
Utilizing and Extending the
Inherent Fault Tolerance

Properties of Asynchronous QDI
Circuits

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Zaheer Tabassam, MS
Matrikelnummer 12110385

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

Diese Dissertation haben begutachtet:

Prof. Hong Chen Assoc. Prof. Petr Fišer

Wien, 1. Jänner 2024
Zaheer Tabassam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Utilizing and Extending the
Inherent Fault Tolerance

Properties of Asynchronous QDI
Circuits

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Zaheer Tabassam, MS
Registration Number 12110385

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

The dissertation has been reviewed by:

Prof. Hong Chen Assoc. Prof. Petr Fišer

Vienna, 1st January, 2024
Zaheer Tabassam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Zaheer Tabassam, MS

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Jänner 2024
Zaheer Tabassam

v

Acknowledgements

Thanks to Almighty ALLAH, who listens to me whenever I speak to Him, especially
guiding me throughout this jorney.

My heartfelt appreciation goes to my mother, Rabia, whose belief in the attainability
of my goals and tireless efforts defy expression. I extend sincere thanks to my father,
Muhammad Nazir, for his unwavering support in every conceivable manner. To my sisters,
Saba Tabassam and Muqadas Noor, your steadfast support has been the foundation upon
which I built the courage to embark on this endeavor.

I extend my sincere appreciation to Andreas Steininger, my doctoral studies supervisor,
who took a chance on me when I was a novice in this field. His consistent support and
weekly interactions over the past three years have been instrumental in my progress and
the generation of innovative ideas contributing to my research.

A special acknowledgment is reserved for Syed Rameez Naqvi, my supervisor during my
master’s studies, whose guidance not only introduced me to the asynchronous world but
also paved the way to TUWien. His mentorship instilled in me the courage to take bold
steps and strive relentlessly towards my objectives.

I am grateful to my dedicated group members, Robert Najvirt, Florian Huemer, Raghda
El Shehaby, and Patrick Behal, whose collaborative efforts laid the groundwork for my
research activities. The extensive and insightful meetings we shared, filled with valuable
suggestions, significantly contributed to the development of my work.

My appreciation extends to my institute fellows, whose unwavering support has been a
constant in my journey.

I am indebted to all those who shared positive words of encouragement, providing a
comforting backdrop for me during the course of this transformative journey.

Finally, I owe a debt of gratitude to my wife, Khush Bakht, whose companionship has
transformed these intense months into a period of joy and love.

This research was partially supported by the project ENROL (grant I 3485-N31) of the
Austrian Science Fund (FWF).

vii

Kurzfassung

Die schlechte Vorhersagbarkeit des Zeitverhaltens ist eines der Hauptprobleme in getak-
teten Schaltungen. Die inhärente Selbsttaktung asynchroner Schaltungen kann dieses
Problem effizient lösen und bietet Anlass, deren mögliche weitere Vorteile zu erkunden. Die
Klasse der Quasi Delay-Insensitive (QDI)-Schaltungen stellt aufgrund ihres im Vergleich
zu synchronen Schaltungen sehr flexiblen Zeitverhaltens und ihrer Realisierungsstruktur
einen guten Kompromiss dar. Allerdings macht ihre ereignisgesteuerte Natur, so wichtig
sie für das gewünschte adaptive Zeitverhalten ist, sie anfällig für andere Umwelteinflüsse
wie single event transient (SET)s. Dies liegt daran, dass die einzelnen Module der Schal-
tung den Zeitpunkt der Generierung sowie der Übernahme von Daten selbst entscheiden,
was die Datenübernahmefenster unberechenbar macht und die Schaltung für jegliche
Signaländerungen, unabhängig von deren Quelle, empfänglich bleiben lässt. In dieser
Arbeit untersuchen wir die drei Hauptteile von QDI-Schaltungen – das Speicherelement
(Buffer-Grundstruktur), die kombinatorische Logik und das bedingte Steuerelement –
während dieser Zeitfenster unter dem Einfluss von SETs.

Die Buffer-Grundstruktur einer QDI-Schaltung basiert auf einem grundlegenden asyn-
chronen Element namens Muller C-element (MCE) (oder anderen Gattern mit Hysterese).
Sein Arbeitsprinzip umfasst zwei Modi: den kombinatorischen Modus, bei dem alle Ein-
gänge übereinstimmen, wodurch der Ausgang unmittelbar von diesen bestimmt wird,
und den Speichermodus, bei dem der Ausgang durch die interne Speicherschleife des
MCE definiert wird. Im Speichermodus ist das MCE anfällig für SETs, an Eingang wie
an Ausgang. Der Wechsel zwischen diesen Modi und folglich die Länge der fehleran-
fälligen Fenster hängt vom Verhalten der benachbarten Module, Quelle und Senke, ab.
Wir analysieren das Verhalten von QDI-Schaltungen in Bezug auf SETs bei variabler
Geschwindigkeit von Quelle und Senke. Für ein erstes Verständnis beginnen wir unsere
Untersuchungen mit einer leeren Pipeline-Schaltung, da der Buffer der aktive Teil im
Handshake ist und für die Umwandlung eines SET in einen single event upset (SEU)
verantwortlich ist. Wir schlagen verschiedene Techniken vor, die Widerstandsfähigkeit der
Buffer-Grundstruktur gegen SETs zu verbessern. Diese Techniken nutzen im Wesentlichen
die Informationen des Handshake-Zyklus, um die empfindlichen Fenster der Buffer zu
verkürzen. Die Ergebnisse bestätigen, dass unsere vorgeschlagenen Verbesserungen die
Schaltungen widerstandsfähiger gegen SETs machen.

Wir untersuchen separat auch die Auswirkungen von MCEs im kombinatorischen Teil

ix

und tragen dabei Sorge, transiente Probleme zu lösen, bevor sie die Buffer-Elemente
erreichen. Anhand der Analyse einer als Pipeline realisierten Multiplikatorschaltung
untersuchen wir zwei bestehende Techniken und schlagen schließlich einen verbesserten
Ansatz vor, der bei Erkennung einer transienten Störung innerhalb der kombinatorischen
Logik (1) die Speicheraktivität des Buffers einfriert und (2) die QDI-Natur der Schaltung
nutzt, um selektiv alle MCEs rückzusetzen, die während dieses Handshake-Zyklus inaktiv
sein sollen. Vielversprechende experimentelle Ergebnisse unterstützen die theoretischen
Konzepte unseres Ansatzes.

Die gesteuerten Datenflusselemente von QDI-Schaltungen enthalten ebenfalls MCEs.
Wir modifizieren diese, um die aktuellen Handshake-Informationen dazu nutzen zu
können, SET-bedingte Flanken im jeweils nicht ausgewählten Pfad zu löschen. Die
experimentelle Analyse zeigt, dass diese Verbesserungen zur Widerstandsfähigkeit der
Schaltung beitragen.

Generell besteht unsere Strategie darin, die intrinsischen Fehlererkennungsfähigkeiten in
QDI-Schaltungen bestmöglich zu nutzen, wobei natürlich auch andere Aspekte abzuwägen
sind. Die Neuheit unserer Arbeit liegt in der Einbeziehung der Umgebung der QDI-
Schaltung (Quelle/Senke) und einer detaillierten Betrachtung der Effekte, die sich aus
deren abnormalem Verhalten ergeben können. Da jede Schaltungsvariante zusätzlich zur
gewünschten Minderung der SET-Effekte auch weitere Vorzüge und Probleme mit sich
bringt, müssen wir gewählte Ansätze sorgfältig anpassen. Letztendlich besteht unser
Ziel darin, ein hohes Maß an Widerstandsfähigkeit gegen SETs zu erreichen, und dabei
zur Verringerung der dafür nötigen Redundanz das flexible Zeitverhalten von QDI-
Schaltungen bestmöglich zu nutzen. Unsere Ergebnisse bestätigen, dass wir tatsächlich
eine bessere Widerstandsfähigkeit als die bestehenden Ansätze erreichen konnten.

Abstract

Timing variation is one of the main concerns in clocked circuits. The inherent self-timed
property of asynchronous circuits can efficiently address this problem and convince the
community to explore its other veiled benefits. The Quasi Delay-Insensitive (QDI) class
of circuits, due to its flexible timing compared to synchronous circuits and its realization
structure, represents a good trade-off. However, its event-driven nature, while being
instrumental for the desired adaptive timing, makes it prone to other environmental
effects such as single event transients (SETs). This is because connected modules are
free in their generation and consumption timing of data, which makes waiting windows
unpredictable and leaves the circuit remaining open to any change regardless of the
source. In this thesis, we investigate the main three parts of QDI circuits – storage
element (buffer template), combinational logic and conditional control element – during
these windows under the influence of SETs.

The buffer template of a QDI circuit is based on a basic asynchronous element called
Muller C-element (MCE) (or other gates with hysteresis). Its working principle comprises
two modes, combinational mode when all inputs match, meaning the output is strongly
indicated by the inputs, and storage mode when the output is defined by the internal
storage loop of the MCE. In storage mode the MCE is susceptible to SETs from input
as well as output. The alternation between these modes and consequently its susceptible
window length is depended on its connected environment, source and sink. We analyze
the behavior of QDI circuits in relation to SETs for variable speed of source and sink. For
a first understanding, we start our investigations with an empty pipelined circuit, as the
buffer is the active part in the handshaking, and it is responsible for converting an SET
into an single event upset (SEU). We propose several techniques to improve the resilience
of the buffer template against SETs. Basically these techniques utilize the handshake
cycle information to shorten the armed (sensitive) windows of the buffers. The results
confirm that our proposed enhancements make the circuits more resilient against SETs.

We also examine the effects of MCEs in the combinational part separately and strive
to resolve transient issues before they reach the buffer elements. Using a pipelined
multiplier circuit for our analysis we analyze two respective state-of-the-art techniques
and finally propose an improved technique which, upon detection of a transient within
the combinational logic, (1) freezes the data latching activity of buffer, and (2) leverages
the QDI nature of the circuit to selectively flush all those MCEs that are supposed to be

xi

zero during this handshake cycle. Promising experimental results back the theoretical
concepts of our approach.

The conditional control elements of QDI circuits also comprise MCEs. We modify these
in a way that the current handshake information is used by the unselected path to nullify
transitions caused by SETs. The experimental analysis shows that these enhancements
contribute well to the resilience of the circuit.

In general, we strive to make best use of the intrinsic fault detection capabilities in QDI
circuits while considering other trade-offs. The novelty of our work lies in addressing
concerns in detail that arise when the environment behaves abnormally in a QDI circuit.
As each variation reveals its own problems and benefits on top of the novel techniques
we propose for mitigating SET effects, we need to carefully adjust suitable approaches.
The ultimate objective is to attain a high level of resilience against SETs, also utilizing
their inherent delay insensitivity while minimizing redundancy. The results confirm that
we successfully achieved better resilience than the state-of-the-art approaches.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Research Questions . 2
1.2 Thesis Organization and Publications 4

2 Asynchronous QDI Logic and its Fault Tolerant Techniques 7
2.1 Quasi Delay Insensitive Design: Isochronic Fork Assumption 7
2.2 Pipeline Load Factor . 14
2.3 Circuit Description and Fault Injection simulation environment 16
2.4 Target Circuits . 19
2.5 Fault-tolerance techniques from literature 21

3 Fault Tolerance Behavior of QDI Buffer Templates 23
3.1 Weak-Conditioned Half Buffer (WCHB) behavior under SET’s 23
3.2 InterlockingWCHB under the influence of SETs 31
3.3 Input/Output-Interlocking WCHB for the mitigation of SET effects . 40
3.4 Input Output Interlocking with SR latch WCHB 50
3.5 Δ: Dual_Completion_Detection Input Output Interlocking WCHB . 60

4 The behavior of QDI Combinational Logic under the influence of
SETs 73
4.1 SET effects in DIMS Combinational Logic with a WCHB buffer template 73
4.2 The SE Tolerance Asynchronous Pipeline I approach for flushing SEUs

from DIMS combinational logic with a WCHB buffer template 78
4.3 The SE Tolerance Asynchronous Pipeline II approach for mitigating SET

effects in DIMS combinational logic with a WCHB buffer template . . 85
4.4 SETs effects in DIMS Combinational Logic with the Δ buffer template 93
4.5 SETAPI approach for flushing SEUs from DIMS combinational logic with

the Δ buffer template . 97

xiii

4.6 ζ approach to flush SEUs from DIMS combinational logic with a modified
Δ buffer template . 104

5 SET suseptibility of QDI Conditional Control Elements 115
5.1 SET effects on QDI Multiplexer and De-multiplexer 115
5.2 Proposed SET resilience enhancements for QDI Multiplexer and De-

multiplexer . 121
5.3 Final Comments on Δ_E and ζ_Δ _E 128

6 Conclusion and Future Work 131
6.1 Resilience of Buffer templates . 131
6.2 Combinational logic Flushing Techniques 133
6.3 Towards the resilient Conditional Control Elements 134
6.4 Comparing SET Effects in Quasi Delay Insensitive and Synchronous Cir-

cuits . 135
6.5 Future Work . 135

List of Figures 137

Bibliography 143

CHAPTER 1
Introduction

Most digital circuits are basically composed of two elementary parts: computation (main
functional part) and storage. Data computed by combinational logic is latched into
storage elements with a special signal transition. In synchronous design these transitions
are delivered by a pre-calculated fixed digital pulse called global clock. The estimation of
the “clock” signal’s period considers the longest combinational delay path. In contrast to
that, in asynchronous design [Spa20] the signal transitions required for triggering the
latching are locally generated by two connected modules following some special protocol.

As delays continue to become increasingly unpredictable and variable in modern VLSI
technologies, the worst-case delay assumption underlying the synchronous design paradigm
is getting cumbersome and inefficient. Justifying the abstraction of synchronous design,
namely that all flip-flops of the circuit are triggered at precisely the same time instances,
demands high design efforts and optimal energy distribution [LKM10, Fri01, DIBM03].

Consequently, asynchronous design techniques, whose closed-loop timing design can
flexibly adapt to delay variations, are considered an attractive alternative. Asynchronous
design methods are also known for their superior energy efficiency [CRS21] and low
power dissipation. Reduced electromagnetic emission, higher operating speed, and better
modularity are among a few other traits associated with asynchronous logic design [Spa20].
In context with new architectures [BBN22, LHT+21, NKD+21, DWO+21] asynchronous
circuits are also moving into the spotlight.

Their flexible timing makes asynchronous circuits, most notably the so-called QDI ones,
also robust against fault effects that impact the circuit’s temporal behavior. As mentioned
earlier, QDI circuits employ local handshakes instead of a global clock to control the
progress of computation and data exchange. These handshakes essentially form closed
control loops that precisely adapt the timing to the actual delays, hence QDI circuits can
easily accommodate delay variations, and they are robust against delay-related types of
faults. However, their operation is event-based (rather than level-based as in synchronous

1

1. Introduction

designs), which makes them vulnerable to SETs. Their relatively large data accepting
windows [HNS20] make them quite susceptible to environmental effects, as well as other
types of transient faults in the value domain, like glitches. Unfortunately, as feature sizes
shrink in modern technologies, the rate of SETs is also increasing. Hence, making QDI
circuits more resilient against SETs becomes a very relevant issue.

Proven fault-tolerance techniques known from the synchronous domain usually cannot
directly be transferred into the asynchronous domain. However, in the literature several
specific techniques have already been proposed to make asynchronous designs more
resilient against SETs, some of them were discussed by [Hue22]. [Sak21] also investigates
QDI circuits in this respect in a detailed manner. This thesis sets out to perform a
comprehensive study on how QDI circuits react to transient faults in the value domain
(specifically SETs), elaborate suitable and efficient hardening approaches, and finally
give experimental evidence for the improvements achieved.

1.1 Research Questions
In this work we investigate the behavior of all parts of a QDI circuit including buffer
template, combinational logic and conditional control elements under SETs. Towards
this end, our strategy will be to first investigate the root cause of errors, and based on
these insights then propose effective methods for their mitigation.

1.1.1 Resilience of QDI circuits against SETs
The environment in which the QDI circuits are operating defines their operating frequency.
This is not necessarily under (full) control of the circuit and depends on how fast the
data is accepted by the sink (receiver) as well as how fast new data is available from the
source (sender). This essentially unknown behavior defines the mode in which the circuit
operates; sometimes the source is slow compared to the sink, sometimes it is vice versa
and sometime both source and sink respond equally fast or even without any delay.

This leads to the main questions, namely

How can the resilience of a QDI pipeline depend on the speed of its environment, and
how can this knowledge be leveraged to improve the resilience?

Can the resilience obtained by existing approaches for SET hardening of QDI pipeline
buffers be improved without having to resort to (expensive) replication approaches?

To answer these main questions, these scenarios must be analyzed with the following
subquestions.

• While waiting for source and sink, which nodes of a buffer template are susceptible
to SETs? What is the resilience without these delays?

• Where are susceptible windows in each mode of operation.

2

1.1. Research Questions

• What types of error are generated as SET effects?

• Are these error types the same for different modes? Does their probability depend
on the mode?

• What are the main causes behind the generation of different types of errors for
different modes?

• How do the state of the art fault tolerance approaches addresses this issue?

• Does QDI also offer any inherent fault tolerance properties for transient faults?

• If yes, how much can we benefit from it?

• How can we extend these inherent fault tolerance properties without utilizing full
duplication (circuit replica)?

• The principle of causality inherent to QDI circuits seems to prohibit that a glitch,
as an effect of an SET, propagates to the output without changing its nature to a
stable value. However, literature reported glitches from QDI circuits due to SET
strikes. What are the main reasons behind the observed glitch appearance?

With the knowledge of how circuits behave in each mode of operation, and what are
the main causes of error generation, we can efficiently deal with the fault effects. We
then add combinational logic to the picture with one main research question and several
subquestions.

Does specific protection of combinational parts of a QDI circuit significantly contribute to
the overall robustness, and if so, how can it be accomplished in an efficient way?

• What is the contribution of QDI combinational logic to the overall error rate?

• What is the main reason of its susceptibility?

• How does the community address this issue?

• How effective are the existing methods? Where are their limitations? Can we do
better?

After analyzing the resilience of linear pipelined circuits, we extended our work to non-
linear pipeline QDI circuits. Non-linear QDI circuits also include conditional control
elements which require extra consideration. So our next research question, along with its
associated subquestions relates to these.

Does specific protection of conditional control elements within a QDI circuit significantly
contribute to the overall robustness, and if so, how can it be accomplished in an efficient
way?

3

1. Introduction

• What is the contribution of QDI conditional control elements to the overall error
rate?

• Which path of a conditional control element is more susceptible to SET and why?

• How we can enhance the resilience of a more susceptible path?

• Do we have to add extra circuitry, or we can utilize the QDI nature of the circuit
to enhance its resilience?

• Is the position of a conditional control element relevant for its susceptibility?

The main approach to analyze the circuits is fault-injection simulation. Through a careful
mix of deterministically chosen and randomly varied parameters we try to cover the
relevant parameter space. The experimental analysis serves two purposes: Firstly, it
provides a good indication of the effects SETs can have in the chosen target circuit and
hence points to weak spots. Secondly, it allows a quantitative robustness assessment,
which is important for a comparison of approaches and the judgement of improvements
attained through circuit enhancements.

1.2 Thesis Organization and Publications
In the next chapter we will start with the basics of asynchronous and specifically the
QDI class of circuits. We will discuss the MCE, a key building block of QDI circuits.
Most parts of the buffer template, combinational logic and conditional control element
are composed of MCEs, so, to get a basic understanding, we first discuss its susceptibility
against SETs in isolation. Then we review the encoding scheme and Delay-Insensitive
Minterm Synthesis (DIMS) style to implement a QDI combinational logic, we also discuss
the WCHB, a baseline buffer template for implementing a QDI pipeline. We also give a
detailed view of Pipeline load factor (PLF) and our simulation tool for fault-injection
experiments with all settings of the circuit. Finally, in this chapter we also introduce the
target circuits for our evaluation study, and, most importantly, the literature review.

In Chapter 3, we thoroughly analyze the behavior of different QDI buffer templates under
SETs. We present a detailed view of buffer templates with all important parameters. We
published the results of our susceptibility analysis of state-of-the-art fault tolerant buffer
templates in

P. Behal, F. Huemer, R. Najvirt, A. Steininger and Z. Tabassam, "Towards Explaining
the Fault Sensitivity of Different QDI Pipeline Styles," 2021 27th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), Beijing, China, 2021, pp.
25-33.

We follow up with the findings from [HNS20] and extend their work with a resilient
approach addressing the susceptible windows. We introduce a novel approach called
Input Output Interlocking WCHB which we also published as

4

1.2. Thesis Organization and Publications

Z. Tabassam, P. Behal, R. Najvirt and A. Steininger, "Input/Output-Interlocking for
Fault Mitigation in QDI Pipelines," 2021 Austrochip Workshop on Microelectronics
(Austrochip), Linz, Austria, 2021, pp. 17-20.

Next, we present the thorough investigations of that approach which suggest refinements
to achieve higher (or at least the same) resilience with a simpler architecture. We
introduce a further improved the buffer template that was published in

Z. Tabassam and A. Steininger, "Towards Resilient QDI Pipeline Implementations," 2022
25th Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain, 2022,
pp. 657-664.

In a next step we elaborate a buffer template we call Δ which shows high resilience
against SETs for a variety of PLFs. The behavior is achieved by minimizing the sensitive
window of the circuit. The analysis presented is based on the publication

Z. Tabassam and A. Steininger, "SET Hardened Derivatives of QDI Buffer Template,"
2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT), Austin, TX, USA, 2022, pp. 1-6.

Chapter 3 not only presents the published SET hardened QDI buffer templates but also
provides more elaborate analyses from different angles to understand their behavior under
SETs.

After having elaborated a somewhat satisfactory protection for the buffer templates,
we start investigating the contribution of combinational logic to the overall error rate
in Chapter 4, and its main root cause. Based on a thorough analysis we propose an
enhancement for the state-of-the-art combinational logic flushing approach. It comes along
without flushing the whole combinational logic and without adding extra computation
cycles, but instead carefully identifies the fault and selectively flushes the stored erroneous
transitions. This idea was published in

Z. Tabassam, A. Steininger, R. Najvirt and F. Huemer, "ζ: A Novel Approach for
Mitigating Single Event Transient Effects in Quasi Delay Insensitive Logic," 2023 28th
IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), Beijing,
China, 2023, pp. 48-57.

To address the research questions regarding the QDI conditional control elements we
investigate their behavior in Chapter 5 in detail and present techniques to enhance their
resilience against SETs. More specifically, we propose a method which considers for each
path of conditional control elements when it is safe to latch data and when not. These
techniques are presented in

Z. Tabassam and A. Steininger, “Towards Resilient Quasi Delay Insensitive Conditional
Control Elements”, 2023 26th Euromicro Conference on Digital System Design (DSD).

To generate the QDI circuits (VHDL file) we utilize the tool designed by our group
members Florian Huemer [Hue22] and Robert Najvirt. This tool is basically written in
Python language where the final file form is then passed to the fault-injection simulation

5

1. Introduction

environment developed by Patrick Behal and Robert Najvirt [BHNS21, Beh21]. My
contribution is the thorough analysis of QDI circuits under SETs and the proposed
enhancements that yield better resilience. In my experiments I also identified the residual
sensitive windows for future work. The thesis is summarized in Chapter 6 by highlighting
the main contributions.

6

CHAPTER 2
Asynchronous QDI Logic and its

Fault Tolerant Techniques

This chapter introduces the basics of QDI logic including its timing assumption, basic
architecture, its environment and the most important its behavior under variable delays
from source and sink. As the focus of thesis is fault tolerance of QDI circuits we discuss
the state-of-the-art fault tolerance techniques. This chapter also introduces all terms
that are relevant in any context with the work presented in the next chapters.

2.1 Quasi Delay Insensitive Design: Isochronic Fork
Assumption

The term QDI comes from delay insensitivity: the circuit operates without any timing
assumptions, which means wires and gates can have arbitrary delays. In QDI we constrain
a delay-insensitive (DI) circuit with an isochronic fork assumption to allow its realization
with basic logic gates [Mar86]. The isochrnoic assumption suggests that the different
branches of the fork must observe the same delay. Figure 2.1 explains the isochronic
fork assumption: line "F" forks to a NOT and an OR gate, when both branches have the
same wire delays, we can guarantee the appearance of the high signal at OR-gate input
"B" before input "A" goes low. In that manner OR-gate output "C" is glitch free.

A
B

CF

Figure 2.1: Isochronic fork assumption: reprinted from [BOF10]

7

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

Asynchronous circuits may also be realized with some other approaches e.g. bundled
data, hybrid techniques etc. All approaches can be found in [BOF10].

2.1.1 The MCE

A fundamental building block of QDI circuits is the Muller C-element (MCE). Its
functionality is simple: only the logic level of matching inputs is passed to the output
and retained until a matching pattern with the opposite logic level arrives, Figure 2.2
shows a symbolic representation of a MCE and its variants.

As Figure 2.2 suggests, a regular MCE’s output changes for symmetric inputs after the
inertial delay of the gate. This also holds for the MCE with negative input (C-element-);
however, here for up transitions (only) the input NegIN has no impact. Likewise, the
MCE with positive input (C-element+) ignores PosIN for the down-transition.

The MCE is a storage element that works on a simple matching and latching principle:
only matching inputs are latched.

IN1

IN2

Out1

Note: ID = Inertial_Delay

ID ID

IN3

IN4

Out2

ID ID
NegIN

IN5

IN6

Out3

ID ID
PosIN

Clean transitions

1

2

3

4

5

6

7

8

9

10

11

C-element-

C-element+

IN1 Out1CIN2

C
NegIN -
IN3

Out2
IN4

Asymmetric C-element
With negative input

C
PosIN +
IN5

Out3
IN6

Asymmetric C-element
With positive input

C-element

Figure 2.2: MCE and its derivatives normal behavior

8

2.1. Quasi Delay Insensitive Design: Isochronic Fork Assumption

2.1.2 Modeling a C-element
Algorithm 2.1 is a detailed model of the MCE and is consistently referenced throughout
this work. If asymmetric inputs are added, they are treated as normal inputs, subject to
validation under one of the respective conditions, as specified. In the case of adding a
reset and activating it, the MCE simply flushes the stored value. The special input sp
has unique functions; if added, it must be checked for SET conditions. If sp is low and
the second input IN2 is also low, it activates the reset condition. Additionally, if the
input n is added and goes low, it forcefully resets the MCE when in storage mode.

Algorithm 2.1: MCE Model
Comment : ∧ is logical AND, ∨ is logical OR, and ∼ is logic inversion
Inputs : IN1, IN2 , Asymmetric+, Asymmetric-, Reset, n, sp
Comment: Only IN1 and IN2 serve as primary inputs; all others are included as
per the requirements
Output : Out1

1 if IN1 ∧ IN2 (∧ Asymmetric+) (∧ ∼ sp) then
2 Out1 = 1 after (Inertial Delay);
3 Comment: Condition 1 – set
4 else if (∼ (IN1 ∨ IN2 (∨ Asymmetric-))) ∨ Reset then
5 Out1 = 0 after (Inertial Delay);
6 Comment: Condition 2 – reset
7 else if ∼ (IN1 ∧ IN2) ∧ ∼n then
8 Out1 = 0 after (Inertial Delay);
9 Comment: force reset with “n”

10 else if ∼ IN2 ∧ ∼sp then
11 Out1 = 0 after (Inertial Delay);
12 Comment: force reset with “sp”
13 else if Out1 then
14 Out1 = 1 after (Inertial Delay);
15 Comment: Condition 3 – hold 1
16 else if (∼ Out1) then
17 Out1 = 0 after (Inertial Delay);
18 Comment: Condition 4 – hold 0

2.1.3 Sensitive Areas of the C − element and SETs
Technology advancements pose some challenges, one being SET effects, [Kob20, TPES22],
and [FCMG13] discussed these effects on digital circuits in comprehensive manners. As
our focus is QDI and the main element is the MCE that converts SETs to soft errors,
we only highlight the effects of an SET with respect to the MCE. MCEs has a major
contribution in error generation and propagation, but also masking. The right part of
Figure 2.3 illustrates possible effects on the three MCE types under fault (SET) scenarios.

9

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

These are numbered F1 to F5. Discussing all fault combinations is not feasible here –
the purpose of the following discussion is to show some principal effects.

ID

ID ID

ID

ID

ID

ID

ID
ID

F2

F1

F3

F4 F5

Faulty transitions

IN1

IN2

Out1

IN3

IN4

Out2

NegIN

IN5

IN6

Out3

PosIN

Note: ID = Inertial_Delay

C-element-

C-element+

IN1
Out1CIN2

C
NegIN -
IN3

Out2
IN4

Asymmetric C-element
With negative input

C
PosIN +
IN5

Out3IN6

Asymmetric C-element
With positive input

C-element

Figure 2.3: MCE and its derivatives under SETs

1. F1: A fault pulse hits the MCE output Out1 while in storage mode (non-matching
inputs). In the physical implementation this fault would attempt to flip the MCE’s
storage loop from the output side, but the one shown here is too short to overcome
the element’s inertia.

2. F2: The MCE input rail In2 is hit by a fault. While it persists, the inputs match.
Since this time the fault pulse is sufficiently long, Out1 is indeed flipped and remains
at the erroneous level even after the fault vanished.

3. F3: A negative fault pulse forces Out2 to “0”. Note that right before the fault
occurred, the C-element- moved to storage mode, by a transition on IN3. However,
in contrast to F1, this fault is long enough to flip the state.

4. F4: A positive fault pulse affects Out3 of C-element+. Even though its length is
sufficient, it has no effect because the MCE is in combinational mode.

10

2.1. Quasi Delay Insensitive Design: Isochronic Fork Assumption

true-rail

false-rail

ack

true-rail

false-rail

ack

1 0

1 0 0

(a)

(b)

Figure 2.4: Dual rail encoding (a) 4-phase, (b) 2-phase

5. F5: A positive fault pulse hits Out3 while in storage mode. Its length is sufficient
to flip the state – even though PosIN is at LO.

2.1.4 Dual Rail Protocol
As QDI circuits fall under the self-timed circuit category, data must be encoded in a
way that confirms its validity to connected modules. In this work we mostly used the
dual-rail encoding scheme with 4-phase handshake protocol [Spa20]. As in Figure 2.4, for
each data bit we have two rails tagged "true-rail" and "false-rail". Figure 2.4-a illustrates
the dual rail 4-phase handshaking protocol between source and sink, "true" and "false"
rails are from source, while "ack" is an explicit signal from sink that confirms valid data
reception. A logical “1” is represented by setting these rails to (1, 0) and “0” by (0, 1).
These are code words and called (data) tokens. The code (0, 0) is used as a spacer, as
demanded in the 4-phase protocol to separate data tokens. Note that for the considered
scheme (1, 1) is an illegal pattern. After receiving a logical high acknowledgement signal
(when considering logic low as reset) from the receiver the source changes the data token
for a spacer. The handshake is completed with its 4th phase when the receiver responds
by resetting the acknowledgment. On the other hand, in the 2-phase handshake protocol
as presented in Figure 2.4-b, each transition on a data rail presents new data while each
transition on the acknowledgement line presents completion of a handshake cycle.

2.1.5 Completion Detection
As discussed, the data is received as encoded word, and the sink must acknowledge
each "token" or "transition" depending on the protocol. Figure 2.5 presents a completion

11

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

true (t)

false (f)

data
valid

t.0
f.0

t.1
f.1

t.m-2
t.m-2

t.m-1
t.m-1

data
valid

C

C

C

t.0
f.0

t.1
f.1

t.m-2
t.m-2

t.m-1
t.m-1

data
valid

C

C

C

(a) (b) (c)

Figure 2.5: Completion detection logics (a) 4-phase signaling with 1-bit message, (b)
4-phase signaling with m-bit message, (c) 2-phase signaling with m-bit message

sensing circuit to establish the command to confirm the reception. Figure 2.5-a generates
the acknowledgement signal for dual rail 1-bit data while observing the 4-phase protocol,
as only one rail made transitions during each handshake cycle, the OR gate is enough
to check the data and spacer. Figure 2.5-b is for m-bit’s, here we use MCE’s that will
ensure the generation of a completion signal once all rails have made their transitions.
Last Fig. 2.5-c generates the acknowledgement signal when we have m-bits, and we are
running with a 2-phase handshake protocol. [Sri22] also discusses completion detection
in asynchronous circuits in more detail.

2.1.6 Dual Rail Combinational Logic

DIMS [SS93], because of its delay insensitive property is one valid choice to implement
combinational blocks of QDI circuits. The DIMS 2-input AND gate in Figure 2.6 is
comprised of four MCE’s which generate minterms of the dual rail bits a, b. With these
minterms, the output can be easily generated using an OR gate as shown. As in Figure 2.6,
its AND gate so the out.t only goes high when both true rail of each bit (a and b) are
high and for all other combinations out.f is “1”. Circuits realized with DIMS are strongly
indicating ones: an output is only generated when inputs are complete.

C

C

C

C

a.t b.ta.f b.f

tt

tf

ft

ff

out.t

out.f

Figure 2.6: DIMS AND Gate

12

2.1. Quasi Delay Insensitive Design: Isochronic Fork Assumption

The second method we list was presented by [FB96], also known as Null Convention
Logic (NCL), to design a logic block with threshold gates. Figure 2.7 presents a NCL
AND gate. The presented NCL AND gate is strongly indicating but not all NCL circuits
are strongly indicating.

2

3

a.t

a.f

b.t

b.f

out.t

out.f

TH22

TH34W22

Figure 2.7: NCL AND Gate

Based on NCL, [KL02] introduced the NCL_X flow, the main theme is to separately
treat the combinational and completion detection parts. In this way a designer can easily
optimize the circuit without violating delay insensitivity of the circuit. [Hue22] also
discusses NCL_X [KL02] in a very precise way. The highlighted difference compared to
NCL is the extra completion detection from the combinational part of the circuit. There
are also other methods available to design dual rail combinational logic block that can
be benefited from [Spa20].

2.1.7 Weak-Conditioned Half Buffer

Figure 2.8-A presents a WCHB [BOF10] based 2-bit, 2-stage pipelined QDI [Spa20]
circuit, and its waveform in Figure 2.8-B explaining the basic functionality. For the event
driven configuration, each bit is encoded by dual-rail protocol using .T and .F rails.
Recall the dual rail configuration: To present a logical 1 from Buffer_0 to the next stage
Buffer_1, Bit-0 ’s Out00.T is set while keeping Out00.F low. Likewise, on Bit-1 the
logical 0 is encoded by setting Out01.T low and Out01.F high as Figure 2.8-B suggests
(with null Function assumption). As already discussed, both rails .T and .F are not
allowed to go high at once; this is considered as illegal code word in dual rail encoding
scheme. This array of bits (in our case 2) with one rail set for each are also called data
tokens. By sending one, we initiate the first phase of a 4-phase handshake cycle. As
shown, when en1 goes high the data waiting at the inputs of Buffer 1 is latched and
by using an explicit signal named Acknowledgement (Ack1_out) the receiver stage tells
the sender about the successful reception of the data token; in this way we achieved the
second phase of our communication cycle. Each pair of subsequent data tokens must be
separated by a Bubble: here both, .T and .F rail of each bit are reset by the sender stage
on the reception of rising Ack1_out, it corresponds to the third phase and in response
to this bubble (spacer) Ack1_out signal will go back to low which is the 4th and last

13

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

phase of the handshake cycle. That is why this whole mechanism is known as 4-phase
handshake or return to zero protocol, as we go to zero after each data token.

