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Kurzzusammenfassung

Die Herausforderungen von flexibler Produktion mit hoch automatisierten Ferti-
gungslinien ist der Trend zur Personalisierung von Produkten bis hin zur voll-
ständigen Individualisierung. Mit diesem Trend müssen Pfadplanungsalgorithmen
für industrielle Roboter mithalten. In dieser Arbeit werden flexible Planungsal-
gorithmen vorgestellt, die die automatische Erzeugung von Roboterprogrammen
in der flexiblen Fertigung unterstützen und komplexe Pfadplanungsprobleme für
industrielle Prozesse auf 3D-Freiformoberflächen lösen.

In der Industrie ist computerunterstützte Offline-Roboterprogrammierung Stand
der Technik, bei der Fertigungspfade manuell oder teilautomatisiert generiert wer-
den. In dieser Arbeit wird eine vollautomatische Generierung von Roboterprogram-
men für 3D-Werkstücke basierend auf benutzergenerierten 2D-Eingangsmustern
vorgestellt. Dafür werden zwei Projektionsmethoden von 2D auf 3D evaluiert, ei-
ne einfache parallele Projektion und eine konforme Abbildung basierend auf dem
kleinsten Fehlerquadrat. Um die Genauigkeit der Projektionsmethoden zu zeigen,
wird ein experimenteller Zeichenprozess mit einem industriellen Roboter durch-
geführt. Dabei wird eine reine Positionsregelung mit einer hybriden Kraft-/Po-
sitionsregelung im Aufgabenraum verglichen. Mit der hybriden Kraft-/Positions-
regelung wird das genaueste Zeichenergebnis erzielt, da auch die Normalkraft des
Stiftes auf die Oberfläche des 3D Werkstücks geregelt werden kann.

In einer flexiblen Produktion muss eine Roboterarbeitszelle eine Vielzahl unter-
schiedlicher Produkte bearbeiten können. Das beinhaltet auch Produkte, die wäh-
rend der Konzeptionierung der Arbeitszelle noch nicht bekannt waren. Wenn be-
stimmte Fertigungspfade nicht ausführbar sind, sind aufwändige Anpassungen der
Roboterplatzierung oder des Fertigungspfades notwendig. In dieser Arbeit wird
gezeigt, dass auch ein mit geringerem Aufwand verbundenes Anpassen der Hal-
terung des Werkzeuges am Endeffektor zu ausführbaren Fertigungspfaden führen
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Kurzzusammenfassung

kann. Dafür wird ein Optimierungsalgorithmus entwickelt, der mit einem Pfad-
planer kombiniert wird, um im Konfigurationsraum die optimale Befestigung des
Werkzeuges zu berechnen. Dabei werden unter anderem die Anzahl der möglichen
Pfade im Konfigurationsraum sowie der Abstand zu den mechanischen Achslimits
maximiert. Des Weiteren ist dieser Algorithmus zur Berechnung der optimalen
Roboterplatzierung verwendbar. Das entwickelte Konzept wird anhand eines in-
dustriellen Schneidprozesses in der Schuhindustrie validiert, bei dem eine Reihe
von unterschiedlichen Fertigungspfaden abgefahren werden muss.

Um die Flexibilität einer vorhandenen Arbeitszelle weiter zu erhöhen, können die
speziellen Prozesseigenschaften eines Fertigungsprozesses gezielt genutzt werden
und dadurch den Lösungsraum der Pfadplanung erheblich vergrößern. Diese Pro-
zesseigenschaften können redundante Freiheitsgrade und zulässige Abweichungen
vom Fertigungspfad (Toleranzen und Prozessfenster) sein. In dieser Arbeit wird
ein neuer Pfadplaner entwickelt, der diese Prozesseigenschaften und eine Kollisi-
onsvermeidung systematisch in einem Optimierungsproblem berücksichtigt. Dabei
werden mehrere Pfade im Konfigurationsraum parallel berechnet, um den optima-
len Pfad zu finden. Zwei spezielle Prozesse, ein Zeichenprozess und ein Prozess zum
Spritzlackieren, werden mit diesem Algorithmus optimiert und komplexe Pfadpla-
nungsprobleme auf 3D-Freiformoberflächen gelöst, die mit dem Stand der Technik
nicht gelöst werden können.

In dieser Arbeit werden die entwickelten Algorithmen an einem experimentellen
Zeichenprozess und in Simulation für einen Schneid- und Spritzlackierprozess de-
monstriert, die repräsentativ für andere industrielle Prozesse auf 3D-Freiformober-
flächen sind. Darüber hinaus sind alle Methoden allgemein formuliert, damit diese
für verschiedenste Prozesse angewandt werden können, z.B. für Schweißen, Spritz-
lackieren, Fräsen, Polieren oder für Textilfertigungsprozesse wie Schneiden, Nähen
und Kleben.
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Abstract

The current challenge in flexible production with highly automated production
lines is the ongoing trend toward customization of products up to full individual-
ization. Consequently, path-planning algorithms for industrial robots have to keep
pace with this trend. This thesis presents flexible planning algorithms to sup-
port the automatic generation of robot programs in flexible automation to solve
complex path-planning problems in industrial processes on freeform 3D surfaces.

In industry, offline robot programming approaches using computer-aided work-
flows, where manufacturing paths are generated manually or semi-automatically,
are state-of-the-art. This work investigates a fully automatic generation of robot
programs for 3D workpieces based on user-generated 2D input patterns. For this,
two projection methods from 2D to 3D, i.e., a simple parallel projection and a least-
squares conformal mapping, are evaluated. In order to show the accuracy of the
projection approaches, a drawing process with an industrial robot is demonstrated
in an experimental setup with two task-space control concepts, i.e., a motion con-
trol and a hybrid force/motion control. With the hybrid force/motion control, the
normal contact force of the pen with the workpiece’s surface is controlled, yielding
the most accurate drawing result.

In flexible production, a robotic work cell must be able to execute an industrial
process on a wide range of products, including ones not known during the design
phase of the work cell. If specific manufacturing paths are not executable, labo-
rious adaptions of the robot placement or manufacturing path are necessary. In
some instances, adapting the tool mounting on the end-effector can also lead to
executable robot trajectories, as shown in this work. Therefore, an optimization
algorithm is developed and combined with a joint-space path planner to compute
the optimal tool mounting while maximizing, e.g., the number of joint-space path
solutions and distance to the mechanical joint limits. This algorithm is also appli-
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Abstract

cable for finding the optimal robot base placement. It is validated in an industrial
trimming process from the shoe industry, where a set of manufacturing paths must
be executed.

To further increase the flexibility of given work cells, the distinct properties of the
manufacturing process, i.e., redundant degrees of freedom and allowed deviations
from the manufacturing path (tolerances and process windows), can significantly
enlarge the path planning search space. Hence, an optimization-based joint-space
path planner is developed, which systematically includes these process properties
and a collision avoidance strategy. Multiple joint-space paths are computed in
parallel to find the optimal path. The proposed algorithm optimizes two distinct
processes, i.e., a drawing process and a spray-painting process. It is shown that
complex path-planning problems can be solved on freeform 3D surfaces where
state-of-the-art concepts fail.

In this thesis, the developed algorithms are demonstrated experimentally for a
drawing task and in simulation for a trimming and spray-painting task, which
are manufacturing processes representative of industrial processes on freeform 3D
surfaces. Additionally, the proposed methods are formulated in a general way such
that they can be easily applied to other processes, e.g., welding, spray painting,
milling, polishing, or textile fabrication processes like cutting, sewing, and gluing.
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Chapter 1 Introduction

In automated production lines, an increasing number of industrial robots are put
into operation every year [1]. Besides improving productivity [2], the main driver
for this trend is the growing product diversity in the industry, which approaches full
individualization with a high degree of automation [3]. Therefore, the demand for
flexible automated production systems has increased tremendously [4]. In some
production sectors like the clothing, shoe, and apparel industry, end consumers
can customize and personalize products during the ordering process, and the size,
appearance, and location of custom labels, logos, and symbols can be specified.
This raises the demand for flexible production systems and automated workflows
[5].

In order to manufacture a product intelligently, the functional interaction between
the aspects of smart design, machines, monitoring, control, and scheduling must
be smoothly aligned [6]. Beginning with smart design and Computer-Aided Design
(CAD), the blueprints and schematics for manufacturing a customized product are
developed. These plans must be executed with smart machines that consider all
important process parameters. With smart monitoring with the help of sensors
and Internet of Things (IoT) solutions, a cloud-based control of manufacturing line
and superordinate scheduling of individual tasks is possible. Furthermore, smart
commissioning in factories and warehouses with autonomous transport vehicles
is crucial to building flexible production lines [6]. This thesis focuses on smart
designs, i.e. CAD-based manufacturing task definitions, and smart machines, i.e.,
industrial robot work cells with automatic planning and execution of manufactur-
ing tasks with high quality demands.

Major parts of this chapter have been published in the author’s works [7, 8, 9, 10,
11] and are adapted for this thesis.

1



Introduction

1.1 Automatic and Flexible Manufacturing

In industrial automation, frequently implemented manufacturing processes include
welding, spray painting, milling, drilling, sanding, polishing, grinding, chamfering,
see, e.g., [12, 13, 14], and also textile fabrication processes like cutting, sewing,
gluing, or drawing on workpieces, see, e.g., [15, 16, 17]. In many cases, executing
these manufacturing processes with an industrial robot requires a robotic tool to
follow a given manufacturing path most accurately. Often, industrial processes
must be executed continuously to lower the execution time and guarantee the de-
sired manufacturing quality, e.g., a continuous welding seam or a uniform coating
with spray paint. Each robot in such a production system must be programmed
accordingly to achieve the specific manufacturing task. These robot programs ei-
ther describe the robot movements as a task-space path, i.e., a Cartesian tool path,
or as a joint-space path and can be generated using online or offline programming
approaches [14]. In online programming, the robot is taught the desired motions
on-site [18]. In contrast, offline programming uses a software representation of the
work cell, and the robot programs are generated in a simulated environment [14],
[19].

In order to keep up with the trend of flexible manufacturing, online teach-in of
robots becomes infeasible due to the laborious task and the necessary set-up time
in the manufacturing line. Therefore, CAD-based offline programming using fully
automated Computer-Aided Manufacturing (CAM)-based production workflows
is required [20], which has to keep pace with the recent developments in terms of
flexibility, complexity, and computational performance [21]. In the CAM-based
workflow, the manufacturing paths are generated manually by the user or auto-
matically, e.g., with coverage algorithms or machine learning approaches [22]. In
the literature, automatic offline robot programming algorithms for specific man-
ufacturing processes and known object geometries have been published [23], e.g.,
uniform spray painting [24, 25, 26], polishing the workpiece surface [27, 28] or
drawing on a moving workpiece [7]. In contrast, the manual design of the manufac-
turing paths in the CAM environment, e.g., to weld seams along certain geometric
paths, requires application-specific knowledge and preparation time, which is es-
pecially cumbersome if the manufacturing paths need to be adapted frequently.
Automated offline path planning based on user inputs and known object geometry
would allow fast adaptions of the manufacturing process, replacing the manual

2
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regeneration of the robot program in the CAM workflow. This reduces downtimes
of the manufacturing line and, therefore, enables flexible manufacturing.

In the context of flexible manufacturing, various manufacturing paths have to be
executed, which are often not known during the design of the robotic work cell.
The robot has to move the tool along the user-provided manufacturing paths, al-
though the kinematic and dynamic properties of the manipulator are limited, e.g.,
mechanical axis or torque limits [29]. If the requirements of the intended man-
ufacturing process exceed the capabilities of the robotic system or the planning
algorithm, the manufacturing paths cannot be executed. Hence, the paths have
to be adapted, i.e., changing the user input and replanning the path in the CAM
workflow [30], a different robot has to be used, or the current robotic setup has
to be adjusted, e.g., the robot is positioned differently relative to the workpiece
[31]. Adapting the manufacturing path in the CAM environment requires time and
often does not fully consider the robot’s capabilities. A complete change or repo-
sitioning of the robot is costly, time-consuming, and laborious. Hence, approaches
for executing manufacturing processes without adapting the manufacturing path
and minimal adaptions on the robotic work cell are needed to fulfill the flexibility
demands. An example of a minimal adaption could be the optimal (re-)mounting
of the robotic tool on the end-effector instead of changing the robot position in
the robotic setup. Additionally, smart path planners for industrial robots are
important to increase flexibility in a manufacturing facility, e.g., [32, 33].

In order to consider the manufacturing processes as a whole, the geometric path
and the set of process properties must be specified. Process properties characterize
a specific manufacturing process in terms of tolerances, process windows, and addi-
tional degrees of freedom (DoF) provided by the robotic tool. In a sanding process,
an example of a process property is the maximum allowed misalignment between
the workpiece surface and the tool. The drilling axis of a drill tool constitutes a
redundant DoF, around which the tool may be rotated freely without degrading
the process execution. Also, position deviations might be tolerable to a certain
extent in a spray process. Therefore, incorporating those specific process prop-
erties into the path planning can significantly increase the flexibility of the given
robotic work cell and make the manufacturing line more adaptive to different man-
ufacturing paths. Thus, manufacturing paths could be executed without changing
the robotic setup. So far, this has been investigated for specific manufacturing
processes only, e.g., welding [32] and chamfering [34].

3
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1.2 Aim of this Work

The work aims to investigate and develop flexible and fully automatic path-planning
algorithms for executing complex manufacturing processes, which cannot be planned
with state-of-the-art concepts. In the previous section, the demand for flexible path
planning in complex manufacturing processes is motivated. This thesis focuses on
answering the following three research questions.

• In order to meet the demand for flexible offline programming, a robot pro-
gram for a manufacturing process should be generated fully automatically
from a user-created 2D input pattern. This pattern should be automatically
transferred to a 3D workpiece to plan and execute the desired manufacturing
process. This raises the question of which algorithms and workflows are best
suited to execute this task and, at the same time, achieve the best manufac-
turing quality, e.g., introducing the least distortion of the 2D pattern on the
3D workpiece. Furthermore, a total execution pipeline should be developed
and demonstrated in a laboratory environment, beginning from the input
of the 2D pattern to the implementation with an industrial robot on the
3D workpiece. Additionally, control concepts for the manufacturing process
should explored to demonstrate the developed workflow.

• In order to execute a process according to a user-defined manufacturing
path with an industrial robot, the location of the robot base relative to
the workpiece has to be chosen appropriately in the production cell. In
flexible manufacturing, however, products and robot tool paths may change
frequently, possibly exceeding the capabilities of the work cell with a fixed
robot base. Adapting the complete setup or remounting the robot is often
costly and time-consuming. Therefore, the research question is raised: Can
the time-consuming remounting of the robot be avoided by adapting the tool
center point (TCP) of the robotic tool?

• In order to achieve an even higher degree of flexibility provided by a robotic
work cell, the following research question should be answered: How can
the specific process properties of a manufacturing process be exploited in
the path planning? Therefore, an advanced path-planning algorithm should
systematically incorporate the process properties. Path planning problems,
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which require a robot to perform continuous motions along complex manu-
facturing paths, may yield planning solutions that state-of-the-art concepts
fail to find. This could potentially handle highly complex industrial path
planning problems with significant flexibility.

The presented open research questions have been investigated in the following
publications of the author, and significant parts of these publications are used in
this thesis:

[7] T. Weingartshofer, M. Schwegel, C. Hartl-Nesic, T. Glück, and A. Kugi,
“Collaborative Synchronization of a 7-Axis Robot”, IFAC-PapersOnLine, vol.
52, no. 15, pp. 507–512, 2019, © IFAC.

[8] T. Weingartshofer, C. Hartl-Nesic, and A. Kugi, “Optimal TCP and Robot
Base Placement for a Set of Complex Continuous Paths”, in IEEE Inter-
national Conference on Robotics and Automation, 2021, pp. 9659-9665, ©
IEEE.

[9] T. Weingartshofer, A. Haddadi, C. Hartl-Nesic, and A. Kugi, “Flexible Robotic
Drawing on 3D Objects with an Industrial Robot”, in IEEE Conference on
Control Technology and Applications, 2022, pp. 29-36, © IEEE.

[10] T. Weingartshofer, B. Bischof, M. Meiringer, C. Hartl-Nesic, and A. Kugi,
“Optimization-based path planning framework for industrial manufacturing
processes with complex continuous paths”, Robotics and Computer-Integrated
Manufacturing, vol. 82, no. 102516, pp. 1-16, 2023, © Authors, CC BY 4.0.

[11] T. Weingartshofer, C. Hartl-Nesic, and A. Kugi, “Automatic and Flexible
Robotic Drawing on Complex Surfaces with an Industrial Robot”, IEEE
Transactions on Control Systems Technology, 2023, © Authors, CC BY 4.0,
in press.

1.3 Outline of the Thesis

Chapter 2 “Mathematical Model of Industrial Robots and Manufacturing Processes”
introduces the mathematical model of a general industrial robot, used in the fol-
lowing chapters. This model comprises the robot’s forward and inverse kinematics

5

https://doi.org/10.1016/j.ifacol.2019.11.726
https://doi.org/10.1109/ICRA48506.2021.9561900
https://doi.org/10.1109/CCTA49430.2022.9966015
https://doi.org/10.1016/j.rcim.2022.102516
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/tcst.2023.3345209
https://creativecommons.org/licenses/by/4.0/


Introduction

and dynamics. Further, the mathematical definition of a manufacturing process
and a manufacturing path is given.

In Chapter 3 “Flexible Robotic Manufacturing based on User Inputs”, two projec-
tion methods to map the 2D input pattern to the 3D object are presented. Based
on those projections, robot trajectories are generated with an automatic workflow.
This workflow is validated by an experimental drawing task with an industrial
robot. Additionally, two control concepts, i.e., pure motion control and hybrid
force/motion control, are investigated, and a contact force estimation is imple-
mented to guarantee a constant contact force during the drawing process. The
proposed automated workflow applies to various industrial processes, e.g., spray
painting, cutting, (laser) engraving.

Chapter 4 “Optimal TCP and Robot Base Placement” focuses on avoiding costly
and time-consuming repositioning of the robot by merely adapting the TCP in
high-mix/low-volume scenarios with complex continuous paths. To this end, an
algorithm for the optimal TCP placement for a set of manufacturing paths is
proposed. This algorithm is based on a fast joint-space path planner capable of
moving through kinematic singularities. Because the robot base placement of an
industrial robot in flexible production lines is crucial, the proposed concept is
also applied to finding the optimal robot base placement. The feasibility of the
approach is demonstrated for a trim application in shoe production for 44 complex
continuous tool paths.

In Chapter 5 “Path Planning using Process Properties”, the flexibility of a robotic
work cell is further improved by systematically incorporating the process proper-
ties of the manufacturing process in a path-planning framework. Consequently,
planning and executing a larger variety of manufacturing paths becomes possible
without adaptions of the robotic setup. The proposed path planning framework is
demonstrated for experimental drawing and simulated spraying processes. Here,
the planner can solve complex planning problems with continuous manufacturing
paths by systematically exploiting the process properties by considering collisions
and the ability to move through singular configurations. This leads to planning
solutions that state-of-the-art concepts cannot find.

In Chapter 6 “Conclusions and Outlook”, this thesis is summarized, possible com-
binations of the concepts are presented, and an outlook on future work is given.
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Chapter 2 Mathematical Model
of Industrial Robots
and Manufacturing

Processes

In order to execute a given manufacturing task, e.g., welding or spray painting,
the industrial robot has to move a tool relative to a workpiece. Planning and
controlling industrial robots requires suitable mathematical models of the robot
and the processes to be executed. Hence, this chapter gives the mathematical
formulations of an industrial robot and a manufacturing process. These definitions
will be used for several applications in this thesis.

The first section of this chapter focuses on the mathematical model of an industrial
robot. For this, the robot’s forward kinematics is introduced with homogeneous
transformations. Then, a general formulation of the Jacobian and the inverse
kinematics is presented, followed by the derivation of the dynamic robot model.
In the second section of this chapter, a general manufacturing process is defined
mathematically. The notation of a geometric manufacturing path and the specific
process properties and necessary DoF are presented.

Major parts of this chapter have been published in the author’s work [10] and are
adapted for this thesis.
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2.1 Robot Model

In this section, the kinematic and dynamic models of a general industrial robot
are presented. The forward kinematics is computed using homogeneous transfor-
mations, followed by defining the manipulator Jacobian and inverse kinematics
function. The specific industrial robots used in this thesis are described in Ap-
pendix A.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.

2.1.1 Homogeneous Transformations

The pose of a coordinate frame or rigid body comprises the position and orientation
w.r.t. a reference frame. The Cartesian position of the origin of a coordinate frame
is denoted by

(
pY
X
)T

=
[
xY
X yYX zYX

] ∈ R3. Note that here and in the following, the
notation (·)YX refers to mathematical objects describing the geometric relation of
the frame Y w.r.t. X , expressed in X , see, e.g., [29]. For describing the Cartesian
orientation of a coordinate frame, multiple representations are used in this thesis
and are defined in the following, see, e.g., [29]:

• Rotation matrix: The orientation of the coordinate frame Y w.r.t. the coor-
dinate frame X is described by the rotation matrix RY

X ∈ SO(3). A rotation
matrix has the mathematical properties

(RY
X )

−1 = (RY
X )

T
= RX

Y . (2.1)

An elementary rotation by the angle θ around the local coordinate axis i ∈
{x, y, z} is denoted as Ri,θ. Consecutive rotations around different coordinate
axes are computed by postmultiplication of the elementary rotations.

• Roll-Pitch-Yaw angles: A minimal representation of the orientation is given
by the Roll-Pitch-Yaw angles

(
φY

X
)T

=
[
φx φy φz

]
. The coordinate frames

are always rotated around the axes of the fixed coordinate frame X . The
rotation matrix corresponding to φY

X is calculated by premultiplication of
the elementary rotations with

RY
X (φ

Y
X ) = Rz,φzRy,φyRx,φx . (2.2)
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Note that consecutive rotations around the axes in the order z, y, and x, i.e.,
postmultiplications of the elementary rotations, are equivalent to consecutive
rotations around the fixed axes x, y, and z [29].

• Unit quaternion: Another way to describe an orientation is the unit quater-
nion

(
oY
X
)T

=
[
η εT

] ∈ R4, with the scalar part η and the vector part
εT =

[
εx εy εz

]
. The elements of the unit quaternion oY

X satisfy the normal-
ization condition

η2 + ε2x + ε2y + ε2z = 1 . (2.3)

Further, mathematical definitions and relations of unit quaternions, which
are used throughout this thesis, are stated in Appendix B.

The homogeneous transformation

HY
X =

[
RY

X pY
X

0 1

]
(2.4)

describes the pose of a coordinate frame Y w.r.t. the coordinate frame X . The
corresponding inverse transformation is analytically given by

(
HY

X
)−1

=

[(
RY

X
)−1 −(

RY
X
)−1

pY
X

0 1

]
=

[
RX

Y −RX
Yp

Y
X

0 1

]
=

[
RX

Y pX
Y

0 1

]
= HX

Y ,

(2.5)
where 0 denotes a zero vector or zero matrix with appropriate size [29]. Addition-
ally, a sequence of transformations HY

X and HZ
Y is composed by multiplying the

homogeneous transformations in the form

HZ
X = HY

XH
Z
Y . (2.6)

Using the homogeneous transformation (2.4), the position of the origin of the co-
ordinate frame Z described in the coordinate frame Y , i.e. pZ

Y , can be transformed
into the coordinate frame X using, see [29][

pZ
X
1

]
= HY

X

[
pZ
Y
1

]
. (2.7)
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2.1.2 Forward Kinematics

The relationship for homogeneous transformations (2.6) is used to describe the
forward kinematics of the end-effector frame E w.r.t. the robot base frame B of a
robot with n DoF in serial kinematics, see [29]

HE
B(q) = HL1

B (q1)H
L2
L1
(q2) · · ·HLn

Ln−1
(qn)H

E
Ln

. (2.8)

In (2.8), the coordinate frames attached to the robot links are denoted by Lh, h =

1, . . . , n, and the joint configuration qT =
[
q1 · · · qn

]
contains the generalized

coordinates of the robot, i.e., the positions of prismatic joints and the angles of
revolute joints.

Augmented Forward Kinematics

In this work, industrial robots are used to execute manufacturing processes on
workpieces. Therefore, additional coordinate frames at the tool center point (TCP)
T , at the origin of the workpiece P , and a world frame W are added to consider
all components of the work cell. In general, the kinematics of the manufacturing
process is described by an augmented forward kinematics HT

P , which denotes the
pose of the TCP frame T w.r.t. the workpiece frame P . Depending on the man-
ufacturing process, the tool may be mounted on the end-effector of the robot and
the workpiece is stationary or the tool may be stationary in the world frame W and
the workpiece is mounted on the end-effector and manipulated by the robot, see
Fig. 2.1. Hence, depending on the mounting of the tool, the augmented forward
kinematics HT

P is specified differently, as discussed in the following.

