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Abstract

In this thesis, the dynamics and heat transfer of large and deformable drops in tur-
bulence are numerically investigated. Direct Numerical Simulation (DNS) is used to
resolve the turbulent flow and energy field, while Phase Field Method (PFM) is used
to describe the interface behaviour. The first purpose of this work is to study the
interaction between drops and turbulence, and in particular to understand how this
interaction is affected by density and viscosity differences between the fluids. To this
aim, a campaign of simulations of a drop-laden turbulent channel flow is performed,
exploring several density and viscosity contrasts and two different surface tensions,
and analysing the drops dynamics in terms of deformation, breakage and coalescence.
We observe that the effects of density and viscosity are negligible when surface tension
is sufficiently high, while they become more significant as surface tension is reduced.
In the latter case, they visibly affect drops deformability in opposite ways: while in-
creasing drops viscosity reduces drops deformability, increasing drops density enhances
drops deformability. Viscosity, in particular, shows a stronger impact, affecting defor-
mation as well as breakage and coalescence rates. On the contrary, density induces
visible deformations of the interface, but does not show any influence on breakage and
coalescence events. The flow modifications inside the drops are then evaluated in terms
of turbulent kinetic energy (TKE). As expected, an increase of drops density produces
a higher internal TKE, while an increase of viscosity causes a strong suppression of
turbulence and a reduction of TKE. The drops internal flow can influence the mixing of
the heat contained by the drops, and how fast it is transferred to the carrier fluid. The
second purpose of this work is to provide a better understanding of this phenomenon,
within the passive scalar approximation. The heat transfer in a drop-laden turbu-
lent channel flow is studied by performing numerical simulations, where warm drops
are released in a cold carrier fluid. Different Prandtl numbers are considered, which
are changed by varying the thermal diffusivity, while keeping a constant momentum
diffusivity. Computing the time behaviour of the drops and carrier fluid average tem-
peratures, we find that an increase of Prandtl slows down the heat transfer process.
These results are explained by deriving a simplified phenomenological model, showing
that the time evolution of the drops average temperature is self-similar, and a univer-
sal behaviour can be found upon rescaling by t/Pr2/3. This scaling can be explained
via the boundary layer theory and is consistent with previous theoretical/numerical
predictions. In the last part of this work, the study of heat transfer in drop-laden
turbulence is extended to evaluate the influence of viscosity differences between the
fluids on the heat transfer process. While keeping a constant density and thermal
diffusivity, two viscosity contrasts are considered, in order to mimic respectively the
cases of warm oil drops in cold water and warm water drops in cold oil. It is observed
that in the oil phase, which is more viscous, the heat transfer is slowed down, while in
the water phase, which is less viscous, the heat transfer is accelerated. These effects
balance each other in the two cases, which therefore result in having an equal heat
transfer rate.





Zusammenfassung

In dieser Arbeit werden die Dynamik und der Wärmeübergang großer und verform-
barer Tropfen in Turbulenzen numerisch untersucht. Die Direkte Numerische Sim-
ulation (DNS) wird verwendet, um die turbulente Strömung und das Energiefeld
aufzulösen, während die Phasenfeldmethode (PFM) verwendet wird, um das Gren-
zflächenverhalten zu beschreiben. Das erste Ziel dieser Arbeit ist es, die Wechsel-
wirkung zwischen Tropfen und Turbulenzen zu untersuchen und insbesondere zu ver-
stehen, wie diese Wechselwirkung durch Dichte- und Viskositätsunterschiede zwischen
den Fluiden beeinflusst wird. Zu diesem Zweck wird eine Kampagne von Simulationen
eines durch Tropfen beladenen turbulenten Kanalströmung durchgeführt, wobei ver-
schiedene Dichte- und Viskositätskontraste sowie zwei verschiedene Oberflächenspan-
nungen untersucht werden und die Tropfendynamik in Bezug auf Verformbarkeit, Au-
seinanderbrechen und Zusammenwachsen analysiert wird. Wir beobachten, dass die
Effekte von Dichte und Viskosität vernachlässigbar sind, wenn die Oberflächenspan-
nung ausreichend hoch ist, während sie bei reduzierter Oberflächenspannung sig-
nifikanter werden. In letzterem Fall beeinflussen sie die Verformbarkeit der Tropfen
in entgegengesetzter Weise: Eine Erhöhung der Viskosität der Tropfen reduziert die
Verformbarkeit, während eine Erhöhung der Dichte die Verformbarkeit der Tropfen
erhöht. Insbesondere zeigt die Viskosität eine stärkere Auswirkung, die sowohl Ver-
formung als auch das Auseinanderbrechen und das Zusammenwachsen beeinflusst.
Im Gegensatz dazu verursacht die Dichte sichtbare Deformationen der Grenzfläche,
hat aber keinen Einfluss auf das Auseinanderbrechen und das Zusammenwachsen. Die
Strömungsänderungen innerhalb der Tropfen werden dann in Bezug auf die turbulente
kinetische Energie (TKE) bewertet. Wie erwartet, führt eine Erhöhung der Dichte
der Tropfen zu einer höheren internen TKE, während eine Erhöhung der Viskosität
eine starke Unterdrückung der Turbulenz und eine Reduzierung der TKE verursacht.
Die innere Strömung der Tropfen kann den Wärmeaustausch beeinflussen, der von den
Tropfen enthalten ist, und wie schnell er auf die Trägerflüssigkeit übertragen wird. Das
zweite Ziel dieser Arbeit ist es, ein besseres Verständnis dieses Phänomens im Rah-
men der passiven Skalaren Annärherung zu erreichen. Der Wärmeübergang in einer
durch Tropfen beladenen turbulenten Kanalströmung wird durch numerische Simula-
tionen untersucht, bei denen warme Tropfen in eine kalte Trägerflüssigkeit freigesetzt
werden. Es werden verschiedene Prandtl-Zahlen betrachtet, die durch Variation der
thermischen Diffusivität geändert werden, während eine konstante Impulsdiffusivität
beibehalten wird. Durch Berechnung des zeitlichen Verhaltens der durchschnittlichen
Temperaturen der Tropfen und des Trägerfluids finden wir heraus, dass eine Erhöhung
der Prandtl-Zahl den Wärmeübertragungsprozess verlangsamt. Diese Ergebnisse wer-
den durch Ableitung eines vereinfachten phänomenologischen Modells erklärt, das
zeigt, dass die zeitliche Entwicklung der durchschnittlichen Temperatur der Tropfen
selbstähnlich ist und ein universelles Verhalten durch Skalierung mit t/Pr2/3 gefun-
den werden kann. Diese Skalierung kann durch die Grenzschichttheorie erklärt werden
und ist mit früheren theoretischen/numerischen Vorhersagen konsistent. Im letzten



Teil dieser Arbeit wird die Untersuchung des Wärmeübergangs in durch Tropfen be-
ladener Turbulenz erweitert, um den Einfluss von Viskositätsunterschieden zwischen
den Fluiden auf den Wärmeübertragungsprozess zu bewerten. Bei konstanter Dichte
und thermischer Diffusivität werden zwei Viskositätskontraste betrachtet, um jeweils
die Fälle warmer Öltropfen in kaltem Wasser und warmer Wassertropfen in kaltem
Öl zu imitieren. Es wird beobachtet, dass im öligen Phasen, das viskoser ist, der
Wärmeübertrag verlangsamt wird, während im wässrigen Phasen, das weniger viskos
ist, der Wärmeübertrag beschleunigt wird. Diese Effekte balancieren sich in den bei-
den Fällen aus, wodurch eine gleichmäßige Wärmeübertragungsrate resultiert.
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1
Introduction

Turbulent multiphase flows can be found in a great number of natural phenomena, such
as ocean-atmosphere interaction, rain, clouds, waterfalls, geysers, as well as plenty of
industrial applications including food processing, spray drying, combustion engines,
nuclear reactors cooling and cavitating ship propellers. These flows are characterized
by the simultaneous presence of two or more thermodynamic phases (gas, liquid or
solid) of the same chemical component (e.g. water vapour in water or ice in water),
or by the simultaneous presence of different components, that have either the same
or a different thermodynamic phase (e.g. oil in water or air in water). The different
phases or components are immiscible, therefore pure gas-gas or solid-solid mixtures are
excluded from this category [38]. In two-phase liquid-liquid or gas-liquid systems, when
the two immiscible fluids are mixed by turbulence, polydispersed drops or bubbles are
formed. Such drops or bubbles, immersed in the continuous phase, are transported by
the turbulent flow while they continuously deform, break up and coalesce between each
other, due to their interaction with the turbulent structures. Likewise, the turbulent
flow field can be modified by the drops/bubbles dynamics (drops hereinafter, without
any loss of generality), even when their volume is very low with respect to the volume
of the carrier fluid.
Deformation, breakup and coalescence, as well as turbulence modulation, are complex
multiscale phenomena, depending on the turbulence intensity, namely on the Reynolds
number Re (the ratio of inertial forces over viscous forces), and on the turbulence
characteristics (e.g. homogeneity, isotropicity, presence of large-scale shear) [115]. In
addition, these phenomena are strongly influenced by the thermophysical properties
of the system, namely by the density, viscosity and surface tension of the two fluids.
These factors are represented in dimensionless form respectively by the density ratio
ρr (drops density over carrier fluid density), the viscosity ratio µr (drops viscosity
over carrier fluid viscosity), and the Weber number We (ratio of inertial forces over
surface tension forces). In particular, the important role of the Weber number has been
widely confirmed by many studies [89], being surface tension the main opposer to the
drop distortion driven by turbulent stresses. More recently several works showed the
relevance of density and viscosity contrasts [47, 132], even if their roles and mechanisms
still lack of a deep understanding [115].
All these factors compete between each other and have different impacts on deforma-
tion, breakup, coalescence and turbulence modifications, making them challenging to
predict and fully comprehend. For instance, one of the difficulty in understanding the
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causes of breakup and deformation resides in the fact that their occurrence potentially
depends on large-scale shear and far-field eddies, as well as on the local turbulence
around the drop [115, 159]. As in real applications turbulence is usually inhomoge-
neous and anisotropic, understanding the synergy between large scales and small local
scales in generating breakups is crucial to model and predict these events. Similarly
hard is the study of coalescence, which is intrinsically related to phenomena occurring
at very small scales, namely to the drainage and rupture of the thin film emerging when
two drops approach each other. From a numerical viewpoint, coalescence description
lacks of accuracy and would therefore imply the coupling of continuum and molecular
simulations or the use of subgrid models [149]. Together with these challenges, studies
on the impact of drops dynamics on turbulence modulation or turbulent drag reduc-
tion bring further and interesting problems. As concerns turbulence modulation, the
main questions are related to the influence of drops dynamics on the turbulent energy
spectra [54], as well as to the impact of surface tension on the energy cascade [114, 37]
and on vorticity generation [141]. Regarding turbulent drag reduction, several studies
investigated the role of bubbles deformability [157, 96, 160] and of coalescence [28],
which turned out to be important factors in reducing drag.

In many practical applications, turbulent drop-laden flows also include the presence
of heat or the presence of a further substance, that, depending on the temperature
gradient or on the concentration gradient respectively, can act as a passive scalar,
being only transported and diffused by the flow, or as an active scalar, being trans-
ported and diffused while influencing the flow itself. Some examples are flows in heat
exchangers and sprays in combustion engines [62], where heat transfer has a central
role in the operation of the device, or the transport of CO2 and oxygen in bubbly flows
produced by breaking waves, as well as the washing of pollutants from gas streams
in the scrubbing process. The main dimensionless parameter that characterizes the
study of active or passive scalars is the Prandtl number, for heat transfer problems,
or the Schmidt number, for mass transfer problems. They are defined as the ratio
of the momentum diffusivity over the thermal or mass diffusivity, respectively, and
therefore quantify the importance of the diffusion of the momentum with respect to
the diffusion of the scalar (heat or mass).

While the behaviour of passive or active scalars in turbulent single-phase flows has
been extensively analysed with experiments and simulations [83, 123], few studies
investigate the mixing of a scalar in turbulent multiphase flows. The analysis of these
flows results particularly difficult because of the presence of deformable interfaces
which alter/mediate the heat and species transport and mixing. Moreover, phase
changes like boiling, condensation [136], evaporation [39] and dissolution [76] often
occur in such liquid-liquid or gas-liquid systems, and can be possibly modulated by
the drops dynamics and by turbulence. Previous works on heat or mass transfer in
two-phase flows mostly considered isolated drops and bubbles [39, 118, 52]. Instead,
swarms of drops/bubbles have received less attention and only recently some works
on passive scalar transport and active scalars/phase change have appeared [138, 70].

The aim of this thesis is to provide a deeper understanding of the drops-drops and
drops-turbulence interaction in two-phase liquid-liquid or gas-liquid systems, with a
particular attention at the role played by density and viscosity differences in the sys-
tem. In addition, this thesis aims at investigating the evolution of a passive scalar in
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drop-laden turbulent flows, focusing on the heat transfer process between the phases.
These problems will be investigated considering a swarm of drops (or bubbles) released
in a turbulent channel flow.

The physics of turbulent dispersed multiphase flows is characterized by a wide range
of scales in space and time, from the largest scale of the problem of O(1m − 10m)
(or even higher for many environmental applications), to the molecular scale of the
interface of O(1nm). This range, which therefore spans about 9 or more orders of mag-
nitude, goes well beyond the range of scales of turbulent single-phase flows, and poses
several challenges to both experiments and simulations [8]. From a numerical point
of view, the resolution of the full range of scales appears still unfeasible, as modern
high performance computing systems can deal at most with 3-4 orders of magnitude.
Consequently, different numerical approaches have been developed in order to simulate
this type of flows as accurately as possible. The main approaches differentiate between
each other based on two criteria: the extent of resolved scales and the range of size
of the simulated drops/bubbles [149]. A good description at the nanoscopic level is
provided by molecular dynamics simulations, which properly describe the interfacial
phenomena but can only simulate very small drops (nanoscopic drops) and do not con-
sider turbulence. When turbulence is considered, instead, direct numerical simulations
(DNS) or large eddy simulations (LES) must be employed: in the former the resolved
range covers all the turbulent scales of the problem, down to the smallest one, the
Kolmogorov scale, while the latter covers all the large scales and uses subgrid models
for the small ones. These approaches can simulate larger drops but require specific
methods to describe the behaviour of the interface, which is no more resolved down
to the molecular level, but rather approximated as modelled at larger scales. A sim-
plification can be introduced in DNS/LES approaches when the dispersed phase has a
characteristic size which is below the Kolmogorov scale, namely drops can be assumed
as point particles and Lagrangian Particle Tracking methods can be used. If drops are
larger than the Kolmogorov scale, the motion and deformation of the interface caused
by turbulence becomes non-negligible, therefore interface-resolved simulation methods
must be employed to properly investigate the problem. The term ”interface-resolved”
means here that the interface motion and deformation are simulated, as drops are not
pointwise, although they are resolved at the mesoscopic and macroscopic scales [149].
The methods used for the interface description in interface-resolved simulations can be
categorized in interface tracking methods and interface capturing methods. In inter-
face tracking methods the interface is defined instantaneously by a set of Lagrangian
markers which are advected by the flow. Examples include the Front-Tracking method
[155] and the Immersed boundary method [84]. Interface capturing methods, instead,
uses an Eulerian concentration field to mark the different phases, thus the interface is
defined as the iso-level of this concentration field. Among these, well known methods
are Volume of Fluid [74], Level Set [117], Lattice Boltzmann [33] and Phase Field
method [25, 26, 27].

Overall, interface-resolved DNS can be considered the most accurate numerical tool to
investigate turbulent flows with large and deformable drops. Clearly, the high fidelity
of such simulations is obtained at the expense of a higher computational power with
respect to LES or Lagrangian Particle Tracking approaches. Moreover, while the cost
of a single-phase DNS is exclusively established by the smallest scales of turbulence
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(Kolmogorov scale), in the multiphase case the additional cost of the interface descrip-
tion must be considered. It is then essential to mention that when the mixing of an
active/passive scalar is taken into account, the cost of a DNS depends also on another
scale: the Batchelor scale. This scale represents the smallest scale of the scalar field
and becomes smaller than the Kolmogorov scale whenever Prandtl/Schmidt numbers
larger than unity are considered, thus implying in the latter cases the necessity of a
finer grid. In this thesis, interface-resolved DNS will be used for the investigation of
drop/bubble-laden turbulent flows, employing a Phase Field method for the descrip-
tion of the interface.

Thesis outline

This thesis is organised as follows:

• Chap. 2: Methodology.

The governing equations for the resolution of the flow field are introduced, in
the context of the one-fluid formulation. Then, following a brief overview of the
methods for the interface modelling, the Phase Field method is illustrated. After
the energy equation for the description of the temperature field is presented, a di-
mensional analysis of all the equations is performed. Finally, the space and time
discretization of the equations, the numerical method and its implementation
are reported.