Out00.T

Out01.T

en1

Out10.T

Out10.F

B
uf

fe
r 0

 O
ut

pu
ts

B
uf

fe
r 1

 O
ut

pu
ts

Phase1
Data token or

Bubble

 Spacer

Ack1_out

Out11.F

Out11.T

Out00.F

Out01.F

Phase2

P1

P3P1

P3

Phase4

C1

C0en0

en0

In00.T Out00.T

Out00.F
In00.F

Ack00_out

C6

C5en1

en1

In10.T Out10.T

Out10.F
In10.F

Ack10_out

If Function = Null_Function:
In10.T = Out00.T
In10.F = Out00.F

C3

C2en0

en0

In01.T Out01.T

Out01.FIn01.F

Ack01_out Ack1_out

C8

C7en1

en1

In11.T Out11.T

Out11.FIn11.F

Ack11_out
Ack_In

Function

Ack_out

Sou
rc

e Sink

C9C4

Bit-0

Bit-1

Buffer_0 Buffer_1
Phase3

From Sink

A B

Figure 2.8: A: 2-bit, 2-stage QDI pipelined circuit realized with Weak-Conditioned Half
Buffer (WCHB) buffer template, B: Waveform of Circuit in A

The term weak-conditioned comes from weak-conditioned logic [SM80]: validity of
input is assumed by the validity of output; these circuits are also known as strongly
indicating circuits. Moreover, when pipeline is completely filled, only one "Buffer" from
two consecutive ones stores a valid token. That’s why it is called half buffer. More
information can be found in [BOF10], they also discuss other QDI buffer templates e.g.
Pre-Charged half Buffer (PCHB), Pre-Charged full Buffer (PCFB) etc. Throughout this
work our focus will be WCHB.

2.2 Pipeline Load Factor
In Section 2.1.7 we discussed how QDI circuits interact with their connected environment.
In this section we look how they flexibly adapt their operational speed to the speed at
which tokens are provided by the source and consumed by the sink. To illustrate that, we
are referring to the Figure 2.9 and Figure 2.10 that demonstrate Bubble_Limited_Mode
and Token_Limited_Mode respectively.

1. Figure 2.9-a: a symbolic representation of a 3-stage QDI pipelined circuit with QDI
source and sink. From source to sink data moves on dual-rail (DR) data lines where
from sink to source the explicit acknowledgement signal conveys the reception of
data tokens. The red color filled file symbols represent the data token while green
color empty file symbols are for spacer.

2. Figure 2.9-b: The circuit is in a reset state, all stages contain bubbles, which means
all the ACK signals are high, demanding the data token from predecessor stages.

3. Figure 2.9-c: 1st token is issued by source and presented to the first stage.

14

2.2. Pipeline Load Factor

4. Figure 2.9-d: 1st token is successfully latched by the first stage; this is explicitly
indicated by the ACK signal (bubble) as it goes low (green). In addition, this
signal tells the predecessor to replace the data token with a spacer.

5. Figure 2.9-e: 1st token is successfully latched by the second stage, where the first
stage now contains the spacer and requests the source for the 2nd token.

6. Figure 2.9-f: 2nd token is latched by the first stage while the 1st token is now
available for sink.

7. Figure 2.9-g: Sink is not responding, the data token at the input of the sink
experiences a delay in latching. At this stage our pipeline is filled; to request a new
token we have to retire the already latched tokens and accept the spacer provided
by source. The pipeline needs a new bubble to proceed further. This situation
when the sink is slow, is termed Bubble Limited Mode.

8. Figure 2.9-h: after some arbitrary delay ACK goes low from the sink (bubble),
which is the indication that the awaited token is successfully latched by sink.

Figure 2.9 presents the basic data movement within the QDI pipeline with the effects of
sink delay. Figure 2.10 is the continuation of the activity from Figure 2.9 but this time
we demonstrate the effects of source delay.

1. Figure 2.10-a: a spacer took the place of the 2nd Token in the first pipeline stage
as it moved to the second stage.

2. Figure 2.10-b: the first stage requests a new token from the source that will be the
3rd in number, but the source is not responding yet.

3. Figure 2.10-c: 2nd The token proceeds further to the third pipeline stage while we
are still waiting for a new token in first pipeline stage.

4. Figure 2.10-d: The 2nd token is successfully latched by the sink; the source did not
respond with a new token.

5. Figure 2.10-e: the third pipeline stage replaces the token with a spacer (generated
by the source in Figure 2.10-a), still waiting for new a token from the source.

6. Figure 2.10-f: at this point all pipeline stages run out of tokens. We conclude that
if the source is slow, we entered Token Limited Mode because we require a token to
continue the flow of pipeline.

In Figure 2.9 we investigate the Bubble Limited Mode, when we need a bubble to proceed
further: we conclude that the shortage of bubble stops the pipeline flow at a certain stage.
From this point PLF >1 presents the Bubble Limited Mode as we have more tokens than
bubbles. In contrast, Figure 2.10 concludes that the pipeline flow gets blocked due to
the shortage of tokens called Token Limited Mode. In the remaining discussion Token
Limited Mode may represent a PLF <1, as we are out of tokens.

15

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

Source SinkPipeline Stage 1 Pipeline Stage 3

Pipeline Stage 2
Data Token Empty Bubble

DR

ACK

DR = Dual Rail
ACK = Acknowledgement

(a) WCHB based 3-stage Pipeline configuration
with QDI Source and Sink (b) Reset State

T1

(c) 1st Token from Source

T1

(d) 1st Token latched by 1st Buffer

T1

(e) 2nd Token Requested

T2

T2 T1

(f) 2nd Token from Source

T2 T1

(g) Circuit Experience Delay from Sink in con-
sumtion of 1st Token

T2 T1
T1

(h) After an arbitrary time, Sink latched the
provided Token and responed with Ack Signal

Figure 2.9: Token Movement within QDI Pipeline while experience Sink Delay called
Bubble limited mode

2.3 Circuit Description and Fault Injection simulation
environment

For the generation of QDI circuits we use the Python-based asynchronous circuit descrip-
tion framework by [Hue22]. This tool provides us with a high-level interface to design
an asynchronous circuit. We defined our circuits in python description file, and the tool
generates the circuit description in Verilog and VHDL format which is then simulated
with standard digital simulators. There are multiple steps involved in translation from
python description to Hardware Discription Language (HDL) format that is not part
of this work, but the interested readers may find it in Chapter 5 of [Hue22]. The HDL
file is then passed to the environment [BHNS21] for the fault injection experiments.
Figure 2.11 shows our simulation setup. It consists of a QDI source and sink generating
and acknowledging DR data with programmable delays to mimic real-world DI scenarios.
With these programmable source/sink delays we control the PLF. Monitors are placed

16

2.3. Circuit Description and Fault Injection simulation environment

T2
T1

(a) 1st Token is consumed by Sink

T2

(b) Request a 3rd Token

T2

(c) Source is not responding

T2
T2

(d) 1st Two Pipeline stages goes out of Token

T2

(e) 2nd Token is consumed by Sink (f) All Pipeline Stages goes out of Tokens

Figure 2.10: Token Movements Continue from Figure 2.9, while experience Source Delay
called Token limited mode

at the interfaces of the target circuit that check each activity and compare it to a golden
run. Please note that only value deviations are considered as error, while timing issues
are only considered an observation because circuits are QDI. As our concern are SETs,
which occur rarely, we only inject one fault per simulation and observe the behavior. We
are excluding input and output signals from the injection list because these are directly
observable to the monitors with no chance for mitigation or masking, so these will
simply result in higher fault rates. The injection count for the respective circuit variant
is chosen directly proportional to the number of nodes in the circuit and the average
processing time of the circuit (this is a pre-calculated time for a specified number of
tokens successfully passed during the golden run). However, we set a minimum threshold
of 10K for the injection count to obtain meaningful statistics in all cases. Injection time
and location are randomly chosen, while the injection pulse length is variable, we also
add a value higher than the longest inertial delay among all gate delays in our considered
buffer templates, and hence electrical masking cannot occur which purely gives insights of
logical and temporal masking. Where the injection pulse lower than the shortest inertial
delay gives us the estimate of electrical masking.

2.3.1 Gate Delays
For the gate delays we utilized the timings from NanGate_15nm library file with typical
conditions [si214]. As an MCE is not part of this library, we considered the MCE model
from [SGY+09] in which they propose a combination of simple NAND gates. Gate delays

17

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

Deviated Results

DATA_IN

QDI Data Source

Ack_OUT
DATA_IN

Ack_OUT

DATA_OUT

Ack_IN

DATA_OUT

Ack_IN

QDI Data Sink

Deviated Results

Device Under Test
Target Circuits

Monitor Monitor

Figure 2.11: Fault Injection Simulation Environment

are computed from a timing matrix of the respective gate using an interpolation method
with fixed index_1 (input_net_transition), as in our simulations we are not varying this
parameter, while we vary index_2 (total_output_net_capacitance) depending on the
fanout of the respective gate.

2.3.2 Fault effects
Deviations from the golden run are classified into two main categories, namely data errors
and timing issues. For timing issues, i.e., data arriving earlier or later than expected,
data integrity remains safe, because of the circuit’s delay insensitivity. Data errors are
further classified into four categories

(a) Value error: data is received correctly, but the value is not as expected.

(b) Coding error: both rails of the DR bit go high; this is illegal in our considered DR
encoding.

(c) Glitch: during any handshake phase a signal makes more than one transition, or
causality of signals is otherwise violated by a wrong sequence, like acknowledgment
activated before data completion

(d) Deadlock: the circuit stops in a state where no further transition is possible.

2.3.3 SETs Pulse Width
[Kob20] provides a detailed survey on SETs and SEUs in digital circuits. Since we are
utilizing delays from a 15nm library, our focus range is from 9nm to 22nm. According to
their analysis, the duration of SET for this range is approximately 23ps to 107ps. This

18

2.4. Target Circuits

clearly indicates the range of realistic pulse widths. Given that our abstraction level is
gate level, and we are specifically concerned with logical and temporal masking effects,
we ensure that electrical masking cannot occur by selecting an injection pulse length
greater than the longest inertial delay among all gate delays in our target circuit. That is
why for each target circuit we performed a detailed analysis of the delays of the contained
gates and related our injection pulse widths to that. This can be considered the range
of effective pulse widths. As can be seen in the histograms, it is in the order of some
tens of picoseconds. So when choosing different effective pulse widths ranging from the
shortest gate delay (approx 10ps) to the longest one (approx 150ps), we automatically
also covered the realistic range from [Kob20].

2.3.4 Field Programmable Gate Array (FPGA) Emulation and Real
Experiments with Application Specific Integrated
Circuit (ASIC)

Our current research primarily involves simulations, providing valuable insights and a
controlled environment for initial analysis, which enables us to refine and optimize the
proposed approaches. As our circuit description is in VHDL file format, FPGA emulation
could be performed as an extension of this work in a straightforward manner. Fault
injection experiments with FPGA (using “saboteur gates” to modify signal levels in a
targeted way) expedite the process, but this approach does not yield more realistic results
than our simulation (while, however, limiting options for controlling and observing signals).
To bridge the gap between simulation results and practical deployment, conducting
experiments on ASIC is crucial. ASICs offer a level of realism and fidelity beyond what
simulations and FPGA emulations can provide. Still, the choice of radiation environment
(particle type, energy, distribution, rate etc) is decisive for the outcome. We acknowledge
the importance of validating the proposed techniques on an ASIC platform to ensure
real-world applicability, a task that may be pursued in postdoctoral research.

2.4 Target Circuits
During the research journey we evaluated our proposed fault-tolerance approaches with
different QDI target circuits, but in this thesis our main aim is to convey the knowledge
we earned during the investigations and to highlight the contribution in a clear manner.
So, we decided to consider an empty pipeline circuit as presented in Figure 2.12 through-
out Chapter 3, as this chapter investigates the buffer templates and their resilience
against SETs. To this end, this configuration gives us clear insights of buffer templates’
susceptibility. Due to its simplicity backtracking of effects to the root cause promises
to be simpler, and potential masking of effects by combinational function blocks can be
ruled out in the empty pipeline. Another advantage is that changing from one template
to another already changes the whole circuit.

For Chapter 4 our target circuit will be a 16-bit 7 stage pipelined multiplier as presented
in Figure 2.13 (to fit the block diagram we cut the circuit into two parts at Buffer 4). The

19

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

Chin
8_bits Buffer_0 8_bits Buffer_1 8_bits Buffer_2 8_bits Buffer_3

Chout
8_bits

Figure 2.12: Empty Pipeline Circuit Configuration

multiplication is performed using a simple binary multiplication method. This pipelined
multiplier is supposed to give insights about how pipelines with relatively complex
computational units in between react to SETs, because these units also contribute to
error generation.

 a(7:0)
 b(7:0)

a(7:0)
b(7:1)

z(8) = 0
z(7:0) = a(7:0) & b(0)

z(9:1) =
z(8:1) + (a(7:0)&b(1))

a(7:0)

z(0)
z(10:2) =

z(9:2) + (a(7:0)&b(2))

a(7:0)
b(7:3)
z(1:0)

z(11:3) =
 z(10:3) + (a(7:0)&b(3))

a(7:0)
b(7:4)
z(2:0)

Chin
16_bits

Bu
ffe

r 0

Bu
ffe

r 1

Bu
ffe

r 2b(7:2)

Bu
ffe

r 3

z(15:7) =
z(14:7) + (a(7:0)&b(6))

z(6:0)
Chout

16_bits
z(15:0)

a(7:0)
b(7:5)
z(3:0)

z(13:5) =
z(12:5) + (a(7:0)&b(5))

a(7:0)
b(7:6)
z(4:0)

z(14:6) =
z(13:6) + (a(7:0)&b(6))

a(7:0)
b(7:7)
z(5:0)

z(12:4) =
z(11:4) + (a(7:0)&b(4))

Bu
ffe

r 4

Bu
ffe

r 5

Bu
ffe

r 6

Bu
ffe

r 7

Bu
ffe

r 8

Bu
ffe

r 4

Figure 2.13: 16-bit 7 Stage Pipelined Multiplier

For Chapter 5 our focus will be conditional control elements, so we select a 16-bit iterative
multiplier as our target circuit, as presented in Figure 2.14. In the iterative configuration,
the shift and add operation are performed on operands until the multiplication is
completed. The main purpose of this configuration is to analyze the susceptibility of the
conditional control elements Multiplexer (Mux) and De-Multiplexer (Demux) towards
the SET.

2.4.1 Target Circuit for the Future Work
Following the improvement of key components in the circuit, such as buffers, combinational
logic, and conditional control elements, we are confident that when integrating our
proposed enhancements into larger circuits, like a microprocessor, it will demonstrate
the same resilience as observed in simple pipelined and iterative multipliers. This is
substantiated by the fact that a microprocessor comprises buffers, combinational logic,
and conditional control elements, and the enhanced versions proposed are robust against
SETs when evaluated within the context of straightforward architectures. In the case
of larger circuits, the primary constraint lies in simulation time. For instance, when
simulating a simple 16-bit multiplier, the observed simulation time is approximately 2
hours. This simulation is conducted on a network of 10 physical machines, each equipped

20

2.5. Fault-tolerance techniques from literature

0

1

S0

Mux
Buffer

3a(8_bit)
b(8_bit)
Inputs

0

1

S0

Demux

Buffer
1

Buffer
2

Check
Condition

b == 0

Buffer
5

Buffer
4

z(16_bit)
Output

Out + = a*b[0];
a<<1;
b>>1

Figure 2.14: Iterative Multiplier

with a 3.5 GHz 7th generation Intel i5 processor and 16 GB RAM. Additionally, each
machine operates four workers in parallel, with one worker assigned per core.

2.5 Fault-tolerance techniques from literature
The dependability of the circuits is most often assured by redundancy, most of the existing
fault-tolerance techniques leverage hardware redundancy [KK20a]. For QDI templates,
[JM05] also introduces double-check of a double-up approach. And this approach shows
approximately full resilience towards the SET’s as [Hue22] evaluates in a recent study.
But the area overhead easily exceeds 3 to 4 times that of to the base circuit with high
processing time, compared by [Beh21]. [JM07] also highlights another drawback of
modular redundancy: liveness of the QDI circuits may be compromised by the majority
voter. A transient may cause a deadlock or change the phase of the current cycle.
But with some modification’s redundancy can be used: [MRL05a] presents a hardening
technique like dual modular redundancy (DMR), duplicating the combinational logic,
with a single storage element, but each MCE has an extra input that is connected with
the redundant combinational part to tolerate single event transients (SETs). They also
introduce a rail synchronizing technique, in which each bit is hardened by synchronizing
it with a parallel bit. At last, they use a 1-bit controller that forms an extra check for
buffer.

By leveraging redundant topology [MR07], [KMM15], and [KHS+20] proved the resilience
of real-word asynchronous circuits like processors and controllers. Few other works like
[VM02], and [KK20b] present methods that are inspired from synchronous hardening
methods.

[LM04] in their investigation of QDI circuits discuss different types of faults and their
out-turns that lead them to detect and correct faulty transitions. Their focus is fail stop
operation, converting failures to deadlocks. Continuing in [PM05] without duplicating
the whole circuit for the detection of fault for fail stop operation they introduce an extra

21

2. Asynchronous QDI Logic and its Fault Tolerant Techniques

check rail as validator. That extra rail also provides a second acknowledgement signal.
In addition to that there is also a special I-element for the detection of the illegal word.
This invention gives efficient failure detection both for hard and soft errors. [MRL04] also
analyze and highlights the fault-sensitive parts of asynchronous circuits, in their study
MCE’s sensitivity regions are explicitly mentioned that are addressed in later research
[MRL05b]. Where [GYB07] introduces a hardening technique with time redundancy, the
buffer recovers itself after the transient fault vanished out. The first latch accepts data
and performs a validity check, and if the check fails the second latch does not respond
while the first one is also reset to accept valid data after the transient passed. In [BS09]
there are more than 9 fault tolerant techniques, at later stages we consider some of these
in our analysis. In most techniques they try to minimize the storage mode of the MCE.

It is difficult to conclude the best approach from all these, but the approach that appeals
most is to shorten the storage mode of the MCE’s during varying PLF. As QDI circuits
are already using more than one rail for each bit, full redundancy becomes expensive
to realize. After considering most of the discussed studies in their evaluation [HNS20]
presents two very elegant fault-tolerant buffer designs with minor overheads, named
Interlocking and deadlocking. Those two proposals are evaluated in [BHN+21] with
state-of-the-art approaches in a comprehensive manner. The Interlocking WCHB seems a
strong candidate where the Deadlocking WCHB converts other error types to deadlocks
as it is designed for fail safe applications. So, we decided to start with their findings.
Special approaches dealing with the flushing of combinational logic will be discussed in
Chapter 4 in detail.

22

CHAPTER 3
Fault Tolerance Behavior of QDI

Buffer Templates

The main theme of this chapter is to investigate the susceptibility of the QDI buffer
templates towards the SET’s. Throughout this chapter we only consider the Empty
Pipeline Circuit as our target circuit. In this way we can remain focused on the inherent
fault tolerance behavior of the buffer without any external effects from the other parts
of circuit. We will extend the scope in the subsequent chapters. We start our analysis
with the baseline QDI buffer template named WCHB and then its fault tolerant state
of the art derivatives, we also discuss the SET hardened templates proposed during our
research journey. This chapter also discusses each possible effect of SET on a buffer and
then backtraces its root cause. At the end of the chapter, we will highlight the pros and
cons of each template.

3.1 WCHB behavior under SET’s
The WCHB and its basic functionality is already known from Section 2.1.7. Here we
start investigating its fault-tolerance behavior specifically under SETs. The target circuit
is an 8-bit, 4-stage Empty Pipeline from Section 2.4 with WCHB as buffer template.
Figure 3.1 presents the gate delays and gate count of the target circuit. On the x-axis we
have a numerical identifier for each gate of our target circuit that counts up to around
125, where the y-axis presents the propagation delay of respective gate. The maximum
propagation delay of a gate contained in the WCHB based Empty Pipeline Circuit is
49ps, where the minimum is 23ps as presented. Please note that the colors change with
the y-axis; they only help the reader to estimate which region is more dense.

Figure 3.2 presents the susceptibility results of our target circuit under the influence
of SETs. It presents the number of times the circuit failed to mask the effects of the

23

3. Fault Tolerance Behavior of QDI Buffer Templates

0 20 40 60 80 100 120

Gate index

10

20

30

40

50

60

70

80

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 3.1: Gate Count (128) and Gate Delays of 8-bit, 4-stage Empty Pipeline Circuit
with WCHB as Buffer Template

SET. As we are injecting one fault per simulation, the simulation count and the fault
injections are same. With our selected target circuit for all PLF configurations the
injection count is less than the set threshold 10K, so it is automatically set to 10K (the
selection criteria are already discussed in Section 2.3). On the x-axis we vary the injection
pulse length. As the minimum propagation delay a gate contained is 23ps, we start from
minimum − 10%_of_minimum and end at maximum + 100%_of_maximum, that
is 99ps in this case. The different injection pulse lengths unfold the resilience behavior of
the buffer template in a comprehensive manner. On the y-axis, each row corresponds
to a different PLF, from TokenLimitedMode to BubbleLimitedMode. This checks the
circuits’ fault tolerance with dynamic environmental effects.

The first noticeable thing from Figure 3.2 is the most prominent error types: for PLF≤1
it is coding errors, while in extreme BubbleLimitedMode, e.g. PLF=4 or 10, the number
of deadlocks proportionally increases. Before moving to the main root cause of each
error we observed in Figure 3.2, here we first discuss the sensitive windows of the WCHB.
We divide our analysis into three sections TokenLimitedMode, normal operation and
BubbleLimitedMode as presented in Figure 3.3-A, B and C respectively.

In the following discussion we highlight the sensitive windows of the WCHB with respect
to SETs. The reference circuit for the waveform is presented in Figure 2.8-A, where the
Buffer_0 is selected this time to illustrate the behavior.

1. Figure 3.3-A: Indicated with Phase 1 “en0” goes high, which means Buffer_0 is
armed for the data token. The source generates the data token after some arbitrary
delay labeled with Source Delay. During the Source Delay window MCE-0,1,2
and 3 are in storage mode. As we already know from Section 2.1.3 the MCE is

24

3.1. WCHB behavior under SET’s

0

2

4

6
×102

308

374

505
483

446

530

PLF = 0.1

0

2

4

×102

202
232

367
394 395

444

PLF = 0.25

0

2

4

N
u
m

b
e
r

o
f

E
rr

o
rs

×102

214

294

424
450 466

491

PLF = 0.5

0

2

4

×102

165

245

320

376
398

472

PLF = 1
Total
deadlock
glitch
coding
value

0.0

2.5

5.0

7.5
×102

276
310

549 550
578

706

PLF = 2

0.0

0.5

1.0

×103

373
469

918

1103 1095

1252

PLF = 4

21ps min
23ps

36ps max
49ps

54ps 99ps
0

1

2
×103

628
704

1464

1687 1742
1817

PLF = 10

Figure 3.2: Susceptibility analyses of 8-bit, 4-stage Empty Pipeline Circuit with WCHB
under the influence of SETs with variable PLF and different injection pulse lengths

25

3. Fault Tolerance Behavior of QDI Buffer Templates

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Phase1

Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

P1

P1

Sink Delay

Bubble
Limited
Mode

Phase1
Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

Phase3

P1

P1

Source Delay

Token
Limited
Mode

P1

A B CNormal Operation

Delayed

Delayed

Delayed

Figure 3.3: Sensitive Windows of WCHB

sensitive to SETs in storage mode. As shown, during this window these MCEs are
susceptible to SETs from the input as well as from the output side.

2. Figure 3.3-B: In normal 4-phase dual rail operation, only one MCE of each bit shows
a transition, which means the other remains in storage mode, and is susceptible
to SETs from both input and output sides. The reason is the activation through
the enable signal. In the presented scenario, these are MCE-2 and 3, as their input
remains low where “en0” goes high to complete the handshake cycle. Moreover, as
all bits are independent from the others in their transition, their timing during the
respective handshake cycle also affects their susceptibility. This time In01.F shows
a transition a bit earlier than the In00.T for Phase 3, as a result MCE-3 goes into
storage mode until “en0” goes low.

3. Figure 3.3-C: This time en0 arrived some arbitrary time after the data token, as
indicated with Sink Delay. All MCEs of the respective buffer go into storage mode
until en0 goes high.

3.1.1 Main Causes of Errors in Token Limited Mode
The prominent error types during Token Limited Mode from PLF=0.1 to PLF=0.5 are
coding and value errors, as reported in Figure 3.2. We trace back the main causes and
discuss them here with the help of Figure 3.4.

1. Figure 3.4-A: An SET appears at In00.F while the source is silent. As “en0” is
already there the MCE fires, but this MCE is supposed to remain low during this
handshake cycle. After some arbitrary Source Delay the real data token arrives
at In00.T and the respective MCE also fires, and as a result the coding error is
generated. This error propagates to the output because the WCHB is not able to
mitigate it.

26

3.1. WCHB behavior under SET’s

2. Figure 3.4-B: This time the SET shows up after the real data token is latched
but before it goes retired (acknowledgment from the next stage). In this case the
SET is also considered as real transition and latched. This is because the WCHB
considers every transition valid during the respective latching window. Here again
the coding error is generated and propagated.

3. Figure 3.4-C: During Token Limited Mode, the source may generate data tokens at
different time stamps; this time, the expected token at In00.T arrives a bit late as
compared to the other bits. During this time window as shown the SET appears
and is considered as valid transition. As this bit is the final, awaited bit, the SET
advances the handshake cycle before the correct transition arrives at In00.T. In
this case the correct transition is missed because “en0” goes low before it occurs.
So, we propagate the wrong value to the next stage and flag the value error.

4. We only consider the scenarios when an SET appears at the inputs of the MCE,
but if it appears at the output node during the sensitive window, it will have the
same impact, as we already discussed in Section 2.1.3.

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

Phase3

P1

P1

Source Delay

Token
Limited
Mode

P1

A

Coding Error

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

Phase3

P1

P1

Source Delay

Token
Limited
Mode

P1

Coding Error

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

P1

P1

Source Delay

Token
Limited
Mode

Value Error

Delayed

B C

Delayed

Delayed

Delayed

Delayed Delayed

Figure 3.4: Main Causes of Errors During Token Limited Mode

3.1.2 Main Causes of Errors during Normal Operation
The prominent error type for PLF=1 is coding error as Figure 3.2 suggests. We will
discuss the main causes behind these here.

1. Figure 3.5-A: As we know for the valid data token only one rail makes a transition,
where the other MCE remains in storage mode as indicated with red shade. During
this time window if the SET appears at any of the non-transitioned rails it may be
captured and propagated, as all MCEs are armed during the valid data phase. In
the shown case it appears at In01.T and generates a coding error, as the correct
data token is already there.

27

3. Fault Tolerance Behavior of QDI Buffer Templates

2. Figure 3.5-B: If the SET appears at the output of the non-transitioned MCE where
the length of the pulse is long enough to flip the storage loop, the logic value will
be changed, and a coding error be generated as a result.

3. Figure 3.5-C: In this case an SET appears really close to the correct transition that
is expected at In01.F, and as a result a coding error is generated and propagated.

Phase1
Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

Normal Operation

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

A
Phase1

Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

Normal OperationB

Coding Error

Coding Error

Phase1
Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

Normal Operation

Coding Error

C

Figure 3.5: Main Causes of Errors during Normal Operation

3.1.3 Main Causes of Errors During Bubble Limited Mode
As Figure 3.2 suggests, during Bubble Limited Mode (PLF = 2 to PLF=10) the prominent
error types include coding error and deadlock.

1. Figure 3.6-A: As we know during bubble limited mode the sink is slow in response;
as shown “en0” is delayed for the acknowledgment of the data token. This time the
SET appears at the input In01.T but after the valid data token is removed from
the opposite rail of the respective bit, the data token is still stored by MCE-C3,
because, due to the sink delay, “en0” is still active. Consequently, the SET is
latched by MCE-C2 and generates the coding error as shown, where Out01.T and
Out01.F both go high.

2. Figure 3.6-B: The handshake cycle is completed between source and Buffer_0
when Ack_out goes low indicated by Phase4. At this point the new data token is
available at the inputs of Buffer_0, but we are not able to latch it because we
are still containing the last spacer for the next stage, as long as “en0” is still low
(the last spacer is not yet acknowledged). This means the handshake cycle between
Buffer_0 and Buffer_1 is not completed yet. During this waiting time window,
the SET appears at the output Out00.T of MCE-C0. As the latter is in storage
mode, the SET is converted into an SEU. As this faulty transition happens before

28

3.1. WCHB behavior under SET’s

the last spacer is acknowledged, as a result it blocks the required transition to shift
the handshake cycle, in this case we entered into a deadlock situation.

B

Phase1

Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

P1

P1

Sink Delay

Bubble
Limited
Mode

Delayed

Phase1

Data token

P1

Sink Delay

Bubble
Limited
Mode

Deadlock

No ACK of spacerFrom
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

From
Sink

In10.T

In11.T

en1

Out10.T

Out10.F

B
uf

fe
r_

1
In

pu
ts

B
uf

fe
r_

1
O

ut
pu

ts

Ack1_out

Out11.F

Out11.T

In10.F

In11.F

C

Phase1

Data token Spacer

Phase2

P1

P3P1

P3

Phase3

P1

P1

Sink Delay

Bubble
Limited
Mode

Delayed Delayed

Sink Delay

Bubble
Limited
Mode

Coding Error

Phase1

Data token

Phase2

P1

P3P1

P3

Phase4

Phase3

P1

P1

Sink Delay

Bubble
Limited
Mode

Delayed Delayed

Sink Delay

Bubble
Limited Mode

A
Spacer

Figure 3.6: Main Causes of Errors During Bubble Limited Mode

3.1.4 Main causes of glitches during Bubble Limited Mode
We define a glitch as a short pulse, i.e., a sequence of two opposing transitions, which
are both caused by some external influence rather than being part of the causal chain of
events in the regular operation. In particular, in regular operation no signal makes more
than one transition during a handshake phase, so any double-transition during a single
handshake phase can safely be considered a glitch. Due to the causal behavior of QDI
circuits if no transition is expected, a faulty one remains ineffective or at most causes a
timing deviation. If a transition is expected, the glitch’s leading transition will move the
handshake process forward one step in one or the other way. However, in a QDI circuit,
a next transition on the same signal will then only be expected once the reaction to the
previous one has sufficiently propagated. Therefore, due to the short duration of the
glitch (by definition), its trailing transition cannot arrive at an armed MCE and must
hence remain ineffective. In conclusion we can state that in a QDI circuit glitches cannot
propagate as such. So, the question arises why we observed a glitch in our results. In the
following we cover the main reasons behind and how to address these.

We have already seen that during Bubble Limited Mode the leading glitch transition
from the successor stage does not arrive at a point in time when a regular transition is
expected (MCE is armed). Figure 3.2 shows that for PLF 0.1, to 1 all variants show 0%
glitches, so that is why we can eliminate these from our analysis and only consider PLF
> 1 in this section.

Backtracking the glitches, we had observed for bubble limited mode in our experimental
results gave an amazing insight: faults on only one signal contribute to all glitches we
observed.

Having identified the culprit through filtering of the results, we can now use Figure 3.6-C
to explain how an SET on “en1” (enable signal of the last stage) can generate a glitch at

29

3. Fault Tolerance Behavior of QDI Buffer Templates

the output. With our choice of PLF > 1 the circuit is running in bubble limited mode as
illustrated in Figure 3.6-C. In this mode the last stage spends a lot of time waiting for
“en1” (inverted version of Ack_In). It is worth noting that for this section we changed
our target buffer used in the explanation; for the following discussion our focus is on
Buffer_1 instead of Buffer_0 in the last sections.

0%

2%

4%

6%

8%

d
e
a
d
lo

c
k
s

0%

1%

g
li
tc

h
e
s

0%

2%

4%

6%

8%

10%

c
o
d
in

g
 e

rr
o
rs

.1 .25 .5 1 2 4 10

Pipeline load factor

0%
1%
2%
3%
4%
5%
6%

v
a
lu

e
 e

rr
o
rs

.1 .25 .5 1 2 4 10

10K 10K 10K
Total Injections

10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K

WCHB
WCHB
without_en

Figure 3.7: Error Rate of WCHB based 8-bit, 4-stage Empty Pipeline Circuit with and
without last Stage Enable Signal in Injection List, with 60ps injection pulse

1. On the arrival of “en1” at P1 (more delayed than usual) a data token advances to the
circuit output, and as a result, Ack1_out is activated (Phase 2) as a confirmation
to the predecessor stage.

2. This acknowledgement ripples upstream to the Buffer_0, and as a result the latter
issues a spacer indicated with Phase 3.

3. Now we are waiting for “en1” to go down on the sink side to complete the four-phase
handshake.

30

3.2. InterlockingWCHB under the influence of SETs

4. Accidentally, during this waiting window (highlighted with Sink delay) if a negative
fault hits the “en1” signal as shown, it just produces a spacer at the output before
the sink responded to the data token.

5. Recall our definition of fault effects, according to which the case where any rail
changes more than once during same handshake phase it considered a glitch. So,
the main cause of glitches is when a new transition arrives during an ongoing
handshake phase.

6. A close look at Figure 2.8 reveals that “en1” is simply the inversion of Ack_In.
While the latter, being an input signal, is excluded from fault injection, the former
is not. As a result, we have an “internal” signal that is fully under control of an
external input (more precisely, our testbench), so obviously it can have any arbitrary
behavior without any chance for mitigating that through circuit provisions.

Figure 3.7 presents the resilience of our target circuit in percentage form, where each
row is for a different error type. The bottom x-axis is again for the pipeline load factor,
where on top we have the corresponding number of injections. In Figure 3.7 we ran
fault injection experiments with (left column) and without hitting the last stage “enable”
signal (right column). As clearly visible in first column second row, we initially observe
glitches where after removing the last stage “enable” signal from the injection list, we
can indeed confirm 0% glitches for the Bubble Limited Mode.