Tool mounted on the end-effector When the tool is mounted on the end-
effector, the pose of the TCP frame T w.r.t. the end-effector frame E is given by
the homogeneous transformation HT

E . Additionally, the stationary poses of the
robot base B and the workpiece P w.r.t. the world frame W are specified by HB

W
and HP

W , respectively. Consequently, the pose HT
P of the manufacturing system is

computed in the form

HT
P(q) = (HP

W)
−1
HB

WHE
B(q)H

T
E , (2.9)
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(a) (b)

BB
WW

P

P

T
T

E
E

RobotRobot

Workpiece

Workpiece

ToolTool

Figure 2.1: Kinematics of the robot: (a) Tool mounted on the end-effector, (b)
Stationary tool; adapted from [10].

which is the augmented forward kinematics of the tool T w.r.t. the workpiece P ,
see Fig. 2.1a.

Stationary tool If the tool is stationary, the workpiece is mounted on the end-
effector flange. Then, the pose HT

P of the manufacturing system is

HT
P(q) = HE

P(H
E
B(q))

−1
HW

B HT
W , (2.10)

utilizing the known geometric relations between the workpiece frame P , the end-
effector frame E , the TCP frame T , the world frame W , and the robot base frame
B, described by HE

P , HT
W , and HW

B , see Fig. 2.1b.

The pose of the tool frame (2.9) and (2.10) can also be written as forward kine-
matics function hH(q) with

HT
P = hH(q) , (2.11)

and

yT
P,o =

[
pT
P

oT
P

]
= ho(q) , (2.12a)

11
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yT
P,φ =

[
pT
P

φT
P

]
= hφ(q) , (2.12b)

where the vector on the left-hand side consists of the Cartesian position vector
pT
P and an orientation representation. In yT

P,o, the orientation is expressed as
unit quaternion oT

P , and in yT
P,φ, it is given as Roll-Pitch-Yaw angles φT

P , see
Section 2.1.1. With the forward kinematics (2.12), the joint configuration q in the
joint space is mapped into the task space, i.e., the coordinates to describe the pose
of the tool frame T w.r.t. the workpiece frame P in which the task is defined, see
[29].

2.1.3 Manipulator Jacobian

The instantaneous Cartesian and angular velocity of the tool frame T w.r.t. the
workpiece frame P is combined in the velocity υT

P and given by, see, e.g., [29]

υT
P =

[
ṗT
P

ωT
P

]
=

[
∂
∂q
pT
P

∂
∂q̇
ωT

P

]
q̇ = JT

P(q)q̇ =

[
JT
P,v(q)

JT
P,ω(q)

]
q̇ , (2.13)

with the geometric manipulator Jacobian JT
P(q) and the joint velocity q̇, i.e., the

total time derivative dq
dt

, and ∂
∂· refers to the partial derivative. The Jacobian

is composed of the Jacobian JT
P,v(q) related to the linear velocity ṗT

P and the
Jacobian JT

P,ω(q) related to the angular velocity ωT
P . The geometric Jacobian

JT
P(q) in (2.13) is computed with the skew-symmetric operator, see, e.g., [35]

S(ωT
P) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.14)

and the relations

S(ωT
P) = ṘT

P(q)
(
RT

P(q)
)T

=
n∑

h=1

(
∂RT

P(q)
∂qh

)(
RT

P(q)
)T

q̇h (2.15)

and

ṗT
P =

n∑
h=1

(
∂pT

P(q)
∂qh

)
q̇h . (2.16)
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2.1.4 Inverse Kinematics

The inverse of the function h(q) in (2.11) and (2.12) is the inverse kinematics,
formally defined as

Q = {q1,q2, . . . ,qe} = h−1
o (yT

P,o) = h−1
φ (yT

P,φ) = h−1
H (HT

P) , (2.17)

where Q is the set of all possible solutions qi, i = 1, . . . , e, where e = |Q|c is the
number of joint-space solutions and |·|c denotes the cardinality of the set ·, cf. [8].
Note that if the dimension of the task space is smaller than the robot’s DoF n,
the robot is kinematically redundant, and an infinite number of inverse kinematics
solutions exist; see [29]. In order to obtain a finite number of solutions e in (2.17)
again, the redundant DoF are sampled.

2.1.5 Dynamic Model

The dynamic model of a manipulator is calculated with the Euler-Lagrange
equations using the Lagrangian EL = ET − EV, see, e.g., [29],

d

dt

(
∂EL

∂q̇h

)
− ∂EL

∂qh
= τh , h = 1, . . . , n , (2.18)

where ET represents the kinetic energy

ET(q, q̇) =
1

2
q̇T

n∑
h=1

(
mh

(
J
Lc,h

W,v

)T

J
Lc,h

W,v +
(
J
Lc,h

W,ω

)T

T
Lc,h

W J
Lc,h

W,ω

)
. .. .

M(q)

q̇ , (2.19)

and EV is the potential energy

EV(q) = −
n∑

h=1

(ag)
Tp

Lc,h

W (q)mh . (2.20)

The mass of the individual robot links is mh, h = 1, . . . , n, and ag denotes the
vector of gravitational acceleration. The inertia tensor T

Lc,h

W , the position p
Lc,h

W ,
and the Jacobian J

Lc,h

W , see also (2.13), are formulated in the frame Lc,h. Each
frame Lc,h, h = 1, . . . , n, is located at the center of mass of the individual robot
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link h, cf. (2.8). The dynamic model of the manipulator is derived using the
Euler-Lagrange equations (2.18) and is rearranged as

n∑
j=1

Mhj(q)q̈j +
n∑

j=1

n∑
k=1

Ckjh(q)q̇kq̇j + gh(q) = τh + τext,h , h = 1, . . . , n , (2.21)

with Mhj denoting the element in row h and column j of the positive definite mass
matrix M(q), the Christoffel symbols

Ckjh =
1

2

(
∂Mhj(q)

∂qk
+

∂Mhk(q)

∂qj
− ∂Mkj(q)

∂qh

)
, (2.22)

and
gh(q) =

∂EV(q)

∂qh
. (2.23)

Equation (2.21) is then rewritten with the vector of gravitational forces gT(q) =[
g1(q) · · · gh(q)

]
and the joint acceleration q̈ as rigid-body model in vector form

M(q)q̈+C(q, q̇)q̇+ g(q) = τ + τ ext , (2.24)

with the Coriolis matrix C(q, q̇) comprising the elements, see, e.g., [35]

Chj(q, q̇) =
n∑

k=1

Ckjhq̇k . (2.25)

The vector of generalized torques τT =
[
τ1 · · · τn

]
is the control input, and the

external torques acting on the robot are denoted by τ ext.

2.2 Manufacturing Process

In this work, a manufacturing process is specified by a continuous geometric man-
ufacturing path on the workpiece and the process properties, including process
DoF, redundant DoF, constraints, process tolerances, and process windows. This
general concept of manufacturing processes is defined mathematically in this sec-
tion.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.
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2.2.1 Manufacturing Path

A continuous geometric manufacturing path is given as a sequence of poses HM
P =

{HM
P,k, k = 1, . . . , nm}, where each pose HM

P,k describes a manufacturing frame M
along a path w.r.t. the workpiece frame P , i.e., the desired tool pose during process
execution. Hence, the manufacturing process is executed by moving the robotic
tool, described by the TCP T , along the manufacturing path HM

P while respecting
the process properties defined in the next section. Note that the manufacturing
path is assumed to be sufficiently smooth to generate continuous robot movements.
Additionally, the spatial resolution is chosen according to the desired accuracy of
the manufacturing result.

2.2.2 Process Properties

The Cartesian DoF of the robotic tool, which are needed to accomplish the man-
ufacturing task, see [36], are called process DoF. Most processes demand all 6
DoF of the 3D Cartesian space, e.g., cutting and sewing. Some processes only
require 5 DoF or less, and the remaining DoF is referred to as a redundant pro-
cess DoF in this work. For example, the rotation axis of a rotating tool like
a drill or a polishing disk is considered a redundant process DoF. Furthermore,
some processes allow for deviations from the manufacturing path. In the following,
the term process window refers to allowed tool deviations from the manufacturing
path, which do not degrade the process quality, e.g., [36]. On the other hand,
deviations that degrade the process quality to a tolerable extent but should be
avoided if possible will be referred to as process tolerances. The process tolerances
may be constrained additionally by defining a tolerance band. In the remainder
of this work, the generic term process properties encompasses process tolerances,
process windows, constraints, and redundant process DoF. Process tolerances and
windows can be specified in one or multiple process DoF, i.e., allowing certain
position deviations in specific Cartesian directions or orientation deviations w.r.t.
specific axes.

Many industrial processes allow for process tolerances or process windows during
process execution. Hence, the tool frame T may deviate from the manufacturing
frame M, see Section 2.2.1, to a certain predefined extent. For example, in a
polishing process, the orientation of the robotic polishing tool may deviate slightly

15



Mathematical Model of Industrial Robots and Manufacturing Processes

(a) (b)

HM
PHM

P

redundant
DoF

Figure 2.2: Tolerances for manufacturing processes (highlighted in yellow): (a)
cutting process, (b) spray-painting process; adapted from [10].

from the surface normal, but its position should exactly follow the manufacturing
path. Additionally, the rotating disk of the polishing tool represents a redundant
process DoF around which the tool may be rotated arbitrarily. Similarly, in a
robotic ultrasonic cutting process, the position of the knife must follow the given
manufacturing path exactly, while the knife tilt may vary within a certain process
window, which results in a cone of admissible orientations, see Fig. 2.2a. Note that
no redundant DoF exists in a cutting process with a knife. In contrast, in a spray-
painting process, the spray nozzle has to perfectly align with the surface normal
vector with the lateral position coordinates matching exactly the manufacturing
frame M, while the distance to the object’s surface should stay within a given
tolerance band. Furthermore, if a rotationally symmetric spray jet is used, the
manufacturing process becomes invariant to the rotation of the spray jet around
the surface normal vector. Thus, in the latter case, a redundant DoF is present in
the process, see Fig. 2.2b.
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Figure 2.3: Tolerance bands and process windows: (a) displacements, (b) orienta-
tion deviations of the tool frame T w.r.t. the manufacturing frame M; adapted
from [10].

The process windows or tolerance bands of the process DoF are specified by the
minimum and maximum allowed displacements, see Fig. 2.3a,

dT
M,min =

dx,min

dy,min

dz,min

 , dT
M,max =

dx,max

dy,max

dz,max

 , (2.26)

and the minimum and maximum rotations in terms of Roll-Pitch-Yaw angles,
defined in Section 2.1.1, see Fig. 2.3b,

φT
M,min =

φx,min

φy,min

φz,min

 , φT
M,max =

φx,max

φy,max

φz,max

 (2.27)

of the tool frame T w.r.t. the manufacturing frame M. Note that the simple

17



Mathematical Model of Industrial Robots and Manufacturing Processes

(linear) box constraints (2.26) and (2.27) may also be replaced by nonlinear con-
straints, e.g., circular or spherical distance constraints.
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Chapter 3 Flexible Robotic
Manufacturing based

on User Inputs

This chapter presents an automatic workflow to generate and execute a manu-
facturing process on different 3D workpieces based on 2D user inputs. For this,
a flexible path-planning algorithm and a tailored control concept are developed.
The workflow is demonstrated for a drawing process in a laboratory environment,
which is representative of other industrial manufacturing processes, e.g., welding,
cutting, or milling.
First, a literature review is presented for automatic user-based robot programming
for industrial robots. Second, two path projection methods to map the user input
on a workpiece are shown, and the robot trajectory generation is explained. In
order to execute the drawing process with an industrial robot, two control con-
cepts, i.e., pure motion control and hybrid force/motion control, are presented and
compared. Finally, the whole automatic path-planning and execution pipeline is
demonstrated in multiple experiments. Preliminary work was developed in the
author’s diploma thesis [37] and in a subsequent diploma thesis [38] supervised by
the author.
Major parts of this chapter have been published in the author’s works [7, 9, 11]
and are adapted for this thesis.

3.1 Literature Review

In the literature, the automatic generation of robot programs from user input
has been considered in several works. In many publications, a drawing process
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is a demonstration example to show the capabilities of the proposed algorithms.
In most cases, the considered task can be easily adapted to conceptually similar
different manufacturing processes, e.g., engraving, laser cutting, or painting.

Major parts of this section have been published in the author’s works [9, 11] and
are adapted for this thesis.

In [39, 40], an edge detection algorithm is used to extract features from portraits
of humans, which are then drawn on a flat canvas by a humanoid robot. In
order to perform this task, a task-space path is generated first, for which a joint-
space path is computed using inverse kinematics and then executed by the robot.
Furthermore, [41] considers an industrial robot drawing on a flat whiteboard, where
robot programs are automatically generated to draw the edges and important
features of ordinary photos and images. Similarly, in [42, 43, 44, 45], robotic
drawing has been presented emphasizing artistic and stylistic algorithms for path
generation. Drawing on 2.5D (terrain-like) objects is demonstrated in [46], where
a Kuka LBR iiwa 7 R800 is utilized. The drawing is interpolated with Bézier
curves, and an impedance control is used to draw on unknown non-planar objects.
In [47], a force/torque sensor is mounted on the end-effector of the drawing robot.
With this information, the robot can draw on objects whose relative position to the
robot is unknown. Even on 3D surfaces with small curvature, drawing is successful
because the pen orientation is controlled to remain normal to the surface. Because
the force information is only available during the drawing process and the object’s
geometry is unknown, the projection can cause distortions and is unpredictable.
Most of the works discussed so far focus on the artistic aspects of robotic drawing
on planar surfaces, but the manufacturing aspects of 3D objects are not considered
in detail.

Automatic path planning to work directly on 3D workpieces has been examined
for processes like spraying [24], polishing [28], and draping [36]. In those works, al-
gorithms generate 3D paths automatically based on the CAD data without further
user input. In most manufacturing processes, the workpiece geometry is already
known, e.g., [48], or state-of-the-art 3D scanners and algorithms can be employed
to obtain the shape of the workpiece [49].

Another way of planning and executing robot motions from user input is inter-
active teach-in methods. A state-of-the-art concept based on an instrumented
pointing tool was developed by Wandelbots [50]. With the so-called TracePen,
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Robot

Pen tool✘✘✘✘✘✘✘✘

Figure 3.1: Experimental setup of the drawing process with a Kuka LBR iiwa 14
R820; adapted from [11].

robot motions are demonstrated by the user, and a robot program is generated
automatically. In [51], an instrumented tool records the position, orientation, and
tension force of a rope winding task. This demonstrated trajectory is then exe-
cuted by an industrial robot. Inspired by the gaming industry, a representation
of a robotic environment in virtual/mixed reality is used to teach an industrial
task [52, 53]. However, those teach-in methods need a trained person to generate
the robot program, and this is especially cumbersome for frequently changing user
inputs or small lot sizes.

A different way to customize the visual design of products is to use inkjet printer
heads mounted on the industrial robot’s end-effector to perform 2D printing on
3D surfaces directly. The printer head prints custom designs on shoes [54] or
cars [55] and thus provides easy customization. In this process, the robot motion
is generated for each product only once because the robot trajectory stays the
same for printing arbitrary 2D input patterns on the same surface area. The print
quality on curved surfaces increases for small 2D input patterns because the print
head has to be at a constant distance from the product.

21



Flexible Robotic Manufacturing based on User Inputs

This chapter aims to demonstrate customization of products in an industrial man-
ufacturing process. To this end, a robotic drawing task based on user inputs for
known arbitrary 3D objects is presented, see Fig. 3.1, which is the main contri-
bution of this chapter. This process demands the robotic system to achieve the
required flexibility and replication accuracy on the 3D surface. A user specifies the
drawing and its exact location, size, and orientation on the object. Subsequently,
the robot trajectory is planned based on accurate mapping, and the drawing proce-
dure is executed. In order to improve the drawing quality, the contact force of the
pen is adjusted using a hybrid force/torque controller, which is further extended
to control the position and orientation of the pen simultaneously.

This automatic pipeline applies to different manufacturing processes. Robot-
assisted additive manufacturing processes, like material extrusion, e.g., fused de-
position modeling (FDM), material jetting, directed energy deposition as shown
in [56], and spray painting, e.g. [25], can also be performed using the proposed
automatic trajectory planning and robot execution pipeline. Further examples
are automated milling and laser engraving, where a user input pattern has to be
engraved into large 3D objects. This pipeline can also be employed for subtractive
processes, including laser or ultrasonic cutting.

3.2 Path Projection and Trajectory Generation

In this section, two path projection methods to transfer a user-provided 2D input
pattern onto a 3D object are presented, and the robot trajectory generation is
explained. First, a least-squares conformal mapping (LSCM) is introduced and
explained in detail. Next, a simple parallel projection is presented for compari-
son. Finally, the robot trajectory is generated based on the result of a projection
method.

Major parts of this section have been published in the author’s works [9, 11] and
are adapted for this thesis.

3.2.1 Path Projection using Least-Squares Conformal Mapping

A flow chart illustrating the individual steps of the path projection with LSCM is
shown in Fig. 3.2. In order to handle meshes of high complexity, the mesh of the
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3D Object
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Figure 3.2: Flow chart of LSCM to project the 2D input pattern; adapted from
[9, 11].

3D object is first decomposed into multiple mesh segments. This preparation step
limits the local distortions of the transferred 2D input pattern in the subsequent
workflow. Next, the mesh segments are flattened using a LSCM approach. The 2D
input pattern is projected on the flattened surface, and then an inverse mapping
transfers the pattern back onto the 3D object, which is discussed at the end of
this section. Preliminary work was developed in the diploma thesis [38] which was
supervised by the author. The methods in this subsection are summarized from
[57, 58] and are tightly integrated into the path-planning workflow. Subsequently,
these methods are utilized to compare the two projection methods, i.e., the LSCM-
based and parallel projection.

Segmentation

As a first preparation step, the mesh segmentation algorithm presented in [57]
is applied to the mesh of the 3D object before flattening the individual mesh
segments. This way, distortions in the projected 2D paths are minimized, and the
replication accuracy on the 3D object is improved, see [38].

The algorithm [57] first finds the boundaries between two segments by computing
the so-called sharpness criterion

wi,j = arccos

(
nT
i nj

∥ni∥2 ∥nj∥2

)
(3.1)

for each edge of the mesh, where ni and nj denote the normal vectors of two
adjacent triangles Ti and Tj, respectively, see [59]. Thereby, ∥·∥2 denotes the
Euclidean 2-norm of the vector ·. Edges for which the angle wi,j in (3.1) is above
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(a) (b)
Figure 3.3: Segmentation of a 3D object before flattening: (a) Mesh of the 3D
object, (b) Result of the segmentation using [57]; adapted from [9, 11].

a particular threshold value are combined to feature curves. Next, the triangles
with the maximum geodesic distance to a feature curve are determined. These
triangles are subsequently used as seeds for a region-growing algorithm to obtain
the individual mesh segments. An example of a segmented 3D object is depicted
in Fig. 3.3.

Least-Squares Conformal Mapping

The LSCM approach [57] is used to flatten the mesh segments of the 3D object
into 2D meshes. A locally isotropic conformal map X : (u, v) ,→ (x, y) preserves
the local angles and, therefore, the shape of small figures but generally not their
size, see [38].

In this section, the considered mesh segment S consists of nt triangles Ti, i =

1, . . . , nt, and nv vertices. For each triangle Ti, new coordinates (xi,1, yi,1), (xi,2, yi,2),

(xi,3, yi,3) of the vertices are computed, with a local orthonormal basis located in
the vertex (xi,1, yi,1) and the x-axis aligned with the edge to (xi,2, yi,2). Then, the
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conformal mapping for a single triangle fulfills the condition

∂X

∂u
− i

∂X

∂v
= 0 , (3.2)

with the complex number X = x + iy, where i denotes the imaginary unit. The
inverse conformal mapping U : (x, y) ,→ (u, v) reads as [60]

∂U

∂x
+ i

∂U

∂y
= 0 , (3.3)

which is a formulation of the Cauchy-Riemann equations[
0 −1

1 0

][
∂ui

∂xi

∂ui

∂yi

]
=

[
∂vi
∂xi

∂vi
∂yi

]
(3.4)

for complex numbers U = u + iv, see [61]. Since (3.3) cannot be satisfied for all
triangles Ti of the mesh segment S simultaneously, the minimization problem

min
U

∑
Ti∈S

fm(Ti) (3.5a)

fm(Ti) = 2

∫
Ti

||||∂U∂x + i
∂U

∂y

||||2 dAi (3.5b)

is formulated, where |·| denotes the magnitude of the complex number · and Ai is
the area of the triangle Ti, i = 1, . . . , nt.

The gradients in (3.5b) for a single triangle Ti read as

[
∂ui

∂xi
∂ui

∂yi

]
=

1

2Ai

W

ui,1

ui,2

ui,3

 , (3.6a)

[
∂vi
∂xi
∂vi
∂yi

]
=

1

2Ai

W

vi,1vi,2
vi,3

 , (3.6b)

with

W =

[
yi,2 − yi,3 yi,3 − yi,1 yi,1 − yi,2
xi,3 − xi,2 xi,1 − xi,3 xi,2 − xi,1

]
(3.7)
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and

2Ai = (xi,1yi,2 − yi,1xi,2) + (xi,2yi,3 − yi,2xi,3) + (xi,3yi,1 − yi,3xi,1) . (3.8)

The compact formulation

∂U

∂x
+ i

∂U

∂y
=

i

2Ai

[
Wi,1 Wi,2 Wi,3

]Ui,1

Ui,2

Ui,3

 = 0 (3.9)

is found with the coordinates of the vertices Ui,j = ui,j + ivi,j, j = 1, 2, 3, of the
corresponding triangle Ti, i = 1, . . . , nt, using (3.6) and

Wi,1 = (xi,3 − xi,2) + i(yi,3 − yi,2) , (3.10a)

Wi,2 = (xi,1 − xi,3) + i(yi,1 − yi,3) , (3.10b)

Wi,3 = (xi,2 − xi,1) + i(yi,2 − yi,1) . (3.10c)

Inserting (3.9) into the minimization problem (3.5), the optimization problem for
the whole mesh segment S with all triangles Ti ∈ S is reformulated as

min
U

fm(U) = min
U

∑
Ti∈S

fm(Ti) (3.11a)

fm(Ti) =
1

2Ai

|||||||
[
Wi,1 Wi,2 Wi,3

]Ui,1

Ui,2

Ui,3


|||||||
2

, (3.11b)

with the vector of all vertices UT =
[
U1 · · · Unv

]
. Note that a single vertex may

be contained in multiple triangles.

In order to solve the optimization problem (3.11), the cost function fm(U) is
written as

fm(U) = UHNHNU , (3.12)
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with the sparse matrix N ∈ Rnt×nv and the Hermitian conjugation denoted by the
superscript ·H. The elements of N are calculated as

Nij =

������
Wi,j√
2Ai

if vertex Uj belongs to triangle Ti

(consisting of the vertices Uj, Uk, Ul)

0 otherwise ,

(3.13)

with Wi,j = (xi,l − xi,k) + i(yi,l − yi,k), cf. (3.10). Equation (3.12) is rewritten in
the quadratic form

fm(U) = ∥NU∥22 = ∥NfUf +NpUp∥22 , (3.14)

with UT =
[
UT

f UT
p

]
, where Uf = UR

f + iUI
f denotes the vector of free (unknown)

and Up = UR
p + iUI

p of pinned (given) vertex coordinates. As suggested in the
original work [57], the two vertices with the maximum distance to each other are
pinned for each mesh segment. This way, (3.11) is reformulated as a least-squares
problem in the unknown variables

γT =
[(
UR

f

)T (
UI

f

)T] (3.15)

and
fm(γ) = ∥αγ − β∥22 , (3.16)

with

α =

[
NR

f −NI
f

NI
f NR

f

]
, (3.17a)

β = −
[
NR

p −NI
p

NI
p NR

p

][
UR

p

UI
p

]
. (3.17b)

In (3.14) and (3.17), Nf and Np denote the sparse index matrices for the free and
pinned vertices, respectively, and the superscripts ·R and ·I in (3.15) and (3.17)
refer to the real and imaginary part of the complex-valued vectors and matrices.

Finally, the least-squares problem with the cost function (3.16) is solved in Mat-
lab using a numerical solver to find the coordinates of the free vertices Uf under
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the inverse conformal mapping U. For a more detailed explanation of the mapping
algorithm, the reader is referred to [57].

2D Path Projection and Inverse Mapping

In this section, the user-provided 2D input pattern is transferred to a user-specified
location and size onto the 3D object. To this end, the 2D input pattern is first pro-
jected on the corresponding flattened mesh segment. Subsequently, it is mapped
back onto the 3D object by the inverse conformal mapping U using barycentric
coordinates [58], see [38].

The 2D input pattern is created by the user with a touchscreen, digitizer, or
mouse interface and comprises the discrete path points (xW2,k)

T =
[
xW2,k yW2,k

]
,

k = 1, . . . , nm, i.e., the individual discrete path point k w.r.t. a 2D world frame
W2. Furthermore, the user defines the location

[
∆x ∆y

]T, rotation θ, and scale ρ

of the desired pattern on the flattened mesh segment. Note that this information
can also be calculated from the 3D object by selecting the vertices in which the 2D
pattern should be located. The resulting path points of the 2D path xP2,k w.r.t. a
2D workpiece frame P2, k = 1, . . . , nm, are computed using the transformation

xP2,k = ρ

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
xW2,k +

[
∆x

∆y

]
, (3.18)

see [29]. If the 2D path covers multiple mesh segments, those segments are com-
bined and flattened again.

