funding transaction
(that we denote by txf) that sets as inputs two outputs controlled by Alice and Bob
holding xA and xB coins respectively and transfers them to an output controlled by both
Alice and Bob (i.e., its spending condition mandates both Alice’s and Bob’s signature).
When txf is added to the blockchain, the payment channel between Alice and Bob is
effectively open.

Assume now that Alice wants to pay α ≤ xA coins to Bob. For that, they create a
new commit transaction TXc representing the commitment from both users to the new
channel state. The commit transaction spends the output of txf into two new outputs:
(i) one holding xA − α coins owned by Alice; and (ii) the other holding xB + α coins
owned by Bob. Finally, parties exchange the signatures on the commit transaction,
thereby completing the channel update. Alice (resp. Bob) could now add TXc to the
blockchain. Instead, they keep it locally in their memory and overwrite it when they
agree on another commit transaction, let us denote it TXc, representing a newer channel
state. This, however, leads to several commit transactions that can possibly be added
to the blockchain. Since all of them are spending the same output, only one can be
accepted. As it is impossible to prevent a malicious user from publishing an old commit
transaction, payment channels require a mechanism punishing such behavior.

Lightning Network [PD16], the state-of-the-art payment channel for Bitcoin, implements
such a mechanism by introducing two commit transactions, denoted TXA

c and TXB
c, per

channel update, each of which contains a punishment mechanism for one of the users.
In more detail (see also Figure 3.2), the output of TXA

c representing Alice’s balance in
the channel has a special condition. Namely, it can be spent by Bob if he presents a

50

3.2. Background and Solution Overview

txf

xA + xB

publishable by A

publishable by B

TXA
c

xA

xB

TXB
c xB

xA

spendable by B
knowing rA

spendable by A
knowing rB

pkA, pkB

pkB

+∆
pkA
hA

pkB

pkA

+∆
pkB

hB

pkA

Figure 3.2: A Lightning style payment channel where A has xA coins and B has xB coins.
The values hA and hB correspond to the hash values of the revocation secrets rA and rB .
∆ upper bounds the time needed to publish a transaction on a blockchain.

preimage of a hash value hA or by Alice if a certain number of rounds passed since the
transaction was published. During a channel update, Alice chooses a value rA, called
the revocation secret, and presents the hash hA := H(rA) to Bob. Knowing hA, Bob
can create and sign the commit transaction TXA

c with the built-in punishment for Alice
(analogously for Bob and TXB

c). During the next channel update, parties first commit
to the new state by creating and signing TXA

c and TXB
c, and then revoke the old state by

sending the revocation secrets to each other thereby enabling the punishment mechanism.
If a malicious Alice now publishes the old commit transaction TXA

c, Bob can spend both
of its outputs and claim all coins locked in the channel.

3.2.1 Solution Overview

The goal of our work is to extend the idea of payment channels such that parties can agree
on any conditional payment that they could do on-chain and not only direct payments.
Technically, this means that we want the commit transaction to contain arbitrarily many
outputs with arbitrary conditions (as long as they are supported by the underlying
blockchain). The main question we need to answer when designing such channels, which
we call generalized channels, is how to implement the revocation mechanism.

Revocation per update. The first idea would be to extend the revocation mechanism
explained above such that each output of TXA

c contains a punishment mechanism for Alice
(analogously for Bob). While this solution works, it has several disadvantages. If one
party, say, Alice, cheats and publishes an old commit transaction TXA

c, Bob has to spend
all outputs of TXA

c to punish Alice. Although Bob could group some of them within
a single transaction (up to the transaction size limit), he might be forced to publish
multiple transactions thereby paying high transaction fees. Moreover, such a revocation
mechanism requires a high on-chain footprint not only for TXA

c, but also for Bob getting
coins from the outputs.

Our goal is to design a punishment mechanism whose on-chain footprint and potential

51

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

transaction fees are independent of the channel state, i.e., the number and type of outputs
in the channel. To this end, we propose the punish-then-split mechanism which separates
the punishment mechanism from the actual outputs. In a nutshell, the commit transaction
TXA

c has now only one output dedicated to the punishment mechanism which can be spent
(i) immediately by Bob, if he proves that the commit transaction was old (i.e., he knows
the revocation secret rA of Alice); or (ii) after a certain number of rounds by a split
transaction TXA

s owned by both parties and containing all the outputs of the channel (i.e.
representing the channel state). Hence, if TXA

c is published on the blockchain, Bob has
some time to punish Alice if the commit transaction was old. If Bob does not use this
option, any of the parties can publish the split transaction TXA

s representing the channel
state. Analogously for TXB

c.

One commit transaction per channel update. Another drawback of the Lightning-
style revocation mechanism is the need for two commit transactions for the same channel
state. While this is not an issue for simple payment channels, for generalized channels it
might cause undesirable redundancy in terms of communication and computational costs.
This comes from the fact that generalized channels support arbitrary output conditions
and hence can be used as a source of funding for other off-chain applications, e.g., a fair
two-party computation or another off-chain channel as we discuss later in this work (see
Section 3.7). Such off-chain applications would, however, have to “exist” twice. Once
considering TXA

c being eventually published on-chain and once considering TXB
c. Especially

when considering channels built on top of channels, the overhead grows exponentially.
Our goal is to construct generalized channels that require only one commit transaction
and hence avoid any redundancy.

A naive approach to design such a single commit transaction TXc would be to “merge”
the transactions TXA

c and TXB
c. Such TXc could be spent (i) by Alice if she knows Bob’s

revocation secret; (ii) by Bob if he knows Alice’s revocation secret or (iii) by the split
transaction TXs representing the channels state after some time. Unfortunately, this
simple proposal allows parties to misuse the punishment mechanism as follows. A
malicious Alice could publish an old commit transaction TXc and since she knows Bob’s
revocation secret, she could immediately try to punish Bob. To prevent such undue
punishment of honest Bob, we need to make sure that Alice can use the punishment
mechanism only if Bob published TXc.

The main idea of how to implement this additional requirement is to force the party
publishing TXc to reveal some secret, which we call publishing secret, that the other party
could use as proof. We achieve this by leveraging the concept of an adaptor signature
scheme – a signature scheme that allows a party to pre-sign a message w.r.t. some
statement Y of a hard relation (at a high level, a statement/witness relation is hard, if
given a statement Y is it computationally hard to find a witness y). Such pre-signature
can be adapted into a valid signature by anyone knowing a witness for the statement Y .
Also, it is possible to extract a witness y for Y by knowing both the pre-signature and
the adapted full signature. In our context, adaptor signatures allow users of a generalized
channel to express the following: “I give you my pre-signature on TXc that you can turn

52

3.3. Preliminaries

txf

xA + xB

publishable by
A, reveals yA

publishable by
B, reveals yB

txc

xA + xB txs ...

x1

xn

spendable by B
knowing rA, yA

spendable by A
knowing rB , yB

pkA, pkB

pkB , hA, YA

pkA, hB , YB

+∆
pkA, pkB

φ1

φn

Figure 3.3: A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). In the figure, pkA

denotes Alice’s public key, (hA, rA) her revocation public/secret values, and (YA, yA) her
publishing public/secret values (analogously for Bob). The value of ∆ upper bounds the
time needed to publish a transaction on a blockchain.

into a full signature and publish TXc, which will reveal your publishing secret to me.”

To conclude, our solution, depicted in Figure 3.3, requires only one commit transaction
TXc per update. The commit transaction has one output that can be spent (i) by Alice if
she knows Bob’s revocation secret rB and publishing secret yB; (ii) by Bob if he knows
Alice’s revocation secret rA and publishing secret yA or (iii) by the split transaction TXs
representing the channels state after some time. In the depicted construction, we assume
that statement/witness pairs used for the adaptor signature scheme are public/secret
keys of the blockchain signature scheme. Hence, testing if a party knows a publishing
secret can be done by requiring a valid signature w.r.t. this public key. Let us emphasize
that public/secret keys can also be used for the revocation mechanism instead of the
hash/preimage pairs. This is actually preferable (not only in our construction but also
in the Lightning-style channels) since the punishment output script will only consist of
signature verification, thereby requiring less complex scripting language. As a result, our
solution does not only work over Bitcoin, but over any UTXO-based blockchain that
supports transaction authorization (if there exists an adaptor signature scheme w.r.t.
the considered digital signature), relative time-locks and constant number of ∧ and ∨ in
output scripts.

3.3 Preliminaries

We denote by x ←$ X the uniform sampling of the variable x from the set X . Throughout
this paper, λ denotes the security parameter and all our algorithms run in polynomial
time in λ. By writing x ← A(y) we mean that a probabilistic polynomial time algorithm
A (or PPT for short) on input y, outputs x. If A is a deterministic polynomial time
algorithm (DPT for short), we use the notation x := A(y). A function ν : N → R is
negligible in λ if for every k ∈ N, there exists n0 ∈ N s.t. for every λ ≥ n0 it holds that
|ν(λ)| ≤ 1/λk. Throughout this work, we use the following notation for attribute tuples.
Let T be a tuple of values which we call attributes. Each attribute in T is identified

53

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

using a unique keyword attr and referred to as T .attr. Let us now briefly recall the
cryptographic primitives used in this paper to establish the used notation.

A signature scheme consists of three algorithms Σ = (Gen, Sign, Vrfy), where: (i) Gen(1n)
gets as input 1n and outputs the secret and public keys (sk, pk); (ii) Signsk(m) gets
as input the secret key sk and a message m ∈ {0, 1}∗ and outputs the signature σ;
and (iii) Vrfypk(m; σ) gets as input the public key pk, a message m and a signature σ,
and outputs a bit b. A signature scheme must fulfill correctness, i.e. it must hold that
Vrfypk(m; Signsk(m)) = 1 for all messages m and valid key pairs (sk, pk). In this work, we
use signature schemes that satisfy the notion of strong existential unforgeability under
chosen message attack (or SUF–CMA). At a high level, SUF–CMA guarantees that a
PPT adversary on input the public key pk and with access to a signing oracle, cannot
produce a new valid signature on any message m.

We next recall the definition of a hard relation R with statement/witness pairs (Y , y).
Let LR be the associated language defined as {Y | ∃y s.t. (Y , y) ∈ R}. We say that
R is a hard relation if the following holds: (i) There exists a PPT sampling algorithm
GenR that on input 1λ outputs a statement/witness pair (Y , y) ∈ R; (ii) The relation is
poly-time decidable; (iii) For all PPT A the probability of A on input Y outputting a
valid witness y is negligible.

Finally, we recall the definition of a non-interactive zero-knowledge proof of knowledge
(NIZK) with online extractors as introduced in [Fis05]. The online extractability property
allows for the extraction of a witness y for a statement Y from a proof π in the random
oracle model and is useful for models where the rewinding proof technique is not allowed,
such as UC. We need this property to prove our ECDSA-based adaptor signature scheme
secure. More formally, a pair (P, V) of PPT algorithms is called a NIZK with an online
extractor for a relation R, random oracle H and security parameter λ if the following
holds: (i) Completeness: For any (Y , y) ∈ R, it holds that V(Y , P(Y , y)) = 1 except with
negligible probability; (ii) Zero knowledge: There exists a PPT simulator, which on input
Y can simulate the proof π for any (Y , y) ∈ R. (iii) Online Extractor : There exists a
PPT online extractor K with access to the sequence of queries to the random oracle
and its answers, such that given (Y , π), the algorithm K can extract the witness y with
(Y , y) ∈ R. An instance of such a proof system is in [Fis05].

3.4 Generalized channels

3.4.1 Notation and security model

To formally model the security of generalized channels, we use the global UC framework
(GUC) [CDPW07] which extends the standard UC framework [Can01] by allowing for
a global setup. Here we discuss our security model (which follows the previous works
on off-chain channels [DFH18,DEF+19b,DEFM19]), only briefly and refer the reader to
Appendix B.1 for more details.

54

3.4. Generalized channels

We consider a protocol π that runs between parties from a fixed set P = {P1, . . . , Pn}.
A protocol is executed in the presence of an adversary A who can corrupt any party
Pi at the beginning of the protocol execution (so-called static corruption). Parties and
the adversary A receive their inputs from a special entity – called the environment E –
which represents anything “external” to the current protocol execution. We assume a
synchronous communication network meaning that protocol execution happens in rounds,
formalized via a global ideal functionality Fclock representing “the clock” [KMTZ13].
Parties in the protocol are connected with authenticated communication channels with
guaranteed delivery of exactly one round, formalized via an ideal functionality FGDC .
For simplicity, we assume that all other communication (e.g., messages sent between the
adversary and the environment) as well as local computation take zero rounds. Monetary
transactions are handled by a global ideal ledger functionality L(∆, Σ, V), where ∆ is an
upper bound on the blockchain delay (number of rounds it takes to publish a transaction),
Σ defines the signature scheme and V defines valid output conditions. Furthermore, the
global ledger maintains a PKI.

Generalized Channel Syntax. A generalized channel γ is an attribute tuple (γ.id,
γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the channel identifier, γ.users ∈ P ×P defines
the identities of the channel users, γ.cash ∈ R≥0 represents the total amount of coins
locked in γ, and γ.st = (θ1, . . . , θn) is the state of γ composed of a list of outputs. Each
output θi has two attributes: the value θi.cash ∈ R≥0 representing the amount of coins and
the function θi.φ : {0, 1}∗ → {0, 1} defining the spending condition. For convenience, we
use γ.otherParty : γ.users → γ.users defined as γ.otherParty(P) := Q for γ.users = {P , Q}.

3.4.2 Ideal Functionality

We capture the desired functionality of a generalized channel protocol as an ideal
functionality FL. As a first step towards defining our functionality, we informally identify
the most important security and efficiency notions of interest that a generalized channel
protocol should provide.

Consensus on creation: A generalized channel γ is successfully created only if all
parties in γ.users agree with the creation. Moreover, parties in γ.users reach
agreement on whether the channel is created or not after an a-priori bounded
number of rounds.

Consensus on update: A generalized channel γ is successfully updated only if both
parties in γ.users agree with the update. Moreover, parties in γ.users reach agree-
ment on whether the update is successful or not after an a-priori bounded number
of rounds.

Instant finality with punish: An honest party P ∈ γ.users has the guarantee that
either the current state of the channel can be enforced on the ledger, or P can
enforce a state where she gets all γ.cash coins. A state st is called enforced on the
ledger if a transaction with this state appears on the ledger.

Optimistic update: If both parties in γ.users are honest, the update procedure takes
a constant number of rounds (independent of the blockchain delay ∆).

55

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

Having the guarantees identified above in mind, we now design our ideal functionality FL.
It interacts with parties from the set P , with the adversary S (called the simulator) and
the ledger L(∆, Σ, V). In a bit more detail, if a party wants to perform an action (such as
opening a new channel), it sends a message to FL who executes the action and informs
the party about the result. The execution might leak information to the adversary who
may also influence the execution which is modeled via the interaction with S. Finally,
FL observes the ledger and can verify that a certain transaction appeared on-chain or
the ownership of coins.

To keep FL generic, we parameterized it by two values Tp and k – both of which must be
independent of the blockchain delay ∆. At a high level, the value Tp upper bounds the
maximal number of consecutive off-chain communication rounds between channel users.
Since different parts of the protocol might require a different amount of communication
rounds, the upper bound Tp might not be reached in all steps. For instance, channel
creation might require more communication rounds than old state revocation. To this
end, we give the power to the simulator to “speed up” the process when possible. The
parameter k defines the number of ways the channel state γ.st can be published on
the ledger. As discussed in Section 3.2, in this work we present a protocol realizing
the functionality for k = 1 (see Figure 3.3). A generalized channel construction using
Lightning style revocation mechanism (see Figure 3.2) would be a candidate protocol for
k = 2.

We assume that the functionality maintains a set Γ of created channels in their latest
state and the corresponding funding transaction tx. We present FL(∆,Σ,V)

L (Tp, k) formally
in Figure 3.4. Here we discuss each part of the functionality at a high level and argue
why it captures the aforementioned security and efficiency properties identified above.
We abbreviate FL := FL(∆,Σ,V)

L (Tp, k).

Create. If FL receives a message of the form (CREATE, γ, tidP) from both parties in
γ.users within Tp rounds, it expects a channel funding transaction to appear on the ledger
L within ∆ rounds. Such a transaction must spend both funding sources (defined by
transaction identifiers tidP , tidQ) and contain one output of the value γ.cash. If this is
true, FL stores this transaction together with the channel γ in Γ and informs both parties
about the successful channel creation via the message CREATED (how this can be done
within the UC model is discussed in Appendix B.1). Since a CREATE message is required
from both parties and both parties receive CREATED, “consensus on creation” holds.

Close. Any of the two parties can request closure of the channel via the message (CLOSE,
id), where id identifies the channel to be closed. In case both parties request closure
within T rounds, peaceful closure is expected. This means that a transaction, spending
the channel funding transaction and whose output corresponds to the latest channel state
γ.st, should appear on L within ∆ rounds. If only one of the parties requests closing, FL

executes the L–ForceClose subprocedure in which case such transaction is supposed to
appear on L within 3∆ rounds modeling possible dispute resolution. In both cases, if the

56

3.4. Generalized channels

funding transaction is not spent before a certain round, an ERROR is returned to both
users.

Update. The channel update is initiated by one of the parties P (called the initiating
party) via a message (UPDATE, id, −→

θ , tstp). The parameter id identifies the channel to be
updated, −→

θ represents the new channel state and tstp denotes the number of rounds
needed by the parties to set up off-chain applications (e.g., new channels or fair two-party
computation) that are being built on top of the channel via this update request. The
update is structured into two phases: (i) the prepare phase, and (ii) the revocation phase.
Intuitively, the prepare phase models the fact that both parties first agree on the new
channel state and get time to set up the off-chain applications on top of this new state.
The revocation phase models the fact that an update is only completed once the two
parties invalidate the previous channel state. We detail the two phases in the following.

The prepare phase starts when FL receives a vector of transaction identifiers tid =
(tid1, . . . , tidk) from S.2 In the optimistic case, it is completed within 3Tp + tstp rounds
and ends when the initiating party P receives an UPDATE–OK message from FL. The
setup phase can be aborted by both the initiating party P and the other party Q. This is
achieved by P not sending the SETUP–OK and by Q not sending the UPDATE–OK message,
respectively. This models two things. Firstly, the fact that Q might not agree with the
proposed update, and secondly, that setting up off-chain objects might fail in which case
parties want to abort the channel update. The abort may also result in a forceful closing
of the channel via the subprocedure L–ForceClose. It happens when one of the parties
has sufficient information to enforce the new state on-chain, while the other does not.

In order to complete the update, the revocation phase is executed. The functionality
expects to receive the REVOKE message from both parties within 2T rounds, in which
case FL updates the channel state in Γ accordingly and informs both parties about the
successful update via the message UPDATED. If one of the messages does not arrive, the
subprocedure L–ForceClose is called.

To conclude, the possibility for forceful closing guarantees the security property “consensus
on update” as it ensures termination of the update process and allows both parties to
see the state in which the channel was closed. Moreover, in case both parties are honest,
the update duration is independent of the ledger delay ∆, hence the efficiency property
“optimistic update” is satisfied.

Punish. In order to guarantee “instant finality with punishments”, parties continuously
monitor the ledger and apply the punishment mechanism if misbehavior is detected. This
is captured by the functionality in the part “Punish” which is executed at the end of
each round. The functionality checks if a funding transaction of some channel was spent.
If yes, then it expects one of the following to happen: (i) a punish transaction appears
on L within ∆ rounds, assigning γ.cash coins to the honest party P ∈ γ.users; or (ii)

2For technical reasons, ideal functionality cannot sign transactions and thus it can also not prepare
the transaction ids (which is the task of the simulator).

57

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

Upon (CREATE, γ, tidP) τ0←− P , distinguish:
Both agreed: If already received (CREATE, γ, tidQ) τ←− Q, where τ0 − τ ≤ Tp: If tx s.t.
tx.input = (tidP , tidQ) and tx.output = (γ.cash, φ), for some φ, appears on L in round
τ1 ≤ τ + ∆ + Tp, set Γ(γ.id) := ({γ}, tx) and (CREATED, γ.id) τ1−→ γ.users. Else stop.
Wait for Q: Else wait if (CREATE, id)

τ≤τ0+Tp←−−−−− Q (in that case “Both agreed” option is
executed). If such message is not received, stop.
Upon (UPDATE, id, −→

θ , tstp) τ0←− P , parse ({γ}, tx) := Γ(id), set γ′ := γ, γ′.st := θ:
1. In round τ1 ≤ τ0 + Tp, let S define tid s.t. |tid| = k. Then (UPDATE–REQ, id, −→

θ , tstp, tid)
τ1−→ Q and (SETUP, id, tid) τ1−→ P .

2. If (SETUP–OK, id)
τ2≤τ1+tstp←−−−−−− P , then (SETUP–OK, id)

τ3≤τ2+Tp−−−−−−→ Q. Else stop.
3. If (UPDATE–OK, id) τ3←− Q, then (UPDATE–OK, id)

τ4≤τ3+Tp−−−−−−→ P . Else distinguish:
• If Q honest or if instructed by S, stop (reject).
• Else set Γ(id) := ({γ, γ′}, tx), run L–ForceClose(id) and stop.

4. If (REVOKE, id) τ4←− P , send (REVOKE–REQ, id)
τ5≤τ4+Tp−−−−−−→ Q.

Else set Γ(id) := ({γ, γ′}, tx), run L–ForceClose(id) and stop.
5. If (REVOKE, id) τ5←− Q, Γ(id) := ({γ′}, tx), send (UPDATED, id, θ)

τ6≤τ5+Tp−−−−−−→ γ.users and
stop (accept). Else set Γ(id) := ({γ, γ′}, tx), run L–ForceClose(id) and stop.

Upon (CLOSE, id) τ0←− P , distinguish: Both agreed: If already received (CLOSE, id) τ←− Q,
where τ0 − τ ≤ Tp, run L–ForceClose(id) unless both parties are honest. In this case let
({γ}, tx) := Γ(id) and distinguish:

• If tx′, with tx′.input = tx.txid and tx′.output = γ.st appears on L in round τ1 ≤
τ0 + ∆, set Γ(id) := ⊥, send (CLOSED, id) τ1−→ γ.users and stop.

• Else output (ERROR) τ0+∆−−−→ γ.users and stop.

Wait for Q: Else wait if (CLOSE, id)
τ≤τ0+Tp←−−−−− Q (in that case “Both agreed” option is

executed). If such message is not received, run L–ForceClose(id) in round τ0 + Tp.
At the end of every round τ0: For each id ∈ {0, 1}∗ s.t. (X, tx) := Γ(id) ̸= ⊥, check if L
contains tx′ with tx′.input = tx.txid. If yes, then define S := {γ.st | γ ∈ X}, τ := τ0 + 2∆
and distinguish: Close: If tx′′ s.t. tx′′.input = tx′.txid and tx′′.output ∈ S appears on L
in round τ1 ≤ τ , set Γ(id) := ⊥ and (CLOSED, id) τ1−→ γ.users if not sent yet.
Punish: If tx′′ s.t. tx′′.input = tx′.txid and tx′′.output = (γ.cash, One–SigpkP

) appears on
L in round τ1 ≤ τ , for P honest, set Γ(id) := ⊥, (PUNISHED, id) τ1−→ P and stop.
Error: Else (ERROR) τ−→ γ.users.
L–ForceClose(id): Let τ0 be the current round and (X, tx) := Γ(id). If within ∆ rounds

tx is still unspent on L, then (ERROR) τ0+∆−−−→ γ.users and stop. Note that otherwise,
message m ∈ {CLOSED, PUNISHED,ERROR} is output latest in round τ0 + 3 · ∆.

Figure 3.4: The ideal functionality FL(∆,Σ,V)
L (Tp, k). We abbreviate Q := γ.otherParty(P).

58

3.5. Adaptor Signatures

a transaction whose output corresponds to the latest channel state γ.st appears on L
within 2∆ rounds, meaning that the channel is peacefully or forcefully closed. If none of
the above is true, ERROR is returned. Hence, under the condition that no ERROR was
returned, the security property “instant finality with punish” is satisfied.
In summary, our functionality satisfies the identified security and efficiency properties if
no ERROR occurs. Otherwise, all guarantees may be lost. Hence, we are interested only
in those protocols realizing FL that never output an ERROR.

Notation used in the formal description in Figure 3.4. Messages sent between
parties and FL have the following format: (MESSAGE_TYPE, parameters). To shorten the
description, we use the following arrow notation: by m

t−→ P , we mean “send the message
m to party P in round t.” and by m

t←− P , we mean “receive a message m from party P
in round t”. To indicate that a message should be sent/received before/after a certain
round, we use inequality symbols above the arrows. When FL expects S to set certain
values (such as the vector of tid’s during the update process or the exact round in which
a message should be sent to parties) and it does not do so, we implicitly assume that
ERROR is returned. Since we do not aim to make any claims about privacy, we implicitly
assume that every message that FL receives/sends from/to a party is directly forwarded
to S. In the formal description, we treat the channel set Γ as a function which on input
id outputs (X, tx), where X is a set of channels s.t. for every γ ∈ X γ.id = id, if such
channel exists and ⊥ otherwise. We denote the script requiring the signature of (only)
P as One–SigpkP

. Moreover, we omit several natural checks that one would expect FL

to make. For example, messages with missing parameters should be ignored, channel
instruction should be accepted only from channel users, etc. We formally define all checks
as a functionality wrapper in Appendix B.6. Finally, we omit the read queries that FL

sends to L in order to learn its state (c.f. Appendix B.1).

3.5 Adaptor Signatures
Our goal is to realize the ideal functionality of generalized channels for k = 1, meaning
that there is only one way to publish the channel state on-chain. As explained at a high
level in Section 3.2.1, we achieve our goal by utilizing an adaptor signature scheme – a
cryptographic primitive that we discuss in this section.
Adaptor signatures have been introduced by the cryptocurrency community to tie together
the authorization of a transaction and the leakage of a secret value. An adaptor signature
scheme is essentially a two-step signing algorithm bound to a secret: first, a partial
signature is generated such that it can be completed only by a party knowing a certain
secret, with the complete signature revealing such a secret. More precisely, we define
an adaptor signature scheme with respect to a digital signature scheme Σ and a hard
relation R. For any statement Y ∈ LR, a signer holding a secret key is able to produce a
pre-signature w.r.t. Y on any message m. Such pre-signature can be adapted into a valid
signature on m if and only if the adaptor knows a witness for Y . Moreover, it must be
possible to extract a witness for Y given the pre-signature and the adapted signature.

59

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

Despite the fact that adaptor signatures have been used in previous works (e.g. [MMS+19,
Fou19,MSK]), none of these works has given a formal definition of the adaptor signature
primitive and its security. In the following, we fill this gap and provide the first game-
based formalization of adaptor signatures. As already mentioned, Erwig et al. [EFH+21]
recently extended our definition to a two-party case.

Definition 2 (Adaptor signature scheme). An adaptor signature scheme w.r.t. a hard
relation R and a signature scheme Σ = (Gen, Sign, Vrfy) consists of four algorithms ΞR,Σ =
(pSign, Adapt, pVrfy, Ext) with the following syntax: pSignsk(m, Y) is a PPT algorithm
that on input a secret key sk, message m ∈ {0, 1}∗ and statement Y ∈ LR, outputs
a pre-signature σ̃; pVrfypk(m, Y ; σ̃) is a DPT algorithm that on input a public key pk,
message m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̃, outputs a bit b; Adapt(σ̃, y)
is a DPT algorithm that on input a pre-signature σ̃ and witness y, outputs a signature
σ; and Ext(σ, σ̃, Y) is a DPT algorithm that on input a signature σ, pre-signature σ̃ and
statement Y ∈ LR, outputs a witness y such that (Y , y) ∈ R, or ⊥.

An adaptor signature scheme ΞR,Σ must satisfy pre-signature correctness stating that for
every m ∈ {0, 1}∗ and every (Y , y) ∈ R, the following holds:

Pr pVrfypk(m, Y ; σ̃) = 1,
Vrfypk(m; σ) = 1, (Y , y′) ∈ R

(sk, pk) ← Gen(1λ),
σ := Adaptpk(σ̃, y),

σ̃ ← pSignsk(m, Y)
y′ := Extpk(σ, σ̃, Y) =1.

The first security property, existential unforgeability under chosen message attack for
adaptor signature (aEUF–CMA security for short), protects the signer. It is similar to
EUF–CMA for digital signatures but additionally requires that producing a forgery σ
for some message m is hard even given a pre-signature on m w.r.t. a random statement
Y ∈ LR. Let us stress that allowing the adversary to learn a pre-signature on the forgery
message m is crucial since, for our applications, signature unforgeability needs to hold
even in case the adversary learns a pre-signature for m without knowing a witness for Y .

Definition 3 (Existential unforgeability). An adaptor signature scheme, denoted as
ΞR,Σ, is aEUF–CMA secure if for every PPT adversary A = (A1, A2) there exists a
negligible function ν such that: Pr[aSigForgeA,ΞR,Σ(λ) = 1] ≤ ν(λ), where the experiment
aSigForgeA,ΞR,Σ is defined as follows:

aSigForgeA,ΞR,Σ(λ)

1 : Q := ∅, (sk, pk) ← Gen(1λ)
2 : (Y , y) ← GenR(1n)

3 : (m, st) ← AOS(·),OpS(·,·)
1 (pk, Y)

4 : σ̃ ← pSignsk(m, Y)

5 : σ ← AOS(·),OpS(·,·)
2 (σ̃, st)

6 : return m ̸∈ Q ∧ Vrfypk(m; σ)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

OpS(m, Y)

1 : σ̃ ← pSignsk(m, Y)
2 : Q := Q ∪ {m}
3 : return σ̃

60

3.5. Adaptor Signatures

The reason why the game computes σ̃ in step 4 (although A could obtain it by querying
OpS) is that it allows A to learn σ̃ without m being added to Q.

The second property, called pre-signature adaptability, protects the verifier. It guarantees
that any valid pre-signature w.r.t. Y (possibly produced by a malicious signer) can be
completed into a valid signature using a witness y with (Y , y) ∈ R. Notice that this
property is stronger than the pre-signature correctness property from Definition 2, since
we require that even pre-signatures that were not produced by pSign but are valid, can
be completed into valid signatures.
Definition 4 (Pre-signature adaptability). An adaptor signature scheme ΞR,Σ satisfies
pre-signature adaptability if for any message m ∈ {0, 1}∗, any statement/witness pair
(Y , y) ∈ R, any public key pk and any pre-signature σ̃ ∈ {0, 1}∗ with pVrfypk(m, Y ; σ̃) = 1,
we have Vrfypk(m; Adapt(σ̃, y)) = 1.

The last property that we are interested in is witness extractability which protects the
signer. Informally, it guarantees that a valid signature/pre-signature pair (σ, σ̃) for
message/statement (m, Y) can be used to extract a witness y for Y . Hence a malicious
verifier cannot use a pre-signature σ̃ to produce a valid signature σ without revealing a
witness for Y 3.

Definition 5 (Witness extractability). An adaptor signature scheme ΞR,Σ is witness
extractable if for every PPT adversary A = (A1, A2), there exists a negligible function ν
such that the following holds: Pr[aWitExtA,ΞR,Σ(λ) = 1] ≤ ν(λ), where the experiment
aWitExtA,ΞR,Σ is defined as follows

aWitExtA,ΞR,Σ(λ)

1 : Q := ∅, (sk, pk) ← Gen(1λ)

2 : (m, Y , st) ← AOS(·),OpS(·,·)
1 (pk)

3 : σ̃ ← pSignsk(m, Y)

4 : σ ← AOS(·),OpS(·,·)
2 (σ̃, st)

5 : return ((Y , Extpk(σ, σ̃, Y)) ̸∈ R ∧ m ̸∈ Q ∧ Vrfypk(m; σ))

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

OpS(m, Y)

1 : σ̃ ← pSignsk(m, Y)
2 : Q := Q ∪ {m}
3 : return σ̃

Let us stress that while the experiment aWitExt looks fairly similar to the experiment
aSigForge, there is one crucial difference; namely, the adversary is allowed to choose the
forgery statement Y . Hence, we can assume that they know a witness for Y so they can
generate a valid signature on the forgery message m. However, this is not sufficient to
win the experiment. The adversary wins only if the valid signature does not reveal a
witness for Y .

3We note that in order to prove security for our ECDSA-based adaptors signature scheme, the game
must also check that the statement returned by the adversary is indeed sampled from the correct space,
i.e., Y ∈ LR. However, as this check is only needed for the ECDSA-based construction we did not add
this restriction to the game.

61

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

Definition 6. An adaptor signature scheme ΞR,Σ is secure, if it is aEUF–CMA secure,
pre-signature adaptable, and witness extractable.

Note that none of the security definitions explicitly states that pre-signatures are un-
forgeable. However, it is implied by the definitions as we discuss in Appendix B.4.

3.5.1 ECDSA-based Adaptor Signature

We now construct a provably secure adaptor signature scheme based on ECDSA digital
signatures that are commonly used by blockchains. The construction presented here
is similar to the construction put forward by [MSK], however, some modifications are
needed for the security proof. In addition to the ECDSA-based adaptor signature
scheme presented here, we show a scheme based on Schnorr digital signatures, including
correctness and security proofs, in Appendix B.2.

Recall the ECDSA signature scheme ΣECDSA = (Gen, Sign, Vrfy) for a cyclic group G = ⟨g⟩
of prime order q. The key generation algorithm samples x ←$ Zq and outputs gx ∈ G
as the public key and x as the secret key. The signing algorithm on input a message
m ∈ {0, 1}∗, samples k ←$ Zq and computes r := f(gk) and s := k−1(H(m) + rx),
where H : {0, 1}∗ → Zq is a hash function modeled as a random oracle and f : G → Zq

(i.e., f is typically defined as the projection to the x-coordinate since in ECDSA the
group G consists of elliptic curve points). The verification algorithm on input a message
m ∈ {0, 1}∗ and a signature (r, s) verifies that f(gs−1H(m)Xs−1r) = r. One of the
properties of the ECDSA scheme is that if (r, s) is a valid signature for m, then so is
(r, −s). Consequently, ΣECDSA does not satisfy SUF–CMA security which we need in
order to prove its security. In order to tackle this problem we build our adaptor signature
from the Positive ECDSA scheme which guarantees that if (r, s) is a valid signature,
then |s| ≤ (q − 1)/2. The positive ECDSA has already been used in other works such
as [BDM16, Lin21]. This slightly modified ECDSA scheme is not only assumed to be
SUF–CMA but also prevents having two valid signatures for the same message after the
signing process, which is useful in practice, e.g., for threshold signature schemes based
on ECDSA. As the ECDSA verification accepts valid positive ECDSA signatures, these
signatures can be used by any blockchain that uses ECDSA, e.g., Bitcoin.

The adaptor signature scheme in [MSK] is presented w.r.t. a relation Rg ⊆ G × Zq

defined as Rg := {(Y , y) | Y = gy}. The main idea of the construction is that a pre-
signature (r, s) for a statement Y is computed by embedding Y into the r-component
while keeping the s-component unchanged. This embedding is rather involved since the
value s contains a product of k−1, r, and the secret key. More concretely, to compute
the pre-signature for Y , the signer samples a random k and computes K := Y k and
K̃ := gk. It then uses the first value to compute r := f(K) and sets s := k−1(H(m) + rx).
To ensure that the signer uses the same value k in K and K̃, a zero-knowledge proof
that (K̃, K) ∈ LY := {(K̃, K,) | ∃k ∈ Zq s.t. gk = K̃ ∧ Y k = K} is attached to the
pre-signature. We denote the prover of the NIZK as PY and the corresponding verifier as
VY . The pre-signature adaptation is done by multiplying the value s with y−1, where y

62

3.5. Adaptor Signatures

pSignsk(m, IY)

x := sk, (Y , πY) := IY

k ←$ Zq, K̃ := gk

K := Y k, r := f(K)
s̃ := k−1(H(m) + rx)
π ← PY ((K̃, K), k)
return (r, s̃, K, π)

pVrfypk(m, IY ; σ̃)

X := pk, (Y , πY) := IY

(r, s̃, K, π) := σ̃

u := H(m) · s̃−1

v := r · s̃−1

K ′ := guXv

return ((IY ∈ LR)
∧ (r = f(K)) ∧ VY ((K ′, K), π))

Adapt(σ̃, y)

(r, s̃, K, π) := σ̃

s := s̃ · y−1

return (r, s)

Ext(σ, σ̃, IY)

(r, s) := σ

(r̃, s̃, K, π) := σ̃

y′ := s−1 · s̃

if (IY , y′) ∈ R′
g

then return y′

else return ⊥

Figure 3.5: ECDSA-based adaptor signature scheme.

is the corresponding witness for Y . This adjusts the randomness k used in s to ky, and
hence matches with the r value.

Unfortunately, it is not clear how to prove security for the above scheme. Ideally, we
would like to reduce both the unforgeability and the witness extractability of the scheme
to the strong unforgeability of positive ECDSA. More concretely, suppose there exists
a PPT adversary A that wins the aSigForge (resp. aWitExt) experiment. Having A, we
want to design a PPT adversary (also called the simulator) S that breaks the SUF–CMA
security. The main technical challenge in both reductions is that S has to answer queries
(m, Y) to the pre-signing oracle OpS by A. This has to be done with access to the ECDSA
signing oracle but without knowledge of sk and the witness y. Thus, we need a method
to “transform” full signatures into valid pre-signatures without knowing y, which seems
to go against the aEUF–CMA-security (resp. witness extractability).

Due to this reason, we slightly modify this scheme. In particular, we modify the hard
relation for which the adaptor signature is defined. Let R′

g be a relation whose statements
are pairs (Y , π), where Y ∈ LRg is as above, and π is a non-interactive zero-knowledge
proof of knowledge that Y ∈ LRg . Formally, we define R′

g := {((Y , π), y) | Y =
gy ∧ Vg(Y , π) = 1} and denote by Pg the prover and by Vg the verifier of the proof system
for LRg . Clearly, due to the soundness of the proof system, if Rg is a hard relation, then
so is R′

g.

It might seem that we did not make it any easier for the reduction to learn a witness
needed for creating pre-signatures. However, we exploit the fact that we are in the ROM,
and the reduction answers adversary’s random oracle queries. Upon receiving a statement
IY := (Y , π) for which it must produce a valid pre-signature, it uses the random oracle
query table to extract a witness from the proof π. Knowing the witness y and a signature
(r, s), the reduction can compute (r, s · y) and execute the simulator of the NIZKY to
produce a consistency proof π. This concludes the protocol description and the main
proof idea. We refer the reader to Appendix B.3 for the detailed proof of the following
theorem.

Theorem 2. If the positive ECDSA signature scheme ΣECDSA is SUF–CMA-secure and

63

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

Rg is a hard relation, ΞR′
g ,ΣECDSA from Figure 3.5 is a secure adaptor signature scheme in

the ROM.

3.6 Generalized Channel Construction
We now present a concrete protocol, denoted ΠL, that requires only one commit trans-
action, i.e., implements the punish-then-split mechanism. This is achieved by utilizing
an adaptor signature scheme ΞR,Σ = (pSign, Adapt, pVrfy, Ext) for signature scheme
Σ = (Gen, Sign, Vrfy) used by the underlying ledger and a hard relation R. Through-
out this section, we assume that statement/witness pairs of R are public/secret keys
of Σ. More precisely, we assume there exists a function ToKey that takes as input a
statement Y ∈ LR and outputs a public key pk. The function is s.t. the distribution
of (ToKey(Y), y), for (Y , y) ← GenR, is equal to the distribution of (pk, sk) ← Gen. We
emphasize that both ECDSA and Schnorr-based adaptor signatures satisfy this condition
as discussed in Appendix B.5, where we also explain how to modify our protocol when
this condition does not hold. Our protocol consists of four subprotocols: Create, Update,
Close, and Punish. We discuss each subprotocol separately at a high level here and refer
the reader to Appendix B.5 for the pseudo-code description.

Channel creation. In order to create a channel γ, the users of the channel, say A
and B, have to agree on the body of the funding transaction [txf], mutually commit to
the first channel state defined by γ.st = ((xA, One–SigpkA

), (xB, One–SigpkB
)), and sign

and publish the funding transaction txf on the ledger. Recall that One–Sigpk represents
the script that verifies that the transaction is correctly signed w.r.t. the public key pk.
Once txf is published, the channel creation is completed. Looking at Figure 3.6, one can
summarize the creation process as a step-by-step creation of transaction bodies from left
to right, and then a step-by-step signature exchange on the transaction bodies from right
to left. Let us elaborate on this in more detail.

Step 1: To prepare [txf], parties need to inform each other about their funding sources,
i.e., exchange the transaction identifiers tidA and tidB . Each party can then locally create
the body of the funding transaction [txf] with {tidA, tidB} as input and output requiring
the signature of both A and B. Step 2: Parties can now start committing to the initial
channel state. To this end, each party P ∈ {A, B} generates a revocation public/secret
pair (RP , rP) ← GenR and publishing public/secret pair (YP , yP) ← GenR, and sends the
public values RP , YP to the other party. Parties can now locally generate [txc] which
spends txf and can be spent by a transaction satisfying one of these conditions:

Punish A: It is correctly signed w.r.t. pkB, ToKey(YA), ToKey(RA);

Punish B: It is correctly signed w.r.t. pkA, ToKey(YB), ToKey(RB);

Channel state: It is correctly signed w.r.t. pkA and pkB, and at least ∆ rounds have
passed since txc was published.

64

3.6. Generalized Channel Construction

txf
xA + xB

txc

xA + xB txs
xA

xB

pkA, pkB

pkB , ToKey(RA), ToKey(YA)

pkA, ToKey(RB), ToKey(YB)

+∆
pkA, pkB

pkA

pkB

1. Create [txf]
tidA−−→
tidB←−−

2. Create [txc]
RA,YA−−−−→
RB ,YB←−−−−−

3. Create [txs]
no communication

6. Sign [txf]
SignskA

([txf])−−−−−−−−→
SignskB

([txf])←−−−−−−−−

5. Pre-sign [txc]
pSignskA

([txc],YB)−−−−−−−−−−−→
pSignskB

([txc],YA)←−−−−−−−−−−−

4. Sign [txs]
SignskA

([txs])−−−−−−−−→
SignskB

([txs])←−−−−−−−−
7. Publish txf

Figure 3.6: Schematic description of the generalized channel creation protocol.

Steps 3+4: Using the transaction identifier of txc, parties can generate and exchange
signatures on the body of the split transaction txs which spends txc and whose output
is equal to the initial state of the channel γ.st. Step 5: Parties are now prepared to
complete the committing phase by pre-signing the commit transaction to each other.
This means that party A executes the pSignskA

on message [txc] and statement YB and
sends the pre-signature to B (analogously for B). Step 6: If valid pre-signatures are
exchanged (validity is checked using the pVrfy algorithm), parties exchange signatures on
the funding transaction and post it on the ledger in Step 7. If the funding transaction is
accepted by the ledger, channel creation is successfully completed.

The question is what happens if one of the parties misbehaves during the creation process
by aborting or sending a malformed message (w.l.o.g. let B be the malicious party). If
the misbehavior happens before A sends her signature on txf (i.e., before step 6), party
A can safely conclude that the creation failed and does not need to take any action. If
the misbehavior happens during step 6, A is in a hybrid situation. She cannot post txf

on-chain as she does not have B’s signature needed to spend tidB. However, since she
already sent her signature on txf to B, she has no guarantee that B will not post txf later.
To resolve this issue, our protocol instructs A to spend her output tidA. Now within ∆
rounds, tidA is spent – either by the transaction posted by A (in which case creation
failed) or by txf posted by B (in which case creation succeeded).

To conclude, channel creation as described above takes 5 off-chain communication rounds,
and up to ∆ rounds are needed to publish the funding transaction. Our formal protocol
description contains two optimizations that reduce the number of off-chain communication
rounds to 3. The optimizations are based on the observations that messages sent during
steps 1 and 2 can be grouped into one as well as the messages sent during steps 4 and 5.

Channel closure. The purpose of the closing procedure is to collaboratively publish
the latest channel state on the blockchain. The naive implementation is to let parties

65

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

publish the latest agreed-upon commit transaction and thereafter the corresponding
split transaction representing the latest channel state. However, due to the punishment
mechanism built into the commit transaction, parties have to wait for ∆ rounds after such
a transaction is accepted by the ledger to publish the split transaction. To realize our
ideal functionality, we need to design a more efficient solution eliminating the redundant
waiting for honest parties.

When parties want to close a channel, they first run a “final update”. In short, the
final update preserves the latest channel state but removes the punishment layer. More
precisely, parties agree on a new split transaction that has exactly the same outputs as the
last split transaction but spends the funding transaction txf directly (i.e., Steps 2+5 from
Figure 3.6 are skipped). Once parties jointly sign the split transaction, they can publish
it on the ledger which completes the channel closure. If the final update fails, parties close
the channel forcefully. Namely, they first publish the latest commit transaction, wait
until the time for punishment expires. Then they post the split transaction representing
the final channel state. It takes at most ∆ rounds to publish the commit transaction
and at most 2∆ rounds to publish the split transaction once the commit transaction is
accepted which corresponds to the upper bound dictated by our ideal functionality. Since
forceful closing might also be triggered during a channel update (as we discuss next), we
define forceful closure as a separate subprocedure ForceClose.

Channel update. To update a channel γ to a new state, given by a vector of output
scripts θ, parties have to (i) agree on the new commit and split transaction capturing
the new state and (ii) invalidate the old commit transaction.

Part (i) is very similar to the agreement on the initial commit and split transaction as
described in the creation protocol (Steps 2-5 in Figure 3.6). There is one major difference
coming from the fact that the new channel state θ can contain outputs that fund other
off-chain applications (such as sub-channels).4 In order to set up these applications, the
identifier of the new split transaction is needed. To this end, parties first prepare the
commit (Steps 2+3) to learn the desired identifier and set up all applications off-chain.
Once this is done, which is signaled by “SETUP–OK” and takes at most tstp rounds, parties
execute the second part of the committing phase (Steps 4+5).

To realize part (ii), in which the punishment mechanism of the old commit transaction is
activated, parties simply exchange the revocation secrets corresponding to the previous
commit transaction which completes the update. Note that in this optimistic case when
both parties are honest, the update is performed entirely off-chain and takes at most
5 + tstp rounds.

We now discuss what happens if one party misbehaves during the update. As long as none
of the parties pre-signed the new commit transaction, i.e., before Step 5, misbehavior
simply implies update failure. A more problematic case is when the misbehavior occurs

4This is not the case during channel creation since we assume that the initial channel state consists
of two accounts only.

66

3.6. Generalized Channel Construction

after at least one of the parties pre-signed the new commit transaction. This happens,
e.g., when one party pre-signs the new commit but the other does not; or when one party
revokes the old commit and the other does not. In each of these situations, an honest
party ends up in a hybrid state when the update is neither rejected nor accepted. In order
to realize our ideal functionality requiring consensus on update in a bounded number of
rounds, our protocol instructs an honest party to ForceClose the channel. This means
that the honest party posts the latest commit transaction that both parties agreed on to
the ledger guaranteeing that txf is spent within ∆ rounds. If the transaction spending
txf is the new commit transaction, the channel is closed in the updated state. Otherwise,
the update fails and either the channel is closed in the state before the update, or the
punishment mechanism is activated and the honest party gets financially compensated
(as discussed in the next paragraph).

Punish. Since we are in the UTXO model, nothing can stop a corrupted party
from publishing an old commit transaction, thereby closing the channel in an old state.
However, the way we designed the commit transaction enables the honest party to punish
such malicious behavior and get financially compensated. If an honest party A detects
that a malicious party B posted an old commit transaction TXc, it can react by publishing
a punishment transaction which spends TXc and assigns all coins to A. In order to make
such a punishment transaction valid, A must sign it under: (i) her secret key skA, (ii)
B’s publishing secret key ȳB, and (iii) B’s revocation secret key r̄B. The knowledge of
the revocation secret r̄B follows from the fact that TXc was old, i.e., parties revealed their
revocation secrets to each other. The knowledge of the publishing secret ȳB follows from
the fact that it was B who published TXc. Let us elaborate on this in more detail. Since
TXc was accepted by the ledger, it had to include a signature of A. The only signature
A provided to B on TXc was a pre-signature w.r.t. ȲB. The unforgeability and witness
extractability properties of ΞR,Σ guarantee that the only way B could produce a valid
signature of A on TXc was by adapting the pre-signature and hence revealing the secret
key ȳB to A.

Security analysis. We now formally state our main theorem, which essentially says
that the ΠL protocol is a secure realization, as defined according to the UC framework,
of the FL(3, 1) ideal functionality.

Theorem 3. Let Σ be a SUF–CMA secure signature scheme, R a hard relation, and ΞR,Σ
a secure adaptor signature scheme. Let L(∆, Σ, V) be a ledger, where V allows for transac-
tion authorization w.r.t. Σ, relative time-locks and constant number of Boolean operations
∧ and ∨. Then the protocol ΠL UC-realizes the ideal functionality FL(∆,Σ,V)

L (3, 1).

The formal UC proof of the Theorem 3 can be found in Appendix B.8. Let us here just
argue at a high level, why our protocol satisfies the most complex property defined by
the ideal functionality, i.e., instant finality with punishment.

We first argue that instant finality holds after the channel creation, meaning that each
of the two parties (alone) is able to unlock her coins from a created channel if it was

67

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

never updated. The pre-signature adaptability property of ΞR,Σ guarantees that after a
successful channel creation, each party P is able to adapt the pre-signature of the other
party Q on [txc] by using the publishing secret value yP (corresponding to YP). Party
P can now sign [txc] herself and post txc on the ledger. Since parties never signed any
other transaction spending txf , the posted txc will be accepted by the ledger within ∆
rounds. Note that here we rely on the unforgeability of the signature scheme and the
unforgeability of the adaptor signature scheme. Let us stress that parties have not revealed
their revocation secrets, i.e., the values rP and rQ, to each other yet. The hardness
of the relation R implies that none of the two parties is able to use the punishment
mechanism of the published commit transaction. Thus, after ∆ rounds, P can post the
split transaction TXs on the ledger by which she unlocks her xP coins.

After a successful update, each party P possesses a pre-signature of the other party
Q on the new commit transaction TXc and the revocation secret of the other party on
the previous commit transaction. The former implies that P is able to complete Q’s
pre-signature, sign [TXc] herself and post TXc on-chain. Assume first that the funding
transaction of the channel txf is not spent yet, hence TXc is accepted by the ledger within
∆ rounds. Since party Q does not know the revocation secret of party P corresponding
to TXc, by the hardness of the relation R, the only way how TXc can be spent is by
publishing TXs representing the latest channel state. Hence, instant finality holds in this
case.

Assume now that txf is already spent and hence TXc is rejected by the ledger. The
only transaction that could have spent txf is one of the old commit transactions. This
is because P never signed or pre-signed any other transaction spending txf . Let us
denote the transaction spending txf as TXc. Since TXc is an old transaction P knows
Q’s revocation secret rQ. Moreover, the extractability property of the adaptor signature
scheme implies that P can extract Q’s publishing secret yQ from the pre-signature that
she gave to Q on this transaction and the completed signature contained in TXc. Hence,
P can create a valid punishment transaction spending TXc. As our protocol instructs
an honest party P to constantly monitor the blockchain and publish the punishment
transaction immediately if TXc appears on-chain, the punishment transaction will be
accepted by the blockchain before the relative time-lock of TXc expires. Hence, P receives
all the coins locked in the channel which is what we needed to show.

3.7 Applications

Our generalized channels support a variety of applications such as PCNs [PD16,MMSK+17,
MMS+19], payment channel hubs [TMSM21a,HAB+17], multi-path payments in PCNs
[EFHR20], financially fair two-party computation [BK14], channel splitting [EMSM19],
virtual payment channels [AME+21] or watchtowers [MSYS21]. Furthermore, generalized
channels prove to be highly versatile in interoperable applications, i.e., applications that
run across multiple blockchains (e.g., for payment channels with watchtower as described
later). As generalized channels rely only on on-chain signature verification, time-locked

68

3.7. Applications

transactions, and basic Boolean logic, they can be implemented on a multitude of different
blockchains, easing thus the design and execution of cross-chain applications. Here, we
first generally discuss which applications can be built on top of generalized channels and
then focus on several concrete examples.

Suitable applications. We are interested in applications that are executed among
two parties (i.e., two-party applications) and whose goal is to redistribute coins between
them. We call the initial transaction outputs holding coins of the two parties the funding
source of the application. If all outputs of the funding source are contained in already
published transactions, we say that the application is funded directly by the ledger. If the
outputs are part of a generalized channel state, we say that the application is funded by
a generalized channel.

In principle, any two-party application that can be funded directly by the underlying
ledger can also be funded by a generalized channel. There are, however, two subtleties
one should keep in mind. Firstly, generalized channels provide “only” instant finality
with punishment. This implies that generalized channels are suitable for two-party
applications in which parties are willing to accept financial compensation in exchange for
an off-chain state loss. Secondly, it takes up to 3∆ rounds to publish the funding source
of the application. Hence, the protocol implementing the application needs to adjust the
dispute timings accordingly (if applicable). We summarize this statement in Remark 4 in
Appendix B.9, where we also explain how to add applications to a generalized channel.
Here we now discuss several concrete applications that benefit from generalized channels.

Fair two-party computation. One important example of an application that can
be built on top of generalized channels is the claim-or-refund functionality introduced
by Bentov and Kumaresan [BK14], and used in a series of work to realize multiple
applications over Bitcoin [KB14]. At a high level, claim-or-refund allows one party, say
A, to lock β coins that can be claimed by party B if she presents a witness satisfying
a condition f . After a predefined number of rounds, say t, the payment of β coins is
refunded back to A if the witness is not revealed.

In their work, Bentov and Kumaresan demonstrated how to utilize this simple functionality
to realize a secure two-party protocol with penalties over a blockchain. Hence, the fact
that claim-or-refund can be built on top of generalized channels naturally implies that
two parties can execute any such protocol off-chain. Off-chain execution offers several
advantages if both parties collaborate: (i) they do not have to pay fees or wait for the
on-chain delay when deploying and funding the claim-or-refund as well as when one of
the parties rightfully claims (resp. refunds) coins; (ii) they can run several simultaneous
instances of claim-or-refund fully off-chain, thus improving efficiency; and (iii) a blockchain
observer is oblivious to the fact that the claim-or-refund functionality has been executed
off-chain. In case of misbehavior during the execution of a claim-or-refund instance, the
channel punishment procedure ensures that the honest party is financially compensated
with all funds locked in the channel.

Channel splitting. A generalized channel can be split into multiple sub-channels

69

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

that can be updated independently in parallel. This idea appears already in [EMSM19]
where two users A and B want to split a channel γ with coin distribution (αA, αB) into
two sub-channels γ0 and γ1 with the coin distributions (βA, βB) and (αA − βA, αB − βB)
respectively.

Executing multiple applications without prior channel splitting requires all applications
to share a single funding source (i.e., that provided by the channel) and thus to be
adjusted with every single channel update (i.e., even if the update is required for a single
application), which might significantly increase the off-chain communication complexity.
However, first splitting the channel into sub-channels effectively makes the execution of
applications in each sub-channel independent of each other. For instance, two applications
that benefit from channel splitting are payment channels with watchtower [MSYS21] and
virtual channels [AME+21] – both of which rely on generalized channels, and which we
discuss next.

Payment channels with watchtower. The security of existing channel constructions
relies on the parties in a channel monitoring the blockchain to detect misbehavior.
In practice, however, it is difficult to guarantee that a party remains always online.
To tackle this, watchtowers [MBB+19a,ALS+18] are used as always-online nodes that
offer monitoring services and can act on behalf of offline parties. Recently, Mirzaei et
al. [MSYS21] proposed an extension to generalized channels which adds watchtower
support. Their result utilizes the fact that our generalized channel construction detaches
the punishment procedure from the applications.

Virtual channels. The concept of virtual channels was first introduced in the work
of Dziembowski et al. [DEFM19] in which the authors presented a construction over
blockchains such as Ethereum, which can run Turing complete programs. Let us shortly
recall this concept. Assume Alice and Bob both have a channel with a party Ingrid, but
not with each other. A virtual channel allows Alice and Bob to send off-chain payments
to each other without having to communicate with Ingrid for each transaction. In a
recent work, [AME+21], Aumayr et al. demonstrated that virtual payment channels
are also possible over Bitcoin. Their virtual channel construction uses our generalized
channels as a building block and heavily relies on the generality of our formalization. For
more details, see [AME+21].

Table 3.1: Costs of lightning (LC) and generalized channels (GC) funding m HTLCs.

on-chain (dispute) off-chain (update)
txs size (bytes) cost (USD) # txs size (bytes)

LC 2 + m 513 + m · 410 13.52 + m · 10.80 2 + 2 · m 706 + 2 · m · 410
GC 2 663 17.47 2 695 + m · 123

70

3.8. Performance Analysis

3.8 Performance Analysis
We implemented a proof of concept for our generalized channels construction, creating the
necessary Bitcoin transactions. We successfully deployed these transactions on the Bitcoin
testnet, demonstrating thereby compatibility with the current Bitcoin network. The
source code is available at https://github.com/generalized-channels/gc.
For the different operations, we measure the (i) number and (ii) byte size for off- and
on-chain transactions required for the protocol. On-chain, we additionally measure
the current estimated fee cost (May 2021). Note that the transaction fee in Bitcoin
is dependent on the transaction size. We compare these numbers to Lightning-based
channels.

Evaluation of multiple HTLCs. Users in a PCN typically take part in several
multi-hop payments at once inside one channel. We evaluate the costs of performing m
parallel payments, over both Lightning channels (LC) and generalized channels (GC).
To realize multiple payments in a channel, there need to be 2 + m outputs: Two of
which account for the balances of each user, and m representing one payment each in a
“Claim-or-Refund” contract (HTLC).

To update to a channel with m parallel payments, parties need to exchange 2 + 2 · m
transactions in LC and only 2 transactions in GC. The advantage of GC is two-fold:
The state is not duplicated and the HTLCs do not require an additional transaction.
The difference in off-chain transaction size is 706 + 2 · m · 410 bytes for LC compared to
695 + m · 123 bytes for GC.

In case of a dispute, the difference in on-chain cost is even more pronounced. To punish
in LC, the honest party needs to spend m + 1 outputs: the one representing the balance
of the malicious party and one per HTLC. This is in contrast to GC, where the honest
party publishes the punishment transaction only. As a result, the total size of on-chain
transactions in the LC is 513 + m · 410 bytes, which cost around 13.52 + m · 10.80 USD.
In GC, the on-chain transaction size is 663 bytes resulting in a cost of 17.47 USD. There
have already been disputes for channels with 50 active HTLCs [lnc20]. To settle such a
dispute in LC, transactions with 21013 bytes or a cost of 553.66 USD have to be deployed.
In GC, again we only need 663 bytes or 17.47 USD. GC thus reduce the on-chain cost
from linear on m to constant in the case of a dispute as shown in Table 3.1.

Evaluation of channel splitting. The state duplication impacts other applications as
well, e.g., channel splitting (see Section 3.7). For an LC, two commit transactions need to
be exchanged per update. Hence, if we split an LC into two sub-channels, parties need to
create these sub-channels for both commit transactions. Moreover, for each sub-channel
two commit transactions are required. This is a total of 4 commit transactions per
sub-channel. GC needs only one commitment and one split transaction per sub-channel.

After a channel split, sub-channels are expected to behave as normal channels. If we
want to split an LC sub-channel further, we would need eight commit transactions (two
for each of the four commitments) per sub-channel. Observe, that for every recursive

71

https://github.com/generalized-channels/gc

3. Generalized Channels from Limited Blockchain Scripts and Adaptor
Signatures

split of a channel, the amount of LC commit transactions for the new subchannel doubles.
For the mth split, we need 2m+1 additional commit transactions in the LC setting. In
the GC setting, there is no state duplication, therefore the amount of transactions per
sub-channel is always one commit and one split transaction. We reduce the complexity
for additional transactions on the mth split from exponential to constant.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) Emmy
Noether Program FA 1320/1-1, by the DFG CRC 1119 CROSSING (project S7), by the
German Federal Ministry of Education and Research (BMBF) iBlockchain project (grant
nr. 16KIS0902), by the German Federal Ministry of Education and Research and the
Hessen State Ministry for Higher Education, Research and the Arts within their joint
support of the National Research Center for Applied Cybersecurity ATHENE, by the
European Research Council (ERC) under the European Unions Horizon 2020 research
(grant agreement No 771527-BROWSEC), by the Austrian Science Fund (FWF) through
PROFET (grant agreement P31621) and the Meitner program (grant agreement M 2608-
G27), by the Austrian Research Promotion Agency (FFG) through the Bridge-1 project
PR4DLT (grant agreement 13808694) and the COMET K1 projects SBA and ABC,
by the Vienna Business Agency through the project Vienna Cybersecurity and Privacy
Research Center (VISP), by CoBloX Labs and by the ERC Project PREP-CRYPTO
724307.

72

CHAPTER 4
Blitz: Secure Multi-Hop Payments

Without Two-Phase Commits

Abstract

Payment-channel networks (PCN) are the most prominent approach to tackling the
scalability issues of current permissionless blockchains. A PCN reduces the load on-chain
by allowing arbitrarily many off-chain multi-hop payments (MHPs) between any two
users connected through a path of payment channels. Unfortunately, current MHP
protocols are far from satisfactory. One-round MHPs (e.g., Interledger) are insecure as a
malicious intermediary can steal the payment funds. Two-round MHPs (e.g., Lightning
Network (LN)) follow the 2-phase-commit paradigm as in databases to overcome this
issue. However, when tied with economical incentives, 2-phase-commit brings other
security threats (i.e., wormhole attacks), staggered collateral (i.e., funds are locked for
a time proportional to the payment path length), and dependency on specific scripting
language functionality (e.g., Hash Time-Lock Contracts) that hinders a wider deployment
in practice.

We present Blitz, a novel MHP protocol that demonstrates for the first time that we can
achieve the best of the two worlds: a single-round MHP where no malicious intermediary
can steal coins. Moreover, Blitz provides the same privacy for sender and receiver as
current MHP protocols do, is not prone to the wormhole attack, and requires only
constant collateral. Additionally, we construct MHPs using only digital signatures and
a timelock functionality, both available at the core of virtually every cryptocurrency
today. We provide the cryptographic details of Blitz and we formally prove its security.
Furthermore, our experimental evaluation on a LN snapshot shows that (i) staggered
collateral in LN leads to between 4x and 33x more unsuccessful payments than the
constant collateral in Blitz; (ii) Blitz reduces the size of the payment contract by 26%;

73

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

and (iii) Blitz prevents up to 0.3 BTC (3397 USD in October 2020) in fees being stolen
over a three day period as it avoids wormhole attacks by design.

This chapter presents the results of a collaboration with Pedro Moreno-Sanchez, Aniket
Kate, and Matteo Maffei, which was published at the 30th USENIX Security Symposium in
2021 under the title "Blitz: Secure Multi-Hop Payments Without Two-Phase Commits". I
am the main author of this paper. I am responsible for the idea, designing and writing the
protocol, formalization in the UC framework, defining the security and privacy properties,
writing the proofs, writing a proof-of-concept implementation, conducting the experiments
and the simulation, as well as comparison to related work. Pedro Moreno-Sanchez, Aniket
Kate, and Matteo Maffei were the general advisors and contributed with continuous
feedback.

4.1 Introduction

Permissonless cryptocurrencies such as Bitcoin enable secure payments in a decentralized,
trustless environment. Transactions are verified through a consensus mechanism and all
valid transactions are recorded in a public, distributed ledger, often called blockchain.
This approach has inherent scalability issues and fails to meet the growing user demands:
In Bitcoin, the transaction throughput is technically limited to tens of transactions per
second and the transaction confirmation time is around an hour. In contrast, more
centralized payment networks such as the Visa credit card network, can handle peaks of
47,000 transactions per second.

This scalability issue is an open problem in industry and academia alike [GMSR+20,
ZABZ+21]. Among the approaches proposed so far, payment channels (PC) have emerged
as one of the most promising solutions; implementations thereof are already widely used
in practice, e.g., the Lightning Network (LN) [PD16] in Bitcoin. A PC enables two
users to securely perform an arbitrary amount of instantaneous transactions between
each other while burdening the blockchain with merely two transactions, (i) for opening
and (ii) for closing. In particular, following the unspent transaction output (UTXO)
model, two users open a PC by locking some coins in a shared multi-signature output.
By exchanging signed transactions that spend from the shared output in a peer-to-peer
fashion, they can capture and redistribute their balances off-chain. Either one of the two
users can terminate the PC by publishing the latest of these signed transactions on the
blockchain.

As creating PCs requires locking up some coins, it is economically infeasible to set up
a PC with every user one wants to interact with. Instead, PCs can be linked together
forming a graph known as payment channel network (PCN) [PD16, MMSK+17]. In a
PCN, a payment of α coins from a sender U0 to a receiver Un can be performed via a
path {Ui}i∈[0,n] of intermediaries.

74

4.1. Introduction

4.1.1 State-of-the-art PCNs

A possible way of achieving such a multi-hop payment (MHP) is an optimistic 1-round
approach, e.g., Interledger [TS15]. Here, U0 starts paying to its neighbor on the path U1,
who then pays to its neighbor U2 and so on until Un is reached. This protocol, however,
relies on every intermediary behaving honestly, otherwise any intermediary can trivially
steal coins by not forwarding the payment to its neighbor.

To achieve security in MHPs, most widely deployed PCNs (e.g., LN [PD16]) require an
additional second round of communication (i.e., sequential, pair-wise communication
between sender and receiver via intermediaries). Specifically, PCNs follow the principles
of the 2-phase-commit protocol used to perform atomic updates in distributed databases.
In the first communication round, the users on the payment path lock α coins of the PC
with their right neighbor in a simple smart contract called Hash Time-Lock Contract
(HTLC), which can be expressed even in restricted scripting languages such as the one
used in Bitcoin. The money put into the HTLC by the left neighbor at each PC moves
to the right neighbor, if this neighbor can present a secret chosen by Un (i.e., the receiver
of the payment); alternatively, it can be reclaimed by the left neighbor after some time
has expired.

After HTLCs have been set up on the whole path, the users move to the second round,
where they release the locks by passing the secret from Un to U0 via the intermediaries
on the path before the time on the HTLCs has expired. Intermediaries are economically
incentivized to assist in the 2-phase payment protocol. In the first round, when Ui receives
α coins from the left neighbor Ui−1, it forwards only α − fee to the right neighbor Ui+1,
charging fee coins for the forwarding service. In the second round, when Ui+1 claims the
α − fee coins from Ui, the latter is incentivized to recover the α coins from Ui−1.

4.1.2 Open problems in current PCNs

There are some fundamental problems with current PCNs that follow the 2-phase-commit
paradigm. While 2-phase-commit has been successfully used for atomic updates in
distributed databases, it is not well suited to applications where economic incentives
are inherently involved. In particular, there exists a tradeoff between security, efficiency,
and the number of rounds in the PCN setting that constitutes not only a challenging
conceptual problem but also one with strong practical impact, as we motivate below.

Staggered collateral. After a user Ui has paid to Ui+1, it must have enough time to
claim the coins put by Ui−1. If Ui−1 is not cooperative, then this time is used to forcefully
claim the funds with an on-chain transaction. The timing on the HTLCs (called collateral
time in the blockchain folklore) grows therefore in a staggered manner from right to left,
ti ≥ ti+1 + ξ. In practice, ξ has to be quite long: e.g., in the LN, it is set to one day (144
blocks). In the worst case, the funds are locked up for a time of n · ξ. This means that a
single payment of value α over n users can lock up a collateral of Θ(n2 · α · ξ). Reducing
this locktime enables a faster release time of locked funds and directly improves the

75

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

throughput of the network. Moreover, long locktimes are also problematic when looking
at the high volatility of cryptocurrency prices, where prices can drop significantly within
the same day.

Griefing attack. A malicious user can start an MHP to itself, causing user Ui to lock
up α coins for a time (n − i) · ξ. The malicious user subsequently goes idle and lets the
payment fail with the intention of reducing the overall throughput of the network by
causing users to lock up their funds. In a different scenario, an intermediary could do
the same by accepting payments in the first round but going idle in the second. It is
interesting also to observe the amplification factor: with the relatively small amount of α
coins, an attacker can lock (n − 1) · α coins of the network. This attack is hard to detect
and can even be used to target specific users in the PCN in order to lock up their funds.

Wormhole attack. The wormhole attack [MMS+19] is an attack on PCNs where
two colluding malicious users skip honest users in the open phase of the 2-phase-commit
protocol and thereby cheat them out of their fees. The payment does not happen
atomically anymore: For some users the payment is successful and for others, it is not,
i.e., for the ones encased by the malicious users. The users for whom it is unsuccessful
have to lock up some of their funds, but do not get any fees for offering their services, nor
can they use their locked funds for other payments. These fees go instead to the attacker.

HTLC contracts. PCNs built on top of 2-phase-commit payments depend largely on
HTLCs and the underlying cryptocurrencies supporting them in their scripts. However,
there are a number of cryptocurrencies that do not have this functionality or that do not
provide scripting capabilities at all, such as Stellar or Ripple. Instead, these currencies
provide only digital signature schemes and timelocks.

On a conceptual level, one could actually wonder whether or not it is required to add
an agreement protocol (in the database literature, a protocol where if an honest party
delivers a message m, then m is eventually delivered by every honest party), like the
HTLC-based 2-phase-commit paradigm, on top of the blockchain-inherited consensus
protocol.

The current state of affairs thus leads to the following question: Is it possible to design
a PCN protocol with a single round of communication (and thus without HTLCs) while
preserving security and atomicity?

4.1.3 Our contributions

We positively answer this question by presenting Blitz, a novel payment protocol built on
top of the existing payment channel constructions, which combines the advantages of
both the optimistic 1-round and the 2-phase-commit paradigms. Our contributions are
as follows.

• With Blitz, we introduce for the first time a payment protocol that achieves an MHP
in one round of communication while preserving security in the presence of malicious

76

4.2. Background and notation

intermediaries (i.e., as in the LN). The Blitz protocol has constant collateral of only
Θ(n · α · ξ), allowing for PCNs that are far more robust against griefing attacks and
provide a higher transaction throughput. Additionally, the Blitz protocol is immune to
the wormhole attack, and having only one communication round reduces the chance of
unsuccessful payments due to network faults.

• We show that Blitz payments can be realized with only timelocks and signatures,
without requiring, in particular, HTLCs. This allows for a more widespread deployment,
i.e., in cryptocurrencies that do not feature hashlocks or scripting, but only signatures
and timelocks, e.g., Stellar or Ripple. Since Blitz builds on standard payment channel
constructions, it can be smoothly integrated as an (alternative or additional) multi-hop
protocol into all popular PCNs, such as the LN.

• We formally analyze the security and privacy of Blitz in the Universal Composability
(UC) framework. We provide an ideal functionality modeling the security and privacy
notions of interest and show that Blitz is a UC realization thereof.

• We evaluate Blitz and show that while the computation and communication overhead
is inline with that of the LN, the size of the contract used in Blitz is around 26% smaller
than an HTLC in the LN, which in practice opens the door for a higher number of
simultaneous payments within each channel. We have additionally evaluated the effect of
the reduction of collateral from staggered in the LN to constant in Blitz and observed that
it reduces the number of unsuccessful payments due to locked funds by a factor between 4x
and 33x, depending on payment amount and percentage of disrupted payments. Finally,
the avoidance of the wormhole attack by design in Blitz can save up to 0.3 BTC (3397
USD in October 2020) of fees in our setting (over a three day period).

4.2 Background and notation

The notation used in this work is adopted from [AEE+21]. We provide here an overview
of the necessary background and for more details we refer the reader to [MMS+19,
MMSK+17,AEE+21].

4.2.1 Transactions in the UTXO model

Throughout this work, we consider cryptocurrencies that are built with the unspent
transaction output (UTXO) model, as Bitcoin is for instance. In such a model, the units
of cash, which we will call coins, exist in outputs of transactions. Let us define such an
output θ as a tuple consisting of two values, θ := (cash, ϕ), where θ.cash denotes the
amount of coins held in this output and θ.ϕ is the condition which must be fulfilled in
order to spend this output. The condition is encoded in the scripting language used
by the underlying cryptocurrency. We say that a user U owns the coins in an output
θ, if θ.ϕ contains a digital signature verification script w.r.t. U ’s public key and the
digital signature scheme of the underlying cryptocurrency. For this, we use the notation
OneSig(U). If multiple signatures are required, we write MultiSig(U1, . . . , Un).

77

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

tx
x1

x2

B
≥ t1

pkB
+t2

pkA, pkB

tx′ x2

ϕ1

ϕ2

ϕ3 ∧ ϕ4

Figure 4.1: (Left) Transaction tx has two outputs, one of value x1 that can be spent by
B (indicated by the gray box) with a transaction signed w.r.t. pkB at (or after) round
t1, and one of value x2 that can be spent by a transaction signed w.r.t. pkA and pkB

but only if at least t2 rounds passed since tx was accepted on the blockchain. (Right)
Transaction tx′ has one input, which is the second output of tx containing x2 coins and
has only one output, which is of value x2 and can be spent by a transaction whose witness
satisfies the output condition ϕ1 ∨ ϕ2 ∨ (ϕ3 ∧ ϕ4). The input of tx is not shown.

Ownership of outputs can change via transactions. A transaction maps a non-empty list
of existing outputs to a non-empty list of new outputs. For better distinction, we refer to
these existing outputs as transaction inputs. We formally define a transaction body tx as
an attribute tuple tx := (id, input, output). The identifier tx.id ∈ {0, 1}∗ is automatically
assigned as the hash of the inputs and outputs, tx.id := H(tx.input, tx.output), where H is
modelled as a random oracle. The attribute tx.input is a list of identifiers of the inputs of
the transaction, while tx.output := (θ1, . . . , θn) is a list of new outputs. A full transaction
tx contains additionally a list of witnesses, which fulfill the spending conditions of the
inputs. We define tx := (id, input, output, witness) or for convenience tx := (tx, witness).
Only a valid transaction can be published on the blockchain, i.e., one that has a valid
witness for every input and has only inputs not used in other published transactions.

In fact, a transaction is not published on the blockchain immediately after it is submitted,
but only after it is accepted through the consensus mechanism. We model that by
defining a blockchain delay ∆, an upper bound on the time it takes for a transaction
that is broadcast until it is added to the ledger.

For better readability, we use charts to visualize transactions, their ordering, and how
they are used in protocols. The charts are expected to be read from left to right,
i.e., the direction of the arrows. Every transaction is represented as a rectangle with
rounded corners. Incoming arrows represent inputs. Every transaction has one or more
output boxes inside it. Inside these boxes, we write the amount of coins stored in the
corresponding output. Every output box has one or more outgoing arrows. This arrow
has the condition needed to spend the corresponding output written above and below it.

To present complex conditions in a compact way, we use the following notation. On
a high level, we write the owner(s) of an output below the arrow and how they can
spend it above. In a bit more detail, most output scripts require signature verification
w.r.t. one or more public keys, a condition that we represent by writing the necessary
public keys below a given arrow. Other conditions are written above the arrow. The
conditions above can be any script supported by the underlying cryptocurrency, however,
in this paper, we require only the following. We write “+t” or RelTime(t) to denote
a relative timelock, i.e., the output with this condition can be spent, if and only if at

78

4.2. Background and notation

least t rounds have passed since the transaction containing the output was published
on the blockchain. Additionally, we consider absolute timelocks, denoted as “≥ t” or
AbsTime(t): this condition is satisfied if and only if the blockchain is at least t blocks
long. If an output condition is a disjunction of several conditions, i.e., ϕ = ϕ1 ∨ · · · ∨ ϕn,
we write a diamond shape in the output box and put each subcondition ϕi above/below
its own arrow. For the conjunction of several conditions, we write ϕ = ϕ1 ∧ · · · ∧ ϕn. We
illustrate an example of our transaction charts in Figure 4.1.

4.2.2 Payment channels

A payment channel is used by two parties P and Q to perform several payments between
them while requiring only two on-chain transactions (for opening and closing). The
balances are kept and updated in what is called a state. For brevity and readability, we
hereby abstract away from the implementation details of a payment channel and provide
a more detailed description in Appendix C.3.

We assume that there is an off-chain transaction txstate which holds the outputs repre-
senting the current state of the payment channel. We further assume that the current
txstate can always be published on the blockchain and if an old state is published by a
dishonest user, the honest user gets the total channel balance through some punishment
mechanism.

Formally, we define a channel γ as the following attribute tuple γ := (id, users, cash, st).
Here, γ.id ∈ {0, 1}∗ is a unique identifier of the channel, γ.users ∈ P2 denotes the
two parties that participate in the channel out of the set of all parties P. Further,
γ.cash ∈ R≥0 stores the total number of coins held in the channel and γ.st := (θ1, . . . , θn)
is the current state of the channel consisting of a list of outputs. For convenience, we also
define a channel skeleton γ with respect to a channel γ as the tuple γ := (γ.id, γ.users).
When the channel is used along a payment path as shown in the next section, we say
the γ.left ∈ γ.users accesses the user that is closer to the sender and γ.right ∈ γ.users the
one closer to the receiver. The balance of each user can be inferred from the state γi.st,
however for convenience we define a function γi.balance(U), that returns the coins of user
U ∈ γi.users in this channel.

4.2.3 Payment channel networks

Since maintaining a payment channel locks a certain amount of coins for a party, it is
economically prohibitive to set up a payment channel with every party that one potentially
wants to interact with. Instead, each party may open channels with a few other parties,
creating thereby a network of channels. A payment channel network (PCN) [MMSK+17]
is thus a graph where vertices represent the users and edges represent channels between
pairs of users. In a PCN, a user can pay any other user connected through a path of
payment channels between them. Suppose user U0 wants to pay some amount α to Un,
but does not have a payment channel directly with it. Now assume that instead, U0 has
a payment channel γ0 with U1, who in turn has a channel γ1 with U2 and so on, until

79

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

the receiver Un. We say that U0 and Un are connected by a path and denote a payment
using it as multi-hop payment (MHP).

Optimistic payment schemes. In an MHP, the main challenge is to ensure that the
payment happens atomically and for everyone, so that no (honest) user loses any money.
In fact, there exist payment-channel network constructions where this security property
does not hold. We call them optimisic payment schemes and give Interledger [TS15] as
an example. In this scheme, the users on the path simply forward the payment without
any guarantee of the payment reaching the receiver. The sender U0 starts by performing
an update for channel γ0, where γ0.balance(U1) is increased by α (and γ0.balance(U0) is
decreased by α) compared to the previous state. U1 does the same with U2 and this step
is repeated until the receiver Un is reached. This scheme works if every user is honest.
However, a malicious intermediary can easily steal the money by simply stopping the
payment and keeping the money for itself.

Secure MHPs. Since the assumption that every user is honest is infeasible in practice,
most widely deployed systems instead ensure that no honest user loses coins. The
Lightning Network (LN) [PD16] uses so-called Hash Time-Lock Contracts (HTLCs). An
HTLC works as follows. In a payment channel between Alice and Bob, party Alice locks
some coins that belong to her in an output that is spendable in the following fashion: (i)
After a predefined time t, Alice gets her money back. (ii) Bob can also claim the money
at any time if he knows a pre-image rA for a certain hash value H(rA), which is set by
Alice.

For an MHP in the LN, suppose again that we have a sender U0 who wants to pay α
to a receiver Un via some intermediaries Ui with i ∈ [1, n − 1], and that two users Uj

and Uj+1 for j ∈ [0, n − 1] have an opened payment channel. Now for the first step, Un

samples a random number r, computes the hash of it y := H(r), and sends y to U0. In
the second step, the sender U0 sets up an HTLC with U1 by creating a new state with
three outputs θ1, θ2, θ3 that correspondingly hold the amount of coins: α, U0’s balance
minus α and U1’s balance. While θ2 and θ3 are spendable by their respective owners,
θ1 is the output used by the HTLC. The HTLC that is constructed spends the output
containing α back to U0 after n time, let us say n days, or to U1 if it knows a value x
such that H(x) = y. Now U1 repeats this step with its right neighbor, again using y but
a different time, (n − 1) days, in the HTLC. This step is repeated until the receiver is
reached, with a timeout of 1 day.

Now if constructed correctly, the receiver Un can present r to its left neighbor Un−1,
which is the secret required in the HTLC for giving the money to Un. We call this opening
the HTLC. After doing that, the two parties can either agree to update their channel to
a new state, where Un has α coins more, or otherwise the receiver can publish the state
and a transaction with witness r spending the money from the HTLC to itself on-chain.
When a user Ui reveals the secret r to its left neighbor Ui−1, Ui−1 can use r to continue
this process. For this continuation, Ui−1 needs to have enough time. Otherwise, Ui could
claim the money of the HTLC it has with Ui−1 by spending the HTLC on-chain at the

80

4.3. Solution overview

last possible moment. Because of the blockchain delay, user Ui−1 will notice this too late
and will not be able to claim the money of the HTLC with Ui−2 anymore. This is the
reason why the timelocks on the HTLCs are staggered, i.e., increasing from right to left.
The aforementioned process where each user presents r to the left neighbor is repeated
until the sender U0 is reached, at which point the payment is completed. We call this
approach of performing MHPs 2-phase-commit.

4.3 Solution overview
The goal of this work is to achieve the best of the two multi-hop payment (MHP)
paradigms existing nowadays (optimistic and 2-phase-commit), that is, an MHP protocol
with a single round of communication that overcomes the drawbacks of the current LN
MHP protocol and yet maintains the security and privacy notions of interest.
For that, we propose a paradigm shift, which we call pay-or-revoke. The idea is to
update the payment channels from sender to receiver in a single round of communication.
The key technical challenge is thus to design a single channel update that can be used
simultaneously for sending coins from the left neighbor to the right one if the payment is
successful and for a refund of the coins to the left neighbor if the payment is unsuccessful
(e.g., one intermediary is offline).
We present the pay-or-revoke paradigm in an incremental way, starting with a naive
design, discussing the problems with it, and presenting a tentative solution. We iterate
these steps until we finally reach our solution.

Naive approach. Assume a setting with a sender U0 who wants to pay α coins to
a receiver Un via a known path of some intermediaries Ui (i ∈ [1, n − 1]), where each
pair of consecutive users Uj and Uj+1 for j ∈ [0, n − 1] has a payment channel γj , where
γj .balance(Uj) ≥ α. We start out with an optimistic payment scheme, as presented
in Section 4.2.3. We already explained that the success of such a payment relies on
every intermediary behaving honestly and really forwarding the α coins. Should an
intermediary not forward the payment, Un will never receive anything. Additionally, a
receiver could claim that it never received the money even though it actually did and it
would be difficult for the sender to prove otherwise.
To solve these problems the sender faces when using this form of payment we introduce
a possibility for the sender to step back from a payment, that is, refund itself and all
subsequent users the α coins that they initially put, should the payment not reach Un.
With such a refund functionality, the sender can now check if a receiver is giving a
confirmation that it got the payment. This confirmation is external to the system (e.g., a
digital payment receipt) and serves additionally as a proof that the money was received.
If such a confirmation is not received, the sender simply steps back from the payment,
and the payments in every channel are reverted.

Adding refund functionality. Adding a refund functionality while avoiding additional
security problems is challenging. Two neighbors can no longer simply update their

81

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

channel γi to a state where α coins are moved from the left to the right neighbor, as this
only encodes the payment. Instead, we need to introduce an intermediate channel state
txstate, which encodes the possibility for both a refund and a payment.

We realize that as follows. This new state has an output holding α coins coming from
γi.left (= Ui) while leaving the rest of the balance in the channel untouched. The output
containing α coins becomes then the input for two mutually exclusive transactions: refund
and payment. We denote the refund transaction as txr

i, which spends the money back
to γi.left (= Ui). We denote the payment transaction as txp

i , which spends the money
to γi.right (= Ui+1). The refund should only be possible until a certain time T . This
gives the sender time to wait for the payment to reach the receiver and for the receiver
to give a (signed) confirmation. Should something go wrong, the sender starts the refund
procedure. After time T , if no refund happened, the payment is considered successful
and the payment transaction becomes valid.

The latter condition can easily be expressed in the scripting language of virtually any
cryptocurrency including Bitcoin, by making use of absolute timelocks, which in this
work we defined as AbsTime(T), meaning an output can be spent only after some time
T . Unfortunately, the same cannot be done for expressing the condition that an output
is spendable only before time T (e.g., see [EMSM19] for details).

We overcome this problem in a different way. Instead of making the refund transaction
txr

i only valid before T , we allow both txr
i and the payment transaction txp

i to be valid
after time T and encode a condition that, should both be posted after T , txp

i will always
be accepted over txr

i. We can achieve this by adding a relative timelock on the input of
txr

i of the blockchain delay ∆. In other words, should a user try to close the channel
with txstate appearing on the chain after time T , the other user will have enough time to
react and post txp

i , which will get accepted before the relative timelock of txr
i expires. For

the honest refund case nothing changes: If txstate is on-chain and txr
i gets posted before

T − ∆, it will always be accepted over txp
i , since the latter transaction is only valid after

time T .

Making the refund atomic. So far, we added a refund functionality that is (i) not
atomic and (ii) triggerable by every user on the path. An obvious attack on this scheme
would be for any user on the path to commence the refund in a way that txr

i is accepted
on the ledger just before T . Other users would not have enough time to react accordingly
and lose their funds. Also, allowing intermediary users to start the refund opens up the
door to griefing, where malicious users start a refund even though the payment reached
the receiver. We therefore need a mechanism that (i) ensures the atomicity of the refund
(or payment) and (ii) is triggerable only by the sender.

Following the LN protocol, one could add a condition H(rA) on the refund transaction,
such that the refund can only happen when a pre-image rA chosen by the sender is
known. To prevent the sender from publishing at the last moment however, the timing
for the refund in the next channel would have to be T + ∆ to give U1 enough time to
react. In subsequent channels, this time would grow by ∆ for every hop and we would

82

4.3. Solution overview

then have an undesirable staggered time delay. Additionally, this approach would rely on
the scripting language supporting hash-lock functionality.

To keep the time delay constant, we instead make the refund transactions dependent on
a transaction being published by the sender. First, the sender creates a transaction that
we name enable-refund and denote by txer. The unsigned transaction txer is then passed
through the path and is used at each channel γj as an additional input for txr

i.

This makes the refund transaction at every channel dependent on txer and gives the sender
and only the sender the possibility to abort the payment until time T in case something
goes wrong along the path (e.g., a user is offline or the enable-refund transaction is
tampered), and the receiver the guarantee to get the payment after time T otherwise.

In order to use the same txer for the refund transaction txr
i of every channel γi, we proceed

as follows. For every user on the path (except for the receiver) there needs to exist
an output in txer that belongs to it. Additionally, we observe that an intermediary Ui

whose left neighbor Ui−1 has used txer as input for its refund transaction txr
i−1 can safely

construct a refund transaction txr
i dependent on the same txer, because it will know that

if its left neighbor refunded, txer has to be on-chain, which means that it can refund
itself. Also, since the appearance of txer on the ledger is a global event that is observable
by everyone at the same time, the time T used for the refund can be the same for every
channel, i.e., constant.

Putting everything together. Our approach is depicted in Figure 4.2, txer is shown in
Figure 4.3, and the transaction structure between two users is shown in Figure 4.4. Note
that we change the payment value from α to αi to embed a per-hop fee (see Appendix C.1
for details). After the payment is set up from sender to receiver, the receiver sends a
confirmation of txer back to U0, which acts both as verification that txer was not tampered
and as a payment confirmation. Should the sender receive this in time, it will wait until
time T , after which the payment will be successful. If no confirmation was received in
time, or txer was tampered with, the sender will publish txer in time to trigger the refund.

We remark that it is crucial that every intermediate user can safely construct txr
i only

observing txer, but not the input funding it (or not even knowing whether it will be funded
at all in the first place). Indeed, an intermediary Ui does not care if the transaction txer

is spendable at all, it only cares that its left neighbor Ui−1 uses an output of the same
transaction txer as input for its refund transaction txr

i−1, as Ui does in txr
i.

In UTXO-based cryptocurrencies, using the jth output of a transaction tx as input of
another transaction tx′ means referencing the hash of the transaction body H(tx), which
we defined as tx.id, plus an index j. A transaction txr

i that was created with an input
referencing txer.id and some index j, can only be valid if txer is published. This means, in
particular, that it is computationally infeasible to create a different transaction txer′ ̸= txer

and use one of txer′’s outputs as input of txr
i without finding a collision in H. Further, as

txr
i requires the signatures of both Ui and Ui+1, a malicious Ui on its own cannot create

a different refund transaction txr
i
′ that does not depend on txer.

83

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

U0 U1 U2 U3 U4
1.

≥ T

2.
≥ T

3.
≥ T

4.
≥ T

txer enables refunds

5. verify txer

Figure 4.4

Figure 4.3

Figure 4.2: Illustration of the pay-or-revoke paradigm.

txer

...
ϵ

ϵ

pkU0

pkUn−1

n · ϵ

txin

...

+tc + ∆

+tc + ∆
pkU0

Figure 4.3: Transaction txer, which enables the refunds and, here, spends the output of
some other transaction txin.

αi

xUi
− αi

xUi+1

ϵ
αi + ϵ

pkUi
, pkUi+1

pkUi +∆

≥ T
αi pkUi+1

txstate
i

txer

...

...

txr
i

txp
i

pkUi+1

pkUi

+tc + ∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

Figure 4.4: Payment setup in the channel γi of two neighboring users Ui and Ui+1 with
the new state txstate. xUi and xUi+1 are the amounts that Ui and Ui+1 own in the state
prior to txstate.

A final timelock. There is however still one subtle problem with the construction up to
this point regarding the timing coming from the fact that the sender has the advantage of
being the only one able to trigger the refund by publishing txer. In a bit more detail, as
closing a channel takes some time, a malicious sender U0 can forcefully close its channel
with U1 beforehand. Then, when txstate

0 is on the ledger, the sender publishes txer so that
it appears just before T − ∆. The sender is able to publish txr

0 just in time before T . All
other intermediaries, however, who did not yet close their channel, with the result that

84

4.3. Solution overview

txstate
i is not on the ledger, will not be able to do this and publish txr

i in time.

To solve this problem, we introduce a relative timelock on the outputs of txer of exactly
tc + ∆, as shown in Figure 4.3 and Figure 4.4. This relative time delay is an upper bound
on the time it takes to (i) forcefully close the channel and (ii) wait for the time delay
needed to publish txr

i. With this, we ensure that no user gains an advantage by closing
its channel in advance, since this can be entirely done in this relative timelock on txer’s
outputs. Honest intermediaries can easily check that this relative timelock is present in
txer’s outputs and every user on the payment path has the same time.

A timeline of when the transactions have to appear on the ledger is given in Appendix C.6.
Note that for the payment to be refunded, txer has to be posted to the ledger at the
latest at time T − tc − 3∆. Still, for better readability, we sometimes refer to this case
simply as txer being published before time T .

Improving anonymity of the path. Until this point, we have shown a design of the
pay-or-revoke paradigm, that, while ensuring that honest users do not lose coins, has
an obvious drawback in terms of anonymity. In particular, the transaction outputs of
txer contain the addresses of every user on the path in the clear (except for the receiver
who does not need to refund and therefore needs no such output). This means that
every intermediary (or any other user that sees txer) learns about the identity of every
user on the payment path as soon as it sees txer. To prevent this leak, we use stealth
addresses [VS18]. We overview our use of stealth addresses here and refer to Section 4.4.2
for technical details. On a high level, instead of spending to existing addresses, the sender
uses fresh addresses for the outputs of txer. These addresses were never used before, but
are under the control of the respective users. With this approach, if txer is leaked, the
identities of all users on the path, especially the identity of the sender and the receiver,
remain hidden. Note that we assume the input of txer to be an unused and unlinkable
input of the sender.

Fast track payments. The design considered so far has still a practical drawback
compared to MHPs in the LN. In the LN, if every user is honest, the payment is carried
out almost instantaneously, i.e. the channels are updated as soon as the HTLCs are
opened. Obviously, users of a payment do not want to wait until some time T until the
payment is carried out, even if all users are honest. To enable the same fast payments
in Blitz, we extend the protocol design with an optional second communication round,
called the fast track (we compare this second round to the one adopted in the LN below).
Specifically, the users on the path can honestly update their channels from the sender to
the receiver to a state where the α coins move from left to right.

For this, the sender does not go idle upon receiving the confirmation in time from the
receiver. Instead, U0 starts updating the channel γ0 with its neighbor U1 to a state where
the α coins are paid to U1. Since U0 is the only one able to publish txer, U0 is safe when
performing this update. After this update, U1 does the same with U2. All users on the
path repeat this step until the receiver is reached. If everyone is honest, the payment will
be carried out as quickly as in the LN honest case. If someone stops the update or some

85

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

honest users are skipped by colluding malicious users, honest users simply wait until time
T , and claim their money (and fees) either by cooperatively updating the channel with
their neighbor or forcefully on-chain. Intuitively, since intermediary users only update
their right channel after updating their left channel, they cannot lose any money, even if
txer is published.

Using the fast track seems to be a better choice for normal payments. However, there
are applications, where the non fast track is more suitable, e.g., a service with a trial
period or a subscription model, where a user might want to set up a payment, that
gets confirmed after some time. Should the user decide against it, he/she can cancel
the payment. The choice of fast track is up to the user. Having this second round is
completely optional and for efficiency reasons only. A payment that is carried out in one
round has the same security properties as one carried out in two rounds.

Fast revoke. In the case that an intermediary is offline and the payment is unsuccessful,
the refund can happen without necessarily publishing txer, saving the cost of putting a
transaction on-chain. Say Ui+1 is offline and Ui has already set up the construction with
Ui−1. As soon as an honest Ui notices that Ui+1 is unresponsive, it can start asking Ui−1
to update their channel to the state before the payment was set up. After doing this,
Ui−1 asks its left neighbor to do the same and so on until the sender is reached and the
payment is reverted without txer being published. Should some intermediary refuse to
honestly revoke, then txer can still be published. Apart from funds being locked for a
shorter time, one could add additional incentives to the fast revocation (or fast track) by
giving a small fee to the users who are willing to participate in it. Of course, users need a
mechanism to find out whether others are offline. For that, we note that the LN protocol
mandates users to periodically broadcast a heartbeat message. We consider such default
messages orthogonal to payment protocols and do not count them in round complexity.

Honest update. The transactions in Figure 4.4 between users are exchanged off-chain
and used to guarantee that honest users do not lose any coins. However, should one of
the users in a channel be able to convince the other that it is able to enforce either txr

i

or txp
i on-chain (that is if txer is on-chain before time T or time T has already passed,

respectively), two collaborating users can simply perform an honest update. For this,
they update their channel to a state where both have their corresponding balance, with
the benefit that no transaction has to be put on-chain and their channel remains open.

Blitz vs. ILP/LN/AMHL. We claim that Blitz is a solution for the issues presented
in Section 4.1 and allows for PCNs that have higher throughput, less communication
complexity, additional security against certain attacks, and are implementable in cryp-
tocurrencies without scripting capabilities. We highlight the differences between Blitz
and other state-of-the-art payment methods such as Interledger Payments (ILP), the LN
and the wormhole secure construction Anonymous Multi-Hop Locks (AMHL) [MMS+19]
in Table 4.1.

First, Blitz offers balance security with only one round of communication, while ILP does
not provide that and the LN requires two rounds. While the fast track optimization does

86

4.3. Solution overview

Table 4.1: Features of different payment methods: Interledger (ILP), Lightning Network
(LN), Anonymous Multi-Hop Locks (AMHL), Blitz, and Blitz using the fast track payment
(FT). We abbreviate timelocks as TL and signature functionality as σ. * The requirement
of HTLC can be dropped from the LN using scriptless scripts when feasible.

ILP LN AMHL Blitz Blitz FT
Bal. Security No Yes Yes Yes Yes
Rounds 1 2 2 1 2
Atomicity No No (Wormhole) Yes Yes Yes
Scripting σ σ, TL, HTLCs* σ, TL σ, TL σ, TL
Collateral n/a linear linear constant constant

Table 4.2: Collateral time for the LN, AMHL and Blitz for unsuccessful (refund) and
successful payments (pay) as well as different threat models. We say instant when no
one on the path stops the payment in either round. ξ denotes the time users need to
claim their funds (e.g., in the LN 144 blocks).

LN / AMHL Blitz
refund pay refund pay

anyone malicious n · ξ n · ξ ξ ξ
sender honest n · ξ n · ξ ∆ ξ
everyone honest instant instant instant instant

involve a second round (from left to right, as opposed to right to left as in the LN), it is
optional and affects only the efficiency (in the case everyone is honest) and not security:
a payment that had a successful first round will be successful regardless of any network
faults in the second round.

Indeed, the same holds true for the wormhole attack: Once a user has successfully set up
a Blitz payment, it cannot be skipped anymore in the second round, even with the fast
track. The payment is successful for everyone or no one, achieving thus the atomicity
property missing in ILP and the LN, and honest intermediaries are not cheated out of
their fees.

Secondly, Blitz reduces the collateral from linear (in the size of the path) to constant in
the case some of the parties are malicious while offering comparable performance in the
optimistic case, as shown in Section 4.6. For a corner case where the sender is honest,
the collateral can even be unlocked almost instantaneously. We show in which cases
Blitz outperforms the LN in Table 4.2. Finally, in terms of interoperability, we require
only signatures and timelocks from the underlying blockchain, with the LN additionally
requiring HTLCs and ILP only signatures.

Concurrent payments. In Blitz, multiple payments can be carried out in parallel,
analogous to concurrent HTLC-based payments in the LN (see Appendix C.1 for further
discussion and an illustrative example).

87

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

4.4 Our construction

4.4.1 Security and privacy goals

We informally review the security and privacy goals of a PCN, deferring the formal
definitions to Appendix C.11.

Balance security. Honest intermediaries do not lose money [MMSK+17].

Sender/Receiver privacy. In the case of a successful payment, malicious intermediaries
cannot determine if the left neighbor along the path is the actual sender or just an honest
user connected to the sender through a path of non-compromised users. Similarly,
malicious intermediaries cannot determine if the right neighbor is the actual receiver or
an honest user connected to the receiver through a path of non-compromised users.

Path privacy. In the case of a successful payment, malicious intermediaries cannot
determine which users participated in the payment aside from their direct neighbors.

4.4.2 Assumptions and building blocks

System assumptions. We assume that every party has a publicly known pair of public
keys (A, B) as required for stealth address creation (see below). We further assume that
honest parties are required to stay online for the duration of the protocol. Finally, we
consider the route-finding algorithm an orthogonal problem and assume that every user
(U0) has access to a function pathList ← GenPath(U0, Un), which generates a valid path
from U0 to Un over some intermediaries. We refer the reader to [SVR+20,RMKG18] for
more details on recent routing algorithms for PCNs. We now introduce the cryptographic
building blocks that we require in our protocol.

Ledger and payment channels. We rely, as a blackbox, on a public ledger to keep
track of all balances and transactions and a PCN that supports the creation, update, and
closure of channels (see Section 4.2). We further assume that payment channels between
users who want to conduct payments are already opened. We denote the standard
operations to interact with the blockchain and the channels as follows:

publishTx(tx) : If tx is a valid transaction (Section 4.2), it will be accepted on the ledger
after at most time ∆.

updateChannel(γi, txstate
i) : When called by a user ∈ γi.users, initiates an update in γi to

the state txstate
i . If the update is successful, (update−ok) is returned to both users of the

channel, else (update−fail) is returned to them. We define tu as an upper bound on the
time it takes for a channel update after this procedure is called.

closeChannel(γi) : When called by a user ∈ γi.users, closes the channel, such that the
latest state transaction txstate

i will appear on the ledger. We define tc as an upper bound
on the time it takes for txstate

i to appear on the ledger after this procedure is called.

88

4.4. Our construction

Digital signatures. A digital signature scheme is a tuple of algorithms Σ := (KeyGen,
Sign, Vrfy) defined as follows:

(pk, sk) ← KeyGen(λ) is a PPT algorithm that on input the security parameter λ, outputs
a pair of public and private keys (pk, sk).

σ ← Sign(sk, m) is a PPT algorithm that on input the private key sk and a message m
outputs a signature σ.

{0, 1} ← Vrfy(pk, σ, m) is a DPT algorithm that on input the public key pk, an authen-
tication tag σ and a message m, outputs 1 if σ is a valid authentication for m.

We require that the digital signature scheme is correct, that is, ∀(pk, sk) ← KeyGen(λ)
it must hold that 1 ← Vrfy(pk, Sign(sk, m), m). We additionally require a digital
signature scheme that is strongly unforgeable against message-chosen attacks (EUF-
CMA) [GMR88].

Stealth addresses [VS18]. On a high level, this scheme allows a user (say Alice) to
derive a fresh public key in a digital signature scheme Σ controlled by another user (say
Bob) on input two of Bob’s public keys. In a bit more detail, a stealth addresses scheme
is a tuple of algorithms Φ := (GenPk, GenSk) defined as follows:

(P , R) ← GenPk(A, B) is a PPT algorithm that on input two public keys A, B controlled
by some user U , creates a new public key P under U ’s control. This is done by first
sampling some randomness r ←$ [0, l − 1], where l is the prime order of the group used
in the underlying signature scheme Σ, and computing P := gH(Ar) · B, where H is a hash
function modeled as a random oracle. Then, the value R := gr is calculated. P is the
public key under U ’s control and R is the information required to construct the private
key.

p ← GenSk(a, b, P , R) is a DPT algorithm that on input two secret keys a, b corresponding
to the two public keys A, B and a pair (P , R) that was generated as P ← GenPk(A, B),
creates the secret key p corresponding to P . This is done by computing p := H(Ra) + b.

We see that correctness follows directly: gp = gH(Ra)+b = gH(gr·a) · gb = gH(Ar) · B = P .
In [VS18] it is argued that this new one-time public key P is unlinkable for a spectator
even when observing R, meaning on a high level that P for some user U cannot be linked
to any existing public key of U . For simplicity, we denote Ui, pk

Ui
when referring to the

stealth identity or the stealth public key under the control of user Ui.

Anonymous communication network (ACN). An ACN allows users to communicate
anonymously with each other. One such ACN is based on onion routing, whose ideal
functionality is defined in [CL05]. Sphinx [DG09] is a realization of this and (extended
with a per-hop payload) is used in the Lightning Network (LN). We use this functionality
here as well in a blackbox way. On a high level, routing information and a per-hop
payload is encrypted and layered for every user along a path, in what is called an onion.

89

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

Every user on the path can then, when it is its turn, “peel off” such a layer, revealing: (i)
the next neighbor; (ii) the payload meant for it; and (iii) the rest of the data, which is
again an onion that can only be opened by the next neighbor. This rest of data is then
forwarded to the next user and so on until the receiver is reached.

For readability, we use two algorithms, where onion ← CreateRoutingInfo({Ui}i∈[1,n],
{msgi}i∈[1,n]) creates such a routing object (an onion) using (publicly known) public
encryption keys of the corresponding users on the path. Moreover, when called by correct
user Ui, the algorithm GetRoutingInfo(onioni, Ui) returns (Ui+1, msgi, onioni+1), that is,
the next user on the path, a message and a new onion or returns msgn if called by the
recipient. A wrong user U ̸= Ui calling GetRoutingInfo(onioni, Ui) will result in an error
⊥.

4.4.3 2-party protocol for channel update

In this section, we show the necessary steps to update a single channel γi between two
consecutive users Ui and Ui+1 on a payment path to a state encoding our payment
functionality as shown in Figure 4.4. We will describe later in Section 4.4.4 the complete
multi-hop payment (MHP) protocol.

As overviewed in Section 4.3, a channel update requires to create a series of transactions
to realize the “pay-or-revoke” semantics at a given channel. In particular, for readability,
we define the following transaction creation methods and in Figure 4.7 some macros to
be used hereby in the paper:

txp
i := GenPay(txstate

i) This transaction takes txstate
i .output[0] as input and creates a single

output := (αi, OneSig(Ui+1)).

txr
i := GenRef(txstate

i , txer, θϵi) This transaction takes as input txstate
i .output[0] and θϵi ∈

txer.output. The calling user Ui makes sure that this output belongs to a stealth address
under Ui’s control. It creates a single output txr

i.output := (αi + ϵ, OneSig(Ui)), where αi,
Ui, Ui+1 are taken from txstate

i .

We now explain in detailed order, how these transactions have to be created, signed,
and exchanged. A full description in pseudocode is given in Figure 4.5. This two-party
update procedure, which we call pcSetup, is called by a user Ui giving as parameters
the channel γi with its right neighbor Ui+1, the transaction txer, a list containing the
values Ri for the stealth addresses of each user on the path, onioni+1 containing some
routing information for the next user, the output θϵi ∈ txer.output that belongs to a
stealth address of Ui, the amount to be paid αi and the time T . The user Ui knows these
values either from performing pcSetup with its left neighbor Ui−1 or because Ui is the
sender.

The first step for Ui is to create the new channel state from the channel γi and the amount
αi by calling txstate

i := genState(γi, α). In the second step, Ui creates the transaction

90

4.4. Our construction

pcSetup(γi, txer, rList, onioni+1, θϵi
, αi, T):

Ui

1. txstate
i := genState(αi, T , γi)

2. txr
i := GenRef(txstate

i , θϵi)
3. Send (txer, rList, onioni+1, txstate, txr

i) to Ui+1 (= γi.right)

Ui+1 upon (txer, rList, onioni+1, txstate, txr
i) from Ui

4. Check that checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txer, rList, onioni+1) ̸= ⊥, but returns some
values (sk

Ui+1
, θϵi+1 , Ri+1, Ui+2, onioni+2)

5. Extract αi and T from txstate and check txstate
i = genState(αi, T , γi)

6. Check that for one output θϵx ∈ txer.output it holds that txr
i := GenRef(txstate

i , θϵx). If one of
these previous checks failed, return ⊥.

7. txp
i := GenPay(txstate

i)
8. Send (σUi+1(txr

i)) to Ui+1

Ui upon (σUi+1(txr
i))

9. If σUi+1(txr
i) is not a correct signature of Ui+1 for the txr

i created in step 2, return ⊥.
10. updateChannel(γi, txstate

i)
11. If, after tu time has expired, the message (update−ok) is returned, return ⊤. Else return ⊥.

Ui+1

12. Upon (update−ok), return (txer, rList, onioni+2, Ui+2, θϵi+1 , αi, T)
13. Upon (update−fail), return ⊥

Figure 4.5: Protocol for 2-party channel update

txr
i from txstate

i .output[0] and θϵi . Then, Ui sends txer, txstate
i , txr

i, rList and onioni+1 to its
right neighbor Ui+1.

Now Ui+1 checks if txer is well-formed and, if it is not the receiver, has an output θϵi+1 ,
which belongs to its stealth address (using its stealth address private keys a, b) under some
Ri ∈ rList. Moreover, it checks that onioni+1 contains the correct routing information
and a message indicating that the txer was not tampered with, for instance, a hash of it.
All this is done using the macro (see Figure 4.7) (sk

Ui+1
, θϵi+1 , Ri+1, Ui+2, onioni+2) :=

checkTxEr(Ui+1, Ui+1.a, Ui+1.b, Ui+1.txer, rList, onioni+1), which returns ⊥ if any of the
checks fail.

Then, Ui+1 checks if txstate
i and txr

i were well-constructed and in particular, that txr
i uses

an output of txer as input. If everything is ok, then Ui+1 can independently create txp
i ,

since it requires only its own signature. Next, Ui+1 pre-signs txr
i and sends this signature

to Ui. Ui checks if this signature is correct and then invokes a channel update with Ui+1
to txstate

i .

91

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

After this step, the pcSetup function is finished and returns either (txer, rList, onioni+2,
Ui+2, θϵi+1 , αi, T) to Ui+1 and ⊤ to Ui if successful or ⊥ otherwise to the users γi.users.
If Ui+1 is not the receiver, it will continue this process with its own neighbor as shown in
the next section.

4.4.4 Multi-hop payment description

In this section we describe the MHP protocol. The pseudocode for carrying out MHPs
in Blitz is shown in Figure 4.6, the macros used in are listed in Figure 4.7. For the full
description of the macros, see Appendix C.9.

Setup. Say the sender wants to pay α coins to Un via a path channelList and for some
timeout T . In the setup phase, the sender derives a new stealth address pk

Ui
and some

Ri for every user except the receiver. Then, the sender creates a list rList of entries Ri

and onions encoding the right neighbor Ui+1 for every user Ui. Moreover, the sender
constructs txer.

Then, it adds the sum of all per-hop fees to the initial amount α: αi := α + (n − 1) · fee
where fee is the fee charged by every user (see Appendix C.1). The setup ends when the
sender starts the open phase with its right neighbor U1.

Open. After successfully setting up the payment with its left user Ui−1, Ui knows txer,
rList, onioni+1 αi−1, T and its stealth output for θϵi ∈ txer.output. Using these values
and reducing αi−1 by fee, Ui carries out the 2-party channel update with Ui+1. The right
neighbor continues this step with its right neighbor until the receiver is reached.

Finalize. Once the receiver has finished the open phase with its left neighbor, it sends
back a signature of txer as a confirmation to the sender, who will then check if that
transaction was tampered with. If yes, or if the sender did not receive such a confirmation
in time, the sender publishes txer on the blockchain. Otherwise, the sender goes idle.

Respond. At any given time after opening a payment construction, users need to check
if txer was published. If it was, they need to refund themselves via txr

i. Also, if some
user’s left neighbor tries to publish txr

i after time T , the user publishes txp
i . This ensures,

that if the refund did not happen before time T , the users have a way to enforce the
payment. Note that due to the relative timelock on both txer and txstate, txp

i will always
be possible if txer is published after T (or if the left neighbor tries to refund after T by
closing the channel).

The protocol is shown in Figure 4.6. Note that we simplified the protocol for readability
purposes, (e.g., by omitting the payment ids that are required for multiple concurrent
payments). The full protocol modeled in the Universal Composability framework can be
seen in Appendix C.10.5.

92

4.5. Security analysis

Setup
U0 upon receiving (setup, channelList, txin, α, T)

1. If checkChannels(channelList, U0) = ⊥, abort.
2. Let n := |channelList|. If checkT(n, T) = ⊥, abort.
3. If checkTxIn(txin, n, U0) = ⊥, abort.
4. (txer, rList, onion) := genTxEr(U0, channelList, txin)
5. α0 := α + fee · (n − 1)
6. (sk

U0
, θϵ0 , R0, U1, onion1) := checkTxEr(U0, U0.a, U0.b, txer, rList, onion)

7. pcSetup(γ0, txer, rList, onion1, U1, θϵ0 , α0, T)

Open
Ui+1 upon receiving (txer, rList, onioni+2, Ui+2, θϵi+1 , αi, T)

1. If Ui+1 is the receiver Un, send (confirm, σUn
(txer)) −→ U0 and go idle.

2. pcSetup(γi+1, txer, rList, onioni+2, Ui+2, θϵi+1 , αi − fee, T)

Finalize

U0: Upon (confirm, σUn
(txer)) ←− Un, check that σUn

(txer) is Un’s valid signature for the
transaction txer created in the Setup phase. If not, or if txer was changed, or no such confirmation
was received until T − tc − 3∆, publishTx(txer, σU ′

0
(txer)).

Respond (Executed in every round τx)

1. If τx < T − tc − 2∆ and txer on the blockchain, closeChannel(γi) and, after txstate
i is accepted

on the blockchain within at most tc rounds, wait ∆ rounds. Let σ
Ui

(txr
i) be a signature

using the secret key sk
Ui

. publishTx(txr
i, (σ

Ui
(txr

i), σUi
(txr

i), σUi+1(txr
i))).

2. If τx > T , γi is closed and txer and txstate
i is on the blockchain, but not txr

i, publishTx(txp
i−1,

(σUi
(txp

i−1))).

Figure 4.6: The Blitz payment protocol

4.5 Security analysis

4.5.1 Security model

The security model we use closely follows [AEE+21, DEF+19b, DEFM19]. We model
the security of Blitz in the synchronous, global universal composability (GUC) frame-
work [CDPW07]. We use a global ledger L to capture any transfer of coins. The ledger
is parameterized by a signature scheme Σ and a blockchain delay ∆, which is an upper
bound on the number of rounds it takes between when a transaction is posted to L
and when said transaction is added to L. Our security analysis is fully presented in
Appendix C.10 and briefly outlined here.

Firstly, we provide an ideal functionality FP ay, which is an idealized description of the
behavior we expect of our pay-or-revoke payment paradigm. This description stipulates

93

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

Macros (see Appendix C.9)
checkTxIn(txin, n, U0): If txin is well-formed and has enough coins, returns ⊤.
checkChannels(channelList, U0): If channelList forms a valid path, returns the receiver Un,
else ⊥. checkT(n, T): If T is sufficiently large, return ⊤. Otherwise, return ⊥ genTxEr(U0,
channelList, txin): Generates txer from txin along with a list of values rList to redeem their stealth
addresses and an onion containing the routing information. genState(αi, T , γi): Generates
and returns a new channel state carrying transaction txstate

i from the given parameters, shown
in Figure 4.4. checkTxEr(Ui, a, b, txer, rList, onioni): Checks if txer is correct, Ui has a stealth
address in it, and onioni holds routing information. If unsuccessful, returns ⊥. If Ui is the
receiver, returns (⊤, ⊤, ⊤, ⊤, ⊤). Else, returns (sk

Ui
, θϵi

, Ri, Ui+1, onioni+1) containing the
output belonging to Ui θϵi

, the secret key to spend it sk
Ui

, the next user and the next onion.

Figure 4.7: Subprocedures used in the protocol

any input/output behavior and the impact on the ledger of a payment protocol, as well
as how adversaries can influence the execution. In this idealized setting, all parties
communicate only with FP ay, which acts as a trusted third party.

We then provide our protocol Π formally defined in the UC framework and show that
Π emulates FP ay. On a high level, we show that any attack that can be performed on
Π can also be simulated on FP ay or in other words that Π is at least as secure as FP ay.
To prove this, we design a simulator S, which translates any attack on the protocol
into an attack on the ideal functionality. Then, we show that no PPT environment can
distinguish between interacting with the real world and interacting with the ideal world.
In the real world, the environment sends instructions to a real attacker A and interacts
with Π. In the ideal world, the environment sends attack instructions to S and interacts
with FP ay.

We need to show that the same messages are output in the same rounds and the same
transactions are posted on the ledger in the same rounds in both the real and the ideal
world, regardless of adversarial presence. To achieve this, the simulator needs to instruct
the ideal functionality to output a message whenever one is output in the real protocol
and the simulator needs to post the same transactions on the ledger. By achieving
this, the environment cannot trivially distinguish between the real and the ideal world
anymore just be looking at the messages and transactions as well as their respective
timing. Formally, in Appendix C.10 we prove Theorem 4.

Theorem 4. (informal) Let Σ be a EUF-CMA secure signature scheme. Then, for any
ledger delay ∆ ∈ N, the protocol Π UC-realizes the ideal functionality FP ay.

4.5.2 Informal security discussion

Due to space constraints, we only argue informally here why Blitz achieves security and
privacy (see Section 4.4.1). We give a more formal discussion in Appendix C.11 and
consider the security against some concrete attacks in Appendix C.5.

Balance security. An honest intermediary will forward a payment to its right neighbor
only if first invoked by its left neighbor. If constructed correctly, the refund transactions

94

4.6. Evaluation

in both channels depend on txer being published and the timing is identical. Also, the
payment transactions have identical conditions in both channels. The only possible way
for an intermediary to lose money is, if it were to pay its money to the right neighbor,
while the left neighbor refunded. However, if the left neighbor is able to refund, this
means that also the intermediary itself can refund. Similarly, if the right neighbor is able
to claim the money, the intermediary can also claim it.

Honest sender. A sender that does not receive a confirmation from the receiver that
it received the money in time, can trigger a refund by publishing txer. In the setup phase
of the protocol, the sender ensures that there is enough time for this.

Honest receiver. The receiver gets the money in exchange for some service. It will
wait until being certain that the money will be received before shipping the product. The
transaction txer on the blockchain is a proof that a refund has occurred.

Privacy. Blitz requires to share with intermediaries txer, routing information and the
value that is being paid. The transaction txer uses stealth addresses for its outputs and an
unlinkable input, thereby granting sender, receiver and path privacy in the honest case,
as defined in Section 4.4.1. As in the LN however, the stronger notion of relationship
anonymity [MMSK+17] does not hold; the payment can be linked by comparing (i) in
Blitz, txer and (ii) in the LN, the hash value. In the pessimistic case, the balance is
claimed on-chain. In both Blitz and the LN, this breaks sender, path, and receiver
privacy. We defer the reader to Appendix C.1 for a more detailed discussion on all privacy
properties mentioned in this paragraph.

4.6 Evaluation
In this section, we evaluate the benefits that Blitz offers over the LN. The source code
for our simulation is at [Bli20].

Testbed. We took a snapshot of the LN graph (October 2020) from https://
ln.bigsun.xyz/ containing 11.6k nodes, 6.5k of which have 30.9k active channels with
a total capacity of 1166.7 BTC, which account for around 13.2M USD in October 2020.
We ignore the nodes without active channels. The initial distribution of the channel
balance is unknown. We assume that initially, the balance at each channel is available
to both users. It is assigned to a user as required by payments in a first come, first
serve basis. Naturally, the balance that has already been used and thus assigned to
one user in the channel is not reassigned to the other user. Since we use this strategy
consistently throughout all our experiments, this assignment does not introduce any bias
in the results.