3.2 InterlockingWCHB under the influence of SETs
[HNS20] after considering most state of the art SET mitigating techniques in their
evaluation study present two very elegant fault-tolerant buffer designs with respect to
area overhead named Interlocking buffer and Deadlocking buffer. In our study we are
interested in the Interlocking methodology as we want to keep the circuit alive where the
deadlocking method simply locks the circuit for further communication on the occurrence
of a fault. Figure 3.8 presents our 2-bit, 2-stage QDI pipelined circuit realized with the
Interlocking technique, with changes to the original template highlighted in orange color.
With the Interlocking methodology, only the first arriving input transition is passed to
the output, and that successful output transition blocks any further input transition on
the second rail MCE.

They use asymmetric MCEs with positive input, which means that high transitions are
passed from the normal inputs to the output only when this extra input is logically high.
In this case they connect the asymmetric input with the inverted opposite rail output
as shown. So, the MCE only accepts a high transition from its inputs if the opposite
rail MCE stores a logical zero. This configuration prevents coding errors to propagate,
as from each rail pair only one MCE is allowed to fire. Figure 3.9 presents the sensitive
windows of the Interlocking WCHB with respect to SETs. They are the same as for
the plain WCHB, except for the non-transitioned MCEs’ sensitivity in the respective

31

3. Fault Tolerance Behavior of QDI Buffer Templates

C1

C0en0

en0

In00.T Out00.T

Out00.F
In00.F

Ack00_out

C6

C5en1

en1

In10.T Out10.T

Out10.F
In10.F

Ack10_out

If Function = Null_Function:
In10.T = Out00.T
In10.F = Out00.F

C3

C2en0

en0

In01.T Out01.T

Out01.FIn01.F

Ack01_out Ack1_out

C8

C7en1

en1

In11.T Out11.T

Out11.FIn11.F

Ack11_out
Ack_In

Function

Ack_out

Sou
rc

e Sink

C9C4

Bit-0

Bit-1

Buffer_0 Buffer_1

+

+

+

+

+

+

+

+

Figure 3.8: 2-bit, 2-stage QDI pipelined circuit realized with Interlocking WCHB buffer
template

handshake cycle. The non-transitioned MCEs enter a resilience mode from the input
side (In00.F and In01.T nodes) once the valid transition is passed and latched by the
opposite rail MCE, as visible from comparison of Figure 3.9 and Figure 3.3.

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Phase1

Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

P1

P1

Sink Delay

Bubble
Limited
Mode

Phase1
Data token Spacer

Phase2

P1

P3P1

P3

Phase4

Phase3

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

Phase3

P1

P1

Source Delay

Token
Limited
Mode

P1

A B CNormal Operation

Delayed

Delayed

Delayed

Figure 3.9: Sensitive windows of Interlocking WCHB

For the evaluation of the approach, we stick with our 8-bit, 4-stage Empty Pipeline
target circuit while changing the buffer template to the Interlocking WCHB. To evaluate
the resilience behavior of the Interlocking WCHB we first extract the gate delays of the
target circuit as presented in Figure 3.10. The gate count is the same as for WCHB,

32

3.2. InterlockingWCHB under the influence of SETs

0 20 40 60 80 100 120

Gate index

10

20

30

40

50

60

70

80

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 3.10: InterlockingWCHB gate count (128) and gate delays

because we only change the configuration of the main MCEs without adding any extra
gates to the template. The maximum delay a gate contains is 64ps whereas the minimum
propagation delay is 21ps. The area between 33ps to 46ps is a bit denser than the other
regions as Figure 3.10 suggests, where very few gates exceed the limit of 50ps. In this
case these are approximately 25 gates out of 128.

We performed fault-injection simulations with 6 different injection pulses as presented in
Figure 3.11. The first thing we noticed from these results is the masking of short injection
pulses like 21ps and 18ps. The latter is (minimum - 10% of minimum) and hence smaller
than any gate delay, while, as visible in Figure 3.10, only one gate’s propagation delay is
21ps either. Apparently, these short pulses are all electrically masked and do not affect
the resilience of the target circuit. When we move further to a bit longer pulses like 42ps
we start observing errors. While increasing the injection pulse beyond the maximum
propagation delay of the gates in a circuit shows a saturation of the resulting error count.

Moving to the result analysis, we only observe value errors in Token Limited Mode.
And after crossing the balanced mode PLF=1 deadlocks show up, and in our considered
extreme Bubble Limited Mode the deadlocks are even more prominent. In the following
sections we discuss the main causes of each error type observed in the respective mode
of circuit operation. Please note that the last stage enable signal is deleted from the
injection list as we consider it as an input signal.

3.2.1 Main Causes of Errors in Token Limited Mode
During Token Limited Mode the value errors are the only reported errors, as visible in
Figure 3.11. In this mode we do not gain a lot in terms of resilience; compared to the
baseline buffer template the resilience is approximately the same. Recall the result of
WCHB from Figure 3.2, where the prominent errors are coding errors. Due to the fact

33

3. Fault Tolerance Behavior of QDI Buffer Templates

0

2

4

×102

0 0

287

460 453
489

PLF = 0.1
Total
deadlock
glitch
coding
value

0

2

4

×102

0 0

214

401 412

476

PLF = 0.25

0

2

4

N
u
m

b
e
r

o
f

E
rr

o
rs

×102

0 0

272

431
459

483

PLF = 0.5

0

2

4

6
×102

0 0

172

362
332

515

PLF = 1

0

2

4

×102

1 10

86

244 249

424

PLF = 2

0.0

2.5

5.0

7.5

×102

2
42

278

472

611

752

PLF = 4

18ps min
21ps

42ps max
64ps

70ps 128ps
0.0

0.5

1.0

×103

0
93

593

1006 1030

1149

PLF = 10

Figure 3.11: Suseptibility analyses of InterlockingWCHB under the influence of SET
with variable PLF and different injection pulse lengths

34

3.2. InterlockingWCHB under the influence of SETs

that the Interlocking WCHB buffer does not propagate a coding error from input to
output, some of them are corrected because the fault appear after the valid transition is
mitigated by the interlocking, while others are converted into value errors by the last
stage buffer.

While our simulation results, as presented in the bar graphs, comprise a large number of
samples and hence have good coverage, the following discussion, for the sake of brevity,
illustrates a selection of cases only, just to give an impression of important effects.

1. Figure 3.12-A: compared to the WCHB Token Limited Mode window in Figure 3.4-
B here once rail In01.F transitioned and reached Out01.F indicated with “P1”, it
locks the opposite rail MCE from latching any erroneous input transitions, and
so the remaining waiting window of In01.T goes green. This is in contrast to
Figure 3.4-B where the fault appears during this waiting window at In01.T and
generates a coding error at the output. Still, a fault creating a transition before
Out01.F transitioned will be effective and create a value error, as shown in the
figure.

2. Figure 3.12-A: as “en0” is already active, the fault at In00.F is latched and appears
at Out00.F. As a result the valid transition that arrives later is blocked, and a
value error is generated and propagated as shown.

3. Figure 3.12-B: the fault hits Out00.F marginally after the valid transition from
In00.T was accepted by MCE C0 (Figure 3.8). After C0’s propagation delay the
valid transition appears at Out00.T, but the faulty one just arrived already at
Out00.F as well. Both these transitions are a bit late to disable the respective
opposite rail to fire. As a result, a coding error is generated. But when these
transitions reach the inputs of the last buffer stage, in this case MCEs C5 and C6,
the leading transition will disable the lagging one, due to timing asymmetries. In
this case C6 wins and fires before the valid transition gets latched. As a result, the
value error flag is raised. Note that in case the valid transition had won the race,
the fault would have been masked and a correct result generated.

4. Figure 3.12-C: the case is the same as presented in Figure 3.12-A, but this time as
shown the fault at Out01.T blocks the respective opposite rail MCE from firing
(correctly), and so instead of a coding error a value error propagates to the next
stage.

3.2.2 Main Causes of Errors during Balanced Operation
As Figure 3.11 suggests, in balanced mode PLF=1 we only observe value errors. In the
following discussion, with the help of Figure 3.13, we will closely look into the main
reasons behind these errors.

35

3. Fault Tolerance Behavior of QDI Buffer Templates

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

Phase3

P1

P1

Source Delay

Token
Limited
Mode

P1

B

Value Error

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

Phase3

P1

P1

Source Delay

Token
Limited
Mode

P1

Value Error

A

Delayed

Delayed

Delayed

Delayed

Data Token Spacer

Phase2

Phase1

P3
P1

P3

Phase4

P1

P1

Source Delay

Token
Limited
Mode

Delayed

Delayed

C

P1

Coding Error*

* Coding Error will be converted into Value Error by last stage buffer

Figure 3.12: Sensitive Windows of Interlocking WCHB during Token Limited Mode

1. Figure 3.13-A: as we know the completion detection of each stage is composed of
an OR and an MCE-based tree structure (Figure 3.8), so the final acknowledgment
signal Ack_out is generated after the delay composed of the propagation delay of
the respective gates. In the investigated scenario presented in Figure 3.13-A, the
spacer acknowledgment to the source is generated at P4. If we pay attention to
P1*, an acknowledgment from the next stage is received before P4. This makes the
buffer armed for the next data token. During this susceptible window the fault at
P1* is considered as valid transition and latched by MCE C2 Figure 3.8. After
P4, the valid data token arrives but as MCE C2 already blocks MCE C3 for any
transition, the faulty transition at Out01.T is considered as valid, and the result is
a value error.

2. Figure 3.13-B: in the investigated scenario we observe the role of gate delays in
the resilience of the circuit. As we use an interpolation method to decide the gate
delays for a simulation run, in this case the propagation delay of C1 is less than the
one of C0 for rising transitions. As presented, the fault hits In00.F after the valid
transition is already at In00.T while en0 is also there. Due to the lower propagation
delay with respect to its complementary rail MCE C1 still fires first and locks C0
for any further transition. In that way the faulty transition at Out00.F generates a
value error.

3. Figure 3.13-C: the investigated case is a bit different than the others in a way that
it may only happen in the empty pipeline configuration. To better understand, we
consider Buffer_1’s inputs, in contrast to the last presented scenarios where we
used Buffer_0’s output for our demonstration purposes. Ack1_out is low which
means our Buffer_0 is armed for the data token (“en0” must low in this case),
and en1 is high which means Buffer_1 is also armed. The fault hits In11.T as
shown, and as In11.T is directly connected to the asymmetric input of MCE C3,
the latter then blocks the transition from appearing at In01.F marked with P1.

36

3.2. InterlockingWCHB under the influence of SETs

In this way the fault that appeared at In11.T is converted into a value error and
propagated to the next stages.

P2*Ack_out P4 From
Sink

Data token

P1*

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Out01.F

Out01.T

In00.F

In01.F

Data token Spacer

P3

P3

P3

Normal OperationA

P1*

Value Error

P1*

P1*

P1*

en1

In10.T

In10.F

B
uf

fe
r_

1
In

pu
ts

Ack1_out

In11.F

In11.T

In00.T

In01.T

B
uf

fe
r_

0
In

pu
ts

In00.F

In01.F

Data token

P2

P1

Normal OperationC

P1

P1

Value Error

SpacerData token

P2

P1

Normal Operation

P1

P1

Value Error

Spacer

B

Figure 3.13: Sensitive Windows of Interlocking WCHB during balanced operation

3.2.3 Main Causes of Errors during Bubble Limited Mode
In extreme bubble limited mode we observe deadlocks and value errors, as Figure 3.11
suggests. In the following discussion we will try to figure out the main reasons why the
buffer template shows these types of error and fails to mitigate the faults at the respective
time instances – again by focusing on selected examples.

1. Figure 3.14-A: the data token is provided by Buffer_0 but Buffer_1 is still not
armed for it, as “en1” is delayed. Still, the completion detection of Buffer_0
generates the acknowledgement, and as a result the new spacer is provided by
the source. At that point Buffer_0 contains last copy of the data token and
Buffer_1 containing a last copy of spacer. Furthermore, as “en0” is high now,
Buffer_0 is in storage mode. Consequently, the fault appearing at In10.T during
the time window labeled with Sink Delay (see Figure 3.14-A) is retained by MCE
C0 as it is in a storage mode. This time the fault polarity is negative so the
respective MCE changes its storage state to 0. As soon as“en1” finally goes high,
the data token from “Bit-1” is latched but we do not have any data token from
“Bit-0”, which keeps the circuit in a waiting state, corresponding to a deadlock.

2. Figure 3.14-B: This time we advance our handshake cycle to phase 3 with Buffer_0,
so Buffer_0 requests a new data token from source. Now “en0” going low again

37

3. Fault Tolerance Behavior of QDI Buffer Templates

changes Buffer_0’s MCEs into storage mode. To complete handshake phase 3,
“en1” responds after some arbitrary time. If during the time window before that
the fault appears at In10.T, it changes the stored value of the respective MCE.
Once the value of MCE C0 is changed we are not able to revert it back, as our
MCE is in a storage mode. The output of MCE C5 remains high, and we are not
able to generate the acknowledgement of the spacer for Buffer_0, as Ack1_out
is toggling back to “0”.

In Figure 3.11 we also observed a value errors, so here we also discuss the main causes
behind the generation of these.

1. Figure 3.14-C: compared to Figure 3.14-A and B, here we consider again Buffer_0
for the explanation of the fault scenario. While “en0” is delayed the MCE whose
inputs change are sensitive to SETs from input and output side. As the MCE C1
is supposed to remain zero during this handshake cycle, it is not sensitive from the
input side. In the shown setting, the fault appears at In00.F when it is actually
green (according to theory), but on the arrival of “en0” the faulty transition is
latched by the respective MCE and blocks the valid transition from In00.T to
proceed to Out00.T. This happens because the propagation delay of MCE C1 is
less than the one of C0. Recall that we also observed the same gate delay effects
in the last section. Here a value error is generated and propagated to the sink.
As a consequence, in the face of significant delay asymmetries, the green shading
of intervals actually needs to be adjusted accordingly to account for such effects.
However, in the following we will keep our focus on the main effects and hence stick
to the slightly simplified shading technique.

P1

Data token Spacer

P2

P1

P3
P1

P3

P4

P3

P1

Sink Delay

Bubble
Limited
Mode

Delayed

C

From
Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Sink Delay

Value Error

P1

Data token

P1

P1

P1

Sink Delay

Bubble
Limited
Mode

Delayed

A

Deadlock

Data token Spacer

P2

P1

P3
P1

P3

P3

P1

Sink Delay

Bubble
Limited
Mode

Delayed

Sink Delay

B

From
Sink

en1

Out10.T

Out10.F

B
uf

fe
r_

1
O

ut
pu

ts

Ack1_out

Out11.F

Out11.T

In10.T

In11.T

B
uf

fe
r_

1
In

pu
ts

In10.F

In11.F

Deadlock

Figure 3.14: Sensitive Windows of Interlocking WCHB during Bubble Limited Mode

38

3.2. InterlockingWCHB under the influence of SETs

3.2.4 The resilience of WCHB and Interlocking WCHB

Figure 3.15 presents the error rate of both discussed buffer templates to make a fair
comparison. Starting with the deadlocks, in terms of percentage, going from extreme
token limited mode to the bubble limited mode we do not achieve noticeable difference
in terms of the resilience. In the second row we present the glitches: As the main cause
of glitches is identified, and after addressing this we do not experience any glitch as
shown. Next is the coding errors: The WCHB, due to its unprotected nature passes
any input transitions to the output without any further check, if they occur during a
sensitive window. Where the Interlocking WCHB does the cross check before passing any
transition, it blocks the second transition and prevents the generation of coding errors.
But moving to the last row we realize that this check is not so effective, as the coding
errors in WCHB are converted into value errors in Interlocking WCHB.

After the discussions in Section 3.2 and the comparison of this section, we conclude that
the Interlocking WCHB provides us a good insight into the sensitive windows and how
to minimize them to achieve a higher resilience. We use these insights in our further
analysis to make circuits more resilient.

0%

2%

4%

6%

8%

d
e
a
d
lo

c
k
s

0%

1%

g
li
tc

h
e
s

0%

2%

4%

6%

8%

10%

c
o
d
in

g
 e

rr
o
rs

.1 .25 .5 1 2 4 10

Pipeline load factor

0%
1%
2%
3%
4%
5%
6%

v
a
lu

e
 e

rr
o
rs

.1 .25 .5 1 2 4 10

10K 10K 10K
Total Injections

10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K

WCHB
Interlocking
WCHB

Figure 3.15: Suseptibility analyses of WCHB and Interlocking WCHB under the influence
of SET (Injection pulse 60ps)

39

3. Fault Tolerance Behavior of QDI Buffer Templates

3.3 Input/Output-Interlocking WCHB for the mitigation
of SET effects

To enhance the resilience of the buffer template, we propose an Input Interlocking in
front of the buffer, in addition to the output Interlocking, drawing inspiration from
[HNS20] and building upon the ideas presented in [TBNS21]. Figure 3.16 presents a
2-bit, 2-stage empty pipeline with a buffer template they call InOutInterlock WCHB.
The InOutInterlock WCHB is purely designed to stop the propagation of SETs from the
buffer input to the next stage. In InOutInterlock WCHB (Figure 3.16) the following
modifications are applied:

C1

C0
In00.T

Out00.T

Out00.FIn00.F

Ack00_out

C6

C5
In10.T

Out10.T

Out10.F
In10.F

Ack10_out

If Function = Null_Function:
In10.T = Out00.T
In10.F = Out00.F

C3

C2
In01.T

Out01.T

Out01.FIn01.F

Ack01_out
Ack1_out

C8

C7

In11.T

Out11.T

Out11.FIn11.F

Ack11_out
Ack_In

Function

Ack_out

Sou
rc

e

Sink

C9

Bit-0

Bit-1

Buffer_0 Buffer_1

-

-

-

-

-

-

-

-

c

c

+

+

c

c

+

+

c

c

+

+

c

c

+

+

C4

Int00.T

Int00.F

IntIN00.T

IntIN00.F

Int01.T

Int01.F

IntIN01.T

IntIN01.F

Int11.T

Int11.F

IntIN11.T

IntIN11.F

Int10.T

Int10.F

IntIN10.T

IntIN10.F

Figure 3.16: InOutInterlock WCHB

1. Asymmetric MCEs with one positive and one normal input are added for a first
validity check. A rising transition on one rail on the normal input is only captured
if the other rail of that bit is low.

2. NAND gates serving as small pulse filters are added. The input MCEs of the first
check serving as delay elements, short positive pulses having a lower pulse width
than the propagation delay of the MCEs are filtered from reaching the output
MCE.

3. As the NAND gate inverts the logic, there is no need for the acknowledgement signal
inversion. This saves some transistors and therefore contributes to compensating
for the area overhead of the additional input filter.

4. Revision of the output MCE from two normal and one positive (asymmetric) input
used in the Interlocking WCHB to two normal and one negative input, to further
reduce area overhead.

With these modifications the first high transition on any input rail disables the input
MCE of the other rail, similarly to the interlocking done at the output. The advantage is

40

3.3. Input/Output-Interlocking WCHB for the mitigation of SET effects

Data token Spacer

B Normal Operation

P1+

P1++

P1+++

P1++++

P1*

P1^

P1^^

P1^^^

P1^^^^

P2

P3+

P3++

P3+++

P3^

P3^^

P3^^^

P3^^^^

P3*

P4

From Buffer_1

In00.T

In01.T

Ack1_out

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T
IntIN01.F

Data token Spacer

Token Limited
Mode

Data token Spacer

Bubble Limited
Mode

Source
 Delay Sink Delay Sink

 Delay

CA

Figure 3.17: Sensitive Windows of InOutInterlock WCHB

that this interlocking is done without any delay and therefore supposed to more effectively
filter illegal code words. This input filter passes the token to the NAND gate small pulse
filter, which ensures that any pulse at the input shorter than the MCE propagation delay
is blocked, unless the token is latched by the output MCE. The direct input of the NAND
gate provides the possibility to flush a faulty transition latched by the input MCE such
that short pulses on data rail have no effect other than a possible timing deviation, as
they might temporarily block the correct transition to propagate. Output interlocking
minimizes the probability of coding errors that may be generated due to a fault hitting
a NAND gate output or a fault with a pulse width longer than the filtering threshold.
The proposed modifications (InOutInterlock WCHB) are most effective in bubble-limited
mode (high PLF), as only the first transition is passed to the output buffer and will then

41

3. Fault Tolerance Behavior of QDI Buffer Templates

be latched when the acknowledge signal arrives.

0 50 100 150 200 250

Gate index

10

20

30

40

50

60

70

80

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 3.18: InOutInterlock WCHB Gate Count (252) and Gate Delays

Before the analysis of results, we first take a closer look at the sensitive windows of
InOutInterlock WCHB. With the introduction of input interlocking extra nodes have
been introduced which then contribute to the sensitivity of the circuit. As Figure 3.17
suggests we add all these nodes (IntINXX.T and .F) in our analysis figure. First, we
compare the sensitivity of our buffer with Interlocking WCHB Figure 3.9 in each mode.
For token limited mode we do not achieve anything, closer look reveals that we make our
circuit even more susceptible to SETs because of the extra nodes. In balanced operation
it again shows similar sensitivity, with the extra nodes problem. But moving to the
bubble limited mode we analyze that the input side is clean as compared to its parent
buffer template Interlocking WCHB. The reason is clearly that the buffer template is
only designed with attained robustness in bubble limited mode in mind. We will discuss
the main reasons in the respective section.

For the evaluation of the approach the target circuit remains the same, that is an 8-bit,
4-stage Empty Pipeline, while changing the buffer template to the InOutInterlock WCHB.
To evaluate the resilience behavior of the InOutInterlock WCHB we first extract the
gate delays of the target circuit as presented in Figure 3.18. The maximum delay a gate
contains is 82ps whereas the one with the minimum propagation delay is 12ps.

We performed fault-injection simulations with 6 different injection pulses as presented
in Figure 3.19. The first thing we noticed from these results is the masking of short
injection pulses from 11ps to 35ps. From Figure 3.18, it is clear that the gate delays are
distributed over the whole defined delay value space quite evenly, as compared to the
Interlocking WCHB Figure 3.10, where the Figure 3.19 shows that the InOutInterlock
WCHB only goes sensitive when we inject pulses equal to the maximum gate delay of
the circuit. As already discussed, and with Figure 3.19 it is clear that we only improve
resilience over the Interlocking WCHB in extreme bubble limited mode.

42

3.3. Input/Output-Interlocking WCHB for the mitigation of SET effects

0

2

4

6

×102

0 0 13

558 553
587

PLF = 0.1
Total
deadlock
glitch
coding
value

0

2

4

6

×102

0 0 14

568 559

668

PLF = 0.25

0

2

4

6

N
u
m

b
e
r

o
f

E
rr

o
rs

×102

0 0 14

551 546

675

PLF = 0.5

0

2

4

6

×102

0 0 14

514
550

615

PLF = 1

0

2

4

6
×102

0 0 13

337

409

539

PLF = 2

0

2

4

×102

0 1
36

176
197

308

PLF = 4

11ps min
12ps

35ps max
82ps

90ps 164ps
0

2

4

×102

24
44

157

253
292

373

PLF = 10

Figure 3.19: Suseptibility analyses of InOutInterlockWCHB under the influence of SETs
with variable PLF and different injection pulse lengths

43

3. Fault Tolerance Behavior of QDI Buffer Templates

In the following discussions we will investigate what the main reasons for errors in each
mode of operation are, if the input interlocking is beneficial, and what we can achieve
with this enhancement.

From Buffer_1

In00.T

In01.T

Ack1_out

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

Data token Spacer

Token Limited
Mode

Source
 Delay

A
Data token Spacer

Token Limited
Mode

Source
 Delay

B

Value Error

Value Error

Data token Spacer

Token Limited
Mode

Source
 Delay

C

Value Error

Figure 3.20: Sensitive Windows of InOutInterlock WCHB during Token Limited Mode

3.3.1 Main Causes of Errors in Token Limited Mode
From Figure 3.19, we conclude that most of the time the circuit shows a value error
when it is not able to mitigate the SET effects. In the following we will discuss the main
reasons behind the generation and propagation of the value errors.

1. Figure 3.20-A: fault appears during a sensitive window while we are waiting for
the valid transition. Before the valid data token arrives the faulty transition gets
latched by the respective MCE, because the Ack1_out is already there and the
buffer is armed for the data token. This time the fault not only propagates to the

44

3.3. Input/Output-Interlocking WCHB for the mitigation of SET effects

output, but it blocks the valid transition at the input level. Clearly, when Int00.F
goes high, Int00.T is forced to remain low for this handshake cycle. This scenario
is a clear evidence that the input interlocking utilized in this methodology is not
appropriate for the token limited mode. It makes it even worse; the valid transition
is not even able to propagate to the main buffer.

2. Figure 3.20-B: the internal signals are also sensitive, but as shown most of the time
they are sensitive to a negative pulse, due to the inversion by the input gates. In
the shown scenario a negative pulse appears during the sensitive window that is
generated due to the source delay. It hits IntIN00.F, and as it matches with the
Ack1_out, it gets latched by MCE-C1 while disabling the valid transition arriving
at IntIN00.T after the source delay. A value error is generated and propagated to
the sink in this case. The important thing to notice here is that this is the same
susceptibility of the main MCE inputs as with to the Interlocking WCHB. On top
of this main MCE input sensitivity we add other sensitive nodes associated with
the input interlocking MCEs as discussed above, and as also visible from this part
where In00.T, and In00.F are sensitive to SETs as well.

3. Figure 3.20-C: during token limited mode the buffer outputs are also sensitive to
SETs, in the same way as with the Interlocking WCHB. A fault can easily flip
the MCE state from the output side because the MCE is in storage mode. In the
observed scenario the fault appearing at Out00.F during the sensitive window is
not only retained by MCE-C1 but also blocks the valid transition waiting at the
IntIN00.T. In this way a wrong data word is generated and passed to the next
stage buffer as shown. This will finally result in the value error flag getting raised.

3.3.2 Main Causes of Errors during Balanced Operation
During balanced operation InOutInterlock WCHB shows a value error if the fault is not
logically or temporally masked by the buffer. Again, it is more susceptible to SETs than
the Interlocking WCHB. The one main difference is that we now also observe deadlocks,
where we did not observe any of these with the Interlocking WCHB. In the following we
discuss the main reasons behind the observed error types.

1. Figure 3.21-A: fault appears at IntIn01.T just before the valid transition arrives
and propagates to the output, as Ack1_out is already low. In this case the
fault disappears from IntIn01.T before the valid transition happens, but its effect
remains there at Out01.T. It then blocks the valid transition from the output side
by disabling MCE-C3. Clearly, the expected transition on Out01.F is not able to
reach there. In this case the value error is propagated to the next buffer stage.

2. Figure 3.21-B: in the observed scenario the fault coincides with the valid transition,
but the position of the fault is at the output of MCE-C1 that is supposed to remain
zero during this handshake cycle, where the valid transition is at the input of C0

45

3. Fault Tolerance Behavior of QDI Buffer Templates

Data token Spacer

A Normal Operation

From Buffer_1

In00.T

In01.T

Ack1_out

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T
IntIN01.F

Value Error

Data token Spacer

B
Data token Spacer

C

Deadlock

Value Error

Normal Operation Normal Operation

From Sink

In10.T

In11.T

Ack11_out

Out10.T

Out10.F

B
uf

fe
r_

1
In

pu
ts

B
uf

fe
r_

1
O

ut
pu

ts

Ack1_out

Out11.F

Out11.T

In10.F

In11.F

Int10.T

Int10.F

Int11.T

Int11.F

IntIN10.T

IntIN10.F

IntIN11.T
IntIN11.F

Figure 3.21: Sensitive Windows of InOutInterlock WCHB during balanced operation

as visible. Nevertheless, the valid transition will only arrive at Out00.T after the
propagation delay of the gate C0. But in this case the fault disabled MCE-C0
during this propagation delay window to fire. At the same time the faulty transition
also flips the storage loop from the output side of C1 because it is in storage mode
(IntIN00.F = 1 and Ack1_out = 0). The faulty value is passed to the next stage
instead of the valid data token, which then raises the value error flag.

3. InOutInterlock WCHB also shows a small percentage of deadlocks. So, in the last
case we will discuss one of its observed root causes.

Figure 3.21-C: the fault appears at the input of Buffer_1 In11.T in very close
proximity with a valid transition at In11.F. Now both input interlock MCE’s are
disabled for a high transition at the same time. In the specific case of our Null
Function in the combinational part, the fault is latched by the previous stage’s

46

3.3. Input/Output-Interlocking WCHB for the mitigation of SET effects

MCE if the latter is in a combinational mode. In the illustrated case C2 therefore
indeed latches the fault. Where for other logic functions like multiplier or adder
this fault may be latched by the combinational circuit’s MCE, but this depends on
the specific signal source node. If the node is fed by any purely combinational gate
this fault does not affects the integrity of the data. So even a buffer will provide
good mitigation here. Moving back to the presented scenario, the fault persistis in
C2. Consequently, both input interlocking MCE remain locked by these persisting
HI inputs as shown and we are not able to progress the handshake further. The
circuit is deadlocked for any further transitions.

Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

A

From Buffer_1

In00.T

In01.T

Ack1_out

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T
IntIN01.F

Data token

Bubble Limited
Mode

Sink Delay

Deadlock Deadlock

B
Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

C

Value Error

Figure 3.22: Sensitive Windows of InOutInterlock WCHB during Bubble Limited Mode

47

3. Fault Tolerance Behavior of QDI Buffer Templates

3.3.3 Main Causes of Errors during Bubble Limited Mode

In extreme bubble limited mode, the buffer template shows better resilience towards
SETs. The number of errors dropped from 1006 (with the Interlocking buffer template)
to 253 when we inject a pulse that is equal to the maximum propagation delay of a gate
a circuit contains. This time the prominent error type is deadlock. During our discussion
we also refer to Figure 3.16, if the signal is not listed in Figure 3.22 please check the
Figure 3.16 for better understanding.

1. Figure 3.22-A: fault appears at the output of the MCE that is holding the data
token for the next stage, but it appears during the waiting window highlighted
with “Sink Delay”. Consequently, the respective MCE goes into storage mode
because the data token is removed from the inputs IntIN00.T. In this scenario the
fault forcefully removed the data from the respective rail before the next stage has
acknowledged it on Ack1_out. As one of the rail data is pending and we are not
able to advance the handshake phase without the expected transition that was
deleted by the SET, as a result the circuit entered the deadlock situation as shown.

2. Figure 3.22-B: in the observed scenario, the spacer is latched by Buffer_0, as
all the outputs are at logic zero. However, the last data token is not retired from
Buffer_1 due to the sink delay; this is visible from Ack1_out that is still high. At
the same time Buffer_0 advances the handshake with the source and as a result
the new data token arrives at the inputs of Buffer_0; In01.F goes high which
makes IntIN01.F low. The SET hits Out01.F at a moment when the MCE-C3 is
already in storage mode, so it gets latched by C3 (Please note that the inverter
bubble in front of the buffer MCE’s are symbolic, the real inversion is performed
internally). This transition when arrived at IntIn11.F will again change MCE C8
into combinational mode, as Ack11_out is still low. After some arbitrary time when
the sink responds and Ack11_out goes high to latch the spacer from Buffer_0,
all the other MCEs of Buffer_1 go to low, except C8 which then forces Ack1_out
to remain high, as visible from the red dotted line. In this way we are not able to
advance the handshake between Buffer_0 and Buffer_1 and remain stuck in a
deadlock situation.

3. Figure 3.22-C: the input of the buffer shows better resilience towards SETs in
bubble limited mode, as most of the time it is green as compared to the other
modes. But we still have some very small sensitive windows when Ack1_out goes
low until the input transitions passed to the output of the MCE. This time the
fault hits that sensitive window as shown. The propagation delay of the respective
gate is less than the other rail MCE, so the transition arrives at the output before
the other rail latched the data. This erroneous transition then blocks the valid one
and generates the value error as shown.

48

3.3. Input/Output-Interlocking WCHB for the mitigation of SET effects

3.3.4 Final Comments on InOutInterlock WCHB

Figure 3.23 presents the comparison between the discussed buffer templates. For this
comparison we set the same injection pulse for all, which is 60ps, ensuring that it is
higher than the minimum threshold to observe some effects. When we move from the
Interlocking WCHB to the InOutInterlock WCHB, it is clearly visible that we achieve
higher resilience. But a closer look to the value errors tells us the strength of the buffer
template that is in extreme bubble limited mode. The reasons we do not acheive much
benefit in token limited mode are the input interlocking MCEs and the way it is deployed,
which makes the circuit more suseptible. The fist thing we learn is that the input
interlocking can be effectively utilized if it will be deployed in a way that it covers all
the modes of the circuit, and we have to do input interlocking without using a MCE,
because a storage element adds a suseptible node.

0%

2%

4%

6%

8%

d
e
a
d
lo

c
k
s

0%

1%

g
li
tc

h
e
s

0%

2%

4%

6%

8%

10%

c
o
d
in

g
 e

rr
o
rs

.1 .25 .5 1 2 4 10

Pipeline load factor

0%

1%

2%

3%

4%

5%

6%

v
a
lu

e
 e

rr
o
rs

.1 .25 .5 1 2 4 10 .1 .25 .5 1 2 4 10

10K 10K 10K
Total Injections

10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K 10K

WCHB
Interlocking
WCHB
InOutInterlocking
WCHB

Figure 3.23: WCHB with InOutInterlocking WCHB (Injection pulse 60ps)

49

3. Fault Tolerance Behavior of QDI Buffer Templates

3.4 Input Output Interlocking with SR latch WCHB
The previous section showed that main problem with the InOutInterlock WCHB is the
use of extra MCE for the input interlocking that makes the circuit more susceptible
to the SET in some mode of operations. In [TS22b], we enhanced the InOutInterlock
WCHB in a way that excludes the extra susceptible nodes.

C1

C0en0

en0

In00.T Out00.T

Out00.FIn00.F

Ack00_out

C6

C5en1

en1

In10.T Out10.T

Out10.FIn10.F

Ack10_out

If Function = Null_Function:
In10.T = Out00.T
In10.F = Out00.F

C3

C2en0

en0

In01.T
Out01.T

Out01.F
In01.F

Ack01_out

C8

C7en1
In11.T Out11.T

Out11.FIn11.F

Ack11_out
Ack_In

Function

Ack_out

Sou
rc

e

Sink

Ack1_out C9

Bit-0

Bit-1

Buffer_0 Buffer_1

+

+

+

+

+

+

+

+

en1

Int00.T

Int00.F

IntIN00.T

IntIN00.F

Int01.T

Int01.F

IntIN01.T

IntIN01.F

Int10.T

Int10.F

IntIN10.T

IntIN10.F

Int11.T

Int11.F

IntIN11.T

IntIN11.F

C4

Figure 3.24: IOISRWCHB

We prefer using SR latches instead of MCEs for the input interlocking. This not only
saves area, it also, most importantly, mitigates the problem of state flipping through
faults at the output of the MCE used for input interlocking. This SR latch resembles the
classical mutex implementation from [Sei80] – albeit without metastability filter – much
closer than the interlocked MCEs did.