• Chap. 3: Density, viscosity and surface tension effects on drops and
bubbles in turbulence.

The dynamics of a swarm of large and deformable drops or bubbles in a tur-
bulent channel flow is investigated, focusing on the role of density and viscosity
differences, as well as surface tension. The impact of these factors is observed
in terms of topological (breakage/coalescence) and morphological modifications
of the dispersed phase. The effects induced by the drops/bubbles properties on
the turbulent flow are also evaluated in terms of turbulent kinetic energy.

• Chap. 4: Heat transfer in drop-laden turbulence.

The heat transfer by large and deformable drops in a turbulent channel flow is
studied, with a particular attention on the role played by thermal diffusivity.
Specifically, the heat transfer by warm drops to a cold carrier fluid is analysed,
computing the evolution in time of the average temperature of each phase and
developing a simplified phenomenological model of the process. A self-similarity
is found in the time behaviour of the average temperature and of the heat transfer
coefficient and universal scalings are introduced.
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• Chap. 5: Viscosity influence on heat transfer in drop-laden turbulence.

The influence of viscosity on the heat transfer by large and deformable drops in
a turbulent channel flow is investigated. Two viscosity ratios are chosen in order
to mimic the cases of water drops in oil and oil drops in water. The temperature
and velocity fields are discussed qualitatively, and the time evolution of the heat
transfer between the phases is compared in the two cases.
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2
Methodology

This chapter presents the mathematical description and the numerical approach used
for the simulation of turbulent dispersed multiphase flows. The first section, 2.1, il-
lustrates the flow field description, with the treatment of surface tension forces and
non-matched thermophysical properties. The second section, 2.2, briefly reviews some
of the most common methods for the interface modelling, analysing in details the
Phase Field Method, while the third section, 2.3, presents the energy equation gov-
erning the heat transfer phenomenon. Once all the equations have been defined, the
dimensionless equations are derived in section 2.4, and their numerical discretization
and solution algorithms are illustrated in section 2.5. Finally, some details on the code
implementation and validation are given in section 2.6.

2.1 Flow field

Multiphase flows are characterized by the presence of multiple fluids with different
properties, separated by a moving and deforming boundary, the interface. The de-
scription of the flow field, therefore, must take into account for two additional aspects
with respect to single-phase flows: the necessity to track the boundaries separating
the phases, where surface tension forces are applied, and the possibility to handle
abrupt changes of density and viscosity [128]. Many methods have been developed for
direct numerical simulations of such flows. Among them we can distinguish three cat-
egories: the one-fluid approach, the body-fitted grid methods and the sharp-interface
methods. The one-fluid approach consists in solving one single set of equations for all
phases, usually on a structured grid. The boundary conditions are thus imposed at
the boundaries of the entire domain, and no jump conditions are used at the inter-
face. On the other hand, a term must be introduced in the Navier-Stokes equations
to include the effect of the surface tension forces, and discontinuities of the properties
(like density and viscosity) must be also properly included. The use of a one-fluid
formulation therefore imply the presence of discontinuities in the flow field, which for
numerical reasons must be smoothed on a thin layer. In the body-fitted grid methods,
instead, multiple sets of equations are solved, one for each phase, and appropriate
jump conditions are imposed at the interface, coupling the different sets of equations.
These methods can well represent jumps of properties and surface tension forces (since
the interface constitutes the boundary of the phases domains), but they must exploit
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unstructured grids that conform to the interface shape. Consequently, they improve
the description of complex interfacial phenomena but require higher computational
sources. The third category of methods, sharp-interface methods, has then emerged
in an attempt to combine the computational advantages of the one-fluid approach
with the accuracy of the body-fitted grid methods. Indeed, these methods rely on the
solution of multiple sets of equations in separated domains, allowing the explicit impo-
sition of jump conditions at the interface, as well as the resolution of the equations on
a structured grid. This category appears promising for its ability to handling discon-
tinuities at the interface, while using still uniform structured grids that benefit from a
high computational efficiency. On the other hand, some issues limit their application
[44], and their computational cost can be much higher with respect to the one-fluid
approach. The one-fluid formulation, despite being the oldest among all numerical
formulations for multiphase flows, remains the most widely used for its simplicity and
enormous power at the same time [128]. In the following, the one-fluid approach, that
has been chosen for the present work, will be explained in more detail.

2.1.1 One-fluid formulation

In the one-fluid formulation the conservation of mass, momentum and energy are writ-
ten for the whole flow field, regardless of the number of phases present in the problem.
Here we restrict to the case of a two-phase incompressible flow. For incompressible
two-phase flows the mass conservation equation (or continuity equation) is the same
as in single-phase flows [64, 128],

∇ · u = 0 , (2.1)

being u = (u, v, w) the velocity field. This equation indicates that the velocity is
divergence-free and is valid also when the phases have different densities.1

The momentum conservation is expressed by the Navier-Stokes equations, which are
modified with respect to the single-phase case, in order to take into account for the
surface tension forces and for the discontinuities of density and viscosity. In the most
general case for a two-phase incompressible flow they can be written as

ρ(φ)

�
∂u

∂t
+ u · ∇u

�
= −∇p+∇ · [µ(φ)(∇u+∇uT )] + Fσ , (2.2)

where p is the pressure, φ the phase field variable, ρ(φ) and µ(φ) the local density
and dynamic viscosity, respectively, and Fσ the surface tension forces. The term Fσ

introduces the surface tension forces at the boundaries between the phases, and is in
general expressed by means of δ functions. The phase field variable φ is the marker
function that identifies the location of the different phases. This marker function is
advected by the flow and its behaviour can be modelled with several different meth-
ods. Among these, some of the most common methods will be examined in section
2.5, including the Phase Field method that will be used in this work. The density and
viscosity discontinuities, which are located at the interface between the phases, can be

1Equation 2.1, however, does not hold when phase changes occur in the system [17].
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therefore introduced considering a dependency on the local value of the marker func-
tion. The term Fσ, here left implicit, as well as the relations between density/viscosity
and the phase field, ρ(φ) and µ(φ), will be treated in the following paragraphs. For
the energy conservation, the passive scalar approximation will be adopted, meaning
that the heat transfer does not have any feedback on the mass and momentum con-
servation equations. Within this framework, the energy equation is decoupled from
the continuity and Navier-Stokes equations, therefore it will be analysed separately in
section 2.3.

Treatment of surface tension forces

Liquid-gas or liquid-liquid interfaces are characterized by an abrupt change of molec-
ular composition. Since fluid molecules near or at the interface experience uneven
molecular forces of attraction, interfaces are in a state of tension. The microscopic
forces applied at the interface are called surface tension forces (or interfacial tension
forces). They act in the normal and tangential directions and, following [20, 78, 126],
can be expressed as

Fσ = −Kσ(xs)δ(xs)n� �� �
fn

+∇sσ(xs)δ(xs)� �� �
ft

, (2.3)

with K the interface mean curvature, σ the surface tension, n the interface normal
versor, xs the interface position and δ a surface Dirac δ-function. The normal com-
ponent fn, that is proportional to the curvature and to the surface tension, is always
present, while the tangential component ft is present whenever the value of surface
tension varies along the interface, creating surface tension gradients. Such gradients
can be induced by temperature variations or by the presence of a surfactant in the
mixture. The δ-function is non-zero only at the interface and allows the imposition
of the forces exclusively along the interface. When the equations are discretized, this
function must be approximated along with the rest of the equations; this can be done
with different methods [126]. Using the Phase Field method, the following relations
can be obtained [150],

δ =
3|∇φ|2ξ√
8(β/α)

n =
∇φ

|∇φ| K = ∇ · n , (2.4)

where ξ =
�
κ/β is a measure of the interfacial layer thickness, and β and α are two

positive constants of the model [25, 77]. The expression of K can be rewritten as

K = ∇ · ∇φ

|∇φ| =
∇2φ

|∇φ| −
1

|∇φ|2∇φ · ∇(|∇φ|) , (2.5)

using the properties of the divergence operator. The surface tension can depend on
the presence of surfactants or temperature gradients. In these cases, an equation of
state (EOS) can be used to express the surface tension dependency on the surfactant
concentration ψ,

σ(ψ) = σ0(1 + βs ln(1− ψ)) , (2.6)
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or on the temperature θ,

σ(θ) = σ0 − βθ(θ − θ0) . (2.7)

Equation 2.6 is the Langmuir EOS [1, 93], where σ0 is the surface tension for the clean
interface and βs is the elasticity number, which represents the strength of the surfac-
tant. Eq. 2.7 assumes a linear dependence of σ on θ, with θ0 the reference temperature
and βθ the surface tension coefficient, defined as βθ = −∂σ/∂θ|θ=θ0 . Restricting to
the case of a clean surface (without surfactants) and of small temperature differences,
the expression of σ can be simplified as σ = σ0. Combining Eq. 2.3 with Eq. 2.4 and
Eq. 2.5, we obtain

fn = − 3σ0ξ√
8(β/α)

∇2φ∇φ . (2.8)

Alternatively, considering the procedure proposed by [86], the following formulation
can be obtained:

fn =
3σ0ξ√
8(β/α)

∇ · τc , (2.9)

where τc is the Korteweg tensor and is defined as

τc = (|∇φ|2I−∇φ⊗∇φ) . (2.10)

The two formulations of Eq. 2.8 and Eq. 2.9 are equivalent; in this work the latter
formulation will be adopted.
If σ is constant (σ = σ0), as previously assumed, there are no surface tension gradients
and ∇sσ = 0. Hence, the tangential component ft becomes null and Fσ reduces to

Fσ = fn =
3σ0ξ√
8(β/α)

∇ · τc . (2.11)

Treatment of non-matched properties

In two-phase flows, thermophysical properties that are dependent on the phases, like
density and viscosity, can be defined as proportional to the marker function. Specif-
ically, in the Phase Field method they are proportional to the phase field variable
φ. Following the profile of φ (shown and discussed in section 2.2.2), they undergo
a smooth transition across the interface. This strategy allow to avoid sharp jumps
in the flow field that introduce complications from a numerical viewpoint. Here, the
treatment of density and viscosity differences is examined, even if this treatment could
be employed also for other properties, as for example the thermal diffusivity α. The
density and viscosity ratios between the two phases are respectively defined as

ρr =
ρd
ρc

, µr =
µd

µc
(2.12)

with the subscripts d associated to the dispersed phase properties and c to the carrier
phase properties. In Fig. 2.1 the profile of a generic thermo-physical property is
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Figure 2.1 – Profile of a generic thermo-physical property γ across the interface (vertical dashed
line) for two different property ratios γr. The interfacial layer (gray area) identifies the region in
which the phase field spans ±96% of its bulk value.

shown. The variable γ can represent density or viscosity. The interface is also reported,
identified by a dashed black vertical line, while the interfacial layer (±96% of the phase
field bulk value) is shown with a gray rectangle. The black solid line and the red solid
line show the behaviour of the generic property when the property ratio is greater than
one, γr > 1, and less than one, γr < 1, respectively. Since the property of the carrier
phase is taken as a reference, the dimensionless thermo-physical property is exactly
equal to 1 in the bulk of the carrier phase, while it is equal to the property ratio, γr,
in the bulk of the dispersed phase.

Thermo-physical are expressed as follows

ρ(φ) = ρc

�
1 +

ρr − 1

2

�
φ�
β/α

+ 1

��
, (2.13)

µ(φ) = µc

�
1 +

µr − 1

2

�
φ�
β/α

+ 1

��
, (2.14)

Since they are defined as a function of the phase field variable, their value never
reduces below zero (value which would be unphysical for both density and viscosity)
if the phase-field does not overshoot/undershoot the equilibrium profile.
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2.2 Interface modelling

In the context of the one-fluid approach, where the governing equations are solved on a
fixed grid, the different fluids and the interface must be identified and tracked in space
and time [128]. The numerical methods used for this purposes can be divided in two
categories: interface tracking methods and interface capturing methods. In interface
tracking methods, a set of marker points are used to explicitly track the location
of the interface, while in interface capturing methods the interface is defined with
a prescribed value of a marker function or phase-concentration field. Each method
exploits a specific equation to evolve in time and space the marker points or the
marker function. In the following, some of these methods will be examined. A more
comprehensive description will be given then for the Phase Field method, that has
been chosen for the present work.

2.2.1 Interface tracking

Front tracking

The most popular method among interface tracking methods is the Front Tracking
(FT) method, developed by Unverdi and Tryggvason [155] and adopted in several
later works [21, 153]. This method defines the interface by a set of Lagrangian marker
points which are advected by the flow field according to

∂xi

∂t
= ui , (2.15)

with xi the position of the i-th marker point, and ui the local flow velocity, which needs
to be interpolated from the Eulerian grid of the flow field to the marker point position.
The interface can be then reconstructed by connecting the marker points. When
the interface shrinks or expands, the set of points can be also updated run-time by
adding or removing points, in order to achieve an adequate resolution of the interface
and to avoid interface wiggles much smaller than the grid size. When the phase is
dispersed, the interface is separated in different closed tracts (i.e. one for each drop),
which must be described by multiple sets of connected marker points. The different
sets of points can approach each other and interact, causing breakage or coalescence
phenomena. These topological modifications of the interface, unlike the morphological
modifications, are not handled automatically by the method and must be described
by including additional ad hoc models [100, 101, 153]. After the interface has been
reconstructed, the interface curvature can be calculated and, consequently, surface
tension forces can be obtained. These are computed at the marker point positions and
therefore have to be redistributed on the Eulerian grid of the flow field by means of
a smoothing operation. This method therefore requires continuous interpolation from
the Eulerian grid to the Lagrangian grid to get the advection velocity, and from the
Lagrangian grid to the Eulerian grid to obtain the distributed surface tension forces.
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2.2.2 Interface capturing

Volume of fluid

The Volume of Fluid (VoF) method belongs to the category of interface capturing
methods and was first developed by Hirt and Nichols in 1979 [74] as a flexible and
efficient method to simulate problems with complex free boundaries. The phases are
identified by an Eulerian marker function f , which is defined in the entire domain and
evolves according to the advection equation

∂f

∂t
+ u · ∇f = 0 , (2.16)

where u is the velocity field. In particular, f represents the concentration of one of
the phases and is

f =

�
f = 0 Phase 1

f = 1 Phase 2 .
(2.17)

Since the domain is discretized, the cell value of the local concentration, fmix, is
defined as the average of the concentration over the volume of the computational cell:

fmix =
1

Vi

�
V

f(x, y, z)dV . (2.18)

The marker function is initialized as a Heaviside function, which, being a step function,
requires specific advection algorithms in order to avoid numerical diffusion over time
[128]. These algorithms exploit the value of fmix in the neighbouring computational
cells to properly reconstruct the shape of the interface front. Based of the methods
used for the interface reconstruction, the VoF methods can be further divided in geo-
metric VoF and algebraic VoF methods. As all the other interface capturing methods,
topological changes like breakages and coalescences are automatically handled by this
method. It must be mentioned, however, that the reconstruction of the interface is
not based on physical arguments and is thus not exact. Consequently, breakages and
coalescences may not be properly resolved. An important advantage of the Volume of
Fluid method is the exact conservation of the mass of each phase.

Level set

Another method among interface capturing methods is the Level Set (LS) method
[60], that has been developed as an alternative to the SLIC-based (simple line in-
terface calculation) VoF methods. This method identifies the phases with a smooth
marker function φ, where the interface is at the zero-level of the marker function.
The smoothness of the marker function allows for a highly accurate calculation of
the interface normals and curvature, and consequently for an accurate computation
of surface tension forces. The advection equation that describes the evolution of the
marker function is

∂φ

∂t
+ u · ∇φ = 0 , (2.19)
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with u the velocity field. In the classic level-set approach the function φ is defined
as the signed-distance from the interface. Because of numerical diffusion, the marker
function may lose its signed-distance property. Therefore, reinitialization operations
of φ and specific advection schemes are used to maintain this property. The reinitial-
ization of φ usually causes mass leakages among the two phases. This issue can be
mitigated by refining the grid, even though mass conservation cannot be granted in
general with this formulation. In order to improve the mass conservation, other formu-
lations of this method have been introduced, such as the conservative level-set (CSL)
or the coupled level-set and volume of fluid (CLS-VoF). More specifically, the CSL ap-
proach adopts a hyperbolic tangent function instead of the signed-distance function,
and imposes the mass conservation of each phase in the reinitialization process; the
CLS-VoF approach combines the accuracy of the normals and curvature computation
offered by the level-set, with the mass conservation property of the volume of fluid.
All level-set approaches, similarly to all interface-capturing methods, are characterized
by the implicit description of breakage and coalescence phenomena, although they are
only based on the local grid resolution, without physical considerations.