Simulation setup. We discretize the time in rounds and each round represents the
collateral time per hop (i.e., 1 day or 144 blocks as in the LN). In such a setting,
we simulate payments in batches as follows. Assume that we want to simulate NPay
payments for an amount of Amt and with a failure rate of FRate. For that, in a first

95

https://ln.bigsun.xyz/
https://ln.bigsun.xyz/

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

batch, we simulate the FRate % of NPay payments, where each payment is between two
nodes s and r (such that s ̸= r) selected at random in the graph and routed through the
cheapest path according to fees. Moreover, each payment in this batch is disrupted at
an intermediary node chosen at random in the path between s and r. Finally, for each
payment, some balance is marked to be locked at the channels for a certain number of
rounds during the second batch, depending on whether we are evaluating the LN (i.e.,
staggered rounds) or Blitz (i.e., single round). We model thereby a setting where the
network contains locked collateral due to disrupted payments.

After the first batch, we simulate a second one of NPay payments over 3 rounds as
before, assuming that they are not disrupted (e.g., go over paths of honest nodes). We
remark that here each payment may still be unsuccessful because there are not enough
unlocked funds in the path between s and r. We focus thus on the effect that staggered
vs. constant collateral has in the number of successful payments.

Setting parameters. Due to the off-chain nature of the LN, there is no ground truth
for payment data, a common limitation in PCN-related work. We try to make reasonable
assumptions for these unknown parameters in our simulation. We sample the payment
amount Amt for each payment from the range [1000, ub]. We use a lower bound of 1000,
as technically the minimum is 546 satoshis (=1 dust) and we additionally account for fees.
We select an upper bound (ub) out of {3000, 6000, 9000}, which is around 0.1%, 0.2% and
0.3% of the average channel capacity. We consider two different numbers of payments
NPay, 78k and 978k. The former corresponds to four payments per active node and
per round (ppnpr) modeling a setting with sporadic payments (e.g., a banking system),
whereas the latter corresponds to 50 ppnpr, modeling a higher payment frequency (e.g.,
micropayments).

Finally, we vary the amount of disrupted payments FRate as {0.5, 1, 2.5} % of the total
payments NPay. We divide these disrupted payments into two groups of equal size. In
the first half, the payment is stopped during the setup phase (from s to r). In the LN,
the channels before the faulty/malicious node are locked with a staggered collateral lock
time. In Blitz, due to the sender publishing txer, the funds are immediately unlocked. In
the second half, the payment fault occurs in the second phase, which in the LN is the
unlocking and in Blitz the fast track. This models the case where a node is offline or an
attacker delays the completion of the payment until the last possible moment. In the LN,
the collateral left of the malicious node is again staggered, whereas in Blitz the channels
right of that node are locked for one simulation round. Finally, we note that distributing
the disrupted payments differently into these groups will alter the results accordingly
(see Appendix C.8).

Collateral effect. We calculate the number of unsuccessful payments in a baseline case
(i.e., omitting the first batch of disrupted payments), in Blitz as well as in the LN and
we say that failBlitz (correspondingly failLN) is the number of payments that fail in Blitz
(correspondingly the LN) when subtracting those failing also in the baseline case. We
carry out every experiment for a given setting eight times and calculate the average. In

96

4.6. Evaluation

3000 6000 9000

10

20

30

7.7 7.7

18.7

9.3

30 32.1

upper bound ub on amount

fa
il L

N
/
fa

il B
lit

z

4 ppnpr 50 ppnpr

0.5% 1% 2.5%
0

10

20

30

7.5 4.6 4.3
9.3

33.1

8.7

% of disrupted payments

fa
il L

N
/
fa

il B
lit

z

4 ppnpr 50 ppnpr

Figure 4.8: Ratio failLN/failBlitz. (Left) we fix the number of disrupted payments at 0.5%
and vary ub. (Right) we fix ub at 3000 and vary the number of disrupted payments.

Figure 4.8 we show the ratio failLN/failBlitz. For all choices of parameters, there are more
unsuccessful payments in the LN than in Blitz, showing thus the practical advantage of
Blitz by requiring only constant collateral. We also observe that difference grows in favor
of Blitz with the number of payments, showing that the advantage in terms of collateral
is higher in use cases for which initially the LN was designed such as micropayments.
Finally, we observe that Blitz offers higher transaction throughput even with an arguably
small ratio of disrupted payments (i.e., a reduced adversarial effect).

Wormhole attack. We measure an upper bound on the amount of fees potentially at
risk in the LN, due to it being prone to the wormhole attack. We observe that the amount
of coins at risk grows with the number of payments and their amount. In particular,
with 50 ppnpr and an upper bound of 3000 (modeling e.g., a micropayment setting), we
observe that the LN put at risk 0.25 BTC (2831 USD in October 2020). Increasing the
upper bound to 9000 while keeping 65 ppnpr, we observe that the LN put at risk 0.30
BTC. Blitz prevents the wormhole attack and the stealing of these fees by design.

Computation overhead. The Blitz protocol does not require any costly cryptography.
In particular, it requires that each user verifies locally the signatures for the involved
transactions. Moreover, each user must compute three signatures (see Figure 4.4)
independently on the number of channels involved in the payment. In the LN, each
user is required to compute only two signatures, one per each commitment transaction
representing the new state. We remark, however, that these are all simple computations
that can be executed in negligible time even with commodity hardware.

Communication overhead. We find that the contract size in Blitz is 26% smaller
than the size of the HTLCs in the LN. This advantage is crucial in practice as current LN
payment channels cannot hold more than 483 HTLC (and thus 483 in-flight payments)
simultaneously, because otherwise, the size of the off-chain state would be higher than a
valid Bitcoin transaction [TMM20,Eme]. The reduced communication overhead in Blitz
implies then that it allows for more simultaneous in-flight payments per channel than in
the LN.

In the pessimistic case, the LN requires to include on-chain one transaction per channel

97

4. Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

(158 Bytes for refund, 192 Bytes for payment), while Blitz requires not only one on-chain
transaction per channel (307 Bytes for refund, 158 Bytes for payment), but also that the
sender includes the transaction txer to ensure that the refund is atomic. In this sense,
the LN requires a smaller overhead than Blitz for the pessimistic case. We remark that
there exist incentives in PCNs for the nodes to follow the optimistic case and reduce
entering the pessimistic case because it requires to close the channels and cannot be used
for further off-chain payments without re-opening them, with the consequent cost in time
and fees. We give detailed results about communication overhead in Appendix C.7.

4.7 Related work

PCNs have attracted plenty of attention from academia [EMSM19,KL19,TS15,MBB+19b,
MMS+19] and have been deployed in practice [PD16]. These PCNs, with the exception
of Interledger [TS15], follow the 2-phase-commit paradigm and suffer from (some of)
the drawbacks we have discussed in this work, namely, prone to the wormhole attack,
griefing attacks, staggered collateral or rely on scripting functionality not widely available.
Interledger is a 1-phase protocol that however does not provide security.

Sprites [MBB+19b] is the first multi-hop payment (MHP) that achieves constant collateral.
It, however, relies on Turing complete smart contracts (available in, e.g., Ethereum)
thereby reducing its applicability in practice. Other constructions that require Turing
complete smart contracts, e.g., State channels [DEF+19b], achieve constant collateral,
but have similar privacy issues as the LN when used for MHPs. AMCU [EMSM19]
achieves constant collateral and is compatible with Bitcoin. AMCU, however, reveals
every participant to each other, a privacy leakage undesirable in the MHP setting.

To improve privacy, [MMSK+17] introduced MHTLCs. In [YKSN19], CHTLCs based on
Chameleon hash functions were introduced, a functionality that is again not supported in
most cryptocurrencies (e.g., in Bitcoin). AMHL [MMS+19] replaces the HTLC contract
with novel cryptographic locks to avoid the wormhole attack. MHTLC, CHTLC, or
AMHL-based MHPs all follow the 2-phase-commit paradigm and require staggered
collateral. We defer to Appendix C.2 for works on 1-phase commits in the context of
distributed databases.

4.8 Conclusion

Payment-channel networks (PCNs) are the most prominent solution to the scalability
problem of cryptocurrencies with practical adoption (e.g., the LN). While optimistic
1-round payments (e.g., Interledger) are prone to theft by malicious intermediaries,
virtually all PCNs today follow the 2-phase-commit paradigm and are thus prone to
a combination of (i) security issues such as wormhole attacks; (ii) staggered collateral;
and (iii) limited deployability as they rely on either HTLC or Turing complete smart
contracts.

98

4.8. Conclusion

We find a redundancy implementing a 2-phase-commit protocol on top of the consensus
provided by the blockchain and instead design Blitz, a multi-hop payment protocol that
demonstrates for the first time that it is possible to have a 1-round payment protocol
that is secure, resistant to wormhole attacks by design, has constant collateral, and
builds upon digital signatures and timelock functionality from the underlying blockchain’s
scripting language. Our experimental evaluation shows that Blitz reduces the number of
unsuccessful payments by a factor of between 4x and 33x, reduces the size of the payment
contract by a 26% and saves up to 0.3 BTC (3397 USD in October 2020) in fees over a
three day period as it avoids wormhole attacks by design.

Blitz can be seamlessly deployed as a (additional or alternative) payment protocol in the
current LN. We believe that Blitz opens possibilities of performing more efficient and
secure payments across multiple different cryptocurrencies and other applications built
on top, research directions that we intend to pursue in the near future.

Acknowledgements. We thank Lloyd Fournier for his valuable feedback on an earlier
version of this work. This work has been supported by the European Research Council
(ERC) under the Horizon 2020 research (grant 771527-BROWSEC); by the Austrian
Science Fund (FWF) through the projects PROFET (grant P31621), the Meitner program
(grant M-2608) and the project W1255-N23; by the Austrian Research Promotion Agency
(FFG) through the Bridge-1 project PR4DLT (grant 13808694) and the COMET K1
SBA; by the Vienna Business Agency through the project Vienna Cybersecurity and
Privacy Research Center (VISP); by CoBloX Labs; by the National Science Foundation
(NSF) under grant CNS-1846316.

99

CHAPTER 5
Thora: Atomic and

Privacy-Preserving Multi-Channel
Updates

Abstract

Most blockchain-based cryptocurrencies suffer from a heavily limited transaction through-
put, which is a barrier to their growing adoption. Payment channel networks (PCNs)
are one of the promising solutions to this problem. PCNs reduce the on-chain load of
transactions and increase the throughput by processing many payments off-chain. In fact,
any two users connected via a path of payment channels (i.e., joint addresses between
the two channel end-points) can perform payments, and the underlying blockchain is
used only when there is a dispute between users. Unfortunately, payments in PCNs can
only be conducted securely along a path, which prevents the design of many interesting
applications. Moreover, the most widely used implementation, the Lightning Network
in Bitcoin, suffers from a collateral lock time linear in the path length, it is affected by
security issues, and it relies on specific scripting features called Hash Timelock Contracts
that hinder the applicability of the underlying protocol in other blockchains.

In this work, we present Thora, the first Bitcoin-compatible off-chain protocol that enables
the atomic update of arbitrary channels (i.e., not necessarily forming a path). This enables
the design of a number of new off-chain applications, such as payments across different
PCNs sharing the same blockchain, secure and trustless crowdfunding, and channel
rebalancing. Our construction requires no specific scripting functionalities other than
digital signatures and timelocks, thereby being applicable to a wider range of blockchains.
We formally define security and privacy in the Universal Composability framework
and show that our cryptographic protocol is a realization thereof. In our performance

101

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

evaluation, we show that our construction requires only constant collateral, independently
from the number of channels, and has only a moderate off-chain communication as well
as computation overhead.

This chapter presents the results of a collaboration with Kasra Abbaszadeh and Matteo
Maffei, which was published at the ACM Conference on Computer and Communications
Security (CCS) in 2022 under the title "Thora: Atomic and Privacy-Preserving Multi-
Channel Updates". Kasra Abbaszadeh and I contributed equally to this work and are
considered to be co-first authors. Kasra Abbaszadeh and I are jointly responsible for
designing the protocol and writing the paper. I am responsible for the idea, defining
the security and privacy properties, as well as the application section. Kasra is mainly
responsible for writing the protocol, formalization, proofs, and implementation. Matteo
Maffei was the general advisor and contributed with continuous feedback.

5.1 Introduction

Permissionless cryptocurrencies such as Bitcoin [Nak09] use consensus mechanisms to
verify transactions in a decentralized way and record them in a public and distributed
ledger. This approach has inherent scalability issues, resulting in a low transaction
throughput and a long confirmation latency. These limitations prevent cryptocurrencies
from meeting the growing user demands, especially when we compare them with central-
ized payment networks, like Visa, which handle tens of thousands of transactions per
second and confirm transactions usually within seconds.

Off-chain protocols constitute one of the most promising solutions to tackle this scalability
issue. Instead of recording every transaction on the public ledger, users exchange and
keep their transactions off-chain and use the ledger only as a fallback when there are
disputes in order to keep their funds. One of the promising off-chain protocols is Payment
Channels (PCs) which are deployed at scale in cryptocurrencies such as Bitcoin and
Ethereum [PD16,MMSH16]. Intuitively, a channel is a shared address that allows two
parties to maintain and update a private ledger through off-chain transactions. In a bit
more detail, looking at Bitcoin’s unspent transaction output (UTXO) model, users first
open a PC by locking some coins in a 2-of-2 multi-signature output. Then, they can
update the balance in the PC arbitrarily many times by exchanging signed transactions.
Each of the users can close the PC by publishing the last state on-chain. This allows them
to perform many transactions while burdening the ledger with only two transactions.

5.1.1 HTLC-based PCNs and their limitations

Payment channel networks (PCNs) such as the Lightning Network (LN) [PD16] and
Raiden [Rai17] generalize this approach, by allowing two users to pay each other as long
as they are connected by a path of channels with enough capacity. Such a payment in a
PCN, also called a multi-hop payment (MHP), requires updating each channel on the
path. The challenge here is to ensure atomicity, i.e., either all channels are updated
consistently or none, such that no user is at risk of losing money. In the most popular

102

5.1. Introduction

A B C D2.HTLC(A,B,y,α,3) 3.HTLC(B,C,y,α,2) 4.HTLC(C,D,y,α,1)

5.x6.x7.x

1. y := H(x)

Figure 5.1: An example of a payment in LN from A to D for a value α using HTLC
contracts. An HTLC contract denoted by HTLC(Alice, Bob, x, y, t), shows the following
conditions: (i) If timeout t expires, Alice gets back the locked x coins. (ii) If Bob reveals
a value r, such that H(r) = y, before timeout t, Alice pays x coins to Bob.

PCN, i.e. the Lightning Network, atomicity is achieved through Hash Timelock Contracts
(HTLCs) [PD16], which make the payments on each channel on the path conditioned on
revealing the preimage of a certain hash. The receiver has to reveal that preimage in
order to receive the money and then all intermediaries from right to left are incentivized
to update their left channel in order to claim the money of the payment. An example of
a payment using HTLCs is shown in Figure 5.1.

HTLC-based PCNs, however, have the following fundamental drawbacks:

Collateral. All parties on the path have to lock the payment amount α up to a period
of locktime. The payment amount multiplied by the locktime is called collateral, a metric
that has been used in previous work, e.g., [MBB+19b,EMSM19,AMSKM21]. In addition,
parties can impose fees for the service of forwarding payments. In the case of HTLCs,
each party has to lock a collateral that is linear in the size of the path n, i.e., Θ(α · n · δ),
where δ is a security parameter defining the time by which users have to react in case of
misbehavior from others (in Lightning, δ is one day).

Due to the linear collateral, the effects of griefing attacks [EMSM19] on HTLC-based
PCNs are particularly severe. In a griefing attack, a malicious user starts a multi-hop
payment to itself with the intent to block coins owned by intermediaries. The attacker
manages to lock up α coins in n − 1 honest channels. The fact that the lock duration is
also linear in the path length amplifies the effects of this attack further. The malicious
user subsequently lets the payment fail to limit the overall network throughput or to lock
coins of specific users.

Weak atomicity. Lightning guarantees only a weak form of atomicity, that is, only
the two adjacent channels of an honest node are updated consistently. In particular,
Lightning is vulnerable to the wormhole attack [MMS+19], where two colluding malicious
users can skip honest users in the phase where they reveal the preimage. This does not
lead to a loss in funds for the honest users, but the malicious users can steal the fees
originally intended for the honest users.

Path restriction. Since HTLC-based PCN protocols rely on an incentive-based
forwarding of a preimage via a path to ensure that honest users do not lose funds,

103

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

Table 5.1: Comparing different payment methods: Lightning Network, Anonymous Multi-
Hop Locks (AMHL), Sprites, Payment Trees, Atomic Multi-Channel Updates(AMCU),
Blitz, and our construction. Studied features are: atomicity property, path restriction,
need for Turing-complete smart contracts, size of per party collateral, and value privacy.
For the latter, note that there are constructions that do not inherently leak the value
transferred in individual channels, but they can only be used for applications (i.e.,
payments) that require the same value in all channels.

Atomicity Path restriction Smart contract pp Collateral Value privacy
Lightning Network [PD16] No Yes No Linear application leak

AMHL [MMS+19] Yes Yes No Linear application leak
AMCU [EMSM19] No No No Constant No

Payment Trees [JLT21] Yes Yes No Logarithmic No
Blitz [AMSKM21] Yes Yes No Constant application leak
Sprites [MBB+19b] Yes No Yes Constant Yes

Thora Yes No No Constant Yes

these protocols are limited to payments over a path of channels. This rules out other
topologies reflecting relevant financial applications (e.g., crowd-funding can be seen as a
star topology where all nodes update their channel with the beneficiary).

Value privacy. In Lightning, intermediaries implicitly learn the paid amount, as the
value has to be the same (except for some fee) over all channels within the path to ensure
atomicity of the protocol.

5.1.2 Related work

Recently, various protocols have been designed to overcome the aforementioned issues,
but they all fall short of some properties, as summarized in Table 5.1.

Anonymous Multi-Hop Locks (AMHL) prevent the wormhole attack by dispensing from
HTLCs in favor of adaptor signatures, a mechanism in which the secret is somewhat
embedded in the randomness of the signature and revealed once that signature is published,
but they still suffer from linear collateral and only support path-based payments.

The Atomic Multi-Channel Updates (AMCU) protocol [EMSM19] attempts to achieve
payments with constant collateral and also to support more generic applications than
path-formed payments. Unfortunately, AMCU is not secure: It is vulnerable to channel
closure attacks [JLT21], where users honestly updating their channels can be the victim
of double-spending attacks, which can lead to a loss of funds for honest users.

Blitz [AMSKM21] is a recently proposed payment protocol for multi-hop payments, which
in contrast to Lightning requires only one round of communication through the path
with constant collateral. However, Blitz supports only path-based payments.

Sprites [MBB+19b] is the only secure protocol supporting atomic multi-channel updates
with constant collateral. In fact, the paper addresses only path-based payments, but we
conjecture that the protocol could in principle be modified so as to support arbitrary

104

5.2. Background

topologies and also to hide the paid amount. Unfortunately, Sprites inherently requires
Turing-complete scripting, which makes it inapplicable to blockchain technologies with
limited scripting capabilities, such as Bitcoin itself. A Turing complete scripting language
provides more expressiveness, but it also enlarges the trusted computing base, opens the
door to programming bugs, and makes computations more expensive (e.g., in terms of
gas fees in Ethereum).

Hence, it is both a foundational and practically relevant question whether or not atomic
multi-channel updates with constant collateral are possible at all in blockchains with
limited scripting languages like Bitcoin. Indeed, it was conjectured in [MBB+19b] that
they are not.

5.1.3 Our contribution

In this paper, we show that the aforementioned conjecture is incorrect. In particular,

• We introduce Thora, the first secure Bitcoin-compatible protocol with constant col-
lateral for atomic, multi-channel updates. The constant collateral property not only
makes the protocol financially sustainable for a large number of channels, but also mit-
igates the threat of griefing attacks. Thora only requires signatures and timelocks, and
it is thus compatible with a number of cryptocurrencies, such as Bitcoin, Stellar, and
Ripple. In addition, Thora supports payments over channels with arbitrary topologies,
thereby enabling a variety of interesting applications. Finally, Thora achieves value
privacy, i.e., the channel owners can synchronize their payments without necessarily
disclosing the individual payment amounts.

• We formally model our protocol in the Global Universal Composability (GUC) frame-
work [CDPW07], analyzing its security and privacy properties. For this, we define
an ideal functionality that captures the security and privacy notions of interest and
prove that Thora constitutes a GUC-realization thereof.

• We conduct a complexity analysis and performance evaluation, demonstrating the
practicality of Thora.

• We instantiate Thora in the context of several applications that go beyond simple path-
formed payments, such as mass payments, channel rebalancing, and crowd-funding,
thereby exemplifying the class of off-chain applications enabled by Thora.

5.2 Background

In this section, we provide an overview on the background and the notations used
throughout the paper. For more details, we refer the reader to [AMSKM21, AEE+21,
MMSK+17].

105

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

5.2.1 UTXO based transactions

We assume the underlying blockchain to be based on the unspent transaction output
(UTXO) model, like Bitcoin. In this model, coins, or the units of currency, exist in
outputs of transactions. We represent each output as a tuple θ := (cash, ϕ) where θ.cash
is the output value, and θ.ϕ is the condition required to spend the output. We encode
the condition in the scripting language used by the underlying cryptocurrency. The
notation OneSig(U) denotes the condition that a digital signature w.r.t. U ’s public
key is required for spending an output. If multiple signatures are required, we write
MultiSig(U1, U2, ..., Un).

Users can transfer the ownership of outputs via transactions. A transaction spends a
non-empty list of unspent outputs (transaction inputs) and maps them to a list of new
unspent outputs (transaction outputs). Formally a transaction is denoted as a tuple
tx := (id, input, output). tx.id ∈ {0, 1}∗ is the identifier, set to be the hash of inputs and
outputs, tx.id = H(tx.input, tx.output), where H is modeled as a random oracle. tx.input
denotes the list of identifiers of the inputs and tx.output denotes the list of new outputs.
Also we let tx := (id, input, output, witness) or for convenience also tx = (tx, witness)
denote a full transaction. tx.witness consists of witnesses for the spending conditions of
the transaction’s inputs. Only valid transactions can be recorded on the public ledger L
(the blockchain). A transaction is considered valid if (i) its inputs are not spent by other
transactions in L, (ii) the sum of its outputs is not greater than the sum of inputs, and
(iii) the transaction provides valid witnesses fulfilling the spending conditions of every
input. In practice, transactions are not recorded on the ledger and published immediately,
but only after the participants in the distributed consensus accept them. We use ∆ to
denote the upper bound on the time it takes for a valid transaction to be published and
accepted to L.

Using the scripting language, we can encode more complex conditions on transaction
outputs than simple ownerships. To better visualize transactions, we use charts in which
transactions are represented as rounded rectangles and inputs as incoming arrows. Boxes
inside transactions represent outputs and the values in these boxes determine the amounts
of coins stored in the outputs. Outgoing arrows from an output are used to encode
the condition under which said output can be spent. In particular, below an arrow, we
identify who can spend an output by listing one or more public keys. A valid transaction
must contain signatures that verify under these public keys. Above the arrow, we write
additional conditions that are required for spending the output. These conditions can
be any script supported by the scripting language of the underlying blockchain, but in
this work, we only use time-locks. For denoting relative time-locks, we write RelTime(t)
or +t, which means that the output can be spent only if at least t rounds have passed
since the transaction holding this output was accepted on L. For denoting absolute
time-locks, we use AbsTime(t) or ≥ t, which means that the output can be spent only
if the round t has already passed. If an output condition is a disjunction of several
conditions, i.e., ϕ = ϕ1 ∨ ϕ2 · · · ∨ ϕn we draw a diamond in the output box and put
each condition ϕi below/above its own arrow. For the conjunction of several conditions,

106

5.2. Background

we write ϕ = ϕ1 ∧ ϕ2 · · · ∧ ϕn. We illustrate an example of our transaction charts in
Figure 5.2.

tx

tx′

x1

x2 x2

A
pkA

pkB, pkA

+ t1

≥ t2

ϕ1

ϕ2 ∧ ϕ3

Figure 5.2: The left transaction tx has two outputs, one of value x1 that can be spent by
A, with a transaction signed w.r.t. pkA, but only if at least t1 rounds passed since tx is
accepted on the blockchain. The other output of value x2 can be spent by a transaction
signed w.r.t. pkA and pkB at or after round t2. The right transaction tx′ has one input,
which is the second output of tx containing x2 coins, and has only one output, which is of
value x2 and can be spent by a transaction whose witness satisfies the output condition
ϕ1 ∨ (ϕ2 ∧ ϕ3). The inputs of tx are not shown.

5.2.2 Payment channels

Using payment channels, two users can perform an arbitrary number of payments off-
chain by publishing only two transactions on the ledger, one for funding and one for
closing. Through the funding transaction txf , users jointly lock up some coins in a
shared multi-signature output, thereby opening a new channel. To avoid having their
funds locked, the two users exchange signed transactions spending from txf , and assign
new balances for users, before posting txf on-chain. Users can perform payments by
exchanging new transactions that reassign their balances. These transactions holding the
balances are called states of the channel. When the two users are done, they can close
the channel by posting the last state to the ledger.

For readability, we omit the implementation details and instead use payment channels in a
black-box manner, using the following abstraction: Both users have the same transaction
txstate, which holds the outputs representing the last state of the channel. Furthermore,
we assume that the users can only publish the last txstate on the ledger. In practice,
there is a punishment mechanism in place, which gives the total channel capacity to
the honest party in case a malicious party publishes an old state. We refer the reader
to [AEE+21,MMSK+17,MMS+19] for more details.

We denote payment channels as γ := (id, users, cash, st), where γ.id ∈ {0, 1}∗ is the unique
identifier of the channel, γ.users ∈ P2 contains addresses of two involved parties (out
of the set of all parties P), γ.cash ∈ R≥0 is the total number of coins in the channel
and γ.st := (output1, output2, ..., outputn) is the last state of the channel and contains a
list of outputs. The balance of both users can be inferred from the current state γ.st,
and γ.balance(P) returns the amount of coins owned by P for P ∈ γ.users. We define a

107

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

channel skeleton γ for a channel γ, as γ := (γ.id; γ.users). Moreover, in the context of our
multi-channel updates protocol, based on the direction of the payment in each channel γ,
we define one of the involving parties as sender, which is denoted by γ.sender ∈ γ.users,
and one as receiver which is denoted by γ.receiver ∈ γ.users.

5.2.3 Payment channel networks

A payment channel network (PCN) [MMSK+17] is a graph consisting of vertices, repre-
senting the users, and edges, representing the channels between pairs of users. PCNs
enable payments between any users connected through a path of open payment channels.
This is called a multi-hop payment. Assume user U0 wants to pay user Un, but there is
no direct payment channel between them. Instead, U0 has an open payment channel γ0
with U1, U1 has an open payment channel γ1 with U2 and so on, until the receiver Un.
An MHP allows transferring coins from U0 to Un through intermediaries {Ui}i∈[1,n−1]
atomically in a secure way, which means that no honest user is at the risk of losing money.

HTLC. The Lightning Network (LN) [PD16] achieves atomicity by using a technique
called Hash Timelock Contract (HTLC). This contract can be executed by two parties
sharing an open payment channel, e.g., Alice and Bob. First, Alice locks some of her
coins in an output that is spendable if one of the following conditions is fulfilled. (i) If a
specified timeout t expires, Alice gets her money back. (ii) If Bob presents a pre-image
rA for a certain hash value H(rA) chosen by Alice, Bob gets the money.

An MHP in LN concatenates several HTLCs aiming for an atomic payment. In a nutshell,
suppose again there is a sender U0 who wants to pay α coins to a receiver Un through
some intermediaries {Ui}i∈[1,n−1]. The payment receiver Un chooses a random value r
and sends y = H(r) to the sender. Then the sender sets up an HTLC with U1 by creating
a new state with three outputs (output0, output1, output2) where output0 contains α coins,
output1 contains U0’s balance minus α, and output2 contains U1’s balance. The HTLC
specifies that output0 can be spent by U0 if timeout n · T is expired, or by U1, if she
knows a value x such that H(x) = y. Then U1 sets up an HTLC with U2 in a similar
manner using the same hash y but a different time, (n − 1) · T . This step is repeated
until the receiver is reached, with a timeout of T . We call this process the setup phase.
Thereafter, the receiver can reveal r and claim α coins from the left neighbor. Using r,
Un−1 can claim α coins from Un−2 and so on, in a second phase, which is called open
phase. In this way, all payments can be performed atomically through the path.

Note that in the open phase, each pair of parties can either agree to update their channel
to a new state off-chain, where finally Un has α coins more, or otherwise the receiver can
publish the state and a transaction with witness r on-chain. The timelocks of the HTLCs
are staggered, i.e., they increase from right to left, because we need to give enough time to
an intermediary party to claim her money from the left neighbor, when her right neighbor
reveals r and spends the output of the corresponding HTLC. LN payments thus require (i)
two rounds of pairwise, sequential communication from sender to receiver and (ii) a linear
collateral lock time in terms of the path length. This opens the door to denial-of-service

108

5.3. Solution overview

attacks, also called griefing attacks [EMSM19] in the literature. Another attack that
threatens the security of the HTLC-based protocols is the wormhole attack [MMS+19].
This attack allows two colluding users to exclude honest intermediaries from the payment
and steal their fees.

Blitz. Blitz [AMSKM21] recently improved on that by requiring only one round of
communication through the path, and a constant collateral lock time, while guaranteeing
security in the presence of malicious intermediaries. In this protocol, the sender creates a
unique transaction Enable Refund, which is denoted by txer. This transaction acts as a
global event and makes the refunds atomic, following a pay-unless-revoke paradigm. On
a high level, each party Ui for i ∈ [0, n − 1], creates an output of α that is spendable in
two ways: (i) Ui+1 can claim it after some specific time T , or (ii) Ui can refund the coins
if txer is on the ledger before that time T . If all channels are updated from sender to
receiver in this way, the receiver sends a confirmation to the sender and the payment is
considered successful. Otherwise, if any update fails, the sender posts txer before time T
to the ledger to trigger all refunds.

Note that in LN, payments in the pessimistic case are performed sequentially. In Blitz,
instead, in the case of failure, all refunds can be performed in parallel whenever txer

appears on the ledger. Because of that, the collateral lock time in Blitz for each party
is constant, thereby significantly reducing the effects of a griefing attack against Blitz
compared to protocols with a linear collateral lock time.

5.3 Solution overview
In this work, we present Thora, the first Bitcoin-compatible protocol that enables the
atomic update of arbitrary channels, going beyond the path-based topology assumed in
HTLC- or Blitz-based payments. In other words, Thora supports multiple senders and
receivers, without requiring them to be connected to each other. This feature enables the
design of new off-chain applications as well as to perform payments across distinct PCNs
sharing the same underlying blockchain. We start by informally presenting the security
and privacy goals of interest and then give an intuitive overview of our construction.

5.3.1 Security and privacy goals

In this work, we focus on two fundamental properties, which we informally define below,
referring the reader to Appendix D.3 for the formal definitions.

(S1) Atomicity. The aim of a multi-channel update protocol is to update a set of
channels. A multi-channel update protocol achieves atomicity if there are no two channels
with at least one honest user each where one update fails and the other one is successful
unless at least one honest user is compensated (i.e., by getting coins she would otherwise
not get). In other words, without losing coins (i) a malicious receiver cannot let the
update of her channel be successful even though it should fail and (ii) a malicious sender
cannot let the update fail, even though it should be successful. Note that a malicious

109

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

(irrational) user can always forfeit their own coins, e.g., by posting an old channel state,
but as this is to the benefit of the honest user, we do not consider it as breaking atomicity.

(P1) Strong value privacy. We say that a multi-channel update protocol achieves
value privacy if in the optimistic case (i.e., when the protocol is executed entirely offline),
for each channel, no party except for the channel owners can determine the payment value.
Note that this property is stronger than value privacy as defined in AMCU [MMSK+17].
In AMCU, each channel’s payment value is known to all parties involved in the protocol,
and the privacy of values is preserved only against parties not involved in the protocol.

Assumptions. We assume that there is a secure and authenticated channel between
each protocol participant. This can be realized in practice by establishing TLS channels.
Also, we do not consider the side channels that can be established by probing the nodes
in the network or by observing the opening and closing on-chain operations, as these
constitute orthogonal problems that affect all PCNs and can be mitigated with dedicated
techniques (e.g. [DTZG22]).

5.3.2 Key idea

The approach we follow to construct our protocol is reminiscent of the pay-unless-revoke
paradigm adopted in Blitz [AMSKM21], but it proceeds the other way around and it
should thus be seen as a revoke-unless-pay paradigm, as discussed below. In particular,
for each channel, we aim to design an update contract that simultaneously allows the
receiver to claim her coins if all payments are successful and allows the sender to refund
her coins if at least one channel fails to perform the payment. We propose our solution
in an incremental way. First, we start with a high-level overview of the approach. Then,
we discuss the challenges and possible solutions, until reaching the final protocol.

Let {γi}i∈[1,n] be the set of involved payment channels. For each channel γi, based on
the payment direction, we define one party as the sender, denoted by γi.sender, and one
as the receiver, denoted by γi.receiver. We call the payment value for this channel αi.
As a high-level abstraction, γi.sender splits αi coins from her balance in the channel’s
current state and generates a new output. This output can be spent by the receiver if all
payments are successful, or can be refunded to the sender if at least one payment fails.
In other words, we need to overcome two challenges. First, the design should be such
that if a sender refunds her coins, then all other senders can also do that. Second, if the
payment in a channel is successful or a receiver is able to claim her coins, then payments
in all other channels are forced, and senders cannot refund.

For the first challenge, we make all refunds possible only if a timeout T expires, so
after this time, all senders can refund their coins if the coins have not been spent by
the receivers. In other words, we give all users time T to finalize the payments in their
channels. If the payment in a channel has not been finalized until this time, the sender can
use a refund transaction and get back her coins. T is a protocol parameter, independent
of the number of channels, and the same for all channels.

110

5.3. Solution overview

txstate

txep

txp

txr

αi

xSi
− αi

xRi

ϵ

...

...

αi

αi + ϵ

Si

Si

Ri

Ri

pkSi

pkRi

pkRi

pkSi

pkSi
, pkRi

≥ T

+∆

+ tc + ∆

pkSi

pkRi

Figure 5.3: Update contract for the channel γi between two neighboring users γi.sender
and γi.receiver with the new state txstate. xSi is the amount that Si = γi.sender owns and
xRi is the amount that Ri = γi.receiver owns in the state before txstate.

For the second challenge, we make payments atomic using a global event. For each channel,
the sender updates the channel and creates a payment transaction, which transfers coins
to the receiver only after a global event occurs before time T . When all channels are
updated correctly, senders are expected to finalize their channels, transferring coins to
their receiver neighbor. In this case, if at least one receiver does not receive coins, the
global event will be triggered before time T , and all payment transactions will become
valid. Then, receivers can claim their cash. This global event is the appearance of a
specific transaction on the ledger, which we call Enable Payment transaction, and denote
it by txep. This transaction is similar to Enable Refund transaction in the Blitz protocol,
but the logic is reversed. Instead of refunds, we make payments dependent to a global
event.

Update contract. For easing the presentation, let us assume first that there is a
trusted user, who creates txep and is responsible for posting it to the ledger. txep contains
outputs to all receivers, which is the key to achieving atomicity. We discuss the structure
of the update contract below, which makes both the payment and the refund available
to the channel owners. In more detail, for each channel γi, the sender γi.sender creates
three transactions: txstate, txr, and txp. txstate is a new state transaction, where αi coins
from the sender are put in a contract that can be spent by the other two transactions.
Transaction txr refunds back the αi coins to the sender if a timeout T expires. Transaction
txp has inputs from txep and txstate and transfers the coins to the receiver if txep is on the
ledger before time T . The design of these transactions is shown in Figure 5.3. The sender
sends txstate and the signed txp to the receiver, who verifies the messages and updates
the channel to the new state txstate together with the sender. In the case of success, the
receiver sends an endorsement to the trusted user.

111

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

Atomic payments. If the trusted user receives endorsements from all receivers, she
informs all parties to finalize their channels and to transfer coins to receivers safely. There
are two error cases. (i) The trusted user does not receive the endorsement from every
receiver. In this case, no party will get a message from the trusted user to finalize the
channel, so all channels are safe, and after time T they can be restored to the initial
state based on refund transactions. (ii) If a sender gets the finalize message from the
trusted user but does not finalize her channel, the corresponding receiver informs the
trusted user to put txep on-chain before time T in order to force all payments.

At this point, our goal is to eliminate the trusted user assumption. Indeed, if we elected
one of the parties for creating and publishing txep, that party might act maliciously and
break atomicity. For instance, by not posting txep to the ledger when some senders do
not finalize their channel, or by posting txep when some channels have been updated
with txstate and some not, payments would no longer be atomic. Our strategy is thus
to enable all receivers to publish txep, but only after every channel updated already to
txstate. For this, each receiver creates her own txep. Each txep has an input conditioned
on the public keys of the creator and of all senders, and it has outputs to all receivers.
An example of this transaction is shown in Figure 5.4.

All receivers send their txep to all other parties, and this time each sender creates one
txp per txep. Then, for each channel, the sender and the receiver jointly update the
channel using txstate as we discussed earlier. If no error occurs, the receiver sends a first
endorsement to all parties instead of the trusted user. Each sender waits until receiving
all endorsements to make sure that all channels are updated using txstate. After that, the
sender sends her signature to each txep to the creator. Eventually, when all receivers get
complete signatures to their txep, they send their second endorsement and the senders are
safe to start finalizing channels and transfer coins to the receivers because all channels
have been updated with txstate. If some transfer fails, the receivers can post txep on the
ledger and force all payments.

We now intuitively argue why atomicity and strong privacy hold. For atomicity, an
honest sender will only update the channel with her receiver neighbor, if she receives the
second endorsement from all receivers, which means that every receiver is able to force
payments via txep. Similarly, honest receivers will only give their second endorsement
if they received all the signatures from txep. This means that if a malicious user does
not send her signature or endorsement to any or some of the users, this will not break
atomicity but potentially only prevent updates from taking place or force the updates via
some txep. Moreover, if a malicious receiver sends either endorsement prematurely, she
will only potentially lose money without side effects to other channels, i.e., the adversary
will donate money to the sender without affecting the payments in the other channels.
Finally, malicious users are rational, which means they will either refund their money or
claim the money from a forced update, if possible.

With regards to privacy, the payment value is only known to the sender and the receiver,
and in particular, it is not disclosed to the other parties involved in the protocol.

112

5.3. Solution overview

...

ϵ

ϵ

ϵ

n.ϵ
pkRi

, pkS1 , pkS2 , ..., pkSn

txin
i

txep
i

pkR1

pkRn

pkR2

+ tc + ∆

+ tc + ∆

+ tc + ∆

Figure 5.4: Transaction txep
i created by receiver Ri for a payment with n channels,

where the set of all senders is {Sj}j∈[1,n] and the set of all receivers is {Rj}j∈[1,n]. This
transaction enables all payments and spends the output of transaction txin

i .

Timelocks. txp should be valid until time T , and txr should be valid after that time.
The latter can easily be handled by using an absolute timelock of T , which is supported by
the underlying scripting language of most cryptocurrencies, including Bitcoin. However,
we do not have access to scripting functionalities to define outputs that are valid before
time T .

We can solve this problem by applying relative timelocks. In particular, we add a relative
timelock of ∆ for the transaction txp, where ∆ is the blockchain delay. According to
this timelock, if txstate appears on the ledger after time T , users have enough time to
post txr before the relative timelock of txp expires. In other words, txr is always accepted
over txp, in the case that both are published after time T . On the other hand, if txstate

appears before time T − ∆, users have enough time to post txp and force the payment.

One other issue we should consider is the unfair advantage of a receiver who closes her
channel in advance and puts her txep on the ledger just before time T − ∆. In this case,
the receiver can post txp and force the payment in her channel, but other receivers, who
have not closed their channels, do not have enough time to react to txep. To prevent this
issue and give enough time to all users to close their channels and post txp to the ledger,
we add a relative time of tc + ∆ to the outputs of txep, where tc is an upper bound on
the time a user needs to close a channel (Figure 5.3). For more detail on how we prevent
race conditions, we refer the reader to Section 5.8.

We point out that, as in the Lightning Network, honest users are assumed to be online
and to monitor the ledger. This assumption is orthogonal to our construction and
can be removed using the techniques proposed in the literature for this purpose, e.g.,
Watchtowers [MBB+19a,ATLW20].

Protocol overview. To wrap up, our protocol proceeds in four main phases, as
described below and visualized in Figure 5.5.

1. Pre-Setup: Each receiver creates her own txep, and sends it to all other parties.
Each txep, in addition to the creator’s signature, requires signatures from all senders
and has one output for each receiver.

113

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

2. Setup: The senders create txstate and txr, and also one txp per txep. They send
txstate and all txp to their receiver neighbor. Also, they include their signatures for
every txp in the message to their receiver neighbor. This ensures that receivers can
post txp on the ledger regardless of which txep is posted in the end. Eventually, the
receivers verify the messages and send their first endorsement to all parties.

3. Confirmation: When a sender gets all such endorsements, she is sure that all
channels have been updated by txstate. Then, the sender signs each txep and sends it
to the corresponding receiver. When a receiver gets the signatures from all senders,
she is able to post her txep on the ledger, so she sends a second endorsement to all
parties.

4. Finalizing: When the senders get the second endorsement from all receivers,
they know that all receivers are able to put their txep on the ledger, so they can
start updating their channels safely. When one update fails and the corresponding
receiver does not get the coins, she checks if a txep is on the ledger or else posts her
own txep. Either way, she claims her coins via some txp.

Fast payments. Similar to the Lightning Network, in the case that all users are honest,
updates can be carried out almost instantaneously, i.e., the channels are updated as soon
as the second endorsements are received from receivers. When the senders are ensured
that each receiver has all signatures required for spending her txep, they can safely update
their channels and pay coins to their right neighbors.

Honest update. The update contract and the corresponding transactions txstate, txr,
and txp are exchanged between two parties sharing a channel to guarantee that honest
users do not lose their coins and atomicity holds during the protocol execution. However,
when one of the two-channel owners is able to convince the other one that she is able to
force the payment (or refund) by posting txp (or txr) to the ledger, the two parties can
update the channel honestly to a state on which both agree. In other words, when both
parties of a channel are honest, no on-chain transaction is required.

5.4 Construction

5.4.1 Building blocks

Digital signatures. A digital signature scheme consists of three algorithms: KeyGen,
Sign, Vrfy.
(sk, pk) ← KeyGen(1λ) is a PPT algorithm, taking the security parameter 1λ as input
and returning a public key pk and the corresponding secret key sk.
σ ← Sign(sk, m) is a PPT algorithm, taking a secret key sk and a message m as inputs
and returning a signature σ.
{0, 1} ← Vrfy(σ, m, pk) is a DPT algorithm, taking signature σ, a message m, and a

114

5.4. Construction

1. Pre-Setup message

2. Setup message
3. 1st Endorsement

4. Confirmation message
5. 2nd Endorsement

6. Post txep

sender

Blockchain

set of all senders set of all receivers receiver

Figure 5.5: For each channel, first, the receiver sends her own txep to all other parties
(the Pre-Setup message). The sender creates txstate and one txp for each txep, then sends
all these transactions to the receiver (Setup message). After verifying the message,
the receiver sends her first endorsement to all other parties. When the sender gets all
endorsements, she sends her signature to each txep to its creator (Confirmation message).
After getting all signatures and verifying them, the receiver sends the second endorsement
to all other parties. Finally, when the receiver has enough signatures as her txep witnesses,
and the payment is not received, she will post her txep to the ledger.

public key pk as inputs, and returning 1 if σ is a valid signature on message m and
created by the secret key corresponding to pk. Otherwise, it returns 0.

Ledger and payment channels. In this work, we use a ledger and a PCN as black
boxes. The ledger keeps a record of the balances of users and all transactions. The PCN
supports the operations open, close, and update. For simplicity, we assume the payment
channels involved in the multi-channel updates protocol to be already open. We assume
that ledger and PCN expose the following API to the users:

• getBalance(U): Returns the sum of all coins in the UTXOs owned by user U on the
ledger.

• splitCoins(U , v, ϕ): Aggregates all UTXOs owned by U and returns a transaction with

115

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

an output containing v coins, which is conditioned on ϕ. If the balance of U is
greater than v, the rest is sent to an address controlled by U . If the balance of U
is less than v, the procedure returns ⊥.

• publishTx(tx): Appends the transaction tx to the ledger after at most ∆ rounds, if
witnesses are valid, inputs exist and are unspent, and the sum of coins in their
outputs is less than or equal to the sum of coins in the inputs.

• updateChannel(γ, txstate): Initiates an update in the channel γ to the state defined by
txstate, when called by a user ∈ γ.users. The update is performed after at most tu

rounds. Upon the termination, the procedure returns UPDATE-OK in the case of
success, and UPDATE-FAIL in the case of failure to both users.

• closeChannel(γ): Closes the channel γ when called by a user ∈ γ.users. The latest
state γ.st appears on the ledger after at most tc rounds.

5.4.2 Protocol description

Let U := {(γi, αi)}i∈[1,n] be the set of all updates, where {γi}i∈[1,n] denotes the involved
payment channels and αi denotes the payments value through the channel γi. Let dealer
be the trigger party, S := {γi.sender}i∈[1,n] and R := {γi.receiver}i∈[1,n] the set of all
senders and all receivers respectively. S and R are known to all parties. A simplified
version of the Thora protocol and the used macros are shown below. We refer the reader
to Appendix D.2.5 for a full description of the protocol. The main phases of the protocol
are as follows.

Initialization. First, we make sure that all parties are aware of every channel that is
participating in the update. The protocol then starts from the Pre-Setup phase. The
protocol execution is triggered by a party denoted by dealer. Note that the triggering
party has no security or privacy advantages over the others.

Pre-Setup. Each user γi.receiver creates txin
i , which has an output conditioned on

the public keys of γi.receiver and all senders in S. The value of the output is n · ε,
where ε is the smallest possible amount of cash. txin

i is created by calling the procedure
GenTxIn. Then, γi.receiver calls GenTxEp, which takes txin

i and R as inputs, and returns
a transaction txep

i with outputs to all users in R, each containing ε coins. γi.receiver
sends txep

i to all users. The structure of txin
i and txep

i can be viewed in Figure 5.4.

Setup. γi.sender, upon receiving {txep
j }j∈[1,n] from all receivers, verifies the correctness

of these transactions. Then, γi.sender creates txstate
i , txr

i, and {txp
i,j}j∈[1,n]. txstate

i splits αi

coins from the sender’s current balance in γ.st, which is spendable by payment or refund
transactions. txr

i returns the coins back to γi.sender only if the time T elapses. txp
i,j has

an input from txep
j and sends the split coins to γi.receiver. The sender creates txstate

i

by the procedure GenState, txr
i by the procedure GenRef, and txp

i,j by the procedure
GenPay. γi.sender sends txstate

i and all signed txp
i,j to the receiver neighbor. We refer

116

5.4. Construction

the reader to Figure 5.3 for the structure of these transactions. γi.receiver checks the
correctness of the transactions and signatures, then sends the first endorsement to all
parties.

Confirmation. When a sender γi.sender gets first endorsements from all parties in
R, it updates γi using txstate

i . If the update is performed successfully, γi.sender sends a
signature on each txep

j to the receiver γj .receiver. Each receiver γi.receiver waits for all
signatures on txep

i and then sends the second endorsement to all parties if γi has been
updated successfully.

Finalizing. Upon receiving the second endorsement from all parties in R, a sender can
safely update the channel to its final state with the receiver neighbor. When updating a
channel fails in this phase, and no txep is on the ledger, the receiver can post her txep

and force the payment.

Respond. This phase is executed in every round by all users. Each sender γi.sender
checks whether the current round is greater than T , γi has been closed, and at least one
txep is on the ledger. If so, γi.sender posts txr

i to the ledger before γi.receiver force the
payment by posting a payment transaction. On the other side, each receiver γi.receiver
checks whether one txep

j has appeared on the ledger. If so, she closes the channel γi.
After the appearance of txstate

i on the ledger, she posts txp
i,j to the ledger and forces the

payment through the channel γi.

The Thora multi-channel updates protocol

• Let dealer be a selected user as the trigger party, T the upper bound on the time we expect
the updates to be performed, and ∆ the blockchain delay.

• Let U := {(γi, αi)}i∈[1,n] be the set of all ongoing updates. Each αi is known only for parties
in γi.users.

Initialization

dealer

1. Send message (init, {γi}i∈[1,n]) to all parties in {γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n].

All parties upon receiving (init, {γi}i∈[1,n]) from dealer

1. Verify the channels set. If the decision is not participating in the protocol, return abort.
2. Set S := {γi.sender}i∈[1,n] , R := {γi.receiver}i∈[1,n], and P := S ∪ R.
3. Go to the Pre-Setup phase.

Pre-Setup

117

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

γi.receiver

1. Set txin
i := GenTxIn(γi.receiver, {γk}k∈[1,n]).

2. Set txep
i := GenTxEp({γk}k∈[1,n], txin

i).

3. Send txep
i to all parties in R ∪ S.

All users upon receiving {txep
j }j∈[1,n] from all parties in R

1. For all j ∈ [1, n], If CheckTxEp(txep
j ,γj .receiver, {γk}k∈[1,n]) = ⊥, return abort.

2. Go to the Setup phase.

Setup

γi.sender

1. Set txstate
i = GenState(αi, T , γi).

2. Set txr
i = GenRef(txstate

i , γi.sender).
3. For all j ∈ [1, n], let θi,j be the output of txep

j which corresponds to γi.receiver, then create
txp

i,j := GenPay(txstate
i , γi.receiver, θi,j) and the corresponding signature σγi.sender(txp

i,j).

4. Send (txstate
i , {txp

i,j , σγi.sender(txp
i,j))}j∈[1,n]) to γi.receiver.

γi.receiver upon receiving

(txstate
i , {(txp

i,j , σγi.sender(txp
i,j))}j∈[1,n]) from γi.sender

1. If txstate
i ̸= GenState(αi, T , γi), return abort.

2. If any signature σγi.sender(txp
i,j) is not correct, return abort.

3. For all j ∈ [1, n], let θi,j be the output of txep
j owned by γi.receiver. if txp

i,j ̸= GenPay(txstate
i ,

γi.receiver, θi,j), return abort.
4. Send message (setup-oki) to all parties in P.

All users upon receiving { (setup-okj }j∈[1,n])

from all parties in R

118

5.4. Construction

1. Go to the Confirmation phase.

Confirmation

γi.sender

1. updateChannel(γi, txstate
i).

2. If time tu has expired and the message (UPDATE-OK) has not been returned, return abort.
3. For all j ∈ [1, n], send σ(txep

j) to γj .receiver.

γi.receiver upon receiving {σ(txep
i)}j∈[1,n]) from all parties in S

1. If (UPDATE-OK) has been returned and for all j ∈ [1, n], σ(txep
j) is a valid signatures, send

message (confirmation-oki) to all parties in P, otherwise return abort.

All users upon receiving { (confirmation-okj }j∈[1,n])

from all parties in R

1. Go to the Finalizing phase.

Finalizing

γi.sender

1. Set txtrans
i = GenTrans(αi, γi).

2. updateChannel(γi, txtrans
i).

γi.receiver

1. If the message (UPDATE-OK) has not been received for the final transfer, and no txep is on
the ledger, before time T − tc − 3∆, combine received signatures from senders for txep

i with
own signature inside σ(txep

i) and calls publishTx(txep
i , σ(txep

i)).

Respond(Executed in every round τx)

γi.receiver

119

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

1. If τx < T − tc − 2∆ and at least one txep is on-chain, closeChannel(γi).
2. After txstate

i is accepted on the blockchain within at most tc rounds, wait ∆ rounds. Let
σ(txp

i) be a signature using the secret key
skγi.receiver in addition to received signature from γi.sender for
txp

i . publishTx(txp
i , σ(txp

i)).

γi.sender

1. If τx > T , γi is closed and txstate
i and at least one txep is on the ledger, but not txp

i ,
publishTx(txr

i, σγi.sender(txr
i)).

Subprocedures used in the multi-channel updates protocol

GenTxIn(R, {γk}k∈[1,n]):

1. n := |{γk}k∈[1,n]|
2. ϕ := MultiSig(R, γ1.sender, γ2.sender, ..., γn.sender).
3. Return txin := splitCoins(R, n · ε, ϕ).

GenTxEp({γk}k∈[1,n], txin):

1. n := |{γk}k∈[1,n]|
2. If txin.output[0].cash ≤ n · ε, return ⊥.
3. outputList := ∅.
4. For each Ri := γi.receiver for all i ∈ [1, n]:

• outputList = outputList ∪ (ε, OneSig(Ri) ∧ RelTime(tc + ∆))

5. id := H(txin.output[0], outputList).
6. Return txep := (id, txin.output[0], outputList).

CheckTxEp(txep, R,{γk}k∈[1,n]):

1. n := |{γk}k∈[1,n]|
2. If txep.input.cash ≤ n · ε or

txep.input.ϕ ̸= MultiSig(R, γ1.sender, γ2.sender, ..., γn.sender),
return ⊥.

3. If |txep.output| ≠ n, return ⊥.

120

5.5. Security analysis

4. For all outputs (cash, ϕ) ∈ txep.output if cash ̸= ε or
ϕ ̸= (OneSig(x), RelTime(tc + ∆)), where x is one of the receivers,
return ⊥.

5. Return ⊤.

GenState(α, T , γ):

1. Let θ′ := γ.st be the current state of channel γ and contains two outputs θ′
s = (xs,

OneSig(γ.sender)) and
θ′

r = (xr, OneSig(γ.receiver)).
2. If xs < α return ⊥.
3. Return θ := (θ0, θ1, θ2) such that:

• θ0 := (α, (OneSig(γ.sender) ∧ AbsTime(T))∨
(MultiSig(γ.sender, γ.receiver) ∧ RelTime(tc + ∆)))

• θ1 := (xs − α, OneSig(γ.sender))
• θ2 := (xr, OneSig(γ.receiver))

GenRef(txstate, γi.sender):

1. Return a transaction txr such that txr.input := txstate.output[0] and
txr.output := (txstate.output[0].cash, OneSig(γi.sender).

GenPay(txstate, γ.receiver, θ):

1. Return a transaction txp such that txp.input := (txstate.output[0], θ) and
txp.output := (txstate.output[0].cash + θ.cash, OneSig(γ.receiver).

GenTrans(α, γ):

1. Let θ′ := γ.st = (θ′
0, θ′

1, θ′
2) be the current state of channel γ.

2. Return θ := (θ0, θ1) such that:

• θ0 := (θ′
1.cash, OneSig(γ.sender))

• θ1 := (θ′
2.cash + α, OneSig(γ.receiver))

5.5 Security analysis

5.5.1 Security model

We model the security of our multi-channel updates protocol in the synchronous setting
and global universal composability (GUC) framework [CDPW07]. Our security model is

121

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

similar to the one adopted in prior work [AEE+21,AMSKM21,DEF+19b]. In particular,
the global ledger L is modeled by the functionality GLedger, which is parameterized by a
signature scheme Σ and a blockchain delay ∆. We model the notion of communication
by the ideal functionality FGDC and the time by Gclock. Moreover, we define an ideal
functionality FChannel, which provides open, update, and close operations for payment
channels.

The formal security analysis is detailed in Appendix D.2. In this section, we briefly present
a high-level overview of the security model. First, we provide an ideal functionality
Fupdate, which describes an ideal multi-channel update protocol with atomicity and strong
value privacy properties. Fupdate is parameterized by a blockchain delay ∆ and a time T ,
which determine an upper bound on the expected time for a successful Thora payment.
The ideal functionality describes the input/output behaviors of the payment protocol
users and their impacts on the global ledger.

We then describe the Thora protocol Π formally and show that Π GUC-realizes Fupdate.
Intuitively, this means that we design a simulator S, which translates any attack on the
protocol Π on the ideal functionality Fupdate. We then show that no PPT environment
can distinguish between interacting with the real world and interacting with the ideal
world. Thus, Π provides both atomicity and strong value privacy. This is stated by
Theorem 5 and formally proven in Appendix D.2.

Theorem 5. For any ∆, T ∈ N, the protocol Π GUC-realizes the ideal functionality
Fupdate.

5.5.2 High-level functionality description

We give a high-level description of our channel update ideal functionality Fupdate and
refer to Appendix D.2 for the formal UC description. Fupdate can be called for a set of
channels to be updated, essentially with the goal of atomically performing payments in
each channel from sender to receiver. Similar to the protocol, the ideal functionality
proceeds in the following phases.

In the initialization phase, the set of channels to be updated is registered with Fupdate.
This phase is initiated by a dealer, which can be any party that is part of the set of
channels to be updated. Following this, in phase pre-setup, Fupdate prepares all channels
for the update by creating a synchronizing transaction txep per channel that can later
be used to force all payments. In phase setup, Fupdate proceeds with preparing an
intermediary state update for each channel. In this intermediary state, the payment can
be enforced if any of the synchronizing transactions gets posted to GLedger and reverted
after timeout T . Then, in phase confirmation, the updates to the intermediary states are
performed via FChannel.

The functionality Fupdate proceeds to the finalizing phase iff all updates are successful
and either the set of senders are honest or the simulator provided a valid signature from
all dishonest senders for the synchronizing transactions. This is crucial because at this

122

5.5. Security analysis

point Fupdate can enforce the payment for honest receivers and only then it is safe to start
finalizing. In the finalizing phase, all channels are finalized, i.e., updated to the state
where the payment went through. If an update fails, Fupdate can utilize the synchronizing
transaction to ensure that the payment is forced for honest receivers.
Further, the functionality checks each round if a synchronizing transaction txep was posted
to GLedger. This can be achieved by expecting the environment to pass the execution
token to Fupdate each round. If it does not, Fupdate outputs an error the next time it gets
the execution token. In case a synchronizing transaction is posted, Fupdate can force the
payment on GLedger. Similarly, a refund can be forced after T .

5.5.3 Informal security analysis

Here, we informally argue why the Thora protocol description shown in Section 5.4.2
achieves atomicity and strong value privacy as defined in Section 5.3.1.

Atomicity. We want to show that if there exist two channels with different update
statuses, where each has at least one honest user, then the party deviating from the
protocol loses the payment value in favor of the other (honest) channel end-point.
Assume that for two channels γi, γj , each with at least one honest user and with payment
values αi and αj , γi is updated successfully, but γj is reverted. There are two possible
cases as follows.

1. The final update in γi is done by γi.sender using txtrans
i . If γi.sender has followed

the protocol correctly, she should receive confirmation-ok message from all re-
ceivers, including γj .receiver. So, γj .receiver has enough signatures to put txep

j on
the ledger and force the payment. If γi.sender has finalized γi without receiving all
confirmation-ok messages, she is deviating from the protocol at the cost of losing
her funds to γi.receiver. Also, if γj .receiver has sent confirmation-ok without
having enough signatures or refuses to force the payment using txep

j , she is deviating
from the protocol at the cost of losing her funds to γj .sender. None of the cases would
affect others’ security.

2. The payment in γi is forced via posting an enable payment transaction txep
k and txp

i,k
on the ledger. Thus, all other receivers, including γj .receiver, can force the payment
in their channels using txep

k . Note that txep
k contains an output owned by γj .receiver,

otherwise, this user would not send setup-ok to other parties, including γi.sender.
If γi.sender continued the protocol without receiving all setup-ok messages, she is
deviating from protocol at the cost of losing her funds. Also, if γj .receiver has sent
setup-ok having incorrect txep

k or refuses to force the payment using txep
k , she is

deviating from the protocol at the cost of losing her funds to γj .sender. None of the
cases would affect others’ security.

Strong value privacy. For an optimistic execution of the protocol, the value of payment
αi through each channel γi is only known to the sender and the receiver of this channel.

123

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

αi is used only in txstate
i , txr

i, and {txp
i,j}j∈[1,n]. These transactions are exchanged between

γi.sender and γi.receiver through secure and authenticated channels. If both parties are
honest, the payment value is not visible to an adversary.

5.6 Evaluation
In this section, we analyze the performance of our construction. We conducted an
asymptotic analysis to determine the number of transactions required on-chain and
off-chain. We also built an implementation to evaluate the size of these transactions and
to check the compatibility of the construction with Bitcoin’s scripting functionalities.
The implementation is open-source and the code is publicly available [Tho22]. Let n be
the number of payment channels to be updated, which means that there are n possibly
non-distinct senders and n possibly non-distinct receivers, and m ∈ [0, n] be the number
of channels in which parties do not agree to update off-chain, and therefore on-chain
transactions are required to settle the dispute.

Number and size of transactions. In the honest case, Thora happens completely
off-chain, requiring no on-chain cost. The (worst-case) on-chain overhead of the scheme
is linear, requiring 2m + 1 transactions to be posted on-chain. As shown in Table 5.2
and discussed below, this is in line with the state-of-the-art Bitcoin-compatible PCN
protocols (e.g., Lightning Network and Blitz). In Thora, however, users are required to
store a linear number of off-chain transactions per channel (which results in a quadratic
number of total off-chain transactions), whereas the off-chain overhead for the existing
Bitcoin-compatible PCN protocols is only constant per channel (or linear in total). We
argue that this is a reasonable price to pay for supporting a larger class of off-chain
applications, as (i) this increase does not lead to any extra on-chain fees and (ii) the size
is small enough in practice to be easily handled even on mobile devices, as we show now.

The transaction txep is 141n + 160 bytes large since it requires an output and a signature
for each channel. Making use of Taproot’s aggregated Schnorr signatures [Tap21], one
can reduce the size of this transaction to 38n + 256 bytes. This is achieved by eliminating
n public keys (32 bytes) and signatures (70-72 bytes) from the redeem script in txep,
adding instead one Schnorr public key (32 bytes), which is the aggregation of public keys
of one receiver and n senders, and one Schnorr signature (64 bytes).

Moreover, each channel requires n transactions txp (501 bytes each), one transaction txr

(272 bytes), an input transaction to txep (224 bytes), a channel update of size 380 bytes
for initiating the update, and another one of size 337 bytes for finalizing the update. For
the whole protocol execution, this leads to an off-chain storage overhead of 539n + 1469
bytes per channel as we plot in Figure 5.6. For example, even when updating n = 100
channels, the off-chain transaction overhead is only around 55KB per channel, or around
5.5MB are exchanged in total.

Collateral. Because the success of the update depends on the global event txep, Thora
manages a constant collateral lock time. For the payment protocols LN [PD16] and

124

5.6. Evaluation

AMHL [MMS+19], this collateral is instead linear in the number of channels, as they
require a growing timelock for each channel to propagate the preimage required for
unlocking. In PT [JLT21], the time is logarithmic due to the underlying tree-based
structure. Finally, Blitz [AMSKM21], Sprites [MBB+19b], and AMCU [EMSM19] achieve
also constant collateral, at the price of various security, expressiveness, and compatibility
trade-offs (cf. Tables 5.1 and 5.2).

Computational overhead. Computationally, the protocol needs to create and verify
transactions (mostly string operations) and handle signatures. In particular, the com-
putational overhead is dominated by computing and verifying signatures. Each sender
needs to sign up to 2n + 2 transactions, more specifically the channel update transaction
txstate, one force refund transaction txr which they need only in case of dispute, n force
payment transactions txp for their receiver neighbors, and n transactions txep, one for
each receiver. Each receiver signs up to n + 2 transactions, i.e., the channel update
transaction txstate, one force payment transaction txp which they need only in case of
dispute, and their own transaction txep. In our implementation, the time required for
creating and verifying one signature is about 30ms on average.

On-chain comparison with LN and Blitz. In Table 5.3, we compare the on-chain
costs of Thora with LN and Blitz, the two state-of-the-art solutions for path-based
payments. We assume that Thora is used to conduct such a payment and focus on the
on-chain load on the blockchain together with the associated fees, which we calculate
using the current price of Bitcoin in USD [Bit22b] and the current average fee per
bytes [Bit22d] (February 2022). When all parties are honest, both protocols are executed
completely off-chain, and no transaction is required to appear on the ledger, thus here we
are interested in the case where parties need to force either the payment or the refund.

Thora and Blitz have similar message costs, just the cost for the payment and refund
transactions are inverted, which corresponds to the fact that one adopts the pay-unless-
revoke paradigm and the other one the revoke-unless-pay paradigm. The size of the
channel state transaction holding the update contract (370 bytes) is the same in all three
constructions, due to our usage of P2SH addresses. The size of the payment transaction
in LN is 451 bytes, and the size of the refund is 302 bytes. The main difference between
the on-chain overhead of these two protocols is txep in Thora. In the case of forced
payments, in addition to one txp per channel, one txep in total has to be posted to
the ledger to enable payments in all channels. This overhead is present in the Blitz
refund case. Aside from this, the on-chain fees of Thora are similar to those for LN (the
payment transaction is 6% more expensive, while the refund transaction is 6% cheaper).
A difference to LN and similarity to Blitz is, that the user posting txep in Thora (or the
equivalent transaction in Blitz) loses (n − 1) · ϵ coins. In Bitcoin, outputs cannot hold 0
coins, therefore ϵ is chosen to be the smallest possible value, e.g., for P2WPKH outputs
this is currently 294 satoshis (roughly 0.06 USD). This cost is not present in LN.

125

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

Table 5.2: Asymptotic comparison of current solutions, with n being the number of
channels.

Collateral # tx (on-chain) # tx (off-chain)
LN [PD16] Θ(n) Θ(n) Θ(n)

AMHL [MMS+19] Θ(n) Θ(n) Θ(n)
AMCU [EMSM19] Θ(1) Θ(n) Θ(n)

PT [JLT21] Θ(log n) Θ(n) Θ(n)
Blitz [AMSKM21] Θ(1) Θ(n) Θ(n)
Sprites [MBB+19b] Θ(1) Θ(n) Θ(n)

Thora Θ(1) Θ(n) Θ(n2)

0 20 40 60 80 100
0

2

4

6
·104

channels

off
ch

ai
n

st
or

ag
e

(K
B)

Figure 5.6: Per-channel off-chain storage overhead for varying number of synchronized
channels.

Table 5.3: On-chain overhead and cost comparison of LN, Blitz and Thora. n is the
number of channels and m ∈ [0, n] is the number of disputed channels.

Overhead LN (Bytes || USD) Blitz (Bytes || USD) Thora (Bytes || USD)
Payment transaction 821m || 1.50m 642m || 1.17m 871m || 1.59m

Refund transaction 672m || 1.23m 871m || 1.59m 642m || 1.17m

Cost of enforcing pay/refund 0 257 + 35n || 0.47 + 0.06n 256 + 36n || 0.47 + 0.06n

5.7 Applications
Most of the existing PCN solutions only support payments from one sender to one receiver
and these are to be connected by a path of open channels. This limitation prevents
the design of applications with multiple senders or multiple receivers, or those involving
payments through two or more distinct PCNs sharing the same blockchain. We show
below how Thora overcomes these limitations.

Mass payments. Mass payments can be used by entities that need to perform a high
volume of payments. Suppose that a single entity S wants to pay multiple recipients

126

5.7. Applications

U0

U1

U2

U3

3

3 4

4

7
γ2

γ1

γ3

γ4

γ5

Figure 5.7: An example of rebalancing with 4 users and 5 channels. Each user holds the
same coins after the rebalancing as before, but distribution of coins through channels
is changed in order to refund depleted channels. In this case, rebalancing cannot be
conducted using a single path-formed payment without using a channel more than once.

R1, R2, ..., Rn simultaneously, with corresponding values α1, α2, ..., αn. Here, atomicity
can be highly desirable as it guarantees that either all payments are performed correctly
or the sender is refunded. For simplicity, we assume that S has a direct channel γi

to each receiver Ri. The sender S can use Thora with the input of the update set
U := {(γ1, α1), (γ2, α2), ..., (γn, αn)} to perform a mass payment in an atomic and off-
chain way. Going one step further, the sender does not need to be directly connected to
all receivers but instead can set up updates via some intermediaries. A special case of
this is when one sender wants to atomically pay one receiver over multiple paths at once,
e.g., when the balance of one path is not sufficient. This is known as atomic multi-path
payment [Ato22] and can be achieved with Thora.

Rebalancing. In a bidirectional channel, when payments in one direction are more
frequent than in the other direction, the channel becomes skewed and is eventually
reduced to a unidirectional channel. Users can close the channel and create a new channel
with fresh balances, but for that, they need to post some transactions to the blockchain.
Alternatively, if there exists a path of channels between the two users that wish to
rebalance their channel, they can leverage a payment through this path to replenish the
depleted channel. This can be more efficient if there are multiple users on the path who
wish to rebalance their channels. However, as the length of the path grows, refunding
becomes more expensive in terms of fees and collateral [EMSM19,KG17].

Moreover, in some cases, rebalancing is performed through more complex topologies,
where (i) a single path payment does not suffice without using certain channels more
than once, see Figure 5.7, or (ii) rebalancing can be made more efficient by making use
of the canceling out effect, as shown in [APS+22]. In the example of Figure 5.7, users
hold the same amount of coins after the payments as before, but the distribution of coins
in the channels is changed. We can perform rebalancing in this case by initiating Thora
with the input of the update set {(γ1, 3), (γ2, 3), (γ3, 7), (γ4, 4), (γ5, 4)}. The set of senders
and receivers is defined based on the direction of the payment in each channel.

127

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

Transaction aggregation. Suppose S0 wants to pay 5 coins to R1 and S1 wants to
pay 5 coins to S0, however, there are only channels between S0 and R0 and between
S1 and R1. A more generalized version of this problem was introduced as transaction
aggregation in [TYA+22] along with a construction that uses Thora as a building block,
which solves this problem.

Crowdfunding. This application is similar to mass payments, but reversed. We have
multiple senders S0, S1, ..., Sn who want to fund one single receiver R in an atomic way.
In such a case, each sender Si may want to pay αi coins to the receiver only when there
is a guarantee that all other senders will pay their funds in the same way. Analogous
to previous cases, we can use Thora to perform trustless and off-chain crowdfunding by
including all involved channels and corresponding payment values in the update set.

5.8 Discussion

Enhancing privacy. In the case of a dispute when one txep appears on the ledger,
users can decide to perform honest updates (Section 5.3) and to post no transaction to
the ledger. In this way, they can still preserve the privacy of payment values and save the
cost of transaction fees. However, because txep includes outputs to all receivers, receivers’
identities are revealed publicly when txep is posted.

To enhance privacy, we can use stealth addresses [VS18]. On a high level, instead of
existing addresses, receivers can generate fresh addresses for other receivers, and create
txep using new addresses. Thus, if any txep is posted to the ledger and the two channel
users decide to update the channel honestly, their identities will stay private from all
parties not involved in the protocol. For more details on stealth addresses, we refer the
reader to Appendix D.1.

Accountability. Thora guarantees strong value privacy for off-chain payments. However,
in some applications, users may have an interest in accounting payments instead of privacy.
For instance, in the crowdfunding application, suppose that all senders have planned
to fund the receiver entity with an identical value. Here, the users want to be sure all
updates are consistent with the agreed payment value. In this case, the senders can use
signed versions of txstate and the set of txp as receipts and prove their correct behavior.

Communication and computation complexity. As previously discussed, parties
have to exchange off-chain messages with each other (i.e., txep and signatures), which
leads to quadratic communication overhead. By extending the role of dealer to a user
whom all parties send these messages and who aggregates the signatures, one could
asymptotically reduce the number of signatures that each party has to handle from linear
to constant since only the aggregated signature is sent instead of every individual one.
Note that, despite the resulting gain, the size of the transactions is, technically speaking,
still quadratic from an asymptotical point of view, because txep has a linear number of
outputs and there is one for every channel.

128

5.9. Conclusion

Race condition. When a receiver posts txep, it will appear in the ledger after at most
∆ rounds. According to Section 5.3, we put a timelock of tc + ∆ on outputs of a txep

to give enough time to users to close their channels and post txp. Thus, for a rational
receiver, the latest possible time to publish txep is T − 3∆ − tc, so that it is accepted at
T − 2∆ − tc and the timelock of the outputs runs out at T − ∆. This ensures that the
payment txp has precedence over the refund txr. However, if a receiver posts txep after
T − 3∆ − tc and before T − 2∆ − tc, the timelock on the outputs of txep could run out
just before T , at which point the refunds txr become possible. Now, there is a potential
race between the payments and the refunds. In particular, there is a chance that one
receiver can post txp just before T , and in another channel, a sender might post a refund.

Of course, this behavior is irrational since the receiver puts her balance and possibly the
one of other malicious receivers at risk, as other channels with honest receivers will have
already either updated honestly or posted their txep before T − 3∆ − tc. If interested, we
can anyway prevent this race condition caused by irrational receivers by changing the
spending condition of txin. In more detail, each receiver R sets the condition of her txin

as follows: (MultiSig(R, S1, S2, ..., Sn) ∧ RelTime(∆)) ∨ (AbsTime(T − 3∆ − tc)), where
Si is the sender of channel γi. According to the new condition, the receiver is forced
to post txep before T − 5∆ − tc, because otherwise, any party, e.g., also miners, can
spend txin and prevent forced payments. This mechanism is similar to the one adopted
in Blitz [AMSKM21].

5.9 Conclusion

In this work, we presented Thora, the first Bitcoin-compatible multi-channel update
protocol that guarantees atomicity of payments without restrictions on the channel
topology. Moreover, Thora enables channel owners to keep their payment value private.

We defined an ideal functionality to model the security and privacy notations of interest
and showed that Thora is a secure realization thereof within the Global Universal
Composability framework. Further, we evaluated the performance and showed that the
collateral is constant and independent of the number of channels. Our construction does
not require Turing-complete smart contracts and can be implemented on top of any
blockchain that supports time-locks and signatures in its scripting language.

An interesting direction of future work is exploring the possibility to extend Thora
to achieve a threshold atomicity property in generic channel networks. For instance,
a k-threshold atomicity holds, if at least k channels are updated successfully or else,
all channels are reverted to the initial state. This extension can further widen the
range of practical applications of Thora payments. Other venues of future research are
interoperability, exploring how to refine Thora in order to support atomic channel updates
over different blockchains, and optimizing Thora in terms of storage and communication
for more specific network topologies.

129

5. Thora: Atomic and Privacy-Preserving Multi-Channel Updates

Acknowledgements

The work was partially supported by CoBloX Labs, by the European Research Council
(ERC) under the European Union’s Horizon 2020 research (grant agreement 771527-
BROWSEC), by the Austrian Science Fund (FWF) through the projects PROFET (grant
agreement P31621) and the project W1255-N23, by the Austrian Research Promotion
Agency (FFG) through the Bridge-1 project PR4DLT (grant agreement 13808694), the
COMET K1 SBA and COMET K1 ABC, by the Vienna Business Agency through the
project Vienna Cybersecurity and Privacy Research Center (VISP), by the Austrian
Federal Ministry for Digital and Economic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler Research Association through
the Christian Doppler Laboratory Blockchain Technologies for the Internet of Things
(CDL-BOT).

130

CHAPTER 6
Bitcoin-Compatible Virtual

Channels

Abstract
Current permissionless cryptocurrencies such as Bitcoin suffer from a limited transaction
rate and slow confirmation time, which hinders further adoption. Payment channels are
one of the most promising solutions to address these problems, as they allow the parties
of the channel to perform arbitrarily many payments in a peer-to-peer fashion while
uploading only two transactions on the blockchain. This concept has been generalized
into payment channel networks where a path of payment channels is used to settle the
payment between two users that might not share a direct channel between them. However,
this approach requires the active involvement of each user in the path, making the system
less reliable (they might be offline), more expensive (they charge fees per payment),
and slower (intermediaries need to be actively involved in the payment). To mitigate
this issue, recent work has introduced the concept of virtual channels (IEEE S&P’19),
which involve intermediaries only in the initial creation of a bridge between payer and
payee, who can later on independently perform arbitrarily many off-chain transactions.
Unfortunately, existing constructions are only available for Ethereum, as they rely on
its account model and Turing-complete scripting language. The realization of virtual
channels in other blockchain technologies with limited scripting capabilities, like Bitcoin,
was so far considered an open challenge.

In this work, we present the first virtual channel protocols that are built on the UTXO
model and require a scripting language supporting only a digital signature scheme
and a timelock functionality, being thus backward compatible with virtually every
cryptocurrency, including Bitcoin. We formalize the security properties of virtual channels
as an ideal functionality in the Universal Composability framework and prove that our
protocol constitutes a secure realization thereof. We have prototyped and evaluated our

131

6. Bitcoin-Compatible Virtual Channels

protocol on the Bitcoin blockchain, demonstrating its efficiency: for n sequential payments,
they require an off-chain exchange of 9+2n transactions or a total of 3524+695n bytes, with
no on-chain footprint in the optimistic case. This is a substantial improvement compared
to routing payments in a payment channel network, which requires 8n transactions with
a total of 3026n bytes to be exchanged.
This chapter presents the results of a collaboration with Oğuzhan Ersoy, Andreas Erwig,
Sebastian Faust, Kristina Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash
Riahi, which was published at the 42nd IEEE Symposium on Security and Privacy in 2021
under the title "Bitcoin-Compatible Virtual Channels". I am responsible for writing a
proof-of-concept implementation, deploying and testing the scheme on the Bitcoin testnet,
and designing and conducting the experiments and measurements. Further, I contributed
to the write-up of the paper. The paper presents two virtual channel constructions (with
and without validity). Oğuzhan Ersoy and I are responsible for designing virtual channels
with validity. Siavash Riahi and Andreas Erwig are mainly responsible for designing
virtual channels without validity and writing the security proofs of that protocol. Kristina
Hostáková and Siavash Riahi are responsible for modeling the security properties and
writing the ideal functionality. Pedro Moreno-Sanchez, Sabastian Faust and Matteo Maffei
were the general advisors and contributed with continuous feedback.

6.1 Introduction
Permissionless cryptocurrencies such as Bitcoin [Nak09] have spurred increasing interest
over the last years, putting forward a revolutionary, from both a technical and economical
point of view, payment paradigm. Instead of relying on a central authority for transaction
validation and accounting, Bitcoin relies on its core on a decentralized consensus protocol
for these tasks. The consensus protocol establishes and maintains a distributed ledger
that tracks every transaction, thereby enabling public verifiability. This approach,
however, severely limits the transaction throughput and confirmation time, which in
the case of Bitcoin is around ten transactions per second, and confirmation of an
individual transaction can take up to 60 minutes. This is in stark contrast to central
payment providers that offer instantaneous transaction confirmation and support orders of
magnitude higher transaction throughput. These scalability issues hinder permissionless
cryptocurrencies such as Bitcoin from serving a growing base of payments.
Within other research efforts [GMSR+20,ZABZ+21,BSA+17], payment channels [Bit18]
have emerged as one of the most promising scalability solutions. The most prominent
example that is currently deployed over Bitcoin is the so-called Lightning network [PD16],
which at the time of writing hosts deposits worth more than 60M USD. A payment
channel enables an arbitrary number of payments between users while committing only
two transactions onto the blockchain. In a bit more detail, a payment channel between
Alice and Bob is first created by a single on-chain transaction that deposits Bitcoins into
a multi-signature address controlled by both users. The parties additionally ensure that
they can get their Bitcoins back at a mutually agreed expiration time. They can then
pay to each other (possibly many times) by exchanging authenticated off-chain messages

132

6.1. Introduction

that represent an update of their share of coins in the multi-signature address. The
payment channel is finally closed when a user submits the last authenticated distribution
of Bitcoins to the blockchain (or after the channel has expired).
Interestingly, it is possible to leverage a path of opened payment channels from the
sender to the receiver with enough capacity to settle their payments off-chain, thereby
creating a payment channel network (PCN) [PD16, MMSK+17]. Assume that Alice
wants to pay Bob, and they do not have a payment channel between each other but
rather are connected through an intermediary user Ingrid. Upon a successful off-chain
update of the payment channel between Alice and Ingrid, the latter would update
her payment channel with Bob to make the overall transaction effective. The key
challenge is how to perform the sequence of updates atomically in order to prevent Ingrid
from stealing the money from Alice without paying Bob. The standard technique for
constructing PCNs requires the intermediary (e.g., Ingrid in the example from above)
to be actively involved in each payment. This has multiple disadvantages, including (i)
making the system less reliable (e.g., Ingrid might have to go offline), (ii) increasing
the latency of each payment, (iii) augmenting its costs since each intermediary charges
a fee per transaction, and (iv) revealing possibly sensitive payment information to the
intermediaries [NFSD20,TMM20,KYP+21].
An alternative approach for connecting multiple payment channels was introduced by
Dziembowski et al. [DEFM19]. They propose the concept of virtual channels – an
off-chain protocol that enables direct off-chain transactions without the involvement
of the intermediary. Following our running example, a virtual channel can be created
between Alice and Bob using their individual payment channels with Ingrid. Ingrid must
collaborate with Alice and Bob only to create such a virtual channel, which can then be
used by Alice and Bob to perform arbitrarily many off-chain payments without involving
Ingrid. Virtual channels offer strong security guarantees: each user does not lose money
even if the others collude. A salient application of virtual payment channels is so-called
payment hubs [DEFM19]. Since establishing a payment channel requires a deposit and
active monitoring, the number of channels a user can establish is limited. With payment
hubs [DEFM19], users have to establish just one payment channel with the hub and
can then dynamically open and close virtual channels between each other on demand.
Interestingly, since in a virtual channel, the hub is not involved in individual payments,
even transactions worth fractions of cents can be carried out with low latency.
The design of secure virtual channels is very challenging since, as previously mentioned,
it has to account for all possible compromise and collusion scenarios. For this purpose,
existing virtual channel constructions [DEFM19] require smart contracts programmed
over an expressive scripting language and the account model, as supported in Ethereum.
This significantly simplifies the construction since the deposit of a channel, and its
distribution between the end-points are stored in memory and can programmatically be
updated. On the downside, however, these requirements currently limit the deployment
of virtual channels to Ethereum.
It was an open question until now if virtual channels could be implemented at all in

133

6. Bitcoin-Compatible Virtual Channels

UTXO-based cryptocurrencies featuring only a limited scripting language, like Bitcoin
and virtually all other permissionless cryptocurrencies. We believe that answering this
question is important for several reasons. First, by limiting the trusted computing base
(i.e., the scripting functionality supported by the underlying blockchain), we reduce the
on-chain complexity of the virtual channel protocol. As bugs in smart contracts are
manifold and notoriously hard to fix, our construction eliminates an additional attack
vector by moving the complexity to the protocol level (rather than on-chain as in the
construction from [DEFM19]). Second, investigating the minimal functionality that is
required by the underlying ledger to support complex protocols is scientifically interesting.
One may view this as a more general research direction of building a lambda calculus
for off-chain protocols. Concretely, our construction shows that virtual channels can
be built with stateless scripts, while earlier constructions required stateful on-chain
computation. Finally, from a practical perspective, our construction can be integrated
into the Lightning Network (the by far most prominent PCN), and thus our solution can
offer the benefits of virtual payment channels/hubs to a broad user base.

6.1.1 Our contributions

In this work, we develop the first protocols for building virtual channel hubs over cryp-
tocurrencies that support limited scripting functionality. Our construction requires only
digital signatures and timelocks, which are ubiquitously available in cryptocurrencies
and well characterized. We also provide a comprehensive formal analysis of our construc-
tions and benchmarks of a prototype implementation. Concretely, our contributions are
summarized below.

• We present the first protocols for virtual channel hubs that are built for the UTXO
model and require a scripting language supporting only digital signature verification
and timelock functionality, being thus compatible with virtually every cryptocurrency,
including Bitcoin. Since in the Lightning network currently only 10 supernodes are
involved in more than 25% of all channels, our technique can be used to reduce the load
on these nodes, and thereby help to reduce latency.
• We offer two constructions that differ on whether (i) the virtual channel is guaranteed
to stay off-chain for an encoded validity period, or (ii) the intermediary Ingrid can decide
to offload the virtual channel (i.e., convert it into a direct channel between Alice and Bob),
thereby removing its involvement in it. These two variants support different business and
functionality models, analogous to non-preemptible and preemptible virtual machines in
the cloud setting, with Ingrid playing the role of the service provider.
• We formalize the security properties of virtual channels as an ideal functionality in
the UC framework [Can01], and prove that our protocols constitute a secure realization
thereof. Since our virtual channels are built in the UTXO model, our ideal functionality
and formalization significantly differs from earlier work [DEFM19].
• We evaluate our protocol over two different PCN constructions, the Lightning Network
(LN) [PD16] and Generalized channels (GC) [AEE+21], which extend LN channels to

134

6.2. Background

support functionality other than one-to-one payments. We show that for virtual channels
on top of GC, n sequential payment operations require an off-chain exchange of 9 + 2 · n
transactions or a total of 3524 + 695 · n bytes, as compared to 8 · n transactions or 3026 · n
bytes when Ingrid routes the payment actively through the PCN. This means a virtual
channel is already cheaper if two or more sequential payments are performed. For virtual
channels over LN, n transactions require an off-chain exchange of 6292 + 2824 · n bytes,
compared to 4776 ·n bytes when routed through an intermediary. We have interacted with
the Bitcoin blockchain to store the required transactions, demonstrating the compatibility
of our protocol.

To summarize, for the first time in Bitcoin, we enable off-chain payments between users
connected by payment channels via a hub without requiring the continuous presence of
any intermediary. Hence, our solution increases the reliability and, at the same time,
reduces the latency and costs of Bitcoin PCNs.

6.2 Background
In this section, we first introduce notation and preliminaries on UTXO-based blockchains.
We then overview the basics of payment and virtual channels, referring the reader
to [Ant14,MMSK+17,MMS+19,DEFM19] for further details. We finally discuss the main
technical challenges one needs to overcome when constructing Bitcoin-compatible virtual
channels.

6.2.1 UTXO-based blockchains

We adopt the notation for UTXO-based blockchains from [AEE+21], which we shortly
review below.

Attribute tuples. Let T be a tuple of values, which we call in the following attributes.
Each attribute in T is identified by a unique keyword, e.g., attr and referred to as T .attr.

Outputs and transactions. We focus on blockchains based on the Unspent Transaction
Output (UTXO) model, such as Bitcoin. In the UTXO model, coins are held in outputs
of transactions. Formally, an output θ is an attribute tuple (θ.cash, θ.φ), where θ.cash
denotes the amount of coins associated with the output and θ.φ denotes the conditions
that need to be satisfied in order to spend the output. The condition θ.φ can contain any
set of operations (also called scripts) supported by the considered blockchain. We say
that a user P controls or owns an output θ if θ.φ contains only a signature verification
w.r.t. the public key of P .

In a nutshell, a transaction in the UTXO model, maps one or more existing outputs to
a list of new outputs. The existing outputs are called transaction inputs. Formally, a
transaction tx is an attribute tuple and consists of the following attributes (tx.txid, tx.input,
tx.output, tx.TimeLock, tx.Witness). The attribute tx.txid ∈ {0, 1}∗ is called the identifier
of the transaction. The identifier is calculated as tx.txid := H([tx]), where H is a hash

135

6. Bitcoin-Compatible Virtual Channels

function which is modeled as a random oracle and [tx] is the body of the transaction defined
as [tx] := (tx.input, tx.output, tx.TimeLock). The attribute tx.input is a vector of strings
which identify the inputs of tx. Similarly, the outputs of the transaction tx.output is the
vector of new outputs of the transaction tx. The attribute tx.TimeLock ∈ N∪ {0} denotes
the absolute time-lock of the transaction, which intuitively means that transaction tx will
not be accepted by the blockchain before the round defined by tx.TimeLock. The time-lock
is by default set to 0, meaning that no time-lock is in place. Lastly, tx.Witness ∈ {0, 1}∗

called the transaction’s witness, contains the witness of the transaction that is required
to spend the transaction inputs.

We use charts in order to visualize the transaction flow in the rest of this work. We first
explain the notation used in the charts and how they should be read. Transactions are
shown using rectangles with rounded corners. Double-edge rectangles are used to represent
transactions that are already published on the blockchain. Single-edge rectangles are
transactions that could be published on the blockchain, but they are not yet. Each
transaction contains one or more boxes (i.e., with squared corners) that represent the
outputs of that transaction. The amount of coins allocated to each output is written
inside the output box. In addition, the output condition is written on the arrow coming
from the output.

In order to be concise, we use the following abbreviations for the frequently used conditions.
Most outputs can only be spent by a transaction that is signed by a set of parties. In
order to depict this condition, we write the public keys of all these parties below the arrow.
We use the command One–Sig and Multi–Sig in the pseudocode. Other additional
spending conditions are written above the arrow. The output script can have a relative
time lock, i.e., a condition that is satisfied if and only if at least t rounds are passed
since the transaction was published on the blockchain. We denote this output condition
by writing the string “+t” above the arrow (and CheckRelative in the pseudocode).
In addition to relative time locks, an output can also have an absolute time lock, i.e.,
a condition that is satisfied only if t rounds elapsed since the blockchain was created
and the first transaction was posted on it. We write the string “> t” above the arrow
for this condition. Lastly, an output’s spending condition might be a disjunction of
multiple conditions. In other words it can be written as φ = φ1 ∨ · · · ∨ φn for some n ∈ N
where φ is the output script. In this case, we add a diamond shape to the corresponding
transaction output. Each of the subconditions φi is then written above a separate arrow.
An example is given in Figure 6.1.

6.2.2 Payment channels

A payment channel enables arbitrarily many transactions between users while requiring
only two on-chain transactions. The first step when creating a payment channel is to
deposit coins into an output controlled by two users. Once the money is deposited,
the users can authorize new balance updates in a peer-to-peer fashion while having the
guarantee that all coins are refunded at a mutually agreed time. In a bit more detail, a

136

6.2. Background

tx
x1

x2

> t2

pkB
+t3

pkA, pkB

tx′ x

φ1

φ2

φ3

Figure 6.1: (Left) Transaction tx is published on the blockchain. The output of value x1
can be spent by a transaction signed w.r.t. pkB after round t2, and the output of value
x2 can be spent by a transaction signed w.r.t. pkA and pkB but only if at least t3 rounds
passed since tx was accepted by the blockchain. (Right) Transaction tx′ is not published
on the ledger. Its only output, which is of value x, can be spent by a transaction whose
witness satisfies the output condition φ1 ∨ φ2 ∨ φ3.

payment channel has three operations: open, update and close. We necessarily keep the
description short and refer to [GMSR+20,AEE+21] for further reading.

Open. Assume that Alice and Bob want to create a payment channel with an initial
deposit of xA and xB coins, respectively. For that, Alice and Bob agree on a funding
transaction (that we denote by txf) that sets as inputs two outputs controlled by Alice
and Bob holding xA and xB coins respectively, and transfers them to an output controlled
by both Alice and Bob. When txf is added to the blockchain, the payment channel is
effectively open.

Update. Assume now that Alice wants to pay α ≤ xA coins to Bob. For that, they
create a new commit transaction TXc representing the commitment from both users to the
new balance of the channel. The commit transaction spends the output of txf into two
new outputs: (i) one holding xA − α coins controlled by Alice; and (ii) the other holding
xB + α coins controlled by Bob. Finally, parties exchange signatures on the commit
transaction, which serve as valid witnesses for txf . At this point, Alice (resp. Bob) could
add TXc to the blockchain. Instead, they keep it locally in their memory and overwrite it
when they agree on another commitment transaction TXc representing a newer balance
of the channel. This, however, leads to the problem that there exist several commitment
transactions that can possibly be added to the blockchain. Since all of them are spending
the same output, only one can be accepted by the blockchain. Since it is impossible
to prevent a malicious user from publishing an outdated commit transaction, payment
channels require a mechanism that punishes such malicious behavior. This mechanism is
typically called revocation and enables that an honest user can take all the coins locked
in the channel if the dishonest user publishes an outdated commitment transaction.

Close. Assume finally that Alice and Bob no longer wish to use the channel. Then,
they can collaboratively close the channel by submitting the last commitment transaction
TXc that they have agreed on to the blockchain. After it is accepted, the coins initially
locked at the channel creation via txf are redistributed to both users according to the last
agreed balance. As aforementioned, if one of the users submits an outdated commitment
transaction instead, the counterparty can punish the former through the revocation
mechanism.

137

6. Bitcoin-Compatible Virtual Channels

txf

xA + xB

txc

xA + xB txs ...

x1

xn

Punishment
for A

Punishment
for B

pkA, pkB

pkB

ϱA

pkA

ϱB

+∆
pkA, pkB

φ1

φn

Figure 6.2: A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). The value of ∆
upper bounds the time needed to publish a transaction on a blockchain. The condition
ϱA represents the verification of A’ revocation secret and ϱB represents the verification
of B’ revocation secret.

The Lightning Network [PD16] defines the state-of-the-art payment channel construction
for Bitcoin.

6.2.3 Generalized channels

The recent work of Aumayr et al. [AEE+21] proposes the concept of generalized channels.
Generalized channels improve and extend payment channels (see Figure 6.2 for details)
in two ways. First, they extend the functionality of payment channels by offering off-
chain execution of any script that is supported by the underlying ledger. Hence, one
may view generalized channels as state channels for blockchains with restricted scripting
functionality. Second, and more important for our work, generalized channels significantly
improve the on-chain and off-chain communication complexity. More concretely, this
efficiency improvement is achieved by introducing a so-called split transaction (that we
denote as TXs) along with a punish-then-split paradigm. In contrast to regular payment
channels that require one revocation process per output in the commit transaction, the
punish-then-split approach decouples the revocation process from the number of outputs
in the commit transaction. This allows moving from revocation for each output to a
single revocation for the entire channel. As shown in Figure 6.2, the commit transaction
(TXc) is only responsible for the punishment, while the split transaction (TXs) holds the
actual outputs of the channel.

The efficiency of generalized channels is further improved since they only require a single
commit transaction per channel. This is in contrast to the payment channels used by
Lightning, which require two distinct commit transactions for each channel user. We
will discuss in Section 6.3.4 why the punish-then-split paradigm (and requiring only one
commit transaction) is useful in order to improve the efficiency of our virtual channels
for Bitcoin.

To simplify terminology, we will use the term ledger channel for all channels that are
funded directly over the blockchain.

138

6.2. Background

Alice Ingrid Bobα β

γ

Figure 6.3: A virtual channel γ built over ledger channels α, β.

6.2.4 Channel Networks

The aforementioned payment and generalized channels allow two parties to issue transac-
tions between each other while having to communicate with the blockchain only during
the creation and closure of the channel. This on-chain communication can further be
reduced by using channel networks. Payment Channel Networks (PCNs). A PCN
is a protocol that allows parties to connect multiple ledger channels to form a payment
channel network. In this network, a sender can route a payment to a receiver as long as
both parties are connected by a path in the network. Suppose that Alice and Bob are
not directly connected via a ledger channel, but instead, both maintain a channel with
an intermediary party (Ingrid). In a nutshell, Alice can pay Bob by sending her coins to
Ingrid who then forwards them in her ledger channel to Bob. Importantly, the protocol
must achieve atomicity, i.e., either both transfers from Alice to Ingrid and from Ingrid
to Bob happen, or neither of them goes through. Current PCNs such as the Lightning
network use the HTLC technique (hash-time-lock transaction), which comes with several
drawbacks as mentioned in the introduction: (i) low reliability because the success of
payments relies on Ingrid being online; (ii) high latency as each payment must be routed
through Ingrid; (iii) high-cost as Ingrid may charge a fee for each payment between Alice
and Bob; and (iv) low privacy as Ingrid can observe each payment that happens between
Alice and Bob. To mitigate these issues, virtual channels have been proposed.

Virtual Channels. An alternative solution to connect two payment channels with each
other is offered by the concept of virtual channels [DEFM19]. Virtual channels allow Alice
and Bob to send payments between each other without the involvement of the intermediary
Ingrid. In some sense, they thus mimic the functionality offered by ledger channels, with
the difference that they are not created directly over the blockchain but instead over two
ledger channels. More concretely, as shown in Figure 6.3, a virtual channel γ between
Alice and Bob with intermediary Ingrid is constructed on top of two ledger channels α
and β. Ingrid is required to participate in the initial creation and final closing of the
virtual channel. But importantly, Ingrid is not involved in any balance updates that occur
in the virtual channel. This overcomes the four drawbacks mentioned above. While
these advantages over PCNs make virtual channels an attractive off-chain solution, their
design is far from trivial. Previous work showed how to construct virtual channels over
a ledger that supports Turing complete smart contracts [DEFM19,DFH18,DEF+19b].
The smart contract acts in the protocol as a trust anchor that parties can fall back to
in case of malicious behavior. Through a rather complex protocol and careful smart

139

6. Bitcoin-Compatible Virtual Channels

contract design, existing virtual channel constructions guarantee that honest parties in
the virtual channel will always get the coins they rightfully own. Unfortunately, most
cryptocurrencies (including Bitcoin) do not offer Turing complete smart contracts, and
hence the constructions from prior work cannot be used. In this work, we present a novel
construction of virtual channels that makes only minimal assumptions on the underlying
scripting functionality offered by the ledger.

6.3 Virtual Channels

In this section, we first give some notation before presenting the necessary properties for
virtual channels and discussing design challenges. Finally, we present our protocol.

6.3.1 Definitions

We briefly recall some notation and definition for generalized channels [AEE+21] and
extend the definition to generalized virtual channels. In order to make the distinction
between the two types of channels clearer, we call the former generalized ledger channel
(or ledger channels for short).

A generalized ledger channel as defined in [AEE+21] is a tuple γ := (γ.id, γ.Alice,
γ.Bob, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the identifier of the channel, γ.Alice, γ.Bob ∈ P
are the identities of the parties using the channel, γ.cash ∈ R≥0 is a finite precision
real number that represents the total amount of coins locked in this channel and
γ.st = (θ1, . . . , θn) is the state of the channel. This state is composed of a list of
outputs. Recall that each output θi has two attributes: the output value θi.cash ∈ R≥0

and the output condition θi.φ : {0, 1}∗ × N × N → {0, 1}. For convenience, we define a
set γ.users := {γ.Alice, γ.Bob} and a function γ.otherParty : γ.users → γ.users, which on
input γ.Alice outputs γ.Bob and on input γ.Bob returns γ.Alice.

A generalized virtual channel (or for short virtual channel) is defined as a tuple γ := (γ.id,
γ.Alice, γ.Bob, γ.cash, γ.st, γ.Ingrid, γ.subchan, γ.fee, γ.val). The attributes γ.id, γ.Alice,
γ.Bob, γ.cash, γ.st are defined as in the case of ledger channels. The additional attribute
γ.Ingrid ∈ P denotes the identity of the intermediary of the virtual channel γ. The
set γ.users and the function γ.otherParty are defined as before. Additionally, we also
define the set γ.users := {γ.Alice, γ.Bob, γ.Ingrid}. The attribute γ.subchan is a function
mapping γ.users to a channel identifier; namely, the value γ.subchan(γ.Alice) refers to
the identifier of the channel between γ.Alice and γ.Ingrid (i.e., the id of α from the
description above); similarly, the value γ.subchan(γ.Bob) refers to the identifier of the
channel between γ.Bob and γ.Ingrid (i.e., β from the description above). The value
γ.fee ∈ R≥0 represents the fee charged by γ.Ingrid for her service of being an intermediary
of γ. Finally, we introduce the attribute γ.val ∈ N ∪ {⊥}. If γ.val ̸= ⊥, then we call
γ a virtual channel with validity and the value of γ.val represents the round number
until which γ remains open. Channels with γ.val = ⊥ are called virtual channels without
validity.

140

6.3. Virtual Channels

6.3.2 Security and efficiency goals

We briefly recall the properties of generalized channels as defined in [AEE+21] and state
the additional properties that we require from virtual channels.

Security goals. Generalized ledger channels must satisfy three security properties,
namely (S1) Consensus on creation, (S2) Consensus on update and (S3) Instant finality
with punish. Intuitively, properties (S1) and (S2) guarantee that successful creation of
a new channel as well as successful update of an existing channel happens if and only
if both parties agree on the respective action. Property (S3) states that if a channel
γ is successfully updated to the state γ.st and γ.st is the last state that the channel is
updated to, then an honest party P ∈ γ.users can either enforce this state on the ledger
or P can enforce a state where she gets all the coins locked in the channel. We say that
a state st is enforced when a transaction with this state appears on the ledger.

Since virtual channels are generalized channels whose funding transaction is not posted
on the ledger yet, the above-stated properties should hold for virtual channels as well with
two subtle but important differences: (i) the creation of a virtual channel involves three
parties (Alice, Ingrid, and Bob) and hence consensus on creation for virtual channels can
only be fulfilled if all three parties agree on the creation; (ii) the finality (i.e., offloading)
of the virtual channel depends on whether Alice is expected to offload the virtual channel
within a predetermined validity period (virtual channel with validity VC-V) or the offload
task is delegated to the intermediary Ingrid without having a predefined validity period
(virtual channel without validity VC-NV). In order to account for these two differences,
virtual channels should also satisfy the following properties:

(V1) Balance security: If γ is a virtual channel and γ.Ingrid is honest, she never loses
coins, even if γ.Alice and γ.Bob collude.

(V2) Offload with punish: If γ is a virtual channel without validity (VC-NV), then
γ.Ingrid can transform γ to a ledger channel. Party P ∈ γ.users can initiate the transfor-
mation which either completes or P can get financially compensated.

Table 6.1: Comparison of security and efficiency goals for ledger channels (L), virtual
channels with validity (VC-V), and virtual channels without validity (VC-NV).

L-Security V-Security Efficiency
S1 – S3 V1 V2 V3 E1 E2 E3

L ✓ - - - ✗ ✓ ✗

VC-V ✓ ✓ ✗ ✓ ✓ ✓ ✓

VC-NV ✓ ✓ ✓ ✗ ✓ ✓ ✓

141

6. Bitcoin-Compatible Virtual Channels

(V3) Validity with punish: If γ is a virtual channel with validity (VC-V), then γ.Alice
can transform γ to a ledger channel. If γ is not transformed into a ledger channel or
closed before time γ.val, γ.Ingrid and γ.Bob can get financially compensated.

We first note that the instant finality with punish property (S3) does not provide any
guarantees for Ingrid ̸∈ γ.users, which is why we need to define (V1) for virtual channels.
Properties (V2) and (V3) point out the main difference between VC-NV and VC-V. In a
VC-NV γ, Ingrid is able to free her collateral from γ at any time by transforming the
channel between Alice and Bob from a virtual channel to a ledger channel. Furthermore,
in case Alice and Bob transform the virtual channel to a ledger channel or even misbehave,
honest Ingrid is guaranteed that she will receive the collateral back. In a VC-V γ, Ingrid
cannot transform a virtual channel into a ledger channel at any time she wants. Instead,
there is a pre-agreed point in time, defined by γ.val, until when γ.users have to close the
virtual channel or transform it into a ledger channel (Ingrid’s collateral is freed in both
cases). If γ.users fail to do so, Ingrid can get her collateral back through a punishment
mechanism. Hence, γ.users have a guarantee that their VC-V will remain a virtual
channel until a certain round, after which they must ensure its closure or transformation
to avoid punishments.

Efficiency goals. Lastly, we define the following efficiency goals, which describe the
number of rounds certain protocol steps require:

(E1) Constant round creation: Successful creation of a virtual channel takes a
constant number of rounds.

(E2) Optimistic update: For a channel γ, this property guarantees that in the opti-
mistic case when both parties in γ.users are honest, a channel update takes a constant
number of rounds.

(E3) Optimistic closure: In the optimistic case when all parties in γ.users are honest,
the closure of a virtual channel takes a constant number of rounds.

Let us stress that property (E2) is common for all off-chain channels (i.e., both ledger
and virtual channels). The properties (E1) and (E3) capture the additional property of
virtual channels that in the optimistic case when all parties behave honestly, the entire
life-cycle of the channel is performed completely off-chain.

We compare the security and efficiency goals for different types of channels in Table 6.1.
We formalize these properties as a UC ideal functionality in Appendix E.4.1.

6.3.3 Design Challenges for Constructing Virtual Channels

The main challenges that arise when constructing Bitcoin-compatible virtual channels
stem from the need to ensure the security properties (V1) - (V3) as presented in the
previous section. Namely, to guarantee balance security to the intermediary, we need

142

6.3. Virtual Channels

to ensure that the virtual channel creation and closure is reflected symmetrically and
synchronously on both underlying ledger channels. We identify this as a challenge (C1).
As we discuss in more detail below, this can be solved by giving the intermediary the
right of a “last say” in the virtual channel creation and closure procedures. However,
a malicious intermediary could abuse such power and block virtual channel closure
indefinitely. Therefore, the second challenge (C2) is to design a punishment mechanism
that allows virtual channel users to either enforce closure or claim financial compensation.
We provide some further details below.

Synchronous create and close (C1). The creation and closure of a virtual channel
are done by updating the underlying ledger channels. In order to guarantee balance
security for the intermediary, we must ensure that updates on both ledger channels are
symmetric and that either both of them succeed or both of them fail. That is, if the
intermediary Ingrid loses coins in one ledger channel as a result of the virtual channel
construction, then she has the guarantee of gaining the same amount of coins from the
other ledger channel. Such an atomicity property can be achieved by allowing Ingrid to
be the reacting party in both ledger channel update procedures. Namely, Ingrid has to
receive symmetric update requests from both Alice and Bob before she confirms either of
them.

As a result, Ingrid has the power to block a virtual channel creation and closure. For a
virtual channel creation, this is not a problem. It simply represents the fact that Ingrid
does not want to be an intermediary, and hence Alice and Bob have to find a different
party. However, for virtual channel closing, this power of the intermediary results in a
violation of the instant finality property for Alice and Bob, and requires a more involved
mechanism.

Enforcing virtual channel state (C2). In contrast to standard ledger channels that
rely on funding transactions that are published on the ledger, the funding transactions of
a virtual channel are, in the optimistic case (i.e., when parties are honest), kept off-chain.
In case of misbehavior (e.g., when malicious Ingrid refuses to close the virtual channel),
however, honest parties must be able to publish the virtual channel funding transaction
to the blockchain in order to enforce the latest state of the virtual channel. Unfortunately,
the funding transactions can only be published if both of the underlying channels are
closed in a state that funds the virtual channel. The fact that the virtual channel
participants, Alice and Bob, respectively have control over just one of the underlying
ledger channels further complicates this situation. For instance, one of the underlying
ledger channels may be updated or closed maliciously at any time which would prevent
the publishing of the funding transaction on the ledger.

6.3.4 Virtual Channel Protocol

We now show how to build virtual channels on top of generalized channels. We later
discuss in Section 6.3.4 how our construction can be built over other channels such as
Lightning and why generalized channels offer better efficiency.

143

6. Bitcoin-Compatible Virtual Channels

As mentioned in the previous section, virtual channels are created and closed through
an update of the underlying ledger channels. Hence, let us recall the update process of
ledger channels, depicted as UpdateChan in Figures 6.4 and 6.5, before explaining our
construction in more detail. The update procedure consists of 4 steps, namely (1) the
Initialization step, during which parties agree on the new state of the channel, (2) the
Preparation step, where parties generate the transactions with the given state, (3) the
Setup during which parties exchange their application-dependent data (e.g., for building
virtual channels), and finally (4) the Completion step where parties commit to the new
state and revoke the old one. We refer the reader to [AEE+21] for more details.

High-level protocol description

We are now prepared to present a high-level description of our modular virtual channel
protocol and explain how to solve the main technical challenges when designing virtual
channels. In a nutshell, this modular protocol gives a generic framework on how to design
virtual channels. Afterwards, we show how to instantiate this modular protocol with our
virtual channel construction without validity. For the description of the instantiation
with our construction with validity, we refer the reader to Appendix E.4.2. We present
the formal pseudocode for the modular protocol as well as the instantiations with and
without validity in Appendix E.4.3.

Create. Let γ be a virtual channel that A := γ.Alice and B := γ.Bob want to create,
using their generalized ledger channels with I := γ.Ingrid. At a high level, the creation
procedure of a virtual channel is a synchronous update of the underlying ledger channels.
Given the ledger channels, we proceed as follows (see Figure 6.4).

A I B
α β

1⃝

2⃝ Up
da

te
Ch

an

Up
da

te
Ch

an

UPDATE, θA UPDATE, θB

tidA, θA tidB , θBtidA tidB

3⃝ Setup virtual channelSetup virtual channel

4⃝
5⃝
6⃝ Up

da
te

Ch
an

Up
da

te
Ch

an

SETUP–OK SETUP–OK

UPDATE–OK UPDATE–OK

UPDATED UPDATEDUPDATED UPDATED

Figure 6.4: Modular creation procedure of a virtual channel on top of two ledger channels
α and β.

As a first step, each party P ∈ {A, B} initiates an update of the respective ledger channel
with I (step 1⃝) who, upon receiving both update requests, checks if the requested states

144

6.3. Virtual Channels

(i.e., θA and θB) are consistent. The parties use the identifiers tidA and tidB of their
subchannels in order to build the virtual channel (step 2⃝). Next, all three parties engage
in a setup phase, in which the structure of the virtual channel is built (step 3⃝). More
concretely, all three parties agree on a funding transaction of the virtual channel which
when published on the blockchain transforms the virtual channel to a ledger channel.
When the setup phase is completed, i.e., the virtual channel structure has been built,
the parties complete the ledger channel update procedures (step 4⃝). It is crucial for the
intermediary I to have the role of a reacting party during both channel updates. This
gives her the power to wait until she is sure that both updates will complete successfully
and only then give her the final update agreement (step 5⃝). Upon successful execution,
parties consider the channels as updated (step 6⃝), which implies that the virtual channel
γ was successfully created.

Update. Updating the virtual channel essentially works in the same way as the update
procedure of a ledger channel. As long as the update is successful or peacefully rejected
(meaning that the reacting party rejects the update), the parties act as instructed in the
ledger channel protocol. The situation is more delicate when the update fails because
one of the parties misbehaved and aborted the procedure.

We note that aborts during a channel update might cause a problematic asymmetry
between the parties. For instance, when one party already signed the new state of the
channel while the other one did not; or when one party already revoked the old state
of the channel but the other one did not. In a standard ledger channel, these disputes
are resolved by a force close procedure, meaning that the honest party publishes the
latest valid state on the blockchain, thereby forcefully closing the channel. Hence, within
a finite number of rounds, the dispute is resolved and the instant finality property is
preserved. We apply a similar technique for virtual channels. The main difference is
that a virtual channel is not funded on-chain. Hence, we first need to offload the virtual
channel to the ledger. In other words, we first need to transform a virtual channel into a
ledger channel by publishing its funding transaction on-chain. This process is discussed
later in this section. Once the funding transaction is published, the dispute is handled in
the same way as for ledger channels.

Close. The closure of a virtual channel is done by updating the underlying ledger
channels α and β according to the latest state of the virtual channel γ.st. To this end,
each party P ∈ {A, B} computes the new state for the ledger channel −→

θ P := {(cP ,
One–SigpkP

), (γ.cash − cP , One–SigpkI
)} where cP is the latest balance of P in γ. All

parties update their ledger channels according to this state.

In a bit more detail, the closing procedure of a virtual channel proceeds as follows (see
Figure 6.5). Each party P initiates an update of the underlying ledger channel with state−→
θ P (step 1⃝). Since both ledger channels must be updated synchronously, I waits for
both parties to initiate the update procedure. Upon receiving the states from both parties
(step 2⃝), I checks that the states are consistent and if so, she agrees to the update of

145

6. Bitcoin-Compatible Virtual Channels

A I B
α β

1⃝
2⃝
3⃝
4⃝

Up
da

te
Ch

an

Up
da

te
Ch

an

UPDATE, θA UPDATE, θB

θA θB

UPDATE–OK UPDATE–OK

UPDATED UPDATEDUPDATED UPDATED

Figure 6.5: Modular close procedure of a virtual channel on top of two ledger channels
α and β. For P ∈ {A, B}, −→

θ P := {(cP , One–SigpkP
), (cQ + γ.fee

2 , One–SigpkI
)} where

γ.st =

(cP , One–SigpkP

), (cQ, One–SigpkQ
)

.

both ledger channels (step 3⃝). Finally, after all parties have successfully revoked the
previous ledger channel state, the virtual channel is considered to be closed.

In the pessimistic case (if the states −→
θ A and −→

θ B are inconsistent, revocation fails or I
remains idle), parties must forcefully close their virtual channel by publishing the funding
transaction (offloading) and closing the resulting ledger channel. This, together with the
fact that I plays the role of the reacting party in its interactions with A and B, addresses
the challenge (C1) as mentioned in Section 6.3.3.

Offload. During the offload procedure, parties try to publish the funding transaction
of the virtual channel γ which effectively transforms the virtual channel into a ledger
channel. In a nutshell, during this procedure, parties try to publish the commit and split
transactions of both underlying ledger channels and afterward the funding transaction of
the virtual channel. In case offloading is prevented by some form of malicious behavior,
parties can engage in the punishment procedure to ensure that they do not lose any
funds.

Punish. The concept of punishment in virtual channels is similar to that in ledger
channels; namely in case that the latest state of a channel cannot be posted on the ledger,
honest A or B are compensated by receiving all coins of the virtual channel while honest
I will not lose coins. If the funding transaction of the virtual channel is posted on the
ledger, the virtual channel is transformed into a ledger channel and parties can execute
the regular punishment protocol for ledger channels. In addition to the ledger channel’s
punishment procedure, parties can punish if the funding transaction of γ cannot be
published. Since this punishment, however, differs for each concrete instantiation, we
will explain it in more detail for our protocol without validity in the following section
(and in Appendix E.4.2 for the case with validity).

The offloading and punishment procedure together tackles challenge (C2) from Sec-
tion 6.3.3.

146

6.3. Virtual Channels

Concrete Instantiation Without Validity

We now describe how the modular protocol explained above can be concretely instantiated
with our construction for virtual channels without validity. Create. In our construction
without validity, A and B must “prepare” the virtual channel during the setup procedure
(step 3⃝ in create of the modular protocol). This is done by executing the creation
procedure of a regular ledger channel, i.e., they create a funding transaction with
inputs tidA and tidB, as well as a commit and split transactions that spend the funding
transaction. Once all three transactions are created, A and B sign them and exchange
their signatures. Note that this corresponds to a normal channel opening, with the mere
difference that the funding transaction is not published to the blockchain. In order to
complete the virtual channel setup, A and B send the signed funding transaction to I
who, upon receiving both signatures, sends her own signature on the transaction back
to A and B. At this stage, the virtual channel is prepared, however, the creation is not
completed yet. In order to finish the creation procedure, A, I, and B have to finish the
update of their respective ledger channels. Once this is done, the virtual channel has
been successfully created.

We illustrate the transaction structure prepared during the creation process in Figure 6.6.
The funding transaction of the virtual channel txf , which is generated during the create
procedure, takes as input coins from both, the ledger channel α (represented by TXA

s)
and the ledger channel β (represented by TXB

s). Both ledger channels jointly contribute a
total of 2c + f coins so that c coins are later used to setup the virtual channel and the
remaining c + f coins are I’s collateral and the fees paid to I for providing the service
for A and B.1 I’s collateral and fees in the funding transaction txf are the reason why I
has to proactively monitor the virtual channel as she has an incentive to publish txf in
case any party misbehaves.

txf

c

c + f
pkA, pkB

I
pkI

c + f/2

TXA
s

pkA, pkB , pkI

A
+(T + 4∆)

pkA

c + f/2

TXB
s

pkA, pkB , pkI

B
+(T + 4∆)

pkB

Figure 6.6: Funding of a virtual channel γ without validity. T upper bounds the number
of off-chain communication rounds between two parties for any operation in the ledger
channel.

Offload. I is always able to offload the virtual channel by herself (i.e., without having
to cooperate with another party) which guarantees that I can redeem her collateral at

1For simplicity we assume each of the parties contributes f/2 coins to I’s total fees in addition to c/2
coins for funding the virtual channel.

147

6. Bitcoin-Compatible Virtual Channels

txf

c

c + f
pkA, pkB

I
pkI

c + f/2

TXA
s

pkA, pkB , pkI

c + f/2

TXB
s

pkA, pkB , pkI

Figure 6.7: Transactions published after a successful offload.

any time. We note that P ∈ {A, B} can also initiate the offloading by publishing the
commit and split transaction of their respective ledger channels. This forces I to publish
the commit and split transactions of the respective other ledger channel since I loses her
collateral to P otherwise.

More precisely, if I wishes to offload the virtual channel γ and retrieve her collateral and
fees, she can close both of her ledger channels with A and B (i.e., α and β) and publish
the funding transaction of the virtual channel i.e., txf . This is possible as I is part of
both ledger channels. A or B, on the other hand, are respectively part of only one ledger
channel and hence they cannot offload the virtual channel individually. However, they
can force I to offload by publishing the commit and split transactions of their respective
channel with I (we will elaborate on this in the description of the punishment mechanism).
Figure 6.7 illustrates the transactions that are posted on the blockchain in case of a
successful offload. The figure shows that the split transactions of both underlying ledger
channels have to be published such that eventually the funding transaction of the virtual
channel can be published which completes the offloading procedure.