Importantly, the decision to arm the C-element+ is now combining input and output
state using a NOR gate that, together with its companion from the other rail, forms
another SR latch. We named this approach Input Output Interlocking with SR latch
WCHB (IOISRWCHB). With the use of the purely combinational NAND and NOR gates
for input and output interlocking the circuit may go back to its original state once the
SET vanished out. The working principle is straightforward:

1. The first input blocks any further transition from the other rail by using the NAND
gate-based SR latch.

2. The latched input is only able to arm the output MCE for a high transition if the
other output MCE is storing logical zero.

3. If any of the rails’ output MCE is storing high it simply forces the IntIN input to
zero which then disables the respective MCE, as well as nullifies the input transition
from Int.

50

3.4. Input Output Interlocking with SR latch WCHB

4. The InXX.T and InXX.F are directly connected with the normal inputs of the
MCE, which gives us more information, when combined with the asymmetric
input that is connected with the filter. This enhances the resilience towards SETs
compared to the InOutInterlock WCHB where we only pass the filtered inputs to
the output MCEs.

Here we first compare the sensitive windows of IOISRWCHB from Figure 3.25 with
the InOutInterlock WCHB from Figure 3.17. As already pointed out in the discussion,
the internal nodes of the locking mechanism are not sensitive anymore. This is now
clearly visible from Figure 3.25 where IntXX.T, IntXX.F and IntINXX.T, IntINXX.F
are throughout green but the primary inputs and outputs are still susceptible to SET.
The susceptibility of these lines is the same as we observed in InOutInterlock WCHB.

For the evaluation we chose the 8-bit, 4-stage Empty Pipeline with the the IOISRWCHB
buffer template. Figure 3.26 gives us insights about the gate delays of the target circuit
and the gate count. The input filter MCEs of the InOutInterlock WCHB are replaced
with the NAND gates so the region between 10 to 30ps is denser compared to the
Figure 3.18. The maximum propagation delay a gate contain is 58ps where the minimum
delay is 12ps.

By following the symmetry, we performed the simulations with 6 different injection
pulses, 11ps to 116ps (that is with addition of 100% to the maximum). The first thing we
observed from Figure 3.27, is in the results of 35ps: compared to its parent buffer template
the circuit shows weak resilience. We investigate it and the reason is not surprising: the
gate delay of the two-input NAND and NOR is sometimes less than 35ps, so the SET
can pass the filter and is considered as valid token. Moving to the higher pulse lengths
the susceptibility of the circuit increases but compared to its parent template it shows
better resilience. It suffers from approximately half the number of error occurrences
compared to the InOutInterlock WCHB. If we compare the 90ps from Figure 3.19 with
116ps of Figure 3.27 it is clearly visible that the IOISRWCHB is better in Token limited
mode but in extreme bubble limited mode the resilience is approximately the same, as
the IOISRWCHB is designed to eliminate the main problems raised by the dual MCE
per rail of the buffer which makes the circuit more susceptible in the token limited mode.
In the next sections we will take a closer look at the main causes of error in each mode
of operation.

3.4.1 Main Causes of Errors in Token Limited Mode
As Figure 3.27 suggests, in Token limited mode the only observed effect is value error.
With reference to Figure 3.24, we highlight these occurrences in Figure 3.28.

1. Figure 3.28-A: The MCEs are in storage mode until the new data token arrives. The
sensitivity windows of MCEs from the output side is the same as InOutInterlock
WCHB. This time the SET hits Out00.F. This transition forces IntIN00.T to

51

3. Fault Tolerance Behavior of QDI Buffer Templates

Data token Spacer

B Normal Operation

P1+

P1++

P1+++

P1++++

P1*

P1^

P1^^

P1^^^

P1^^^^

P2

P3+

P3++

P3+++

P3^

P3^^

P3^^^

P3^^^^

P3*

P4

From Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

Data token Spacer

Token Limited
Mode

Data token Spacer

Bubble Limited
Mode

Source
 Delay Sink Delay Sink

 Delay

CA

Figure 3.25: Sensitive Windows of IOISRWCHB

remain low after Int00.T goes low. As shown the correct transition is now waiting
at the input of MCE-C0 and the SET is latched by MCE-C1 and considered as
valid transition raising the value error flag.

2. Figure 3.28-B: for explanation purposes we change the target buffer; now Buffer_1
is selected, and the fault hits In10.F very close to the valid transition. However, it is
early enough to win the input interlocking, so, making its way to the output because
en1 is already high. The value error appears at the output while disabling the valid
transition from propagating. After some arbitrary time, the fault disappears from
In10.F allowing the valid transition at In10.T to propagate to In10.T. But this is
worth-less because the next stage already acknowledged the token, as en1 goes low.

52

3.4. Input Output Interlocking with SR latch WCHB

0 50 100 150 200 250

Gate index

10

20

30

40

50

60

70

80

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 3.26: IOISRWCHB Gate Count (256) and Gate Delays

3. Figure 3.28-C: the fault appears at In11.T during the sensitive window as shown.
As no valid transition is there, it makes its way to the output and gets latched by
MCE-C7 that is supposed to be remain zero during this handshake phase. The
fault length is so small and vanished out (from input ((In11.T)) before the valid
transitions appears at the other rail (In11.F), but as C7 already latched, the faulty
value remains there for this handshake cycle and raise value error.

With thorough investigation it becomes clear that most of the time errors are only caused
by the positive SETs.

3.4.2 Main Causes of Errors during Balanced Operation
In a balanced mode the circuit generally shows better resilience than its parent tem-
plate, compared with Figure 3.19 PLF=1. For instance, when injecting 90ps SETs the
Figure 3.27 only shows 225 errors with the injection of 116ps injection pulses, while
the parent circuit failed 550 times. The inputs of the buffer template are totally green
as shown in Figure 3.25 for normal operation, which is the indirect argument why the
number of error occurrences goes half compared to the InOutInterlock WCHB. In the
following discussion we will figure out the main reasons behind that.

It should be noted here that for the Figure 3.29 we only discuss scenarios where the
fault hits the output of an MCE. This is backed up by the simulation results we were
examining: all error scenarios we observed could be backtracked to the output node of
an MCE.

1. Figure 3.29-A: the fault hits Out01.T after the valid input arrived at In01.F. The
valid transition advances to Int01.F, but the fault forces IntIN01.F to remain low,

53

3. Fault Tolerance Behavior of QDI Buffer Templates

0

1

2

3

×102

0 0

123

226 223
247

PLF = 0.1
Total
deadlock
glitch
coding
value

0

1

2

3
×102

0 0

90

161

203

227

PLF = 0.25

0

1

2

3

N
u
m

b
e
r

o
f

E
rr

o
rs

×102

0 0

137

214
234 240

PLF = 0.5

0

1

2

×102

0 0

41

162
174

160

PLF = 1

0.0

0.5

1.0

1.5

×102

0 0

28

76 75

135

PLF = 2

0

1

2

3

×102

0 0

78

192
171

276

PLF = 4

11ps min
12ps

35ps max
58ps

64ps 116ps
0

2

4

×102

0 12

188

383
401

423

PLF = 10

Figure 3.27: Suseptibility analyses of IOISRWCHB under the influence of SET with
variable PLF and different injection pulse lengths

54

3.4. Input Output Interlocking with SR latch WCHB

From Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

Data token Spacer

Token Limited
Mode

Source
 Delay

A

Value Error

Source
 Delay

Data token Spacer

Token Limited
Mode

Source
 Delay

C

Source
 Delay

Data token Spacer

Token Limited
Mode

Source
 Delay

B

Source
 Delay

Value Error

From Sink

In10.T

In11.T

en1

Out10.T

Out10.F

B
uf

fe
r_

1
In

pu
ts

B
uf

fe
r_

1
O

ut
pu

ts

Ack1_out

Out11.F

Out11.T

In10.F

In11.F

Int10.T

Int10.F

Int11.T

Int11.F

IntIN10.T

IntIN10.F

IntIN11.T

IntIN11.F

Value Error

Figure 3.28: Sensitive Windows of IOISRWCHB during Token Limited Mode

and this SET also gets latched by MCE-C2 which is then considered as valid token
as shown, causing a value error at the output.

2. Figure 3.29-B: the fault scenario is the same as the previous one but here a very
important thing to be noticed is the time of fault appearance: It appeared in the
green window while MCE-C1 is in combinational mode, which means en0 is also
low as shown. But the length of the fault is long enough to enter the red window
and so it gets latched by C1 once the en0 goes high. The remaining behavior is
the same as in part A.

3. Figure 3.29-C: again the SET hits the output and raises a value error, but this
time the valid input transition is not only passed by the first input filter but also
by the output filter as shown. As the NOR gate is connected here with Out01.T,
the logical high at IntIN01.F (valid token) is forced to low as shown, which then
disables MCE-C3 from firing the valid transition. In this way we are not producing
a coding error, but still the SET gets latched by C2 and propagates, producing a
value error.

55

3. Fault Tolerance Behavior of QDI Buffer Templates

Data token Spacer

A Normal Operation

From Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T
IntIN01.F

Data token Spacer

B Normal Operation
Data token Spacer

C Normal Operation

Value Error
Value Error

Value Error

Figure 3.29: Sensitive Windows of IOISRWCHB during balanced operation

3.4.3 Main Causes of Errors during Bubble Limited Mode

Comparing Figure 3.27 in bubble limited mode with Figure 3.19 justifies the findings we
made in context with Figure 3.25-C: with the modifications we applied we do not achieve
any resilience gain in this mode. The circuit is even a bit more susceptible in this mode.
Anyways, our main goal was to eliminate the extra MCE to achieve better resilience in
Token limited mode, which we definitely achieved. In extreme bubble limited mode, the
main contributor is deadlock, as Figure 3.27 suggests. With the help of Figure 3.30, we

56

3.4. Input Output Interlocking with SR latch WCHB

will explain the main causes of deadlocks in the following discussion. We found that most
of the time the main cause are output signals:

Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

A

From Buffer_1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

Int00.T

Int00.F

Int01.T

Int01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

B
Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

C

Deadlock

Deadlock
Deadlock

Figure 3.30: Sensitive Windows of IOISRWCHB during Bubble Limited Mode

1. Figure 3.30-A: fault occurs Out00.T at a point in time where the token has been
latched by Buffer_0 and the source has received the Ack_out, but the token has
not yet been taken over by Buffer_1. Buffer_0 holds the only copy of the token,
and when that one is cleared by the SET, there is no recovery. As a result, the
next stage remains in a waiting state for that removed data token and we are stuck
in this handshake phase – which raises a deadlock situation.

2. Figure 3.30-B: Buffer_0 after completing its last handshake with the source is now
waiting for the next stage to respond to the spacer initiated, so that it can accept
a new data token from the source. MCE-C0 and C3 are in a storage mode because

57

3. Fault Tolerance Behavior of QDI Buffer Templates

the input signals already changed, while the en0 is low. As shown the fault appears
at Out01.F inverting the stored value from logical zero to one. In this case we are
not able to complete the last handshake phase with the next stage, as the spacer of
Bit-1 is converted into an invalid data token. As shown the deadlock flag goes high.

3. Figure 3.30-C: this case is a bit different from those we presented so far. Here it is
also important to recall that we mark the sensitivity window red where the MCE
is in storage mode, while green represens the combinational mode. This is also the
first time that we are going to discuss the acknowledgement signal. This signal
does not contribute much but still accounts for some occurrence. So, as shown, the
SET appears at Ack_out when MCE-C4 is in combinational mode. This means
the fault will only be able to last for its original length. Here the important thing
to notice is that Ack_out was high before the SET, telling the source that the data
token was successfully received, and requesting the spacer. This small SET is long
enough to be considered as valid acknowledgment of the spacer that is still waiting
at the input of Buffer_0. This means the handshake with the source is completed,
and so the source places a new data token at the inputs as shown. Now the spacer
for the running handshake cycle with Buffer_1 cannot be initiated, as that spacer
is not able to propagate due to the erroneous acknowledgement. We experience a
deadlock in this situation because the last latched token will never be retired from
Buffer_0.

3.4.4 Final Comments on IOISRWCHB
To compare the IOISRWCHB with all the discussed buffer templates we choose the
“maximum plus 100% of the maximum” injection pulse results from all of the susceptibility
analysis figures. As shown in Figure 3.31 we only present deadlocks, coding and value
errors, as we already discussed the cause of glitches and removed the last stage enable
signal from the injection list. That is why we are not experiencing any glitches, so
here it is not useful anymore to add the row with zero values. Moving back to the
discussion on IOISRWCHB and Figure 3.31, in extreme token limited mode we achieve
way better results with the same basic idea from InOutInterlock WCHB but with a
different implementation. We conclude that we achieve higher resilience with the same
gate count (Figure 3.26) and, relative to [TS22b], with approximately 50% reduction in
transistor count. At the same time we attain faster operation because of the simpler
input interlocking mechanism. The first main reason is that we are not using MCEs
anymore for the input interlocking, which excludes two sensitive nodes from each bit.
These enhancements allow us to fully utilize the input interlocking strategy, as visible
from the results of extreme token limited mode. Secondly, the input filter is more effective
in a way that if the length of the fault is shorter than the NAND plus NOR gate delays,
the input is already changed back to the regular level when the fault appears at the
positive asymmetric input of the MCE. In this situation the fault has no impact on the
circuit. We can also add another argument to back the resilience of the circuit in token
limited mode: in contrast to the InOutInterlock WCHB, with this configuration we are

58

3.4. Input Output Interlocking with SR latch WCHB

not blindly blocking the other rail for further transition at the input, but it only blocks
if it passes through the first NAND gate filter Figure 3.24.

For future direction we have also identified state flips of the MCE (while in state holding
mode) through SETs on its output as a main contributor to error effects. So our deep
analysis suggests that if we can somehow maintain the symmetry of input lines of the
MCE during the waiting time of the pipeline (namely in token or bubble limited modes),
faults at the output of the MCE lose their effectiveness. As a result, the remaining 1 to
3% faults are easily addressable.

With all these insights we can move on and will further enhance the resilience of the
circuit by blocking the acknowledgment until all the bits arrive. That may add more
resilience against SETs in Token limited mode. In the next section we continue our
investigation to achieve our goal.

0%

2%

4%

6%

8%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

10%

c
o
d
in

g
e
rr

o
rs

.1 .25 .5 1 2 4 10

Pipeline load factor

0%

1%

2%

3%

4%

5%

8%

v
a
lu

e
 e

rr
o
rs

.1 .25 .5 1 2 4 10 .1 .25 .5 1 2 4 10 .1 .25 .5 1 2 4 10

10K 10K 10K
Total Injections

10K 10K

WCHB
Interlocking
WCHB
InOutInterlocking
WCHB
IOISRWCHB

Figure 3.31: Comparison with IOISRWCHB (Injection pulse is equal to 2*(maximum
gate delay))

59

3. Fault Tolerance Behavior of QDI Buffer Templates

3.5 Δ: Dual_Completion_Detection Input Output
Interlocking WCHB

From the investigations we conclude that if we somehow maintain the symmetry of the
MCE’s input until both source and sink respond to the last respective token, we can
shorten the sensitive windows of our circuit. In the last section we achieved a higher
resilience in Token limited mode by carefully implementing the input interlocking. In
[TS22a] we proposed a technique which utilizes the Dual completion detection from [BS09]
(originally known as “normally closed pipeline latch”) to shorten the armed windows of
the MCEs. As the analysis presented in [TS22a] shows, using dual completion detection
without any supportive SET hardened buffer technique only converts the coding errors
into value errors. So in its original form it is not worthwhile to be deployed for better
resilience.

C1

C0
In00.T

Out00.T

Out00.FIn00.F

Ack00_out

C6

C5In10.T Out10.T

Out10.F
In10.F

Ack10_out

If Function = Null_Function:
In10.T = Out00.T
In10.F = Out00.F

C3

C2
en0

en0

In01.T
Out01.T

Out01.FIn01.F

Ack01_out

C8

C7

In11.T

Out11.T

Out11.FIn11.F

Ack11_out

Ack_In

Function

Ack_out

Sou
rc

e

Sink

Ack1_out C9

Bit-0

Bit-1

Buffer_0 Buffer_1

-

-

-

-

-

-

-

-

IntIN00.F

IntIN00.T

IntIN01.F

IntIN01.T

C4

C11

INC0

en0

en0

C10

en1

en1

IntIN10.F

IntIN10.T

IntIN11.F

IntIN11.T

C13

INC1

en1

en1

C12

Figure 3.32: DualCD InOut WCHB Δ

We know that in Token limited mode data arrives late, and if we somehow block the
acknowledgement signal to the buffer until all of the bits arrived, we can easily maintain the
MCE’s input symmetry for longer than normally. This keeps the MCE in combinational
mode, during which, as we know, it is hard for the SET to corrupt its logical state either
from the input or output side. Dual completion detection Input Output Interlocking,
also known as Δ, is basically an enhanced version of the InOutInterlock WCHB with
the dual completion detection being efficiently embedded into a buffer to acheive higher
resilience against SETs, where the Δ approach is also inspired from the IOISRWCHB.
Figure 3.32 presents an illustration of a 2-bit, 2-stage pipeline based on Δ.

The working principle of Δ is as follows:

1. A high transition on any input InXX.T or InXX.F is only allowed to pass the
NAND gate filter if the other rail does not show any transition before its arrival.

60

3.5. Δ: Dual_Completion_Detection Input Output Interlocking WCHB

Data token Spacer

B Normal Operation

P1+

P1++

P1+++

P1^

P1^^

P1^^^

P2

P3+

P3++

P3^

P3^^

P4

Fr
om

 B
uf

fe
r_

1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

Data token Spacer

Token Limited
Mode

Data token Spacer

Bubble Limited
Mode

Source
 Delay Sink Delay Sink

 Delay

CA

INC0

Ack1_out

P3^^^

P3+++

Figure 3.33: Sensitive Windows of Δ

This will then block any further transition by setting the other rail IntINXX.T or
IntINXX.F high.

2. As the buffer works on inverted signals, the high transition on InXX.T or .F will
be inverted by the NAND gate and we get a logical zero at IntINXX.T or .F.

3. This logical zero when matched with the low transition on enX will be stored by
the respective MCE as logical high and the output will also go high.

4. However, the low transition on acknowledgement signal AckX_out is only passed
to enX whenever INCX goes low, and this happens after the arrival of all bits.

5. In this way we somehow maintain the buffer MCEs in combinational mode for
longer than usual in Token limited mode, as enX remains the same as in the
previous handshake phase until source provides a new token.

61

3. Fault Tolerance Behavior of QDI Buffer Templates

0 50 100 150 200 250

Gate index

10

20

30

40

50

60

70

80

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 3.34: DualCD InOut WCHB Gate Count (252) and Gate Delays

6. The main buffer is the same as for the InOutInterlock WCHB, namely the MCEs
with two normal and one negative inputs.

We first compare the sensitive windows of Δ from Figure 3.33 with IOISRWCHB
Figure 3.25. It can be observed that in Token limited mode we are bit cleaner than
the IOISRWCHB. Here a few differences must be checked before moving on, so we
add the Ack1_out signal in our visual analysis as well as INC0. In Token limited
mode input signals are green except for a very small sensitive window that is associated
with the rail assumed to not participate in current handshake cycle. This is because
when the Ack1_out signal is allowed to propagate to en0 (high to low) it takes some
time for the valid transition to propagate to the output of the buffer. Just recall that
whenever en0 goes low, a logical zero at IntIN00.T will show up at the output only after
some propagation delay. Until it reaches the output Out00.T and blocks the opposite
MCE, MCE-C1 enters into susceptible mode and any low transition is considered a valid
transition.

Moving to the output signals, we achieved high resilience as shown. As en0 remains high
until the data arrived at the inputs (source delay) and the inputs IntINXX.T and .F
are also high, our MCEs are in combinational mode and we can easily mitigate the SET
effects from input and output sides. During Normal operation we also achieve a better
resilience but in extreme Bubble limited mode we are not able to enhance our buffer,
since we loose the resilience due to some signals which we will later discuss in detail.
Here it is visible that we for the first time mark the en0 signal’s sensitivity in bubble
limited mode.

As we are only injecting on nodes and considering a gate as atomic structure, we are
comparing the area overhead on the basis of gate count. Figure 3.34 presents the gate
count, which is the same as IOISRWCHB, whereas the gate delays are a bit different, as,

62

3.5. Δ: Dual_Completion_Detection Input Output Interlocking WCHB

0.0

0.5

1.0

×102

0 0 3 6
12

31

PLF = 0.1
Total
deadlock
glitch
coding
value

0.0

0.5

1.0

1.5
×102

0 0 0

33
27

58

PLF = 0.25

0.0

0.5

1.0

1.5

N
u
m

b
e
r

o
f

E
rr

o
rs

×102

0 0 1

43 47

85

PLF = 0.5

0

1

2
×102

0 0 3

62
71

118

PLF = 1

0

1

2

3

×102

12 9

41

120
135

242

PLF = 2

0

2

4

×102

34 42

153

262 279

388

PLF = 4

15ps min
17ps

47ps max
77ps

85ps 154ps
0

2

4

6

×102

69 74

256

425
396

510

PLF = 10

Figure 3.35: Suseptibility analyses of Δ under the influence of SET with variable PLF
and different injection pulse lengths

63

3. Fault Tolerance Behavior of QDI Buffer Templates

in contrast to the IOISRWCHB, now a few gates cross the 60ps limit. The minimum
propagation delay a gate contains is 17ps, with the maximum being 77ps. Again, we
performed simulations with 6 different injection pulse lengths and varying PLFs as shown
in Figure 3.35. Our target circuit is the same as before, namely the 8-bit, 4-stage Empty
Pipeline.

From Figure 3.35 we start observing errors with 15ps in bubble limited mode, while
in token limited mode fault effects remain rare, even with 154ps fault length(100% of
the maximum). In balanced mode our approach shows better resilience compared to
IOISRWCHB. In the next sections we will take a closer look at the main causes, which
will help us to conclude what we achieve and where we still lack.

3.5.1 Main Causes of Errors in Token Limited Mode
Δ performs very well in extreme token limited mode as the results in Figure 3.35 suggest.
The circuit fails to mitigate the fault only 31 times while injecting a pulse with a length
of twice the maximum gate delays a circuit contains. Where we only observe value errors.
The reason becomes already clear when observing in Figure 3.33-A that most of the
time the signals are green shaded. With the help of Figure 3.32 we present the observed
scenarios in Figure 3.36. We manually examine all scenarios when the circuit fails to
mitigate the fault in extreme token limited mode (PLF = 0.1) while injecting 77ps pulse.
We only observe scenarios, when fault hits the red shaded window of Figure 3.33-A. To
present more scenarios we move to the 154ps injection pulse results, but the main reasons
are approximately the same. In the following we will discuss these in detail:

1. Figure 3.36-A: fault appears at Out00.F at a time instance when en0 goes low.
As IntIN01.F is high, our MCE-C1 is in storage mode and the fault can flip the
stored value if the fault length is longer than the propagation delay. This SET
also disables MCE-C0 for its high transition, although en0 and IntIN00.T are low:
C0 is not allowed to fire as the asymmetric negative input is high. Since the SET
length is higher than the propagation delay of gate it is stored by C0 and considered
as valid data token – which will finally raise the value error flag.

2. Figure 3.36-B: MCE C2 which did not transition in the current handshake cycle
goes into sensitive mode from the input side when the en0 goes low and IntIN01.T
is high. Unfortunately the transition that appeared at IntIN01.F has not arrived
at Out01.F which means C2’s asymmetric negative input is low allowing it to fire.
If the fault appears during this sensitive red window as shown at IntIN01.T and
long enough to cross the propagation delay of the gate, it appears at the output
and gets latched propagating the value error. Here another thing should be noticed:
The fault changes the IntIN01.F signal from 0 to 1 minimizing the chances of the
valid value to propagate.

3. Figure 3.36-C: this scenario is the same as “Figure 3.36-A”, the only difference
is that the fault appears during the non-sensitive window but is long enough to

64

3.5. Δ: Dual_Completion_Detection Input Output Interlocking WCHB

extend into the sensitive red-shaded window. Another important thing is that it
disabled C3 slightly before en0 goes low, which means the chances of the valid
value to propagate are less than in the scenario presented in Figure 3.36-A. These
results are found from injection pulse length 154ps, token limited mode.

Fr
om

 B
uf

fe
r_

1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

Data token Spacer

Token Limited
Mode

Source
 Delay

A

INC0

Ack1_out

Data token Spacer

Token Limited
Mode

Source
 Delay

B
Data token Spacer

Token Limited
Mode

Source
 Delay

C

Value Error

Value Error

Value Error

Figure 3.36: Sensitive Windows of Δ during Token Limited Mode

3.5.2 Main Causes of Errors during Balanced Operation
If we analyze the sensitive windows of the token limited mode in comparison with balanced
operation from Figure 3.33 it is visible that their sensitive windows lie approximately
on the same spot. However, when we go to the results in Figure 3.35 the circuit turns
out to be more susceptible to SETs during balanced operation. The main reason behind
the resilience in token limited mode is that the fault may vanish during the waiting time
of the source. The very similar SET sensitivity of Δ in token limited and in balanced
operation also made it hard to identify interesting new scenarios to show for balanced
operation (PLF=1) here. We decided to analyze the results for fault length 154ps.

65

3. Fault Tolerance Behavior of QDI Buffer Templates

Data token Spacer

A Normal Operation
Fr

om
 B

uf
fe

r_
1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

INC0

Ack1_out

Data token Spacer

B Normal Operation
Data token Spacer

C Normal Operation

Value Error

Value Error

Value Error

Figure 3.37: Sensitive Windows of Δ during balanced operation

1. Figure 3.37-A: a fault appears at Out01.T in close proximity of the falling edge
on en0. As the respective MCE enters the storage mode there, the fault flips the
stored logical value and nullifies the effect of the valid transition. As a result we
get a value error.

2. Figure 3.37-B: a fault appears at IntIN00.F ; this time it has negative polarity. It
forces IntIN00.T that already performed the valid down-transition to go back to
high. As fault covers the red shaded window of IntIN00.F and gets latched by C1,
disabling the C0 for any further transition. After some time (length of the fault)
IntIN00.F goes back to high because In00.F is low. This forces the NAND gate to

66

3.5. Δ: Dual_Completion_Detection Input Output Interlocking WCHB

go high, and as a result IntIN00.T retains its correct value back as shown. But
now it is worthless because C0 is blocked by the Out00.F high transition and we
already propagated the value error.

3. Figure 3.37-C: as we were not able to find a different scenario than the ones
presented in normal operation, we highlight a scenario that is, in essence, similar to
Figure 3.37-A but the affected signal here is further downstream, namely Out00.F.

3.5.3 Main Causes of Errors during Bubble Limited Mode
Compared to the other two modes, the circuit is more susceptible to SETs in bubble
limited mode: As shown in Figure 3.35 we observe more errors as compared to the
IOISRWCHB Figure 3.27. For the maximum injection pulse length and with PLF=10,
for instance, Δ shows 425 effects in comparison to 383 for IOISR. We investigated
the main reasons and found a few new signals that were not so susceptible before our
modification. These signals include the enX and AckX_out. A closer look to the
Figure 3.35 extreme bubble limited mode tells us that there is higher number of value
errors compared to the IOISRWCHB Figure 3.27 and lower number of deadlocks. And
the main contributor behind this value error is enX and AckX_out. In all our previous
discussions we did not consider these signals, because they are not a real contributor in
those cases. Here, however, we have to carefully analyze their behavior – why are they
sensitive? In Figure 3.38 we also showed the sensitivity of en0 with red and green shades
for the first time, but we were not able to explicitly identify the sensitivity of Ack1_out.
The reason was that when looking back from Buffer_0 we were not aware of the state
of the input signals of MCE-C9. This information, however, is required to determine
whether the MCE is in storage mode or combinational mode. In the following we will
discuss the main reasons behind the generation and propagation of the faults.

1. Figure 3.38-A: the sensitivity of en0 depends on INC0 and Ack1_out. When these
signals have different level, MCE-C11 is in storage mode and the shade must be
red. This time the fault appears during the red shade, but at the same time our
circuit is also sensitive in a way that this negative transition on en0 allows the
waiting token at the inputs of Buffer_0 to pass to the output as shown. As a result,
Ack_out goes high and the source removes the tokens from In00.T and In01.F.
Consequently, INC0 goes high again because all IntIN.t and .F go high, indicating
a spacer. Ack1_out is still high, as the last passed spacer is not acknowledged yet
by the next stage (Buffer_1). Now INC0 and Ack1_out force en0 to high. At this
instance the effect of the SET has alrealy vanished. This transition at en0 passes
the new spacer at the output, and as the next stage is excepting the spacer, it
responds by setting the acknowledgement signal low: as shown, Ack_out goes low
after arbitrary time. But unfortunately, one token is lost due to the false transition
at en0 (SET hit). Now the token at the input of the Buffer_0 is not the one
that is supposed to pass, as Out01.T goes high in contrast to the expected one in
which Out01.F was high. A value error is reported. In this scenario the seemingly

67

3. Fault Tolerance Behavior of QDI Buffer Templates

B
uf

fe
r_

0
O

ut
pu

ts

Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

A
Fr

om
 B

uf
fe

r_
1

In00.T

In01.T

en0

Out00.T

Out00.F

B
uf

fe
r_

0
In

pu
ts

Ack_out

Out01.F

Out01.T

In00.F

In01.F

IntIN00.T

IntIN00.F

IntIN01.T

IntIN01.F

INC0

Ack1_out

Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

B
Data token Spacer

Bubble Limited
Mode

Sink Delay Sink
 Delay

C

Deadlock

Value Error

Value Error

Figure 3.38: Sensitive Windows of Δ during Bubble Limited Mode

erroneous data token has indeed been sent by the source, but it is not the expected
one, the presented token will be expected next in line by Buffer_1.

2. Figure 3.38-B: here Ack1_out goes low, which means the spacer is latched by the
Buffer_1 and a new token is requested. That token is placed and passed to the
output of the Buffer_0. Next, as the Ack_out goes high, the source places a spacer
to the inputs of Buffer_0. In consequence, all IntINXX.T and .F go high, which
fires MCE-C10, and INC0 goes high. Accidentally the fault appears at Ack1_out
firing C11 when en0 goes high. This is the indication that the next stage demands
a spacer. The waiting spacer is now passed to the outputs which then also reset
Ack_out, asking for a new token from the source. After some arbitrary time, the
SET vanished from Ack1_out. At this point we are not aware whether MCE-C9
is in storage mode or combinational mode, but the fact that the effect will vanish
confirms that C9 is in combinational mode. When all bits of the new token arrive
at the input of Buffer_0, it will force INC0 to zero, which then resets en0. This

68

3.5. Δ: Dual_Completion_Detection Input Output Interlocking WCHB

0 50 100 150 200 250

Gate Index

10

20

30

40

50

60

70

80

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

WCHB

InterlockingWCHB

InOutInterlockingWCHB

IOISRWCHB

Figure 3.39: Gate Count and Gate Delays Comparison of all dicussed buffer templates

latter transition allows the new token to the output and is now considered as valid
token by Buffer_1 which is expecting a token. But as shown the presented token
is different from the lost token due to the false statement of Ack1_out. The value
error flag goes high.

3. Figure 3.38-C: a fault appears at the Out00.T when we are waiting for the ac-
knowledgement from the next stage. As its polarity is negative it then forcefully
removes the valid stored token from MCE-C0, which is in storage mode: its inputs
IntIN00.T and en0 are at high and lo, respectively. Our next stage remains in a
waiting state for the unexpectedly removed token and we are not able to forward
the handshake cycle, which then causes a deadlock.

3.5.4 Final Comments on Δ
With Figure 3.39, we can compare the area (gate count) of all discussed buffer templates,
its clearly visible that the Δ comprise the same gate count as other resilient techniques,
we achieve better resilience with same footprint. Where the Figure 3.40 presents the
resilience comparison of all discussed buffer templates. It is visible that we achieve higher

69

3. Fault Tolerance Behavior of QDI Buffer Templates

resilience with Δ in token limited mode, while it is comparable with the alternatives in
bubble limited mode. The reason that we are not able to show the difference in bubble
limited mode is that our control signals – which includes enable and acknowledgement –
become sensitive in that mode of operation. The dual completion detection adds an extra
MCE to allow the acknowledgement signal to the buffer. That latter signal, however,
then becomes susceptible in bubble limited mode as the acknowledgement is delayed
while the source already toggles its input lines – as a result the MCE responsible for
passing these signals remains in storage mode. But at the same time in token limited
mode, as Figure 3.40 suggests, the error occurrence is near to zero, in contrast to
IOISRWCHB where it is approximately 2.5% while maintaining the same gate count as
the IOISRWCHB.

In [TS22a] we compared Δ with Dual completion detection versions of WCHB, Interlock-
ing WCHB and InOutInterlock WCHB. Δ performs well compared to all these while
saving 44% area (transistor count) by replacing the MCE used for input interlocking
with an SR latch technique. Compared to its Dual Completion detection version of the
InOutInterlock WCHB, Δ shows higher throughput, which is clearly due to the efficient
and faster input interlocking.

The lesson learnt from the IOISRWCHB is implemented in Δ, which further minimizes
the sensitive window in token limited and balanced operation.

We only considered the buffer templates in our analysis for this chapter which gives us
good insights about the behavior of the buffer template alone. In the next chapter we
continue our study by introducing combinational elements between these buffer stages,
which is a step towards real-world circuits.

70

3.5. Δ: Dual_Completion_Detection Input Output Interlocking WCHB

0%

2%

4%

6%

8%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

10%

c
o
d
in

g
e
rr

o
rs

.1 .25 .5 1 2 4 10

Pipeline load factor

0%

1%

2%

3%

4%

5%

8%

v
a
lu

e
 e

rr
o
rs

.1 .25 .5 1 2 4 10 .1 .25 .5 1 2 4 10 .1 .25 .5 1 2 4 10 .1 .25 .5 1 2 4 10

10K 10K 10K
Total Injections

10K 10K

WCHB
Interlocking
WCHB
InOutInterlocking
WCHB
IOISRWCHB

Figure 3.40: Δ comparison with all discussed buffer templates (Injection pulse is equal
to 2*(maximum gate delay))

71

CHAPTER 4
The behavior of QDI

Combinational Logic under the
influence of SETs

So far, we analyzed the behavior of QDI buffer templates only, without any combinational
logic included in the circuit. To extend our scope, we will specifically investigate the
susceptibility of the combinational logic under the influence of SETs. As the QDI
combinational logic is delay insensitive under the isochoric fork assumption, it contains
MCEs. As we know, the MCE is the main contributor in converting SETs into SEUs, and
it propagates SETs to the buffer template. In this section we will try to highlight the root
cause behind both, the conversion and the propagation. We selected the 16-bit 7 stage
pipelined multiplier circuit as our target circuit, the combinational logic style is DIMS
[SS93] and [Spa20]. We start our investigation by segregating the error contributors from
the circuit, which tells us how much the combinational logic is susceptible to SETs. Then
we analyze the state-of-the-art techniques proposed to mitigate the effects of SETs in
combinational logic. Lastly, we propose a respective novel technique. Our focus is to
utilize the inherent behavior of QDI logic to make our circuit fault tolerant.