Phase field method

Classic formulation The Phase Field method was initially developed by Cahn and
Hilliard for the description of critical and near critical mixtures [25, 26, 27] and applied
in particular to phase separation by spinodal decomposition [23, 24]. The method was
later extended to incompressible multiphase flows far from critical conditions [77],
by introducing an advection term in the Cahn-Hilliard equation and coupling the
interface description with the Navier-Stokes equations. In the Phase Field method,
that belongs to the interface capturing methods, the marker function identifying the
phases is the phase field, φ. The phase field corresponds to the relative concentration
of the phases, it has a constant value in the bulk of each phase and follows a smooth
variation across the interface. The evolution of the phase field variable is regulated by
an advection-diffusion equation,

∂φ

∂t
+ u · ∇φ = −∇ · J , (2.20)

which is the Cahn-Hilliard equation modified including an advection term, being u
the velocity field. The term on the right-hand side of Eq. 2.20 is a diffusive term,
where J = −Mφ∇µφ is a phase field flux, responsible for driving the system towards
its equilibrium following the chemical potential µφ. The coefficient Mφ is the mobility
or Onsager coefficient, that controls the interface relaxation time and is set constant
in our case [156]. Inserting the phase field flux definition in Eq. 2.20 we obtain

∂φ

∂t
+ u · ∇φ = ∇ · (Mφ∇µφ) . (2.21)

The chemical potential µφ is defined as the variational derivative of a Ginzburg-Landau
free energy functional F [φ,∇φ] [156, 77]:

µφ =
δF [φ,∇φ]

δφ
. (2.22)
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In the case of a system with two immiscible fluids, the free energy functional is com-
posed by two contributions. The first one, f0, accounts for the bulk free energy of
the system, that represents the tendency of the system to separate in two pure stable
phases. The second one, fmix, accounts for the mixing free energy, namely the energy
stored in the interfacial layer, that, for liquid-liquid or gas-liquid systems, corresponds
to the surface tension. The functional can be thus expressed as

F [φ,∇φ] =

�
Ω

(f0(φ) + fmix(∇φ))dΩ , (2.23)

being Ω the considered domain. In particular, f0 is a double well potential and is
defined as

f0(φ) =
α

4

�
φ−

�
β

α

�2�
φ+

�
β

α

�2

(2.24)

where α and β are two positive constants that define the bulk properties of the two
fluids. Its behaviour is reported in Fig. 2.2a: the two minima correspond to the pure
phases, φ = ±�

β/α. The mixing term fmix is proportional to the gradient of the
phase field,

fmix(∇φ) =
κ

2
|∇φ|2 (2.25)

with κ a positive constant representing the magnitude of the surface tension. As shown
in Fig. 2.2b, fmix has a maximum at the interface and is zero in the bulk of the two
phases. By taking the variational derivative of the free energy functional, the chemical
potential is obtained:

µφ =
δF [φ,∇φ]

δφ
= αφ3 − βφ− κ∇2φ . (2.26)

At the equilibrium the chemical potential is constant in the entire domain. Therefore,
the equilibrium profile of the phase field can be derived by imposing ∇µφ = 0. For a
flat interface, the phase field equilibrium profile results in

φ =

�
β

α
tanh

�
x√
2ξ

�
, (2.27)

where ξ =
�
κ/β is a measure of the interfacial layer thickness and s is a coordinate

normal to the interface. The behaviour of the equilibrium profile is illustrated in Fig.
2.2b (dashed line): it can be noticed that the phase field is constant in the bulk of
the phases (s → ±∞) and, following the hyperbolic tangent profile, has a smooth
transition across the interface, whose thickness is proportional to the parameter ξ.
The surface tension can be also related to the functional F by means of the expression

σ =
βκ

α

� +∞

−∞
F [φ,∇φ]dx , (2.28)
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Figure 2.2 – Double well potential f0 (panel a) and mixing free energy fmix (panel b). The
interface (iso-contour φ = 0) is marked with a dashed line.

which is enforcing that the integral of the system free energy density across the in-
terface must be equal to the surface tension. Using the equilibrium profile in the
integration, the following relation is obtained:

σ =
2
√
2

3

βκ

αξ
=

2
√
2

3

�
β3κ

α
. (2.29)

The phase field method is an exact approach for critical and near-critical mixtures,
where the interface is actually a layer of finite thickness. For multi-fluid systems
far-from-critical conditions, the thickness of the interface becomes extremely small
(few molecular size, for temperature sufficiently below the critical one [103, 102]),
therefore the thickness of the transition layer is usually much bigger than the real one,
considering that the grid resolution cannot reach the order of the molecular size. For
this kind of systems, the method thus constitutes an approximation, which gradually
reduces as the grid is refined.
The advantages of the phase field method are the capability to automatically han-
dle topological changes of the interface (breakups and coalescences) and to provide
an accurate description of the interface as well as a precise calculation of the inter-
facial curvature. Indeed, there is no need for reinitialization operations, and specific
advection schemes are not necessary to maintain the marker function profile. The
disadvantages of the phase field method are shrinkage, coarsening and misrepresenta-
tion of surface tension forces and thermo-physical properties. Shrinkage phenomena
occur when the phase field is perturbed from its equilibrium profile: this induces the
tendency to restore the correct profile and causes mass leakages between the phases.
As a consequence, the total mass of the system is conserved, while the mass of each
phase is not necessarily conserved. Coarsening phenomena, instead, are due to the
energy minimization criterion, which is intrinsic to the method: larger domains en-
closed by an interface tend to grow at the expense of smaller ones, in order to reduce
the interfacial energy. Besides shrinkage, phase field deviations from the equilibrium
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profile can also cause inaccuracies in the calculation of surface tension forces and mis-
representation of thermo-physical properties, being these quantities a function of the
phase field. Undershoots or overshoots of the equilibrium profile can cause unphysical
values of surface forces, and unphysical/negative values of density and viscosity. These
limitations have been treated in several studies by introducing modified formulations
of the method [94, 147, 168], such as the profile-corrected phase field method and the
flux-corrected phase field method. In this work the profile-corrected formulation will
be used. A brief explanation of this formulation will be given in the following section.

Mass-conservation-improved Phase Field method The profile-corrected for-
mulation of the phase field method differs from the classic formulation only by the
introduction of a term in the Cahn-Hilliard equation, which is called penalty flux.
The penalty flux is proportional to the magnitude of the perturbation of the equilib-
rium profile, and it ams at forcing the interfacial profile towards its correct behaviour.
The modified Cahn-Hilliard equation is thus

∂φ

∂t
+ u · ∇φ = Mφ∇2µφ + fp , (2.30)

with fp the penalty flux, considering a constant mobility parameter Mφ (which can be
therefore taken out of the divergence operator). An explicit definition of the penalty
flux will be given in dimensionless form in section 2.4, after the dimensional analysis
will be performed.

2.3 Energy equation

Following the one fluid formulation, as introduced in section 2.1.1, the energy con-
servation equation of a two-fluid system can be written as a single equation for the
entire domain, considering, if necessary, property variations between the fluids. For a
two-fluid incompressible system the energy equation can be written as

∂θ

∂t
+ u · ∇θ = ∇ · [α(φ)∇θ] , (2.31)

where θ is the temperature and α(φ) is the local thermal diffusivity, defined as

α(φ) =
k(φ)

ρ(φ)cp(φ)
, (2.32)

being k(φ) and cp(φ) the local thermal conductivity and local specific heat respectively.
In this work we study the heat transfer considering small temperature differences
associated to negligible density variations. As a consequence, buoyancy effects can be
ignored and temperature becomes simply a scalar, which is transported and diffused
in the system without having any influence on the flow field. Moreover we consider
two fluids with the same thermal diffusivity, with α(φ) = α. In this case, Eq 2.33 can
be simplified as

∂θ

∂t
+ u · ∇θ = α∇2θ . (2.33)
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Figure 2.3 – Geometry of the simulation domain. The channel is bounded by solid walls at z± h
and has dimensions Lx in the streamwise direction, Ly in the spanwise direction and 2h in the
wall-normal direction. The reference system is located at the channel midplane.

2.4 Dimensional analysis

The governing equations have been presented so far in dimensional form. In this section
the corresponding dimensionless equations will be derived; all dimensionless variables
will be indicated with the superscript −. All simulations presented in this work are
performed using the canonical geometrical configuration of the three-dimensional plane
channel. A sketch of the channel with the used reference system is reported in Fig. 2.3.
The two solid walls bounding the domain are located at z = ±h, with h the channel
half height. The channel half height h is chosen as a characteristic length scale of
the problem, while the friction velocity uτ is chosen as a characteristic velocity, since
a pressure-driven flow, or Poiseuille flow, is considered (while the wall velocity uw

is usually adopted for a shear-driven flow, or Couette flow). The friction velocity
is defined as uτ =

�
τw/ρc, where τw is the shear stress at the wall and ρc is the

reference density. The characteristic time scale can be derived from the length and
velocity scale, thus we obtain

x− =
x

h
u− =

u

uτ
t− =

tuτ

h
, (2.34)

where x = (x, y, z) is the position vector, u = (u, v, w) is the velocity vector and t is
the time. The phase field value in the bulk of the phases is used to get a dimensionless
phase field,

φ− =
φ�
β/α

, (2.35)

while using the carrier fluid density and the friction velocity we can get the dimen-
sionless pressure

p− =
p

ρcu2
τ

. (2.36)
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The dimensionless temperature is then expressed as

θ− =
θ − θr
Δθ

(2.37)

where θr is the reference temperature, which is chosen as θr = θc,0, being θc,0 the
initial temperature of the carrier fluid.
The carrier fluid properties are taken as a reference to get dimensionless thermo-
physical properties. Dimensionless density, viscosity and thermal diffusivity can be
thus written as

ρ−(φ−) =
ρ(φ)

ρc
= 1 +

ρr − 1

2
(φ− + 1) , (2.38)

µ−(φ−) =
µ(φ)

µc
= 1 +

µr − 1

2
(φ− + 1) , (2.39)

α−(φ−) =
α(φ)

αc
= 1 +

αr − 1

2
(φ− + 1) . (2.40)

Recalling the expression of the surface forces term, Eq. 2.11, and the definition of the
Korteweg tensor, Eq. 2.10, the dimensionless surface tension forces can be written,
and multiplying by h/(ρcu

2
τ ) the following term is obtained

h

ρcu2
τ

Fσ
− =

h

ρcu2
τ

3σξ√
8(β/α)

β/α

h3
∇ · τ−c =

3√
8

Ch

We
∇ · τ−c , (2.41)

being τc = β/α
h2 τ−c . The superscript has here been dropped from ∇−, and will be

dropped also in the following. Two dimensionless quantities have been introduced
in Eq. 2.41: the Weber number, We, that is the ratio of inertial forces over surface
tension forces, and the Cahn number, Ch, that is the dimensionless interface thickness.
Their definition is thus

We =
ρcu

2
τh

σ
Ch =

ξ

h
. (2.42)

The continuity and Navier-Stokes equations in dimensionless form are therefore

∇ · u− = 0 (2.43)

ρ−(φ−)
�
∂u−

∂t−
+ u− · ∇u−

�
= −∇p− +

1

Reτ
∇ · [µ−(φ−)(∇u− +∇u−T

)]+

+
3√
8

Ch

We
∇ · τ−c .

(2.44)

Another dimensionless quantity has been introduced in the dimensionless Navier-
Stokes equations, namely the shear Reynolds number, which is defined as

Reτ =
ρcuτh

µc
. (2.45)
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The energy equation in dimensionless form is

∂θ−

∂t−
+ u− · ∇θ− =

1

PrReτ
∇ · [α−(φ−)∇θ−] . (2.46)

The dimensionless groups in Eq. 2.46 are the shear Reynolds number, previously
defined, and the Prandtl number, Pr, which is the ratio of the momentum diffusivity
(or kinematic viscosity) over the thermal diffusivity

Pr =
νc
αc

. (2.47)

Expressing the chemical potential in dimensionless form,

µφ =

�
β3

α
µ−
φ =

�
β3

α
(φ−3 − φ− − Ch2∇2φ−) , (2.48)

and defining the dimensionless Péclet number for the phase field,

Peφ =
uτh

Mφβ
, (2.49)

we obtain the modified Cahn-Hilliard equation (Eq. 2.20) in dimensionless form:

∂φ−

∂t−
+ u− · ∇φ− =

1

Peφ
∇2µ−

φ + f−
p . (2.50)

The penalty flux is defined as

f−
p =

λ

Peφ

�
∇2φ− 1√

2Ch
∇ ·

�
(1− φ2)

∇φ

|∇φ|

��
, (2.51)

where λ is a positive constant parameter, that can be expressed as proposed by Li et
al. [94] with the scaling λ = α/Ch. The parameter α is here an arbitrary positive
constant, related to the importance of the correction term. In the study of Soligo et
al. [147], different values of the parameter α have been tested and an optimum value
has been identified, in order to mitigate the shrinkage phenomena without affecting
the topological changes of the interface.
The phase field equilibrium profile can also be expressed in dimensionless form

φ− = tanh

�
s−√
2Ch

�
, (2.52)

where s− is a dimensionless coordinate normal to the interface. The scaling system here
used for the non-dimensionalization is the outer units system; the wall units (or inner
units) system, used to treat turbulence statistics, is briefly illustrated in Appendix A.
In the following sections and chapters the outer units notation will be dropped for ease
of reading. All the dimensionless governing equations, and thermophysical properties
expressions are reported again below (respectively continuity, Navier-Stokes, energy
transport, phase field transport, density, viscosity and thermal diffusivity):
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∇ · u = 0 ; (2.53)

ρ(φ)

�
∂u

∂t
+ u · ∇u

�
= −∇p+

1

Reτ
∇ · [µ(φ)(∇u+∇uT )] +

3√
8

Ch

We
∇ · τc ;

(2.54)

∂θ

∂t
+ u · ∇θ =

1

PrReτ
∇ · [α(φ)∇θ] ; (2.55)

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2µφ + fp ; (2.56)

ρ(φ) = 1 +
ρr − 1

2
(φ+ 1) ; (2.57)

µ(φ) = 1 +
µr − 1

2
(φ+ 1) ; (2.58)

α(φ) = 1 +
αr − 1

2
(φ+ 1) . (2.59)

As concerns the choice of the dimensionless numbers, it must be pointed out that the
shear Reynolds, the Weber and the Prandtl numbers are phenomenological parameters
that define the physics of the specific problem analysed. The Cahn and Péclet num-
bers, instead, are numerical parameters that characterize the Phase Field method.
In particular, the Cahn number, which is the dimensionless measure of the transi-
tion layer thickness, is set to the minimum possible value that satisfies the following
requirement: there must be at least five grid points across the interface. As a con-
sequence, the choice of this parameter depends on the available grid resolution. The
Péclet number is set based on the Cahn number, according to the scaling Peφ = 1/Ch
[103, 147, 167].

2.5 Numerical method

In this section, the numerical procedure for the solution of the dimensionless system of
equations is illustrated. A velocity-vorticity formulation is adopted to solve the flow
field. This formulation consists in replacing the Navier-Stokes equations by a system
composed of a second-order equation for the wall-normal component of the vorticity, a
fourth order equation for the wall normal component of the velocity and the definition
of the wall-normal vorticity. This approach allows to avoid the time-consuming Poisson
solver for the calculation of the pressure field, as the pressure term cancels out from
the equations. The Cahn-Hilliard equation is solved in its original form, although a
splitting operation is used for the Laplace operator, in order to improve the stability of
the numerical scheme [156]. The system of governing equations is now rewritten with
a more compact notation: all non-linear terms are collected in single terms, S, Sφ and
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Sθ (for the Navier-Stokes, energy and phase field transport equations respectively), in
order to separate them from the linear terms. Hence, the system becomes

∇ · u = 0 , (2.60)

∂u

∂t
= S−∇p� +

1

Reτ
∇2u , (2.61)

∂θ

∂t
= Sθ +

1

PrReτ
∇2θ , (2.62)

∂φ

∂t
= Sφ +

s

Peφ
∇2φ− Ch2

Peφ
∇4φ . (2.63)

The pressure term has been decomposed in a mean and a fluctuating component,
p = p+ p�; the pressure gradient thus results in the sum of a constant mean pressure
gradient, Π, and a fluctuating pressure gradient, ∇p� [144]. The splitting coefficient,
which appears in the phase-field transport equation, is defined as

s =

�
4PeφCh2

Δt
, (2.64)

with Δt the integration step. The non-linear terms can be thus written as follows:

S =

Sx

Sy

Sz

 = −u · ∇u− ρr − 1

2
(φ+ 1)

�
∂u

∂t
+ u · ∇u

�
−Π+

+
1

Reτ
∇ ·

�
µr − 1

2
(φ+ 1)(∇u+∇uT )

�
+

3√
8

Ch

We
∇ · τc

(2.65)

Sθ = −u · ∇θ +
1

PrReτ
∇ ·

�
αr − 1

2
(φ+ 1)∇θ

�
(2.66)

Sφ = −u · ∇φ+
1

Peφ
[∇2φ3 − (1 + s)∇2φ] + fp (2.67)

The velocity-vorticity formulation, used for the resolution of the Navier-Stokes equa-
tions, is now introduced. First, a transport equation for the vorticity ω is obtained by
taking the curl of the Navier-Stokes equations:

∂ω

∂t
= ∇× S+

1

Reτ
∇2ω . (2.68)

Second, a fourth-order equation for the velocity is obtained by taking the curl of Eq.
2.68 (corresponding to taking twice the curl of the Navier-Stokes equations).