Punish. Party P ∈ {A, B} can punish I by taking all the coins on their respective
ledger channels if the funding transaction of the virtual channel γ is not published on
the ledger. In other words, it is I’s responsibility to ensure that the state of her ledger
channels with A and B are not updated while γ is open. Furthermore, upon one of the
subchannels being closed, I must close the other subchannel in order to guarantee that
both parties can post txf .

Let us now get into more details. Assume that A’s ledger channel with I is closed, but
the funding transaction txf cannot be published on the blockchain. This means that I’s
channel with B (i.e., β) is still open or has been closed in a different state such that txf

cannot be published. In other words, Ingrid acted maliciously by wrongfully closing β in
a different state or by not closing β at all. In this case, A must be able to get all the coins
from her channel with Ingrid. This punishment works as follows: After A publishing the
split transaction of α, I is given a certain time period to close her channel with B and
publish the virtual channel’s funding transaction txf . If I fails to do so in the prescribed
time period, A receives all coins in her channel with I.

We note that in this scenario, B (instead of I) might have been the malicious party by

148

6.3. Virtual Channels

c + f/2

TXA
s A

+(T + 4∆)

pkA

c + f/2

TXB
s

Figure 6.8: Transactions published after A successfully executed the punishment proce-
dure. The grayed transaction TXB

s indicates that this transaction has not been published.

closing β in an outdated state, thereby leaving I no option to publish txf . However,
in this case, I can punish B via the punishment mechanism of the underlying ledger
channel and earn all the coins in β. Therefore, I will remain financially neutral as she
gets punished by A but simultaneously compensated by B. Figure 6.8 illustrates the
transactions that are posted on the blockchain in the case of A successfully executing
the punishment mechanism. The case where B executes the punishment mechanism is
analogous.

Further discussion regarding our constructions

In the following, we present further considerations regarding our protocol, including
remarks on concurrency, a discussion on how the protocol can be built on top of Lightning
channels, and a brief description of our virtual channel construction with validity that
we detail in Appendix E.4.2.

Concurrency. When creating a virtual channel, we need to lock the underlying ledger
channels α and β (i.e., no further updates can be made on the ledger channels as long as
the virtual channel is open). This, however, is undesirable, because in most cases the
ledger channels will have more coins available than what is needed for funding the virtual
channel. We emphasize that this issue can be easily addressed (and hence supporting
full concurrency) by using the channel splitting technique discussed in [AEE+21]. This
means that before constructing the virtual channel Alice-Bob, parties would first split
each underlying ledger channel off-chain in two channels: (i) one would contain the exact
amount of coins for the virtual channel and (ii) the other one would contain the remaining
coins that can be used in the underlying ledger channel.

Virtual channels over Lightning. We will now discuss how our virtual channel
constructions can be built on top of any ledger channel infrastructure that uses a
revocation/punishment mechanism such as the Lightning Network [PD16]. The main
complication arises from the fact that ledger channel constructions other than generalized
channels require two commit transactions per channel state (one for each party). As
depicted in Figure 6.9 (and unlike generalized channels in Figure 6.2), Alice and Bob
each have a commit transaction TXA

c and TXB
c which spends the funding transaction txf

149

6. Bitcoin-Compatible Virtual Channels

and distributes the coins. Therefore, in such channel constructions, it is a priori unclear
which of these commit transactions will be posted and accepted on the blockchain (note
that only one of them can be successfully published) and hence building applications
(e.g., virtual channels) on top of such ledger channels becomes complex.

txf

xA + xB

publishable by A

publishable by B

TXA
c

xA

xB

TXB
c

xB

xA

Punishment for A

Punishment for B

pkA, pkB
pkB

+∆
pkA

ϱA

pkB

pkA

+∆
pkB

ϱB

pkA

Figure 6.9: A Lightning style payment channel where A has xA coins and B has xB coins.
∆ upper bounds the time needed to publish a transaction on a blockchain. condition ϱA

represents the verification of A’ revocation secret and h represents the verification of B’
revocation secret.

In more detail, assume Alice and Bob want to build a virtual channel γ on top of their
respective Lightning ledger channels with Ingrid, where both ledger channels consist
of two commit transactions respectively (i.e., (TXA

c, TXIA
c) for the channel between Alice

and Ingrid and (TXB
c, TXIB

c) for the channel between Bob and Ingrid). All three parties
now have to make sure that the virtual channel can be funded (i.e., that the funding
transaction of γ can be published to the blockchain) even in case of malicious behavior.
To ensure this, parties have to prepare the funding transaction of γ with respect to all
possible combinations of the commit transactions of the respective underlying ledger
channels. Since there are four such combinations ((TXA

c, TXB
c), (TXA

c, TXIB
c), (TXIA

c , TXB
c) and

(TXIA
c , TXIB

c)), parties have to prepare four funding transactions for γ. Hence, updating
such a virtual channel requires repeating the update procedure for all four funding
transactions.

As generalized channels require only a single commit transaction per channel state
building virtual channels on top of generalized channels offers a significant efficiency
improvement in terms of off-chain communication complexity (see Section 6.5 for the
detailed comparison).

Virtual Channels With Validity. Note that so far we described our protocol without
validity where the virtual channel can be offloaded by the intermediary whenever she
wants. The drawback of this construction is that Ingrid needs to be proactive during the
lifetime of the virtual channel, i.e., she has to constantly monitor the channel for potential
misbehavior of Alice or Bob. This might be undesirable in scenarios where Ingrid plays
the role of the intermediary in not just one but many different virtual channels at the

150

6.4. Security Model and Analysis

same time (e.g., if Ingrid is a channel hub). For this reason, we developed an alternative
solution which we call virtual channels with validity. In this solution, each virtual channel
has a predetermined time (which we call validity) which indicates until when the channel
has to be closed again. If the channel is still open after this time, Ingrid has to become
proactive in order to receive her collateral back. The obvious advantage of this approach
is that Ingrid can remain inactive until the validity of a channel expires. The details of
this protocol can be found in Appendix E.4.2.

6.4 Security Model and Analysis
In order to model and prove the security of our virtual channel protocols, we use the
global UC framework (GUC) [CDPW07] as in [AEE+21]. This framework allows for a
global setup which we utilize to model a public blockchain. More precisely, our protocol
uses a global ledger functionality L(∆, Σ), where ∆ upper bounds the blockchain delay,
i.e., the maximum number of rounds required to publish a transaction, and Σ is the
signature scheme used by the blockchain. In this section, we only give a high-level idea
behind our security analysis in the UC framework and refer the reader to Appendices E.1,
E.3.1, E.3.3 and E.4.1 for more details.

As a first step, we define the expected behavior of a virtual channel protocol in the form
of an ideal functionality FV . The functionality defines the input/output behavior of a
protocol, its impact on the global setup (e.g., ledger), and the possible ways an adversary
can influence its execution (e.g., delaying messages). In order to prove that a concrete
protocol is a secure virtual channel protocol, one must show that the protocol emulates
the ideal functionality FV . This means that any attack that can be mounted on the
protocol can also be mounted on the ideal functionality, hence the protocol is at least as
secure as the ideal specification given by FV .

The proof of emulation consists of two steps. First, one must design a simulator, which
simulates the actions of an adversary on the real-world protocol by interacting with
the ideal functionality. Second, it must be shown that the execution of the real-world
protocol being attacked by a real-world adversary is indistinguishable from the execution
of the ideal functionality communicating with the constructed simulator. In UC, the ppt
distinguisher who tries to distinguish these two executions is called the environment.

The main challenge when designing a simulator is to make sure that the environment sees
transactions being posted on the ledger in the same round in both worlds. In addition, our
simulator needs to ensure that the ideal functionality outputs the same set of messages in
the same round as the protocol. We reduce the indistinguishability of the two executions
to the security of the cryptographic primitives used in our protocol.

One of the advantages of using UC is its composability. In other words, one can use an
ideal functionality in a black-box way in other protocols. This simplifies the process of
designing new protocols as it allows to reuse existing results and enables modular protocol
designs. We utilize this nice property of the UC framework and use the ideal functionality
of the generalized channel from [AEE+21] when designing our virtual channel protocol.

151

6. Bitcoin-Compatible Virtual Channels

We only mention the main security theorem here and provide a high-level proof sketch
here. We refer the reader to Appendix E.5.1 for the full proof.

Theorem 6. Let Σ be a signature scheme that is strongly unforgeable against chosen
message attacks. Then for any ledger delay ∆ ∈ N, the virtual channel protocol without
validity as described in Section 6.3.4 working in FpreL(3, 1)-hybrid, UC-realizes the ideal
functionality FV (3).

We now give a proof sketch to show that the two properties (V1) Balance security and
(V2) Offload with punish hold for honest parties. To this end, we analyze all possible
cases in which the underlying ledger channels are maliciously closed, i.e., the cases when
the virtual channel cannot be offloaded anymore. Note that if the virtual channel is
offloaded, it is effectively transformed into a generalized ledger channel and satisfies the
security properties of generalized channels.

If all parties behave honestly (V1) and (V2) hold trivially as I is always able to offload
the virtual channel by publishing all transactions TXA

s, TXB
s and txf . Furthermore, neither

A nor B would ever lose their coins. Now consider the case where one of the underlying
channels, e.g., the channel between B and I is closed in a different state such that txf

cannot be posted on the blockchain anymore (the case for the channel between A and
I is analogous). As an honest A would not update her channel with I as long as the
virtual channel is open, there are only two possible situations: (i) A is able to post TXA

s
which allows her to punish I (see Figure 6.8), or (ii) I has maliciously closed her channel
with A in an outdated and revoked state. In this case, A is able to punish I according
to property (S3), i.e., instant finality with punish, of the underlying ledger channel (see
Section 6.2 and Figure 6.2 for more details on the punishment of the underlying channel).
Therefore, (V2) is satisfied for A, since she can punish I and get financially compensated.
Now let us analyze the maliciously closed channel between B and I, let us denote it β.
If both parties are malicious, we do not need to prove anything as (V1) and (V2) should
only hold for honest parties. In case B is honest, I must have closed β in an old state
which would allow B to punish I. Hence (V2) holds and we do not need to prove (V1)
as I is malicious. Analogously, if I is honest, malicious B must have closed β in an old
state, and hence I can punish B. Hence (V1) holds and we do not need to prove (V2)
for malicious B). Hence, (V1) and (V2) hold for all honest parties.

6.5 Performance evaluation
In this section, we first study the storage overhead on the blockchain as well as the
communication overhead between users using virtual channels. For each of these aspects,
we evaluate both constructions (i.e., with and without validity) built on top of both
generalized channels as well as Lightning channels and compare them. Finally, we evaluate
the advantages of virtual channels over ledger channels in terms of routing communication
overhead and fee costs. As testbed [Bit20], the transactions are created in Python using
the library python-bitcoin-utils and the Bitcoin Script language. To showcase

152

6.5. Performance evaluation

compatibility and feasibility, we deployed these transactions successfully on the Bitcoin
testnet.

6.5.1 Communication overhead

We analyze the communication overhead imposed by the different operations, such as
CREATE, UPDATE, OFFLOAD, and CLOSE, by measuring the byte size of the transactions that
need to be exchanged as well as the cost in USD necessary for posting the transactions
that need to be published on-chain. The cost in USD is calculated by taking the price of
18803 USD per Bitcoin, and the average transaction fee of 104 satoshis per byte all of
them at the time of writing. We detail in Table 6.2 the aforementioned costs measured
for both virtual channel constructions building on top of generalized channels and on top
of Lightning channels.

Table 6.2: Evaluation of the virtual channels. For each operation, we show the number
of on-chain and off-chain transactions (# txs) and their size in bytes. For on-chain
transactions, cost is in USD and estimates cost of publishing them on the ledger.

Generalized Channels Lightning Channels
VC-NV VC-V VC-NV VC-V

Operations on-chain off-chain on-chain off-chain on-chain off-chain on-chain off-chain
txs size cost # txs size # txs size cost # txs size # txs size cost # txs size # txs size cost # txs size

CREATE 0 0 0 7 2829 0 0 0 8 2803 0 0 0 16 7704 0 0 0 14 5722
UPDATE 0 0 0 2 695 0 0 0 2 695 0 0 0 8 2824 0 0 0 4 1412
OFFLOAD 5 2134 41.73 0 0 6 2108 41.22 0 0 3 1800 35.20 0 0 4 1778 34.77 0 0
CLOSE (opt) 0 0 0 4 1390 0 0 0 4 1390 0 0 0 4 1412 0 0 0 4 1412
CLOSE (pess) 7 2829 55.32 0 0 8 2803 54.81 0 0 4 2153 42.10 0 0 5 2131 41.67 0 0

Perhaps the most relevant difference to ledger channels in practice is, in the CREATE and
the optimistic CLOSE case, we do not have any on-chain transactions. This implies no
on-chain fees for the opening and closing of virtual channels.

Virtual channels over generalized channels. For the creation of a virtual channel
(CREATE operation) on top of generalized channels, we need to update both ledger channels
to a new state that can fund the virtual channel, requiring to exchange 2 · 2 transactions
with 1494 (VC-NV) or 1422 (VC-V) bytes. Additionally, we need 640 bytes for txf (VC-
NV) or 309 + 377 bytes for txf and txrefund (VC-V). Finally, for both VC-NV and VC-V,
we need the transactions representing the state of the virtual channel itself which requires
431 bytes for TXc and 264 bytes for TXs. This complete process results in 7 (VC-NV) or
8 (VC-V) transactions with a total of 2829 (VC-NV) or 2803 (VC-V) bytes. Forcefully
closing (CLOSE(pess) operation) and offloading (OFFLOAD operation) requires the same
set of transactions as with CREATE, minus the commitment and the split transaction (695
bytes) of the virtual channel in the latter case, both on-chain. Finally, we observe that
the UPDATE and the optimistic CLOSE(opt) operation require 2 transactions (695 bytes)
for both constructions, as they are designed as an update of a ledger channel.

Virtual channels over Lightning channels. Building virtual channels on top of
Lightning channels yields the following results. Instead of one commitment and one split
transaction per ledger channel, we now need two commitment transactions per ledger
channel, each of size 580 (VC-NV) or 546 (VC-V) bytes. Due to the fact that in both

153

6. Bitcoin-Compatible Virtual Channels

ledger channels, either commitment transaction can be published, we now need four
txf of 640 bytes each (VC-NV) or two txf of 309 and four txrefund of 377 bytes (VC-V).
For every txf , we need two commitment transactions of 353 bytes (in total, 8 · 353 in
VC-NV or 4 · 353 in VC-V). For OFFLOAD, only one commitment transaction per ledger
channel needs to be published, along with one txf (for VC-NV) and txf plus txrefund (for
VC-V). CLOSE(pess), needs to publish a commitment transaction in addition to OFFLOAD,
resulting in 2153 (VC-NV) or 2131 (VC-V) bytes.

6.5.2 Comparison to payment channel networks

In this section, we compare virtual channels to multi-hop payments in a payment channel
network (PCN). In a PCN, users route their payments via intermediaries. During the
routing of a transaction tx, each intermediary party locks tx.cash coins as a “promise to
pay” in their channels, a payment commitment that can technically be implemented as a
Hash-Time Lock Contract (HTLC), e.g. as in the Lightning Network [PD16]. We now
evaluate the difference in communication overhead and fee costs compared to virtual
channels, summarize them in Table 6.3, and illustrate them in Figure 6.10.

Routing communication overhead. When performing a payment between Alice
and Bob via an intermediary Ingrid in a multi-hop payment over generalized channels,
the participants need to update both generalized channels with a “promise to pay”,
which require 2 transactions or 818 bytes per channel when implemented as HTLC. If
they are successful, both generalized channels need to be updated again to “confirm the
payment” (again, 2 transactions or 695 bytes per channel). This whole process results
in 8 transactions or 2 · 818 + 2 · 695 = 3026 off-chain bytes that need to be exchanged.
Generically, if the parties want to perform n sequential payments, they need to exchange
8 · n transaction with a total of 3026 · n bytes.

Assume now that Alice and Bob were to perform the payment over a virtual channel
without validity instead and that this virtual channel is not yet created. As shown
in Table 6.2, they need to open the virtual channel for 2829 bytes, where they set the
balance of the virtual channel already to the correct state after the payment, and then
close it again for 1390 bytes, resulting in a total of 4219 off-chain bytes. However, if
we again consider n sequential payments, the result would be 9 + 2 · n transactions or
3524 + 695 · n bytes, which supposes a reduction of 2331 · n − 3524 bytes with respect
to relying on generalized channels only. This means that a virtual channel is already
cheaper if only two (or more) sequential transactions are performed. We obtain similar
results if we consider virtual channels with validity instead. For Lightning channels, the
overhead is larger for both the multi-hop payment and the VC setting (Table 6.3).

Fee costs. In a multi-hop payment tx in a PCN, the intermediary user Ingrid charges a
base fee (BF) for being online and offering the routing service and relative fee (FR) for
locking the amounts of coins (tx.cash) and changing the balance in the channel, so that
fee(tx) := BF + FR · tx.cash. Note that at the time of writing, the fees are BF = 1 satoshi
and FR = 0.000001.

154

6.5. Performance evaluation

1 2 3 4 5 6 7 8 9 100
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
·104

Number of payments (n)

O
ve

rh
ea

d
in

by
te

s

Routing communication overhead

GC:VC-NV LN:VC-NV
GC:VC-V LN:VC-V
GC:PCN LN:PCN

Figure 6.10: Pictorial illustration of Table 6.3.

Table 6.3: Comparison of virtual channels (VC) to multi-hop payments (PCN) showing
the overhead in bytes for a different number of payments and the difference in fees.

Overhead in bytes fees
1 paym. 2 paym. n payments tx.cash in n payments

GC: PCN 3026 6052 3026 · n BF · n + FR · tx.cash
GC: VC-NV 4219 4914 3524 + 695 · n BF + FR · tx.cashGC: VC-V 4193 4888 3498 + 695 · n
LN: PCN 4776 9552 4776 · n BF · n + FR · tx.cash
LN: VC-NV 9116 11940 6292 + 2824 · n
LN: VC-V 5722 7134 4310 + 1412 · n

BF + FR · tx.cash

In a virtual channel setting, γ.Ingrid can charge a base fee to collaborate to open and close
the virtual channel, and also a relative fee to lock collateral coins in the virtual channel.
However, no fees per payment are charged by Ingrid as she does not participate in them
(and even does not know how many end-users performed)1. Let us now investigate the
case of paying tx.cash in n micropayments of equal value. In PCN case, the total cost
would be n

i=1 BF + FR · tx.cash
n = BF · n + FR · tx.cash. Whereas, in the virtual case, the

parties first create a virtual channel γ with balance tx.cash, and they will handle the
micropayments in γ. Thereby, the cost would be only the opening cost of the virtual
channel, for which we assumed BF + FR · tx.cash. Thus, if Alice and Bob would make
more than one transaction, i.e., n > 1, it is beneficial to use virtual channels for reducing
the fee costs by BF · (n − 1).

Summary. We find that the best construction in practice is the combination of virtual
channels on top of generalized channels, as this yields the least overhead after only two
or more sequential payments. However, building virtual channels over LN channels also

155

6. Bitcoin-Compatible Virtual Channels

yields less overhead than multi-hop PCN payments over LN.

6.6 Related Work
In this section, we position this work in the landscape of the literature for off-chain
payment protocols.

Payment Channels. Starting from the Lightning Channels construction [PD16], the
idea of 2-party payment channels has been largely used in academia and industry as a
building block for more complex off-chain payment protocols. More recently, Aumayr
et al. [AEE+21] have proposed a novel construction for 2-party payment channels that
overcome some of the drawbacks of the original Lightning channels. While their benefit
in terms of scalability is out of any doubt by now, payment channels are limited to
payments between two users and consequently its overall utility.

A concurrent work [JLT20] has also proposed a virtual channel construction over Bitcoin.
However, their construction uses decreasing time-locks instead of a punishment mechanism
in order to guarantee that only the latest state can be posted on the blockchain. As a
consequence, their construction only allows a fixed number of transactions to be made
during the lifetime of the virtual channel. This is quite restrictive as it requires users
to close and open new virtual channels more frequently which goes against the purpose
of virtual channels. Note that one cannot simply increase the time-lock as this would
essentially lock the coins of the users for a longer period of time. Furthermore, our
constructions are generalized virtual channels, i.e., they are not limited to just payments,
but rather allow to run any Bitcoin script off-chain. In addition, we propose a modular
approach compared to the monolithic construction in [JLT20]. Finally, our work proposes
two protocols, which each have their advantages in different use cases.

Payment Channel Networks (PCN) and Payment Channel Hub (PCH). A
PCN allows a payment between two users that do not share a payment channel but are
however connected through a path of payment channels. The notion of PCN started with
the deployment of Lightning Network [PD16] for Bitcoin and Raiden Network [Rai17]
for Ethereum and has been widely studied in academia to research into different as-
pects such as privacy [MMSK+17,MMS+19], routing of payments [RMKG18], collateral
management [EMSM19] and others. Similar to PCN, different constructions for PCH
exist [TMSM21a,HAB+17,BCG+14] that allow a payment between two users through a
single intermediary, the payment hub. PCNs and PCHs, however, share the drawback
that each payment between two users requires the active involvement of the intermediary
(or several intermediaries in the case of PCH), which reduces the reliability (e.g., the
intermediary can go offline) and increases the cost of the payment (e.g., each intermediary
charges a fee for the payment).

State Channels. Several works [DEF+19b,DFH18,MBB+19b,CCF+21] have shown
how to leverage the highly expressive scripting language available at Ethereum to construct
(multi-party) state channels. A state channel allows the involved parties to carry out off-

156

6.7. Conclusion

chain computations, possibly other than payments. Closer to our work, Dziembowski et
al. [DEFM19] showed how to construct a virtual channel leveraging two payment channels
defined in Ethereum. These approaches are, however, highly tight to the functionality
provided by the Ethereum scripting language and their constructions cannot be reused
in other cryptocurrencies. In this work, we instead show that virtual channels can be
constructed from digital signatures and timelock mechanism only, which makes virtual
channels accessible for virtually any cryptocurrency system available today.

6.7 Conclusion
Current PCNs route payments between two users through intermediate nodes, making
the system less reliable (intermediaries might be offline), expensive (intermediaries charge
a fee per payment), and privacy-invasive (intermediate nodes observe every payment they
route). To mitigate this, recent work has introduced the concept of virtual channels, which
involve intermediaries only in the creation of a bridge between payer and payee, who can
later on independently perform arbitrarily many off-chain transactions. Unfortunately,
existing constructions are only available for Ethereum, as they rely on its account model
and Turing-complete scripting language.
In this work, we present the first virtual channel constructions that are built on the UTXO
model and require a scripting language supported by virtually every cryptocurrency,
including Bitcoin. Our two protocols provide a tradeoff on who can offload the virtual
channel, similar to the preemptible vs. non-preemptible virtual machines in the cloud
setting. In other words, our virtual channel construction without validity is more suitable
for intermediaries who can monitor the blockchain regularly, such as payment channel
hubs, but can also close the virtual channel at any time if desired. Our virtual channel
protocol with validity however, is more suitable for light intermediaries who do not wish
to be active during the lifetime of the virtual channel but cannot close the virtual channel
before its validity has expired. We formalize the security properties of virtual channels in
the UC framework, proving that our protocols constitute a secure realization thereof. We
have prototyped our protocols and evaluated their efficiency: for n sequential payments in
the optimistic case, they require 9 + 2 · n off-chain transactions for a total of 3524 + 695 · n
bytes, with no on-chain footprint.
As mentioned in the introduction of this work, the task of designing secure virtual chan-
nels has been proven to be challenging even on a cryptocurrency like Ethereum [DEFM19]
which supports smart contract execution. Unsurprisingly, this task becomes even more
complex when building virtual channels for blockchains that support only a limited
scripting language as it is not possible to take advantage of the full computation power of
Turing complete smart contracts. Due to these significantly differing underlying assump-
tions (smart contracts vs. limited scripting languages), the virtual channel protocols
based on Ethereum [DEFM19] and the protocols presented in this work are incomparable.
We emphasize that we view our virtual channel constructions as complementary to the
one presented in [DEFM19], as we do not aim to improve the construction of [DEFM19]
but rather extend the concept of virtual channels to a broader class of blockchains.

157

6. Bitcoin-Compatible Virtual Channels

We conjecture that it is possible to recursively build virtual channels on top of any two
underlying channels (either ledger, virtual, or a combination of them), requiring to adjust
the timings for offloading channels: users of a virtual channel at layer k should have
enough time to offload the (virtual/ledger) channels at layers 1 to k − 1. Additionally,
we envision that while virtual channels without validity might serve as a building block
at any layer of recursion, virtual channels with validity period may be more suitable for
the top layer as they have a predefined expiration time after which they would require
to offload in any case all underlying layers. We plan to explore the recursive building
of virtual channels in the near future. Additionally, we conjecture that virtual channels
help with privacy, but we leave a formalization of this claim as interesting future work,
as it involves a quantitative analysis that falls off the scope of this work.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) Emmy
Noether Program FA 1320/1-1, by the DFG CRC 1119 CROSSING (project S7), by the
German Federal Ministry of Education and Research (BMBF) iBlockchain project (grant
nr. 16KIS0902), by the German Federal Ministry of Education and Research and the
Hessen State Ministry for Higher Education, Research and the Arts within their joint
support of the National Research Center for Applied Cybersecurity ATHENE, by the
European Research Council (ERC) under the European Unions Horizon 2020 research
(grant agreement No 771527-BROWSEC), by the Austrian Science Fund (FWF) through
PROFET (grant agreement P31621) and the Meitner program (grant agreement M 2608-
G27), by the Austrian Research Promotion Agency (FFG) through the Bridge-1 project
PR4DLT (grant agreement 13808694) and the COMET K1 projects SBA and ABC,
by the Vienna Business Agency through the project Vienna Cybersecurity and Privacy
Research Center (VISP), by CoBloX Labs and by the ERC Project PREP-CRYPTO
724307.

158

CHAPTER 7
Breaking and Fixing Virtual

Channels: Domino Attack and
Donner

Abstract

Payment channel networks (PCNs) mitigate the scalability issues of current decentralized
cryptocurrencies. They allow for arbitrarily many payments between users connected
through a path of intermediate payment channels, while requiring interacting with
the blockchain only to open and close the channels. Unfortunately, PCNs are (i) tai-
lored to payments, excluding more complex smart contract functionalities, such as the
oracle-enabling Discreet Log Contracts and (ii) their need for active participation from
intermediaries may make payments unreliable, slower, expensive, and privacy-invasive.
Virtual channels are among the most promising techniques to mitigate these issues,
allowing two endpoints of a path to create a direct channel over the intermediaries
without any interaction with the blockchain. After such a virtual channel is constructed,
(i) the endpoints can use this direct channel for applications other than payments and
(ii) the intermediaries are no longer involved in updates.

In this work, we first introduce the Domino attack, a new DoS/griefing style attack
that leverages virtual channels to destruct the PCN itself and is inherent to the design
adopted by the existing Bitcoin-compatible virtual channels. We then demonstrate its
severity by a quantitative analysis on a snapshot of the Lightning Network (LN), the
most widely deployed PCN at present. We finally discuss other serious drawbacks of
existing virtual channel designs, such as the support for only a single intermediary, a
latency and blockchain overhead linear in the path length, or a non-constant storage
overhead per user.

159

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

We then present Donner, the first virtual channel construction that overcomes the
shortcomings above, by relying on a novel design paradigm. We formally define and
prove security and privacy properties in the Universal Composability framework. Our
evaluation shows that Donner is efficient, reduces the on-chain number of transactions
for disputes from linear in the path length to a single one, which is the key to preventing
Domino attacks, and reduces the storage overhead from logarithmic in the path length
to constant. Donner is Bitcoin-compatible and can be easily integrated into the LN.

This chapter presents the results of a collaboration with Pedro Moreno-Sanchez, Aniket
Kate, and Matteo Maffei, which was published at the Network and Distributed System
Security Symposium (NDSS) in 2023 under the title "Breaking and Fixing Virtual Chan-
nels: Domino Attack and Donner". I am the main author of this paper. I am responsible
for the idea, discovery, and write-up of the Domino attack, analyzing the impact of the
Domino attack, designing and writing the protocol, formalization in the UC framework,
defining the security and privacy properties, writing the proofs, writing a proof-of-concept
evaluation, conducting the experiments and comparison to related work. Pedro Moreno-
Sanchez, Aniket Kate, and Matteo Maffei were the general advisors and contributed with
continuous feedback.

7.1 Introduction

Payment channels (PCs) have emerged as one of the most promising solutions to the
limited transaction throughput of permissionless blockchains, with the Lightning Net-
work [PD16] being the most popular realization thereof in Bitcoin. A PC enables
arbitrarily many payments between two users while requiring to commit only two
transactions to the ledger: one to open and another to close the channel. Aside from
payments, several applications proposed so far benefit from the scalability gains of 2-party
PCs [Dry17,BK14,BDW17]. Recent work [AEE+21] has further shown how to lift any
operation supported by the underlying blockchain to the off-chain setting, thereby further
expanding the class of supported off-chain applications.

Creating PCs between all pairs of users (i.e., a clique) is economically infeasible, as users
must lock coins for each PC and funding occurs on-chain. On-demand creation of PCs
with any potential partner is also infeasible due to the need for on-chain transactions for
opening and closing each channel, which results in on-chain fees, long confirmation times
(around 1h in Bitcoin) and again impacts the blockchain throughput. As a result, single
PCs are instead linked together to form PCNs, using paths of PCs to connect two users
instead of opening a PC between them. The interactions of PCN users can be classified
into synchronization protocols and virtual channels.

Synchronization protocols. Synchronization protocols, e.g., [EMSM19,AMSKM21,
MBB+19b, MMS+19, MMSK+17, PD16], allow a sender to pay a receiver when they
are connected by a path of PCs, atomically updating the balance of all PCs along
the path. Although some of these synchronization protocols are deployed in practice
(e.g., for multi-hop payments in the Lightning Network), there are several drawbacks:

160

7.1. Introduction

(i, online assumption) they require users in the path to be online; (ii, reliability) each
intermediate user must participate, making the payment less reliable; (iii, cost) each
intermediate charges a fee per synchronization round; (iv, latency) the latency of the
application increases along with the number of intermediaries (e.g., in the Lightning
Network up to one-day latency per channel); (v, privacy) intermediaries are aware of
every single operation; and (vi, efficiency) they can handle only a limited number of
simultaneous payments (e.g., 483 in the Lightning Network) [dev]. Finally, and perhaps
more importantly, current synchronization protocols are tailored to payments. Supporting
2-party applications (as the ones mentioned before) would require thus to come up with a
synchronization protocol for each application. Apart from being a burden, it is not trivial
to design such protocols tailored to applications beyond payments, as exemplified by the
recent quest in the Bitcoin community about the realization of Discreet Log Contracts
across multiple hops [DLC21].

Virtual channels. Virtual channels (VC) [DEFM19,DFH18,DEF+19b,Per20,AME+21,
JLT20,KL] allow two users connected by a path of PCs to establish a direct connection,
bypassing intermediaries. Intuitively, a VC is akin to a PC, but instead of being opened
by an on-chain transaction, it is opened off-chain using funds from the path of PCs.
Therefore, the opening phase involves all intermediaries, besides the endpoints. Once
established, however, updates can proceed without the involvement of any intermediaries.
In this manner, VCs overcome the aforementioned drawbacks of synchronization protocols:
(i) intermediaries are no longer required to be online; (ii) the reliability of the channel
does not depend on intermediaries; (iii) intermediaries do not charge a fee for each usage
of the channel (perhaps only once to create and close the VC); (iv) the latency does not
depend on intermediaries; (v) intermediaries do not learn each single VC update; (vi) a
PC can host several VCs, each of which can be used to dispense up to 483 payments or
potentially more VCs, bypassing the limitation on the number of payments in PCNs.

Since VCs can be used just as PCs, they constitute the most promising solution to perform
repeated transactions as well as applications different from payments (e.g., [Dry17,BK14,
BDW17]) between any pair of users connected by a path of PCs. In fact, applications built
on top of PCs can be smoothly lifted to VCs, which constitutes a crucial improvement over
synchronization protocols.1 For instance, VCs support Discreet Log Contracts [Dry17],
an application that has received increased attention lately and that intuitively allows for
bets based on attestations from an oracle on real-world events. As compared to PCs,
VCs offer the same advantages while requiring no on-chain transaction for their setup,
thereby dispensing from the associated blockchain delays, on-chain fees, and on-chain
footprints. This makes it possible to keep VCs short-lived, to frequently close, open, or
extend them based on current needs. For a more detailed discussion see Appendix F.1.

VC constructions are difficult to design since the balance of honest parties needs to be
ensured even in the presence of malicious, and possibly colluding intermediaries/endpoints.

1VCs expose all the functionalities of a PC and can be used interchangeably as a building block for
off-chain applications, see Section 7.5.

161

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

The first constructions have been proposed for blockchains supporting Turing-complete
scripting languages based on the account model, like Ethereum [DEFM19, DFH18,
DEF+19b]. In such blockchains, VC constructions are somewhat easier to design: For
instance, stateful smart contracts can resolve conflicts on the current state of VCs by
associating a different version number to each state update and, in case of conflict, by
selecting the highest number as the valid state. Indeed, Ethereum-based constructions
are based on this idea and do not suffer from the Domino attack presented in this
paper. Unfortunately, this reliance on Turing-complete scripting languages makes these
constructions incompatible with many of the cryptocurrencies available today, including
Bitcoin itself.

It is not only practically relevant but also theoretically interesting to investigate what is
the minimum scripting functionalities necessary to design secure VCs. Therefore, a bit
later VC constructions have been proposed also for blockchains with a less expressive
scripting language and based on the Unspent Transaction Output (UTXO) model (i.e.,
Bitcoin-compatible) [AME+21, JLT20, KL]. Throughout the rest of this paper, we
investigate VCs built on these blockchains if not specified otherwise. All of these VC
constructions share one common design pattern: The VC is funded from all underlying
PCs. We refer to this design pattern as rooted VCs and illustrate it on a high level
in Figure 7.1(a.1). Because VCs are, unlike PCs, not funded on-chain, they rely on
an operation called offloading, which transforms a VC to a PC. This is important for
honest users so they can enforce their balance in case the other user misbehaves: first
transforming the VC to a PC by putting the VC funding on-chain, and second using
the means provided by the PC to enforce their balance. Rooted designs enable both
endpoints to offload the VC, but because they are funded by all underlying PCs, every
underlying PC has to be closed on-chain (see Figure 7.1(a.2)).

Table 7.1: Comparison to other multi-hop VC protocols. ∗ by synchronizing all channels,
this time can be only Θ(log(n)).

LVPC [JLT20] Elmo [KL] Donner
Scripting requirements Bitcoin Bitcoin + Bitcoin

ANYPREVOUT
Multi-hop ✓ ✓ ✓

Secure against Domino attack ✗ ✗ ✓

Path privacy ✗ ✗ yes
Time-based fee model ✓ ✗ ✓

Unlimited lifetime ✗ ✓ ✓

Storage Overhead per party Θ(n)∗ Θ(n3) Θ(1)
Off-chain closing ✓ ✗ ✓

Offload: txs on-chain Θ(n) Θ(n) 1
Offload: time delay Θ(n)∗ Θ(n)∗ 1

Conceptual advancements in this work. We show that rooted VCs are by de-
sign prone to severe drawbacks including the Domino attack (see Section 7.3), a new
DoS/griefing style attack in which (i) a malicious intermediary of a VC or (ii) an attacker
establishing a VC with itself over a number of honest PCs can close the whole path of
underlying PCs and bring them on-chain. Not only are all existing Bitcoin-compatible

162

7.1. Introduction

VC constructions affected by this attack, in fact the ideal functionalities against which
they are proven secure do permit this attack, but also this attack is so severe that
it can potentially shut down the underlying PCN, as we show in Section 7.3.3. As a
result, we argue that none of the existing Bitcoin-compatible VC constructions should
be deployed in practice. Furthermore, the rooted design allows adversaries to learn the
identity of participants other than their direct neighbors, thereby breaking what we
call path privacy (see Section 7.3.4). Given these security and privacy shortcomings,
we introduce a paradigm shift towards the design of non-rooted VCs, based on two
fundamental ingredients.

First, instead of being rooted, the VC is funded independently from the underlying PCs,
by one of the VC endpoints. The underlying PCs are used to lock up some funds (or
collateral) that are paid to the honest VC endpoint if the other VC endpoint misbehaves.
We illustrate this concept on a high level in Figure 7.1(b.1). In contrast to rooted designs,
VCs can be offloaded without having to close the underlying PCs, which is the key to
prevent Domino attacks. Since the VC is only funded by one endpoint, only this funding
endpoint has the means of transforming the VC to a PC (offload). Subsequently, the
other one cannot get their money via offloading in case of misbehavior. This issue is
solved by compensating the non-funding endpoint in case the funding endpoint has not
transformed the VC to a PC within a channel lifetime T , see Figure 7.1(b.2) and (b.3).

This lifetime T is the second crucial aspect where we depart from the state of the art.
Current solutions provide unlimited lifetime without guaranteeing however that the VC
will remain open, as an intermediary node could initiate the offloading. Instead, our
design ensures that the VC is open until time T , which can be repeatedly prolonged if all
involved parties agree. This allows intermediaries to charge fees based on the lifetime of
the VC, which corresponds to the time they have to lock up their funds, something that
is not possible in current VC solutions with unlimited lifetime [KL]. The improvements
over existing Bitcoin-compatible multi-hop VC constructions are summarized in Table 7.1.
We compare with single-hop constructions and with those relying on Turing-complete
smart contracts in Table F.2 in Appendix F.2.

Our contributions can be summarized as follows:

• We introduce the Domino attack, which allows the adversary to close arbitrarily
many PCs of honest users, thereby destructing the underlying PCN. We argue
that any rooted construction, in particular, all existing Bitcoin-compatible VC
constructions are prone to this attack. We show the severity of this attack in
a quantitative analysis; given current BTC transaction fees, it suffices for an
attacker to spend 1 BTC to close every channel in the current LN. Even though
VC protocols are not yet used in practice, we find it crucial to show this attack
before any construction gets implemented, offering instead a secure alternative.

• We present Donner, a new VC protocol that departs from the rooted paradigm
by funding the VC from outside of the underlying PC path. In addition to being

163

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

U0 U1 U2 U3

U0 U3

U0 U1 U2 U3

U0 U1 U2 U3

U0 U3

U0 U1 U2 U3

txvc

U0 U1 U2 U3

U0 U3 U0 U1 U2 U3

U0 U1 U2 U3txvc

U0 U1 U2 U3

U0 U1 U2 U3

L3

L2

L1

L3

L2

L1

(a) State-of-the-art VC
(rooted)

(b) Donner VC
(non-rooted)

(a.1) Construction

(a.2) Transform VC to PC (b.2) Transform VC to PC (b.3) Compensation

(b.1) Construction

after T

after T

Figure 7.1: Conceptual comparison of (a) state-of-the-art VCs (rooted) and (b) our
protocol (non-rooted) on layers L1 (blockchain), L2 (PCs) and L3 (VCs). Note that the
VC in (a.1) is funded by all the underlying channels In (b.1), the VC is funded only by
U0, indirectly via a transaction txvc. Additionally, in (b.1), a payment is set up from U0
to U3, whose outcome depends on whether the VC is offloaded. Offloading, i.e., the act of
forcefully transforming a VC (L3) to a PC (L2) in (a.2), requires that all the underlying
PCs (L2) are put on-chain (L1). In (b.2), offloading the VC keeps the PCs open, posting
only txvc on-chain (L1). Since offloading enables U3 to receive their funds, the payment
is refunded then. However, since in (b), only U0 can offload, U3 is compensated (b.3)
after a timeout T via a payment that is executed iff U0 has not offloaded the VC (i.e.,
(b.2) did not happen).

secure against the Domino attack, it significantly improves in terms of efficiency
and interoperability over state-of-the-art VC protocols (see Table 7.1).

• We introduce the notion of synchronized modification, a novel subroutine allowing
parties to atomically change the value or timeout of a synchronization protocol,
a contribution of independent interest. Synchronized modification, non-rooted
funding, and the pay-or-revoke paradigm [AMSKM21] are the core building blocks
of Donner.

• We conduct a formal security and privacy analysis of Donner in the Universal
Composability framework.

• We conduct experimental evaluations to quantify the severity of the Domino attack
and demonstrate that Donner requires significantly fewer transactions than state-
of-the-art VCs; Donner decreases the on-chain costs for offloading VCs from linear
in the path length to a single one and the storage overhead per PC from linear or

164

7.2. Background and notation

logarithmic in LVPC [JLT20] (depending on how the VC is constructed) or cubic
in Elmo [KL] to constant.

7.2 Background and notation

7.2.1 UTXO based blockchains

We adopt the notation for UTXO-based blockchains from [AEE+21], which we shortly
review next. In UTXO-based blockchains, the units of currency, i.e., the coins, exist
in outputs of transactions. We define such an output as a tuple θ := (cash, ϕ); θ.cash
contains the amount of coins stored in this output and θ.ϕ defines the condition under
which the coins can be spent. The latter is done by encoding such a condition in the
scripting language of the underlying blockchain. This can range from simple ownership,
specifying which public key can spend the output, to more complex conditions (e.g.,
timelocks, multi-signatures, or logical boolean functions).

Coins can be spent with transactions, resulting in the change of ownership of the coins.
A transaction maps a list of outputs to a list of new outputs. For better readability,
we denote the former outputs as transaction inputs. Formally, we define a transaction
body as a tuple tx := (id, input, output). The identifier tx.id ∈ {0, 1}∗ is assigned as
the hash of the other attributes, tx.id := H(tx.input, tx.output). We model H as a
random oracle. The attribute tx.input is a non-empty list of the identifiers of the
transaction’s inputs and tx.output := (θ1, ..., θn) a non-empty list of new outputs. To
prove that the spending conditions of the inputs are known, we introduce full transactions,
which contain in addition to the transaction body also a witness list. We define a full
transaction tx := (id, input, output, witness) or for convenience also tx := (tx, witness).
Valid transactions can be recorded on the public ledger L called blockchain, with a delay
of ∆. A transaction is valid if and only if (i) all its inputs exist and are not spent by
other transactions on L; (ii) it provides a valid witness for the spending condition ϕ of
every input; and (iii) the sum of coins in the outputs is equal (or smaller) than the sum
of coins in the inputs.

There are several conditions under which coins can be spent. Usually, they consist of
a signature that verifies w.r.t. one or more public keys, which we denote as OneSig(pk)
or MultiSig(pk1, pk2, ...). Additional conditions could be any script supported by the
scripting language of the underlying blockchain, but in this paper, we only use relative
and absolute time-locks. For the former, we write RelTime(t) or simply +t, which signifies
that the output can be spent only if at least t rounds have passed since the transaction
holding this output was accepted on L. Similarly, we write AbsTime(t) or simply ≥ t for
absolute time-locks, which means that the transaction can be spent only if the blockchain
is at least t blocks long. A condition can be a disjunction of subconditions ϕ = ϕ1 ∨ ...∨ϕn.
A conjunction of subconditions is simply written as ϕ = ϕ1 ∧ ... ∧ ϕn.

To visualize how transactions are used in a protocol, we use transaction charts. The
charts are to be read from left to right. Rounded rectangles represent transactions, with

165

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

incoming arrows being their inputs. The boxes within the transactions are the outputs
and the value in them represents the amount of output coins. Outgoing arrows show how
outputs can be spent. Transactions that are on-chain have a double border (see, e.g.,
Figure F.4 in Appendix F.4.1).

7.2.2 Payment channels

Two users can utilize a payment channel (PC) in order to perform arbitrarily many
payments while putting only two transactions on the ledger. On a high level, there are
three operations in a PC operation: open, update and close. First, to open a channel, both
users have to lock up some money in a shared output (i.e., an output that is spendable
if both users give their signature) in a transaction called the funding transaction or txf .
From this output, they can create new transactions called state or txs which assign each
of them a balance. Once the funding transaction is on the ledger, the users can exchange
arbitrarily many new states (balance updates) in an off-chain manner, thereby realizing
the update phase of the channel. Once they are done, they can close the channel by
posting the final state to the ledger.

In this work, we use PCs in a black-box manner and refer the reader to [AEE+21,
MMSK+17,MMS+19] for more details. We abstract away from the implementation details
and instead model the state of the channel as the outputs contained in a transaction
txs, which is kept off-chain. For simplicity, we assume that this is the only state that
the users can publish and abstract away from how the dishonest behavior is handled. In
practice, it is possible that a dishonest user publishes a stale state of the channel and
current constructions come with a way to handle this case (e.g., through a punishment
mechanism that compensates the honest user [AEE+21]). We illustrate this abstraction
in Figure 7.2.

7.2.3 Payment channel networks

A payment-channel network (PCN) [MMSK+17] is a graph where the nodes represent
the users and the edges represent the PCs. The Lightning Network [PD16] is the state of
the art in both PCs and PCNs for Bitcoin, and the largest PCN in terms of coins locked
within its channel fundings, currently having around 81k channels, 19k active nodes, and
a total capacity of 3k BTC (around 130M USD).

txf

xA + xB
A : xA

B : xB

(A, B)

Figure 7.2: We abstract PCs using a squiggly line to hide details that are not needed in
this work. P : xP indicates that user P owns xP coins in the state txs, written as (A, B).
The box containing xA + xB indicates the shared output of A and B.

166

7.2. Background and notation

In a PCN, any two users connected by a path of channels can perform what is called a
multi-hop payment (MHP). Assume that there is a sender U0 who wants to pay α coins
to a receiver Un, but they do not have a direct channel. Instead, they are connected
by a path of channels going through intermediaries {Ui}i∈[1,n−1], such that any pair of
neighbors Uj and Uj+1 have a channel γj , for j ∈ [0, n − 1]. A mechanism synchronizing
all channels on the path is required for a payment, such that each channel is updated to
represent the fact that α coins moved from left to right. We give an example in Figure F.5
in Appendix F.4.2.

7.2.4 Blitz

There exist many different MHP protocols that synchronize the updates of channels.
In particular, the Blitz [AMSKM21] protocol is useful for this work. In Blitz, the PC
updates are dependent on a transaction called txer, which acts as a global event. The PCs
are synchronized in the following way: If txer is posted on-chain, the updates are reverted,
otherwise, they are successful. In other words, the sender sets up a MHP conditioned
on a “refund enabling” transaction txer in a way that the refund can be triggered, if
anything goes wrong. If all channels participated honestly, the sender does not post txer

and the MHP goes through (see Figure 7.3). In a bit more detail, Blitz consists of four
operations:

1. Setup. The sender U0 creates a synchronization transaction txer as depicted in
Figure 7.3b, which has an output θϵi holding ϵ coins for each user except the receiver
Un. The value ϵ is set to the smallest possible value that the underlying blockchain
allows (ideally zero); these outputs are merely to enable other transactions.

2. Open. Each channel sequentially, from sender to receiver, sets up a payment whose
success or refund is conditioned on a time T or transaction txer, as conceptualized
in Figure 7.3a and shown in detail in Figure 7.3c. In a nutshell, two users Ui, Ui+1
update their channel γi to a state where the amount to be paid α (more precisely αi

which encodes a per-hop fee) coming from Ui can be spent as follows: Either by Ui+1
using txp

i after time T or by Ui using txr
i if txer is posted on-chain. Since each txr

i uses
the corresponding output θϵi of txer, the UTXO model ensures that txr

i can only be
posted if txer has been posted before.

3. Finalize. After the receiver has successfully set up the payment, she sends back
a confirmation to the sender containing txer. If the sender receives a confirmation
containing the txer she created in the setup phase within some time, she goes idle.
Otherwise, she posts txer, initiating the refunds (see respond).

4. Respond. Every user Ui monitors the blockchain if txer appears. In case it appears
before T , the user will publish the refund transaction txr

i for her channel γi. If the two
users in γi collaborate, both updates and refunds can always be performed off-chain.

167

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

U0 U1 U2 U3 U4≥ T ≥ T ≥ T ≥ T

txer

Fig. 7.3cFig. 7.3b

(a)

txer/txvc

...

α pkU0 , pkUn

ϵ

ϵ

pkU0

pkUn−1

n · ϵ+α

txin

...

+tc + ∆

+tc + ∆
pkU0

(b)

αi

xUi
− αi

xUi+1

ϵ
αi + ϵ

pkUi
, pkUi+1

pkUi +∆

≥ T
αi pkUi+1

txs
i

txer/txvc

...

...

txr
i

txp
i

pkUi+1

pkUi

+tc + ∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

(c)

Figure 7.3: (7.3a) Illustration of the Blitz synchronization protocol; (7.3b) Off-chain
synchronization transaction spending from an output under U0’s control and linking to
the collateral in each channel. (i) Without the green part: txer in Blitz. (ii) With the
green part: txvc used for funding the VC in this work; (7.3c) Two-party contract used
within each channel

In this work, we utilize a slightly modified version of Blitz as a building block. We mark
the modification in green in Figure 7.3b and describe it in Section 7.5.3.

txf

α

U1 : α

α

U0 : xU0 − α

U1 : xU1

(U0, U1)

α

U1 : yU1 − α

U2 : yU2

(U1, U2)

U0 : α

U0 : zU0

U2 : α − zU0

(U0, U2)

Funding

Collateral

> tpun

U2 : α

> tpun

Punishment

Figure 7.4: Illustration of a VC construction over a single intermediary. The VC funding
txf is rooted in the underlying channels is the only way for the intermediary to get its
collateral back. txf and the the punishment are mutually exclusive.

168

7.2. Background and notation

7.2.5 State-of-the-art virtual channels

A virtual channel (VC) allows two users to establish a direct channel, without putting
any transaction on-chain. Indeed, the fundamental difference between a PC and a VC
is that in a VC, the funding transaction txf does not go on-chain in the honest case.
To still ensure that users do not lose their funds in case of dispute, this requires a new
operation: In addition to the three operations open, update and close of PCs, we need
the operation offload, which allows a user of the VC to put the funding transaction txf

on-chain, transforming the VC into a PC in case of a dispute.

To understand how VCs work, let us look at an example following a state-of-the-art VC
construction [JLT20]. This example is depicted in Figure 7.4. Assume U0 and U2 want
to construct a VC via U1, i.e., there exist PCs (U0, U1) and (U1, U2), and they wish to
build a VC (U0, U2). To open a VC, the main idea is to take the desired VC capacity
α and lock it in both channels, such that α coins come from U0 and α coins from the
intermediary U1. These 2 · α coins are used both for funding the VC and as collateral;
these coins can be spent in the following, mutually exclusive ways:

(i) by putting the funding transaction txf on-chain, which simultaneously funds the
VC and refunds the intermediary its collateral α, or

(ii) if both α coins are not spent by a chosen punishment time tpun, U0 and U2 can
each claim α coins, which is the maximal amount they could hold in the VC

Clearly, U1, who is part of both channels, is incentivized to put txf on-chain, as this is
the only way to get her collateral back. Simultaneously, the two end-users U0 and U2,
who are only part of one of the channels, are ensured that either txf goes on-chain, or
else they receive the full α.

Putting txf on-chain is called offloading and is a safety mechanism to ensure that users
can claim their rightful balance in case of a dispute. Offloading can be initiated by either
U0 or U2 (by closing their respective channel and threatening to take the collateral if
U1 does not react), or by U1 by simply closing both channels. We emphasize that the
money of txf comes from both underlying channels, i.e., it can only exist on-chain if both
underlying channels have been put on-chain (closed). We call this design a rooted VC.

If there is no dispute, the transactions depicted in Figure 7.4 remain off-chain and the
underlying channels (U0, U1) and (U1, U2) remain open. The update of the VC requires
no interaction of the intermediaries, the end-users simply update the channel (U0, U2) as
they would a PC. Finally, to close the VC, the final balance of the VC has to be mapped
into the base channels so that in the end both VC endpoints receive the latest balance of
the VC and the intermediaries do not lose coins. Note that with the exception of offload,
which requires at least one on-chain transaction (i.e., the funding), all other operations
require no on-chain transaction. This single-intermediary idea can be used to construct a
tree-like structure over a path of arbitrary intermediaries to get VCs of arbitrary length.
We show this concept in Figure 7.5.

169

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

txf

α

U1 : α

α
...

U0 : α

U2 : α U0 : vU0
U4 : vU4

(U0, U1)

(U0, U4)
α
...

(U1, U2)

α
...

(U2, U3)

α
...

(U3, U4)

α
...

(U0, U2)

txf

α

U2 : α

α
...

(U0, U3)

txf

α

U3 : α

U0 : α

U3 : α

U0 : α

U4 : α

Figure 7.5: Illustration of a rooted VC via multiple hops. The yellow lines indicate how
the VC is rooted. All transactions connected to and to the left of txf need to be put
on-chain in case the rightmost VC is offloaded.

7.3 The Domino attack

7.3.1 Reasons that lead to the attack

Observation 1: Balance security for VC endpoints. Independently of its inner
workings, any VC construction must ensure that honest VC endpoints Alice and Bob can
cash out the coins they hold in the VC (i.e., get their coins on-chain). As discussed in
Section 7.2.5, VCs are akin to payment channels (PCs), with the difference of having their
funding transaction off-chain. This means that both endpoints can no longer directly
claim their latest balance as in a PC. Instead, the VC funding transaction first needs
to be put on-chain through the operation offload, which can be initiated by the VC
endpoints and in some existing VC protocols [KL] even by the intermediaries.

Observation 2: VC funding transaction is rooted in all underlying base
channels. We recall that to enable the offload operation, the VC funding takes as
inputs (either directly or indirectly, via intermediate transactions) outputs of each of the
underlying base channels. We denote such a VC as being rooted in the base channels.2
At a first glance, this seems the most natural approach since it allows both endpoints
to offload the VC and the intermediaries to unlock their collateral. However, a rooted
funding implies that it can be posted on-chain if and only if all underlying PCs are closed.
This feature is the source of the Domino attack, as shown next.

7.3.2 Attack description

The Domino attack is essentially a DoS or griefing style attack. It follows directly from
the two observations mentioned above and can proceed in the following phases: (i) an

2By base channel we mean either a PC or a VC that was used for opening a VC, to capture the fact
that VCs can be constructed recursively.

170

7.3. The Domino attack

adversary controlling two nodes opens two PCs encasing a path of victim channels; (ii)
the adversary opens a VC to herself via these victim paths; and (iii) she initiates the
offloading of the VC.

The effect of this attack is to force the closure of every channel on this path, i.e., the
two the attacker created and the channels on the victim path. Anyone not closing their
channel risks losing their money. In stark contrast to payment protocols in PCNs such
as Lightning or Blitz where closing one channel in the payment path still allows channels
in the rest of the path to remain open, in current VC constructions there is no way that
honest nodes can settle their channels honestly off-chain and keep them open. They
are forced to close every channel, as the VC funding can only exist on-chain if all base
channels are closed.

Example. Assume an attacker controlling nodes U0 and U4 who wants to perform a
Domino attack on the victim path U1, U2 and U3, see Figure 7.5. If not already opened,
the attacker opens the channels (U0, U1) and (U3, U4). Then, she constructs a VC between
her own nodes U0 and U4 recursively, as, e.g., established in the LVPC protocol [JLT20].
After the attacker is done with this step, the transaction structure among different users
is as in Figure 7.5. The attacker can now unilaterally force the closure of all underlying
channels, i.e., the PCs (U0, U1), (U1, U2), (U2, U3) and (U3, U4) as well as the intermediate
VCs (U0, U2), (U0, U3) and the offloading of (U0, U4).

First, U4 closes the PC (U3, U4), which she can do on her own. In the rooted VC example
of Figure 7.5 (e.g., this could be LVPC), the output in the state of (U3, U4) which is
used to fund the VC (U0, U4) goes to U4, unless it is first consumed by the VC. This
means that an honest U3 will lose money in the channel (U3, U4) to U4 by means of the
punishment transaction on the bottom right in Figure 7.5 (dubbed Punish transaction
in the LVPC protocol), unless she closes the channel (U0, U3) and claims its money by
posting txf , i.e., the transaction funding the VC (i.e., offloading) (U0, U4), dubbed Merge
transaction in LVPC.

However, to post txf for (U0, U4), U3 first needs close (U0, U3). U3 initiates the offloading
by first closing (U2, U3). This triggers a similar response from U2, who is now at risk of
losing the coins in (U2, U3), unless she offloads (U0, U3) by putting the corresponding txf .
But to do that, U2 first needs to close (U0, U2). This is done, finally, by closing (U1, U2),
which forces U1 to close also (U0, U1).

In the end, all channels are closed (as shown in Figure F.1 in Appendix F.3). Let us
clarify that by closing the underlying channels we mean that at least two transactions
per channel have to be put on-chain, one for closing the channel and another one to
spend the collateral locked for the VC. Due to the fact that LVPC first splits the channel
into two subchannels before using one of them to fund the VC, closing the initial channel
simultaneously spawns a new channel (i.e., the remaining subchannel) that has a capacity
reduced by the amount put in the collateral funding the VC. The Domino attack works
regardless of how the recursion was applied, as well as on Elmo [KL]. In LVPC some (U3 in
the example above) and in Elmo all intermediaries can carry out this attack. The Domino

171

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

attack can also be launched if the attacker controls only one of the endpoints, assuming
the other one agrees to open a VC with her over the victim path. We remark that LVPC
and Elmo are modeled in the UC framework, however, their ideal functionalities explicitly
allow for the Domino attack.

7.3.3 Quantitative analysis of the Domino attack

To quantify the severity of the Domino attack, we perform the following simulation. We
take a current (March 2022) snapshot of the Lightning Network (LN) [LN 22]. In this
snapshot, there are 83k channels, 20k nodes, and 3284 BTC (around 150M USD) locked
in channels (of the largest connected component). The nodes’ connectivity varies in
the LN. There are leaf nodes having only one open channel, and there are nodes with
almost 3000 channels. Additionally, entities can control multiple nodes. The entities
can be linked by their alias, as pointed out in [RVMS+21], something we follow in this
simulation as well.

Clearly, differently connected nodes can launch the Domino attack with more or less
devastating effects. The better connected a node is, the more channels can be closed
down. Note that for this attack, it does not matter how many coins are locked in the
channels under the control of the attacker and not even the number of nodes the attacker
controls, but instead the number of open channels and the kind of paths that exist to
another node under the attacker’s control; the source and destination may be the same
node.

Analyzing existing nodes. To measure the damage that can be caused by existing
nodes in the LN with two or more open channels, we do the following. Assuming each
node, or more precisely, each alias, is performing the Domino attack. This means, using
the open channels the attacker tries to close as many channels as possible. Computing
the optimal set of VCs the attacker would need to open to maximize the channels is
computationally expensive and out of the scope of this simulation. Instead, we settle for
a simpler heuristic. The attacker computes the cycle basis for a root node controlled by
the attacker, yielding paths starting and ending at one node under the attacker’s control.
The attacker chooses the longest one and proceeds to close the channels by performing
the Domino attack. Now, on the new network with fewer channels, the attacker repeats
these steps, until all of the attacker’s channels are closed and they can do no further
damage.

We count the channels an attacker can close with this approach for each alias. Each node
can close 1284 channels on average, which amounts to around 1.5% of all channels in the
LN. However, note that around 8% of all nodes can close no channels at all, while the
most well-connected entity can close around 53k channels, which is more than 60% of
the LN. We visualize our results in Figure 7.6a, where for a given interval of how many
channels an entity can close, we show the percentage of nodes that fall into this category.
The source code and raw results of this simulation can be found at [Sim22].

172

7.3. The Domino attack

[0,500)
[500,1k)

[1k,1.5k)
[1.5k,2k)

[2k,2.5k)
[2.5k,85k)

0

0.2

0.4

0.6

Channels an attacker can close

Pe
rc

en
ta

ge
of

no
de

s

(a)

2 4 6 8 10 120 k

20 k

40 k

60 k

80 k

100 k

Maximum allowed length of VCs

#
of

ho
ne

st
ch

an
ne

ls
cl

os
ed Adv. budget

0.2 BTC
0.5 BTC
1 BTC

(b)

Figure 7.6: Simulated effect of the Domino attack.

To make matters worse, an attacker can target specific channels with this. This allows the
attacker to perform attacks similar to Route Hijacking [TZS20], a DoS attack where an
attacker strategically places a channel in a topologically important location and announces
low fees. Subsequently, users will route their payments through the attacker’s channel
who can then drop the requests. In the worst case, this can (temporarily) disconnect
parts of the network from one another. In the Domino attack, an attacker can disconnect
parts of the network directly, by closing all edges that connect the two subgraphs.

Analyzing newly placed nodes. In this second analysis, we let the attacker create
new channels instead of assuming an existing node is corrupted. Clearly, without any
restrictions, an attacker can do more damage than in the previous simulation, i.e., by
opening the same (and more) channels as the best-performing node which had a bit
less than 3000 channels. Taking a current average fee of 0.000031 BTC (1.27 USD) per
transaction [Bit22a], this would cost an adversary around 0.186 BTC. In more detail,
0.093 BTC are needed for opening these channels and again 0.093 BTC for closing them
after establishing the according VC, triggering the Domino attack. Note that the latter
amount is also needed if the channels are already there (in the previous simulation).

We therefore put some restrictions on the attacker. We assume that an adversary has a
certain budget to spend on fees for establishing channels over the network. Further, the
adversary constructs VCs of a length of up to n ∈ [2, 11] to herself, i.e., the adversary is
the first and last node. We set the maximum VC length n to 11, the diameter of the LN
snapshot, i.e., at this length, every node can reach every other node.

The adversary needs to post 3 on-chain transactions per VC with the associated fees,
two for establishing the two PCs encasing the victim path and one to close one of these

173

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

channels. Further, for the VC itself, a certain minimum amount is needed to open it,
similar to LN payments. However, since this amount is presumably not only very small
but also the adversary gets it back, we omit it in our simulation and say instead that the
adversary performs this attack in sequence. Finally, we note that the effect of this attack
is likely to be even more severe in reality, since in existing VC constructions, not only
does the channel need to be closed, but subsequent transactions making up the rooted
funding of the VC need to be posted as well.

We present our results in Figure 7.6b. Using only 1 BTC for fees, the adversary can close
up to 97k honest channels, which is more than all channels in our LN snapshot (83k),
and cause a cost of at least 6 BTC to the involved nodes. Budgets in the order of 0.2,
0.5, and 1 BTC are not unrealistic, as there are 1501, 799, and 453 nodes, respectively,
holding this money within the LN, assuming equal balance distribution in the channels,
i.e., 0.5% of nodes in the LN have enough balance to shut down the whole network. If we
consider all Bitcoin addresses (even outside the LN), there exist 815k addresses owning 1
BTC or more [Bit22c].

We remark that since VCs are not used in practice, we cannot evaluate this in the real
world. However, previous work has already shown the feasibility of similar DoS or griefing
attacks and how they transfer to the real world [HZ20]. For a discussion on why it is
infeasible to deter this attack with fees, we refer to Appendix F.2. From our simulation,
it follows that this attack is too severe for the adaption of current VC solutions in PCNs
such as the LN. In order to make VCs usable in practice, it is essential to prevent the
Domino attack.

7.3.4 More drawbacks of current VC constructions

Unlimited lifetime. Existing VC constructions such as Elmo [KL] offer VCs with an
a priori unlimited lifetime. On a high level, unlimited lifetime of a VC means that if
every party agrees (including endpoints and intermediaries), the VC can remain open
potentially forever. While existing work highlights unlimited lifetime as a desirable
feature for both PCs and VCs, we view it as a drawback in the context of VCs. Indeed,
there is an important difference between VCs and PCs: in a VC funds are locked up not
only by the endpoints but also by the intermediaries of the underlying path. Without a
lifetime, intermediaries could have their collateral locked up forever unless they decide to
go on-chain, which however forces them to close their PCs. Related to that, intermediaries
should charge a fee proportional to the collateral and the time this collateral is locked
(analogously to the LN): without a lifetime, the second parameter cannot be estimated
nor enforced without closing the base PCs.

We, therefore, propose a new approach: instead of having an a priori unlimited lifetime,
we fix a certain lifetime at the point of creation. When this lifetime expires, users have the
option to prolong it for another fixed lifetime if everyone agrees or to close it. Prolonging
it means that the VC remains active and any applications hosted on top of can be kept
on being used smoothly. In addition, every intermediary can charge a lifetime-based fee

174

7.4. Donner: Key ideas

every time they prolong the VC. While all agree, they can repeat this process indefinitely.
If one party wants to stop it, the party can unlock their funds without having to close
any channel on-chain. We explain this concept in more detail in Section 7.4.

Recursiveness. The last issue we point out comes from how the VC funding is rooted
in the underlying channels. In current VC constructions, the VC funding is built by
recursively combining two channels at a time, forming a tree with the VC funding
transaction being the root of the tree and the underlying channels being the leaves. This
has two negative implications. First, in addition to closing all PCs (which requires at
least one on-chain transaction per channel), i.e., the leaves of the tree, a linear number
of transactions needs to go on-chain in order to offload a channel, i.e., the non-leaf
nodes of the tree. Second, depending on how the recursiveness has been applied, the
time it takes to offload a VC is also either linear (in case of an unbalanced tree, cf.
Figure F.6 in Appendix F.5.1) or logarithmic (in case of a balanced tree, cf. Figure F.7
in Appendix F.5.1) in the number of underlying channels. In our construction, offloading
involves only a constant number of on-chain transactions as elaborated in the next section.

Lack of path privacy. State-of-the-art VC constructions create the rooted funding by
connecting outputs of pairs of channels in a recursive way. However, this requires the
interaction of some intermediaries with more than their direct neighbors on the path. In
our construction, intermediaries on the path only learn about their direct neighbors in
the honest case, exactly as in the Lightning Network.

7.4 Donner: Key ideas
We describe the core ideas of Donner by assuming that a slight variant of the previously
described Blitz construction is used as the underlying MHP protocol. As detailed below,
our construction is parameterized over it, so that other functionality-equivalent MHP
protocols could be deployed instead.

High level architecture. Let us assume U0 and Un, connected via Ui for i ∈ [1, n − 1],
wish to open a bidirectional VC with capacity α and time T fully funded by U0. First, U0
starts with a slightly modified version of the Setup phase of a Blitz payment of α coins,
as explained in Section 7.2.4, let us call it Setup*. In this modified phase, U0 proceeds to
create a transaction txvc as depicted in Figure 7.3b (this time, including the green part)
instead of txer. txvc takes an input from U0 and creates an output holding α coins and
like in the Setup phase, an output holding ϵ coins for each user except the receiver Un.
This transaction will serve two purposes: (i) it will be the funding of the VC and (ii) it
will be used to synchronize a Blitz payment.

Next, U0 and Un proceed to create the initial state (see Section 7.2.2) txs of the VC
using txvc as funding. We emphasize that this process is exactly the same as for a PC,
the only difference being that the funding transaction txvc has these additional outputs
holding ϵ and we do not intend to publish txvc on-chain. After this step is successful, U0
initiates the remaining phases of Blitz (Open, Finalize, and Respond) using txvc. After

175

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

completion, a Blitz payment of value α is open between U0 and Un conditioned on txvc,
i.e., it is refunded if txvc is posted and otherwise successful after time T .

Intuition security. At this point, the VC is considered open and can be used exactly
like a PC. The careful reader might be wondering why this VC is safe to use. After
all, we detached the funding from the underlying PCs and removed the receiver Un’s
ability to offload the VC. However, the sender U0 did set up a Blitz payment to Un of
α coins, which is the full capacity of the VC. By putting the VC funding inside the
synchronization transaction of Blitz, we make the two actions offload the VC and refund
the Blitz payment atomic. In other words, if U0 does not offload, Un will automatically
receive the full VC capacity via the payment after T .

Getting rid of the Domino attack. We recall the causes for the Domino attack: (i)
the VC funding has to be enforceable on-chain by offloading and (ii) the VC funding is
rooted in all underlying PCs. To prevent the attack, we got rid of (ii): The funding txvc

comes solely from U0, i.e., it is independent (or detached) from the PCs underlying the
VC. The VC can be offloaded without closing the underlying PCs, simply by U0 posting
txvc. Once posted, all PCs can be honestly settled, updating the PC to reflect the refund
or the success of the Blitz payment, as in Blitz itself or other synchronization protocols.

Closing the VC. One of the most essential operations of the VC operation is closing
the VC honestly, i.e., off-chain. This is challenging because closing needs to proceed
in a way, such that no one is at risk of losing funds. To solve this challenge, we first
observe that if the receiver Un already owns all α coins in the VC, the VC endpoints need
merely wait until the Blitz timeout T runs out. At this point, the Blitz payment will be
successful automatically. But what about when Un owns 0 ≤ α′ < α coins in the VC? We
need a protocol that atomically changes the value of the Blitz transaction from α to α′.
To solve this issue, we introduce a new protocol, called synchronized modification, which
given a payment of value α tied to transaction txvc and a timeout T , allows for updating
the payment to a value α′ such that 0 ≤ α′ < α. This is illustrated in Figure 7.7.
Synchronized modification works as follows. We can update individual 2-party Blitz
contracts to the new value α′ from right to left. An intermediary Ui is sure to not lose
money, because the atomicity of Blitz ensures that in both the left (Ui−1, Ui), having
locked α, and the right channel (Ui, Ui+1), having locked α′, the payment is either
refunded or succeeds. In the former case, Ui does not lose money, as both payments are
reverted. In the latter case, Ui gains α while paying α′, so Ui gets some money. We
can incentivize the participation of intermediary users with fees. Alice is incentivized
to publish txvc if the correct updates do not reach her (paying more money than she
owes otherwise), thereby ensuring the atomicity of the synchronized modification. If
all the channels are updated, they can simply go idle waiting for the payment to be
successful after T , or they can finalize this payment instantly by using the fast track
functionality [AMSKM21].

Fair unlimited lifetime. The timeout parameter T serves an additional purpose
here: It is the lifetime of the VC. VC endpoints need to close the VC before T expires.

176

7.5. Donner: Protocol description

Interestingly, we can use the aforementioned synchronized modification operation also for
extending this lifetime. In particular, besides updating the contracts in each channel to
a smaller amount, as shown in Figure 7.7, we can in fact update the timeout T in each
channel. Before the initial timeout T expires, the VC endpoints can run a synchronized
modification update from receiver to sender. If everyone agrees, they can update to
the time T ′ > T , and intermediaries would charge a fee for this. Intuitively, users are
incentivized to agree as they are fine to pay their money later (at T ′) to their right
while receiving it earlier (at T) on their left. This solves the problem of the a priori
unlimited lifetime of prior VC constructions. The endpoints have the guarantee that the
VC remains virtual until a pre-defined timeout, while the intermediaries have a guarantee
that they can unlock their collateral after at most a pre-defined timeout without going
on-chain and they can prolong it if everyone agrees for as long as they wish. Since the
time for which the VC is prolonged is known, intermediaries can adopt a fee model that
is based on time, which is not possible in existing solutions.

7.5 Donner: Protocol description

7.5.1 Security and privacy goals

We informally define three security and three privacy goals for our VC construction. For
a formal definition of these properties as cryptographic games (Definitions 21 to 26) and

U0 U1 U2 U3 U4
α

≥ T

α

≥ T

α

≥ T

α

≥ T

txvc: U4 owns α
Case (i): U4’s balance is reflected in payment.

U0 U1 U2 U3 U4
α′

≥ T

α′

≥ T

α′

≥ T

α′

≥ T

U0 U1 U2 U3 U4
α

≥ T

α

≥ T

α

≥ T

α

≥ T

txvc: U4 owns α′
Case (ii): Discrepancy between U4’s balance and payment.

txvc: U4 owns α′
Case (iii): Synchronized modification to reflect U4’s balance in payment

Figure 7.7: Synchronized modification: Safely modify the contract tied to a transaction
txvc in each channel atomically. Note that txvc is the same transaction in all three cases.

177

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

proofs (Theorems 19 to 24), we defer the reader to Appendix F.6.6. We mark security
goals with an S and privacy goals with a P. Side channel attacks (e.g., probing and
balance discovery) constitute a significant privacy threat for PCNs [KYP+21]. Here, we
rule out side channels from the attacker model to reason about the leakage induced by
the design of the VC construction itself.

(S1) Balance security. Honest intermediaries do not lose any coins when participating
in the VC construction.

(S2) Endpoint security. No user can steal the sender’s balance of the VC. Additionally,
the receiver is always guaranteed to get at least its VC balance.

(S3) Reliability. No (possibly colluding) intermediaries can force two honest endpoints
of a VC to close or offload the VC before the lifespan T of the VC expires.

(P1) Endpoint anonymity. In an optimistic VC execution, intermediaries cannot
distinguish if their left (right) user is the sending (receiving) endpoint or merely an honest
intermediary connected to the sending (receiving) endpoint via other, non-compromised
users.

(P2) Path privacy. In an optimistic VC execution, intermediaries do not learn any
identifiable information about the other intermediaries, except for their direct neighbors.

(P3) Value privacy. The users on the path learn only about the initial and the final
balance of the VC, not the value of the individual payments.

The careful readers may have noticed that P1 and P2 hold only for the optimistic case.
Indeed, like in any other off-chain protocol (e.g., the Lightning Network), the channels
have to go on-chain in order to resolve disputes in the worst case. This means that anyone
observing the blockchain can reconstruct the path. Note, however, that this happens
rarely, as the optimistic case is less costly for the participants. Designing off-chain
protocols that achieve privacy even in case of disputes is an interesting open question.

7.5.2 Assumptions and prerequisites

Digital signatures. A digital signature scheme is a tuple of three algorithms Σ :=
(KeyGen, Sign, Vrfy). On a high level, (pk, sk) ← KeyGen(λ) is a PPT algorithm that
on input a security parameter λ generates a keypair (pk, sk). The public key pk is
publicly known, while the secret key sk is only known to the user who generated that
keypair. σ ← Sign(sk, m) is a PPT algorithm that on input a secret key sk and a message
m ∈ {0, 1}∗ generates a signature σ of m. Finally, {0, 1} ← Vrfy(pk, σ, m) is a DPT
algorithm that on input a public key pk, a message m and a signature σ outputs 1
iff the signature is a valid authentication tag for m w.r.t. pk. We use a EUF-CMA
secure [GMR88] signature scheme Σ as a black box throughout this work.

Payment channel notation. We model each payment channels as a tuple: γ :=
(id, users, cash, st). The attribute γ.id ∈ {0, 1}∗ uniquely identifies a channel; γ.users ∈ P2

178

7.5. Donner: Protocol description

identifies the two parties involved in the channel out of the set of all parties P . Moreover,
γ.cash ∈ R≤0 denotes the total monetary capacity (i.e., the coins) of the channel and
the current state is stored as a vector of outputs of txstate: γ.st := (θ1, ...θn). In this
work, we use channels in paths from a sender to a receiver. For simplicity, we say that
γ.left ∈ γ.users refers to the user closer to the sender, while γ.right ∈ γ.users refers to the
user closer to the receiver. The balance of both users can always be inferred from the
current state γ.st. For convenience, we say that γ.balance(U) gives the coins owned by
U ∈ γ.users in this channel’s latest state γ.st. Finally, we define a channel skeleton γ for
a channel γ, as γ := (γ.id, γ.users).

Ledger and channels. We use the ledger (or blockchain) and a PCN (both introduced
in Section 7.2) as black-boxes in our construction. The ledger keeps a record of all
transactions and balances and is append-only. The PCN supports opening, updating and
closing of PCs. We assume the PCs involved in VCs to be already open. We interact
with ledger and PCN through the following procedures.

publishTx(tx): The transaction tx is posted on-chain after at most ∆ time (the blockchain
delay), if it is valid.

updateChannel(γi, txstate
i): This procedure initiates an update in the channel γi to the

state txstate
i , when called by a user ∈ γi.users. The procedure terminates after at most tu

time and returns (update−ok) in case of success and (update−fail) in case of failure to
both users. We call this function also to update our VC hosted on txvc.

closeChannel(γi): This procedure closes the channel γi, when called by a user ∈ γi.users.
The latest state transaction txstate

i appears on the ledger after at most tc time.

preCreate(txvc, index, U0, Un): Pre-creates the VC γvc, exchanging the initial state trans-
actions with the other user in γvc.users := (U0, Un) based on the output identified by
index of the funding transaction txvc that remains off-chain for now. It finally returns γvc.

Assumptions and remarks. In our construction, we assume that every user U has a
public key pkU to receive transactions. Additionally, we assume that honest parties stay
online for the duration of the protocol, like in the Lightning Network. A path-finding
algorithm to identify a payment path can be called by pathList ← GenPath(U0, Un). This
will return a path in the PCN from U0 to Un. Path-finding algorithms are orthogonal
to the problem tackled in this paper and we refer the reader to [SVR+20,RMKG18] for
more details. Finally, we assume fee to be a publicly known value charged by every user.
Note that in practice, every user can charge an individual fee. We reuse the pseudo-code
definitions of Setup, Open, Finalize, and Respond from [AMSKM21] in Figure 7.8.

7.5.3 Detailed construction and pseudocode

Recall the setting, where U0 and Un, connected via Ui for i ∈ [1, n − 1], wish to open a
bidirectional VC with capacity α fully funded by U0. We consider the different phases

179

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

of Donner: OpenVC, UpdateVC, CloseVC, ProlongVC and Respond. We show the
used macros in Figure 7.8(a), the procedure for updating individual PCs for the close
or prolong VC phase in Figure 7.8(b), and the whole protocol in Figure 7.8(c). For
completeness, we explain the protocol including the operations of Blitz [AMSKM21]
below in prose, while in Figure 7.8(c) we show a modularized protocol based on the
operations setup, open, finalize and respond. We remark that in this work, we could
use any other construction providing the same functionality, e.g., this can be achieved
by smart contract enabling UTXO-based chains such as the EUTXO model used in
Cardano [CCM+20]. For better readability we simplify the protocol, e.g., we omit ids
required for routing VCs concurrently. For the formal protocol description in the UC
framework, we defer to Appendix F.6.4.

OpenVC. This phase uses a modified Blitz Setup phase (Setup*) and Open/Finalize
of Blitz. Setup*: The sender U0 starts by creating a transaction txvc that contains an
output θvc holding α coins spendable under the condition MultiSig(U0, Un) and n outputs
θϵi holding ϵ coins each spendable under the condition OneSig(Ui) + RelTime(tc + ∆) ,
one for every user Ui for i ∈ [0, n − 1]. Spending from θvc, U0 and Un create commitment
transactions for the VC with γvc := preCreate(txvc, 0, U0, Un). This function pre-creates
the VC γvc, exchanging the initial state transactions with the other user in γvc.users :=
(U0, Un) based on the output with index 0 of the funding transaction txvc that remains
off-chain for now. It finally returns γvc.

Open (Blitz): Then, each pair of users from U0 to Un performs pcSetup of [AMSKM21],
which we briefly summarize as follows. Sender U0 presents its neighbor U1 with txvc and an
update of their channel to a state, where α coins of U0 are spendable under the condition
ϕ = (OneSig(U1) ∧ AbsTime(T)) ∨ (MultiSig(U0, U1) ∧ RelTime(∆)). Passing along txvc

does not violate privacy, due to the usage of stealth addresses, see Appendix F.5.2.

Before actually updating the channel, U1 gives U0 its signature for txr
0. txr

0 takes as inputs
the output holding α of the aforementioned proposed state update and the output θϵ0 of
txvc holding ϵ under U0’s control. After receiving the signature, they perform this update
and revoke their previous state. In the same fashion, U1 continues this procedure with
its neighbor U2 and this continues with its neighbor until the receiver Un has successfully
updated its channel with its left neighbor Un−1. Then, Un sends a confirmation to U0
(Finalize).

UpdateVC. At this point the VC γvc is considered to be open and ready to be used. An
update is performed by creating a new state txstate

i and calling updateChannel(γvc, txstate
i).

This function updates the VC γvc, changing the latest state transaction to txstate
i and

revoking the previous one. In case of a dispute, the users wait until the VC is offloaded.
At this time, the VC is closed.

In the beginning, the whole balance lies with U0, but once the balance is redistributed, the
channel is usable in both directions. Should they wish to construct a channel where they
both hold some balance initially, they can start the construction in the other direction
for a second time, as we discuss in Appendix F.2. When they have rebalanced the money

180

7.5. Donner: Protocol description

inside the VC and definitely before time T , they proceed to the next phase, the closing
phase.

CloseVC/ProlongVC (Synchronized modification). For closing the VC, assume
its final balance is α − α′ belonging to U0 and α′ to Un (and T ′ = T). For prolonging
the lifetime, assume the new time is T ′ > T (and α′ := α). In either case, pairs of
users perform the new functionality 2pModify from right to left, which we outline as
follows. Un starts the following update process with its left neighbor Un−1. Un presents
a state, where (instead of α) only α′ coins from Ui−1 are spendable under the condition
ϕ = (OneSig(Un) ∧ AbsTime(T)) ∨ (MultiSig(Un−1, Un) ∧ RelTime(∆)) (closing) or the
time in this condition is changed to T ′ (prolong). For this new state, Un creates a
transaction txr

n−1 spending this output and the output of txvc belonging to Un−1 and
gives its signature for this new txr

n−1 to Un−1. After Un−1 checks that the new state
and new txr

n−1 are correct, they update their channel to this new state and revoke the
previous one (cf. Figure 7.8(b)).

User Un−1 continues this process with its left neighbor Un−2 and so on until the sender
U0 is reached. U0 checks that the balance in the state update is actually the balance that
U0 owes Un in the VC, α′. If it is not the same, or no such request reaches the sender,
U0 simply publishes txvc on-chain and claims txr

0 before the currently active timeout
T expires. In the case where the correct request reaches the sender, they can either
continue using the VC until T ′ (prolong) or in the case of closing, they wait until T
expires, at which the money α′ automatically moves from left to right to the receiver,
or they perform the fast-track mechanism of [AMSKM21] to immediately unlock their
funds (cf. Appendix F.2). VC endpoints do not need to wait until T , but can close the
VC well before if they wish to do so.

Respond. This phase corresponds to the phase with the same name of Blitz, which
proceeds thus. Participants have to monitor the ledger if txvc is published. In case it is
published and its outputs are spendable before T , each user Ui for i ∈ [0, n − 1] needs to
refund the money they staked in their right channel. They can either do this off-chain
if their right neighbor is cooperating or in the worst case, forcefully on-chain via txr

i.
Similarly, after time T has expired without txvc being published on-chain, each user Ui for
i ∈ [1, n] can claim the money from their left channel. Again, this can happen honestly
off-chain or forcefully via txp

i .

Remarks. Because we detached the funding transaction from the underlying channels,
we additionally get rid of the other issues presented in Section 7.3.4. Since the funding
can be published independently from the channels and the collateral outcome depends
on the funding, we give back the possibility to intermediaries to resolve their channels
honestly. Additionally, as the funding is not constructed by combining the outputs of the
underlying channels in sequence, we eliminate the additional linear on-chain transactions
(needing only one) and reduce the linear (or logarithmic) time delay for publishing the
funding transaction to a constant. Further, as we discuss in Section 7.6, Donner achieves

181

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

(a) Macros: genState(αi, T , γi): Generates and returns a new channel state carrying transac-
tion txstate

i from the given parameters. GenPay(txstate
i) Returns txp

i , which takes txstate
i .output[0]

as input and creates a single output := (αi, OneSig(Ui+1)). GenRef(txstate
i , txvc, θϵi) Return

txr
i, which takes as input txstate

i .output[0] and θϵi ∈ txvc.output. The calling user Ui makes
sure that this output belongs to an address under Ui’s control. It creates a single output
txr

i.output := (αi + ϵ, OneSig(Ui)), where αi, Ui, Ui+1 are taken from txstate
i .

(b) 2-party operation: 2pModify(γi, txvc, α′
i, T ′)

Let T be the timeout, αi the amount and θϵi−1 be the output used for the two party contract
set up between Ui−1 and Ui, known from pcSetup executed in the Open [AMSKM21] phase.
Ui: txstate′

i−1 := genState(α′
i, T ′, γi−1), txr′

i−1 := GenRef(txstate′
i−1 , θϵi−1), then send (txstate′

i−1 , txr′
i−1,

σUi
(txr′

i−1)) to Ui−1 //θϵi−1 known as θϵx
from pcSetup Ui−1 upon (txstate′

i−1 , txr′
i−1, σUi

(txr′
i−1)):

1. Extract α′
i and T ′ from txstate′

i−1 . Check that α′
i ≤ αi, T ′ ≥ T and txstate′

i−1 = genState(α′
i,

T ′, γi−1).If Ui−1 = U0, ensure that α′
i ≤ x + n · fee where x is the final balance of Un in the

virtual channel. Check that σUi
(txr′

i−1) is a correct signature of Ui for txr′
i−1. Check that

txr′
i−1 = GenRef(txstate′

i−1 , θϵi−1) //αi, T and θϵi−1 from pcSetup

2. updateChannel(γi−1, txstate′
i−1)

3. If, after tu time has expired, the message (update−ok) is returned, replace variables txstate
i−1

and txr
i−1 with txstate′

i−1 and txr′
i−1, respectively. Return (⊤, α′

i, T ′). Else, return ⊥.

Ui: Upon (update−ok), replace variables txstate
i−1 , txr

i−1 and txp
i−1 with txstate′

i−1 , txr′
i−1 and TXi−1

f :=
GenPay(txstate′

i−1), respectively.
(c) Protocol: OpenVC

(i) Setup∗ (see also Appendix F.5, Figure F.8), as in [AMSKM21], except:

• Create txvc instead of txer as shown in Figure 7.3b
• γvc := preCreate(txvc, 0, U0, Un) together with Un after creating txvc, to create the VC

commitment transactions.
(ii) Open and Finalize (see also Appendix F.5, Figure F.8) as in [AMSKM21]

UpdateVC
Both Ui ∈ γvc.users can update γvc: Create a new state txstate

i and call updateChannel(γvc, txstate
i).

CloseVC/ProlongVC (synchronized modification)
(i) InitClose/InitProlong

• Un: Let α′
i be the final balance of Un in the virtual channel and T ′ = T (Close) or let

T ′ > T be the new lifetime of the VC and leave α′
i = αi (Prolong). Execute 2pModify(γi,

txvc, α′, T ′)
• Ui−1 upon (⊤, α′

i, T ′): If Ui−1 ̸= U0, let α′
i−1 := α′

i+fee, exe. 2pModify(γi−2, txvc, α′
i−1, T ′)

(ii) Emergency-Offload: If U0 has not successfully performed 2pModify with the correct value
α′ (plus fee for each hop) until T − tc − 3∆, publishTx(txvc, σU ′

0
(txvc)). Else, update T := T ′

Respond (see also Appendix F.5, Figure F.8) as in [AMSKM21]

Figure 7.8: (a) macros, (b) 2-party operation, (c) protocol

182

7.6. Security analysis

a better level of privacy. We include an illustration of the full construction and the offload
operation Figures F.2 and F.3 in Appendix F.3.

7.6 Security analysis

7.6.1 Informal security analysis

Balance security. When the VC is opened, a Blitz [AMSKM21] collateral payment
is simultaneously opened from sender to receiver. A Blitz payment provides balance
security to the intermediaries. An intermediary is merely involved in a payment, the
outcome of which is atomically determined by whether or not txvc is posted. For both of
these outcomes, the intermediary does not lose money. As already argued in Section 7.4
the synchronized modification operation does not put an intermediary at risk.

Endpoint security. An honest sender can always enforce the VC that holds its correct
balance by posting txvc and thereby offloading the VC. By doing so, the refunding of the
collateral along the path is triggered, including the one of the sender itself. This means
that in case of a dispute or someone not cooperating, the sender can always use the
offloading before T to ensure its balance. An honest receiver will get its rightful balance
either when the channel is offloaded or, if it is not, after time T through the collateral,
which is moved from left to right along the path.

Reliability. Only the sender is able to offload the VC. This means that if sender and
receiver are honest, no one can force them to offload the VC before T .

Endpoint anonymity and path privacy. txvc is constructed, as in Blitz, based on
fresh and stealth addresses and the endpoints of the VC rely on fresh addresses too.
Hence, an intermediary observing txvc learns no meaningful information about the sender,
the receiver, and the path. This holds only in the optimistic case. In the pessimistic
case, it might be possible to link (parts of) the path to txvc and also link the VC to
sender/receiver, like in any other off-chain protocol, including the Lightning Network.

Value privacy. Similarly to how payments between users of a payment channel (PC)
are known only to those users, also VC updates are only known to the endpoints. There
occur no on-chain transactions in the optimistic case throughout the protocol. Any two
users connected in the PC network can open a VC, and apart from their open and close
balance, the amount and nature of the individual updates remains known only to them,
even in the pessimistic case.

7.6.2 Security model

We rely on the synchronous, global universal composability (GUC) framework [CDPW07]
to model the Donner protocol. We make use of some preliminary functionalities commonly
used in the literature [AEE+21,DEF+19b,DEFM19,AMSKM21,AME+21]. The global
ledger L is maintained by the functionality GLedger, which is parameterized by a signature

183

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

scheme Σ and a blockchain delay ∆, i.e., an upper bound on the number of rounds it
takes for a valid transaction to appear on L, after it is posted. The notion of time (or
computational rounds) is modeled by Gclock and the communication by FGDC . Finally, a
functionality FChannel handles the creation, update, and closure of PCs as well as the
preparation and update of the VCs.

We define an ideal functionality FP ay that models the idealized behavior of our VC
protocol, stipulating input/output behavior, impact on the ledger as well as possible
attacks by adversaries. In the ideal world, FP ay is a trusted third party. Additionally, we
formally define the real-world hybrid protocol Π and show that Π emulates (or realizes)
FP ay. For this, we describe a simulator S that translates any attack of any adversary on
Π into an attack on FP ay.

To show that the protocol Π realizes FP ay, we need to show that no PPT environment E
can distinguish between interacting with the real world and interacting with the ideal
world with non-negligible probability. This implies, that any attack that is possible on
the protocol is also possible on the ideal functionality. Intuitively, it suffices to output
the same messages and add the same transaction to the ledger in both the real and the
ideal world in the same rounds. We refer to Appendix F.6 for the preliminaries, the ideal
functionality, the formal protocol, the simulator, the formal proof of Theorem 7 and the
formalization of the security and privacy goals (Definitions 21 to 26) as well as the proof
that FP ay has these properties (Theorems 19 to 24).

Theorem 7. For functionalities GLedger, Gclock, FGDC , FChannel and for any ledger delay
∆ ∈ N, the protocol Π UC-realizes the ideal functionality FP ay.

7.7 Evaluation and comparison

Communication overhead. We implemented a small proof-of-concept that creates
the raw Bitcoin transactions necessary for Donner [Don21]. In this implementation, we
use the library python-bitcoin-utils and Bitcoin Script to build the transactions
and test their compatibility with Bitcoin by deploying them on the testnet. We show the
results for the operations Open, Update, Close, Offload in Table 7.2. For transactions
that go on-chain, we provide additionally the expected cost in USD at the time of writing.
For this evaluation, we assume generalized channels [AEE+21] as the underlying payment
channel (PC) protocol, but note that Donner is also compatible with Lightning channels
(as we discuss at the end of this section).

For opening a virtual channel (VC), each of the n underlying PCs needs to exchange
4 transactions: txvc, txr

i, and two transactions for updating the state. Since txvc has
an output for every intermediary and the sender, its size increases with the number of
channels on the path n and is 192 + 34 · n bytes. txr

i has a size of 306 bytes, and a channel
update to a state holding this contract is 742 bytes. txp

i does not need to be exchanged,
since the left user of a channel can generate it independently. This totals to 1240 + 34 · n
bytes of off-chain communication per channel for the open phase. Then, we require to

184

7.7. Evaluation and comparison

Table 7.2: Communication overhead of Donner for the whole path (not per party) for
the different operations, assuming a VC across n channels. In the pessimistic offload,
k ∈ [0, n] is the number of channels where there is a dispute. Only in the Offload case
transactions are posted on-chain.

txs size (bytes) on-chain cost (USD)
Open 4 · n + 2 34 · n2 + 1240 · n + 695 0
Update 2 695 0
Close 3 · n 1048 · n 0
Offload (Optimistic) 1 192 + 34 0.25 + 0.04 · n
Offload (Pessimistic) 3k + 1 1048 · k + 192 + 34 · n 1.36 · k + 0.25 + 0.04 · n

exchange the initial state of the VC, which is 2 transactions or 695 bytes. This totals
4 · n + 2 transactions or 34 · n2 + 1240 · n + 695 bytes for the path.

For honestly closing a VC, the payment needs to be updated from right to left. However,
txvc does not need to be exchanged anymore, so we only need to exchange 3 transactions
or 1048 bytes for each of the n underlying channels. To update a VC, the two endpoints
need to exchange 2 transactions with 695 bytes, the same as a PC update.

Finally, for offloading, only the transaction txvc needs to be posted on-chain and nothing
per channel. This means 192 + 34 · n bytes and costs 0.25 + 0.04 · n USD. Note that
if individual users on the path do not collaborate, regardless if the VC is offloaded or
successfully closed, these channels may need to be closed as well. We argue that this is
also the case during the normal PC execution, e.g., when routing multi-hop payments.
However, for every channel that does need to be closed, the three transactions exchanged
in the close phase need to be posted additionally. If there are k channels with such a
dispute, this results in a total of 3k + 1 transactions or 1048 · k + 192 + 34 · n bytes, which
costs 1.36 · k + 0.25 + 0.04 · n USD for the whole path. We mark this as the pessimistic
case in Table 7.2.

Efficiency comparison. We compare our construction to LVPC [JLT20] and Elmo [KL]
(cf. Table 7.3), the only current Bitcoin-compatible VC solutions over multiple hops. As
already mentioned, LVPC and Elmo have rooted VC funding transactions. We evaluate,
in particular, the off-chain and on-chain costs of the core VC operations (open, update,
close, and offload), concluding that Donner is better in each case.

LVPC is constructed recursively; there are different ways of doing the recursion. Each
combination leads to the same minimum number of VCs required for a path of n base
channels: One for each of the n−1 intermediaries. The storage overhead per intermediary
is linear in the number of layers on top of a user, which in turn is in the worst case
linear (Figure F.6 in Appendix F.5.1) and in the best case logarithmic (Figure F.7 in
Appendix F.5.1) in the path length.

In the open phase across the whole path, Donner requires 4 · n + 2 off-chain transactions
for the whole path. In LVPC, 7 off-chain transactions per VC are needed, so 7 · (n − 1).
Similarly, for closing, we need to store 4 transactions per VC in LVPC, so 4 · (n − 1).
Elmo requires to store n − 2 + χi=2 + χi=n−1 + (i − 2 + χi=2)(n − i − 1 + χi=n−1) ∈ Θ(n2)

185

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

Table 7.3: Comparison of LVPC, Elmo and Donner for a VC over from U0 to Un.1In
the pessimistic offload in Donner, k ∈ [0, n] is the number of channels where there is a
dispute.

txs off-chain
Open LVPC [JLT20] 7 · (n − 1) ✓

Elmo [KL] Θ(n3) ✓

Donner 4 · n + 2 ✓

Update LVPC [JLT20] 2 ✓

Elmo [KL] 2 ✓

Donner 2 ✓

Close LVPC [JLT20] 4 · (n − 1) ✓

Elmo [KL] 3 · n + 3 ✗

Donner 3 · n ✓

Offload LVPC [JLT20] 5 · (n − 1) ✗

(Optimistic) Elmo [KL] 3 · n + 1 ✗

Donner 1 ✗

Offload LVPC [JLT20] 5 · (n − 1) ✗

(Pessimistic) Elmo [KL] 3 · n + 1 ✗

Donner1 3 · k + 1 ✗

(where χP is 1 if P is true and 0 otherwise) for the ith intermediary (and 1 for the
endpoints), resulting in a storage overhead of Θ(n3) for the whole path. Closing honestly
(i.e., off-chain) is not defined for Elmo, so it needs to be closed on-chain, resulting in
2 transactions per channel (n) for closing plus 1 transaction per user (n + 1) plus 2
transactions to close the VC or 3 · n + 3 on-chain transactions. Donner requires the close
operation per underlying channel, so 3 · n transactions. The update phase is the same in
all constructions.

The interesting case again is the offload case. As we already pointed out, a fully rooted,
recursive VC construction requires to close all underlying channels. This means in LVPC,
we require 2 transactions per underlying channel, of which we have n PCs and n − 2 VCs
(all but the topmost one). Additionally, we need to publish n − 1 funding transactions
of the VCs including the topmost one. This results in 2 · (2n − 2) + n − 1 = 5 · n − 5
transactions that have to be posted on-chain along with the fact that all involved channels
have to be closed in the case of a dispute. In Elmo, we need 3 · n + 1, i.e., the number of
transactions to close minus the 2 transactions required to put the VC state on-chain. In
Donner, only 1 transaction has to be posted on-chain. For the pessimistic offload, there
need to be 3 · k + 1 transactions posted in Donner, where k is the number of channels

186

7.8. Conclusion

where there is a dispute. We show an application example in Appendix F.1.1, where
we analyze how Donner can be used to connect a node better to a network via VCs,
compared to no VCs and LVPC.

Compatibility with LN channels. To simplify the formalization of this work, we built
our VC construction on top of generalized payment channels (GC) [AEE+21], which have
one symmetric channel state. However, it is also possible to construct Donner on top of
LN channels, which have two asymmetric channel states. The (one-hop) BCVC [AME+21]
constructions rely on GCs as well, while the recursive LVPC [JLT20] relies on simple
channels that have only one state, but each update reduces the limited lifetime of the
channel. (Elmo [KL] needs the opcode ANYPREVOUT that is not supported in Bitcoin or
in the LN.)

As LN channels are the only ones deployed in practice so far, it is interesting to investigate
the effect of building VCs on top of LN channels. We point out that building Donner on
top of LN channels is not difficult, as the collateralization in the underlying base channels
is similar to a MHP. In fact, the only two differences for implementing Donner on top of
LN channels instead of GCs is that (i) for each of the two asymmetric states per channel
we now need to create a txr

i transaction, so two instead of one, and (ii) a punishment
mechanism has to be introduced per output instead of per state (e.g., similar to how
HTLCs are handled in LN).

The LVPC construction is not as straightforward to implement on top of LN channels.
Similarly to Donner, we need to introduce a punishment mechanism (ii). However, the
more difficult part is handling the two asymmetric states (i). Since the VC needs to be
able to be posted regardless of which of the two states are posted, there needs to be a
unique funding transaction (called Merge in [JLT20]) for each possible combination of
states in the underlying channels. This implies that in a LVPC-like construction which is
built on top of LN channels, the storage overhead per party is exponential in the layers
of VCs that are constructed over this party. In fact, using channels with duplicated
states this exponential growth is present in every rooted, recursive VC construction. This
follows from the evaluation in [AEE+21]. For each of these exponentially many copies of
the VC, commitment transactions need to be exchanged for an update, so there is an
exponential communication overhead too. Note that the storage overhead for Donner on
top of LN channels is constant as is the communication overhead for updates.

7.8 Conclusion

Payment channel networks (PCNs) have emerged as successful scaling solutions for
cryptocurrencies. However, path-based protocols are tailored to payments, excluding
novel and interesting non-payment applications such as Discreet Log Contracts, while
creating direct PCs on-demand is expensive, slow, and infeasible on a large scale. VCs are
among the most promising solutions. We show that all existing UTXO-based constructions
are vulnerable to the Domino attack, which fundamentally undermines the underlying
PCN itself.

187

7. Breaking and Fixing Virtual Channels: Domino Attack and Donner

Hence we introduce a new VC design, the first one to be secure against the Domino
attack, besides the only one achieving path privacy and a time-based fee model. Our
performance analysis demonstrates that Donner is more efficient: It only requires a single
on-chain transaction to solve disputes, as opposed to a number that is linear in the path
length, and the storage overhead is constant too, as opposed to linear.

Overall, Donner offers an easy-to-adopt, LN-compatible VC construction enabling new
applications such as Discreet Log Contracts or fast and direct micropayments, without the
need to create a direct PC. Unlike the underlying PCNs, the VCs are not susceptible to
liveness and privacy attacks by the intermediaries and do not require fees per payment.

Acknowledgements. This work has been supported by the European Research
Council (ERC) under the Horizon 2020 research (grant 771527-BROWSEC); by the
Austrian Science Fund (FWF) through the projects PROFET (grant P31621) and the
project W1255-N23; by the Austrian Research Promotion Agency (FFG) through the
Bridge-1 project PR4DLT (grant 13808694) and the COMET K1 SBA and COMET
K1 ABC; by the Vienna Business Agency through the project Vienna Cybersecurity
and Privacy Research Center (VISP); by CoBloX Labs; by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National Foundation for Research, Tech-
nology and Development and the Christian Doppler Research Association through
the Christian Doppler Laboratory Blockchain Technologies for the Internet of Things
(CDL-BOT); by the National Science Foundation (NSF) under grant CNS-1846316; by
Madrid regional government as part of the program S2018/TCS-4339 (BLOQUES-CM)
co-funded by EIE Funds of the European Union; by the project HACRYPT (N00014-
19-1-2292); by grant IJC2020-043391-I/MCIN/AEI/10.13039/501100011033 and Euro-
pean Union NextGenerationEU/PRTR; by PRODIGY Project (TED2021-132464B-I00)
funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGen-
erationEU/PRTR; by SCUM Project (RTI2018-102043-B-I00) MCIN/AEI/10.13039/
501100011033/ERDF A way of making Europe.

188

CHAPTER 8
Conclusion and Directions of

Future Research

8.1 Conclusion

In this thesis, we have shown how protocols built on top of cryptocurrencies can be used
to improve scalability. To this end, we have introduced novel protocols for payment
channels, payment channel networks, and virtual channels, improving upon the state of
the art in off-chain scaling solutions in terms of security, privacy, efficiency, and allowing
for new applications.

First, we introduced a payment channel protocol allowing users to go offline safely.
Thereby, we get rid of the online assumption, one of the major disadvantages and
differences of existing layer-2 (off-chain) solutions over layer-1 (blockchain). Further,
we formalize the notion of generalized channels and provide a protocol that effectively
bridges the gap between payment channels and state channels. Generalized channels can
be used to lift any scripting capabilities of the underlying blockchain to the off-chain
setting. We eliminate state duplication, handling the punishment mechanism instead
with adaptor signatures, which we formalize for the first time.

Second, we introduce a new multi-hop payment scheme that, for the first time, consolidates
the efficiency of one-round payments with the security of two-round payments. This is
not only theoretically interesting but also has an impact in practice, as we demonstrate
in our simulation on the effect of constant collateral lock time. Moreover, we introduce a
multi-channel update scheme, which allows us to securely and atomically update multiple
payment channels that do not have to be aligned on a path. Instead, they can have
any topology, which opens the door to new and exciting applications, such as off-chain
crowdfunding or transaction aggregation.

189

8. Conclusion and Directions of Future Research

Finally, we introduce the first Bitcoin-compatible virtual channel protocol, demonstrating
that virtual channels can be built without relying on Turing-complete scripting. Further,
we analyze this construction as well as concurrent virtual channel constructions for
Bitcoin. We find a common design paradigm that allows for a devastating novel attack.
We simulate the severity of this attack, showing that these existing constructions should
not be used in practice. Moreover, we present a generic multi-hop virtual channel
construction that is not only secure against this attack but also improves efficiency and
allows for a fair economic fee model. Such a general virtual channel construction enables
hosting any application (e.g., DLCs) in a multi-hop setting.

8.2 Directions for Future Work

Collateral. One fundamental drawback of payment channel networks as scalability
solutions is that they require a large amount of money to be locked up in channels. The
normal functioning of PCNs requires intermediary users to lock up some collateral, both for
routing payments and for building virtual channels. To resolve this issue, there are some
potential future research directions. Existing countermeasures include making channel
allocation more effective, both for payment and virtual channels, e.g., [KR21,ACM+].
More interesting still would be to enable users who have money in the PCN to be able to
use that money for anything while further reducing or removing the need for collateral of
intermediaries. It would be interesting to explore how the advantages of PCNs and, e.g.,
rollups or other scalability can be combined, potentially in a hybrid approach.

Interoperability. There is a vast number of different cryptocurrencies, each with a
unique set of features. To avoid using centralized services such as exchanges, it is crucial
to have cross-chain protocols. In the context of PCNs, cross-chain multi-hop payments
or swaps are already possible using HTLCs or adaptor signatures, assuming that there
is at least one party on both chains. Exploring how one could build cross-chain virtual
channels, atomic multi-channel updates, or other off-chain applications would be an
exciting line of research. But not only the interoperability between different blockchains
is interesting, also making different scaling solutions compatible is an exciting research
direction, e.g., PCNs and rollups, sidechains, etc.

Privacy. PCNs are somewhat revealing, as they generally leak the value of each payment
to intermediary users. This is necessary since the intermediary users need to lock up
collateral. The situation improves somewhat through the use of virtual channels, which at
least hide any operation other than opening and closing from intermediaries; in particular,
they hide the number of updates and the value of each update. Still, exploring the
possibility of building value-privacy-preserving multi-hop payment schemes or virtual
channels that do not reveal this balance during the opening and closing of the channel
would be intriguing.

Expressiveness. One of the goals of this thesis was already to explore which off-chain
protocols we can build with limited scripting. An interesting follow-up would be to see

190

8.2. Directions for Future Work

formally what the minimal required scripting capabilities of the underlying blockchain are
to build a given off-chain protocol and why. For example, for what type of applications
is it needed to have relative timelocks? Another compelling direction is to explore how
having an account-based model instead of a UTXO-based model impacts the applications
that can be expressed, given the same scripting capabilities. However, it is also interesting
to see if off-chain protocols can be used to add functionality, possibly also by adding
trust assumptions, such as a trusted price oracle.

Efficiency. To reduce cost and make off-chain protocols more usable in practice,
minimizing the on-chain load in the pessimistic case is essential. One of the techniques
we use in this thesis is to make use of auxiliary outputs, which hold a negligible amount
ϵ. These outputs exploit the UTXO model and are necessary to make some transactions
depend on another transaction. However, they have some impact on practicality. First,
one protocol party (e.g., the sender of a payment in Blitz) needs to fund these outputs,
which is undesirable even for tiny amounts. Second, these outputs are not used in the
optimistic case, possibly remaining unclaimed for a long time or forever. This leads to
an unnecessary load on the UTXO set, i.e., the data structure that miners use to keep
unspent outputs in memory. It would be exciting to get rid of these auxiliary outputs.

191

List of Figures

1.1 Payment channel: A payment channel consists of three operations. Alice and
Bob can (1) open a payment channel by creating a funding transaction, which
locks some of their money in a shared account (multisig address). In this
example, Alice puts 6 coins and Bob 4 coins into the funding transaction.
They create another transaction (state), which pays them back their coins
in this initial balance distribution (A : 6, B : 4) and then post the funding
transaction on the blockchain. Then, Alice and Bob can (2) update their
channel from (A : 6, B : 4) to, e.g., (A : 3, B : 7), which represents Alice
paying 3 coins to Bob. They can continue updating their channel as often as
they want. When they are done, they finally (3) close their channel with the
latest state, unlocking their coins. Only two transactions go on-chain. . . 4

1.2 Multi-hop payment (MHP): Sender A pays 4 coins to receiver D via B and
C. The colored boxes connecting two users represent payment channels (as
shown in Figure 1.1). The first row shows the initial balance distribution of
the channels. The second row shows the desired outcome after the payment,
where 4 coins were transferred to the receiver. The challenge of MHPs is to
update these channels atomically in order to prevent honest users from losing
their coins. 5

1.3 Virtual Channel (VC): A VC is not funded on-chain, but built on top of
payment channels. For this, some funds of these underlying payment channels
are locked (illustrated in gray) as collateral, such that the whole VC capacity
is covered (in this example, 5 coins). This collateral is used to compensate
honest users in case of misbehavior. After successfully closing a VC, its latest
balance will be reflected in the underlying payment channels. All operations
happen off-chain and while the VC is open, the two endpoints, A and D, can
transact without the involvement of the intermediaries B and C. 6

193

1.4 Lightning channel: In Lightning channels, there exist two versions of each
state (state duplication), one for Alice (e.g., State0

A) and one for Bob (e.g.,
State0

B). When updating to a new state, Alice and Bob sample new revocation
secrets r1

A and r1
B uniformly at random, respectively. Then, they create the

two versions of the new state State1
A and State1

B, exchange the signatures of
the respective state (Alice signs State1

B , Bob signs State1
B), and then exchange

the revocation secrets of the previous states r0
A and r0

B. If Bob now tries to
cheat by posting State0

B because he holds more coins than in State1
B, there

is a spending condition on his balance, and he cannot spend it right away.
Alice has one day to use r0

B to punish Bob and steal all his money. If Bob
had posted the latest state State1

B, Alice would not have known r1
B yet and

could not have punished Bob. This ensures that honest parties cannot lose
their funds, but comes at the cost of users constantly needing to monitor the
blockchain to react to misbehavior, having two versions of each state, and
needing a punishment mechanism per output. 8

1.5 Hash Time Locked Contract (HTLC): This example shows an HTLC inside
the channel of Alice and Bob. Here, Alice and Bob create and update their
payment channel to a new state, where Alice locks 4 of her coins in an HTLC,
conditioned on y and t = 2days. These 4 coins can be spent either by Bob, if
Bob knows a pre-image r, such that H(r) = y, or else by Alice, after 2days. 10

1.6 Lightning payment: Sender A pays 4 coins to receiver D via B and C. The
colored boxes connecting two users represent payment channels (as shown in
Figures 1.1 and 1.5). The first row shows the initial balance distribution of
the channels. The last row shows the desired outcome, where 4 coins were
transferred to the receiver. These updates should occur atomically. In the
case of Lightning-based HTLC payments, this is achieved in four steps. (1) D
samples a uniformly random string r, and (2) sends its hash y := H(r) to A.
Then, in step (3), parties lock 4 coins in an HTLC, sequentially from left to
right. B and C each charge 0.1 fee in this example, thus forward only 3.8 and
3.9 coins, respectively. In step (4), after creating all HTLCs, D knowing r
can unlock his HTLC with C, claiming the coins and revealing r to C, who
can continue in the same way until all HTLCs are unlocked. Due to the
increasing timelocks (1, 2, and 3 days, respectively), each user has enough
time to propagate r. Users are incentivized to unlock the HTLC. If something
goes wrong before step (3) is completed, or if D chooses not to reveal r, the
HTLCs are reverted after the timelocks expire. Thus, the payment is atomic. 11

194

2.1 The transaction flow of LN channel between A and B. Rounded boxes represent
transactions, rectangles within represent outputs of the transaction: here vA +vB = f .
Incoming arrows represent transaction inputs, while outgoing arrows represent how
an output can be spent. Double lines from transaction outputs indicate the output is
a shared address. A single line from the transaction output indicates that the output
is a single party address. We write the timelock (∆) associated with a transaction
over the corresponding arrow. 24

2.2 Transaction flow of our base solution. Here double lines from transaction outputs
indicate that the output is a 2-party shared address between A and B. A single line
from the transaction output indicates that the output is a single party address. We
have vA + vB = f and ϵ is some negligible amount of coins. 26

2.3 Transaction flow of the extension to our protocol. Again, vA + vB = f and ϵ is some
negligible amount of coins. The collateral c can be chosen as a value 0 ≤ c ≤ f . For
c = 0, we get Figure 2.2. 27

2.4 Ideal Functionality . 31

2.5 Sleepy Channel protocol - Payment setup, payments, closing, and punishment . 36

2.6 Results of the first simulation. 40

2.7 Results of the second simulation. (Blue = LN, Red = Sleepy Channels) . 41

3.1 (Left) tx is published on the blockchain. The output of value x1 can be spent
by a transaction containing a preimage of h and signed w.r.t. pkA. The output
of value x2 can be spent by a transaction signed w.r.t. pkA and pkB but only
if at least t rounds passed since tx was accepted by the blockchain. (Right)
tx′ is not published yet. Its only output can be spent by a transaction whose
witness satisfies φ1 ∨ φ2 ∨ φ3. 50

3.2 A Lightning style payment channel where A has xA coins and B has xB coins.
The values hA and hB correspond to the hash values of the revocation secrets
rA and rB. ∆ upper bounds the time needed to publish a transaction on a
blockchain. 51

3.3 A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). In the figure, pkA

denotes Alice’s public key, (hA, rA) her revocation public/secret values, and
(YA, yA) her publishing public/secret values (analogously for Bob). The value
of ∆ upper bounds the time needed to publish a transaction on a blockchain. 53

3.4 The ideal functionality FL(∆,Σ,V)
L (Tp, k). We abbreviate Q := γ.otherParty(P). 58

3.5 ECDSA-based adaptor signature scheme. 63

3.6 Schematic description of the generalized channel creation protocol. . . . 65

195

4.1 (Left) Transaction tx has two outputs, one of value x1 that can be spent by B
(indicated by the gray box) with a transaction signed w.r.t. pkB at (or after)
round t1, and one of value x2 that can be spent by a transaction signed w.r.t.
pkA and pkB but only if at least t2 rounds passed since tx was accepted on the
blockchain. (Right) Transaction tx′ has one input, which is the second output
of tx containing x2 coins and has only one output, which is of value x2 and
can be spent by a transaction whose witness satisfies the output condition
ϕ1 ∨ ϕ2 ∨ (ϕ3 ∧ ϕ4). The input of tx is not shown. 78

4.2 Illustration of the pay-or-revoke paradigm. 84
4.3 Transaction txer, which enables the refunds and, here, spends the output of

some other transaction txin. 84
4.4 Payment setup in the channel γi of two neighboring users Ui and Ui+1 with

the new state txstate. xUi and xUi+1 are the amounts that Ui and Ui+1 own in
the state prior to txstate. 84

4.5 Protocol for 2-party channel update . 91
4.6 The Blitz payment protocol . 93
4.7 Subprocedures used in the protocol . 94
4.8 Ratio failLN/failBlitz. (Left) we fix the number of disrupted payments at 0.5%

and vary ub. (Right) we fix ub at 3000 and vary the number of disrupted
payments. 97

5.1 An example of a payment in LN from A to D for a value α using HTLC
contracts. An HTLC contract denoted by HTLC(Alice, Bob, x, y, t), shows
the following conditions: (i) If timeout t expires, Alice gets back the locked
x coins. (ii) If Bob reveals a value r, such that H(r) = y, before timeout t,
Alice pays x coins to Bob. 103

5.2 The left transaction tx has two outputs, one of value x1 that can be spent
by A, with a transaction signed w.r.t. pkA, but only if at least t1 rounds
passed since tx is accepted on the blockchain. The other output of value x2
can be spent by a transaction signed w.r.t. pkA and pkB at or after round
t2. The right transaction tx′ has one input, which is the second output of
tx containing x2 coins, and has only one output, which is of value x2 and
can be spent by a transaction whose witness satisfies the output condition
ϕ1 ∨ (ϕ2 ∧ ϕ3). The inputs of tx are not shown. 107

5.3 Update contract for the channel γi between two neighboring users γi.sender
and γi.receiver with the new state txstate. xSi is the amount that Si = γi.sender
owns and xRi is the amount that Ri = γi.receiver owns in the state before
txstate. 111

5.4 Transaction txep
i created by receiver Ri for a payment with n channels, where

the set of all senders is {Sj}j∈[1,n] and the set of all receivers is {Rj}j∈[1,n].
This transaction enables all payments and spends the output of transaction
txin

i . 113

196

5.5 For each channel, first, the receiver sends her own txep to all other parties
(the Pre-Setup message). The sender creates txstate and one txp for each
txep, then sends all these transactions to the receiver (Setup message). After
verifying the message, the receiver sends her first endorsement to all other
parties. When the sender gets all endorsements, she sends her signature to
each txep to its creator (Confirmation message). After getting all signatures
and verifying them, the receiver sends the second endorsement to all other
parties. Finally, when the receiver has enough signatures as her txep witnesses,
and the payment is not received, she will post her txep to the ledger. . . . 115

5.6 Per-channel off-chain storage overhead for varying number of synchronized
channels. 126

5.7 An example of rebalancing with 4 users and 5 channels. Each user holds
the same coins after the rebalancing as before, but distribution of coins
through channels is changed in order to refund depleted channels. In this
case, rebalancing cannot be conducted using a single path-formed payment
without using a channel more than once. 127

6.1 (Left) Transaction tx is published on the blockchain. The output of value
x1 can be spent by a transaction signed w.r.t. pkB after round t2, and the
output of value x2 can be spent by a transaction signed w.r.t. pkA and pkB

but only if at least t3 rounds passed since tx was accepted by the blockchain.
(Right) Transaction tx′ is not published on the ledger. Its only output, which
is of value x, can be spent by a transaction whose witness satisfies the output
condition φ1 ∨ φ2 ∨ φ3. 137

6.2 A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). The value of ∆
upper bounds the time needed to publish a transaction on a blockchain.
The condition ϱA represents the verification of A’ revocation secret and ϱB

represents the verification of B’ revocation secret. 138
6.3 A virtual channel γ built over ledger channels α, β. 139
6.4 Modular creation procedure of a virtual channel on top of two ledger channels

α and β. 144
6.5 Modular close procedure of a virtual channel on top of two ledger channels α

and β. For P ∈ {A, B}, −→
θ P := {(cP , One–SigpkP

), (cQ + γ.fee
2 , One–SigpkI

)}
where γ.st =

(cP , One–SigpkP

), (cQ, One–SigpkQ
)

. 146

6.6 Funding of a virtual channel γ without validity. T upper bounds the number
of off-chain communication rounds between two parties for any operation in
the ledger channel. 147

6.7 Transactions published after a successful offload. 148
6.8 Transactions published after A successfully executed the punishment procedure.