For the embedding into a pipeline we include the resilient buffer template named Δ from
our previous findings [TS22a], but we also consider the baseline WCHB template for
reference.

4.1 SET effects in DIMS Combinational Logic with a
WCHB buffer template

[SS93] discussed the approach Delay Insensitive Minterm Synthesis (DIMS) to implement
the combinational logic for delay insensitive circuits. As the name suggests, the circuit will

73

4. The behavior of QDI Combinational Logic under the influence of SETs

operate in a delay-insensitive manner; the minterms of the input variables are generated
with MCEs to achieve the required behavior.

C1

C0en0

en0

In00.T

Out00.F
In00.F

Ack00_out

C6

C5en1

en1

In10.T Out10.T

Out10.FIn10.F

Ack10_out

C3

C2en0

en0

In01.T Out01.T

Out01.FIn01.F

Ack01_out Ack1_out

C8

C7en1

en1

In11.T
Out11.T

Out11.FIn11.F

Ack11_out
Ack_In

Ack_out

Sou
rc

e Sink

C9C4

Bit-0

Bit-1

Buffer_0 Buffer_1

00.T
01.T

C10

C11

00.F
01.T

C12

C13

00.F
01.F

00.T
01.F

One-hot signal

AND Gate

XOR Gate

DIMS Combinational Logic

Out00.T

Figure 4.1: WCHB buffer with DIMS AND and XOR logic

Figure 4.1 is the same simple 2-bit, 2-stage circuit we used to explain the behavior of
our buffer circuits, but here we add the combinational logic within the pipeline stages.
The first stage of the DIMS logic transforms the binary input into a one-hot signal using
MCEs as shown. Based on that one-hot signal we can implement any logic. In this case
we implement AND and XOR gates. The AND gate’s value will be stored as Bit-0 and
the XOR’s output as Bit-1 of Buffer_1. For the AND gate there is only one possibility
that the output goes high, namely when both .T rails of the last buffer bits show a high
transition, so we can connect the 00.T and 01.T one-hot signal directly to In10.T. For all
other combinations In10.F goes high and this will be checked by OR-ing all other one-hot
signals. The XOR gate’s In11.T will only go high if Bit-0 and Bit-1 are different so
00.F,01.T and 00.T,01.F are checked by an OR gate, while the 00.T,01.T and 00.F,01.F
are checking whether the bits are same and then passed to the In11.F for the generation
of the false-bit.

To get a first idea of the normal operation of that combinational logic and the effects
when an SET strikes it, we explain both behaviors in the following discussion with the
help of Figure 4.2. We use the Figure 4.1 for reference.

1. Figure 4.2-Fault Free: we already know the behavior of the WCHB from the
last chapter, so here we focus on the propagation of the data token through
the combinational logic. When the data token arrives at Out00.T and Out01.F,
transitions labelled with “1” toggle Ack_out as an acknowledgment to the source,
and one-hot signal 00.T, 01.F to high (1∗). As a result, the AND gate must show
a logical 0, as one of the input bits to the combinational logic is low (Out01.F).
Consequently, In10.F shows a transition labelled with 1 ∗ ∗. The input bits are

74

4.1. SET effects in DIMS Combinational Logic with a WCHB buffer template

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

Fault Free

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10.T

In10.F

In11.F

In11.T

Ack1_out

SET Strikes

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic
O

ut
pu

t

1

1

1*

1**
1**

2

3

3

3*

3**

3**

4

Out10.T

Out10.F

Out11.F

Out11.T

O
ut

pu
ts

 o
f

B
uf

fe
r_

1

1***
1***

3***
3***

en1

Coding Error

A
N

D
XO

R

Figure 4.2: SET effects in combinational logic without any protection deployed

different, so the XOR generates a logical 1 output, as shown In11.T goes high
(label 1 ∗ ∗). en1 high means Buffer_1 is ready to latch the new data token. These
values are reflected at Out10.F and Out11.T marked with 1 ∗ ∗∗. These transitions
toggle Ack1_out marked with 2, an acknowledgement signal to Buffer_0. When
the data token is latched by the sink, en1 goes low arming Buffer_0 for the bubble.

2. Figure 4.2-SET Strikes: a fault appeared at the 00.T, 01.T one-hot signal during
a time window when the valid transition is expected on one of these lines. As
MCE-C10 is in storage mode and the SET pulse is long enough, the value stored
in C10 is flipped. At the same time the valid value also shows up at the 00.T, 01.F
one-hot signal as expected because of the input signals to the combinational logic.
As the In10.T is the same signal as 00.T, 01.T, this fault appears at the input

75

4. The behavior of QDI Combinational Logic under the influence of SETs

0 500 1000 1500 2000

Gate index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 4.3: 16-bit 7 stage Pipelined multiplier with WCHB buffer template Gate Count
(2102) and Gate Delays

of Buffer_1 without any propagation delay. There it also reaches In11.F before
the valid transition propagtes to In10.F and In11.T. As en1 is high, all transitions
pass to the output without any further checks. This generates illegal code words
on both bits as shown.

This example provided some insight how SETs threaten the data integrity and flip
multiple rails that may propagate to the next stages and cause errors. Here we start
investigating the fault-tolerance behavior for our target circuit, a 16-bit 7 stage pipelined
multiplier Section 2.4 where the combinational logic is DIMS and the buffer template
is a WCHB. Figure 4.3 presents the gate count and gate delays of the target circuit.
The gate count is 2102 where the minimum propagation delay of a gate contained in the
target circuit is 21ps, with a maximum of 73ps.

Figure 4.4 presents the susceptibility analysis of our target circuit under the influence of
SETs. It presents the number of times the circuit failed to mask the effects of the SET
with specific sub-counts for how much each part of the circuit is susceptible. On the
right-hand side, we give the total number of injections for each presented scenario. The
number of injections we perform is chosen dependent on the total number of nodes in the
circuit and the time the circuit requires to process some specified number of tokens. In
extreme token and bubble limited modes, due to extra waiting time, the injection count
increases as shown; e.g. for PLF = 10 the injection count is 177K compared to 31K for
PLF = 1.

We start our experimental analysis with injection pulse length 21ps, and by crossing the
73ps (maximum gate delay) we inject 1 and 2ns pulses that are safely long enough to test
the circuit resilience towards transients. For all injection pulse lengths the behavior of the
combinational logic is important. The results of Figure 4.4 show that the combinational

76

4.1. SET effects in DIMS Combinational Logic with a WCHB buffer template

0

2

4

6

×103

1321

1916

4921

7332

PLF = 0.1

0

2

4

6

×104

59K 59K 58K 58K

PLF = 0.1

Fault Injected

0

2

4

6
×103

1276

1748

4755

5689

PLF = 0.25
Total
Logic
Buffer
Control
Flushing

0

2

4
×104

33K 33K 33K 33K

PLF = 0.25

0

2

4

N
u
m

b
e
r

o
f

E
rr

o
rs

×103

1630

2288

4491 4370

PLF = 0.5

0

1

2

3
N

u
m

b
e
r

o
f

S
im

u
la

ti
o
n
s
 P

e
rf

o
rm

e
d
 (

O
n
e
 S

E
T
 p

e
r

s
im

u
la

ti
o
n
)

×104

23K 23K 23K 23K

PLF = 0.5

0

2

4

6

×103

2743

3849

6449 6305

PLF = 1

0

2

4
×104

31K 31K 31K 31K

PLF = 1

0.0

0.5

1.0

×104

4562

6634

9370
10125

PLF = 2

0

2

4

6
×104

47K 47K 47K 47K

PLF = 2

0

1

2
×104

8031

11753

14353

16774

PLF = 4

0.0

2.5

5.0

7.5

×104

79K 80K 80K 80K

PLF = 4

min
21ps

max
73ps

1ns 2ns
0

1

2

3

×104

17547

25343

28750

31395

PLF = 10

min
21ps

max
73ps

1ns 2ns
0

1

2
×105

174K 174K 177K 177K

PLF = 10

Figure 4.4: Suseptibility analyses of Pipelined multiplier with WCHB buffer template
under the influence of SET with variable PLF and different injection pulse lengths

77

4. The behavior of QDI Combinational Logic under the influence of SETs

logic always contributes twice as much as the buffer template. In the last chapter our
focus was the buffer template, and we proposed a technique to harden it to mitigate the
effects of SET directly hitting its internal signals or its inputs and outputs. Most of the
QDI hardening techniques for SETs (excluding modular redundant ones) focus on the
buffer templates as these are the data latching elements in a pipeline circuit. However,
as the QDI combinational part also contains MCEs, it is important to take this part into
consideration as well. Our results now clearly indicate that the error rate of a basic QDI
WCHB pipeline template receives a significant share from the combinational logic part.
Considering that combinational logic is often the dominant part (area-wise) in a circuit,
this is not surprising and may even become more pronounced for more complex logic.
Fortunately, some inherent properties of QDI circuits help us minimize these effects. In
the course of our investigations we found a couple of techniques utilizing these inherent
QDI properties to mitigate SET effects in combinational logic. From the next section
onward we will discuss a few, with most promising results.

4.2 The SE Tolerance Asynchronous Pipeline I approach
for flushing SEUs from DIMS combinational logic
with a WCHB buffer template

[KZYD10] presents a technique called Built in Soft Error Correction (BISEC) that flushes
the whole combinational logic upon detection of an error. We will refer to this approach
as SE Tolerance Asynchronous Pipeline I (SETAPI) in the following. With dual-rail
4-phase logic, only one rail can go high per handshake cycle, so a (single) erroneous
rail can be easily detected by ANDing the rails of each bit. A logical one at the AND
output means there is an illegal code word. In SETAPI, as presented in Figure 4.5, with
specific extensions highlighted in orange color, first an SE detection circuit is placed at
the output of the combinational logic which detects the illegal code word. Secondly, AND
gates are inserted into every rail before feeding it to the combinational logic. These are
used to flush (force to low) the whole combinational logic if the q goes low. The signal
q only goes low if a fault is detected and the extra buffer (Buffer_E) also confirms the
data latching by the Req signal. This simply arms the reset circuit, which then forces all
AND gates to go low. The Delay block (difference of combinational and contamination
delay of that stage) is used before the Ack_E_Inv to delay the extra buffer’s completion
signal. If SE detect did not flag any erroneous value before the arrival of Ack_E_Inv, it
nullifies the SE Detect unit’s output, as Ack_E_Inv = 1 forces the Error signal to “0”.
SETAPI conveys an error signal along with invalid data and moves the responsibility for
its appropriate use for error handling to its receiver.

Using Figure 4.5 as reference we will study Figure 4.6 to understand the normal operation
of the SETAPI approach, as well as what happens if a fault hits any rail:

1. Figure 4.6-Fault Free: as the logic is the same as that of Figure 4.1, the data prop-
agation is essentially the same. The only difference is the extra buffer (Buffer_E).

78

4.2. The SE Tolerance Asynchronous Pipeline I approach for flushing SEUs from DIMS
combinational logic with a WCHB buffer template

C1

C0en0

en0

In00.T

Out00.F
In00.F

Ack00_out

C3

C2en0

en0

In01.T Out01.T

Out01.FIn01.F

Ack01_out

Ack1_out

In11E.T

In11E.F

Ack_out

Sou
rc

e

C4

Bit-0

Bit-1

Buffer_0

00.T
01.T

C10

C11

00.F
01.TC12

C13

00.F
01.F

00.T
01.F

One-hot signal

AND Gate

XOR Gate

DIMS Combinational Logic

Out00.T

C6

C5en1

en1

In10.T Out10.T

Out10.F
In10.F

Ack10_out

C8

C7en1

en1

Out11.T

Out11.F

Ack11_out
Ack_In

Sink

C9

Buffer_1

C15

C14enE

enE

In10E.T

In10E.F

Ack10E_out

C17

C16enE

enE
Ack11E_out

C18

Buffer_E

In11.T

In11.F

Delay

SE
Detect

Error Ack_E_Inv
Reset
Circuit

Req

SE
q

Figure 4.5: SETAPI approach with DIMS AND and XOR logic

The outputs of the combinational logic are first passed to the Buffer_E and then
to the output buffer, where enE, an enable signal of Buffer_E, is generated by the
completion detection of the same buffer. A transition on rails In10.F and In11.T
will toggle enE to low, arming the stage for a spacer (highlighted with arrow from
1** to enE).

2. Figure 4.6-SET Strikes: an SET appears at the 00.T, 01.T rail. Since In10E.T is
the same node, the fault also propagates to In11E.F. Together with these faulty
transitions, the valid transitions also arrive at the output of the combinational
logic, forcing all rails to high. This illegal codeword activates the SE detect, and
when Req (check Figure 4.5) goes high, which is the completion detection signal of
Buffer_E, q is reset which then flushes whole combinational logic part. Observe in
the figure how all rails In10E.T, In10E.F, In11E.T, In11E.F are forcefully reset
to zero. However, as faulty data has already been provided to the output buffer,
it gets latched before the flushing of combinational logic, so a coding error is still
generated and propagated to the sink.

With this discussion we conclude that the SETAPI approach is flushing the combinational
logic but as the fault already propagated, this flushing is worthless. For the evaluation
of the approach, we again first extract the gate delays and gate count presented in
Figure 4.7. Due to the extra buffer per stage and the flushing logic the gate count goes
from 2102(with no flushing circuitry and single buffer per stage Figure 4.3) to 3389. The
maximum gate delays a circuit contain is 116ps and the minimum is 12ps.

We simulate the circuit with 7 different PLF’s presented in Figure 4.8. These are the
same as our last discussed target circuits. For PLF > 1 we (more or less) observe the
intended resilience of the logic part against SETs. This is because in this bubble-limited
mode the acknowledgment is delayed, and so the SET is blocked from propagating deeper
into the pipeline, and the correction mechanism can flush and correct the current pipeline
state. For understanding this point, consider the scenario presented in Figure 4.6-SET
Strike part, but if en1 is delayed the faulty transitions are not passed to the sink and
meither is Ack1_out generated. So the valid value to the combinational logic input

79

4. The behavior of QDI Combinational Logic under the influence of SETs

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

Fault Free

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10E.T

In10E.F

In11E.F

In11E.T

Ack1_out

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic

O
ut

pu
t

In10.T

In10.F

In11.F

In11.T

In
pu

ts
 to

 th
e

O
ut

pu
t B

uf
fe

r

enE
q

SET Strikes

1

1

Out10.T

Out10.F

Out11.F

Out11.T

O

ut
pu

ts
 o

f
 B

uf
fe

r_
1

en1

1*

1**
1**

1**
1**

1***
1***

2

3

From Sink

3

3*

3**
3**

3**
3**

3***
3***

4

Coding Error

Figure 4.6: SET effects from combinational logic with SETAPI approach

80

4.2. The SE Tolerance Asynchronous Pipeline I approach for flushing SEUs from DIMS
combinational logic with a WCHB buffer template

0 500 1000 1500 2000 2500 3000 3500

Gate index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 4.7: 16-bit 7 stage Pipelined multiplier with WCHB buffer template and SETAPI
approach Gate Count (3389) and Gate Delays

(Buffer_0 output) remains there, while during this waiting time the fault can be flushed,
and the valid values are calculated again. This is clearly visible from the results, where
in bubble limited mode the contribution from combinational logic is low in comparison to
the buffer and also when we compare this to the Figure 4.4. On the other hand, the buffer
contribution is considerably higher compared to the baseline approach because SETAPI
has one extra buffer per stage, which results in a higher overall injection count (reflecting
the fact that its larger area is also more likely to be victim of an SET). Another important
thing can be noticed from the result of extreme token limited mode PLF = 0.1 and 0.25
is that we also observe errors due to the flushing logic itself. If the whole combinational
logic is accidentally flushed by an SET on the flushing logic, it may generate the spacer
before the source generates it and as the sink or next stage is already armed, it may be
accepted. This advances the handshake from the sink side without any valid response
from the source side, which generates errors. With the contribution of the flushing logic
in error generation the number of errors doubles, see Figure 4.4: for injecting 1ns pulses
in PLF=0.1 the errors are 4921, while with the same selection in Figure 4.8 it is 10976.
The flushing bar from the same selection suggests that the contribution is not negligible.

4.2.1 Final Comments on SETAPI

Figure 4.9 presents the comparison between the unprotected 16-bit 7 stage pipelined
multiplier with the SETAPI approach realized with the WCHB buffer template. The first
thing we observe from this figure is the number of injections presented on the top x-axis:
due to the extra buffer and the flushing logic the number of injections is approximately
doubled compared to the simple WCHB-based multiplier. We do not observe any glitches
as we delete the last stage’s enable signal from the injection list that is responsible for
the glitches discussed in the last chapter. In the following discussion using Figure 4.9 we

81

4. The behavior of QDI Combinational Logic under the influence of SETs

0.0

0.5

1.0

1.5
×104

2052

5343

10976

15899PLF = 0.1

0.0

0.5

1.0

×104

1234

3359

8250

11376PLF = 0.25

0

2

4

6

N
u
m

b
e
r

o
f

E
rr

o
rs

×103

875

2365

5890
6267PLF = 0.5

0.0

2.5

5.0

7.5

×103

847

2759

7827

8676PLF = 1
Total
Logic
Buffer
Control
Flushing

0.0

0.5

1.0

1.5
×104

1012

5069

10411

15067PLF = 2

0

1

2
×104

2389

11383

15451

19901PLF = 4

min
12ps

max
116ps

1ns 2ns
0

1

2

3

×104

6962

30950

34551

37760PLF = 10

Figure 4.8: Suseptibility analyses of Pipelined multiplier with WCHB buffer template and
SETAPI approach under the influence of SET with variable PLF and different injection
pulse lengths

82

4.2. The SE Tolerance Asynchronous Pipeline I approach for flushing SEUs from DIMS
combinational logic with a WCHB buffer template

discuss briefly the main causes behind errors in all modes of operation.

1. In extreme token limited mode, as the buffer is already armed for the token or
spacer, the transient is accepted as valid transition and causes a value or coding
error as Figure 4.9-SETAPI concludes.

2. Compared to the WCHB for PLF = 0.1 we now also observed value errors where
for PLF= 0.25 the circuit experiences more deadlock situations, and for PLF= 1
we observed fewer deadlocks and more coding errors.

3. For PLF = 0.1, due to an SET in between Buffer_1 and Buffer_0, “q” goes low, a
spacer is generated (due to the flushing mechanism) and passed to Buffer_1. After
being latched it generates Ack_1 = 0 (en0 = 1), but as the source is slow (the last
data token is still at the inputs) we are able to recover the flushed data token as
Buffer_0 is still holding it. This generates the same data token for Buffer_1 but
it is now considered as new data token. Buffer_1 toggles its Ack_1 = 1 (en0 =
0), which arms Buffer_0 for a spacer. As we passed the same token two times the
value error flag is raised, but the circuit does not enter into a deadlock.

4. For PLF = 0.25 the source responds faster than with PLF = 0.1, so the circuit
may enter the deadlock situation easily due to the flushing mechanism. Consider in
Figure 4.5 that due to an SET a spacer is produced (as the flushing mechanism does
in case of SET) and passed to Buffer_1 while holding a valid data token. Further
assume that the source is near to respond with a spacer to the acknowledgement
of that data token passed to Buffer_1 by Buffer_0. The spacer due to the SET
now latched by Buffer_1 generates a bubble (Ack_1 = 0 makes en0 = 1) that is
not expected as response before the actual generation of the spacer through the
source. The latter then stops the valid spacer that arrives just now at the inputs of
Buffer_0. We are not able to proceed further and get stuck in a deadlock. This is
the main reason why we experience more deadlocks for PLF = 0.25.

5. Moving to the balanced mode (PLF = 1) we experience more coding errors than
deadlocks. The reason is that the WCHB buffer template is not able to mitigate
the SET effects. All transitions are passed to the output without any check and on
the detection of the SET the flushing mechanism flushes the whole logic, generating
a spacer. As the circuit is fast enough, the generated spacer is merged with the
valid spacer by the source and we thus somehow manage to not enter into the
deadlock situation.

6. For bubble limited mode again our circuit experiences deadlocks, but the prominent
factor here is not the combinational logic, as Figure 4.8 suggests. Most errors are
due to the buffers operating in bubble limited mode.

7. Consider the circuit Figure 4.5. Buffer_1 passed a data token to the sink and as it
is in bubble limited mode, we are waiting for en1 to go low. When Buffer_1 passed

83

4. The behavior of QDI Combinational Logic under the influence of SETs

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

11%

g
li
tc

h
e
s

WCHB SETAPI

0%
2%
4%
6%
8%

10%
12%
14%
16%

19%

c
o
d
in

g
 e

rr
o
rs

.1 .25 1 2 4 10
Pipeline load factor

0%

2%

4%

6%

8%

10%

v
a
lu

e
 e

rr
o
rs

.1 .25 1 2 4 10

 Total Injections in X10^4
6 3 3 5 8 18 11 6 5 8 13 29

Figure 4.9: SETAPI comparison with WCHB based Pipelined Multiplier (Injection pulse
is 1ns)

84

4.3. The SE Tolerance Asynchronous Pipeline II approach for mitigating SET effects in DIMS
combinational logic with a WCHB buffer template

the data token to the sink, it also sends the acknowledgment signal to Buffer_0
which then passes a spacer from the source to Buffer_1. All inputs to Buffer_1
are now zero. In bubble limited mode Buffer_E already changes its enable signal
state to “1”, putting MCE-C14 in storage mode. If a fault hits In10.T in this state,
when en1 is high C5 also fires, regardless of the value of C6. After some arbitrary
time the sink responds to the sent token, which makes en1 low. So all rails except
Out10.T go low, and C14 is holding a faulty transition that we are not able to flush.
Our flushing is neither able to detect the SET as it is out of its scope. We end up
in a deadlock situation.

The presented argument does not cover all scenarios but gives us an insight why
there are more deadlocks in extreme bubble limited mode.

After this discussion we can conclude that SETAPI is not effective again SETs because of
the extra buffer it introduces, and because of the flushing of the whole combinational logic
that it performs without any knowledge of the environment, which causes a deadlock or
advances the handshake cycle without any transition from the inputs – which sometimes
violates the causal behavior of the QDI circuit. In the next section we discuss a successor
approach of the SETAPI called SE Tolerance Asynchronous Pipeline II (SETAPII).

4.3 The SE Tolerance Asynchronous Pipeline II approach
for mitigating SET effects in DIMS combinational
logic with a WCHB buffer template

The flushing is meaningless if the data is already delivered to the next stage, and it
advances the handshake cycle. This limitation of SETAPI (BISEC [KZYD10]) is already
discussed by [LHHA12], and in a later paper the authors present a modified version
named SETAPII [LHHA16]. They proposed some enhancements highlighted with orange
color in Figure 4.10 . They basically modify the SE Detect unit to check the current
state of the circuit as well and combine it to generate an SE signal that is now also
capable of resetting Buffer_E and Buffer_1 on the detection of the SET. So, if the
faulty data is already latched by the Buffer_E and Buffer_1 it will be flushed out on
the detection of the SET. The handshake phase detection is derived from the output of
Buffer_0. More specifically, rails Out00.T, .F and Out01.T,.F are passed to the State
Detection and, after some delay (AND gate + combinational logic delay), fed to the
SE detect unit. If the SE detects any illegal code word, it only generates the SE signal
to flush the Buffer_E and 1 if a data phase is detected. In their circuit diagram the
authors of [LHHA12] connect SE to the reset of the extra buffer only, while text of the
article suggests that SE is connected to both extra and regular buffer. In [LHHA16] they
connect SE to the regular buffer reset signal only. Following the text of [LHHA12] we
connect SE to both registers again in our evaluations.

85

4. The behavior of QDI Combinational Logic under the influence of SETs

C1

C0en0

en0

In00.T

Out00.F
In00.F

Ack00_out

C3

C2en0

en0

In01.T Out01.T

Out01.FIn01.F

Ack01_out

Ack1_out

In11E.T

In11E.F

Ack_out

Sou
rc

e

C4

Bit-0

Bit-1

Buffer_0

00.T
01.T

C10

C11

00.F
01.TC12

C13

00.F
01.F

00.T
01.F

One-hot signal

AND Gate

XOR Gate

DIMS Combinational Logic

Out00.T

C6

C5en1

en1

In10.T Out10.T

Out10.F
In10.F

Ack10_out

C8

C7en1

en1

Out11.T

Out11.F

Ack11_out
Ack_In

Sink

C9

Buffer_1

C15

C14enE

enE

In10E.T

In10E.F

Ack10E_out

C17

C16enE

enE
Ack11E_out

C18

Buffer_E

In11.T

In11.F

Delay

SE
Detect

Error Ack_E_Inv
Reset
Circuit

Req

SE
q

State
Detection Delay_SD SD

Figure 4.10: SETAPII approach with DIMS AND and XOR logic

Using Figure 4.11, we discuss the normal operation of the SETAPII and study what
happens when an SET hits any of its combinational logic signals. The reference circuit is
given in Figure 4.10.

1. Figure 4.11-Fault Free: normal data propagation is approximately the same as in
SETAPI, the extra signal is SD (already discussed: it is a state detection signal).
SD toggles aprroximately at the same time when the combinational logic generates
its output; as shown, when In10E.F and In11E.T go high SD also goes to 1. We
also add SE in our figure this time because it is important to tell when we must
reset Buffer_E and Buffer_1.

2. Figure 4.11-SET Strikes: a fault appears at 00.T, 01.T near to the valid transition
at 00.T, 01.F. As In10E.T and 00.T, 01.T are the same, the fault is also visible
on In10E.T, from where it is also propagated to In11E.F. The valid transitions are
propagated to the inputs of Buffer_0, as shown on In10.F, In11.T, before the fault
makes its way, while the valid transitions are also passed to the outputs Out10.F
and Out11.T. Due to transitions on Out10.F and Out11.T the Ack1_out is removed
and as a response a spacer is generated by Buffer_0 as indicated by Out00.T,
Out01.F showing transitions to zero. Due to the SET, SE goes low and resets both
Buffer_E and Buffer_1 before the sink responds via en1 ; data is removed from
Out10.F and Out11.T. When q goes low on the detection of the SET it flushes the
whole combinational logic. Unfortunately, we are not able to recover the correct
state after flushing, as the subsequent spacer reset all inputs to the combinational
logic. The resetting of Buffer_E and Buffer_1 by SE also generates a bubble for
Buffer_0 which then comes with a new data token. The sink does not participate
in the last handshake activity as this activity is falsely completed by the internal
mechanism of SETAPII. The new data token from Buffer_0 at (Out00.F, Out01.F)
is now passed through the combinational logic and appeares at (Out10.F, Out11.F).
It is considered as valid data token by the sink but as the last data token is lost it
is not the expected data value, which raises the value error flag.

86

4.3. The SE Tolerance Asynchronous Pipeline II approach for mitigating SET effects in DIMS
combinational logic with a WCHB buffer template

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10E.T

In10E.F

In11E.F

In11E.T

Ack1_out

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic

O
ut

pu
t

In10.T

In10.F

In11.F

In11.T

In
pu

ts
 to

 th
e

O
ut

pu
t B

uf
fe

r

enE

q

SD

SE

Out10.T

Out10.F

Out11.F

Out11.T

O

ut
pu

t B
uf

fe
r_

1

3***

3***

en1

SET Strikes

Value Error

Fault Free

1

1

1*

1**

1**

1***

1***

1***

1***

2

3

3

3*

3**
3**

3***
3***

4

Figure 4.11: SET effects from combinational logic with SETAPII approach

87

4. The behavior of QDI Combinational Logic under the influence of SETs

A closer examination, however, reveals, that the proposed modification introduces a glitch
problem because of the different delays (skew) of data rails. To better understand, we
open the SE detect from [LHHA12, LHHA16] and present it in Figure 4.12. The AND
gates connected at the output of the combinational logic are for the illegal code word
detection, ultimately producing output D. Data completion is checked per bit using an
OR gate from the output of the combinational logic as shown marked with A and B. The
SD signal is combined with these to check whether we are in data phase or null phase. If
A and B are low as well as SD, this means a spacer is provided by Buffer_0. In his case
P0 is set high which then sets F (which combines P0 with D) to allow SE to go high.

SD

D

Delay =
(Combinational + AND

Gate)

SE

State
Detection

Combinational
 Logic

q

3 input

3 input

Out00.T
Out00.F
Out01.T
Out01.F

AB

P1

P0

F

In10E.T
In10E.F
In11E.T
In11E.F

Figure 4.12: SETAPII approach Flush logic

In Figure 4.13-Internal Glitch we explain how these signal produce glitches at the SE
signal which may cause an erroneous value even without any SET strike. For better
understanding we refer to Figure 4.12 for the signals highlighted in orange color in
Figure 4.13-Internal Glitch.

1. As each combinational logic part has different propagation delay, In10E.F may go
high a bit earlier than In11E.T.

2. A goes high, which then forces P0 to low. P0 then resets F as P1 is already low (B
and SD is still zero).

3. F forces SE to low, which then resets Buffer_E and Buffer_1. As shown in the
figure, In10.F and Out10.F are reset without any transitions on the input signals
In10E.F.

4. SE goes back to “1” when the second bit In11E.T is completed by the combinational
logic and SD also arrives (after the added delay). As a consequence, P1 goes to
high, which then makes F high and as a result SE goes high, too.

88

4.3. The SE Tolerance Asynchronous Pipeline II approach for mitigating SET effects in DIMS
combinational logic with a WCHB buffer template

5. As we did not advance the handshake cycle, Buffer_E and Buffer_1 again latch
the provided values from the combinational logic and Ack1_out goes high.

6. This acknowledgement removes the data from the output of Buffer_0, namely
Out00.T and Out01.F, which again produces a glitch at SE in the same way as we
discussed for the positive transitions.

7. This glitch resets again both, Buffer_E and Buffer_1, where a closer look tells us
that the data token is removed before en1 shows any transition. This means the
sink did not respond to the lost data token.

8. The forced flushing also generates a bubble for Buffer_0 when Ack1_out goes low,
as highlighted with the red dotted line.

9. Ack1_out generates a new data token (at Buffer_0 ’s outputs), which propagates
to the output of Buffer_1. But luckily this time the propagation delays of bit 0
and 1 are approximately equal so the glitch on SE is small and not long enough to
reset Buffer_E and Buffer_1. But as the values differ from the last data token
(the lost one), a value error is generated, because the sink is expecteing a high on
Out10.F and Out11.T.

Just like in Figure 4.11 here again we present a scenario without glitch effects. In the
following discussion we explain, with the aid of Figure 4.13-SET Strike, how SET effects
can be flushed by SETAPII without producing any error.

1. A fault appears at 00.T, 01.T very near to the valid transition at 00.T, 01.F. When
the illegal code word is detected by the SE detect unit with SD being high, it will
toggle its SE signal to low. At the point where SE goes low faulty transitions are
only latched by Buffer_E. SE resets Buffer_E as well the “q” signal.

2. When the combinational logic is flushed on the resetting of “q” the traces of the
SET will be also be flushed out.

3. As the Buffer_0 is still holding the data token, it will be recovered and be passed
to the sink. As shown, Out10.F and Out11.T transition to the value expected by
the sink.

The SETAPII approach works in cases when (i) the glitch at SE is negligible as well as
(ii) the resetting of Buffer_E and Buffer_1 does not advance the handshake cycle. But
the most important thing to be noted is that the circuit is not anymore QDI, due to the
added delay constraint on the SD line. This SD line is also responsible for glitches at SE
we discussed.

The state detection can be done with the last stage’s completion detection circuit, so we
don’t have to really add extra state detection circuit for that. For resetting Buffer_E
and Buffer_1 the internal structure of the MCEs is modified without addition of any

89

4. The behavior of QDI Combinational Logic under the influence of SETs

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10E.T

In10E.F

In11E.F

In11E.T

Ack1_out

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic

O
ut

pu
t

In10.T

In10.F

In11.F

In11.T

In
pu

ts
 to

 th
e

O
ut

pu
t B

uf
fe

r

enE

q

SD

SE

Out10.T

Out10.F

Out11.F

Out11.T

O

ut
pu

t B
uf

fe
r_

1

en1

SET Strikes

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

In10E.T

In10E.F

In11E.F

In11E.T

Ack1_out

C
om

bi
na

tio
na

l L
og

ic

O
ut

pu
t

In10.T

In10.F

In11.F

In11.T

In
pu

ts
 to

 th
e

O
ut

pu
t B

uf
fe

r

enE

B

SD

A

Out10.T

Out10.F

Out11.F

Out11.T

O

ut
pu

t B
uf

fe
r_

1

en1

P1

F

P0

SE

Internal Glitch

Value Error

Figure 4.13: Behavior of SETAPII with and without SET strike

90

4.3. The SE Tolerance Asynchronous Pipeline II approach for mitigating SET effects in DIMS
combinational logic with a WCHB buffer template

0 500 1000 1500 2000 2500 3000 3500

Gate index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 4.14: 16-bit 7 stage Pipelined multiplier with WCHB buffer template and SETAPII
approach Gate Count (3389) and Gate Delays

extra gate. That is why the gate count remains the same, namely 3389 as counted in
Figure 4.14. The minimum and maximum gate delays are 12ps and 116ps, respectively,
the same as for SETAPI.

The SETAPII approach is evaluated in Figure 4.15 with the same 7 different PLFs as
in the previous sections. A first look at Figure 4.15 in comparison to the Figure 4.8
tells us that the SETAPII is more susceptible to SETs. For PLF = 1 when injecting
a 116ps pulse, e.g. , SETAPI Figure 4.8 fails 2759 times, while SETAPII Figure 4.8
fails 5019 times in mitigating the SET. The same situation is observed for all scenarios
presented. Compared to SETAPI the logic contribution from SETAPII is higher for all
PLFs. In extreme bubble limited mode when the ACK is delayed, we have more time
to flush the combinational logic on the detection of the SET, where data is not allowed
to pass through the output buffer that is not armed. So, as shown, in bubble limited
mode the logic contribution decreases compared to the buffer part. Figure 4.15 tells
another important fact about the flushing circuitry: for all PLFs the “Flushing” logic’s
contribution is non-negligible. So, SETs is itself contributing to make circuit susceptible
to SETs. Compared to the token limited mode, in bubble limited mode the contribution
of the “Flushing” part is not so prominent. This it is again due to delayed ACK signal.
We have more time to recover before the output buffer goes active to latch the data.