∂(∇2u)

∂t
= ∇2S−∇(∇ · S) + 1

Reτ
∇4u . (2.69)
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Both Eq. 2.68 and Eq. 2.69 are then projected on the wall-normal direction. The
final system thus results as follows,

����������������������������������������

∇ · u = 0

ω · nz = (∇× u) · nz

∂(∇2u)

∂t
· nz =

�
∇2S−∇(∇ · S) + 1

Reτ
∇4u · nz

�
∂ω

∂t
· nz =

�
∇× S+

1

Reτ
∇2ω

�
· nz

∂θ

∂t
= Sθ +

1

PrReτ
∇2θ

∂φ

∂t
= Sφ +

s

Peφ
∇2φ− Ch2

Peφ
∇4φ

(2.70)

where the definition of the wall-normal vorticity has been additionally included. The
symbol nz represents the wall-normal unit vector. The obtained system is solved for
the velocity components u, v, w, the wall-normal component of the vorticity ωz, the
phase field φ and the temperature θ. Once the velocity field is obtained, the fluctuating
pressure p� can be calculated by applying the divergence operator to the original
Navier-Stokes equations, Eq. 2.61, which therefore reduces to a Poisson equation, as
follows:

∇2p� = ∇ · S . (2.71)

2.5.1 Time discretization

An IMplicit-EXplicit (IMEX) scheme is used for the time-advancement of the system of
equations: the non-linear terms S, Sθ and Sφ are integrated explicitly with a two-step
Adams-Bashforth scheme, while all the other linear terms are integrated implicitly. A
Crank-Nicolson scheme is used for the linear terms of the equations for the second-
order wall-normal vorticity equation and for the fourth-order wall-normal velocity
equation. An implicit Euler scheme is used instead for the linear terms of the energy
equation and the Cahn-Hilliard equation: this scheme allows to better damp the high-
frequency oscillations that may arise from the steep gradients associated to the phase-
field [156, 119]. At the first time step all the non-linear terms are integrated with an
explicit Euler scheme. The time-discretized system at a generic time step n (current
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time step) is:

��������������������������������������������������

∇ · un+1 = 0

ωn+1 · nz = (∇× un+1) · nz

∇2un+1 −∇2un

Δt
· nz =

�
3[∇2Sn −∇(∇ · Sn)]− [∇2Sn−1 −∇(∇ · Sn−1]

2
+

+
1

Reτ

∇4un+1 +∇4un

2

�
· nz

ωn+1 − ωn

Δt
=

�
3∇× Sn −∇× Sn−1

2
+

1

Reτ

∇2ωn+1 +∇2ωn

2

�
· nz

θn+1 − θn

Δt
=

3Sn
θ − Sn−1

θ

2
+

1

PrReτ
∇2θn+1

φn+1 − φn

Δt
=

3Sn
φ − Sn−1

φ

2
+

2

Peφ
∇2φn+1 − Ch2

Peφ
∇4φn+1

(2.72)

2.5.2 Spatial discretization

This dimensionless system of equations is discretized in space using a pseudo-spectral
approach [30, 75, 122] with Fourier series in the streamwise (x) and spanwise (y)
directions and Chebyshev polynomials in the wall-normal (z) direction. The use of
Fourier transforms in the homogeneous directions implicitly enforces periodic bound-
ary conditions on all variables along these directions. All variables are solved on the
same computational grid, apart from the temperature, which can be solved on a finer
grid when Prandtl numbers larger than one are considered. This allows to properly
resolve the temperature field down to the smallest scales, which are below the smallest
turbulent scales whenever Prandtl is larger than one. The adoption of the finer grid
exclusively for the temperature and the coarse grid for all the other variables limit
the overall computational cost. In the streamwise and spanwise directions a uniform
grid spacing is adopted, while in the wall-normal direction Chebyshev-Gauss-Lobatto
points are chosen in order to have a finer grid close to the channel walls. The points
(xi, yj , zk) of the Cartesian grid are defined as

xi = (i− 1)
Lx

Nx − 1
i = 1, . . . , Nx

yi = (j − 1)
Ly

Ny − 1
j = 1, . . . , Ny

zk = cos

�
k − 1

Nz − 1
π

�
k = 1, . . . , Nz

(2.73)

whereNx, Ny andNz are the number of grid points in x, y and z direction, respectively.
All equations are solved in spectral space. All variables are brought from a physical to
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a spectral representation using Fourier and Chebyshev transforms. A generic variable
f(x, y, z, t) in physical space can be represented in spectral space as a truncated series
of Fourier wavenumbers and Chebyshev polynomials, Tk,

f(x, y, z, t) =

Nx/2�
i=0

Ny/2�
j=−Ny/2+1

Nz−1�
k=0

f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) , (2.74)

where ι =
√−1 is the imaginary unit. The Fourier coefficient f̂ depends on the

wavenumbers, kx,i and ky,j , on the kth Chebyshev polynomial and on time. The
Fourier wavenumbers kx,i and ky,j are defined as follows:

kx,i =
2π(i− 1)

Lx
i = 1, . . . , Nx/2 + 1 , (2.75)

ky,j =

������
2π(j − 1)

Ly
j = 1, . . . , Ny/2 + 1

−2π(Ny − j + 1)

Ly
j = Ny/2 + 2, . . . , Ny .

(2.76)

The spectral and pseudo-spectral methods are characterized by a high accuracy in the
calculations of derivatives, as spatial derivatives in spectral space are exact. A trunca-
tion error is however introduced in the variables representation, when truncating the
infinite Fourier and Chebyshev series to finite series, although this error is extremely
small. The derivatives in the homogeneous directions can be computed from Eq. 2.74:

∂f(x, y, z, t)

∂x
=

Nx/2�
i=0

Ny/2�
j=−Ny/2+1

Nz−1�
k=0

ιkx,if̂Tke
ι(kx,ix+ky,jy) , (2.77)

∂f(x, y, z, t)

∂y
=

Nx/2�
i=0

Ny/2�
j=−Ny/2+1

Nz−1�
k=0

ιky,j f̂Tke
ι(kx,ix+ky,jy) . (2.78)

Once all the variables have been written in spectral space, the system of equations
of Eq. 2.72 can be re-written in spectral space. Thanks to the orthogonality of all
Fourier modes, the problem can be split in (Nx/2+1)×Ny independent subproblems,

one for each wavenumber couple (kx,i, ky,j). In the following, the symbol f̂ will be
used to indicate the Chebyshev discretization of Fourier modes at a generic couple of
wavenumbers, in order to have a more compact notation. Specifically f̂ will indicate
the expression

f̂ = f̂i,j =

Nz−1�
k=0

f̂(kx,i, ky,j , k, t)Tk(z)e
ι(kx,ix+ky,jy) (2.79)
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for each couple (i, j) ∈ ([1, Nx/2 + 1], [−Ny/2 + 1, Ny/2]). The system of discretized
equations thus becomes,

��������������������������������������������������������������������������������������������������������
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∂2ŵn+1

∂z2
− k2i,jŵ
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(2.80)

being the coefficient k2i,j the sum of the square of the corresponding wavenumbers:

k2i,j = k2x,i + k2y,j . The terms which are previously known, namely the terms of time n
(current time step) and n− 1 (previous time step) are collected in a history term.

Hn
x = Δt

�
3Ŝn

x − Ŝn−1
x

2
+

1

2Reτ

∂2ûn

∂z2
+

�
1

Δt
− k2i,j

2Reτ

�
ûn

�
(2.81)

Hn
y = Δt

�
3Ŝn

y − Ŝn−1
y

2
+

1

2Reτ

∂2v̂n

∂z2
+

�
1

Δt
− k2i,j

2Reτ

�
v̂n

�
(2.82)

Hn =
∂

∂z
(ιkx,iH

n
x + ιky,jH

n
y ) + k2i,jH

n
z (2.83)
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Hn
θ =

Δt

2
(3Ŝn

θ − Ŝn−1
θ ) + θ̂n (2.84)

Hn
φ =

Δt

2
(3Ŝn

φ − Ŝn−1
φ ) + φ̂n (2.85)

Using the history terms and taking all the unknowns terms (of time n+ 1) to the left
hand side, the following system is obtained for each couple (i, j):����������������������������������������

ιkx,iû
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∂ŵn+1

∂z
= 0

ω̂n+1
z = ιkx,iv̂

n+1 + ιky,j û
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with the parameters γ, β, γθ, βθ, γφ and βφ defined as:

γ =
Δt

2Reτ
, β2 =

1 + γk2i,j
γ

γθ =
Δt

2PrReτ
, β2

θ =
1 + γθk

2
i,j

γθ

γφ =
Ch2Δt

Peφ
, β2

φ =
s

2Ch2
+ k2i,j .

(2.87)

2.5.3 Boundary conditions

Since Fourier and Chebyshev transforms are employed, periodic boundary conditions
are implicitly enforced in the streamwise (x) and spanwise (y) directions. A closed
channel setup is considered, with solid walls at z = ±1 outer units (dimensionless
units). Hence, no-slip and no-flux boundary conditions are imposed on the flow field:��

u(x, y, z = ±1) = [uw, vw, 0]

∂w

∂z

    
z=±1

= 0 .
(2.88)

The fluid is constrained to move with the same velocity of the wall, where uw and
vw are respectively the velocities in x and y directions of the moving wall (which are
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zero when a still wall is considered). The boundary condition for the wall-normal
component of the vorticity is obtained from the no-slip condition at the wall:

ωz(x, y, z) = ±1) = 0 . (2.89)

For the temperature, adiabatic conditions at the walls are enforced:

∂θ

∂z

    
z=±1

= 0 . (2.90)

A no-flux condition is imposed on the phase field at the walls. Since the phase field
transport equation is a fourth-order equation, an additional no-flux condition is im-
posed at the walls on the phase field chemical potential:������

∂φ

∂z

    
z=±1

= 0

∂3φ

∂z3

    
z=±1

= 0 .

(2.91)

2.6 Code implementation and validation

The numerical method presented has been implemented in an in-house parallel code,
written in Fortran-2003. The parallelization strategy is based on a pure-MPI (Message
Passing Interface) approach. The overall workload is divided among the different MPI
tasks using a 2D domain decomposition, also called pencil decomposition. Within this
strategy, the whole domain is split in so-called pencils: the domain is divided along
two out of three directions and each sub-domain is assigned to a different MPI process.
With respect to the 1D domain decomposition (slab decomposition), 2D decomposi-
tion allows to divide the domain among a much higher number of processes at the cost
of an increased number of MPI communications. However, it has been observed that,
for the problem size we are interested in, the 2D domain decomposition has better
performances than the 1D one. A schematic representation of the steps required to
compute a three-dimensional transform is shown is figure 2.4. In physical space, the
domain is divided along the y and z directions, while in modal space it is divided
along the x and y directions. This change in the parallelization is needed when taking
the transforms: to compute the Fourier or Chebyshev transforms each process must
hold all the point in the transform direction. Therefore, when in physical space, first
Fourier transforms are taken along the x-direction, second the parallelization changes
in order to have all the points in the y direction. The domain is thus divided along
the x and z directions when taking the Fourier transforms along y. Then the paral-
lelization is changed again, switching to a domain division along x and y directions;
therefore each MPI process holds all the points in z direction at a certain (x, y) loca-
tion (parallelization in modal space). Finally, Chebyshev transforms are taken in the z
direction. The only MPI communications occur when the parallelization changes, thus
two series of MPI communications are needed for each transform from physical (spec-
tral) to spectral (physical) space. After the calculation of all the terms that appear in
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the equations, a Helmholtz problem along the wall-normal direction is solved at each
(x, y) location independently: during the solving procedure each MPI process works
independently from the others. Fast Fourier transforms and Chebyshev transforms are
performed using the functions provided in the library FFTW. Parallel input/output
instructions are employed to read/write large data files, using MPI I/O library. This
choice allows a low usage of memory for each task, improving the performances of the
code.

MPI communication

MPI communication

MPI communication

MPI communication

FF
T -
x FFT - y

D
C
T
-z

Physical space Spectral space

Figure 2.4 – Sketch of the parallelization steps and MPI communications required for the com-
putation of a three-dimensional transform. Starting from the physical space (proceeding from left
to right in the sketch), the FFT along x is performed; the domain is then reoriented using MPI
communications, and the FFT along y is performed; a further reorientation of the domain is then
performed to compute the DCT along z. The obtained variables are in the spectral space. The
inverse transform can be computed by following analogous steps in the opposite direction (from
right to left in the sketch).

The code performances have been evaluated on several High Performance Computing
systems, where strong scalability and weak scalability tests have been performed.
Among them there are Marconi100, Marconi KNL (CINECA), VSC-4 and VSC-5
(Vienna Scientific Cluster), Discoverer (Sofia-Tech) and LUMI-C (CSC data center).
The code has been validated using several benchmarks. The phase field modelling
part, in particular, has been validated simulating the cases of the drop deformation
in laminar a shear flow, and the Rayleigh Taylor instability. The drop deformation
in a laminar shear flow has been compared with an analytical solution. The results
from the simulations of the Rayleigh Taylor instability have been instead compared
with previous simulations. These benchmarks test various component of the method,
as surface tension force, viscosity contrasts and density contrasts.
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3
Density, viscosity and surface
tension effects on drops and

bubbles in turbulence

Reproduced in part from:

F. Mangani, G. Soligo, A. Roccon and A. Soldati, Influence of density and viscosity on deformation,

breakage and coalescence of bubbles in turbulence, Physical Review Fluids, 7, 053601 (2022).

Large drops or bubbles transported by a turbulent flow are characterized by a complex
dynamics, as they deform, break apart or coalesce. This behaviour is governed by the
forces generated by the surrounding continuous phase, acting on the surface of the
drops/bubbles with shear and normal stresses, and by the response of drops/bubbles,
which depends on their surface tension and their density and viscosity. The ultimate
competition among these forces determines the number, shape and size distribution of
the dispersed phase.
In this chapter the interaction of a swarm of large and deformable drops or bubbles with
wall-bounded turbulence will be investigated. The focus of the study is the evaluation
of the effect of the density ratio (ratio of dispersed over carrier phase density), the
viscosity ratio (ratio of dispersed over carrier phase viscosity) and the surface tension
(controlled by the Weber number, ratio of inertial over surface tension forces) on the
two-phase dispersed system. Since in most of the considered cases the dispersed phase
has a smaller density or viscosity with respect to the carrier phase, the term bubbles,
which is more appropriate than drops in this case, will be used hereinafter in this
chapter without any loss of generality.
The physical configuration adopted in the study is the bubble-laden turbulent channel
flow. This setup has been widely used in the past to investigate different aspects of
bubbly flows, from bubbles shape, deformation and clustering to the flow modifications
produced by the bubbles themselves. In the pioneering works of Lu & Tryggvason [98,
99], the effects of the bubble size and deformability were investigated: they observed
that as bubbles become more deformable, they move towards the middle of the channel
and have a relatively small effect on the flow-rate. Scarbolo et al. [89, 139], considering
a matched density and viscosity system, investigated the effect of the surface tension,
observing that surface tension forces play a key role in determining the dispersed phase
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topology. Roccon et al. [132] studied the effect of the bubble viscosity, finding that for
small surface tension values, larger internal viscosities reduce the drop deformability.
Recently, Soligo et al. [145, 148], considering also the presence of a soluble surfactant,
investigated the surfactant effects on drop morphology [145] and flow behaviour [148].
Finally, Hasslberger et al.[66] analyzed the coherent structures obtained in a bubble-
laden turbulent channel flow while Cannon et al. [28] investigated the role played by
droplets coalescence on drag in turbulent channel flows.

Building on previous studies [89, 132], this work aims at providing a comprehensive
analysis on the effects of density, viscosity and surface tension on the multiphase
system. For this purpose, a database of direct numerical simulations is built, where
two Weber numbers, We = 1.5 and We = 3.0, four density ratios, from ρr = 1 down
to ρr = 0.001, and five viscosity ratios, from µr = 0.01 up to µr = 100, are considered,
while keeping a constant shear Reynolds number, Reτ = 300, and bubbles volume
fraction, Φ = 5.4%. In order to avoid further complexity in the system, the buoyancy
effect associated to the density difference between the fluids will be not taken into
account. The first objective is to investigate the effects of these parameters on the
dispersed phase topological modifications, namely coalescence and breakage events,
and on the morphological modifications, namely bubbles deformation and shape. The
second objective is to characterize the global and local modifications produced by the
bubbles on the turbulent flow. The numerical framework of the simulations relies on
a direct solution of the Navier-Stokes equations coupled with a phase-field method.
Direct solutions of the Navier-Stokes equations are used to accurately resolve all the
relevant turbulence scales, while the phase-field method [77, 156] is used to describe
in a thermodynamically consistent manner the motion of the deformable interface and
its topological modifications.