Next, the correspondence between the flattened and the 3D mesh segment is
established via the triangles of both meshes. For each 2D path point xP2,k,
k = 1, . . . , nm, from the flattened mesh segment, the associated triangle Tk is
determined. This is performed using the efficient bin-based algorithm published in
[58]; see also [57]. Note that a triangle in the flattened 2D mesh segment directly
corresponds to the 3D representation of this triangle.

Finally, the 2D path points xP2,k are mapped onto the 3D mesh segment using
barycentric coordinates inside the corresponding triangles Tk, k = 1, . . . , nm. In
general, barycentric coordinates map between two arbitrary triangles based on the
corresponding vertices, see, e.g., [62]. A given point xP2,k is mapped from one
triangle in the workpiece frame P2 in 2D space, described with the positions of
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Figure 3.4: Mapping from the triangle of the flattened object to the 3D object:
(a) Triangle on the flattened object, (b) Triangle on the 3D object; adapted from
[9, 11], cf. [58].

the vertices (u1
P2
,u2

P2
,u3

P2
) with (ui

P2
)
T
=

[
xi
P2

yiP2

]
, i = 1, 2, 3, to the triangle in

the workpiece frame P in 3D space, described with the positions of the vertices
(v1

P ,v
2
P ,v

3
P) with (vi

P)
T
=

[
xi
P yiP ziP

]
, i = 1, 2, 3, in the form, see Fig. 3.4, [58]

pM
P,k = Ǎ1v

1
P + Ǎ2v

2
P + Ǎ3v

3
P , k = 1, . . . , nm , (3.19)

with

Ǎ1 =
fa(xP2,k,u

2
P2
,u3

P2
)

fa(u1
P2
,u2

P2
,u3

P2
)

, (3.20a)

Ǎ2 =
fa(u

1
P2
,xP2,k,u

3
P2
)

fa(u1
P2
,u2

P2
,u3

P2
)

, (3.20b)

Ǎ3 =
fa(u

1
P2
,u2

P2
,xP2,k)

fa(u1
P2
,u2

P2
,u3

P2
)

. (3.20c)

In (3.20), the function fa(·, ·, ·) calculates the area of the enclosed triangle. Using
(3.19), all 3D path points pM

P,k, k = 1, . . . , nm, are determined. For each 3D path
point, a coordinate frame on the surface with the origin pM

P,k and the orientation
RM

P,k is constructed such that the z-axis is parallel to the local surface normal
vector. The remaining orientation results from a suitable reference orientation,
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Figure 3.5: Examples of parallel projections from a 3D object to a 2D plane;
adapted from [11], cf. [63].

e.g., the x-axis is set horizontally to the floor, and the y-axis is computed to
obtain a right-oriented coordinate system.

3.2.2 Parallel Path Projection

Parallel projection, a simple method serving as comparison approach for perfor-
mance evaluation in the experimental results, is explained in this section. Parallel
projection is mainly used to project 3D objects on 2D planes by projecting the
points along parallel projection rays, see Fig. 3.5. If the 2D plane is perpendicular
to the projection rays, this parallel projection is called orthographic and otherwise
oblique, see [63].

In this work, the inverse orthographic projection is needed, i.e., the 2D pattern of
the user input has to be mapped to the 3D object to obtain the 3D path points
pM
P,k in the workpiece frame P . Therefore, the points of the user input xW2,k are

given in a 2D plane. This 2D plane can be defined in front of the 3D object by the
user or automatically computed based on the mean value of the normal vectors
of the corresponding triangles. Then parallel projection rays perpendicular to
this 2D plane are generated from each position xW2,k. At the intersection points
of the parallel rays with the surface of the 3D object, the 3D path points pM

P,k
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Figure 3.6: Flow chart of generating a robot trajectory based on the projection
result; adapted from [9, 11].

corresponding to the 2D input xW2,k are found. The intersection points can be
computed with, e.g., the Ray-Triangle Intersection algorithm [64]. Analogous to
the LSCM, local rotation matrices RM

P,k are generated for each 3D path point pM
P,k

to construct the manufacturing frames HM
P,k, see Section 2.2.1. The direction of

the parallel projection rays is used as the z-axis of this frame. The remaining
orientations are again computed based on a reference orientation. Note that the
orientations of all path points pM

P,k are equal since all projection rays are parallel
due to the used parallel projection, cf. [11].

3.2.3 Cartesian Robot Trajectory

The projection result from Subsections 3.2.1 and 3.2.2 is described by the sequence
of 3D path points pM

P,k, k = 1, . . . , nm located on the surface of the 3D object and
the corresponding orientations RM

P,k. Along this 3D path, the robot has to draw the
user-defined pattern. The resulting sequence of manufacturing poses is composed
of the path points and orientations in the form

HM
P =

{
HM

P,k =

[
RM

P,k pM
P,k

0 1

]
, k = 1, . . . , nm

}
. (3.21)

A flow chart of the necessary computation steps is shown in Fig. 3.6. If a user-
provided 2D input pattern contains multiple disconnected path segments, addi-
tional transition points are added to the sequence of 3D path points. Between
two segments, the robot retracts the pen from the surface by performing a linear
motion. Subsequently, the robot moves from the end point of one segment to the
starting point of the next path segment and approaches the surface again. The
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Figure 3.7: Path progress of the spline curve for a single segment; adapted from
[7, 9].

individual sequences of 3D path points are interpolated according to [65], where a
5th-order polynomial is used for the time parametrization, see Fig. 3.7. This way,
the drawing process of the robot starts and ends smoothly, see [38].

3.3 Control Concept

In order to realize the robotic drawing process with a pen on the 3D object, the
robot executes the generated trajectory using a suitable control concept, which
is detailed in this section. First, a standard task-space controller is described to
control the motion of the pen on the surface of the 3D object. Second, contact
force estimation [66] is introduced. Third, a hybrid force/motion controller is
adapted from [29, 67] to control the contact force during the drawing process
and improve the robotic drawing task. The standard task-space controller and
the hybrid force/motion controller compute a torque τ 1, added to the torque τ 2

generated from a subsequently presented null-space controller. This results in the
final control torque τ = τ 1 + τ 2. Preliminary work was developed in the diploma
theses [37, 38].

Major parts of this section have been published in the author’s works [7, 9, 11] and
are adapted for this thesis.
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3.3.1 Motion Control

Applying the inverse dynamics control to the dynamic robot model in (2.24) and
neglecting the external torques τ ext, see [29]

τ 1 = M(q)wn +C(q, q̇)q̇+ g(q) (3.22)

yields the new linear system dynamics in the form

q̈ = wn , (3.23)

with the new input wn. A standard task-space controller is implemented by choos-
ing the new input wn as

wn =
(
JT
P(q)

)† (
wm − J̇T

P(q)q̇
)

, (3.24)

with the control input, see [29]

wm =

[
p̈M
P +KD

˙̃pP +KP p̃P +KI

∫
p̃P dt

ω̇M
P +Kω ω̃P +Ko ε

M
T

]
, (3.25)

where A† = AT
(
AAT

)−1 is the right pseudo-inverse of the matrix A and JT
P(q)

the augmented Jacobian of the tool frame T w.r.t. the workpiece frame P from
(2.13). The spline-interpolated desired Cartesian trajectory

[ (
pM
P (t)

)T (
oM
P (t)

)T ]
of the manufacturing frame M was introduced in Section 3.2.3, where oM

P denotes
the unit quaternion related to the rotation matrix RM

P . Hence, the position er-
ror of the controller (3.25) is computed as p̃P = pM

P − pT
P , the velocity error as

˙̃pP = ṗM
P − ṗT

P , and the angular velocity error as ω̃P = ωM
P − ωT

P in the work-
piece frame P . The vector part of the quaternion error εMT is computed with the
quaternion product ⊗, defined in Appendix B.1, as

oM
T =

[
ηMT
εMT

]
= oM

P ⊗ (
oT
P
)−1

=

[
ηMP
εMP

]
⊗
[
ηTP
−εTP

]
=

[
ηMP ηTP +

(
εMP

)T
εTP

ηTPε
M
P − ηMP εTP − εMP × εTP

]
,

(3.26)
see [29, 68]. The quaternion error (3.26) describes the orientation deviation of the
manufacturing frame M w.r.t. the tool frame T , i.e., the quaternion representation
of the rotation matrix RM

T = RM
P (RT

P(q))
T, see [29]. The controller and the proof
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of the closed-loop stability is published in the author’s publications [7, 37] and
presented for the sake of completeness in the following two subsections.

Position Error Dynamics

The position error dynamics of (2.24) with (3.22)-(3.25), with the state ξT =[
(p̃P)

T ( ˙̃pP)
T (¨̃pP)

T
]
, reads as

ξ̇ = Ǩξ with Ǩ =

 0 I 0

0 0 I

−KI −KP −KD

 . (3.27)

If KI, KP, and KD are chosen to render Ǩ a Hurwitz matrix, the position error
dynamics (3.27) becomes exponentially stable, see [29].

Orientation Error Dynamics

In order to prove the stability of the orientation error dynamics of (2.24) with
(3.22)-(3.25), the positive definite Lyapunov function

V (ζ) = Ko

(
η̃2P + (ε̃P)

Tε̃P
)
+

1

2
(ω̃P(ζ))

T ω̃P(ζ) (3.28)

is chosen with the state ζT =
[
η̃P (ε̃P)T ˙̃ηP ( ˙̃εP)T

]
and the relations η̃P = ηMP −ηTP

and ε̃P = εMP − εTP . A similar approach without Ko > 0 can be found in [68]. The
time derivative of (3.28) results in, see Appendix B.2,

V̇ (ζ) = −(ω̃P(ζ))
T Kωω̃P(ζ) , (3.29)

which is negative semi-definite for Kω > 0. Because the largest invariant set in
{ζ : V̇ (ζ) = 0} is the point ζ = 0, LaSalle’s invariance theorem proves the
asymptotic stability of the equilibrium point ζ = 0, see, e.g., [69].

3.3.2 Contact Force Estimation

In this work, no external force/torque sensor is available to directly measure the
interacting forces between the pen and the 3D object. Instead, the contact force
estimation [66] is employed and summarized in this section, see [38].
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Based on the dynamic robot model (2.24), the work [66] shows that the residual
vector

k(t) = KC

(
M(q)q̇−

∫ t

0

τ +CT(q, q̇)q̇− g(q) + k ds

)
(3.30)

leads to the residual dynamics

k̇(t) = KC(τ ext − k(t)) , (3.31)

with a large positive definite gain matrix KC, from which the external torques
τ ext ≈ k are estimated.

In general, the relation between the vector of contact forces fP and moments µP
expressed in the workpiece frame P , i.e., (δP)T =

[
(fP)T (µP)

T
]
, and the external

torques τ ext is established with the geometric Jacobian JT
P(q) of the tool frame T ,

e.g., [29]
τ ext = −(JT

P(q))
T
δP . (3.32)

The estimated contact force f̂P and moment µ̂P is computed as[
f̂P
µ̂P

]
= −

(
(JT

P(q))
T
)†
k , (3.33)

while the moment µP on the tool frame T vanishes due to point contact of the
pen with the object’s surface. The contact force w.r.t. the tool frame T reads as

f̂T =
(
RT

P(q)
)T

f̂P =

f̂T ,x

f̂T ,y

f̂T ,z

 . (3.34)

3.3.3 Hybrid Force/Motion Control

In this section, the hybrid force/motion controller proposed in [29, 67] is extended
for the robotic drawing task. To this end, the pen’s lateral position and orientation
are controlled simultaneously, and the estimated contact force f̂T at the pen tip
along the surface normal vector is regulated to the desired value fd.

The inverse dynamics control law for (2.24) is applied, which reads as

τ 1 = M(q)wh +C(q, q̇)q̇+ g(q) , (3.35)
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with a new control input wh. The new control input wh is chosen as

wh=(JT
P(q))

†
Vmw̆m+M−1(q)(JT

P(q))
T
Vfwf − (JT

P(q))
†
J̇T
P(q)q̇+(JT

P(q))
†V̇mν

T
P ,

(3.36)
with the motion control input w̆m ∈ R6, the force control input wf ∈ R6, and the
velocity vector νT

P to be defined later, cf. [11, 29, 38]. The matrices Vm and Vf

utilized in (3.36) are computed as

Vm = TT
P(q)Ym(T

T
P(q))

T (3.37a)

Vf = TT
P(q)Yf(T

T
P(q))

T (3.37b)

with the constant selection matrices

Ym = diag(1, 1, 0, 1, 1, 1) , (3.38a)

Yf = diag(0, 0, 1, 0, 0, 0) , (3.38b)

and the transformation matrix TT
P(q) given by

TT
P(q) =

[
RT

P(q) 0

0 I

]
, (3.39)

in order to apply the control inputs w̆m and wf in their specific coordinate axes
w.r.t. the tool frame T . Because the matrices Vf and Vm satisfy

(Vf)
TVm = 0 , (3.40)

the force and motion control loops are decoupled with the inverse dynamics control
law (3.35) and (3.36) which is shown in the following, see [14, 29].

With the assumption of a rigid contact between the pen’s tip and the object’s
surface, no mechanical work is done, and the kinostatic relationship

(δP)TυT
P = 0 , (3.41)

is satisfied, see [29]. Velocities only emerge in the corresponding velocity subspace
and read as

υT
P = Vmν

T
P (3.42)
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and all forces and moments appear only in the force subspace

δP = VfλP (3.43)

with the velocity vector νT
P and the force vector λP w.r.t. the workpiece frame P .

The time derivative of (3.42) using (2.13) is

JT
P(q)q̈+ J̇T

P(q)q̇ = V̇mν
T
P +Vmν̇

T
P . (3.44)

Solving (3.44) for q̈ and inserting the result into (2.24) with τ ext = −(JT
P(q))

TδP =

−(JT
P(q))

TVfλP yields

M(q)(JT
P(q))

†Vmν̇
T
P = τ −C(q, q̇)q̇− g(q)−M(q)(JT

P(q))
†V̇mν

T
P+

M(q)(JT
P(q))

†J̇T
P(q)q̇− (JT

P(q))
TVfλP . (3.45)

By premultiplying (3.45) with ((JT
P(q))

†Vm)
T and using (3.40), the last term van-

ishes. After inserting τ = τ 1 from (3.35) and (3.36), the new motion dynamics
reads as

ν̇T
P = w̆m , (3.46)

see [29]. This equation shows that the force subspace does not influence the sub-
space of the new motion dynamics. The new control input w̆m from (3.46) is
chosen similarly to wm from (3.25) as, see, e.g. [29],

w̆m =

[
p̈M
P + (RT

P)KD(R
T
P)

T ˙̃pP + (RT
P)KP(R

T
P)

T p̃P + (RT
P)KI(R

T
P)

T
∫
p̃P dt

ω̇M
P +Kω ω̃P +Ko ε

M
T

]
(3.47)

with transforming the gain matrices KD, KP, and KI to render an active compli-
ance control in the tool frame T . Again, the exponential stability of the position
dynamics can be ensured with the state ξT =

[
(p̃P)

T ( ˙̃pP)
T (¨̃pP)

T
]
,

ξ̇ = K̆ξ with K̆ = (RT
P)Ǩ(RT

P)
T , (3.48)

where Ǩ in (3.27) is a Hurwitz matrix, which is also true for K̆. Note that the
orientation terms εMT and ω̃P stay the same because of the identity matrix in
TT

P(q), cf. (3.39). Hence, the orientation error dynamics is unchanged and is
asymptotically stable with the Lyapunov function (3.28), see [7, 37].
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The control input (3.47) can also be interpreted within the tool frame T by trans-
forming p̃P , ε̃P , ˙̃pP , and ω̃P with[

p̃T
εMT

]
=

(
TT

P(q)
)T [

p̃P
εMT

]
, (3.49a)[

˙̃pT
ω̃P

]
=

(
TT

P(q)
)T [

˙̃pP
ω̃P

]
, (3.49b)

resulting in

w̆T ,m = (TT
P(q))

Tw̆m =

[
(RT

P)
Tp̈M

P +KD
˙̃pT +KP p̃T +KI

∫
p̃T dt

ω̇M
P +Kω ω̃P +Ko ε

M
T

]
. (3.50)

Hence, the position errors are rotated into the tool frame T according to, see (2.5)

p̃T = (RT
P)

T
p̃P = RP

T (p
M
P − pT

P) ≡ RP
T p

M
P + pP

T = pM
T , (3.51)

resulting in the position error of the tool frame T w.r.t. the manufacturing frame
M. Furthermore, also the feedforward term p̈M

P is rotated into the tool frame T ,
while ṘT

P is neglected in (3.49), see [67].

The constraints (3.41) of the force-controlled subspace read with (3.43) and (2.13)
as

(Vf)
TυT

P = (Vf)
TJT

P(q)q̇ = 0 . (3.52)

Solving (2.24) for q̈ with the external torque τ ext = −(JT
P(q))

TVfλP and inserting
the result into the time derivative of (3.52), i.e.,

(V̇f)
TJT

P(q)q̇+ (Vf)
TJ̇T

P(q)q̇+ (Vf)
TJT

P(q)q̈ = 0 , (3.53)

yields

λP =
(
(Vf)

TJT
P(q)M

−1(q)(JT
P(q))

TVf

)−1(
(Vf)

TJT
P(q)M

−1(q)
(
τ−C(q, q̇)q̇−q(q)

)
+ (Vf)

TJ̇T
P(q)q̇+ (V̇f)

TJT
P(q)q̇

)
.

(3.54)
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By inserting (3.35) and (3.36) in (3.54) and using (3.40), the identity (V̇f)
TVm =

−(Vf)
TV̇m, and (3.42) the new force dynamics results in

λP = wf , (3.55)

see [29]. This equation shows that the velocity subspace does not influence the
subspace of the new force dynamics. The force control input wf is chosen as

wf = TT
P(q)

[
wT ,f

0

]
, (3.56)

where
wT ,f = fd +KPf(fd − f̂T ) +KIf

∫
fd − f̂T dt , (3.57)

with the desired force (fd)
T =

[
0 0 fd,z

]
, see [29, 38]. The contact force f̂T is

assumed to appear only in the z-direction of the pen’s tip tool frame T , i.e.,
(f̂T )T =

[
0 0 f̂T ,z

]
, cf. (3.38b). The force control input (3.56) and (3.57) with the

force error f̃T = fd − f̂T , and with the assumption of a correct estimation of the
contact force f̂P ≈ fP leads to the force error dynamics

(I+KPf)
˙̃fT +KIf f̃T = 0 , (3.58)

which is exponentially stable with positive definite diagonal gain matrices I+KPf

and KIf .

3.3.4 Null-Space Controller

Kinematically redundant robots exhibit an additional null-space in task-space con-
trol, which is stabilized using the null space control law

τ 2 = M(q)P
(−b(q)−KDnq̇−KPn(q− qmean)

)
, (3.59)

with the projection matrix P = I−(JT
P(q))

†
JT
P(q), see [11, 29, 38, 70], and the pos-

itive definite diagonal gain matrices KDn and KPn. In (3.59), the barrier function
bT(q) =

[
b1(q1) b2(q2) · · · bn(qn)

]
is defined as

bh(qh) =
bmax

(qh − qh,max)2
− bmin

(qh,min − qh)2
, h = 1, . . . , n , (3.60)
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to avoid reaching the mechanical axis limits

qT
max =

[
q1,max q2,max · · · qn,max

]
and (3.61a)

qT
min =

[
q1,min q2,min · · · qn,min

]
, (3.61b)

see Appendix A and [71]. The parameters bmax and bmin are used to tune the
barrier functions, and qmean denotes the mid point between the axis limits, i.e.

qmean =
1

2

[
q1,max + q1,min q2,max + q2,min · · · qn,max + qn,min

]
. (3.62)

3.4 Experimental Results

In this section, the experimental results for the robotic drawing process are pre-
sented and discussed. First, the experimental setup and the input pattern to be
drawn are presented. Second, the parallel path projection and the path projec-
tion using the LSCM from Section 3.2 are evaluated in simulation with the user-
provided 2D input pattern. Third, the optimal placement of the robot w.r.t. the
workpiece is determined. Fourth, drawing trajectories are generated and executed
experimentally on the robot using the motion controller from Section 3.3.1, and
fifth, the hybrid force/motion controller from Section 3.3.3 is evaluated experimen-
tally. Finally, the drawing results and measurements are compared. A video of
the experimental drawing process is provided at www.acin.tuwien.ac.at/c1eb .
Major parts of this section have been published in the author’s work [9, 11] and
are adapted for this thesis.

3.4.1 Experimental Setup

The experimental setup for the drawing process is shown in Fig. 3.1. In this setup,
the ceiling-mounted industrial robot Kuka LBR iiwa 14 R820 has a pen tool at-
tached to the end-effector according to the kinematic arrangement in Fig. 2.1a. The
tool comprises a passive compliance mechanism to account for absolute positioning
errors and model uncertainties of the robot and its environment. The kinematic
parameters of the Kuka LBR iiwa 14 R820 are shown in Appendix A.1. The
workpiece in the experiments is a 3D-printed rabbit on which the robot has to
draw the input pattern.
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T1

T2 T3

T4

Figure 3.8: User-provided 2D input pattern for the experimental drawing process
with the disconnected segments T1 · · · T4 ; adapted from [9, 11].

Input Pattern

The 2D input pattern is provided by the user using a computer mouse, a touch-
screen, or by drawing patterns with a digitizer on a tablet device. Furthermore,
a path may also be generated from parametric equations. In the following exper-
imental drawing process, the 2D input pattern with four disconnected segments
T1 · · · T4 shown in Fig. 3.8 is used, i.e., a smiley symbol.

3.4.2 Path Projection

In the following, the user-provided 2D input pattern in Fig. 3.8 is projected at
a user-specified location on the 3D object, which is the face of the 3D-printed
rabbit, see Fig. 3.9. Both projection methods introduced in Section 3.2, i.e., the
parallel projection and the proposed projection based on the LSCM, are used.
Subsequently, the projection results are compared and robot trajectories for the
process execution are generated.

Parallel Projection Method

For the simple parallel projection from Section 3.2.2, parallel green rays are gen-
erated originating at each path point xW2,k, k = 1, . . . , nm, from the blue 2D input
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(a)

P2

P1

P5

P4

P3

(b)

P1

P2

P3

Figure 3.9: 2D input path projected on the 3D object with (a) parallel projection
(b) LSCM-based projection; adapted from [11].

pattern, see Fig. 3.9a. Then, the path points pM
P,k, k = 1, . . . , nm, on the 3D object

are found at the intersection points of the green rays with the 3D object’s mesh
using the implementation of the Ray-Triangle Intersection algorithm [72]. At each
path point pM

P,k, k = 1, . . . , nm, a desired orientation for the manufacturing frame
M, i.e., RM

P,k, is generated from the path planning. The z-axis of the pen tool
is aligned with the green ray and the x- and y-axes are chosen according to a
reference orientation. The orientation is equal for every path point.

Examining the parallel projection result in Fig. 3.9a, a large distortion can be seen
at point P1 due to the high curvature of the 3D object and the large inclination
angle of the parallel rays. In comparison, the eyes of the smiley symbol at P3 are
less distorted because of the smaller curvature. Nevertheless, the eyes are in an
elliptic shape and not properly placed. If the parallel projection is used to project
a 2D input pattern to areas with small curvature, e.g., P4 or P5 in Fig. 3.9a, the
drawing result of the whole 2D input would be significantly better without notable
distortions, cf. [9].

42



Experimental Results

Figure 3.10: Projection of the 2D input pattern on the red and blue flattened
segments of the 3D object in Fig. 3.3; adapted from [11].

Since the parallel projection is computationally inexpensive, the computation is
finished after approximately 50ms on an Intel Core i7-8700K at 3.70GHz.

Path Projection using Least-Squares Conformal Mapping

The path projection on the 3D-printed rabbit according to Section 3.2.1 is com-
puted by segmenting the object, resulting in the segmentation shown in Fig. 3.3.
Then, the individual segments are flattened using conformal mapping. In the next
step, the 2D input pattern is projected on the flattened segments, i.e., the face of
the 3D-printed rabbit, see Fig. 3.10. The red and blue segments located at the face
of the 3D-printed rabbit in Fig. 3.3b must be combined to be able to apply the
LSCM-based projection method for the whole face area. The 2D input pattern is
transferred back to the 3D object using the barycentric coordinates introduced in
Section 3.2.1. The projection result of the 2D input pattern on the 3D surface of
the workpiece is illustrated in Fig. 3.9b. According to (3.21), coordinate systems
are attached to the 3D projection points of the manufacturing path HM

P . The z-
direction of the pen tool’s coordinate systems is chosen based on the local normal
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vector of the surface, and the remaining directions are derived from a reference
orientation. The x-axis is set horizontally to the floor, while the y-axis is computed
to obtain a right-oriented coordinate system.