4.3.1 Final Comments on SETAPII
Figure 4.16 presents a comparison of the SETAPII-based pipelined multiplier circuit with
the simple WCHB-based one and the SETAPI approach. The first thing we notice is that
the injection count is approximately the same as for SETAPI. This is due to the same
structure and gate count. Compared to its predecessor, SETAPI, the circuit is more
prone to deadlocks, glitch and value errors. The reason behind the glitches has already

91

4. The behavior of QDI Combinational Logic under the influence of SETs

0

1

2

×104

5794

16809

20991

24046PLF = 0.1

0.0

0.5

1.0

×104

2412

6532

10791

12299PLF = 0.25

0.0

2.5

5.0

7.5

N
u
m

b
e
r

o
f

E
rr

o
rs

×103

1318

3865

7466
8048PLF = 0.5

0.0

0.5

1.0
×104

1417

5019

9181

10787PLF = 1
Total
Logic
Buffer
Control
Flushing

0.0

0.5

1.0

1.5

×104

2913

10932

15865

18736PLF = 2

0

1

2

×104

5902

21599

24805

29433PLF = 4

min
12ps

max
116ps

1ns 2ns
0

2

4

6
×104

15872

53507

61147 61668PLF = 10

Figure 4.15: Suseptibility analyses of Pipelined multiplier with WCHB buffer template
and SETAPII approach under the influence of SET with variable PLF and different
injection pulse lengths

92

4.4. SETs effects in DIMS Combinational Logic with the Δ buffer template

been explained: the SE signal can reset the output buffer without any extra check or
awareness of the handshake phase, which may cause a glitch at the output. In addition,
an SET within the combinational logic or in flushing circuitry can erroneously advance
the circuit in its handshake phases without any signal from source or sink. This may
cause deadlocks. In conclusion, due to these structural flaws, the SETAPII approach
is not an effective choice for mitigating SETs within the combinational logic. Strictly
speaking, it may not be considered a QDI approach either, because of the addition of
delay assumption.

4.4 SETs effects in DIMS Combinational Logic with the
Δ buffer template

Our proposed buffer template Δ showed good resilience with an empty pipeline configura-
tion in the last chapter. Here we check its resilience with the pipelined multiplier circuit.
In this technique the first transition locks the input and gives extra margin to finalize
the decision whether it is a correct input or an SET. If the correct transition arrives
before the completion of all bits and the SET has vanished, the correct transition takes
the place of the faulty one, otherwise the first transition (correct or faulty) is considered
valid. In addition, the output interlocks help to prevent erroneous behavior for different
PLF. The buffer is equipped with the input interlocking, which cuts the probability of
latching faulty transitions by the main buffer. This has poterntial to also mitigate some
of the erroneous values propagated from the combinational logic. Figure 4.17 presents
the 2-bit, 2 stage Δ buffer with a DIMS AND and XOR gate.

Using Figure 4.17 as a reference circuit, we will discuss the normal operation and the
behavior of the circuit under the influence of SETs in the following. For the latter we
only present a scenario where the circuit fails to mitigate the effect.

1. Figure 4.18-Fault Free: we follow the data propagation from the combinational
logic to the Buffer_1. Data propagation from the Buffer_0 to the output of the
combinational logic is the same as in the simple WCHB based example. However,
when data arrives at the Buffer_1 ’s internal inputs (after the input interlock stage),
the first transition on InIN10.F or InIN11.T blocks the respective opposite rail for
latching any transition, or, in other words, forcefully sets it to high. When all bits
have arrived at the IntIN level, MCE-C12 changes its state to zero, and so INC1
goes low. This transition, when combined with Ack_In changes en1 to low. Now
Buffer_1 ’s MCEs latch the transition, and Out10.F and Out11.T go high (marked
with “1***”). This generates the Ack1_out “2” for Buffer_0 and whenever the
sink latches the provided data token, Ack_In goes low.

2. Figure 4.18-SET Strikes: a fault appears at 00.T, 01.T close enough to the valid
transition at 00.T, 01.F. As we know, due to the realized logic function, In10.T
also shows up as In11.F. As the faulty transition at In10.T occurs bit earlier than

93

4. The behavior of QDI Combinational Logic under the influence of SETs

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

11%

g
li
tc

h
e
s

WCHB SETAPI SETAPII

0%
2%
4%
6%
8%

10%
12%
14%
16%

19%

c
o
d
in

g
 e

rr
o
rs

.1 .25 1 2 4 10
Pipeline load factor

0%

2%

4%

6%

8%

10%

v
a
lu

e
 e

rr
o
rs

.1 .25 1 2 4 10 .1 .25 1 2 4 10

 Total Injections in X10^4
6 3 3 5 8 18 11 6 5 8 13 29 12 6 5 8 13 30

Figure 4.16: Comparison of SETAPII with all discussed approaches (Injection pulse is
1ns)

94

4.4. SETs effects in DIMS Combinational Logic with the Δ buffer template

C1

C0
In00.T

Out00.T

Out00.FIn00.F

Ack00_out

C6

C5

In10.T

Out10.T

Out10.F
In10.F

Ack10_out

C3

C2
en0

en0

In01.T
Out01.T

Out01.FIn01.F

Ack01_out

C8

C7

In11.T

Out11.T

Out11.F
In11.F

Ack11_out

Ack_In

Ack_out

Sou
rc

e

Sink

Ack1_out C9

Bit-0

Bit-1

Buffer_0 Buffer_1

-

-

-

-

-

-

-

-

IntIN00.F

IntIN00.T

IntIN01.F

IntIN01.T

C4

C11

INC0

en0

en0

C10

en1

en1

IntIN10.F

IntIN10.T

IntIN11.F

IntIN11.T

C13

INC1

en1

en1

C12

00.T
01.T

C10

C11

00.F
01.TC12

C13

00.F
01.F

00.T
01.F

One-hot signal

AND Gate

DIMS Combinational Logic

XOR Gate

Figure 4.17: Δ with DIMS AND and XOR logic

the one on In10.F, it toggles the IntIN10.T to low and forces InIN10.F to remain
high, which was actually expected to go low. Now the correct transition at In11.T
as well as the faulty one at In11.F show up at the same time. For our setting we
assume that the propagation delay of the NAND gate with the input In11.T is
higher, so the faulty transition makes its way to IntIN11.F, locking out the correct
one. As a result, a value error is detected at the output of Buffer_1, as shown.

From this discussion we conclude that the fault may propagate to the output if the SET
appears a bit earlier than the correct transition and the buffer to which the transitions
are fed is armed for the transitions. In contrast, if the fault arrives a bit late, we can
safely mitigate its effect with the Δ approach.

Figure 4.18 tells us that the area overhead of the pipelined multiplier with the Δ buffer
template compared to Figure 4.3 with the basic WCHB buffer is not so high. The
difference is only 696 gates which stems from the input interlocking. The minimum gate
delay is 17ps, with the maximum being 116ps.

For the evaluation we maintain our symmetry of performing simulations with 7 different
PLFs and the 4 injection pulse values including minimum and maximum gate delay, as
well as 1 and 2ns pulses. Figure 4.20 shows the results of fault-injection simulations for
the 16-bit pipelined multiplier with the Δ buffer template. It can be observed that the
susceptibility of the combinational logic is a bit higher than that of the buffer, only in
extreme bubble limited mode it shows a more resilient behavior. This is again due to
the delayed ACK signal: in those cases, the SET effect already vanished, and the valid
transition is accepted by the input interlocking stage before the output buffer gets armed.
From all discussed templates so far, except Δ, the WCHB is still the most resilient one.

In comparison with the basic WCHB Δ shows better resilience. If we specifically compare
Δ with WCHB for pulse lengths equal to the minimum or maximum gate delay a circuit
contains, the results from Figure 4.20 and Figure 4.4 show that Δ is way better. If we,
e.g., select the result for PLF=1 when injecting a 73ps pulse, Figure 4.4 reports 3489,

95

4. The behavior of QDI Combinational Logic under the influence of SETs

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

Fault Free

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10.T

In10.F

In11.F

In11.T

Ack1_out

SET Strikes

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic
O

ut
pu

t

IntIN10.T

IntIN10.F

IntIN11.F

IntIN11.T

B
uf

fe
r_

1
In

te
rn

al
 In

pu
ts

Out10.T

Out10.F

Out11.F

Out11.T

B
uf

fe
r_

1
O

ut
pu

ts

INC1

Ack_In

en1

1

1

1*

1**
1**

1***

1***

1***

1***

2

3

3

3*

3**
3**

3***

3***

3***

3***

4

Value Error

Figure 4.18: SET effects in combinational logic with theΔ buffer template

96

4.5. SETAPI approach for flushing SEUs from DIMS combinational logic with the Δ buffer
template

0 500 1000 1500 2000 2500

Gate index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 4.19: 16-bit 7 stage Pipelined multiplier with Δ buffer template: Gate Count
(2798) and Gate Delays

while Figure 4.20 shows 844 for PLF=1 and 116ps – the difference is as large as 3005.
These values show the resilience of Δ for injection pulses less or equal to maximum gate
delay of the circuit.

4.4.1 Final Comments on Δ
Figure 4.21 presents the results for all discussed approaches based on Δ. Δ shows 6%
value errors and approximately 0% for all other error types. These 6% occur only when
the circuit is operating in balanced mode. Data tokens are received as fast as bubbles
from the sink, so a faulty transition latched by the input interlock stage has a chance to
get accepted as valid transition and cause a value error. In contrast, when the source is
slow (token limited mode) the fault from the combinational logic or from the internal
signals of the buffer is temporally masked because the buffer does not get armed before
all bits arrived. As other bits may be delayed, the SET may, in the meantime, have
vanished without effect. In bubble limited mode ACK is delayed, which gives an extra
time margin during which the correct value can take the place of a potentially already
decayed erroneous transient.

4.5 SETAPI approach for flushing SEUs from DIMS
combinational logic with the Δ buffer template

In Figure 4.22, we present the 2-bit, 2 stage pipelined circuit with the DIMS AND and
XOR logic. In the last section we concluded that the Δ buffer is a resilient buffer, so we
decided to examine the SETAPI approach with this buffer template here. We call this
configuration SETAPI_Δ, as the flushing approach is SETAPI and the “N” is for the
new enhancement proposed with the buffer. To minimize the area overhead we proposed

97

4. The behavior of QDI Combinational Logic under the influence of SETs

0

2

4

6

×103

134
547

3570

7097PLF = 0.1

0

2

4

×103

144
535

3286

5295PLF = 0.25

0

2

4

N
u
m

b
e
r

o
f

E
rr

o
rs

×103

133

539

3768

4524PLF = 0.5

0

2

4

×103

209

844

3972

4377PLF = 1
Total
Logic
Buffer
Control
Flushing

0

2

4

×103

301

1215

4233

5764PLF = 2

0.0

2.5

5.0

7.5
×103

456

1908

5038

7830
PLF = 4

min
17ps

max
116ps

1ns 2ns
0.0

0.5

1.0
×104

873

4037

6943

10141PLF = 10

Figure 4.20: Suseptibility analyses of Pipelined multiplier with Δ buffer template under
the influence of SET with variable PLF and different injection pulse lengths

98

4.5. SETAPI approach for flushing SEUs from DIMS combinational logic with the Δ buffer
template

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

11%

g
li
tc

h
e
s

WCHB SETAPI SETAPII

0%
2%
4%
6%
8%

10%
12%
14%
16%

19%

c
o
d
in

g
 e

rr
o
rs

.1.25 1 2 4 10
Pipeline load factor

0%

2%

4%

6%

8%

10%

v
a
lu

e
 e

rr
o
rs

.1.25 1 2 4 10 .1.25 1 2 4 10 .1.25 1 2 4 10

 Total Injections in X10^4
6 3 3 5 8 18 11 6 5 8 13 29 12 6 5 8 13 30 22 11 5 7 12 25

Figure 4.21: Comparison of all discussed approaches for Δ-based pipelined multiplier
circuits (Injection pulse is 1ns)

99

4. The behavior of QDI Combinational Logic under the influence of SETs

some modification with buffer configuration. We utilize Buffer_E ’s completion detection
for Buffer_1 ’s input completion detection signal “INC1”. Buffer_E is also a Δ-buffer
but without input completion detection signal.

C1

C0
In00.T

Out00.T

Out00.FIn00.F

Ack00_out

C3

C2
en0

en0

In01.T
Out01.T

Out01.FIn01.F

Ack01_out
Ack_out

Sou
rc

e

Ack1_out

Bit-0

Bit-1

Buffer_0

-

-

-

-

IntIN00.F

IntIN00.T

IntIN01.F

IntIN01.T

C4

en0

en0

00.T
01.T

00.F
01.T

00.F
01.F

00.T
01.F

One-hot signal

AND Gate

DIMS Combinational Logic

XOR Gate

C11

C10

C12

C13

In10E.T

In10E.F

In11E.T

In11E.F

C15

C14 Out10E.T

Out10E.F

Ack10E_out

C17

C16 Out11E.T

Out11E.F

Ack11E_outAckE_In
C18

Buffer_E

-

-

-

-

en1

en1

IntIN10E.F

IntIN10E.T

IntIN11E.F

IntIN11E.T

en1

en1
C6

C5 Out10.T

Out10.F

Ack10_out

C8

C7 Out11.T

Out11.F

Ack11_out

Ack_In

Sink

C9

Buffer_1

-

-

-

-

en1

en1

IntIN10.F

IntIN10.T

IntIN11.F

IntIN11.T

en1

en1

C13

INC1

Delay

SE
Detect

Error Ack_E_Inv
Reset
Circuit

Req

SE
q

Figure 4.22: SETAPI approach with Δ buffer template with DIMS AND and XOR logic

In the following discussion we will use the waveforms in Figure 4.23, with reference to
Figure 4.22, to discuss its normal operation and its behavior under SETs striking the
internal signals of its combinational logic.

1. Figure 4.23-Fault Free: during the normal operation outputs of Buffer_0 are passed
to the combinational logic, which toggles a one-hot signal marked with “1*”. This
transition is passed to the output buffer Out10E.F, Out11E.T (“1**”) after passing
through the extra buffer. The completion detection of Buffer_E sets enE to high,
arming for the spacer. The value of enE after inversion, when matched with Ack_In
toggles en1 to low, which then propagates the available data token to the output of
the main buffer, as Out10.F, Out11.T (labeled with“1***”) go high. This generates
Ack1_out to Buffer_0 and when these values are latched by the sink Ack_In finally
goes high.

2. Figure 4.23-SET Strikes: an SET appears at 00.T, 01.T. It is reflected at In11E.F
and on the same signal In10E.T. The transition on In10E.T is a bit earlier than
the valid transition at In10E.F, so the input interlocking only allows In10E.T to
transition, which passes to Out10E.T. In11E.T and In11E.F show transitions at
the same time, but here the valid transition at In11E.T blocks the faulty one on
the opposite rail, because we assume smaller propagation delay of the respective
NAND gate. When we procced further to the main buffer for Out11E.T a valid
token is passed to the Out11.T without generating any error. But as the valid
transition on Out10E.F is blocked by Out10E.T, now the faulty transition is passed
to Out10.T, generating a value error. On the detection of the SET “q” goes low,
which flushes the whole combinational logic. This is, however, worthless because
the error has already propagated to the next stages, and now this flushing only
generates a preliminary spacer which gets matched with the actual spacer generated
by Buffer_0, without generating any deadlock situation.

100

4.5. SETAPI approach for flushing SEUs from DIMS combinational logic with the Δ buffer
template

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

Fault Free

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10E.T

In10E.F

In11E.F

In11E.T

Ack1_out

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic

O
ut

pu
t

Out10.T

Out10.F

Out11.F

Out11.T

O
ut

pu
ts

 o
f

B
uf

fe
r_

1

enE
q

1

1

Out10E.T

Out10E.F

Out11E.F

Out11E.T

O
ut

pu
ts

 o
f

 B
uf

fe
r_

E

Ack_In

en1

1*

1**
1**

1**
1**

1***
1***

2

3

3

3*

3**
3**

3**
3**

3***
3***

4

SET Strikes

Value Error

Figure 4.23: SET effects in combinational logic with the SETAPI approach combined
with the Δ buffer template

101

4. The behavior of QDI Combinational Logic under the influence of SETs

0 500 1000 1500 2000 2500 3000 3500 4000

Gate index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 4.24: 16-bit 7 stage Pipelined multiplier with Δ buffer template and SETAPI
approach: Gate Count (4060) and Gate Delays

We conclude that flushing is again worthless, but the Δ approach blocks the coding
errors. These are, however, in some cases not the worst possible effect, as we are able to
detect them more easily than value errors (in practice, without availability of reference
results for comparison).

Figure 4.24 presents the gate count, that is 4060. Compared to the 3389 from SETAPI it
is 671 higher, due to the input interlocking of the Δ buffer. The minimum and maximum
gate delays are 12ps and 116ps, respectively.

The suseptibility analysis of SETAPI_Δ is presented in Figure 4.25 with 7 different
PLF’s and 4 injection pulses. When we compare it with SETAPI, we observe that the
contribution from combinational logic part is approximately the same, but the buffer is
more susceptible. This is simply because the number of nodes of the Δ buffer is higher
than for the WCHB (in SETAPI), so the injection count is higher. For short injection
pulses like 12ps it shows better resilience, as each transition must pass the input filters so
it may get cancelled. In general, this configuration does not appear very attractive, but
a closer look tells us that at least the contribution from the flushing circuit is lower than
with SETPAI in token limited mode. Due to the Δ buffers’ input interlocking, and since
this input interlocking is done twice after signal passes from the combinational logic,
the propagation delay doubles relative to the simple WCHB based approach. Now if
the SET hits the flushing logic part and generates some erroneous value, it is likely that
before these transitions appear at the input of the main output buffer and generate the
unexpected ACK for the source, the source already responded with the last ACK, and
this slightly early erroneous ACK is merged with the expected one. To illustrate this,
just suppose we are holding the data token and just asked the source for the spacer. Now
the SET on the flushing circuit accidently flushes the whole combinational logic. Due to
the extra two layers of input interlocking NAND gates, however, this flushing takes more

102

4.5. SETAPI approach for flushing SEUs from DIMS combinational logic with the Δ buffer
template

0

1

2

×104

1134

16277

23669

29475PLF = 0.1

0.0

0.5

1.0

1.5

×104

779

6817

12933

18081PLF = 0.25

0.0

0.5

1.0

N
u
m

b
e
r

o
f

E
rr

o
rs

×104

646

5212

10885

14763PLF = 0.5

0.0

0.5

1.0

×104

584

4335

9589

12908PLF = 1
Total
Logic
Buffer
Control
Flushing

0.0

0.5

1.0

×104

873

6914

10824

14788PLF = 2

0

1

2
×104

2053

14725

18262

21272PLF = 4

min
12ps

max
116ps

1ns 2ns
0

2

4

×104

5638

39709
41946

44128PLF = 10

Figure 4.25: Suseptibility analyses of the Pipelined multiplier with Δ buffer template
with SETAPI approach (SETAPI_Δ) under the influence of SETs with variable PLF
and different injection pulse lengths

103

4. The behavior of QDI Combinational Logic under the influence of SETs

time than SETAPI needs to generate the bubble for the source. So meanwhile the source
already responds to the last ACK signal and issues the spacer. So, this bubble may
arrive a bit early but does not violate the handshake protocol. When comparing with Δ,
SETAPI_Δ due to the extra buffer shows high deadlock rate . For example, for PLF =
1 when injecting 116ps pulses SETAPI_Δ fails 4338 times (Figure 4.25) compared to Δ
alone which fails only 844 times (Figure 4.20).

4.5.1 Final Comments on SETAPI_Δ

Figure 4.26 shows that the injection count is approximately twice as high as for Δ and
SETAPI. Thanks to the Δ buffer template there are no coding errors and no glitches.
The value errors are approximately same in percentage as with Δ. But when it drops it
is at the cost of more deadlocks, these are due to the flushing approach deployed which
may violate the handshake protocol by generating the spacer as SET effect. So even with
higher area overhead we still do not achieve the desired results compared to the Δ.

4.6 ζ approach to flush SEUs from DIMS combinational
logic with a modified Δ buffer template

A key drawback of existing methods is that upon detection of an error they force a NULL
wave, using, e.g., the AND gates in front of the combinational block in Figure 4.5 to
clear the pipeline. This is counterproductive as it can turn the erroneous state into a
data token that needs to be appropriately discarded in the receiver (if possible, at all),
while at the same time causing a speed and energy penalty. A smarter approach would
be to selectively reset only the one MCE that was erroneously set by the SET. This is
possible by leveraging the fact that the SET will vanish, leaving the incorrectly set MCE
in storage mode, while all correctly set MCEs remain in combinational mode (matching
inputs) until the data token is acknowledged. So, if we manage to reset an MCE that is
in hold mode only, we can elegantly flush out the error (A conventional reset applied
to an MCE with both inputs at 1 will cause an undesired negative output pulse for
the duration of the reset). To implement this, we need a special MCE implementation
variant. Our proposed MCE is shown in Figure 4.27 MCEn. Its reset input n forms
the (active low) reset that will force the MCE to output 0 only when it is in storage
mode. In ζ [TSNH23] we replace all the MCEs within the combinational logic with our
special “MCEn” presented in Figure 4.27 highlighted with orange color. Here the orange
colored NAND gates in front of the combinational output detect the presence of SET
and reset the Flush signal. This signal is then fed to the “MCEn”. Here, we modified the
Δ buffer to fit with our flushing technique presented in Fig. 4.27 with one extra signal
highlighted with orange color, namely the asymmetric input signal of MCE-C13. This
gate is responsible to pass Ack_In when input data is completed. The Flush signal only
allows this gate to pass Ack_In when it is high.

The working principle of ζ then becomes as follows:

104

4.6. ζ approach to flush SEUs from DIMS combinational logic with a modified Δ buffer template

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

11%

g
li
tc

h
e
s

WCHB SETAPI SETAPII SETAPI_

0%
2%
4%
6%
8%

10%
12%
14%
16%

19%

c
o
d
in

g
 e

rr
o
rs

.1.25 1 2 4 10
Pipeline load factor

0%

2%

4%

6%

8%

10%

v
a
lu

e
 e

rr
o
rs

.1.25 1 2 4 10 .1.25 1 2 4 10 .1.25 1 2 4 10 .1.25 1 2 4 10

 Total Injections in X10^4
6 3 3 5 8 18 11 6 5 8 13 29 12 6 5 8 13 30 22 11 5 7 12 25 43 20 9 10 17 38

Figure 4.26: SETAPI_Δ (SETAPI with Δ buffer template) comparison with all discussed
approaches (Injection pulse is 1ns)

105

4. The behavior of QDI Combinational Logic under the influence of SETs

C1

C0
In00.T

Out00.T

Out00.FIn00.F

Ack00_out

In10.T

In10.F

C3

C2
en0

en0

In01.T
Out01.T

Out01.FIn01.F

Ack01_out

In11.T

In11.F

Ack_out

Sou
rc

e

Ack1_out

Bit-0

Bit-1

Buffer_0

-

-

-

-

IntIN00.F

IntIN00.T

IntIN01.F

IntIN01.T

C4

C11

INC0

en0

en0

C10

00.T
01.T

00.F
01.T

00.F
01.F

00.T
01.F

One-hot signal

AND Gate

DIMS Combinational Logic

XOR Gate

C6

C5 Out10.T

Out10.F

Ack10_out

C8

C7 Out11.T

Out11.F

Ack11_out

Ack_In

Sink

C9

Buffer_1

-

-

-

-

en1

en1

IntIN10.F

IntIN10.T

IntIN11.F

IntIN11.T

INC1

en1

en1

C12

C13
-

Flush

n

n

n

n

C11

C10

C12

C13

Flush

Figure 4.27: ζ approach with Δ buffer template with DIMS AND and XOR logic

1. As Figure 4.27 suggests, upon detection of the illegal codeword (.T rail and .F
rail of the combinational logic output go high) in the dual-rail 4-phase handshake
protocol the Flush signal goes to 0 (i.e., it becomes active).

2. The main two functions of Flush are: halt the input acknowledgement to the
receiving buffer Buffer_1 and perform our targeted reset on the MCEs in the
combinational block, thus removing the SET.

3. Halting the acknowledgement to Buffer_1 only helps in mitigating faults that
appear before the arrival of the acknowledgement (Ack_In) from the successor
stage. In this case we can temporarily block the passage of the acknowledgement
signal to the en1 of Buffer_1, and in the meantime flush the erroneous value within
the combinational logic.

4. During the data phase the predecessor stage Buffer_0 provides a data value and
within the combinational logic only those MCEs go high that have a 1 on both
their standard inputs that remains stable until Buffer_1 ’s completion detector
acknowledges the data.

5. All the MCEs in combinational mode (matching inputs) logically mask SETs that
manifest as HI pulses on their input or output. An SET producing a LOW pulse
may delay the switching of the MCE to 1, but that is acceptable with QDI logic.

6. The only critical scenarios are a HI SET on the output of an MCE in storage mode
(asymmetric inputs) which can flip it to 1 if the length is larger than its storage
loop delay. Or, alternatively, if one input of the MCE is high, and on the second
one a HI SET appears, then depending on the gate delay the output will go to 1.

7. Our targeted reset allows flushing the errors exactly in those critical scenarios
outlined above.

8. More specifically, whenever Flush goes low all MCEs with non-identical inputs are
reset.

106

4.6. ζ approach to flush SEUs from DIMS combinational logic with a modified Δ buffer template

9. If the fault is due to an SET at the MCE input, the Flush signal remains low until
the SET effects vanished from the input and Flush resets the respective MCE.

With this elegant flushing mechanism, we can easily mitigate the effects of single event
transients (SETs) from the combinational logic.

As mentioned in the above description, the flushing only takes effect as long as Buffer_1
is not enabled. In an adverse scenario Buffer_1 is already enabled when the SET occurs
within the combinational block and latches the faulty input, irrespective of the flushing
attempt. So, it is useful to avoid activating the buffer early.

During the data phase the acknowledgment is double-checked with the Flush signal. Due
to the inverted nature of the main buffer the acknowledgment does not require inversion,
so the data is only allowed to pass when Flush is 1. We call this approach with enhanced
buffer “ζ_Δ ” or ζ approach with Δ in [TSNH23].

Here we discuss the data propagation through the “ζ_Δ ” in normal operation and its
behavior while experiencing an SET within its combinational logic node with the aid of
Figure 4.28 where the reference circuit is given in Figure 4.27.

1. Figure 4.28-Fault Free: data propagation from the output of Buffer_0 to the output
of the combinational logic and then further on to the input interlocking where the
IntIN10.F and IntIN11.T transitions are followed by the INC1 (indication of data
completion) is the same as for Δ Figure 4.18. The main difference is: en1 only goes
low if the Flush signal is high and Ack_In is low, arming Buffer_1 for the data
token. Then the generation of the data token at the output of Buffer_1 (labeled
with “1***”) toggles Ack1_out, completing the data phase with Buffer_0 which is
also called the 2nd handshake phase. The spacer marked with “3” at Buffer_0 ’s
output also follows the same sequence, ending at phase “4” and completing the
handshake cycle.

2. Figure 4.28-SET Strikes: a fault hits 00.T, 01.T (also with label In10.T) and
propagates to In11.F. The valid transitions also appear approximately at the same
time, but both faulty transitions get locked at IntIN10.T and IntIN11.F. The
Flush signal goes low on the detection of the illegal code word, which then halts
the propagation of the data to the outputs of Buffer_1, as well as resets MCE-
C10 (Figure 4.27). After the transient effects have vanished, the reset clears rails
In10.T and In11.F. In this case the transient had already disappeared, so resetting
took place immediately and we recover the original transitions at IntIN10.F, and
IntIN11.T. On the removal of the illegal code word the Flush signal goes back to
high. We can now generate en1 which then passes the data token to the output of
Buffer_1 as shown; the transitions on Out10.F, Out11.T are valid ones.

We conclude that ζ_Δ flushes the targeted MCE and elegantly recovers the correct
values without violating the handshake protocol. The most important thing to be noticed

107

4. The behavior of QDI Combinational Logic under the influence of SETs

Out00.T

Out00.F

B
uf

fe
r_

0
O

ut
pu

ts

Ack_out

Out01.F

Out01.T

Fault Free

00.T, 01.T

00.F, 01.F

00.F, 01.T

00.T, 01.F

In10.T

In10.F

In11.F

In11.T

Ack1_out

SET Strikes

O
ne

-h
ot

 s
ig

na
l

C
om

bi
na

tio
na

l L
og

ic
O

ut
pu

t

IntIN10.T

IntIN10.F

IntIN11.F

IntIN11.TB
uf

fe
r_

1
In

te
rn

al
 In

pu
ts

Out10.T

Out10.F

Out11.F

Out11.T

B
uf

fe
r_

1
O

ut
pu

ts

INC1

Flush

Ack_In

en1

1

1

1*

1**
1**

1***

1***

1***

1***

2

3

3

3*

3**
3**

3***

3***

3***

3***

4

Figure 4.28: SET effects in combinational logic with the ζ approach combined Δ buffer
template

108

4.6. ζ approach to flush SEUs from DIMS combinational logic with a modified Δ buffer template

is that with this approach we are maintaining our valid tokens as shown in Figure 4.28:
during our flushing process the 00.T, 01.F rail remains high, providing the valid token
to the buffer.

0 500 1000 1500 2000 2500 3000

Gate index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 4.29: 16-bit 7 stage Pipelined multiplier using Δ buffer template with ζ approach:
Gate Count (3142) and Gate Delays

According to the circuit statistics presented in Figure 4.29, the circuit implementation
usingζ_Δ has a total gate count of 3142, which is only 344 gates higher than for Δ
(2798). The maximum propagation delay of a gate a circuit contains is 116ps, with the
minimum being 17ps.

With the same evaluation settings for ζ_Δ , Figure 4.30 suggests full resilience towards
SETs appearing within the combinational logic: The count for logic-related errors is zero
now, indicating that ζ_Δ has perfectly accomplished its mission of mitigating these. In
the previous sections we concluded that the Δ buffer template is one of the most resilient
approaches. In spite of the fact that it is not designed to flush the combinational logic, it
can still mitigate effects originating there when they reach the buffers inputs. So, here
we only compare our approach ζ_Δ with Δ (Figure 4.20).

For small pulses like 17ps the circuit shows full resilience with zero errors during token
limited mode. This is due to the fact that the buffer is not enabled for the next transitions
until the source responds with the new token or spacer. So while holding the data token
all buffers are locked at input and output. Consequently, faults propagating from the
input side are totally ignored as these inputs are locked already. If the pulse is small
enough, it will disappear before the circuit changes its state. In contrast, the 116ps pulse
is long enough to stay until the source starts responding, so the SET may flip any MCE
that changes its state to storage mode. As we move from extreme token limited mode to

109

4. The behavior of QDI Combinational Logic under the influence of SETs

0

1

2

3
×103

0

356

1539

2915
PLF = 0.1

0

1

2

×103

0

389

1577

2557
PLF = 0.25

0

1

2

N
u
m

b
e
r

o
f

E
rr

o
rs

×103

0

477

1904

2333
PLF = 0.5

0

1

2

×103

52

826

2032

2301
PLF = 1

Total
Logic
Buffer
Control
Flushing

0

1

2

3

×103

127

1601

2825

3546
PLF = 2

0

2

4

×103

225

2965

4293

5382
PLF = 4

min
17ps

max
116ps

1ns 2ns
0.0

2.5

5.0

7.5

×103

664

7361

8780

9573PLF = 10

Figure 4.30: Suseptibility analysis of the Pipelined Multiplier using the Δ buffer template
with the ζ approach under the influence of SETs with variable PLF and different injection
pulse lengths

110

4.6. ζ approach to flush SEUs from DIMS combinational logic with a modified Δ buffer template

0 500 1000 1500 2000 2500 3000 3500 4000

Gate Index

20

40

60

80

100

120

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

WCHB

SETAPI

SETAPII

SETAPI_

 _ '

Figure 4.31: Gate Count and Gate Delays Comparison of all dicussed approaches

the balanced mode, the error counts go higher, because the source changes the circuit
state faster and the probability increases that the SET is latched by any MCE.

During bubble limited mode the combinational logic already changed its state, but the
main buffer is waiting for the ACK signal and therefore not armed yet for a new transition.
But if the SET already passed the input interlock stage and is long enough, it has a
non-zero probability to be latched by the main buffer on the reception of the ACK.

Comparing ζ_Δ (Figure 4.30) with Δ (Figure 4.20) we notice that ζ_Δ approximately
halves the error occurrence. However, the buffer contribution is still there and even bit
higher than with Δ. This is first due to the higher injection count, where the buffer’s
internal nodes are not covered by the flushing mechanism. Consider node IntIN10.T
in Figure 4.27: if an SET hits there and blocks the valid transition from In10.F, this
scenario is out of the reach of illegal code word detector, and on the arrival of en1 the
faulty transition gets latched by MCE-C5. Otherwise, if the SET hits the output of
MCE-C0 and flips the state before the valid transition is latched by MCE-C1, the faulty
transition will be considered as valid but raise the error flag when checked by the monitor
at the end. While it is not possible to discuss all feasible scenarios here, this discussion
hints why we are experiencing errors as the SET length increases.

4.6.1 Final Comments on ζ_Δ

With Figure 4.31, we can compare the area (gate count) of all discussed approaches. It
is evident that ζ_Δ outperforms other combinational logic flushing techniques. Sub-
sequently, Figure 4.32 presents the resilience comparison of ζ_Δ with all discussed
approaches. We observe no coding errors and glitches, just like with Δ and SETAPI_Δ.

111

4. The behavior of QDI Combinational Logic under the influence of SETs

In addition, we achieve approximately the same resilience for the deadlocks as Δ. With
a higher injection count compared to Δ, ζ_Δ shows a lower percentage of value errors.
For example, for PLF = 0.1 the error rate of Δ is approximately 1.8% with the injection
count being 22∗104, while ζ_Δ shows approximately 0.5% of 26∗104. The spike of value
errors in balanced mode also drops from 7% to 2%. This can be explained as follows: If
the error is from the combinational logic while we are operating in balance mode, the
detection of the illegal code word halts the ACK signal to the buffer during the time
window when the signal propagates through the input interlock stage. Then we flush
the erroneous transition and pass the valid transition. The remaining percentage, as we
already discussed above, is from faults originating in the buffer template.

With all these results and discussion, we can conclude that the ζ_Δ approach covers
the whole combinational part and can easily mitigate the effects generated from that
part. Although we do not further explore this avenue here, it is quite likely that further
investigation may enhance the buffer template; maybe even to the point where we can
finally experience a fully SET resilient QDI circuit. Throughout our analysis so far we
only discussed a linear pipelined circuit. In the next chapter we will start investigating a
nonlinear QDI pipelined configuration.