Before proceeding, it is worth to briefly discuss the main capabilities and limitations of
interface-resolved simulations in describing topological modifications of the interface
[154, 145, 149]. The numerical description of breakages and coalescences is indeed
one of the most challenging aspects of interface-resolved simulation methods. As in-
troduced in section 1, fully-resolved simulation of topological changes would require
resolving all the scales, from the molecular scale of the interface [131] up to the largest
scales of the flow. This type of simulation, however, is way beyond the capabilities
of any existing supercomputing facility. A common choice is to avoid resolving the
small interfacial scales and to find a way to approximate their dynamics on a much
larger scale. Here, following a similar approach, the resolved range is limited to the
scales of turbulence: from the Kolmogorov length scale up to the problem size. Thus,
phenomena occurring at scales smaller than Kolmogorov are smeared out on the small-
est resolved scale. This choice however influences the description of coalescence and
breakage events. For coalescences, a part of the physics involved in the coalescence
process [81] (i.e. film drainage and rupture) cannot be directly resolved. As a re-
sult, regardless of the approach employed to describe coalescence (models for interface
tracking methods [153, 100] or implicit description for interface capturing methods
[47, 149]), numerical simulations struggle in predicting physical coalescence, with this
inaccuracy referred to as numerical coalescence. For breakages, the picture is differ-
ent and their numerical description is less troublesome. Indeed, being breakage a very
quick phenomenon, it can be well approximated without resolving the dynamics at the
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molecular scale and there is evidence that the Navier-Stokes equations alone provide
an adequate description of a breakage event [50]. Besides, the small time scale of a
breakage limits the impact of the approximation on the overall flow dynamics [69, 100].
Therefore, the description of breakages on turbulence-resolved grids is considered to
be rather accurate, although in the pinch-off region the smallest interfacial features,
characterized by high curvature, may not be perfectly resolved.

The chapter is organized as follows: in section 3.1, the simulation setup and parameters
are introduced. Then, in section 3.2, the results obtained from the analysis of the
simulations database are presented. The effects of density, viscosity and surface tension
are evaluated first on the topology of the dispersed phase and its topological changes
(breakage and coalescence), then on the overall interfacial area and interface curvature,
and finally on the mean velocity profiles and on the bubbles turbulent kinetic energy
(TKE). In section 3.3, the results are summarized and the main conclusions are drawn.

3.1 Simulation setup

A turbulent channel flow at a shear Reynolds number Reτ = 300 is considered for all
the cases. The computational domain has dimensions Lx×Ly ×Lz = 4πh×2πh×2h,
which corresponds to L+

x × L+
y × L+

z = 3770 × 1885 × 600 wall units. The domain is
discretized with Nx ×Ny ×Nz = 512× 256× 513 grid points; the computational grid
has uniform spacing in the homogenous directions, while Chebyshev-Gauss-Lobatto
points are used in the wall-normal direction. The flow is driven by an imposed constant
pressure gradient in the streamwise direction. Two surface tension values are chosen,
set through the Weber number: We = 1.50 (higher surface tension) and We = 3.00
(lower surface tension). The selected values are characteristics of air/water mixtures
[79]. For each surface tension value (i.e. for each Weber number), the density ratio is
kept unitary and the effect of different viscosity ratios is analysed: from µr = 0.01 (less
viscous bubbles) up to µr = 100 (more viscous bubbles); then, the viscosity ratio is
kept unitary and different density ratios are considered: from ρr = 1 (matched density
bubbles) down to ρr = 0.001 (lighter bubbles). Finally, to evaluate the combined effect
of density and viscosity differences, a case in which both bubble density and viscosity
are smaller than those of the carrier fluid is considered: ρr = 0.1 and µr = 0.1. In
addition, a single-phase flow simulation is performed as a reference case and to provide
initial velocity fields for the multiphase simulations. It is worthwhile noting that when
different properties (i.e. density and viscosity) are considered, the local value of the
Reynolds number changes as well as the range of spatiotemporal scales that needs to
be resolved to fulfill the DNS requirements. These modifications can be appreciated
from table 3.1 in which we show an estimate of the turbulence length scale inside the
dispersed phase (computed from the definition of the Kolmogorov length scale), η+k,d,

the grid resolution, the final average bubble-size, �d+eq�, and its root mean square value,
RMS(d+eq), for all the different combination of density and viscosity ratios considered
as well as for the reference single-phase case. The bubble size has been characterized
using the equivalent diameter, d+eq, i.e. the diameter of an equivalent spherical bubble
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with the same volume as the bubble considered [145]:

d+eq =

�
6V +

π

�1/3

(3.1)

where V + is the volume of the bubble. All dimensions are reported in wall units
(based on the carrier flow shear Reynolds number) and refer to the channel centre,
where most bubbles are located. The Kolmogorov scale, which is used here to provide
an estimate of the smallest length scale inside the bubbles, has been computed as
follows:

η+k,d =

�
µ2
rRe2τ
ρ2r�

�1/4

(3.2)

where � is the dissipation at the channel center evaluated in the region characterized
by φ ≥ 0 (i.e. inside the bubbles), µr and ρr are the density and viscosity ratios,
respectively, and Reτ is the shear Reynolds number. We can observe that for almost
all the cases presented here, the estimated Kolmogorov scale is of the order of the
grid spacing thus ensuring a correct resolution of all the relevant flow scales. Only
for the cases with µr ≤ 0.1 (most critical cases due to the largest local Reynolds
number increase), the smallest flow scales (which are found inside the bubbles) cannot
be completely resolved. From table 3.1, we can also observe that the average bubble
size is always at least one order of magnitude larger than the grid spacing.
For the phase field, the Cahn number is set to Ch = 0.02. This value is selected based
on the grid resolution: at least three grid points are required across the interface to
accurately describe the steep gradients present [146]. The phase field Péclet number
has been set according to the scaling Peφ = 1/Ch = 50, to achieve convergence to the
sharp interface limit [167, 103]. More refined grids allow to reduce the thickness of the
interface and to adopt smaller Cahn numbers. However, the resulting computational
cost is much larger: grid resolution needs to be refined along all three directions, as
the orientation of the interfacial layer is arbitrary, and the time step has to be reduced
as well to satisfy the Courant–Friedrichs–Lewy condition. Overall, the computational
cost of a simulation with an halved Cahn number is roughly 16 times larger: grid re-
finement makes the simulation eight times more expensive and the time step limitation
makes the simulation twice as expensive.
At the beginning of each simulation, a regular array of 256 spherical droplets with
diameter d = 0.4h (corresponding to d+ = 120 wall units) is initialized in a fully-
developed single-phase turbulent channel flow. The total volume fraction of the dis-
persed phase is Φ = Vd/(Vc+Vd) ≃ 5.4%, being Vd and Vc the volume of the dispersed
and carrier phase, respectively. As the array of spherical bubbles is suddenly released
in a single-phase turbulent flow, turbulent velocity fluctuations strongly perturb the
interfacial profile; during this initial coupling phase, mass leakages among the phases
may occur [167, 147] After this initial transient, the mass of each phase keeps con-
stant over time. While the initial condition chosen for the dispersed phase may seem
unphysical, after a short transient, memory of the initial condition is completely lost
and the results are not affected by the initial condition selected [145]· Different initial
conditions have been tested (e.g., the injection of a thin liquid sheet at the chan-
nel center) and the same statistically statistically-stationary results were obtained.
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System We µr ρr Δx+ Δy+ Δz+ η+k,d �d+eq� RMS(d+eq)

SP - - - 7.36 7.36 1.84 4.19 - -
BL1 1.50 0.01 1 7.36 7.36 1.84 0.20 195.13 176.97
BL2 1.50 0.1 1 7.36 7.36 1.84 1.04 191.16 134.04
BL3 1.50 1 1 7.36 7.36 1.84 5.27 226.72 123.55
BL4 1.50 10 1 7.36 7.36 1.84 26.72 229.84 127.99
BL5 1.50 100 1 7.36 7.36 1.84 145.50 245.04 104.51
BL6 1.50 1 0.001 7.36 7.36 1.84 887.50 208.15 150.61
BL7 1.50 1 0.01 7.36 7.36 1.84 185.80 230.31 142.16
BL8 1.50 1 0.1 7.36 7.36 1.84 30.66 180.60 142.73
BL9 1.50 0.1 0.1 7.36 7.36 1.84 5.86 186.00 138.08
BL10 3.00 0.01 1 7.36 7.36 1.84 0.19 81.37 74.77
BL11 3.00 0.1 1 7.36 7.36 1.84 0.94 84.06 76.15
BL12 3.00 1 1 7.36 7.36 1.84 4.87 87.56 79.55
BL13 3.00 10 1 7.36 7.36 1.84 24.96 89.70 77.94
BL14 3.00 100 1 7.36 7.36 1.84 140.3 203.62 111.09
BL15 3.00 1 0.001 7.36 7.36 1.84 818.2 87.58 77.74
BL16 3.00 1 0.01 7.36 7.36 1.84 142.0 86.54 76.25
BL17 3.00 1 0.1 7.36 7.36 1.84 27.45 91.16 81.28
BL18 3.00 0.1 0.1 7.36 7.36 1.84 4.63 83.62 75.41

Table 3.1 – Grid resolution, Δx+, Δy+ and Δz+c , Kolmogorov scale at the channel centre in the
dispersed phase, η+k,d, average equivalent diameter of the bubbles, �d+eq�, and root mean square

of the bubble equivalent diameter, RMS(d+eq), for all the different simulations performed. All
dimensions are reported in wall units; Kolmogorov scale is measured at the channel centre. Single-
phase flow values at the channel centre have been also reported as a reference.

We selected the current initial configuration as it reduces the time required to reach
statistically-stationary conditions.

3.2 Results

We present here the results obtained from the analysis of the simulation database,
starting from the effects of the density ratio, viscosity ratio, and Weber number on
the topology of the dispersed phase (number of bubbles) and on its topological changes
(coalescence and breakage rates). Then we evaluate the effects of these parameters
on the shape and deformation of the bubbles studying the local curvature of the
interface and the time evolution of the interfacial area. Finally, we investigate the
flow modifications produced by the bubbles by analyzing the mean velocity profiles
and the turbulent kinetic energy inside the bubbles. All the results will be presented
according to the following color code: a red-colors scale is used to show the density
ratio variations and a blue-colors scale to show the viscosity ratio variations. The
case with both non-matched density and viscosity is represented in green, while the
reference case (matched density and matched viscosity) is shown in black.
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System Reτ We µr ρr Ch Peφ

SP 300 - - - - -
BL1 300 1.50 0.01 1 0.02 50
BL2 300 1.50 0.1 1 0.02 50
BL3 300 1.50 1 1 0.02 50
BL4 300 1.50 10 1 0.02 50
BL5 300 1.50 100 1 0.02 50
BL6 300 1.50 1 0.001 0.02 50
BL7 300 1.50 1 0.01 0.02 50
BL8 300 1.50 1 0.1 0.02 50
BL9 300 1.50 0.1 0.1 0.02 50
BL10 300 3.00 0.01 1 0.02 50
BL11 300 3.00 0.1 1 0.02 50
BL12 300 3.00 1 1 0.02 50
BL13 300 3.00 10 1 0.02 50
BL14 300 3.00 100 1 0.02 50
BL15 300 3.00 1 0.001 0.02 50
BL16 300 3.00 1 0.01 0.02 50
BL17 300 3.00 1 0.1 0.02 50
BL18 300 3.00 0.1 0.1 0.02 50

Table 3.2 – Overview of simulations parameters. We analyze two Weber numbers: We = 1.50
and We = 3.00. For each Weber number, we consider four density ratios: from ρr = 0.001 up to
ρr = 1; five viscosity ratios: from µr = 0.01 up to µr = 100 and a combined case ρr = 0.1 and
µr = 0.1. In addition, a single-phase flow simulation has been also conducted.

3.2.1 Bubbles topological modifications

Number of bubbles

The topology of the dispersed phase is the direct consequence of the ultimate compe-
tition between breakage and coalescence events. To obtain a first qualitative insight
of the effects of density ratio, viscosity ratio and Weber number on the statistically-
stationary number of bubbles (i.e. once the effect of the initial condition is completely
dissipated), we can consider figure 3.2. Panel (a) refers to We = 1.5, while panel (b)
to We = 3.0. In each panel of figure 3.2, four snapshots of the multiphase system
at statistically-stationary are arranged in a plot according to the values of density
(horizontal axis) and viscosity (vertical axis) ratio of each case. The surface of the
bubbles, identified as the iso-contour φ = 0, is reported at the time instant t+ = 4000
(statistically-stationary conditions); in the background the contour map of the turbu-
lent kinetic energy, TKE= (ρ/ρc)(u

�2+v�2+w�2)/2 (where ρ identifies the local density
value, ρd in the bubbles and ρc in the carrier phase), on a x+ − y+ plane located at
the channel centre is shown. Among all cases, we select those with the extreme values
of the density (ρr = 0.001 - µr = 1) and viscosity ratio (ρr = 1 - µr = 100 and ρr = 1
- µr = 0.01). As a reference, also the matched density and viscosity case (ρr = 1
- µr = 1) is shown. We can observe that for We = 1.5 (figure 3.2a), the number
of bubbles remains almost unchanged when both density and viscosity contrasts are
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Figure 3.1 – Sketch of the computational domain. A swarm of drops with density ρd and viscosity
µd is released in turbulent carrier fluid with density ρc and viscosity µc. The wall-bounded channel
has dimensions 4πh× 2πh× 2h; the flow is driven by a constant pressure gradient imposed along
the streamwise direction (x). A sketch of the mean velocity profile is also reported.

introduced in the system. For We = 3.0 (figure 3.2b), the number of bubbles is higher
in all the cases, compared to We = 1.5. If we then look along the density axis (namely
to the pictures in the central row) of figure 3.2b, we see that the number of bubbles
is quite similar in the two cases, suggesting a negligible effect of density for the range
of values considered here. By opposite, looking along the viscosity axis (thus to the
pictures on the right column), we notice that viscosity does play an important role,
as the number of bubbles significantly reduces from µr = 0.01 to µr = 100, with a
more marked difference between µr = 1 and µr = 100, than between µr = 0.01 and
µr = 1, thus hinting that the viscosity difference among the phases may actually be
the relevant factor, rather than the viscosity ratio.

To evaluate these results more quantitatively, we compute at each time the number of
bubbles, N(t+), normalized by the initial bubbles number, N0. Figure 3.3 shows the
results obtained for all the combination of density and viscosity ratios considered, and
for the two Weber numbers as well. Left column refers to We = 1.5 (figure 3.3a,c,e),
while the right column toWe = 3.0 (figure 3.3b,d,f ). The top, middle and bottom rows
show, in order, the effects of the density ratio, viscosity ratio and of their combination.

We start by analyzing the effect of Weber number solely and we consider the matched
density and viscosity case (black lines in figure 3.3a-d).

For We = 1.5, the number of bubbles decreases monotonically: coalescence events
dominate the initial transient phase (up to t+ = 2000). Then a balance between
breakage and coalescence events is attained and the number of bubbles settles on a
stationary value, N(t+)/N0 ≃ 0.1.

Likewise, for We = 3.0, an initial transient mainly characterized by coalescence events
can be also observed. However, this phase ends at an earlier time (about t+ = 500)
and is followed by a statistically-stationary condition where breakups and coalescences
alternately prevail on each other.
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Figure 3.2 – Top view of four statistically-stationary configurations (t+ = 4000) for different
combinations of density ratios (ρr = 0.001 and 1) and viscosity ratios (µr = 0.01, 1 and 100).
Panel (a) refers to We = 1.5, while panel (b) to We = 3.0. The sub-panels are arranged in a plot
using ρr as x-coordinate and µr as y-coordinate. The effect of density can be appreciated in the
sequence of panels on the middle row, while that of viscosity in the right column. The background
of the plot shows the turbulent kinetic energy, TKE= (ρ/ρc)(u�2 + v�2 +w�2)/2 (white-low; black-
high), computed on the central x+ − y+ plane of the channel.