The shape of the pattern, in particular the outer circle of the smiley symbol at
P1 and the circular eyes at P3 in Fig. 3.9b, is projected on the 3D object with
minimum distortions.

The path projection using the conformal mapping method is performed on the
3D-printed rabbit, which comprises approximately 13000 faces and 6500 vertices.
The computation is executed on an Intel Core i7-8700K at 3.70GHz. The most
time-consuming computation of this offline planning is the segmentation, which
takes around 5 s. The LSCM-based projection can be calculated in 0.3 s. Note
that those steps must be executed only once for each 3D object, see Fig. 3.2.

Properties of Projection Methods

In this section, further simulations to compare the parallel projection with the
LSCM-based projection are presented. The 2D input pattern from Fig. 3.8 is
projected on the ear of the 3D-printed rabbit. Due to the high curvature of the
area around the ear, projections are challenging, and local distortions are likely to
occur, Fig. 3.11.

In the first experiment, the parallel projection is used to project the smiley symbol
with the 2D plane located on the side of the 3D-printed rabbit, see Fig. 3.11a. It
is clearly seen that some of the green rays do not intersect with the 3D object.
Hence, only parts of the input pattern are projected on the 3D-printed rabbit, and
the trajectory generation fails.

In the second experiment, the parallel projection is employed with the 2D plane
for the input pattern located on top of the 3D-printed rabbit. In this experiment,
large distortions occur due to the high curvature; see Fig. 3.11b. Additionally, the
projection result is dissected in multiple parts due to the concave areas on the side.
Although, theoretically, the trajectory can be computed, the drawing process with
the robot would fail.

The third experiment shows the projection of the 2D input pattern from Fig. 3.8
on the ear of the 3D-printed rabbit with the LSCM-based method; see Fig. 3.11c.
Using this mapping, the 2D input pattern is properly projected on the workpiece.
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(a) (b) (c)

Figure 3.11: 2D input path projected on the ear of the 3D-printed rabbit with (a)
parallel projection from the side (b) parallel projection from the top (c) LSCM-
based projection; adapted from [11].

Flattening the segments of the 3D object into 2D form brings along that the 2D
input pattern is wrapped around the ear of the 3D-printed rabbit, see also Fig. 3.10.
Thus, the projection result contains the complete user-provided pattern and the
trajectory for the robotic drawing process is computable.

3.4.3 Optimal Robot Base Placement

The optimal placement of the robot base is crucial to execute the continuous
drawing path with the robot since the robot’s workspace is limited due to the
mechanical joint limits. Therefore, an optimal robot base placement w.r.t. the
world frame is determined, see Fig. 2.1a. In this example, the world frame W
coincides with the workpiece frame P .

In order to find this optimal placement, the total number of feasible inverse kine-
matics solutions of all manufacturing-path poses in HM

P from (3.21) is maximized.
The set Qk of joint-space solutions is computed for a specific path pose HM

P,k with
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the analytical inverse kinematics [73] as

Qk = h−1
H (HM

P,k) , (3.63)

see (2.9) and (2.17). The Kuka LBR iiwa 14 R820 has n = 7 DoF, i.e., the ma-
nipulator is kinematically redundant and an infinite number of inverse kinematics
solutions exist for each feasible path pose HM

P,k. Therefore, the inverse kinematics
solutions are reduced to a finite number of solutions by filtering Qk from (3.63)
according to

Qf
k = ff(Qk) = {qf,1,qf,2, · · · ,qf,ef,k}
=

{
qi,qj ∈ Qk

||qdist < ∥qi − qj∥∞ , i, j = 1, . . . , ek

}
, (3.64)

where qdist determines the minimum distance between two solutions in the filtered
set Qf

k. In (3.64), ∥·∥∞ denotes the maximum norm of the vector ·, and ef,k and ek
are the total numbers of solutions in Qf

k and Qk, respectively. The optimal robot
base placement relative to the world frame pB∗

W is then computed with (3.64) by
solving the optimization problem

pB∗
W = argmax

pB
W∈R3

nm∑
k=1

ef,k(p
B
W) , (3.65)

i.e., by maximizing the number of distinguishable inverse kinematics solutions, see
the individual coordinate frames in Fig. 2.1a.

In the experimental setup, the robot base is placed as accurately as possible relative
to the world frame, according to the result of (3.65). The actual robot base
placement in the experimental setup is determined using a calibration procedure
during the initial setup, see Fig. 3.12. In this calibration procedure, the robot is
equipped with calibration pins at the end-effector (red rectangles in Fig. 3.12),
which tightly fit into the holes at the base of the 3D-printed rabbit (red circles in
Fig. 3.12). The actual robot base placement is obtained from the measurement
of the robot configuration q and the forward kinematics (2.8), which accurately
calibrates the pose of the robot base w.r.t. the world frame for subsequent path
planning and trajectory execution.
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3D
object✟✟✟✟✟✟

Calibration
pins

Calibration
holes
✦✦

End-effector

Robot

Figure 3.12: Calibration of the experimental setup with the Kuka LBR iiwa 14
R820; adapted from [11].

3.4.4 Drawing Process with Motion Control

In this section, the drawing process using the two presented path projection re-
sults from Section 3.4.2 is executed with the motion control concept introduced in
Section 3.3.1. In the following, the planning and measurement results and the pen
motions are discussed in terms of 3D paths, position control errors, and joint-space
paths.

Planned and Executed 3D Paths

The drawing process is planned with both projection methods, transition paths are
added, and a spline interpolation is computed with a suitable time parametrization,
see Section 3.2.3. The trajectories are then executed on the Kuka LBR iiwa
14 R820 using the motion control concept of Section 3.3.1. The resulting 3D
paths are depicted in Fig. 3.13 for the parallel projection and in Fig. 3.14 for the
LSCM-based projection. For both methods, the desired trajectory pM

B of the tool
frame T , i.e., the pen tip, the corresponding desired pen orientations nM

B , and the
actual trajectory pT

B w.r.t. the robot’s base frame B, computed using the forward
kinematics (2.8), are shown. The automatically generated transition paths are also
visible.
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Figure 3.13: Desired and executed 3D paths pM
B and pT

B and the corresponding
surface normal vectors nM

B using parallel projection with motion control; adapted
from [11].

For the parallel projection in Fig. 3.13, the pen orientation RM
B is constant and

aligned with the projection direction nM
B , while it remains aligned with the surface

normal vector using the LSCM-based projection. Consequently, a high position
deviation evolves for the parallel projection between the desired and the actual tra-
jectory, which becomes clearly visible around P2 . In this area, the local curvature
of the 3D object is very high, see also Fig. 3.9a. Due to the constant orientation
RM

B , the angle between the surface normal vector and the pen at the tool surface
becomes large. Due to this large approach angle, the pen slips on the object’s
surface, which makes the pen tip deviate from the desired manufacturing path pM

B
and results in a large position error. In comparison, the approach angle around
the eyes at point P3 in Fig. 3.13 is much smaller; therefore, this effect is less
pronounced, see Fig. 3.9.

For the LSCM-based projection, see Fig. 3.14, the motion controller has a good
closed-loop performance when following the desired trajectory in the experimental
setup. Even at the points P1 and P2 with high curvature, cf. Fig. 3.13, the pen
tip motion pT

B does not deviate from the desired manufacturing path pM
B . Because

the pen axis is aligned with the surface normal vector, i.e., nM
B , the pen does not

slip on the surface due to the perpendicular approach angle. The position errors
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Figure 3.14: Desired and executed 3D paths pM
B and pT

B and the corresponding
surface normal vectors nM

B using the LSCM-based projection with motion control;
adapted from [11].

remain low throughout the trajectory, even in areas with high curvature, which
will be discussed quantitatively in the next section.

Position Control Error

In Fig. 3.15, the position control errors p̃T in the tool frame T for both experiments
are presented, see (3.49). The topmost graph shows the contact state of the pen,
where intervals with the value 1 indicate that the pen is in contact with the 3D
object, and the value of the contact state is 0 when the pen is retracted from the
surface. The variable s denotes the path progress from 0% to 100%. During the
first interval T1 , the outer circle of the smiley symbol; at T2 and T3 , the eyes;

and during T4 , the mouth is drawn, cf. Fig. 3.8. In between those intervals, the
robot’s end-effector moves from the end of one segment to the starting point of
the next segment.

Fig. 3.15 shows that the position control errors p̃T are large within the intervals
T1 (s ∈ [

5%, 20%
]
)) and T4 (s ∈ [

80%, 90%
]
) because of the large approach

angles. Small position errors emerge during the intervals T2 and T3 due to the
small local curvature and the small approach angle. Due to the passive compliance
of the pen holder along the z-direction, the position control error in this direction
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Table 3.1: Gain matrices of the position, orientation, and null-space control law
in (3.25), (3.59) and (3.60).

Position Control Orientation Control Null-Space Control

KD = 10 diag(8, 8, 8) Kω = 10 diag(8, 8, 8) KDn = 10 diag(8, 8, 8)
KP = 102 diag(16, 16, 16) Ko = 1600 KPn = 102 diag(16, 16, 16)
KI = diag(0, 0, 0) bmax = −bmin = 10

is small. In contrast, the position control errors p̃T of the LSCM-based experiment
in Fig. 3.15 (red lines) remain small during the entire execution time. Quantita-
tively, the position control error p̃T remains below 1mm for all Cartesian position
coordinates.

Note that the lengths of the intervals T1 · · · T4 for the two projection methods
differ. This is due to the fact that the range of the axes motion during the draw-
ing process depends on the planned trajectory. Using the LSCM-based projection,
the pen orientation is always normal to the surface. Therefore, the robot has to
perform wide motions in the joint space and, consequently, the time intervals are
longer. The total execution time is around 300 s. The positive definite diagonal
gain matrices Kω,KPn,KDn, and Ko > 0 in (3.25) and (3.59) are chosen empiri-
cally, and the gain matrices KD, KP, KI in (3.25) are found using pole placement.
The parameters of the gain matrices are given in Tab. 3.1. Note that the feedfor-
ward terms p̈M

P and ω̇M
P in the motion control law (3.25) are neglected due to the

high gain matrices KD and KP.

Joint-Space Paths

The joint-space paths q̄T(s) =
[
q̄1 q̄2 · · · q̄7

]
for the process execution with both

projections are depicted in Fig. 3.16, where the individual joint angles q̄h are
normalized to their respective axis limits qh,min and qh,max in the form

q̄h =
2qh − (qh,max + qh,min)

qh,max − qh,min

, h = 1, . . . , n . (3.66)

As the orientation of the pen during the parallel projection experiment remains
constant, only small changes of the joint angles are required to follow the corre-
sponding desired path, see the blue lines in Fig. 3.16.
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malized to their respective axis limits qmin and qmax; adapted from [11].

52



Experimental Results

The joint-space path q̄(s) for the LSCM-based experiment (red lines in Fig. 3.16)
shows that, in this case, significantly larger robot movements are performed. Most
joints come close to the respective mechanical axis limit during process execution.
Therefore, applying the advanced null-space control law (3.59) is necessary to ex-
ecute this process, even though the relative position of the robot base B w.r.t. the
workpiece frame P is already chosen optimally with (3.65). Consequently, execut-
ing the planned trajectory is more challenging using the LSCM-based projection,
but it yields more accurate results for the drawing process, cf. Figs. 3.13 and 3.14.

3.4.5 Drawing Process with Hybrid Force/Motion Control

In this experiment, the hybrid force/motion controller from Section 3.3.3 is em-
ployed to perform the robotic drawing process using the planned trajectory of the
LSCM-based projection. The results are discussed in terms of the planned and
executed 3D paths, position control errors, and contact forces.

Planned and Executed 3D Paths

The desired and actual paths of the pen tip pM
B and pT

B are shown in Fig. 3.17.
It can be clearly seen that the actual trajectory pT

B deviates from the desired
trajectory pM

B in z-direction because the force control law (3.56) is applied in this
direction. The position in z-direction must deviate from the planned trajectory to
guarantee a constant contact force. During the transition phase from the end point
of one segment to the starting point of the next segment, the motion controller of
Section 3.4.4 is used. In order to ensure a smooth transition between the hybrid
force/motion control and the motion control, slightly smaller diagonal entries of
the positive definite gain matrix Kω and Ko > 0 and smaller diagonal entries of
the matrices KD and KP compared to the experiment with the motion controller
in Section 3.4.4 were chosen, see Tab. 3.2 and compare with Tab. 3.1. In the hybrid
force/motion control law (3.36), the last term is omitted due to a sufficiently slow
change of the selection matrix Vm, and the feedforward terms p̈M

P and ω̇M
P in the

motion control law (3.47) are negligible due to the high gain matrices KD and KP.
In the force control law (3.57), the feedforward term fd is also negligible because
of the high gain matrix KPf . Additionally, the term −KDf

(
RT

P(q)
)T

ṗT
P(q) is

added with the positive definite diagonal matrix KDf to damp the motion along
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Table 3.2: Gain matrices of the position, orientation, and force control law in
(3.47) and (3.57), cf. Tab. 3.1.

Position Control Orientation Control Force Control

KD = 10 diag(4, 4, 4) Kω = 10 diag(4, 4, 4) KDf = 102 diag(0, 0, 8)
KP = 102 diag(4, 4, 4) Ko = 400 KPf = 102 diag(0, 0, 1)
KI = diag(0, 0, 0) KIf = 102 diag(0, 0, 1)

0.7
0.75

0.8
0.03 0.06 0.09 0.12

0.5

0.55

x (m)
y (m)

z
(m

)

pM
B
pT
B

nM
B

P2

P1
P3

Figure 3.17: Desired and executed 3D path pM
B and pT

B and the correspond-
ing surface normal vectors nM

B using the LSCM-based projection with hybrid
force/motion control; adapted from [11].

the z-direction of the tool frame T and generate smooth robot motions during
the experiment, see [67]. This term does not affect the proof of stability from
Section 3.3.3 because no end-effector velocity appears in z-direction with ideal
contact, see (3.42). The gain matrices of the null-space controller are the same as
those of the motion controller.

Contact Force

The estimated contact force f̂T ,z is depicted in Fig. 3.18 for the LSCM-based
trajectory with the hybrid force/motion control and the motion control of Sec-
tion 3.4.4. The contact force parallel to the surface normal f̂T ,z is controlled to
the desired value of −3N by the hybrid force/motion controller (red line). At
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Figure 3.18: Evolution of the pen/surface contact state (top) and the estimated
contact force f̂T ,z in z-direction of the tool frame T (bottom) during the drawing
process with the motion control and the hybrid force/motion control; adapted from
[11].

every pen/surface contact state change, the controller is switched from the hybrid
force/motion controller to the motion controller and vice versa. The small contact
force peaks in f̂T ,z, see Fig. 3.18, originate from these controller switching opera-
tions. In contrast, the contact force f̂T ,z is not controlled by the motion controller
and, therefore, it varies between −4N and nearly zero in this case (blue line).
Additionally, a loss of the pen/surface contact can occur due to misalignment of
the workpiece and inaccuracies of the robot. For both controllers, the estimated
forces are approximately zero in phases without contact.

Remark 1 The contact force estimation [66] requires a precisely calibrated dy-
namic robot model (2.24). Otherwise, significant estimation errors may occur,
even if no pen/surface contact is present. Alternatively, the contact force estima-
tion can be calibrated for a specific robot trajectory by performing the experiment
without any pen/surface contact as a reference motion with f̂T = 0.
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Position Control Error

In order to evaluate the performance of the hybrid force/motion control, the con-
tact state and the position control error p̃T of the drawing process are depicted in
Fig. 3.19. Overall, small control errors are observed for x̃T and ỹT , whereas the
peaks originate from the controller switching, cf. Fig. 3.18. During the intervals
with pen/surface contact, the position control error p̃T in z-direction is higher be-
cause the force controller adapts the position in z-direction to control the contact
force f̂T ,z.

3.4.6 Comparison of the Drawing Results

This section presents and compares the experimental drawing results of both pro-
jection methods introduced in Section 3.2 and the two control concepts from Sec-
tion 3.3. The resulting drawing patterns on the 3D-printed rabbit using the paral-
lel projection and the LSCM-based projection with motion control are depicted in
Fig. 3.20a as blue line and Fig. 3.20b as red line. The other patterns (the yellow
line for the LSCM-based projection in Fig. 3.20a and the blue line for the parallel
projection in Fig. 3.20b) are only depicted for comparison. Comparing the two
projection methods, distortions from the parallel projection are seen, especially at
areas with high curvature, e.g., at P1 . The robot is not able to accurately fol-
low the desired trajectory at areas with a large approach angle using the parallel
projection with motion control, e.g., P2 , cf. Fig. 3.13 and Fig. 3.14.

Next, the drawing results with the two presented control concepts are compared for
the LSCM-based trajectory, see Fig. 3.21. In the drawing result with the motion
controller in Fig. 3.21a, a fluctuating line thickness is observed. In particular, at
point P6 , nearly no pen/surface contact is present, emerging from inaccuracies of
the robot kinematics. This thin line results from a low contact force of the pen tip
which can also be seen in the estimated contact force f̂T ,z in Fig. 3.18 at s ≈ 10%.
In contrast, a uniform line thickness is achieved with the hybrid force/motion
control in Fig. 3.21b. The experiments for this drawing process are executed
without an absolute calibration of the robot and without optical measurement of
the actual Cartesian end-effector pose.
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(a) (b)

P2 P2

P1 P1

Figure 3.20: Resulting patterns on the 3D object with motion control and (a)
parallel projection (blue line) (b) LSCM-based projection (red line); adapted from
[11].

3.5 Conclusions

In this chapter, an automated workflow for the customization of products using
robotic manufacturing is presented on the basis of a drawing process on a complex
surface of a 3D object. In this process, a 2D input pattern is provided by a user
together with the desired size, location, and rotation on the 3D object and then
drawn on the 3D object using an industrial robot.

The workflow starts with a projection procedure of the 2D input pattern to the 3D
object, for which two different projection methods are presented and explained,
i.e., the least-squares conformal mapping (LSCM) projection and a simple parallel
projection approach. The conformal mapping procedure comprises a segmenta-
tion step, an LSCM to flatten the segments, and an inverse map using barycentric
coordinates. This way, distortions of the 2D input pattern are minimized, and
a 3D path on the 3D object is obtained. Although the parallel projection can
be used in areas with small curvature and low complexity a visually proper pro-
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(a) (b)

P6 P6

Figure 3.21: Resulting patterns on the 3D object with the LSCM-based projection
using (a) motion control (b) hybrid force/motion control; adapted from [11].
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jection is achieved only with the more advanced conformal mapping procedure.
Based on the result of the two presented projection methods, robot trajectories
are planned and executed in an experimental setup with an industrial robot. For
the planned trajectories, two different control concepts, i.e., motion control and
hybrid force/motion control, are presented and employed in the experiments. Ad-
ditionally, the contact force during the drawing process is estimated. The motion
controller can execute the trajectory with small errors. However, only the hybrid
force/motion controller is able to maintain the desired contact force normal to
the surface during the whole task execution, which is necessary for achieving a
high production quality. This chapter presented the drawing results using both
projection procedures and the two control concepts.

In industry, this approach allows the automatic mapping of 2D manufacturing
paths to different 3D objects while maintaining the required position and contact
force accuracy. This automated workflow directly applies to other manufacturing
processes like laser engraving, milling, or ultrasonic cutting.

Major parts of this section have been published in the author’s works [7, 9, 11] and
are adapted for this thesis.
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Chapter 4 Optimal TCP and
Robot Base
Placement

In the previous chapter, a flexible way to draw 2D user-input patterns fully au-
tomatically on complex 3D workpieces with an industrial robot was shown. In
order to guarantee high flexibility, the robot’s kinematic structure needs to fulfill
the kinematic requirements of the drawing task for many possible input patterns.
Executing the trajectory generated with the least-squares conformal mapping ap-
proach may be challenging due to the high curvature of the workpiece. The robot
placement is crucial to execute the desired complex continuous robot trajectories.
Although the robot placement is optimally designed and an advanced null-space
controller is used for the drawing task, some axes are occasionally close to their lim-
its. If a joint limit is violated during the drawing task, continuous robot execution
is no longer possible.

In this chapter, the optimal robot base placement for multiple manufacturing
paths is investigated. An emphasis is laid on optimizing the mounting of the TCP
on the robot’s end-effector, which has gained little attention in the literature so
far. This approach allows the adaption of the robot cell in a manufacturing line
after deployment or during operation if challenging robot trajectories cannot be
executed with the TCP mounting of the original robot work cell.

First, a literature review for the optimal robot base and TCP placement is dis-
cussed. Then, a fast joint-space planner for continuous paths is presented, designed
to be embedded in a superordinate optimization problem. Subsequently, this plan-
ner is utilized in the algorithm to find the optimal TCP pose, formulated as an
optimization problem. Additionally, this algorithm is adapted to find the optimal
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robot base placement. The proposed approach is applied to a trim application,
where the optimal robot base and the TCP placement are calculated for 44 complex
continuous paths.

Major parts of this chapter have been published in the author’s work [8] and are
adapted for this thesis.

4.1 Literature Review

The robot base placement is crucial for the execution of certain manufacturing
paths. Most papers in the literature deal with base pose optimization, considering
different properties of the robot, i.e., kinematics [74], dynamics [75], manipulability
[76], stiffness [77], and time optimality [78].

Major parts of this section have been published in the author’s work [8] and are
adapted for this thesis.

In one example in the literature, the stiffness and deformation of individual axes are
considered for the base placement in milling tasks [79] to satisfy the high accuracy
requirements. In some applications, i.e., mostly for milling and welding tasks,
continuous end-effector paths are investigated. In [80] and [81], the elastostatic
model of the robot is used to find the optimal stationary workpiece placement
for continuous paths by minimizing the distance between the robot tool and its
desired path. In [82], genetic algorithms that consider kinematic and dynamic
manipulability and milling forces for a given trajectory are used. A fast search
for a feasible stationary workpiece pose is shown in [83] for a 7-DoF robot with
a tool axis redundancy by successively considering additional constraints in an
optimization problem. Other works concerned with robot base placement only
consider individual poses instead of continuous paths, e.g., for spot welding [84, 85],
short seam welding [86], or pick-and-place tasks using mobile robots [87]. Further
works focus on capability and reachability maps, which are mostly used to position
the base of mobile robots in grasping tasks, e.g., [88], [89], and [90].

For a general 6-DoF robot, up to 16 inverse kinematics solutions exist, which result
in the same end-effector pose, see [29]. Industrial robots with 6 DoF and a spherical
wrist are used in most applications. If the range of one or more rotational axes
is beyond 180◦, additional inverse kinematics solutions must be considered in the
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planning. In [91], the feasibility of the whole path is investigated while focusing
mainly on cycle times. The work [31] combines two optimization loops, wherein,
the inner loop, a redundant DoF is used to avoid singularities and the dynamical
limits of the robot. In the outer loop, a particle swarm optimization searches for
the global optimal robot base pose. Although wide axis ranges are considered
in both works, the same solution of inverse kinematics is employed throughout a
single-path execution.
Because the search for the optimal robot base placement is closely related to path
planning, a survey of sampling-based path planning methods that systematically
incorporate constraints is given in [92]. The graph-based Descartes algorithm
described in [93] considers movements through multiple inverse kinematics solu-
tions. However, this planner only outputs one solution for each path planning
problem and exhibits comparably long computation times. More advanced path-
planning algorithms like [94] and [95] cover a wider range of applications but also
suffer from higher computational costs.
Nevertheless, a robotic work cell is only productive if all desired manufacturing
paths are plannable and executable. This chapter aims to show that by adapting
the TCP on the end-effector, the robotic work cell can improve its flexibility, and
a necessary repositioning of the robot base can be avoided. This adaptation of the
TCP could be implemented in practice using multiple tools with different TCP
and a tool changer. In order to find the optimal TCP pose, a fast path planner
generating all possible solutions is developed, considering axis ranges over 180◦

and movements through singular configurations. Furthermore, this algorithm is
formulated in a general way and applies to finding the optimal robot base place-
ment while taking a set of paths into account for optimization. To the best of the
authors’ knowledge, such an approach has not been proposed in the literature yet.

4.2 Fast Kinematic Joint-Space Path Planner

In this section, a fast joint-space path planner is proposed which considers all
feasible kinematics solutions. Additionally, this planner is capable of generating
multiple joint-space paths and planning through kinematic singularities. Based on
the output of the joint-space path planner, the optimal TCP of the end-effector is
determined as the solution of an optimization problem in Section 4.3, considering
joint-space motions and kinematic robot limits.
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Algorithm 1 Joint-space path planner
Require: HM

P = {HM
P,k, k = 1, . . . , nm}

Initialize:
for k = 1 to nm do
HT

P,k ← HM
P,k

Qk ← h−1
H

(
HT

P,k

)
Dk ←

{
1, . . . , |Qk|c

}
end for
Search continuous joint-space paths:
C ← D1

∀c ∈ C : Pc ← {qc,1}
for k = 2 to nm do

for all Pc, c ∈ C do
dmin ← argmind∈Dk

∥qd,k − lastElement(Pc)∥2
if ∥qdmin,k − lastElement(Pc)∥2 < qdist then
Pc ← Pc ∪ {qdmin,k}

else
C ← C \ c

end if
end for

end for

Major parts of this section have been published in the author’s work [8] and are
adapted for this thesis.