The grayed transaction TXB
s indicates that this transaction has not been

published. 149

197

6.9 A Lightning style payment channel where A has xA coins and B has xB coins.
∆ upper bounds the time needed to publish a transaction on a blockchain.
condition ϱA represents the verification of A’ revocation secret and h represents
the verification of B’ revocation secret. 150

6.10 Pictorial illustration of Table 6.3. 155

7.1 Conceptual comparison of (a) state-of-the-art VCs (rooted) and (b) our
protocol (non-rooted) on layers L1 (blockchain), L2 (PCs) and L3 (VCs).
Note that the VC in (a.1) is funded by all the underlying channels In (b.1),
the VC is funded only by U0, indirectly via a transaction txvc. Additionally, in
(b.1), a payment is set up from U0 to U3, whose outcome depends on whether
the VC is offloaded. Offloading, i.e., the act of forcefully transforming a VC
(L3) to a PC (L2) in (a.2), requires that all the underlying PCs (L2) are put
on-chain (L1). In (b.2), offloading the VC keeps the PCs open, posting only
txvc on-chain (L1). Since offloading enables U3 to receive their funds, the
payment is refunded then. However, since in (b), only U0 can offload, U3 is
compensated (b.3) after a timeout T via a payment that is executed iff U0
has not offloaded the VC (i.e., (b.2) did not happen). 164

7.2 We abstract PCs using a squiggly line to hide details that are not needed in
this work. P : xP indicates that user P owns xP coins in the state txs, written
as (A, B). The box containing xA + xB indicates the shared output of A and
B. 166

7.3 (7.3a) Illustration of the Blitz synchronization protocol; (7.3b) Off-chain
synchronization transaction spending from an output under U0’s control and
linking to the collateral in each channel. (i) Without the green part: txer in
Blitz. (ii) With the green part: txvc used for funding the VC in this work;
(7.3c) Two-party contract used within each channel 168

7.4 Illustration of a VC construction over a single intermediary. The VC funding
txf is rooted in the underlying channels is the only way for the intermediary
to get its collateral back. txf and the the punishment are mutually exclusive. 168

7.5 Illustration of a rooted VC via multiple hops. The yellow lines indicate how
the VC is rooted. All transactions connected to and to the left of txf need to
be put on-chain in case the rightmost VC is offloaded. 170

7.6 Simulated effect of the Domino attack. 173
7.7 Synchronized modification: Safely modify the contract tied to a transaction

txvc in each channel atomically. Note that txvc is the same transaction in all
three cases. 177

7.8 (a) macros, (b) 2-party operation, (c) protocol 182

B.1 Description of the global ledger functionality. 239
B.2 Schnorr-based adaptor signature scheme ΞRg ,ΣSch 241
B.3 The formal definition of game G0G0G0. 244
B.4 The formal definition of G1G1G1. 244
B.5 The formal definition of G2G2G2. 245

198

B.6 The formal definition of G3G3G3. 246
B.7 The formal definition of G4G4G4. 247
B.8 The formal definition of the simulator. 248
B.9 The formal definition of G0G0G0. 250
B.10 The formal definition of game G0G0G0. 250
B.11 The formal definition of game G2G2G2. 251
B.12 The formal definition of game G3G3G3. 252
B.13 The formal definition of game G4G4G4. 253
B.14 The formal definition of the simulator. 254
B.15 The formal definition of game G0G0G0. 257
B.16 The formal definition of game G1G1G1. 258
B.17 The formal definition of game G2G2G2. 258
B.18 The formal definition of game G3G3G3. 259
B.19 The formal definition of game G4G4G4. 260
B.20 The formal definition of the simulator. 261
B.21 The formal definition of the game G0G0G0. 263
B.22 The formal definition of the game G1G1G1. 263
B.23 The formal definition of the game G2G2G2. 264
B.24 The formal definition of the game G3G3G3. 265
B.25 The formal definition of the game G4G4G4. 266
B.26 The formal definition of the game G3G3G3. 267

C.1 Concurrent payments between users Ui and Ui+1: (left) a Blitz channel with
a single payment; (right) an updated channel that has this payment and a
second concurrent one. To add a second payment of value α′

i to the channel,
the transactions for the in-flight payment of value αi are recreated with the
new state txstate

i
′ as input, the channel is updated to txstate

i
′ and finally, the

old state txstate
i is revoked. In the LN, this process is the same, except that

the HTLC contract and transactions are recreated, instead of the Blitz ones. 289
C.2 Timeline of when transactions appear on the ledger L in the case payment and

refund. τn − τ0 denotes the time needed for the setup of the whole payment. 291

E.1 The root sets of transaction tx8 are {tx1}, {tx2, tx3, tx4}, {tx5, tx6}, {tx4, tx5}
and {tx2, tx3, tx6}. 364

E.2 Funding of a virtual channel γ with validity γ.val. 368

F.1 Illustration showing the transactions that go on-chain in case of offloading,
an operation that can be forced by a malicious enduser in the Domino attack,
forcing all underlying channels to be closed. 408

F.2 Illustration of a Donner VC of U0 and U4 via U1, U2 and U3. 408
F.3 Illustration of the offload operation for a Donner VC. Note that the underlying

PCs remain open and only one transaction goes on-chain: txvc. 409

199

F.4 (Left) Transaction tx has two outputs, one of value x1 that can be spent by B
(indicated by the gray box) with a transaction signed w.r.t. pkB at (or after)
round t1, and one of value x2 that can be spent by a transaction signed w.r.t.
pkA and pkB but only if at least t2 rounds passed since tx was accepted on the
blockchain. (Right) Transaction tx′ has one input, which is the second output
of tx containing x2 coins and has only one output, which is of value x2 and
can be spent by a transaction whose witness satisfies the output condition
ϕ1 ∨ ϕ2 ∨ (ϕ3 ∧ ϕ4). The input of tx is not shown. 409

F.5 Example of an MHP in a PCN. Here, U0 pays 4 coins (disregarding any fees)
to U4, via U1, U2 and U3. The lines represent payment channels. We write
balances as (x, y), where x is the balance of the user on the right, and y the
balance of the user on the left. Above we write the channel balances before
and below after the payment. In an MHP, this change of balance should
happen atomically in every channel (or not at all). 410

F.6 Recursive virtual channel: Example A . 413
F.7 Recursive virtual channel: Example B . 413
F.8 Pseudocode of the protocol. 415
F.9 Protocol for 2-party channel update. 416
F.10 Interface of FChannel(T , k). 418

200

List of Tables

2.1 Comparison among payment channel approaches. We do not consider [AKKWZ21,CCF+21]
as they rely on third-party committees with additional trust assumptions. Online assumption
refers to the honest user being online for revocation of an old state on-chain. Unrestricted
lifetime means the protocol does not require users to close the channel before a pre-specified
time. Unbounded payments refer to channel users making any number of payments while the
channel is open. In terms of scripts, DS refers to digital signatures, SIGHASH_NOINPUT
refers to a specific signature scheme [DRO], Seq. number refers to attaching a state number
to a transaction and verifying if it is greater or smaller than the current height of the
blockchain. In the case of Duplex [DW15], d is the number of payments made in the channel.
LRS refers to the Linkable Ring Signature scheme used in Monero [TMSS22], and DLSAG
refers to the transaction scheme proposed in [MSBL+20]. 20

3.1 Costs of lightning (LC) and generalized channels (GC) funding m HTLCs. 70

4.1 Features of different payment methods: Interledger (ILP), Lightning Network
(LN), Anonymous Multi-Hop Locks (AMHL), Blitz, and Blitz using the
fast track payment (FT). We abbreviate timelocks as TL and signature
functionality as σ. * The requirement of HTLC can be dropped from the LN
using scriptless scripts when feasible. 87

4.2 Collateral time for the LN, AMHL and Blitz for unsuccessful (refund) and
successful payments (pay) as well as different threat models. We say instant
when no one on the path stops the payment in either round. ξ denotes the
time users need to claim their funds (e.g., in the LN 144 blocks). 87

5.1 Comparing different payment methods: Lightning Network, Anonymous
Multi-Hop Locks (AMHL), Sprites, Payment Trees, Atomic Multi-Channel
Updates(AMCU), Blitz, and our construction. Studied features are: atomicity
property, path restriction, need for Turing-complete smart contracts, size of
per party collateral, and value privacy. For the latter, note that there are
constructions that do not inherently leak the value transferred in individual
channels, but they can only be used for applications (i.e., payments) that
require the same value in all channels. 104

5.2 Asymptotic comparison of current solutions, with n being the number of
channels. 126

201

5.3 On-chain overhead and cost comparison of LN, Blitz and Thora. n is the
number of channels and m ∈ [0, n] is the number of disputed channels. . . 126

6.1 Comparison of security and efficiency goals for ledger channels (L), virtual
channels with validity (VC-V), and virtual channels without validity (VC-NV).
. 141

6.2 Evaluation of the virtual channels. For each operation, we show the number
of on-chain and off-chain transactions (# txs) and their size in bytes. For
on-chain transactions, cost is in USD and estimates cost of publishing them
on the ledger. 153

6.3 Comparison of virtual channels (VC) to multi-hop payments (PCN) showing
the overhead in bytes for a different number of payments and the difference
in fees. 155

7.1 Comparison to other multi-hop VC protocols. ∗ by synchronizing all channels,
this time can be only Θ(log(n)). 162

7.2 Communication overhead of Donner for the whole path (not per party) for
the different operations, assuming a VC across n channels. In the pessimistic
offload, k ∈ [0, n] is the number of channels where there is a dispute. Only in
the Offload case transactions are posted on-chain. 185

7.3 Comparison of LVPC, Elmo and Donner for a VC over from U0 to Un.1In the
pessimistic offload in Donner, k ∈ [0, n] is the number of channels where there
is a dispute. 186

A.1 Overhead for operations, given a current fee of 102 satoshi per byte and a
price of 57, 202 USD per BTC. 234

C.1 Communication overhead of the LN and Blitz. The pessimistic transactions
are on-chain, the rest off-chain. 293

C.2 Extended results of our simulation. 294
C.3 Explanation of the sequence names used in Lemma 17 and where they can be

found in the ideal functionality (IF), Protocol (Prot) or Simulator (Sim). 312
C.4 Explanation of the sequence names used in Lemma 18 and where they can be

found. 314
C.5 Explanation of the sequence names used in Lemma 19 and where they can be

found. 315

F.1 Bootstrapping cost comparison . 405
F.2 Comparison to other virtual channel protocols. We denote dispute as the case

where a party needs to enforce their VC funds or be compensated. In the
UTXO case, this means offloading. ∗ by synchronizing all channels, this time
can be reduced to Θ(log(n)). † for single-hop constructions n is constant,
however, since the action/storage overhead/time delay is per user, we write
Θ(n). ‡ This depends on using indirect/direct dispute. 405

202

F.3 Explanation of the sequence names used in Lemma 26 and where they can be
found in the ideal functionality (IF), Protocol (Prot) or Simulator (Sim). 439

F.4 Explanation of the sequence names used in Lemma 27 and where they can be
found. 441

F.5 Explanation of the sequence names used in Lemma 29 and where they can be
found. 443

F.6 Explanation of the sequence names used in Lemma 31 and where they can be
found. 445

203

Bibliography

[AAM22] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. Thora: Atomic
and Privacy-Preserving Multi-Channel Updates. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 165–178. Association for Computing Machinery, 2022.

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro
Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco,
and Jason Yellick. Hyperledger Fabric: A Distributed Operating System
for Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys
Conference. Association for Computing Machinery, 2018.

[ACM+] Lukas Aumayr, Esra Ceylan, Matteo Maffei, Pedro Moreno-Sanchez, Iosif
Salem, and Stefan Schmid. Optimizing Virtual Payment Channel Estab-
lishment in the Face of On-Path Adversaries. Under submission.

[ADMM16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on Bitcoin. Commun. ACM,
59(4):76–84, 2016.

[AEE+21] Lukas Aumayr, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina
Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. Gen-
eralized Channels from Limited Blockchain Scripts and Adaptor Signatures.
In Advances in Cryptology – ASIACRYPT 2021, pages 635–664. Springer
International Publishing, 2021.

[AGP98] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. One-phase
commit: does it make sense? Proceedings 1998 International Conference
on Parallel and Distributed Systems, pages 182–192, 1998.

[AhC95] Yousef J. Al-houmaily and Panos K. Chrysanthis. Two-Phase Commit
in Gigabit-Networked Distributed Databases. In Parallel and Distributed
Computing Systems, 1995.

205

[AHC04] Yousef J Al-Houmaily and Panos K Chrysanthis. 1-2PC: the one-two phase
atomic commit protocol. In Symposium on Applied Computing, 2004.

[AKKWZ21] Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer, and Dion-
ysis Zindros. Brick: Asynchronous incentive-compatible payment channels.
In Financial Cryptography and Data Security: 25th International Confer-
ence, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers,
Part II, page 209–230, Berlin, Heidelberg, 2021. Springer-Verlag.

[ALS+18] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski, Yuyi Wang, and
Roger Wattenhofer. Towards secure and efficient payment channels, 2018.

[AME+21] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian
Faust, Siavash Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez.
Bitcoin-Compatible Virtual Channels. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 901–918. IEEE Computer Society, 2021.

[AMSKM21] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei.
Blitz: Secure Multi-Hop Payments Without Two-Phase Commits. In 30th
USENIX Security Symposium (USENIX Security 21), pages 4043–4060.
USENIX Association, 2021.

[AMSKM23] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei.
Breaking and Fixing Virtual Channels: Domino Attack and Donner. In
30th Annual Network and Distributed System Security Symposium, NDSS
2023. The Internet Society, 2023.

[Ant14] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies. O’Reilly Media, Inc., 1st edition, 2014.

[APS+22] Zeta Avarikioti, Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, Samarth
Tiwari, and Michelle Yeo. Hide & seek: Privacy-preserving rebalancing on
payment channel networks. In Financial Cryptography and Data Security,
2022.

[ATLW20] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Wattenhofer.
Cerberus channels: Incentivizing watchtowers for bitcoin. In Financial
Cryptography and Data Security: 24th International Conference, FC 2020 ,
Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers,
page 346–366, Berlin, Heidelberg, 2020. Springer-Verlag.

[ATM+22] Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro
Moreno-Sanchez, and Matteo Maffei. Sleepy Channels: Bi-directional
Payment Channels without Watchtowers. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’22,
page 179–192. Association for Computing Machinery, 2022.

206

[Ato22] Atomic multi-path payments (amp), 2022. https : / /
docs.lightning.engineering / lightning - network - tools /
lnd/amp.

[BCD+14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille.
Enabling Blockchain Innovations with Pegged Sidechains, 2014.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In IEEE SP, pages 459–474, 2014.

[BDM16] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient
zero-knowledge contingent payments in cryptocurrencies without scripts.
In ESORICS, pages 261–280, 2016.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In Advances in Cryptology – ASIACRYPT 2018:
24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2–6, 2018,
Proceedings, Part II, page 435–464, Berlin, Heidelberg, 2018. Springer-
Verlag.

[BDW17] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable
funding of bitcoin micropayment channel networks. In Stabilization, Safety,
and Security of Distributed Systems, pages 361–377, 2017.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Eli Biham, editor,
Advances in Cryptology — EUROCRYPT 2003, pages 416–432, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[BH04] Michael Backes and Dennis Hofheinz. How to break and repair a universally
composable signature functionality. In Kan Zhang and Yuliang Zheng, edi-
tors, Information Security, pages 61–72, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[BHK+20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi
Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang. Combining
GHOST and casper. CoRR, abs/2003.03052, 2020.

[Bit18] Bitcoin wiki: Payment channels, 2018. https://en.bitcoin.it/
wiki/Payment_channels.

[Bit20] Bitcoin-compatible virtual channels: Github repository, 2020. https:
//github.com/utxo-virtual-channels/vc.

207

https://docs.lightning.engineering/lightning-network-tools/lnd/amp
https://docs.lightning.engineering/lightning-network-tools/lnd/amp
https://docs.lightning.engineering/lightning-network-tools/lnd/amp
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://github.com/utxo-virtual-channels/vc
https://github.com/utxo-virtual-channels/vc

[Bit22a] Bitcoin avg. transaction fee historical chart, January 2022.
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html.

[Bit22b] Bitcoin price in usd, feb 2022. https://coinmarketcap.com/.

[Bit22c] Bitcoin rich list, January 2022. https://bitinfocharts.com/top-100-richest-
bitcoin-addresses.html.

[Bit22d] Bitcoin transaction fee estimator, average fee per byte, feb 2022. https:
//privacypros.io/tools/bitcoin-fee-estimator/.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair
protocols. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, pages 421–439, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[BKM17] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decen-
tralized poker. In ASIACRYPT, pages 410–440, 2017.

[Bli20] Blitz simulation: Github repository, 2020. https://github.com/
blitz-payments/simulation.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT
2001, pages 514–532, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX
cache attacks are practical. In 11th USENIX Workshop on Offensive
Technologies, 2017.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Bitcoin as a Transaction Ledger: A Composable Treatment. In CRYPTO,
2017.

[BMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In USENIX, 2018.

[BNT20] Vivek Bagaria, Joachim Neu, and David Tse. Boomerang: Redundancy
Improves Latency and Throughput in Payment-Channel Networks. In FC,
2020.

[BSA+17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick
McCorry, Sarah Meiklejohn, and George Danezis. Consensus in the age of
blockchains. CoRR, abs/1711.03936, 2017.

208

https://web.archive.org/web/20220220110845/https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y
https://coinmarketcap.com/
https://web.archive.org/web/20220112083643/https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://web.archive.org/web/20220112083643/https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://privacypros.io/tools/bitcoin-fee-estimator/
https://privacypros.io/tools/bitcoin-fee-estimator/
https://github.com/blitz-payments/simulation
https://github.com/blitz-payments/simulation

[But21] Vitalik Buterin. An incomplete guide to rollups, January 2021. https://
web.archive.org/web/20230524091432/https://vitalik.ca/
general/2021/01/05/rollup.html#how-much-scaling-do-
rollups-give-you.

[BZ18] Massimo Bartoletti and Roberto Zunino. Bitml: A calculus for bitcoin
smart contracts. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, CCS, pages 83–100, 2018.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology, 13, January 2000.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In FOCS, 2001.

[CCF+21] Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gaži,
Philipp Kant, Aggelos Kiayias, and Alexander Russell. Fast isomorphic state
channels. In Financial Cryptography and Data Security: 25th International
Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected
Papers, Part II, page 339–358, Berlin, Heidelberg, 2021. Springer-Verlag.

[CCM+20] Manuel MT Chakravarty, James Chapman, Kenneth MacKenzie, Orestis
Melkonian, Michael Peyton Jones, and Philip Wadler. The extended utxo
model. In FC, pages 525–539. Springer, 2020.

[CCX+19] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin,
and Ten H. Lai. Sgxpectre: Stealing intel secrets from sgx enclaves via
speculative execution. In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 142–157, 2019.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer,
et al. On scaling decentralized blockchains: (a position paper). In Financial
Cryptography and Data Security, pages 106–125. Springer, 2016.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
Composable Security with Global Setup. In TCC, 2007.

[Chi] Chia network faq. https://www.chia.net/faq/.

[CL05] Jan Camenisch and Anna Lysyanskaya. A Formal Treatment of Onion
Routing. In CRYPTO, 2005.

[Cou23] Bitcoin Mining Council. Global bitcoin mining data review q4 2022, January
2023. https://web.archive.org/web/20240101174009/https:
//bitcoinminingcouncil.com/wp-content/uploads/2023/01/
BMC-Q4-2022-Presentation.pdf.

209

https://web.archive.org/web/20230524091432/https://vitalik.ca/general/2021/01/05/rollup.html#how-much-scaling-do-rollups-give-you
https://web.archive.org/web/20230524091432/https://vitalik.ca/general/2021/01/05/rollup.html#how-much-scaling-do-rollups-give-you
https://web.archive.org/web/20230524091432/https://vitalik.ca/general/2021/01/05/rollup.html#how-much-scaling-do-rollups-give-you
https://web.archive.org/web/20230524091432/https://vitalik.ca/general/2021/01/05/rollup.html#how-much-scaling-do-rollups-give-you
https://www.chia.net/faq/
https://web.archive.org/web/20240101174009/https://bitcoinminingcouncil.com/wp-content/uploads/2023/01/BMC-Q4-2022-Presentation.pdf
https://web.archive.org/web/20240101174009/https://bitcoinminingcouncil.com/wp-content/uploads/2023/01/BMC-Q4-2022-Presentation.pdf
https://web.archive.org/web/20240101174009/https://bitcoinminingcouncil.com/wp-content/uploads/2023/01/BMC-Q4-2022-Presentation.pdf

[Cry] Cryptographic frontier, open problems in ethereum research. https:
//sites.google.com/view/cryptofrontier21.

[CZK+19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah M. Johnson, Ari Juels, Andrew Miller, and Dawn Xiaodong Song.
Ekiden: A platform for confidentiality-preserving, trustworthy, and perfor-
mant smart contracts. In IEEE EuroS&P, pages 185–200, 2019.

[DDM+18] Dominic Deuber, Nico Döttling, Bernardo Magri, Giulio Malavolta, and Sri
Aravinda Krishnan Thyagarajan. Minting mechanisms for blockchain – or –
moving from cryptoassets to cryptocurrencies. Cryptology ePrint Archive,
Report 2018/1110, 2018. https://eprint.iacr.org/2018/1110.

[DEF+19a] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina
Hostáková, Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi.
Fastkitten: Practical smart contracts on bitcoin. In USENIX Security,
pages 801–818, 2019.

[DEF+19b] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina
Hostáková. Multi-party Virtual State Channels. In EUROCRYPT, 2019.

[DEFM19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski.
Perun: Virtual payment hubs over cryptocurrencies. In IEEE SP, pages
106–123, 2019.

[dev] LN developers. Bolt #2: Peer protocol for channel management.
https://github.com/lightning/bolts/blob/master/02-
peer-protocol.md.

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
State Channel Networks. In CCS, 2018.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Advances in Cryptology – CRYPTO 2015,
page 585–605, Berlin, Heidelberg, 2015. Springer-Verlag.

[DG09] G. Danezis and I. Goldberg. Sphinx: A Compact and Provably Secure Mix
Format. In IEEE S&P, 2009.

[DLC21] DLC over Lightning, 2021. Available at https://mailmanlists.org/
pipermail/dlc-dev/2021-November/000091.html.

[Don21] Donner vc evaluation of the communication overhead, 2021. https://
github.com/donner-vc/overhead.

[DRO] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A simple
layer2 protocol for bitcoin. https://blockstream.com/eltoo.pdf.

210

https://sites.google.com/view/cryptofrontier21
https://sites.google.com/view/cryptofrontier21
https://eprint.iacr.org/2018/1110
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md
https://github.com/lightning/bolts/blob/master/02-peer-protocol.md
https://mailmanlists.org/pipermail/dlc-dev/2021-November/000091.html
https://mailmanlists.org/pipermail/dlc-dev/2021-November/000091.html
https://github.com/donner-vc/overhead
https://github.com/donner-vc/overhead
https://blockstream.com/eltoo.pdf

[Dry17] Thaddeus Dryja. Discreet Log Contracts, 2017. Available at https:
//adiabat.github.io/dlc.pdf.

[DTZG22] Maya Dotan, Saar Tochner, Aviv Zohar, and Yossi Gilad. Twilight: A
differentially private payment channel network. In 31st USENIX Security
Symposium (USENIX Security 22), pages 555–570, Boston, MA, August
2022. USENIX Association.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment
network with bitcoin duplex micropayment channels. In Andrzej Pelc and
Alexander A. Schwarzmann, editors, Stabilization, Safety, and Security of
Distributed Systems - 17th International Symposium, SSS 2015, Edmonton,
AB, Canada, August 18-21, 2015, Proceedings, volume 9212 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2015.

[EEE20] Muhammed F. Esgin, Oğuzhan Ersoy, and Zekeriya Erkin. Post-quantum
adaptor signatures and payment channel networks. In Liqun Chen, Ninghui
Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS, pages 378–397,
2020.

[EFH+21] Andreas Erwig, Sebastian Faust, Kristina Hostáková, Monosij Maitra, and
Siavash Riahi. Two-party adaptor signatures from identification schemes. In
IACR International Conference on Public-Key Cryptography, pages 451–480.
Springer, 2021.

[EFHR20] Lisa Eckey, Sebastian Faust, Kristina Hostáková, and Stefanie Roos. Split-
ting payments locally while routing interdimensionally. ePrint Archive,
2020. https://eprint.iacr.org/2020/555.

[Eme] Emelyanenkok (pseudonym). payment channel congestion via spam-
attack. https://github.com/lightningnetwork/lightning-
rfc/issues/182.

[EMSM19] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. Atomic
Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible
Payment-Channel Networks. In CCS, 2019.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, pages 152–168, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[Fou19] Lloyd Fournier. One-time verifiably encrypted signatures a.k.a. adaptor
signatures, Oct 2019. https://tinyurl.com/y4qxopxp.

[Fun] Funding transaction of our evaluation on the Bitcoin testnet. https:
//tinyurl.com/589xku8w.

211

https://adiabat.github.io/dlc.pdf
https://adiabat.github.io/dlc.pdf
https://eprint.iacr.org/2020/555
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://tinyurl.com/y4qxopxp
https://tinyurl.com/589xku8w
https://tinyurl.com/589xku8w

[Gita] Github repository of our Sleepy Channels evaluation. https://
github.com/sleepy-channels/overhead.

[Gitb] Github repository of our sleepy channels simulation. https://
github.com/sleepy-channels/simulation.

[GJKR99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
Proceedings of the 17th International Conference on Theory and Applica-
tion of Cryptographic Techniques, EUROCRYPT’99, page 295–310, Berlin,
Heidelberg, 1999. Springer-Verlag.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol: Analysis and applications. In Advances in Cryptology-
EUROCRYPT 2015: 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II, pages 281–310. Springer, 2015.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
computing, 1988.

[GMSR+20] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry,
and Arthur Gervais. SoK: Layer-Two Blockchain Protocols. In Financial
Cryptography and Data Security, 2020.

[Gol06] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge
University Press, New York, NY, USA, 2006.

[GW17] Rachid Guerraoui and Jingjing Wang. How Fast can a Distributed Trans-
action Commit? In PODS, 2017.

[HAB+17] Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. TumbleBit: An untrusted bitcoin-compatible anonymous
payment hub. In NDSS, 2017.

[HSL19] Maurice Herlihy, Liuba Shrira, and Barbara Liskov. Cross-chain Deals and
Adversarial Commerce. VLDB, 2019.

[HZ20] Jona Harris and Aviv Zohar. Flood & loot: A systemic attack on the
lightning network. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, AFT ’20, 2020.

[JKLT19] Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka.
Sok: A taxonomy for layer-2 scalability related protocols for cryptocur-
rencies. Cryptology ePrint Archive, Report 2019/352, 2019. https:
//eprint.iacr.org/2019/352.

212

https://github.com/sleepy-channels/overhead
https://github.com/sleepy-channels/overhead
https://github.com/sleepy-channels/simulation
https://github.com/sleepy-channels/simulation
https://eprint.iacr.org/2019/352
https://eprint.iacr.org/2019/352

[JLT20] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. Lightweight
Virtual Payment Channels. In 19th International Conference on Cryptology
and Network Security (CANS), 2020.

[JLT21] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. Payment trees:
Low collateral payments for payment channel networks. In Financial
Cryptography and Data Security, 2021.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize
correct computations. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, page 30–41, New
York, NY, USA, 2014. Association for Computing Machinery.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with
penalties. In ACM CCS 16, pages 418 – 429, 2016.

[KBS20] Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking and (par-
tially) fixing provably secure onion routing. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 168–185. IEEE, 2020.

[KG17] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain
payment networks. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, page 439–453, New
York, NY, USA, 2017. Association for Computing Machinery.

[KL] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. Elmo: Recursive
virtual payment channels for bitcoin. https://eprint.iacr.org/
2021/747.

[KL19] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. A Composable
Security Treatment of the Lightning Network. In CSF, 2019.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to
play decentralized poker. In ACM CCS, pages 195 – 206, 2015.

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for
signatures from identification schemes. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 33–61, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[KMS+16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts.
In IEEE S&P, pages 839–858, 2016.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Univer-
sally Composable Synchronous Computation. In TCC, 2013.

213

https://eprint.iacr.org/2021/747
https://eprint.iacr.org/2021/747

[KNW19] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. Outpost:
A responsive lightweight watchtower. In Proceedings of the 1st ACM Con-
ference on Advances in Financial Technologies, AFT ’19, page 31–40, New
York, NY, USA, 2019. Association for Computing Machinery.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[KR21] Julia Khamis and Ori Rottenstreich. Demand-aware channel topologies for
off-chain payments. In 2021 International Conference on COMmunication
Systems & NETworkS (COMSNETS), pages 272–280, 2021.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, pages 357–388, Cham, 2017. Springer International Pub-
lishing.

[KYP+21] George Kappos, Haaroon Yousaf, Ania Piotrowska, Sanket Kanjalkar, Sergi
Delgado-Segura, Andrew Miller, and Sarah Meiklejohn. An empirical
analysis of privacy in the lightning network. In Nikita Borisov and Claudia
Diaz, editors, Financial Cryptography and Data Security, pages 167–186,
Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[KZF+18] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez,
and Arthur Gervais. Commit-chains: Secure, scalable off-chain pay-
ments. Cryptology ePrint Archive, Paper 2018/642, 2018. https:
//eprint.iacr.org/2018/642.

[LEPS16] Joshua Lind, Ittay Eyal, Peter R. Pietzuch, and Emin Gün Sirer.
Teechan: Payment channels using trusted execution environments. CoRR,
abs/1612.07766, 2016.

[Liga] Lightning network. https://lightning.network/.

[Ligb] Lightning network specification, bolt #1: Base protocol, ping and pong
messages. https://github.com/lightningnetwork/lightning-
rfc/blob/master/01- messaging.md#the- ping- and- pong-
messages.

[Lin21] Yehuda Lindell. Fast secure two-party ecdsa signing. J. Cryptol., 34(4), oct
2021.

[Lin23] Robin Linus. Bitvm: Compute anything on bitcoin, December 2023. https:
//bitvm.org/bitvm.pdf.

[LN 22] Ln snapshot, January 2022. https://ln.fiatjaf.com/.

214

https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642
https://lightning.network/
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm.pdf
https://web.archive.org/web/20220201185915/https://ln.fiatjaf.com/

[lnc20] lnchannels. https://web.archive.org/web/20200206130901/
https://ln.bigsun.xyz/, 2020.

[MBB+19a] Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and An-
drew Miller. Pisa: Arbitration outsourcing for state channels. In Proceedings
of the 1st ACM Conference on Advances in Financial Technologies. Associ-
ation for Computing Machinery, 2019.

[MBB+19b] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick
McCorry. Sprites and state channels: Payment networks that go faster than
lightning. In Financial Cryptography and Data Security, pages 508–526,
Cham, 2019. Springer International Publishing.

[MJS+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing bitcoin work for data preservation. In 2014 IEEE
Symposium on Security and Privacy, pages 475–490, 2014.

[MMS+19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate,
and Matteo Maffei. Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability. In NDSS, 2019.

[MMSH16] Patrick Mccorry, Malte Möser, Siamak F. Shahandasti, and Feng Hao.
Towards bitcoin payment networks. In Proceedings, Part I, of the 21st
Australasian Conference on Information Security and Privacy - Volume
9722, page 57–76, Berlin, Heidelberg, 2016. Springer-Verlag.

[MMSK+17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and
Srivatsan Ravi. Concurrency and Privacy with Payment-Channel Networks.
In CCS, 2017.

[MSBL+20] Pedro Moreno-Sanchez, Arthur Blue, Duc V. Le, Sarang Noether, Brandon
Goodell, and Aniket Kate. Dlsag: Non-interactive refund transactions
for interoperable payment channels in monero. In Joseph Bonneau and
Nadia Heninger, editors, Financial Cryptography and Data Security, pages
325–345, Cham, 2020. Springer International Publishing.

[MSK] Pedro Moreno-Sanchez and Aniket Kate. Scriptless scripts with ecdsa.
https://tinyurl.com/yxtjo47l.

[MSYS21] Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld. Fppw: A
fair and privacy preserving watchtower for bitcoin. In Nikita Borisov and
Claudia Diaz, editors, Financial Cryptography and Data Security, pages
151–169, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
http://bitcoin.org/bitcoin.pdf.

215

https://web.archive.org/web/20200206130901/https://ln.bigsun.xyz/
https://web.archive.org/web/20200206130901/https://ln.bigsun.xyz/
https://tinyurl.com/yxtjo47l
http://bitcoin.org/bitcoin.pdf

[NFSD20] Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian
Decker. Toward active and passive confidentiality attacks on cryptocurrency
off-chain networks. In Steven Furnell, Paolo Mori, Edgar R. Weippl, and
Olivier Camp, editors, ICISSP, pages 7–14, 2020.

[NTT22] Joachim Neu, Ertem Nusret Tas, and David Tse. Two more attacks on
proof-of-stake ghost/ethereum. In Proceedings of the 2022 ACM Workshop
on Developments in Consensus, ConsensusDay ’22, page 43–52, New York,
NY, USA, 2022. Association for Computing Machinery.

[Paya] Pay A star transaction of our evaluation on the Bitcoin testnet. https:
//tinyurl.com/bskz7fvx.

[Payb] Pay A transaction of our evaluation on the Bitcoin testnet. https://
tinyurl.com/2w6aebr9.

[Payc] Pay A,B transaction of our evaluation on the Bitcoin testnet. https:
//tinyurl.com/2uwn5fvb.

[PB17] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts, 2017.

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments, 2016.

[Per20] Perun network, 2020. https://perun.network/.

[PKF+18] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gaži, Joël Alwen, and
Krzysztof Pietrzak. Spacemint: A cryptocurrency based on proofs of space.
In Sarah Meiklejohn and Kazue Sako, editors, Financial Cryptography and
Data Security, pages 480–499, Berlin, Heidelberg, 2018. Springer Berlin
Heidelberg.

[Poe] Andrew Poelstra. Lightning in scriptless scripts. https://tinyurl.com/
mcefmph.

[Poe17] Andrew Poelstra. Scriptless scripts. https://tinyurl.com/ludcxyz,
May 2017.

[PS17] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in
the permissionless model. In International Symposium on Distributed
Computing, 2017.

[Rai17] Update from the raiden team on development progress, announcement of
raidex, February 2017. https://tinyurl.com/z2snp9e.

[RMKG18] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg.
Settling Payments Fast and Private: Efficient Decentralized Routing for
Path-Based Transactions. In NDSS, 2018.

216

https://tinyurl.com/bskz7fvx
https://tinyurl.com/bskz7fvx
https://tinyurl.com/2w6aebr9
https://tinyurl.com/2w6aebr9
https://tinyurl.com/2uwn5fvb
https://tinyurl.com/2uwn5fvb
https://perun.network/
https://tinyurl.com/mcefmph
https://tinyurl.com/mcefmph
https://tinyurl.com/ludcxyz
https://tinyurl.com/z2snp9e

[Rol] roll_up. https://web.archive.org/web/20230410170419/
https://github.com/barryWhiteHat/roll_up.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-
release crypto, 1996.

[Rus18] Rusty Russell. [lightning-dev] splicing proposal, 2018. https:
//lists.linuxfoundation.org/pipermail/lightning- dev/
2018-October/001434.html.

[RVMS+21] Matteo Romiti, Friedhelm Victor, Pedro Moreno-Sanchez, Peter Sebastian
Nordholt, Bernhard Haslhofer, and Matteo Maffei. Cross-layer deanonymiza-
tion methods in the lightning protocol. In FC, pages 187–204. Springer,
2021.

[SAAM23] Giulia Scaffino, Lukas Aumayr, Zeta Avarikioti, and Matteo Maffei. Glimpse:
On-demand Light Client with Constant-size Storage for DeFi. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 733–750.
USENIX Association, 2023.

[SC93] James W Stamos and Flaviu Cristian. Coordinator log transaction execution
protocol. Distributed and Parallel Databases, 1993.

[Sie16] David Siegel. Understanding the dao attack. https://tinyurl.com/
2bzxkn7a, 2016.

[Sim22] Simulation of domino attack, 2022. https://github.com/donner-
vc/simulation.

[Smi23] Corwin Smith. Optimistic rollups, June 2023. https :
/ / web.archive.org / web / 20230623142748 / https : / /
ethereum.org / en /developers/docs/scaling/optimistic-
rollups/.

[Spi] Jeremy Spillman. Spillman-style payment channels. https://
tinyurl.com/uwzfb2tu.

[SVR+20] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen
Ruan, Parimarjan Negi, Lei Yang, Radhika Mittal, Giulia C. Fanti, and Mo-
hammad Alizadeh. High Throughput Cryptocurrency Routing in Payment
Channel Networks. In NSDI, 2020.

[Tap21] Taproot (bip 341), 2021. https://github.com/bitcoin/bips/
blob/master/bip-0341.mediawiki.

[TBM+20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico
Döttling, Aniket Kate, and Dominique Schröder. Verifiable timed signatures

217

https://web.archive.org/web/20230410170419/https://github.com/barryWhiteHat/roll_up
https://web.archive.org/web/20230410170419/https://github.com/barryWhiteHat/roll_up
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://tinyurl.com/2bzxkn7a
https://tinyurl.com/2bzxkn7a
https://github.com/donner-vc/simulation
https://github.com/donner-vc/simulation
https://web.archive.org/web/20230623142748/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://web.archive.org/web/20230623142748/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://web.archive.org/web/20230623142748/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://web.archive.org/web/20230623142748/https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://tinyurl.com/uwzfb2tu
https://tinyurl.com/uwzfb2tu
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

made practical. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page 1733–1750, New
York, NY, USA, 2020. Association for Computing Machinery.

[TGB+21] Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat, Aniket
Kate, and Dominique Schröder. Opensquare: Decentralized repeated mod-
ular squaring service. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’21, page 3447–3464, New
York, NY, USA, 2021. Association for Computing Machinery.

[Tho22] Thora payments overhead, 2022. https://github.com/Thora-
Payments/overhead.

[TM21] Sri Aravinda Krishnan Thyagarajan and Giulio Malavolta. Lockable signa-
tures for blockchains: Scriptless scripts for all signatures. In IEEE S&P,
2021.

[TMM20] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. A Quanti-
tative Analysis of Security, Anonymity and Scalability for the Lightning
Network. In IEEE S&B Workshop, 2020.

[TMSM21a] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anony-
mous atomic locks for scalability in payment channel hubs. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 1834–1851, 2021.

[TMSM21b] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. Post-quantum
adaptor signature for privacy-preserving off-chain payments. In FC, 2021.

[TMSS22] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Fritz Schmid, and
Dominique Schröder. Verifiable timed linkable ring signatures for scalable
payments for monero. In Computer Security – ESORICS 2022: 27th
European Symposium on Research in Computer Security, Copenhagen,
Denmark, September 26–30, 2022, Proceedings, Part II, page 467–486.
Springer-Verlag, 2022.

[Tod] Peter Todd. Cltv-style payment channels. https :
/ / github.com / bitcoin / bips / blob / master / bip -
0065.mediawiki#Payment_Channels.

[Tra] Transcripts from coredev.tech amsterdam 2019 meeting on sighash noinput.
https://tinyurl.com/49ryfutr.

[Tri13] Manny Trillo. Stress test prepares visanet for the most wonderful time of
the year, 2013. https://www.visa.com/blogarchives/us/2013/10/10/stress-
test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html.

[TS15] Stefan Thomas and Evan Schwartz. A protocol for interledger payments,
2015. https://interledger.org/interledger.pdf.

218

https://github.com/Thora-Payments/overhead
https://github.com/Thora-Payments/overhead
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://tinyurl.com/49ryfutr
https://web.archive.org/web/20181015034057/https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://web.archive.org/web/20181015034057/https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://interledger.org/interledger.pdf

[TYA+22] Samarth Tiwari, Michelle Yeo, Zeta Avarikioti, Iosif Salem, Krzysztof
Pietrzak, and Stefan Schmid. Wiser: Increasing throughput in payment
channel networks with transaction aggregation. In ACM Advances in
Financial Technologies (AFT), 2022.

[TZS20] Saar Tochner, Aviv Zohar, and Stefan Schmid. Route hijacking and dos in
off-chain networks. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, AFT, 2020.

[Unl] Unlinkable outsourced channel monitoring. https://diyhpl.us/
wiki / transcripts / scalingbitcoin / milan / unlinkable -
outsourced-channel-monitoring/.

[VBOM+19] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D.
Garcia, and Frank Piessens. A tale of two worlds: Assessing the vulner-
ability of enclave shielding runtimes. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 1741–1758, New York, NY, USA, 2019. Association for Computing
Machinery.

[VS18] Nicolas Van Saberhagen. Cryptonote v 2.0, 2018. https://
cryptonote.org/whitepaper.

[WSNH19] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding
on blockchain. In ACM AFT, pages 41–61, 2019.

[YKSN19] Bin Yu, Shabnam Kasra Kermanshahi, Amin Sakzad, and Surya Nepal.
Chameleon Hash Time-lock Contract for Privacy Preserving Payment Chan-
nel Networks. In Conference on Provable Security, 2019.

[ZABZ+21] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-
Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J. Knotten-
belt. SoK: Communication Across Distributed Ledgers. In FC, 2021.

[ZK-] Zk-rollup. https://web.archive.org/web/20221130233402/
https : / / docs.ethhub.io / ethereum - roadmap / layer - 2 -
scaling/zk-rollups/.

[ZMR18] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’18, page 931–948, New York, NY, USA, 2018. Association for Computing
Machinery.

219

https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://cryptonote. org/whitepaper
https://cryptonote. org/whitepaper
https://web.archive.org/web/20221130233402/https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://web.archive.org/web/20221130233402/https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://web.archive.org/web/20221130233402/https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/

APPENDIX A
Appendix to Chapter 2

A.1 UC Protocol
Using the notation introduced in Section 2.4, we here give a formal version of the protocol
that is augmented in a way to model it in the UC framework. More specifically, we model
the environment to capture anything that happens outside of the protocol execution as
well as communication model. Additionally, we replace (i) the 2-party key generation
protocol ΓJKGen for a signature scheme ΠDS with an idealized version FJKGen and (ii)
the 2-party signing protocol ΓSign for a signature scheme with an idealized version FSign.
Finally, we add the possibility to honestly close payment channels in a way that requires
only one on-chain transaction, i.e., by creating a transaction spending from the funding
transaction and giving each user their respective balance right away.

In order to improve the readability of the protocol, we exclude checks that an honest
user would naturally perform, such as that parameters given from the environment are
well-formed, there is an input of the fund belonging to each of the two users holding the
right amount of coins, verifying that channels to be updated or closed exist, the new
state is valid or that a channel to be updated or closed is not currently being updated
or closed. This can be formally handled by using a protocol wrapper, that performs
these checks on the messages from the environment and drops invalid ones. We refer
to [AEE+21], where such a wrapper for payment channels is formally defined and use the
same in this work. Similarly, for the ideal functionality we use such a wrapper as well.

Sleepy channel protocol Π

Create

Party A upon (CREATE, id, γ, tidA) t0←− E :

221

A. Appendix to Chapter 2

1. Generate pkCPay,A, skCPay,A , (pkpun,A, skpun,A), (pkfp,A, skfp,A) and (pkffp,A, skffp,A). Let
pkeyA

set be the set of public keys of these key pairs.
2. Extract vA,0 and vB,0 from γ.st, and c := γ.c
3. Send (createInfo, id, tidA, pkeyA

set)
t0−→ B.

4. If (createInfo, id, tidB , pkeyB
set)

t0+1←−−− B, continue. Else, go idle.
5. Using pkeyA

set and pkeyB
set, A together with B runs FJKGen to generate the following set of

shared addresses: addrset := {ChAB, SleepyChA, SleepyChB, ExitChA, ExitChB, auxA, auxB}
which takes tg rounds. In case of failure, abort.

6. Generate txf := tx([tidA, tidB], [ChAB], [2 · c + vA,0 + vB,0])
7. Let txset0 ← GenerateTxs(addrset , pkeyA

set , pkeyB
set , c, vAi

, vBi
)

8. Let sigSetA
0 ← SignTxsA(txset0, addrset , pkeyA

set ∪ pkeyB
set)

9. A generates a signature σtidA
for the output tidA and sends

(createFund, id, σtidA
)

t0+1+tg+ts−−−−−−−→ A.
10. If (createFund, id, σtidB

)
t0+2+tg+ts←−−−−−−− B, post (txF , {σtidA

, σtidB
}) to L.

11. If txF is accepted by L in round t1 ≤ t0 + 2 + tg + ts + ∆, store ΓA(id) := (txF , txset0,
sigSetA

0 , addrset , pkeyA
set , pkeyB

set) and
(CREATED, id) t1−→ E .

Update

Party A upon (UPDATE, id, −→
θ , tstp) t0←− E

1. (updateReq, id, −→
θ , tstp) t0−→ B

Party B upon (updateReq, id, −→
θ , tstp) τ0←− A

1. Retrieve (txF , txseti−1, sigSetB
i−1, addrset , pkeyA

set , pkeyB
set) = ΓB(id)

2. Extract vA,i and vB,i from −→
θ , and c from txF

3. Let txseti ← GenerateTxs(addrset , pkeyA
set , pkeyB

set , c, vAi
, vBi

)
4. Let −→tid := (txA

Pay,i.id, txB
Pay,i.id) be a tuple of the transaction ids of transaction txA

Pay,i and
txB

Pay,i.
5. (UPDATE–REQ, id, −→

θ , tstp, −→tid) τ0−→ E
6. (updateInfo, id) τ0−→ A

Party A upon (updateInfo, id) t0+2←−−− B

1. Retrieve (txF , txseti−1, sigSetA
i−1, addrset , pkeyA

set , pkeyB
set) = ΓA(id)

2. Extract vA,i and vB,i from −→
θ , and c from txF

3. Let txseti ← GenerateTxs(addrset , pkeyA
set , pkeyB

set , c, vAi
, vBi

)

222

A.1. UC Protocol

4. Let −→tid := (txA
Pay,i.id, txB

Pay,i.id) be a tuple of the transaction ids of transaction txA
Pay,i and

txB
Pay,i.

5. (SETUP, id, −→tid) t0+2−−−→ E
6. If (SETUP–OK, id)

t1≤t0+2+tstp←−−−−−−−− E , send (updateCom, id) t1−→ B
7. Wait one round.
8. SignTxsA(txseti, addrset , pkeyA

set ∪ pkeyB
set)

Party B upon (updateCom, id)
τ1≤τ0+2+tstp←−−−−−−−− A

9. (SETUP–OK, id) τ1−→ E
10. If not (UPDATE–OK, id) τ1←− E , go idle.
11. SignTxsA(txseti, addrset , pkeyA

set ∪ pkeyB
set)

Party A in round t1 + 1 + ts

12. If sigSetA
i is returned from SignTxsA, (UPDATE–OK, id) t1+1+ts−−−−−→ E . Else, execute L–ForceClose(id)

and go idle.
13. If not (REVOKE, id) t1+1+ts←−−−−− E , go idle.
14. A together with B runs the interactive protocol FSign to generate the following signature.

σA
Pnsh,i on the punishment transaction txA

Pnsh,i.Party A receives σA
Pnsh,i as output after tr. In

case of failure, execute L–ForceClose(id).
15. (REVOKE, id, σA

Pnsh,i)
t1+1+ts+tr−−−−−−−→ B

Party B in round τ1 + ts

16. If sigSetB
i is not returned from SignTxsA, execute L–ForceClose(id) and go idle.

17. Participate in the signing of txA
Pnsh,i.

18. Upon (REVOKE, id, σA
Pnsh,i)

τ1+1+ts+tr←−−−−−−−− A, continue. Else, execute L–ForceClose(id) and go
idle.

19. (REVOKE–REQ, id) τ1+1+ts+tr−−−−−−−−→ E
20. If not (REVOKE, id) τ1+1+ts+tr←−−−−−−−− E , go idle.
21. B together with A runs the interactive protocol FSign to generate the following signature.

σB
Pnsh,i on the punishment transaction txB

Pnsh,i. Party B receives σB
Pnsh,i as output after tr. In

case of failure, execute L–ForceClose(id).
22. (REVOKE, id, σB

Pnsh,i)
τ1+1+ts+2tr−−−−−−−−→ A

23. ΘB(id) := ΘB ∪ {(txseti−1, sigSetB
i−1, σB

Pnsh,i−1)}
24. ΓB(id) := (txF , txseti, sigSetB

i , addrset , pkeyA
set , pkeyB

set)
25. (UPDATED, id) τ1+2+ts+2tr−−−−−−−−→ E

Party A in round t1 + 2 + ts + tr

223

A. Appendix to Chapter 2

26. Participate in the signing of txB
Pnsh,i.

27. If (REVOKE, id, σB
Pnsh,i)

t1+3+ts+2tr←−−−−−−−− B and the signature is valid, go to next step. Else,
execute L–ForceClose(id).

28. ΘA(id) := ΘA ∪ {(txseti−1, sigSetA
i−1, σB

Pnsh,i−1)}
29. ΓA(id) := (txF , txseti, sigSetA

i , addrset , pkeyA
set , pkeyB

set)
30. (UPDATED, id) t1+3+ts+2tr−−−−−−−−→ E

Close

Party A upon (CLOSE, id) t0←− E

1. Extract (txF , txseti, sigSetA
i , addrset , pkeyA

set , pkeyB
set) from ΓA(id).

2. Extract vA,i and vB,i from txA
Pay,j ∈ txseti, and c from txF

3. Create transaction txc := tx(ChAB , {pkA, pkB}, {vA,i + c, vB,i + c}), where pkA is an address
controlled by A and pkB an address controlled by B.

4. A together with B runs the interactive protocol FSign to generate the following signature,
σtxc on the transaction txc. This takes tr rounds.

5. In case the signature generation was successful, post (txc, σtxc
) on L. Else, execute

L–ForceClose(id).

6. If txc appears on L in round t1 ≤ t0 + tr + ∆, set ΘA(id) := ⊥, ΓA(id) := ⊥ and send
(CLOSED, id) t2−→ E .

Punish

Party A upon PUNISH
t0←− E :

For each id ∈ {0, 1}∗ s.t. ΘP (id) ̸= ⊥:

1. Iterate over all elements (txseti, sigSetA
i , σB

Pnsh,i) in ΘP (id)

2. If the revoked payment txB
Pay,i ∈ txseti is on L, post

txB

Pnsh,i, σB
Pnsh,i

on L before the absolute

timeout T.
3. Let txB

Pnsh,i be accepted by L in round t1 ≤ t0 + ∆. Post
(txB,A

Fpay,i, σtxB,A
Fpay,i

∈ sigSetA
i)

4. After txB,A
Fpay,i is accepted by L in round t2 ≤ t1 + ∆, set ΘA(id) := ⊥, ΓA(id) := ⊥ and

output (PUNISHED, id) t1−→ E .

224

A.1. UC Protocol

Subprotocols

L–ForceClose(id):
Let t0 be the current round

1. Extract (txF , txset0, sigSetA
0 , addrset, pkeyA

set, pkeyB
set) from ΓA(id) and extract txA

Pay,j from
txset and σA

Pay,j and sigSet.

2. Party A posts

txA
Pay,j , σA

Pay,j

on L

3. Let t1 ≤ t0 + ∆ be the round in which txA
Pay,j is accepted by L.

4. If txA,B
Fpay,i appears on L at or after round t2 ≤ t1 + ∆ and before T, post

txA

Pay,j , σA
Pay,j

and

send (CLOSED, id) t3≤t2+∆−−−−−−→ E . Otherwise, post

txA,A
Fpay,i, σA,A

Fpay,i

after T and send (CLOSED,

id) t4≤T+∆−−−−−→ E .

5. Set ΓP (id) := ⊥, ΘP (id) := ⊥.

GenerateTxs(addrset , pkeyA
set , pkeyB

set , c, vAi
, vBi

):

1. Using the addresses in addrset and the public keys in pkeyA
set and pkeyB

set , do the following.

2. Generate txA
Pay,i := tx(ChAB , [pkCPay,A, SleepyChA, ExitChB],

[c, vA,i, vB,i + c])

3. Generate txB
Pay,i := tx(ChAB , [pkCPay,B , SleepyChB , ExitChA]

[c, vB,i, vA,i + c])

4. Generate punishment transactions txA
Pnsh,i := tx(SleepyChA,

pkpun,B , vA,i) and txB
Pnsh,i := tx(SleepyChB , pkpun,A, vB,i)

5. Generate finish-pay transactions txA,A
Fpay,i := tx(SleepyChA, pkfp,A,

vA,i) and txB,B
Fpay,i := tx(SleepyChB , pkfp,B , vB,i) both timelocked until time T.

6. Generate a set of faster finish-pay transactions txA,B
Fpay,i :=

tx(ExitChA, [pkffp,B , auxA], [vB,i + c − ϵ, ϵ]) and txB,A
Fpay,i :=

tx(ExitChB , [pkffp,A, auxB], [vA,i + c − ϵ, ϵ]).

7. Generate a set of enabler transactions txA∗
Fpay,i :=

tx([SleepyChA, auxA], pkfp,A, vA,i + ϵ) and txB∗
Fpay,i :=

tx([SleepyChB , auxB], pkfp,B , vB,i + ϵ) that enable a faster finish-payment.

8. Return txset := {txA
Pay,i, txB

Pay,i, txA
Pay,i, txA

Pnsh,i, txB
Pnsh,i, txA,A

Fpay,i,
txB,B

Fpay,i, txA,B
Fpay,i, txB,A

Fpay,i, txA∗
Fpay,i, txB∗

Fpay,i}

225

A. Appendix to Chapter 2

SignTxsA(txset , addrset , pkeyA
set ∪ pkeyB

set):
Party A (specified by the superscript of the function) is the one that receives the signatures
first.
Upon agreement, i.e., A and B start executing this subprotocol in the same round with the same
parameters, the following is executed. Extracting the transactions, addresses and public keys
from the parameters, Party A together with B runs FSign to sign the transactions as follows.

1. Party A receives signature σA,A
Fpay,i on transaction txA,A

Fpay,i under the shared key SleepyChA.

2. Party B receives signature σB,B
Fpay,i on transaction txB,B

Fpay,i under the shared key SleepyChB .

3. Party A receives signatures σSleepyCh,A, σaux,A on the transaction txA∗
Fpay,i with respect

to the shared keys SleepyChA and auxA, respectively.

4. Party B receives signatures σSleepyCh,B , σaux,B on the transaction txB∗
Fpay,i with respect

to the shared keys SleepyChB and auxB , respectively.

5. Party A receives signature σA,B
Fpay,i on the transaction txA,B

Fpay,i under the shared key ExitChB .

6. Party B receives signature σB,A
Fpay,i on the transaction txB,A

Fpay,i under the shared key ExitChA.

7. Party A receives signature σA
Pay,i on the transaction txA

Pay,i under the shared key ChAB .

8. Party B receives signature σB
Pay,i on the transaction txB

Pay,i under the shared key ChAB .

This takes ts rounds and in case of failure (i.e., a signatures is not received or not valid for the
specified transaction and output), execute the steps in Close. In case of success, returns to A

sigSetA
i := {σA,A

Fpay,i, σSleepyCh,A, σaux,A , σB,A
Fpay,i, σA

Pay,i} and to B sigSetB
i :=

{σB,B
Fpay,i, σSleepyCh,B , σaux,B , σA,B

Fpay,i, σB
Pay,i}

Indistinguishability. What is left at this point is to show that the UC version of
the protocol is computationally indistinguishable from the one described in Section 2.5.
More specifically, in the UC version of the protocol we substituted (i) the 2-party key
generation protocol ΓJKGen for a signature scheme ΠDS with an idealized version FJKGen
and (ii) the 2-party signing protocol ΓSign for a signature scheme ΠDS with an idealized
version FSign. For the UC formulations we refer the reader to [BH04,Can00]. Let Π′′ be
the protocol we presented in Section 2.5.

Π′. We define Π′ as Π′′ except that the (UC-secure) 2-party key generation protocol
ΓJKGen for a signature scheme ΠDS is replaced by an idealized version FJKGen. Such ideal
functionality samples a key pair honestly and simulates the shares of the corrupted party.

Π′′ ≈ Π′. Towards a contradiction, we assume that there exists an adversary A that can
computationally distinguish between Π′ and Π′′. We can construct a reduction algorithm
R that uses A as a subprocedure. Since the two protocols only differ in ΓJKGen being
replaced by FJKGen, R using A can be used to distinguish a keyshare of ΓJKGen from
the data received in FJKGen, which in turn would break the security of our 2-party key
generation protocol with non-negligible probability.

226

A.1. UC Protocol

Π. We define Π as Π′ except that the (UC-secure) 2-party signing protocol ΓSign for a
signature scheme ΠDS is replaced with an idealized version FSign, which signs messages
locally and simulates the interaction of corrupted parties. Note that this corresponds to
the UC version of the protocol.

Π′ ≈ Π. Towards a contradiction, we assume that there exists an adversary A that can
computationally distinguish between Π and Π′. Since the two protocols only differ in
ΓSign being replaced by FSign, this means that A is able to distinguish a real interaction
from a simulated one with non-negligible probability. This is a contradiction against the
UC-security of ΓSign.

A.1.1 UC Simulator

In this section, we give the pseudocode of a simulator for the formal Sleepy Channel
protocol Π of Appendix A.1 in the ideal world. Our simulator interacts with FL and
L. The subprotocol SignTxsP refers to the one given in the formal protocol description.
Normally, the challenge of providing a UC-simulation proof is that the simulator is not
given the secret inputs of parties sent by the environment. Instead, the functionality
usually specifies exactly what is leaked to the simulator, and the simulator has to generate
a simulated transcript merely from this leaked information. The simulated transcript has
to be indistinguishable from the transcript that is the result of the real-world protocol
execution.
Note that in our model, all messages to the functionality are implicitly forwarded to the
simulator, i.e., there are no secret inputs. Hence, we can omit the simulation of the case
where both protocol participants are honest; the simulator in this case would merely
need to recreate the side-effect of the protocol code, which can be easily achieved with
access to all the messages sent to the functionality. Indeed, the main challenge in our
setting is to handle any behavior of malicious parties.

Simulator for Create

Case A is honest and B is corrupted

Upon A sending (CREATE, γ, tidA) τ0−→ FL, if B does not send
(CREATE, γ, tidB) τ−→ FL where |τ0 − τ | ≤ T1, then distinguish the following cases:

1. If B sends (createInfo, id, tidB , pkeyB
set)

τ0−→ A, then send
(CREATE, γ, tidB) τ0−→ FL on behalf of B.

2. Otherwise stop.

Do the following:

1. Set id := γ.id, generate pkCPay,A, skCPay,A , (pkpun,A, skpun,A), (pkfp,A, skfp,A) and (pkffp,A,
skffp,A). Let pkeyA

set be the set of public keys of these key pairs. Send (createInfo, id, tidA,

227

A. Appendix to Chapter 2

pkeyA
set)

τ0−→ B.

2. If you receive (createInfo, id, tidB , pkeyB
set)

τ0+1←−−− B, do the following. Else go idle.

3. Using pkeyA
set and pkeyB

set, the simulator on behalf of A together with B runs FJKGen to
generate the following set of shared addresses: addrset := {ChAB, SleepyChA, SleepyChB,
ExitChA, ExitChB , auxA, auxB} which takes tg rounds. In case of failure, abort.

4. Generate txf := tx([tidA, tidB], [ChAB], [2 · c + vA,0 + vB,0])

5. Let txset0 ← GenerateTxs(addrset , pkeyA
set , pkeyB

set , c, vAi , vBi)

6. Let sigSetA
0 ← SignTxsA(txset0, addrset , pkeyA

set ∪ pkeyB
set)

7. Generates a signature on behalf of A, σtidA
, for the output tidA and send (createFund, id,

σtidA
)

t0+1+tg+ts−−−−−−−→ A.

8. If you (createFund, id, σtidB
)

τ0+2+tg+ts←−−−−−−−− B, post (txF , {σtidA
, σtidB

}) to L.

9. If txF is accepted by L in round τ1 ≤ τ0 + 2 + tg + ts + ∆, store ΓA(id) := (txF , txset0,
sigSetA

0 , addrset , pkeyA
set , pkeyB

set).

Simulator for Update

Case A is honest and B is corrupted

Upon A sending (UPDATE, id, −→
θ , tstp) τ0−→ FL, proceed as follows:

1. (updateReq, id, −→
θ , tstp) t0−→ B

2. Upon (updateInfo, id) t0+2←−−− B, do the following

3. Retrieve (txF , txseti−1, sigSetA
i−1, addrset , pkeyA

set , pkeyB
set) = ΓA(id)

4. Extract vA,i and vB,i from −→
θ , and c from txF

5. Let txseti ← GenerateTxs(addrset , pkeyA
set , pkeyB

set , c, vAi , vBi)

6. Let −→tid := (txA
Pay,i.id, txB

Pay,i.id) be a tuple of the transaction ids of transaction txA
Pay,i and

txB
Pay,i. Inform FL of −→tid in round t0 + 2.

7. If A sends (SETUP–OK, id)
t1≤t0+2+tstp−−−−−−−−→ FL, send (updateCom, id) t1−→ B

8. Wait one round.
9. If in round t1 + 1, B starts executing SignTxsA(txseti, addrset, pkeyA

set ∪ pkeyB
set), send

(UPDATE–OK, id) t1+1−−−→ FL on behalf of B

10. SignTxsA(txseti, addrset , pkeyA
set ∪ pkeyB

set)

11. If sigSetA
i is returned from SignTxsA, instruct FL to (UPDATE–OK, id) t1+1+ts−−−−−→ E via A. Else,

execute L–ForceCloseA(id) and go idle.

228

A.1. UC Protocol

12. If A does not send (REVOKE, id) t1+1+ts−−−−−→ FL, go idle.
13. The simulator on behalf of A together with B runs the interactive protocol FSign to generate

the following signature. σA
Pnsh,i on the punishment transaction txA

Pnsh,i. Party A receives
σA

Pnsh,i as output. This takes tr rounds. In case of failure, execute L–ForceCloseA(id).

14. (REVOKE, id, σA
Pnsh,i)

t1+1+ts+tr−−−−−−−→ B

15. If B starts FSign to sign txB
Pnsh,i in round t1 + 2 + ts + tr, send (REVOKE, id) t1+2+ts+tr−−−−−−−→ FL

on behalf of B and participate in the signing on behalf of A.

16. If (REVOKE, id, σB
Pnsh,i)

t1+3+ts+2tr←−−−−−−−− B and the signature is valid, go to next step. Else,
execute L–ForceCloseA(id).

17. ΘA(id) := ΘA ∪ {(txseti−1, sigSetA
i−1, σB

Pnsh,i−1)}
18. ΓA(id) := (txF , txseti, sigSetA

i , addrset , pkeyA
set , pkeyB

set)

Case B is honest and A is corrupted

Upon A sending (updateReq, id, −→
θ , tstp) t0−→ B, send

(UPDATE, id, −→
θ , tstp) t0−→ FL on behalf of A, if A has not already sent this message. Proceed as

follows:

1. Upon (updateReq, id, −→
θ , tstp) τ0←− A, do the following

2. Retrieve (txF , txseti−1, sigSetB
i−1, addrset , pkeyA

set , pkeyB
set) = ΓB(id)

3. Extract vA,i and vB,i from −→
θ , and c from txF

4. Let txseti ← GenerateTxs(addrset , pkeyA
set , pkeyB

set , c, vAi , vBi)

5. Let −→tid := (txA
Pay,i.id, txB

Pay,i.id) be a tuple of the transaction ids of transaction txA
Pay,i and

txB
Pay,i. Inform FL of −→tid.

6. (updateInfo, id) τ0−→ A

7. Upon A sending (updateCom, id)
τ0+1+tstp−−−−−−→ B, send (SETUP–OK, id) τ1−→ FL on behalf of A.

8. Receive (updateCom, id)
τ1≤τ0+2+tstp←−−−−−−−− A

9. If B sends (UPDATE–OK, id) τ1−→ FL, SignTxsA(txseti, addrset , pkeyA
set ∪ pkeyB

set)

10. If sigSetB
i is not returned from SignTxsA in round τ1 + ts, execute L–ForceCloseB(id) and

go idle.

11. If A starts the FSign in round τ1 + ts to generate σA
Pnsh,i, send (REVOKE, id) τ1+ts−−−→ FL on

behalf of A. Participate in the signing on behalf of B.

229

A. Appendix to Chapter 2

12. Upon (REVOKE, id, σA
Pnsh,i)

τ1+1+ts+tr←−−−−−−−− A, continue. Else, execute L–ForceCloseB(id) and
go idle.

13. If B does not send (REVOKE, id) τ1+1+ts+tr−−−−−−−−→ FL, go idle.
14. S on behalf of B together with A runs the interactive protocol FSign to generate the following

signature. σB
Pnsh,i on the punishment transaction txB

Pnsh,i. Party B receives σB
Pnsh,i as output

after tr. In case of failure, execute L–ForceCloseB(id).

15. (REVOKE, id, σB
Pnsh,i)

τ1+1+ts+2tr−−−−−−−−→ A

16. ΘB(id) := ΘB ∪ {(txseti−1, sigSetB
i−1, σB

Pnsh,i−1)}
17. ΓB(id) := (txF , txseti, sigSetB

i , addrset , pkeyA
set , pkeyB

set)

Simulator for Close

Case A is honest and B is corrupted

Upon A sending (CLOSE, id) t0−→ FL, do the following.

1. Extract (txF , txseti, sigSetA
i , addrset , pkeyA

set , pkeyB
set) from ΓA(id).

2. Extract vA,i and vB,i from txA
Pay,j ∈ txseti, and c from txF

3. Create transaction txc := tx(ChAB , {pkA, pkB}, {vA,i + c, vB,i + c}), where pkA is an address
controlled by A and pkB an address controlled by B.

4. The simulator on behalf of A together with B runs the interactive protocol FSign to generate
the following signature, σtxc

on the transaction txc. This takes tr rounds.
5. In case the signature generation was successful, post (txc, σtxc

) on L and send (CLOSE, id)
t0+tr−−−→ FL on behalf of B. Else, execute L–ForceCloseA(id).

6. If txc appears on L in round t1 ≤ t0 + tr + ∆, set ΘA(id) := ⊥, ΓA(id) := ⊥.

Simulator for Punish

Case A is honest and B is corrupted

Upon A sending PUNISH
τ0−→ FL, for each id ∈ {0, 1}∗ such that ΘA(id) ̸= ⊥ do the following:

1. Parse {(txseti, sigSetA
i , σB

Pnsh,i)}i∈m := ΘA(id) and extract γ from ΓA(id). If for some i ∈ m,
there exist a transaction txB

Pay,i ∈ txseti on L do the following.

2. Post

txB
Pnsh,i, σB

Pnsh,i

on L before the absolute timeout T.

3. Let txB
Pnsh,i be accepted by L in round t1 ≤ t0 + ∆. Post

(txB,A
Fpay,i, σtxB,A

Fpay,i
∈ sigSetA

i)

230

A.1. UC Protocol

4. After txB,A
Fpay,i is accepted by L in round t2 ≤ t1 + ∆, set ΘA(id) := ⊥, ΓA(id) := ⊥.

Simulator for ForceCloseP (id)

Let τ0 be the current round

1. Extract (txF , txset0, sigSetA
0 , addrset, pkeyA

set, pkeyB
set) from ΓA(id) and extract txA

Pay,j from
txset and σA

Pay,j and sigSet.

2. Post

txA
Pay,j , σA

Pay,j

on L

3. Let t2 ≤ t1 + ∆ be the round in which txA
Pay,j is accepted by L.

4. If txA,B
Fpay,i appears on L at or after round t3 ≤ t2 + ∆ and before T, post

txA

Pay,j , σA
Pay,j

.

Otherwise, post

txA,A
Fpay,i, σA,A

Fpay,i

after T. Set ΓP (id) := ⊥, ΘP (id) := ⊥.

A.1.2 Simulation proof

To prove that the protocol is a (G)UC-realization of the functionality FL, we show that the
execution ensembles EXEC Π,A,E and EXEC F ,S,E are computationally indistinguishable.
I.e., for the simulator S presented in Appendix A.1.1, for every environment the interaction
with S and FL is computationally indistinguishable from the interaction with A and
Π. We show this for the different phases Create, Update, Close, Punish as well as the
subprotocol ForceClose.

For readability, we define m[τ] to capture the fact that a message m is observed by the
environment in round τ . Note that messages sent to parties in the protocol that are
under adversarial control observe the message after one round. Additionally, we interact
with other functionalities, e.g., for signing and the ledger. To capture any side effect
observable by the environment including messages sent by parties who are potentially
controlled by the adversary or changing public variables such as the ledger, we do the
following. We denote obsSet(action, τ) as the set of all observable side effects triggered
by action action in round τ . Finally, we refer to a message by the message identifier, e.g.,
CREATE or createInfo. We note that other message parameters are omitted. Instead, we
refer to relevant parts in the ideal world and the real world, where one can verify that
indeed the same objects are created, checks are performed, etc.

We require a SUF-CMA secure signature scheme Σ and a ledger L(∆, Σ, V) where V allows
for transaction authorization under Σ and absolute time-locks.1 The former property is
needed to ensure that the environment and malicious party cannot generate signatures
on behalf of honest parties with non-negligible probability. Instead, only the simulator

1The necessity for time-locks can be dropped when using verifiable timed signatures (VTS) as discussed
in Section 2.5.2, although we do not provide a formal analysis for such variant here.

231

A. Appendix to Chapter 2

can generate signatures on behalf of honest parties. Further, we require a ledger that
supports transaction authorization under Σ and absolute time-locks for encoding our
construction.

Lemma 2. The Create phase of Π UC-realizes the Create phase of FL.

Proof. We consider the case where A is honest and B is corrupted. Note that the reverse
case is symmetric.

Real World. After receiving CREATE in round t0, A sends message createInfo to B
in t0. If A receives also createInfo in t0 + 1, A will perform first the action a0 :=
“run address generation” in round t0 + 1 and on success, create the transactions for the
channel followed by a1 := “create signatures” in round t0 + 1 + tg. If this is successful, A
generates the signature for the funding tx txF and sends the signature via createFund
to B in t0 + 1 + tg + ts. If A receives also createFund from B in round t0 + 2 + tg + ts,
it will perform action a2 := “Post funding tx on L”. If it is accepted in round t1 ≤
t0 + 2 + tg + ts + ∆, finally A will output CREATED. Thus, the execution ensemble is
EXEC create

Π,A,E := {createFund[t0+1], obsSet(a0, t0+1), obsSet(a1, t0+1+tg), createFund[t0+
2 + tg + ts], obsSet(a2, t0 + 2 + tg + ts), CREATED[t1]}.

Ideal World. After A sending CREATE in round t0 to FL, the simulator sends createInfo
to B. If B sends createInfo to A, the simulator informs FL and performs a0 in round
t0 + 1. Upon success, S creates the transactions for the channel and performs a1 in round
t0 + 1 + tg. If this was successful, the simulator on behalf of A generates the signature
of txF and sends createFund to B in t0 + 1 + tg + ts. If B sends also createFund to A,
received in t0 + 2 + tg + ts + ∆, perform a2 in t0 + 2 + tg + ts + ∆. If the funding tx is
accepted in round t1 ≤ t0 + 2 + tg + ts + ∆, FL (which expects it after being informed by
S) outputs CREATED in round t1 ≤ t0 + 2 + tg + ts + ∆. Thus, the execution ensemble is
EXEC create

F ,S,E := {createFund[t0+1], obsSet(a0, t0+1), obsSet(a1, t0+1+tg), createFund[t0+
2 + tg + ts], obsSet(a2, t0 + 2 + tg + ts), CREATED[t1]}

Lemma 3. The ForceClose subprotocol of Π UC-realizes the ForceClose subprocedure of
FL.

Proof. We consider the case where A is honest and B is corrupted. Note that the reverse
case is symmetric.

Real World. Taking the latest state, a performs action a0 := “post

txA

Pay,j , σA
Pay,j

on L”

in round t0. After the transaction appears on L in round t1 ≤ t0 + ∆, do the fol-
lowing depending on B. Either (i) the transaction txA,B

Fpay,i appears on L in round
t2 ≤ t1 + ∆ and before T. In this case, A posts

txA

Pay,j , σA
Pay,j

, which we denote

as action a1, followed by sending CLOSED in round tm := t3leqt2 + ∆. Otherwise, (ii)
A posts

txA,A

Fpay,i, σA,A
Fpay,i

after T, which we denote as action a2, followed by sending

232

A.1. UC Protocol

CLOSED in round tm := t4 ≤ T + ∆. Thus, the execution ensemble is EXEC forceclose
Π,A,E :=

{obsSet(a0, t0), o ∈ {obsSet(a1, t2), obsSet(a2, T)}, CLOSED[tm]}.

Ideal World. Taking the latest state, the simulator will mirror the behavior of the real
world. In round t0, it will perform action a0. After the transaction appears on L in round
t1 ≤ t0 + ∆, do the following depending on B. Either (i) the transaction txA,B

Fpay,i appears
on L in round t2 ≤ t1 + ∆ and before T. In this case, the simulator posts

txA

Pay,j , σA
Pay,j

,

which we denote as action a1. Otherwise, (ii) the simulator posts

txA,A

Fpay,i, σA,A
Fpay,i

after

T, which we denote as action a2.Meanwhile, the functionality FL expects that either of
these transactions appears on L. If this happens, either in round tm := t3 ≤ t2 + ∆ in
case (i) or in round tm := t4 ≤ T + ∆, it outputs CLOSED. Thus, the execution ensemble
is EXEC forceclose

F ,S,E := {obsSet(a0, t0), o ∈ {obsSet(a1, t2), obsSet(a2, T)}, CLOSED[tm]}.

Lemma 4. The Update phase of Π UC-realizes the Update phase of FL.

Proof. We start by considering the case where A is honest and B is corrupted.

Real World. A upon UPDATE in round t0 does the following. The update phase consists
of the following steps: Informing B, generating the transactions for the new state, signing
these transactions, signing the revocation for B, and signing the revocation for A. We
capture the steps visible to the E below, together with their dependencies. The execution
ensemble EXEC update

Π,A,E follows as a list for better readability.

• updateReq to B in round t0

• SETUP to E in t0 + 2 (if received updateInfo from B)
• updateCom to B in round t1 ≤ t0 + 2 + tstp(if received SETUP–OK from E)
• SignTxs in t1 + 1
• UPDATE–OK to E in round t1 + 1 + ts (if signing successful)
• sign revocation of B with B in round t1 + 1 + ts (if REVOKE from E)
• REVOKE to B in round t1 + 1 + ts + tr (if signing successful)
• sign revocation of A with B in round t1 + 2 + ts + tr

• UPDATED to E in round t1 + 3 + ts + 2tr (if signature for revocation received from B)

Ideal World. Upon A sending UPDATE in round t0 to FL, S simulates the protocol
view to E . The same steps of the update phase have to be conducted: Informing B,
generating the transactions for the new state, signing these transactions, signing the
revocation for B, and signing the revocation for A. We capture the steps visible to the
E below, together with their dependencies and if they are executed by S or FL. The
execution ensemble EXEC update

F ,S,E follows as a list for better readability.

• updateReq to B in round t0 (S)

233

A. Appendix to Chapter 2

• SETUP to E in t0 + 2 (if received updateInfo from B) (FL)
• updateCom to B in round t1 ≤ t0 + 2 + tstp (if received SETUP–OK from E) (S)
• SignTxs in t1 + 1 (S)
• UPDATE–OK to E in round t1 + 1 + ts (if signing successful) (FL after instructed by

S)
• sign revocation of B with B in round t1 + 1 + ts (if REVOKE from E) (S)
• REVOKE to B in round t1 + 1 + ts + tr (if signing successful) (S
• sign revocation of A with B in round t1 + 2 + ts + tr (S)
• UPDATED to E in round t1 + 3 + ts + 2tr (if signature for revocation received from

B) (FL)

Table A.1: Overhead for operations, given a current fee of 102 satoshi per byte and a
price of 57, 202 USD per BTC.

txs off-chain bytes txs on-chain bytes USD
create 2 · (txA

Pay,i + txA,B
Fpay,i + txA∗

Fpay,i + txA,A
Fpay,i) 2026 txF 338 2.13

update 2 · (txA
Pay,i + txA,B

Fpay,i + txA∗
Fpay,i + txA,A

Fpay,i + txA
Pnsh,i) 2408 - - -

close (optimistic) - - txA
Pay,i 225 1.42

close (slow) - - txA
Pay,i + txA,A

Fpay,i 449 2.83
close (fast) - - txA

Pay,i + txA,B
Fpay,i + txA∗

Fpay,i 823 5.18
punish - - txA

Pay,i + txA
Pnsh,i 450 2.83

Now we consider the case where B is honest and A is corrupted.

Real World. A upon UPDATE in round t0 does the following. The update phase consists
of the following steps: Generating the transactions for the new state, signing these
transactions, signing the revocation for A, and signing the revocation for B. Similar
to the previous case, we capture the steps visible to the E below, together with their
dependencies. The execution ensemble EXEC update

Π,A,E follows as a list for better readability.

• UPDATE–REQ to E in round τ0 (if received updateReq from A)
• updateInfo to A in round τ0

• SETUP–OK to E in round τ1 ≤ τ0 + 2 + tstp (if received updateCom from A)
• SignTxs in τ1

• sign revocation of B with A in round τ1 + ts (if previous signing was successful)
• REVOKE–REQ to E in round τ1 +1+ ts (after receiving REVOKE from A in that round)
• sign revocation of A with A in round τ1 + 1 + ts + tr

• REVOKE to A in round τ1 + 1 + ts + 2tr (in case revocation was signed successfully)
• UPDATED to E in round τ1 + 2 + ts + 2tr

234

A.1. UC Protocol

Ideal World. Upon A sending UPDATE in round t0 to FL, S simulates the protocol
view to E . The same steps of the update phase have to be conducted: Generating the
transactions for the new state, signing these transactions, signing the revocation for B
and signing the revocation for A. We capture the steps visible to the E below, together
with their dependencies and if they are executed by S or FL. The execution ensemble
EXEC update

F ,S,E follows as a list for better readability.

• UPDATE–REQ to E in round τ0 (if received updateReq from A) (FL)
• updateInfo to A in round τ0 (S)
• SETUP–OK to E in round τ1 ≤ τ0 + 2 + tstp (if received updateCom from A) (FL)
• SignTxs in τ1 (S)
• sign revocation of B with A in round τ1 + ts (if previous signing was successful) (S)
• REVOKE–REQ to E in round τ1 +1+ ts (after receiving REVOKE from A in that round)

(FL)
• sign revocation of A with A in round τ1 + 1 + ts + tr (S)
• REVOKE to A in round τ1 + 1 + ts + 2tr (in case revocation was signed successfully)

(S)
• UPDATED to E in round τ1 + 2 + ts + 2tr (FL)

Lemma 5. The Close phase of Π UC-realizes the Close phase of FL.

Proof. We consider the case where A is honest and B is corrupted. Note that the reverse
case is symmetric.

Real World. After receiving CLOSE in round t0, A creates a closing transaction txc from
the latest state of the channel. A then performs action a0 := create signature for txc

with B. In case of success, A performs a1 := post txc on L in round t0 + tr. If it
appears in round t1 ≤ t0 + tr + ∆, send CLOSED. If the signature generation was
unsuccessful in round t2 ≥ t0, A runs a2 := ForceClose. Thus, the execution ensemble
is either EXEC close

Π,A,E := {obsSet(a0, t0), obsSet(a1, t0 + tr), CLOSED[t1]} or EXEC close
Π,A,E :=

{obsSet(a0, t0), obsSet(a2, t2)}.

Ideal World. In this case, after A receving CLOSE in round t0, S handles creat-
ing the transaction and performing a0 in round t0 and a1 in t0 + tr, while FL sends
CLOSED if the closing transaction appears on L in round t1 ≤ t0 + tr + ∆. If the sig-
nature generation was unsuccessful in round t2 ≥ t0, the simulator will perform a2
and instruct FL to do the same (by not sending CLOSE on behalf of B). Thus, the
execution ensemble is EXEC close

F ,S,E := {obsSet(a0, t0), obsSet(a1, t0 + tr), CLOSED[t1]} or
EXEC close

F ,S,E := {obsSet(a0, t0), obsSet(a2, t2)}.

235

A. Appendix to Chapter 2

Lemma 6. The Punish phase of Π UC-realizes the Punish phase of FL.

Proof. We consider the case where A is honest and B is corrupted. Note that the reverse
case is symmetric.

Real World. After A receives PUNISH from E in round t0,2 A checks if there is a
transaction on the ledger that belongs to an old state of one of its channels. If yes, using the
corresponding revocation secret, A performs action a0 := post punishment transaction in
round t0. After it is accepted in round t1 ≤ t0+∆, A performs a1 := post collateral unlock
transaction. If that is accepted in round t2 ≤ t1 +∆, A outputs message PUNISHED. Thus,
the execution ensemble is EXEC punish

Π,A,E := {obsSet(a0, t0), obsSet(a1, t1), PUNISHED[t2]}.

Ideal World. The ideal functionality checks at the end of every round t0 (this is
achieved by marking itself stale if not invoked by E , see Section 2.4) if a transaction
spending the funding transaction that is not the most recent state is on the ledger. If
it is, and the other party is honest, it expects a punishment transaction to appear in
round t1 ≤ t0 + ∆. Additionally, it expects that the collateral unlock transaction of that
party appears in round t2 ≤ t1 + ∆. If both appear, FL outputs PUNISHED in round
t2. Meanwhile, the simulator will take care of posting both the punishment a0 and the
collateral unlock transaction a1 in rounds t0 and t1, respectively. Thus, the execution
ensemble is EXEC punish

F ,S,E := {obsSet(a0, t0), obsSet(a1, t1), PUNISHED[t2]}.

Theorem 8. The protocol Π UC-realizes the the ideal functionality FL.

Proof. The proof of the theorem follows by a standard hybrid argument and an application
of Lemmas 2 to 6.

A.2 Deployment cost
To further evaluate our Sleepy Channels protocol, we want to measure the cost in terms
of on-chain fees when using the protocol. Taking the numbers from Section 2.6, we do
the following. To post a Bitcoin transaction to the blockchain, one has to give a certain
amount of fees to the miner. This fee is dependent on the size of the transaction. At the
time of writing, the fee of including a transaction to the next block is 11 satoshis per
byte and the price of 1 Bitcoin in USD is 57202,30. Together with the fact that there
are 108 satoshis in one Bitcoin, we can compute the fees in USD for each of the Sleepy
Channels operations. We show our results in Table A.1.

2Note that we require the environment to send this message, as we defined that all security guarantees
of FL are lost in the case of message ERROR. However, this is exactly what happens if the environment
does not give the execution token to FL via PUNISH, see Section 2.4

236

APPENDIX B
Appendix to Chapter 3

B.1 On the Usage of the UC-Framework

To formally model the security of our construction, we use a synchronous version of the
global UC framework (GUC) [CDPW07] which extends the standard UC framework
[Can01] by allowing for a global setup. Since our model is essentially the same as
in [DFH18,DEF+19b], parts of this section are taken verbatim from there.

Protocols and adversarial model. We consider a protocol π that runs between
parties from the set P = {P1, . . . , Pn}. A protocol is executed in the presence of an
adversary A that takes as input a security parameter 1λ (with λ ∈ N) and an auxiliary
input z ∈ {0, 1}∗, and who can corrupt any party Pi at the beginning of the protocol
execution (so-called static corruption). By corruption, we mean that A takes full control
over Pi and learns its internal state. Parties and the adversary A receive their inputs
from a special entity – called the environment E – which represents anything “external”
to the current protocol execution. The environment also observes all outputs returned
by the parties of the protocol.

Modeling time and communication. We assume a synchronous communication
network, which means that the execution of the protocol happens in rounds. Let us
emphasize that the notion of rounds is just an abstraction that simplifies our model
and allows us to argue about the time complexity of our protocols in a natural way.
We follow [DEF+19b], which in turn follows [KMTZ13], and formalize the notion of
rounds via an ideal functionality Fclock representing “the clock”. At a high level, the ideal
functionality requires all honest parties to indicate that they are prepared to proceed to
the next round before the clock is “ticked”. We treat the clock functionality as a global
ideal functionality using the GUC model. This means that all entities are always aware
of the given round.

237

B. Appendix to Chapter 3

We assume that parties of a protocol are connected via authenticated communication
channels with guaranteed delivery of exactly one round. This means that if a party P
sends a message m to party Q in round t, party Q receives this message in beginning of
round t + 1. In addition, Q is sure that the message was sent by party P . The adversary
can see the content of the message and can reorder messages that were sent in the same
round. However, it can not modify, delay or drop messages sent between parties, or insert
new messages. The assumptions on the communication channels are formalized as an
ideal functionality FGDC . We refer the reader to [DEF+19b] its formal description.

While the communication between two parties of a protocol takes exactly one round, all
other communication – for example, between the adversary A and the environment E –
takes zero rounds. For simplicity, we assume that any computation made by any entity
takes zero rounds as well.

Finally, we allow our ledger channel ideal functionality to output the same message to two
parties in the same round (c.f. Figure 3.4). Technically, this can be done as follows. The
functionality first outputs the message to one of the parties, thereby loses its execution
token. The functionality then waits for the next activation to send the message to the
other party. Only once the message is sent to both parties, the ideal functionality allows
the round to complete by “ticking the clock”.

Handling coins. We model the money mechanics offered by UTXO cryptocurrencies,
such as Bitcoin, via a global ideal functionality L using the GUC model. Our functionality
is parameterized by a delay parameter ∆ which upper bounded in the maximal number
of rounds it takes to publish a valid transaction, a digital signature scheme Σ and a set V
defining valid output conditions. We require that V includes signature verification w.r.t.
Σ. The functionality accepts messages from a fixed set of parties P.

The ledger functionality L is initiated by the environment E via the following steps: (1)
E instructs the ledger functionality to generate public parameter of the signature scheme
pp; (2) E instructs every party P ∈ P to generate a key pair (skP , pkP) and submit the
public key pkP to the ledger via the message (register, pkP); (3) sets the initial state of
the ledger meaning that it initialize a set TX defining all published transactions.

Once initialized, the state of L is public and can be accessed by all parties of the protocol,
the adversary A and the environment E via a read message. Any party P ∈ P can at any
time post a transaction on the ledger via the message (post, tx). The ledger functionality
waits for at most ∆ rounds (the exact number of rounds is determined by the adversary).
Thereafter, the ledger verifies the validity of the transaction and adds it to the transaction
set TX. The formal description of the ledger functionality is presented in Figure B.1.

Let us emphasize that our ledger functionality is fairly simplified. In reality, parties can
join and leave the blockchain system dynamically. Moreover, we completely abstract from
the fact that transactions are published in blocks that are proposed by parties and the
adversary. These and other features are captured by prior works, such as [BMTZ17], that
provide a more accurate formalization of the Bitcoin ledger in the UC framework [Can01].

238

B.1. On the Usage of the UC-Framework

However, interaction with such ledger functionality is fairly complex. To increase the
readability of our channel protocols and ideal functionality, which is the main focus of
our work, we decided on this simpler ledger.

Ideal Functionality L(∆, Σ, V)

The functionality accepts messages from all parties that are in the set P and maintains a PKI
for those parties. The functionality maintains the set of all accepted transactions TX and all
unspent transaction outputs UTXO.
Initialize public keys: Upon (register, pkP) τ0←− P and it is the first time P sends a registration
message, add (pkP , P) to PKI.
Post transaction: Upon (post, tx) τ0←− P , check that |PKI| = |P|. If not, drop the message, else
wait until round τ1 ≤ τ0 + ∆ (the exact value of τ1 is determined by the adversary). Then
check if:
1. The id is unique, i.e. for all (t, tx′) ∈ TX, tx′.txid ̸= tx.txid.
2. All the inputs are unspent and the witness satisfies all the output conditions, i.e. for each

(tid, i) ∈ tx.input, there exists (t, tid, i, θ) ∈ UTXO and θ.φ(tx, t, τ1) = 1.
3. All outputs are valid, i.e. for each θ ∈ tx.output it holds that θ.cash > 0 and θ.φ ∈ V.
4. The value of the outputs is not larger than the value of the inputs. More formally, let

I := {utxo := (t, tid, i, θ) | utxo ∈ UTXO ∧ (tid, i) ∈ tx.input}, then θ′∈tx.output θ′.cash ≤
utxo∈I utxo.θ.cash

5. The absolute time-lock of the transaction has expired, i.e. tx.TimeLock ≤ now.
If all the above checks return true, add (τ1, tx) to TX, remove the spent outputs from UTXO, i.e.,
UTXO := UTXO \ I and add the outputs of tx to UTXO, i.e., UTXO := UTXO ∪ {(τ1, tx.txid, i, θi)}i∈[n]
for (θ1, . . . , θn) := tx.output. Else, ignore the message.
Read state: Upon (read) τ0←− X, where X is any entity of the system, check that |PKI| = |P|. If
not, drop the message, else (state, PKI, TX) τ0−→ X.

Figure B.1: Description of the global ledger functionality.

The GUC-security definition. Let π be a protocol with access to the global ledger
L(∆, Σ, V) and the global clock Fclock . The output of an environment E interacting
with a protocol π and an adversary A on input 1λ and auxiliary input z is denoted
as EXEC L(∆,Σ,V),Fclock

π,A,E (λ, z). Let ϕF be the ideal protocol for an ideal functionality F
with access to the global ledger L(∆, Σ, V) and the global clock Fclock . This means that
ϕF is a trivial protocol in which the parties simply forward their inputs to the ideal
functionality F . The output of an environment E interacting with a protocol ϕF and a
adversary S (sometimes also call simulator) on input 1λ and auxiliary input z is denoted
as EXEC L(∆,Σ,V),Fclock

ϕF ,S,E (λ, z).

We are now ready to state our main security definition which, informally, says that if a
protocol π UC-realizes an ideal functionality F , then any attack that can be carried out
against the real-world protocol π can also be carried out against the ideal protocol ϕF .

Definition 7. We say that a protocol π UC-realizes an ideal functionality F with respect
to a global ledger L := L(∆, Σ, V) and a global clock Fclock if for every adversary A there

239

B. Appendix to Chapter 3

exists an adversary S such that we have
EXEC L,Fclock

π,A,E (λ, z)
λ∈N,

z∈{0,1}∗

c≈

EXEC L,Fclock
ϕF ,S,E (λ, z)

λ∈N,
z∈{0,1}∗

(where “ c≈” denotes computational indistinguishability of distribution ensembles, see,
e.g., [Gol06]).

To simplify exposition, we omit the session identifiers sid and the sub-session identifiers
ssid. Instead, we will use expressions like “message m is a reply to message m′”. We
believe that this approach improves readability.

B.2 Schnorr-based Adaptor Signature
In this section, we recall the Schnorr-based adaptor signature construction put forward
by Poelstra [Poe] and formally prove that it satisfies our security definitions. Let G = ⟨g⟩
be a cyclic group of prime order q and let Rg ⊆ G × Zq be a relation defined as
Rg := {(Y , y) | Y = gy}. The adaptor signature construction is defined with respect to
the Schnorr signature scheme ΣSch for the group G and the relation Rg. We implicitly
assume that all algorithms of the scheme (and the adversary) are parameterized by public
parameters pp := (g, q) and have access to a random oracle H : {0, 1}∗ → Zq.

For completeness, let us briefly recall the Schnorr signature scheme ΣSch = (Gen, Sign, Vrfy).
The key generation algorithm samples x ← Zq uniformly at random and returns
X := gx ∈ G as the public key and x as the secret key. The signing algorithm on
input a message m ∈ {0, 1}∗ computes r := H(X∥gk∥m) ∈ Zq and s := k + rx ∈ Zq,
for a k ← Zq chosen uniformly at random, and outputs a signature σ := (r, s). The
verification algorithm on input a message m ∈ {0, 1}∗ and signature (r, s) ∈ Zq × Zq,
verifies that r = H(X∥gs · X−r∥m).

To extend Schnorr signatures to an adaptor signature scheme, we need a method to
produce pre-signatures that depend on the statement Y and reveal the corresponding
witness y once the full signature is published. To this end, the r-component of a pre-
signature is computed as H(X∥gkY ∥m), and s is computed as in standard Schnorr. To
adapt a pre-signature into a complete signature, we need to adjust the randomness in
s to make it consistent with the randomness k + y used in the r-component. This is
done by adding y to s, where y is a value s.t. gy = Y . Clearly, given s and the fixed
s-component, we can then efficiently compute the witness y. We formally define the
Schnorr-based adaptor signature scheme ΞRg ,ΣSch in Figure B.2.

Theorem 9. If the Schnorr signature scheme ΣSch is SUF–CMA-secure and Rg is a hard
relation, then ΞRg ,ΣSch from Figure B.2 is a secure adaptor signature scheme in the ROM.

Remark 1. We note that ΣSch is SUF–CMA-secure under the assumption that the discrete
logarithm problem is hard [KMP16]. However, since we prove the aEUF–CMA-security of

240

B.2. Schnorr-based Adaptor Signature

pSignsk(m, Y)

k ←$ Zq

r := H(X∥gkY ∥m)
s̃ := k + r · sk
return (r, s̃)

pVrfypk(m, Y ; σ̃)

(r, s̃) := σ̃

r′ := H(pk∥gs̃pk−rY ∥m)
return (r = r′)

Ext(σ, σ̃, Y)

(r, s) := σ

(r̃, s̃) := σ̃

y′ := s − s̃

if (Y , y′) ∈ R

then return y′

else return ⊥

Adapt(σ̃, y)

(r, s̃) := σ̃

s := s̃ + y

return (r, s)

Figure B.2: Schnorr-based adaptor signature scheme ΞRg ,ΣSch .

ΞRg ,ΣSch by a reduction to SUF–CMA-security of ΣSch, we state the SUF–CMA-security
of ΣSch in Theorem 9.

In order to prove Theorem 9, we reduce both the unforgeability and the witness ex-
tractability of the adaptor signature scheme to the strong unforgeability of the standard
Schnorr signature scheme. We first provide a high-level overview of the main technical
challenges and thereafter present the full proof.

Suppose there exists a PPT adversary A that wins aSigForge (resp. aWitExt) experiment,
then we design a PPT adversary (also called the simulator) S that breaks the SUF–CMA
security. The main technical challenge in both reductions is that S has to answer queries
(m, Y) to OpS by A. This has to be done with access to the Schnorr signing oracle but
without knowledge of sk and the witness y. Thus, we need a method to “transform” full
signatures into valid pre-signatures without knowing y, which seems to go against the
aEUF–CMA-security (resp. witness extractability).

To address this difficulty, we will use the programmability of the random oracle. Con-
cretely, upon a pre-sign query by A on some message m, the simulator forwards this
message to its own signing oracle and sends the resulting full signature back to A. To
“convince” A that the reply looks like a valid pre-signature, we program the random oracle
for RO queries made to verify the pre-signatures. This is possible since the pre-signature
and signature verification differ only in the inputs to the hash function.

Finally, let us briefly explain why we need that the underlying signature scheme is
strongly unforgeable. In the reduction, S needs to simulate a pre-signature on the target
message m for which a successful A will later produce a forgery. As described above, this
is achieved by querying the underlying Schnorr signature oracle on message m. When
A returns a full signature for m as its forgery, S can only use this forgery to break the
strong unforgeability of Schnorr.

We are now prepared to present the full proof of Theorem 9. As a first step we prove
that our Schnorr adaptor signature scheme satisfies pre-signature adaptability. In fact,
we prove a slightly stronger statement; namely, that any valid pre-signature adapts to a
valid signature with probability 1.

241

B. Appendix to Chapter 3

Lemma 7 (Pre-signature adaptability). The Schnorr-based adaptor signature scheme
ΞRg ,ΣSch satisfies pre-signature adaptability.

Proof. Let us fix arbitrary y ∈ Zq, m ∈ {0, 1}∗, pk ∈ G and (r, s̃) ∈ Zq × Zq. Let us
define Y := gy and s := s̃ + y. Assuming that pVrfypk(m, Y ; (r, s̃)) = 1, we have

r = H(pk∥gs̃pk−rY ∥m)
= H(pk∥gs̃+ypk−r∥m)
= H(pk∥gspk−r∥m)

which implies that Vrfypk(m; (r, s)) = 1.

Lemma 8 (Pre-signature correctness). The Schnorr-based adaptor signature scheme
ΞRg ,ΣSch satisfies pre-signature correctness.

Proof. Let us fix arbitrary x, y ∈ Zq and m ∈ {0, 1}∗, and define X := gx and Y := gy.
For σ̃ = (r, s̃) ← pSignx(m, Y) it holds that r = H(X∥gk · Y ∥m) and s̃ = k + rx, for
some k ∈ Zq. Since

H(X∥gs̃X−rY ∥m) = H(X∥gk+rxg−xrY ∥m) = r,

we have pVrfyX(m, Y ; σ̃) = 1. By Lemma 7, this implies that VrfyX(m, Y ; σ) = 1 for
σ = (r, s) := (r, s̃ + y) = AdaptX(σ̃, y). Finally,

Ext((r, s), (r, s̃), Y) = s − s̃ = (s̃ + y) − s̃ = y

which completes the proof.

Before we prove that the Schnorr-based adaptor signature scheme satisfies unforgeability,
we make the following simple but useful observation.

Lemma 9. For any σ := (r, s) ∈ Zq × Zq and any y ∈ Zq it holds that

Adapt(Adapt(σ, y), −y) = σ.

Proof. By definition of Adapt, for any r, s, y ∈ Zq we have

Adapt(Adapt((r, s), y), −y) = Adapt((r, s + y), −y)
= (r, s + y + (−y)) = (r, s)

This lemma, in particular, implies that knowing a witness y one can not only adapt a
valid pre-signature w.r.t. gy into a valid signature but also the other way round.

242

B.2. Schnorr-based Adaptor Signature

Lemma 10 (aEUF–CMA security). Assuming that the Schnorr digital signature scheme
ΣSch is SUF–CMA-secure and Rg is a hard relation, the adaptor signature scheme ΞRg ,ΣSch ,
as defined in Figure B.2, is aEUF–CMA secure.

Before we present the formal proof, let us give some intuition about the main ideas of the
proof. Our goal is to reduce the unforgeability of the adaptor signature scheme to the
strong unforgeability of the standard Schnorr signature scheme, i.e. we assume that there
exists a PPT adversary A winning the aSigForge experiment and design a PPT adversary
(also called the simulator) S winning the strongSigForge experiment. The main technical
challenge in the reduction is the simulation of pre-sign queries. Since the reduction has
access to the Schnorr signing oracle, it may ask for a full signature on the given message.
However, it is not immediately clear how this helps to produce a pre-signature w.r.t. a
given statement without knowing a witness. In fact, this might seem to go against the
intuition that it is infeasible to transform a valid pre-signature to a full signature and
vice versa without knowing a corresponding witness.

We make use of the fact that the reduction simulates not only the sign and pre-sign
queries but also the queries to the random oracle. The main trick in simulating pre-sign
queries is to simply forward the full signature to the adversary and “convince” him that
it is a valid pre-signature. In more detail, we program the random oracle such that
queries made during pre-signature verification are answered as if they were queries made
during signature verification and vice versa. This is possible since the pre-signature and
signature verification differ only in the string being hashed.

Let us emphasize that no oracle programming is needed for the pre-signature on the
forgery message m. This is because the statement/witness pair (Y , y) is chosen by the
reduction simulating the aSigForge experiment. The reduction can hence ask the Schnorr
signing oracle for a signature σ on the message m and adapt it into a valid pre-signature σ̃
itself by executing Adapt(σ, −y). Now if the adversary outputs a valid signature σ′, there
are two options. Either σ′ ̸= σ, in which case the reduction learns a valid strongSigForge
forgery, or σ′ = σ, in which case the reductions failed. However, the latter case happens
only with negligible probability since it implies that the adversary, given statement Y ,
found a witness y and hence broke the hardness of the relation Rg.

Proof. We prove the lemma by defining several game hops.

Game G0G0G0: This game, formally defined in Figure B.3, corresponds to the original
aSigForge, where the adversary A has to come up with a valid forgery for a message m
of his choice while having access to pre-sign oracle OpS and sign oracle OS. Since we are
in the ROM, the adversary (as well as all the algorithms of the scheme) has additionally
access to a random oracle H.

Pr[G0 = 1] = Pr[aWitExtA,ΞRg ,ΣSch
(λ) = 1]

243

B. Appendix to Chapter 3

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (Y , y) ← GenR(1n)

5 : (m, st) ← AOS,OpS,H
1 (pk, Y)

6 : σ̃ ← pSignsk(m, Y)

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : b := Vrfypk(m; σ)
9 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : σ̃ ← pSignsk(m, Y)
2 : Q := Q ∪ {m}
3 : return σ̃

Figure B.3: The formal definition of game G0G0G0.

Game G1G1G1: This game, formally defined in Figure B.4, works exactly as G0G0G0 with the
following exception. When the adversary outputs a forgery σ, the game checks if
completing the pre-signature σ̃ using the secret value y results in σ. If yes, the game
aborts.

G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (Y , y) ← GenR(1n)

5 : (m, st) ← AOS,OpS,H
1 (pk, Y)

6 : σ̃ ← pSignsk(m, Y)

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ

9 : Abort
10 : b := Vrfypk(m; σ)
11 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : σ̃ ← pSignsk(m, Y)
2 : Q := Q ∪ {m}
3 : return σ̃

Figure B.4: The formal definition of G1G1G1.

Claim: Let Bad1 be the event that G1G1G1 aborts. Then Pr[Bad1] ≤ ν1(λ), where ν1 is a
negligible function in n.

Proof: We prove this claim using a reduction to the hardness of the relation Rg. More
concretely, we construct a simulator S breaking the hardness the relation assuming he has
access to an adversary A that causes G1G1G1 to abort with non-negligible probability. The
simulator gets a challenge Y ∗, upon which it generates a key pair (sk, pk) ← Gen(1λ) in

244

B.2. Schnorr-based Adaptor Signature

order to simulate A’s queries to the oracles H, OpS and OS. This simulation of the oracles
works as described in G1G1G1. Eventually, upon receiving the challenge message m from
A, S computes a pre-signature σ̃ ← pSignsk(m, Y ∗) and returns the pair (σ̃, Y ∗) to the
adversary who outputs a forgery σ. Assuming that Bad1 happened (i.e. Adapt(σ̃, y) = σ),
we know that due to the correctness property, the simulator can extract y∗ by executing
Ext(σ, σ̃, Y ∗) to obtain a valid statement/witness pair for the relation Rg, i.e. (Y ∗, y∗) ∈
Rg.

First, we note that the view of A is indistinguishable from his view in G1G1G1, since the
challenge Y ∗ is an instance of the hard relation Rg and hence equally distributed to the
public output of GenR. Hence the probability of S breaking the hardness of the relation
is equal to the probability of the Bad1 event. By our assumption, this is non-negligible
which is in contradiction with the hardness of Rg. ■
Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds that Pr[G0 =
1] ≤ Pr[G1 = 1] + ν1(λ).

Game G2G2G2: This game, formally defined in Figure B.5, behaves like the previous game
with the only differences being in the OpS oracle. In this game, the OpS oracle makes
a copy of the list H before executing the algorithm pSignsk. Afterwards it extracts the
randomness used during the pSignsk algorithm, and checks if before the execution of
the signing algorithm, a query of the form pk∥K∥m or pk∥K · Y ∥m was made to H by
checking if H ′[pk∥K∥m] ̸= ⊥ or H ′[pk∥K · Y ∥m] ̸= ⊥. If so the game aborts.

G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (Y , y) ← GenR(1n)

5 : (m, st) ← AOS,OpS,H
1 (pk, Y)

6 : σ̃ ← pSignsk(m, Y)

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ

9 : Abort
10 : b := Vrfypk(m; σ)
11 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← pSignsk(m, Y)
3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H ′[pk∥K∥m] ̸= ⊥
6 : ∨H ′[pk∥K · Y ∥m] ̸= ⊥)
7 : Abort
8 : Q := Q ∪ {m}
9 : return σ̃

Figure B.5: The formal definition of G2G2G2.

Claim: Let Bad2 be the event that G2G2G2 aborts in OpS. Then Pr[Bad2] ≤ ν2(λ), where ν2
is a negligible function in n.

Proof: We first recall that pSignsk and Signsk compute K = gk by choosing k uniformly
at random from Zq. Since A is PPT , the number of queries it can make to H, OS and

245

B. Appendix to Chapter 3

OpS is also polynomially bounded. Let l1, l2, l3 be the number of queries made to H, OS
and OpS respectively, then we have:

Pr[Bad2] = Pr[H ′[pk∥K∥m] ̸= ⊥ ∨ H ′[pk∥K · Y ∥m] ̸= ⊥]

≤ 2 l1 + l2 + l3
q

=: ν2(n)

Since l1, l2, l3 are polynomial in n, ν2 is a negligible function. ■

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2 occurs, it holds that Pr[G1 =
1] ≤ Pr[G2 = 1] + ν2(λ).

Game G3G3G3: In this game, formally defined in Figure B.6, upon an OpS query, the game
produces a valid full signature σ̃ = (r, s) = (H(pk∥K∥m), k + rsk) and adjusts the global
list H as follows: It assigns the value stored at position pk∥K∥m to H [pk∥K · Y ∥m] and
samples a fresh random value for H[pk∥K∥m]. These changes make the full signature
σ̃ “look like” a pre-signature to the adversary, since upon querying the random oracle
on pk∥K · Y ∥m, A obtains the value H[pk∥K∥m]. The adversary can only notice the
changes in this game, in case the random oracle has been previously queried on either
pk∥K∥m or pk∥K · Y ∥m. This case has been captured in the previous game and hence it
holds that Pr[G2 = 1] = [G3 = 1].

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (Y , y) ← GenR(1n)

5 : (m, st) ← AOS,OpS,H
1 (pk, Y)

6 : σ̃ ← pSignsk(m, Y)

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ

9 : Abort
10 : b := Vrfypk(m; σ)
11 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← Signsk(m)
3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H ′[pk∥K∥m] ̸= ⊥
6 : ∨ H ′[pk∥K · Y ∥m] ̸= ⊥)
7 : Abort
8 : x := pk∥K∥m

9 : H[pk∥K · Y ∥m] := H[x]
10 : H[x] ←$ Zq

11 : Q := Q ∪ {m}
12 : return σ̃

Figure B.6: The formal definition of G3G3G3.

Game G4G4G4: In this game, formally defined in Figure B.6, the pre-signature generated upon
A outputting the message m is created by modifying a full signature to a pre-signature.
In other words upon receiving the full signature σ = (r, s), where s = k + xr and
r = H(gx∥gk∥m) and given the pair (Y , y), the game can modify the signature to the
pre-signature by setting σ̃ = Adapt(σ, −y). One way to see this transformation is that k
is modified to k′ = k − y.

246

B.2. Schnorr-based Adaptor Signature

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (Y , y) ← GenR(1n)

5 : (m, st) ← AOS,OpS,H
1 (pk, Y)

6 : σ′ ← Signsk(m)
7 : (r, s) := σ′

8 : σ̃ := Adapt(σ, −y)

9 : σ ← AOS,OpS,H
2 (σ̃, st)

10 : if Adapt(σ̃, y) = σ

11 : Abort
12 : b := Vrfypk(m; σ)
13 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← Signsk(m)
3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H ′[pk∥K∥m] ̸= ⊥
6 : ∨ H ′[pk∥K · Y ∥m] ̸= ⊥)
7 : Abort
8 : x := pk∥K∥m

9 : H[pk∥K · Y ∥m] := H[x]
10 : H[x] ←$ Zq

11 : Q := Q ∪ {m}
12 : return σ̃

Figure B.7: The formal definition of G4G4G4.

Since k is chosen uniformly at random and according to Lemma 9, the view of the
adversary is identical in this game and the previous game and hence it holds that
Pr[G3 = 1] = [G4 = 1].

Having shown that the transition from the original aSigForge game (game G0G0G0) to game
G4G4G4 is indistinguishable, it remains to show that there exists a simulator that perfectly
simulates G4G4G4 and uses A = (A1, A2) to win the strongSigForge game. In the following,
we concisely describe how the simulator answers oracle queries. The formal description
of the simulator can be found in Figure B.8.

Signing queries: Upon A querying the oracle OS on input m, S forwards m to its
oracle SignSch and forwards its response to A.

Random Oracle queries: Upon A querying the oracle H on input x, if H[x] = ⊥,
then S queries HSch(x), otherwise the simulator returns H[x].

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m, Y), S for-
wards m to its oracle SignSch and receives the signature σ̃ = (r, s) where
r = HSch(pk∥K∥m).

2. If H has been previously queried on the input (pk∥K∥m) or (pk∥K · Y ∥m), S
aborts.

3. S programs the random oracle H such that queries of A on the input pk∥K ·
Y ∥m are answered with the value of HSch(pk∥K∥m) and queries on the input
pk∥K∥m are answered with the value of HSch(pk∥K · Y ∥m).

247

B. Appendix to Chapter 3

SSignSch,HSch(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (Y , y) ← GenR(1n)

4 : (m, st) ← AOS,OpS,H
1 (pk, Y)

5 : σ′ := SignSch(m)
6 : (r, s) := σ′

7 : σ̃ := Adapt(σ, −y)

8 : σ ← AOS,OpS,H
2 (σ̃, st)

9 : return (m, σ)

OS(m)

1 : σ := SignSch(m)
2 : (r, s) := σ

3 : K := gs · pk−r

4 : x := pk∥K∥m

5 : H[x] := HSch(x)
6 : Q := Q ∪ {m}
7 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] := HSch(x)
3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ := SignSch(m)
3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort
8 : x := pk∥K∥m

9 : H[pk∥K · Y ∥m] := HSch(x)
10 : H[x] := HSch(pk∥K · Y ∥m)
11 : Q := Q ∪ {m}
12 : return σ̃

Figure B.8: The formal definition of the simulator.

4. The simulator returns σ̃ to A.

Challenge Phase: 1. S chooses values (Y , y) ← GenR(1λ) and runs the adversary
A1 on pk and Y .

2. Upon A1 outputting the message m as the challenge message, S queries the
SignSch oracle on input m. Let σ′ = (r, s) be the response, then S runs A2 on
σ̃ = (r, s − y).

3. Upon A2 outputting a forgery σ, the simulator outputs (m, σ) as its own
forgery.

We emphasize that the main differences between the simulation and G4G4G4 are syntactical,
namely instead of generating the public and secret keys and calculating the algorithm
Signsk and the random oracle H, the simulator S uses its oracles SignSch and HSch.
Therefore S perfectly simulates G4G4G4.

It remains to show that the forgery output by A can be used by the simulator to win the
strongSigForge game.

Claim: (m, σ) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m, σ) has not been
output by the oracle SignSch before. Note that the adversary A has not previously made
a query on the challenge message m to either OpS or OS. Hence, SignSch is only queried
on m during the challenge phase. As shown in game G1G1G1 and according to Lemma 9,
the adversary outputs a forgery σ which is equal to the signature σ′ output by SignSch

248

B.2. Schnorr-based Adaptor Signature

during the challenge phase only with negligible probability (in this case the simulation
aborts). Hence, SignSch has never output σ on query m before and consequently (m, σ)
constitutes a valid forgery for game strongSigForge. ■

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + ν1(λ) + ν2(λ). Since
S provides a perfect simulation of game G4G4G4, we obtain: AdvA

aSigForge ≤ AdvS
strongSigForge +

ν1(λ) + ν2(λ).

Lemma 11 (Witness Extractability). Assuming that Schnorr digital signature scheme
ΣSch is SUF–CMA-secure and Rg is a hard relation, the adaptor signature scheme ΞRg ,ΣSch
as defined in Fig. B.2 is witness extractable.

Proof. Before giving the formal proof, we first provide the main intuition. In general,
this proof is very similar to the proof of Lemma 10. Our goal is to reduce the witness
extractability of the adaptor signature scheme to the strong unforgeability of the standard
Schnorr signature scheme. More concretely, under the assumption that there exists a
PPT adversary A = (A1, A2) winning the aWitExt experiment, we design a PPT adversary
S that wins the strongSigForge experiment.

The simulation of pre-sign queries is done exactly as in the proof of Lemma 10. However,
unlike in the aSigForge experiment, in aWitExt A1 outputs the public value Y alongside
the challenge message m, meaning that the game does not choose the pair (Y , y).
Therefore, S does not learn the witness y and hence cannot transform a full signature to
a pre-signature by executing Adapt(σ, −y). Fortunately, we can do this transformation
without knowledge of y by using the same random oracle programmability as in the OpS
oracle. More concretely, S can program the random oracle such that queries made during
pre-signature verification are answered as if they were queries made during signature
verification and vice versa. In other words, the values H(gx∥K∥m) and H(gx∥KY ∥m)
(where K = gk, gx and Y are known to the simulator) are swapped in the random oracle.

We note that it is not possible to program the random oracle if at least one of the values
gx∥K∥m or gx∥KY ∥m have already been queried to H. However, since A is PPT, and k
is chosen uniformly at random from Zq (during the signing and pre-signing processes)
where q is exponential in n, the probability that one of these values has previously been
queried to H is negligible in the security parameter n.

Game G0G0G0: This game, formally defined in Figure B.9, corresponds to the original
aWitExt, where the adversary A has to come up with a valid forgery for a message m of
his choice such that extracting the secret value given the forgery and the pre-signature is
not in relation with the corresponding public key. A has access to oracles H, OpS, and
OS, and since we are in the random oracle model, we explicitly write the random oracle
code H.

249

B. Appendix to Chapter 3

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, Y , st) ← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk(m, Y)

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Extpk(σ, σ̃, Y)
8 : b1 := Vrfypk(m; σ)
9 : b2 := m ̸∈ Q

10 : b3 := (Y , y′) ̸∈ R

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : σ̃ ← pSignsk(m, Y)
2 : Q := Q ∪ {m}
3 : return σ̃

Figure B.9: The formal definition of G0G0G0.

Game G1G1G1: This game, formally defined in Figure B.10, behaves like G0G0G0 with the only
differences being in the OpS oracle. First, a copy of the list H is stored before executing
the algorithm pSignsk in the oracle OpS. Upon computing the pre-signature, the game
extracts the randomness used during the pSignsk algorithm, and checks if before the
execution of the signing algorithm, a query of the form pk∥K∥m or pk∥K · Y ∥m was
made to H. This is done by checking if H ′[pk∥K∥m] ̸= ⊥ or H ′[pk∥K · Y ∥m] ̸= ⊥. If so
the game aborts.

G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, Y , st) ← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk(m, Y)

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Extpk(σ, σ̃, Y)
8 : b1 := Vrfypk(m; σ)
9 : b2 := m ̸∈ Q

10 : b3 := (Y , y′) ̸∈ R

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← pSignsk(m, Y)
3 : parse σ̃ as (r, s)
4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort
8 : Q := Q ∪ {m}
9 : return σ̃

Figure B.10: The formal definition of game G0G0G0.

250

B.2. Schnorr-based Adaptor Signature

Claim: Let Bad1 be the event that G1G1G1 aborts in OpS, then Pr[Bad1] ≤ ν(λ), where ν is
a negligible function in n.

Proof: We first recall that pSignsk and Signsk compute K = gk by choosing k uniformly
at random from Zq. Since A is PPT, the number of queries it can make to H, OS and
OpS are also polynomially bounded. Let l1, l2, l3 be the number of queries made to H,
OS and OpS respectively, then we have:

Pr[Bad1] = Pr[H ′(pk∥K∥m) ̸= ⊥
∨ H ′(pk∥K · Y ∥m) ̸= ⊥]

≤ 2 l1 + l2 + l3
q

≤ ν(n)

■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds that Pr[G0G0G0 =
1] ≤ Pr[G1G1G1 = 1] + ν1(λ).

Game G2G2G2: In this game, formally defined in Figure B.11, upon an OpS query, the
game produces a valid full signature such that σ̃ = (r, s) = (H(pk∥K∥m), k + rsk) and
modifies the global list H as follows: It sets the value stored at position pk∥K∥m to
H [pk∥K · Y ∥m] and samples a fresh random value for H [pk∥K∥m]. These changes make
the full signature σ̃ look like a pre-signature to the adversary, since upon querying the
random oracle on pk∥K · Y ∥m, A obtains the value H [pk∥K∥m]. The adversary can only
notice the changes in this game, in case the random oracle has been previously queried
on either pk∥K∥m or pk∥K · Y ∥m. This case has been captured in the previous game
and hence it holds that Pr[G1G1G1 = 1] = Pr[G2G2G2 = 1].