3.2. Results 39

We = 3.0We = 1.5

N(t+)/N0

t+

ρr = 1
ρr = 0.1

ρr = 0.01
ρr = 0.001

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

Transient

0 1000 2000 3000 4000 5000

t+

Transient

(a) (b)

We = 3.0We = 1.5

N(t+)/N0

t+

µr = 0.01
µr = 0.1
µr = 1

µr = 10
µr = 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

Transient

0 1000 2000 3000 4000 5000

t+

Transient

(c) (d)

We = 3.0We = 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

N(t+)/N0

t+

ρr = 0.1, µr = 0.1
ρr = 0.1, µr = 1
ρr = 1, µr = 0.1

Transient

0 1000 2000 3000 4000 5000

t+

Transient

(e) (f )

Figure 3.3 – Time evolution of the number of bubbles, N(t+), normalized by its initial value
N0. Left column refers to We = 1.5, while the right column to We = 3.0. Top row: effect of
density ratio, for ρr = 0.001, 0.01, 0.1 and 1 (with µr = 1); Middle row: effect of viscosity ratio, for
µr = 0.01, 0.1, 1, 10 and 100 (with ρr = 1); Bottom row: combined effect of density and viscosity,
for the case with ρr = 0.1, the cases ρr = 0.1, µr = 1 and ρr = 1, µr = 0.1 are reported for
reference. On each line the left plot also includes the color code and a sketch with the definition
of the property ratio considered (ρr, µr or both ratios).
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Comparing simultaneously the plots at We = 1.5 (figure 3.3a,c,e), we can observe
that the effects of both density and viscosity ratios (and of their combination) are
very small. This behaviour can be traced back to the dominant role played by surface
tension forces. The Weber number quantifies the relative importance of surface tension
forces with respect to inertial forces: the lower is the Weber number, the stronger is
the action of surface tension in controlling bubbles dynamics. Thus, for We = 1.5,
the surface tension forces are dominant and are those determining the topology of
the dispersed phase (i.e. number of bubbles). For the higher Weber, surface tension
forces are weaker in comparison, and density and viscosity ratios effects become more
significant. In particular, for We = 3.0 (figure 3.3b,d,f ), the statistically-stationary
value obtained for the number of bubbles shows a marked dependence on the viscosity
ratio.

As the dispersed phase dynamics for the cases at We = 1.5 are dominated by surface
tension forces, we focus on the cases at We = 3.0 to investigate the effects of density
and/or viscosity ratios. First, we consider the effects of the density ratio solely. Fig-
ure 3.3b shows the time evolution of the number of bubbles for different density ratios
(from ρr = 1.0 down to ρr = 0.001) and a fixed unitary viscosity ratio. We notice that
the influence of the density ratio on the number of bubbles is small: the red-colors lines
do not depart in average from the black reference line, nor from each other. Hence, no
significant modifications are introduced in the topology of the dispersed phase when
density contrasts are present between the phases (with respect to a two-phase system
with uniform density). This behaviour suggests that, for the range of density ratios
considered, the external inertial forcing is the main factor that determines the bub-
ble size and thus the dispersed phase topology. In contrast, the density (and thus
the inertia) of the bubble plays a negligible role in determining the dispersed phase
topology.

On the other hand a marked effect of the viscosity ratio alone can be observed, fig-
ure 3.3d. We observe in this case a much clearer trend: after the initial transient the
curves depart from each other and set on different equilibrium values once statistically-
stationary conditions are reached. In particular, as the viscosity ratio is increased, the
statistically-stationary number of bubbles is reduced. For high viscosity ratio (µr > 1)
fragmentation is prevented, coalescence dominates and only a few bubbles are present
in the channel. By opposite, for low viscosity ratio (µr < 1) breakups are favored, the
average bubble size decreases, and the resulting number of bubbles is slightly larger
when smaller viscosity ratios are considered. Hence, it is evident that viscosity acts as
a stabilizing factor, in a similar way as surface tension does. Indeed, it is interesting
to observe that the behaviour of the number of bubbles for µr = 100 at We = 3.0
(high viscosity) resembles those of the cases at We = 1.5 (high surface tension, fig-
ure 3.3c). This suggests that a very high viscosity ratio can compensate a low surface
tension and produce similar results in terms of topology. A physical argument that
can explain the action of viscosity is related to the deformations that the external
turbulent flow is able to induce on the bubble. When the internal viscosity is larger
than the external one, the larger internal viscous dissipation damps all the turbulent
fluctuations produced by the external flow. This hinders large deformations of the
bubble surface and, as a consequence, it reduces the possibility of bubble breakage.

Finally, we analyze the combined effects of density and viscosity ratios. In figure 3.3f,
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we report the results obtained from the case ρr = 0.1 and µr = 0.1 and from two cases
with one matched property and one non-matched property, ρr = 0.1 and µr = 1 (red
line) and ρr = 1 and µr = 0.1 (blue line). We can first note that these two latter
cases, where only one property is non-matched, exhibit a very similar behaviour for
the entire duration of the simulation. This is consistent with our previous observation:
the influence of the density ratio is almost negligible (figure 3.3b) and the effects of
the viscosity ratio are relatively small for µr = 0.1 (figure 3.3d). Then, we observe
that the combined case (green line) does not deviate largely from the other two cases.
This indicates that a simultaneous reduction of the density and viscosity ratios does
not remarkably modify the general picture for the range of density and viscosity ratios
here tested. Nevertheless, it is interesting to observe that the green line lies above the
red and blue lines for a longer timespan, indicating that the number of bubbles for the
combined case is slightly higher than in the other two cases.

Breakage and coalescence rates

The evolution of the number of bubbles provides useful insights on the time behaviour
of the dispersed phase topology, although it only shows the net outcome of the com-
petition between breakage and coalescence events.
To evaluate whether density and viscosity differences among the phases affect break-
age and coalescence dynamics, we compute the instantaneous number of breakage and
coalescence events. Evaluating these effects is not only crucial to better understand
the involved physics, but is also extremely important for the development of accurate
coalescence and breakage kernels [51]. The time behaviour of the breakage and coa-
lescence is directly linked to the number of bubbles present in the channel, as hinted
by the balance population equation [90]:

dN(t+)

dt+
= Ṅb(t

+)− Ṅc(t
+) , (3.3)

where N(t+) is the number of bubbles and Ṅb(t
+) and Ṅc(t

+) are respectively the
breakage and coalescence rates.
We compute the breakage and coalescence rates counting the number of breakage or
coalescence events that occur within a set temporal window Δt+:

Ṅb(t
+) =

Nb

Δt+
, Ṅc(t

+) =
Nc

Δt+
, (3.4)

where the temporal window has been chosen equal to Δt+ = 300. As the number
of breakage and coalescence events that occur in a certain temporal window is also
influenced by the number of bubbles present in the channel [145], we normalize the
breakage and coalescence rates, Ṅb(t

+) and Ṅc(t
+), by the instantaneous number of

bubbles N(t+). Being the description of coalescence and breakage events in numerical
simulations influenced by grid resolution [62, 154, 145, 149], a convergence study has
been also performed to ensure that the grid employed is sufficient to obtain convergent
results.
Figure 3.4 shows the results obtained for all cases examined: breakage rate is plotted
over time as a positive quantity, while coalescence rate as a negative quantity, be-
ing them related to an increase and decrease of the number of bubbles, respectively.
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Figure 3.4 – Time evolution of the normalized breakage rate, Ṅb(t
+)/N(t+), and coalescence

rate, Ṅc(t+)/N(t+). Left column refers to We = 1.5, while right column to We = 3.0. Top row:
effect of density ratio, for ρr = 0.001, 0.01, 0.1 and 1 (with µr = 1); Middle row: effect of viscosity
ratio, for µr = 0.01, 0.1, 1, 10 and 100 (with ρr = 1); Bottom row: combined effect of density and
viscosity ratios, for the case with ρr = 0.1, µr = 0.1. Cases ρr = 0.1, µr = 1 and ρr = 1, µr = 0.1
are reported for reference. For each row of plots, the left plot also shows the color code and a
sketch with the definition of the ratio considered (ρr, µr or both).
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We will first discuss the effect of the Weber number comparing the left column (fig-
ure 3.4a,c,e) with the right column (figure 3.4b,d,f ). For We = 1.5 (left column), the
breakage and coalescence rates behave nearly in the same way for all the combinations
of density and viscosity ratios. After the initial transient where the behaviour of the
rates is influenced by the selected initial condition for the phase-field, an equilibrium
is reached at about t+ = 1000 where both rates set on a constant value. At this stage,
bubbles keep on breaking and coalescing, but with the same rate, thus maintaining
their number in statistical equilibrium. This value of the Weber number does not
allow density and viscosity contrasts to substantially modify the evolution of bubbles
topology, as a good correspondence among the curves can be noticed in all the plots.
Indeed, when a low Weber number is considered the deformability, which is a crucial
factor for coalescence and breakage events, is mainly determined by surface tension
forces that dominate over density and viscosity contributions. For We = 3.0 (right
column), the results are qualitatively and quantitatively different: breakage and coa-
lescence rates reach in general larger values, and some significant deviations among the
curves are visible. This is a direct consequence of the larger Weber number: surface
tension forces, which are smaller in magnitude, weakly counteract turbulent velocity
gradients, that can more easily deform and break the bubbles.

Thus, we observe a larger number of breakage and coalescence events due to the larger
deformability of the bubbles, as can be appreciated from figure 3.3b,d,f. In addition,
for this larger Weber number, we can clearly observe how the density and viscosity
ratios play a much more important role in the dynamics of breakage and coalescence
events (with respect to We = 1.5).

For this reason, we move now to discuss the effect of non-matched density or viscosity
on the cases at We = 3.0 in more detail. Figure 3.4b shows the breakage and coa-
lescence rate for different values of the density ratios. In the first transient phase, all
cases manifest a very high frequency of both breakage and coalescence events, slightly
larger for coalescences at the very beginning (coherently with the evolution of the
number of bubbles shown in figure 3.3b). Later on, both rates stabilize and set on two
equal (in magnitude) stationary values. Although a clear trend among the different
density ratios cannot be observed, it is worth noticing that all the rates seem slightly
larger when sub-unitary density ratios are considered (especially in the early stage of
simulations).

Overall, these observations suggest that density differences between the phases do not
introduce remarkable changes in the dispersed phase topology and on its modifications:
the number of bubbles and breakage and coalescence rates are weakly influenced by
changing the density ratio.

Moving now to the effect of the viscosity ratio, figure 3.4d depicts the time evolution of
the breakage and coalescence rates obtained for different viscosity ratios (and a fixed
unitary density ratio). Again, once the initial transient is finished, a statistically-
stationary phase can be distinguished for all cases. From a qualitative viewpoint,
coalescence is predominant at the beginning of the transient (consistently with the
behaviour reported in figure 3.3d); then relatively high values for both rates are main-
tained during the rest of the transient, until they stabilize on steady values. The
cases, however, deeply differ from a quantitative point of view. We see in this case
that the rates significantly change when the viscosity ratio is changed: both break-
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age and coalescence rates decrease in magnitude as the viscosity ratio is increased (i.e.
when bubble viscosity is increased). This modification of the breakage and coalescence
rates is clear when the case µr = 100 is considered: the statistically-steady value of
both rates is smaller than the one attained by the other cases. A similar trend was
experimentally measured by Eastwood et al. [49] for the breakup of immiscible fluid
particles in a turbulent jet: it was observed that the breakage rate of the droplets
scales inversely with the inner bubble capillary number (ratio between bubble viscous
forces and surface tension forces). Present results seem to confirm this finding: bubble
viscosity and the corresponding viscous forces, acting as a damper of external velocity
fluctuations [132], make bubbles less deformable and the probability of breakage and
coalescence decreases.

Finally, we discuss the combination of density and viscosity contrasts (figure 3.4f ).
The three curves do not deviate considerably from each other and a clearcut trend
cannot be appreciated.

As the density effect is generally unimportant and the viscosity one shall be small for
µr = 0.1, the case ρr = 0.1 - µr = 0.1 does not give us clear information on how
density and viscosity effects combine together.

3.2.2 Bubbles morphological modifications

Interfacial area

A bubble released in a turbulent flow is constantly subjected to deformations due to
the action of turbulent fluctuations [137, 159]. Turbulence fluctuations deform and
stretch the bubble and, if strong enough, can lead to breakage of the bubble. The
result of turbulence actions in terms of deformation can be evaluated by computing
the total interfacial area. This quantity gives a general indication of the average bubble
deformation and also provides a quantification of the amount of energy stored at the
interface [80, 47, 134]. Indeed, in the hypothesis of constant surface tension (as in the
present case), surface tension energy is proportional to the amount of interfacial area
available [80, 47, 134].

With the aim of evaluating the effects of the simulations parameters (density ratio,
viscosity ratio, and Weber number) on the interfacial energy, we compute the time
behaviour of total interfacial area, A(t+), for all cases considered. The results are
presented normalized by the initial value A0. In figure 3.5, the results are shown
using the same arrangement adopted in the previous figures. To correctly interpret
these results, it is necessary to make a preliminary remark. The area of the interface
between the dispersed phase and the carrier fluid evolves in time depending on two
factors: the evolution of the number of bubbles and the modifications of the shape of
the bubbles. This concept can be explained by considering the following example: to
have a minimal interface area, the dispersed phase should consist of a unique spherical
bubble, since, for a given volume, the spherical shape is the one that minimizes the
surface area. If we split this bubble into several smaller spherical bubbles the total
interface area will increase, being the total volume constant. If these smaller spherical
bubbles are then deformed and elongated the area will further increase, as for each
bubble the same mass will be redistributed in a way that makes it more exposed to the
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Figure 3.5 – Time evolution of the total interface area A(t+), normalized by its initial value A0.
Top row: effect of density, for ρr = 0.001, 0.01, 0.1 and 1 (with µr = 1); Middle row: effect of
viscosity, for µr = 0.01, 0.1, 1, 10 and 100 (with ρr = 1); Bottom row: combined effect of density
and viscosity, for the case with ρr = 0.1, µr = 0.1. Cases with ρr = 0.1, µr = 1 and ρr = 1,
µr = 0.1 are reported for reference. These effects are shown for two different Weber numbers:
(a)-(c)-(e) We = 1.5 and (b)-(d)-(f ) We = 3.0. On each row the left plot also includes the colour
code and a sketch with the definition of the ratio considered (ρr, µr or both ratios).
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external flow. Thus, when we look at the evolution of the total interface area we are
simultaneously observing the effect of the number of bubbles and of their deformation.

We start by analyzing the effects of the density ratio for the cases at We = 1.5, fig-
ure 3.5a. We notice an initial transient that is characterized by a nearly monotonic
decrease of A(t+)/A0, for all the considered cases. In particular, during this tran-
sient, the curves corresponding to sub-unitary density ratios are superposed, while
a remarkable discrepancy is visible between them and ρr = 1. As soon as the flow
reaches a steady behaviour, all the curves differentiate and a trend becomes visible,
where the higher is the density ratio the larger is the total interface area. Considering
that for We = 1.5 the number of bubbles is almost unaffected by the density ratio
(figure 3.3a), this indicates that the trends observed in figure 3.5a are mainly caused
by the bubble deformation: when smaller density ratios are considered, bubbles tend
to be less deformed with respect to the case ρr = 1. The origin of this behaviour
can be traced back to the local Reynolds number (i.e. evaluated using the bubble
proprieties): as the density ratio is decreased, the inertial forces become smaller, the
local Reynolds number decreases and less deformed bubbles are obtained.

For We = 3.0 (figure 3.5b), we notice a similar but more irregular behaviour. For all
density ratios, the normalized interfacial area decreases and sets on stationary values
that are higher than the final stationary values obtained for We = 1.5 (figure 3.5a).
This is coherent with the fact that increasing the Weber number, the number of bubbles
increases, and so does the interfacial area. For this larger Weber number, the trend
among the different density ratios is now less clear and the differences between the
curves are slightly smaller. Nevertheless, consistently with the results obtained for
We = 1.5 (figure 3.5a), the matched density case (ρr = 1) is clearly above all the
other curves (ρr < 1) for almost the entire time range of the simulations. Being the
number of bubbles similar for all the cases shown in figure 3.5b, this seems to confirm
that for smaller density ratios the overall interfacial area is reduced.

The viscosity effect can be appreciated in figure 3.5c,d. For We = 1.5 (panel c),
the total interface area is practically independent on the viscosity ratio and no sig-
nificant changes can be observed. As the number of bubbles is similar for all cases
(figure 3.3c), this indicates that no significant effects on the average bubble defor-
mation are observed. Even though bubble viscosity does not play an important role
in the average bubble deformation, we can anticipate that it still plays a role when
more local quantities are analyzed (e.g. local curvature), as discussed in the following
section. For We = 3.0, a remarkable difference is present between µr = 100 (larger
bubble viscosity) and all the other cases. This is consistent with the time evolution
of the number of bubbles (figure 3.3d). Indeed, when the statistically-stationary con-
figuration is reached, the number of bubbles for µr = 100 is much lower than that
obtained for the other ratios. As a result, the interfacial area is much lower than the
other cases. For the other cases (from µr = 10 down to µr = 0.01), a clear trend
cannot be observed thus suggesting that no large modifications of the average bubble
deformation are obtained for µr < 10. However, as already anticipated for We = 1.5,
larger modifications are observed when local quantities are analyzed, see next section
for details.