The objective of the path planner is to find all feasible continuous joint-space paths
P for a given manufacturing path HM

P , see Section 2.2.1. The joint-space path
planner is summarized in Algorithm 1.

The industrial robot must consecutively follow the manufacturing path poses HM
P,k

contained in HM
P . The augmented forward kinematics introduced in Section 2.1.2

compute the robot configuration depending on whether the tool is attached to the
end-effector (2.9)

HT
P,k(y

T
E,φ) = HW

P HB
WHE

B(qk)H
T
E (y

T
E,φ) (4.1)

or is stationary (2.10)

HT
P,k(y

P
E,φ) =

(
HP

E (y
P
E,φ)

)−1 (
HE

B(qk)
)−1

HW
B HT

W . (4.2)
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The augmented forward kinematics (4.1) is parametrized with the pose yT
E,φ of

the tool mounting w.r.t. the end-effector, i.e., the position pT
E and orientation

given as Roll-Pitch-Yaw angles φT
E from (2.12b). The latter is indicated by the

index φ in yT
E,φ. Similarly, if the tool is stationary, the workpiece is mounted

on the end-effector, and the augmented forward kinematics (4.2) is parametrized
with the pose yP

E,φ of the workpiece mounting w.r.t. the end-effector. With these
parametrizations, the geometric dimensions of the mechanical attachment on the
end-effector can be found by using the poses yT

E,φ or yP
E,φ as optimization variables

in the optimization problem.

In the initialization phase of Algorithm 1, the inverse kinematics (2.17) is applied
to each pose of the manufacturing path HT

P,k of the augmented forward kinematics
(4.1) or (4.2),

Qk = h−1
H

(
HT

P,k

)
, (4.3)

for k = 1, . . . , nm, to obtain the sets Qk containing ek = |Qk|c = |Dk|c ∈ N inverse
kinematics solutions qd,k ∈ Qk, d ∈ Dk. Here, Dk denotes the index set of the
solutions in Qk, which only contains feasible solutions, i.e., all inverse kinematics
solutions that satisfy the kinematic constraints, like mechanical joint limits. If the
DoF of the robot is greater than the process DoF, i.e., the dimension of the task
space in (2.12), the sets Qk are sampled according to (3.64), which results in the
sets Qf

k, see, e.g., [93]. The set Qk is also used to cover this case in the following.

Initially, C = D1 is chosen, i.e., at the beginning, all starting solutions c ∈ D1 are
assumed to yield a feasible sequence Pc. Then, starting with c ∈ D1, all possible
sequences of feasible continuous joint-space paths Pc, c ∈ C ⊆ D1 are determined,
where C is the index set of feasible continuous joint-space paths. The first element
of each sequence Pc corresponds to the inverse kinematics solution qc,1, c ∈ D1.
The second element of each sequence Pc is obtained by minimizing the Euclidean
distance ∥qd,2−qc,1∥2 for all d ∈ D2. The index of the solution with minimum dis-
tance is denoted by dmin. If ∥qdmin,2 − qc,1∥2 < qdist, with a user-defined threshold
qdist, the second element of the sequence Pc is qdmin,2, otherwise Pc is discarded, and
a new index set C is defined as C = D1 \ c . This procedure is now sequentially
applied to all further path points k = 3, . . . , nm. With this approach, multiple
continuous joint-space paths Pc, c ∈ C, are found for a given task-space manufac-
turing path HM

P . This joint-space path planner can consider movements through
kinematic singularities and solutions resulting from wide turning axis ranges since
all feasible joint-space configurations of each path pose HT

P,k are accounted for to
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Figure 4.1: Example of the path planner searching for continuous paths. The
solid arrows represent transitions with the shortest Euclidean distance, while the
dashed arrows represent discarded transitions between feasible joint configurations;
adapted from [8].

find the path with the least joint movement. A joint-space controller has to be
used if the robot is moved through a singular configuration.

A visual representation of the search for continuous join-space paths is shown in
Fig. 4.1. In this figure, the nodes represent feasible joint configurations. The short-
est Euclidean distances are indicated as arrows with solid lines, and the dashed
lines represent discarded transitions.

4.3 Optimal TCP Placement

This section describes the algorithm to determine the optimal pose yT
E,φ of the

TCP frame T or the optimal pose yP
E,φ of the workpiece frame P w.r.t. the end-

effector frame E . By adapting the end-effector mounting using an optimization-
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based approach, redesigning the robot work cell and repositioning the robot can be
avoided. First, a set of paths is introduced as input for the optimization. Second,
the objective function and the optimization criteria are presented, and third, the
optimization algorithm is described in detail. Finally, the algorithm is adapted
for optimal robot base placement. In the following, only the TCP pose w.r.t. the
end-effector yT

E,φ is used.

Major parts of this section have been published in the author’s work [8] and are
adapted for this thesis.

4.3.1 Set of Paths

The set of manufacturing paths {HM
P,1, · · · , HM

P,np
} with the number of paths np

is considered as input for the algorithm. The joint-space path-planning algorithm
from Section 4.2 is executed for all manufacturing paths HM

P,i, i = 1, . . . , np, for a
given TCP pose yT

E,φ, resulting in the feasible joint-space paths {P i
c | c ∈ Ci}, i =

1, . . . , np, for all manufacturing paths. Note that Ci is the index set for the feasible
solutions of the corresponding manufacturing path i. Each manufacturing path
HM

P,i consists of nm,i poses, cf. (4.1) or (4.2).

4.3.2 Objective Function and Optimization Criteria

The objective function fp(y
T
E,φ) computes a scalar measure for a given TCP pose

yT
E,φ. The results of the joint-space path planner from Section 4.2 are used as

qualitative and quantitative measure in the objective function of the optimization.

The objective function fp(y
T
E,φ) consists of four terms

fp(y
T
E,φ) =

ν1fp,1(y
T
E,φ) + ν2fp,2(y

T
E,φ) + ν3fp,3(y

T
E,φ) + ν4fp,4(y

T
E,φ)

ν1 + ν2 + ν3 + ν4
, (4.4)

where the coefficients νj > 0, j = 1, . . . , 4, are manually tuned weights of the terms
fp,j(y

T
E,φ). The terms fp,j(y

T
E,φ) read as follows:

• The term fp,1(y
T
E,φ) accounts for the number of feasible inverse kinematics

solutions ek,i for every path pose k = 1, . . . , nm,i of every manufacturing path
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HM
P,i, i = 1, . . . , np, i.e.,

fp,1(y
T
E,φ) =

1

emaxnp

np∑
i=1

1

nm,i

nm,i∑
k=1

ek,i . (4.5)

The pre-factor in (4.5) normalizes the function. The constant emax denotes
the maximum number of inverse kinematics solutions for the specific robot.
For non-redundant robots this constant is the number of distinguishable
joint-space solutions and for redundant robots the infinite number of possible
joint-pace solutions is sampled, see Section 2.1.4. The term (4.5) locally
generates a gradient in a meaningful direction.

• The function fp,2(y
T
E,φ) corresponds to the number of feasible continuous

joint-space solutions for each manufacturing path HM
P,i, i = 1, . . . , np, and is

chosen as

fp,2(y
T
E,φ) =

1

emaxnp

np∑
i=1

|Ci|c . (4.6)

The higher the objective term (4.6), the more manufacturing paths are con-
tinuously executable by the robot.

• By including fp,3(y
T
E,φ) in the objective function, the joint movement between

consecutive manufacturing path poses is minimized for continuous paths.
The objective term fp,3(y

T
E,φ) is defined as

fp,3(y
T
E,φ) =

1

np

np∑
i=1

1

(nm,i − 1) |Ci|c
∑
c∈Ci

nm,i−1∑
k=1

∥qi
c,k+1 − qi

c,k∥−1
2 , (4.7)

where qi
c,k is the kth element of the sequence P i

c . Again, the pre-factors
normalize the objective term (4.7).

• A robot setup is more flexible if it can execute paths for which the TCP
was not optimized for. Hence, the last term fp,4(y

T
E,φ) considers the reserves

of the joint positions to the respective mechanical joint limits qh,min and
qh,max, h = 1, . . . , n, during the robot motion and is given by

fp,4(y
T
E,φ) =

1

np

np∑
i=1

1

nm,i |Ci|c
∑
c∈Ci

nm,i∑
k=1

∥q̄(qi
c,k)∥−1

2 , (4.8)
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with qi
c,k ∈ P i

c , where the vector-valued function q̄T(q) =
[
q̄1 · · · q̄n

]
corre-

sponds to (3.66) q̄h =
2qh−(qh,max+qh,min)

qh,max−qh,min
, h = 1, . . . , n.

4.3.3 Optimization Algorithm

Using the objective function (4.4), the optimization problem for the optimal TCP
placement yT ∗

E,φ reads as

yT ∗
E,φ =argmax

yT
E,φ∈R6

fp(y
T
E,φ) (4.9a)

s.t. yT
E,φ,min ≤ yT

E,φ ≤ yT
E,φ,max , (4.9b)

with the boundaries (yT
E,φ,min)

T=
[
(pT

E,min)
T (φT

E,min)
T
]

and (yT
E,φ,max)

T=
[
(pT

E,max)
T

(φT
E,max)

T
]
, see (2.12b) and Fig. 2.3. Note that fp(y

T
E,φ) is not continuously differ-

entiable. Furthermore, the proposed path-planning algorithm is computationally
expensive, particularly for large path sets. Therefore, a surrogate optimization
approach is chosen. Specifically, the Matlab implementation surrogateopt is used
to solve (4.9), which uses an approximation of the objective function to search
for the global optimum [96]. Additionally, the parallel nature of this algorithm is
utilized to reduce the computation time.

4.3.4 Robot Base Placement

By considering a new optimization variable, the problem (4.9) is adapted in a
straightforward way for optimal robot base placement, which is described in this
section. To this end, the homogeneous transformation HT

P,k in (4.1) or (4.2) is
reformulated as

HT
P,k(x

W
B ) = HW

P
(
HW

B (xW
B )

)−1
HE

B(qk)H
T
E , (4.10)

or
HT

P,k(x
W
B ) = HE

P
(
HE

B(qk)
)−1

HW
B (xW

B )HT
W , (4.11)

with the 2D robot base position (xW
B )T =

[
xW
B yWB

]
as new optimization variable

and a constant height zWB = 0.193m. The optimization variable xW
B is the position

of the world frame W w.r.t. the robot base frame B. The optimization problem
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(4.9) is adapted in the form

xW∗
B =argmax

xW
B ∈R2

fp(x
W
B ) (4.12a)

s.t. xW
B,min ≤ xW

B ≤ xW
B,max , (4.12b)

with the minimum and maximum positions xW
B,min and xW

B,max in terms of the
available workspace. The optimization (4.12) is again solved with the surrogate
optimization approach. Every other pose, position, or orientation of the forward
kinematics can be found using a different optimization variable and reformulating
the optimization problem.

4.4 Simulation Results

In this section, the optimal placement of the TCP and the robot base is applied to
a robot work cell performing a trim application. A robot moves a trimming tool
along the edge of a shoe sole to trim excess material arising from injection molding,
which is a common task in semi-automated shoe manufacturing. The kinematic
arrangement is shown in Fig. 2.1a. In this application, the 6-DoF robot Kuka
Cybertech KR8 R1620 with a spherical wrist is used, see Appendix A.2. The range
of joint 3 is constrained by the workshop floor and the energy chain of the tool from
q3,min = −137◦ to q3,min = 60◦, cf. Tab. A.2. The robot base and the TCP must
be placed such that 22 trim paths for the left and the right shoe, i.e., 44 paths,
are executable. Two of the trim paths are shown in Fig. 4.2, where the robot base
frame B is located at the origin. The trim paths are described in the workpiece
frame P , which is also the world frame W , i.e., HW

P = I. All feasible joint-space
solutions for one trim path with nm = 638 manufacturing path frames are found
in less than 100ms using the fast joint-space path planner from Section 4.2 on an
Intel Core i7-8700K with 16GB RAM. A video of the experimental trimming
process is provided at www.acin.tuwien.ac.at/9c5f .

Major parts of this section have been published in the author’s work [8] and are
adapted for this thesis.
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Figure 4.2: Example trim paths for the left and the right shoe given in the work-
piece frame P , which equals the world frame W ; adapted from [8].

4.4.1 Optimal Robot Base Placement

In this section, the placement of the robot base for the trim application is investi-
gated using the optimization problem (4.12), which is analogous to the workpiece
placement. The homogeneous transformation HT

E in (4.10) is taken from the ex-
isting tool

(yT
E,φ,ex)

T =
[
−0.066m 0 0.269m π 0.719 rad −π

]
. (4.13)

In order to illustrate and discuss the objective function fp(x
W
B ) for the surrogate

optimization algorithm, a Monte-Carlo simulation in the admissible range

(xW
B,min)

T =
[
0 −1m

]
and (4.14a)

(xW
B,max)

T =
[
1.5m 1m

]
(4.14b)

is performed and shown in Fig. 4.3. In this figure, dark blue areas represent high
objective function values, and red areas indicate low values. Furthermore, Fig. 4.3
reveals three distinct plateaus originating from the objective term fp,2(x

W
B ) from
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Figure 4.3: Grid-based Monte-Carlo simulation with contour lines with the
optimal robot base placement xW∗

B ; adapted from [8].

(4.6). For a robot base placement xW
B in the blue area, the algorithm can solve the

joint-space paths for all trim paths. The green area marks positions where only a
subset of trim paths can be solved, and in the red area, none of the trim paths are
executable by the robot.

Thus, with the boundaries (4.14), the optimal robot base placement reads as

(xW∗
B )T =

[
0.902m 0.003m

]
. (4.15)

This optimal point xW∗
B is found by applying the surrogate optimization to (4.12),

in which the objective function (4.4) is evaluated about 25 times. The weights of
(4.4) are empirically tuned and are chosen as ν1 = 5, ν2 = 10, ν3 = 0.1, and ν4 = 1.
If the robot base is placed at this optimal point xW∗

B , all 44 trim paths can be
executed with the existing tool with the TCP (4.13) mounted on the robot.

For a single trim path, Fig. 4.4 shows a comparison of the joint-space paths for
two different robot base placements xW

B , i.e., the optimal point xW∗
B from (4.15)

shown in blue and a suboptimal point (xW
B,sub)

T =
[
0.8m −0.4m

]
depicted in red,
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Figure 4.4: Joint-space paths normalized to the respective joint limit, see (3.66),
for the optimal robot base placement (xW∗

B )T =
[
0.902m 0.003m

]
in blue and for

the suboptimal placement (xW
B,sub)

T =
[
0.8m −0.4m

]
in red; adapted from [8].

see Fig. 4.3. The joint angles are normalized with (3.66) in the range [qmin,qmax]

according to Tab. A.2 with the reduced joint limit of q3,min = 60◦. Although all
desired trim paths can be executed for both placements, a distinct difference is
visible in the joint-space paths. Particularly for joint q3, the joint motions for
the suboptimal placement provide less reserves to the joint limits of the robot.
This is taken into account by the objective function term fp,4(x

W
B ) in (4.8), which

penalizes joint-space path points close to the joint limits. Furthermore, Fig. 4.4
reveals that the wide turning range of joint 6 from q6,min = −350◦ to q6,max = 350◦

is necessary to perform the continuous motion along the complex trim path.
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4.4.2 Optimal TCP Placement

In this section, the optimal TCP placement is investigated for all 44 trim paths,
considering the suboptimal robot placement (xW

B,inv)
T =

[
0.6m −0.4m

]
. With this

placement, only a subset of all trim paths can be executed with the available tool
yT
E,φ,ex introduced in (4.13), see Fig. 4.3. The optimization problem (4.9) is solved

with the boundaries

(yT
E,φ,min)

T =
[
−0.2m −0.2m 0.2m −π −π

2
−π

]
(4.16)

and
(yT

E,φ,max)
T =

[
0.2m 0.2m 0.4m π π

2
π
]

, (4.17)

which arise from the mechanical limits for the construction of the trim tool and
the allowed specifications of the robot. The weights νj, j = 1, . . . , 4, are chosen as
in Section 4.4.1.

The optimal TCP pose yT ∗
E,φ for the optimization problem (4.9) is found as

(yT ∗
E,φ)

T =
[
−0.079m 0.039m 0.309m 2.849 rad 0.805 rad 3.040 rad

]
=

[
(pT ∗

E )T (φT ∗
E )T

]
, (4.18)

given by the optimal TCP position pT ∗
E and orientation φT ∗

E as Roll-Pitch-Yaw
angles. With this optimal TCP pose, all trim paths can be realized, and a repo-
sitioning of the robot can be avoided. In Fig. 4.5, the poses of the existing tool
yT
E,φ,ex from (4.13) and optimal tool yT ∗

E,φ from (4.18) are compared, for which dif-
ferent tool mounts are used. Figure 4.6 illustrates the updated Monte-Carlo
simulation from Fig. 4.3 with the optimal TCP pose yT ∗

E,φ from (4.18). In this
figure, the investigated point xW

B,inv is now located in the blue area, which again
refers to the area where all desired trim paths can be executed by the robot. This
point was located in the green area in Fig. 4.3 using the existing tool with the
TCP pose yT

E,φ,ex.

In order to validate this result qualitatively, the admissible area of the TCP pose
is investigated by visualizing the objective function fp(y

T
E,φ) from (4.4) for the

6-dimensional space yT
E,φ using two 3-dimensional Monte-Carlo simulations for

the position and orientation separately. In Fig. 4.7, the Monte-Carlo simulation
of the Cartesian position pT

E is shown, whereas the orientation of the TCP φT
E is
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Figure 4.5: Comparison of the pose of the (a) existing tool yT

E,φ,ex (b) optimal tool
yT ∗
E,φ and their corresponding tool mounts.

fixed to the optimum value φT ∗
E . Note that only TCP positions pT

E for which all
trim paths can be executed are plotted. The blue dots mark high values of the
objective function and low values are depicted in red. A gradient in the objective
function is visible, which guides the optimization algorithm towards the optimal
position pT ∗

E . Similarly, a Monte-Carlo simulation of the Roll-Pitch-Yaw angles
φT

E using the optimal TCP position pT ∗
E from (4.18) is depicted in Fig. 4.8. Again,

only data points φT
E are shown with which the robot can execute all 44 desired

trim paths. The feasible areas in Fig. 4.8 are more distinct compared to Fig. 4.7 for
the TCP position pT

E . The apparent four separated areas are connected due to the
periodicity of the Roll-Pitch-Yaw angles φT

E,z and φT
E,x. Therefore, the objective

function fp(y
T
E,φ) exhibits a distinct maximum which is found by the surrogate

optimization.

4.5 Conclusions

In order to improve the flexibility of robot work cells, an algorithm for the optimal
TCP and robot base placement for a given set of complex manufacturing paths is
presented. To this end, a fast joint-space path planner is developed, which calcu-
lates all feasible continuous joint-space paths. This planner considers all possible
inverse kinematics solutions, including wide axis ranges, and allows the planning of
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Figure 4.6: Grid-based Monte-Carlo simulation with contour lines using the
TCP pose yT ∗

E,φ; adapted from [8].

robot motions through singular points. The optimization-based placement of the
TCP and the robot base is performed using a surrogate optimization and systemat-
ically considers the reserves to the respective joint limits. The proposed algorithm
is applied in a trim application in shoe manufacturing to find the optimal robot
base placement and the optimal TCP placement in the case of a suboptimally
placed robot base. This work shows that, in some cases, it is sufficient to adapt
the TCP of the robot tool on the end-effector instead of redesigning the robot work
cell. Optimally placing the robot base also increases the reserves to the respective
robot joint limits.

Major parts of this section have been published in the author’s work [8] and are
adapted for this thesis.
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Chapter 5 Path Planning using
Process Properties

The previous chapter presented the optimal TCP and robot base placement for a
set of complex manufacturing paths. The location of the robot base and the TCP
are crucial for designing a manufacturing line for a specific product. In a flexible
production line, the product or manufacturing path changes frequently. If these
manufacturing paths exceed the kinematic capabilities of the robotic setup, an
adaption of the manufacturing line would be necessary, which, in some cases, can
be achieved by adaptions of the TCP on the end-effector. Since the adaption of
the TCP is usually only possible within geometrical and load limits, this approach
cannot be applied in all situations to obtain executable manufacturing paths. In
some cases, additional aspects of the production process must be considered to
achieve the required flexibility.

In this chapter, the strict specifications of the manufacturing path can be soft-
ened by exploiting the process properties, which significantly increases the search
space for path planning. This chapter discusses how the process properties of the
manufacturing path, i.e., process tolerances, process windows, constraints, and
redundant process DoF, can be used to solve complex path-planning problems.
Incorporating those process properties into a path-planning framework leads to
solutions for continuous robot motions for manufacturing paths, which cannot
be found otherwise. Hence, an adaption of the robotic setup could be avoided.
Therefore, considering these advanced path-planning capabilities allows us to han-
dle highly complex industrial path-planning problems with significant flexibility.

First, a literature review of the broad field of path planning is discussed. Second,
a general collision avoidance scheme is presented. The following section describes
a general path-planning framework using this collision avoidance scheme. A cost
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function is designed based on the process properties, and an optimization is for-
mulated to solve the path-planning problem. Next, the proposed path planner is
used to determine an optimal robot base placement. Finally, the path planner is
applied to two different manufacturing processes.

Major parts of this chapter have been published in the author’s work [10] and are
adapted for this thesis.

5.1 Literature Review

In this section, the state-of-the-art path-planning algorithms for industrial robots
are summarized and discussed. An emphasis is laid on path-planning methods
that consider tolerances, process windows, constraints, and redundant DoF, as
introduced in Section 2.2.2.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.

In the literature, several path planning algorithms tailored to specific manufactur-
ing processes have been published, which incorporate only the application-specific
process properties, e.g., welding [32, 33], surface inspection [97], sanding [98], and
chamfering [34]. In this work, a general deterministic path-planning framework is
proposed, which systematically considers all process properties. Additionally, the
planning algorithm takes into account collision avoidance and can plan through
singular joint configurations, which is mostly avoided with different concepts in
state-of-the-art path planners, e.g., [32, 36, 94, 99].

Note that this review focuses on path planning in joint space for a given Cartesian
tool path. Generally, the tool path may be designed manually or automatically
based on user inputs, e.g., with the concepts of Section 3.2, or be the result of an
automatic path-generation algorithm based on the workpiece geometry, e.g., [24].
Path-planning algorithms are distinguished by the underlying method used, i.e.,
sampling or optimization-based, which are discussed in the following. Additionally,
the pathwise inverse kinematics problem is addressed as a special form of the
inverse kinematics problem.
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Sampling-based Path Planners

A detailed survey of sampling-based path planners that systematically incorporate
constraints is given in [92]. The most prominent library of sampling-based path
planners is the Open Motion Planning Library (OMPL) [100], in which several
sampling-based approaches are included, such as Probabilistic Roadmap Methods
(PRM) and Rapidly-exploring Random Trees (RRT). As the main focus of those
approaches is solving point-to-point motion planning problems, the intermediate
Cartesian path cannot be provided beforehand. Furthermore, sampling-based path
planners mostly require smoothing as a post-processing step to remove redundant
and jerky motions, e.g., [101]. Additionally, including multiple constraints, redun-
dant DoF, and tolerances in the computation of a joint-space path increases the
problem size drastically, which becomes infeasible to solve.

The popular Descartes algorithm [93] is a semi-constrained offline path plan-
ner that considers tolerances. Therein, for every Cartesian path point, multiple
inverse kinematics solutions are computed using inverse kinematics solvers such
as the Kinematics and Dynamics Library (KDL) [102] or Inverse Kinematics Fast
(IKFast) [103]. Process tolerances are considered by sampling the allowed tolerance
band with an equidistant grid, for which all corresponding inverse kinematics so-
lutions are computed. Hence, the number of possible inverse kinematics solutions
for each path point increases, particularly if tolerances are allowed for multiple
DoF. This leads to high memory usage and high computation time when searching
the optimal joint-space path in a graph search with the Dijkstra algorithm. In
[104], an RRT-based planner computes collision-free paths without an explicit goal
configuration. Instead, a goal region is described by workspace goal criteria, and a
path with the lowest tolerance utilization is computed. Considering multiple con-
straints and costs in sampling-based methods is challenging, especially if optimal
paths must be found, see [105]. In [106], a sampling-based planner is introduced to
solve point-to-point problems. The planner incorporates kinematic and dynamic
constraints to find optimal paths.