G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, Y , st) ← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk(m, Y)

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Extpk(σ, σ̃, Y)
8 : b1 := Vrfypk(m; σ)
9 : b2 := m ̸∈ Q

10 : b3 := (Y , y′) ̸∈ R

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← Signsk(m)
3 : parse σ̃ as (r, s)
4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort
8 : x := pk∥K∥m

9 : H[pk∥K · Y ∥m] := H[x]
10 : H[x] ←$ Zq

11 : Q := Q ∪ {m}
12 : return σ̃

Figure B.11: The formal definition of game G2G2G2.

251

B. Appendix to Chapter 3

Game G3G3G3: In this game, formally defined in Figure B.12, we apply the exact same
changes made in game G1G1G1 in oracle OpS to the challenge phase of the game. First, a
copy of the list H is stored before executing the algorithm pSignsk during the challenge
phase of the game. Upon computing the pre-signature, the game extracts the randomness
used during the pSignsk algorithm, and checks if before the execution of the pre-signing
algorithm, a query of the form pk∥K∥m or pk∥K · Y ∥m was made to H. This is done by
checking if H ′[pk∥K∥m] ̸= ⊥ or H ′[pk∥K · Y ∥m] ̸= ⊥. If so the game aborts.

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, Y , st) ← AOS,OpS,H
1 (pk)

5 : H ′ := H

6 : σ̃ ← pSignsk(m, Y)
7 : parse σ̃ as (r, s)
8 : K := gs · pk−r

9 : if H ′[pk∥K∥m] ̸= ⊥
10 : or H ′[pk∥K · Y ∥m] ̸= ⊥
11 : Abort

12 : σ ← AOS,OpS,H
2 (σ̃, Y , st)

13 : y′ := Extpk(σ, σ̃, Y)
14 : b1 := Vrfypk(m; σ)
15 : b2 := m ̸∈ Q
16 : b3 := (Y , y′) ̸∈ R

17 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← Signsk(m)
3 : parse σ̃ as (r, s)
4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort
8 : x := pk∥K∥m

9 : H[pk∥K · Y ∥m] := H[x]
10 : H[x] ←$ Zq

11 : Q := Q ∪ {m}
12 : return σ̃

Figure B.12: The formal definition of game G3G3G3.

Claim: Let Bad2 be the event that G2G2G2 aborts in Game3(λ) during the challenge phase,
then Pr[Bad2] ≤ ν(λ), where ν is a negligible function in n.

Proof: This proof is analogous to the proof of claim B.2. ■

Since games G3G3G3 and G2G2G2 are equivalent except if event Bad2 occurs, it holds that Pr[G2G2G2 =
1] ≤ Pr[G3G3G3 = 1] + ν(λ).

Game G4G4G4: In this game, formally defined in Figure B.13, we apply the exact same changes
made in game G2G2G2 in oracle OpS to the challenge phase of the game. As explained before the
adversary receives a full signature but by programming the random oracle, from A’s point
of view the signature looks like a pre-signature. It holds that Pr[G4G4G4 = 1] = Pr[G3G3G3 = 1].

Having shown that the transition from the original aWitExt game (Game G0G0G0) to Game

252

B.2. Schnorr-based Adaptor Signature

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, Y , st) ← AOS,OpS,H
1 (pk)

5 : H ′ := H

6 : σ̃ ← Signsk(m)
7 : parse σ̃ as (r, s)
8 : K := gs · pk−r

9 : if H ′[pk∥K∥m] ̸= ⊥
10 : or H ′[pk∥K · Y ∥m] ̸= ⊥
11 : Abort
12 : x := pk∥K∥m

13 : H[pk∥K · Y ∥m] := H[x]
14 : H[x] ←$ Zq

15 : σ ← AOS,OpS,H
2 (σ̃, Y , st)

16 : y′ := Extpk(σ, σ̃, Y)
17 : b1 := Vrfypk(m; σ)
18 : b2 := m ̸∈ Q
19 : b3 := (Y , y′) ̸∈ R

20 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ̃ ← Signsk(m)
3 : parse σ̃ as (r, s)
4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort
8 : x := pk∥K∥m

9 : H[pk∥K · Y ∥m] := H[x]
10 : H[x] ←$ Zq

11 : Q := Q ∪ {m}
12 : return σ̃

Figure B.13: The formal definition of game G4G4G4.

G4G4G4 is indistinguishable, it remains to show that there exists a simulator that perfectly
simulates G4G4G4 and uses A to win the strongSigForge game. In the following, we concisely
describe how the simulator answers oracle queries. The formal simulator code can be
found in Figure B.14.

Signing queries: Upon A querying the oracle OS on input m, S forwards m to its
oracle SignSch and forwards its response to A.

Random Oracle queries: Upon A querying the oracle H on input x, if H[x] = ⊥,
then S queries HSch(x), otherwise the simulator returns H[x].

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m, Y), S for-
wards m to its oracle SignSch and receives the signature σ̃ = (r, s) where
r = HSch(pk∥K∥m).

2. If H has been previously queried on the input (pk∥K∥m) or (pk∥K · Y ∥m), S
aborts.

253

B. Appendix to Chapter 3

3. S programs the random oracle H such that queries of A on the input pk∥K ·
Y ∥m are answered with the value of HSch(pk∥K∥m) and queries on the input
pk∥K∥m are answered with the value of HSch(pk∥K · Y ∥m).

4. The simulator returns σ̃ to A.

Challenge Phase:

1. Upon A outputting the message and public value (m, Y) as the challenge
message, S queries the SignSch oracle on input m. Let σ = (r, s) be the
response where r = HSch(pk∥K∥m), then S again programs the random oracle
H such that queries of A on the input pk∥K · Y ∥m are answered with the
value of HSch(pk∥K∥m) and queries on the input pk∥K∥m are answered with
the value of HSch(pk∥K · Y ∥m).

2. Upon A outputting a forgery σ, the simulator outputs (m, σ) as its own
forgery.

SSignSch,HSch(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, Y , st) ← AOS,OpS,H
1 (pk)

5 : H ′ := H

6 : σ̃ ← SignSch(m)
7 : parse σ̃ as (r, s)
8 : K := gs · pk−r

9 : if H ′[pk∥K∥m] ̸= ⊥
10 : or H ′[pk∥K · Y ∥m] ̸= ⊥
11 : Abort
12 : x := pk∥K∥m

13 : H[pk∥K · Y ∥m] ←$ HSch(x)
14 : H[x] ←$ HSch(pk∥K · Y ∥m)

15 : σ ← AOS,OpS,H
2 (σ̃, Y , st)

16 : return (m, σ)

OS(m)

1 : σ ← SignSch(m)
2 : parse σ as (r, s)
3 : K := gs · pk−r

4 : x := pk∥K∥m

5 : H[x] ← HSch(x)
6 : Q := Q ∪ {m}
7 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ HSch(x)
3 : return H[x]

OpS(m, Y)

1 : H ′ := H

2 : σ ← SignSch(m)
3 : parse σ̃ as (r, s)
4 : K := gs · pk−r

5 : if H ′[pk∥K∥m] ̸= ⊥
6 : or H ′[pk∥K · Y ∥m] ̸= ⊥
7 : Abort
8 : x := pk∥K∥m

9 : y := pk∥K · Y ∥m

10 : H[y] ←$ HSch(x)
11 : H[x] ←$ HSch(y)
12 : Q := Q ∪ {m}
13 : return σ̃

Figure B.14: The formal definition of the simulator.

We emphasize that the main differences between the simulation and G4G4G4 are syntactical,
namely instead of generating the public and secret keys and calculating the algorithm
Signsk and the random oracle H, S uses its oracles SignSch and HSch.

254

B.3. Proof of the ECDSA-based Adaptor Signature

It remains to show that the signature output by A can be used by the simulator to win
the strongSigForge game.

Claim: (m, σ) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m, σ) has not been
output by the oracle SignSch before. Note that the adversary A has not previously made
a query on the challenge message m to either OpS or OS. Hence, SignSch is only queried
on m during the challenge phase. If the adversary outputs a forgery σ which is equal
to the signature σ̃ output by SignSch the adversary loses the game because this would
not be a valid signature given the programmed random oracle. Hence, A must output a
valid signature σ ≠ σ̃ and SignSch has never output σ on query m before, consequently
(m, σ) constitutes a valid forgery for game strongSigForge. ■

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + 2ν(λ). Since S provides
a perfect simulation of game G4G4G4, we obtain: AdvA

aSigForge ≤ AdvS
strongSigForge + 2ν(λ).

B.3 Proof of the ECDSA-based Adaptor Signature
In Section IV of the paper, we presented our ECDSA-based adaptor signature scheme
and explained the main ideas of our security proof. We now provide the formal proof of
Theorem 2 which we recall here the following completeness.

Theorem 2 (restated). Assuming that the positive ECDSA signature scheme ΣECDSA is
SUF–CMA-secure and R′

g is a hard relation, the ECDSA-based adaptor signature scheme
ΞRg ,ΣECDSA as defined in Figure 3.5 is secure in ROM.

As a first step, we prove that our ECDSA-based adaptor signature scheme satisfies
pre-signature adaptability. In fact, we prove a slightly stronger statement; namely, that
any valid pre-signature adapts to a valid signature with probability 1.

Lemma 12 (Pre-signature adaptability). The ECDSA-based adaptor signature scheme
ΞR′

g ,ΣECDSA satisfies pre-signature adaptability.

Proof. Let us fix arbitrary (IY , y) ∈ R′
g, m ∈ {0, 1}∗, X ∈ G and σ̃ = (r, s̃, K, π) ∈

Zq × Zq × G × G × {0, 1}∗. Let

K̃ := gH(m)s̃−1
Xrs̃−1 and r = f(K).

Assuming that pVrfyX(m, IY ; σ̃) = 1, we know that there exists k ∈ Zq s.t. K̃ = gk and
K = Y k for (Y , πY) := IY . By definition of Adapt, we know that Adapt(σ̃, y) = (r, s) for
s := s̃ · y−1. Hence, we have

f(gH(m)s−1
Xrs−1) = f((gH(m)s̃−1

Xrs̃−1)y)
= f(K̃y) = f(K) = r.

255

B. Appendix to Chapter 3

Lemma 13 (Pre-signature correctness). The ECDSA-based adaptor signature scheme
ΞRg ,ΣECDSA satisfies pre-signature correctness.

Proof. Let us fix arbitrary x, y ∈ Zq and m ∈ {0, 1}∗, and define X := gx, Y := gy,
πY ← Pg(Y) and IY := (Y , πY). For σ̃ = (r, s̃, K, π) ← pSignx(m, IY) it holds that
K̃ = gk, K = Y k, r = f(K) and s̃ = k−1(H(m) + rx). Set

K̃ := gH(m)s̃−1
grs̃−1x = gk.

By correctness of NIZKY we know that VY ((K̃, K), π) = 1 and hence we also have
that pVrfyX(m, IY ; σ̃) = 1. By Lemma 12, this implies that VrfyX(m; σ) = 1 for
σ = (r, s) := Adapt(σ̃, y). By definition of Adapt, we know that s = s̃ · y−1 and hence

Ext((r, s), (r, s̃), IY) = s−1 · s̃ = (s̃−1 · y−1) · s̃ = y.

Lemma 14 (aEUF–CMA security). Assuming that the positive ECDSA signature scheme
ΣECDSA is SUF–CMA-secure and R′

g is a hard relation, the adaptor signature scheme
ΞRg ,ΣECDSA as defined in Figure 3.5 of the paper is aEUF–CMA secure.

Proof. We prove unforgeability for the ECDSA-based adaptor signature scheme by
reduction to strong unforgeability of positive ECDSA signatures. We consider an adversary
A who plays the aSigForge game, then we build a simulator S who plays the strong
unforgeability experiment for the ECDSA signature scheme and uses A’s forgery in
aSigForge to win its own experiment. S has access to the signing oracle SignECDSA and
the random oracle HECDSA, which it uses to simulate oracle queries for A, namely random
(H), signing (OS) and pre-signing (OpS) queries.

The main challenges in the oracle simulations arise when simulating OpS queries, since
S can only get full signatures from its own signing oracle and hence needs a way to
transform those full signatures into pre-signatures for A. In order to do so, the simulator
faces two challenges, namely 1) S needs to learn the witness y for statement Y for
which the pre-signature is supposed to be generated and 2) S needs to simulate the zero
knowledge proof π which proves randomness consistency in the pre-signature.

More concretely, upon receiving a OpS query from A on input a message m and an
instance IY = (Y , πY), the simulator queries its Sign oracle to obtain a full signature
on m. Further, S needs to learn a witness y, s.t. Y = gy, in order to transform the
full signature into a pre-signature for A. We make use of the extractability property of
the zero knowledge proof πY , in order to extract y and consequently transform a full
signature into a valid pre-signature. Additionally, since a valid pre-signature contains a
zero knowledge proof for Lexp, the simulator has to simulate this proof without knowledge
of the corresponding witness. In order to do so, we make use of the zero knowledge
property, which allows for simulation of a proof for a statement without knowing the
corresponding witness.

256

B.3. Proof of the ECDSA-based Adaptor Signature

Game G0G0G0: This game, formally defined in Figure B.15, corresponds to the original
aSigForge game, where the adversary A has to come up with a valid forgery for a
message m of his choice, while having access to oracles H, OpS and OS. Since we are
in the random oracle model, we explicitly write the random oracle code H. We have
Pr[G0 = 1] = Pr[aWitExtA,ΞRg ,ΣSch

(λ) = 1].

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (IY , y) ← GenR(1n)

5 : (m, st) ← AOS,OpS,H
1 (pk, IY)

6 : σ̃ ← pSignsk(m, IY)

7 : σ ← AOS,OpS,H
2 (σ̃, st)

8 : b := Vrfypk(m; σ∗)
9 : return (m ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, IY)

1 : σ̃ ← pSignsk(m, IY)
2 : Q := Q ∪ {m}
3 : return σ̃

Figure B.15: The formal definition of game G0G0G0.

Game G1G1G1: This game, formally defined in Figure B.16, works exactly as G0G0G0 with the
exception that upon the adversary outputting a forgery σ∗, the game checks if completing
the pre-signature σ̃ using the witness y results in σ∗. In that case, the game aborts.

Claim: Let Bad1 be the event that G1G1G1 aborts, then Pr[Bad1] ≤ ν(λ).

Proof: This proof is analogous to the proof of G1G1G1 in Lemma 10. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds that Pr[G1G1G1 =
1] ≤ Pr[G0G0G0 = 1] + ν1(λ), where ν1 is a negligible function in λ.

Game G2G2G2: This game, formally defined in Figure B.17, only applies changes to the OpS
oracle as opposed to the previous game. Namely, during the OpS queries, this game
extracts a witness y by executing the algorithm K on inputs the statement Y , the proof
πY and the list of random oracle queries H . The game aborts, if for the extracted witness
y it does not hold that ((Y , πY), y) ∈ R′

g.

Claim: Let Bad2 be the event that G2G2G2 aborts during an OpS execution, then it holds
that Pr[Bad2] ≤ ν2(λ) where ν2 is a negligible function in λ.

Proof: According to the online extractor property of the zero knowledge proof, for a
witness y extracted from a proof πY of statement Y such that Vrfy(Y , πY) = 1, it holds
that ((Y , πY), y) ∈ R′

g except with negligible probability in the security parameter. ■

257

B. Appendix to Chapter 3

G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (IY , y) ← GenR(1n)

5 : (m∗, st) ← AOS,OpS,H
1 (pk, IY)

6 : σ̃ ← pSignsk(m∗, IY)

7 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort
10 : b := Vrfypk(m∗; σ∗)
11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, IY)

1 : σ̃ ← pSignsk(m, IY)
2 : Q := Q ∪ {m}
3 : return σ̃

Figure B.16: The formal definition of game G1G1G1.

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2 occurs, it holds that Pr[G2G2G2 =
1] ≤ Pr[G1G1G1 = 1] + ν2(λ).

G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (IY , y) ← GenR(1n)

5 : (m∗, st) ← AOS,OpS,H
1 (pk, IY)

6 : σ̃ ← pSignsk(m∗, IY)

7 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort
10 : b := Vrfypk(m∗; σ∗)
11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ̃ ← pSignsk(m, IY)
6 : Q := Q ∪ {m}
7 : return σ̃

Figure B.17: The formal definition of game G2G2G2.

Game G3G3G3: This game, formally defined in Figure B.18, extends the changes of the
previous game to the OpS oracle by first creating a valid full signature σ by executing the
Sign algorithm and then converting σ into a pre-signature using the extracted witness
y. Further, the game calculates the randomness K̃ = gk and K = K̃y−1 from σ and
simulates a zero knowledge proof πS using K̃ and K.

258

B.3. Proof of the ECDSA-based Adaptor Signature

Due to the zero knowledge property of the zero knowledge proof, the simulator can produce
a proof πS which is computationally indistinguishable from a proof π ← Pdh((K̃, K), k).
Hence, this game is indistinguishable from the previous game and it holds that Pr[G3G3G3 =
1] ≤ Pr[G2G2G2 = 1] + ν3(λ), where ν3 is a negligible function in λ.

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (IY , y) ← GenR(1n)

5 : (m∗, st) ← AOS,OpS,H
1 (pk, IY)

6 : σ̃ ← pSignsk(m∗, IY)

7 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort
10 : b := Vrfypk(m∗; σ∗)
11 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← Signsk(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K̃, πS)

Figure B.18: The formal definition of game G3G3G3.

Game G4G4G4: In this game, which is formally defined in Figure B.19, upon receiving the
challenge message m∗ from A, the game creates a full signature by executing the Sign
algorithm and transforms the resulting signature into a pre-signature in the same way
as in the previous game during the OpS execution. Hence, the same indistinguishability
argument as in the previous game holds in this game as well and it holds that AdvA

G4G4G4 ≤
AdvA

G3G3G3 + ν3(λ), where ν3 is a negligible function in λ.

Having shown that the transition from the original aSigForge game (Game G0G0G0) to Game
G4G4G4 is indistinguishable, it remains to show that there exists a simulator that perfectly
simulates G4G4G4 and uses A to win the strongSigForge game. In the following, we concisely
describe how the simulator answers oracle queries. The formal description of the simulator
can be found in Figure B.20.

Signing queries: Upon A querying the oracle OS on input m, S forwards m to its
oracle SignECDSA and forwards its response to A.

Random Oracle queries: Upon A querying the oracle H on input x, if H[x] = ⊥,
then S queries HECDSA(x), otherwise the simulator returns H[x].

259

B. Appendix to Chapter 3

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (IY , y) ← GenR(1n)

5 : (m∗, st) ← AOS,OpS,H
1 (pk, IY)

6 : σ ← Signsk(m∗, IY)
7 : parse σ as (r, s)
8 : s̃ := s · y

9 : u := H(m∗) · s−1

10 : v := r · s−1

11 : K̃ := guXv

12 : K := K̃y−1

13 : πS ← S((K̃, K), 1)
14 : σ̃ := (r, s̃, K̃, πS)

15 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

16 : if Adapt(σ̃, y) = σ∗

17 : Abort
18 : b := Vrfypk(m∗; σ∗)
19 : return (m∗ ̸∈ Q ∧ b)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ Zq

3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← Signsk(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K̃, πS)

Figure B.19: The formal definition of game G4G4G4.

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m, IY), the
simulator extracts y using the extractability of NIZK, forwards m to oracle
SignECDSA and parses the signature that is generated as (r, s).

2. S generates a pre-signature from (r, s) by computing s̃ := s · y.

3. Finally, S simulates a zero knowledge proof πS, proving that K and K̃ have
the same exponent. The simulator outputs (r, s̃, K̃, πS).

Challenge phase: 1. S generates (IY , y) ← GenR(1λ) and runs A1 on IY

2. Upon A1 outputting the message m∗ as the challenge message, S forwards m∗

to the oracle SignECDSA and parses the signature that is generated as (r, s).

3. The simulator generates the required pre-signature σ̃ in the same way as
during OpS queries.

4. The simulator runs A2 on σ̃ and upon getting a forgery σ∗, the simulator
outputs (m∗, σ∗) as its own forgery.

260

B.3. Proof of the ECDSA-based Adaptor Signature

SSignECDSA,HECDSA(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (IY , y) ← GenR(1n)

4 : (m∗, st) ← AOS,OpS,H
1 (pk, IY)

5 : σ ← SignECDSA(m∗, IY)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m∗) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : σ̃ := (r, s̃, K̃, πS)

14 : σ∗ ← AOS,OpS,H
2 (σ̃, st)

15 : return (m∗, σ∗)

OS(m)

1 : σ ← SignECDSA(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] ←$ HECDSA(x)
3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← Signsk(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K̃, πS)

Figure B.20: The formal definition of the simulator.

We emphasize that the main difference between the simulation and G4G4G4 are syntactical,
namely instead of generating the public and secret keys and calculating the algorithm
Signsk and the random oracle H, the simulator S uses its oracles SignECDSA and HECDSA.

It remains to show that the forgery output by A can be used by the simulator to win the
strongSigForge game.

Claim: (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m∗, σ∗) has not been
output by the oracle SignECDSA before. Note that the adversary A has not previously
made a query on the challenge message m∗ to either OpS or OS. Hence, SignECDSA is only
queried on m∗ during the challenge phase. As shown in game G1G1G1, the adversary outputs
a forgery σ∗ which is equal to the signature σ output by SignECDSA during the challenge
phase only with negligible probability. Hence, SignECDSA has never output σ∗ on query
m∗ before and consequently (m∗, σ∗) constitutes a valid forgery for game strongSigForge.
■

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + ν1(λ) + ν2(λ) + 2ν3(λ).
Since S provides a perfect simulation of game G4G4G4, we obtain:

261

B. Appendix to Chapter 3

AdvA
aSigForge = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4] + ν1(λ) + ν2(λ) + 2ν3(λ)
≤ AdvS

strongSigForge + ν1(λ) + ν2(λ) + 2ν3(λ).

Lemma 15 (Witness Extractability). Assuming that the positive ECDSA scheme ΣpECDSA
is SUF–CMA-secure and R′

g is a hard relation, the adaptor signature scheme ΞR′
g ,ΣpECDSA

as defined in Figure 3.5 of the paper is witness extractable.

Proof. Before providing the formal proof of witness extractability, we give the main
intuition behind this proof. In general, this proof is very similar to the proof of lemma 14.
Our goal is to reduce the witness extractability of ΞR′

g ,ΣpECDSA to the strong unforgeability
of the positive ECDSA signature scheme. In other words, assuming that there exists a
PPT adversary A who wins the aWitExt experiment, we design a PPT adversary S that
wins the strongSigForge experiment.

During the reduction, the main challenge arises during the simulation of pre-sign queries.
This simulation is done exactly as in the proof of lemma 14. However, unlike in the
aSigForge experiment, in aWitExt, A outputs the statement IY for relation R′

g alongside
the challenge message m∗, meaning that the game does not choose the pair (IY , y).
Therefore, S does not learn the witness y and hence cannot transform a full signature to
a pre-signature by computing s̃ := s · y. Fortunately, it is possible to extract y from the
zero-knowledge proof embedded in IY . After extracting y, the same approach used in
order to simulate the pre-sign queries can be taken here as well.

Game G0G0G0: This game, formally defined in Figure B.21, corresponds to the original
aWitExt game, where the adversary A has to come up with a valid signature σ for a message
m of his choice, a given pre-signature σ̃ and a given statement/witness pair ((Y , πY), y),
while having access to oracles H, OpS and OS, such that ((Y , πY), Ext(σ, σ̃, (Y , πY))) ̸∈ R′

g.
Since we are in the random oracle model, we explicitly write the random oracle code H.
We have Pr[G0 = 1] = Pr[aWitExtA,ΞRg ,ΣSch

(λ) = 1].

Game G1G1G1: This game, formally defined in Figure B.22, only applies changes to the OpS
oracle as opposed to the previous game. Namely, during the OpS queries, this game
extracts a witness y by executing the algorithm K on inputs the statement Y , the proof
πY and the list of random oracle queries H . The game aborts, if for the extracted witness
y it does not hold that ((Y , πY), y) ∈ R′

g.

Claim: Let Bad1 be the event that G1G1G1 aborts during an OpS execution, then it holds
that Pr[Bad1] ≤ ν1(λ), where ν1 is a negligible function in λ.

Proof: According to the online extractor property of the zero knowledge proof, for a
witness y extracted from a proof πY for statement Y such that Vrfy(Y , πY) = 1, it holds

262

B.3. Proof of the ECDSA-based Adaptor Signature

G0G0G0

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, IY , st) ← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk(m, IY)

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Ext(σ, σ̃, IY)
8 : b1 := Vrfypk(m; σ)
9 : b2 := m ̸∈ Q

10 : b3 := (IY , y′) ̸∈ R′
g

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x) ←$ Zq

3 : return H(x)

OpS(m, IY)

1 : σ̃ ← pSignsk(m, IY)
2 : Q := Q ∪ {m}
3 : return σ̃

Figure B.21: The formal definition of the game G0G0G0.

that ((Y , πY Y), y) ∈ R′
g except with negligible probability. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds that Pr[G0G0G0 =
1] ≤ Pr[G1G1G1 = 1] + ν1(λ), where ν1 is a negligible function in λ.

G1G1G1

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, IY , st) ← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk(m, IY)

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Ext(σ, σ̃, IY)
8 : b1 := Vrfypk(m; σ)
9 : b2 := m ̸∈ Q

10 : b3 := (IY , y′) ̸∈ R′
g

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x) ←$ Zq

3 : return H(x)

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ̃ ← pSignsk(m, IY)
6 : Q := Q ∪ {m}
7 : return σ̃

Figure B.22: The formal definition of the game G1G1G1.

Game G2G2G2: This game, formally defined in Figure B.23, extends the changes to OpS from
the previous game. In the OpS execution, this game first creates a valid full signature σ
by executing the Sign algorithm and converts σ into a pre-signature using the extracted

263

B. Appendix to Chapter 3

witness y. Further, the game calculates the randomness K̃ = gk and K = K̃y−1 from
σ and simulates a zero knowledge proof πS using K̃ and K. Due to the zero knowledge
property of the zero knowledge proof, the simulator can produce a proof πS which is
indistinguishable from a proof π ← Pdh((K̃, K), k). Hence, this game is indistinguishable
from the previous game. It holds that Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + ν2(λ), where ν2 is a
negligible function in λ.

G2G2G2

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m, IY , st) ← AOS,OpS,H
1 (pk)

5 : σ̃ ← pSignsk(m, IY)

6 : σ ← AOS,OpS,H
2 (σ̃, st)

7 : y′ := Ext(σ, σ̃, IY)
8 : b1 := Vrfypk(m; σ)
9 : b2 := m ̸∈ Q

10 : b3 := (IY , y′) ̸∈ R′
g

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x) ←$ Zq

3 : return H(x)

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← Signsk(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K̃, πS)

Figure B.23: The formal definition of the game G2G2G2.

Game G3G3G3: In this game, formally defined in Figure B.24, we apply the exact same
changes made in game G1G1G1 in oracle OpS to the challenge phase of the game. During the
challenge phase, this game extracts a witness y by executing the algorithm K on inputs
the statement Y , the proof πY and the list of random oracle queries H . The game aborts,
if for the extracted witness y it does not hold that ((Y , πY), y) ∈ R′

g.

Claim: Let Bad2 be the event that G3G3G3 aborts during the challenge phase, then it holds
that Pr[Bad2] ≤ ν1(λ), where ν1 is a negligible function in λ.

Proof: This proof is analogous to the proof of G1G1G1 in the proof of Lemma 15. ■
Since games G2G2G2 and G3G3G3 are equivalent except if event Bad2 occurs, it holds that Pr[G2G2G2 =
1] ≤ Pr[G3G3G3 = 1] + ν1(λ), where ν1 is a negligible function in λ.

Game G4G4G4: In this game, formally defined in Figure B.25, we apply the exact same
changes made in game G2G2G2 in oracle OpS to the challenge phase of the game. In the
challenge phase, this game first creates a valid full signature σ by executing the Sign
algorithm and converts σ into a pre-signature using the extracted witness y. Further,
the game calculates the randomness K̃ = gk and K = K̃y−1 from σ and simulates a zero

264

B.3. Proof of the ECDSA-based Adaptor Signature

G3G3G3

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)

4 : (m∗, IY , st) ← AOS,OpS,H
1 (pk)

5 : parse IY as (Y , πY)
6 : y := K(Y , πY , H)
7 : if ((Y , πY), y) ̸∈ R′

g

8 : Abort
9 : σ̃ ← pSignsk(m, IY)

10 : σ ← AOS,OpS,H
2 (σ̃, st)

11 : y′ := Ext(σ∗, σ̃, IY)
12 : b1 := Vrfypk(m∗; σ∗)
13 : b2 := m∗ ̸∈ Q
14 : b3 := ((Y , πY), y′) ̸∈ R′

g

15 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x) ←$ Zq

3 : return H(x)

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← Signsk(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K̃, πS)

Figure B.24: The formal definition of the game G3G3G3.

knowledge proof πS using K̃ and K. Due to the zero knowledge property of the zero
knowledge proof, the simulator can produce a proof πS which is indistinguishable from a
proof π ← Pdh((K̃, K), k). Hence, this game is indistinguishable from the previous game.
It holds that Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + ν3(λ), where ν3 is a negligible function in λ.

Having shown that the transition from the original aWitExt game (Game G0G0G0) to Game
G4G4G4 is indistinguishable, it remains to show that there exists a simulator that perfectly
simulates G4G4G4 and uses A to win the strongSigForge game. In the following, we concisely
describe how the simulator answers oracle queries. The simulator code can be found in
Figure B.26.

Signing queries: Upon A querying the oracle OS on input m, S forwards m to its
oracle SignECDSA and forwards its response to A.

Random Oracle queries: Upon A querying the oracle H on input x, if H[x] = ⊥,
then S queries HECDSA(x), otherwise the simulator returns H[x].

Pre-Signing queries: 1. Upon A querying the oracle OpS on input (m, IY), the
simulator extracts y using the extractability of NIZK, forwards m to oracle
SignECDSA and parses the signature that is generated as (r, s).

2. S generates a pre-signature from (r, s) by computing s̃ := s · y.

265

B. Appendix to Chapter 3

G4G4G4

1 : Q := ∅
2 : H := [⊥]
3 : (sk, pk) ← Gen(1λ)
4 : (m∗, IY , st) ← AOS,OpS,H(pk)
5 : parse IY as (Y , πY)
6 : y := K(Y , πY , H)
7 : if ((Y , πY), y) ̸∈ R′

g

8 : Abort
9 : σ ← Signsk(m∗)

10 : parse σ as (r, s)
11 : s̃ := s · y

12 : u := H(m∗) · s−1

13 : v := r · s−1

14 : K̃ := guXv

15 : K := K̃y−1

16 : πS ← S((K̃, K), 1)
17 : σ̃ := (r, s̃, K̃, πS)
18 : σ∗ ← AOS,OpS,H(σ̃, st)
19 : y′ := Ext(σ∗, σ̃, IY)
20 : b1 := Vrfypk(m∗; σ∗)
21 : b2 := m∗ ̸∈ Q
22 : b3 := ((Y , πY), y′) ̸∈ R′

g

23 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x) ←$ Zq

3 : return H(x)

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← Signsk(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K̃, πS)

Figure B.25: The formal definition of the game G4G4G4.

3. Finally, S simulates a zero knowledge proof πS, proving that it knows the
exponent of K and K̃. The simulator outputs (r, s̃, K̃, π).

Challenge phase: 1. Upon A outputting the message (m∗, IY) as the challenge
message, S extracts y using the extractability of NIZK, forwards m∗ to the
oracle SignECDSA and parses the signature that is generated as (r, s).

2. The simulator generates the required pre-signature σ̃ in the same way as
during OpS queries.

3. Upon A outputting a forgery σ, the simulator outputs (m∗, σ∗) as its own
forgery.

We emphasize that the main differences between the simulation and G4G4G4 are syntactical,

266

B.3. Proof of the ECDSA-based Adaptor Signature

namely instead of generating the public and secret keys and calculating the algorithm
Signsk and the random oracle H, the simulator S uses its oracles SignECDSA and HECDSA.

SSignECDSA,HECDSA(pk)

1 : Q := ∅
2 : H := [⊥]
3 : (m∗, IY , st) ← AOS,OpS,H(pk)
4 : parse IY as (Y , πY)
5 : y := K(Y , πY , H)
6 : if ((Y , πY), y) ̸∈ R′

g

7 : Abort
8 : σ ← SignECDSA(m∗)
9 : parse σ as (r, s)

10 : s̃ := s · y

11 : u := H(m∗) · s−1

12 : v := r · s−1

13 : K̃ := guXv

14 : K := K̃y−1

15 : πS ← S((K̃, K), 1)
16 : σ̃ := (r, s̃, K, πS)
17 : σ∗ ← AOS,OpS,H(σ̃, st)
18 : return (m∗, σ∗)

OS(m)

1 : σ ← SignECDSA(m)
2 : Q := Q ∪ {m}
3 : return σ

H(x)

1 : if H(x) = ⊥
2 : H(x) ←$ HECDSA(x)
3 : return H(x)

OpS(m, IY)

1 : parse IY as (Y , πY)
2 : y := K(Y , πY , H)
3 : if ((Y , πY), y) ̸∈ R′

g

4 : Abort
5 : σ ← SignECDSA(m)
6 : parse σ as (r, s)
7 : s̃ := s · y

8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃, K), 1)
13 : Q := Q ∪ {m}
14 : return (r, s̃, K, πS)

Figure B.26: The formal definition of the game G3G3G3.

It remains to show that the signature output by A can be used by the simulator to win
the strongSigForge game.

Claim: (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: In order to prove this claim, we have to show that the tuple (m∗, σ∗) has not been
output by the oracle SignECDSA before. Note that the adversary A has not previously
made a query on the challenge message m∗ to either OpS or OS. Hence, SignECDSA is only
queried on m∗ during the challenge phase. If the adversary outputs a forgery σ∗ which is
equal to the signature σ output by SignECDSA during the challenge phase, the extracted y
would be in relation with the given public value IY . Hence, SignECDSA has never output
σ∗ on query m∗ before and consequently (m∗, σ∗) constitutes a valid forgery for game
strongSigForge. ■

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + 2ν1(λ) + ν2(λ) + ν3(λ).
Since S provides a perfect simulation of game G4G4G4, we obtain:

267

B. Appendix to Chapter 3

AdvaWitExt = Pr[G0G0G0 = 1]
≤ Pr[G4G4G4 = 1] + 2ν1(λ) + ν2(λ) + ν3(λ)
≤ AdvS

strongSigForge + 2ν1(λ) + ν2(λ) + ν3(λ)

which concludes the proof.

B.4 Pre-signature unforgeability
As mentioned in Section 3.5, the definition of aEUF–CMA does not explicitly state that
pre-signatures are unforgeable. In this section, we prove that pre-signature unforgeability
is, however, implied by Definition 3. In order to do so, let us first define pre-signature
unforgeability formally.

Definition 8 (Pre-signature unforgeability). An adaptor signature scheme ΞR,Σ satisfied
pre-signature unforgeability under chosen message attack (pEUF–CMA for short) if for ev-
ery PPT adversary A there exists a negligible function ν such that Pr[pSigForgeA,ΞR,Σ(λ) =
1] ≤ ν(λ), where the experiment pSigForgeA,ΞR,Σ is defined as follows:

pSigForgeA,ΞR,Σ(λ)

1 : Q := ∅, (sk, pk) ← Gen(1λ)
2 : (Y , y) ← GenR(1n)

3 : (m, σ̃) ← AOS(·),OpS(·,·)(pk, Y)
4 : return m ̸∈ Q ∧ pVrfypk(m, Y ; σ̃)

OS(m)

1 : σ ← Signsk(m)
2 : Q := Q ∪ {m}
3 : return σ

OpS(m, Y)

1 : σ̃ ← pSignsk(m, Y)
2 : Q := Q ∪ {m}
3 : return σ̃

Lemma 16. If an adaptor signature scheme ΞR,Σ satisfies aEUF–CMA and pre-signature
adaptability, then it also satisfies pEUF–CMA.

Proof. Let A be a PPT adversary winning the pSigForge game with non-negligible
probability. We construct an adversary B that uses A to win the aSigForge game as
follows:

Challenge phase:

1. Upon receiving a public key pk and a statement Y ∈ LR from the challenger,
generate a statement/witness pair (Y ′, y′) ← GenR(1n).

2. Run the adversary A on pk and Y ′ to obtain (m, σ̃′).
3. Compute σ′ := Adaptpk(σ̃′, y′)
4. Output m to the challenger to obtain σ̃.

268

B.5. Additional material to generalized channel protocol

5. Return (m, σ′) as a valid forgery.

Signing queries: If A makes a signing query, forward to request to OS and relay the
answer.

Pre-Signing queries: If A makes a pre-signing query, forward to request to OpS and
relay the answer.

Random Oracle queries: If A makes a query to the random oracle, forward to request
to H and relay the answer.

It is easy to see that B perfectly simulates the pSigForge game to A and that B is a
PPT algorithm. If (m, σ̃′) is a valid forgery, then pVrfy(m, Y ′; σ̃) = 1 and A did not
query the signing or the pre-signing oracle on m. This implies that m /∈ Q. Moreover,
pre-signature adaptability guarantees that σ′ := Adaptpk(σ̃′, y′) is a valid signature on m.
Hence (m, σ′) is a successful forgery. To conclude, if A outputs a valid forgery, then so
does B. Hence, the success probability of B is non-negligible which completes the proof.

B.5 Additional material to generalized channel protocol

We now formally describe the protocol for generalized channels ΠL described at high level
in Section 3.6 of the paper. The protocol internally uses a secure adaptor signature scheme
ΞR,Σ = (pSign, Adapt, pVrfy, Ext) for the ledger signature scheme Σ and a relation R. We
assume that statement/witness pairs of R are public/secret key of Σ. More precisely, we
assume there exists a function ToKey that takes as input a statement Y ∈ LR and outputs
a public key pk. The function is s.t. the distribution of (ToKey(Y), y), for (Y , y) ← GenR,
is equal to the distributions of (pk, sk) ← Gen. We emphasize that both ECDSA and
Schnorr-based adaptor signatures, that we presented in Appendix B.2 and Section 3.5.1,
satisfy this condition (ECDSA, the ToKey simply drops the NIZK, for Schnorr ToKey is
the identity function). We discuss how to modify our protocol if this assumption does not
hold in Remark 2 below the formal protocol description. Before we present our protocols,
we introduce some conventions.

We assume that each party P ∈ P maintains a set ΓP of all open channels together with
auxiliary information about the channel (such as the funding transaction, latest commit
transaction, and corresponding revocation secret, etc.). In addition to the channel set, we
assume that each party maintains a set ΘP containing all revoked commit transactions
and corresponding revocation secretes. Similarly to the formal description of the ideal
functionality, we make use of an arrow notation for sending and receiving messages which
was explained in Section 3.3. Moreover, our formal description excludes some natural
checks an honest party should make. These checks are defined as a protocol wrapper in
Appendix B.7. In the protocol description, we abbreviate One–Sigpk1 ∧ · · · ∧ One–Sigpkn

269

B. Appendix to Chapter 3

as Multi–Sigpk1,...,pkn
. Moreover, we denote the script verifying that at least t rounds

have passed since the transaction was accepted by the blockchains as CheckRelativet.

In order to distinguish between the communication between parties and input/outputs
from/to the environment, we use lowercase letters for the former and uppercase typewriter
type style for the latter. So for example “CREATE” denotes a message from the environment
while “createInfo” denotes a protocol message. To avoid code repetition, we define the
generation of the funding, commit, and split transactions as separate subprocedure,
presented at the end of the protocol description. For the same reason, we define the force
closure as a subprocedure as well.

Generalized channel protocol

Below, we abbreviate Q := γ.otherParty(P) for P ∈ γ.users.

Create

Party P upon (CREATE, γ, tidP) t0←− E :

1. Set id := γ.id, generate (RP , rP) ← GenR, (YP , yP) ← GenR and send (createInfo, id, tidP ,
RP , YP) t0−→ Q.

2. If (createInfo, id, tidQ, RQ, YQ) t0+1←−−− Q, create:

[txf] := GenFund((tidP , tidQ), γ)
[TXc] := GenCommit([txf], IP , IQ)
[TXs] := GenSplit([TXc].txid∥1, γ.st)

for IP := (pkP , RP , YP), IQ := (pkQ, RQ, YQ). Else stop.
3. Compute sP

c ← pSignskP
([TXc], YQ), sP

s ← SignskP
([TXs]) and send (createCom, id, sP

c , sP
s)

t0+1−−−→ Q.
4. If (createCom, id, sQ

c , sQ
s) t0+2←−−− Q, s.t. pVrfypkQ

([TXc], YP ; sQ
c) = 1 and VrfypkQ

([TXs];

sQ
s) = 1, sP

f ← SignskP
([txf]) and send (createFund, id, sP

f) t0+2−−−→ Q. Else stop.
5. If (createFund, id, sQ

f) t0+3←−−− Q, s.t. VrfypkQ
([txf]; sQ

f) = 1, txf := ([txf], {sP
f , sQ

f }) and

(post, txf) t0+3−−−→ L. Else parse (θP , θQ) := γ.st, create tx such that tx.input := tidP ,
tx.output := θP , tx.w ← SignpkP

([tx]) and (post, tx) t0+3−−−→ L.
6. If txf is accepted by L in round t1 ≤ t0 + 3 + ∆, set TXc := ([TXc], {SignskP

([TXc]), Adapt(sQ
c ,

yP)}), TXs := ([TXs], {sP
s , sQ

s }), store ΓP (γ.id) := (γ, txf , (TXc, rP , RQ, YQ, sP
c), TXs) and

(CREATED, id) t1−→ E .

Update

270

B.5. Additional material to generalized channel protocol

Party P upon (UPDATE, id, −→
θ , tstp) t0←− E

1. Generate (RP , rP) ← GenR, (YP , yP) ← GenR and send (updateReq, id, −→
θ , tstp, RP , YP) t0−→

Q.

Party Q upon (updateReq, id, −→
θ , tstp, RP , YP) τ0←− P

2. Generate (RQ, rQ) ← GenR and (YQ, yQ) ← GenR.
3. Extract txf from ΓP (id) and

[TXc] := GenCommit([txf], IP , IQ)
[TXs] := GenSplit([TXc].txid∥1, θ)

where IP := (pkP , RP , YP), IQ := (pkQ, RQ, YQ).
4. Sign sQ

s ← SignskQ
([TXs]), send (updateInfo, id, RQ, YQ, sQ

s) τ0−→ P , (UPDATE–REQ, id, −→
θ , tstp,

TXs.txid) τ0+1−−−→ E .

Party P upon (updateInfo, id, hQ, YQ, sQ
s) t0+2←−−− Q

5. Extract txf from ΓQ(id) and

[TXc] := GenCommit([txf], IP , IQ)
[TXs] := GenSplit([TXc].txid∥1, θ),

for IP := (pkP , RP , YP) and IQ := (pkQ, RQ, YQ). If VrfypkQ
([TXs]; sQ

s) = 1, (SETUP, id,

TXs.txid) t0+2−−−→ E . Else stop.
6. If (SETUP–OK, id)

t1≤t0+2+tstp←−−−−−−−− E , compute sP
c ← pSignskP

([TXc], YQ), sP
s ← SignskP

([TXs])
and send (updateComP, id, sP

c , sP
s) t1−→ Q. Else stop.

Party Q

7. If (updateComP, id, sP
c , sP

s)
τ1≤τ0+2+tstp←−−−−−−−− P , s.t. pVrfypkP

([TXc], YQ; sP
c) = 1 and

VrfypkP
([TXs]; sP

s) = 1, output (SETUP–OK, id) τ1−→ E . Else stop.
8. If (UPDATE–OK, id) τ1←− E , pre-sign sQ

c ← pSign([TXc], YP) and send (updateComQ, id, sQ
c) τ1−→

P . Else send (updateNotOk, id, rQ) τ1−→ P and stop.

Party P

9. In round t1 + 2 distinguish the following cases:

271

B. Appendix to Chapter 3

• If (updateComQ, id, sQ
c) t1+2←−−− Q, s.t. pVrfypkQ

([TXc], YP ; sQ
c) = 1, output (UPDATE–OK, id)

t1+2−−−→ E .
• If (updateNotOk, id, rQ) t1+2←−−− Q, s.t. (RQ, rQ) ∈ R, add ΘP (id) := ΘP (id) ∪ ([TXc], rQ,

YQ, sP
c) and stop.

• Else, execute the procedure L–ForceCloseP (id) and stop.
10. If (REVOKE, id) t1+2←−−− E , parse ΓP (id) as (γ, txf , (TXc, r̄P , R̄Q, ȲQ, s̄P

Com), txs) and update the
channel space as ΓP (id) := (γ, txf , (TXc, rP , RQ, YQ, sP

c), TXs), for TXs := ([TXs], {sP
s ,

sQ
s }) and TXc := ([TXc], {SignskP

([TXc]), Adapt(sQ
c , yP)})., and send (revokeP, id, r̄P) t1+2−−−→ Q.

Else, execute L–ForceCloseP (id) and stop.

Party Q

11. Parse ΓQ(id) as (γ, txf , (TXc, r̄Q, R̄P , ȲP , s̄Q
Com), txs). If (revokeP, id, r̄P) τ1+2←−−− P , s.t. (R̄P ,

r̄P) ∈ R, (REVOKE–REQ, id) τ1+2−−−→ E . Else execute L–ForceCloseQ(id) and stop.
12. If (REVOKE, id) τ1+2←−−− E as a reply, set

ΘQ(id) :=ΘQ(id) ∪ ([TXc], r̄P , ȲP , s̄Q
Com)

ΓQ(id) :=(γ, txf , (TXc, rQ, RP , YP , sQ
c), TXs),

for TXs := ([TXs], {sP
s , sQ

s }), TXc := ([TXc], {SignskQ
([TXc]), Adapt(sP

c , yQ)}), and send
(revokeQ, id, r̄Q) τ1+2−−−→ P . In the next round (UPDATED, id) τ1+3−−−→ E and stop. Else, in round
τ1 + 2, execute L–ForceCloseQ(id) and stop.

Party P

13. If (revokeQ, id, r̄Q) t1+4←−−− Q s.t. (R̄Q, r̄Q) ∈ R, then set ΘP (id) := ΘP (id) ∪ ([TXc], r̄Q, ȲQ,
s̄P

Com) and (UPDATED, id) t1+4−−−→ E . Else execute L–ForceCloseP (id) and stop.

Close

Party P upon (CLOSE, id) t0←− E

1. Extract txf and TXs from ΓP (id) and set:

[txs] := GenSplit(txf .txid∥1, TXs.output)

2. Compute sP
s ← SignskP

([txs]) and send (peaceful–close, id, sP
s) t0−→ Q.

272

B.5. Additional material to generalized channel protocol

3. If (peaceful–close, id, sQ
s) t0+1←−−− Q s.t. VrfypkQ

([txs]; sQ
s) = 1, set txs := ([txs], {sP

s , sQ
s }) and

send (post, txs) t0+1−−−→ L. Else, execute L–ForceCloseP (id) and stop.

4. Let t2 ≤ t1 + ∆ be the round in which txs is accepted by L. Set ΓP (id) := ⊥, ΘP (id) := ⊥
and send (CLOSED, id) t2−→ E .

Punish

Party P upon PUNISH
t0←− E :

For each id ∈ {0, 1}∗ s.t. ΘP (id) ̸= ⊥:

1. Parse ΘP (id) := {([TX(i)
c], r (i)

Q , Y (i)
Q , s(i))}i∈m and extract γ from ΓP (id). If for some i ∈ [m],

there exist a transaction tx on L such that tx.txid = TX(i)
c .txid, then parse the witness as

(sP , sQ) := tx.Witness), where VrfypkP
([tx]; sP) = 1, and set y(i)

Q := Ext(sP , s(i), Y (i)
Q).

2. Define the body of the punishment transaction [TXpun] as:

TXpun.input := tx.txid∥1,
TXpun.output := {(γ.cash, One–SigpkP

)}

3. Sign sy ← Signy(i)
Q

([TXpun]), sr ← Signr(i)
Q

([TXpun]), sP ← SignpkP
([TXpun]), and set

TXpun := ([TXpun], sy, sr , sP). Then (post, TXpun) t0−→ L.

4. Let TXpun be accepted by L in round t1 ≤ t0 + ∆. Set ΘP (id) := ⊥, ΓP (id) := ⊥ and output
(PUNISHED, id) t1−→ E .

Subprocedures

GenFund(tid, γ) :
Return [tx], where tx.input := tid and tx.output := γ.cash, Multi–Sigγ.users .

GenCommit([txf], (pkP , RP , YP), (pkQ, RQ, YQ)) :
Let (c, Multi–SigpkP ,pkQ

) := txf .output[1] and denote

φ1 := Multi–SigToKey(RQ),ToKey(YQ),pkP
,

φ2 := Multi–SigToKey(RP),ToKey(YP),pkQ
,

φ3 := CheckRelative∆ ∧ Multi–SigpkP ,pkQ
.

Return [tx], where tx.input = txf .txid∥1 and tx.output := (c, φ1 ∨ φ2 ∨ φ3).

273

B. Appendix to Chapter 3

GenSplit(tid, θ):
Return [tx], where tx.input := tid and tx.output := θ.

L–ForceCloseP (id):
Let t0 be the current round.

1. Extract TXc and TXs from Γ(id) and send (post, TXc) t0−→ L.
2. Let t1 ≤ t0 + ∆ be the round in which TXc is accepted by the blockchain. Wait for ∆ rounds

to (post, TXs) t1+∆−−−→ L.
3. Once TXs is accepted by L in round t2 ≤ t1 + 2∆, set ΘP (id) := ⊥ and ΓP (id) := ⊥ and

output (CLOSED, id) t2−→ E .

Remark 2. In the protocol described in this section, we assume statement/witness pairs
of R are valid key pairs. This assumption can be eliminated by modifying our protocol as
follows. When creating a new commit transaction, each party samples the publishing pair
(YP , yP) ← GenR and chooses a random revocation secret rP . Thereafter, it computes
a hash of both secrets as hP := H(rP) and HP := H(yP) and sends YP and the hash
values hP , HP to the other party. In addition, it proves in zero knowledge the consistency
of YP and HP . The punishment mechanism for party P in the commit transaction then
expects (i) a preimage of hP (ii) a preimage of HP and (iii) valid signature w.r.t. pkQ.

B.6 Simplifying functionality description

The formal description of the functionality FL(Tp, k) as presented in Figure 3.4 is
simplified. Namely, several natural checks that one would expect an ideal functionality
to make when receiving a message are excluded from its description. For example, a
functionality should ignore a message that is malformed (e.g. missing or additional
parameters), requests an update of a channel that was never created, etc. We now define
all these checks using a wrapper Wchecks(Tp, k). Before we present the wrapper formally,
let us discuss it at a high level.

Channel creation. Upon receiving a (CREATE, γ, tid) message from a party P , the
wrapper verifies that γ is a valid generalized channel, that its identifier is unique and
that P is indeed a channel user. Moreover, the wrapper checks that the initial state of
the channel has only two outputs – each spendable by one of the channel users only. Let
us stress that while we do not support creation of a channel that already funds some
off-chain applications, the application of interest can be added immediately after the
channel creation is completed via a channel update. Finally, the wrapper verifies that tid
refers to an output that is spendable by P and contains a sufficient amount of coins.

Channel update. Upon receiving a (UPDATE, id, θ, tstp) message from a party P , the
wrapper verifies that the channel with identifier id exists and that P is a user of this
channel. Moreover, the wrapper verifies the validity of the new state. This means that
the outputs contained in the state are not distributing more coins than what is locked

274

B.6. Simplifying functionality description

in the channel and the conditions of the outputs are valid scripts of the underlying
ledger. Finally, the wrapper verifies that there is no parallel update of the channel being
performed and the channel is not being closed. Let us stress that this does not imply
that applications built on top of the channel cannot be executed in parallel. This only
says that all applications built on top of the channel must be created and closed at the
same time.

Channel closure. We do not allow closing requests during a channel update or
when a closure it already happening. Otherwise, the checks performed upon receiving a
(CLOSE, id) message from a party P are rather straightforward. The wrapper verifies that
the channel with identifier id exists and that P is a user of that channel.

Functionality wrapper: Wchecks(Tp, k)

Below, we abbreviate F := FL(Tp, k).

Create: Upon (CREATE, γ, tid) τ0←− P , where P ∈ γ.users, check if: Γ(γ.id) = ⊥ and there is
no channel γ′ with γ.id = γ′.id being created; γ is valid according to the definition given in
Section 3.4; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈ R≥0; and there exists

(t, id, i, θ) ∈ L.UTXO such that θ = (cP , One–SigP) for (id, i) := tid;a If one of the above checks
fails, drop the message. Else proceed as F .

Update: Upon (UPDATE, id, θ, tstp) τ0←− P check if: γ := Γ(id) ̸= ⊥; P ∈ γ.users; there is no
other update being preformed and the channel is not being closed; let θ = (θ1, . . . θℓ) =
((c1, φ1), . . . , (cℓ, φℓ)), then j∈[ℓ] ci = γ.cash and φj ∈ L.V for each j ∈ [ℓ]. If not, drop the
message. Else proceed as F .

Upon (SETUP–OK, id) τ0←− P check if: the message is a reply to the message (SETUP, id, tid) sent
to P in round τ ′

0 such that τ0 − τ ′
0 ≤ tstpb. If not, drop the message. Else proceed as F .

Upon (UPDATE–OK, id) τ0←− P , check if the message is a reply to the message (SETUP–OK, id) sent
to P in round τ0. If not, drop the message. Else proceed as F .

Upon (REVOKE, id) τ0←− P , check if the message is a reply to either the message (UPDATE–OK, id)
sent to P in round τ0 or the message (REVOKE–REQ, id) sent to P in round τ0. If not, drop the
message. Else proceed as F .

Close: Upon (CLOSE, id) τ0←− P , check if γ := Γ(id) ̸= ⊥ and P ∈ γ.users and γ is currently not
being updated or closed. If not, drop the message. Else proceed as F .
All other messages are dropped.

aIn case more channels are being created at the same time, then none of the other creation requests
can use of the tid.

bWhat we formally mean by “reply” is explained in Appendix B.1.

275

B. Appendix to Chapter 3

B.7 Simplifying the protocol descriptions
Similarly to the descriptions of our ideal functionality, the description of the protocol ΠL

presented in Appendix B.5 excludes many natural checks that an honest party should
make in order to realize the ideal functionality. We define all these checks as a wrapper
WchecksP which we first discuss at a high level and only then present formally.

Channel creation. When an honest party receives the message (CREATE, γ, tidP) from
the environment, she verifies that she is a user of the channel and that the channel is
correctly formed. Moreover, she verifies that the channel identifier is unique. Finally, she
checks that the transaction identifier tidP refers to a published output that has the right
amount of coins and belongs to her. If all the checks pass, party P behaves as described
in the simplified protocol.

Similarly, when P receives the transaction identifier tidQ from the other channel users,
she first verifies that tidQ refers to an output controlled by Q. Let us stress that skipping
this check would be very dangerous for P . Malicious party Q could try to trick honest P
to fund the channel completely on her own by proposing tidQ that refers to an output
controlled by P . As P sings the initial commit transaction, she would give her consent
to spend both tidP and tidQ.

Channel update. When an honest party receives the message (UPDATE, id, θ, tstp) from
the environment, i.e., P is the initiating party of the update, she verifies that the channel
exists in her channel space, that there is no other update being performed already and
that the channel is not being closed. Moreover, she verifies that the new state is valid.
This means that it is not distributing more coins than is locked in the channel and all
the output conditions are supported by the underlying blockchain. If all checks pass,
party P behaves as described in the simplified protocol.

Analogously, if party P receives the message (updateReq, id, −→
θ , tstp, RQ, YQ) from some

party Q, she verifies that id refers to an existing channel between P and Q that is
currently not being updated. Moreover, P verifies that the proposed new state −→

θ is
valid. Thereafter, she proceeds as in the simplified protocol.

Channel closure. Upon receiving the message (CLOSE, id) from the environment, party
P verifies that there exists a channel with identifier id in her channel space. Moreover, it
checks that there is no update currently being performed and that the channel is not
being closed already.

Protocol wrapper: WchecksP

Party P ∈ P proceeds as follows:

Create: Upon (CREATE, γ, tid) τ0←− E check if: P ∈ γ.users; ΓP (γ.id) = ⊥ and there is no channel
γ′ with γ.id = γ′.id being created; γ is valid according to the definition given in Section 3.4;

276

B.8. Security proof

γ.st = {(cP , One–SigpkP
), (cQ, One–SigpkQ

)} for cP , cQ ∈ R≥0; there exists (t, id, i, θ) ∈ L.UTXO
such that θ = (cP , One–SigP) for (id, i) := tid. If one of the above checks fails, drop the
message. Else proceed as in ΠL.

Upon (createInfo, id, tidQ, RQ, YQ) τ0+1←−−− Q, check if: you accepted a (CREATE, γ, tid) message
in round τ0 with γ.id = id; there exists (t, id, i, θ) ∈ L.UTXO such that θ = (cQ, One–SigpkQ

) for
(id, i) := tidQ and (cQ, One–SigpkQ

) ∈ γ.st; there is no other channel are being created using
this tidQ. If one of the above checks fails, drop the message. Else proceed as ΠL.

Update: Upon (UPDATE, id, θ, tstp) τ0←− E check if: γ := ΓP (id) ̸= ⊥; there is no other update
being preformed and the channel is not being closed; let θ = (θ1, . . . θℓ) = ((c1, φ1), . . . , (cℓ,
φℓ)), then j∈[ℓ] ci = γ.cash and φj ∈ L.V for each j ∈ [ℓ]. If on of the checks fails, drop the
message. Else proceed as in ΠL.

Upon (updateReq, id, −→
θ , tstp, RQ, YQ) τ0←− Q, check if {P , Q} = γ.users; γ := Γ(id) ̸= ⊥; there is

no other update being preformed and the channel is not being closed; let θ = (θ1, . . . θℓ) = ((c1,
φ1), . . . , (cℓ, φℓ)), then j∈[ℓ] ci = γ.cash and φj ∈ L.V for each j ∈ [ℓ]. If one of the above
checks fails, drop the message. Else proceed as in ΠL.

Upon (SETUP–OK, id) τ0←− E check if: the message is a reply to the message (SETUP, id, tid) you
sent in round τ ′

0 such that τ0 − τ ′
0 ≤ tstpa. If not, drop the message. Else proceed as in ΠL.

Upon (UPDATE–OK, id) τ0←− E , check if the message is a reply to the message (SETUP–OK, id) you
sent in round τ0. If not, drop the message. Else proceed as in ΠL.

Upon (REVOKE, id) τ0←− E , check if the message is a reply to either (UPDATE–OK, id) or
(REVOKE–REQ, id) you sent in round τ0. If not, drop the message. Else proceed as in ΠL.

Close: Upon (CLOSE, id) τ0←− E , check if γ := ΓP (id) ̸= ⊥ and that the channel is not being
updated or closed. If one of the checks fails, drop the message. Else proceed as in ΠL.

Upon (peaceful–close, id, σQ) τ1←− Q, check if you sent (peaceful–close, id, σP) τ1−1−−−→ Q. If not,
then drop the message. Else proceed as in ΠL.
All other messages are dropped.

aWhat we formally mean by “reply” is explained in Appendix B.1.

B.8 Security proof
In this section, we provide a proof for Theorem 3. In our proof, we provide the code for
a simulator, that simulates the protocol ΠL(∆,Σ)

L (ΞR,Σ) in the ideal world having access
to the functionalities L and FL. The main challenge in providing a simulation in UC
proofs usually arises from the fact that the simulator is not given the secret inputs of
the parties in the protocol, which makes it difficult to provide a simulated transcript
that is indistinguishable from a transcript of a real protocol execution. However, in our
setting, parties do not obtain any secret inputs, but only receive commands from the
environment E , and hence the only challenge that arises during the simulation is handling
different behavior of malicious parties. For this reason, we omit the simulation for the
case where both parties are honest in the protocol. Furthermore, due to the same reason,

277

B. Appendix to Chapter 3

as long as the protocol can be simulated in the ideal world, the ideal and real-world
executions are indistinguishable. We emphasize that the security of the protocol and its
realizability rely on the correctness and security properties of the underlying adaptor
signature scheme, namely unforgeability, witness intractability, and adaptability.

Let us now explain the necessity of the adaptor signature properties in more detail.
Clearly, if the environment or malicious parties are able to generate signatures on
behalf of honest parties, we create an adversary that can use them in order to win the
unforgeability game of the adaptor signature scheme. Therefore, only the simulator can
generate valid signatures on behalf of the honest parties (the environment can do so only
upon guessing the correct signing keys, which happens only with negligible probability).
Witness Extractability is necessary in order to punish the dishonest party who has
published an old commit transaction. Hence, if a malicious party can publish a valid
signature for which the extract algorithm Ext, in step 1 of the simulation for the punish
procedure, does not output a correct witness, we can build an adversary that can win
the witness extractability game of the adaptor signature scheme. Further, adaptability is
required in order to complete the pre-signature of the new commit transaction. Therefore,
if a malicious party can generate a pre-signature that cannot be adapted, in step 8
of the simulation for the update procedure, we can build an adversary who can break
the pre-signature adaptability property. Last but not least, the signatures generated
upon adapting a pre-signature are valid according to correctness and hence the punish
transaction generated in step 3 of the simulation for the punish procedure, is signed
correctly and will get accepted by the blockchain.

Remark 3. In the following proof, we use the witness extracted from an adaptor signature
as a signing secret key. We note that the proof extends naturally to the case where the
witness is used as a hash preimage even though this requires an additional zero-knowledge
proof, which guarantees consistency of the hash value and the preimage.

Simulator for creating generalized channels

Let T1 = 3.

Case A is honest and B is corrupted

Upon A sending (CREATE, γ, tidA) τ0−→ FL, if B does not send (CREATE, γ, tidB) τ−→ FL where
|τ0 − τ | ≤ T1, then distinguish the following cases:

1. If B sends (createInfo, id, tidB, RB, YB) τ0−→ A, then send (CREATE, γ, tidB) τ0−→ FL on
behalf of B.

2. Otherwise stop.

Do the following:

278

B.8. Security proof

1. Set id := γ.id, generate a revocation public/secret pair (RA, rA) ← GenR(pp), generate
publishing public/secret pair (YA, yA) ← GenR(pp) and send (createInfo, id, tidA, RA, YA)
τ0−→ B.

2. If you receive (createInfo, id, tidB , RB , YB) τ0+1←−−− B, create the body of the funding, the first
commit and split transactions:

[txf] := GenFund((tidA, tidB), γ)
[TXc] := GenCommit([txf], IA, IB , 0)
[TXs] := GenSplit([TXc].txid∥1, γ.st)

where IA := (pkA, RA, YA) and IB := (pkB , RB , YB). Else stop.
3. Pre-sign [TXc] w.r.t. YB and sign [TXs],

sA
c ← pSignskA

([TXc], YB)
sA

s ← SignskA
([TXs])

and (createCom, id, sA
c , sA

s) τ0+1−−−→ B.

4. If you receive (createCom, id, sB
c , sB

s) τ0+2←−−− B, s.t.

pVrfypkB
([TXc], YA; sB

c) = 1
VrfypkB

([TXs]; sB
s) = 1

sign the funding transaction sA
f ← SignskA

([txf]) and (createFund, id, sA
f) τ0+2−−−→ B. Else stop.

5. If you (createFund, id, sB
f) τ0+3←−−− B s.t. VrfypkB

([txf]; sB
f) = 1, define txf := ([txf], {sA

f , sB
f })

and (post, txf) τ0+3−−−→ L. Else parse (θA, θB) := γ.st, create tx such that tx.input := tidA,
tx.output := θA, tx.w ← SignpkA

([tx]) and (post, tx) τ0+3−−−→ L and stop.

6. If txf is accepted by L in round τ1 ≤ τ0 + 3 + ∆, add

ΓA(γ.id) := (γ, txf , (TXc, rA, RB , YB , sA
c), TXs),

where TXs := ([TXs], {sA
s , sB

s }) and

TXc := ([TXc], {SignskA
([TXc]), Adapt(sB

c , yA)}).

Simulator for updating generalized channels

Let T1 = 2 and T2 = 1 and let |tid| = 1.

Case A is honest and B is corrupted

279

B. Appendix to Chapter 3

Upon A sending (UPDATE, id, −→
θ , tstp) τ0−→ FL, proceed as follows:

1. Generate new revocation public/secret pair (RP , rP) ← GenR and a new publishing

public/secret pair (YP , yP) ← GenR and send (updateReq, id, −→
θ , tstp, RA, YA)

τA
0−→ B.

2. Upon (updateInfo, id, hB , YB , sB
s)

τA
0 +2←−−− B, extract txf from ΓB(id) and

[TXc] := GenCommit([txf], IA, IB)
[TXs] := GenSplit([TXc].txid∥1, θ),

for IA := (pkA, RA, YA) and IB := (pkB , RB , YB). If VrfypkB
([TXs]; sB

s) = 1, send (SETUP, id,

TXs.txid)
τA

0 +2−−−→ E . Else stop.

3. If A sends (SETUP–OK, id)
τA

1 ≤τA
0 +2+tstp−−−−−−−−−→ FL, compute sA

c ← pSignskA
([TXc], YB) and

sA
s ← SignskA

([TXs]) , and send (update–commitA, id, sA
c , sA

s)
τA

1−→ B.

4. In round τA
1 + 2 distinguish the following cases:

• If you receive (update–commitB, id, sB
c)

τA
1 +2←−−− B and if B has not sent (UPDATE–OK,

id)
τA

1 +1−−−→ FL, then send (UPDATE–OK, id)
τA

1 +1−−−→ FL on behalf of B. If pVrfypkB
([TXc],

YA; sB
c) = 0, then stop.

• If you receive (updateNotOk, id, rB)
τP

2 +2←−−− B, where (RB, rB) ∈ R, add ΘA(id) :=
ΘA(id) ∪ ([TXc], rB , YB , sA

c), instruct FL to stop and stop.
• Else, execute the simulator code for the procedure L–ForceCloseA(id) and stop.

5. If A sends (REVOKE, id)
τA

1 +2−−−→ FL, then parse ΓA(id) as (γ, txf , (TXc, r̄A, R̄B, ȲB,
s̄A

Com), txs) and update the channel space as ΓA(id) := (γ, txf , (TXc, rA, RB, YB, sA
c)

, TXs), for TXs := ([TXs], {sA
s , sB

s }) and TXc := ([TXc], {SignskA
([TXc]), Adapt(sB

c , yA)}).

Then send (revokeP, id, r̄A)
τA

1 +2−−−→ B. Else, execute the simulator code for the procedure
L–ForceCloseA(id) and stop.

6. If you receive (revokeB, id, r̄B)
τA

1 +4←−−− B and if B has not sent (REVOKE, id)
τB

1 +2−−−→ FL, then

send (REVOKE, id)
τB

1 +2−−−→ FL on behalf of B. Check if (R̄B , r̄B) ∈ R, then set

ΘB(id) :=ΘA(id) ∪ ([TXc], r̄B , ȲB , s̄A
Com)

Else execute the simulator code for the procedure L–ForceCloseA(id) and stop.

Case B is honest and A is corrupted

280

B.8. Security proof

Upon A sending (updateReq, id, −→
θ , tstp, hA) τ0−→ B, send (UPDATE, id, −→

θ , tstp) τ0−→ FL on behalf
of A, if A has not already sent this message. Proceed as follows:

1. Upon (updateReq, id, −→
θ , tstp, RA, YA)

τB
0←−− A, generate (RB, rB) ← GenR and (YB,

yB) ← GenR.

2. Extract txf from ΓA(id) and

[TXc] := GenCommit([txf], IA, IB)
[TXs] := GenSplit([TXc].txid∥1, θ)

where IA := (pkA, RA, YA), IB := (pkB , RB , YB).

3. Compute sB
s ← SignskB

([TXs]), send (updateInfo, id, RB , YB , sB
s)

τB
0−−→ A.

4. If you (updateComP, id, sA
c , sA

s)
τB

1 ≤τB
0 +2+tstp←−−−−−−−−− A then send (SETUP–OK, id)

τB
1−−→ FL on behalf

of A, if A has not sent this message.
5. Check if pVrfypkP

([TXc], YQ; sP
c) = 1 and VrfypkP

([TXs]; sP
s) = 1.

6. If B sends (UPDATE–OK, id)
τB

1−−→ FL, pre-sign sB
c ← pSign([TXc], YA) and send (updateComQ,

id, sB
c)

τB
1−−→ A. Else send (updateNotOk, id, rB)

τB
1−−→ A and stop.

7. Parse ΓB(id) as (γ, txf , (TXc, r̄B, R̄A, ȲA, s̄B
Com), txs). If you (revokeP, id, r̄A)

τB
1 +2←−−− A, send

(REVOKE, id)
τB

1 +2−−−→ FL on behalf of A, if A has not sent this message.

Else if you do not receive (revokeP, id, r̄A)
τB

1 +2←−−− A or if (R̄A, r̄A) ̸∈ R, execute the simulator
code of the procedure L–ForceCloseB(id) and stop.

8. If B sends (REVOKE, id)
τB

1 +2−−−→ FL, then set

ΘB(id) :=ΘB(id) ∪ ([TXc], r̄A, ȲA, s̄B
Com)

ΓB(id) :=(γ, txf , (TXc, rB , RA, YA, sB
c), TXs),

for TXs := ([TXs], {sA
s , sB

s }) and TXc := ([TXc], {SignskB
([TXc]), Adapt(sA

c , yB)}). Then

(revokeB, id, r̄B)
τB

1 +2−−−→ A and stop. Else, in round τB
1 + 2, execute the simulator code of the

procedure L–ForceCloseB(id) and stop.

Simulator for closing generalized channels

Let T1 = 1.

Case A is honest and B is corrupted

281

B. Appendix to Chapter 3

Upon A sending (CLOSE, id) τ0−→ FL, if B does not send (CLOSE, id) τ−→ FL where |τ0 − τ | ≤ T1,
then distinguish the following cases:

1. If B sends sB
s

τ0−→ A, then send (CLOSE, id) τ0−→ FL on behalf of B.

2. Otherwise execute the simulator code of the procedure L–ForceCloseA(id) and stop.

1. Extract txf and TXs from ΓA(id). Create the body of the final split transaction [txs] as
follows

[txs] := GenSplit(txf .txid∥1, TXs.output)

2. Compute the signature sA
s ← SignskA

([txs]) and send sA
s

τ0−→ B.

3. If you receive sB
s

τ0+1←−−− B, s.t. VrfypkB
([txs]; sB

s) = 1, set txs := ([txs], {sA
s , sB

s }) and send
(post, txs) τ0+1−−−→ L. Else, execute the simulator code for the procedure L–ForceCloseA(id)
and stop.

4. Let τ2 ≤ τ1 + ∆ be the round in which txs is accepted by the blockchain. Set ΓA(id) = ⊥,
ΘA(id) = ⊥.

Simulator for punishment of generalized channels

Case A is honest and B is corrupted

Upon A sending PUNISH
τ0−→ FL, for each id ∈ {0, 1}∗ such that ΘP (id) ̸= ⊥ do the following:

1. Parse ΘA(id) := {([TX(i)
c], r (i)

B , Y (i)
A , s(i))}i∈m and extract γ from ΓA(id). If for some i ∈ [m],

there exist a transaction tx on L such that tx.txid = TX(i)
c .txid, then parse the witness as

(sA, sB) := tx.Witness), where VrfypkA
([tx]; sA) = 1, and set y(i)

B := Ext(sA, s(i), Y (i)
B).

2. Define the body of the punishment transaction [TXpun] as:

TXpun.input := tx.txid∥1,
TXpun.output := {(γ.cash, One–SigpkA

)}

3. Compute the signatures sy ← Signy(i)
B

([TXpun]), sr ← Signr(i)
B

([TXpun]), sA ← SignpkA
([TXpun]),

and set TXpun := ([TXpun], sy, sr , sA). Then (post, TXpun) τ0−→ L.

4. Let TXpun be accepted by L in round τ1 ≤ τ0 + ∆. Set ΘA(id) = ⊥, ΓA(id) = ⊥.

Simulator for ForceCloseP (id)

Let τ0 be the current round

1. Extract TXc and TXs from Γ(id).

282

B.9. Applications on top of generalized channels

2. Send (post, TXc) τ0−→ L.
3. Let τ1 ≤ τ0 + ∆ be the round in which TXc is accepted by the blockchain. Wait for ∆ rounds

to (post, TXs) τ2+∆−−−→ L.

4. Once TXs is accepted by the blockchain in round τ3 ≤ τ2 + 2∆, set ΘP (id) = ⊥ and
ΓP (id) = ⊥.

B.9 Applications on top of generalized channels
We summarize the general discussion from Section 3.7 about which applications can be
built on top of generalized channels in Remark 4, where we denote a two-party application
π whose funding source can be published within t rounds as π(t). Thus, π(0) indicates
that π is funded directly by the ledger.

Remark 4 (Lifting on-chain functionality off-chain). Let π(0) be an application executed
between two parties P1 and P2 funded directly by a ledger L(∆, Σ, V), where V allows at
least for transaction authorization w.r.t. Σ, relative time-locks and constant number of
Boolean operations ∧ and ∨. Then π(3∆) can be funded by a generalized channel between
P1 and P2, hence executed fully off-chain, while guaranteeing instant finality with punish
to both parties. This means that either π(3∆) terminates as π(0) would over L(∆, Σ, V),
or the honest party is financially compensated.

In Section 3.7, we described how to construct two concrete applications on top of
generalized channels. The process described there can naturally be generalized to any
two-party applications which is what we do in this section.

Assume that two parties already created a generalized channel γ via FL and now want
to use it for several applications. For that, parties have to carry out the following steps.

Initialize: Parties agree on the new state θ of γ and the upper bound tstp on the time
required to set up applications. That is, for each application parties agree on (i) the
amount of coins they want to invest and the funding condition; technically, this means
that parties define θi = (θi.cash, θi.φ), and (ii) the maximal set up time ti. The value
tstp is defined as maxi ti, thereby upper-bounding the number of rounds that it takes to
set up all the applications in parallel.

Prepare: One party sends the message (UPDATE, id, θ, tstp) to FL in order to prepare the
update. Upon receiving such message, FL responds with tid– a vector of k transaction
identifiers referring to transactions that contain the output vector θ and hence are
candidate funding sources of our applications.

Setup: For every tidj ∈ tid, parties exchange the application-dependent information
required to fulfill the conditions {θi.φ}.

Complete: Parties inform FL about setup completion by sending SETUP–OK and
UPDATE–OK messages. Thereafter, FL requests both parties to revoke the old state

283

B. Appendix to Chapter 3

of γ which they do by invoking FL on input the message REVOKE. FL notifies the users
of the completed update via the message UPDATED.

B.9.1 Claim-Or-Refund

Initialize: First, parties need to agree on the new state of the channel that would
include the new claim-or-refund applications. To this end, parties exchange the function
f , decide on the time-out value t, and create three outputs (one for the conditional
payment, one for the remaining balance of A and one for the balance B): (i) θ0.cash := β,
θ0.φ := (Checkf ∧ One–SigpkB

) ∨ (CheckAbsolutet ∧ One–SigpkA
); (ii) θ1.cash := αA − β,

θ1.φ := One–SigpkA
; and (iii) θ2.cash := αB, θ2.φ := One–SigpkB

. The new channels
state is then θ = (θ0, θ1, θ2).

Prepare: One party sends the message (UPDATE, γ.id, θ, 0) to FL in order to prepare the
update. The last coordinate is set to 0, because no special setup is needed in the case of
the claim-or-refund application. Upon receiving such message, FL responds with tid– a
vector of k transaction identifiers referring to transactions that contain the output vector
θ and hence are candidate funding sources of our applications.

Complete: Parties inform FL about their intention to complete the update by sending
SETUP–OK and UPDATE–OK messages. Thereafter, FL requests both parties to revoke the
old state of γ which they do by invoking FL on input the message REVOKE. FL notifies
the users of the completed update via the message UPDATED.

A similar process is used when B wants to claim the β coins or A wants to refund β
coins. Namely, if B wants to claim the β coins, this party initiates a new update of γ0
s.t., αA − β coins are assigned to A and αB + β coins are assigned to B. The security of
the solution follows from the fact that if the update fails, the channel is closed in the
latest agreed state. Hence, the output funding the claim-or-refund is published in an
on-chain transaction allowing B to claim the β coins over the blockchain. Analogously,
for the refund of A.

B.9.2 Channel-Splitting

Initialize: Parties first agree on the new state of the channel. To this end, they create
one output per sub-channel: (i) θ0.cash := γ0.cash, θ0.φ := One–SigpkA

∧ One–SigpkB
;

and (ii) θ1.cash := γ1.cash, θ1.φ := One–SigpkA
∧One–SigpkB

. The new state is hence
θ = (θ0, θ1).

Prepare: As in the previous example, one party sends the message (UPDATE, γ.id, θ, 2)
to FL in order to prepare the update. This time, the setup time is set to 2 rounds as this
is how long it takes to setup a new generalized channel. Upon receiving such message,
FL responds with tid– a vector of k transaction identifiers referring to transactions that
contain the output vector θ and hence are candidate funding sources of our applications.

284

B.9. Applications on top of generalized channels

Setup: For each sub-channel, parties generate and sign the commit and split transactions
representing the initial channel state. This procedure, explained in Section 3.6, takes 2
rounds.

Complete: Parties inform FL about the completed setup by sending SETUP–OK and
UPDATE–OK messages. Thereafter, FL requests both parties to revoke the old state of γ
which they do by invoking FL on input the message REVOKE. FL notifies the users of the
completed update via the message UPDATED.

Remark 5. The setup phase is run for each transaction identifier in tid which means
that parties have to set up and maintain k copies of all their applications. Hence, low
values of the parameter k are of great importance.

285

APPENDIX C
Appendix to Chapter 4

C.1 Discussion on practical deployment

Payment fees. We encode a fee mechanism in our construction. For simplicity, we
assume that every intermediary charges the same fee amount: fee. However, it is trivial
to extend this mechanism to allow for different fees. The sender initially puts an amount
α0 := α + fee · (n − 1) in the output θi,0. Every intermediary now deducts fee from
this amount when opening the construction with its own right neighbor. Specifically,
an intermediary Ui receives αi−1 and forwards only αi := αi−1 − fee. Thereby, every
intermediary effectively gains fee coins in the case of a successful payment.

Refund tradeoff. In the case of a refund, where a fast refund (see Section 4.3) is not
possible, the sender has to publish txer. Doing this will have the cost of publishing this
transaction (and possibly the transaction containing its input) plus the (n − 1) · ϵ that go
to the intermediaries. The amount ϵ can be the smallest possible amount of cash since
it is just used to enable the payment. In other words, for Bitcoin, we can say ϵ := 1
satoshi,1 which is currently around 0.00011 USD. However, the refund of Blitz payments
has a fundamental advantage over the one in the Lightning Network (LN). The refund
time is only constant in the worst case and if the sender is honest, is only the time it
takes to publish txer (i.e., ∆) instead of n · ξ. We presented this advantage in Section 4.3.

So the tradeoff is a more expensive, but much faster refund. This immensely reduces the
effect of griefing attacks and increases the overall transaction throughput.

1In practice, Bitcoin transactions need to carry a total amount of one dust, which is 546 satoshis.
Having individual outputs of one satoshi is not a problem, as the sender can include an additional output
to a stealth address under its control, such that the sum is greater than one dust. In txr

i, the output of
txer holding one satoshi is combined with the first output of the state txstate, resulting in a sum larger
than one dust.

287

C. Appendix to Chapter 4

Race. We already mentioned that only the sender can publish txer and because of the
time delays, the timing is the same for every user on the path. We claimed that the latest
possible time to safely publish txer and still be able to claim the refund is T − tc − 3∆.
However, there is a time frame after T − tc − 3∆ up until T − tc − 2∆, where the sender
could publish txer and still, txr

i would be sent to the ledger before time T . However now,
everyone is at risk, because we said that accepting a transaction takes at most ∆ time
and at time T , already txp

i might be sent to the ledger and there might be a race over
which of these two transactions is accepted first. We argue, that a sender will not do this,
as this puts himself at the same risk as every other intermediary. For a way of preventing
this race entirely, we defer the reader to Appendix C.4.

Obfuscate the length of the path. By adding additional dummy outputs (that
belong to fresh addresses of the sender) to txer, a sender can obfuscate the path length.
Note that the rList has to include some random values as well so that it has the same
number of elements as txer has outputs. Note that by looking at the timelock in the LN,
the path length or at least ones position within the path is leaked to some degree.

Extended privacy discussion. As mentioned in Section 4.4.1, Blitz achieves sender,
receiver, and path privacy, which provides a measure of privacy in the case of a successful
payment. To hide the path from users observing txer, we use stealth addresses for the
outputs of txer. This allows to have path privacy as defined in Section 4.4.1, where
malicious intermediaries cannot determine the participants of the payment other than
their direct neighbors. We stress that as in the LN, the stronger notion of relationship
anonymity [MMSK+17] does not hold. Two users can link a payment by comparing the
transaction txer in Blitz, or the hash value in the LN.

To make an on-chain linking of the sender impossible, we require the input of txer to
be fresh and unlinkable to the sender. In practice, this can be achieved as follows. The
sender creates off-chain an intermediary transaction txin that spends from an output
under the sender’s control txsdr to a newly generated address of the sender, never used
before. Then, txer uses this output with the new address of txin as input. Since txin is
off-chain, users observing txer are unable to link the payment to an on-chain identity.
Again, this is due to inputs referring to a transaction hash plus an id of the output.

In the pessimistic case, these properties do not hold anymore. If the transactions go
on-chain, they can be linked together by observing a shared transaction txer or time T .
The same holds true in the LN, where transactions that spend from an HTLC with the
same hash value, can be linked.

Redundancy for improving throughput and latency. Routing a payment through
a path can fail or be delayed due to unknown channel balances, offline or malicious
users, or other reasons. Following Boomerang [BNT20], a sender can construct several
redundant payments across several paths, that differ in one or more users. For this, the
sender creates a transaction txer for each of these redundant payments and forwards
them. Intermediary users have to open a payment construction (build txr

i and txp
i) for

every txer that they receive.

288

C.2. 1-phase commits in distributed databases

αi

xUi
− αi

xUi+1

ϵ
αi + ϵ

pkUi
, pkUi+1

pkUi +∆

≥ T
αi pkUi+1

txstate
i

txer

...

...

txr
i

txp
i

pkUi+1

pkUi

+tc + ∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

αi

α′
i

xUi
− αi − α′

i

xUi+1

ϵ
αi + ϵ

pkUi
, pkUi+1

pkUi +∆

≥ T
αi pkUi+1

txstate
i

′

txer

...

...

txr
i

txp
i

pkUi+1

pkUi

+tc + ∆

Ui

Ui+1

. . .

pkUi

pkUi+1

Ui

Ui+1

Figure C.1: Concurrent payments between users Ui and Ui+1: (left) a Blitz channel
with a single payment; (right) an updated channel that has this payment and a second
concurrent one. To add a second payment of value α′

i to the channel, the transactions
for the in-flight payment of value αi are recreated with the new state txstate

i
′ as input,

the channel is updated to txstate
i

′ and finally, the old state txstate
i is revoked. In the LN,

this process is the same, except that the HTLC contract and transactions are recreated,
instead of the Blitz ones.

Should an intermediary user have a choice of forwarding a payment to several different
neighbors, it can choose one and start a fast refund (Section 4.3) for the other payments.
Should several different payments reach the receiver, it can start the fast refund for all
but one of them. In the worst case, if the sender sees that after some time more than
one payment is active, it can start the refund by publishing the according transaction
txer. With this, the sender can ensure that at most one of the redundant payments is
carried out. This technique is useful to improve transaction throughput and latency and
we achieve it without any additional cryptography.

Concurrent payments. Two parties of a payment channel can achieve concurrent
payments as follows. They agree to update their current channel state txstate

i to a new
state txstate

i
′, where any unresolved in-flight Blitz payments are carried over. More

concretely, for every unresolved payment the transactions txr
i and txp

i are recreated, but
the input for these transactions is changed from using an output of txstate

i to using an
output of txstate

i
′. Afterwards, the right user’s signature for txr

i is given to the left user
and only then, the old state txstate

i is revoked using the revocation technique in the LN
(outlined in Appendix C.3). In other words, the same channel state-management of the
LN is reused in Blitz, but changing the HTLC contract for the Blitz contract. We show
an illustrative example of concurrent payments in Figure C.1.

C.2 1-phase commits in distributed databases

The concepts of 1-phase commits [AhC95,SC93,AGP98] and one-two commit [AHC04]
have been studied for distributed databases in general. These protocols introduce
recovery mechanisms such as coordinator Log [SC93], implicit Yes-Vote [AhC95] or logical
logging [AGP98] towards avoiding the voting/commit/prepare phase of 2-phase commits.

289

C. Appendix to Chapter 4

However, extending observation by Herlihy, Liskov, and Shrira [HSL19], traditional
1-phase commit ideas are not directly applicable to PCNs: while PCNs (with blockchain-
based conflict resolution) are structurally similar to transactions over distributed database,
they are fundamentally different in terms of the ACID properties and the adversarial
assumptions. Nevertheless, analyses such as [GW17] can still be interesting to understand
lower bounds for PCNs.

C.3 Payment channels in more detail

In this section, we give a more detailed account on payment channels. A payment channel
is used by two parties P and Q to perform several payments between them while requiring
only two on-chain transactions. It is set up by two parties spending some coins to a
shared multisig output (i.e., an output θ with θ.ϕ := MultiSig(P , Q)). Before signing
and publishing this transaction, however, they create transactions (so-called commitment
transactions txc) that spend this shared output in some way, e.g., giving each party
some balance. We also refer to this as the (current) state of the channel. Now after
publishing this txf on-chain, they can update their balances by creating new commitment
transactions txc, rebalancing the funds of the channel, and thereby carrying out payments.
We note that there are implementations that use two commitment transactions per state
(in other words, one per party) such as the Lightning Network (LN) [PD16] whereas a
more recent construction called generalized channels [AEE+21] requires one commitment
transaction per state. In this work, we leverage the latter construction, although other
ledger channel protocols such as the one of the LN would work as well.

After a channel has been updated several times, there exist several txc that can be
published. In order to prevent misbehavior, where one party publishes an older state
of the channel, which perhaps is financially more advantageous to it, we employ a
punishment mechanism. If an old state is published, the other, honest user can carry out
this punishment to gain all funds of the channel. For this to work, both parties exchange
revocation secrets every time a state is succeeded by a new one. This secret, together
with the outdated txc that is published by the misbehaving user is enough to claim all
funds of the channel. The latest state can always be safely published as the corresponding
revocation secret was not yet revealed. This mechanism provides an economical incentive
not to publish an old txc.

To close a payment channel, the parties can merely publish the latest txc to the ledger,
which terminates the channel. In summary, two parties can use a payment channel to
carry out arbitrarily many off-chain payments that rebalance some funds, but only need
to publish two transactions on the blockchain, one to open the channel and one to close
it, saving both fees and increasing the cryptocurrency’s transaction throughput.

290

C.4. Preventing the race condition when the sender is irrational

time. . .τ0 τn
T − tc − 3∆

T − tc − 2∆
T − 2∆

T − ∆ T

Setup payment structure

α effectively paid

Setup failure:
U0 publishes txer

Publish txer

txer on L
Close γi

txstate
i

on L
Publish txr

i

txr
i

on L

Case Refund:

Case Payment (txer not on L before T − tc − 3∆):

some time period, ≥ 0

Figure C.2: Timeline of when transactions appear on the ledger L in the case payment
and refund. τn − τ0 denotes the time needed for the setup of the whole payment.

C.4 Preventing the race condition when the sender is
irrational

We mentioned in Appendix C.1, that if the sender posts txer after T − tc − 3∆ and before
T − tc − 2∆, there is an unwanted race condition. We argue, that this race condition is
also unwanted by the sender, but a small tweak to the protocol allows us to prevent it
completely. We need to introduce a new spending condition to the output of txin, i.e.,
the output that is used to fund txer. Instead of the sender being able to just spend that
output (and therefore txer) with the condition OneSig(U0), we set the following condition:
(RelTime(∆) ∧ OneSig(U0)) ∨ AbsTime(T − tc − 3∆). In other words, this output of txin

can be spent by anyone, if it is still unspent at time T − tc − 3∆.2

If U0 wants to spend it, U0 has to wait until the relative timelock of ∆ has expired. So
to be safely able to post txer, U0 has to post txin before T − tc − 5∆ (accepted to the
ledger before T − tc − 4∆) and subsequently, txer before T − tc − 3∆ (accepted to the
ledger before T − tc − 2∆). After the relative timelock of tc + ∆ expires, the outputs
of txer are spendable before T − ∆ , ensuring enough time and preventing a race. If
txin is posted later, then an observant intermediary can spend its output in a different
way, which makes txer unspendable. To convince intermediaries that this condition is
actually present, the sender needs to pass (unsigned) txin along with txer along the path.
To make txin unlinkable to the sender, the same method mentioned in Appendix C.1
can be employed. We emphasize again, that this race is only a problem if we assume an
irrational sender.

C.5 Concrete attack scenarios (informal)

In this section, we consider some attacks against Blitz and argue informally, why balance
security still holds.

2In Bitcoin, an output can also be made spendable by anyone by putting OP_TRUE or requiring a
signature that verifies under the private key 0x1, known by everybody.

291

C. Appendix to Chapter 4

txer is tampered. If txer is tampered by some intermediary, the next intermediary
will see that the message embedded in the routing information is not H(txer) anymore.
Assuming that a malicious intermediary does not know the routing information especially
not the receiver, changing the routing information will result in the receiver not being
reached.

Also, note that balance security holds even in the case where txer is tampered, as long as
every intermediary Ui makes sure, that its refund txr

i depends on the same txer as the
refund of its neighbor txr

i−1. Also note, that intermediaries have to ensure the same for
the time T , in order to have the same time as their neighbor. Should an intermediary
change the time T to a smaller value, it potentially only hurts itself by not being able to
refund in time, while its left neighbor actually is. If the time T is changed to a larger
value, this may delay the execution of the payment, however, it is detectable, if the
receiver sends this time T back to the sender, who can check if it was tampered.

Some users are skipped (wormhole). Users cannot be skipped, as the routing
information can only be opened by the next user. A malicious user would not know the
receiver and would not be able to forge the sender’s signature of H(txer) that is embedded
as a message to the receiver in this onion. The only thing for the malicious user is to
stop forwarding the payment (griefing attack). Users that are skipped in the fast-track
payment will not be cheated out of their fees or funds, rather this money will be locked
until at most until T instead of being accessible immediately (see Section 4.3).

Sender publishes txer after starting fast track. Assume a malicious sender started
the fast track with its neighbor, but the fast track updates have not yet reached the
receiver. Should the sender now publish txer, the intermediaries that have not yet
performed the fast track will refund. The receiver will say that it did not receive the
money and will not ship the promised product. The sender cannot prove that the receiver
got the money, even though it has the payment confirmation in form of the receiver’s
signature of txer. The transaction txer on the blockchain is a proof of revocation, and the
sender will have lost its money without getting anything in return. The sender should
thus not publish txer after starting the fast track.

C.6 Timeline
We show a timeline of posting the transaction of the Blitz payment construction between
two users in Figure C.2. Red shows the refund case, green the payment case.

C.7 Communication overhead
To evaluate our payment scheme, we created an implementation that creates the trans-
actions necessary for setting up the payment. The source code is publicly available at
https://github.com/blitz-payments/overhead. We tested the compatibility
by deploying the transactions on the Bitcoin testnet and checking if the transactions
achieve our intended functionalities. Furthermore, we measured the transaction sizes in

292

https://github.com/blitz-payments/overhead

C.8. Extended simulation results

Table C.1: Communication overhead of the LN and Blitz. The pessimistic transactions
are on-chain, the rest off-chain.

Cases LN Blitz
txs size # txs size

Pay (pessimistic) 1 192 1 158
Refund (pessimistic) per channel 1 158 1 307
Additional pess. refund cost for sender 0 0 1 157 + 34 · n
Cost of p in-flight payments 1 225 + 119 · p 1 225 + 88 · p

Bytes and compare them to multi-hop payments in the Lightning Network (LN) in a
case-by-case analysis.

We present the number of transactions and their sizes for the different sizes in Table C.1.
Note that the size of the contract in our construction is only 88 Bytes compared to
the 119 of the HTLC, a difference mostly due to the part of the script that verifies the
hash pre-image. This means, that state transactions holding several different in-flight
payments, which directly implement the contract in their outputs, can hold around 26%
more Blitz payments than LN payments. For one payment, this difference results in a
state of size 311 Bytes for Blitz and a state of 345 Bytes for the LN. In Blitz, additionally
to the state we require the refund transaction to be exchanged, which is 307 Bytes,
resulting in 618 Bytes for a 2-party setup.

For the rest of the cases, the Blitz payments and the LN payments are similar. In the
pessimistic case, both Blitz and the LN require to publish one transaction (after closing
the channel) per disputed channel. In the pessimistic refund case, it is 158 Bytes in
the LN and 307 Bytes in Blitz, due to the additional signature of the input spending
from txer. In the pay case, it is 192 Bytes in the LN and 158 Bytes in Blitz, due to the
additional hash in the LN. The most notable difference in comparing the transaction
overhead comes from the fact that in the Blitz payment, the sender has to publish txer in
the pessimistic refund case, which is a total of 157 + 34 · (n) Bytes, for a payment path
of length n + 1. However, in the LN there is an additional communication overhead of
sending the hash pre-image of 32 Bytes per channel back in the open phase.

C.8 Extended simulation results

In this section, we include results for the simulation when we do not distribute the
disrupted payments equally between the two types. As expected, letting 75% of the
disrupted payments be of the second type is more favorable for Blitz, while having 25%
is less favoring than dividing equally. We show the results in Table C.2.

C.9 Extended macros

In this section, we give concrete pseudo-code for the used subprocedures.

293

C. Appendix to Chapter 4

Table C.2: Extended results of our simulation.

ub FRate ppnpr failBlitz failLN ratio
25% disrupted type 1, 75% type 2
3000 0.5% 4 4 33 8.25
3000 0.5% 50 13 4343 334.08
3000 1% 4 15 56 3.73
3000 1% 50 751 32807 43.68
3000 2.5% 4 28 182 6.50
3000 2.5% 50 1076 77213 71.76
75% disrupted type 1, 25% type 2
3000 0.5% 4 18 31 1.72
3000 0.5% 50 505 4422 8.76
3000 1% 4 19 61 3.21
3000 1% 50 1458 33386 22.90
3000 2.5% 4 78 195 2.50
3000 2.5% 50 15427 77574 5.03

Subprocedures

checkTxIn(txin, n, U0):

1. Check that txin is a transaction on the ledger L.
2. If txin.output[0].cash ≥ n · ϵ and txin.output[0].ϕ = OneSig(U ′

0), that is spendable by an
unused address of U0, return ⊤. Otherwise, return ⊥. When using this transaction (to fund
txer), the sender will pay any superfluous coins back to a fresh address of itself.

checkChannels(channelList, U0):

Check that channelList forms a valid path from U0 via some intermediaries to a receiver Un and
that no users are in the path twice. If not, return ⊥. Else, return Un.

checkT(n, T):

Let τ be the current round. If T ≥ τ + n(2 + tu) + 3∆ + tc + 1, return ⊤. Otherwise, return ⊥

genTxEr(U0, channelList, txin):

1. Let outputList := ∅ and rList := ∅

294

C.9. Extended macros

2. For every channel γi in channelList:
• (pk

Ui
, Ri) ← GenPk(γi.left.A, γi.left.B)

• outputList := outputList ∪ (ϵ, OneSig(pk
Ui

) ∧ RelTime(tc + ∆))

• rList := rList ∪ Ri

3. Let P := {γi.left, γi.right}γi∈channelList and let nodeList be a list, where P is sorted from
sender to receiver. Let n := |P|.

4. Shuffle outputList and rList.
5. Let txer := (txin.output[0], outputList)
6. Create a list [msgi]i∈[0,n], where msgi := H(txer)

7. onion ← CreateRoutingInfo(nodeList, [msgi]i∈[0,n])

8. Return (txer, rList, onion)

genState(αi, T , γi):

1. For the users Ui := γi.left = and Ui+1 := γi.right, create the output vector θi := (θ0, θ1, θ2),
where
• θ0 := (αi, (MultiSig(Ui, Ui+1) ∧ RelTime(T)) ∨ (OneSig(Ui+1) ∧ AbsTime(T)))
• θ1 := (xUi

− αi, OneSig(Ui))
• θ2 := (xUi+1 , OneSig(Ui+1))

where xUi and xUi+1 is the amount held by Ui and Ui+1 in the channel, respectively.

2. Let txstate
i be a channel transaction carrying the state with txstate.output = θi. Return txstate

i .

checkTxEr(Ui, a, b, txer, rList, onioni):

1. x := GetRoutingInfo(onioni, Ui). If x = ⊥, return ⊥. If Ui is the receiver and x = H(txer) ,
return (⊤, ⊤, ⊤, ⊤, ⊤). Else, if x ̸= (Ui+1, H(txer), onioni+1), return ⊥.

2. For all outputs (cash, ϕ) ∈ txer.output it must hold that:

• cash = ϵ

• ϕ = OneSig(pkx) ∧ RelTime(tc + ∆) for some identity pkx

3. For exactly one output θϵi := (ϵ, OneSig(Ui) ∧ RelTime(tc + ∆)) ∈ txer.output and one
element Ri ∈ rList it must hold that

• Let pk
Ui

be the corresponding public key of OneSig(Ui)

• sk
Ui

:= GenSk(a, b, pk
Ui

, Ri) must be the corresponding secret key of pk
Ui

4. If the checks in 2 or 3 do not hold, return ⊥
5. Return (sk

Ui
, θϵi

, Ri, Ui+1, onioni+1)

295

C. Appendix to Chapter 4

Subprocedures used exclusively in UC model

createMaps(U0, nodeList, txin):

1. For every Ui ∈ nodeList \ Un do:

• (pk
Ui

, Ri) ← GenPk(Ui.A, Ui.B)

• outputMap(Ui) := (ϵ, OneSig(pk
Ui

) ∧ RelTime(tc + ∆))

• rMap(Ui) := Ri

2. rList = rMap.values().shuffle()

3. txer := (txin.output[0], outputMap.values().shuffle())
4. Create a map stealthMap that stores for every user Ui that is a key in outputMap the

corresponding output of txer corresponding to outputMap(Ui)
5. Create two empty lists ∅ named msgList, userList
6. For every Ui ∈ nodeList from Un to U0 (in descending order):

• Append [H(txer)] to msgList
• Prepend [Ui] to userList.
• onioni := CreateRoutingInfo(userList, msg)
• onions(Ui) := onioni

7. Return (txer, onions, rMap, rList, stealthMap)

genStateOutputs(γi, αi, T):

1. Let θ′
i := γi.st be the current state of the channel γi.

2. Let Ui := γi.left = and Ui+1 := γi.right.
3. θ′

i consists of the outputs θ′
Ui

:= (xUi , OneSig(Ui)) and θ′
Ui+1

:= (xUi+1 , OneSig(Ui+1))
holding the balances of the two users.a If xUi < αi, return ⊥

4. Create the output vector θi := (θ0, θ1, θ2), where

• θ0 := (αi, (MultiSig(Ui, Ui+1) ∧ RelTime(T)) ∨ (OneSig(Ui+1) ∧ AbsTime(T)))
• θ1 := (xUi

− αi, OneSig(Ui))
• θ2 := (xUi+1 , OneSig(Ui+1))

5. Return θi.

genRefTx(θ, θϵi , Ui):

296

C.10. Modeling in the UC framework

1. Create a transaction txr
i with txr

i.input := [θ, θϵi
] and txr

i.output := (θ.cash + θϵi
.cash,

OneSig(Ui)).
2. Return txr

i

genPayTx(θ, Ui+1):

1. Create a transaction txp
i with txp

i .input := [θ] and txp
i .output := (θ.cash, OneSig(Ui+1)).

2. Return txp
i

aPossibly other outputs {θ′
j}j≥0 could also be present in this state. They, along with the off-chain

objects there (e.g., other payments) would have to be recreated in the new state while adapting the
index of the output these objects are referring to. For simplicity, we say this here in prose and omit it
in the protocol, only handling the two outputs mentioned.

C.10 Modeling in the UC framework

We formally model our construction in the global UC framework (GUC) [CDPW07], an
extension of the standard UC framework [Can01] that allows for a global setup, which we
use for instance for modeling the ledger. In this section, we provide some preliminaries and
then present the code for the ideal functionality of the multi-hop payment construction
presented in this work. Our model follows closely the model in [AEE+21].

C.10.1 Preliminaries, communication model and threat model

A protocol Π runs between parties of the set P. A protocol is executed in the presence
of an adversary A that receives as input a security parameter λ ∈ N and an auxiliary
input z ∈ {0, 1}∗. We assume a static corruption model, where A can corrupt any party
Pi ∈ P at the beginning of the execution, which means learning Pi’s internal state and
taking full control over Pi. The environment E is a special entity, that sends inputs to
every party and the adversary A and observes every message output by the parties. Note
that E is used to model anything that can happen outside the protocol execution.

We model communication in a synchronized network setting, where the protocol execution
takes place in rounds. This abstraction allows for arguing about time more naturally.
The global ideal functionality Gclock [KMTZ13] represents a global clock, that proceeds
to the next round when all honest parties agree to do so. Every entity is aware of what
the current round is.

On top of this notion of rounds, we use a functionality FGDC that models authenticated
channels with guaranteed delivery after one round between the parties. Messages sent
from a party P to Q in round t are guaranteed to reach Q in round t + 1 with Q knowing
that the sender was P . The adversary A can observe the content of messages and reorder
the ones that were sent within the same round. It cannot however drop, modify, or delay
messages. See [DEF+19b] for a formal description of FGDC .

297

C. Appendix to Chapter 4

Every other message, that is not sent between two parties, but rather involves for instance
E or A, takes zero rounds. Also, we assume that any computation by any party takes
zero rounds as well.

C.10.2 Ledger and channels

To model a UTXO cryptocurrency, we use a global functionality GLedger(∆), parameterized
by an upper bound of the blockchain delay ∆, i.e., the number of rounds it at most
takes for a valid transaction to be accepted on the blockchain, after being posted, and a
signature scheme Σ. This functionality interacts with a fixed set of parties P . To initialize
GLedger, E sets up a key pair (skP , pkP) for every P ∈ P, sends (sid,REGISTER, pkp)
to GLedger and sets the intial state of L, the set of all published transactions. After
the initialization, the state of L is publicly accessible by every entity. When a valid
transaction (i.e., a transaction that has correct witnesses for each input, a unique id, and
the inputs have not been spent) is posted via (sid,POST, tx), it will be accepted on L
after at most ∆ rounds. The adversary chooses the exact number of rounds.

In this simplified model, the set of users is fixed and we do not model the fact, that in
reality, transactions are usually bundled in blocks. We chose this simplification to increase
readability and refer to works such as [BMTZ17] for a more accurate formalization.

To model channels, we use the functionality FChannel [AEE+21] that builds on top of
GLedger. It provides the functionality to create, update, and close a payment channel
between two users. We say that updating a channel takes at most tu rounds and closing
a channel, regardless if the parties are cooperating or not, takes at most tc rounds.

For our Blitz payments, we assume that all participating parties have been registered
with the ledger functionality and have had channels created beforehand already. For
the complete API of FChannel and GLedger see below. For better readability, we use the
following notation instead of calling Gclock or FGDC . We let (msg) t−→ X denote sending
message (msg) to X in round t. Moreover, (msg) t←− X means receiving message (msg)
from X at time t. Note that X as well as the sending/receiving identity are either a
party P ∈ P, the environment E , the simulator S or another ideal functionality.

Interface of FChannel(T , k) [AEE+21]

Parameters:
T : upper bound on the maximum number

of consecutive off-chain communication
rounds between channel users

k: number of ways the channel state can be
published on the ledger

API:
Messages from E via a dummy user P :

298

C.10. Modeling in the UC framework

• (sid,CREATE, γ, tidP) τ←− P :
Let γ be the attribute tuple (γ.id, γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the identifier
of the channel, γ.users ⊂ P are the users of the channel (and P ∈ γ.users), γ.cash ∈ R≥0

is the total money in the channel and γ.st is the initial state of the channel. tidP defines
P ’s input for the funding transaction of the channel. When invoked, this function asks
γ.otherParty to create a new channel.

• (sid,UPDATE, id, θ) τ←− P :
Let γ be the channel where γ.id = id. When invoked by P ∈ γ.users and both parties agree,
the channel γ (if it exists) is updated to the new state θ. If the parties disagree or at least
one party is dishonest, the update can fail or the channel can be forcefully closed to either
the old or the new state. Regardless of the outcome, we say that tu is the upper bound that
an update takes. In the successful case, (sid,UPDATED, id, θ) ≤τ+tu−−−−→ γ.users is output.

• (sid,CLOSE, id) τ←− P :
Will close the channel γ, where γ.id = id, either peacefully or forcefully. After at most tc
in round ≤ τ + tc, a transaction tx with the current state γ.st as output (tx.output := γ.st)
appears on L (the public ledger of GLedger).

Interface of GLedger(∆, Σ) [AEE+21]

This functionality keeps a record of the public keys of parties. Also, all transactions that are
posted (and accpeted, see below) are stored in the publicly accessible set L containing tuples of
all accepted transactions .
Parameters:

∆: upper bound on the number of rounds it
takes a valid transaction to be published
on L

Σ: a digital signature scheme

API:
Messages from E via a dummy user P ∈ P:

• (sid,REGISTER, pkP) τ←− P :
This function adds an entry (pkP , P) to PKI consisting of the public key pkP and the user
P , if it does not already exist.

• (sid,POST, tx) τ←− P :
This function checks if tx is a valid transaction and if yes, accepts it on L after at most ∆
rounds.

C.10.3 The UC-security definition

We denote Π as a hybrid protocol that accesses the ideal functionalities Fprelim consisting
of FChannel, GLedger, FGDC and Gclock. An environment E that interacts with Π and
an adversary A will on input a security parameter λ and an auxiliary input z output
EXEC

Fprelim
Π,A,E(λ, z). Moreover, ϕFP ay

denotes the ideal protocol of ideal functionality FP ay,
where the dummy users simply forward their input to FP ay. It has access to the same

299

C. Appendix to Chapter 4

functionalities Fprelim. The output of ϕFP ay
on input λ and z when interacting with E

and a simulator S is denoted as EXECFprelim
ϕFP ay

,S,E(λ, z).

If a protocol Π GUC-realizes an ideal functionality FP ay, then any attack that is possible
on the real-world protocol Π can be carried out against the ideal protocol ϕFP ay

and vice
versa. Our security definition is as follows.

Definition 9. A protocol Π GUC-realizes an ideal functionality FP ay, w.r.t. Fprelim, if
for every adversary A there exists a simulator S such that we have

EXEC
Fprelim
Π,A,E(λ, z) λ∈N,

z∈{0,1}∗

c≈

EXEC

Fprelim
ϕFP ay

,S,E(λ, z)
λ∈N,

z∈{0,1}∗

where ≈c denotes computational indistinguishability.

C.10.4 Ideal functionality

In this section, we will describe the ideal functionality (IF) FP ay in prose. We are only
interested in protocols that realize this IF and never output an ERROR. For cases where
ERROR is output, any guarantees are lost. These cases are not meaningful to us, they
occur for instance when a transaction does not appear on the ledger as it should. We use
the subprocedures defined in Appendix C.9. We divide the ideal functionality into three
main parts: (i) Pay, (ii) Finalize and (iii) Respond.

Pay. This sequence starts with setup, which is executed when queried by the sender
U0. In it, FP ay sets up all initial objects and does the following. For every neighbor
distinguish two cases: (i) the neighbor is honest, then FP ay takes care of computing the
objects and updating the channel or (ii) the neighbor is dishonest, then FP ay instructs
the simulator to simulate the view of the attacker. Should an attack ask an honest node,
simulated by the simulator, to continue opening a payment with a legitimate request, the
simulator will first let FP ay perform Check and then Register. This process is repeated
until the receiver is reached. At this point, the Finalize part starts.

Finalize. If U0 is honest, FP ay will expect a confirmation in the correct round, which is
given either by itself if Un is honest or sent by Un via the simulator. If the confirmation
is not well-formed or no confirmation is received in the correct round, FP ay instructs
the simulator to publish txer. In case that Un is honest, but not U0, either FP ay via the
simulator or the simulator directly will simulate the view to the attacker by constructing
and sending the confirmation to U0.

Respond. In this phase FP ay reacts to transactions txer, that it has registered for
payments in step Pay, appearing on L. In the case of txer for an honest user in a channel
being published before the time when a refund is possible, FP ay will close the channel
and ask the simulator to publish a refund transaction. In the case that the time T has
already passed and the neighbor closes the channel, FP ay will instruct the simulator to
claim the money by publishing the payment transaction.

300

C.10. Modeling in the UC framework

Ideal Functionality FP ay(∆)

Parameters:
∆ : Upper bound on the time it takes a transaction to appear on L.

Local variables:
idSet :A set of containing pairs of ids and users (pid, Ui) to prevent duplicate ids to

avoid loops in payments.
Φ : A map, storing for a given key (pid, U0) of an id pid and a user U0, a tuple (τf ,

txer, Un), where τf is the round in which the payment confirmation is expected
from the receiver, the transaction txer and the receiver Un. The map is initially
empty and read write access is written as Φ(pid, U0). Φ.keyList() returns a
set of all keys.

Γ : A set of tuples (pid, γi, θi, txer, T , θϵi , Ri) for channels with opened payment
construction, containing a payment id pid, the channel γi, the state the payment
builds upon θi, the time T , the output used in the refund by γi.left and value Ri

to reconstruct the secrect key of the stealth address used. It is initially empty.
Ψ : A set of tuples (pid, txer) containing payments, that have been opened and where

the receiver is honest.
tu : Time required to perform a ledger channel update honestly.
tc : Time it at most takes to close a channel.

Init (executed at initialization in round tinit.)

Send (sid, init) tinit−−→ S and upon (sid,init-ok, tu, tc)
tinit←−− S set tu and tc accordingly.

Pay

Let τ be the current round.
Setup:

1. Upon (sid, pid, SETUP, channelList, txin, α, T , γ0) τ←− U0, if (pid, U0) ∈ idSet go idle.
idSet := idSet ∪ {(pid, U0)}

2. Let x := checkChannels(channelList, U0). If x = ⊥, go idle. Else, let Un := x. If γ0 is
not the full channel between U0 and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be a list of all the users on the
path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n, T) = ⊥, go idle.

4. If checkTxIn(txin, n, U0) = ⊥, go idle.

5. (txer, onions, rMap, rList, stealthMap) := createMaps(U0, nodeList, txin).
6. Set α0 := α + fee · (n − 1).

301

C. Appendix to Chapter 4

7. Set Φ(pid, U0) := (τf := τ + n · (2 + tu) + 1, txer, Un).
8. If U1 honest, execute Open(pid, nodeList, txer, onions, rMap, rList, stealthMap, α0, T , γ0).
9. Else, let onion1 := onions(U1) and θϵ0 := stealthMap(U0). Send (sid, pid, open, txer, rList,

onion1, α0, T , γ0, θϵ0) τ−→ S.

Continue:

1. Upon (sid,pid,continue, nodeList, txer, onions, rMap, rList, stealthMap, αi−1, T , γi−1) τ←−
S

2. Open(pid, nodeList, txer, onions, rMap, rList, stealthMap, αi−1, T , γi−1).

Check:

1. Upon (sid,pid,check-id, txer, θϵi , Ri, Ui−1, Ui, Ui+1, αi, T) τ←− S
2. If (pid, Ui) ̸∈ idSet, let idSet := idSet ∪ {(pid, U)} and send the message (sid,pid,OPEN,

txer, θϵi , Ri, Ui−1, Ui+1, αi−1, T) τ−→ Ui

3. If (sid,pid,ACCEPT, γi)
τ←− Ui, (sid,pid,ok, γi)

τ−→ S.

Payment-Open:

1. Upon (sid,pid,payment-open, txer) τ←− S, let Ψ := Ψ ∪ {(pid, txer)}.

Register:

1. Upon (sid,pid,register, γi, θi, txer, T , θϵi
, R) τ←− S

2. Γ := Γ ∪ {(pid, γi, θi, txer, T , θϵi
, R)}

Open(pid, nodeList, txer, onions, rMap, rList, stealthMap, αi−1, T , γi−1):
Let τ be the current round and Ui := γi−1.right

1. If (pid, Ui) ∈ idSet, go idle.
2. idSet := idSet ∪ {(pid, Ui)}
3. If an entry after Ui in nodeList exists and is ⊥, go idle.
4. If Ui = Un (i.e., last entry in nodeList), set Ui+1 := ⊤. Else, get Ui+1 from nodeList (the

entry after Ui).
5. Ri := rMap(Ui) and θϵi

:= stealthMap(Ui)
6. θi−1 := genStateOutputs(γi−1, αi−1, T). If θi−1 = ⊥, go idle. Else, wait 1 round.

7. (sid,pid,OPEN, txer, θϵi
, Ri, Ui−1, Ui+1, αi−1, T) τ+1−−→ Ui

8. If not (sid,pid,ACCEPT, γi)
τ+1←−− Ui, go idle. Else,wait 1 round.

9. (ssidC ,UPDATE, γi−1.id, θi−1) τ+2−−→ FChannel

302

C.10. Modeling in the UC framework

10. (ssidC ,UPDATED, γi−1.id) τ+2+tu←−−−−− FChannel, else go idle.
11. Γ := Γ ∪ (pid, γi, θi, txer, T , θϵi

, Ri)
12. If Ui = Un:

• Ψ := Ψ ∪ {(pid, txer)}
• (sid,pid,PAYMENT-OPEN, txer, T , αi−1) τ+2+tu−−−−−→ Ui

• If U0 is dishonest, send (sid,pid,finalize, txer) τ+2+tu−−−−−→ S
13. Else:

• (sid,pid,OPENED) τ+2+tu−−−−−→ Ui

• If Ui+1 honest, execute Open(pid, nodeList, txer, onions, rMap, rList, stealthMap,
αi−1 − fee, γi)

• Else, send (sid, pid, open, txer, rList, onioni+1, αi−1 − fee, T , γi, θϵi)
τ−→ S, where

onioni+1 := onions(Ui+1)

Finalize (executed at every round)

For every (pid, U0) ∈ Φ.keyList() do the following:

1. Let (τf , txer, Un) = Φ(pid, U0). If for the current round τ it holds that τ = τf , do the
following.

2. If Un honest, check if (pid, txer) ∈ Ψ. If yes, let Ψ := Ψ \ {(pid, txer)} and go idle.

3. If Un dishonest and (sid,pid,confirmed, txer
x , σUn(txer

x)) τf←− S, such that txer
x = txer and

σUn(txer
x) is Un’s valid signature of txer, go idle.

4. Send (sid, pid, denied, txer, U0) τf−→ S. txer must appear on L in round τ ′ ≤ τf + ∆.
Otherwise, output (sid,ERROR) t1−→ U0.

Respond (executed at the end of every round)

Let t be the current round. For every element (pid, γi, θi, txer, T , θϵi
, Ri) ∈ Γ, check if

γi.st = θi and txer is on L. If yes, do the following:

Revoke: If γi.left honest and t < T − tc − 2∆ do the following.

• Set Γ := Γ \ {(pid, γi, θi, txer, T , θϵi , Ri)}.

• (ssidC ,CLOSE, γi.id) t−→ FChannel

• At time t + tc, a transaction tx with tx.output = γi.st has to be on L. If not, do the
following. If (ssidC , PUNISHED, γi.id) τ<T←−−− FChannel, go idle. Else, send (sid,
ERROR) T−→ γi.users.

303

C. Appendix to Chapter 4

• Wait for ∆ rounds and send (sid,pid,post-refund, γi, θϵi
, Ri)

t′<T −∆−−−−−→ S
• At time t′′ < T , check whether a transaction tx′ appears on L with tx′.input = [θϵi

,
tx.output[0]] and tx′.output = [(tx.output[0].cash + θϵi .cash, OneSig(Ui))]. If it does,
send (sid,pid,REVOKED) t′′

−→ γi.left. If not, send (sid,ERROR) T−→ γi.users.

Force-Pay: Else, if a transaction tx with tx.output = γi.st is on-chain and tx.output[0] is
unspent (i.e., there is no transaction on L, that uses is as input), t ≥ T and Ui+1 is
honest, do the following.

• Set Γ := Γ \ {(pid, γi, θi, txer, T , θϵi
, Ri)}.

• Send (sid,pid,post-pay, γi)
t−→ S

• In round t + ∆ transaction tx′ with tx′.input = [tx.output[0]] and tx′.output =
(tx.output[0].cash, OneSig(Ui+1)) must have appeared on L. If yes, (sid, pid,
FORCE-PAY) t+∆−−→ γi.right. Otherwise, (sid,ERROR) t+∆−−→ γi.users.