Finally, we discuss the combined effect of density and viscosity ratios (figure 3.5e,f ).
For We = 1.5, the case with both non-matched density and viscosity (green line)
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overlaps the case with non-matched density (red line) during the transient and in the
final steady configuration, while in the first steady part it is intermediate between the
two other cases, ρr = 0.1 - µr = 1 and ρr = 1 - µr = 0.1. On average the combined
case is therefore closer to the non-matched density case, suggesting that the density
ratio has a larger influence on the total interfacial area (and thus on the stretching
of the bubbles) with respect to the viscosity ratio. This is confirmed by the plot for
We = 3.0, where the green line shows again values that on average are much closer to
the non-matched density case (i.e. ρr = 0.1).

Probability density function of mean curvature

The evolution of the total interface area gives us an idea of the overall behaviour of
the average deformation of the bubbles in presence of density and viscosity contrasts.
However, being an average indication, it does not provide a clear indication of the
local deformations of the bubbles surface. To obtain a deeper understanding of the
deformation, we examine the probability density function (PDF) of the local interface
mean curvature in the final statistically-stationary configuration. The mean curvature,
K+, can be computed as the divergence of the local normal vector n, which in turn
can be defined from the phase variable φ [4, 150]:

n = − ∇φ

|∇φ| , K+ = ∇ ·
�
− ∇φ

|∇φ|
�
. (3.5)

We compute the mean curvature, K+, for each point on the surface of the bubbles,
corresponding to the points of the iso-level φ = 0. The resulting curvature values tell
us how much the bubbles deviate from their spherical equilibrium shape, giving rise to
small bumps and ripples in the surface when K+ is highly positive, or small dimples
when K+ is highly negative.
From figure 3.6, we can appreciate the effect of density and viscosity on the mean
curvature from a qualitative point of view. The figure shows for We = 1.5 (figure 3.6a)
and We = 3.0 (figure 3.6b) four top views of the statistically-stationary configurations
of the system. Bubbles are colored according to the local value of the mean curvature
(blue-low; red-high). Red areas correspond to bumps and ripples of the interface
(positive curvatures), while blue areas to dimples (negative curvatures).
For We = 1.5 (figure 3.6a), the effect of the density ratio can be observed by looking at
the horizontal sequence of pictures (central row): we notice that moving from ρr = 1
down to ρr = 0.001 there is a slight decrease in the extension of both red and blue
saturated regions, which correspond to very high and very low curvatures respectively.
Therefore a reduction of the density ratio (i.e. a decrease of bubble density), leads to
a smoother bubble surface, characterized by fewer ripples and dimples.
In the vertical sequence of pictures on the right column, we can appreciate the effect of
viscosity. We notice that the shape of the bubbles is qualitatively unchanged increasing
the viscosity from µr = 0.01 to µr = 1. However, from µr = 1 to µr = 100 the
shape changes remarkably: the irregularities that characterize the bubbles surface at
µr = 1 disappear completely at µr = 100, where the surface becomes very smooth
and the bubbles shape very closely resembles the spherical shape. Thus, the action
of viscosity seems opposite to the one of density in terms of local deformation of the
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Figure 3.6 – Top view of the mean curvature of the bubble surface, K+, for four different com-
binations of density ratios (ρr = 0.001 and 1) and viscosity ratios (µr = 0.01, 1 and 100) once a
statistically-stationary configuration is reached (t+ = 4000). Panel (a) refers to We = 1.5 while
panel (b) to We = 3.0. The sub-panels are arranged in a plot using ρr as x-coordinate and µr as
y-coordinate. The effect of density can be appreciated in the sequence of panels on the middle row,
while that of viscosity in the right column. Bubble surface (iso-level φ = 0) is colored according
to the local value of the mean curvature (low-blue; high-red).
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bubble surface: an increase of viscosity prevents the formation of high curvatures
values (in magnitude), while an increase of density promotes the formation of large
interface deformations. The two opposite trends obtained increasing the density or
viscosity ratios can be interpreted in terms of local Reynolds or capillary numbers (i.e.
evaluated using the bubble proprieties). An increase of the density ratio leads to an
increase of the local Reynolds number and as a consequence, a more irregular surface
of the bubbles is obtained. In contrast, an increase of the viscosity ratio, produces a
decrease of the local Reynolds number (which also corresponds to an increase of the
capillary number) and a smoother surface of the bubbles is attained. Interestingly,
the entity of these effects depends on the value of the ratio considered: a slight effect
of the density ratio can be observed when it is decreased of three orders of magnitude
(from ρr = 1 down to ρr = 0.001), as well as for the viscosity ratio when reduced by
two orders of magnitude (from µr = 1 down to µr = 0.01), while a more noticeable
difference is visible when it is increased of two orders of magnitude (from µr = 1
up to µr = 100). Similar considerations can be obtained from the qualitative results
obtained at We = 3.0 (figure 3.6b). In this case, we can qualitatively appreciate
similar effects for the density and viscosity ratios. These modifications, however, are
now reflected on a much larger number of bubbles (larger Weber number).

To confirm these first qualitative observations, we compute the probability density
function (PDF) of the mean curvature. Results are reported in figure 3.7 for different
combinations of the density ratio, viscosity ratio, and Weber number. Left column
(figure 3.7a,c,e) refers to We = 1.5, while right column (figure 3.7b,d,f ) to We = 3.0.

Before analyzing each curve in detail, we can do some general observations. All curves
are centered on a positive value of curvature and present an asymmetry with respect
to the null value. Since positive curvatures correspond to convex surfaces and the null
curvature corresponds to a flat surface, this is consistent with the fact that bubbles
are in average convex, considering an outwards normal vector. Then, comparing the
results shown in the left column (cases at We = 1.5) against those reported in the right
column (cases at We = 3.0), we can appreciate the effect of the Weber number: for
We = 3.0 the curves are extended on a wider range of curvature values with respect to
We = 1.5. In particular, the curves are extended slightly towards negative values and
considerably towards positive values, meaning that a higher Weber leads to a higher
probability of having irregularities in the surface of the bubbles, especially bump or
ripples-like irregularities. The higher probability of having large curvature values is
also due to the presence of many smaller bubbles, which are intrinsically more convex
(smaller radius) and closer to a spherical shape.

We study now the effects of the density ratio (figure 3.7a,b). We notice a trend for
We = 1.5 that becomes clearer for We = 3.0: the cases with ρr = 0.1, 0.01, 0.001
present a lower probability of having large curvatures (in magnitude) with respect to
ρr = 1. This effect is small for positive curvatures and more pronounced for negative
curvatures. We can also observe that while the discrepancy between the reference case
(ρr = 1) and all other cases is clear, there is almost no difference among the cases
ρr = 0.1, 0.01, and 0.001. Interestingly, a similar trend was also reported in a previ-
ous work [29] that investigated the rise of bubbles in quiescent liquid. In particular,
Cano-Lozano et al. [29] reported that for density ratios smaller than 0.128, a further
decrease of the density ratio does not produce significant changes in the shape of the
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Figure 3.7 – Probability density function of the mean curvature, K+. Left column refers to
We = 1.5, while right column to We = 3.0. Effect of density ratio can be appreciated on the top
row for ρr = 0.001, 0.01, 0.1 and 1 (with µr = 1). The effect of bubble viscosity can be observed
in the middle row for µr = 0.01, 0.1, 1, 10 and 100 (with ρr = 1). Finally, the combined effect of
the density and viscosity ratio is shown on the bottom row for the case with ρr = 0.1, µr = 0.1,
with respect to the cases where a single effect is considered (with ρr = 0.1, µr = 1 and ρr = 1,
µr = 0.1).



3.2. Results 51

bubbles. This seems to suggest that the modifications produced by the density with
respect to the case with ρr = 1 (matched density case), are likely to be proportional
to the density difference between the two phases (i.e. ρc − ρd) rather than their ratio
(i.e. ρd/ρc). Further simulations, which consider super-unitary density ratios, are
however required to confirm this indication. Overall, present results (figure 3.5) in-
dicate that when sub-unitary density ratios are considered, the probability of having
large curvatures values, especially negative, and very stretched bubbles decreases. In
other words, when the density of the bubbles is decreased with respect to the carrier
density, it becomes more difficult for turbulence fluctuations to locally deform and
stretch the bubbles, and in particular, it is difficult to create dimples and concave
areas. A possible physical mechanism that supports present observations is the fol-
lowing: when an external perturbation reaches the deformable interface of a bubble,
the bubble surface is modified and the perturbation then propagates to the internal
bubble fluid. As bubble density is reduced, however, the propagation of this pertur-
bation to the bubble fluid and thus to the rest of the bubble interface becomes less
effective. Indeed, the inertia of the perturbation is modulated by the smaller bubble
density and thus the magnitude of the inertial forces is reduced. As a result, viscous
and surface tension forces increase their relative importance with respect to inertial
forces, and the resulting bubble deformation is reduced. This behaviour can be also
justified considering the dispersed phase Reynolds number, i.e. the Reynolds number
evaluated considering the dispersed phase density. As bubble density is reduced, so
does the dispersed phase Reynolds number and the bubbles become less deformable
and distorted, as can be also graphically appreciated from figure 3.2 comparing the
case ρr = 0.001 (orange bubbles) against the case ρr = 1.000 (white bubbles).

To evaluate the influence of the viscosity, we consider figure 3.7c,d. A trend can be
distinguished for both the Weber numbers: the PDFs become narrower as the viscosity
increases. More specifically, the largest effect can be seen for µr = 100, where the range
of possible curvatures is significantly reduced. The shrinkage of the pdf is less but still
evident for µr = 10, and it becomes almost negligible for µr = 0.1 and µr = 0.01.
Unlike density, the impact of viscosity is important for µr = 100 and µr = 10, while it
becomes less important for µr = 0.1 and µr = 0.01. Indeed, for these two latter cases,
no significant modifications can be appreciated from both Weber numbers.

Finally, the combined effects of the density and viscosity ratio can be evaluated from
figure 3.7e,f. Interestingly, we observe that when both density ratio and viscosity
ratios are decreased, the resulting PDF of the mean curvature lies in between the
case ρr = 0.1 (and matched viscosity) and µr = 0.1 (and matched density). This
intermediate behaviour can be traced back to the two opposite actions of density and
viscosity on the mean curvature of the surface of the bubbles: while a decrease of the
bubble density (i.e. of the density ratio) makes the bubbles surface more rigid and thus
smoother, when bubble viscosity is decreased the bubbles become more deformable and
ripples or dimples can be more easily formed on the interface. Thus, when we combine
these two effects, these actions balance out and we obtain an intermediate trend. This
result is already visible for We = 1.5 and becomes clearer for We = 3.0 where, thanks
to the higher number of bubbles, a smoother statistic is obtained.
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3.2.3 Flow modifications

Mean velocity profiles

Once detailed the evolution of the dispersed phase topology, its modifications and the
deformation and curvature of the bubbles, we move to analyze the flow modifications
produced by the bubbles. We start by analyzing the macroscopic behaviour of the
multiphase mixture, in terms of flow-rate and mean flow statistics. In particular, we
investigate the wall-normal behaviour of the mean velocity profiles of the multiphase
flow, and we compare them with the single-phase flow statistics at the same Reτ = 300.
Indeed, we aim at understanding whether the injection of bubbles in a turbulent flow
induces modifications to the mean velocity profile, especially when density or viscosity
contrasts are present between the two phases. This aspect is widely studied and
a common question that persists in the field concerns the capability of bubbles in
generating drag reduction [96, 31, 157, 160, 139, 28].
Figure 3.8 shows the wall-normal behaviour of the mean velocity profiles, computed
by averaging the streamwise velocity along the streamwise and spanwise directions
in the entire domain (both dispersed and carrier phase). The results are illustrated
for all combinations of density and viscosity ratios considered, following the same
arrangement of the previously presented statistics. In addition, the velocity profile
relative to the single-phase case is shown with a black dashed line, and the classical
law of the wall, u+ = z+ and u+ = (1/κ) ln z+ + 5.2 [125], is reported as a reference
(with κ = 0.41 the Von Kármán constant [161]). We observe that in all the plots the
velocity profiles perfectly collapse on each other in the vicinity of the wall, while tiny
deviations can be observed in the central part of the channel, where most bubbles
are located. In particular, in the core region of the channel, no differences can be
appreciated varying the density and viscosity ratios. However, all multiphase cases
are characterized by a slightly greater velocity with respect to the single-phase case.
As in our simulations a constant mean pressure gradient is used to drive the flow,
the observed flow-rate enhancement corresponds to a slight drag reduction. The drag
reduction we observe is rather low in all the simulated cases (roughly 1 to 2%), and
current results suggest that the presence of density and viscosity contrasts among the
phases does not visibly impact it. These results are in agreement with previous works
[101, 28], which found that drag significantly depends on the bubble size. Specifically,
they observe that large and deformable bubbles (obtained allowing bubbles to coa-
lesce) migrate towards the central part of the channel and do not influence the drag
significantly [96, 98, 99, 97]. By opposite, smaller bubbles (obtained not allowing bub-
bles to coalesce) move towards the near-wall region and lead to an increase of the drag
[96, 98, 99, 97]. To support this argument, we can consider figure 4.9, which shows the
scatter plot of the wall-normal location of each bubble over its equivalent diameter.
Panel a refers to We = 1.5 while panel b to We = 3.0. The bottom and top walls
are located at z+ = 0 w.u. and z+ = 600 w.u.. Two black dashed lines identify the
critical condition for which the upper (or lower) part of the bubble interface intercepts
the top (or bottom) wall. From a mathematical point of view, this condition can be
identified imposing:

z+b = d+eq/2 , (3.6)

where z+b is the distance of the center of the mass of the bubble from the closer wall,
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Figure 3.8 – Wall-normal behaviour of the streamwise mean velocity profiles. Left column refers
to We = 1.5, while the right column to We = 3.0. Density ratios effects are shown on the top
row for ρr = 0.001, 0.01, 0.1, 1. Viscosity ratio effects are shown on the middle row for µr =
0.01, 0.1, 1, 10, 100. Finally, the combined effect of the density and viscosity ratios is shown on the
bottom row for the case ρr = 0.1 and µr = 0.1, with respect to the cases where only one effect is
considered. As a reference, the classical law of the wall, u+ = z+ and u+ = (1/k) log z+ +5 (with
k = 0.41 the von Kármán constant) is also reported with a dashed line. For all cases, with respect
to single-phase, we observe a minor increase of the mean velocity.
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Figure 3.9 – Scatter plot of the wall-normal location of each bubble over its size for the different
cases considered. The two black dashed lines identify the condition for which the interface of the
bubble intercepts the closer wall in the hypothesis of a perfectly spherical bubble. Smaller bubbles
tend to disperse along the entire channel height can get rather close to one of the two walls while
larger bubbles tend to accumulate at the center of the channel.

which can be computed as follows:

z+b = min(z+i , 2h
+ − z+i ) , (3.7)

where z+i is the wall-normal location of the i-th bubble and h+ = 300 w.u. is the
channel half-height in wall units. Hence, the equations that identify these conditions
are:

z+ = d+eq/2 , z+ = 2h+ − d+eq/2 . (3.8)

Analyzing the dispersion of the bubbles along the wall-normal direction, we can confirm
previous intuitions: smaller bubbles tend to disperse along the entire height of the
channel and can get rather close to the two walls while, by opposite, larger bubbles
tend to accumulate at the center of the channel and stay farther away from the two
walls. It is worth pointing that despite a few points are located above (or below)
the two black dashed lines (i.e. in the gray region), no collisions with the walls are
detected. Instead, these points represent bubbles elongated along the streamwise or
spanwise directions and thus with a larger d+eq with respect to the actual wall-normal
size. Overall, the results presented in figure 3.8 corroborated by those reported in
figure 4.9 seem to confirm the idea that bubble deformability is a crucial parameter
for obtaining drag reduction [143, 98, 31, 160, 28]. Indeed, bubble deformability plays
a central role in determining the preferential distribution of the bubbles [98, 100],
which is directly linked to drag reduction [160, 139].