In many works, path planners tailored to a special industrial process are designed,
e.g., for welding applications in [33]. Therein, the redundant process DoF of the
tool is discretized, and a collision-free path is generated by a modified RRT*
algorithm. Another example is presented in [32], where the planning of a com-
plex welding path for a 6-DoF robot is performed in two steps. First, the joint
configurations of the end-effector’s start and end poses are determined. Second,
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the continuous robot motion between those configurations is computed. In this
process, the rotation around the welding torch is a redundant process DoF, cf. Sec-
tion 2.2.2. This DoF is sampled with an equidistant grid, and the corresponding
joint configurations are computed. If no solution of the inverse kinematics prob-
lem is found, a different inclination angle of the torch is used. Furthermore, the
joint movement defines costs to be minimized by the beam search algorithm while
near-singular configurations of the robot are avoided. The above path planners
[32, 33] sample the redundant DoF and, therefore, must reduce the search space
by sampling to solve the planning problem.

Optimization-based Path Planners

In optimization-based path planners, an optimization scheme is employed to plan
feasible and locally or globally optimal joint-space paths. Constraints can be
systematically incorporated, e.g., [107]. A sequential convex optimization algo-
rithm called Trajectory Optimization for Motion Planning (Trajopt) is presented
in [108]. The Trajopt algorithm guesses one or multiple initial solutions for a
trajectory and optimizes the joint-space path length while considering kinematic
constraints. Process tolerances are not taken into account by this algorithm. The
covariant Hamiltonian optimization for motion planning (CHOMP) algorithm in
[109] is used to find smooth collision-free trajectories, and the stochastic trajectory
optimization for motion planning (STOMP) algorithm in [110] is a gradient-free
optimization with the possibility to include constraints. The above path plan-
ners compute an intermediate joint-space path between two configurations and,
therefore, are suited for solving point-to-point planning problems only.
Optimization-based approaches can consider additional criteria for path planning,
i.e., energy consumption [111, 112], time [113, 114, 115], time and jerk [116, 117],
and a combination of multiple criteria [118, 119]. The dynamic model of the robot
is also taken into account in [115, 120]. Additionally, the path optimization can
be executed in a post-processing step. For example, in [121], the joint-space path
length is minimized from an initial guess.
In [122], it is shown that using tolerances of the manufacturing path results in
lower jerks in the planned trajectory. Nevertheless, not all DoF of the robot are
used, and a distinct inverse kinematics solution is employed, i.e., the elbow-up
solution, to find a trajectory with the lowest possible maximum jerk based on a
heuristic approach.
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A robotic layup task is investigated in [36] for a multi-robot scenario. The redun-
dant process DoF of the roller tool is utilized to generate robot trajectories for
this task. The process window is discretized and an optimization-based approach
is applied to solve the trajectory planning problem while considering process con-
straints and avoiding singular configurations.

In [123], a time-optimal or energy-optimal joint-space trajectory is searched, where
end-effector position and orientation tolerances are allowed within a tube in the
task space, i.e., within a tolerance band. Although tolerances are considered, other
process properties like process windows, (redundant) process DoF, and collisions
are not systematically included.

Inverse Kinematics and Pathwise Inverse Kinematics

A general review of methods to compute the inverse kinematics is given in [124].
The inverse kinematics computes joint configurations for one specific end-effector
pose, see (2.17). In [95], a continuous multivariate inverse function is described to
find the global inverse kinematics of redundant manipulators, i.e., a unique joint
configuration for a given end-effector pose despite the kinematic redundancy. The
TRAC-Inverse Kinematics (TRAC-IK) solver, proposed in [125], considers toler-
ances in each Cartesian dimension and improves the calculation times compared
to KDL [102]. Another widely used method to solve the inverse kinematics is to
formulate an optimization problem, e.g., [126, 127]. In [128], a genetic algorithm to
solve the inverse kinematics problem is proposed, where different soft constraints
of the manipulator are weighted in the cost function.

Pathwise inverse kinematics refers to applying an inverse kinematics scheme to a
Cartesian end-effector path to find one or more corresponding joint-space paths.
Solving the pathwise inverse kinematics problem by computing the inverse kine-
matics for each path point independently generally leads to discontinuous joint-
space paths. An example for an optimization-based scheme is the trajectory op-
timization of a redundant manipulator (TORM) in [129, 130], which computes
trajectories for given end-effector paths. A two-stage gradient descent optimiza-
tion minimizes the position and orientation error of the joint-space path w.r.t.
the desired end-effector poses. New trajectories are repeatedly generated to avoid
local minima. However, the process properties of the underlying manufacturing
process cannot be considered systematically. Another work, which is concerned
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with solving pathwise inverse kinematics problems, is given in [131], where an
anytime graph-based path planner minimizes a geometric task-space criterion, the
so-called Fréchet distance. This Fréchet distance can be interpreted as the
utilization of process tolerances. In [132], the inverse kinematics problem is solved
with geometric task prioritization if the robot cannot execute the desired motion.
In the path planner proposed in [132], the tolerances of the desired geometric task
are implemented as soft constraints. Hence, no guarantees in terms of maximum
deviations can be given.

The online path planner Relaxed Inverse Kinematics (RelaxedIK) [94] computes
continuous joint-space paths as a sequence of optimization problems, where the
solution of the previous path point is the initial guess for the subsequent opti-
mization problem. The position and orientation deviations from the given path
are weighted in the objective function as soft constraints. Because the RelaxedIK
planner does not accurately reach the given manufacturing paths, the sampling-
based Stampede algorithm is proposed in [133]. A pathwise inverse kinematics
solution with a sampling-based graph search is used, considering process windows.
Based on RelaxedIK, the path planner proposed in [134] focuses on offline path
planning and considers process tolerances. Starting at multiple joint configura-
tions for the first path point, continuous joint-space paths are computed, which
account for the tolerances of the end-effector pose. Although self collisions are de-
tected, no general collision avoidance for obstacles in the workspace is considered.
In [94, 133, 134], singular configurations are avoided, but there are no guarantees
to adhere to and distinguish between tolerance bands and process windows, and
the available redundant process DoF are not exploited. Hence, no systematic and
simultaneous usage of all process properties is considered.

5.1.1 Comparison and Contribution

Sampling-based path planners are widely used for path planning of industrial pro-
cesses in spatially constrained environments. By considering (redundant) process
DoF, the search space increases exponentially and cannot be covered sufficiently
and smoothly using sampling. Pathwise inverse kinematics solvers are based on
the inverse kinematics solution of robots, for which every (redundant) process DoF
must be discretized. In contrast, in optimization-based path planners, these ad-
ditional DoF can be considered as continuous optimization variables or additional
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constraints, e.g., process windows and tolerance bands, and criteria, e.g., time or
energy optimality, can be incorporated.

In this chapter, an optimization-based path-planning framework that systemati-
cally incorporates process tolerances, process windows, constraints, and redundant
process DoF is proposed. In the following, industrial processes are described by
a geometric manufacturing path on the workpiece and a set of process properties,
see Section 2.2. Incorporating process properties into the path-planning algorithm
allows the Cartesian path to deviate from the desired reference within the allowed
process DoF. This is suitable for many applications including, e.g., spraying, grind-
ing and welding. By considering the process properties and, thus, exploiting the
process windows and tolerance bands, the robot can realize a much larger number
of feasible manufacturing paths. In a second step, the joint-space solutions are
evaluated and the one with the best manufacturing quality is chosen.

The main contribution of the proposed work is the systematic integration of pro-
cess properties in the optimization-based path-planning algorithm in the form of
equality and inequality constraints, which are not available in state-of-the-art path
planners. This way, desired manufacturing process properties in the task space are
guaranteed, while other DoF are allowed to vary within given process windows or
tolerance bands. Due to the optimization-based approach, no analytical inverse
kinematics formulation is required, which is especially useful for kinematically re-
dundant manipulators. Furthermore, analytical gradients of the objective function
and the equality and inequality constraints significantly improve the calculation
time and convergence speed of the path planner. The proposed path planner
also incorporates a collision avoidance method, can plan through kinematic robot
singularities, and uses parallelization on multiple CPU cores.

Remark 2 It is worth mentioning that the proposed path planner is also use-
ful for non-redundant robots performing non-redundant processes. Even for non-
redundant robots, like industrial robots with 6 DoF and typical kinematics, e.g.,
Kuka Cybertech KR8 R1620 [135], the inverse kinematics is not unique and pro-
vides up to 16 solutions for a given pose. Further non-uniqueness has to be con-
sidered if one or more axes have a large or infinite turning range, i.e., robots with
axis ranges of more than ±180◦. All possible solutions for the inverse kinematics
can be handled with the proposed optimization-based path planner.
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5.2 Collision Avoidance

The proposed path-planning framework incorporates the collision detection frame-
work V-Clip [136], which is summarized in this section. The V-Clip framework
finds the pair of globally closest features of convex polyhedrons, of which the signed
distance and also the analytical gradient is computed, e.g., [137]. The signed dis-
tance and its gradient are utilized in the optimization algorithm in the next section,
see [138].

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.

Each collision object in the environment is described as one polyhedron consisting
of vertices, edges and faces. A feature is represented by a single vertex, two ver-
tices define an edge, and three vertices are a face. The V-Clip algorithm iteratively
examines the neighboring features until the pair of closest features is determined.
Assuming that the robot movement between two consecutive poses of the manu-
facturing path HM

P is small, the pair of closest features barely change. Hence, the
previously found pair is chosen as initial guess for the subsequent path planning
step. This way, the pair of closest features is mostly found in the first iteration of
the algorithm.

With the V-Clip framework, arbitrary objects can be included in collision avoid-
ance, e.g., parts of the robot, the tool, the workpiece, and the environment. The
collision checks are then tailored to the manufacturing process, the robot, and
its environment. If collisions between multiple objects have to be examined, the
V-Clip algorithm is applied to each pair of collision objects separately. Therefore,
the number of collision checks can be easily reduced to lower the computation time
by examining only pairs of objects that are critical for the considered manufac-
turing process. An example of a collision model for a drawing process is shown
in Fig. 5.1. In the depicted manufacturing process, the robot’s wrist and the tool
mounted on the end-effector are checked for collisions with the table and the box
on the table. This collision detection method can also be integrated into the joint-
space path planner of Chapter 4 and, hence, the robot base placement and TCP
pose optimization.
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Box

Table

Tool

Robot

Figure 5.1: Convex polyhedrons as collision objects are checked to avoid collisions
of the robot and the tool with the table and the box on the table; adapted from
[10].

5.3 Optimization-based Path Planning

The proposed optimization-based path-planning algorithm starts by finding a dis-
crete subset of all feasible robot starting configurations for the first manufacturing
frame HM

P,1, considering the available process DoF, redundant DoF, process tol-
erances, process windows, and constraints. The corresponding joint-space paths
are computed by sequentially solving an optimization problem, starting from these
initial configurations, considering the process properties and collision avoidance.
Finally, the best joint-space path is selected, and a time parametrization is de-
termined to obtain a dynamically feasible robot trajectory. The proposed path
planner is deterministic, as no random samples are required to solve the path-
planning problem.

In this section, the components of the path planner are explained. First, the start-
ing configurations are discussed. Second, the optimization problem and the sequen-
tial solution procedure are introduced. Third, cost function terms and constraint
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functions are introduced, which can be combined and parametrized to describe
the considered manufacturing process. Fourth, the selection process for the best
joint-space path is detailed, and finally, the time parametrization of the selected
path is explained.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.

5.3.1 Starting Configurations

A set of feasible initial tool poses is derived from the first manufacturing frame
HM

P,1 considering the process, the redundant DoF, the process tolerances, and the
process windows. The process windows and tolerance bands defined in (2.26) and
(2.27) are sampled with an equidistant grid. The vectors

dt =
1

dgrid

(
dT
M,max − dT

M,min

) ◦ t+ dT
M,min (5.1)

and
φr =

1

φgrid

(
φT

M,max −φT
M,min

) ◦ r+φT
M,min (5.2)

denote the individual grid points and ◦ is the element-wise product, also known as
Hadamard product [139]. Thereby, dgrid + 1 and φgrid + 1 are the number of grid
points and the vectors tT =

[
tx ty tz

]
and rT =

[
rx ry rz

]
are composed of the

indices tx, ty, tz = 0, 1, . . . , dgrid and rx, ry, rz = 0, 1, . . . , φgrid. The indices t and r

in (5.1) and (5.2) are vector-valued. Using every combination of the indices in t

and r, i.e., every sampled grid point, a set of initial frames Hg is derived from the
first manufacturing frame HM

P,1 in the form

Hg =

{
HM

P,1

[
R∆(φr) dt

0 1

] ||||| tx, ty, tz = 0, 1, . . . , dgrid

rx, ry, rz = 0, 1, . . . , φgrid

}
, (5.3)

with the rotation matrix for the Roll–Pitch–Yaw angles (φr)
T =

[
φx,rx φy,ry φz,rz

]

R∆(φr) =

cxcy cxsysz − sxcz cxsycz + sxsz
sxcy sxsysz + cxcz sxsycz − cxsz
−sy cysz cycz

 , (5.4)
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where si and ci denote abbreviations of the trigonometric functions sin(φi,ri) and
cos(φi,ri), i = x, y, z, respectively, see [29].

Next, the discrete subset of all feasible joint-space configurations Qg for the set of
initial frames Hg in (5.3) is computed with the inverse kinematics

Qg = {qg,1,qg,2, · · · ,qg,eg} = {h−1
H (H) | ∀H ∈ Hg} . (5.5)

This yields a total number of eg joint-space solutions, which are sequentially num-
bered. This set can be computed via an analytical inverse kinematics solver or
numerical inverse kinematics solvers, e.g., TRAC-IK [125], cf. [94]. Note that the
redundant DoF of kinematically redundant robots have to be sampled as well. In
order to reduce the number of initial joint configurations, the joint-space solutions
contained in Qg are filtered using the minimum-distance criterion in (3.64). This
yields the reduced set Qf

g = ff(Qg) comprising ef,g joint-space solutions for the set
of initial frames Hg.

Sampling the process windows and computing the inverse kinematics solutions
must only be performed with a low grid resolution and only for the first manu-
facturing frame HM

P,1, which yields different joint-space solutions Qf
g for the sub-

sequent path-planning problem. In contrast, sampling-based path-planning algo-
rithms require a large number of samples for each pose of the manufacturing path,
e.g., the Descartes algorithm [93], which becomes infeasible for higher numbers
of DoF.

5.3.2 Optimization Problem

Starting from each joint-space solution Qf
g from Section 5.3.1, a series of opti-

mization problems is solved sequentially, see Fig. 5.2. Each series of optimization
problems is given by

q∗
d,k =argmin

qd,k∈Rn

fc(qd,k,H
M
P,k) , k = 1, . . . , nm (5.6a)

s.t. qmin ≤ qd,k ≤ qmax (5.6b)

ceq(qd,k,H
M
P,k) = 0 (5.6c)

cineq(qd,k,H
M
P,k) ≤ 0 , (5.6d)
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q1,2

q2,2

q3,2

q4,2

q5,2

q1,1

q2,1

q3,1

q4,1

q5,1

qf,1

qf,2

qf,3

qf,4

qf,5

Qf
g

Figure 5.2: Series of optimization problems starting from the initial guesses in
Qf

g = ff(Qg) obtained from Hg in (5.3) to find complete continuous joint-space
paths. In this example, the initial guess qf,4 does not yield a complete continuous
joint-space path; adapted from [10].

with the initial guess for the kth optimization problem, cf. [94]

qd,k,0 =

qf,d k = 1

q∗
d,k−1 k > 1 ,

(5.7)

where d = 1, . . . , ef,g selects the joint-space solution from Qf
g. The optimal joint

configuration q∗
d,k for the specific path pose HM

P,k is found by minimizing the objec-
tive function fc, which is detailed in the next section. The interior-point method
from the Matlab solver fmincon is used, e.g., [140], to solve the corresponding
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problem, cf. (5.6)

[
q∗
d,k σ∗

]
=argmin

qd,k∈Rn

σ∈Rκ

fc(qd,k,H
M
P,k)− λ

κ∑
i=1

ln(σi) (5.8a)

s.t. σ ≥ 0 (5.8b)

ceq(qd,k,H
M
P,k) = 0 (5.8c)cineq(qd,k,H

M
P,k)

qmin − qd,k

qd,k − qmax

+ σ = 0 , (5.8d)

with the slack variable σ, the dimension of the inequality constraints vector κ =

dim
([

cTineq qT
min qT

max

]T) and the barrier parameter λ > 0, see [141, 142]. The last
term in (5.8a) are barrier functions to approximate the inequality constraints.

The process and redundant DoF and the process tolerances and windows of the
specific manufacturing process are formulated as soft constraints in fc and hard
constraints using the equality constraints ceq and inequality constraints cineq. A
number of different objective functions and constraints are provided and explained
in the next section. Additionally, the upper and lower joint limits qmax and qmin

are considered as inequality constraints in (5.6b). The initial guess qd,k,0 for each
optimization problem in the sequence, see (5.7), is chosen as the solution q∗

d,k−1

from the previous optimization. For the first manufacturing frame HM
P,1, the set

of joint-space solutions Qf
g serves as initial guess for the optimization. In order

to speed up the solution of the optimization problem, the analytical gradients
of the objective function and constraints are utilized. Note that the joint-space
solutions in Qf

g are independent of each other. Hence, multiple joint-space paths
can be computed in parallel on a multi-core CPU, which significantly improves
the computational performance. Furthermore, the constraints and the objective
function can be adapted for each path pose HM

P,k individually, k = 1, . . . , nm,

since the optimization problem is solved in series. In this way, for example, lower
tolerances can be specified in certain segments of the manufacturing path while
wider tolerance bands are used in other segments.

Remark 3 The solution space may be further increased by considering cross con-
nections between individual joint-space paths, e.g., from q1,1 to q2,2 in Fig. 5.2,
which are not taken into account in this work. This could be implemented using
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a graph representation of the solution space. Consequently, the individual solution
paths depend on each other, which makes a parallel computation impossible. In-
cluding cross-connections while preserving, at least to a certain extent, parallelism
is an interesting future research direction. Note that a similar path-planning ap-
proach based on the inverse kinematics is shown in Section 4.2.

5.3.3 Objective Functions and Constraints

With the proposed optimization-based path-planning approach, the objective func-
tions and constraints are tailored to describe the considered manufacturing process
and considering the process properties. This way, individual Cartesian coordinates
may be strictly constrained while allowing tolerances in other coordinates.

In general, the objective function consists of nc cost terms fc,j, j = 1, . . . , nc, in
the form

fc(qd,k,H
M
P,k) =

nc∑
j=1

fc,j(qd,k,H
M
P,k) , (5.9)

and the equality and inequality constraints are also composed of different compo-
nents

ceq =

ceq,1ceq,2
...

 , cineq =

cineq,1cineq,2
...

 . (5.10)

Since the individual terms in (5.9) and (5.10) directly depend on the manufacturing
process under consideration, the index j will be omitted in the following to improve
the clarity of presentation.

Position Deviation

The deviation p̃M of the actual tool position pT
P from the desired position pM

P ,
described in the manufacturing frame M, is computed as

p̃M =

x̃M
ỹM
z̃M

 =
(
RM

P
)T (

pM
P − pT

P(q)
)

, (5.11)

using the augmented forward kinematics from Section 2.1.2 and the manufacturing
path defined in Section 2.2, analogous to the control error in (3.49), cf. [94].
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Depending on the considered manufacturing process, the position deviation may
appear as soft constraint in the objective function to implement process tolerances

fc =
1

2
(p̃M)TApp̃M , (5.12)

with the positive semi-definite weighting matrix Ap, as hard constraint in the
equality constraint to implement a strictly constrained process DoF

ceq = p̃M , (5.13)

or as inequality constraint to implement process windows

cineq =

[
dT
M,min − p̃M

p̃M − dT
M,max

]
. (5.14)

The position deviation may also appear in both the objective function (5.12)
and the inequality constraint (5.14), which yields the implementation of tolerance
bands. Instead of the complete vector p̃M, its components x̃M, ỹM, and z̃M may
be used individually as soft, hard, or inequality constraint. Fixing some entries
using hard constraints while considering the remaining entries as soft constraints
is also possible.

The analytical gradients of (5.13) and (5.14) follow as

∂ceq
∂q

=
∂p̃M
∂q

= −(
RM

P
)T

JT
P,v(q) , (5.15)

∂cineq
∂q

=

[
−∂p̃M

∂q
∂p̃M
∂q

]
, (5.16)

with the Jacobian JT
P,v(q) related to the translational velocity of the tool frame T

w.r.t. the workpiece frame P , see (2.13). The gradient of (5.12) reads as

∂fc
∂q

= (p̃M)TAp
∂p̃M
∂q

. (5.17)
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Orientation Deviation

The orientation deviation RM
T = RM

P (RT
P(q))

T is described as unit quaternion
oM
T = oM

P ⊗ (oT
P)

−1, see (3.26), cf. [94]. If the orientation of the actual tool frame
T exactly matches the orientation of the desired manufacturing frame M, the
quaternion oM

T in (3.26) becomes (oM
T )T =

[
1 0T

]
, see [29]. Thus, the orientation

deviation is constructed as soft constraint using the scalar part ηMT of oM
T with

the positive scalar weight ao > 0 as

fc =
ao
2

(
1− ηMT

)2 . (5.18)

Consequently, in (5.18), all orientation deviations are penalized equally. If the
manufacturing process allows for different orientation tolerances w.r.t. each rota-
tion axis, the soft constraint on the vector part εMT of oM

T in the form

fc =
1

2
(εMT )TAoε

M
T , (5.19)

with the positive semi-definite weighting matrix Ao, is used. In Appendix B.3, the
cost terms in (5.18) and (5.19) for the orientation deviation (3.26) are motivated
and validated using mathematical and geometric arguments.

The soft constraints (5.18) and (5.19) may also be implemented as hard constraints
in the form

ceq = 1− ηMT (5.20)

and
ceq = εMT . (5.21)

When using these hard constraints, rotations around certain axes can be restricted.
Moreover, the inequality constraints

cineq =

[
εTM,min − εMT
εMT − εTM,max

]
, (5.22)

can be employed, where εTM,min and εTM,max are computed using (3.26) from the
minimum and maximum orientation deviation defined in (2.27). Analogous to
the position deviation, only individual components of the orientation error εMT
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may be included in (5.19), (5.21), and (5.22) by assembling the cost functions and
constraints accordingly.

The gradients of the objective function terms (5.18) and (5.19) are computed as

∂fc
∂q

= −ao(1− ηMT )
∂ηMT
∂q

(5.23)

and
∂fc
∂q

= (εMT )TAo
∂εMT
∂q

, (5.24)

using the gradients ∂ηMT
∂q

and ∂εMT
∂q

of Appendix B.4. The gradient of the constraint
(5.20) reads as

∂ceq
∂q

= −∂ηMT
∂q

, (5.25)

and the gradients of (5.21) and (5.22) yield

∂ceq
∂q

=
∂εMT
∂q

, (5.26)

∂cineq
∂q

=

[
−∂εMT

∂q
∂εMT
∂q

]
. (5.27)

Collision Avoidance

The V-Clip algorithm [136] determines the pair of globally closest features of two
convex polyhedrons, for which the signed distance l is computed. The signed
distance l is positive if two obstacles are at the distance l from each other, and
a negative distance l describes obstacles in collision. For every collision check
i = 1, . . . , nl between two objects, the signed distances li(q) of all feature pairs are
utilized in the soft constraint as

fc =
1

2


max(0, l1,min − l1)

max(0, l2,min − l2)
...

max(0, lnl,min − lnl
)


T

Av


max(0, l1,min − l1)

max(0, l2,min − l2)
...

max(0, lnl,min − lnl
)

 , (5.28)

with the positive semi-definite weighting matrix Av and the respective minimum
distances li,min, see [138]. The signed distances li can also be used in inequality
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constraints as

cineq =


−l1
−l2
...

−lnl

 (5.29)

to ensure that no collision occurs in the planned joint-space path. Using both
constraints (5.28) and (5.29) together improves the convergence of the optimization
problem (5.6) significantly.

The analytical gradient of (5.28) reads as

∂fc
∂q

= −


max(0, l1,min − l1)

max(0, l2,min − l2)
...

max(0, lnl,min − lnl
)


T

Av


∂l1
∂q
∂l2
∂q
...

∂lnl

∂q

 . (5.30)

In (5.30), the gradients of the signed distances li are computed in the form

∂li
∂q

=
[

∂li
∂v1

∂li
∂v2

· · · ∂li
∂vnv

]

JV1
P,v(q)

JV2
P,v(q)

...
J
Vnv
P,v (q)

 , (5.31)

where the vectors vj, j = 1, . . . , nv, denote the positions of the vertices Vj of the
polyhedron, and J

Vj

P,v(q) are the corresponding Jacobians related to the velocities.
Only the vertices defining the closest feature pair are required to compute the
gradient, and therefore, most of the entries in the left vector in (5.31) are zero. The
gradient of the inequality constraint (5.29) directly follows from (5.31). Although
the analytical gradient (5.31) is discontinuous if the closest features change, this
does not affect the performance of the optimization algorithm (5.6) in practice.