C.10.5 Protocol

Here we present the formal protocol Π and a brief description thereof. For simplicity, we
assume that users involved in the payment do not use (e.g., update, close) the channels
involved in the payment.3 Moreover, for any payment the sender knows the receiver and
the receiver knows the sender. Also, every user knows if it is the sender in a payment or
if it is the receiver in a payment. Therefore, when the simulator simulates the behavior
of an honest user, the simulator also knows if the user is the sender/receiver or not and,
if it is the sender (receiver), the simulator also knows the receiver (sender).

The protocol itself is similar to the simpler version presented in Section 4.4.4, but
extended with payment ids and UC formalism, most notably we introduce rounds and
the environment E . To reiterate briefly, the protocol is divided into three parts. In Pay,
the initial objects are set up by U0 after being invoked by E . Afterwards, the neighbor is
contacted and they open a payment construction by creating a new state, the appropriate
transactions, signing them, and then updating the channel. When first asked, a user will
forward an open message to E , which responds with accept (or nothing). In Finalize, the
receiver sends a confirmation to the sender. The sender expects the correct confirmation
in the correct round, otherwise, it will publish txer. In the Respond phase, users will
react to txer being published and, if possible, either refund or force the payment.

Protocol Π
Let fee ∈ N be a system parameter known to every user.
Local variables of Ui (all initially empty):

3We refer the reader to Appendix C.1 for an outline on how to perform concurrent payments or use
the channel otherwise while a payment is active.

304

C.10. Modeling in the UC framework

pidSet : A set storing every payment id pid that a user has participated in to prevent
duplicates.

paySet : A map storing tuples (pid, τf , Un) where pid is an id, τf is the round in which a
confirmation is expected from the receiver Un for the payments that have been
opened by this user.

local : A map, storing for a given pid Ui’s local copy of txer and T in a tuple (txer, T).
left : A map, storing for a given pid a tuple (γi−1, θi−1, txr

i−1) containing channel with
its left neighbor Ui−1, the state and the transaction txr

i−1 for Ui’s left channel in
the payment pid.

right : A map, sotring for a given pid a tuple (γi, θi, txr
i, sk

Ui
) containing the channel

with its right neighbor, the state, the transaction txr
i and the key necessary for

signing the refund transaction in the payment pid.
rightSig : A map, storing for a given pid the signature for txr

i of the right neighbor σUi+1(txr
i)

in the payment pid.

Pay

Setup: In every round, every node U0 ∈ P does the following. We denote τ0 as the current
round.

U0 upon (sid,pid,SETUP, channelList, txin, α, T , γ0) τ0←− E

1. If pid ∈ pidSet, abort. Add pid to pidSet.
2. Let x := checkChannels(channelList, U0). If x = ⊥, abort. Else, let Un := x. If γ0 is

not the full channel between U0 and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be a list of all the users on the
path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n, T) = ⊥, abort.

4. If checkTxIn(txin, n, U0) = ⊥, abort

5. (txer, onions, rMap, rList, stealthMap) := createMaps(U0, nodeList, txin).

6. (txer, rList, onion0) := genTxEr(U0, channelList, txin)
7. paySet := paySet ∪ {(pid, τf := τ + n · (2 + tu) + 1, Un)}
8. (sk

U0
, θϵ0 , R0, U1, onion1) := checkTxEr(U0, U0.a, U0.b, txer, rList, onion0)

9. Set local(pid) := (txer, T).
10. Set α0 := α + fee · (n − 1) and compute:

• θ0 := genStateOutputs(γ0, α0, T)
• txr

0 := genRefTx(θ0[0], θϵ0 , U0)

11. Set right(pid) := (γ0, θ0, txr
0, sk

U0
).

12. Send (sid,pid,open-req, txer, rList, onion1, θ0, txr
0) τ0−→ U1.

305

C. Appendix to Chapter 4

Open: In every round, every node Ui+1 ∈ P does the following. We denote τx as the current
round.

Ui+1 u. (sid,pid,open-req, txer, rList, onioni+1, θi, txr
i)

τx←− Ui

1. Perform the following checks:
• Verify that pid ̸∈ pidSet. Add pid to pidSet
• Let x := checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txer, rList, onioni+1). Check that x ̸= ⊥, but

instead x = (sk
Ui+1

, θϵi+1 , Ri+1, Ui+2, onioni+2).

• Set αi = θi[0].cash and extract T from θi−1[0].ϕ (the parameter of AbsTime()).
• Check that there exists a channel between Ui and Ui+1 and call this channel γi. Verify

that θi = genStateOutputs(γi, αi, T).
• Check that txr

i := genRefTx(θi[0], θϵx
, Ui), where θϵx

is an output of txer that is not
θϵi+1 .

2. If one or more of the previous checks fail, abort. Otherwise, send (sid, pid, OPEN, txer,
θϵi+1 , Ri, Ui, Ui+2, αi, T) τx−→ E .

3. If (sid,pid,ACCEPT, γi+1) τx←− E , generate σUi+1(txr
i). Otherwise stop.

4. Set local(pid) := (txer
i , T), left(pid) := (γi, θi, txr

i) and (sid, pid, open-ok, σUi+1(txr
i))

τx−→ Ui.

Ui upon (sid,pid,open-ok, σUi+1(txr
i))

τi+2←−−− Ui+1

(The round τi given Ui and pid is defined in Setup or in Open step (6), the round when the
update is successful.)

5. Check that σUi+1(txr
i) is a valid signature for txr

i. If yes, set rightSig(pid) := σUi+1(txr
i) and

(ssidC ,UPDATE, γi.id, θi)
τi+2−−−→ FChannel.

Ui+1 upon (ssidC ,UPDATED, γi.id, θi)
τx+1+tu←−−−−− FChannel

6. Define τ(i+1) := τx + 1 + tu.
7. If Ui+1 is not the receiver, using the values of step 1:

• Send (sid,pid,OPENED)
τi+1−−→ E .

• (sk
Ui+1

, θϵi+1 , Ri+1, Ui+2, onioni+2) := checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txer
i , rList,

onioni+1)
• θi+1 := genStateOutputs(γi+1, αi − fee, T)

306

C.10. Modeling in the UC framework

• txr
i+1 := genRefTx(θi+1[0], θϵi+1 , Ui+1)

• Set right(pid) := (γi+1, θi+1, txr
i+1, sk

Ui+1
)

• Send (sid,pid,open-req, txer, rList, onioni+2, θi+1, txr
i+1)

τi+1−−→ Ui+2.

8. If Ui+1 is the receiver:

• msg := GetRoutingInfo(onioni+1, Ui+1)
• Create the signature σUn

(txer
i) as confirmation and send (sid, pid, finalize, txer,

σUn(txer))
τi+1−−→ U0. Send the message (sid,pid,PAYMENT-OPEN, txer, T , αi)

τi+1−−→ E .

Finalize

U0 in every round τ

For every entry (pid, τf , Un) ∈ paySet do the following if τ = τf :

1. Remove (pid, τf , Un) from paySet.

2. Upon receiving (sid,pid,finalize, txer, σUn(txer)) τ←− Un, continue if σUn(txer) is a valid
signature for txer. Otherwise, go to step (4).

3. If local(pid) = txer, go idle. Otherwise, continue with the next step.

4. Sign txer yielding σU0(txer) and set txer := (txer, (σU0(txer))). Send (ssidL, POST, txer) τ−→
GLedger.

Respond

Ui at the end of every round

Let t be the current round. Do the following:

1. For every pid in right.keyList(), let (γi, θi, txr
i, sk

Ui
) := right(pid), let (txer, T) :=

local(pid) and do the following. If t < T − tc − 2∆, txer is on the ledger L and γi.st = θi,
do the following:

• Remove the entry for pid from right, send (ssidC ,CLOSE, γi.id) t−→ FChannel.
• If a transaction tx with tx.output = θi is on L in round t + tc, wait ∆ rounds.
• Sign txr

i yielding σUi
(txr

i) and use sk
Ui

to sign txr
i yielding σ

Ui
(txr

i).

• Set txr
i := (txr

i, (σUi(txr
i), rightSig(pid), σ

Ui
(txr

i))) and send (ssidL, POST, txr
i)

t+tc+∆−−−−−→
GLedger. When it appears on L in round t1 < T , send (sid,pid,REVOKED) t2−→ E

307

C. Appendix to Chapter 4

2. For every pid in left.keyList(), let (γi−1, θi−1, txr
i−1) := left(pid), let (txer, T) :=

local(pid) and do the following. If t ≥ T and a transaction tx with tx.output = θi−1 is on
the ledger L, but not txr

i−1, do the following:

• Remove the entry for pid from left and create txp
i−1 := genPayTx(γi−1.st, Ui).

• Sign txp
i−1 yielding σUi

(txp
i−1).

• Set txp
i−1 := (txp

i−1, σUi(txp
i−1)) and send (ssidL,POST, txp

i−1) t−→ GLedger.

• If it appears on L in round t1 ≤ t + ∆, send (sid,pid,FORCE-PAY) t1−→ E

C.10.6 Proof

In this section, we describe the simulator as well as the formal proof that the Blitz protocol
(see Appendix C.10.5) UC-realizes the ideal functionality FP ay shown in Appendix C.10.4.

Simulator
Local variables:

right A map, storing the transaction txr
i for a given keypair consisting of a payment id

pid and a user Ui.
rightSig A map, storing the signature of the right neighbor for the transaction stored in

right for a given keypair consisting of a payment id pid and a user Ui.

Simulator for init phase

Upon (sid, init) tinit←−− FP ay and send (sid,init-ok, tu, tc)
tinit−−→ FP ay.

Simulator for pay phase

a) Case Ui is honest, Ui+1 dishonest

1. Upon (sid, pid, open, txer, rList, onioni+1, αi, T , γi, θϵi)
τ←− FP ay or upon being called by

the simulator S itself in round τ with parameters (pid, txer, rList, onioni+1, αi, T , γi, θϵi
).

2. Let Ui := γi.left and Ui+1 := γi.right.
3. θi := genStateOutputs(γi, αi, T)
4. txr

i := genRefTx(θi[0], θϵi
, Ui)

5. (sid,pid,open-req, txer, rList, onioni+1, θi, txr
i)

τ−→ Ui+1

6. Upon (sid,pid,open-ok, σUi+1(txr
i))

τ+2←−− Ui+1, check that σUi+1(txr
i) is a valid signature

for txr
i. If yes, set rightSig(pid, Ui) := σUi+1(txr

i), right(pid, Ui) := txr
i and (ssidC ,

UPDATE, γi.id, θi)
τ+2−−→ FChannel . Send(sid, pid, register, γi, θi, txer, T , θϵi

, R) τ−→
FP ay. Otherwise, go idle.

308

C.10. Modeling in the UC framework

b) Case Ui is honest, Ui−1 dishonest

1. Upon (sid,pid,open-req, txer, rList, onioni, θi−1, txr
i−1) τ←− Ui−1. Let αi−1 := θi−1[0].cash

and extract T from θi−1[0].ϕ (the parameter of AbsTime()).
2. Let x := checkTxEr(Ui, Ui.a, Ui.b, txer, rList, onioni). Check that x ̸= ⊥, but instead

x = (sk
Ui

, θϵi , Ri, Ui+1, onioni+1). Otherwise, go idle.

3. Check that there exists a channel between Ui and Ui+1 and call this channel γi. Verify that
θi−1 = genStateOutputs(γi−1, αi−1, T) and that txr

i−1 := genRefTx(θi−1[0], θϵx
, Ui−1)

for an output θϵx
∈ txer.output ̸= θϵi

.

4. (sid,pid,check-id, txer, θϵi
, Ri, Ui−1, Ui, Ui+1, αi, T) τ−→ FP ay

5. If not (sid,pid,ok, γi)
τ←− FP ay, go idle. Let Ui+1 := γi.right.

6. Sign txr
i−1 on behalf of Ui yielding σUi

(txr
i−1) and (sid, pid, open-ok, σUi

(txr
i−1)) τ−→

Ui−1.

7. Upon (ssidC ,UPDATED, γi−1.id, θi−1) τ+1+tu←−−−−− FChannel, send (sid,pid,register, γi−1,
θi−1, txer, T , ⊥, ⊥) τ−→ FP ay. Otherwise, go idle.

8. If Ui = Un (if (sk
Ui

, θϵi
, Ri, Ui+1, onioni+1) = (⊤, ⊤, ⊤, ⊤, ⊤) holds), and U0 is honest,a

send (sid, pid, payment-open, txer) τ+1+tu−−−−−→ FP ay. If U0 is dishonest, create signature
σUn(txer) on behalf of Un and send (sid, pid, finalize, txer, σUn(txer)) τ+1+tu−−−−−→ U0. In
both cases, send via FP ay to the dummy user Un the message (sid,pid,PAYMENT-OPEN,
txer, T , αi−1) τ+1+tu−−−−−→ Un.

9. Send via FP ay to the dummy user Ui the message (sid,pid,OPENED) τ+1+tu−−−−−→ Ui.
10. If Ui+1 honest, call process(sid,pid, txer, γi−1, γi, Ri, onioni, αi, T)
11. If dishonest, go to step Simulator Ui honest, Ui+1 dishonest step 1 with parameters (pid,

txer, rList, onioni+1, αi−1 − fee, T , γi, θϵi
).

process(sid,pid, txer, γi−1, γi, Ri, onioni, αi−1, T)

Let τ be the current round.

1. Initialize nodeList := {Ui} and onions, rMap, stealthMap as empty maps.
2. (Ui+1, msgi, onioni+1) := GetRoutingInfo(onioni)
3. stealthMap(Ui) := θϵi

4. rMap(Ui) := Ri

5. While Ui and Ui+1 honest:

• x := checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txer, rList, onioni+1):
– If x = ⊥, append Ui+1 and then ⊥ to nodeList and break the loop.

309

C. Appendix to Chapter 4

– If x = (⊤, ⊤, ⊤, ⊤, ⊤), append Ui+1 to nodeList and break the loop.
– Else, if x = (sk

Ui+1
, θϵi+1 , Ui+2, onioni+2), do the following.

• Append Ui+1 to nodeList
• onions(Ui+2) := onioni+2

• rMap(Ui+1) := Ri+1

• stealthMap(Ui+1) := θϵi+1

• If Ui+2 is dishonest, append Ui+2 to nodeList and break the loop.
• Set i := i + 1 (i.e., continue loop for Ui+1 and Ui+2)

6. Send (sid, pid, continue, nodeList, txer, onions, rMap, rList, stealthMap, αi−1, T , γi−1) τ−→
FP ay

aFor simplicity, assume that the Un (and in the case it is honest, the simulator) knows the sender.
As the payment is usually tied to the exchange of some goods, this is a reasonable assumption. Note
that in practice, this is not necessary, as the sender can be embedded in the routing information onionn.

Simulator for finalize phase

a) Publishing txer

Upon receiving a message (sid, pid, denied, txer, U0) τ←− FP ay and U0 honest, sign txer on
behalf of U0 yielding σU0(txer). Set txer := (txer, σU0(txer)) and send (ssidL, POST, txer) τ−→
GLedger.

b) Case Un honest, U0 dishonest

Upon message (sid,pid,finalize, txer) τ←− FP ay, sign txer on behalf of Un yielding σUn
(txer).

Send (sid,pid,finalize, txer, σUn(txer)) τ−→ U0.

c) Case Un dishonest, U0 honest

Upon message (sid,pid,finalize, txer, σUn
(txer)) τ←− Un, send (sid,pid,confirmed, txer,

σUn(txer)) τ−→ FP ay.

Simulator for respond phase

In every round τ , upon receiving the following two messages, react accordingly.

1. Upon (sid,pid,post-refund, γi, txer, θϵi , Ri)
τ←− FP ay.

• Extract αi and T from γi.st.output[0].

310

C.10. Modeling in the UC framework

• If Ui+1 is honest, create the transaction txr
i := genRefTx(γi.st[0], θϵi

, Ui). Else, let
txr

i := right(pid, Ui)
• Extract pk

Ui
from the output θϵi

of txer and let sk
Ui

:= GenSk(Ui.a, Ui.b, pk
Ui

, Ri).

• Generate signatures σUi(txr
i) and, using sk

Ui
, σ

Ui
(txr

i) on behalf of Ui.

• If Ui+1 := γi.right is honest, generate signature σUi+1(txr
i) on behalf of Ui+1. Else, let

σUi+1(txr
i) := rightSig(pid, Ui)

• Set txr
i := (txr

i, (σUi(txr
i), σUi+1(txr

i), σ
Ui

(txr
i))).

• Send (ssidL,POST, txr
i)

τ−→ GLedger.

2. Upon (sid,pid,post-pay, γi)
τ←− FP ay

• Extract αi and T from γi.st.output[0]. Create the transaction txp
i := genPayTx(γi.st,

Ui+1).

• Generate signatures σUi+1(txp
i) and set txp

i := (txp
i , (σUi+1(txp

i))).

• Send (ssidL,POST, txp
i) τ−→ GLedger.

Lemma 17. Let Σ be a EUF-CMA secure signature scheme. Then, the Pay phase of
protocol Π GUC-emulates the Pay phase of functionality FP ay.

Proof. We show that the simulator S presented above interacting with the Pay phase
of FP ay is indistinguishable for any environment E from an interaction with Π and a
dummy adversary A. A bit more formally, we show that the ensembles EXECFP ay ,S,E
and EXECΠ,A,E are indistinguishable for the environment E .

In our description, we write m[τ] to denote that message m is observed at round τ .
Moreover, we interact with other ideal functionalities, which in turn interact with either
the environment E or other parties, who are possibly under adversarial control, by sending
messages. These interactions can have an additional impact on publicly observable
variables, i.e., the ledger L. When sending a message m to an ideal functionality F in
round τ , we denote the set of all by E observable actions triggered by this as a function
obsSet(m, F , τ).

In the following, we analyze the different corruption cases. For each case, we first describe
the view of the environment in Π and then the view of the environment as simulated
by S. For the Pay phase, we consider three different cases of the interaction between
two users Ui and Ui+1. We match the sequences of this phase, that we use in the proof
below, and where they are used in the ideal and real world in Table C.3. Note that
for Ui = U0 SETUP is performed initially, otherwise CREATE_STATE. We define the
following messages.

• m0 := (sid,pid,open-req, txer, rList, onioni+1, θi, txr
i)

• m1 := (sid,pid,OPEN, txer, θϵi+1 , Ri, Ui, Ui+2, αi, T)

311

C. Appendix to Chapter 4

• m2 := (sid,pid,ACCEPT, γi+1)

• m3 := (sid,pid,open-ok, σUi+1(txr
i))

• m4 := (ssidC,UPDATE, γi.id, θi)

• m5 := (ssidC,UPDATED, γi.id, θi)

• m6 := (sid,pid,OPENED) or, if sent by the receiver,
m6 := (sid,pid,PAYMENT-OPEN, txer, T, αi)

Table C.3: Explanation of the sequence names used in Lemma 17 and where they can be
found in the ideal functionality (IF), Protocol (Prot) or Simulator (Sim).

Real World Ideal World Output Description
Ui honest, Ui+1 corrupted Ui honest, Ui+1 honest Ui corrupted, Ui+1 honest

SETUP Prot.Pay.Setup 1-12 IF.Pay.Setup 1-7,9,
Sim.Pay.a 1-5 IF.Pay.Setup 1-8 n/a m0 Does setup and contacts next user

CREATE_STATE Prot.Pay.Open 6-8 n/a IF.Pay.Open 12, 13
Sim.Pay.a 1-5 Sim.Pay.b 8-10 m6,

m0

Upon m5, sends message m6 to E .
Then, ceates the objects to send in
m0 and sends it to Ui+1 (or finalize).

CHECK_STATE Prot.Pay.Open 1-4 n/a IF.Pay.Open 1-8

Sim.Pay.b 1-4
IF.Check

Sim.Pay.b 5-7
IF.Register

m1,
m3

Checks if objects in m0 are correct,
sends m1 to E and on m2, sends
m3 to Ui

CHECK_SIG Prot.Pay.Open 5 Sim.Pay.a 6 IF.Pay.Open 9-11 n/a m4 Checks if signature of txr
i is correct

1. Ui honest, Ui+1 corrupted.

Real world: After Ui performs either SETUP or CREATE_STATE, it sends m0 to Ui+1
in the current round τ . The environment E controls A and therefore Ui+1 and will
see m0 in round τ + 1. Iff Ui+1 replies with a correct message m3 in τ + 2, Ui will
perform CHECK_SIG and call FChannel with message m4 in the same round. The
ensemble is EXECΠ,A,E := {m0[τ + 1]} ∪ obsSet(m4, FChannel, τ + 2)

Ideal world: After FP ay performs either SETUP or simulator performs CREATE_STATE,
the simulator sends m0 to Ui+1 in the current round τ . E will see m0 in round
τ +1. Iff Ui+1 replies with a correct message m3 in τ +2, the simulator will perform
CHECK_SIG and call FChannel with message m4 in the same round. The ensemble
is EXECFP ay ,S,E := {m0[τ + 1]} ∪ obsSet(m4, FChannel, τ + 2)

2. Ui honest, Ui+1 honest.

Real world: After Ui performs either SETUP or CREATE_STATE, it sends m0 to Ui+1
in the current round τ . Ui+1 performs CHECK_STATE and sends m1 to E in round
τ + 1. Iff E replies with m2, Ui+1, Ui+1 replies with m3. Ui receives this in round
τ + 2, performs CHECK_SIG and sends m4 to FChannel. Ui+1 expects the message
m5 in round τ + 2 + tu and will then send m6 to E . Afterwards it continues with
either CREATE_STATE or FINALIZE. The ensemble is EXECΠ,A,E := {m1[τ +
1], m6[τ + 2 + tu]} ∪ obsSet(m4, FChannel, τ + 2)

312

C.10. Modeling in the UC framework

Ideal world: After FP ay performs either SETUP or is invoked by itself (in step Open.13)
or by the simulator (in step process.6) in the current round τ , FP ay perform
the procedure Open. This behaves exactly like CREATE_STATE, CHECK_STATE
and CHECK_SIG. However, since every object is created by FP ay, the checks are
omitted. The procedure Open outputs the messages m1 in round τ + 1 and iff E
replies with m2, calls FChannel with m4 in τ + 2. Finally, if m5 is received in round
τ + 2 + tu, outputs m6 to E . The ensemble is EXECFP ay ,S,E := {m1[τ + 1], m6[τ +
2 + tu]} ∪ obsSet(m4, FChannel, τ + 2)

3. Ui corrupted, Ui+1 honest.

Real world: After Ui+1 receives the message m0 from Ui, it performs CHECK_STATE
and sends m1 to E in the current round τ . Iff E replies with m2, Ui+1 sends m3 to
Ui. If Ui+1 receives the message m5 from FChannel in round τ + 1 + tu, it sends m6
to E . The ensemble is EXECΠ,A,E := {m1[τ], m3[τ + 1], m6[τ + 1 + tu]}

Ideal world: After the simulator receives m0 from Ui, it performs CHECK_STATE to-
gether with FP ay and FP ay sends m1 to E . Iff E replies with m2, FP ay asks the
simulator to send m3 to Ui. All of this happens in the current round τ . If the
simulator receives m5 in round τ + 1 + tu, it sends m6 to E . The ensemble is
EXECFP ay ,S,E := {m1[τ], m3[τ + 1], m6[τ + 1 + tu]}

Note that we do not care about the case were both Ui and Ui+1 are corrupted, because
the environment is commuincating with itself, which is trivially the same in the ideal
and the real world. We see that in these three cases, the execution ensembles of the ideal
and the real world are identical, thereby proving Lemma 17.

Lemma 18. Let Σ be a EUF-CMA secure signature scheme. Then, the Finalize phase
of protocol Π GUC-emulates the Finalize phase of functionality FP ay.

Proof. Again, we consider the execution ensembles of the interaction between users Un

and U0 for three different cases. We match the sequences and where they are used in the
ideal and real world in Table C.4. We define the following messages.

• m7 := (sid,pid,finalize, txer)

• m8 := (ssidL,POST, txer)

1. Un honest, U0 corrupted.

313

C. Appendix to Chapter 4

Table C.4: Explanation of the sequence names used in Lemma 18 and where they can be
found.

Real World Ideal World Output Description
Un honest, U0 corrupted Un honest, U0 honest Un corrupted, U0 honest

FINALIZE Prot.Pay.Open 8
IF.Pay.12 and

Sim.Finalize.b or
Sim.Pay.b 8

IF.Pay.12 and
Sim.Finalize.b or

Sim.Pay.b 8
n/a m7 Sends finalize message to U0

CHECK_FINALIZE Prot.Finalize 1-6 n/a IF.Finalize 1,2,4
Sim.Finalize.a

Sim.Finalize.c
IF.Finalize 1,3,4
Sim.Finalize.a

m8
Checks if txer is the same, if not,
publishes it to ledger with m8.

Real world: After performing FINALIZE in the current round τ , Un sends m7 to U0.
The ensemble is EXECΠ,A,E := {m7[τ]}

Ideal world: After either FP ay or the simulator performs FINALIZE in the current
round τ , the simulator sends m7 to U0. The ensemble is EXECFP ay ,S,E := {m7[τ]}

2. Un honest, U0 honest.

Real world: After performing FINALIZE in the current round τ , Un sends m7 to U0. In
the meantime, U0 performs CHECK_FINALIZE and should it not receive a correct
message m7 in the correct round, will send m8 to GLedger in round τ ′. This will
result in the sets of message The ensemble is EXECΠ,A,E := obsSet(m8, GLedger, τ ′)

Ideal world: Either FP ay or the simulator performs FINALIZE in the current round
τ . In the meantime, FP ay performs CHECK_FINALIZE and will, if the checks in
FINALIZE failed or it was performed in a incorrect round τ ′, FP ay will instruct
the simulator to send m8 to GLedger in rounds τ ′. The ensemble is EXECFP ay ,S,E :=
obsSet(m8, GLedger, τ ′)

3. Un corrupted, U0 honest.

Real world: U0 performs CHECK_FINALIZE and should it not receive a correct message
m7 in the correct round, will send m8 to GLedger in round τ ′. The ensemble is
EXECΠ,A,E := obsSet(m8, GLedger, τ ′)

Ideal world: The simulator and FP ay perform CHECK_FINALIZE and should the sim-
ulator not receive a correct message m7 in the correct round, FP ay will instruct
the simulator to send m8 to GLedger in round τ ′.The ensemble is EXECFP ay ,S,E :=
obsSet(m8, GLedger, τ ′)

Lemma 19. Let Σ be a EUF-CMA secure signature scheme. Then, the Respond phase
of protocol Π GUC-emulates the Respond phase of functionality FP ay.

314

C.10. Modeling in the UC framework

Proof. Again, we consider the execution ensembles. This time only for the case were a
user Ui is honest, however we distinguish between the case of revoke and force-pay. We
match the sequences and where they are used in the ideal and real world in Table C.5.
We define the following messages.

• m9 := (ssidC ,CLOSE, γi.id)

• m10 := (ssidL,POST, txr
i)

• m11 := (sid,pid,REVOKED)

• m12 := (ssidL,POST, txp
i−1)

• m13 := (sid,pid,FORCE-PAY)

Table C.5: Explanation of the sequence names used in Lemma 19 and where they can be
found.

Real World Ideal World Output Description
Ui honest

RESPOND Prot.Respond IF.Respond n/a Checks every round if response in order.

REVOKE Prot.Respond.1 IF.Respond.Revoke
Sim.Respond.1

m9,
m10,
m11

Carries out the revokation.

FORCE_PAY Prot.Respond.2 IF.Respond.Revoke
Sim.Respond.2

m12,
m13

Carries out the force-pay.

Ui honest, revoke.

Real world: In every round τ , Ui performs RESPOND, which provides a decision on
whether or not to do the following. If yes, Ui performs REVOKE, which results in
message m9 to FChannel in round τ . If the channel that is sent in m9 is closed, Ui

sends m10 to GLedger in round τ + tc + ∆. Finally, if the transaction sent in m10
appears on L in τ + tc + 2∆, Ui sends m11 to E . The ensemble is EXECΠ,A,E :=
{m11[τ + tc + 2∆]} ∪ obsSet(m9, FChannel, τ) ∪ obsSet(m10, GLedger, τ + tc + ∆)

Ideal world: In every round τ , FP ay performs RESPOND, which provides a decision
on whether or not to do the following. If yes, FP ay instructs the simulator to
perform REVOKE, which results in the message m9 to FChannel in round τ . If the
channel that is sent in m9 is closed, the simulator sends m10 to GLedger in round
τ + tc + ∆. Finally, if the transaction sent in m10 appears on L, FP ay sends m11 to
E . The ensemble is EXECFP ay ,S,E := {m11[τ + tc + 2∆]} ∪ obsSet(m9, FChannel, τ) ∪
obsSet(m10, GLedger, τ + tc + ∆)

Ui honest, force-pay.

315

C. Appendix to Chapter 4

Real world: In every round τ , Ui performs RESPOND, which provides a decision on
whether or not to do the following. If yes, Ui performs FORCE_PAY, which results
in the messages m12 to GLedger in round τ and, if the transaction sent in m12
appears on L, the message m13 to E in round τ + ∆. The ensemble is EXECΠ,A,E :=
{m13[τ + ∆]} ∪ obsSet(m12, GLedger, τ)

Ideal world: In every round τ , FP ay performs RESPOND, which provides a decision on
whether or not to do the following. If yes, FP ay instructs the simulator to perform
FORCE_PAY, which results in the messages m12 to GLedger in round τ and, if the
transaction sent in m12 appears on L, the message m13 to E in round τ + ∆. The
ensemble is EXECFP ay ,S,E := {m13[τ + ∆]} ∪ obsSet(m12, GLedger, τ)

Theorem 10. (formal) Let Σ be a EUF-CMA secure signature scheme. Then, for any
ledger delay ∆ ∈ N, the protocol Π UC-realizes the ideal functionality FP ay.

This theorem follows directly from Lemma 17, 18 and Lemma 19.

C.11 Discussion on security and privacy goals
So far, in Section 4.4.1 we have informally stated what are our security and privacy goals
in this work. Additionally, in Appendix C.10.4 we have described the ideal functionality
FP ay that formally defines the security and privacy guarantees achieved by Blitz. In
this section, we aim to show how FP ay indeed has the security and privacy goals that
we intuitively want to achieve. For that, we first formalize each intuitive security and
privacy goal into a cryptographic game and then show that FP ay fulfills such definition.

C.11.1 Assumptions

For the theorems in this section, we have the following assumptions: (i) we assume that
stealth addresses achieve unlinkability and (ii) we assume that the routing scheme we
use (i.e., Sphinx extended with a per-hop payload) is a secure onion routing process.

Unlinkability of stealth addresses. Consider the following game. The challenger
computes two pair of stealth addresses (A0, B0) and (A1, B1). Moreover, the challenger
picks a bit b and computes Pb, Rb ← GenPk(Ab, Bb). Finally, the challenger sends the
tuples (A0, B0), (A1, B1) and Pb, Rb to the adversary.

Additionally, the adversary has access to an oracle that upon being queried, returns
P ∗

b , R∗
b to the adversary.

We say that the adversary wins the game if it correctly guesses the bit b chosen by the
challenger.

316

C.11. Discussion on security and privacy goals

Definition 10 (Unlinkability of Stealth Addresses). We say that a stealth addresses
scheme achieves unlinkability if for all PPT adversary A, the adversary wins the afore-
mentioned game with probability at most 1/2 + ϵ, where ϵ denotes a negligible value.

Secure onion routing process. We say that an onion routing process is secure,
if it realizes the ideal functionality defined in [CL05]. Sphinx [DG09], for instance, is
a realization of this. We use it in Blitz, extended with a per-hop payload (see also
Section 4.4.2).

C.11.2 Balance security

Given a path channelList := γ1, . . . , γn and given a user U such that γi.right = U
and γi+1.left = U , we say that the balance of U in the path is PathBalance(U) :=
γi.balance(U)+γi+1.balance(U). Intuitively then, we say that a payment protocol achieves
balance security if the PathBalance(U) for each honest user U does not decrease.

Formally, consider the following game. The adversary selects a channelList, a transaction
txin, a payment amount α, and a timeout T such that the output txin.output[0] holds at
least n · ϵ coins, where n is the length of the path defined in channelList. The adversary
sends the tuple (channelList, txin, α, T) to the challenger.

The challenger sets sid and pid to two random identifiers. Then, the challenger simulates
a payment from the setup phase on input (sid,pid,SETUP, channelList, txin, α, T , γ0).
The challenger runs the Pay phase. Every time that a corrupted user Ui needs to
be contacted, the challenger forwards the query to the attacker and waits for the
corresponding answer, thereby giving the attacker the opportunity to stop payments and
trigger refunds or let them be successful.

We say that the adversary wins the game if there exists an honest intermediate user U ,
such that PathBalance(U) is lower after the payment operation.

Definition 11 (Balance security). We say that a payment protocol achieves balance
security if for every PPT adversary A, the adversary wins the aforementioned game with
negligible probability.

Theorem 11 (Blitz achieves balance security). Blitz payments achieve balance security
as defined in Definition 11.

Proof. Assume that an adversary exists, can win the balance privacy game. This means,
that after the balance security game, there exists an honest intermediate user U , such
PathBalance(U) is lower after the payment. An intermediary U has coins locked up
in its right channel when FP ay (if right neighbor is honest) or the simulator (if right
neighbor dishonest) updates this right channel to its new state. However, both FP ay and
the simulator do this only, after successfully updating also their left channel using the
same txer to fund the refund transactions in both channels.

317

C. Appendix to Chapter 4

Assume now that U has less channel balance after the payment. This would imply, that
U lost its fund in the right channel without gaining any in the left. Consider two cases:
(i) The left neighbor refunded in time, which implies that txer was posted in time, which
triggers also the refund in FP ay of U in its right channel and no balance is lost. (ii) The
right neighbor claimed the collateral of U ’s right channel. Since for an honest U , FP ay

would have automatically refunded before T if possible, this means that also in U ’s left
channel, no refund occurred. Therefore, U can claim the money put by its left neighbor
and will not lose balance. This leads to the conclusion, that no such honest U exists with
a lower channel balance, or if its the sender, a lower channel balance and an unsuccessful
payment.

C.11.3 Sender privacy

Intuitively, we say that a payment protocol achieves sender privacy if an adversary
controlling an intermediary node cannot distinguish the case where the sender is its
left neighbor in the path from the case where the sender is separated for one (or more)
intermediaries.

A bit more formally, consider the following game. The adversary controls node U∗ and
selects two paths channelList0 and channelList1 that differ on the number of intermediary
nodes between the sender and the adversary. In particular, the path channelList0 is formed
by U1, U∗, U2, U3 whereas the path channelList1 contains the users U0, U1, U∗, U2. Note
that we force both queries to have the same path length to avoid a trivial distinguishability
attack based on path length. Additionally, the adversary picks transaction txin, a payment
amount α as well as a timeout T such that the output txin.output[0] holds at least n·ϵ coins,
where n is the length of the path defined in channelListb. Finally, the adversary sends
two queries (channelList0, txin, α, T) and (channelList1, txin, α + fee, T) to the challenger.
The challenger sets sid and pid to two random identifiers. Moreover, the challenger
picks a bit b at random and simulates setup and open of the Pay phase on input
(sid,pid,SETUP, channelListb, txin, α, T , γ0). Every time that the corrupted user U∗

needs to be contacted, the challenger forwards the query to the attacker and waits for
the corresponding answer.

We say that the adversary wins the game if it correctly guesses the bit b chosen by the
challenger.

Definition 12 (Sender privacy). We say that a payment protocol achieves sender
privacy if for every PPT adversary A, the adversary wins the aforementioned game with
probability at most 1/2 + ϵ, where ϵ denotes a negligible value.

Theorem 12 (Blitz achieves sender privacy). Blitz payments achieve sender privacy as
defined in Definition 12.

Proof. The message (sid,pid,open, txer, rList, onioni+1, αi, T , γi, θϵi) that FP ay sends
to the simulator in the Open phase, is leaked to the adversary. By looking at γi and

318

C.11. Discussion on security and privacy goals

opening onioni+1, U∗ knows its neighbors U1 and U2. We know that U∗ cannot learn any
additional information about the path from T and γi. Since the amount to be sent was
increased fee for the path channelList1, the amount αi for Ui is identical for both cases.
This leaves txer, rList and onioni+1. Let us assume, that there exists an adversary that
can break sender privacy. There are two possible cases.

1. The adversary finds out by looking at txer and rList: We defined that the
output, that serves as input for txer, has never been used and is unlinkable to the sender
and check this in checkTxIn. Looking at the outputs of txer, the adversary knows to
whom all but one output belongs. Since our adversary breaks the sender privacy, it needs
to be able to reconstruct, to whom this final output of txer belongs observing rList. This
contradicts our assumption of unlinkable stealth addresses.

2. The adversary finds out by looking at onioni+1: The adversary controlling U∗

is able to open onioni+1 revealing U2, a message m and onioni+2. Since our adversary
breaks the sender privacy, he has to be able to open onioni+2 to reveal if U2 is the receiver
or not, thereby learning who is the sender. This contradicts our assumption of secure
anonymous communication networks.

These two cases lead to the conclusion, that a PPT adversary that can win the sender
privacy game with a probability non-negligibly better than 1/2, can also break our
assumptions of unlinkability of stealth addresses or secure anonymous communication
networks. Note that both receiver privacy and its proof are analogous to the sender
privacy.

C.11.4 Path privacy

Intuitively, we say that a payment protocol achieves path privacy if an adversary control-
ling an intermediary node does not know what other nodes are part of the path other
than its own neighbors.

A bit more formally, consider the following game. The adversary controls node U∗ and
selects two paths channelList0 and channelList1 that differ on the nodes other than the
adversary neighbors. In particular, the path channelList0 is formed by U0, U1, U∗, U2, U3
whereas the path channelList1 contains the users U ′

0, U1, U∗, U2, U ′
3. Note that we force

both queries to have the same path length to avoid a trivial distinguishability attack
based on path length. Further note that we force that in both paths, the adversary has
the same neighbors as otherwise there exists a trivial distinguishability attack based on
what neighbors are used in each case.

Additionally, the adversary picks transaction txin, a payment amount α as well as a
timeout T such that the output txin.output[0] holds at least n · ϵ coins. Finally, the
adversary sends two queries (channelList0, txin, α, T) and (channelList1, txin, α, T) to the
challenger.

The challenger sets sid and pid to two random identifiers. Moreover, the chal-
lenger picks a bit b at random and simulates the setup and open phases on input

319

C. Appendix to Chapter 4

(sid,pid,SETUP, channelListb, txin, α, T , γ0). Every time that the corrupted user U∗

needs to be contacted, the challenger forwards the query to the attacker and waits for
the corresponding answer.

We say that the adversary wins the game if it correctly guesses the bit b chosen by the
challenger.

Definition 13 (Path privacy). We say that a payment protocol achieves path privacy if
for every PPT adversary A, the adversary wins the aforementioned game with probability
at most 1/2 + ϵ, where ϵ denotes a negligible value.

Theorem 13 (Blitz achieves path privacy). Blitz payments achieve path privacy as
defined in Definition 13.

Proof. As this proof is analogous to the proof for sender privacy, we only sketch it here.
Again, the simulator leaks the same message (sid,pid,open, txer, rList, onioni+1, αi,
T , γi, θϵi) to the adversary. Again, the adversary can find out the correct bit b by looking
at (i) txer and rList or (ii) at onioni+1. If there exists an adversary that breaks the path
privacy of Blitz, then it also can be used to break (i) unlinkability of stealth addresses or
(ii) secure anonymous communication networks.

320

APPENDIX D
Appendix to Chapter 5

D.1 Stealth addresses

The stealth addresses scheme allows us to derive one-time and fresh public keys in a
digital signature scheme for a specific user. Here, we briefly describe a basic dual-key
stealth addresses protocol (DKSAP). Assume that G is a base point of an elliptic curve,
in which the difficulty of the elliptic curve discrete logarithm problem (ECDLP) [Kob87]
holds. Moreover, assume that there is a user (say Alice) with two pairs of private/public
keys (a, A), (b, B) such that A = a · G and B = b · G. We want to derive fresh public keys
for Alice. A DKSAP is a tuple of two algorithms DKSAP := (GenPk, GenSk) defined as
follows.

• (P , R) ← GenPk(A, B): A PPT algorithm takes two Alice’s public keys A, B as inputs
and returns a fresh public key for Alice P along with an additional value R, which
is required for deriving the secret key for P . For that, a random r ←$ [0, l − 1] is
sampled uniformly, where l is the prime order of the underlying elliptic curve. Then,
P is computed as P := H(r · A) · G + B, H is a hash function modeled as a random
oracle. Moreover, R is computed as R := r · G.

• p ← GenSk(a, b, P , R): A DPT algorithm takes two Alice’s secret keys a, b and P , R
generated by GenPk algorithm as inputs and returns the secret key corresponding to
P . For that p is computed as p := H(a · R) + b.

Correctness of algorithms follows directly: p·G = (H(a·R)+b)·G = H(a·r ·G)·G+b·G =
H(r · A) · G + B = P . In [VS18] it is argued that the new address P is unlikable for a
spectator, even when observing R.

321

D. Appendix to Chapter 5

D.2 UC modeling
We now formalize our construction in the global UC framework (GUC) [CDPW07], which
is an extension of the standard UC framework [Can01] that allows for a global setup.
We use this global step for modeling the ledger. Through this section, first, we provide
some preliminaries. Then, we define an ideal functionality for the multi-channel updates
protocol. Our model follows closely the model in [AEE+21,AMSKM21,AMSKM23].

D.2.1 Preliminaries, communication model and threat model

In the real world, a protocol Π is executed by a set of parties P and in the presence of
an adversary A. A security parameter λ ∈ N and an auxiliary input z ∈ {0, 1}∗ are given
to the adversary as inputs. We consider a static corruption model, which means that
A can corrupt any party Pi ∈ P at the beginning of the protocol execution. A controls
corrupted parties and learns their internal states. All parties in P and A take their input
from a special entity called environment E , which represents everything external to the
protocol. This entity observes all output messages from participants. We assume that the
communication network is synchronous, and the protocol execution takes place in rounds.
The global ideal functionality Gclock [KMTZ13] represents a global clock that proceeds to
the next round if all honest parties indicate that they are ready to do so. Every entity
always knows the current round. Communications between parties in P are through
authenticated channels with guaranteed delivery after exactly one round. If a party P
sends a message to party Q in round t, then Q receives that message in the beginning of
round t + 1 and knows that P has sent the message. We model authenticated channels
by an ideal functionality FGDC [DEF+19b]. The adversary can read and reorder the
messages sent in the same round, but can not modify or delay messages. Communications
involving A, E , or the simulator S and every computation that a party executes locally
take zero rounds.

D.2.2 Ledger and channels

We model a UTXO-based blockchain in the ideal functionality GLedger. We denote the
blockchain delay as ∆, and the blockchain’s signature scheme by Σ. GLedger communicates
with a fixed set of parties P.

Initially, the environment E chooses a key pair (skP , pkP) for each P ∈ P and registers it
to the ledger by sending
(sid,register, pkP) to GLedger. Also, E sets the initial state of L, which is a publicly
accessible set of all published transactions. A party P ∈ P can post a transaction tx via
message (sid,POST, tx) to GLedger. The transaction will be added to the ledger after
at most ∆ rounds if it is valid. The exact number of delay rounds is chosen by the
adversary. In this work, we consider a simplified model for the underlying blockchain and
assume that the set of users is fixed instead of allowing them to join or leave dynamically.
For a more precise model, we refer the reader to works [BMTZ17]. We define an ideal
functionality FChannel [AME+21], which is built on top of GLedger and provides open,

322

D.2. UC modeling

update, and close procedures related to payment channels. We assume that closing a
channel takes at most tc rounds and updating a channel takes at most tu rounds. For
simplicity, we assume that channels involved in the multi-channel updates protocol have
already been registered and opened with the ledger functionality.

The complete API of FChannel and GLedger are shown below. We hide the calls to Gclock

and FGDC in our notation. Instead of explicitly calling these functionalities, we write
msg t−→ X to denote sending message msg to party X in round t and also msg t←− X to
denote receiving message msg from party X in round t.

Interface of GLedger(∆, Σ) [AEE+21, AMSKM21]

This functionality keeps a record of the public keys of parties. Also, all transactions that are
posted (and accepted, see below) are stored in the publicly accessible set L containing tuples of
all accepted transactions .
Parameters:

∆: upper bound on the number of rounds it takes a valid transaction to be published
on L

Σ: a digital signature scheme

API:
Messages from E via a dummy user P ∈ P:

• (sid,REGISTER, pkP) τ←− P :
This function adds an entry (pkP , P) to PKI consisting of the public key pkP and the user
P , if it does not already exist.

• (sid,POST, tx) τ←− P :
This function checks if tx is a valid transaction and if yes, accepts it on L after at most ∆
rounds.

Interface of FChannel(T , k) [AEE+21, AMSKM21]

Parameters:
T : upper bound on the maximum number of consecutive off-chain communication

rounds between channel users
k: number of ways the channel state can be published on the ledger

API:
Messages from E via a dummy user P :

• (sid,CREATE, γ, tidP) τ←− P :
Let γ be the attribute tuple (γ.id, γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the identifier
of the channel, γ.users ⊂ P are the users of the channel (and P ∈ γ.users), γ.cash ∈ R≥0

is the total money in the channel and γ.st is the initial state of the channel. tidP defines
P ’s input for the funding transaction of the channel. When invoked, this function asks
γ.otherParty to create a new channel.

323

D. Appendix to Chapter 5

• (sid,UPDATE, id, θ) τ←− P :
Let γ be the channel where γ.id = id. When invoked by P ∈ γ.users and both parties agree,
the channel γ (if it exists) is updated to the new state θ. If the parties disagree or at least
one party is dishonest, the update can fail or the channel can be forcefully closed to either
the old or the new state. Regardless of the outcome, we say that tu is the upper bound that
an update takes. In the successful case, (sid,UPDATED, id, θ) ≤τ+tu−−−−→ γ.users is output.

• (sid,CLOSE, id) τ←− P :
Will close the channel γ, where γ.id = id, either peacefully or forcefully. After at most tc
in round ≤ τ + tc, a transaction tx with the current state γ.st as output (tx.output := γ.st)
appears on L (the public ledger of GLedger).

D.2.3 The UC-security definition

Closely following [AMSKM21,AMSKM23], we define Π as a hybrid protocol that accesses
to ideal functionality Fprelim consisting of FGDC , GLedger, FChannel, and Gclock. In the
beginning, the environment E supplies inputs to the parties in P and the adversary
A with a security parameter λ and auxiliary input z. We denote the output that E
observes as the ensemble EXECFprelim

Π,A,E (λ, z). ΦFupdate
denotes the ideal protocol of the

ideal functionality Fupdate, where the dummy users simply forward their input to Fupdate.
With access to functionalities Fprelim, we denote the output of this idealized protocol as
EXEC

Fprelim

ΦFupdate
,S,E(λ, z).

If a protocol Π GUC-realizes an ideal functionality Fupdate, then any attack that is
possible on the real world protocol Π can be carried out against the ideal protocol
ΦFupdate

and vice versa.

Definition 14. A protocol Π GUC-realizes an ideal functionality Fupdate, w.r.t. Fprelim,
if for every adversary A there exists a simulator S such that for any z ∈ {0, 1}∗ and
λ ∈ N, we have

EXEC
Fprelim

Π,A,E (λ, z) ≈c EXEC
Fprelim

ΦFupdate
,S,E(λ, z) (D.1)

where ≈c denotes computational indistinguishability.

D.2.4 Ideal functionality

Here, we define our ideal functionality Fupdate. This functionality can output an ERROR
message, e.g., when a transaction does not appear on the ledger as it should. When
Fupdate outputs ERROR, any guarantees are lost. Hence, we are only interested in protocols
that realize Fupdate and never output an ERROR. The subprocedures used in Fupdate, Π,
and S follow the same logic as the macros defined in Section 5.4.2.

Note that in Fupdate and Π, for better readability, we use the set P to store all parties,
the set S to store all senders, and the set R to store all receivers. We know that two

324

D.2. UC modeling

different channels may have a common user. Thus, for handling duplicated identifiers
in the aforementioned sets, we implicitly assign different identifiers for users of different
channels. Consequently, the size of each set is equal to the number of channels.

Ideal Functionality Fupdate(∆, T)

Parameters:
∆ : Upper bound on the time it takes a transaction to appear on L.

T : Upper bound on the time expected for successful payments.

Local variables:
idSet : A set of tuples containing pairs of ids and channels (pid, γi) to avoid duplicated

channels.

Γ : A set of tuples (pid, γi, txstate
i , txr

i, {txp
i,j , θi,j}j∈[1,n]) that for each payment id

pid and channel γi, store the state transaction txstate
i , refund transaction txr

i and
a set of tuples for payment transactions (txp

i,j , θi,j) where θi,j is the output of txep
j

used in txp
i,j .

Ψ : A map, storing for a given pid a copy of all txep in a set {txep
j }j∈[1,n].

tu : Time required to perform a ledger channel update honestly.

tc : Time it takes at most to close a channel.

Start (executed in the beginning in round τs)

Send (sid,start) τs−→ S and upon (sid,start-ok, tu, tc)
τs←− S set tu and tc accordingly.

Initialization

Let τ be the current round, and S, R, and P be initially empty sets.

1. If (sid,pid,CHANNELS-SET, {γi}i∈[1,n])
τ←− dealer where the

dealer is honest, do the following.

a) Send (sid,pid,send-init, {γj}j∈[1,n], dealer) τ−→ S.
b) For all honest Pi ∈ {γi.sender}i∈[1,n] ∪{γi.receiver}i∈[1,n], send (sid,pid,INIT-CHECK,

{γj}j∈[1,n])
τ+1−−→ Pi.

325

D. Appendix to Chapter 5

2. Upon each message (sid, pid, send-check, {γi}i∈[1,n], Pi)
τ+1←−− S, send (sid, pid,

INIT-CHECK, {γj}j∈[1,n])
τ+1−−→ Pi.

3. Upon (sid,pid,INIT-CHECKED, {γj}j∈[1,n])
τ+1←−− Pi for each honest Pi, do following.

a) Send (sid,pid,send-init-ok, {γj}j∈[1,n], Pi)
τ+1−−→ S.

b) If this is the first INIT-CHECKED message from an honest party, for each γi the tuple
(pid, γi) /∈ idSet, set idSet = idSet ∪ {(pid, γi)}, add γi.sender to S and P, and add
γi.receiver to R and P.

4. If there is an honest Pi ∈ P, where the message
(sid,pid,INIT-CHECKED, {γj}j∈[1,n])

τ+1←−− Pi is not received, go idle.

5. If there is an honest Pi ∈ P and a corrupted Pj ∈ P, where the message (sid, pid,
init-acc, Pi, Pj) τ+2←−− S is not received, remove Pi from P and S or R.

6. Go to the Pre-Setup phase, and pass the set of channels with the receiver in P to the next
phase.

Pre-Setup

Let τ be the current round.

1. For each channels γi do following.

a) Let txin
i := GenTxIn(γi.receiver, {γk}k∈[1,n]).

b) Let txep
i := GenTxEp({γk}k∈[1,n], txin

i), and add txep
i to Ψ(pid)

c) If γi.receiver is corrupted, send
(sid,pid,presetup-req, γi, txep

i) τ−→ S.
d) Else if γi.receiver is honest, for all corrupted Pj ∈ P send

(sid,pid,send-presetup, txep
i , γi.receiver, Pj) τ−→ S.

2. If there is an honest Pi ∈ P and a corrupted Pj ∈ R, where the message (sid, pid,
presetup-acc, Pi, Pj) τ+1←−− S is not received, remove Pi from P and S or R.

3. Go to the Setup phase, and pass the set of channels with at least one user in P to the next
phase.

Setup

Let τ be the current round.

1. For each channel γi if both γi.sender and γi.receiver are honest, do the following.

a) If γi.sender ∈ P, (sid,pid,REQ-VALUE, γi)
τ−→ γi.sender.

326

D.2. UC modeling

b) Upon (sid,pid,VALUE, γi, αi)
τ←− γi.sender, continue. Otherwise skip the steps (c) to

(g).
c) Let txstate

i := GenState(αi, T , γi), and
txr

i := GenRef(txstate
i , γi.sender).

d) For all j ∈ [1, n], let θi,j be the output of txep
j which corresponds to γi.receiver, then

create txp
i,j = GenPay(txstate

i , γi.receiver, θi,j).
e) If γi.receiver ∈ P, send

(sid,pid,REQ-VALUE, γi)
τ+1−−→ γi.receiver.

f) Upon (sid,pid,VALUE, γi, αi)
τ+1←−− γi.receiver, continue. Otherwise skip the step (g).

g) For all corrupted Pj ∈ P, send
(sid,pid,send-setup-ok, γi.receiver, Pj) τ+1−−→ S.

2. Else If γi.sender is corrupted and γi.receiver is honest, do the following.

a) If (sid, pid, setup-acc, γi, txstate
i , {txp

i,j}}j∈[1,n])
τ+1←−− S, set αi :=

txstate
i .output[0].cash. Otherwise, skip the steps (b) to (d).

b) If γi.receiver ∈ P, send
(sid,pid,REQ-VALUE, γi)

τ+1−−→ γi.receiver.

c) Upon (sid, pid, VALUE, γi, αi)
τ+1←−− γi.receiver with a same αi as the step(b) and

txstate
i = GenState(αi, T , γi), continue. Otherwise skip the step (e).

d) For all corrupted Pj ∈ P, send
(sid,pid,send-setup-ok, Pi, Pj) τ+1−−→ S.

3. Else If γi.sender is honest and γi.receiver is corrupted, do the following.

a) If γi.sender ∈ P, (sid,pid,REQ-VALUE, γi)
τ−→ γi.sender.

b) Upon (sid,pid,VALUE, γi, αi)
τ←− γi.sender, continue. Otherwise skip the steps (c) to

(e).
c) Let txstate

i := GenState(αi, T , γi), and
txr

i := GenRef(txstate
i , γi.sender).

d) For all j ∈ [1, n], let θi,j be the output of txep
j which corresponds to γi.receiver, then

create txp
i,j = GenPay(txstate

i , γi.receiver, θi,j).
e) Send (sid,pid,send-setup, γi, txstate

i ,
{(txp

i,j , σγi.sender(txp
i,j))}j∈[1,n])

τ+1−−→ S.

4. If there is an honest receiver Pi ∈ R, where the message
(sid,pid,VALUE, γi, αi)

τ+1←−− Pi is not received, go idle.
5. If there is an honest Pi ∈ P and a corrupted Pj ∈ R, where the message (sid, pid,

setup-finalized, Pi, Pj) τ+1←−− S is not received, remove Pi from P and S or R.
6. Go to the Confirmation phase. Pass the set of channels with at least one user in P to the

next phase.

327

D. Appendix to Chapter 5

Confirmation

- Let τ be the current round.

1. For each honest sender γi.sender ∈ S, do the following.

a) Send (ssidC ,UPDATE, γi.id, txstate
i .output) τ−→ FChannel.

b) If not (ssidC ,UPDATED, γi.id, txstate
i .output) τ+tu←−−− FChannel, skip the step (c).

c) For each corrupted γj .receiver ∈ R, send
(sid,pid,send-sig, γi.sender, γj .receiver, txep

j) τ+tu−−−→ S.

2. For each honest receiver γi.receiver ∈ R, if
(i) (sid, pid, confirmation-acc, γi.receiver, γj .sender) τ+tu+1←−−−−− S is received for all
corrupted γj .sender ∈ S, and
(ii) (ssidC , UPDATED, γi.id, txstate

i .output) τ+tu←−−− FChannel on behalf of γi.receiver, do the
following.

a) Send (sid,pid,OPENED, γi)
τ+tu+1−−−−−→ γi.receiver

b) For all corrupted Pj ∈ P,
(sid,pid,send-confirmation-ok, γi.receiver, Pj) τ+tu−−−→ S.

3. If there is an honest receiver γi.receiver, where
(sid, pid, confirmation-acc, γi.receiver, γj .sender) τ+tu+1←−−−−− S is not received for at
least one corrupted γj .sender ∈ S, or
(ssidC ,UPDATED, γi.id, txstate

i .output) τ+tu←−−− FChannel on behalf of γi.receiver, go idle.
4. If there is an honest Pi ∈ P and a corrupted Pj ∈ R, where the message (sid, pid,

confirmation-finalized, Pi, Pj) τ+tu+1←−−−−− S is not received, remove Pi from P and S
or R.

5. Send (sid,pid,agg-sig, {txep
j }j∈[1,n], S) τ+tu+1−−−−−→ S.

6. Go to the Finalizing phase. Pass the set of channels with at least one user in P to the next
phase.

Finalizing

- Let τ be the current round.

1. For each channel γi, let txtrans
i := GenTrans(αi, γi).

2. For each honest sender γi.sender, send
(ssidC ,UPDATE, γi.id, txtrans

i .output) τ−→ FChannel.
3. For each channels γi, If γi.receiver is honest, do the following.

328

D.2. UC modeling

a) If not (ssidC ,UPDATED, γi.id, txtrans
i .output) τ+tu←−−− FChannel,

(sid,pid,post-txep, γi, txep
i) τ+tu−−−→ S.

b) Send (sid,pid,FINALIZED, γi)
τ+tu−−−→ γi.receiver.

Respond (executed at the end of every round)

Let t be the starting round. For every element
(pid, γi, txstate

i , txr
i, {txp

i,j , θi,j}j∈[1,n]) ∈ Γ, if γi.st = txstate
i .output, and one txep

j ∈ Ψ(pid) is on
L, do the Pay step as follows.

Pay: If γi.receiver is honest and t < T − tc − 2∆ do the following.

1. (ssidC ,CLOSE, γi.id) t−→ FChannel

2. At time t + tc, if a transaction tx with tx.output = γi.st appears on L, Wait for ∆
rounds and send (sid,pid,post-pay, γi, txp

i,j) t′<T −∆−−−−−→ S.
3. At time t′′ < T , if a transaction tx′ appears on L with tx′.input = [θi,j , tx.output[0]]

and
tx′.output = [(tx.output[0].cash + θi,j .cash, OneSig(γi.receiver))],
send (sid,pid,PAID) t′′

−→ γi.receiver. Otherwise return ERROR to all parties.

Force-Refund: Else, if a transaction tx with tx.output = γi.st is on-chain and tx.output[0] is
unspent, t ≥ T , and γi.sender is honest, do the following.

1. Send (sid,pid,post-refund, γi, txr
i)

t−→ S
2. If transaction tx′ with tx′.input = [tx.output[0]] and tx′.output = (tx.output[0].cash,

OneSig(γi.sender)) appears on L in round t1 < t+∆, send (sid,pid,FORCE-REFUND)
t1−→ γi.sender. Otherwise, return ERROR to all parties.

D.2.5 Protocol

In this section, we present the formal protocol Π. The protocol is similar to what is
presented in Figure 5.5, but extended with payment ids and UC formalism. We add the
environment E and model communication in rounds. The protocol is divided into six
phases. In Initialization, a user dealer receives the ongoing updates from E and sends
them to every user to check whether all participants agree with that. In Pre-Setup,
each receiver generates txep and sends it to all parties. In Setup, senders generate and
send txstate, txp, and txr to their neighbors. Receivers verify the messages and inform
all parties when everything is OK. In Confirmation, senders update their channels and
then send their signature to each txep to the corresponding receivers. When a receiver
gets all signatures, sends an endorsement to all parties. In Finalizing, the senders after
receiving all endorsements update their channel to the final state. If a receiver does
not get UPDATED from FChannel, puts txep on-chain. In Respond users will react to txep

being published and, either force payments or refunds.

329

D. Appendix to Chapter 5

Protocol Π
Local variables:

pidSet : A set storing every payment id pid that a user has participated in, to prevent
duplicates.

paySet : A map storing for a given pid a tuple ({γi}i∈[1,n], S, R) where U is the set of
containing channels and payment values, S is the set of all senders and R is the
set of all receivers.

local : A map storing for a given pid a copy of all txep in a set {txep
j }j∈[1,n].

left : For each sender γi.sender, a map storing for a given pid a tuple (γi, txstate
i , txr

i)
which contains the channel γi and corresponding state and refund transactions.

right : For each receiver γi.receiver, a map storing for a given pid a tuple (γi, txstate
i ,

{(txp
i,j , σγi.sender(txp

i,j), θi,j)}j∈[1,n]) which contains a channel and corresponding
state transaction and the set of payment transactions. Along with each txp

i,j , a
signature from the sender of the channel and the input of this transaction that
comes from txep

j are saved.

sigSet : For each receiver γi.receiver, a map, storing for a given pid the signatures for
txep

i of all senders {σγi.sender(txep
i)}j∈[1,n].

Initialization

- Let τ be the current round.

dealer upon (sid,pid,CHANNELS-SET, {γi}i∈[1,n])
τ←− E

1. For all parties Pi in {γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n], send (sid,pid,init, {γi}i∈[1,n])
τ−→ Pi.

Each γi.sender and γi.receiver

upon (sid,pid,init, {γj}j∈[1,n])
τ+1←−− dealer

1. If pid ∈ pidSet, abort. Add pid to pidSet, and let S, R and P be initially empty sets.

2. Send (sid,pid,INIT-CHECK, {γj}j∈[1,n])
τ+1−−→ E .

330

D.2. UC modeling

3. If (sid, pid, INIT-CHECKED, {γj}j∈[1,n])
τ+1←−− E , for each channel γj add γj .sender to S

and γj .receiver to R. Then set
paySet(pid) := ({γj}j∈[1,n], S, R) and P := R ∪ S. Otherwise abort.

4. Send (sid,pid,init-ok) τ+1−−→ Pi to all Pi ∈ P.

5. If (sid,pid,init-ok) τ+2←−− Pi from all parties in P , go to the Pre-Setup phase. Otherwise
abort.

Pre-Setup

- Let τ be the current round.

γi.receiver

1. Let txin
i := GenTxIn(γi.receiver, {γk}k∈[1,n]).

2. Let txep
i := GenTxEp({γk}k∈[1,n], txin

i).

3. Send (sid,pid,pre-setup, txep
i) τ−→ Pi for all Pi ∈ P.

All users upon

(sid,pid,pre-setup, txep
i) τ+1←−− γi.receiver for all i ∈ [1, n]

1. For all j ∈ [1, n], if CheckTxEp(txep
j ,γj .receiver, {γk}k∈[1,n]) = ⊥, abort. otherwise set

local(pid) = {txep
j }j∈[1,n] and go to the Setup phase.

Setup

- Let τ be the current round.

γi.sender

1. Send (sid,pid,REQ-VALUE, γi)
τ−→ E . If this message is replied by

(sid,pid,VALUE, γi, αi)
τ←− E , continue. Otherwise go idle.

2. Let txstate
i := GenState(αi, T , γi).

3. Let txr
i := GenRef(txstate

i , γi.sender).

331

D. Appendix to Chapter 5

4. For all j ∈ [1, n], let θi,j be the output of txep
j which corresponds to γi.receiver, then create

txp
i,j := GenPay(txstate

i , γi.receiver, θi,j).

5. Set left(pid) := (γi, txstate
i , txr

i, {txp
i,j}j∈[1,n]).

6. Generate the set {σγi.sender(txp
i,j)}j∈[1,n].

7. Send
(sid,pid,setup, γi, txstate

i , {(txp
i,j , σγi.sender(txp

i,j))}j∈[1,n])
τ−→

γi.receiver.

γi.receiver upon (sid,pid,setup, γi, txstate
i

, {(txp
i,j , σγi.sender(txp

i,j))}j∈[1,n])
τ+1←−− γi.sender

1. Send (sid,pid,REQ-VALUE, γi)
τ+1−−→ E . If this message is replied by

(sid,pid,VALUE, γi, αi)
τ+1←−− E , continue. Otherwise go idle.

2. If txstate
i ̸= GenState(αi, T , γi), abort.

3. For each element in {(txp
i,j , σγi.sender(txp

i,j))}j∈[1,n], If
σγi.sender(txp

i,j) is not a correct signature, abort.

4. For all j ∈ [1, n], let θi,j be the output of txep
j which corresponds to γi.receiver. If txp

i,j ̸=
GenPay(txstate

i , γi.receiver, θi,j), abort.

5. Set right(pid) = (γi, txstate
i , {txp

i,j , σγi.sender(txp
i,j , θi,j)}j∈[1,n])

6. Send (sid,pid,setup-ok) τ+1−−→ Pi for all Pi ∈ P.

All users

1. If (sid,pid,setup-ok) τ+2←−− Pi for all Pi ∈ R, go to the Confirmation phase. Otherwise
abort.

Confirmation

- Let τ be the current round.

γi.sender

1. Send (ssidC ,UPDATE, γi.id, txstate
i .output) τ−→ FChannel.

332

D.2. UC modeling

2. If (ssidC ,UPDATED, γi.id, txstate
i .output) τ+tu←−−− FChannel, for all j ∈ [1, n], create signature

σγi.sender(txep
j) and send

(sid,pid,confirmation, σγi.sender(txep
j)) τ+tu−−−→ γj .receiver.

γi.receiver upon (sid,pid,confirmation, σγj .sender(txep
i))

τ+tu+1←−−−−− γj .sender for all j ∈ [1, n]

1. If (ssidC ,UPDATED, γi.id, txstate
i .output) τ+tu←−−− FChannel,

send (sid,pid,OPENED, γi)
τ+tu+1−−−−−→ E . Otherwise abort.

2. If for all j ∈ [1, n], σγj .sender(txep
i) are valid signatures,

let sigSet := {(σγj .sender(txep
i))}j∈[1,n]. Otherwise abort.

3. Send (sid,pid,confirmation-ok) τ+tu+1−−−−−→ Pi for all Pi ∈ P.

All users

1. If (sid, pid, confirmation-ok) τ+tu+2←−−−−− Pi for all Pi ∈ R, go to the Finalizing phase.
Otherwise abort.

Finalizing

- Let τ be the starting round.

γi.sender

1. Let txtrans
i := GenTrans(αi, γi).

2. Send (ssidC ,UPDATE, γi.id, txtrans
i .output) τ−→ FChannel.

γi.receiver

1. If not (ssidC , UPDATED, γi.id, txtrans
i .output) τ+tu←−−− FChannel, sign txep

i and add the
signature to sigSet. (ssidL,POST, (txep

i , sigSet)) τ+tu−−−→ GLedger.

2. Send (sid,pid,FINALIZED, γi)
τ+tu−−−→ E .

333

D. Appendix to Chapter 5

Respond

Let t be the current round. Do the following:

γi.receiver at the end of every round t

1. For every pid in right.keyList(),
let (γi, txstate

i , {txp
i,j , σγi.sender(txp

i,j , θi,j)}j∈[1,n]) := right(pid)
and let {txep

j }j∈[1,n] := local(pid).

2. If t < T − tc − 2∆, one txep
j is on the ledger L, and γi.st = txstate

i .output, do the following:

a) Send (ssidC ,CLOSE, γi.id) t−→ FChannel.
b) If a transaction tx with tx.output = txstate

i .output is on L in round t + tc, wait ∆ rounds.
c) Sign txp

i,j and set
txp

i,j := (txp
i,j , {σγi.receiver(txp

i,j), σγi.sender(txp
i,j)}).

d) Send (ssidL,POST, txp
i,j) t+tc+∆−−−−−→ GLedger.

e) When txp
i,j appears on L in round t1 < T , send

(sid,pid,PAID, γi)
t1−→ E

γi.sender at the end of every round t

1. For every pid in left.keyList(), let (γi, txstate
i , txr

i, {txp
i,j}j∈[1,n]) := left(pid).

2. If t > T and a transaction tx with tx.output = txstate
i is on the ledger L, but not any

transaction in {txp
i,j}j∈[1,n], do the following:

a) Sign txr
i and set txr

i := (txr
i, σγi.sender(txr

i)).

b) Send (ssidL,POST, txr
i)

t−→ GLedger.
c) When txr

i appears on L in round t1 < t + ∆, send
(sid,pid,FORCE-REFUND, γi)

t1−→ E

D.2.6 Proof

In this section, we present the simulator and formal proof that our multi-channel updates
protocol Appendix D.2.5 UC-realizes the ideal functionality Fupdate Appendix D.2.4.

Simulator
Local variables:

334

D.2. UC modeling

enableSig : A map, sorting for a given (pid, txep
i)

the set of signatures {σγj .sender(txep
i)}

from all senders.

paySig : A map, sorting for a given (pid,
txp

i,j) the signature σγi.sender(txp
i,j).

Start phase

• Upon (sid, start) τs←− Fupdate, Send (sid, start-ok, tu, tc)
τs−→ Fupdate and go to the

Initialization phase.

Initialization phase

• Upon (sid, pid, send-init, {γj}j∈[1,n], dealer) τ←− Fupdate, for all corrupted Pi ∈
{γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n], send
(sid,pid,init, {γi}i∈[1,n])

τ−→ Pi on behalf of dealer.
• If the trigger party dealer is corrupted, upon

(sid, pid, init, {γi}i∈[1,n])
τ←− dealer on behalf on each honest party Pi, send (sid, pid,

send-check, {γi}i∈[1,n], Pi)
τ−→ Fupdate.

• Upon (sid,pid,send-init-ok, {γj}j∈[1,n], Pi)
τ−→ S, for corrupted

Pj ∈ {γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n], send
(sid,pid,init-ok) τ−→ Pj on behalf of Pi.

• Upon (sid,pid,init-ok) τ+2←−− Pj on behalf of Pi, where Pi is honest and Pj is corrupted,
send (sid,pid,init-acc, Pi, Pj) τ+2−−→ Fupdate.

Pre-Setup phase

• Upon (sid,pid,presetup-req, γi, txep
x) τ←− Fupdate, where

γi.receiver is a corrupted party, do the following.

1. Upon (sid, pid, pre-setup, txep
i) τ+1←−− γj .receiver of behalf of Pi, where γi.receiver

is corrupted, and Pi is honest, check if txep
i = txep

x , (sid, pid, presetup-acc, Pi,
γj .receiver) τ+1−−→ Fupdate.

• Upon (sid,pid,send-presetup, txep
i , γi.receiver, Pj) τ←− Fupdate,

where γi.receiver is honest and Pj is corrupted, send
(sid,pid,pre-setup, txep

i) τ←− Pj on behalf of γi.receiver.

335

D. Appendix to Chapter 5

Setup phase

• Upon, (sid, pid, send-setup-ok, Pi, Pj) τ←− Fupdate, where Pi is honest and Pj is
corrupted, send (sid,pid,setup-ok) τ−→ Pj on behalf of Pi.

• Upon (sid,pid,setup, γi, txstate
i ,

{(txp
i,j , σγi.sender(txp

i,j))}j∈[1,n])
τ+1←−− γi.sender, where γi.sender is corrupted, do the following.

1. Check if any signature σγi.sender(txp
i,j) is not valid, abort.

2. For all j ∈ [1, n], let θi,j be the output of txep
j which corresponds to γi.receiver. If txp

i,j ̸=
GenPay(txstate

i , γi.receiver, θi,j), abort.
3. Add the signature for each txp

i,j to paySig(pid, txp
i,j).

4. (sid,pid,setup-acc, γi, txstate
i , {txp

i,j}}j∈[1,n])
τ+1−−→ Fupdate.

• Upon (sid,pid,send-setup, txstate
i , {txp

i,j}j∈[1,n], γi)
τ←− Fupdate where γi.sender is honest

but γi.receiver is corrupted, do the following.

1. sign txp
i,j on behalf of γi.sender and add it to paySig(pid, txp

i,j).
2. send (sid,pid,setup, γi, txstate

i ,
{(txp

i,j , σγi.sender(txp
i,j))}j∈[1,n])

τ−→ γi.receiver on behalf of
γi.sender.

• Upon (sid, pid, setup-ok) τ+1←−− γj .receiver on behalf of Pi, where Pi is honest and
γj .receiver is corrupted, send
(sid,pid,setup-finalized, Pi, γj .receiver) τ+1−−→ Fupdate

Confirmation phase

• Upon (sid, pid, send-sig, γi.sender, γj .receiver, txep
j) τ←− Fupdate, where γi.sender is

honest but γj .receiver is corrupted, sign txep
j on behalf of γi.sender and send

(sid,pid,confirmation, σγi.sender(txep
j)) τ−→ γj .receiver.

• Upon (sid, pid, confirmation, σγj .sender(txep
i)) τ←− γj .sender is received on behalf of

γi.receiver, where γi.receiver is honest and
γj .sender is corrupted, check if all signatures are valid, send
(sid,pid,confirmation-acc, γi.receiver, γj .sender) τ−→ Fupdate.

• Upon, (sid, pid, send-confirmation-ok, Pi, Pj) τ←− Fupdate, where Pi is honest and
Pj is corrupted, (sid,pid,confirmation-ok) τ+1−−→ Pj on behalf of Pi.

• Upon (sid, pid, confirmation-ok) τ←− γj .receiver is received on behalf of an honest
party Pi, where γj .receiver is corrupted, send (sid,pid,confirmation-finalized, Pi,
γi.receiver) τ−→ Fupdate.

336

D.2. UC modeling

• Upon (sid, pid, agg-sig, {txep
j }j∈[1,n], S) τ←− S, for each txep

j , sign the transaction on
behalf of all honest Pi ∈ S and add σPi

(txep
j) to enableSig(pid, txep

j)

Finalizing phase

• Upon (sid,pid,post-txep, γi, txep
i) τ←− Fupdate where γi.receiver is a honest:

1. Sign txep
i on behalf of γi.receiver and add the signature to

enableSig(pid, txep
i)

2. Set txep
i := (txep

i , enableSig(pid, txep
i)).

3. Send (ssidL,POST, txep
i) τ−→ GLedger.

Respond phase

• Upon (sid,pid,post-pay, γi, txp
i,j) τ←− Fupdate, where γi.receiver is honest:

1. Sign txp
i,j on behalf of γi.receiver and add the signature to

paySig(pid, txp
i,j).

2. Set txp
i,j := (txp

i,j , paySig(pid, txp
i,j).

3. Send (ssidL,POST, txp
i,j) τ+tc−−−→ GLedger.

• Upon (sid,pid,post-refund, γi, txr
i)

τ←− Fupdate where γi.sender is honest:

1. Sign txr
i on behalf of γi.sender and set txr

i := (txr
i, σγi.sender(txr

i).

2. Send (ssidL,POST, txr
i)

τ+tc−−−→ GLedger.

Now, we show that in the view of the environment E , a transcript resulting from interac-
tions between the simulator S and the ideal functionality Fupdate is indistinguishable from
a transcript resulting from an execution of the protocol Π in the presence of the adversary
A. Formally, we want to show that EXECΠ,A,E and EXECFupdate,S,E are indistinguishable.

Our protocol Π and ideal functionality Fupdate both are executed in six phases: Initializa-
tion, Pre-Setup, Setup, Confirmation, Finalize, and Respond. For each phase separately,
we show how the ideal world and the real world are indistinguishable for the environment.

In our description, we write m[τ] to denote that message m is observed at round τ .
In other meaning, τ is the receiving round for message m (not the round it is sent).
Moreover, sometimes we interact with ideal functionalities such as FChannel and GLedger.
These functionalities in turn interact with either the environment E or other parties,
who are possibly under adversarial, either by sending messages or additional impacts on
publicly observable variables, i.e., the ledger L. To capture this, we define obsSet(m, F , τ)

337

D. Appendix to Chapter 5

as the set of all observable messages that are triggered by calling F with message m in
round τ .

Lemma 20. The initialization phase of protocol Π GUC-emulates the initialization phase
of the functionality Fupdate.

Proof. Let τ be the starting round. Note that in the real world environment controls
A, and therefore, all corrupted parties. For better readability, we define the following
messages that are used for Initialization phase in Fupdate and Π.

• m0 := (sid,pid,INIT-CHECK, {γi}i∈[1,n])

• m1 := (sid,pid,INIT-CHECKED, {γj}j∈[1,n])

• m2 := (sid,pid,CHANNELS-SET, {γi}i∈[1,n])

• m3 := (sid,pid,init, {γi}i∈[1,n])

• m4 := (sid,pid,init-ok)

• m5 := (sid,pid,send-init, {γj}j∈[1,n], dealer)

• m6 := (sid,pid,send-check, {γi}i∈[1,n], Pi)

• m7 := (sid,pid,send-init-ok, {γj}j∈[1,n], Pi)

• m8 := (sid,pid,init-acc, Pi, Pj)

For each participant Pi, we compare messages that E receives from this party and the
trigger party dealer in the ideal world and the real world. The types of messages depend
on corruption cases for Pi and dealer. Note that messages from corrupted parties to E are
not considered, because the environment is communicating with itself, which is trivially
the same in the ideal and the real world.

Case 1: Pi honest, dealer honest.

Real world: E receives m3 from dealer in round τ + 1 on behalf of all corrupted parties.
Moreover, E receives m0 from Pi, which contains the set of all channels in round τ + 1. If
Pi gets m1 from E in the response, then E receives m4 from Pi on behalf of all corrupted
parties in round τ + 2.

EXECΠ,A,E := {m3[τ + 1], m0[τ + 1], m4[τ + 2]}
Ideal world: Fupdate sends m5 to the simulator, which in turn, S sends m3 on behalf
on dealer to all corrupted parties in round τ . Moreover, Fupdate sends m0 on behalf of Pi

to E in round τ . Upon this message is replied by m1 from E , Fupdate sends m7 to the
simulator. After receiving this message, S sends m4 to all corrupted parties on behalf of
Pi in round τ + 1, which is received by E .

338

D.2. UC modeling

EXECFupdate,S,E := {m3[τ + 1], m0[τ + 1], m4[τ + 2]}
Case 2: Pi honest, dealer corrupted.

Real world: Because dealer is corrupted, we do not need to consider messages from
dealer to E . Other received messages are similar to the previous case.

EXECΠ,A,E := {m0[τ + 1], m4[τ + 2]}
Ideal world: No longer S is required to send m3 on behalf of dealer to E . Simulation of
the behavior of Pi is done the same as in the previous case.

EXECFupdate,S,E := {m0[τ + 1], m4[τ + 2]}
Case 3: Pi corrupted, dealer honest.

Real world: We do not to consider messages sent from Pi. E receives m3 From dealer
on behalf of all corrupted parties.

EXECΠ,A,E := {m3[τ + 1]}
Ideal world: Fupdate sends m5 to the simulator, which in turn, S sends m3 to all
corrupted parties who are under the control of E .

EXECFupdate,S,E := {m3[τ + 1]}
Lemma 21. The pre-setup phase of protocol Π GUC-emulates the pre-setup phase of the
functionality Fupdate.

Proof. Again we compare observed messages by E in the ideal world and the real world.
Let τ be the starting round, and consider the following definitions for all messages that
are used for Pre-Setup phase in Fupdate and Π.

• m9 := (sid,pid,pre-setup, txep
i)

• m10 := (sid,pid,presetup-req, γi, txep
i)

• m11 := (sid,pid,send-presetup, txep
i , γi.receiver, Pj)

• m12 := (sid,pid,presetup-acc, Pi, Pj)

In this phase, for each channel γi, E receives messages only from γi.receiver, so we should
consider only one case. The case that γi.receiver is honest.

Real world: γi.receiver creates txin
i and txep

i and sends m9 to all other parties, so this
message is received by E on behalf of all corrupted parties in round τ + 1.

EXECΠ,A,E := {m9[τ + 1]}
Ideal world: Fupdate first creates txin

i and txep
i transactions for each channel γi. Then,

Fupdate sends m11 to the simulator for all corrupted parties Pj . When S receives this

339

D. Appendix to Chapter 5

message, sends m9 to all corrupted parties on behalf of γi.receiver. The messages are
received by E in round τ + 1.

EXECFupdate,S,E := {m9[τ + 1]}
Lemma 22. The setup phase of protocol Π GUC-emulates the setup phase of the
functionality Fupdate.

Proof. Again we compare observed messages by E in the ideal world and the real world.
Let τ be the starting round, and consider the following definitions for all messages that
are used for Setup phase in Fupdate and Π.

• m13 := (sid,pid,REQ-VALUE, γi)

• m14 := (sid,pid,VALUE, γi, αi)

• m15 := (sid,pid,setup, γi, txstate
i ,

{(txp
i,j , σγi.sender(txp

i,j))}j∈[1,n])

• m16 := (sid,pid,setup-ok)

• m17 := (sid,pid,send-setup, γi, txstate
i ,

{(txp
i,j , σγi.sender(txp

i,j))}j∈[1,n])

• m18 := (sid,pid,setup-acc, γi, txstate
i , {txp

i,j}}j∈[1,n])

• m19 := (sid,pid,send-setup-ok, γi.receiver, Pj)

• m20 := (sid,pid,setup-finalized, Pi, Pj)

In this phase, for each channel γi, both the sender and the receiver have interactions
with the environment. We need to consider different corruption cases for these parties
except the case that both of them are corrupted.

Case 1: γi.sender honest, γi.receiver honest.

Real world: γi.sender sends m13 to E in round τ . Upon this message is replied by m14,
γi.sender generates txstate

i , txr
i, and the set {txp

i,j}j∈[1,n]. Then she sends m15 to γi.receiver.
When γi.receiver gets this message, first asks E about the payment value via message
m13 in round τ + 1. Upon this message is replied by m14, γi.receiver checks validity of
the transactions inside received m15, and then sends m16 to all other parties, which is
received by E on behalf of corrupted parties in round τ + 2. Note that two m13 messages
are received by E in different rounds. One from the sender and one from the receiver.

EXECΠ,A,E := {m13[τ], m13[τ + 1], m16[τ + 2]}
Ideal world: Fupdate sends m13 to E on behalf of γi.sender in round τ . After receiving
the response m14, Fupdate creates txstate

i , txr
i, and the set {txp

i,j}j∈[1,n]. Again, Fupdate

340

D.2. UC modeling

sends m13 to E this time on behalf of γi.receiver in round τ + 1. After receiving the
response, Fupdate sends m19 to the simulator, which in turn, S sends m16 to all corrupted
parties, which is received in round τ + 2.

EXECFupdate,S,E := {m13[τ], m13[τ + 1], m16[τ + 2]}

Case 2: γi.sender honest, γi.receiver corrupted.

Real world: In this case, we only consider messages that are sent from the sender.
Similar to the previous case, γi.sender sends m13 to E in round τ , and waits for the
response m14. Then she generates txstate

i , txr
i, and the set {txp

i,j}j∈[1,n] and sends m15 to
γi.receiver. This time the message m15 is observed by E in round τ + 1. because the
receiver is corrupted.

EXECΠ,A,E := {m13[τ], m15[τ + 1]}
Ideal world: Similar to the previous case, Fupdate sends m13 to E on behalf of γi.sender
in round τ . After receiving the response m14, Fupdate creates txstate

i , txr
i, and the set

{txp
i,j}j∈[1,n]. This time Fupdate sends m17 to the simulator, which in turn, S sends m15

to the corrupted receiver in round τ .

EXECFupdate,S,E := {m13[τ], m15[τ + 1]}

Case 3: γi.sender corrupted, γi.receiver honest.

Real world: In this case, we only consider messages that are sent from the receiver.
At first, When γi.receiver gets m15 message from the sender, sends m13 to E to get the
payment value in round τ + 1. Then, this party after receiving the response from E ,
checks the validity of the transactions inside m15. Finally, she sends m16 to all other
parties, which is received by E on behalf of corrupted parties in round τ + 2.

EXECΠ,A,E := {m13[τ + 1], m16[τ + 2]}
Ideal world: S gets transactions txstate

i , and the set
{(txp

i,j , σγi.sender(txp
i,j))}j∈[1,n] from A and sends them to Fupdate via m18 if they are correct.

Fupdate sends m13 to E this time on behalf of γi.receiver in round τ + 1. If this message is
reponsed by E with m14, Fupdate checks correctness of txstate

i received from the simulator.
Fupdate sends m19 to the simulator, which in turn, S sends m16 to all corrupted parties
in round τ + 1.

EXECFupdate,S,E := {m13[τ + 1], m16[τ + 2]}

Lemma 23. The confirmation phase of protocol Π GUC-emulates the confirmation phase
of the functionality Fupdate.

Proof. Again we compare observed messages by E in the ideal world and the real world.
Let τ be the starting round, and consider the following definitions for all messages that
are used for Confirmation phase in Fupdate and Π.

341

D. Appendix to Chapter 5

• m21 := (ssidC ,UPDATE, γi.id, txstate
i .output)

• m22 := (ssidC ,UPDATED, γi.id, txstate
i .output)

• m23 := (sid,pid,confirmation, σγi.sender(txep
j))

• m24 := (sid,pid,OPENED, γi)

• m25 := (sid,pid,confirmation-ok)

• m26 := (sid,pid,send-sig, γi.sender, γj .receiver, txep
j)

• m27 := (sid,pid,confirmation-acc, γi.receiver, γj .sender)

• m28 := (sid,pid,send-confirmation-ok, γi.receiver, Pj)

• m29 := (sid,pid,confirmation-finalized, Pi, Pj)

• m30 := (sid,pid,agg-sig, {txep
j }j∈[1,n], S)

For each channel γi, both the sender and the receiver send messages to E . We need to
consider different corruption cases for these parties except the case that both of them
are corrupted.

Case 1: γi.sender honest, γi.receiver honest.

Real world: γi.sender sends m21 to FChannel in round τ to update the state of γi using
txstate

i . If the update is executed correctly, γi.sender sends m23 to each receiver. This
message is received by E on behalf of each corrupted receiver in round τ + tu + 1. Again,
if the update is executed correctly, γi.receiver waits until receiving signatures to txep

i

from all senders. Then, she sends m24 to E in round τ + tu + 1. Also, after verifying all
signatures, she sends m25 messages to all parties, which are received by E on behalf of
corrupted parties in round τ + tu + 2.

EXECΠ,A,E := {m23[τ + tu +1], m24[τ + tu +1], m25[τ + tu +2]}∪obsSet(m21, FChannel, τ)}
Ideal world: Fupdate sends m21 massage to FChannel. If the update is executed correctly,
Fupdate via message m26, asks S to generate a signature to each txep

j on behalf of γi.sender
and sends it to the corresponding receiver if the receiver is corrupted. This is done via
message m23 which is received by E in round τ + tu + 1 . Moreover, Fupdate sends m24 to
E in round τ + tu + 1 and m28 to the simulator, which in turn, S sends m25 on behalf of
γi.receiver to all corrupted parties, which is received by E in round τ + tu + 2.

EXECFupdate,S,E := {m23[τ+tu+1], m24[τ+tu+1], m25[τ+tu+2]}∪obsSet(m21, FChannel, τ)}
Case 2: γi.sender honest, γi.receiver corrupted.

Real world: In this case, we only consider messages that are sent from the sender.
γi.sender sends m21 to FChannel in round τ . If the update is executed correctly, she sends

342

D.2. UC modeling

m23 to each receiver. This message is received by E in behalf of each corrupted receiver
in round τ + tu + 1.

EXECΠ,A,E := {m23[τ + tu + 1]} ∪ obsSet(m21, FChannel, τ)

Ideal world: Again, Fupdate sends m21 massage to FChannel and if the update is executed
correctly, Fupdate sends m26 to S to generate a signature to each txep

j on behalf of γi.sender.
Then S sends it to the corresponding receiver if she is corrupted via message m23 in
round τ + tu.

EXECFupdate,S,E := {m23[τ + tu + 1]} ∪ obsSet(m21, FChannel, τ)

Case 3: γi.sender corrupted, γi.receiver honest.

Real world: In this case, we only consider messages that are sent from the receiver. If
the update is executed correctly, γi.receiver verifies received signatures to txep

i from all
senders, sends m24 to E in round τ + tu + 1, and sends m25 messages to all parties in
round τ + tu + 2.

EXECΠ,A,E := {m24[τ + tu + 1], m25[τ + tu + 2]}
Ideal world: S receives signatures form a corrupted sender. If the signature is valid S
sends m27 to Fupdate. If the update has already executed correctly, then Fupdate sends
m24 to E in round τ + tu + 1. Moreover, sends m28 to the simulator, which in turn, S
sends m25 on behalf of γi.receiver to all corrupted parties in round τ + tu + 1.

EXECFupdate,S,E := {m24[τ + tu + 1], m25[τ + tu + 2]}
Lemma 24. The finalizing phase of protocol Π GUC-emulates the finalizing phase of the
functionality Fupdate.

Proof. Again we compare observed messages by E in the ideal world and the real world.
Let τ be the starting round, and consider the following definitions for all messages that
are used for Confirmation phase in Fupdate and Π.

• m31 := (ssidC ,UPDATE, γi.id, txtrans
i .output)

• m32 := (ssidC ,UPDATED, γi.id, txtrans
i .output)

• m33 := (ssidL,POST, (txep
i , sigSet))

• m34 := (sid,pid,FINALIZED, γi)

• m35 := (sid,pid,post-texp, γi, txep
i)

For each channel γi, both the sender and the receiver send messages to E . We need to
consider different corruption cases for these parties except the case that both of them
are corrupted.

343

D. Appendix to Chapter 5

Case 1: γi.sender honest, γi.receiver honest.

Real world: γi.sender generates txin
i , which transfers αi coins from the sender to the

receiver. Then, sends m31 to FChannel in round τ . If the update fails, the receiver sends
m33 to GLedger in round τ + tu and post txep

i to the ledger. Finally, γi.receiver sends m34
to E in round τ + tu.

EXECΠ,A,E := {m34[τ + tu]} ∪ obsSet(m31, FChannel, τ)∪
obsSet(m33, GLedger, τ + tu)

Ideal world: Fupdate generates txin
i and updates the channel γi via sending m31 to

FChannel in round τ . After the update execution, Fupdate sends m34 to E in round τ + tu

and on behalf of the receiver. If the update fails, Fupdate sends m35 to S and asks it to
post txep

i on the ledger via message m33 to GLedger in round τ + tu on behalf of γi.receiver.
EXECFupdate,S,E := {m34[τ + tu]} ∪ obsSet(m31, FChannel, τ) ∪ obsSet(m33, GLedger, τ + tu)

Case 2: γi.sender honest, γi.receiver corrupted.

Real world: In this case, we ignore messages that are sent directly from the receiver to
E . γi.sender generates txin

i , and sends m33 to FChannel to update the channel.

EXECΠ,A,E := obsSet(m33, FChannel, τ)

Ideal world: Fupdate generates txin
i and updates the channel γi via sending m33 to

FChannel in round τ .

EXECFupdate,S,E := obsSet(m33, FChannel, τ)

Case 3: γi.sender corrupted, γi.receiver honest.

Real world: In this case, we only consider messages that are sent from the receiver.
γi.receiver waits until time τ + tu. If message m32 is received in this round, the final
transfer has been performed, so γi.receiver sends m34 to E . If m32 is not received and
the update fails, sends m33 to GLedger in round τ + tu.

EXECΠ,A,E := {m34[τ + tu]} ∪ obsSet(m33, GLedger, τ + tu)

Ideal world: Fupdate waits until receiving m32 from FChannel. If this happens, the
update is executed and Fupdate sends m34 to E on behalf of the receiver in round τ + tu.
Otherwise, Fupdate sends m35 to S and asks it to send m33 to GLedger on behalf of the
receiver.

EXECFupdate,S,E := {m34[τ + tu]} ∪ obsSet(m33, GLedger, τ + tu)

Lemma 25. The respond phase of protocol Π GUC-emulates the respond phase of the
functionality Fupdate.

Proof. Again we compare observed messages by E in the ideal world and the real world.
Let τ be the starting round, and consider the following definitions for all messages that
are used for Confirmation phase in Fupdate and Π.

344

D.2. UC modeling

• m36 := (ssidC ,CLOSE, γi.id)

• m37 := (ssidL,POST, txp
i,j)

• m38 := (sid,pid,PAID, γi)

• m39 := (ssidL,POST, txr
i)

• m40 := (sid,pid,FORCE-REFUND, γi)

• m41 := (sid,pid,post-pay, γi, txp
i,j)

• m42 := (sid,pid,post-refund, γi, txr
i)

For each channel γi, both the sender and the receiver send messages to E independently.
We consider cases where the parties are honest.

Case 1: γi.receiver honest, Pay.

Real world: In every round, γi.receiver checks whether one of transactions in {txep
j }j∈[1,n]

is observed on the ledger and τ < T − tc − 2∆. If so, she closes the channel γi via message
m36 to FChannel. When the channel becomes closed and txstate

i is found on the ledger,
γi.receiver waits time ∆, and then, post transaction txp

i,j , which forces the payment. This
is done by sending m37 to GLedger. The receiver finally sends m38 to E in round τ +tc +2∆

EXECΠ,A,E := {m38[τ+tc+2∆]}∪obsSet(m36, FChannel, τ)∪obsSet(m37, GLedger, τ+tc+∆)

Ideal world: In every round, Fupdate checks if one of transactions in {txep
j }j∈[1,n] is

observed on the ledger and τ < T − tc − 2∆, sends m36 to FChannel to close the channel
γi. After a successful closure, Fupdate after a time ∆, send m41 to the simulator. The S
aggregates signatures required for spending txp

i,j and sends m37 to GLedger. When this
transaction appears on the ledger, Fupdate sends m38 to E .

EXECFupdate,S,E := {m38[τ + tc + 2∆]} ∪ obsSet(m36, FChannel, τ)
∪obsSet(m37, GLedger, τ + tc + ∆)

Case 2: γi.sender honest, Revoke.

Real world: In every round, when τ is larger than T and channel γi has been closed,
but not any payment transaction txp

i,j is on the ledger, γi.sender signs txr
i and post it on

the ledger via message m39 to GLedger. After observing txr
i on the ledger, γi.sender sends

m40 to E .

EXECΠ,A,E := {m40[τ + ∆]} ∪ obsSet(m39, GLedger, τ)

Ideal world: In every round, when τ is larger than T and channel γi has been closed,
Fupdate sends m42 to the simulator, which in turn, S sign txr

i on behalf of γi.sender and
sends m39 to GLedger. When txr

i is observed on the ledger, Fupdate sends m40 to E again
on behalf of γi.sender.
EXECFupdate,S,E := {m40[τ + ∆]} ∪ obsSet(m39, GLedger, τ)

345

D. Appendix to Chapter 5

Theorem 14. For ideal functionalities FChannel, Gclock, FGDC , and GLedger and for any
T , ∆ ∈ N, the protocol Π GUC-emulates the the functionality Fupdate.

This theorem follows directly from Lemmas 20 to 25.

D.3 Discussion on security and privacy
In Section 5.3.1, we introduced the security and privacy goals of interest, atomicity,
and strong value privacy. In Section 5.5.3, we informally showed that the security and
privacy goals are achieved by our construction. Further, in Appendix D.2.4 we defined an
ideal functionality Fupdate for multi-channel updates, and then we proved that the Thora
protocol GUC-emulates the ideal functionality. In this section, formalize our security
and privacy properties and then prove that Fupdate fulfills them.

D.3.1 Atomicity

For our multi-channel updates, let U := {(γi, αi)}i∈[1,n] be the set of updates. Each tuple
(γi, αi) contains a channel γi, which will be updated, and a value αi which determines
the update amount of that channel. For each channel γi, we define the following possible
outcomes. We define γi as successful if αi coins have been transferred from the sender
to the receiver. I.e., γi.balance(γi.sender) has been decreased by αi and additionally
γi.balance(γi.receiver) has been increased by αi at the end of the protocol execution. We
define γi as reverted if, at the end of the protocol execution, the channel balance is the
same as at the start of the protocol execution. A successful or reverted channel γi can be
compensated if one of the users is malicious and deviates from protocol at the cost of
losing her funds to the neighboring user without affecting the security of other users. We
define γi as punished if there is an honest node that receives the total channel balance
via the channel punishment mechanism. For every other outcome, we say a channel is
invalid. A channel can have multiple outcomes, e.g., reverted and compensated.

Now, we define a security game AtomA,Π as follows. The adversary A selects a set of
n channels {γ1, γ2, ..., γn}, chooses the corrupted users from the users of these channels,
selects dealer and sends these values to the challenger. The challenger sets sid and pid
to two random identifiers. With these parameters, the challenger starts running Thora
from the Initialization phase on the input of the channels set for the given dealer. The
behavior of honest parties can be simulated directly by the challenger, and every time a
corrupted party needs to be contacted, the challenger sends the query to A and waits for
the corresponding answer. A can respond correctly, wrongly, not at all, manipulate the
ledger by posting (valid) transactions, updating channels, etc.

After the protocol execution terminates, we say that A wins if one of the following cases
holds after the execution.

1. There exist two channels γi, γj , each with at least one honest user, where γi is
successful, and γj is reverted, and none of the channels are compensated.

346

D.3. Discussion on security and privacy

2. There exists any channel γi without two corrupted nodes such that γi is invalid or
channel γj with two honest users such that γj is punished.

Definition 15. We say that a multi-channel updates protocol achieves atomicity if, for
every PPT adversary A, the adversary wins the AtomA,Π game with negligible probability.

Theorem 15. The multi-channel updates functionality Fupdate achieves atomicity prop-
erty defined in Definition 15.

Proof. Assume that there is an adversary A that can win the game AtomA,Π, which
implies that at least one of the two conditions (1) or (2) from the game definitions holds.

Suppose that (1) holds. We have two possible scenarios. First, Fupdate has created txtrans
i

in the Finalizing phase, and has updated the channel γi using txtrans
i successfully. Second,

at least one txep
k and txp

i,k are on the ledger.

If we are in the first case, both γi and γj have been entered into the Finalizing phase
of Fupdate because both have at least one honest user. If γj .receiver is honest, Fupdate

forces the payment of γj either by updating with txtrans
j or posting txep

j in the finalizing
phase. Note that if one txep appears on the ledge, as γj .receiver is honest, Fupdate forces
the payment in the response phase.

Now consider the case that γj .receiver is malicious. By the assumption γj .sender is honest.
As Fupdate has started the finalizing phase, txtrans

j should be generated, and γj should be
tried to be updated using txtrans

j unless γj .receiver does not cooperate in the updating.
In this case, γj will be compensated.

If we are in the second case, if γj .receiver is honest, Fupdate forces the payment on behalf
of her in the response phase. If γj .receiver is malicious, she has refused to force the
payment by posting txp

k,j and γj would be compensated. It follows that (1) cannot hold.

Similarly, (2) cannot hold: The only possible outcomes that the ideal functionality allows
for channels with at least one honest node are successful, reverted, or compensated. Since
both (1) and (2) cannot hold, it follows that such an adversary does not exist.

D.3.2 Strong value privacy

For a protocol Π and an adversary A, we define another game VPriv to capture the strong
value privacy property. A selects dealer, and chooses a set of n channels {γ1, γ2, ..., γn},
where for each channel γi both γi.receiver and γi.sender are honest or semi-honest parties.
In other words, corrupted parties involved in the protocol do not deviate from the protocol
during the execution. The goal A is to guess the payment values regarding the channels
with both honest senders and honest receivers. A has access to messages sent from honest
parties to corrupted ones and publicly auditable parameters, like transactions posted to
the ledger.

A sends the set of channels to the challenger. The challenger sets sid and pid to two
random identifiers. Then, the challenger starts simulating Thora from the Initialization

347

D. Appendix to Chapter 5

phase on the input of the channels set for the given dealer. We assume that messages
honest parties receive from E about the payment values (REQ-VALUE messages) are not
leaked to any other parties. Moreover, we assume the values E sends to the receiver and
the sender of a single channel are the same.

By the end of the protocol simulation, A sends the set {α′
i1 , α′

i2 , ..., α′
ik

} to the challenger,
each α′

ij
is the guess of A for the payment value in channel γij where both the sender and

the receiver are honest. We say that A wins the game if there is at least one j ∈ [1, k]
such that α′

ij
= αij .

Definition 16. We say that a multi-channel updates protocol achieves strong value
privacy if for every PPT adversary A, the adversary wins the VPrivA,Π game with
negligible probability.

Theorem 16. The multi-channel updates functionality Fupdate achieves the strong value
privacy property.

Proof. We assume that k is negligible with regard to the size of the domain which
payment values can be chosen from. Thus, without any leaked information about payment
values, the probability of the adversary winning the game is negligible.

Suppose that there is an adversary A that can win the game VPrivA,Π with a non-
negligible probability. It means that there is a payment value αij , where A is able to
extract some information about the value and guess α′

ij
, such that α′

ij
= αij . The only

ways to get information about αij are the messages Fupdate sends to corrupted parties
and transactions that are posted to the ledger.

αij is encoded only in four types of transactions. txstate
ij

, {txp
ij ,k}k∈[1,n], txr

ij
, and txtrans

ij
.

γij .sender is honest so all these transactions are created by Fupdate. txr
ij

and txtrans
ij

are
never sent to other parties inside exchanged messages. Moreover, because γij .receiver is
honest, Fupdate will not sent txstate

ij
, txp

ij ,k neither to γij .receiver nor other parties.

On the other hand, since all parties are honest or semi-honest and do not deviate from the
protocol, we expect the final update using transaction txtrans

ij
to be executed successfully

for all channels, and no txep is required to be posted on the ledger. Therefore, in the
respond phase, txstate

ij
, txp

ij ,k, or txr
ij

are not required to be posted on the ledger, and A
has no way to observe these transactions.

348

APPENDIX E
Appendix to Chapter 6

E.1 On the usage of the UC-Framework
To formally model the security of our construction, we use a synchronous version of the
global UC framework (GUC) [CDPW07] which extends the standard UC framework
[Can01] by allowing for a global setup. Since our model is essentially the same as
in [AEE+21], which in turn follows [DFH18,DEF+19b], parts of this section are taken
verbatim from there.

Protocols and adversarial model. We consider a protocol π that runs between
parties from the set P = {P1, . . . , Pn}. A protocol is executed in the presence of an
adversary A that takes as input a security parameter 1λ (with λ ∈ N) and an auxiliary
input z ∈ {0, 1}∗, and who can corrupt any party Pi at the beginning of the protocol
execution (so-called static corruption). By corruption, we mean that A takes full control
over Pi and learns its internal state. Parties and the adversary A receive their inputs
from a special entity – called the environment E – which represents anything “external”
to the current protocol execution. The environment also observes all outputs returned
by the parties of the protocol. In addition to the above entities, the parties can have
access to ideal functionalities H1, . . . , Hm. In this case we say that the protocol π works
in the (H1, . . . , Hm)-hybrid model and write πH1,...,Hm .

Modeling time and communication. We assume a synchronous communication
network, which means that the execution of the protocol happens in rounds. Let us
emphasize that the notion of rounds is just an abstraction which simplifies our model
and allows us to argue about the time complexity of our protocols in a natural way. We
follow [DEF+19b], which in turn follows [KMTZ13], and formalize the notion of rounds
via an ideal functionality Fclock representing “the clock”. On a high level, the ideal
functionality requires all honest parties to indicate that they are prepared to proceed to
the next round before the clock is “ticked”. We treat the clock functionality as a global

349

E. Appendix to Chapter 6

ideal functionality using the GUC model. This means that all entities are always aware
of the given round.

We assume that parties of a protocol are connected via authenticated communication
channels with guaranteed delivery of exactly one round. This means that if a party P
sends a message m to party Q in round t, party Q receives this message in the beginning
of round t + 1. In addition, Q is sure that the message was sent by party P . The
adversary can see the content of the message and can reorder messages that were sent
in the same round. However, it can not modify, delay or drop messages sent between
parties, or insert new messages. The assumptions on the communication channels are
formalized as an ideal functionality FGDC . We refer the reader to [DEF+19b] its formal
description.

While the communication between two parties of a protocol takes exactly one round, all
other communication – for example, between the adversary A and the environment E –
takes zero rounds. For simplicity, we assume that any computation made by any entity
takes zero rounds as well.

Handling coins. We model the money mechanics offered by UTXO cryptocurrencies,
such as Bitcoin, via a global ideal functionality L using the GUC model. Our functionality
is parameterized by a delay parameter ∆ which upper bounded in the maximal number of
rounds it takes to publish a valid transaction, and a signature scheme Σ. The functionality
accepts messages from a fixed set of parties P.

The ledger functionality L is initiated by the environment E via the following steps: (1)
E instructs the ledger functionality to generate public parameter of the signature scheme
pp; (2) E instructs every party P ∈ P to generate a key pair (skP , pkP) and submit the
public key pkP to the ledger via the message (register, pkP); (3) sets the initial state of
the ledger meaning that it initialize a set TX defining all published transactions.

Once initialized, the state of L is public and can be accessed by all parties of the protocol,
the adversary A, and the environment E . Any party P ∈ P can at any time post a
transaction on the ledger via the message (post, tx). The ledger functionality waits for at
most ∆ rounds (the exact number of rounds is determined by the adversary). Thereafter,
the ledger verifies the validity of the transaction and adds it to the transaction set TX.
The formal description of the ledger functionality follows.

Ideal Functionality L(∆, Σ)

The functionality accepts messages from all parties that are in the set P and maintains a PKI
for those parties. The functionality maintains the set of all accepted transactions TX and all
unspent transaction outputs UTXO. The set V defines valid output conditions.

Initialize public keys: Upon (register, pkP) τ0←− P and it is the first time P sends a registration
message, add (pkP , P) to PKI.

Post transaction: Upon (post, tx) τ0←− P , check that |PKI| = |P|. If not, drop the message, else

350

E.1. On the usage of the UC-Framework

wait until round τ1 ≤ τ0 + ∆ (the exact value of τ1 is determined by the adversary). Then
check if:
1. The id is unique, i.e. for all (t, tx′) ∈ TX, tx′.txid ̸= tx.txid.
2. All the inputs are unspent and the witness satisfies all the output conditions, i.e. for each

(tid, i) ∈ tx.input, there exists (t, tid, i, θ) ∈ UTXO and θ.φ(tx, t, τ1) = 1.
3. All outputs are valid, i.e. for each θ ∈ tx.output it holds that θ.cash > 0 and θ.φ ∈ V.
4. The value of the outputs is not larger than the value of the inputs. More formally, let

I := {utxo := (t, tid, i, θ) | utxo ∈ UTXO ∧ (tid, i) ∈ tx.input}, then it must hold that
θ′∈tx.output θ′.cash ≤ utxo∈I utxo.θ.cash

5. The absolute time-lock of the transaction has expired, i.e. it must hold that tx.TimeLock ≤
now.

If all the above checks return true, add (τ1, tx) to TX, remove the spent outputs from UTXO, i.e.,
UTXO := UTXO \ I and add the outputs of tx to UTXO, i.e., UTXO := UTXO ∪ {(τ1, tx.txid, i, θi)}i∈[n]
for (θ1, . . . , θn) := tx.output. Else, ignore the message.

Let us emphasize that our ledger functionality is fairly simplified. In reality, parties can
join and leave the blockchain system dynamically. Moreover, we completely abstract from
the fact that transactions are published in blocks which are proposed by parties and the
adversary. Those and other features are captured by prior works, such as [BMTZ17], that
provide a more accurate formalization of the Bitcoin ledger in the UC framework [Can01].
However, interaction with such ledger functionality is fairly complex. To increase the
readability of our channel protocols and ideal functionality, which is the main focus of
our work, we decided on this simpler ledger.

The GUC-security definition. Let π be a protocol with access to the global ledger
L(∆, Σ), the global clock Fclock and ideal functionalities H1, . . . , Hm. The output of
an environment E interacting with a protocol π and an adversary A on input 1λ and
auxiliary input z is denoted as

EXEC L(∆,Σ),Fclock ,H1,...,Hm

π,A,E (λ, z).

Let ϕF be the ideal protocol for an ideal functionality F with access to the global ledger
L(∆, Σ) and the global clock Fclock . This means that ϕF is a trivial protocol in which
the parties simply forward their inputs to the ideal functionality F . The output of an
environment E interacting with a protocol ϕF and a adversary S (sometimes also call
simulator) on input 1λ and auxiliary input z is denoted as

EXEC L(∆,Σ),Fclock
ϕF ,S,E (λ, z).

We are now ready to state our main security definition which, informally, says that if a
protocol π UC-realizes an ideal functionality F , then any attack that can be carried out
against the real-world protocol π can also be carried out against the ideal protocol ϕF .

Definition 17. A protocol π working in a (H1, . . . , Hm)-hybrid model UC-realizes an
ideal functionality F with respect to a global ledger L := L(∆, Σ) and a global clock Fclock

351

E. Appendix to Chapter 6

if for every adversary A there exists an adversary S such that we have
EXEC L,Fclock ,H1,...,Hm

π,A,E (λ, z)
λ∈N,

z∈{0,1}∗

c≈

EXEC L,Fclock
ϕF ,S,E (λ, z)

λ∈N,
z∈{0,1}∗

(where “ c≈” denotes computational indistinguishability of distribution ensembles, see,
e.g., [Gol06]).

To simplify exposition, we omit the session identifiers sid and the sub-session identifiers
ssid. Instead, we will use expressions like “message m is a reply to message m′”. We
believe that this approach improves readability.

E.2 Adaptor Signatures
Adaptor signatures have been introduced and used in the cryptocurrency community for
some time, but have been formalized for the first time in [AEE+21]. These signatures
not only allow for authentication as normal signature schemes do but also reveal a secret
value upon publishing. Here we recall the definition of an adaptor signature scheme
from [AEE+21]. In a nutshell, an adaptor signature is generated in two phases. First, a
pre-signature is computed w.r.t. some statement Y of a hard relation R e.g. Y = gy where
g is the generator of the group G in which computing the discrete logarithm is hard. We
define LR to be the associated language for R defined as LR := {Y | ∃y s.t. (Y , y) ∈ R}.
This pre-signature can be adapted to a full signature given a witness y for the statement
Y , i.e. (Y , y) ∈ R. Furthermore, given the pre-signature and the adapted full signature
one can extract a witness y. We now recall the definition for adaptor signature schemes
from [AEE+21].

Definition 18 (Adaptor Signature Scheme). An adaptor signature scheme wrt. a hard
relation R and a signature scheme Σ = (Gen, Sign, Vrfy) consists of four algorithms
ΞR.Σ = (pSign, Adapt, pVrfy, Ext) defined as:

pSignsk(m, Y): is a PPT algorithm that on input a secret key sk, message m ∈ {0, 1}∗

and statement Y ∈ LR, outputs a pre-signature σ̃.

pVrfypk(m, Y ; σ̃): is a DPT algorithm that on input a public key pk, message m ∈ {0, 1}∗,
statement Y ∈ LR and pre-signature σ̃, outputs a bit b.

Adapt(σ̃, y): is a DPT algorithm that on input a pre-signature σ̃ and witness y, outputs
a signature σ.

Ext(σ, σ̃, Y): is a DPT algorithm that on input a signature σ, pre-signature σ̃ and
statement Y ∈ LR, outputs a witness y such that (Y , y) ∈ R, or ⊥.

352

E.3. Additional material to ledger channels

We now briefly recall the properties that an adaptor signature scheme must satisfy and
refer the reader to [AEE+21] for the formal definitions.

Correctness. An adaptor signature should not only satisfy the standard signature
correctness, but it must also satisfy pre-signature correctness. This property guarantees
that if a pre-signature is generated honestly (wrt. a statement Y ∈ LR), it can be adapted
into a valid signature such that a witness for Y can be extracted.

Existential unforgeability under chosen message attack for adaptor signa-
tures. Unforgeability for adaptor signatures is very similar to the normal definition
of existential unforgeability under chosen message attacks for digital signatures, but it
additionally requires that producing a forged signature σ for a message m is hard even
if the adversary is given a pre-signature on the challenge message m w.r.t. a random
statement Y ∈ LR.

Pre-signature adaptability. Intuitively it is required that any valid pre-signature
w.r.t. Y (even when produced by a malicious signer) can be completed into a valid
signature using the witness y where (Y , y) ∈ R.

Witness extractability. In a nutshell, this property states that given a valid signature
/ pre-signature pair (σ, σ̃) for a message m with respect to a statement Y , one can extract
the corresponding witness y.

E.3 Additional material to ledger channels

E.3.1 Ledger channels

For completeness, we recall the ledger channel ideal functionality FL from [AEE+21].
We then show that we cannot use this ideal functionality in a black-box way and instead,
we introduce a wrapped ledger channel functionality FpreL. Finally, we present a protocol
ΠpreL that realizes FpreL.

E.3.2 Ledger Channel Functionality

We now recall the ideal functionality for ledger channels FL(Tp, k) from [AEE+21]. This
functionality is parameterized by Tp ∈ N that upper bounds the number of consecutive
off-chain communication rounds between parties and a parameter k ∈ N that defined
the number of ways a channel can be closed (i.e., number of commit transactions per
update).

Following [AEE+21], the pseudocode presented below excludes several checks that one
would expect the functionality to make. We formalize all the missing checks in form of
a functionality wrapper in Appendix E.5. Moreover, in order to simplify the notation
in the functionality description, we write m

t−→ P as a short hand form for “send the
message m to party P in round t.” and m

t←− P for “receive a message m from party P
in round t”.

353

E. Appendix to Chapter 6

Ideal Functionality FL(Tp, k)

We abbreviate Q := γ.otherParty(P) for P ∈ γ.users.

Create

Upon (CREATE, γ, tidP) τ0←− P , let S define T1 ≤ T and:

Both agreed: If already received (CREATE, γ, tidQ) τ←− Q, where τ0 − τ ≤ T1, wait if in round
τ1 ≤ τ + ∆ + T1 a transaction tx, with tx.input = (tidP , tidQ) and tx.output = (γ.cash,
φ), appears on the ledger L. If yes, set Γ(γ.id) := (γ, tx) and (CREATED, γ.id) τ1−→ γ.users.
Else stop.

Wait for Q: Else store the message and stop.

Update

Upon (UPDATE, id, −→
θ , tstp) τ0←− P , let S define T1, T2 ≤ T , parse (γ, tx) := Γ(id) and proceed as

follows:

1. In round τ1 ≤ τ0 + Tp, let S set |tid| = k. Then (UPDATE–REQ, id, −→
θ , tstp, tid) τ1−→ Q and

(SETUP, id, tid) τ1−→ P .

2. If (SETUP–OK, id)
τ2≤τ1+tstp←−−−−−− P , then (SETUP–OK, id) τ2+T1−−−−→ Q. Else stop.

3. If (UPDATE–OK, id) τ2+T1←−−−− Q, then (UPDATE–OK, id) τ2+2T1−−−−→ P . Else distinguish:

• If Q honest or if instructed by S, stop (update rejected).
• Else execute L–ForceClose(id) and stop.

4. If (REVOKE, id) τ2+2T1←−−−− P , (REVOKE–REQ, id) τ2+2T1+T2−−−−−−−→ Q. Else execute L–ForceClose(id)
and stop.

5. If (REVOKE, id) τ2+2T1+T2←−−−−−−− Q, set γ.st = θ and Γ(id) := (γ, tx). Then (UPDATED, id, θ)
τ2+2T1+2T2−−−−−−−−→ γ.users and stop. Else distinguish:

• If Q honest, execute L–ForceClose(id) and stop.
• If Q corrupt, and wait for ∆ rounds. If tx still unspent, then set θold := γ.st,

γ.st := {θold , θ} and Γ(id) := (γ, tx). Execute L–ForceClose(id) and stop.

Close

Upon (CLOSE, id) τ0←− P , let S define T1 ≤ T and distinguish:

354

E.3. Additional material to ledger channels

Both agreed: If you received (CLOSE, id) τ←− Q, where τ0 − τ ≤ T1, let (γ, tx) := Γ(id) and
distinguish:

• If in round τ1 ≤ τ + T1 + ∆ a transaction tx′, with tx′.output = γ.st and tx′.input =
tx.txid, appears on L, set Γ(id) := (⊥, tx), (CLOSED, id) τ1−→ γ.users and stop.

• If tx is still unspent in round τ + T1 + ∆, output (ERROR) τ+T1+∆−−−−−→ γ.users and
stop.

Wait for Q: Else wait for at most T1 rounds to receive (CLOSE, id) τ≤τ0+T1←−−−−−− Q (in that case op-
tion “Both agreed” is executed). If such message is not received, execute L–ForceClose(id)
in round τ0 + T1.

Punish (executed at the end of every round τ0)

For each (γ, tx) ∈ Γ check if L contains tx′ with tx′.input = tx.txid. If yes, then distinguish:

Punish: For P ∈ γ.users honest, the following must hold: in round τ1 ≤ τ0 + ∆, a transaction
tx′′ with tx′′.input = tx′.txid and tx′′.output = (γ.cash, One–SigpkP

) appears on L. Then
send (PUNISHED, id) τ1−→ P , set Γ(id) := ⊥ and stop.

Close: Either Γ(id) = (⊥, tx) before round τ0 + ∆ (channels was peacefully closed) or in round
τ1 ≤ τ0 + 2∆ a transaction tx′′, with tx′′.output ∈ γ.st and tx′′.input = tx′.txid, appears
on L (channel is forcefully closed). In the latter case, set Γ(id) := (⊥, tx) and (CLOSED,
id) τ1−→ γ.users.

Error: Otherwise (ERROR) τ0+2∆−−−−→ γ.users.

Subprocedure L–ForceClose(id)

Let τ0 be the current round and (γ, tx) := Γ(id). If within ∆ rounds tx is still an unspent
transaction on L, then (ERROR) τ0+∆−−−→ γ.users and stop. Else, latest in round τ0 + 3∆,
m ∈ {CLOSED, PUNISHED,ERROR} is output via Punish.