112

4.6. ζ approach to flush SEUs from DIMS combinational logic with a modified Δ buffer template

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

d
e
a
d
lo

c
k
s

0%

2%

4%

6%

8%

11%

g
li
tc

h
e
s

WCHB SETAPI SETAPII SETAPI_ _ '

0%
2%
4%
6%
8%

10%
12%
14%
16%

19%

c
o
d
in

g
 e

rr
o
rs

.1.25 12410
Pipeline load factor

0%

2%

4%

6%

8%

10%

v
a
lu

e
 e

rr
o
rs

.1.25 12410 .1.25 12410 .1.25 12410 .1.25 12410 .1.25 12410

 Total Injections in X10^4
6 3 3 5 8 18 11 6 5 8 13 29 12 6 5 8 13 30 22 11 5 7 12 25 43 20 9 1017 38 26 12 6 8 14 31

Figure 4.32: Comparison of the ζ approach with Δ pipelined multiplier circuits with all
discussed approaches (Injection pulse is 1ns)

113

CHAPTER 5
SET suseptibility of QDI

Conditional Control Elements

In the last two chapters our focus was QDI buffer templates and the DIMS combinational
logic, respectively, where we only considered linear pipelined circuits. Here we refer the
nonlinear pipeline configuration introduced in Section 2.4 in which we have conditional
control elements namely Multiplexer and De-multiplexer. To maintain the causal behavior
of the QDI circuit these elements also contain MCEs, so in principle these elements also
require special consideration to improve the overall fault tolerance of the circuit. Currently,
to the best of our knowledge, literature does not address the topic of their explicit
protection. We analyze the behavior of these elements under SETs and highlight the root
cause behind the conversion and propagation. We select the 16-bit Iterative multiplier
circuit as our target circuit, the combinational logic is DIMS. We first analyze the behavior
with a WCHB buffer template as well as a simple Multiplexer and De-multiplexer with
DIMS combinational logic. Then we propose enhanced Multiplexer and De-multiplexer
implementations with our resilient buffer template Δ and the combinational logic with
the ζ_Δ flushing approach. As the behavior of the circuit is known in each phase of the
handshake, we can utilize this information to harden the circuit efficiently.

5.1 SET effects on QDI Multiplexer and De-multiplexer
Figure 5.1 presents the gate level structure of the QDI Multiplexer with source and
Buffer_4 as inputs and Buffer_3 as output. Our focus is the Multiplexer so we only
present the specific part of the iterative multiplier here for the discussion. As Figure 5.1
suggests, each path of the Multiplexer is controlled by a dual-rail SEL line. As only one
data path is activated, we merge the output lines of both paths with OR gates. The
Ack_out from Buffer_3 is only passed to the respective active source, as determined by
SEL.T and .F.

115

5. SET suseptibility of QDI Conditional Control Elements

In.T mux_A.T

mux_A.FIn.F

Ack4_out
Ack_Buffer_4

Out.T

Out.Fm.F

Ack_In

mA.F
C2

mA.TC1 m.T

C Ack_out

SEL.F

mB.Fmux_B.F C4

mB.T
mux_B.T C3

SEL.T

C

Source

Ack_F

Ack_source

Ack_T

Buffer 4
WCHB

MUX

Buffer 3
WCHB

Figure 5.1: 1-bit Multiplexer with WCHB buffer template

In the following the propagation of the data through the Multiplexer is discussed, with
Figure 5.1 as reference circuit and the waveform given in Figure 5.2.

1. Figure 5.2 Fault-Free: a data token from the source is placed at mux_B.T (labelled
with “1”). As SEL.T is already high (“*1”) the data token is passed through
Multiplexer path “B” and arrives at mB.T (“1*”). After propagating through
the OR-gate it appeares at Multiplexer output m.T (“1**”). Once latched by
Buffer_3, Ack_out is generated, which then, combined with the SEL.T (“*2”),
toggles Ack_source to low (“2*”). The source now responds with a spacer (“3”),
that will propagate in the same way as the data token (“4*”). In response to
Ack_source, the source generates a new data token, but this token has to wait
until the SEL.T goes high. This time SEL.F goes high, which allows Buffer_4 to
pass data through Multiplexer path “A”. There the data propagation is same as we
discussed for path “B”.

2. Figure 5.2 SET Strike: this time the selected path is “A”, so the transition appeares
at mA.F (“1*”) and propagates to m.F. Once it is latched by Buffer_3, Ack_out
is again generated (“2”), and in reponse the spacer arrives from Buffer_4 (“3”).
Before that spacer reaches Buffer_3, an SET hits mB.F while MCE-C4 (Figure 5.1)
is in storage mode (mux_B.F is high and SEL.T is low). Assuming the SET is
long enough, it flips C4’s state. Although mA.F is low, m.F is now forcefully set to
high by the faulty transition at mB.F. As we are not able to advance the handshake
cycle from here, we enter a deadlock situation.

We can conclude that if an SET on the unactive path gets latched by the respective
MCE, this will cause a deadlock.

116

5.1. SET effects on QDI Multiplexer and De-multiplexer

mux_B.T

mux_B.F

Ack_source

SEL.T

mux_A.T

mux_A.F

Ack_Buffer_4

SEL.F

mA.T

mA.F

1stToken 2ndToken

So
ur

ce
M

U
X_

Pa
th

_A
_O

U
T

New Token from Source

m.T

m.F

mB.T

mB.F

M
U

X_
O

ut

Ack_out

M
U

X_
Pa

th
_B

_O
U

T
Bu

ffe
r_

3

1

2

3

4

1

2

3

4

1st Handshake 2nd Handshake

1*

1**

3*

3**

2*

*1 *2
*4

4*

*1

1*

1**

*2

2*

*3

3*

3**

*4

4*Bu
ffe

r_
4

*3

3rdToken

1

2

3

3rd Handshake

*1

1*

1**

*2

2*

Fault Free SET Strike

Deadlock

Figure 5.2: SET effects at the Multiplexer with WCHB buffer template

117

5. SET suseptibility of QDI Conditional Control Elements

5.1.1 De-multiplexer
Figure 5.3 presents the 1-bit De-multiplexer circuit from the iterative multiplier configu-
ration. The inputs demux.T and demux.F are passed to the Sink or Buffer_5 depending
on SEL.T and SEL.F. With this reference circuit we will now explain the normal data
propagation and the behavior under the influence of SETs in Figure 5.3.

Buff5
Out.T

Buff5
Out.F

Buff5
Ack_In

demux.F

demux.T
In.T

In.F

Ack_out
ack

A_Out.FC

A_Out.T

SEL.F

C

B_Out.F

C

B_Out.T

C

ack_in

ack_out

SEL.T SEL.ack

DEMUX

Buffer 5
WCHB

Buffer 3
WCHB

Sink

en

Figure 5.3: 1-bit DeMultiplexer with WCHB buffer template

1. Figure 5.3 Normal Operation: a data token labelled with “1” is passed to the De-
multiplexer input demux.T (“1*”). This transition generates the acknowledgement
for the predecessor stage toggling Ack_out to high (1**). As select line SEL.T
is high (“*1”), the token appearing at demux.T is simply passed to Buffer_5 ’s
input B_Out.T (1***). Once it is latched by Buffer_5, ack_out goes high (2).
This transition propagates to Buffer_3 generating the spacer there (3). The spacer
propagation is the same and ends the first handshake cycle at (4**). A second
token follows in the same way but this time it passed to the Sink.

2. Figure 5.3 SET strike at DEMUX Inputs: during the communication with Buffer_5,
an SET appears at De-multiplexer input demux.F, which is also a primary output
of Buffer_3. This erroneous transition gets latched and remains there even after
the triggering SET vanished. SEL.T is already high, so both valid and faulty
transition are propagated to the De-multiplexer output B_Out.T and B_Out.F
respectively, generating the coding error. Buffer_5 is a simple WCHB, so it accepts
both transitions and propagates them to the next stages.

3. Figure 5.3 SET strike at DEMUX Output: the presented scenario is the same as
above with respect to the data token propagation, but this time the SET appears

118

5.1. SET effects on QDI Multiplexer and De-multiplexer

B_Out.T

B_Out.F

ack_out

SEL.F

demux.T

demux.F

SEL.T

A_Out.T

A_Out.F

Bu
ffe

r_
3_

O
U

TP
U

T
Si

nk
Bu

ffe
r_

5_
IN

PU
T

ack_in

1st Handshake 2nd Handshake

In.T

In.F

en

Bu
ffe

r_
3_

IN
PU

T

Ack_out

ack

To
 B

uf
fe

r_
3

Normal Operation
SET's strike

 at
DEMUX Inputs

SET's strike
at DEMUX Output

1

1*

1**

1***

2

2*

3*

3**

3***

4

4*

1

2**

1*

1**

1***

2

2*

2**

3*

3**

3***

4

4*

4**4**

1st Token 2nd Token

1st Handshake

1*

1**

1***

2

2*

3*

3**

4

4*

2** 4*

1st Token

1

1st Handshake

1

1*

1**

1***

2

2*

3*

3**

3***

4

4*

2**

1st Token

1***

*1

3

*1

*1

1*

1***

3

3*

3***

3***

*1

3

*3

*3

*3

3***

Coding Error

Coding Error

Figure 5.4: SET effects at the DeMultiplexer with WCHB buffer template

at the De-multiplexer output B_Out.F. The respective MCE is in storage mode,
with input emphdemux.F at zero and SEL.T at high. The SET is long enough to
flip the state of the MCE. Again a coding error is generated and propagated to the
next stages.

To quantitatively evaluate the behavior of QDI Multiplexer and De-multiplexer, we
select the 16-bit iterative multiplier circuit. Figure 5.5 presents the gate count and
the propagation delay of the gates. The circuit contains 1187 gates with a minimum
propagation delay of 13ps and maximum of 134ps.

The susceptibility analysis for this circuit is presented in Figure 5.6. As this is an iterative

119

5. SET suseptibility of QDI Conditional Control Elements

0 200 400 600 800 1000 1200

Gate index

20

40

60

80

100

120

140

160

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 5.5: 16-bit Iterative multiplier with WCHB buffer template: Gate Count (1187)
and Gate Delays

min
13ps

max
134ps

1ns
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u
m

b
e
r

o
f

E
rr

o
rs

×104

1388
2501

3085

1607

3554

5195

11931

23445

33906

Iterative Multiplier (WCHB)

Total
Logic
Buffer
Control
mux
demux

Figure 5.6: Suseptibility analysis of Iterative Multiplier with WCHB buffer template
under the influence of SETs with different injection pulse lengths

multiplier, the time it takes to complete the internal iteration (number of rounds) totally
depends on the input values. Our focus is to evaluate the resilience of the Multiplexer
and De-multiplexer against SETs. In this iterative loop structure their speed of operation
is not only controlled by the external enviornment, but rather the main control is from
the delays along the internal loop.

So, adding extra delays for different PLF is not useful anymore, because both control
elements’ primary paths (connected with circuit input and output) remain inactive during
internal iterations. We perform experiments with balanced mode operation, whenever

120

5.2. Proposed SET resilience enhancements for QDI Multiplexer and De-multiplexer

circuit generated something for the external environment source and sink react without
any delay. The experiments are performed with 13, 134ps and 1ns injection pulses.
The error contribution from each part of the circuit is presented with five bars, namely
for combinational logic (logic), buffer, control (acknowledgement lines), Multiplexer
(mux) and De-multiplexer (demux). For each injection pulse results the Multiplexer and
De-multiplexer approximately contributes 25% of overall error rate.

5.2 Proposed SET resilience enhancements for QDI
Multiplexer and De-multiplexer

The main problem with the Multiplexer we found is that if an SET affects one of the MCEs
from the unselected path while in storage mode, it may deadlock the circuit for further
communication. After thorough analysis of the circuit, we propose some enhancements
in [TS23b] which makes the Multiplexer more SET resilient. The enhancements are
presented with orange color in Figure 5.7. They resemble a special type of interlocking
that not only, as usual, takes into account the status of the opposite rail, but also whether
a valid transition passed through this path during pervious handshake cycle. As Figure 5.7
suggests, each Multiplexer MCE is replaced with a special-condition MCE with “sp” line.
This line combines the status of the opposite rail with the acknowledgement line of the
respective path. The special MCE is forcefully reset, if the select line SEL.T or SEL.F
as well as the “sp” line is zero. This condition ensures that the path is neither selected,
nor did it pass a valid token during previous handshake cycle. Consequently, anything
stored by the MCE must be the effect of an SET. This time we replaced the WCHB
buffer with our resilient buffer template Δ [TS22a] and we also deployed our proposed
flushing technique ζ_Δ [TSNH23] as shown in Figure 5.7.

With the aid of Figure 5.8 we will in the following discuss the regular behavior as well as
the behavior under the influence of SETs.

1. Figure 5.8 Fault-Free: a new data token is received from the Source at mux_B.T
(labelled with “1”). As SEL.T is high (“*1”) it propagates to mB.T (“1*”). With
this transition sp4 goes high (“1**”) and locks MCE-C4 for any further transitions.
With this we ensure that no transition will pass from mux_B.F to mB.F. When
the transition at m.T (“1***”) is latched by Buffer_3, Ack_out (2) is generated
and as SEL.T is high (*2) it generates Ack_T (2*). Ack_F and sp1 and sp2 are
low, which indicates that path A is not active in this handshake cycle. After the
spacer of the first handshake cycle, the second data token propagation is same but
this time path A is activated, so Ack_T keeps sp3 and sp4 low and, combined with
SEL.T, forcefully flushes any erroneous transition appearing at mB.T and mB.F.

2. Figure 5.8 SET-Strikes: Buffer_4 produces a data token at mux_A.F (“1”) which
then propagates to m.F (1***). After Ack_out arrived (2), Buffer_4 generates
the spacer, but before it arrives at m.F an SET appears at mB.F which keeps

121

5. SET suseptibility of QDI Conditional Control Elements

In.T mux_A.T

mux_A.FIn.F

Ack4_out
Ack_Buffer_4

Out.T

Out.Fm.F

Ack_In

mA.F
C2

mA.TC1 m.T

C Ack_out

SEL.F

mB.F
mux_B.F C4

mB.T
mux_B.T C3

SEL.T

C

Source

Ack_F

Ack_source

sp2

Ack_T

sp

sp

sp

sp

Buffer 4
∆'

MUX

sp1

sp4

sp3

Buffer 3
∆

Figure 5.7: 1-bit Enhanced Multiplexer with Δ and Δ buffer template

the m.F high after mA.F (3*) went low. In contrast to Figure 5.2 this time after
transient vanished C4 flushes its effects from mB.F, and m.F (3**) goes low. This
completes the handshake cycle and we have successfully recovered our circuit from
the deadlock situation.

When we move to the De-multiplexer we are facing different problems. As Figure 5.9
suggests, one output is directly connected with the Sink. So in case the faulty transition
propagates to the output, if we forcefully flush it upon detection, this generates a glitch
(monitors already count the transition). Note that we are not injecting at the outputs
of the De-multiplexer path A, as these are primary outputs and directly connected
with the monitor. Consequently, any fault detected at the output of path A must be a
propagated one from the input side of the De-multiplexer. Now if we forcefully reset the
transitioned MCE to enable the valid transition to proceed, there is no guarantee that
the valid transition will make it in the second round either if the SET is already latched
by the last buffer, in this case Buffer_3, in the second round it again propagated to the
output generating the error. So, we decided to use the Interlocking methodology with
the primary output port (path A in this case) of the De-multiplexer highlighted with the
blue color. Whenever one MCE fires it locks the other rail for further transition. With
this we can mitigate all those SET effects which arrive after the valid transitions got
latched.

122

5.2. Proposed SET resilience enhancements for QDI Multiplexer and De-multiplexer

mux_B.T

mux_B.F

Ack_source

SEL.T

mux_A.T

mux_A.F

Ack_Buffer_4

SEL.F

mA.T

mA.F

1stToken 2ndToken

So
ur

ce
M

U
X_

Pa
th

_A
_O

U
T

New Token from Source

m.T

m.F

mB.T

mB.F

M
U

X_
O

ut

Ack_out

M
U

X_
Pa

th
_B

_O
U

T
Bu

ffe
r_

3

1

2

3

4

1

2

3

4

1st Handshake 2nd Handshake

1*

1***

3*

3**

2***

*1 *2
*4

4***

*1

1*

1***

*2

2***

*3

3*

3**

*4

4***Bu
ffe

r_
4

*3

3rdToken

1

2

3

3rd Handshake

*1

1*

1***

*2

2***

Fault Free SET Strike

sp1

sp2 1**

1**

sp3

sp4

2* 4*

2* 4*

Ack_F

Ack_T
2** 4**

4**

2** 4**

4** 1**

2* 4*

2** 4**

4**

*3

3*

4***

*4

4

3**

Figure 5.8: Mitigating SET effects in the Enhanced Multiplexer with Δ and Δ buffer
template

123

5. SET suseptibility of QDI Conditional Control Elements

Buff5
Out.T

Buff5
Out.F

Buff5
Ack_In

demux.F

demux.T
In.T

In.F

Ack_out

ack

A_Out.FC

A_Out.T

SEL.F

C

B_Out.F

C

B_Out.T

C

ack_in

ack_out

SEL.T SEL.ack

DEMUX

Buffer 5
∆

Buffer 3
∆

+

+

sp

sp

Sink

en

Figure 5.9: 1-bit Enhanced DeMultiplexer with Δ buffer template

The scenerios for path B are different. The latter is connected with the Buffer_5 in
our case. If an SET appears at the input of the De-multiplexer it may get latched by
Buffer_3. If we utilize the same methodology as for the Multiplexer there, we are only
able to mitigate some of the effects appearing at the De-multiplexer ’s B output. More
specifically, we can ensure the reset condition while ack_out as well as the SEL.T are
zero (meaning this path is not selected). In this case SETs at B_Out.T and B_Out.F
will forcefully be flushed out as soon as they ended (after their pulse length). Note that
it is important to clear the MCEs the even if the path is currently not selected and the
SET does not seem to do any harm. The reason is that when this path is again selected
for communication the already latched SET will be considered as valid transition. So we
flush it during the same handshake cycle.

In the following we will discuss a few scenarios shown in Figure 5.10 to illustrate how the
proposed enhancements mitigate SET effects and where they fail.

1. Figure 5.10-SET’s strike at DEMUX Inputs: when SEL.F (*1) is high the data
token at the input of the De-multiplexer demux.F (1*) is propagated to the Sink via
A_Out.F (1***). An SET appears at demux.T shortly after the valid transition.
At this point the latter has already locked its opposite rail, which then blocks the
SET from propagting to the Sink.

124

5.2. Proposed SET resilience enhancements for QDI Multiplexer and De-multiplexer

B_Out.T

B_Out.F

ack_out/sp

SEL.F

demux.T

demux.F

SEL.T

A_Out.T

A_Out.F

Bu
ffe

r_
3_

O
U

TP
U

T
Si

nk
Bu

ffe
r_

5_
IN

PU
T

ack_in

In.T

In.F

en

Bu
ffe

r_
3_

IN
PU

T

Ack_out

ack

To
 B

uf
fe

r_
3

SET's strike
 at

DEMUX Inputs (1)

1

1*

1**

1***

2

2*

2**

3*

3**

3***

4

4*

4**

1*

1**

1***

2

2*

3*

3**

4

4*

2** 4*

1

*1

*1

3

3***

*3

SET's strike
 at

DEMUX Inputs

1

1*

1**

1***

2

2*

2**

3*

3**

3***

4

4**

*1 *3

SET's strike
 at

DEMUX Outputs

Value Error

3

Figure 5.10: Mitigating SET effects with the Enhanced DeMultiplexer with Δ buffer
template

2. Figure 5.10-SET’s strike at DEMUX Inputs (1): This time the SET appears at
demux.F slightly before the valid transition originating from In.T (1). As Buffer_3
is of type Δ, the propagation path of the latter is locked by the output interlock
mechanism, and we are not able to pass valid transition to demux.T. Instead, the
faulty transition propagates to Buffer_5 where it is considered as valid, generating
the value error.

3. Figure 5.10-SET’s strike at DEMUX Outputs: The scenario is same here as the
first one, but this time the SET appears at B_Out.F (path B’s output) when this
path is not selected. As sp is zero (ack_out) as well as SEL.T, this triggers the
reset condition of the respective MCE, flushing the value after the length of the
SET.

From this discussion we can conclude that our proposed enhancement efficiently targets
the affected rails and flushes the erroneous value without using any extra circuitry. For a

125

5. SET suseptibility of QDI Conditional Control Elements

0 250 500 750 1000 1250 1500 1750

Gate index

20

40

60

80

100

120

140

160

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 5.11: 16-bit Iterative multiplier with Δ buffer template and Enhanced Multiplexer
and Demultiplexer: Gate Count (1771) and Gate Delays

quantitative assessment, this time we perform the simulations with two variants of the
16-bit Iterative multiplier with enhanced Multiplexer and De-multiplexer, first with the
Δ buffer template and then with the ζ_Δ approach (to flush the combinational logic on
the detection of the SET) with Δ. Here it is important to note that all buffer templates
are type Δ, except those in front of the combinational logic; those are Δ .

0 250 500 750 1000 1250 1500 1750

Gate index

20

40

60

80

100

120

140

160

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

Figure 5.12: 16-bit Iterative multiplier with ζ_Δ approach and Enhanced Multiplexer
and Demultiplexer: Gate Count (1847) and Gate Delays

Figure 5.11 presents the gate count and gate delays for the circuit with the Δ buffer
template. The total gate count is 1771. Compared to the WCHB variant we only added
584 gates for the enhanced conditional control elements and resilient buffer template.

126

5.2. Proposed SET resilience enhancements for QDI Multiplexer and De-multiplexer

The maximum and minimum gate delays are 155 and 12ps, respectively. We call this
approach Δ_E.

With the ζ_Δ approach the gate count is 1847 Figure 5.12. This is an increase of 76
gates, due to the combinational flushing approach. The maximum and minimum gate
delays are 155 and 12ps respectively, the same as with the previous approach. This
approach is termed ζ_Δ _E. All these approaches are published in [TS23b].

To evaluate these proposed techniques, we again select three different injection pulses,
namely minimum and maximum gate delay a circuit contains, as well as a 1ns pulse. The
circuit operates in balanced mode (PLF=1). Figure 5.13 presents the results of the fault
injection experiments we conducted with two variants of our target circuit.

First, we compare the results of the Multiplexer and De-multiplexer from Figure 5.6 with
the enhanced versions Figure 5.13. Generally, the enhancements yield high resilience:
For the injection pulse length of 155ps for Δ_E and ζ_Δ _E and 134ps for WCHB
iterative multiplier (corresponding to the respective maximum delay), the error rate ap-
proximately drops from 25% to 15% (only considering the Multiplexer and De-multiplexer
contributions). For the minimum pulse length we achieve even higher improvements:
The error rate drops from 25% to 6% for Δ_E and 13% for ζ_Δ _E.

min
12ps

max
155ps

1ns
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
u
m

b
e
r

o
f

E
rr

o
rs

×104

21 262
796

12
401

2526

517

4355

17402

Iterative Multiplier _E

Total
Logic
Buffer
Control
mux
demux

min
12ps

max
155ps

1ns
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

×104

1 298
867

10
427

2526

80

4192

13780

Iterative Multiplier with _ '_E

Figure 5.13: Suseptibility analysis of Iterative multiplier with Δ and ζ_Δ approach
and Enhanced Multiplexer and Demultiplexer under the influence of SETs with different
injection pulse lengths

When we move to the 1ns pulse, for Δ_E the error rate is 19% and for ζ_Δ _E it is 24%,
compared to 25% with the simple WCHB iterative multiplier. But a closer inspection
of the results of Figure 5.6 and Figure 5.13 hints that the enhanced conditional control
elements are showing much more resilience than the simple ones. For instance, while
injecting the maximum pulse 134ps in Figure 5.6, the Multiplexer fails 2501 times where

127

5. SET suseptibility of QDI Conditional Control Elements

0 250 500 750 1000 1250 1500 1750

Gate Index

20

40

60

80

100

120

140

160

D
e
la

y
 V

a
lu

e
 (

p
s
)

Gate Count and Gate Delays

WCHB

_E

 _ '_E

Figure 5.14: Gate Count and Gate Delays Comparison of all dicussed approaches

with enhanced versions it only fails 262 and 298 times, respectively, for 155ps pulses
(see Figure 5.13). With the enhanced conditional control elements, we also utilize the
resilient buffer template and combinational flushing logic in Figure 5.13 which enhances
the overall resilience. If we compare the two variants presented in Figure 5.13, ζ_Δ _E
shows smaller contribution from the combinational logic (blue bars). This is as expected,
since this approach has been specifically designed to reduce the SET susceptibility of the
combinational logic circuit.

5.3 Final Comments on Δ_E and ζ_Δ _E

Figure 5.14 presents a comparison of the area (gate count) for all the discussed approaches
in this chapter. Each column in Figure 5.15 presents the one-to-one resilience comparison
between all the discussed target circuits. For comparison we add WCHB-based circuit,
the Δ_E with our most resilient buffer template from the Chapter 3 and the ζ_Δ _E
our best approach for flushing the combinational logic from Chapter 4.

On the top x-axis of Figure 5.15, we present the number of injections for each target
circuit and on the bottom x-axis the injection pulse length, where we consider three
different injection pulses minimum, maximum gate delay of the circuit and 1ns pulse.
The number of injection is different for all target circuits: for WCHB it is 20 × 104 and
for Δ_E its approximately 40 × 104. This is due to the fact that the number of gates
and nodes is higher than the WCHB, and it requires more time to complete the same
number of tokens. For ζ_Δ _E it is even a bit higher and touches 51 × 104. Each row
presents the different types of errors a circuit produces when it fails to mitigate the SET
effect.

128

5.3. Final Comments on Δ_E and ζ_Δ _E

With the enhancement proposed we approximately halve the number of deadlocks moving
from WCHB to Δ_E. When we further go to the ζ_Δ _E the behavior similar with
respect to deadlocks, but with a higher number of injections. For the glitches we only
experience negligible counts with the basic WCHB already. Thanks to the interlocking
mechanism utilized to harden the De-multiplexer ’s output to the Sink there is no way for
the coding errors to propagate to the output. The first transition getting latched simply
locks the buffer’s opposite rail for further transition. This is evidenced by the results,
where only the plain WCHB shows coding errors. While these errors may be converted
into value errors, Δ_E and ζ_Δ _E still show as little as 4% and 2% value errors,
respectively, compared to the 14% coding errors reported for WCHB when injecting 1ns
pulse. But for the minimum injection pulse length the enhanced circuits exhibit excellent
resilience against SETs, showing approximately 0% error rate.

With all these discussions we can conclude that our proposed enhancements prove efficient
in making the conditional control elements more resilient against SETs.

129

5. SET suseptibility of QDI Conditional Control Elements

0%

1%

2%

3%

d
e
a
d
lo

c
k
s

0%

1%

g
li
tc

h
e
s

WCHB _E _ '_E

0%
2%
4%
6%
8%

10%
12%
14%
16%

c
o
d
in

g
 e

rr
o
rs

min max 1ns
Injection Pulse

0%

2%

4%

6%

v
a
lu

e
 e

rr
o
rs

min max 1ns min max 1ns

 Total Injections in X10^4
20 20 20 41 40 41 49 51 51

Figure 5.15: Comparing ζ_Δ _E with all discussed approaches

130

CHAPTER 6
Conclusion and Future Work

In this chapter we briefly summarize the contributions of this thesis. The main theme
was to first investigate and then reduce the susceptibility of QDI circuits against SETs.
Specifically we looked into WCHB buffer templates, DIMS combinational logic and QDI
conditional control elements. Due to their DI nature, these circuits’ operation is not
effected by arbitrary response time of their environment. We have considered this variable
response time by means of the PLF which was proven to have a heavy impact on the
fault tolerance of the circuit, as it determines the windows that are susceptible to SETs.

6.1 Resilience of Buffer templates
According to our first research question we started out in Chapter 3 with the empty
pipeline configuration for our experiments to get a better understanding of the buffer
templates’ behavior under SETs with variable PLFs. To cover all relevant corners, we
chose different lengths for the fault pulses we injected, ranging from the minimum gate
delay a circuit contains to twice the maximum gate delay. As an aid for our analysis,
we made a classification of erroneous behaviors into different types and presented these
separately in our results. Among others, this allowed us to observe how different error
classes occur more frequently for different PLF. With respect to the PLF we distinguished
three modes of operation, namely Token limited mode (PLF < 1), Balanced mode (PLF
= 0) and Bubble limited mode (PLF > 1). For each of these we selected three error
cases that we analyzed in detail. While these three cases did not cover the whole space,
they helped us understand which nodes are sensitive when, how an SET gets latched and
produces an error, and which factor decides the type of error being triggered.

To keep this detailed discussion feasible, we selected relatively simple and basic target
circuits. For the buffer analysis we chose a 2-bit, 2-stage empty pipeline QDI circuit
(with different buffer templates) for the discussions, while we performed our experimental
assessment on an 8-bit, 4-stage empty pipeline QDI circuit with different buffer templates.

131

6. Conclusion and Future Work

We used an existing tool [BHNS21] to perform the fault injection simulations at randomly
selected nodes and points in time, where the number of injected faults was carefully
aligned with the size (number of gates) and speed (time to complete a given number of
computations) of the target. In this way we considered the fact that adding provisions
for error mitigation to a circuit at the same time also makes it more complex and prone
to fault occurrences.
After thorough analysis of the basic WCHB as well as its key constituent element, namely
the MCE, we moved to the Interlocking WCHB [HNS20], an already existing fault
tolerant derivative of the WCHB that is based on mutual interlocking of the two rails
pertaining to the same data signal. While this approach is elegant in leveraging coding
information for fault tolerance, virtually without any extra hardware, our analysis showed
that rather than mitigating all coding errors, as expected, it tends to simply convert an
appreciable share of them into value errors.
Based on insights gained from a more comprehensive analysis of different other fault-
tolerant pipeline templates [BHN+21], we proposed our first own buffer solution, namely
the Input/Output-Interlocking WCHB buffer template [TBNS21], thus moving to the
second research question. Its key mission is to establish the buffer as a firewall between
two adjacent pipeline stages. To this end, we introduced an extra level of interlocking
at the buffer input. As our thorough analyis unveiled, this approach was quite effective
in bubble limited mode, while it showed lower performance in token limited mode. Its
further limitations are its area overhead (close to 100%) as well as the use of extra MCEs,
both of which make it more prone to SET impacts.
So naturally our next step was directed towards a simplification of the circuit while keeping
its mitigation properties. This led to the proposal of the Input Output Interlocking
with SR latch WCHB (IOISRWCHB) template [TS22b]. Its key ingredients are the
replacement of the undesired MCE through an SR latch, which removes sensitive nodes
from the circuit, as well as the addition of an input filter that removes glitches and better
moderates the mutual exclusion. An experimental analysis of the circuit evidenced its
substantially better resilience in token limited mode (as deisred), while keeping the good
resilience of its predecessor for bubble limited operation.
All these fault tolerant approaches proposed up to that point somehow utilized the
inherent fault-tolerance properties of QDI circuits without the full duplication of the
circuit. They took benefit from dual-rail encoding which helps them to lock the buffer
from the input and output side on the first rail transition. Investigations on IOISRWCHB
directed us to a new direction for achieving higher resilience – there is more information
available from the circuit that can be used to enhance the resilience. As the buffer
template is more susceptible to SETs while its SETs are in storage mode, reducing
their storage time directly impacts the resilience. To leverage this, we took inspiration
from a respective existing approach (normally closed pipeline latch [BS09]) to enhance
our buffer templates. More specifically, the input interlocking got more refined with a
single SR latch and Dual_Completion_Detection from the outputs of the input filter.
With these modifications our buffer, called Δ, remained in combinational mode most

132

6.2. Combinational logic Flushing Techniques

of the time without any area overhead to its predecessors the new template showed a
further increased resilience in token limited mode, while keeping similar resilience as
IOISRWCHB in bubble limited mode. For extreme bubble limited mode, however, the
results still indicated some residual weakness: approximately 4% of errors were reported
for all circuits proposed so far. The main reason is that the token arrives earlier than the
Acknowledgment, changing the buffer state from combinational mode to the storage mode
and thus making it sensitive to SETs. What still would be needed is to block the newly
arrived token from reaching the MCEs until the respective Acknowledgment arrived.

6.2 Combinational logic Flushing Techniques
In Chapter 4 we moved to the third research question and addressed the contribution
of the combinational logic. As the latter also contains MCEs, which turned out to play
a major role in SET susceptibility, our expectation was that protection will be needed.
To investigate that in more detail, we again performed our fault-injection experiments,
starting out with the basic WCHB buffer template, again in a 2-bit, 2-stage pipeline
configuration. This time, according to the purpose, we added DIMS combinational logic,
specifically an AND and an XOR gate in between these stages for the discussion part.
For the experiments our target now was a 16-bit, 7-stage pipelined multiplier. The
experiment settings were the same, but this time we also injected slightly longer pulses
with 1ns and 2ns length to also cover potentially longer (multi-gate) propagation delays,
and thus more pronounced electrical masking, through the combinational logic.

After having thus established a reference for the unprotected case, and having confirmed
the significant contribution of combinational logic to the overall error rate, we took
a closer look at respective mitigation approaches from the literature. For the BISEC
approach [KZYD10] that essentially proposes completely flushing the combinational logic
upon detection of an error, our experimental results showed no improvement in resilience.
In fact, coding errors were traded for deadlocks. A modified version, SETAPII, published
in [LHHA12, LHHA16], employs protocol phase detection in order to refine the resetting.
However, in our experiments it performed even worse, while, as our analysis showed, also
violating the handshake protocol by generating extra spacers upon pipeline flushing.

In a next attempt, we assessed the capabilities of our resilient buffer template Δ for
mitigating fault effects originating in the combinational logic. After all, our resilient
buffers with their rigid interlocking had been designed to prevent SET effects from
propagating. Indeed, Δ showed reasonable resilience with negilgible overhead relative to
the basic WCHB. We also checked the combination of WCHB with BISEC but did not
yield any improvement, in spite of a doubled gate count. We continue our analysis of
combinational logic with our Δ approach, as this approach can mitigate the SET effects
from the combinational logic with its rigid input interlock mechanism. With negligible
area overhead compared to WCHB based circuit, it shows high resilience. We also check
the resilience of SETAPI approach by using the Δ buffer template with it, but with
double gate count the results are not better than the simple Δ based circuit. Based

133

6. Conclusion and Future Work

on the findings from our analyses we proposed a combinational logic flushing approach
called ζ that selectively flushes those MCEs within the combinational logic only that
potentially hold an erroneous transition. This approach was based on the insight that
MCEs holding valid data are in combinational mode while those holding an erroneous
value are in storage mode. This targeted flushing not only prevented the generation of
erroneous spacers but also saved the time to propagate the correct token through the
whole logic for recovery. On the illegal code word detection, we also disabled the MCE
passing the Acknowledgement signal to the buffer which prevented the latching of the
erroneous values. By finally combining this ζ approach with our Δ buffer, we could
even largely mitigate the residual problem of an early arriving Acknowledgement. This
approach that we called ζ_Δ , was able to cut the error rate (from the combinational
logic) to 0% with approximately 12% area overhead (gate count) compared to Δ, by
carefully utilizing the inherent fault-tolerance properties of QDI circuit.