Joint Limits and Path Continuity

In order to obtain physically feasible robot motions, a joint-space path must be
sufficiently smooth and adhere to the joint limits. Hence, to derive continuous
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joint-space paths, the objective function term

fc =
1

2
(q− qd,k,0)

T As (q− qd,k,0) , (5.32)

with the positive semi-definite weighting matrix As, is used to penalize large joint
movements. In (5.32), the joint configuration qd,k,0 is the initial guess for the
optimization for the kth manufacturing frame HM

P,k, see (5.7). The corresponding
analytical gradient reads as

∂fc
∂q

= (q− qd,k,0)
T As . (5.33)

Robot movements through kinematic singular points of the robot are explicitly
allowed with the proposed path-planning framework and are executable with stan-
dard controllers of an industrial robot using joint-space control.

The joint positions of the robot are constrained in (5.6b) within their axes limits to
compute feasible robot motions. In order to improve convergence, joint positions
q are penalized as soft constraints with the objective function term

fc =
1

2
q̃TAlq̃ and q̃ = q− qmean , (5.34)

with qmean from (3.62) and the corresponding gradient

∂fc
∂q

= q̃TAl . (5.35)

The diagonal matrix Al is chosen as

Al =
al
2
diag (qmax − qmin)

−2 , (5.36)

with the mechanical joint limits of the robot (3.61) and the weighting parameter
al > 0.

5.3.4 Optimal Joint-Space Path

Multiple joint-space paths are generated by solving the sequence of optimization
problems (5.6), starting from all ef,g joint-space solutions contained in Qf

g. If a
subproblem of a sequence does not yield a feasible solution, the corresponding
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joint-space path is discarded, see Fig. 5.2. In order to find the optimal joint-space
path, the costs of the objective function terms for the manufacturing path HM

P
are added

f a
c (Pd, H

M
P ) =

nm∑
k=1

∑
j∈χ

fc,j(qd,k,H
M
P,k) , d = 1, . . . , ef,g (5.37)

for each feasible joint-space path. By comparing the individual costs f a
c in (5.37)

for each feasible joint-space path Pd = {qd,1,qd,2, · · · ,qd,nm} with d = 1, . . . , ef,g,
the optimal joint-space path Q∗ = {q∗

1, · · · ,q∗
nm

} is found from the lowest costs
f a
c (Q

∗, HM
P ) for the desired manufacturing path HM

P . Only a particular subset
χ ⊂ {1, . . . , nc} of objective function terms may be used in (5.37) instead of
all terms fj, j = 1, . . . , nc, from (5.9). For example, the optimization problem
(5.9) might consider all process properties of the manufacturing process, collision
avoidance, and the joint limits. Then, evaluating the optimal joint-space path in
(5.37) might use a reduced subset χ that only contains the process properties and,
hence, only considers the achieved manufacturing result. Consequently, the best
joint-space path Q∗ may be optimal regarding the manufacturing quality and is
not penalized by challenging but feasible robot movements.

The weighting matrices Ap, Ao, Av, and As and the scalar weights ao and al in-
troduced in the previous section have a strong impact on the convergence behavior
and the shape of the resulting joint-space solution, particularly if the considered
process exhibits a large number of (redundant) process DoF, tolerances, and win-
dows.

5.3.5 Trajectory Generation

The result of the planning algorithm is the optimal joint-space path Q∗ corre-
sponding to the desired manufacturing path HM

P . As a final step, the joint-space
path Q∗ is time parametrized to compute a piecewise trajectory q∗(t) with the
sample points (tk,q

∗
k), k = 1, . . . , nm. The time stamps tk are derived from the

Cartesian distance between two consecutive sample points q∗
k−1 and q∗

k with the
augmented forward kinematics (2.11) from Section 2.1.2 in the form

tk = tk−1 +

||||pT
P (q∗

k)− pT
P
(
q∗
k−1

)||||
2

ṗk
, k = 1, . . . , nm . (5.38)
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The desired path velocity is specified by ṗk > 0, k = 1, . . . , nm, according to the
manufacturing process.

The optimal smooth joint-space trajectory q∗(t) is generated by computing piece-
wise cubic Hermite interpolating polynomials [143] for the sample points (tk,q∗

k), k =

1, . . . , nm. The obtained trajectory q∗(t) is then executable on the robot to perform
the manufacturing process considering the specified process properties.

5.4 Robot Base Placement

In Section 4.2, a fast kinematic joint-space path planner was introduced to find
the optimal TCP pose or robot base placement for a set of manufacturing paths.
Based on this planner, in Section 4.3, the optimization problem for the optimal
placement was formulated, considering different goals in the objective function
(4.4), e.g., maximizing the number of continuous joint-space paths or minimizing
the joint movements. In Section 5.3, an advanced optimization-based path planner
was introduced, which can also be used to optimize the robotic work cell. This
planner is superior to the previous one by including a collision avoidance scheme
and systematically incorporating process properties. Therefore, the number of
feasible joint-space path solutions is expected to rise compared to the original
planner from Section 4.2.

The optimization-based path planner presented in Section 5.3 computes a set of
multiple continuous joint-space paths Pd for a given relative position pB

W of the
robot base frame B w.r.t. the world frame W . Additionally, the individual costs of
the objective functions are computed for all paths Pd, and the optimal joint-space
path Q∗ is found by the lowest costs f a

c (Q
∗(pB

W), HM
P ), cf. (5.37). The optimal

position pB∗
W is computed by a superordinate optimization problem

pB∗
W =argmin

pB
W∈R3

f a
c

(
Q∗(pB

W), HM
P
)

, (5.39a)

s.t. pB
W,min ≤ pB

W ≤ pB
W,max . (5.39b)

Similar to (4.12), the objective function is evaluated with the optimal joint-space
path Q∗ of the corresponding position pB

W and minimized to find the optimal
position pB∗

W . For every evaluation of the cost function f a
c

(
Q∗(pB

W), HM
P
)
, the

advanced joint-space path planner searches the optimal joint-space path Q∗(pB
W),
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which needs a longer computation time compared to the fast planner in Section 4.2.
Similar to Section 5.3.4, a reduced set of objective functions χ ⊂ {1, . . . , nc} can
be used to evaluate the cost of the optimal joint-space path, which allows us to
optimize the robot base placement for different criteria than the underlying path
planner. The already evaluated objective function terms needed to solve the path
planning problem can be reused to find the optimal robot base placement.

5.5 Experimental Results

In this section, the proposed path-planning framework is applied to two exam-
ple applications with significantly different process properties. To this end, only
the weighting matrices of the objective function terms must be adapted, and the
equality and inequality constraints must be adjusted to describe the respective
manufacturing process, see Section 5.3.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.

The first application is a drawing process, in which a marker with rectangular
nib is utilized to draw thin and thick lines on the surface of a workpiece. The
thickness of the line depends on the orientation of the marker w.r.t. the desired
drawing path. In the second application, a spraying process is demonstrated.
The rotationally symmetric spray nozzle is considered a redundant DoF in this
process. The rabbit-shaped workpiece and the manufacturing path HM

P are shown
in Fig. 5.3, in which the first manufacturing frame HM

P,1 is shown. The total length
of the meander-shaped path is approximately 2.5m with 1024 path poses. The
z-axes of the manufacturing frames (blue) are normal to the workpiece surface and
the frames rotate w.r.t. the surface normal vector along the manufacturing path.

5.5.1 Drawing Process

In this process, a line specified by the desired manufacturing path has to be drawn
on a 3D-printed rabbit with a marker mounted on the end-effector of an industrial
robot. This experiment demonstrates an industrial process with an end-effector
mounted tool, see Fig 2.1a, and a complex continuous manufacturing path. This
process is representative for similar industrial processes, e.g., welding, grinding,
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P “ WHM
P,1

✂
✂

Figure 5.3: Manufacturing path HM
P on the rabbit-shaped workpiece in the work-

piece frame P . The first frame is denoted by HM
P,1; adapted from [10].

or cutting. The drawing process was executed and validated in a laboratory en-
vironment, see Fig. 5.4. Planning long continuous robot motions with multiple
constraints is challenging due to the restrictive mechanical axes limits and the
limited workspace of the robot.

Drawing Process Properties

The experimental setup of the drawing process is shown in Fig. 5.4. The robot
Kuka LBR iiwa 14 R820, see Appendix A.1, draws a continuous line on the
surface of a stationary rabbit-shaped workpiece with a marker with rectangular nib
mounted on the end-effector. In order to account for the kinematic inaccuracies of
the real robot, the drawing tool is equipped with a passive compliance mechanism
comprising two linear springs. The rectangular nib allows us to draw different
line thicknesses by rotating the marker around the surface normal vector. In
order to demonstrate the capabilities of the path-planning framework including
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E

B

P “ W

T

q1q2
q3

q4

q5

q6

q7

Table

Colliding object

End-effector
mounted tool

Rabbit-shaped
workpiece

Figure 5.4: Experimental setup for the drawing process after completing the pro-
cess; adapted from [10].

collision avoidance, the blue collision object in Fig. 5.4 is placed in front of the
workpiece. Due to this blue object, the robot cannot reach certain sections of the
manufacturing path HM

P precisely without collision, see 1 - 3 in Fig. 5.6.

The position of the nib must precisely follow the manufacturing path HM
P of

Fig. 5.3 to perform the drawing process on the surface of the workpiece. In con-
trast, orientation deviations of the marker from the surface normal in a certain
range only marginally degrade the quality of the drawn line. Since the nib of the
marker is rectangular, a deviation from the desired rotation around the surface
normal changes the line thickness, which should be avoided. Therefore, the tol-
erance band for the rotation around the z-axis is chosen more restrictively. The
process properties for the position and orientation are represented by tolerance
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HM
P

Figure 5.5: Tolerances for the drawing process; adapted from [10].

bands in the form (see Fig. 2.3)

dT
M,max = −dT

M,min =

0m0m
0m

 , (5.40a)

φT
M,max = −φT

M,min =

40◦40◦

20◦

 , (5.40b)

and are visualized in Fig. 5.5, cf. Fig. 2.2a.

By parametrizing the objective function and selecting the corresponding equality
and inequality constraints, the process properties are systematically considered
in the proposed optimization-based path planner. Since no position deviation is
allowed, the equality constraint of the position deviation (5.13) is used, and the
corresponding objective term (5.12) and inequality constraint (5.14) are omitted.
To allow for orientation deviations according to (5.40), the equality constraints
of the marker orientation (5.20) and (5.21) are disabled. The deviation from the
desired orientation of the manufacturing path HM

P is penalized with the objective
term (5.18) to minimize the utilized tolerances. Additionally, with the soft con-
straint (5.19), the deviations of the different orientation coordinates are weighted
according to the allowed tolerances (5.40). Also, the inequality constraint (5.22) is
enabled to guarantee that the tolerance bands from (5.40) are adhered to. More-
over, it is checked that there are no collisions of the marker and the last robot
link with the table and the blue collision object, see Fig. 5.1. Therefore, the cor-
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responding objective function (5.28) together with the inequality constraint (5.29)
are used to ensure a collision-free robot movement. Finally, to obtain continu-
ous joint movements, the objective terms (5.32) and (5.34) are employed with
the robot joint limits qmin and qmax from Tab. A.1. The inverse kinematics is
solved by numerical optimization, except for the starting configurations presented
in Section 5.3.1.

The weights and parameters of the individual terms of the objective function and
constraints are chosen empirically and summarized in Tab. 5.1. The matrix Ap

weighs the position deviation (5.12), the scalar ao and the matrix Ao account for
the orientation deviation, see (5.18) and (5.19), the matrix Av penalizes the joint
configurations near obstacles, see (5.28), the matrix As weighs the joint movements
according to (5.32), and the weight al in (5.36) penalizes joint positions near their
axis limits in (5.34). In general, diagonal matrices are advantageous, as the number
of parameters is greatly reduced, and couplings between the individual DoF are
avoided. In general, larger matrix entries lead to smaller errors in the respective
DoF. Depending on which term in the objective function is crucial for the specific
process, the individual weights are chosen larger or smaller.

Experimental Results of the Drawing Process

Using the set of parameters given in Tab. 5.1, the optimal robot base placement
pB∗
W is computed according to Section 5.4 with the optimization-based path planner

from Section 5.3. While executing the optimization-based path planner, all feasible
joint-space solutions Qf

g for the first frame HM
P,1 of the manufacturing path HM

P ,
see Fig. 5.3, are computed using (3.64) with qdist = 0.5. Subsequently, the series
of optimization problems (5.6) is solved for every starting configuration Qf

g. The
optimal joint-space path Q∗ is found with (5.37), where the same objective function
terms as in the optimization (5.6) are used. The subset χ in (5.37) for finding the
optimal robot base placement pB∗

W with (5.39) contains only the objective function
term of the orientation deviation (5.19) to maximize the manufacturing quality.
The robot is placed as accurately as possible at the optimal position, and the
exact location is determined with a similar calibration method as presented in
Fig. 3.12, for which the optimal joint-space path Q∗ is recomputed. Although the
robot base is placed optimally w.r.t. the manufacturing quality, more than 15%

of the manufacturing poses in HM
P from Fig. 5.3 are only reachable by exploiting
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Table 5.1: Objective function terms, constraints, and weights used for the drawing
process; adapted from [10].

Variables Equations Weights

Position Deviation

fc(p̃M) (5.12) Ap = 0
ceq(p̃M) (5.13) enabled
cineq(p̃M) (5.14) disabled

Orientation Deviation

fc(η
M
T ) (5.18) ao = 80

fc(ε
M
T ) (5.19) Ao = diag (1, 1, 30)

ceq(η
M
T ) (5.20) disabled

ceq(ε
M
T ) (5.21) disabled

cineq(ε
M
T ) (5.22) enabled

Collision Avoidance

fc(li) (5.28) Av = 103diag (1, 1, 4)
cineq(li) (5.29) enabled

Joint Limits and Path Continuity

fc(q) (5.32) As = diag (10, 10, 5, 5, 5, 5, 5)
fc(q) (5.34), (5.36) al = 0.05

Robot Kuka LBR iiwa 14 R820, see Tab. A.1

the process properties. These points cannot be reached by the robot exactly in
position and orientation due to mechanical axes limits, the limited workspace of
the robot, and colliding objects, i.e., the blue box and the table. These poses are
shown in Fig. 5.6 as black dots.

After finding the optimal robot position and the corresponding joint-space path,
the time parametrization (5.38) is applied to obtain the optimal joint-space trajec-
tory q∗(t). The trajectories of the individual joints q∗h(t), h = 1, . . . , n, are normal-
ized to the respective axes limits qmin and qmax, see (3.66), and depicted in Fig. 5.7
as q̄∗h. The available axes ranges of the robot joints must be utilized to a large ex-
tent in order to perform the drawing process, which emphasizes the complexity of
the task. In particular, the trajectories of axes 4, 6, and 7 occasionally reach their
mechanical axes limits. The path planner can also compute joint-space trajectories
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P

1

2

3

Figure 5.6: Side view of the manufacturing path HM
P on the rabbit-shaped work-

piece in the workpiece frame P . The manufacturing poses marked with black dots
can only be reached by exploiting the process properties; adapted from [10].

moving through singular configurations. For the demonstrated drawing process,
the robot moves three times close to the singular configuration q2 = 0◦∧q3 = −90◦,
see (A.1b), to execute the given manufacturing path, see Fig. 5.7. The joint-space
path is executed using the robot manufacturer’s joint-space controller. To this
end, all sample points (q∗

k), k = 1, . . . , nm, are transmitted to the controller before
executing the manufacturing process.

Remark 4 The robot controller of the Kuka LBR iiwa 14 R820 does not al-
low the definition of the sample points, including their desired time parametriza-
tion (tk, (q

∗
k)), k = 1, . . . , nm, as computed with the trajectory generation of Sec-

tion 5.3.5, see [144]. In order to execute the joint-space path in the desired time,
the software-defined velocity limit for the fastest joint is set accordingly for each tra-
jectory segment to achieve the desired Cartesian velocity specified in (5.38). If an
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Figure 5.7: Optimal joint-space trajectory q̄∗(t) for the drawing process. The
trajectories of the individual joints are normalized to their respective axes limits
qmin and qmax; adapted from [10].
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appropriate torque interface is available to control the robot, the motion controller
presented in Section 3.3.1 or the hybrid force/motion controller of Section 3.3.3
could also be used to execute the manufacturing process.

The mean calculation time of a single optimization problem from the series (5.6)
including collision checks is approximately 70ms on an Intel Core i7-8700K in
a single-core implementation. If all CPU cores are utilized, the mean calculation
time reduces to around 18ms, since multiple optimization problems are solved in
parallel. The total calculation time of the path-planning problem with ef,g = 6

starting configurations is approximately 90 s. The total calculation time depends
on the number of path poses nm in the given manufacturing path, the number of
different starting configurations ef,g, the CPU, and the number of available CPU
cores. Without collision checks using the V-Clip algorithm, see Section 5.3.3,
the mean optimization time further reduces by a factor of 3. The path-planning
problem for the drawing process in this scenario is highly constrained, and many
poses along the manufacturing path HM

P are only reachable by exploiting the
process tolerances. Therefore, most joint-space solutions in Qf

g do not lead to a
complete and feasible joint-space path.

A video of the experimental result of the drawing process is shown in
www.acin.tuwien.ac.at/4adf . The result of the drawing process, depicted in
Fig. 5.8, shows a good agreement with the desired manufacturing path HM

P in
Fig. 5.3. The path sections with the two different desired line thicknesses can
be easily distinguished. The experiment is executed without absolute calibration,
without feedback of the actual Cartesian end-effector position, and without es-
timation and control of the contact force due to the limitations of the available
robot interface.

As shown in Fig. 5.6, a significant portion of the manufacturing path poses in HM
P

is not exactly reachable with the tool mounted on the end-effector. Hence, pro-
cess tolerances must be utilized to solve the path-planning problem and compute
the optimal trajectory q∗(t). In Fig. 5.9, the orientation deviations of the TCP
frame poses HT

P(q
∗) from the desired manufacturing path HM

P are depicted. The
maximum values of the utilized process tolerances are below 30◦ for φx and φy

and below 10◦ for φz, which results from the higher weighting of φz in (5.19), see
Tab. 5.1. The process tolerances are within the allowed tolerance bands defined in
(5.40).
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T

P

1

2

3

Figure 5.8: Result of the drawing process using the manufacturing path HM
P shown

in Fig. 5.3 with the segments from Fig. 5.6; adapted from [10].

The first path pose of the manufacturing path HT
P,1 is located near the bottom of

the workpiece, see Fig. 5.3. Moving with the marker from the first path pose HT
P,1

towards 1 in Fig. 5.6, the proposed path planner exploits the tolerances to avoid
collisions with the blue collision object and the table, see Fig. 5.4. High usage of
orientation tolerances is also necessary at t = 71 s located at 2 in Fig. 5.6. At
2 , the robot motion cannot be solved without the additional freedom provided by
the tolerances due to the blue collision object. The surface normals at 2 directly
point towards the blue collision object, see Fig. 5.3. High orientation tolerances
are used again at t = 105 s, located at 3 . These orientation tolerances result from
moving multiple times near the singular configuration q2 = 0◦ ∧ q3 = −90◦, see
(A.1b), which is required to solve the path-planning problem in one continuous
robot motion, see also Fig. 5.7. Because the Cartesian position of the TCP frame
HT

P w.r.t. the manufacturing frame HM
P is implemented as equality constraint, see

Tab. 5.1, the resulting deviations of the position coordinates are below the numer-
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Figure 5.9: Utilized orientation tolerances of the TCP frame poses HT
P(q

∗(t)) w.r.t.
the desired manufacturing path HM

P at the drawing process; adapted from [10].

ical tolerance of the used optimization solver. The experiment shows an accurate
execution of the drawing process with the demanded process quality based on the
specified process properties. The continuous joint-space trajectory q∗(t) could be
computed only with the help of the available tolerance bands, demonstrating the
proposed optimization-based path-planning framework.

5.5.2 Spraying Process

In this section, the proposed optimization-based path-planning framework is ap-
plied to a spraying process. In this process, the workpiece is mounted on the
end-effector of a robot, and a stationary spray nozzle has to be moved along the
manufacturing path to perform the process. The spray jet is considered rota-
tionally symmetric, i.e., a rotation of the spray jet around the spray direction
does not affect the process quality and is, therefore, considered a redundant pro-
cess DoF. This property also appears in other industrial processes, e.g., robotic
milling, drilling, or laser cutting. Although this spraying process differs signifi-
cantly from the drawing process in Section 5.5.1, the proposed path planner can
be applied to the new process properties. Additionally, long and complex spray
paths are challenging path-planning problems, where the available redundancy has
to be exploited to compute continuous joint-space paths for the process execution.
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End-effector mounted
workpiece

Figure 5.10: Setup for the spraying process in simulation; adapted from [10].

Spraying Process Properties

The simulation environment Simulink 3D Animation of the spraying process is
shown in Fig. 5.10 with the robot Kuka Cybertech KR8 R1620, see Appendix A.2.
The rabbit-shaped workpiece mounted on the robot’s end-effector is shown in
green, and the spray machine is implemented as a stationary tool and depicted
as a yellow object, see also Fig. 2.1b. The rotationally symmetric spray jet is
blue and considered a redundant DoF in this process. In order to implement
collision avoidance from Section 5.2 in the path planning, the spraying machine
is embedded in two box objects, and collisions with the workpiece are checked.
Collisions between the robot and the spraying machine do not occur.

The desired manufacturing path HM
P from Fig. 5.3 has to be followed with the

spray jet to perform the spray process on the rabbit-shaped workpiece. Hence,
the lateral position (x- and y-direction of the manufacturing frame) of the spray
jet must follow the manufacturing path HM

P exactly, while small deviations along
the surface normal vector (z-direction of the manufacturing frame) are allowed.
The latter only slightly degrades the process quality and is considered a process
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tolerance. Due to the rotationally symmetric spray nozzle, this process has a
redundant process DoF, i.e., the orientation around the surface normal vector.
In contrast, no rotational deviations around the x- and y-axis are permitted to
maintain a circular spray deposit. The process DoF of the spraying process are
visualized in Fig. 2.2b. These process properties are represented by the tolerance
bands and process windows given by

dT
M,max =

 0m

0m

0.045m

 , dT
M,min =

 0m

0m

−0.055m

 , (5.41a)

φT
M,max = −φT

M,min =

0◦0◦
∞

 . (5.41b)

Based on (5.41), the optimization problem (5.6) is tailored to the spraying pro-
cess by parametrizing the objective function terms and enabling the appropriate
constraints. The equality constraint of the x- and y-position deviation in (5.13) is
enabled to precisely follow the given manufacturing path HM

P . Hence, the corre-
sponding position inequality constraints in (5.14) are disabled and the respective
weights of the objective function term (5.12) are zero. To use the process toler-
ances along the z-direction of the manufacturing path HM

P , the equality constraint
of the z-position deviation (5.13) is disabled. Instead, the z-position deviation is
used in the objective function term (5.12), and the corresponding inequality con-
straint (5.14) ensures compliance with the defined tolerance band (5.41a). Because
no orientation deviation is allowed around the x- and y-axis w.r.t. the manufac-
turing path HM

P , the corresponding equality constraints in (5.21) are enabled and
the inequality constraints (5.22) and objective function terms (5.18) and (5.19)
are omitted. The redundant process DoF of the spray process, i.e., the orientation
around the z-axis, is implemented by setting the respective weight in (5.19) to zero
and disabling the corresponding equality (5.20), (5.21) and inequality constraints
(5.22). The orientation deviations around the z-axis are neither penalized in the
optimization problem (5.6) nor constrained in any way. Collision avoidance is con-
sidered between the rabbit-shaped workpiece and the spraying machine with the
objective function term (5.28) and the inequality constraint (5.29). The objective
function terms (5.32) and (5.34) are used to ensure continuous joint movements
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of the robot. The objective function terms, equality and inequality constraints
for the spraying process are summarized in Tab. 5.2. The individual weights are
empirically chosen as diagonal matrices according to the specific process and the
robot used.

Simulation Results of the Spraying Process

The path planner is parametrized for the spraying process with the objective func-
tions and constraints from Tab. 5.2. Similar to the drawing process, the optimiza-
tion (5.39) computes the optimal relative position of the robot base frame B w.r.t.
the world frame W , see Fig. 2.1b, together with the optimal joint-space path Q∗.
The series of optimization problems of the path planner is solved based on the
joint-space solutions Qf

g for the first manufacturing path pose HM
P,1, see Fig. 5.3,

using qdist = 0.5. For this process, the objective function terms in Tab. 5.2 are
reused to evaluate the optimal joint-space path Q∗ with (5.37), where the objec-
tive function term of the position deviation in z-direction (5.12) is used to find
the optimal position pB∗

W . The joint-space trajectory q∗(t) is computed with (5.38)
with a constant path velocity to obtain a uniform spray coating on the work-
piece. The joint trajectory q∗(t) is shown in Fig. 5.11, where the individual joints
q∗h(t), h = 1, . . . , n, are normalized to the respective axes limits qmin and qmax, see
(3.66). The robot does not reach the mechanical axes limits during the motion
and continuously follows the manufacturing path HM

P . This is possible since the
redundant DoF is considered and the robot can move through a singular configura-
tion at t = 63 s where q5 = 0◦ and at t = 74 s and t = 88 s where q3 ≈ 1.7◦; see the
mathematical description of the singular configurations in (A.3). For this appli-
cation, the mean optimization time for a single optimization in (5.6) on an Intel
Core i7-8700K is approximately 36ms in a single-core implementation and around
9ms using all cores. The total calculation time is around 60 s with ef,g = 6 starting
configurations. These optimization times are lower compared to the drawing pro-
cess, which originates from the robot’s lower axis count and, hence, the reduced
number of optimization variables, see (5.6). Furthermore, only two collision checks
in each optimization are required for the two boxes surrounding the spraying ma-
chine. Without collision avoidance checks, an additional 1.5 times reduction of
the computing time is possible. A video of the simulation result of the spraying
process is shown in www.acin.tuwien.ac.at/4adf .
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Table 5.2: Objective function terms, constraints, and weights used for the spraying
process; adapted from [10].