E.3.3 Wrapped ledger channel functionality

For technical reasons, we cannot use the ledger channel functionality FL(Tp, k) for building
virtual channels in a black-box way. The main problem comes from the offloading feature
of virtual channels. In order to overcome these issues, we present FpreL(Tp, k), an ideal
functionality that extends FL(Tp, k) to support the preparation of generalized channels
ahead of time and later registration of such prepared generalized channels. Technically,
the functionality extension is done by wrapping the original functionality. Before we
present the functionality wrapper FpreL(Tp, k) formally, let us explain each of its parts
on a high level.

355

E. Appendix to Chapter 6

Generalized channels. The functionality treats messages about standard generalized
channels exactly as the functionality FL(Tp, k) presented earlier in this section.

Creation. In order to pre-create a generalized channel γ, both end-users of the channel
must send the message (PRE–CREATE, γ, txf , i, tofl) to the ideal functionality. Here txf ||i
identifies the funding of the channel and tofl ∈ N represents the maximal number of rounds
it should take to publish the channel funding transaction on-chain. If the functionality
receives such a message from both parties within Tp rounds, it stores the channel γ, the
funding identifier, and the waiting time to a special channel set Γpre, and informs both
parties about the successful pre-creation.

Update. The update process works similarly as for standard ledger channels with one
difference. If the update process fails at some point (e.g., one of the parties does not
revoke), the functionality does not call L–ForceClose since there is no ledger channel
to be forcefully closed. Instead, it calls a subprocedure called Wait–if–Register which
add a flag “in–dispute” to the channel and waits for at most tofl rounds if the prepared
channel is turned into a standard generalized channel (i.e., the corresponding funding
transaction is added to the blockchain). If not, then it adds the new channel state back
into the set of prepared (not yet full-fledged) channel states.

Register. The ideal functionality constantly monitors the ledger. Once the funding
transaction of one of the channels in preparation appears on-chain, the functionality
moves the information about the channel from the channel space Γpre to the channel
space Γ. Moreover, if the channel in preparation was marked as “in–dispute”, then it
immediately calls L–ForceClose.

The formal functionality description on the functionality wrapper FpreL(Tp, k) follows.
Again, for the sake of readability, we exclude several natural checks from the functionality
description. These checks are formalized in Appendix E.5.

Wrapped Ledger Channel Functionality FpreL(Tp, k)

We abbreviate Q := γ.otherParty(P) for P ∈ γ.users.

Ledger Channels

Upon receiving a CREATE, UPDATE, SETUP–OK, UPDATE–OK, REVOKE or CLOSE message, then
behave exactly as the functionality FL(Tp, k).

Pre-Create

Upon (PRE–CREATE, γ, txf , i, tofl) τ0←− P , let S define T1 ≤ T and:

356

E.3. Additional material to ledger channels

Both agreed: If already received (PRE–CREATE, γ, txf , i, tofl) τ←− Q, where τ0 − τ ≤ T1, check
that txf .output[i].cash = γ.cash. If yes, set Γpre(γ.id) := (γ, txf , tofl) and (PRE–CREATED,
γ.id) τ0−→ γ.users. Else stop.

Wait for Q: Else store the message and stop.

Pre-Update

Upon (PRE–UPDATE, id, −→
θ , tstp) τ0←− P , let S define T1, T2 ≤ T , parse (γ, txf , t) := Γpre(id) and

proceed as follows:

1. In round τ1 ≤ τ0 + Tp, let S set |tid| = k. Then (PRE–UPDATE–REQ, id, −→
θ , tstp, tid) τ1−→ Q and

(PRE–SETUP, id, tid) τ1−→ P .

2. If (PRE–SETUP–OK, id)
τ2≤τ1+tstp←−−−−−− P , then (PRE–SETUP–OK, id) τ2+T1−−−−→ Q. Else stop.

3. In round τ2 + T1 distinguish:

• If (PRE–UPDATE–OK, id) τ2+T1←−−−− Q, then (PRE–UPDATE–OK, id) τ2+2T1−−−−→ P .

• If not and Q honest or if instructed by S, (PRE–UPDATE–REJECT, id) τ2+2T1−−−−→ P .
• Else execute Wait–if–Register(id) and stop.

4. If (PRE–REVOKE, id) τ2+2T1←−−−− P , (PRE–REVOKE–REQ, id) τ2+2T1+T2−−−−−−−→ Q. Else execute
Wait–if–Register(id) and stop.

5. If (PRE–REVOKE, id) τ2+2T1+T2←−−−−−−− Q, set γ.st = θ and ΓV (id) := (γ, txf). Then (PRE–UPDATED,
id, θ) τ2+2T1+2T2−−−−−−−−→ γ.users and stop. Else Wait–if–Register(id) and stop.

Register – executed in every round

Let t0 be the current round. For every (γ, txf) ∈ Γpre check if txf appears on the ledger L. If
yes, then Γpre(γ.id) = ⊥ and Γ(γ.id) = (γ, txf).

Subprocedure Wait–if–Register(id)

Let τ0 be the current round and (γ, txf , tofl) := Γpre(id).

1. Set Γpre(id) := (γ, txf , tofl , in–dispute).
2. Wait for tofl rounds. If after this time, Γpre(id) ̸= ⊥, then set θold := γ.st, γ.st := {θold, θ}

and Γpre(id) := (γ, txf , tofl , in–dispute).

357

E. Appendix to Chapter 6

E.3.4 Realizing the wrapped functionality

While [AEE+21] presents a protocol ΠL that realizes the ideal functionality FL, it does
not say anything about our wrapped functionality FpreL. In order to have such protocol,
we design a protocol wrapper around the protocol ΠL and prove that such wrapped
protocol, which we denote ΠpreL realizes the ideal functionality FpreL. Note that, just
like ΠL, ΠpreL uses the adaptor signature primitive that we recalled in Appendix E.2.

Let us stress that the protocol wrapper very closely follows the protocol for ledger
channels. Below we stress the main difference and thereafter we formally define the
protocol for completeness.

Pre-Create. The only difference between the pre-create and create is that in pre-create
txf is neither generated by the parties nor posted on the ledger and is given as an
input from the environment. Intuitively this is a funding transaction that might be
posted in the future. Hence such channels are called pre-created or prepared channels.
Pre-Update. During the pre-update procedure, parties update the state of the pre-
created channel as in normal ledger channels, but parties cannot directly force-close the
channel since the funding transaction is not posted on the ledger yet. Hence in case of
dispute parties first have to post this transaction on the ledger this is captured in calls
to Wait–if–Register sub-procedure.

Register. This is a new procedure in order to capture the situation during which the
funding transaction of a pre-created channel is posted on the ledger. In this case, the
pre-created channel is transformed into a normal ledger channel and is added to the list
of ledger channels. Furthermore, if this channel was in dispute, it is directly force closed.

To sum up, parties upon receiving one of the PRE–UPDATE, PRE–SETUP–OK, PRE–UPDATE–OK
or PRE–REVOKE messages, behave as in the protocol ΠL with the following changes:

• Use the channel space ΓP
pre instead of ΓP .

• Add tofl rounds to the absolute time lock of new TXc.
• Replace calls to L–ForceCloseP by calls to Wait–if–RegisterP which marks a

channel to be in dispute.
• In case the reacting party peacefully rejects the update, output PRE–UPDATE–REJECT

before you stop.
• When the protocol instructs you to output a m-message, where m ∈ {UPDATE–REQ,

SETUP, SETUP–OK, UPDATE–OK, REVOKE–REQ, UPDATED}, then output PRE–m.

We are now prepared to present the formal description of the protocol. As for the ideal
functionalities, we exclude several natural checks that parties have to make. We present
all these checks in the form of a protocol wrapper in Appendix E.5.

Wrapped Ledger Channel Protocol ΠpreL

Below, we abbreviate Q := γ.otherParty(P) for P ∈ γ.users.

358

E.3. Additional material to ledger channels

Ledger channels

Upon receiving a CREATE, UPDATE, SETUP–OK, UPDATE–OK, REVOKE or CLOSE message, then
behave exactly as in the protocol ΠL.

Pre-Create

Party P upon (PRE–CREATE, γ, txf , i, tofl) t0←− E :

1. If txf .output[i].cash ̸= γ.cash, then ignore the message.
2. Set id := γ.id, generate (RP , rP) ← GenR, (YP , yP) ← GenR and send (createInfo, id, txf , i,

tofl , RP , YP) t0−→ Q.
3. If (createInfo, id, txf , i, tofl , RQ, YQ) t0+1←−−− Q, create:

[TXc] := GenCommit([txf], IP , IQ, 0)
[TXs] := GenSplit([TXc].txid∥1, γ.st)

for IP := (pkP , RP , YP), IQ := (pkQ, RQ, YQ). Else stop.
4. Compute sP

c ← pSignskP
([TXc], YQ), sP

s ← SignskP
([TXs]) and send (createCom, id, sP

c , sP
s)

t0+1−−−→ Q.
5. If (createCom, id, sQ

c , sQ
s) t0+2←−−− Q, s.t. pVrfypkQ

([TXc], YP ; sQ
c) = 1 and VrfypkQ

([TXs];
sQ

s) = 1, set

TXc := ([TXc], {SignskP
([TXc]), Adapt(sQ

c , yP)})
TXs := ([TXs], {sP

s , sQ
s })

ΓP
pre(γ.id) := (γ, txf , (TXc, rP , RQ, YQ, sP

c), TXs, tofl).

and send (PRE–CREATED, id) t0+2−−−→ E .

Pre-Update

Party P upon (PRE–UPDATE, id, −→
θ , tstp) t0←− E

1. Generate (RP , rP) ← GenR, (YP , yP) ← GenR and send the message (updateReq, id, −→
θ , tstp,

RP , YP) t0−→ Q.

Party Q upon (updateReq, id, −→
θ , tstp, RP , YP) τ0←− P

2. Generate (RQ, rQ) ← GenR and (YQ, yQ) ← GenR.
3. Extract txf and tofl from ΓP

pre(id).

359

E. Appendix to Chapter 6

4. Set tlock := τ0 + tstp + 4 + ∆ + tofl and

[TXc] := GenCommit([txf], IP , IQ, tlock)
[TXs] := GenSplit([TXc].txid∥1, θ)

where IP := (pkP , RP , YP), IQ := (pkQ, RQ, YQ).
5. Sign sQ

s ← SignskQ
([TXs]), send (updateInfo, id, RQ, YQ, sQ

s) τ0−→ P , (PRE–UPDATE–REQ, id, −→
θ ,

tstp, TXs.txid) τ0+1−−−→ E .

Party P upon (updateInfo, id, hQ, YQ, sQ
s) t0+2←−−− Q

6. Extract txf and tofl from ΓQ
pre(id).

7. Set tlock := t0 + tstp + 5 + ∆ + tofl , and

[TXc] := GenCommit([txf], IP , IQ, tlock)
[TXs] := GenSplit([TXc].txid∥1, θ),

for IP := (pkP , RP , YP) and IQ := (pkQ, RQ, YQ). If it holds that VrfypkQ
([TXs]; sQ

s) = 1,

(PRE–SETUP, id, TXs.txid) t0+2−−−→ E . Else stop.
8. If (PRE–SETUP–OK, id)

t1≤t0+2+tstp←−−−−−−−− E , compute the values sP
c ← pSignskP

([TXc], YQ),
sP

s ← SignskP
([TXs]) and send the message (updateComP, id, sP

c , sP
s) t1−→ Q. Else stop.

Party Q

9. If (updateComP, id, sP
c , sP

s)
τ1≤τ0+2+tstp←−−−−−−−− P , s.t. pVrfypkP

([TXc], YQ; sP
c) = 1 and

VrfypkP
([TXs]; sP

s) = 1, output (PRE–SETUP–OK, id) τ1−→ E . Else stop.
10. If (PRE–UPDATE–OK, id) τ1←− E , pre-sign sQ

c ← pSign([TXc], YP) and send (updateComQ, id,
sQ

c) τ1−→ P . Else send the message (updateNotOk, id, rQ) τ1−→ P and stop.

Party P

11. In round t1 + 2 distinguish the following cases:
• If (updateComQ, id, sQ

c) t1+2←−−− Q, s.t. pVrfypkQ
([TXc], YP ; sQ

c) = 1, output (PRE–UPDATE–OK,

id) t1+2−−−→ E .
• If (updateNotOk, id, rQ) t1+2←−−− Q, s.t. (RQ, rQ) ∈ R, add ΘP (id) := ΘP (id) ∪ ([TXc], rQ,

YQ, sP
c), output the message (PRE–UPDATE–REJECT) t1+2−−−→ E and stop.

• Else, execute the procedure Wait–if–RegisterP (id) and stop.

360

E.3. Additional material to ledger channels

12. If (PRE–REVOKE, id) t1+2←−−− E , parse ΓP
pre(id) as (γ, txf , (TXc, r̄P , R̄Q, ȲQ, s̄P

Com), txs) and update
the channel space as ΓP

pre(id) := (γ, txf , (TXc, rP , RQ, YQ, sP
c), TXs), for TXs := ([TXs], {sP

s ,
sQ

s }) and TXc := ([TXc], {SignskP
([TXc]), Adapt(sQ

c , yP)})., and send (revokeP, id, r̄P) t1+2−−−→ Q.
Else, execute Wait–if–RegisterP (id) and stop.

Party Q

13. Parse ΓQ
pre(id) as (γ, txf , (TXc, r̄Q, R̄P , ȲP , s̄Q

Com), txs). If (revokeP, id, r̄P) τ1+2←−−− P , s.t. (R̄P ,
r̄P) ∈ R, (PRE–REVOKE–REQ, id) τ1+2−−−→ E . Else execute Wait–if–RegisterQ(id) and stop.

14. If (PRE–REVOKE, id) τ1+2←−−− E as a reply, set

ΘQ(id) :=ΘQ(id) ∪ ([TXc], r̄P , ȲP , s̄Q
Com)

ΓQ
pre(id) :=(γ, txf , (TXc, rQ, RP , YP , sQ

c), TXs),

for TXs := ([TXs], {sP
s , sQ

s }), TXc := ([TXc], {SignskQ
([TXc]), Adapt(sP

c , yQ)}), and send
(revokeQ, id, r̄Q) τ1+2−−−→ P . In the next round (PRE–UPDATED, id) τ1+3−−−→ E and stop. Else, in
round τ1 + 2, execute Wait–if–RegisterQ(id) and stop.

Party P

15. If (revokeQ, id, r̄Q) t1+4←−−− Q s.t. (R̄Q, r̄Q) ∈ R, then set ΘP (id) := ΘP (id) ∪ ([TXc], r̄Q, ȲQ,
s̄P

Com) and (PRE–UPDATED, id) t1+4−−−→ E . Else execute Wait–if–RegisterP (id) and stop.

Register

Party P in every round t0: For each id ∈ {0, 1}∗ s.t. ΓP
pre(id) ̸= ⊥:

1. Parse ΓP
pre(id) := (γ, txf , (TXc, rP , RQ, YQ, sP

c), TXs, tofl , x)

2. If txf appeared on-chain in this round, then

a) Set Γ(id) := (γ, txf , (TXc, rP , RQ, YQ, sP
c), TXs).

b) Set ΓP
pre(id) := ⊥

c) If x = in–dispute, then call L–ForceCloseP (id).

Subprocedures

361

E. Appendix to Chapter 6

GenCommit([txf], (pkP , RP , YP), (pkQ, RQ, YQ), t) :
Let (c, Multi–SigpkP ,pkQ

) := txf .output[1] and denote

φ1 := Multi–SigToKey(RQ),ToKey(YQ),pkP
,

φ2 := Multi–SigToKey(RP),ToKey(YP),pkQ
,

φ3 := CheckRelative∆ ∧ Multi–SigpkP ,pkQ
.

Return [tx], where tx.input = txf .txid∥1, tx.output := (c, φ1 ∨ φ2 ∨ φ3) and set tx.TimeLock to t
if t > now and to 0 otherwise.
GenSplit(tid, θ):
Return [tx], where tx.input := tid and tx.output := θ.

Wait–if–RegisterP (id):
Let t0 be the current round. Let X := ΓP

pre(id). Then set ΓP
pre(id) := (X, in–dispute).

Theorem 17. Let Σ be a signature scheme that is existentially unforgeable against
chosen message attacks, R a hard relation, and ΞR,Σ a secure adaptor signature scheme.
Then for any ledger delay ∆ ∈ N, the protocol ΠpreL UC-realizes the ideal functionality
FpreL(3, 1).

E.4 Virtual Channels
In this section, we first describe and present the ideal functionality FV that describes
the ideal behavior of virtual channels. We then give a high-level description of our
construction of virtual channels with validity, before giving the full formal protocol
description of our virtual channel constructions.

E.4.1 Ideal functionality for virtual channels

FV can be viewed as an extension of the ledger channel functionality FL defined
in [AEE+21] and here presented in Appendix E.3.1. The functionality FV is parameterized
by a parameter T which upper bounds the maximum number of off-chain communication
rounds between two parties required for any of the operations in FL. The ideal func-
tionality FV communicates with the parties P, the simulator S and the ledger L (see
Appendix E.1). It maintains a channel space Γ where it stores all currently opened ledger
channels (together with their funding transaction tx) and virtual channels. Before we
define FV formally, we describe it at a high level.

Messages related to ledger channels. For any message related to a ledger channel,
FV behaves as the functionality FL. That is, the corresponding code of FL is executed
when a message about a ledger channel γ is received. For the rest of this section, we
discuss the behavior of FV upon receiving a message about a virtual channel.

Create. The creation of a virtual channel is equivalent to synchronously updating two
ledger channels. Therefore, if all parties, namely γ.Alice, γ.Bob and γ.Ingrid, follow the

362

E.4. Virtual Channels

protocol, i.e., update their ledger channels correctly, a virtual channel is successfully
created. This is captured in the “All agreed” case of the functionality. Hence, if all
parties send the CREATE message, the functionality returns CREATED to γ.users, keeps the
underlying ledger channels locked and adds the virtual channel to its channel space Γ.

On the other hand, the creation of the virtual channel fails if after some time at least
one of the parties does not send CREATE to the functionality. There are three possible
situations: (i), the update is peacefully rejected and parties simply abort the virtual
channel creation, (ii) both channels are forcefully closed, in order to prevent a situation
where one of the channels is updated and the other one is not, (iii) if γ.Ingrid has not
published the old state of one of her channels to the ledger after ∆ rounds, it forcefully
closes the ledger channels using the new state i.e., where γ.Ingrid behaves maliciously
and can publish both the old and new states, while γ.Alice or γ.Bob can only publish the
new state.

Update. The update procedure for the virtual channel works in the same way as for
ledger channels except in case of any disputes during the execution, the functionality
calls V–ForceClose instead of L–ForceClose.

Offload. We consider two types of offloading depending on whether the virtual channel is
with or without validity. In the first case, offloading is initiated by one of the γ.users before
round γ.val, while for channels without validity, Ingrid can initiate the offloading at any
time. Since offloading a virtual channel requires closure of the underlying subchannels, the
functionality merely checks if either funding transaction of γ.subchan has been spent until
round T1 + ∆. If not, the functionality outputs a message (ERROR). As in to [AEE+21],
the ERROR message represents an impossible situation which should not happen as long
as one of the parties is honest.

Close - channels without validity. Upon receiving (CLOSE, id) from all parties in
γ.users within T1 ≤ 6T rounds (where the exact value of T1 is specified by S), all parties
have peacefully agreed on closing the virtual channel, which is indicated by the “All
Agreed” case. In this case, the final balance of the parties is reflected on their underlying
channels. When the update of Γ is completed, the ideal functionality sends CLOSED to all
users. Due to the peaceful closure in this “All Agreed” case, the functionality defines
property (E3).

If one of the (CLOSE, id) messages was not received within T1 rounds (“Wait for others”
case), the closing procedure fails. The following cases my happen: (i) the update
procedure of an underlying ledger channel was aborted prematurely by γ.Alice or γ.Bob
which would cause the virtual channel to be forcefully closed. (ii) γ.Ingrid refuses to
revoke her state during the update of either one of the underlying ledger channels where
the functionality waits ∆ rounds and if γ.Ingrid has not published the old state to the
ledger the functionality forcefully closes the ledger channels using the new state.

Close - channels with validity. This procedure starts in round γ.val − (4∆ + 7T) to
have enough time to forcefully close the channel if necessary. If within T1 ≤ 6T rounds

363

E. Appendix to Chapter 6

(where the exact value of T1 is specified by S) all γ.users agreed on closing the channel or
if the simulator instructs the functionality to close the channel, the same steps as in the
all agreed case for channels without validity are executed. Otherwise, after T1 rounds,
the functionality executes the forceful closure of the virtual channel.

Punish. The punishment procedure is executed at the end of each round. It checks
for every virtual channel γ if any of γ.subchan has just been closed and distinguishes if
the consequence of closure was offloading or punishment. If after T1 rounds (T1 is set
by S) two transactions tx1 and tx2 are published on the ledger, where tx1 refunds the
collateral γ.cash + γ.fee to γ.Ingrid and tx2 funds γ on-chain, then the virtual channel
has been offloaded and the message (OFFLOADED) is sent to γ.users. If after T1 rounds,
only one transaction tx is on the ledger, which assigns γ.cash coins to a single honest
party P and spends the funding transaction of only one of γ.subchan, the functionality
sends (PUNISHED) to P . Otherwise, the functionality outputs (ERROR) to γ.users.

Notation. In the functionality description, we use the notion of rooted transactions
that we now explain (see Figure E.1 for a concrete example). UTXO-based blockchains
can be viewed as a directed acyclic graph, where each node represents a transaction.
Nodes corresponding to transactions txi and txj are connected with an edge if at least
one of the outputs of txi is an input of txj , i.e, txi is (partially) funding txj . We denote
the transitive reachability relation between nodes, which constitutes a partial order, as
≤. We say that a transaction tx is rooted in the set of transactions R if

1. ∀txi ≤ tx.∃txj ∈ R.txj ≤ txi ∨ txi ≤ txj ,

2. ∀txi, txj ∈ R.txi ̸= txj , txi ̸≤ txj and

3. tx /∈ R.

tx1 tx3

tx2

tx4

tx5

tx6

tx8

tx7

Figure E.1: The root sets of transaction tx8 are {tx1}, {tx2, tx3, tx4}, {tx5, tx6}, {tx4, tx5}
and {tx2, tx3, tx6}.

As in the case of ledger channel functionalities, the formal description of FV excludes
several checks that one would expect the functionality to make. These checks are
formalized in form of a functionality wrapper in Appendix E.5.

Ideal Functionality FV (Tp)

364

E.4. Virtual Channels

Below we abbreviate A := γ.Alice, B := γ.Bob, I = γ.Ingrid. For P ∈ γ.users, we denote
Q := γ.otherParty(P).

For messages about ledger channels, behave as FL(Tp, 1).

Create

Upon (CREATE, γ) τ←− P , let S define T1 ≤ 8T . If P ∈ γ.users, then define a set S, where
S := {idP } := γ.subchan(P), otherwise define S as S := {idP , idQ} := γ.subchan. Lock all
channels in S and distinguish:

All agreed: If you already received both (CREATE, γ) τ1←− Q1 and (CREATE, γ) τ2←− Q2, where
Q1, Q2 ∈ γ.users \ {P} and τ − T1 ≤ τ1 ≤ τ2, then in round τ3 := τ1 + T1 proceed as:

1. Let S define θA and θB and set (idA, idB) := γ.subchan.
2. Execute UpdateState(idA, θA), UpdateState(idB, θB), set Γ(γ.id) := γ, send (CREATED, γ)

τ3−→ γ.users, stop.

Wait for others: Else wait for at most T1 rounds to receive (CREATE, γ) τ1≤τ+T1←−−−−−− Q1 and
(CREATE, γ) τ2≤τ+T1←−−−−−− Q2 where Q1, Q2 ∈ γ.users \ {P} (in that case option “All agreed” is
executed). If at least one of those messages does not arrive before round τ +T1, do the following.
For all idi ∈ S, let (γi, txi) := Γ(idi) and distinguish the following cases:

• If S sends (peaceful–reject, idi), unlock idi and stop.
• If γ.Ingrid is honest or if instructed by S, execute L–ForceClose(idi) and stop.
• Otherwise wait for ∆ rounds. If txi still unspent, then set θold := γi.st, γi.st := {θold , θ}

and Γ(idi) := (γi, txi). Execute L–ForceClose(idi) and stop.

Update

Upon (UPDATE, id, −→
θ , tstp) τ0←− P , where P ∈ γ.users, behave as FL(Tp, 1) yet replace the calls

to L–ForceClose in FL(Tp, 1) with calls to V–ForceClose.

Offload

Upon (OFFLOAD, id) τ0←− P , execute Offload(id).

Close

365

E. Appendix to Chapter 6

Channels without validity:
Upon (CLOSE, id) τ←− P , where γ(id).val = ⊥, let S define T1 ≤ 6Tp. If P ∈ γi.users, define a
set S, where S := {idP } := γi.subchan(P), else define S as S := {idP , idQ} := γi.subchan and
distinguish:

All agreed: If you received both messages (CLOSE, id) τ1←− Q1 and (CLOSE, id) τ2←− Q2, where
Q1, Q2 ∈ γ.users \ {P} and τ − T1 ≤ τ1 ≤ τ2, then in round τ3 := τ1 + T1 proceed as follows:

1. Let γ := Γ(id), (idA, idB) := γ.subchan.
2. Parse γ.st = {(cA, One–SigA), (cB , One–SigB)} and set

θA := ((cA, One–SigA), (cB + γ.fee/2, One–SigI)),
θB := ((cA + γ.fee/2, One–SigI), (cB , One–SigB)),

3. Unlock both subchannels and execute UpdateState(idA, θA) and UpdateState(idB , θB).
Set Γ(id) := ⊥ and send (CLOSED, γ) τ3−→ γ.users.

Wait for others: Else wait for at most T1 rounds to receive (CLOSE, γ) τ1≤τ+T1←−−−−−− Q1 and
(CLOSE, γ) τ2≤τ+T1←−−−−−− Q2 where Q1, Q2 ∈ γ.users \ {P} (in that case option “All agreed” is
executed). For all idi ∈ S let (γi, txi) := Γ(idi), if such messages are not received until round
τ + T1, set θold := γ′.st and distinguish:

• If γ.Ingrid is honest or if instructed by S, execute V–ForceClose(idi) and stop.
• Else wait for ∆ rounds. If txi still unspent, set γi.st := {θold, θ} and Γ(idi) := (γi, txi).

Execute L–ForceClose(idi) and stop.

Channels with validity:
For every γ ∈ Γ s.t. γ.val ̸= ⊥, in round τ0 := γ.val − (4∆ + 7Tp) proceed as follows: let S set
T1 ≤ 6Tp and distinguish:

Peaceful close: If all parties in γ.users are honest or if instructed by S, execute steps (1)–(3)
of the “All agreed” case for channels without validity with τ3 := τ0 + T1.
Force close: Else in round τ3 execute V–ForceClose(γ.id).

Punishment (executed at the end of every round)

For every id, where γ := Γ(id) is a virtual channel, set (idA, idB) := γ.subchan. If this is the
first round when Γ(idA) = (⊥, txA) or Γ(idB) = (⊥, txB), i.e., one of the subchannels was just
closed, then let S set t1 ≤ T ′, where T ′ := τ0 + T + 5∆ if γ.val = ⊥ and T ′ := γ.val + 3∆ if
γ.val ̸= ⊥, and distinguish the following cases:

Offloaded: Latest in round t1 the ledger L contains both

• a transaction tx1 rooted at {txA, txB} with an output (γ.cash + γ.fee, One–SigI). In this
case (OFFLOADED, id) τ1−→ I, where τ1 is the round tx1 appeared on L.

366

E.4. Virtual Channels

• a transaction tx2 with an output of value γ.cash and rooted at {txA, txB}, if γ.val = ⊥,
and rooted at {txA}, if γ.val ̸= ⊥. Let τ2 be the round when tx2 appeared on L. Then
output (OFFLOADED, id) τ2−→ γ.users, set γ′ = γ, γ′.Ingrid = ⊥, γ′.subchan = ⊥, γ.val = ⊥
and define Γ(id) := (γ′, tx2).

Punished: Else for every honest party P ∈ γ.users, check the following: the ledger L contains
in round τ1 ≤ t1 a transaction tx rooted at either txA or txB with (γ.cash + γ.fee/2, One–SigP)
as output. In that case, output (PUNISHED, id) τ1−→ P . Set Γ(id) = ⊥ in the first round when
PUNISHED was sent to all honest parties.

Error: If the above case is not true, then (ERROR) t1−→ γ.users.

V–ForceClose(id): Let τ0 be the current round and γ := Γ(id). Execute subprocedure
Offload(id). Let T ′ := τ0 + 2Tp + 8∆ if γ.val = ⊥ and T ′ := γ.val + 3∆ if γ.val ̸= ⊥.
If in round τ1 ≤ T ′ it holds that Γ(id) = (γ, tx), execute subprocedure L–ForceClose(id).

Subprocedure Offload(id): Let τ0 be the current round, γ := Γ(id), (idα, idβ) := γ.subchan, (α,
txA) := Γ(idα) and (β, txB) := Γ(idβ). If within ∆ rounds, neither txA nor txB is spent, then
output (ERROR) τ0+∆−−−→ γ.users.
Subprocedure UpdateState(id, θ): Let (α, tx) := Γ(id). Set α.st := θ and update Γ(id) := (α,
tx).

E.4.2 Virtual Channels With Validity

We now briefly present our virtual channel protocol with validity. We focus mainly on
the creation of the virtual channel as this illustrates the main structural differences to
our construction without validity. For the full formal protocol description, we refer the
reader to Appendix E.4.3.

Create. Unlike the without validity case, the structure of the construction with validity
is not symmetric (see Figure E.2). The output of the ledger channel between A and
I is used as the input for the funding transaction of the virtual channel txf , whereas
the output of the channel between B and I is used for the so-called refund transaction
txrefund.

A can create txf on her own from the last state of her ledger channel with I. As a second
step, A and B can already create the transactions required for the virtual channel γ.
Additionally, I and B create the refund transaction which returns I’s collateral if the
virtual channel is offloaded. Finally, the created transactions are signed in reverse order.
In particular, B signs txrefund so that I is ensured that she can publish it and receive
her collateral and fees. Then, I signs txf and provides the signature to A, effectively
authorizing her to publish txf , thereby allowing A to offload the virtual channel.

367

E. Appendix to Chapter 6

txf

c

f/2
pkA, pkB

txrefund
c + f

pkI

I
pkI

c + f/2

TXA
s

pkA, pkI

I
> γ.val

pkI

c + f/2

TXB
s pkI , pkB

B
> γ.val + 2∆

pkB

Figure E.2: Funding of a virtual channel γ with validity γ.val.

Offload. In our virtual channel with validity, only A can offload the virtual channel γ by
publishing the commit and split transaction of her ledger channel with I. Although I and
B are not able to offload the virtual channel, they have the guarantee that after round
γ.val either the channel is offloaded or closed or they can punish A and get reimbursed.

Punish. Recall that after a successful offload, the punishment mechanisms of generalized
channels apply. We now discuss other malicious behaviors specific to this construction.
In this protocol, only A can post the funding transaction of the virtual channel. If the
virtual channel is not closed or offloaded by γ.val, A is punished. A loses her coins to
I and I loses her coins to B. Therefore, though B cannot offload the channel, he will
get reimbursed from his ledger channel with I and I will get reimbursed regardless of
whether the virtual channel is offloaded or not. At the time val, if the virtual channel is
not honestly closed or the funding is not published, I submits the punishment transaction
to reimburse her collateral. Therefore, at time val + ∆, either the punishment or the
funding transaction is posted. If the virtual channel is offloaded, I can publish the refund
transaction within ∆ to get her coins back.
We mention here only for our virtual channel construction with validity. We refer the
reader to Appendix E.5.1 for the full proof.

Theorem 18. Let Σ be a signature scheme that is strongly unforgeable against chosen
message attacks. Then for any ledger delay ∆ ∈ N, the virtual channel protocol with
validity as described in Appendix E.4.2 working in FpreL(3, 1)-hybrid, UC-realizes the
ideal functionality FV (3).

E.4.3 Formal Virtual Channel Protocol

We now formally describe the protocol ΠV (Tp) that was discussed on a high level in
Section 6.3.4 and Appendix E.4.2. Since our goal is to prove that ΠV (Tp) UC-realizes
FV (Tp), we need to discuss about how parties deal with instructions about ledger channels
as well as virtual channels.

Ledger Channels. As a first step, we discuss how parties deal with messages about
ledger channels or prepared ledger channels. On a high level, parties simply forward

368

E.4. Virtual Channels

these instructions to the hybrid ideal functionality FpreL(Tp, 1). If the functionality
sends a reply, parties forward this reply to the environment. In addition to the message
forwarding, parties store information about the ledger channels in a channel space ΓL.
More precisely, once a ledger channel is created or pre-created, parties add this channel
to ΓL. Once an existing ledger channel is updated or pre-updated, the party updates the
latest state of the channel stored in ΓL.

There is one technicality that we need to take care of. There are two different situations
in which a party of a virtual channel protocol instructs the hybrid ideal functionality
FpreL(Tp, 1) to pre-cerate (resp. pre-update) a channel γ:

1. Party receives a pre-create, resp. pre-update, instruction from the environment. As
discussed above, in this case, the party acts as a dummy party and forwards the
message to FpreL(Tp, 1).

2. Party is creating, resp. updating, a virtual channel and hence is sending pre-create,
resp. pre-update, messages to FpreL(Tp, 1).

Let us stress that while channels pre-created via option (1) exist in both the real and
ideal world, channels pre-created via option (2) exist only in the real world. This is
because the pre-creation of these channels was not initiated by the environment but
by the parties of the virtual channel protocol. Hence, we need to make sure that the
environment cannot “accidentally” update a channel pre-created via (2) since this would
help the environment distinguish between the real and ideal world.

To this end, party in the case (1) modifies the identifier of the channel by adding a
prefix “ledger”. More precisely, if the environment makes a request about a channel
with identifier id it forwards the instruction to the hybrid functionality but replaces id
with ledger∥id. Analogously, if the hybrid functionality replies to this message, the party
removes the prefix. This ensures that the environment cannot directly make any change
on the ledger channels pre-created via option (2).

Virtual Channels. We now present the formal pseudocode for our virtual channel
protocols ΠV (Tp). As for ledger channels, the description excludes several checks that
parties have to make. We formalize all these checks in the form of a functionality wrapper
in Appendix E.5.

Create.

The creation of a virtual channel was described on a high level in Section 6.3.4. The main
idea is to update the two subchannels of the virtual channel and pre-create a new ledger
channel corresponding to the virtual channel. Importantly, the update of the subchannel
needs to be synchronized in order to ensure that either both updates complete (in which
case the virtual channel is created) or both updates are rejected (in which case the virtual
channel creation fails).

369

E. Appendix to Chapter 6

Since a large part of the creation process is the same for channels with and without
validity, our formal description is modularized.

Create a virtual channels - modular

Below we abbreviate FpreL := FpreL(Tp, 1), A := γ.Alice, B := γ.Bob, I = γ.Ingrid. For
P ∈ γ.users, we denote Q := γ.otherParty(P).

Party P ∈ {A, B}

Upon receiving (CREATE, γ)
tP

0←− E proceed as follows:

1. Let idα := γ.subchan(P) and compute

θP := GenVChannelOutput(γ, P).

2. Send (UPDATE, idα, θP , tstp)
tP

0−→ FpreL.

3. Upon receiving (SETUP, idα, tidP)
tP

1 ≤tP
0 +T←−−−−−− FpreL, engage in the subprotocol SetupVChannel

with input (γ, tidP).

Party I

Upon receiving (CREATE, γ)
tI

0←− E proceed as follows:

1. Set idα = γ.subchan(A), idβ = γ.subchan(B) and generate

θA := GenVChannelOutput(γ, A)
θB := GenVChannelOutput(γ, B)

2. If in round tI
1 ≤ tI

0 + T you have received both (UPDATE–REQ, idα, θA, tstp, tidA) ←− FpreL and
(UPDATE–REQ, idβ , θB, tstp, tidB) ←− FpreL, then engage in the subprotocol SetupVChannel
with inputs (γ, tidA, tidB). Else stop.

Party P ∈ {A, B}

Wait until tP
2 := tP

1 + tstp. If the subprotocol completed successfully, then send (SETUP–OK, idα)
tP

2−→ FpreL. Else stop.

Party I

370

E.4. Virtual Channels

If in round tI
2 ≤ tI

1 + tstp + T you receive both (SETUP–OK, idα)) ←− FpreL and (SETUP–OK, idβ))
←− FpreL, send (UPDATE–OK, idα) t2−→ FpreL and (UPDATE–OK, idβ) t2−→ FpreL. Otherwise stop.

Party P ∈ {A, B}

1. If you receive (UPDATE–OK, idα)
tP

2 ≤tP
1 +2T←−−−−−−− FpreL, reply with (REVOKE, idα)

tP
2 +T−−−→ FpreL.

Otherwise stop.

Party I

If in round tI
3 ≤ tI

2 + 4T you have received both (REVOKE–REQ, idα) ←− FpreL and (REVOKE–REQ,

idβ) ←− FpreL, reply (REVOKE, idα)
tI

3−→ FpreL and (REVOKE, idβ)
tI

3−→ FpreL and update ΓI(γ.id)
from (⊥, x) to (γ, x). Otherwise stop.

Party P ∈ {A, B}

Upon receiving (UPDATED, idα)
tP

3 ≤tP
2 +3T←−−−−−−− FpreL, mark γ as created, i.e. update ΓP (γ.id) from

(⊥, x) to (γ, x), and output (CREATED, γ.id)
tP

3−→ E .

Function GenVChannelOutput(γ, P)

Return θ, where θ.cash = γ.cash + γ.fee/2 and θ.φ is defined as follows

θ.φ =

Multi–Sigγ.users ∨ (One–SigP ∧ CheckRelative(Tp+4∆)),
if γ.val = ⊥

Multi–SigA,I ∨ (One–SigI ∧ CheckLockTimeγ.val),
if γ.val ̸= ⊥ ∧ P = A

Multi–SigB,I ∨ (One–SigB ∧ CheckLockTimeγ.val+2∆),
if γ.val ̸= ⊥ ∧ P = B

Subprotocol SetupVChannel

Let t0 be the current round.

Channels without validity

Party P ∈ {A, B} on input (γ, tidP)

371

E. Appendix to Chapter 6

1. Create the body of the funding transactions:

txγ
f .input :=(tidP , tidQ)

txγ
f .output :=((γ.cash, Multi–Sig{γ.users}),

(γ.cash + γ.fee, One–SigpkI
))

2. Send (PRE–CREATE, γ, txf , 1, tofl) t0−→ FpreL, where tofl = 2Tp + 8∆.

3. If (PRE–CREATED, γ.id) t1≤t0+T←−−−−− FpreL, then sign the funding transaction, i.e. sP
f ←

SignskP
([txγ

f]) and send (createFund, γ.id, sP
f , [txγ

f]) t1−→ I. Else stop.

Party I on input (γ, tidA, tidB)

4. If you receive (createFund, γ.id, sA
f , [txγ

f]) t2≤t0+T +1←−−−−−−− A and (createFund, γ.id, sB
f , [txγ

f]) t2←−
B, verify the funding transaction and signatures of A and B, i.e. check:

VrfypkA
([txγ

f]; sA
f) = 1

VrfypkB
([txγ

f], sB
f) = 1

(tidA, tidB) = txγ
f .input

(γ.cash + γ.fee, One–SigpkI
) ∈ txγ

f .output.

5. If all checks pass, sign the funding transaction, i.e. compute

sI
f := SignskI

([txγ
f]),

txγ
f := {([txγ

f], sA
f , sB

f , sI
f)}.

Store ΓI(γ.id) := (⊥, txγ
f). Then send (createFund, γ.id, sB

f , sI
f) t2−→ A and (createFund, γ.id,

sA
f , sI

f) t2−→ B, and consider procedure successfully completed. Else stop.

Party P ∈ {A, B}

6. Upon receiving (createFund, γ.id, sQ
f , sI

f) t1+1←−−− I, verify all signatures, i.e. check:

VrfypkQ
([txγ

f]; sQ
f) = 1

VrfypkI
([txγ

f], sI
f) = 1.

If all checks pass define txγ
f := {([txγ

f], sP
f , sQ

f , sI
f)} and set ΓP (γ.id) := (⊥, txγ

f , tidP) and
consider procedure successfully completed. Else stop.

Channels with validity

372

E.4. Virtual Channels

Party A on input (γ, tidA)

1. Send (createInfo, γ.id, tidA) t0−→ B

2. In round t1 := t0 + 1, create the body of the funding transaction:

txγ
f .input :=(tidA)

txγ
f .output :=((γ.cash, Multi–Sig{γ.users}),

(γ.fee/2, One–SigpkI
))

3. Send (PRE–CREATE, γ, txf , 1, tofl) t1−→ FpreL, for tofl = γ.val + 3∆.

4. If (PRE–CREATED, γ.id) t2≤t1+T←−−−−− FpreL, then goto step (10). Else stop.

Party B on input (γ, tidB)

5. If (createInfo, γ.id, tidA) t1:=t0+1←−−−−− A, then create the body of the funding and refund
transactions:

txγ
f .input :=(tidA)

txγ
f .output :=((γ.cash, Multi–Sig{γ.users}),

(γ.fee/2, One–SigpkI
))

txγ
refund.input :=(txγ

f .txid||2, tidB)
txγ

refund.output :=(γ.cash + γ.fee, One–SigpkI
).

Else stop.

6. Send (PRE–CREATE, γ, txf , 1, tofl) t1−→ FpreL, for tofl = γ.val + 3∆.

7. If (PRE–CREATED, γ.id) t2≤t1+T←−−−−− FpreL, then compute a signature on the refund transaction,
i.e., sB

Ref ← SignskB
([txγ

refund]) and define ΓB(γ.id) := (⊥, [txγ
f], tidB). Then, send (createFund,

γ.id, sB
Ref, [txγ

refund], [txγ
f]) t2−→ I and consider procedure successfully completed. Else stop.

Party I on input (γ, tidA, tidB)

8. If (createFund, γ.id, sB
Ref, [txγ

refund], [txγ
f]) t3≤t0+T +2←−−−−−−− B, verify the fund and refund

transactions and signature of B, i.e. check:

VrfyskB
([txγ

refund]; sB
Ref) = 1.

[txγ
refund].input = (txγ

f .txid||2, tidB),
[txγ

refund].output = (γ.cash + γ.fee, One–SigpkI
),

[txγ
f].output[2] = (γ.fee/2, One–SigpkI

)

373

E. Appendix to Chapter 6

If all checks pass, then sign the fund and refund transactions, i.e. compute

sI
Ref := SignskI

([txγ
refund]), sI

f := SignskI
([txγ

f]),
txγ

refund := {([txγ
refund], sI

Ref, sB
Ref)}.

Else stop.

9. Store ΓI(γ.id) := (⊥, [txγ
f], txγ

refund, tidA, tidB), send the message (createFund, γ.id, sI
f) t3−→ A,

and consider procedure successfully completed.

Party A

10. If you receive (createFund, γ.id, sI
f) t2+2←−−− I, verify the signature, i.e. check VrfypkI

([txγ
f]; sI

f) =
1. If the check passes, compute a signature on the fund transaction:

sA
f := SignskA

([txγ
f]),

txγ,A
f := {([txγ

f], sI
f , sA

f)}.

and set ΓA(γ.id) := (⊥, txγ,A
f , tidA). Then consider procedure successfully completed. Else

stop.

Update. As discussed in Section 6.3.4, in order to update a virtual channel, parties
update the corresponding prepared channel. This is done in a black-box way via the
hybrid functionality FpreL. Hence, parties act as dummy parties as forward update
instructions (modified by adding PRE–) to the hybrid functionality FpreL and forward the
replies of the functionality (modified by removing PRE–) to the environment. In case the
update fails, parties offload the channel which allows to resolve disputes on-chain.

Update

Below we abbreviate FpreL := FpreL(Tp, 1).

Initiating party P :

1. Upon (UPDATE, id, −→
θ , tstp) t0←− E , (PRE–UPDATE, id, −→

θ , tstp) t0−→ FpreL.
2. If (PRE–SETUP, id, tidP) t1≤t0+T←−−−−− FpreL, (SETUP, id, tidP) t1−→ E . Else stop.
3. If (SETUP–OK, id)

t2≤t1+tstp←−−−−−− E , (PRE–SETUP–OK, id) t2−→ E . Else stop.
4. Distinguish the following three cases:

• If (PRE–UPDATE–OK, id) t3≤t2+T←−−−−− FpreL, (UPDATE–OK, id) t3−→ E .
• If (PRE–UPDATE–REJECT, id) t3≤t2+T←−−−−− FpreL, then stop.
• Else execute the procedure OffloadP (id) and stop.

5. If (REVOKE, id) t3←− E , (PRE–REVOKE, id) t3−→ FpreL. Else execute OffloadP (id) and stop.

374

E.4. Virtual Channels

6. If (PRE–UPDATED, id) t4≤t3+T←−−−−− FpreL, update the channel space, i.e., let γ := ΓP (id), set
γ.st := −→

θ and Γ(id) := γ. Then (UPDATED, id) t4−→ FpreL. Else execute OffloadP (id) and
stop.

Reacting party Q

1. Upon (PRE–UPDATE–REQ, id, −→
θ , tstp, tid) τ0←− FpreL, (UPDATE–REQ, id, −→

θ , tstp, tid) τ0−→ E .
2. If (PRE–SETUP–OK, id)

τ1≤τ0+tstp+T←−−−−−−−−− FpreL, (SETUP–OK, id) τ1−→ E . Else stop.
3. If (UPDATE–OK, id) τ1←− E , (PRE–UPDATE–OK, id) τ1−→ FpreL. Else stop.
4. If (PRE–REVOKE–REQ, id) τ2≤τ1+T←−−−−−− FpreL, (REVOKE–REQ, id) τ2−→ E . Else execute OffloadQ(id)

and stop.
5. If (REVOKE, id) τ2←− E , (PRE–REVOKE, id) τ2−→ FpreL. Else execute OffloadQ(id) and stop.
6. Upon (PRE–UPDATED, id) τ3≤τ2+T←−−−−−− FpreL, update the channel space, i.e., let γ := ΓQ(id), set

γ.st := −→
θ and Γ(id) := γ. Then (UPDATED, id) τ3−→ E .

Offload. As a next step, we define the offloading process which transforms a virtual
channel into a ledger channel. Let us stress that offloading can be triggered either by the
environment via a message OFFLOAD or internally by parties when executing an update or
close. To avoid code repetition, we define a procedure OffloadP (id) and instruct parties
upon receiving (OFFLOAD, id) t0←− E to simply call OffloadP (id).

Since channels with validity are constructed in a different way than channels without
validity, the procedure is defined for the two cases separately.

Subprocedure OffloadP (id)

Below we abbreviate FpreL := FpreL(Tp, 1), A := γ.Alice and B := γ.Bob and I = γ.Ingrid. For
P ∈ γ.users, we denote Q := γ.otherParty(P). Let t0 be the current round.

Channels without validity

P ∈ {A, B}

1. Extract γ and txγ
f from ΓP (id) and tidP , tidQ from txγ

f . Then define idα := γ.subchan(P)
and send (CLOSE, idα) t0−→ FpreL.

2. If you receive (CLOSED, idα) t1≤t0+T +3∆←−−−−−−−− FpreL, then continue. Else set ΓP (γ.id) = ⊥ and
stop.

3. Let T2 := t1 + T + 3∆ and distinguish:

• If in round t2 ≤ T2 a transaction with tidQ appeared on L, then (post, txγ
f) t2−→ L.

375

E. Appendix to Chapter 6

• Else in round T2 create the punishment transaction TXpun as TXpun.input := tidP ,
TXpun.output := (γ.cash + γ.fee/2, One–SigpkP

) and TXpun.Witness := SignskP
([TXpun]).

Then (post, TXpun) T2−→ L.
4. Let T3 := t2 + ∆ and distinguish the following two cases:

• The transaction txγ
f was accepted by L in t3 ≤ T3, then update ΓP

L (id) := ΓP (id) and
set m := offloaded.

• The transaction TXpun was accepted by L in t3 ≤ T3, then set m := punished.

5. Set ΓP (id) = ⊥ and return m in round t3.

Party I

1. Extract γ and txγ
f from ΓI(id) and tidA, tidB from txγ

f . Then define idα := γ.subchan(A),
idβ := γ.subchan(B) and send the messages (CLOSE, idα) t0−→ FpreL and (CLOSE, idβ) t0−→
FpreL.

2. If you receive both messages (CLOSED, idα)
tA

1 ≤t0+T +3∆←−−−−−−−−− FpreL and (CLOSED, idβ)
tB

1 ≤t0+T +3∆←−−−−−−−−− FpreL, publish (post, txγ
f) t1−→ L, where t1 := max{tA

1 , tB
1 }. Otherwise

set ΓI(id) = ⊥ and stop.
3. Once txγ

f is accepted by L in round t2 ≤ t1 + ∆, then ΓI(id) = ⊥ and return “offloaded”.

Channels with validity

Party A

1. Extract γ, tidA and txγ
f from ΓA(id). Let idα := γ.subchan(A) and send (CLOSE, idα) t0−→

FpreL.
2. If you receive (CLOSED, idα) t1≤t0+T +3∆←−−−−−−−− FpreL, then post (post, txγ,A

f) t2−→ L. Otherwise, set
ΓA(γ.id) = ⊥ and stop.

3. Once txγ
f is accepted by L in round t2 ≤ t1 + ∆, then update ΓA

L(id) := ΓA(id), ΓA(id) := ⊥
and return “offloaded”.

Party B

1. Extract γ, tidB and [txγ
f] from ΓB(id). Let idβ := γ.subchan(B) and send (CLOSE, idβ) t0−→

FpreL.
2. If you receive (CLOSED, idβ) t1≤t0+T +3∆←−−−−−−−− FpreL, then continue. Otherwise, set ΓB(γ.id) = ⊥

and stop.
3. Create the punishment transaction TXpun as TXpun.input := tidB, TXpun.output := (γ.cash +

γ.fee/2, One–SigpkB
) and set the value TXpun.Witness := SignskB

([TXpun]). Then wait until
round t2 := max{t1, γ.val + 2∆} and send (post, TXpun) t2−→ L.

376

E.4. Virtual Channels

4. Let T3 := t2 + ∆ and distinguish the following two cases:
• A transaction with identifier txγ

f .txid was accepted by L in t3 ≤ T3, then define
ΓB

L (id) := ΓB(id) and set m := offloaded.
• The transaction TXpun was accepted by L in t3 ≤ T3, set m := punished.

5. Set ΓB(id) := ⊥ and return m in round t3.

Party I

1. Extract γ, tidA, tidB, txγ
refund and [txγ

f] from ΓI(id). Then define idα := γ.subchan(A),
idβ := γ.subchan(B) and send (CLOSE, idα) t0−→ FpreL and (CLOSE, idβ) t0−→ FpreL.

2. If you receive both messages (CLOSED, idα)
tA

1 ≤t0+T +3∆←−−−−−−−−− FpreL and (CLOSED, idβ)
tB

1 ≤t0+T +3∆←−−−−−−−−− FpreL, then continue. Otherwise, set ΓI(γ.id) = ⊥ and stop.
3. Create the punishment transaction TXpun as TXpun.input := tidA, TXpun.output := (γ.cash +

γ.fee/2, One–SigpkI
) and set the value TXpun.Witness := SignskI

([TXpun]). Then wait until
round t2 := max{tA

1 , γ.val} and send (post, TXpun) t2−→ L.
4. Let T3 := t2 + ∆ and distinguish the following two cases:

• A transaction with identifier txγ
f .txid was accepted by L in t′

3 ≤ T3, send (post, txγ
refund)

t4−→ L where t4 := max{tB
1 , t′

3}. Once txγ
refund is accepted by L in round t5 ≤ t4 + ∆,

then define m := offloaded and ΓI(γ.id) = ⊥.
• The transaction TXpun was accepted by L in t′′

3 ≤ T3, then define m := punished and
ΓI(γ.id) = ⊥.

5. Return m in round t6 where t6 := max{t5, t′′
3}.

Close. In order to close a virtual channel, parties first try to adjust the balances in
the subchannel according to the latest valid state of the virtual channel. This is done
by updating the subchannels in a synchronous way, as was done during virtual channel
creation. In case this process fails, parties close the channel forcefully. This means that
parties first offload the channel and then immediately close the offloaded ledger channel.

Close a virtual channel

Below we abbreviate FpreL := FpreL(Tp, 1), A := γ.Alice and B := γ.Bob and I = γ.Ingrid. For
P ∈ γ.users, we denote Q := γ.otherParty(P).

Party P ∈ {A, B}

Upon receiving (CLOSE, id)
tP

0←− E or in round tP
0 := γ.val − (4∆ + 7Tp) if γ.val ̸= ⊥, proceed as

follows:

377

E. Appendix to Chapter 6

1. Extract γ, txγ
f from ΓP (id).

2. Parse γ.st =

(cP , One–SigpkP
), (cQ, One–SigpkQ

)

.

3. Compute the new state of the channel idα := γ.subchan(P) as

−→
θ P := {(cP , One–SigpkP

), (cQ + γ.fee
2 , One–SigpkI

)}

Then, send (UPDATE, idα, −→
θ P , 0)

tP
0−→ FpreL.

4. Upon (SETUP, idα, tidP)
tP

1 ≤tP
0 +T←−−−−−− FpreL, send (SETUP–OK, idα)

tP
1−→ FpreL.

Party I

Upon receiving (CLOSE, id)
tI

0←− E or in round tI
0 := γ.val − (4∆ + 7Tp), proceed as follows:

1. Extract γ, txγ
f from ΓI(id).

2. Let idα = γ.subchan(A), idβ = γ.subchan(B) and c := γ.cash

3. If in round tI
1 ≤ tI

0 + T you received both (UPDATE–REQ, idα, tidA, −→
θ A, 0) ←− FpreL and

(UPDATE–REQ, idβ , tidB , −→
θ B , 0) ←− FpreL check that for some cA, cB s.t. cA + cB = c it holds

−→
θ A = {(cA, One–SigpkA

), (cB + γ.fee/2, One–SigpkI
)}

−→
θ B = {(cB , One–SigpkB

), (cA + γ.fee/2, One–SigpkI
)}

If not, then stop.
4. If in round tI

2 ≤ tI
1 + T you receive both (SETUP–OK, idα)) ←− FpreL and (SETUP–OK, idβ)) ←−

FpreL, send (UPDATE–OK, idα)
tI

2−→ FpreL and (UPDATE–OK, idβ)
tI

2−→ FpreL. If not, then stop.

Party P ∈ {A, B}

If you receive (UPDATE–OK, idα)
tP

2 ≤tP
1 +2T←−−−−−−− FpreL, reply with (REVOKE, idα)

tP
2−→ FpreL. Otherwise

execute OffloadP (id) and stop.

Party I

If in round tI
3 ≤ tI

2 + 2T you received both (REVOKE–REQ, idα) ←− FpreL and (REVOKE–REQ, idβ)

←− FpreL, reply (REVOKE, idα)
tI

3−→ FpreL and (REVOKE, idβ)
tI

3−→ FpreL and set ΓI(id) := ⊥.

378

E.4. Virtual Channels

Party P ∈ {A, B}

If you receive (UPDATED, idα)
tP

3 ≤tP
2 +2T←−−−−−−− FpreL, set ΓP (id) := ⊥. Then output (CLOSED, id)

tP
3−→

E and stop. Else execute OffloadP (id) and stop.

Punish. Finally, we formalize the actions taken by parties in every round. On a high
level, in addition to triggering the hybrid ideal functionality to take the every-round
actions for ledger channels (which include blockchain monitoring for outdated commit
transactions), parties also need to make several checks for virtual channels. Namely,
channel users who tried to offload the virtual channel by closing their subchannel) monitor
whether the other subchannel was closed as well. If yes, then they can publish the funding
transaction and complete the offload and otherwise apply the punishment mechanism.

Punish virtual channel

Below we abbreviate FpreL := FpreL(Tp, 1), A := γ.Alice and B := γ.Bob and I = γ.Ingrid. For
P ∈ γ.users, we denote Q := γ.otherParty(P).

Upon receiving (PUNISH) τ0←− E , do the following:

• Forward this message to the hybrid ideal functionality (PUNISH) τ0−→ FpreL. If (PUNISHED, id)
τ1←− FpreL, then (PUNISHED, id) τ1−→ E .

• Execute both subprotocols Punish and Punish–Validity.

Punish

Party P ∈ {A, B}

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be extracted from ΓP (id) do the
following:

1. Extract txγ
f from ΓP (id) and tidP , tidQ from txγ

f . Check if tidP appeared on L. If not, then
stop.

2. Denote T2 := t1 + T + 3∆ and distinguish:

• If in round t2 ≤ T2 the transaction with tidQ appeared on L, then (post, txγ
f) t2−→ L.

• Else in round T2 create the punishment transaction TXpun as

TXpun.input := tidP

TXpun.output := (γ.cash + γ.fee/2, One–SigpkP
)

TXpun.Witness := SignskP
([TXpun]),

379

E. Appendix to Chapter 6

and (post, TXpun) T2−→ L.

3. Let T3 := t2 + ∆ and distinguish the following two cases:

• The transaction txγ
f was accepted by L in t3 ≤ T3, then ΓP

L (id) := ΓP (id), ΓP (id) = ⊥
and m := OFFLOADED.

• The transaction TXpun was accepted by L in t3 ≤ T3, then define ΓP (γ.id) = ⊥ and set
m := PUNISHED.

4. Output (m, id) t3−→ E .

Party I

For every id ∈ {0, 1}∗, such that γ with γ.val = ⊥ can be extracted from ΓI(id) do the following:

1. Extract txγ
f from ΓI(id) and tidA, tidB from txγ

f . Check if for some P ∈ {A, B} a transaction
with identifier tidP appeared on L. If not, then stop.

2. Denote idα := γ.subchan(Q) and send (CLOSE, idα) t0−→ FpreL.

3. If you receive (CLOSED, idα) t1≤t0+T +3∆←−−−−−−−− FpreL and tidQ appeared on L, (post, txγ
f) t1−→ L.

Otherwise set ΓI(id) = ⊥ and stop.

4. Once txγ
f is accepted by L in round t2, such that t2 ≤ t1 + ∆, set ΓI(id) = ⊥ and output

(OFFLOADED, id) t2−→ E .

Punish–Validity

Party A

For every id ∈ {0, 1}∗, such that γ with γ.val ̸= ⊥ can be extracted from ΓA(id) do the following:

1. Extract txγ
f from ΓA(id) and tidA from txγ

f . If tidA appeared on L, then send (post, txγ
f) t1−→

L. Else stop.
2. Once txγ

f is accepted by L in round t2 ≤ t1 + ∆, set ΓA
L(id) := ΓA(id), ΓA(id) := ⊥ and

output (OFFLOADED, id) t2−→ E .

Party B

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be extracted from ΓB(id) do the
following:

380

E.4. Virtual Channels

1. Extract tidB and [txγ
f] from ΓB(id). Check if tidB or [txγ

f].txid appeared on L. If not, then
stop.

2. If a transaction txγ
f appeared on L, update set ΓB

L (id) := ΓB(id) and ΓB(id) := ⊥. Then
output (OFFLOADED, id) t1−→ E and stop.

3. If tidB appeared on L, create the punishment transaction TXpun as

TXpun.input := tidB

TXpun.output := (γ.cash + γ.fee/2, One–SigpkB
)

TXpun.Witness := SignskB
([TXpun]).

Then wait until round t2 := max{t1, γ.val + 2∆} and send (post, TXpun) t2−→ L.

4. If transaction TXpun was accepted by L in t3 ≤ t2 + ∆, then define ΓB(γ.id) = ⊥ and output
(PUNISHED, id) t3−→ E .

Party I

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be extracted from ΓI(id) do the
following:

1. Extract tidA, tidB, txγ
refund and [txγ

f] from ΓI(id). Check if tidA or tidB appeared on L or
t1 = γ.val − (3∆ + Tp). If not, then stop.

2. Distinguish the following cases:

• If t1 = γ.val − (3∆ + Tp), define idα := γ.subchan(A), idβ := γ.subchan(B) and send
(CLOSE, idα) t1−→ FpreL and (CLOSE, idβ) t1−→ FpreL.

• If tidB appeared on L, send (CLOSE, idα) t1−→ FpreL.

3. If a transaction with identifier tidA appeared on L in round t2 ≤ t1 + T + 3∆, create the
punishment transaction TXpun as

TXpun.input := tidA

TXpun.output := (γ.cash + γ.fee/2, One–SigpkI
)

TXpun.Witness := SignskI
([TXpun]).

Then wait until round t3 := max{t2, γ.val} and send (post, TXpun) t3−→ L.

4. Distinguish the following two cases:

• The transaction txγ
f .txid was accepted by L in t4 ≤ t3 + ∆, send (post, txγ

refund) t5−→ L
where t5 := max{γ.val + ∆, t4}. Once txγ

refund is accepted by L in round t6 ≤ t5 + ∆,
set ΓI(γ.id) = ⊥ and output (OFFLOADED, id) t6−→ E and stop.

381

E. Appendix to Chapter 6

• The transaction TXpun was accepted by L in t4 ≤ t3 + ∆, then set ΓI(γ.id) = ⊥ and
output (PUNISHED, id) t4−→ E .

E.5 Wrappers for Missing Checks
In the previous sections, we provided simplified descriptions of the ideal functionalities
FL, FpreL and FV as well as of the protocols ΠpreL and ΠV . The simplification stems
from the fact that we excluded several natural checks in the ideal functionalities and
protocols. In this section, we present wrappers that include these missing checks.

Wrapper for Ideal Functionalities

In order to simplify the exposition, the formal descriptions of the channel ideal function-
alities FL, FpreL, and FV are simplified. Namely, they exclude several natural checks
that one would expect an ideal functionality to make when it receives a message from a
party. The purpose of the checks is to avoid the functionality from accepting malformed
messages. To provide some intuition, we present several examples of such restrictions:

• A party sends a malformed message (e.g. missing or additional parameters)

• A party requests creation of a virtual channel but one of the two subchannels does
not exist or does not have enough funds for virtual channel creation.

• Parties try to update the same channel twice in parallel.

We now list all checks formally in the wrapper below which can be seen as an extension
to the wrapper provided by [AEE+21] for FL.

Functionality wrapper: Wchecks(Tp)

The wrapper is defined for F ∈ {FV (Tp), FpreL(Tp), FL(Tp)}. Below, we abbreviate A := γ.Alice,
B := γ.Bob and I := γ.Ingrid.

Create: Upon (CREATE, γ, tid) τ0←− P , where P ∈ γ.users, check if: Γ(γ.id) = ⊥, F .Γpre(γ.id) = ⊥
and there is no channel γ′ with γ.id = γ′.id being created or pre-created; γ is valid according to
the definition given in Section 6.3.1; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈

R≥0. Depending on the type of channel, make the following additional checks:

ledger channel: There exists (t, id, i, θ) ∈ L.UTXO such that θ = (cP , One–SigP) for (id, i) :=
tid;a

virtual channel:
• If P ∈ γ.users, then α := F .Γ(idP) ̸= ⊥ for idP := γ.subchan(P); α.users = {P , I};

there is no other virtual channel being created over α and α is currently not being
updated; both P and I have enough funds in α.

382

E.5. Wrappers for Missing Checks

• If P = I, then α := F .Γ(idA) ̸= ⊥ for idA := γ.subchan(A); β := F .Γ(idB) ̸= ⊥ for
idB := γ.subchan(B); α.users = {A, I}; β.users = {B, I}; there is no other virtual
channel being created over α or β; A and I have enough funds in α and B and I have
enough funds in β.

• If γ.val ̸= ⊥, then γ.val ≥ τ0 + 4∆ + 15Tp.

If one of the above checks fails, drop the message. Else proceed as F .

Pre-Create: Upon (PRE–CREATE, γ, txf , i, tofl) τ0←− P , check if: P ∈ γ.users, F .Γpre(γ.id) =
⊥, F .Γpre(γ.id) = ⊥ and there is no channel γ′ with γ.id = γ′.id being created or pre-
created; γ is valid according to the definition given in Section 6.3.1; γ.st = {(cP , One–SigpkP

),
(cQ, One–SigpkQ

)} for cP , cQ ∈ R≥0 and txf is not a published transaction on L. If one of the
above checks fails, drop the message. Else proceed as F .

(Pre)-Update: Upon (m, id, θ, tstp) τ0←− P , check if: γ := Γ(id) ̸= ⊥ if m = UPDATE and
γ := Γpre(id) ̸= ⊥ if m = PRE–UPDATE. In both cases additionally check: P ∈ γ.users; there
is no other update being performed on γ; let θ = (θ1, . . . θℓ) = ((c1, φ1), . . . , (cℓ, φℓ)), then

j∈[ℓ] ci = γ.cash and φj ∈ L.V for each j ∈ [ℓ]. If not, drop the message. Else proceed as F .

Upon ((PRE–)SETUP–OK, id) τ2←− P check if: you accepted a message ((PRE–)UPDATE, id, θ, tstp)
τ0←− P , where t2 − t0 ≤ tstp + Tp and the message is a reply to the message ((PRE–)SETUP, id, tid)

sent to P in round τ1 such that τ2 − τ1 ≤ tstpb. If not, drop the message. Else proceed as F .

Upon ((PRE–)UPDATE–OK, id) τ0←− P , check if the message is a reply to the message
((PRE–)SETUP–OK, id) sent to P in round τ0. If not, drop the message. Else proceed as F .

Upon ((PRE–)REVOKE, id) τ0←− P , check if the message is a reply to either the message
((PRE–)UPDATE–OK, id) sent to P in round τ0 or the message ((PRE–)REVOKE–REQ, id) sent to P
in round τ0. If not, drop the message. Else proceed as F .

Offload: Upon receiving (OFFLOAD, id) τ0←− P make the following checks: γ := Γ(id) ̸= ⊥ is a
virtual channel and P ∈ γ.users. If one of the checks fails, then drop the message. Otherwise
proceed as the functionality F .

Close: Upon (CLOSE, id) τ0←− P , check if γ := Γ(id) ̸= ⊥ and P ∈ γ.users. If γ is a virtual
channel, additionally check that γ.val = ⊥. If not, drop the message. Else proceed as F .
All other messages are dropped.

aIn case more channels are being created at the same time, then none of the other creation requests
can use of the tid.

bSee Appendix E.1 what we formally meant by “reply”.

Wrapper for Protocols

Similar to the descriptions of our ideal functionality, the description of our channel
protocols, the protocol ΠpreL presented in Appendix E.3.4 and the protocol ΠV , exclude
many natural checks that we would want an honest party to make. Let us give a few
examples of requests which an honest party drops if received from the environment:

• The environment sends a malformed message to a party P (e.g. missing or additional

383

E. Appendix to Chapter 6

parameters);

• A party P receives an instruction to create a channel γ but P ̸∈ γ.users;

• A party P receives an instruction to create a virtual channel on top of a ledger
channel that does not exist, does not belong to part P or is not sufficiently funded.

• Parties request to create a channel with validity whose validity time already expired
(or is about to expire).

We define all these checks as a wrapper WchecksP that can be seen as an extension of the
wrapper provided by [AEE+21] for their ledger channel protocol.

Protocol wrapper: WchecksP

The wrapper is defined for Π ∈ {ΠV (Tp), ΠpreL(Tp)}. Below, we abbreviate A := γ.Alice,
B := γ.Bob and I := γ.Ingrid.

Party P

Create: Upon (CREATE, γ, tid) τ0←− E check if: P ∈ γ.users; ΓP (γ.id) = ⊥, ΓP
pre(γ.id) = ⊥ and

there is no channel γ′ with γ.id = γ′.id being created or pre-created; γ is valid according to the
definition given in Section 6.3.1; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈ R≥0.

Depending on the type of channel, make the following additional checks:

ledger channel: There exists (t, id, i, θ) ∈ L.UTXO such that θ = (cP , One–SigP) for (id,
i) := tid;a

virtual channel:
• If P ∈ γ.users, then α := ΓP (idP) ̸= ⊥ for idP := γ.subchan(P); α.users = {P , I};

there is no other virtual channel being created over α and α is currently not being
updated; both P and I have enough funds in α.

• If P = I, then α := ΓP (idA) ̸= ⊥ for idA := γ.subchan(A); β := ΓP (idB) ̸= ⊥ for
idB := γ.subchan(B); α.users = {A, I}; β.users = {B, I}; there is no other virtual
channel being created over α or β; A and I have enough funds in α and B and I have
enough funds in β.

• If γ.val ̸= ⊥, then γ.val ≥ τ0 + 4∆ + 15Tp.

If one of the checks fails, drop the message. Else proceed as in Π.

Pre-Create: Upon (PRE–CREATE, γ, txf , i, tofl) τ0←− E , check if: P ∈ γ.users, ΓP
pre(γ.id) = ⊥,

ΓP
pre(γ.id) = ⊥ and there is no channel γ′ with γ.id = γ′.id being created or pre-created; γ

is valid according to the definition given in Section 6.3.1; γ.st = {(cP , One–SigpkP
), (cQ,

One–SigpkQ
)} for cP , cQ ∈ R≥0 and txf is not a published transaction on L. If one of the above

checks fails, drop the message. Else proceed as in Π.

384

E.5. Wrappers for Missing Checks

(Pre)-Update: Upon (m, id, θ, tstp) τ0←− E check if: γ := ΓP (id) ̸= ⊥ if m = UPDATE and
γ := ΓP

pre(id) ̸= ⊥ if m = PRE–UPDATE. In both cases, check that there is no other update being
preformed on γ; let θ = (θ1, . . . θℓ) = ((c1, φ1), . . . , (cℓ, φℓ)), then j∈[ℓ] ci = γ.cash and
φj ∈ L.V for each j ∈ [ℓ]. If on of the checks fails, drop the message. Else proceed as in Π.

Upon ((PRE–)SETUP–OK, id) τ2←− E check if: you accepted a message ((PRE–)UPDATE, id, θ, tstp)
τ0←− E , where t2 − t0 ≤ tstp + Tp and the message is a reply to the message ((PRE–)SETUP, id, tid)

you sent in round τ1 such that τ2 − τ1 ≤ tstpb. If not, drop the message. Else proceed as in Π.

Upon ((PRE–)UPDATE–OK, id) τ0←− E , check if the message is a reply to the message
((PRE–)SETUP–OK, id) you sent in round τ0. If not, drop the message. Else proceed as in Π.

Upon ((PRE–)REVOKE, id) τ0←− E , check if the message is a reply to either ((PRE–)UPDATE–OK, id)
or ((PRE–)REVOKE–REQ, id) you sent in round τ0. If not, drop the message. Else proceed as in Π.

Offload: Upon receiving (OFFLOAD, id) τ0←− E make the following checks: γ := Γ(id) ̸= ⊥ is a
virtual channel and P ∈ γ.users. If one of the checks fails, then drop the message. Else proceed
as in Π.

Close: Upon (CLOSE, id) τ0←− E , check if γ := ΓP (id) ̸= ⊥, P ∈ γ.users. If γ is a virtual channel,
additionally check that γ.val = ⊥. If not, drop the message. Else proceed as in Π.
All other messages are dropped.

aIn case more channels are being created at the same time, then none of the other creation requests
can use of the tid.

bSee Appendix E.1 what we formally meant by “reply”.

E.5.1 Security Proofs

In this section, we provide proofs for Theorem 17, Theorem 6 and Theorem 18.

Proof of Theorem 17

In our proof of Theorem 17, we provide the code for a simulator, that simulates the
protocol ΠpreL in the ideal world, having access to the functionalities L and FpreL. In
UC proofs it is required to provide a simulation of the real protocol in the ideal world
even without knowledge of the secret inputs of the honest protocol participants. The
main challenge is that this transcript of the simulation has to be indistinguishable to the
environment E from the transcript of the real protocol execution. Yet, in our protocols,
parties do not receive secret inputs but are only instructed by the environment to take
certain protocol actions, e.g. updating a channel. Hence the only challenge that arises
during simulation is handling different behaviors of malicious parties. Due to this, we only
provide the simulator code for the protocol without arguing about indistinguishability of
simulation and real protocol execution, since it naturally holds due to the reasons given
above. In our simulation, we omit the case where all parties are honest since the simulator
simply has to follow the protocol description. In the case of three protocol participants,
we provide a simulation for all cases where two parties are corrupted and one party is
honest because these cases cover also all cases where just one party is corrupted. In other

385

E. Appendix to Chapter 6

words, the case where two parties are honest is a combination of cases where each of
these parties is honest individually.

Since the functionality FpreL incorporates, FL, we refer at some point of our simulation
to the simulator code for ledger channels.

We note that the indistinguishability of the simulated transcript and the transcript of the
real protocol can only hold if the security properties of the underlying adaptor signature
scheme hold. Namely, we require the adaptor signature scheme to fulfill the unforgeability,
witness extractability and adaptability properties.

Simulator for Wrapper protocol

Pre-Creat

Case A honest and B corrupted

1. Upon A sending (PRE–CREATE, γ, txf , i, tofl) τ0−→ FpreL set T1 = 2 and do the following:

2. If txf .output[i].cash ̸= γ.cash, then ignore the message.

3. Set id := γ.id, generate (RA, rA) ← GenR, (YA, yA) ← GenR and send (createInfo, id, txf , i,
tofl , RA, YA) τ0−→ B.

4. If (createInfo, id, txf , i, tofl , RB , YB) τ0+1←−−− B, create:

[TXc] := GenCommit([txf], IA, IB , 0)
[TXs] := GenSplit([TXc].txid∥1, γ.st)

for IA := (pkA, RB , YA), IB := (pkB , RB , YB). Else stop.

5. Compute sA
c ← pSignskA

([TXc], YB), sA
s ← SignskA

([TXs]) and send (createCom, id, sA
c , sA

s)
τ0+1−−−→ B.

6. If (createCom, id, sB
c , sB

s) τ0+2←−−− B, s.t. pVrfypkB
([TXc], YA; sB

c) = 1 and VrfypkB
([TXs];

sB
s) = 1, set

TXc := ([TXc], {SignskA
([TXc]), Adapt(sB

c , yA)})
TXs := ([TXs], {sA

s , sB
s })

ΓA
pre(γ.id) := (γ, txf , (TXc, rA, RB , YB , sA

c), TXs, tofl).

and if B has not sent (PRE–CREATE, γ, txf , i, tofl) to FpreL send this message on behalf of B.

Pre-Update

Let T1 = 2 and T2 = 1 and let |tid| = 1.

386

E.5. Wrappers for Missing Checks

Case A is honest and B is corrupted

Upon A sending (PRE–UPDATE, id, −→
θ , tstp) τ0−→ FpreL, proceed as follows:

1. Generate new revocation public/secret pair (RP , rP) ← GenR and a new publishing

public/secret pair (YP , yP) ← GenR and send (updateReq, id, −→
θ , tstp, RA, YA)

τA
0−→ B.

2. Upon (updateInfo, id, hB, YB, sB
s)

τA
0 +2←−−− B, set tlock := τA

0 + tstp + 5 + ∆ + tofl, extract txf

from ΓB
pre(id) and

[TXc] := GenCommit([txf], IA, IB , tlock)
[TXs] := GenSplit([TXc].txid∥1, θ),

for IA := (pkA, RA, YA) and IB := (pkB, RB, YB). If it holds that VrfypkB
([TXs]; sB

s) = 1
continue. Else mark this execution as “failed” and stop.

3. If A sends (PRE–SETUP–OK, id)
τA

1 ≤τA
0 +2+tstp−−−−−−−−−→ FpreL, compute sA

c ← pSignskA
([TXc], YB),

sA
s ← SignskA

([TXs]) and send the message (update–commitA, id, sA
c , sA

s)
τA

1−→ B.

4. In round τA
1 + 2 distinguish the following cases:

• If A receives (update–commitB, id, sB
c)

τA
1 +2←−−− B check if B has not sent (PRE–UPDATE–OK,

id)
τA

1 +1−−−→ FpreL. If so send the message (PRE–UPDATE–OK, id)
τA

1 +1−−−→ FpreL on behalf of B.
If pVrfypkB

([TXc], YA; sB
c) = 0, then mark this execution as “failed” and stop.

• If A receives (updateNotOk, id, rB)
τA

1 +2←−−− B, where (RB, rB) ∈ R, add ΘA(id) :=
ΘA(id) ∪ ([TXc], rB, YB, sA

c), instruct FpreL to send (PRE–UPDATE–REJECT, id) −→ A and
to stop and mark this execution as “failed” and stop.

• Else, execute the simulator code for the procedure
Wait–if–RegisterA(id) and stop.

5. If A sends (PRE–REVOKE, id)
τA

1 +2−−−→ FpreL, then parse ΓA
pre(id) as (γ, txf , (TXc, r̄A, R̄B, ȲB,

s̄A
Com), txs) and update the channel space as ΓA

pre(id) := (γ, txf , (TXc, rA, RB, YB, sA
c),

TXs), for TXs := ([TXs], {sA
s , sB

s }) and TXc := ([TXc], {SignskA
([TXc]), Adapt(sB

c , yA)}).

Then send (revokeP, id, r̄A)
τA

1 +2−−−→ B. Else, execute the simulator code for the procedure
Wait–if–RegisterA(id) and stop.

6. If A receives (revokeB, id, r̄B)
τA

1 +4←−−− B, check if B has not sent (PRE–REVOKE, id)
τB

1 +2−−−→
FpreL. If so send (PRE–REVOKE, id)

τB
1 +2−−−→ FL on behalf of B. Check if (R̄B, r̄B) ∈ R, then

set

ΘB(id) :=ΘA(id) ∪ ([TXc], r̄B , ȲB , s̄A
Com)

387

E. Appendix to Chapter 6

Else execute the simulator code for the procedure
Wait–if–RegisterA(id) and stop.

Case B is honest and A is corrupted

Upon A sending (updateReq, id, −→
θ , tstp, hA) τ0−→ B, send the message (PRE–UPDATE, id, −→

θ , tstp)
τ0−→ FpreL on behalf of A, if A has not already sent this message. Proceed as follows:

1. Upon (updateReq, id, −→
θ , tstp, RA, YA)

τB
0←−− A, generate (RB, rB) ← GenR and (YB,

yB) ← GenR.

2. Set tlock := τB
0 + tstp + 4 + ∆ + tofl , extract txf from ΓA

pre(id) and

[TXc] := GenCommit([txf], IA, IB , tlock)
[TXs] := GenSplit([TXc].txid∥1, θ)

where IA := (pkA, RA, YA), IB := (pkB , RB , YB).

3. Compute sB
s ← SignskB

([TXs]), send (updateInfo, id, RB , YB , sB
s)

τB
0−−→ A.

4. If B receives (update–commitA, id, sA
c , sA

s)
τB

1 ≤τB
0 +2+tstp←−−−−−−−−− A then send (PRE–SETUP–OK, id)

τB
1−−→ FpreL on behalf of A, if A has not sent this message.

5. Check if pVrfypkP
([TXc], YQ; sP

c) = 1 and VrfypkP
([TXs]; sP

s) = 1. Else mark this execution as
“failed” and stop.

6. If B sends (PRE–UPDATE–OK, id)
τB

1−−→ FpreL, then compute sB
c ← pSign([TXc], YA) and send

(update–commitB, id, sB
c)

τB
1−−→ A. Else send (updateNotOk, id, rB)

τB
1−−→ A, mark this

execution as “failed” and stop.

7. Parse ΓB
pre(id) as (γ, txf , (TXc, r̄B , R̄A, ȲA, s̄B

Com), txs). If B receives (revokeA, id, r̄A)
τB

1 +2←−−− A,

send (PRE–REVOKE, id)
τB

1 +2−−−→ FpreL on behalf of A, if A has not sent this message.

Else if you do not receive (revokeA, id, r̄A)
τB

1 +2←−−− A or if (R̄A, r̄A) ̸∈ R, execute the simulator
code of the procedure
Wait–if–RegisterB(id) and stop.

8. If B sends (PRE–REVOKE, id)
τB

1 +2−−−→ FpreL, then set

ΘB(id) :=ΘB(id) ∪ ([TXc], r̄A, ȲA, s̄B
Com)

ΓB
pre(id) :=(γ, txf , (TXc, rB , RA, YA, sB

c), TXs),

388

E.5. Wrappers for Missing Checks

for TXs := ([TXs], {sA
s , sB

s }) and TXc := ([TXc], {SignskB
([TXc]), Adapt(sA

c , yB)}). Then

(revokeB, id, r̄B)
τB

1 +2−−−→ A and stop. Else, in round τB
1 + 2, execute the simulator code of the

procedure Wait–if–RegisterB(id) and stop.

Register

Case A honest and B corrupted

For party A in every round τ0 do the following:

1. For each id ∈ {0, 1}∗ s.t. ΓA
pre(id) ̸= ⊥:

2. Parse ΓA
pre(id) := (γ, txf , (TXc, rA, RB , YB , sA

c), TXs, tofl , x)

3. If txf appeared on-chain in this round, then

a) Set Γ(id) := (γ, txf , (TXc, rA, RB , YB , sA
c), TXs).

b) Set ΓA
pre(id) := ⊥

c) If x = in–dispute, then execute the simulator code for
L–ForceCloseA(id).

Wait–if–Register(id)

Case A honest and B corrupted

Let τ0 be the current round. Let X := ΓA
pre(id). Then set ΓA

pre(id) := (X, in–dispute).

Proof of Theorems 6 and 18

We now provide a proof for Theorem 6 and Theorem 18. In our proof, we provide the
code for a simulator, that simulates the protocol ΠV in the ideal world having access to
the functionalities L and FV .

We note that since during our simulation, no ERROR messages are produced by the
functionality, the protocol satisfies the security properties of the functionality FV as
mentioned in Section 6.3.2.

Simulator for creating virtual channels

creating virtual channels

389

E. Appendix to Chapter 6

Case A is honest and I are B are corrupt

Upon A sending (CREATE, γ)
τA

0−→ FV set T1 = 6T + tstp proceed as follows:

1. Let idα := γ.subchan(A) and compute

θA := GenVChannelOutput(γ, A).

2. Upon A sending (UPDATE, idα, θA, tstp)
τA

0−→ FL execute the simulator code of the update
procedure for the generalized channels until the message (SETUP, idα, tidA) is sent by FL. If
the execution stops send (peaceful–reject, idα) −→ FV .

3. Upon A receiving (SETUP, idα, tidA)
τA

1 ≤τA
0 +T←−−−−−−− FL, execute the simulator code for

SetupVChannel with input (γ, tidA).
4. If this execution of SetupVChannel is recorded “failed” stop. Otherwise execute the simulator

code of the update procedure for the generalized channels until the end. If the execution
failed (I does not revoke) instruct FV to L–ForceClose(idα).

5. If B or I have not sent (CREATE, γ) −→ FV send this message on their behalf.

6. Upon A receiving (CREATED, γ)
τA

2 ≤τA
1 +5T←−−−−−−− FV , mark γ as created, i.e. update ΓA(γ.id)

from (⊥, x) to (γ, x).

Case I is honest and A, B are corrupted

Upon I sending (CREATE, γ)
τI

0−→ FV proceed as follows:

1. Set idα = γ.subchan(A), idβ = γ.subchan(B) and generate

θA := GenVChannelOutput(γ, A)
θB := GenVChannelOutput(γ, B)

2. Upon A and B sending (UPDATE, idα, θA, tstp)
τA

0−→ FL and (UPDATE, idα, θB, tstp)
τB

0−−→ FL,
execute the simulator code for the update procedure of the generalized channel functionality
until the message (UPDATE–REQ, idα, θA, tstp, tidA) and (UPDATE–REQ, idα, θB, tstp, tidB) are
sent by FL.

3. If in round τ I
1 ≤ τ I

0 + T , I has received both (UPDATE–REQ, idα, θA, tstp, tidA) ←− FL and
(UPDATE–REQ, idβ , θB, tstp, tidB) ←− FL, then execute the simulator code of SetupVChannel
with inputs (γ, tidA, tidB). Or send (peaceful–reject, idα) −→ FV and (peaceful–reject, idβ)
−→ FV if instructed by E . Else stop.

390

E.5. Wrappers for Missing Checks

4. If in round τ I
2 ≤ τ I

1 + tstp + T , I receives both (SETUP–OK, idα)) ←− FL and (SETUP–OK, idβ))
←− FL, continue executing the simulator code of the update procedure of generalized channels
until the messages (REVOKE–REQ, idα) and (REVOKE–REQ, idα) are sent by FL. Otherwise
stop.

5. If in round τ I
3 ≤ τ I

2 + 4T you have received both (REVOKE–REQ, idα) ←− FL and (REVOKE–REQ,
idβ) ←− FL, continue executing the simulator code of the update procedure of generalized
channels until the end. Otherwise stop.

6. If A or B have not sent (CREATE, γ) −→ FV send this message on their behalf. Update
ΓI(γ.id) from (⊥, x) to (γ, x).

SetupVChannel for channels without validity

Case A is honest and I, B are corrupted

1. Create the body of the funding transaction:

txγ
f .input :=(tidA, tidB)

txγ
f .output :=((γ.cash, Multi–Sig{γ.users}),

(γ.cash + γ.fee, One–SigpkI
))

2. Upon A sending (PRE–CREATE, γ, txf , 1, tofl) t0−→ FpreL where tofl = 2T + 8∆, execute the
simulator code for the Pre-Create procedure of the FpreL functionality.

3. Upon A receiving (PRE–CREATED, γ.id) τ1≤τ0+T←−−−−−− FpreL then sign the funding transaction, i.e.
sB

f ← SignskB
([txγ

f]) and send (createFund, γ.id, sA
f , [txγ

f]) τ1−→ I. Else record this execution
as “failed” and stop.

4. Upon receiving (createFund, γ.id, sB
f , sI

f) τ1+1←−−− I, verify all signatures, i.e. check:

VrfypkB
([txγ

f]; sB
f) = 1

VrfypkI
([txγ

f], sI
f) = 1.

If all checks pass define

txγ
f := {([txγ

f], sA
f , sB

f , sI
f)},

and set
ΓA(γ.id) := (⊥, txγ

f , tidA)
and consider procedure successfully completed. Else record this execution as “failed” and
stop.

391

E. Appendix to Chapter 6

Case I is honest and A, B are corrupted

5. If I receives (createFund, γ.id, sA
f , [txγ

f]) τ2≤τ0+T +1←−−−−−−− A and (createFund, γ.id, sB
f , [txγ

f]) τ2←−
B, verify the funding transaction and signatures of A and B, i.e. check:

VrfypkA
([txγ

f]; sA
f) = 1

VrfypkB
([txγ

f], sB
f) = 1

(tidA, tidB) = txγ
f .input

(γ.cash + γ.fee, One–SigpkI
) ∈ txγ

f .output.

6. If all checks pass, sign the funding transaction, i.e. compute

sI
f := SignskI

([txγ
f]),

txγ
f := {([txγ

f], sA
f , sB

f , sI
f)}.

Store ΓI(γ.id) := (⊥, txγ
f). Then send (createFund, γ.id, sB

f , sI
f) τ2−→ A and (createFund, γ.id,

sA
f , sI

f) τ2−→ B, and consider procedure successfully completed. Else record this execution as
“failed” and stop.

SetupVChannel for channels With validity

Case A is honest and B, I are corrupted

1. Send (createInfo, γ.id, tidA) τ0−→ B.
2. In round τ1 = τ0 + 1, create the body of the funding transaction:

txγ
f .input :=(tidA)

txγ
f .output :=((γ.cash, Multi–Sig{γ.users}),

(γ.fee/2, One–SigpkI
))

3. Upon A sending (PRE–CREATE, γ, txf , 1, tofl) τ1−→ FpreL where tofl = γ.val + 3∆, execute the
simulator code for the Pre-Create procedure of the FpreL functionality. If A does not receive
the message (PRE–CREATED, γ.id) τ2≤τ1+T←−−−−−− FpreL then mark this execution as “failed” and
stop.

4. If A receives (createFund, γ.id, sI
f) τ2+2←−−− I, verify the signature, i.e. check:

VrfyskI
([txγ

f]; sI
f) = 1.

392

E.5. Wrappers for Missing Checks

If the check passes, compute a signature on the fund transaction:

sA
f := SignskA

([txγ
f]),

txγ,A
f := {([txγ

f], sI
f , sA

f)}.

Else record this execution as “failed” and stop.
5. Set

ΓA(γ.id) := (⊥, txγ,A
f , tidA)

and consider procedure successfully completed.

Case B is honest and A, I are corrupted

1. If (createInfo, γ.id, tidA) τ0+1←−−− A, create the body of the funding and the first commit and
split transactions:

txγ
f .input :=(tidA)

txγ
f .output :=((γ.cash, Multi–Sig{γ.users}),

(γ.fee/2, One–SigpkI
))

txγ
refund.input :=(txγ

f .txid||2, tidB)
txγ

refund.output :=(γ.cash + γ.fee, One–SigpkI
).

Else record this execution as “failed” and stop.

2. Upon B sending (PRE–CREATE, γ, txf , 1, tofl) τ1=τ0+1−−−−−→ FpreL
where tofl = γ.val + 3∆, execute the simulator code for the Pre-Create procedure of the
FpreL functionality. If B does not receive (PRE–CREATED, γ.id) τ2≤τ1+T←−−−−−− FpreL then mark
this execution as “failed” and stop.

3. Compute a signature on the refund transaction, i.e., sB
Ref ← SignskB

([txγ
refund]) and define

txγ,B
f := {([txγ

f])}. Then, send (createFund, γ.id, sB
Ref, [txγ

refund], [txγ
f]) τ2−→ I, set

ΓB(γ.id) := (⊥, txγ,B
f , tidB)

and consider procedure successfully completed. Else record this execution as “failed” and
stop.

Case I is honest and A, B are corrupted

393

E. Appendix to Chapter 6

4. If I receives the message (createFund, γ.id, sB
Ref, [txγ

refund], [txγ
f]) τ3≤τ0+T +2←−−−−−−− B, verify the

fund and refund transactions and signature of B, i.e. check:

VrfyskB
([txγ

refund]; sB
Ref) = 1.

[txγ
refund].input = (txγ

f .txid||2, tidB),
[txγ

refund].output = (γ.cash + γ.fee, One–SigpkI
),

[txγ
f].output[2] = (γ.fee/2, One–SigpkI

)

If all checks pass, sign the fund and refund transactions, i.e. compute

sI
Ref := SignskI

([txγ
refund]), sI

f := SignskI
([txγ

f]),
txγ

refund := {([txγ
refund], sI

Ref, sB
Ref)}.

Store ΓI(γ.id) := (⊥, [txγ
f], txγ

refund, tidA, tidB). Then send (createFund, γ.id, sI
f) τ3−→ A, and

consider procedure successfully completed. Else record this execution as “failed” and stop.

Function GenVChannelOutput(γ, P)

Return θ, where θ.cash = γ.cash + γ.fee/2 and θ.φ is defined as follows

θ.φ =

Multi–Sigγ.users ∨ (One–SigP ∧ CheckRelative(Tp+4∆)),
if γ.val = ⊥

Multi–SigA,I ∨ (One–SigI ∧ CheckLockTimeγ.val),
if γ.val ̸= ⊥ ∧ P = A

Multi–SigB,I ∨ (One–SigB ∧ CheckLockTimeγ.val+2∆),
if γ.val ̸= ⊥ ∧ P = B

Simulator for updating virtual channels

Update virtual channels

Case A is honest and B is corrupt

Below we abbreviate FpreL := FpreL(Tp, 1) and assume A is the initiating party.

1. Upon A sending (UPDATE, id, −→
θ , tstp)

τA
0−→ FpreL, execute the simulator for the pre-update

procedure of the FpreL functionality from beginning until PRE–SETUP is sent. If this execution
is marked “failed” stop.

2. Upon A sending (SETUP–OK, id)
τA

2 ≤τA
1 +tstp−−−−−−−→ FpreL, continue executing the simulator code

until step 4. If this execution is marked “failed” stop.

394

E.5. Wrappers for Missing Checks

3. If A does not receive (PRE–UPDATE–OK, id)
τA

3 ≤τA
2 +T←−−−−−−− FpreL or (PRE–UPDATE–REJECT, id)

τA
3 ≤τA

2 +T←−−−−−−− FpreL, execute the simulator code for the procedure OffloadA(id) and stop.

4. Upon A sending (PRE–REVOKE, id)
τA

3−→ FpreL continue executing the simulator code until the
end. If this execution is marked as “failed” execute the simulator code for the procedure
OffloadA(id) and stop.

5. Upon A receiving (PRE–UPDATED, id)
τA

4 ≤τA
3 +T←−−−−−−− FpreL, update the channel space, i.e., let

γ := ΓA(id), set γ.st := −→
θ and Γ(id) := γ. Else if this execution is marked as “failed” execute

the simulator code for the procedure OffloadA(id) and stop.

Case B is honest and A is corrupt

1. Let τB
0 be the round in which B receives (PRE–UPDATE–REQ, id, −→

θ , tstp, tid)
τB

0←−− FpreL.
2. Let τB

1 ≤ τ0 + tstp + T be the round in which B receives the message (PRE–SETUP–OK, id)
τB

1 ≤τ0+tstp+T←−−−−−−−−− FpreL.

3. Upon B sending (UPDATE–OK, id)
τB

1←−− FpreL execute the simulator code of the pre-update
procedure for the FpreL functionality until the message PRE–REVOKE–REQ is sent by the
functionality and let the this round be τB

2 ≤ τB
1 + T . If this execution is marked as “failed”

execute the simulator code of the procedure OffloadB(id) and stop.

4. Upon B sending (PRE–REVOKE, id)
τB

2−−→ FpreL continue executing the simulator code until the
end. If this execution is marked as “failed” execute the simulator code for the procedure
OffloadB(id) and stop.

5. Upon B receiving (PRE–UPDATED, id)
τB

3 ≤τB
2 +T←−−−−−−− FpreL, update the channel space, i.e., let

γ := ΓB(id), set γ.st := −→
θ and Γ(id) := γ.

Simulator for offloading virtual channels

Offloading virtual channels without validity

Case A honest and I, B corrupted

1. Extract γ and txγ
f from ΓA(id) and tidA, tidB from txγ

f . Then define idα := γ.subchan(A).
Upon A sending (CLOSE, idα) τ0−→ FL execute the simulator code for the close procedure
of generalized ledger channels.

2. If A receives (CLOSED, idα) τ1≤τ0+T +3∆←−−−−−−−−− FL, check that a transaction with tidA appeared
on L. Else stop.

3. Let T2 := τ1 + T + 3∆ and distinguish:

• If in round τ2 ≤ T2 a transaction with tidB appeared on L, then (post, txγ
f) τ2−→ L.

395

E. Appendix to Chapter 6

• Else in round T2 create the punishment transaction TXpun as TXpun.input := tidA,
TXpun.output := (γ.cash+γ.fee/2, One–SigpkA

) and TXpun.Witness := SignskA
([TXpun]).

Then (post, TXpun) T2−→ L.

4. Let T3 := τ2 + ∆ and distinguish the following two cases:

• The transaction txγ
f was accepted by L in τ3 ≤ T3, then update

ΓA := ToLedgerChannel(ΓA, γ.id) and set m := offloaded.
• The transaction TXpun was accepted by L in τ3 ≤ T3, then define ΓA(γ.id) = ⊥ and

set m := punished.
5. Return m in round τ3.

Case I honest and A, B corrupted

1. Extract γ and txγ
f from ΓI(id) and tidA, tidB from txγ

f . Then define idα := γ.subchan(A),
idβ := γ.subchan(B) Upon I sending the messages (CLOSE, idα) τ0−→ FL and (CLOSE, idβ)
τ0−→ FL execute the simulator code of the close procedure for the generalized channels.

2. If I receives both (m, idα)
τA

1 ≤τ0+T +3∆←−−−−−−−−− FL and (CLOSED, idβ)
τB

1 ≤τ0+T +3∆←−−−−−−−−− FL, check
that a transaction with tidA and a transaction with tidB appeared on L. Then publish
(post, txγ

f) τ1−→ L, where τ1 := max{τA
1 , τB

1 }. Otherwise set ΓI(id) = ⊥ and stop.

3. Once txγ
f is accepted by L in round τ2 ≤ τ1 +∆, then ΓI(γ.id) = ⊥ and return “offloaded”.

Offloading virtual channels with validity

Case A honest and B, I corrupted

1. Extract γ, tidA and txγ
f from ΓA(id). Then define idα := γ.subchan(A) and Upon A

sending (CLOSE, idα) τ0−→ FL execute the simulator code of the close procedure of the
generalized ledger channel.

2. If A receives (CLOSED, idα) τ1≤τ0+T +3∆←−−−−−−−−− FL, then post (post, txγ,A
f) τ2−→ L. Otherwise,

set ΓA(γ.id) = ⊥ and stop.

3. Once txγ
f is accepted by L in round τ2 ≤ τ1 + ∆, then set ΓA

L(id) := ΓA(id), ΓA(id) := ⊥
and return “offloaded”.

Case B honest and A, I corrupted

1. Extract γ, tidB and [txγ
f] from ΓB(id). Then define idβ := γ.subchan(B) and Upon B

sending (CLOSE, idβ) τ0−→ FL execute the simulator code of the close procedure of the
generalized ledger channel.

396

E.5. Wrappers for Missing Checks

2. If B receives (CLOSED, idβ) τ1≤τ0+T +3∆←−−−−−−−−− FL, then continue. Otherwise, set ΓB(γ.id) = ⊥
and stop.

3. Create the punishment transaction TXpun as TXpun.input := tidB , TXpun.output := (γ.cash +
γ.fee/2, One–SigpkB

) and TXpun.Witness := SignskB
([TXpun]). Then wait until round

τ2 := max{τ1, γ.val + 2∆} and send (post, TXpun) τ2−→ L.

4. Let T3 := τ2 + ∆ and distinguish the following two cases:

• A transaction with identifier txγ
f .txid was accepted by L in τ3 ≤ T3, then update

ΓB
L (id) := ΓB(id) and set m := offloaded.

• The transaction TXpun was accepted by L in τ3 ≤ T3, then define ΓB(γ.id) = ⊥, and
set m := punished.

5. Return m in round τ3.

Case I honest and A, B corrupted

1. Extract γ, tidA, tidB, txγ
refund and [txγ

f] from ΓI(id). Then define idα := γ.subchan(A),
idβ := γ.subchan(B) and upon I sending (CLOSE, idα) τ0−→ FL and (CLOSE, idβ) τ0−→ FL

execute the simulator code of the close procedure of the generalized ledger channel for
both idα and idβ .

2. If I receives both (CLOSED, idα)
τA

1 ≤τ0+T +3∆←−−−−−−−−− FL and (CLOSED, idβ)
τB

1 ≤τ0+T +3∆←−−−−−−−−−
FL,then continue. Otherwise, set ΓI(γ.id) = ⊥ and stop.

3. Create the punishment transaction TXpun as TXpun.input := tidA, TXpun.output := (γ.cash +
γ.fee/2, One–SigpkI

) and TXpun.Witness := SignskI
([TXpun]). Then wait until round

τ2 := max{τA
1 , γ.val} and send (post, TXpun) τ2−→ L.

4. Let T3 := τ2 + ∆ and distinguish the following two cases:

• A transaction with identifier txγ
f .txid was accepted by L in τ ′

3 ≤ T3, send (post,
txγ

refund) τ4−→ L where τ4 := max{τB
1 , τ ′

3}. Once txγ
refund is accepted by L in round

τ5 ≤ τ4 + ∆, set ΓI(γ.id) = ⊥ and m := offloaded.
• The transaction TXpun was accepted by L in τ ′′

3 ≤ T3, then set ΓI(γ.id) = ⊥ and
m := punished.

5. Return m in round τ6 where τ6 := max{τ5, τ ′′
3 }.

Simulator for punishing in a virtual channel

• Upon a party sending (PUNISH) τ0−→ FL, execute the simulator code for the punish procedure
of the generalized channels.

• Execute the simulator code for both Punish and Punish–Validity.

Punish

397

E. Appendix to Chapter 6

Case A honest and I, B corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be extracted from ΓA(id) do the
following:

1. Extract txγ
f from ΓA(id) and tidA, tidB from txγ

f . Check if tidA appeared on L. If not,
then stop.

2. Denote T2 := τ1 + T + 3∆ and distinguish:

• If in round τ2 ≤ T2 the transaction with tidB appeared on L, then (post, txγ
f) τ2−→ L.

• Else in round T2 create the punishment transaction TXpun as TXpun.input := tidA,
TXpun.output := (γ.cash + γ.fee/2, One–SigpkA

) and TXpun.Witness := SignskA
([TXpun])

and (post, TXpun) T2−→ L.

3. Let T3 := τ2 + ∆ and distinguish the following two cases:

• The transaction txγ
f was accepted by L in τ3 ≤ T3, then update

ΓA := ToLedgerChannel(ΓA, γ.id).
• The transaction TXpun was accepted by L in τ3 ≤ T3, then define ΓA(γ.id) = ⊥.

Case I honest and A, B corrupted

For every id ∈ {0, 1}∗, such that γ with γ.val = ⊥ can be extracted from ΓI(id) do the following:

1. Extract txγ
f from ΓI(id) and tidA, tidB from txγ

f . Check if for some P ∈ {A, B} a
transaction with identifier tidP appeared on L. If not, then stop.

2. Denote idα := γ.subchan(Q) where Q = γ.otherParty(P) and upon I sending (CLOSE, idα)
τ0−→ FL execute simulator the code for the punish procedure of the generalized virtual

channels.

3. If I receives (CLOSED, idα) τ1≤τ0+T +3∆←−−−−−−−−− FL and tidQ appeared on L, (post, txγ
f) τ1−→ L.

Otherwise set ΓI(id) = ⊥ and stop.

4. Once txγ
f is accepted by L in round τ2, such that τ2 ≤ τ1 + ∆, set ΓI(id) = ⊥.

Punish–Validity

Case A honest and I, B corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val ̸= ⊥ can be extracted from ΓA(id) do the
following:

398

E.5. Wrappers for Missing Checks

1. Extract tidA and txγ
f from ΓA(id). Check if tidA appeared on L. If not, then stop.

2. Send (post, txγ
f) τ1−→ L.

3. Once txγ
f is accepted by L in round τ2 ≤ τ1 + ∆, set ΓA

L(id) := ΓA(id), ΓA(id) := ⊥.

Case B honest and A, I corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val ̸= ⊥ can be extracted from ΓB(id) do the
following:

1. Extract tidB and [txγ
f] from ΓB(id). Check if tidB or [txγ

f].txid appeared on L. If not,
then stop.

2. If txγ
f appeared on L, set ΓB

L (id) := ΓB(id), ΓB(id) := ⊥ and stop.
3. If tidB appeared on L, create the punishment transaction TXpun as TXpun.input := tidB,

TXpun.output := (γ.cash + γ.fee/2, One–SigpkB
) and TXpun.Witness := SignskB

([TXpun]).
Then wait until round τ2 := max{τ1, γ.val + 2∆} and send (post, TXpun) τ2−→ L.

4. If transaction TXpun was accepted by L in τ3 ≤ τ2 + ∆, then define ΓB(γ.id) = ⊥.

Case I honest and A, B corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val ̸= ⊥ can be extracted from ΓI(id) do the
following:

1. Extract tidA, tidB , txγ
refund and [txγ

f] from ΓI(id). Check if tidA or tidB appeared on L or
τ1 = γ.val − (3∆ + Tp). If not, then stop.

2. Distinguish the following cases:

• If τ1 = γ.val − (3∆ + Tp), define idα := γ.subchan(A), idβ := γ.subchan(B) and
upon I sending the messages (CLOSE, idα) τ1−→ FL and (CLOSE, idβ) τ1−→ FL execute
the simulator code for the close procedure of the generalized channels for both
channels idα and idβ .

• If tidB appeared on L, send (CLOSE, idα) τ1−→ FL.

3. If a transaction with identifier tidA appeared on L in round τ2 ≤ τ1 + T + 3∆, create the
punishment transaction TXpun as TXpun.input := tidA, TXpun.output := (γ.cash + γ.fee/2,
One–SigpkI

) and TXpun.Witness := SignskI
([TXpun]). Then wait until round τ3 := max{τ2,

γ.val} and send (post, TXpun) τ3−→ L.

4. Distinguish the following two cases:

399

E. Appendix to Chapter 6

• The transaction txγ
f .txid was accepted by L in τ4 ≤ τ3 + ∆, send (post, txγ

refund)
τ5−→ L where τ5 := max{γ.val + ∆, τ4}. Once txγ

refund is accepted by L in round
τ6 ≤ τ5 + ∆, set ΓI(γ.id) = ⊥ and stop.

• The transaction TXpun was accepted by L in τ4 ≤ τ3 + ∆, then set ΓI(γ.id) = ⊥.

Simulator for Close in a virtual channel
Closing virtual channels

Case A honest and I, B corrupted

1. Upon A sending (CLOSE, id)
τA

0−→ FV or in round τA
0 = γ.val − (4∆ + 7T) if γ.val ≠ ⊥,

proceed as follows:
2. Extract γ, txγ

f , tidA from ΓA(id). Parse

TXγ
s .output =

(cA, One–SigpkA

), (cB , One–SigpkB
)

.

3. Compute the new state of the channel idα := γ.subchan(A) as

−→
θ A := {(cA, One–SigpkA

), (γ.cash − cA + γ.fee
2 , One–SigpkI

)}

Then, upon A sending (UPDATE, idα, −→
θ A, 0)

τA
0−→ FL execute the simulator code for the

update procedure of generalized channels until (SETUP, idα, tid′
A) is sent by FL. If this

execution fails instruct FV to execute V–ForceClose(id) and stop.

4. Upon A sending (SETUP–OK, idα)
τA

1 ≤τA
0 +T−−−−−−−→ FL continue executing the simulator code for

the update procedure of generalized channels until A receives (UPDATE–OK, idα)
τA

2 ≤τA
1 +2T←−−−−−−−

FL. If this execution fails instruct FV to execute V–ForceClose(id) and stop.

5. Upon A sending (REVOKE, idα)
τA

2−→ FL continue executing the simulator code for the update

procedure of generalized channels until A receives (UPDATED, idα)
τA

3 ≤τA
2 +2T←−−−−−−− FL, then set

ΓA(id) := ⊥ and stop. If this execution fails instruct FV to execute V–ForceClose(id) and
stop.

Case I honest and A, B corrupted

1. Upon I sending (CLOSE, id)
τI

0−→ FV or in round τA
0 = γ.val − (4∆ + 7T) if γ.val ̸= ⊥, proceed

as follows:
2. Extract γ, txγ

f , tidA and tidB from ΓI(id).

400

E.5. Wrappers for Missing Checks

3. Let idα = γ.subchan(A), idβ = γ.subchan(B) and c := γ.cash, execute the simulator code for
the update procedure of generalized channels until (UPDATE–REQ, idα, tid′

A, −→
θ A, 0) ←− FL

and (UPDATE–REQ, idβ , tid′
B, −→

θ B , 0) ←− FL are sent by FL until round τ I
1 ≤ τ I

0 + T .
4. Check that for some cA, cB s.t. cA + cB + γ.fee = c it holds

−→
θ A = {(cA, One–SigpkA

), (c − cA + γ.fee/2, One–SigpkI
)}

−→
θ B = {(cB , One–SigpkB

), (c − cB + γ.fee/2, One–SigpkI
)}

If not, then stop.
5. continue executing the simulator code for the update procedure of generalized channels until

I receives (SETUP–OK, idα) ←− FL and (SETUP–OK, idβ)) ←− FL until round τ I
2 ≤ τ I

1 + T .
Otherwise stop.

6. Upon I sending (UPDATE–OK, idβ)
τI

2−→ FL continue executing the simulator code for the
update procedure of generalized channels until I receives the messages (REVOKE–REQ, idα) ←−
FL and (REVOKE–REQ, idβ) ←− FL until round τ I

3 ≤ τ I
2 + 2T .

7. Upon I sending (REVOKE, idα)
τI

3−→ FL and (REVOKE, idβ)
τI

3−→ FL executing the simulator
code for the update procedure of generalized channels until the end and set ΓI(id) := ⊥.

401

APPENDIX F
Appendix to Chapter 7

F.1 When to use virtual channels
In the state of the art on off-chain protocols, we can distinguish between generic 2-party
applications and simple payments. The former require a direct channel between the
parties and therefore it is interesting to compare VCs and direct PCs in this setting. In
the latter, PCNs have already been shown to offer improvements over constructing a
direct channel and therefore it is worth to compare VC against PCN payments. Next,
we highlight use cases of VCs in these two settings.

VCs vs PCs for 2-party applications. Imagine that two arbitrary users that do
not share a PC or a VC decide to execute a 2-party application between them. The first
disadvantage of using a PC over a VC is that over their lifespan they would pay twice as
many fees per on-chain transaction (i.e., to open and close the channel). At the current
average Bitcoin transaction cost of 4100 satoshi (or 0.000041 BTC or 1.73 USD), the
overall cost would be 8200 satoshi (3.46 USD).

Since VCs are currently not being used in practice, there is no fee model for them. To
put the cost of opening a VC into perspective, we can compare it to payments over the
PCN. Say Alice and Bob are connected by a path of payment channels that has 3 hops
(we take the average shortest distance of a current LN snapshot). Taking the current
average fees of the LN, and, say, an average transaction amount of 50, 000 satoshi (21.10
USD), Alice and Bob could perform 1115 payments in the LN for the same fee of 8200
satoshi (3.46 USD). This means that in this example, the fees paid to intermediaries
for operating a VC, i.e., opening and closing, is cheaper in terms of fees if these VC
operating fees are less than the fees of 1115 LN payments.

More generally, we can compare the cost of VC versus PC as follows. We introduce
x as a factor by which VCs are more expensive than PCN payments. A VC channel
is cheaper if l · (BF + RF · a) · x < 2 · TF holds, where l is the number of hops in the

403

F. Appendix to Chapter 7

path between the two VC endpoints. Further, BF and RF are the two types of fees
charged in PCN implementation such as the LN, where BF is a base fee charged by
intermediaries for forwarding payments and RF a relative fee based on the payment
amount. We compare this to the transactions fee on-chain TF, paid twice in the lifespan
of a PC. For instance, taking the concrete values from the example above we can write
the following: 3 · (1 + 0.000029 · a) · x < 8200.

Secondly, creating direct PCs on-demand for applications such as Discreet Log Contracts
instead of VCs is again not scalable. Doing so would incur a continuous on-chain
transaction load for opening and closing channels. This is against the purpose of PCs
and PCNs, which aim at reducing the on-chain load.

Finally, and perhaps still more importantly, it is not possible to open a short-lived PC,
since it requires waiting for the confirmation of the funding transaction on the blockchain,
which is around 1 hour in Bitcoin. So for applications that are time-critical, direct PCs
are not an option. Applications such as betting on a sports event, say, half an hour
before they end are simply impossible with direct PCs.

VCs vs PCN payments. Due to the limited transaction size in Bitcoin, current
Lightning channels are limited to holding 483 concurrent payments, which becomes
especially critical in a micropayment setting. VCs can be used to overcome this issue.
Simply, instead of a payment, an output can be used to collateralize a VC, which in turn
can be used to again hold 483 payments or further VCs, effectively helping to mitigate
this limitation.

In terms of fees, VCs are more desirable than payments over a PCN in the context of
micropayments. This is due to the fact that in a PCN, the intermediaries charge a fee for
every payment, while for a VC, the fee is charged only once. We can therefore say that a
VC is cheaper, if the (simplified) inequality l · (BF + RF · a) · x < l · (n · BF + RF · a) holds,
where similar to above we use the base fee BF and relative fee RF of the LN. a is the
sum of the amounts of all micropayments, n the number of micropayments, and x again
the factor by which a VC is more expensive than a payment. We stress that for any
given x there is a number of payments n, such that the use of VC becomes cheaper than
payments over the PCN because the base fee BF is paid for each of the n micropayments
in the PCN setting and only once in the VC setting.

Offline users. Routing multi-hop payments (MHPs) through the network requires
active participation from the intermediaries. However, users may want to go offline and
then cannot route MHPs. To still lend their capacity in a productive way and generate
some fees, they can allow other nodes to build a VC over them, using watchtowers to
ensure their balance.

F.1.1 Application scenario: Bootstrapping

According to a recent Lightning Network (LN) snapshot, the average number of channels
per node is 7.8. This means that, on average, the bootstrapping of a newly created

404

F.2. Extended comparison and discussion

node in the LN costs (rounding up) 8 transactions posted on-chain, i.e., one funding
transaction per channel. Additional 8 transactions need to be posted on-chain when such
channels are closed. VCs can reduce the on-chain bootstrapping cost of a new node in
the LN. In particular, given that the LN is a connected component and assuming that
each channel has enough capacity in both directions, one can open only one payment
channel holding all the funds of the user and leverage it then to open a virtual channel
to the other 7 nodes, thereby minimizing the overhead on-chain.

The results of our back-of-the-envelop calculations are shown in Table F.1. We exclude
Elmo here, as it does not provide functionality to close virtual channels off-chain. Here
we assume that there exist 4 intermediate channels to create each VC since the average
shortest path length in our snapshot of the LN is 3.4, and take the results from Table 7.3
to count the number of transactions. These results show that VCs effectively move
the on-chain overhead to the off-chain setting for bootstrapping, making the PCNs an
attractive and cheap layer-2 solution: A user can use a single but expensive on-chain
operation to put all its funds over a single channel to a well-connected node and then
create many and cheap virtual channels to any frequent counterparties over the PCN
topology. By doing that, the user additionally gains in liveness and privacy guarantees
as VCs in Donner are not susceptible to the corresponding attacks by the intermediaries.

Table F.1: Bootstrapping cost comparison

no VCs LVPC [JLT20] Donner
on-/off-chain on off on off on off
connecting to the network 8 16 1 147 1 126
disconnecting honestly 8 0 1 84 1 84
disconnecting forcefully 8 0 120 0 8 0

Table F.2: Comparison to other virtual channel protocols. We denote dispute as the
case where a party needs to enforce their VC funds or be compensated. In the UTXO
case, this means offloading. ∗ by synchronizing all channels, this time can be reduced to
Θ(log(n)). † for single-hop constructions n is constant, however, since the action/storage
overhead/time delay is per user, we write Θ(n). ‡ This depends on using indirect/direct
dispute.

Perun [DEFM19] GSCN [DFH18] MPVC [DEF+19b] BCVC-V/BCVC-NV [AME+21] LVPC [JLT20] Elmo [KL] Donner
Scripting req. Ethereum Ethereum Ethereum Bitcoin Bitcoin Bitcoin + ANYPREVOUT Bitcoin
Multi-hop no yes yes no yes yes yes
Domino attack no no no yes yes yes no
Path privacy no no no no no no yes
Storage Overhead per party Θ(n)† Θ(n)∗ Θ(n)∗/Θ(1)‡ Θ(n)† Θ(n)∗ Θ(n3) Θ(1)
Time-based fee model yes yes yes no/yes no no yes
Unlimited lifetime no no no yes/no no yes yes
Off-chain closing yes yes yes yes yes no yes
Dispute: txs on-chain 1 1 1 Θ(n)† Θ(n) Θ(n) 1
Dispute: time delay Θ(n)† Θ(n)∗ Θ(n)/1‡ Θ(n)† Θ(n)∗ Θ(n)∗ 1

405

F. Appendix to Chapter 7

F.2 Extended comparison and discussion

F.2.1 Extended comparison to the state of the art in VCs

Dziembowski et al. [DEFM19] proposed the first construction of VCs over a single
intermediary. Recursive constructions [DFH18] followed up allowing for creating VCs
on top of other VCs (or a pair composed of a VC and a PC), thereby supporting
arbitrarily many intermediaries. Dziembowski et al. [DEF+19b,Per20] further extended
the expressiveness of VCs proposing the notion of multi-party VCs, where a set of n
participants build an n-party channel recursively from their pair-wise payment/virtual
channels. Unfortunately, all the aforementioned constructions rely on the expressiveness
of Turing-complete scripting languages such as that of Ethereum and are based on the
account model instead of the Unspent Transaction Output (UTXO) model; thus, they
are incompatible with many of the cryptocurrencies available today, including Bitcoin
itself. Aumayr et al. [AME+21] have later shown how to design a Bitcoin-compatible
VC through a carefully crafted cryptographic protocol in the UTXO model, supporting
however only one intermediary.

Jourenko et al. [JLT20] have recently introduced the first Bitcoin-compatible construction
over multiple intermediaries, called Lightweight Virtual Payment Channels (LVPC),
where a VC over one hop is applied recursively to achieve a VC between two users
separated by a path of any length. More recently, Kiayias and Litos have introduced
Elmo [KL], a VC construction that does not rely on creating intermediate VCs, by instead
relying on scripting functionality not present in Bitcoin, i.e., the opcode ANYPREVOUT.
In Table F.2 we compare Donner to existing VC protocols, including those that rely on a
Turing-complete scripting language or are limited to a single intermediary.

F.2.2 Extended discussion

Deterring the Domino attack with fees. One might think that the Domino attack
could deterred by fees. I.e., intermediaries charge fees high enough to be compensated
for having to close and reopen their channel, as well as having to claim the collateral put
into the VC, in total at least three transactions per intermediary, in addition to the fees
charged for the VC usage. It becomes clear, that this is an infeasible deterrence strategy
and is in opposition to the aim of VCs to provide scalable and cheap payments: No user
would pay three times an on-chain fee per intermediary for a VC. They would simply
post an on-chain transaction or open a new direct PC.