6.3 Towards the resilient Conditional Control Elements

Conditional control elements of QDI circuits also contain MCEs, whichs make them
susceptible to SETs. According to our fourth research question, we evaluated the resilience
of these elements to SETs in Chapter 5. This time we selected an iteartive multiplier for
evaluation purposes, so we had Multiplexer and De-Multiplexer in our target circuit. As
the speed of the iterations was defined by the internal movement of the data token in this
structure, environment delays played a minor role. Therefore we restricted our parameter
space to PLF = 1. We performed experiments with three different injection pulses,
namely minimum and maximum gate delay a circuit contains and a 1ns pulse. Even
though our experimental results indicated a contribution of around 25% of overall error
rate for the conditional control elements, we were not able to find respective mitigation
approaches in the literature. Our analysis suggested that the unselected path is the
root cause of most of the errors we observed. After closely examining the situation for
a WCHB based design, we proposed some modification to the Multiplexer. In essence,
our approach triggers a flushing only after considering whether the path in question is
currently selected and whether it currently holds a token. With this modification we
could cut the error contribution of the Multiplexer from 12% to 1% (in some cases).

For the De-Multiplexer its deployment turned out to be essential. If it is part of an
internal circuit, we could utilize the same idea, but for the case that its output paths
were primary outputs, we suggested the use of the Interlocking mechanism from [HNS20].

After integrating these approaches with our resilient buffer template Δ and the combi-
national logic flushing technique ζ_Δ we obtained a respectable SET resilience for the
complete circuit – and so finally achieved the overall goal of the thesis.

134

6.4. Comparing SET Effects in Quasi Delay Insensitive and Synchronous Circuits

6.4 Comparing SET Effects in Quasi Delay Insensitive
and Synchronous Circuits

In this thesis we kept the focus on the resilience of QDI circuits against SETs. In our
larger research context, however, we also evaluated this in comparison with synchronous
logic [TS23a]. This work is not included in this thesis as full chapter form, but here we
briefly discuss the results to make the picture complete. Our target circuit was a pipelined
multiplier with different bit widths including 4*4, 8*8 and 16*16. We considered the
WCHB buffer template with DIMS combinational logic (plus we also considered NCLX
logic [KL02]) in comparison with a simple synchronous logic without any fault tolerant
techniques applied. In this comparison we adopted a different method to select the
injection pulses. More specifically, we aligned the injection pulse lengths with different
percentages of the circuit’s computation steps (clock/handshake cycle time). The analysis
concludes that asynchronous QDI circuits show better resilience against SETs due to
two main reasons: (1) if realized with a 4-phase handshake protocol they are resilient to
negative fault pulses, and (2) the susceptibility of a QDI circuit is largely unchanged for
increasing fault length because of the causality underlying the QDI principle. For instance,
injecting a pulse with length of 32% of 157ps (clock period of synchronous circuit) shows
10% error rate where the QDI circuit with 32% of 1200ps shows approximately 18% error
rate. However, when we inject 157ps injection pulses to the same synchronous circuit,
the error rate touches 30%, where for QDI circuit with 1200ps pulses it remains 18%.
This is due to the fact that the flip flops in synchronous circuits are edge triggered, and
consequently the probability increases that the SET pulse gets latch if its longer than the
clock period. In fact, their sensitive windows are always centered around the clock edges,
regardless of fault origin and environment. In contrast to that, in asynchronous settings
SET length does not matter but the injection time is crucial. If the SET appeared in the
sensitive window (when the MCE is in storage mode) it will definitely alter the behavior,
while if it occurs outside of the sensitive window it may widen the handshake cycle
(extra delay) without corrupting the data token. Delays, however, can be easily managed
by the delay-insensitive circuit design. Our analysis provided insights leading towards
more resilient QDI circuits: if we only make a circuit or specific gates better resist ”1”
faults, we are fully resilient towards the SETs because ”0” faults are already filtered
out by its inherent behavior. This is also beneficial for area efficiency: as asynchronous
circuits often require already twice the area (or more) and computation time compared
to synchronous circuits, adding extra SET mitigation with full replication or other buffer
redundant techniques tends to result in painful overheads. Being able to focus on specifc
protection of circuit blocks against ”1” faults, as indicated by our analysis, can hence
yield important savings.

6.5 Future Work
This thesis only focuses on the resilience of the WCHB buffer template and its fault-
tolerance with DIMS combinational logic. It would be interesting to extend this for other

135

6. Conclusion and Future Work

buffer templates and logic designs. Combining all approaches together with ζ_Δ for
the linear configuration, the remaining errors are from buffer template. These could
be further addresses by somehow managing to delay an incoming token during bubble
limited mode such that it reaches the buffer only as soon as the enable signal arrives
there. The findings of [TS23a] show that the WCHB mitigates negative fault pulses, so
as a next step one could investigate how to modify the proposed buffer templates to make
them also tolerate these. With all these extensions establishing full resilience against
SETs seems within reach. With respect to the non-linear configuration the conditional
control elements are still not fully protected against SETs, in next step it seems promising
to investigate their behavior with different settings as they require different protection
measures depending on their position in the circuit.

136

List of Figures

2.1 Isochronic fork assumption: reprinted from [BOF10] 7
2.2 MCE and its derivatives normal behavior 8
2.3 MCE and its derivatives under SETs . 10
2.4 Dual rail encoding (a) 4-phase, (b) 2-phase 11
2.5 Completion detection logics (a) 4-phase signaling with 1-bit message, (b) 4-

phase signaling with m-bit message, (c) 2-phase signaling with m-bit message 12
2.6 DIMS AND Gate . 12
2.7 NCL AND Gate . 13
2.8 A: 2-bit, 2-stage QDI pipelined circuit realized with Weak-Conditioned Half

Buffer (WCHB) buffer template, B: Waveform of Circuit in A 14
2.9 PLFall . 16
2.10 PLFall . 17
2.11 Fault Injection Simulation Environment 18
2.12 Empty Pipeline Circuit Configuration . 20
2.13 16-bit 7 Stage Pipelined Multiplier . 20
2.14 Iterative Multiplier . 21

3.1 Gate Count (128) and Gate Delays of 8-bit, 4-stage Empty Pipeline Circuit
with WCHB as Buffer Template . 24

3.2 Susceptibility analyses of 8-bit, 4-stage Empty Pipeline Circuit with WCHB
under the influence of SETs with variable PLF and different injection pulse
lengths . 25

3.3 Sensitive Windows of WCHB . 26
3.4 Main Causes of Errors During Token Limited Mode 27
3.5 Main Causes of Errors during Normal Operation 28
3.6 Main Causes of Errors During Bubble Limited Mode 29
3.7 Error Rate of WCHB based 8-bit, 4-stage Empty Pipeline Circuit with and

without last Stage Enable Signal in Injection List, with 60ps injection pulse 30
3.8 2-bit, 2-stage QDI pipelined circuit realized with Interlocking WCHB buffer

template . 32
3.9 Sensitive windows of Interlocking WCHB 32
3.10 InterlockingWCHB gate count (128) and gate delays 33
3.11 Suseptibility analyses of InterlockingWCHB under the influence of SET with

variable PLF and different injection pulse lengths 34

137

3.12 Sensitive Windows of Interlocking WCHB during Token Limited Mode . . 36
3.13 Sensitive Windows of Interlocking WCHB during balanced operation . . . 37
3.14 Sensitive Windows of Interlocking WCHB during Bubble Limited Mode . 38
3.15 Suseptibility analyses of WCHB and Interlocking WCHB under the influence

of SET (Injection pulse 60ps) . 39
3.16 InOutInterlock WCHB . 40
3.17 Sensitive Windows of InOutInterlock WCHB 41
3.18 InOutInterlock WCHB Gate Count (252) and Gate Delays 42
3.19 Suseptibility analyses of InOutInterlockWCHB under the influence of SETs

with variable PLF and different injection pulse lengths 43
3.20 Sensitive Windows of InOutInterlock WCHB during Token Limited Mode 44
3.21 Sensitive Windows of InOutInterlock WCHB during balanced operation . 46
3.22 Sensitive Windows of InOutInterlock WCHB during Bubble Limited Mode 47
3.23 WCHB with InOutInterlocking WCHB (Injection pulse 60ps) 49
3.24 IOISRWCHB . 50
3.25 Sensitive Windows of IOISRWCHB . 52
3.26 IOISRWCHB Gate Count (256) and Gate Delays 53
3.27 Suseptibility analyses of IOISRWCHB under the influence of SET with variable

PLF and different injection pulse lengths 54
3.28 Sensitive Windows of IOISRWCHB during Token Limited Mode 55
3.29 Sensitive Windows of IOISRWCHB during balanced operation 56
3.30 Sensitive Windows of IOISRWCHB during Bubble Limited Mode 57
3.31 Comparison with IOISRWCHB (Injection pulse is equal to 2*(maximum gate

delay)) . 59
3.32 DualCD InOut WCHB Δ . 60
3.33 Sensitive Windows of Δ . 61
3.34 DualCD InOut WCHB Gate Count (252) and Gate Delays 62
3.35 Suseptibility analyses of Δ under the influence of SET with variable PLF and

different injection pulse lengths . 63
3.36 Sensitive Windows of Δ during Token Limited Mode 65
3.37 Sensitive Windows of Δ during balanced operation 66
3.38 Sensitive Windows of Δ during Bubble Limited Mode 68
3.39 Gate Count and Gate Delays Comparison of all dicussed buffer templates 69
3.40 Δ comparison with all discussed buffer templates (Injection pulse is equal to

2*(maximum gate delay)) . 71

4.1 WCHB buffer with DIMS AND and XOR logic 74
4.2 SET effects in combinational logic without any protection deployed 75
4.3 16-bit 7 stage Pipelined multiplier with WCHB buffer template Gate Count

(2102) and Gate Delays . 76
4.4 Suseptibility analyses of Pipelined multiplier with WCHB buffer template

under the influence of SET with variable PLF and different injection pulse
lengths . 77

138

4.5 SETAPI approach with DIMS AND and XOR logic 79
4.6 SET effects from combinational logic with SETAPI approach 80
4.7 16-bit 7 stage Pipelined multiplier with WCHB buffer template and SETAPI

approach Gate Count (3389) and Gate Delays 81
4.8 Suseptibility analyses of Pipelined multiplier with WCHB buffer template

and SETAPI approach under the influence of SET with variable PLF and
different injection pulse lengths . 82

4.9 SETAPI comparison with WCHB based Pipelined Multiplier (Injection pulse
is 1ns) . 84

4.10 SETAPII approach with DIMS AND and XOR logic 86
4.11 SET effects from combinational logic with SETAPII approach 87
4.12 SETAPII approach Flush logic . 88
4.13 Behavior of SETAPII with and without SET strike 90
4.14 16-bit 7 stage Pipelined multiplier with WCHB buffer template and SETAPII

approach Gate Count (3389) and Gate Delays 91
4.15 Suseptibility analyses of Pipelined multiplier with WCHB buffer template

and SETAPII approach under the influence of SET with variable PLF and
different injection pulse lengths . 92

4.16 Comparison of SETAPII with all discussed approaches (Injection pulse is 1ns) 94
4.17 Δ with DIMS AND and XOR logic . 95
4.18 SET effects in combinational logic with theΔ buffer template 96
4.19 16-bit 7 stage Pipelined multiplier with Δ buffer template: Gate Count (2798)

and Gate Delays . 97
4.20 Suseptibility analyses of Pipelined multiplier with Δ buffer template under

the influence of SET with variable PLF and different injection pulse lengths 98
4.21 Comparison of all discussed approaches for Δ-based pipelined multiplier

circuits (Injection pulse is 1ns) . 99
4.22 SETAPI approach with Δ buffer template with DIMS AND and XOR logic 100
4.23 SET effects in combinational logic with the SETAPI approach combined with

the Δ buffer template . 101
4.24 16-bit 7 stage Pipelined multiplier with Δ buffer template and SETAPI

approach: Gate Count (4060) and Gate Delays 102
4.25 Suseptibility analyses of the Pipelined multiplier with Δ buffer template with

SETAPI approach (SETAPI_Δ) under the influence of SETs with variable
PLF and different injection pulse lengths 103

4.26 SETAPI_Δ (SETAPI with Δ buffer template) comparison with all discussed
approaches (Injection pulse is 1ns) . 105

4.27 ζ approach with Δ buffer template with DIMS AND and XOR logic . . . 106
4.28 SET effects in combinational logic with the ζ approach combined Δ buffer

template . 108
4.29 16-bit 7 stage Pipelined multiplier using Δ buffer template with ζ approach:

Gate Count (3142) and Gate Delays . 109

139

4.30 Suseptibility analysis of the Pipelined Multiplier using the Δ buffer template
with the ζ approach under the influence of SETs with variable PLF and
different injection pulse lengths . 110

4.31 Gate Count and Gate Delays Comparison of all dicussed approaches 111
4.32 Comparison of the ζ approach with Δ pipelined multiplier circuits with all

discussed approaches (Injection pulse is 1ns) 113

5.1 1-bit Multiplexer with WCHB buffer template 116
5.2 SET effects at the Multiplexer with WCHB buffer template 117
5.3 1-bit DeMultiplexer with WCHB buffer template 118
5.4 SET effects at the DeMultiplexer with WCHB buffer template 119
5.5 16-bit Iterative multiplier with WCHB buffer template: Gate Count (1187)

and Gate Delays . 120
5.6 Suseptibility analysis of Iterative Multiplier with WCHB buffer template

under the influence of SETs with different injection pulse lengths 120
5.7 1-bit Enhanced Multiplexer with Δ and Δ buffer template 122
5.8 Mitigating SET effects in the Enhanced Multiplexer with Δ and Δ buffer

template . 123
5.9 1-bit Enhanced DeMultiplexer with Δ buffer template 124
5.10 Mitigating SET effects with the Enhanced DeMultiplexer with Δ buffer

template . 125
5.11 16-bit Iterative multiplier with Δ buffer template and Enhanced Multiplexer

and Demultiplexer: Gate Count (1771) and Gate Delays 126
5.12 16-bit Iterative multiplier with ζ_Δ approach and Enhanced Multiplexer

and Demultiplexer: Gate Count (1847) and Gate Delays 126
5.13 Suseptibility analysis of Iterative multiplier with Δ and ζ_Δ approach and

Enhanced Multiplexer and Demultiplexer under the influence of SETs with
different injection pulse lengths . 127

5.14 Gate Count and Gate Delays Comparison of all dicussed approaches . . . 128
5.15 Comparing ζ_Δ _E with all discussed approaches 130

140

List of Algorithms

2.1 MCE Model . 9

141

Bibliography

[BBN22] Davide Bertozzi, Kshitij Bhardwaj, and Steven M. Nowick. An asynchronous
soft macro for ultra-low power communication in neuromorphic computing.
In 2022 IEEE 4th International Conference on Artificial Intelligence Circuits
and Systems (AICAS), pages 178–181, 2022.

[Beh21] Patrick Behal. Quantitative comparison of the sensitivity of delay-insensitive
design templates to transient faults. Master’s thesis, TU Wien, 2021.

[BHN+21] Patrick Behal, Florian Huemer, Robert Najvirt, Andreas Steininger, and
Zaheer Tabassam. Towards explaining the fault sensitivity of different qdi
pipeline styles. In 2021 27th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 25–33, 2021.

[BHNS21] Patrick Behal, Florian Huemer, Robert Najvirt, and Andreas Steininger. An
automated setup for large-scale simulation-based fault-injection experiments
on asynchronous digital circuits. In 2021 24th Euromicro Conference on
Digital System Design (DSD), pages 541–548, 2021.

[BOF10] Peter A Beerel, Recep O Ozdag, and Marcos Ferretti. A designer’s guide to
asynchronous VLSI. Cambridge University Press, 2010.

[BS09] W. J. Bainbridge and S. J. Salisbury. Glitch Sensitivity and Defense of
Quasi Delay-Insensitive Network-on-Chip Links. In 15th IEEE Symposium
on Asynchronous Circuits and Systems, pages 35–44, May 2009.

[CRS21] Ney Laert Vilar Calazans, Taciano Ares Rodolfo, and Marcos LL Sartori.
Robust and energy-efficient hardware: The case for asynchronous design.
Journal of Integrated Circuits and Systems, 16(2):1–11, 2021.

[DIBM03] Monica Donno, Alessandro Ivaldi, Luca Benini, and Enrico Macii. Clock-tree
power optimization based on rtl clock-gating. In Proceedings of the 40th
annual Design Automation Conference, pages 622–627, 2003.

[DWO+21] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud.
Advancing neuromorphic computing with loihi: A survey of results and
outlook. Proceedings of the IEEE, 109(5):911–934, 2021.

143

[FB96] KM Fant and SA Brandt. Null convention logictm: a complete and consistent
logic for asynchronous digital circuit synthesis proceedings of international
conference on application specific systems. Architectures and Processors,
1996.

[FCMG13] Véronique Ferlet-Cavrois, Lloyd W. Massengill, and Pascale Gouker. Single
event transients in digital cmos—a review. IEEE Transactions on Nuclear
Science, 60(3):1767–1790, 2013.

[Fri01] Eby G Friedman. Clock distribution networks in synchronous digital inte-
grated circuits. Proceedings of the IEEE, 89(5):665–692, 2001.

[GYB07] K. T. Gardiner, A. Yakovlev, and A. Bystrov. A C-element Latch Scheme
with Increased Transient Fault Tolerance for Asynchronous Circuits. In
13th IEEE International On-Line Testing Symposium (IOLTS 2007), pages
223–230, July 2007.

[HNS20] F. Huemer, R. Najvirt, and A. Steininger. Identification and confinement
of fault sensitivity windows in qdi logic. In 2020 Austrochip Workshop on
Microelectronics (Austrochip), pages 29–36, Oct 2020.

[Hue22] Florian Ferdinand Huemer. Contributions to Efficiency and Robustness of
Quasi Delay-Insensitive Circuits. PhD thesis, TU Wien, 2022.

[JM05] Wonjin Jang and A. J. Martin. SEU-tolerant QDI circuits [quasi delay-
insensitive asynchronous circuits]. In 11th IEEE International Symposium
on Asynchronous Circuits and Systems, pages 156–165, March 2005.

[JM07] Wonjin Jang and Alain J Martin. A soft-error-tolerant asynchronous micro-
controller. In 13th NASA Symposium on VLSI Design. Citeseer, 2007.

[KHS+20] F. A. Kuentzer, M. Herrera, O. Schrape, P. A. Beerel, and M. Krstic. Ra-
diation Hardened Click Controllers for Soft Error Resilient Asynchronous
Architectures. In 26th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 78–85, May 2020.

[KK20a] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann,
2020.

[KK20b] F. A. Kuentzer and M. Krstic. Soft Error Detection and Correction Archi-
tecture for Asynchronous Bundled Data Designs. IEEE Transactions on
Circuits and Systems I: Regular Papers, pages 1–12, 2020.

[KL02] A. Kondratyev and K. Lwin. Design of Asynchronous Circuits by Synchronous
CAD Tools. In Proceedings 2002 Design Automation Conference (IEEE Cat.
No.02CH37324), pages 411–414, June 2002.

144

[KMM15] S. Keller, A. J. Martin, and C. Moore. DD1: A QDI, Radiation-Hard-by-
Design, Near-Threshold 18uW/MIPS Microcontroller in 40nm Bulk CMOS.
In 21st IEEE International Symposium on Asynchronous Circuits and Sys-
tems, pages 37–44, May 2015.

[Kob20] Daisuke Kobayashi. Scaling trends of digital single-event effects: A survey of
seu and set parameters and comparison with transistor performance. IEEE
Transactions on Nuclear Science, 68(2):124–148, 2020.

[KZYD10] W. Kuang, P. Zhao, J. S. Yuan, and R. F. DeMara. Design of Asynchronous
Circuits for High Soft Error Tolerance in Deep Submicrometer CMOS Cir-
cuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
18(3):410–422, March 2010.

[LHHA12] Faiq Khalid Lodhi, Osman Hasan, Syed Rafay Hasan, and Falah Awwad.
Modified null convention logic pipeline to detect soft errors in both null
and data phases. In 2012 IEEE 55th International Midwest Symposium on
Circuits and Systems (MWSCAS), pages 402–405. IEEE, 2012.

[LHHA16] Faiq Khalid Lodhi, Syed Rafay Hasan, Osman Hasan, and Falah Awwad.
Analyzing vulnerability of asynchronous pipeline to soft errors: leveraging
formal verification. Journal of Electronic Testing, 32(5):569–586, 2016.

[LHT+21] Zhiyu Li, Yuhao Huang, Longfeng Tian, Ruimin Zhu, Shanlin Xiao, and
Zhiyi Yu. A low-power asynchronous risc-v processor with propagated timing
constraints method. IEEE Transactions on Circuits and Systems II: Express
Briefs, 68(9):3153–3157, 2021.

[LKM10] Dong-Jin Lee, Myung-Chul Kim, and Igor L Markov. Low-power clock trees
for cpus. In 2010 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 444–451. IEEE, 2010.

[LM04] C. LaFrieda and R. Manohar. Fault detection and isolation techniques for
quasi delay-insensitive circuits. In International Conference on Dependable
Systems and Networks, 2004, pages 41–50, June 2004.

[Mar86] Alain J Martin. Compiling communicating processes into delay-insensitive
vlsi circuits. Distributed computing, 1(4):226–234, 1986.

[MR07] M. Marshall and G. Russell. A Low Power Information Redundant Concurrent
Error Detecting Asynchronous Processor. In 10th Euromicro Conference on
Digital System Design Architectures, Methods and Tools (DSD 2007), pages
649–656, Aug 2007.

[MRL04] Y. Monnet, M. Renaudin, and R. Leveugle. Asynchronous circuits sensitivity
to fault injection. In 10th IEEE International On-Line Testing Symposium,
pages 121–126, July 2004.

145

[MRL05a] Y. Monnet, M. Renaudin, and R. Leveugle. Hardening techniques against
transient faults for asynchronous circuits. In 11th IEEE International On-Line
Testing Symposium, pages 129–134, July 2005.

[MRL05b] Yannick Monnet, Marc Renaudin, and Régis Leveugle. Asynchronous cir-
cuits transient faults sensitivity evaluation. In Proceedings. 42nd Design
Automation Conference, 2005., pages 863–868. IEEE, 2005.

[NKD+21] Spencer Nelson, Sang Yun Kim, Jia Di, Zhe Zhou, Zhihang Yuan, and
Guangyu Sun. Reconfigurable asic implementation of asynchronous recurrent
neural networks. In 2021 27th IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), pages 48–54, 2021.

[PM05] Song Peng and R. Manohar. Efficient failure detection in pipelined asyn-
chronous circuits. In 20th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT’05), pages 484–493, 2005.

[Sak21] Ashiq A. Sakib. Soft error tolerant quasi-delay insensitive asyn-
chronous circuits: Advancements and challenges. In 2021 34th
SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems
Design (SBCCI), pages 1–6, 2021.

[Sei80] Charles L Seitz. Ideas about arbiters. Lambda, 1(1):10–14, 1980.

[SGY+09] Kenneth S Stevens, Daniel Gebhardt, Junbok You, Yang Xu, Vikas Vij,
Shomit Das, and Krishnaji Desai. The future of formal methods and gals
design. Electronic Notes in Theoretical Computer Science, 245:115–134, 2009.

[si214] si2.org. Silvaco open-cell 15nm library v0.1_2014_06 from si2, 2014.

[SM80] Charles L Seitz and C Mead. System timing. Reading, Massachusetts, 1980.

[Spa20] Jens Sparsø. Introduction to Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark, 2020. Paperback edition available here:
https://www.amazon.com/dp/B08BF2PFLN.

[Sri22] Pallavi Srivastava. Completion Detection in Asynchronous Circuits: Toward
Solution of Clock-Related Design Challenges. Springer Nature, 2022.

[SS93] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring structures.
Integration, the VLSI Journal, 15(3):313 – 340, 1993. Special Issue on
asynchronous systems.

[TBNS21] Zaheer Tabassam, Patrick Behal, Robert Najvirt, and Andreas Steininger.
Input/output-interlocking for fault mitigation in qdi pipelines. In 2021
Austrochip Workshop on Microelectronics (Austrochip), pages 17–20, 2021.

146

https://www.amazon.com/dp/B08BF2PFLN

[TPES22] Pelopidas Tsoumanis, Georgios Ioannis Paliaroutis, Nestor Evmorfopoulos,
and George Stamoulis. Analysis of the impact of electrical and timing masking
on soft error rate estimation in vlsi circuits. Technologies, 10(1):23, 2022.

[TS22a] Zaheer Tabassam and Andreas Steininger. Set hardened derivatives of qdi
buffer template. In 2022 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2022.

[TS22b] Zaheer Tabassam and Andreas Steininger. Towards resilient qdi pipeline
implementations. In 2022 25th Euromicro Conference on Digital System
Design (DSD), pages 657–664, 2022.

[TS23a] Zaheer Tabassam and Andreas Steininger. Set effects on quasi delay insensitive
and synchronous circuits. In 2023 IEEE European Test Symposium (ETS),
pages 1–6, 2023.

[TS23b] Zaheer Tabassam and Andreas Steininger. Towards resilient quasi delay
insensitive conditional control elements. In 2023 26th Euromicro Conference
on Digital System Design (DSD), 2023.

[TSNH23] Zaheer Tabassam, Andreas Steininger, Robert Najvirt, and Florian Huemer.
ζ: A novel approach for mitigating single event transient effects in quasi
delay insensitive logic. In 2023 28th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 48–57, 2023.

[VM02] T. Verdel and Y. Makris. Duplication-based concurrent error detection in
asynchronous circuits: shortcomings and remedies. In Proceedings of the
17th IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), pages 345–353, 2002.

147

Curriculum Vitae
Zaheer Tabassam

Personal Information

Email zaheer.tabassam1@gmail.com
Mobile +43 665 65478628

City Vienna, Austria
ORCID 0000-0002-9656-6927
LinkedIn www.linkedin.com/in/zaheertabassam
Language English

Education

2021-2024 PhD Student at the Institute of Computer Engineering, TU Wien, Austria
Grade: Good
PhD Thesis: “Utilizing and Extending the Inherent Fault Tolerance Properties of Asyn-
chronous QDI Circuits”

2017-2019 Master’s degree Electrical Engineering, COMSATS University Islamabad, Wah Campus,
Pakistan
Grade: 3.83/4
Master Thesis: “A Speed Independent Microprocessor with Delay Insensitive Pipeline
Stages”

2012-2016 Bachelor’s degree Electronics, University of Haripur, Pakistan
Grade: 4/4 (passed with honors)
Graduation Project: “Unmanned Aerial Vehicle for Surveillance (Flight Control)”

Professional Experience

2020-2024
(Dec - Jan)

Project assistant at the Institute of Computer Engineering, TU Wien, Austria
Research: “Investigating the fault tolerance properties of asynchronous Quasi Delay
Insensitive circuits”
Skills: Circuit Designing • Python-based circuit description framework • RTL Design •
Embedded System • Fault Analysis • Designed and implemented fault injection tech-
niques for assessing circuit resilience • Automated the entire circuit generation, test
bench creation, and fault injection processes • Pioneered new approaches to enhance
fault tolerance, contributing to improved system reliability • Process Design Kit • HDL
(Verilog and VHDL) • Python

2019-2020
(Aug - Nov)

Senior Design Officer, Aviation Design Institute, Pakistan Aeronautical Complex, Kamra
Pakistan
Responsibilities: “Indigenous development of an autopilot system, Indigenous develop-
ment of RADAR, integrating different modules with autopilot and architecture design of
Hardware in Loop Simulation setup using National Instruments hardware”
Skills: System Architecture Design • Avionic Systems Development • Protocol Tailoring
• Integration • Requirements Analysis • Flight Data Analysis • Collaboration • Engine
Control Unit • FPGA and ASIC Design148

2017-2019
(Sept - Sept)

Research Associate, Dept. of Electrical and Computer Engineering, COMSATS Univer-
sity Islamabad, Wah Campus, Pakistan
Research: “Evaluating the performance and power effectiveness of asynchronous proces-
sors customized for many-core systems”
Skills: Microprocessor Design • Logic Design • Testing and Debugging • Project De-
ployment • FPGA Tools • Linux Environment • Report Writing

Academic Achievements/Awards

2016 Distinction in BS (Gold Medal)

2021 Best Paper Award, IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC)

2022 Best Regular Paper Candidate, IEEE International Symposium on Design and Diagnostics
of Electronic Circuits Systems (DDECS)

2022 Outstanding Paper Award, IEEE 25th Euromicro Conference on Digital System Design
(DSD)

Highlighted Courses

Advanced Digital Design • Advanced Computer Architecture • Hardware/Software Code-
sign • Artificial Intelligence • Computer-Aided Design of Digital Systems • Biologically
Inspired Computing • Circuit Analysis • Basic Electronics • Solid State Electronics •
Semiconductor Devices • Industrial Electronics • Integrated Circuit Design • VLSI Design
• Complex Variable and Transforms • Solid State Electronics • Amplifiers and Oscilla-
tors • Signal and System • Digital Signal Processing • Microprocessors and Interfacing
• Microcontroller and Embedded System • Opto Electronics • Power Electronics • Con-
trol System • Data Communication • Analog and Digital Communication • Microwave
Communication

Technical Proficiency

Languages C/C++, Python, MATLAB, Shell scripting, SQL, MySQL, Git, Assembly, Verilog,
VHDL, BALSA

Tools ModelSim, QuestaSim, Xilinx Vivado Design Suite, Xilinx ISE Design Suite, Cadence
Virtuoso Studio, LabVIEW, VeriStand, Arduino IDE, Jupyter Notebook, BALSA asyn-
chronous design and synthesis tool

Boards Cyclone V FPGA, Zynq UltraScale+ MPSoC ZCU102, National Instruments Com-
pactRIO, Rasberry Pi, Arduino

FCS Flight Control Systems: Embention Veronte Autopilots
GNSS Global Navigation Satellite System: NovAtel PwrPak7

Journal Papers (peer-revieved)

1. Z. Tabassam, S. R. Naqvi, T. Akram, M. Alhussein, K. Aurangzeb, and S. A. Haider.
Towards designing asynchronous microprocessors: From specification to tape-out. IEEE
Access, 7:33978–34003, 2019. doi: 10.1109/ACCESS.2019.2903126.

149

Conference Papers (peer-revieved)

2. P. Behal, F. Huemer, R. Najvirt, A. Steininger, and Z. Tabassam. Towards Ex-
plaining the Fault Sensitivity of Different QDI Pipeline Styles. In 27th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC), pages 25–33,
2021. doi: 10.1109/ASYNC48570.2021.00012.

Conference Papers with Talk (peer-revieved)

3. Z. Tabassam, P. Behal, R. Najvirt, and A. Steininger. Input/output-interlocking for
fault mitigation in qdi pipelines. In 2021 Austrochip Workshop on Microelectronics
(Austrochip), pages 17–20, 2021. doi: 10.1109/Austrochip53290.2021.9576871.

4. Z. Tabassam and A. Steininger. Towards resilient qdi pipeline implementations. In 2022
25th Euromicro Conference on Digital System Design (DSD), pages 657–664, 2022.
doi: 10.1109/DSD57027.2022.00093.

5. Z. Tabassam and A. Steininger. Set hardened derivatives of qdi buffer template. In
2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT), pages 1–6, 2022. doi: 10.1109/DFT56152.2022.9962344.

6. Z. Tabassam, S. R. Naqvi, and A. Steininger. Aµflips: An asynchronous microprocessor
with flexibly-timed pipeline stages. In 2022 25th International Symposium on De-
sign and Diagnostics of Electronic Circuits and Systems (DDECS), pages 32–37, 2022.
doi: 10.1109/DDECS54261.2022.9770113.

7. Z. Tabassam and A. Steininger. Set effects on quasi delay insensitive and syn-
chronous circuits. In 2023 IEEE European Test Symposium (ETS), pages 1–6, 2023.
doi: 10.1109/ETS56758.2023.10173866.

8. Z. Tabassam, A. Steininger, R. Najvirt, and F. Huemer. ζ: A novel approach for
mitigating single event transient effects in quasi delay insensitive logic. In 2023 28th
IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), pages
48–57, 2023. doi: 10.1109/ASYNC58294.2023.10239589.

9. Z. Tabassam and A. Steininger. Towards resilient quasi delay insensitive conditional
control elements. In 2023 26th Euromicro Conference on Digital System Design (DSD),
2023.

150

	Kurzfassung
	Abstract
	Contents
	Introduction
	Research Questions
	Thesis Organization and Publications

	Asynchronous QDI Logic and its Fault Tolerant Techniques
	Quasi Delay Insensitive Design: Isochronic Fork Assumption
	Pipeline Load Factor
	Circuit Description and Fault Injection simulation environment
	Target Circuits
	Fault-tolerance techniques from literature

	Fault Tolerance Behavior of QDI Buffer Templates
	WCHB behavior under SET's
	InterlockingWCHB under the influence of SETs
	Input/Output-Interlocking WCHB for the mitigation of SET effects
	Input Output Interlocking with SR latch WCHB
	: Dual_Completion_Detection Input Output Interlocking WCHB

	The behavior of QDI Combinational Logic under the influence of SETs
	SET effects in DIMS Combinational Logic with a WCHB buffer template
	The SE Tolerance Asynchronous Pipeline I approach for flushing SEUs from DIMS combinational logic with a WCHB buffer template
	The SE Tolerance Asynchronous Pipeline II approach for mitigating SET effects in DIMS combinational logic with a WCHB buffer template
	SETs effects in DIMS Combinational Logic with the buffer template
	SETAPI approach for flushing SEUs from DIMS combinational logic with the buffer template
	 approach to flush SEUs from DIMS combinational logic with a modified buffer template

	SET suseptibility of QDI Conditional Control Elements
	SET effects on QDI Multiplexer and De-multiplexer
	Proposed SET resilience enhancements for QDI Multiplexer and De-multiplexer
	Final Comments on _E and _'_E

	Conclusion and Future Work
	Resilience of Buffer templates
	Combinational logic Flushing Techniques
	Towards the resilient Conditional Control Elements
	Comparing SET Effects in Quasi Delay Insensitive and Synchronous Circuits
	Future Work

	List of Figures
	Bibliography