Variables Equations Weights

Position Deviation

fc(p̃M) (5.12) Ap = diag (0, 0, 90)
ceq,x(x̃M) (5.13) enabled
ceq,y(ỹM) (5.13) enabled
ceq,z(z̃M) (5.13) disabled
cineq,x(x̃M) (5.14) disabled
cineq,y(ỹM) (5.14) disabled
cineq,z(z̃M) (5.14) enabled

Orientation Deviation

fc(η
M
T ) (5.18) ao = 0

fc(ε
M
T ) (5.19) Ao = diag (0, 0, 0)

ceq(η
M
T ) (5.20) disabled

ceq,x(ε
M
T ,x) (5.21) enabled

ceq,y(ε
M
T ,y) (5.21) enabled

ceq,z(ε
M
T ,z) (5.21) disabled

cineq(ε
M
T ) (5.22) disabled

Collision Avoidance

fc(li) (5.28) Av = 104diag (1, 1)
cineq(li) (5.29) enabled

Joint Limits and Path Continuity

fc(q) (5.32) As = diag (5, 5, 5, 5, 5, 5)
fc(q) (5.34), (5.36) al = 0.05

Robot Kuka Cybertech KR8 R1620, see Tab. A.2
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Figure 5.11: Optimal joint-space trajectory q̄∗(t) for the spraying process. The
trajectories of the individual joints are normalized to their respective axes limits
qmin and qmax; adapted from [10].

In Fig. 5.12, the position and orientation deviations from the TCP frame poses
HT

P(q
∗) w.r.t. the desired manufacturing path HM

P are presented. Deviations of the
x- and y-position are below the numerical tolerance of the used optimization solver.
The tolerance band of the z-position is utilized only to a small extent, cf. (5.41a).
The orientation deviation of the TCP frame poses HT

P(q
∗) w.r.t. the manufactur-

ing path HM
P around the x- and y-axis are also constrained and are consistently

below the optimizer tolerance. In contrast, rotations around the z-axis of the spray
direction, i.e., the redundant DoF, are used extensively to generate a continuous
joint-space path Q∗. This experiment shows that the proposed path planner can
solve complex path-planning problems for various manufacturing processes with
long paths by only adapting the objective function terms and constraints based
on the required process properties. As a consequence, the path planner signifi-
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Figure 5.12: Position and orientation tolerances of the TCP frame poses HT
P(q

∗(t))
w.r.t. the desired manufacturing path HM

P for the spraying process; adapted from
[10].

cantly exploits the redundant DoF of the spraying process to compute feasible and
continuous robot trajectories.

5.6 Conclusions

In this chapter, a novel optimization-based path-planning framework for robots is
proposed, which systematically accounts for all process properties (process toler-
ances, process windows, constraints, redundant DoF) of the specific manufacturing
process and includes a collision avoidance scheme. This allows us to find solutions
to path planning problems for complex manufacturing paths that cannot be solved
with state-of-the-art concepts. By parametrizing the objective function terms and
selecting the appropriate equality and inequality constraints, the underlying op-
timization problem can be easily tailored to the specific needs of the considered
manufacturing process.

In the first step, the path planner computes multiple joint configurations for the
robot based on the pose of the first manufacturing frame. Based on these joint-
space solutions, series of optimization problems are solved that are all independent.
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This makes it possible to perform a parallel execution of the path-planning algo-
rithm on a multi-core CPU, significantly reducing the computing time. Moreover,
analytical gradients of the objective function and of the constraints are provided to
improve the convergence further and curb the computing time. The proposed path-
planning framework also allows the robot to move through kinematic singularities,
often avoided in state-of-the-art algorithms that rely on task-space controllers.

In order to demonstrate the feasibility of the proposed approach, a drawing process
and a spraying process are considered. For the drawing process, the robot is
equipped with an end-effector that holds the marker to draw a predefined line
on the surface of a workpiece. The marker has a rectangular nib, with which
two different line thicknesses can be realized by rotating the marker around the
surface’s normal direction by 90◦. The orientation of the end-effector is allowed
to deviate from the surface’s normal direction within a specified tolerance band
without deteriorating the final drawing quality. Similar process properties can be
defined accordingly for many other industrial processes, like welding or cutting.
The drawing process was implemented experimentally on a Kuka LBR iiwa 14
R820. Interestingly, 15% of the poses along the drawing path cannot be reached for
the nominal path. However, by exploiting the process tolerances, the drawing task
could be successfully performed with high quality and the desired line thickness in
the corresponding segments. For the second application, a joint-space path for a
simulated spraying process was computed. In this process, the rotation of the spray
jet around the surface’s normal vector is considered a redundant DoF, and the
distance of the spray nozzle to the surface can vary within a predefined tolerance
band. Again, by taking advantage of the redundant DoF, a feasible complex robot
path could be planned with the proposed framework. These two applications
demonstrate the versatility of the proposed collision-free robotic path-planning
framework, which can be easily adjusted to different manufacturing processes and
systematically account for process tolerances, process windows, and redundant
DoF.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.
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Chapter 6 Conclusions and
Outlook

This thesis deals with the fast-paced increase in the demand for flexible robotic pro-
duction cells. The trend of individualized products and decreasing lot sizes drive
this demand. To this end, flexible offline path-planning algorithms were developed
to solve planning problems in fully automated manufacturing, which cannot be
solved with state-of-the-art concepts. In each chapter of this thesis, conclusions of
the presented concepts are given. The following focuses on summarizing the entire
work, the commonalities and possible combinations of the proposed concepts, and
an outlook.

Major parts of this chapter have been published in the author’s works [7, 8, 9, 10,
11] and are adapted for this thesis.

6.1 Conclusions

This work investigates processes that require continuous contact between tool and
workpiece which are common in industrial manufacturing, e.g., welding, trimming,
milling, polishing, cutting, and sewing. In order to execute such manufacturing
processes automatically, an industrial robot must perform a continuous motion
with a tool or workpiece mounted on the end-effector. The industrial processes
exemplified in this work are trimming and spraying in simulation and drawing
processes performed in laboratory experiments.

First, an automatic production process is presented in Chapter 3 that automati-
cally executes manufacturing paths on 3D workpieces based on user-generated 2D
input patterns. For this, a manufacturing path has to be computed based on this
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input pattern to generate a program for execution on an industrial robot. The
accuracy of this automatic manufacturing pipeline is demonstrated in an experi-
mental drawing process with an industrial robot. For the experimental setup, a
sophisticated way to compute the optimal placement of the robot in the work cell
is developed. This workflow provides an easy way to manufacture 3D workpieces
with robots based on 2D input patterns.

The robotic work cell is productive as long as the industrial robot can execute
the required manufacturing paths. In some cases, new manufacturing paths may
exceed the possibilities of the robotic work cell and are not executable with the
current setup due to, e.g., the limited workspace of the robot. Chapter 4 shows
that small adaptions of the tool’s end-effector mounting, i.e. the tool center point
(TCP), are sometimes sufficient to execute given manufacturing paths, which were
not executable before. Therefore, a fast joint-space path planner was developed
as a basis for an optimization problem to find the optimal TCP or robot base
placement. This algorithm is a natural extension of finding the optimal robot
base placement of the drawing process in Chapter 3. It proved its potential in an
industrial trimming process performed in semi-automated shoe manufacturing.

In Chapters 3 and 4, the computed manufacturing paths are followed exactly with
an industrial robot. Besides the limited workspace of a robot, this exact execution
of continuous manufacturing paths can be impeded by collisions or mechanical
joint limits. Adaptions of the TCP, as presented in Chapter 4, could be applied
if manufacturing paths are not executable. However, this can only be used in
some situations due to, e.g., geometrical or dynamical limits of the TCP on the
robot. Nevertheless, many manufacturing processes allow deviations of the tool
from the desired manufacturing path in certain process degrees of freedom (DoF).
Therefore, the surface processes are modeled in the form of process tolerances,
windows, constraints, and redundant DoF, as described in Chapter 2. Based on
these process properties, a path-planning algorithm can provide maximum flexi-
bility without further modification of the robotic setup or desired manufacturing
path. Therefore, in Chapter 5, an advanced joint-space path planner that system-
atically incorporates all process properties of a manufacturing path was developed.
This optimization-based approach can solve even more challenging path-planning
problems compared to the simple joint-space planner presented in Chapter 4. This
is shown for two different manufacturing processes, i.e., a drawing process and a
spray-painting process, where the available process DoF, tolerances, and redun-
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dancies are beneficially utilized. By using this planner, the robot is more flexible
in executing complex manufacturing paths without changes to the robotic work
cell or manufacturing path.

This thesis presents several algorithms for flexible, individualized manufacturing in
surface processes, i.e., the automatic user-based generation of robot programs, the
optimal placement of the TCP and robot base, and the advanced path planning
using all available process properties. Employing these algorithms in practical
applications allows us to increase the flexibility of a robotic work cell already in
the design stage or without significant hardware modifications during operation.
Additionally, these algorithms can be combined appropriately to fit the application
at hand. One example of such a combination is presented in Chapter 5 to find
the optimal robot base placement, where the advanced path planner with process
properties from Chapter 5 was used instead of the fast joint-space planner of
Chapter 4. This way, the robot base placement algorithm is extended to find the
optimal placement for the specific manufacturing process.

Another example for a valuable combination of the presented algorithms is the
automatic pipeline to draw 2D input patterns on 3D objects in Chapter 3 or the
trim application in Chapter 4. If a task-space path on the 3D object is not ex-
ecutable with the robot, the advanced joint-space path planner from Chapter 5
can generate executable joint-space trajectories by considering the process proper-
ties. This joint-space path deviates from the original path in certain process DoF,
from which a modified task-space path is computed and executed using the control
concepts presented in Chapter 3.

6.2 Outlook

This thesis shows several ways to improve the workflows of robot program gen-
eration to fulfill the demands for flexible production systems. The presented al-
gorithms are versatile and can be applied to a large number of different robotic
manufacturing tasks, e.g., welding, spray painting, milling, drilling, sanding, pol-
ishing, grinding, chamfering, and also textile fabrication processes like cutting,
sewing, gluing, and drawing on workpieces. Consequently, robotic work cells can
be used and reused for multiple manufacturing tasks without a redesign of the
work cell layout. Moreover, the setup time for new manufacturing paths can be
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minimized with automatic path planning and execution pipelines. More intuitive
human-machine interfaces for generating 2D input patterns can further improve
the usability of the workflow presented in Chapter 3, e.g., with a digital pen and
a tablet device.

Additional future work focuses on different aspects of the algorithms to improve
their performance. Hence, the computation time of the advanced path planner
in Chapter 5 of long manufacturing paths with high resolution and multiple colli-
sion objects can be improved by using compiled algorithms, different optimization
solvers, e.g., [145], more advanced collision avoidance concepts, e.g., [146], and
machine learning [147]. Machine learning concepts are already employed to solve
online and offline path-planning problems for industrial manufacturing processes,
especially for grasping, imitation, and robot vision tasks, e.g., [148, 149]. Those
concepts can be included in the presented algorithms to improve the computation
time, e.g., an automatic generation of databases for specific processes and reuse in
the planning [150] or by learning motion primitives from imitation [151].

Additionally, by incorporating the dynamic model of the manipulator into the
advanced path-planning framework from Chapter 5, time or energy-optimal joint-
space trajectories can be obtained. Instead of solving individual optimization
problems sequentially without a look-ahead, graph-based or predictive methods
can enlarge the search space and improve the optimal joint-space paths. An ex-
ample approach is a bidirectional search to solve the path planning problem si-
multaneously starting from the first and last manufacturing path point [152]. A
particular focus is placed on identifying sections where the robot cannot use all
available DoF and, therefore, is very constrained, e.g., due to possible collisions,
see [153, 154, 155]. Using these concepts to improve the presented algorithms in-
creases the solution space and reduces the computation time, which makes flexible
robotic work cells more attractive for complex manufacturing tasks.
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Appendix A Industrial Robots

This section describes the industrial robots used in this thesis with their kinematic
parameters and singular configurations. First, the collaborative robot Kuka LBR
iiwa 14 R820, and second, the industrial robot Kuka Cybertech KR8 R1620 is
presented.

Major parts of this chapter have been published in the author’s work [8] and are
adapted for this thesis.

A.1 KUKA LBR iiwa 14 R820

The Kuka LBR iiwa 14 R820 is a lightweight collaborative industrial robot. This
robot is redundant due to the n = 7 revolute joints. Each joint includes a torque
sensor, which allows one to estimate the external torques. A schematic drawing of
the industrial robot attached with a pen on the end-effector is given in Fig. A.1.
Note that the manipulator shown in Fig. A.1 is in the configuration q = 0.

The kinematic parameters of the Kuka LBR iiwa 14 R820 are given in Tab. A.1,
and the analytical inverse kinematics is presented in [73]. The singular configura-
tions of the Kuka LBR iiwa 14 R820 manipulator are

(A) q4 = 0◦ , (A.1a)

(B) q2 = 0◦ ∧ (q3 = 90◦ ∨ q3 = −90◦) , (A.1b)

(C) q2 = 0◦ ∧ q6 = 0◦ , (A.1c)

(D) (q5 = 90◦ ∨ q5 = −90◦) ∧ q6 = 0◦ , (A.1d)

see [99].
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Figure A.1: Kuka LBR iiwa 14 R820 with annotated coordinate frames and
revolute joints qh turning around the zh axes, h = 1, . . . , 7, and a drawing tool
mounted on the end-effector, cf. [144].
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KUKA Cybertech KR8 R1620

Table A.1: Kinematic parameters of the Kuka LBR iiwa 14 R820, see [144].

h θh dh qh,min qh,max q̇h,max

- - mm ◦ ◦ ◦ s−1

1 q1 157.5 −170 170 85
2 q2 202.5 −120 120 85
3 q3 237.5 −170 170 100
4 q4 182.5 −120 120 75
5 q5 217.5 −170 170 130
6 q6 182.5 −120 120 135
7 q7 81 −175 175 135
8 - 71 - - -
9 - 150 - - -

A.2 KUKA Cybertech KR8 R1620

The Kuka Cybertech KR8 R1620 is an industrial robot with n = 6 revolute
joints, of which the last three joints constitute a spherical wrist [29]. A schematic
drawing is given in Fig. A.2 with a trim tool mounted on the end-effector. The
configuration shown in Fig. A.2 is

qT =
[
0◦ −90◦ 90◦ 0◦ 0◦ 0◦

]
. (A.2)

The Denavit-Hartenberg parameters, see, e.g., [29], together with the mechan-
ical joint limits qmin and qmax of the robot are listed in Tab. A.2. The analytical
inverse kinematics of this manipulator is presented in [29]. Due to the wide axis
range of joint 6, additional inverse kinematics solutions exist, see Tab. A.2.
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Figure A.2: Kuka Cybertech KR8 R1620 with annotated coordinate frames and
revolute joints qh turning around the zh−1 axes, h = 1, . . . , 6, and a trim tool
mounted on the end-effector; adapted from [8], cf. [135].
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Table A.2: Denavit-Hartenberg and kinematic parameters of the Kuka Cy-
bertech KR8 R1620; adapted from [8], see [135].

h θh dh ϑh ah qh,min qh,max q̇h,max

- - mm ◦ mm ◦ ◦ ◦ s−1

1 q1 450 −90 150 −170 170 220
2 q2 0 0 810 −185 65 210
3 q3− π

2
0 −90 20 −137 163 270

4 q4 660 90 0 −185 185 381
5 q5 0 −90 0 −120 120 311
6 q6 80 0 0 −350 350 492

The singular configurations of the Kuka Cybertech KR8 R1620 manipulator are

(A) q5 = 0◦ (A.3a)

(B) q3 =
π

2
− arctan

(
d4
a3

)
≈ 1.7◦ (A.3b)

(C) a1 + a2 cos(q2) + a3 cos
(π
2
− q2 − q3

)
+ d4 sin

(π
2
− q2 − q3

)
= 0 , (A.3c)

see [99].

Major parts of this section have been published in the author’s work [8] and are
adapted for this thesis.
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Appendix B Mathematics of Unit
Quaternions

In this section, the utilized mathematical relations for unit quaternions are pre-
sented and derived. First, the definition of the quaternion product and the time
derivative of unit quaternions are presented. Based on this, the time derivative
of the Lyapunov function from Section 3.3 is computed. Next, the motivation
of the objective function regarding the orientation deviation from Section 5.3.3 is
shown, and finally, the gradients of the quaternion error are derived. Preliminary
work was developed in the diploma thesis written by the author [37].

Major parts of this chapter have been published in the author’s works [7, 10] and
are adapted for this thesis.

B.1 Quaternion Product and Time Derivative of Unit

Quaternions

The quaternion product ⊗ of two unit quaternions oT
i =

[
ηi ε

T
i

]
, i = 1, 2, is defined

as, see, e.g., [29],

o1 ⊗ o2 =

[
η1
ε1

]
⊗

[
η2
ε2

]
=

[
η1η2 − (ε1)

Tε2
η1ε2 + η2ε1 + S(ε1)ε2

]
, (B.1)
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with the skew-symmetric operator S(·) from (2.14). The time derivative of a unit
quaternion oT =

[
η εT

]
is called quaternion propagation and reads as

ȯ =

[
η̇

ε̇

]
=

1

2

[
0

ω

]
⊗
[
η

ε

]
=

1

2

[
0 −ωT

ω S(ω)

][
η

ε

]
, (B.2)

with the angular velocity ω, see [29]. Taking the quaternion product of ȯ with the
inverse unit quaternion (o−1)T =

[
η −εT

]
yields, see (B.2)

ω = 2 (ηε̇− η̇ε− S(ε̇)ε) , (B.3)

see [29].

Major parts of this section have been published in the author’s works [7, 37] and
are adapted for this thesis.

B.2 Time Derivative of Lyapunov Function

In this section, the time derivative of the Lyapunov function (3.28) is derived.
Similar to [68], the time derivative with the introduced terms a and b is

V̇ = 2Ko

(
η̃P(η̇

M
P − η̇TP ) + (ε̃P)

T(ε̇MP − ε̇TP)
). .. .

a

+(ω̃P)
T(ω̇M

P − ω̇T
P). .. .

b

, (B.4)

with the relations η̃P = ηMP − ηTP , ε̃P = εMP − εTP , and ω̃P = ωM
P − ωT

P . With
(3.26) and (B.2), the term a simplifies to

a =Koη̃P
(
(−ωM

P )TεMP + (ωT
P)

TεTP
)
+

Ko(ε̃P)
T (

ωM
P ηMP + S(ωM

P )εMP − ωT
Pη

T
P − S(ωT

P)ε
T
P
)

=Ko(ω
M
P )T

(
ηTPε

M
P − ηMP εTP

)−Ko(ω
T
P)

T
(
ηTPε

M
P − ηMP εTP

)−
Ko(ε

M
P )TS(ωT

P)ε
T
P −Ko(ε

T
P)

TS(ωM
P )εMP

=Ko(ω̃P)
TεMT , (B.5)
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where the relation

−(εMP )
T
S(ωT

P)ε
T
P − (εTP)

TS(ωM
P )εMP = −(ω̃P)

T(εMP × εTP)

= −(ω̃P)
TS(εMP )εTP (B.6)

with the cross product × was used.

The term b in (B.4) with (3.25) takes the form

b = (ω̃P)
T (−Kωω̃P −Koε

M
T
)

. (B.7)

Inserting (B.5) and (B.7) into (B.4) results in

V̇ = −(ω̃P)
TKωω̃P , (B.8)

see (3.29).

Major parts of this section have been published in the author’s works [7, 37] and
are adapted for this thesis.

B.3 Objective Function of Orientation Deviation

In this section, the relation between unit quaternions and the angle-axis represen-
tation with the vector l and the rotation θ around l is discussed. The mathematical
relation is given by, e.g., [29],

η = cos

(
θ

2

)
and (B.9a)

ε = l sin

(
θ

2

)
. (B.9b)

In the following, two examples with rotations around one axis in (B.10) and around
two axes in (B.11) are shown, where the specific range of rotation is chosen to
clarify the visual presentation in Fig. B.1. In Fig. B.1a, pure rotations around the
z-axis w.r.t. the dashed coordinate frame T are illustrated, which correspond to
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Figure B.1: Orientation deviations oM
T w.r.t. the dashed coordinate frame T in

the origin with rotations around (a) the z-axis, (b) the x- and y-axis; adapted from
[10].

unit quaternions oM
T in the form

oM
T =

ǒM
T

∥ǒM
T ∥2

, ǒM
T =


1

0

0

εz

 , − 0.15 ≤ εz ≤ 0.15 . (B.10)

In (B.10), the first two entries of the vector part of the quaternion error εMT are
zero, while the last entry is a small random number corresponding to lT =

[
0 0 1

]
in (B.9b). Hence, unit quaternions in the form (B.10) represent pure rotations
around the z-axis.

In contrast, quaternion errors in the form

oM
T =

ǒM
T

∥ǒM
T ∥2

, ǒM
T =


1

εx
εy
0

 ,
−0.15 ≤ εx ≤ 0.15

−0.15 ≤ εy ≤ 0.15
, (B.11)

have negligible rotations around the z-axis, while the rotations around the x-
and y-axis are significant, see Fig. B.1b. This example shows that penalizing the
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individual components of εMT in (5.19) using Ao minimizes the rotation around
the respective axis in l.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.

B.4 Gradients of Unit Quaternions

The time derivative of the quaternion error (3.26) reads as

doM
T

dt
=

[
dηMT
dt

dεMT
dt

]
=

[
η̇MP ηTP + ηMP η̇TP + (ε̇MP )TεTP + (εMP )Tε̇TP

η̇TPε
M
P + ηTP ε̇

M
P − η̇MP εTP − ηMP ε̇TP − ε̇MP × εTP − εMP × ε̇TP

]
=

1

2

[ (
ωM

P
)T(−ηTPε

M
P + ηMP εTP+εMP × εTP

)
+
(
ωT

P
)T(

ηTPε
M
P − ηMP εTP − εMP × εTP

)(
ωM

P − ωT
P
)(
ηMP ηTP + (εMP )TεTP

)
+
(
ωM

P + ωT
P
)×(

ηTPε
M
P − ηMP εTP − εMP × εTP

)] ,

(B.12)
where the time derivative of a unit quaternion (B.2) is inserted.

Factorizing (B.12) with (3.26) results in

∂oM
T

∂q
q̇ =

[
∂ηMT
∂q

∂εMT
∂q

]
q̇ =

1

2

[
−(

ωM
P − ωT

P
)T

εMT(
ωM

P − ωT
P
)
ηMT +

(
ωM

P + ωT
P
)× εMT

]
, (B.13)

and after eliminating q̇ with (2.13), the gradient yields

∂oM
T

∂q
=

[
∂ηMT
∂q

∂εMT
∂q

]
=

1

2

[
(εMT )TJT

P,ω(q)

−ηMT JT
P,ω(q)− S(εMT )JT

P,ω(q)

]
. (B.14)

Since the manufacturing path HM
P is assumed to be stationary, the corresponding

Jacobian JM
P,ω vanishes.

Major parts of this section have been published in the author’s work [10] and are
adapted for this thesis.
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Appendix C Supplementary
Material

Along with the published works from the author, several videos were created and
published as supplementary material. The links to those videos are listed in the
following:

[7] T. Weingartshofer, M. Schwegel, C. Hartl-Nesic, T. Glück, and A. Kugi,
“Collaborative Synchronization of a 7-Axis Robot”, IFAC-PapersOnLine, vol.
52, no. 15, pp. 507–512, 2019, © IFAC.
www.acin.tuwien.ac.at/b2ac

[8] T. Weingartshofer, C. Hartl-Nesic, and A. Kugi, “Optimal TCP and Robot
Base Placement for a Set of Complex Continuous Paths”, in IEEE Inter-
national Conference on Robotics and Automation, 2021, pp. 9659-9665, ©
IEEE.
www.acin.tuwien.ac.at/9c5f

[9] T. Weingartshofer, A. Haddadi, C. Hartl-Nesic, and A. Kugi, “Flexible Robotic
Drawing on 3D Objects with an Industrial Robot”, in IEEE Conference on
Control Technology and Applications, 2022, pp. 29-36, © IEEE.
www.acin.tuwien.ac.at/3bc0

[10] T. Weingartshofer, B. Bischof, M. Meiringer, C. Hartl-Nesic, and A. Kugi,
“Optimization-based path planning framework for industrial manufacturing
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