Unidirectionally funded. Similar to current PCs in the Lightning Network, our VCs
are only funded by U0, whom we call the sending endpoint or sender. User Un is the
receiving endpoint or receiver and the intermediaries are {Ui}i∈[1,n−1]. Even though the
VC is only funded by U0, once some money has been moved, they can use the channel
also in the other direction. Moreover, if they want to have a channel funded from both
endpoints, they can simply construct another channel from Un to U0.

406

F.3. Operation examples

Choosing the lifetime. The lifetime T is chosen by the two endpoints of the VC,
depending on how long they plan to use the V C. They propose this to the intermediaries
who can, based on this time and the amount they need to lock as a collateral, charge a
fee. Note that this T has to be larger than the time it takes to settle the Blitz contracts,
T ≥ 3∆ + tc, where ∆ is an upper bound on the time it takes for a valid transaction to
appear on the ledger (i.e., modeling the block delay as mentioned in Section 7.2) and tc
is the time it takes to close a channel. Intermediaries can prolong the lifetime if they
agree and they can charge a fee based on time and amount.

Properties inherited from Blitz. The fee mechanism of Blitz can be reused here
as well, i.e., the intermediary nodes forward fewer coins than they receive. Additionally,
the outputs ϵ of txvc represent a small number. Since they cannot be 0, they are the
smallest possible value, one dust (546 satoshi), i.e., something that is insignificant in
value to the sender. If a VC is closed (honestly) before the lifetime expires, parties do not
need to wait until the lifetime expires to unlock their money. They can unlock it right
away by using the fast track mechanism of Blitz. We refer the reader for these details
to [AMSKM21]. Finally, reusing the stealth address and onion routing mechanism as
in [AMSKM21] we achieve our desired privacy properties.

F.3 Operation examples

To illustrate the different operations for different VC protocols as examples, we provide the
following figures. For rooted VCs, we show the construction in Figure 7.5 in Section 7.2.
We further show the offload operation in Figure F.1, which coincides with the outcome
of the Domino attack example in Section 7.3. For Donner, we show the full construction
in Figure F.2 and the offload operation in Figure F.3

F.4 Extended background

F.4.1 Transaction graphs

In this section, we give a more in-depth explanation and example (Figure F.4) of our
transaction graph notation. Rounded rectangles represent transactions, if they have a
single border it means they are off-chain, with a double border on-chain. Incoming arrows
to a transaction represent its inputs. The boxes within transactions denote outputs, the
outgoing arrows define how an output can be spent.

More specifically, below an arrow we write who can spend the coins. This is usually a
signature that verifies w.r.t. one or more public keys, which we denote as OneSig(pk)
or MultiSig(pk1, pk2, ...). Above the arrow, we write additional conditions for how an
output can be spent. This could be any script supported by the scripting language of the
underlying blockchain, but in this paper, we only use relative and absolute time-locks.
For the former, we write RelTime(t) or simply +t, which signifies that the output can be
spent only if at least t rounds have passed since the transaction holding this output was

407

F. Appendix to Chapter 7

txf

α

U1 : α

α

U0 : xU0 − α

U1 : xU1

txs of (U0, U1)

α

U1 : yU1 − α

U2 : yU2

txs of (U1, U2)

txpunish

U0 : α

U2 : α

α

U2 : zU2 − α

U3 : zU3

txs of (U2, U3)
txf

α

U2 : α

txf

α

U3 : αα

U3 : wU3 − α

U4 : wU4

txs of (U3, U4)

α

U0 : 0

U2 : 0

txs of (U0, U2)
txpunish

U0 : α

U3 : α

α

U0 : 0

U3 : 0

txs of (U0, U3)
txpunish

U0 : α

U4 : α

U0 : vU0

U4 : vU4

txs of (U0, U4)

Figure F.1: Illustration showing the transactions that go on-chain in case of offloading,
an operation that can be forced by a malicious enduser in the Domino attack, forcing all
underlying channels to be closed.

α

U0 : xU0 − α

U1 : xU1

U0 : α + ϵ

≥ T
U1 : α

txs of (U0, U1)

txr

txp

U1 : ϵ

txvc

α

α

U1 : yU1 − α

U2 : yU2

txs of (U1, U2) α

U2 : zU2 − α

U3 : zU3

txs of (U2, U3)

U2 : ϵ

U3 : ϵ

U0 : vU0

U4 : vU4

txs of (U0, U4)

U1 : α + ϵ

≥ T
U2 : α

txr

txp

U4 : ϵ

U2 : α + ϵ

≥ T
U3 : α

txr

txp
α

U3 : wU3 − α

U4 : wU4

txs of (U3, U4)

U3 : α + ϵ

≥ T
U4 : α

txr

txp

< T

< T

< T

< T

Figure F.2: Illustration of a Donner VC of U0 and U4 via U1, U2 and U3.

408

F.4. Extended background

U0 : xU0

U1 : xU1

U1 : ϵ

txvc

α

U1 : yU1

U2 : yU2

U2 : zU2

U3 : zU3

U2 : ϵ

U3 : ϵ

U0 : vU0

U4 : vU4
U4 : ϵ

U2 : wU3

U4 : wU4txs of (U0, U1)

txs of (U1, U2)

txs of (U2, U3)

txs of (U3, U4)

txs of (U0, U4)

Figure F.3: Illustration of the offload operation for a Donner VC. Note that the underlying
PCs remain open and only one transaction goes on-chain: txvc.

tx
x1

x2

B
≥ t1

pkB
+t2

pkA, pkB

tx′ x2

ϕ1

ϕ2

ϕ3 ∧ ϕ4

Figure F.4: (Left) Transaction tx has two outputs, one of value x1 that can be spent by
B (indicated by the gray box) with a transaction signed w.r.t. pkB at (or after) round
t1, and one of value x2 that can be spent by a transaction signed w.r.t. pkA and pkB

but only if at least t2 rounds passed since tx was accepted on the blockchain. (Right)
Transaction tx′ has one input, which is the second output of tx containing x2 coins and
has only one output, which is of value x2 and can be spent by a transaction whose witness
satisfies the output condition ϕ1 ∨ ϕ2 ∨ (ϕ3 ∧ ϕ4). The input of tx is not shown.

accepted on the blockchain. Similarly, we write AbsTime(t) or simply ≥ t for absolute
time-locks, which means that the transaction can be spent only if the blockchain is at
least t blocks long. A condition can be a disjunction of subconditions ϕ = ϕ1 ∨ ... ∨ ϕn,
which we denote as a diamond shape in the output box, with an outgoing arrow for each
subcondition. A conjunction of subconditions is simply written as ϕ = ϕ1 ∧ ... ∧ ϕn.

F.4.2 Synchronization example

A multi-hop payment (MHP) allows to transfer coins from U0 to Un through {Ui}i∈[1,n−1]
in a secure way, that is, ensuring that no intermediary is at risk of losing money. A
mechanism synchronizing all channels on the path is required for a payment, such that
each channel is updated to represent the fact that α coins moved from left to right. We
give an example of what we mean in Figure F.5.

409

F. Appendix to Chapter 7

U0 U1 U2 U3 U4
7, 12
3, 16

8, 2
4, 6

11, 7
7, 11

9, 0
5, 4

Figure F.5: Example of an MHP in a PCN. Here, U0 pays 4 coins (disregarding any fees)
to U4, via U1, U2 and U3. The lines represent payment channels. We write balances as
(x, y), where x is the balance of the user on the right, and y the balance of the user on
the left. Above we write the channel balances before and below after the payment. In an
MHP, this change of balance should happen atomically in every channel (or not at all).

F.5 Extended macros, prerequisites and protocol
In this section, discuss the prerequisites stealth addresses and onion routing. We give
extended pseudo-code for the subprocedures used in our protocol, both in the pseudocode
definition given in Section 7.5 and in the formal model in Appendix F.6.3, Appendix F.6.4
and Appendix F.6.5. To be transparent about the similarities to [AMSKM21] and
highlight the novelties of this work, we mark the latter in green . Further, we spell
out the full protocol pseudocode, including the parts taken from. For the protocol see
Figure F.8, for the two-party protocols used therein see Figure F.9. To be transparent
about the similarities to [AMSKM21] and highlight the novelties of this work, we mark
the latter in green color.

Subprocedures

checkTxIn(txin, n, U0, α):

1. Check that txin is a transaction on the ledger L.
2. If txin.output[0].cash ≥ n · ϵ + α and txin.output[0].ϕ = OneSig(U ′

0), that is spendable by an
unused address of U0, return ⊤. Otherwise, return ⊥. When using this transaction (to fund
txvc), the sender will pay any superfluous coins back to a fresh address of itself.

checkChannels(channelList, U0):

Check that channelList forms a valid path from U0 via some intermediaries to a receiver Un and
that no users are in the path twice. If not, return ⊥. Else, return Un.

checkT(n, T):

Let τ be the current round. If T ≥ τ + n(3 + 2tu) + 3∆ + tc + 2 + to, return ⊤. Otherwise,
return ⊥.

410

F.5. Extended macros, prerequisites and protocol

genTxEr(U0, channelList, txin):

1. Let outputList := ∅ and rList := ∅
2. For every channel γi in channelList:

• (pk
Ui

, Ri) ← GenPk(γi.left.A, γi.left.B)

• outputList := outputList ∪ (ϵ, OneSig(pk
Ui

) ∧ RelTime(tc + ∆))

• rList := rList ∪ Ri

3. Let P := {γi.left, γi.right}γi∈channelList and let nodeList be a list, where P is sorted from
sender to receiver. Let n := |P|.

4. Shuffle outputList and rList.
5. Let txvc := (txin.output[0], outputList)
6. Create a list [msgi]i∈[0,n], where msgi := H(txvc)

7. onion ← CreateRoutingInfo(nodeList, [msgi]i∈[0,n])

8. Return (txvc, rList, onion)

genState(αi, T , γi):

1. For the users Ui := γi.left = and Ui+1 := γi.right, create the output vector θi := (θ0, θ1, θ2),
where
• θ0 := (αi, (MultiSig(Ui, Ui+1) ∧ RelTime(T)) ∨ (OneSig(Ui+1) ∧ AbsTime(T)))
• θ1 := (xUi

− αi, OneSig(Ui))
• θ2 := (xUi+1 , OneSig(Ui+1))

where xUi
and xUi+1 is the amount held by Ui and Ui+1 in the channel, respectively.

2. Let txstate
i be a channel transaction carrying the state with

txstate.output = θi. Return txstate
i .

checkTxEr(Ui, a, b, txvc, rList, onioni):

1. x := GetRoutingInfo(onioni, Ui). If x = ⊥, return ⊥. If Ui is the receiver and x = H(txvc) ,
return (⊤, ⊤, ⊤, ⊤, ⊤). Else, if x ̸= (Ui+1, H(txvc), onioni+1), return ⊥.

2. For all outputs (cash, ϕ) ∈ txvc.output except output with index 0 it must hold that:

• cash = ϵ

• ϕ = OneSig(pkx) ∧ RelTime(tc + ∆) for some identity pkx

3. For exactly one output θϵi
:= (ϵ, OneSig(Ui) ∧ RelTime(tc + ∆)) ∈ txvc.output and one

element Ri ∈ rList it must hold that

411

F. Appendix to Chapter 7

• Let pk
Ui

be the corresponding public key of OneSig(Ui)

• sk
Ui

:= GenSk(a, b, pk
Ui

, Ri) must be the corresponding secret key of pk
Ui

4. If the checks in 2 or 3 do not hold, return ⊥
5. Return (sk

Ui
, θϵi

, Ri, Ui+1, onioni+1)

Subprocedures used exclusively in UC model

createMaps(U0, nodeList, txin, α):

1. For every Ui ∈ nodeList \ Un do:
• (pk

Ui
, Ri) ← GenPk(Ui.A, Ui.B)

• outputMap(Ui) := (ϵ, OneSig(pk
Ui

) ∧ RelTime(tc + ∆))
• rMap(Ui) := Ri

2. rList = rMap.values().shuffle()
3. Let θvc := (α, MultiSig(U0, Un))
4. txvc := (txin.output[0], [θvc, outputMap.values() .shuffle()])
5. Create a map stealthMap that stores for every user Ui that is a key in outputMap the

corresponding output of txvc corresponding to outputMap(Ui)
6. Create two empty lists ∅ named msgList, userList
7. For every Ui ∈ nodeList from Un to U0 (in descending order):

• Append [H(txvc)] to msgList
• Prepend [Ui] to userList.
• onioni := CreateRoutingInfo(userList, msg)
• onions(Ui) := onioni

8. Return (txvc, onions, rMap, rList, stealthMap)

genStateOutputs(γi, αi, T):

1. Let θ′
i := γi.st be the current state of the channel γi.

2. Let Ui := γi.left = and Ui+1 := γi.right.
3. θ′

i consists of the outputs θ′
Ui

:= (xUi , OneSig(Ui)) and θ′
Ui+1

:= (xUi+1 , OneSig(Ui+1))
holding the balances of the two usersa. If xUi < αi, return ⊥

4. Create the output vector θi := (θ0, θ1, θ2), where
• θ0 := (αi, (MultiSig(Ui, Ui+1) ∧ RelTime(T)) ∨ (OneSig(Ui+1) ∧ AbsTime(T)))
• θ1 := (xUi − αi, OneSig(Ui))
• θ2 := (xUi+1 , OneSig(Ui+1))

5. Return θi.

genNewState(γi, α′
i, T):

412

F.5. Extended macros, prerequisites and protocol

U0 U1 U2 U3 U4

γv0

γv1

γv2

Figure F.6: Recursive virtual channel: Ex-
ample A

U0 U1 U2 U3 U4

γv0 γv1

γv2

Figure F.7: Recursive virtual channel: Ex-
ample B

1. Let θi := γi.st.
2. Let αi := θi[0].cash
3. Set θ0 := (α′

i, θi[0].ϕ)
4. Set θ1 := (θ[1].cash + αi − α′

i, θi[1].ϕ)
5. Set θ2 := θi[2]
6. Return vector θ′

i := (θ0, θ1, θ2)

genRefTx(θ, θϵi
, Ui):

1. Create a transaction txr
i with txr

i.input := [θ, θϵi] and txr
i.output := (θ.cash + θϵi .cash,

OneSig(Ui)).
2. Return txr

i

genPayTx(θ, Ui+1):

1. Create a transaction txp
i with txp

i .input := [θ] and txp
i .output := (θ.cash, OneSig(Ui+1)).

2. Return txp
i

aPossibly other outputs {θ′
j}j≥0 could also be present in this state. They, along with the off-chain

objects there (e.g., other payments) would have to be recreated in the new state while adapting the
index of the output these objects are referring to. For simplicity, we say this here in prose and omit it
in the protocol, only handling the two outputs mentioned.

F.5.1 Example graphs for recursive VC

In this section, we show in Figure F.6 and Figure F.7 two example graphs that illustrate
the different ways that one could recursively create a multi-hop VC using VC with a
single intermediary as a building block.

F.5.2 Prerequisities

Stealth addresses. In order to hide the underlying path, we use stealth addresses [VS18]
for the outputs in the transaction txvc. On a high level, every user U controls two private
keys a and b. The respective public keys A and B are publicly known. A sender can use
these public keys controlled by U to create a new public key P and a value R. The user
U and only the user U knowing a and b can use R, P together with a and b to construct

413

F. Appendix to Chapter 7

the private key p. In particular, also the sender is unaware of p. This new one-time
public key is unlinkable to U by anyone observing only R and P [VS18].

Onion routing. Like in the Lightning Network, we rely on onion routing [KBS20]
techniques like Sphinx [DG09] to allow users communicate anonymously with each other.
This allows users to route the VC correctly through the desired path while ensuring
that intermediaries remain oblivious to the path except for their direct neighbors. On
a high level, an onion is a layered encryption of routing information and a payload.
Each user in turn can peel off one layer, revealing the next user on the path, the
payload meant for the current user, and another onion, which is designated for the
next user. For simplicity, we use onion routing by calling the following two functions:
onion ← CreateRoutingInfo({Ui}i∈[1,n], {msgi}i∈[1,n]) generates an onion using the public
keys of users {Ui}i∈[1,n] on the path, while the procedure GetRoutingInfo(onioni, Ui) returns
the tuple (Ui+1, msgi, onioni+1) when called by the correct user Ui, or ⊥ otherwise.

F.6 UC modeling

For our formal security analysis, we utilize the global UC framework (GUC) [CDPW07].
In contrast to the standard Universal Composability (UC) framework, the GUC allows
for a global setup, which in turn we use for modeling the blockchain as a global ledger.
In this section, we go over some preliminaries and notation before presenting the ideal
functionality. Note that our formal model follows closely [AEE+21,AMSKM21,DFH18,
DEF+19b,AME+21,DEFM19].

F.6.1 Preliminaries, communication model and threat model

A protocol Π is executed between a set of parties P and runs in the presence of an
adversary A, who receives as input a security parameter λ ∈ N along with an auxiliary
input z ∈ {0, 1}∗. A can corrupt any party Pi ∈ P at the beginning of the protocol
execution, i.e., a static corruption model. Corrupting a party Pi means that A takes
control over Pi and learns its internal state. The parties and the adversary A take their
input from the environment E , a special entity that represents everything external to the
protocol execution. Additionally, E observes the messages that are output by the parties
of the protocol.

In our model, we assume a synchronous communication network with computation
happening in rounds, which allows for a more natural arguing about time. This abstraction
of computational rounds is formalized in the ideal functionality Gclock [KMTZ13], which
represents a global clock, that proceeds to the next round if all honest parties indicate
that they are ready to do so. This means that every entity always knows the given round.

Further, we assume that parties communicate via authenticated channels with guaranteed
delivery after precisely one round. This is modeled by the ideal functionality FGDC :
If a party P sends a message to party Q in round t, then Q receives that message in
the beginning of round t + 1 and knows that the message was sent by P . Note that

414

F.6. UC modeling

OpenVC

Setup: U0 upon receiving (setup, channelList, txin, α, T), do the following:

1. Let n := |channelList|. If checkTxIn(txin, n, U0) = ⊥ or checkChannels(channelList,
U0) = ⊥ or checkT(n, T) = ⊥, abort. Else, let α0 := α + fee · (n − 1)

2. (txvc, rList, onion) := genTxEr(U0, channelList, txin)
3. γvc := preCreate (txvc, 0, U0, Un) together with Un

4. (sk
U0

, θϵ0 , R0, U1, onion1) :=
checkTxEr(U0, U0.a, U0.b, txvc, rList, onion)

5. pcSetup(γ0, txvc, rList, onion1, U1, θϵ0 , α0, T)
Open: Ui+1 upon receiving (txvc, rList, onioni+2, Ui+2, θϵi+1 , αi, T), do the following:

6. If Ui+1 is the receiver Un, send (confirm, σUn
(txvc)) −→ U0 and go idle.

7. pcSetup(γi+1, txvc, rList, onioni+2, Ui+2, θϵi+1 , αi − fee, T)

Finalize: U0 upon (confirm, σUn
(txvc)) ←− Un, check that σUn

(txvc) is Un’s valid signature
for the transaction txvc created in the Setup phase. If not, or if txvc was changed, or no such
confirmation was received until T − tc − 3∆, publishTx(txvc, σU ′

0
(txvc)).

UpdateVC

Either user Ui ∈ γvc.users can update the virtual channel γvc by creating a new state txstate
i and

calling preUpdate(γvc, txstate
i).

CloseVC/ProlongVC (synchronized modification)

InitClose/InitProlong

Un: Let α′
i be the final balance of Un in the virtual channel and T ′ = T (Close) or let T ′ > T

be the new lifetime of the VC and leave α′
i = αi (Prolong). Execute 2pModify(γi, txvc, α′, T ′)

Ui−1 upon (⊤, α′
i, T ′): If Ui−1 ̸= U0, let α′

i−1 := α′
i + fee and 2pModify(γi−2, txvc, α′

i−1, T ′)

Emergency-Offload

U0: If U0 has not successfully performed 2pModify with the correct value α′ (plus fee for each
hop) until T − tc − 3∆, publishTx(txvc, σU ′

0
(txvc)). Else, update T := T ′

Respond (executed by Ui for i ∈ [0, n] in every round)

1. If τx < T − tc − 2∆ and txvc on the blockchain, closeChannel(γi) and, after txstate
i is accepted

on the blockchain within at most tc rounds, wait ∆ rounds. Let σ
Ui

(txr
i) be a signature

using the secret key sk
Ui

. publishTx(txr
i, (σ

Ui
(txr

i), σUi(txr
i), σUi+1(txr

i))).
2. If τx > T , γi−1 is closed and txvc and txstate

i−1 is on the blockchain, but not txr
i−1,

publishTx(txp
i−1, (σUi(txp

i−1))).

Figure F.8: Pseudocode of the protocol.

415

F. Appendix to Chapter 7

pcSetup(γi, txvc, rList, onioni+1, θϵi
, αi, T): (see [AMSKM21])

Ui

1. Let txstate
i := genState(αi, T , γi) and txr

i := GenRef(txstate
i , θϵi)

2. Send (txvc, rList, onioni+1, txstate, txr
i) to Ui+1 (= γi.right)

Ui+1 upon (txvc, rList, onioni+1, txstate, txr
i) from Ui

3. Check that checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txvc, rList, onioni+1) ̸= ⊥, but returns some
values (sk

Ui+1
, θϵi+1 , Ri+1, Ui+2, onioni+2)

4. Extract αi and T from txstate and check txstate
i = genState(αi, T , γi)

5. Check that for one output θϵx
∈ txvc.output it holds that txr

i := GenRef(txstate
i , θϵx

). If one of
these previous checks failed, return ⊥.

6. Set txp
i := GenPay(txstate

i) and send (σUi+1(txr
i)) to Ui+1

Ui upon (σUi+1(txr
i))

7. If σUi+1(txr
i) is not a correct signature of Ui+1 for the txr

i created in step 1, return ⊥.
8. updateChannel(γi, txstate

i)
9. If, after tu time has expired, the message (update−ok) is returned, return ⊤. Else return ⊥.
Ui+1: Upon (update−ok), return (txvc, rList, onioni+2, Ui+2, θϵi+1 , αi, T). Else, upon
(update−fail), return ⊥

2pModify(γi, txvc, α′
i, T ′)

Let T be the timeout, αi the amount and θϵi−1 be the output used for the two party contract
set up between Ui−1 and Ui, known from pcSetup executed in the Open [AMSKM21] phase.
Ui

1. txstate′
i−1 := genState(α′

i, T ′, γi−1)
2. txr′

i−1 := GenRef(txstate′
i−1 , θϵi−1) //θϵi−1 known as θϵx from pcSetup

3. Send (txstate′
i−1 , txr′

i−1, σUi(txr′
i−1)) to Ui−1

Ui−1 upon (txstate′
i−1 , txr′

i−1, σUi
(txr′

i−1))

1. Extract α′
i and T ′ from txstate′

i−1 and check that α′
i ≤ αi, T ′ ≥ T and txstate′

i−1 = genState(α′
i,

T ′, γi−1) //αi and T from pcSetup

2. If Ui−1 = U0, ensure that α′
i ≤ x + n · fee where x is the final balance of Un in the VC.

3. Check that txr′
i−1 = GenRef(txstate′

i−1 , θϵi−1) //θϵi−1 from pcSetup

4. Check that σUi
(txr′

i−1) is a correct signature of Ui for txr′
i−1

5. updateChannel(γi−1, txstate′
i−1)

6. If, after tu time has expired, the message (update−ok) is returned, replace variables txstate
i−1

and txr
i−1 with txstate′

i−1 and txr′
i−1, respectively. Return (⊤, α′

i, T ′). Else, return ⊥.

Ui: Upon (update−ok), replace variables txstate
i−1 , txr

i−1 and txp
i−1 with txstate′

i−1 , txr′
i−1 and TXi−1

f :=
GenPay(txstate′

i−1), respectively.

Figure F.9: Protocol for 2-party channel update.

416

F.6. UC modeling

the adversary A is capable of reading the content of every message that is sent and can
reorder messages that are sent in the same round, but cannot drop, modify, or delay
messages. For a formal definition of FGDC we refer to [DEF+19b].

In contrast to this communication between parties of P which takes one round, all other
communication, that involves for instance the adversary A or the environment E , takes
zero rounds. Further, every computation that a party executes locally takes zero rounds
as well.

F.6.2 Ledger and channels

We use the global ideal functionality GLedger to model a UTXO-based blockchain, param-
eterized by ∆, an upper bound on the number of rounds it takes for a valid transaction
to be accepted (the blockchain delay) and a signature scheme Σ. GLedger communicates
with a fixed set of parties P. The environment E first initializes GLedger by setting up
a key pair (skP , pkP) for every party P ∈ P and registers it to the ledger by sending
(sid,REGISTER, pkp) to GLedger. Then, E sets the initial state of L, a publicly accessible
set of all published transactions. Any party P ∈ P can always post a transaction on L
via (sid,POST, tx). If a transaction is valid, it will appear on L after at most ∆ round,
the exact number is chosen by the adversary. Recall that a transaction is valid, if all its
inputs exist and are unspent, there is a correct witness for each input and a unique id.

We point out that this model is simplified: We fix the set of users instead of allowing
them to join or leave dynamically. Further, transactions are in reality bundled in blocks,
which are submitted by parties and A. For a more accurate formalization, we refer to
works such as [BMTZ17]. To increase readability, we opted for these simplifications.

Channels are handled by the functionality FChannel [AME+21], which is an extension
of [AEE+21] and builds on top of GLedger. FChannel allows to create, update, and close
a payment channel between two users, as well as handling channels (pre-create and
pre-update) that are funded off-chain, i.e., a virtual channel. We define tu as an upper
bound on rounds it takes to update and tc as an upper bound on rounds it takes to close
a channel (regardless of whether or not there is cooperation). We say that updating
a channel takes at most tu rounds and closing a channel, regardless if the parties are
cooperating or not, takes at most tc rounds. Finally, to is an upper bound it takes to
pre-create a channel.

We assume that for our constructions, all parties in the protocol have been registered
with L, and all relevant channels between them are already open. We present an API
along with an explanation of FChannel in Figure F.10 and of GLedger below. For increased
readability, we hide the calls to Gclock and FGDC in our notation. Instead of explicitly
calling these functionalities, we write (msg) t−→ X to denote sending message (msg) to X

in round t and (msg) t←− X to denote receiving message (msg) from X at time t. The
sending/receiving entity as well as X are either a party P ∈ P, the environment E , the
simulator S, or another ideal functionality.

417

F. Appendix to Chapter 7

Interface of FChannel(T , k) [AEE+21]

Parameters:
T : upper bound on the maximum number

of consecutive off-chain communication
rounds between channel users

k: number of ways the channel state can be
published on the ledger

API:
Messages from E via a dummy user P :

• (sid,CREATE, γ, tidP) τ←− P :
Let γ be the attribute tuple (γ.id, γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the identifier
of the channel, γ.users ⊂ P are the users of the channel (and P ∈ γ.users), γ.cash ∈ R≥0

is the total money in the channel and γ.st is the initial state of the channel. tidP defines
P ’s input for the funding transaction of the channel. When invoked, this function asks
γ.otherParty to create a new channel.

• (sid,UPDATE, id, θ) τ←− P :
Let γ be the channel where γ.id = id. When invoked by P ∈ γ.users and both parties agree,
the channel γ (if it exists) is updated to the new state θ. If the parties disagree or at least
one party is dishonest, the update can fail or the channel can be forcefully closed to either
the old or the new state. Regardless of the outcome, we say that tu is the upper bound that
an update takes. In the successful case, (sid,UPDATED, id, θ) ≤τ+tu−−−−→ γ.users is output.

• (sid,CLOSE, id) τ←− P :
Will close the channel γ, where γ.id = id, either peacefully or forcefully. After at most tc
in round ≤ τ + tc, a transaction tx with the current state γ.st as output (tx.output := γ.st)
appears on L (the public ledger of GLedger).

• (sid,PRE-CREATE, γ, txf , i, tofl) τ←− P :
Does the same as CREATE, with the following difference. Instead of the an input for the
funding transaction, the funding transaction txf along with an index i, defining which output
of txf is used to fund the channel. The parameter tofl defines the maximum number of rounds
it takes to put txf on-chain. If successfully invoked by both users of the channel, FChannel

returns (sid,PRE-CREATED, γ.id) after at most to rounds.

• (sid,PRE-UPDATE, id, θ) τ←− P :
Does the same as UPDATE for a pre-created channel, however, in case of a dispute, FChannel

waits for txf to appear on the ledger within tofl rounds. If it does, the channel is closed.
• Additionally, FChannel checks every round if the txf of a pre-created channel is put on the

ledger. If it is, the pre-created channel is handled just as a normal channel from that time
forward.

Figure F.10: Interface of FChannel(T , k).

418

F.6. UC modeling

Interface of GLedger(∆, Σ) [AEE+21]

This functionality keeps a record of the public keys of parties. Also, all transactions that are
posted (and accpeted, see below) are stored in the publicly accessible set L containing tuples of
all accepted transactions .
Parameters:

∆: upper bound on the number of rounds it
takes a valid transaction to be published
on L

Σ: a digital signature scheme

API:
Messages from E via a dummy user P ∈ P:

• (sid,REGISTER, pkP) τ←− P :
This function adds an entry (pkP , P) to PKI consisting of the public key pkP and the user
P , if it does not already exist.

• (sid,POST, tx) τ←− P :
This function checks if tx is a valid transaction and if yes, accepts it on L after at most ∆
rounds.

The UC-security definition

Closely following [AMSKM21], we define Π as a hybrid protocol that accesses the ideal
functionalities Fprelim consisting of FChannel, GLedger, FGDC and Gclock. An environment
E that interacts with Π and an adversary A will on input a security parameter λ and an
auxiliary input z output EXECFprelim

Π,A,E(λ, z). Moreover, ϕFP ay
denotes the ideal protocol

of ideal functionality FP ay, where the dummy users simply forward their input to FP ay.
It has access to the same functionalities Fprelim. The output of ϕFP ay

on input λ and z

when interacting with E and a simulator S is denoted as EXECFprelim
ϕFP ay

,S,E(λ, z).

If a protocol Π GUC-realizes an ideal functionality FP ay, then any attack that is possible
on the real-world protocol Π can be carried out against the ideal protocol ϕFP ay

and vice
versa. Our security definition is as follows.

Definition 19. A protocol Π GUC-realizes an ideal functionality FP ay, w.r.t. Fprelim, if
for every adversary A there exists a simulator S such that we have

EXEC
Fprelim
Π,A,E(λ, z) λ∈N,

z∈{0,1}∗

c≈

EXEC

Fprelim
ϕFP ay

,S,E(λ, z)
λ∈N,

z∈{0,1}∗

where ≈c denotes computational indistinguishability.

F.6.3 Ideal functionality

In this section, we explain our ideal functionality (IF) FP ay in prose. Note that the IF
is capable of outputting an ERROR message, e.g., when a transaction does not appear

419

F. Appendix to Chapter 7

on the ledger after instructing the simulator. We remark that the only protocols that
realize this IF that are of interest to us are the ones that never output ERROR. The cases
where ERROR is output are not meaningful to us and any guarantees are lost. We use
the extended macros defined in Appendix F.5. The IF is split into different parts: (i)
Open-VC, (ii) Finalize-Open, (iii) Update-VC, (iv) Close-VC, (v) Emergency-Offload, and
(vi) Respond. We remark on the similarity of (i), (ii), and (vi) to the IF in [AMSKM21].
To be transparent about the similarities to [AMSKM21] and highlight the novelties of
this work, we mark the latter in green in the ideal functionality, formal UC protocol,
and simulator.

Open-VC. This part starts with the setup phase, in which the sender U0 invokes the
IF to open a VC. In it, FP ay takes care of creating all necessary objects, such as txvc,
the onions, the stealth addresses, etc., and calls PRE-CREATE of FChannel to set up the
VC with Un. Afterwards, FP ay continues to do the following. If the next neighbor on
the path is honest, it takes care of creating the objects and updating the channel with
that neighbor, which is captured in the subprocedure Open. If the next neighbor is
instead dishonest, FP ay instructs the simulator S to simulate the view of the attacker.
Additionally, FP ay exposes the functionality to the simulator, which was asked to continue
the open phase with a legitimate request, the simulator can perform a check to see if
an id is already in use and Register to register the channel that was updated with the
adversary. If the subsequent neighbor is again honest, the IF will continue handling the
opening, or else the simulator will do it. This continues until the receiver Un is reached
and all channels along with their created objects are stored in the IF for each channel
that contains at least one honest user. If Un is honest, but not U0, the last step of the
Open-VC phase is actually to instruct S to send a confirmation to U0. At this point, the
Finalize-Open starts.

Finalize-Open. If U0 is honest, the IF will either know that Un completed the opening
within a certain round if Un is also honest. Or, if Un is dishonest, FP ay expects a
confirmation from Un via S. If an incorrect or no confirmation was received in the correct
round, the IF instructs the simulator to publish txvc, offloading the VC.

Update-VC. While the VC is open, the two endpoints can use PRE-UPDATE of FChannel

to update the VC. The IF simply forwards these messages.

Close-VC. This phase is similar to the Open-VC phase, but it is initiated by Un,
conducted from right to left, and requires fewer objects to be created. Similar to the
Open-VC phase, the IF distinguishes if the left neighbor is honest or not. If it is, then
FP ay takes care of updating the channel, reducing the collateral to Un’s final balance in
the VC plus its according fee. If it is dishonest, it instructs S to simulate the view of the
adversary. If the simulator is invoked by the adversary to continue the closing with a
legitimate request, the IF continues with the closure, until the sender is reached.

Emergency-Offload. If the sender of a payment is honest, the IF will expect the
Close-VC request to be concluded for that payment in a certain round. If it is not, FP ay

420

F.6. UC modeling

instructs S to offload the VC.

Respond. This phase is executed in every round and in it, FP ay observes if a transaction
txvc is posted on the ledger L, which is used in channels that have an honest user and are
registered as pending in the IF. If it is published early enough to refund the collateral,
FP ay closes the channels and instructs the simulator to publish the refund transaction.
Else, if the lifetime of the VC T has already expired and the neighbor closes the channel,
FP ay instructs the simulator to publish the payment transaction.

Ideal Functionality FP ay(∆)

Parameters:
∆ : Upper bound on the time it takes a transaction to appear on L.

Local variables:
idSet : A set of containing pairs of ids and users (pid, Ui) to prevent duplicate ids to avoid

loops in payments.
Φ : A map, storing for a given key (pid, U0) of an id pid and a user U0, a tuple (τf , txvc,

Un), where τf is the round in which the payment confirmation is expected from the
receiver, the transaction txvc and the receiver Un. The map is initially empty and
read write access is written as Φ(pid, U0). Φ.keyList() returns a set of all keys.

Γ : A set of tuples (pid, γi, θi, txvc, T , θϵi , Ri) for channels with opened payment
construction, containing a payment id pid, the channel γi, the state the payment
builds upon θi, the time T , the output used in the refund by γi.left and value Ri to
reconstruct the secrect key of the stealth address used. It is initially empty.

Ψ : A set of tuples (pid, txvc) containing payments, that have been opened and where
the receiver is honest.

tu,
tc,
to :

Time it takes at most to update, close or (pre-)open a channel.

Init (executed at initialization in round tinit.)

Send (sid, init) tinit−−→ S and upon (sid,init-ok, tu, tc, to) tinit←−− S set tu, tc, to accordingly.

Open-VC

Let τ be the current round.
Setup:

1. Upon (sid, pid, SETUP, channelList, txin, α, T , γ0) τ←− U0, if (pid, U0) ∈ idSet go idle.
idSet := idSet ∪ {(pid, U0)}

421

F. Appendix to Chapter 7

2. Let x := checkChannels(channelList, U0). If x = ⊥, go idle. Else, let Un := x. If γ0 is
not the full channel between U0 and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be a list of all the users on the
path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n, T) = ⊥, go idle.

4. If checkTxIn(txin, n, U0, α) = ⊥, go idle.

5. (txvc, onions, rMap, rList, stealthMap) := createMaps(U0, nodeList, txin, α).

6. Send (sid,pid,pre-create-vc, γvc, txvc, T) τ−→ S and wait 1 round.

7. Send (ssidC ,PRE-CREATE, γvc, txvc, 0, T − τ) τ+1−−→ FChannel

8. If not (ssidC ,PRE-CREATED, γvc.id) τ+1+to←−−−− FChannel, go idle.
9. Set α0 := α + fee · (n − 1).

10. Set Φ(pid, U0) := (τf := τ + n · (2 + tu) + 2 + to, txvc, Un).
11. If U1 honest, execute Open(pid, nodeList, txvc, onions, rMap, rList, stealthMap, α0, T , γ0).
12. Else, let onion1 := onions(U1) and θϵ0 := stealthMap(U0). Send (sid,pid,open, txvc, rList,

onion1, α0, T , ⊥, γ0, ⊥, θϵ0) τ+1+to−−−−→ S.

Continue: //Continue after a dishonest user

1. Upon (sid, pid, continue, nodeList, txvc, onions, rMap, rList, stealthMap, αi−1, T , γi−1) τ←−
S

2. Open(pid, nodeList, txvc, onions, rMap, rList, stealthMap, αi−1, T , γi−1).

Check: //Sim. can check that id was not yet used

1. Upon (sid,pid,check-id, txvc, θϵi
, Ri, Ui−1, Ui, Ui+1, αi, T) τ←− S

2. If (pid, Ui) ̸∈ idSet, let idSet := idSet ∪ {(pid, U)} and send the message (sid,pid,OPEN,
txer, θϵi

, Ri, Ui−1, Ui+1, αi−1, T) τ−→ Ui

3. If (sid,pid,ACCEPT, γi)
τ←− Ui, (sid,pid,ok, γi)

τ−→ S.

VC-Open: //Mark VC as opened

1. Upon (sid,pid,payment-open, txvc) τ←− S, let Ψ := Ψ ∪ {(pid, txvc)}.

Register: //Sim. can register a channel

1. Upon (sid,pid,register, γi, θi, txvc, T , θϵi , R) τ←− S
2. Γ := Γ ∪ {(pid, γi, θi, txvc, T , θϵi

, R)}

422

F.6. UC modeling

Open(pid, nodeList, txvc, onions, rMap, rList, stealthMap, αi−1, T , γi−1): Let τ be the current
round and Ui := γi−1.right

1. If (pid, Ui) ∈ idSet, go idle.
2. idSet := idSet ∪ {(pid, Ui)}
3. If an entry after Ui in nodeList exists and is ⊥, go idle.
4. If Ui = Un (i.e., last entry in nodeList), set Ui+1 := ⊤. Else, get Ui+1 from nodeList (the

entry after Ui).
5. Ri := rMap(Ui) and θϵi

:= stealthMap(Ui)
6. θi−1 := genStateOutputs(γi−1, αi−1, T). If θi−1 = ⊥, go idle. Else, wait 1 round.

7. (sid,pid,OPEN, txer, θϵi , Ri, Ui−1, Ui+1, αi−1, T) τ+1−−→ Ui

8. If not (sid,pid,ACCEPT, γi)
τ+1←−− Ui, go idle. Else,wait 1 round.

9. (ssidC ,UPDATE, γi−1.id, θi−1) τ+2−−→ FChannel

10. (ssidC ,UPDATED, γi−1.id) τ+2+tu←−−−−− FChannel, else go idle.
11. Γ := Γ ∪ (pid, γi, θi, txvc, T , θϵi

, Ri)
12. If Ui = Un:

• Ψ := Ψ ∪ {(pid, txvc)}
• (sid,pid,PAYMENT-OPEN, txvc, T , αi−1) τ+2+tu−−−−−→ Ui

• If U0 is dishonest, send (sid,pid,finalize, txvc) τ+2+tu−−−−−→ S
13. Else:

• (sid,pid,OPENED) τ+2+tu−−−−−→ Ui

• If Ui+1 honest, execute Open(pid, nodeList, txvc, onions, rMap, rList, stealthMap,
αi−1 − fee, γi)

• Else, send (sid, pid, open, txvc, rList, onioni+1, αi−1 − fee, T , γi−1, γi, θϵi−1 , θϵi)
τ−→ S,

where onioni+1 := onions(Ui+1) and θϵi−1 := stealthMapUi−1

Finalize-Open (executed at every round)

For every (pid, U0) ∈ Φ.keyList() do the following:

1. Let (τf , txvc, Un) = Φ(pid, U0). If for the current round τ it holds that τ = τf , do the
following.

2. If Un honest, check if (pid, txvc) ∈ Ψ. If yes, let Ψ := Ψ \ {(pid, txvc)} and go idle.

3. If Un dishonest and (sid,pid,confirmed, txer
x , σUn

(txer
x)) τf←− S, such that txer

x = txvc and
σUn

(txer
x) is Un’s valid signature of txvc, go idle.

423

F. Appendix to Chapter 7

4. Send (sid,pid,denied, txvc, U0) τf−→ S and remove key and value for key (pid, U0) from
Φ. txvc must be on L in round τ ′ ≤ τf + ∆. Otherwise, output (sid,ERROR) t1−→ U0.

Update-VC

While VC is open, the sending and the receiving endpoint can update the VC using PRE-UPDATE
of FChannel just as they would a ledger channel.

Close-VC

Let τ be the current round.
Start:

1. Upon (sid, pid, SHUTDOWN, α′
n−1) τ←− Un, for parameter pid, fetch entry (pid, γn−1, θi,

txvc, T , θϵi
, Ri) from Γ, s.t. γn−1.right = Un. If there is no such entry, go idle.

2. Let Un−1 := γn−1.left.
3. If Un is not the endpoint in VC pid, go idle.
4. If Un−1 honest, execute Close(pid, γn−1, α′

n−1)

5. Else, send (sid,pid,close, α′
n−1, γn−1) τ−→ S

Continue-Close: //Continue after a dishonest user

1. Upon (sid,pid,continue-close, γi−1, α′
i−1) τ←− S

2. Close(pid, γi−1, α′
i−1).

Close(pid, γi, α′
i): Let τ be the current round and Ui := γi.left

1. For the parameters pid and γi, fetch entry (pid, γi, θi, txvc, T , θϵi
, Ri) from Γ. If there is

no entry where the parameters pid and γi match, go idle.
2. If γi.st ̸= θi, go idle.
3. Let αi := θi[0].cash. If not 0 ≤ α′

i ≤ αi, go idle.
4. θ′

i := genNewState(γi, α′
i, T). If θ′

i = ⊥, go idle. Else, wait 1 round.

5. (sid,pid,CLOSE, α′
i)

τ+1−−→ Ui

6. If not (sid,pid,CLOSE-ACCEPT) τ+1←−− Ui, go idle.

7. (ssidC ,UPDATE, γi.id, θ′
i)

τ+1−−→ FChannel

8. If not (ssidC ,UPDATED, γi.id) τ+1+tu←−−−−− FChannel, go idle.
9. Γ := Γ \ (pid, γi, θi, txvc, T , θϵi

, Ri)

424

F.6. UC modeling

10. Γ := Γ ∪ (pid, γi, θ′
i, txvc, T , θϵi

, Ri)
11. If Ui = U0:

• (sid,pid,VC-CLOSED) τ+1+tu−−−−−→ Ui

• Remove key and value for key (pid, U0) from Φ.

12. Else:
• Retrieve γi−1 from Γ matching pid and s.t. γi−1.right = Ui

• (sid,pid,CLOSED) τ+1+tu−−−−−→ Ui

• If Ui−1 honest, execute Close(pid, α′
i + fee, γi−1)

• Else, send (sid,pid,close, α′
i + fee, γi−1) τ−→ S.

Replace: //Update the state currently saved by the IF

1. Upon (sid,pid,replace, γi, θ′
i)

τ←− S, let Ui := γi.left
2. For parameters pid and γi, fetch entry (pid, γi, θi, txvc, T , θϵi

, R) ∈ Γ
3. Γ := Γ \ {(pid, γi, θi, txvc, T , θϵi , R)}
4. Γ := Γ ∪ {(pid, γi, θ′

i, txvc, T , θϵi
, R)}

5. If Ui = U0, remove key and value for key (pid, U0) from Φ.

Emergency-Offload (executed at every round)

Let τ be the current round. For every (pid, U0) ∈ Φ.keyList() do the following:

1. For pid and a channel γ0 where γ0.left = U0, fetch entry (pid, γ0, θ0, txvc, T , θϵ0 , R0) ∈ Γ
2. If τ < T − tc − 3∆, continue with next loop iteration.

3. Else, let (τf , txvc, Un) = Φ(pid, U0). Send (sid,pid,denied, txvc, U0) τ−→ S. txvc must be
on L in round τ ′ ≤ τ + ∆. Otherwise, output (sid,ERROR) t1−→ U0.

4. Remove key and value for key (pid, U0) from Φ.

Respond (executed at the end of every round)

Let t be the current round. For every element (pid, γi, θi, txvc, T , θϵi , Ri) ∈ Γ, check if
γi.st = θi and txvc is on L. If yes, do the following:

Revoke: If γi.left honest and t < T − tc − 2∆ do the following.

• Set Γ := Γ \ {(pid, γi, θi, txvc, T , θϵi
, Ri)}.

425

F. Appendix to Chapter 7

• (ssidC ,CLOSE, γi.id) t−→ FChannel

• At time t + tc, a transaction tx with tx.output = γi.st has to be on L. If not, do the
following. If (ssidC , PUNISHED, γi.id) τ<T←−−− FChannel, go idle. Else, send (sid,
ERROR) T−→ γi.users.

• Wait for ∆ rounds, then (sid,pid,post-refund, γi, θϵi , Ri)
t′<T −∆−−−−−→ S

• At time t′′ < T , check whether a transaction tx′ appears on L with tx′.input = [θϵi ,
tx.output[0]] and tx′.output = [(tx.output[0].cash + θϵi

.cash, OneSig(Ui))]. If it appears,
send (sid,pid,REVOKED) t′′

−→ γi.left. If not, send (sid,ERROR) T−→ γi.users.

Force-Pay: Else, if a transaction tx with tx.output = γi.st is on-chain and tx.output[0] is
unspent (i.e., there is no transaction on L, that uses is as input), t ≥ T and Ui+1 is
honest, do the following.

• Set Γ := Γ \ {(pid, γi, θi, txvc, T , θϵi , Ri)}.

• Send (sid,pid,post-pay, γi)
t−→ S

• In round t + ∆ transaction tx′ with tx′.input = [tx.output[0]] and tx′.output =
(tx.output[0].cash, OneSig(Ui+1)) must have appeared on L. If yes, (sid, pid,
FORCE-PAY) t+∆−−→ γi.right. Otherwise, (sid,ERROR) t+∆−−→ γi.users.

F.6.4 Protocol

In this section, we give the formal protocol Π along with a short description of it. We note
that for simplicity, we assume that users do not update or close the channels involved
with virtual channels1 Also, a user knows if it is an endpoint (sender/receiver) or an
intermediary of a VC as well as its direct neighbors on the path. Following, the simulator
simulating an honest user knows that also.

The protocol is similar to the simplified pseudo-code presented in Section 7.5. The main
differences lie in having VC ids that allow handling multiple different VCs, the notion
of time, and the environment E . Briefly, the protocol starts with E invoking U0 to set
up the initial objects and pre-create the VC with Un. Then U0 asks its neighbor U1
to exchange the necessary transactions and update their channel to hold the collateral.
This is continued until the receiver Un is reached. In the finalize phase, Un sends a
confirmation to U0, indicating that the VC is open. In the Update VC phase, the channel
can be used. The Close VC phase updates the collateral from right to left to hold Un’s
final balance in the VC. The Respond phase is there, for users to react to txvc being
posted on the ledger, and triggers either a refund or claim of the collateral. We point to
the similarities of Open VC, Finalize, and Respond with the formal protocol description
in [AMSKM21].

1In reality, they can take part in multiple VCs, update, close or use their channels in some other
fashion while a VC is open. For this, they recreate the output used for the collateral and txr

i, but we
omit this for readability.

426

F.6. UC modeling

Protocol Π
Let fee ∈ N be a system parameter known to every user.
Local variables of Ui (all initially empty):

pidSet : A set storing every payment id pid that a user has participated in to prevent
duplicates.

paySet : A map storing tuples (pid, τf , Un) where pid is an id, τf is the round in which
a confirmation is expected from the receiver Un for the payments that have been
opened by this user.

local : A map, storing for a given pid Ui’s local copy of txvc and T in a tuple (txvc, T).
left : A map, storing for a given pid a tuple (γi−1, θi−1, txr

i−1) containing channel with
its left neighbor Ui−1, the state and the transaction txr

i−1 for Ui’s left channel in
the payment pid.

right : A map, sotring for a given pid a tuple (γi, θi, txr
i, sk

Ui
) containing the channel

with its right neighbor, the state, the transaction txr
i and the key necessary for

signing the refund transaction in the payment pid.
rightSig : A map, storing for a given pid the signature for txr

i of the right neighbor
σUi+1(txr

i) in the payment pid.

Open VC

Setup: In every round, every node U0 ∈ P does the following. We denote τ0 as the current
round.

U0 upon (sid,pid,SETUP, channelList, txin, α, T , γ0) τ0←− E

1. If pid ∈ pidSet, abort. Add pid to pidSet.
2. Let x := checkChannels(channelList, U0). If x = ⊥, abort. Else, let Un := x. If γ0 is

not the full channel between U0 and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be a list of all the users on the
path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n, T) = ⊥, abort.

4. If checkTxIn(txin, n, U0, α) = ⊥, abort

5. (txvc, onions, rMap, rList, stealthMap) := createMaps(U0, nodeList, txin, α).

6. (txvc, rList, onion0) := genTxEr(U0, channelList, txin)
7. paySet := paySet ∪ {(pid, τf := τ + n · (2 + tu) + 2 + to, Un)}
8. (sk

U0
, θϵ0 , R0, U1, onion1) := checkTxEr(U0, U0.a, U0.b, txvc, rList, onion0)

9. Set local(pid) := (txvc, T).

10. Send (sid,pid,pre-create-vc, γvc, txvc, T) τ0−→ Un, wait 1 round.

427

F. Appendix to Chapter 7

11. Send (ssidC ,PRE-CREATE, γvc, txvc, 0, T − τ0) τ0+1−−−→ FChannel

12. If not (ssidC ,PRE-CREATED, γvc.id) τ0+1+to←−−−−− FChannel, go idle.
13. Set α0 := α + fee · (n − 1) and compute:

• θ0 := genStateOutputs(γ0, α0, T)
• txr

0 := genRefTx(θ0, θϵ0 , U0)

14. Set right(pid) := (γ0, θ0, txr
0, sk

U0
).

15. Send (sid,pid,open-req, txvc, rList, onion1, θ0, txr
0) τ0+1+to−−−−−→ U1.

Un upon (sid,pid,pre-create-vc, γvc, txvc, T) τ←− U0

1. (ssidC ,PRE-CREATE, γvc, txvc, 0, T − τ) τ−→ FChannel

2. If not (ssidC ,PRE-CREATED, γvc.id) τ+to←−−− FChannel, mark VC as unusable.

Open: In every round, every node Ui+1 ∈ P does the following. We denote τx as the current
round.
Ui+1 upon
(sid,pid,open-req, txvc, rList, onioni+1, θi, txr

i)
τx←− Ui

1. Perform the following checks:
• Verify that pid ̸∈ pidSet. Add pid to pidSet
• Let x := checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txvc, rList, onioni+1).

Check that x ̸= ⊥, but instead x = (sk
Ui+1

, θϵi+1 , Ri+1, Ui+2, onioni+2).

• Set αi = θi[0].cash and extract T from θi−1[0].ϕ (the parameter of AbsTime()).
• Check that there exists a channel between Ui and Ui+1 and call this channel γi. Verify

that θi = genStateOutputs(γi, αi, T).
• Check that txr

i := genRefTx(θi, θϵx
, Ui), where θϵx

is an output of txvc, s.t. θϵx
̸= θϵi+1 .

2. If one or more of the previous checks fail, abort. Otherwise, send (sid, pid, OPEN, txvc,
θϵi+1 , Ri, Ui, Ui+2, αi, T) τx−→ E .

3. If (sid,pid,ACCEPT, γi+1) τx←− E , generate σUi+1(txr
i). Otherwise stop.

4. Set local(pid) := (txer
i , T), left(pid) := (γi, θi, txr

i) and (sid, pid, open-ok, σUi+1(txr
i))

τx−→ Ui.

Ui upon (sid,pid,open-ok, σUi+1(txr
i))

τi+2←−−− Ui+1

428

F.6. UC modeling

(The round τi given Ui and pid is defined in Setup or in Open step (6), the round when the
update is successful.)

5. Check that σUi+1(txr
i) is a valid signature for txr

i. If yes, set
rightSig(pid) := σUi+1(txr

i) and (ssidC ,UPDATE, γi.id, θi)
τi+2−−−→ FChannel.

Ui+1 upon (ssidC ,UPDATED, γi.id, θi)
τx+1+tu←−−−−− FChannel

6. Define τ(i+1) := τx + 1 + tu.
7. If Ui+1 is not the receiver, using the values of step 1:

• Send (sid,pid,OPENED)
τi+1−−→ E .

• (sk
Ui+1

, θϵi+1 , Ri+1, Ui+2, onioni+2) := checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txer
i , rList,

onioni+1)
• θi+1 := genStateOutputs(γi+1, αi − fee, T)
• txr

i+1 := genRefTx(θi+1, θϵi+1 , Ui+1)
• Set right(pid) := (γi+1, θi+1, txr

i+1, sk
Ui+1

)

• Send the message (sid,pid,open-req, txvc, rList, onioni+2, θi+1, txr
i+1)

τi+1−−→ Ui+2.

8. If Ui+1 is the receiver:

• msg := GetRoutingInfo(onioni+1, Ui+1)
• Create the signature σUn

(txer
i) as confirmation and send (sid, pid, finalize, txvc,

σUn(txvc))
τi+1−−→ U0. Send the message (sid,pid,PAYMENT-OPEN, txvc, T , αi)

τi+1−−→ E .

Finalize

U0 in every round τ

For every entry (pid, τf , Un) ∈ paySet do the following if τ = τf :

1. Upon receiving (sid,pid,finalize, txvc, σUn
(txvc)) τ←− Un, continue if σUn

(txvc) is a valid
signature for txvc. Otherwise, go to step (3).

2. Let (x, T) = local(pid). If x = txvc, go idle. Otherwise, continue with the next step.

3. Sign txvc yielding σU0(txvc) and set txvc := (txvc, (σU0(txvc))). Send (ssidL,POST, txvc) τ−→
GLedger and remove (pid, τf , Un) from paySet.

Update VC

429

F. Appendix to Chapter 7

While VC is open, the sending and the receiving endpoint can update the VC using PRE-UPDATE
of FChannel just as they would a ledger channel.

Close VC

Shutdown: In every round, every node Un ∈ P does the following. We denote τ0 as the current
round.

Un upon (sid,pid,SHUTDOWN, α′
n−1) τn←− E

1. If pid ̸∈ pidSet, abort.
2. If Un is not the receiving endpoint in the VC, abort.
3. Retrieve (γn−1, θn−1, txr

n−1) := left(pid)
4. Extract θϵn−1 ∈ txr

n−1.input
5. Extract T from θn−1[0].ϕ
6. Let αi := θn−1[0].cash. If not 0 ≤ α′

i ≤ αi, abort. Compute:

• θ′
n−1 := genNewState(γn−1, α′

n−1, T)

• txr′
n−1 := genRefTx(θ′

n−1, θϵn−1 , Un−1)

7. Create the signature σUn(txr′
n−1)

8. Send (sid,pid,close-req, θ′
n−1, txr′

n−1, σUn(txr′
n−1)) τ0−→ Un−1.

Close: In every round, every node Ui ∈ P does the following. We denote τx as the current
round.

Ui upon (sid,pid,close-req, θ′
i, txr′

i , σUi+1(txr′
i)) τx←− Ui+1

1. If pid ̸∈ pidSet, abort.
2. Retrieve (γi, θi, txr

i, sk
Ui

) := right(pid)

3. If γi.right ̸= Ui+1, abort. If θi[0] ̸∈ txr
i.input, abort.

4. Extract θϵi
∈ txr

i.input
5. Extract T from θi[0].ϕ and αi := θi[0].cash
6. Extract T ′ from θ′

i[0].ϕ and α′
i := θ′

i[0].cash
7. If T ′ ̸= T , abort. If not 0 ≤ α′

i ≤ αi, abort.
8. If θ′

i ̸= genNewState(γi, α′
i, T), abort.

9. If txr′
i ̸= genRefTx(θ′

i, θϵi
, Ui), abort.

430

F.6. UC modeling

10. If σUi+1(txr′
i) is not a valid signature for txr′

i , abort.

11. Send (sid,pid,CLOSE, α′
i)

τx−→ E
12. If not (sid,pid,CLOSE-ACCEPT) τx←− E , abort.

13. (ssidC ,UPDATE, γi.id, θ′
i)

τx−→ FChannel.

Ui+1 upon (ssidC ,UPDATED, γi.id, θ′
i)

τi+1+tu←−−−−− FChannel

14. Set left(pid) := (γi, θ′
i, txr′

i)

Ui upon (ssidC ,UPDATED, γi.id, θ′
i)

τx+tu←−−− FChannel

15. Let τi := τx + tu

16. Set rightSig(pid) := σUi+1(txr′
i) and set right(pid) := (γi, θ′

i, txr′
i , sk

Ui
).

17. If Ui is not the sending endpoint:

• Retrieve (γi−1, θi−1, txr
i−1) := left(pid)

• Extract θϵi−1 ∈ txr
i−1.input

• θ′
i−1 := genNewState(γi−1, α′

i + fee, T)

• txr′
i−1 := genRefTx(θ′

i−1, θϵi−1 , Ui−1)

• Create the signature σUi
(txr′

i−1)

• Send (sid,pid,close-req, θ′
i−1, txr′

i−1, σUi
(txr′

i−1)) τi−→ Ui−1.

• (sid,pid,CLOSED) τi−→ E
18. If Ui is the sending endpoint:

• (sid,pid,VC-CLOSED) τi−→ E

Emergency-Offload

U0 in every round τ

For every entry (pid, τf , Un) ∈ paySet do the following:

1. Let (txvc, T) := local(pid).
2. If τ < T − tc − 3∆, continue with next loop iteration.

431

F. Appendix to Chapter 7

3. Remove (pid, τf , Un) from paySet.

4. Sign txvc yielding σU0(txvc) and set txvc := (txvc, (σU0(txvc))). Send (ssidL,POST, txvc) τ−→
GLedger.

Respond

Ui at the end of every round

Let t be the current round. Do the following:

1. For every pid in right.keyList(), let (γi, θi, txr
i, sk

Ui
) := right(pid), let (txvc, T) :=

local(pid) and do the following. If t < T − tc − 2∆, txvc is on the ledger L and γi.st = θi,
do the following:

• Remove the entry for pid from right, send (ssidC ,CLOSE, γi.id) t−→ FChannel.
• If a transaction tx with tx.output = θi is on L in round t1 ≤ t + tc wait ∆ rounds.
• Sign txr

i to yield σUi(txr
i) and use sk

Ui
to sign txr

i to yield σ
Ui

(txr
i)

• Set txr
i := (txr

i, (σUi
(txr

i), rightSig(pid), σ
Ui

(txr
i))) and send

(ssidL, POST, txr
i)

t1+∆−−−→ GLedger. When it appears on L in round t2 < T , send (sid,
pid,REVOKED) t2−→ E

2. For every pid in left.keyList(), let (γi−1, θi−1, txr
i−1) := left(pid), let (txvc, T) :=

local(pid) and do the following. If t ≥ T and a transaction tx with tx.output = θi−1 is on
the ledger L, but not txr

i−1, do the following:

• Remove the entry for pid from left and create txp
i−1 := genPayTx(γi−1.st, Ui).

• Sign txp
i−1 yielding σUi

(txp
i−1).

• Set txp
i−1 := (txp

i−1, σUi(txp
i−1)) and send (ssidL,POST, txp

i−1) t−→ GLedger.

• If it appears on L in round t1 ≤ t + ∆, send (sid,pid,FORCE-PAY) t1−→ E

F.6.5 Simulation

In this section we provide the code for the simulator S, which can simulate the protocol
in the ideal world, and give the proof that the protocol (see Appendix F.6.4) UC-realizes
the ideal functionality FP ay shown in Appendix F.6.3.

Simulator
Local variables:

432

F.6. UC modeling

left A map, storing the channel γi−1 and output θϵi−1 for a given keypair consisting of
a payment id pid and a user Ui, or (⊥, ⊥) if Ui is the sending endpoint.

right A map, storing the transaction txr
i for a given keypair consisting of a payment id

pid and a user Ui.
rightSig A map, storing the signature of the right neighbor for the transaction stored in

right for a given keypair consisting of a payment id pid and a user Ui.

Simulator for init phase

Upon (sid, init) tinit←−− FP ay and send (sid,init-ok, tu, tc, to) tinit−−→ FP ay.

Simulator for Open-VC phase

Pre-create VC

1. Upon (sid,pid,pre-create-vc, γvc, txvc, T) τ←− U0 if U0 dishonest, go to step (3).

2. Upon (sid, pid, pre-create-vc, γvc, txvc, T) τ←− FP ay if U0 honest, do the following. If
Un honest go to step (3). If Un dishonest, send (sid, pid, pre-create-vc, γvc, txvc, T)

τ−→ Un and go idle.

3. (ssidC ,PRE-CREATE, γvc, txvc, 0, T − τ) τ−→ FChannel.

4. If not (ssidC ,PRE-CREATED, γvc.id) τ+to←−−− FChannel, mark VC as unusable.

a) Case Ui is honest, Ui+1 dishonest

1. Upon receiving (sid, pid, open, txvc, rList, onioni+1, αi, T , γi−1, γi, θϵi−1 , θϵi
) τ←− FP ay or

upon being called by the simulator S itself in round τ with parameters (pid, txvc, rList,
onioni+1, αi, T , γi−1, γi, θϵi−1 , θϵi

).
2. Let Ui := γi.left and Ui+1 := γi.right.
3. θi := genStateOutputs(γi, αi, T)
4. txr

i := genRefTx(θi, θϵi
, Ui)

5. (sid,pid,open-req, txvc, rList, onioni+1, θi, txr
i)

τ−→ Ui+1

6. Upon (sid,pid,open-ok, σUi+1(txr
i))

τ+2←−− Ui+1, check that
σUi+1(txr

i) is a valid signature for txr
i. If not, go idle.

7. Set rightSig(pid, Ui) := σUi+1(txr
i), right(pid, Ui) := txr

i

8. Send (ssidC ,UPDATE, γi.id, θi)
τ+2−−→ FChannel.

433

F. Appendix to Chapter 7

9. If not (ssidC ,UPDATED, γi.id, θi)
τ+2+tu←−−−−− FChannel, go idle.

10. Set left(pid, Ui) := (γi−1, θϵi−1)

11. Send(sid,pid,register, γi, θi, txvc, T , θϵi , R) τ−→ FP ay.

b) Case Ui is honest, Ui−1 dishonest

1. Upon (sid,pid,open-req, txvc, rList, onioni, θi−1, txr
i−1) τ←− Ui−1.

Let αi−1 := θi−1[0].cash and extract T from θi−1[0].ϕ (the parameter of AbsTime()). Let
γi−1 be the channel between Ui−1 and Ui

2. Let x := checkTxEr(Ui, Ui.a, Ui.b, txvc, rList, onioni). Check that x ̸= ⊥, but instead
x = (sk

Ui
, θϵi

, Ri, Ui+1, onioni+1). Otherwise, go idle.

3. Check that there exists a channel between Ui and Ui+1 and call this channel γi. Verify that
θi−1 = genStateOutputs(γi−1, αi−1, T) and txr

i := genRefTx(θi−1, θϵi−1 , Ui), where
θϵi−1 ∈ txvc and θϵi−1 ̸= θϵi

.

4. (sid,pid,check-id, txvc, θϵi
, Ri, Ui−1, Ui, Ui+1, αi, T) τ−→ FP ay

5. If not (sid,pid,ok, γi)
τ←− FP ay, go idle. Let Ui+1 := γi.right.

6. Sign txr
i−1 on behalf of Ui yielding σUi

(txr
i−1) and (sid, pid, open-ok, σUi

(txr
i−1)) τ−→

Ui−1.

7. Upon (ssidC ,UPDATED, γi−1.id, θi−1) τ+1+tu←−−−−− FChannel, send
(sid,pid,register, γi−1, θi−1, txvc, T , ⊥, ⊥) τ−→ FP ay. Otherwise, go idle.

8. Set left(pid, Ui) := (γi−1, θϵi−1).

9. If Ui = Un (if (sk
Ui

, θϵi
, Ri, Ui+1, onioni+1) = (⊤, ⊤, ⊤, ⊤, ⊤) holds), and U0 is honest,a

send (sid, pid, payment-open, txvc) τ+1+tu−−−−−→ FP ay. If U0 is dishonest, create signature
σUn

(txvc) on behalf of Un and send (sid, pid, finalize, txvc, σUn
(txvc)) τ+1+tu−−−−−→ U0. In

both cases, send via FP ay to the dummy user Un the message (sid,pid,PAYMENT-OPEN,
txvc, T , αi−1) τ+1+tu−−−−−→ Un. Go Idle.

10. Send via FP ay to the dummy user Ui the message (sid,pid,OPENED) τ+1+tu−−−−−→ Ui.
11. If Ui+1 honest, call process(sid,pid, txvc, γi−1, γi, Ri, onioni, αi, T).
12. If Ui+1 dishonest, go to step Simulator Ui honest, Ui+1 dishonest step 1 with parameters

(pid, txvc, rList, onioni+1, αi−1 − fee, T , γi−1, γi, θϵi−1 , θϵi
).

process(sid,pid, txvc, γi−1, γi, Ri, onioni, αi−1, T)

Let τ be the current round.

1. Initialize nodeList := {Ui} and onions, rMap, stealthMap as empty maps.

434

F.6. UC modeling

2. (Ui+1, msgi, onioni+1) := GetRoutingInfo(onioni)
3. stealthMap(Ui) := θϵi

4. rMap(Ui) := Ri

5. While Ui and Ui+1 honest:

• x := checkTxEr(Ui+1, Ui+1.a, Ui+1.b, txvc, rList, onioni+1):
– If x = ⊥, append Ui+1 and then ⊥ to nodeList and break the loop.
– If x = (⊤, ⊤, ⊤, ⊤, ⊤), append Ui+1 to nodeList and break the loop.
– Else, if x = (sk

Ui+1
, θϵi+1 , Ui+2, onioni+2), do the following.

• Append Ui+1 to nodeList
• onions(Ui+2) := onioni+2

• rMap(Ui+1) := Ri+1

• stealthMap(Ui+1) := θϵi+1

• If Ui+2 is dishonest, append Ui+2 to nodeList and break the loop.
• Set i := i + 1 (i.e., continue loop for Ui+1 and Ui+2)

6. Send (sid, pid, continue, nodeList, txvc, onions, rMap, rList, stealthMap, αi−1, T , γi−1) τ−→
FP ay

aFor simplicity, assume that the Un (and in the case it is honest, the simulator) knows the sender.
As the payment is usually tied to the exchange of some goods, this is a reasonable assumption. Note
that in practice, this is not necessary, as the sender can be embedded in the routing information onionn.

Simulator for finalize and emergency-offload phase

a) Publishing txvc

Upon receiving a message (sid, pid, denied, txvc, U0) τ←− FP ay and U0 honest, sign txvc on
behalf of U0 yielding σU0(txvc). Set txvc := (txvc, σU0(txvc)) and send (ssidL, POST, txvc) τ−→
GLedger.

b) Case Un honest, U0 dishonest

Upon message (sid, pid, finalize, txvc) τ←− FP ay, sign txvc on behalf of Un yielding
σUn

(txvc). Send (sid,pid,finalize, txvc, σUn
(txvc)) τ−→ U0.

c) Case Un dishonest, U0 honest

Upon message (sid, pid, finalize, txvc, σUn
(txvc)) τ←− Un, send (sid, pid, confirmed,

txvc, σUn(txvc)) τ−→ FP ay.

435

F. Appendix to Chapter 7

Simulator for Close-VC phase

a) Case Ui is honest, Ui−1 dishonest

1. Upon (sid,pid,close, α′
i−1, γi−1) τ←− FP ay or upon being called by the simulator S itself

in round τ with parameters (pid, α′
i−1, γi−1).

2. Retrieve (γi−1, θϵi−1) := left(pid, Ui).

3. Extract T from γi−1.st[0].
4. Let Ui := γi.left and Ui+1 := γi.right.
5. θ′

i−1 := genNewState(γi−1, α′
i, T)

6. txr
i := genRefTx(θ′

i−1, θϵi−1 , Ui−1)

7. Create the signature σUi(txr′
i−1) on Ui’s behalf.

8. Send (sid,pid,close-req, θ′
i−1, txr′

i−1, σUi
(txr′

i−1)) τ−→ Ui−1.

9. If (ssidC ,UPDATED, γi−1.id, θ′
i−1) τ+1+tu←−−−−− FChannel, send (sid,pid,replace, γi−1, θ′

i−1)
τ+1+tu−−−−−→ FP ay.

b) Case Ui is honest, Ui+1 dishonest

1. Upon (sid, pid, close-req, θ′
i, txr′

i , σUi+1(txr′
i)) τ←− Ui+1, let γi the channel between Ui

and Ui+1.
2. Let txr

i := right(pid, Ui). If no such entry exists, go idle.
3. Let θi := γi.st and check that θi[0] ∈ txr

i.input. If not, go idle.
4. Extract θϵi ∈ txr

i.input
5. Extract T from θi[0].ϕ and αi := θi[0].cash
6. Extract T ′ from θ′

i[0].ϕ and α′
i := θ′

i[0].cash
7. If T ′ ̸= T , abort. If not 0 ≤ α′

i ≤ αi, abort.
8. If θ′

i ̸= genNewState(γi, α′
i, T), abort.

9. If txr′
i ̸= genRefTx(θ′

i, θϵi , Ui), abort.

10. If σUi+1(txr′
i) is not a valid signature for txr′

i , abort.

11. Via FP ay to the dummy user Ui send (sid,pid,CLOSE, α′
i)

τ−→ Ui and expect the answer
(sid,pid,CLOSE-ACCEPT) τ←− Ui, otherwise go idle.

12. Send (ssidC ,UPDATE, γi.id, θ′
i)

τ−→ FChannel.

13. Expect (ssidC ,UPDATED, γi.id, θ′
i)

τ+tu←−−− FChannel, else go idle.

436

F.6. UC modeling

14. Send (sid,pid,replace, γi, θ′
i)

τ−→ FP ay.

15. Set right(pid, Ui) := txr′
i

16. Retrieve (γi−1, θϵi−1) := left(pid, Ui).

17. If Ui = U0, send via FP ay to the dummy user Ui the message (sid, pid, VC-CLOSED)
τ+tu−−−→ Ui. Go idle.

18. Send via FP ay to the dummy user Ui the message (sid,pid,CLOSED) τ+tu−−−→ Ui.

19. If Ui−1 honest, send (sid,pid,continue-close, γi−1, α′
i + fee) τ+tu−−−→ FP ay

20. If dishonest, go to step Simulator Ui honest, Ui+1 dishonest step 1 with parameters (pid,
α′

i + fee, γi−1).

Simulator for respond phase

In every round τ , upon receiving the following two messages, react accordingly.

1. Upon (sid,pid,post-refund, γi, txvc, θϵi , Ri)
τ←− FP ay.

• Extract αi and T from γi.st.output[0].
• If Ui+1 is honest, create the transaction txr

i := genRefTx(γi.st[0], θϵi
, Ui). Else, let

txr
i := right(pid, Ui)

• Extract pk
Ui

from output θϵi of txvc and let sk
Ui

:= GenSk(Ui.a, Ui.b, pk
Ui

, Ri).

• Generate signatures σUi
(txr

i) and, using sk
Ui

, σ
Ui

(txr
i) on behalf of Ui.

• If Ui+1 := γi.right is honest, generate signature σUi+1(txr
i) on behalf of Ui+1. Else, let

σUi+1(txr
i) := rightSig(pid, Ui)

• Set txr
i := (txr

i, (σUi
(txr

i), σUi+1(txr
i), σ

Ui
(txr

i))).

• Send (ssidL,POST, txr
i)

τ−→ GLedger.

2. Upon (sid,pid,post-pay, γi)
τ←− FP ay

• Extract αi and T from γi.st.output[0]. Create the transaction txp
i := genPayTx(γi.st,

Ui+1).

• Generate signatures σUi+1(txp
i) and set txp

i := (txp
i , (σUi+1(txp

i))).

• Send (ssidL,POST, txp
i) τ−→ GLedger.

Proof.
We proceed to show that for any environment E an interaction with ϕFP ay

(the ideal
protocol of ideal functionality FP ay) via the dummy parties and S (ideal world) is
indistinguishable from an interaction with Π and an adversary A. More formally, we
show that the execution ensembles EXECFP ay ,S,E and EXECΠ,A,E are indistinguishable for
the environment E .

437

F. Appendix to Chapter 7

We use the notation m[τ] to denote that a message m is observed by E at round τ . We
interact with other ideal functionalities. These functionalities might in turn interact with
the environment or parties under adversarial control, either by sending messages or by
impacting public variables, i.e., the ledger L. To capture this impact, we define a function
obsSet(m, F , τ), returning a set of all by E observable actions which are triggered by
calling F with message m in round τ .

In this proof, we do a case-by-case analysis of each corruption setting. We start with
the view of the environment in the real world and follow with the view in the ideal
world, simulated by S. Due to the similarities of the Open-VC, the Finalize well as the
Respond phase and the Pay, Finalize and Respond phase in [AMSKM21], parts of the
corresponding proofs are taken verbatim from there.

Lemma 26. Let Σ be an EUF-CMA secure signature scheme. Then, the Open-VC phase
of Π GUC-emulates the Open-VC phase of functionality FP ay.

Proof. We compare the execution ensembles for the open phase in the real and the ideal
world. In Table F.3 we match the sequence of the Open-VC phase of the ideal and the
real world and point to which code is executed. We divide this phase into setup and
open. For readability, we define the following messages:

• m0 := (sid,pid,pre-create-vc, γvc, txvc, T)

• m1 := (sid,pid,PRE-CREATE, γvc, txvc, 0, T − τ)

• m2 := (sid,pid,PRE-CREATED, γvc.id)

• m3 := (sid,pid,open-req, txvc, rList, onioni+1, θi, txr
i)

• m4 := (sid,pid,OPEN, txvc, θϵi+1 , Ri, Ui, Ui+2, αi, T)

• m5 := (sid,pid,ACCEPT, γi+1)

• m6 := (sid,pid,open-ok, σUi+1(txr
i))

• m7 := (ssidC ,UPDATE, γi.id, θi)

• m8 := (ssidC ,UPDATED, γi.id, θi)

• m9 := (sid,pid,OPENED) or, if sent by the receiver,
m9 := (sid,pid,PAYMENT-OPEN, txvc, T , αi)

Setup.

438

F.6. UC modeling

Table F.3: Explanation of the sequence names used in Lemma 26 and where they can be
found in the ideal functionality (IF), Protocol (Prot) or Simulator (Sim).

Real World Ideal World Output Description
Ui honest, Ui+1 corrupted Ui honest, Ui+1 honest Ui corrupted, Ui+1 honest

SETUP Prot.OpenVC.Setup 1-15

IF.OpenVC.Setup 1-6,
Sim.OpenVC.PrecreateVC 1-4,

IF.OpenVC.Setup 7-10,12,
Sim.OpenVC.a 1-5

IF.OpenVC.Setup 1-6,
Sim.OpenVC.PrecreateVC 1-4,

IF.OpenVC.Setup 7-11
Sim.OpenVC.PrecreateVC 1-4

m0,
2 · m1,

m3

Pre-Creates VC, performs setup and
contacts next user

CREATE_STATE Prot.OpenVC.Open 6-8 IF.OpenVC.Open 12,13 ,
Sim.OpenVC.a 1-5 IF.OpenVC.Open 12, 13 Sim.OpenVC.b 8-12 m9,

m3

Upon m8, sends message m9 to E .
Then, ceates the objects to send in m3
and sends it to next user (or finalize).

CHECK_STATE Prot.OpenVC.Open 1-4 n/a IF.OpenVC.Open 1-8

Sim.OpenVC.b 1-4
IF.Check

Sim.OpenVC.b 5-7
IF.Register

m4,
m6

Checks if objects in m3 are correct,
sends m4 to E and on m5, sends
m6 to Ui

CHECK_SIG Prot.OpenVC.Open 5 Sim.OpenVC.a 6-11 IF.OpenVC.Open 9-11 n/a m7 Checks if signature of txr
i is correct

Real world: An honest U0 performs SETUP in τ0 to set up the initial objects and to
pre-create the VC with Un. In round τ0, U0 sends m0 to Un (which E sees in round
τ0 + 1 only if Un is corrupted) and then, after waiting 1 round, m1 to FChannel.
Note that an honest Un receiving m0 in some round τ , sends also a message m1 to
FChannel. If FChannel received two valid messages m1 from U0 and Un, it returns
m2. Depending on the corruption setting, the ensemble

• EXECΠ,A,E := {m0[τ0 + 1]} ∪ obsSet(m1, FChannel, τ0 + 1) for U0 honest, Un

corrupted
• EXECΠ,A,E := obsSet(m1, FChannel, τ0 + 1) ∪ obsSet(m1, FChannel, τ0 + 1) for U0

honest, Un honest, where m1 is sent by each user.
• EXECΠ,A,E := obsSet(m1, FChannel, τ) for U0 corrupted, Un honest

Ideal world: For an honest U0, FP ay performs SETUP in τ0 to set up the initial objects
and to pre-create the VC. In round τ0, FP ay asks S to send m0 to a dishonest
Un (who receives it in round τ0 + 1), or, if Un is honest send m1 to FChannel in
τ0 + 1 on behalf of Un. In both cases, FP ay sends m1 to FChannel in τ0 + 1. If U0 is
dishonest and Un honest, S waits for a message m0 from U0 in some round τ and
sends m1 to FChannel. If FChannel received two valid messages m1 from U0 and Un,
it returns m2. Depending on the corruption setting, the ensemble

• EXECFP ay ,S,E := {m0[τ0 + 1]} ∪ obsSet(m1, FChannel, τ0 + 1) for U0 honest, Un

corrupted
• EXECFP ay ,S,E := obsSet(m1, FChannel, τ0 + 1) ∪ obsSet(m1, FChannel, τ0 + 1) for

U0 honest, Un honest, where m1 is sent for each user.
• EXECFP ay ,S,E := obsSet(m1, FChannel, τ) for U0 corrupted, Un honest

Open. 1. Ui honest, Ui+1 corrupted.

Real world: After Ui performs either SETUP or CREATE_STATE, it sends m3 to Ui+1
in the current round τ . The environment E controls A and therefore Ui+1 and will
see m3 in round τ + 1. Iff Ui+1 replies with a correct message m6 in τ + 2, Ui will

439

F. Appendix to Chapter 7

perform CHECK_SIG and call FChannel with message m7 in the same round. The
ensemble is EXECΠ,A,E := {m3[τ + 1]} ∪ obsSet(m7, FChannel, τ + 2)

Ideal world: After FP ay performs either SETUP or simulator performs CREATE_STATE,
the simulator sends m3 to Ui+1 in the current round τ . E will see m3 in round
τ +1. Iff Ui+1 replies with a correct message m6 in τ +2, the simulator will perform
CHECK_SIG and call FChannel with message m7 in the same round. The ensemble
is EXECFP ay ,S,E := {m3[τ + 1]} ∪ obsSet(m7, FChannel, τ + 2)

2. Ui honest, Ui+1 honest.

Real world: After Ui performs either SETUP or CREATE_STATE, it sends m3 to Ui+1
in the current round τ . Ui+1 performs CHECK_STATE and sends m4 to E in round
τ + 1. Iff E replies with m5, Ui+1, Ui+1 replies with m6. Ui receives this in round
τ + 2, performs CHECK_SIG and sends m7 to FChannel. Ui+1 expects the message
m8 in round τ + 2 + tu and will then send m9 to E . Afterwards it continues with
either CREATE_STATE or FINALIZE. The ensemble is EXECΠ,A,E := {m4[τ +
1], m9[τ + 2 + tu]} ∪ obsSet(m7, FChannel, τ + 2)

Ideal world: After FP ay performs either SETUP or is invoked by itself (in step Open.13)
or by the simulator (in step process.6) in the current round τ , FP ay perform
the procedure Open. This behaves exactly like CREATE_STATE, CHECK_STATE
and CHECK_SIG. However, since every object is created by FP ay, the checks are
omitted. The procedure Open outputs the messages m4 in round τ + 1 and iff E
replies with m5, calls FChannel with m7 in τ + 2. Finally, if m8 is received in round
τ + 2 + tu, outputs m9 to E . The ensemble is EXECFP ay ,S,E := {m4[τ + 1], m9[τ +
2 + tu]} ∪ obsSet(m7, FChannel, τ + 2)

3. Ui corrupted, Ui+1 honest.

Real world: After Ui+1 receives the message m3 from Ui, it performs CHECK_STATE
and sends m4 to E in the current round τ . Iff E replies with m5, Ui+1 sends m6 to
Ui. If Ui+1 receives the message m8 from FChannel in round τ + 1 + tu, it sends m9
to E . The ensemble is EXECΠ,A,E := {m4[τ], m6[τ + 1], m9[τ + 1 + tu]}

Ideal world: After the simulator receives m3 from Ui, it performs CHECK_STATE to-
gether with FP ay and FP ay sends m4 to E . Iff E replies with m5, FP ay asks the
simulator to send m6 to Ui. All of this happens in the current round τ . If the
simulator receives m8 in round τ + 1 + tu, it sends m9 to E . The ensemble is
EXECFP ay ,S,E := {m4[τ], m6[τ + 1], m9[τ + 1 + tu]}

Note that we do not care about the case where both Ui and Ui+1 are corrupted because
the environment is communicating with itself, which is trivially the same in the ideal and

440

F.6. UC modeling

the real world. We see that for the setup and open phase in all three corruption cases,
the execution ensembles of the ideal and the real world are identical, thereby proving
Lemma 26.

Lemma 27. Let Σ be a EUF-CMA secure signature scheme. Then, the Finalize phase
of protocol Π GUC-emulates the Finalize phase of functionality FP ay.

Proof. Again, we consider the execution ensembles of the interaction between users Un

and U0 for three different cases. We match the sequences and where they are used in the
ideal and real world in Table F.4. We define the following messages.

• m10 := (sid,pid,finalize, txvc, σUn(txvc))

• m11 := (ssidL,POST, txvc)

Table F.4: Explanation of the sequence names used in Lemma 27 and where they can be
found.

Real World Ideal World Output Description
Un honest, U0 corrupted Un honest, U0 honest Un corrupted, U0 honest

FINALIZE Prot.OpenVC.Open 8
IF.OpenVC.12 and
Sim.Finalize.b or
Sim.OpenVC.b 9

IF.OpenVC.12 or
Sim.OpenVC.b 9,

IF.VCOpen
n/a m10 Sends finalize message to U0

CHECK_FINALIZE Prot.Finalize 1-3 n/a IF.Finalize 1,2,4
Sim.Finalize.a

Sim.Finalize.c
IF.Finalize 1,3,4
Sim.Finalize.a

m11
Checks if txvc is the same, if not,
publishes it to ledger with m11.

1. Un honest, U0 corrupted.

Real world: After performing FINALIZE in the current round τ , Un sends m10 to U0,
which E sees in τ + 1. The ensemble is EXECΠ,A,E := {m10[τ + 1]}

Ideal world: After either FP ay or the simulator performs FINALIZE in the current
round τ , the simulator sends m10 to U0, which E sees in τ + 1. The ensemble is
EXECFP ay ,S,E := {m10[τ + 1]}

2. Un honest, U0 honest.

Real world: After performing FINALIZE in the current round τ , Un sends m10 to U0.
In the meantime, user U0 performs CHECK_FINALIZE and should it not receive
a correct message m10 in the correct round, will send m11 to GLedger in round τ ′.
The ensemble is EXECΠ,A,E := obsSet(m11, GLedger, τ ′)

441

F. Appendix to Chapter 7

Ideal world: Either FP ay or the simulator performs FINALIZE in the current round
τ . In the meantime, functionality FP ay performs CHECK_FINALIZE and will, if
the checks in FINALIZE failed or it was performed in a incorrect round τ ′, FP ay

will instruct the simulator to send m11 to GLedger in rounds τ ′. The ensemble is
EXECFP ay ,S,E := obsSet(m11, GLedger, τ ′)

3. Un corrupted, U0 honest.

Real world: U0 performs CHECK_FINALIZE and should it not receive a correct message
m10 in the correct round, will send m11 to GLedger in round τ ′. The ensemble is
EXECΠ,A,E := obsSet(m11, GLedger, τ ′)

Ideal world: The simulator and FP ay perform CHECK_FINALIZE and should the
simulator not receive a correct message m10 in the correct round, FP ay will
instruct the simulator to send m11 to GLedger in round τ ′. The ensemble is
EXECFP ay ,S,E := obsSet(m11, GLedger, τ ′)

Lemma 28. Let Σ be a EUF-CMA secure signature scheme. Then, the Update phase of
protocol Π GUC-emulates the Update phase of functionality FP ay.

Proof. Trivially, this update phase is the same, as the pre-update messages are simply
forwarded to FChannel in both the real and the ideal world.

Lemma 29. Let Σ be a EUF-CMA secure signature scheme. Then, the Close phase of
protocol Π GUC-emulates the Close phase of functionality FP ay.

Proof. Again, we consider the execution ensembles of the interaction between users Ui+1
and Ui for three different cases. We match the sequences and where they are used in the
ideal and real world in Table F.5. We define the following messages.

• m12 := (sid,pid,close-req, θ′
i−1, txr′

i−1, σUi(txr′
i−1))

• m13 := (sid,pid,CLOSE, α′
i)

• m14 := (sid,pid,CLOSE-ACCEPT)

• m15 := (ssidC ,UPDATE, γi.id, θ′
i)

442

F.6. UC modeling

Table F.5: Explanation of the sequence names used in Lemma 29 and where they can be
found.

Real World Ideal World Output Description
Ui+1 honest, Ui corrupted Ui+1 honest, Ui honest Ui+1 corrupted, Ui honest

SHUTDOWN Prot.CloseVC.Shutdown 1-8 IF.CloseVC.Start 1-3,5,
Sim.CloseVC.a 1-8 IF.CloseVC.Start 1-4 n/a m12

Shutdown starts with Un, creates
objects, contacts next user

CLOSE Prot.CloseVC.Close 1-14 n/a IF.CloseVC.Close 1-10 Sim.CloseVC.b 1-12 m13,
m15

Checks if objects in m12 are correct,
sends m13 to E and on m14, sends
m15 to FChannel

PROCEED_CLOSE Prot.CloseVC.Close 15-18 IF.CloseVC.Close 11,12,
Sim.CloseVC.a IF.CloseVC.Close 11,12

Sim.CloseVC.b 13,14,
IF.CloseVC.Replace,
Sim.CloseVC.B 14-20

m17
On m16, sends m17 to E and
continues with next user (if exists).

• m16 := (ssidC ,UPDATED, γi.id, θ′
i)

• m17 := (sid,pid,CLOSED) or, if sent by the sender, m17 := (sid,pid,VC-CLOSED)

1. Ui+1 honest, Ui corrupted.

Real world: After Ui+1 performs either SHUTDOWN or alternatively PROCEED_CLOSE,
it sends m12 to Ui in the current round τ . The environment E controls A and
therefore Ui and will see m12 in round τ + 1. The ensemble is EXECΠ,A,E :=
{m12[τ + 1]}

Ideal world: After FP ay performs either SHUTDOWN or S performs PROCEED_CLOSE,
the simulator sends m12 to Ui in the current round τ . E will see m12 in round τ + 1.
The ensemble is EXECFP ay ,S,E := {m12[τ + 1]}

2. Ui+1 honest, Ui honest.

Real world: After Ui+1 performs either SHUTDOWN or alternatively PROCEED_CLOSE,
it sends m12 to Ui in the current round τ . Ui receives this message in τ + 1 and
carries out CLOSE, sending m13 to E in τ + 1 and, upon m14 in τ + 1, sends
m15 in τ + 1 to FChannel. After a successful update (m16 is received), Ui sends
m17 to E in τ + 1 + tu and continues with Ui−1, if it exists. The ensemble is
EXECΠ,A,E := {m13[τ + 1], m17[τ + 1 + tu]} ∪ obsSet(m15, τ + 1, FChannel).

Ideal world: After FP ay performs either SHUTDOWN or is invoked by itself (in step
Close.12) or by the simulator (in step b.19 and then IF.Continue-Close) in the
current round τ , FP ay perform the procedure Close. This behaves exactly like
CLOSE and PROCEED_CLOSE. However, since every object is created by FP ay, the
checks are omitted. The procedure Close outputs the messages m13 in round τ + 1
and iff E replies with m14, calls FChannel with m15 in τ +1. Finally, if m16 is received
in round τ +1+tu, outputs m17 to E and continues for Ui−1, if it exists. The ensemble
is EXECFP ay ,S,E := {m13[τ + 1], m17[τ + 1 + tu]} ∪ obsSet(m15, τ + 1, FChannel)

3. Ui+1 corrupted, Ui honest.

443

F. Appendix to Chapter 7

Real world: After Ui receives the message m12 from Ui+1 in round τ , it performs CLOSE
and sends m13 to E in τ . Iff E replies with m14 in the same round, Ui sends m15 to
FChannel in τ . After receiving m16 in τ + tu, performs PROCEED_CLOSE, sending
m17 to E and continues with Ui−1, if it exists. The ensemble is EXECΠ,A,E :=
{m13[τ], m17[τ + tu]} ∪ obsSet(m15, τ , FChannel).

Ideal world: After the S receives m12 from Ui+1 in round τ , performs the steps CLOSE,
sending m13 to E in τ . Iff E replies with m14 in the same round, S sends m15 to
FChannel in τ . After receiving m16 in τ + tu, S performs PROCEED_CLOSE together
with FP ay, sending m17 to E and continues for Ui−1, if it exists. The ensemble is
EXECFP ay ,S,E := {m13[τ], m17[τ + tu]} ∪ obsSet(m15, τ , FChannel).

Lemma 30. Let Σ be a EUF-CMA secure signature scheme. Then, the Emergency-
Offload phase of protocol Π GUC-emulates the Emergency-Offload phase of functionality
FP ay.

Proof. Again, we consider the execution ensembles, but now only for an honest U0. We
use message m11 := (ssidL,POST, txvc) from before.

Real world: An honest U0 checks every round and each of its VCs (with a certain
pid), if the VC has already been closed, see Prot.EmergencyOffload 1-4. If it
has not within a certain round τ , U0 sends m11 to GLedger in τ . The ensemble is
EXECΠ,A,E := obsSet(m11, GLedger, τ).

Ideal world: FP ay checks every round and every VC (with a certain pid), if the VC
has already been closed. If it has not within a certain round τ , FP ay instructs
S to send m11 to GLedger, see IF.EmergencyOffload 1-4 and Sim.Finalize.a. The
ensemble is EXECFP ay ,S,E := obsSet(m11, GLedger, τ).

Lemma 31. Let Σ be a EUF-CMA secure signature scheme. Then, the Respond phase
of protocol Π GUC-emulates the Respond phase of functionality FP ay.

Proof. Again, we consider the execution ensembles. This time only for the case where a
user Ui is honest, however, we distinguish between the case of revoke and force-pay. We
match the sequences and where they are used in the ideal and real world in Table F.6.
We define the following messages.

444

F.6. UC modeling

• m18 := (ssidC ,CLOSE, γi.id)

• m19 := (ssidL,POST, txr
i)

• m20 := (sid,pid,REVOKED)

• m21 := (ssidL,POST, txp
i−1)

• m22 := (sid,pid,FORCE-PAY)

Table F.6: Explanation of the sequence names used in Lemma 31 and where they can be
found.

Real World Ideal World Output Description
Ui honest

RESPOND Prot.Respond IF.Respond n/a Checks every round if response in order.

REVOKE Prot.Respond.1 IF.Respond.Revoke
Sim.Respond.1

m18,
m19,
m20

Carries out the revokation.

FORCE_PAY Prot.Respond.2 IF.Respond.Revoke
Sim.Respond.2

m21,
m22

Carries out the force-pay.

Ui honest, revoke.

Real world: In every round τ , Ui performs RESPOND, which provides a decision on
whether or not to do the following. If yes, Ui performs REVOKE, which results in
message m18 to FChannel in round τ . If the channel that is sent in m18 is closed,
Ui sends m19 to GLedger in round τ + tc + ∆. Finally, if the transaction sent in m19
appears on L in τ + tc + 2∆, Ui sends m20 to E . The ensemble is EXECΠ,A,E :=
{m20[τ + tc + 2∆]} ∪ obsSet(m18, FChannel, τ) ∪ obsSet(m19, GLedger, τ + tc + ∆)

Ideal world: In every round τ , FP ay performs RESPOND, which provides a decision
on whether or not to do the following. If yes, FP ay instructs the simulator to
perform REVOKE, which results in the message m18 to FChannel in round τ . If the
channel that is sent in m18 is closed, the simulator sends m19 to GLedger in round
τ + tc + ∆. Finally, if the transaction sent in m19 appears on L, FP ay sends m20 to
E . The ensemble is EXECFP ay ,S,E := {m20[τ + tc +2∆]}∪obsSet(m18, FChannel, τ)∪
obsSet(m19, GLedger, τ + tc + ∆)

Ui honest, force-pay.

Real world: In every round τ , Ui performs RESPOND, which provides a decision on
whether or not to do the following. If yes, Ui performs FORCE_PAY, which results
in the messages m21 to GLedger in round τ and, if the transaction sent in m21
appears on L, the message m22 to E in round τ + ∆. The ensemble is EXECΠ,A,E :=
{m22[τ + ∆]} ∪ obsSet(m21, GLedger, τ)

445

F. Appendix to Chapter 7

Ideal world: In every round τ , FP ay performs RESPOND, which provides a decision on
whether or not to do the following. If yes, FP ay instructs the simulator to perform
FORCE_PAY, which results in the messages m21 to GLedger in round τ and, if the
transaction sent in m21 appears on L, the message m22 to E in round τ + ∆. The
ensemble is EXECFP ay ,S,E := {m22[τ + ∆]} ∪ obsSet(m21, GLedger, τ)

Theorem 7 (restated). Let Σ be an EUF-CMA secure signature scheme. Then, for
functionalities GLedger, Gclock, FGDC , FChannel and for any ledger delay ∆ ∈ N, the
protocol Π UC-realizes the ideal functionality FP ay.

This theorem follows directly from Lemma 26, 27, 28, 29, 30 and Lemma 31.

F.6.6 Discussion on security and privacy goals

We state our security and privacy goals informally in Section 7.5.1. In this section, we
formally define these goals as cryptographic games on top of the ideal functionality FP ay

described in Appendix F.6.3 and then show that FP ay fulfills each goal. Due to the
same assumptions and similarities in some of the security and privacy goals, parts of this
section are taken verbatim from [AMSKM21].

Assumptions

For the theorems in this section, we have the following assumptions: (i) stealth addresses
achieve unlinkability and (ii) the used routing scheme (i.e., Sphinx extended with a
per-hop payload) is a secure onion routing process.

Unlinkability of stealth addresses. Consider the following game. The challenger
computes two pair of stealth addresses (A0, B0) and (A1, B1). Moreover, the challenger
picks a bit b and computes Pb, Rb ← GenPk(Ab, Bb). Finally, the challenger sends the
tuples (A0, B0), (A1, B1) and Pb, Rb to the adversary.

Additionally, the adversary has access to an oracle that upon being queried, it returns
P ∗

b , R∗
b to the adversary.

We say that the adversary wins the game if it correctly guesses the bit b chosen by the
challenger.

Definition 20 (Unlinkability of Stealth Addresses). We say that a stealth addresses
scheme achieves unlinkability if for all PPT adversary A, the adversary wins the afore-
mentioned game with probability at most 1/2 + ϵ, where ϵ denotes a negligible value.

446

F.6. UC modeling

Secure onion routing process. We say that an onion routing process is secure, if
it realizes the ideal functionality defined in [CL05]. Sphinx [DG09], for instance, is a
realization of this. We use it in Donner, extended with a per-hop payload (see also
Section 7.5.2).

Balance security

Given a path channelList := γ0, . . . , γn−1 and given a user U such that γi.right = U
and γi+1.left = U , we say that the balance of U in the path is PathBalance(U) :=
γi.balance(U) + γi+1.balance(U). Intuitively then, we say that a virtual channel (VC)
protocol achieves balance security if the PathBalance(U) for each honest intermediary
U does not decrease.

Formally, consider the following game. The adversary selects a channelList, a transac-
tion txin, a virtual channel capacity α and a channel lifetime T such that the output
txin.output[0] holds at least α + n · ϵ coins, where n is the length of the path defined in
channelList. The adversary sends the tuple (channelList, txin, α, T) to the challenger.

The challenger sets sid and pid to two random identifiers. Then, the challenger simulates
opening a VC from the OpenVC phase on input (sid, pid, SETUP, channelList, txin, α,
T , γ0). Every time a corrupted user Ui needs to be contacted, the challenger forwards
the query to the attacker and waits for the corresponding answer, thereby giving the
attacker the opportunity to stop opening and trigger the offload and thereby refunding
the collateral or let them be successful. If the opening was successful, an attacker can
instruct the simulator to either perform updates, honestly close the VC, or do nothing.
In the case of an honest closure, the queries to corrupted users are forwarded to the
attacker, who again can let the closure be successful or force an offload.

We say that the adversary wins the game if there exists an honest intermediate user U ,
such that PathBalance(U) is lower after the VC execution.

Definition 21 (Balance security). We say that a VC protocol achieves balance security if
for every PPT adversary A, the adversary wins the aforementioned game with negligible
probability.

Theorem 19 (Donner achieves balance security). Donner virtual channel executions
achieve balance security as defined in Definition 21.

Proof. Assume that an adversary exists, and can win the balance security game. This
means, that after the balance security game, there exists an honest intermediate user U ,
such PathBalance(U) is lower after the VC execution.

An intermediary Ui potentially has coins locked up in the state stored in FChannel with its
left neighbor Ui−1 and its right neighbor Ui+1. Depending on if and where an adversary
potentially disrupts the VC execution there are amount locked up differs. We analyze
below all the different cases and show that no honest intermediary Ui exists, such that
PathBalance(Ui) is lower after the execution.

447

F. Appendix to Chapter 7

1. The adversary disrupts the VC execution before it reaches Ui. In this case,
Ui has no coins locked up and therefore the balance does not change.

2. The adversary disrupts the VC execution after Ui and Ui−1 have updated
their channel for opening. In this case, Ui−1 has a non-negative amount of coins
locked up with Ui. Regardless of the outcome, the balance of Ui can only increase or stay
the same, since the locked-up coins come from Ui−1.

3. The adversary disrupts the VC execution after Ui and Ui+1 have updated
their channel for opening. In this case, Ui−1 has a non-negative amount αi−1 of
coins locked up with Ui. Ui has the same amount (minus a fee) αi locked up with Ui+1.

4. The adversary disrupts the VC execution after Ui and Ui+1 have updated
their channel for closing. In this case, Ui−1 has a non-negative amount αi−1 of coins
locked up with Ui. Ui has the smaller amount α′

i locked up with Ui+1.

5. The adversary disrupts the VC execution after Ui and Ui+1 have updated
their channel for closing. In this case, Ui−1 has a non-negative amount α′

i−1 of coins
locked up with Ui. Ui has the same amount (minus a fee) α′

i locked up with Ui+1.

To sum up, in all cases the money that Ui locks up Ui+1 is always either the same or less
than what Ui−1 locks up with Ui. Now in each of these five cases, there are two possible
things that can happen. Either txvc is posted before T − 3∆ − tc or it is not. In the
former case, FP ay ensures with the Respond phase, that Ui is refunding itself, thereby
keeping a neutral path balance. In the case that txvc is not posted before T − 3∆ − tc,
Ui always gets the collateral from Ui−1 via the Respond phase of FP ay, keeping either a
neutral or positive path balance.

Endpoint security

Intuitively, a VC protocol achieves endpoint security, if the endpoints can either enforce
their VC balance on-chain or, they are compensated with an amount that is at least
as large as their VC balance within an agreed-upon time. More concretely in our
construction, we ensure that the sender can always enforce its VC balance on-chain. For
the receiver, we ensure that either the sender puts the VC funding on-chain (allowing the
receiver to enforce its balance) or, it gets the full capacity of the VC after the life time T .
We extend our definition of PathBalance(U) for the sender U0 and the receiver Un. For
each endpoint, this is the balance that it holds in the VC, if the VC is offloaded or 0, if
the VC is not offloaded, plus its respective balance in its channel with its direct neighbor
on the path.

Formally, consider the following game. The adversary selects a channelList, a transaction
txin, a virtual channel capacity α and a channel lifetime T , such that the output of
txin.output[0] holds at least α + n · ϵ coins, where n is the length of the path defined in
channelList. The adversary sends the tuple (channelList, txin, α, T) to the challenger.

448

F.6. UC modeling

The challenger sets sid and pid to two random identifiers. Then, the challenger simulates
opening a VC from the OpenVC phase on input (sid,pid,SETUP, channelList, txin, α, T , γ0).
Every time that a corrupted user Ui needs to be contacted, the challenger forwards the
query to the attacker and waits for the corresponding answer, thereby giving the attacker
the opportunity to stop opening and trigger the offload and thereby refunding the collat-
eral or let them be successful. If the opening was successful, an attacker can instruct the
simulator to either perform updates, honestly close the VC or do nothing. In the case
of an honest closure, the queries to corrupted users are forwarded to the attacker, who
again can let the closure be successful or force an offload.

Define xU0 and xUn as the latest balance of the sender and receiver in the VC, respectively.
We say that the adversary wins the game if for an honest sender PathBalance(U0) is
lower (by an amount greater than the combined fees (n − 1) · fee) after the VC execution
or if for an honest receiver, PathBalance(Un) is lower after T , compared balance with
their respective neighbors before the VC execution plus xU0 or xUn , respectively.

Definition 22 (Endpoint security). We say a VC protocol achieves endpoint security if
for every PPT adversary A, the adversary wins the aforementioned game with negligible
probability.

Theorem 20 (Donner achieves endpoint security). Donner virtual channel executions
achieve endpoint security as defined in Definition 22.

Proof. For an honest sender, there are two possible scenarios. Either, FP ay has updated
(or registered an update via S in) the channel between U0 and U1 to exactly the final
balance α′

i (= xU0 minus fees) in the CloseVC phase before the round T − 3∆ − tc.
Or, if not, FP ay has instructed the simulator to publish txvc, allowing the balance to
be enforceable on-chain. In both cases, PathBalance(U0) is not lower than its initial
balance with U1 plus xU0 minus the sum of all fees (n − 1) · fee.

For an honest receiver, there are also two possible scenarios. Either, the VC was offloaded,
allowing Un to enforce its balance on-chain, or it is not. If VC is not offloaded, Un either
gets the full VC capacity, if the channel with Un−1 was not updated in the CloseVC phase
or, its actual balance if it was updated in the CloseVC phase. The PathBalance(Un) is
therefore not lower.

Reliability

Intuitively, we say that a VC protocol achieves reliability if after successfully opening
the VC, no (colluding) malicious intermediaries can force two honest endpoints to close
or offload the virtual channel before the lifespan T of the VC expires. Note that in this
intuition we write before T , when technically the offloading process has to be initiated
sometime before, i.e., at time T − 3∆ − tc.

Formally, consider the following game. The adversary selects a channelList, a transaction
txin, a virtual channel capacity α and a channel lifetime T , such that the output of

449

F. Appendix to Chapter 7

txin.output[0] holds at least α + n · ϵ coins, where n is the length of the path defined in
channelList. The adversary sends the tuple (channelList, txin, α, T) to the challenger.

The challenger sets sid and pid to two random identifiers and then simulates opening a
VC from the OpenVC phase on input (sid,pid,SETUP, channelList, txin, α, T , γ0). Every
time that a corrupted user Ui needs to be contacted, the challenger forwards the query
to the attacker and waits for the corresponding answer, thereby giving the attacker the
opportunity to stop opening and trigger the offload and thereby refunding the collateral
or let them be successful. If the opening was successful, an attacker can instruct the
simulator to either perform updates, honestly close the VC, or do nothing. In the case
of an honest closure, the queries to corrupted users are forwarded to the attacker, who
again can let the closure be successful or force an offload.

We say that the adversary wins the game if after successfully opening the VC, i.e., the
OpenVC and Finalize phases are completed successfully, the VC is offloaded before
T − 3∆ − tc.

Definition 23 (Reliability). We say that a VC protocol achieves reliability if for every
PPT adversary A, the adversary wins the aforementioned game with negligible probability.

Theorem 21 (Donner achieves reliability). Donner virtual channel executions achieve
reliability as defined in Definition 23.

Proof. This follows directly from FP ay. Note that after a successful OpenVC and Finalize
phase, the only way for a VC to be offloaded is if the close phase is not reaching the
sender until time T − 3∆ − tc.

Endpoint anonymity

A VC protocol achieves endpoint anonymity, if it achieves sender anonymity and receiver
anonymity. Intuitively, we say that a VC protocol achieves sender anonymity if an
adversary controlling an intermediary node cannot distinguish the case where the sender
is its left neighbor in the path from the case where the sender is separated by one (or
more) intermediaries. For receiver anonymity, an intermediary has to be unable to
distinguish that the right neighbor is the receiver from the case that the intermediary
and the receiver are separated by one (or more) intermediaries.

A bit more formally, consider the following game. The adversary controls node U∗ and
selects two paths channelList0 and channelList1 that differ on the number of intermediary
nodes between the sender and the adversary. In particular, channelList0 is formed by
U1, U∗, U2, U3 whereas the path channelList1 contains the users U0, U1, U∗, U2. Note that
we force both queries to have the same path length to avoid a trivial distinguishability
attack based on path length. Additionally, the adversary picks transaction txin, a
VC capacity α as well as a channel life time T such that the output txin.output[0]
holds at least α + n · ϵ coins, where n is the length of the path defined in channelListb.
Finally, the adversary sends two queries (channelList0, txin, α, T) and (channelList1, txin, α+

450

F.6. UC modeling

fee, T) to the challenger. The challenger sets sid and pid to two random identifiers.
Moreover, the challenger picks a bit b at random and simulates the OpenVC phase on
input (sid,pid,SETUP, channelListb, txin, α, T , γ0), followed by the Finalize, Update and
CloseVC phases. Every time that the corrupted user U∗ needs to be contacted, the
challenger forwards the query to the attacker and waits for the corresponding answer.

We say that the adversary wins the game if it correctly guesses the bit b chosen by the
challenger.

Definition 24 (Sender anonymity). We say that a VC protocol achieves sender anonymity
if for every PPT adversary A, the adversary wins the aforementioned game with proba-
bility at most 1/2 + ϵ, where ϵ denotes a negligible value.

Theorem 22 (Donner achieves sender anonymity). Donner virtual channel executions
achieve sender anonymity as defined in Definition 24.

Proof. The message (sid,pid,open, txvc, rList, onioni+1, αi, T , γi−1, γi, θϵi−1 , θϵi) that is
sent by FP ay to the simulator in the OpenVC phase, is leaked to the adversary. By
looking at γi−1, γi and opening onioni+1, U∗ knows its neighbors U1 and U2. We know
that U∗ cannot learn any additional information about the path from T , γi−1 and γi.
Since the amount to be sent was increased fee for the path channelList1, the amount αi

for Ui is identical for both cases. This leaves txvc, rList, θϵi−1 , θϵi and onioni+1. Let us
assume, that there exists an adversary that can break sender anonymity. There are two
possible cases.

1. The adversary finds out by looking at txvc, rList, θϵi−1 and θϵi. By design,
the adversary knows that outputs θϵi−1 belongs to its left neighbor U1 and θϵi to itself.
We defined that the output, that serves as input for txvc, has never been used and is
unlinkable to the sender and check this in checkTxIn. Looking at the outputs of txvc,
the adversary knows to whom all but one output belongs. Since our adversary breaks the
sender anonymity, it needs to be able to reconstruct, to whom this final output of txvc

belongs observing rList. This contradicts our assumption of unlinkable stealth addresses.

2. The adversary finds out by looking at onioni+1. The adversary controlling U∗

is able to open onioni+1 revealing U2, a message m and onioni+2. Since our adversary
breaks the sender anonymity, he has to be able to open onioni+2 to reveal if U2 is the
receiver or not, thereby learning who is the sender. This contradicts our assumption of
secure anonymous communication networks.

These two cases lead to the conclusion, that a PPT adversary that can win the sender
anonymity game with a probability non-negligibly better than 1/2, can also break our
assumptions of unlinkability of stealth addresses or secure anonymous communication
networks. Note that both receiver anonymity and its proof are analogous to the sender
anonymity.

451

F. Appendix to Chapter 7

Path privacy

Intuitively, we say that a VC protocol achieves path privacy if an adversary controlling
an intermediary node does not know what other nodes are part of the path other than
its own neighbors.

A bit more formally, consider the following game. The adversary controls node U∗ and
selects two paths channelList0 and channelList1 that differ on the nodes other than the
adversary neighbors. In particular, the path channelList0 is formed by U0, U1, U∗, U2, U3
whereas the path channelList1 contains the users U ′

0, U1, U∗, U2, U ′
3. Note that we force

both queries to have the same path length to avoid a trivial distinguishability attack
based on path length. Further note that we force that in both paths, the adversary has
the same neighbors as otherwise there exists a trivial distinguishability attack based on
what neighbors are used in each case.

Additionally, the adversary picks transaction txin, a VC capacity α as well as a life time
T such that the output txin.output[0] holds at least α + n · ϵ coins. Finally, the adversary
sends two queries (channelList0, txin, α, T) and (channelList1, txin, α, T) to the challenger.

The challenger sets sid and pid to two random identifiers. Moreover, the chal-
lenger picks a bit b at random and simulates the setup and open phases on input
(sid,pid,SETUP, channelListb, txin, α, T , γ0). Every time that the corrupted user U∗

needs to be contacted, the challenger forwards the query to the attacker and waits for
the corresponding answer.

We say that the adversary wins the game if it correctly guesses the bit b chosen by the
challenger.

Definition 25 (Path privacy). We say that a VC protocol achieves path privacy if for
every PPT adversary A, the adversary wins the aforementioned game with probability
at most 1/2 + ϵ, where ϵ denotes a negligible value.

Theorem 23 (Donner achieves path privacy). Donner virtual channel executions achieve
path privacy as defined in Definition 25.

Proof. As this proof is analogous to the proof for sender privacy, refer to that proof and
reiterate the idea here. Again, the simulator leaks the same message (sid,pid,open, txvc,
rList, onioni+1, αi, T , γi−1, γi, θϵi−1 , θϵi) to the adversary. Again, the adversary can find
out the correct bit b by looking at (i) txvc and rList or (ii) at onioni+1. If there exists an
adversary that breaks the path privacy of Donner, then it also can be used to break (i)
unlinkability of stealth addresses or (ii) secure anonymous communication networks.

Value privacy

Intuitively, a VC protocol achieves value privacy, if no intermediaries gains information
about the VC payments of two honest endpoints other than the opening and closing

452

F.6. UC modeling

balances of each endpoint. In particular, no intermediary learns about number of
transactions being exchanged and their amount. Formally, consider the following game.
The adversary selects a channelList, a transaction txin, a virtual channel capacity α and
a channel lifetime T such that the output txin.output[0] holds at least α + n · ϵ coins,
where n is the length of the path defined in channelList. The adversary sends the tuple
(channelList, txin, α, T) to the challenger.

The challenger sets sid and pid to random identifiers and simulates the opening of the
virtual channel for the given parameters, forwarding queries that a corrupted intermediary
would receive to the adversary. After the VC has been opened successfully, we denote the
current round in the simulation as τ the challenger asks the adversary to select two lists
of payments p0 and p1 with a length in range [0, k], containing VC payments between
the endpoints and their order. k denotes the maximum number of transactions that are
possible within the time period between τ and when the VC needs to be honestly closed.
The adversary can select arbitrary payments in an arbitrary direction with an amount
between 0 and the balance of the respective sending user at the time the payment is
performed. Additionally, performing either list of payments has to result in the same end
balance, to avoid trivial distinction by looking at the final balance. That is, U0’s final
balance is α − α′ and Un’s final balance is α′, with 0 ≤ α′ ≤ α. The adversary sends p0
and p1 to the challenger.

The challenger picks a random bit b ∈ {0, 1}, and then performs the payments specified in
pb. After the payments, the challenger initiates the honest closing such, that if successful,
the closing will be completed 1 round before T − tc − 3∆, forwarding queries to corrupted
intermediaries again to the adversary. This gives the chance to the adversary, to let
either VC close honestly or force to offload.

We say that an adversary wins the game, if it correctly guesses the bit b chosen by the
challenger.

Definition 26 (Value privacy). We say that a VC protocol achieves path value if for
every PPT adversary A, the adversary wins the aforementioned game with probability
at most 1/2 + ϵ, where ϵ denotes a negligible value.

Theorem 24 (Donner achieves path privacy). Donner virtual channel executions achieve
value privacy as defined in Definition 26.

Proof. This property follows directly from FP ay and FChannel. The only information
regarding the VC updates is sent by either VC endpoint to FP ay (in the Update phase)
and forwarded to FChannel, other than that, the two simulations of the challenger are
identical. The adversary sees only the messages that the challenger forwards to the
corrupted intermediaries, which means that the adversary knows neither about the
content nor the existence of these VC update messages in both scenarios. Additionally,
the functionality FChannel does not expose the internal state of a channel to anyone but
the two users of it, in the case of the VC, the two endpoints.

453

F. Appendix to Chapter 7

The adversary has two options, either letting the VC close honestly or, forcing the VC to
offload. In the former case, the adversary will see only the final balance α′ being forwarded
in the close request. In the latter case, the adversary will learn about the final balance in
the VC, after it is offloaded and it is closed. It follows, that an adversary cannot guess b
correctly with a probability better than 1/2 + ϵ, where ϵ denotes a negligible value.

454

	Kurzfassung
	Abstract
	List of Publications
	Contents
	Introduction
	Overview of Payment Channel Networks
	State of the Art and Limitations
	Methodology
	Contributions

	Sleepy Channels: Bi-directional Payment Channels without Watchtowers
	Introduction
	Solution Overview
	Preliminaries
	Ideal Functionality Bi-directional Channels
	Sleepy Channels: Our Bi-Directional Payment Channel Protocol
	Performance Evaluation
	Conclusion

	Generalized Channels from Limited Blockchain Scripts and Adaptor Signatures
	Introduction
	Background and Solution Overview
	Preliminaries
	Generalized channels
	Adaptor Signatures
	Generalized Channel Construction
	Applications
	Performance Analysis

	Blitz: Secure Multi-Hop Payments Without Two-Phase Commits
	Introduction
	Background and notation
	Solution overview
	Our construction
	Security analysis
	Evaluation
	Related work
	Conclusion

	Thora: Atomic and Privacy-Preserving Multi-Channel Updates
	Introduction
	Background
	Solution overview
	Construction
	Security analysis
	Evaluation
	Applications
	Discussion
	Conclusion

	Bitcoin-Compatible Virtual Channels
	Introduction
	Background
	Virtual Channels
	Security Model and Analysis
	Performance evaluation
	Related Work
	Conclusion

	Breaking and Fixing Virtual Channels: Domino Attack and Donner
	Introduction
	Background and notation
	The Domino attack
	Donner: Key ideas
	Donner: Protocol description
	Security analysis
	Evaluation and comparison
	Conclusion

	Conclusion and Directions of Future Research
	Conclusion
	Directions for Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendix to Chapter 2
	UC Protocol
	Deployment cost

	Appendix to Chapter 3
	On the Usage of the UC-Framework
	Schnorr-based Adaptor Signature
	Proof of the ECDSA-based Adaptor Signature
	Pre-signature unforgeability
	Additional material to generalized channel protocol
	Simplifying functionality description
	Simplifying the protocol descriptions
	Security proof
	Applications on top of generalized channels

	Appendix to Chapter 4
	Discussion on practical deployment
	1-phase commits in distributed databases
	Payment channels in more detail
	Preventing the race condition when the sender is irrational
	Concrete attack scenarios (informal)
	Timeline
	Communication overhead
	Extended simulation results
	Extended macros
	Modeling in the UC framework
	Discussion on security and privacy goals

	Appendix to Chapter 5
	Stealth addresses
	UC modeling
	Discussion on security and privacy

	Appendix to Chapter 6
	On the usage of the UC-Framework
	Adaptor Signatures
	Additional material to ledger channels
	Virtual Channels
	Wrappers for Missing Checks

	Appendix to Chapter 7
	When to use virtual channels
	Extended comparison and discussion
	Operation examples
	Extended background
	Extended macros, prerequisites and protocol
	UC modeling