Turbulent Kinetic Energy (TKE) of bubbles

After having analyzed the flow field in terms of mean velocity, we focus on the turbu-
lence behaviour inside the bubbles. The characterization of the flow inside the bubbles
is of paramount importance in many applications. Indeed, internal circulation controls
the transport of heat, mass, momentum and chemical species through the interface
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[6, 61], the motion and deformation of the bubbles [93, 109] and particle removal effi-
ciency in scrubbing process [59, 65]. To characterize the mixing and flow behaviour in
the dispersed phase, we consider the turbulent kinetic energy (TKE) inside the bub-
bles. Since the shear Reynolds is set in the turbulent channel flow based on the carrier
phase properties, namely ρc and µc, when a density and viscosity ratio is imposed,
modifications of the flow field are expected to occur inside the dispersed phase, where
density and viscosity are different (i.e. ρd and µd). As the magnitude of inertial and
viscous forces inside the bubbles differs from the one in the carrier fluid, the turbulence
characteristics must also change inside the bubbles, where a local Reynolds number
could be evaluated using the dispersed phase properties and the bubble size.
To give a first qualitative idea of these modifications, we can consider the specific
turbulent kinetic energy, TKE, whose definition is here recalled:

TKE =
ρ

ρc

(u�2 + v�2 + w�2)
2

, (3.9)

where ρ is the local density (ρd in the bubbles and ρc in the carrier phase). Figure 3.10
shows the specific turbulent kinetic energy for two different simulations: panel (a)
refers to the case with ρr = 0.01 and matched viscosity and panel (b) to the case
with µr = 0.01 and matched density. Both panels refer to the higher Weber number
analyzed (We = 3.0) and to the time instant t+ = 4000, when for both cases a
statistically-stationary configuration is attained. The two snapshots illustrate with a
white-black scale the contour map of specific TKE on an x+ − y+ plane located at
the channel center (z+ = 0). The interface of the bubbles is marked with a white thin
line. We notice that the flow structures in the carrier phase are qualitatively similar in
the two pictures, while inside the bubbles the contour maps of specific TKE look very
different and for ρr = 0.01 and µr = 1 (panel a), low values of specific TKE inside
the bubbles are observed. In evaluating the results presented in panel a, however, it is
important to make a clarification: although the energy content of the bubbles is rather
low, velocity fluctuations are still present inside the bubbles. Indeed, the low values of
specific TKE in the bubbles obtained for the case ρr = 0.01 and µr = 1 are due to the
low density that characterizes the bubbles: the prefactor ρ/ρc present in the definition
of specific TKE reduces the values obtained inside the bubbles. Shifting our focus to
the case µr = 0.01 and ρr = 1 (panel b), we can appreciate here the presence of many
vortical structures characterized by an energy content similar to that of the carrier
phase. Interestingly, the characteristic length scale of these turbulence structures is
much smaller than that of the carrier phase. This observation can be traced back
to the smaller viscosity of the dispersed phase that results in a larger local Reynolds
number, as also observed in other multiphase flow instances [133, 134].
To quantify these qualitative observations, we compute the mean value of the specific
turbulent kinetic energy inside the bubbles for all simulated cases, except for the com-
bined case, and we collect the results in figure 3.11. To better evaluate the contribution
of density and velocity fluctuations, the specific turbulent kinetic energy is shown in
panel a (according to equation 3.9), while the turbulent kinetic energy is shown in
panel b (i.e. the specific TKE is reported normalized by the local density contribution
ρ/ρc). The mean values of specific TKE and TKE are reported as a function of the
density ratio (scale on the bottom part of the plot), viscosity ratio (scale on the top
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Figure 3.10 – Contour map of the specific turbulent kinetic energy in a x+ − y+ plane located
at the channel center (z+ = 0). Panel (a) refers to the case ρr = 0.01 and µr = 1 while panel
(b) refers to the case ρr = 1 and µr = 0.01. Both panels refer to the lower surface tension case
(We = 3.0) and to the time instant t+ = 4000 (statistically-steady configuration). The interface
of the bubbles is highlighted with a white line. For ρr = 0.01, bubbles and characterized by a low
and uniform value of the specific TKE while, for µr = 0.01, the specific TKE map is non-uniform
and characterized by small scales fluctuations.

part of the plot), and Weber number (full circles for We = 1.5 and empty circles for
We = 3.0). We start by analyzing the effects of the density and viscosity ratios shown
in panel a. Two opposite trends can be observed: as the viscosity ratio increases,
the mean value of specific TKE inside the bubbles decreases of about one order of
magnitude while, by opposite, increasing the density ratio, the mean value of specific
TKE inside the bubbles rapidly increases of about four orders of magnitude. This
behaviour reflects the modifications of the inertial and viscous forces inside the bub-
bles produced by the different dispersed phase density and viscosity. As the viscosity
ratio is increased from µr = 0.01 up to µr = 100 (from left to right), viscous forces
become dominant over inertial forces and thus the local Reynolds number decreases.
As a result, for low viscosity ratios, small turbulent structures can be observed inside
the bubbles, characterized by significative turbulent kinetic energy levels, while for
viscosity ratios larger than unity turbulence structures cannot be sustained inside the
bubbles (larger viscous dissipation) and bubbles are characterized by a low level of
specific turbulent kinetic energy. A similar trend, albeit in a slightly different simu-
lation setup, was reported by Cano-Lozano et al. [29], that investigated the rise of
bubbles in still liquid and observed a reduction of the velocity gradients for increasing
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Figure 3.11 – Mean value of the turbulent kinetic energy (TKE) inside the bubbles. In panel a,
TKE is evaluated using the complete definition of specific TKE (i.e. including the prefactor ρ/ρc)
while, in panel b, TKE is evaluated considering only the velocity contribution (i.e. not considering
the prefactor ρ/ρc). For both panels, a dashed line (We = 1.5) and a continuous line (We = 3.0)
are used to show the behaviour of TKE as the density or viscosity ratios are changed. Each value
of TKE is marked with a circle (empty for We = 1.5 and filled for We = 3.0), with a red-color
scale for the non-matched density cases and a blue-color scale for the non-matched viscosity cases,
while the black color is used for the reference case.

values of the viscosity ratio. On the other hand, increasing the density ratio from
ρr = 0.001 up to ρr = 1, inertial forces become dominant over viscous forces, the
local Reynolds number increases and the bubbles result to be characterized by higher
specific turbulent kinetic energy. Interestingly, we observe a much stronger action of
the density ratio on the mean value of the bubbles specific TKE. Indeed, the specific
turbulent kinetic energy directly depends on the bubble density and, as we can see
from panel a, present results roughly follow the ρr scaling law reported with a dotted
line. However, it is worthwhile observing that when the smallest density ratio is con-
sidered (ρr = 0.001), results start to deviate from the ρr scaling law: as the density
ratio is reduced, we observe a reduction in the magnitude of the velocity fluctuations
of about one order of magnitude. This deviation can be better appreciated in panel b,
where the specific TKE values are reported normalized by the prefactor ρ/ρc, so that
the contribution from velocity fluctuations alone can be better appreciated. The mag-
nitude of velocity fluctuations is roughly constant when considering different density
ratios, exception made for the lowest density ratio, ρr = 0.001, thus indicating that
the specific TKE scales with the density ratio.

Finally, the effect of the Weber number is considered: we observe that increasing
the Weber number, thus decreasing the surface tension, the TKE is slightly increased
for all the cases. This trend can be attributed to the larger transfer of momentum
that occurs when surface tension forces are weaker: as the interface becomes more
deformable, the modulation effect of the interface becomes weaker and energy and
momentum can be more easily exchanged between the phases. When the surface
tension is reduced, in fact, the bubbles become more deformable and reasonably they
are more likely to contain a greater amount of TKE.
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3.3 Conclusions

In this work, we studied the behaviour of bubbles in a turbulent channel flow for differ-
ent values of the density ratio, viscosity ratio, and Weber number. The investigation is
based on direct numerical simulation of turbulence coupled with a phase-field method.
First, we investigated the topology of the dispersed phase and its modifications. We
found that the number of bubbles present in the channel is strongly influenced by the
surface tension value (i.e. by the Weber number), in accordance with the results of
previous studies [89, 132, 145]. Besides, we observe that an increase of bubble viscosity
with respect to the carrier (i.e. an increase of the viscosity ratio) has an important
stabilizing role and leads to a remarkable increase of the maximum bubble stable di-
ameter and thus to a decrease of the number of bubbles. By opposite, a reduction of
the bubble density (i.e. a reduction of the density ratio), does not remarkably affect
the dispersed phase topology. Similar findings are obtained from the analysis of the
coalescence and breakage rates: an increase of bubble viscosity or surface tension (i.e.
a decrease of the Weber number) leads to a reduction of the breakage and coalescence
rates. In contrast, a modification of the density ratio has a marginal effect on the
behaviour of the breakage and coalescence rates. Secondly, we studied the surface
stretching and curvature of the bubbles. We observed that these indicators are in-
fluenced by all three parameters investigated. In particular, larger viscosity ratios or
lower density ratios or Weber numbers hinder the stretching of the bubbles and as
a result the overall amount of interfacial area obtained is lower (with respect to the
reference matched density and viscosity cases). These observations are also reflected in
the probability density function of the mean curvature: an increase of bubble viscosity,
a decrease of bubble density or a decrease of the Weber number hinder the formation
of ripples and dimples on the surface of the bubbles and thus high curvature values
are less likely to be found. Thirdly, we evaluated the flow modifications produced by
the swarm of bubbles in the background turbulent flow and in the dispersed phase.
From a macroscopic point of view, no significant modifications are observed in the
wall-normal behaviour of the mean velocity profiles and only a minor increase of the
flow-rate is observed for all bubbles-laden cases with respect to a single-phase flow, in
accordance with previous results [89, 132, 145]. Finally, as bubbles internal circula-
tion play a key role in controlling the transport of heat, mass, momentum through the
interface [6, 61], we characterized the mixing in the bubbles by studying the turbulent
kinetic energy of the bubbles. We observe a clear action of density and viscosity in
modulating the turbulent kinetic energy of the bubbles. In particular, a decrease of
the bubble density or an increase of the bubble viscosity lead to a remarkable decrease
of the turbulent kinetic energy levels in the bubbles.
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In turbulent dispersed multiphase flows, drops or bubbles that are deformable and
larger than the smallest turbulent scales are characterized by an internal circulation
and secondary flow. The characteristics and the developement of such internal flow
depend on many different factors, such as the drop/bubble size, the forcing produced
by the surrounding turbulent flow and the drop/bubble thermophysical properties, as
discussed in section 3.2.3 of the previous chapter. This internal flow plays a crucial role
in the mixing of scalar quantities, like heat or mass, whose distribution can be as much
inhomogeneous and non-uniform as the internal turbulence is. The assumption of a
uniformly distributed scalar inside the drops/bubbles, which is often used in simple
analytical models, can be therefore a substantial approximation, leading to inaccurate
predictions of the scalar motion and transfer rate between the fluids. In this chapter,
the mixing of a scalar in a turbulent two-phase flow will be investigated, with particular
attention at the scalar transfer between the phases.

Transport of passive and active scalars in turbulent dispersed multiphase flows is very
important in many industrial processes and natural phenomena, from vaporization of
atomized fuel jets [62, 5, 56, 19], to rain formation and atmosphere-ocean heat/mass
exchanges [48, 42] or even to the uptake of nutrients and other biochemicals by cells in
complex flows [2, 104]. In turbulent single-phase flows, the mixing of active or passive
scalars has been widely investigated in the last decades using experiments and simu-
lations [3, 82, 83, 123, 170, 171, 172]. Only recently, instead, these phenomena have
been included in the study of turbulent multiphase flows. Indeed, when multiphase
flows are considered the situation becomes much more challenging [58, 115], due to the
presence of interfaces that dynamically move and deform in time and space according
to the flow conditions and that clearly alter or modulate heat and species transport
and mixing[41, 63, 95, 120, 135]. In this context, previous works mostly focused on the
heat/mass transfer from/to isolated drops and bubbles using analytical [18, 92, 12],
numerical [16, 53, 68, 39, 118, 52] and experimental techniques [116, 73, 166, 14, 107].
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When swarms of drops/bubbles are considered, the number of available investiga-
tions is more limited. For very small drops/bubbles, numerical investigations usually
rely on the Lagrangian approach, in which drops/bubbles are assumed to have sub-
Kolmogorov size and are treated as material points [88, 110, 34, 162, 163]. When
larger drops/bubbles are considered (i.e. larger than the Kolmogorov scale), the prob-
lem becomes more complex, since the interface shape and deformation play a crucial
role. Not surprisingly, remarkable works in this context have appeared only lately,
both for the case of passive scalar transport and for the case of active scalars/phase
change [111, 46, 138, 22, 70]. Relevant to the present work is the observation done
by [46] and [138], and also confirmed by the experiments of [111], that the Sherwood
number (i.e. dimensionless mass transfer coefficient) measured during drop evapora-
tion in turbulence is larger compared to that obtained from widely-used correlations
[130, 55, 13].

This work is focused on the numerical simulation of the heat transfer process in a drop-
laden turbulent channel flow, particularly at the role of the Prandtl number Pr, i.e. the
ratio between momentum and thermal diffusivity, in the process. Compared to single-
phase turbulence, where the range of scales that must be resolved to perform a direct
numerical simulation (DNS) is purely dictated by the smallest scales of turbulence
(Kolmogorov scale), when the mixing of scalars in multiphase turbulence is analyzed,
two further additional scales come into the picture. The first one is the Batchelor
scale [9, 10], which determines the smallest scale of the temperature/concentration
field. The second important scale is the Kolmogorov-Hinze scale [85, 72], and is
linked to the multiphase nature of the flow. This scale can be used, perhaps with
some limitations [129], to determine the critical size of a drop/bubble that will not
undergo breakage in turbulence. These two scales – and their corresponding ratio
to the Kolmogorov scale, i.e. the smallest length scale of the turbulent flow field –
control the system dynamics and define the minimal grid requirements that must be
satisfied to perform a DNS of scalar mixing in multiphase turbulence (keeping always
in mind that performing a simulation that resolves the interface dynamics down to the
molecular scale is at present almost unfeasible). In this context, the major constraint
is usually posed by the Batchelor scale, which becomes smaller than the Kolmogorov
length scale when Prandtl numbers larger than unity are considered. Overall, the wide
range of scales involved in the process makes simulations of scalar mixing in multiphase
turbulence a challenging task and limits the space parameters that can be explored
by means of DNS. Our simulations are initialized by injecting a swarm of large and
deformable drops (initially warmer) inside a turbulent channel flow (initially colder).
The system is described by coupling the DNS of turbulent heat transfer with a phase-
field method, employed to describe the drops topology [169, 113]. We simulate realistic
values of the Prandtl number up to Pr = 8, similar to those obtained in liquid-liquid
systems. We remark here that simulations of mass transfer problems in wall-bounded
flow configurations, where the typical Schmidt number Sc (i.e. the mass transfer
counterpart of Pr) is O(102 ∼ 103), e.g. Sc ≃ 600 for CO2 in freshwater [164], are
currently out of reach even using the most advanced computing. Indeed, the resulting
Batchelor scale would be at least one order of magnitude smaller, thus requiring grid
resolutions comparable or larger than those employed for state-of-the-art single-phase
DNS [91, 124] but with a much larger computational cost as the systems of equations
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to be solved is more complex and restrictive (also from the temporal discretization
point of view).
The present study has three main objectives. First, we want to investigate the macro-
scopic dynamic of the drops and of the heat transfer process by analyzing the drop
size distribution and the mean temperature behaviour of the two phases over time.
Second, we want to characterize the influence of the Prandtl number, i.e. of the mi-
croscopic flow properties, on the macroscopic flow properties (mean temperature, heat
transfer coefficient) and, building on top of the numerical results, we want to develop
a physically-based model to explain the observed results. Third, we want to study the
influence of the Prandtl number and drop size on the temperature distribution inside
the drops, so to evaluate the corresponding flow mixing/ homogenization.
The chapter is organized as follows. In section 4.1 the simulation setup is presented.
Then in section 4.2, the simulation results, in terms of drop size distribution and mean
temperature of the two phases and heat transfer coefficient are carefully characterized
and discussed. A simplified model is also developed to explain the observed results.
The temperature distribution inside the drops is then evaluated at different Prandtl
numbers and drop sizes. Finally, conclusions are presented in 4.3.

4.1 Simulation setup

The turbulent channel flow, driven by an imposed constant pressure gradient in the
streamwise direction, has a shear Reynolds number Reτ = 300. The computational
domain has dimensions Lx × Ly × Lz = 4πh× 2πh× 2h, which corresponds to L+

x ×
L+
y × L+

z = 3770× 1885× 600 wall units.
The value of the Weber number is kept constant and is equal to We = 3.00, so to be
representative of liquid/liquid mixtures [151]. To study the influence of the Prandtl
number Pr on the heat transfer process, we consider four different values of Pr:
Pr = 1, Pr = 2, Pr = 4 and Pr = 8. These values cover a wide range of real-case
scenarios: from low-Prandtl number fluids to water-toluene mixtures. A single-phase
flow simulation is also performed as a reference case, and to provide initial velocity
fields for the multiphase simulations.
As the characteristic length scales of the flow and temperature fields, represented by
the Kolmogorov scale, η+k , and the Batchelor scale, η+θ , are different when non-unitary
Prandtl numbers are employed (being these two quantities linked by the following
relation η+θ = η+k /

√
Pr), a dual grid approach is employed to reduce the computational

cost of the simulations and, at the same time, to fulfil the DNS requirements. In
particular, when super-unitary Prandtl numbers are simulated, a finer grid is used to
resolve the energy equation. Spectral interpolation is used to upscale/downscale the
fields from the coarse to the refined grid and vice versa when required (e.g. upscaling
of the velocity field to compute the advection terms in the energy equation).
The grid resolution used to resolve the continuity, Navier-Stokes and Cahn-Hilliard
equations is equal to Nx × Ny × Nz = 1024 × 512 × 513 for all the cases considered
in this work. For the energy equation, the same grid used for the flow field and
phase field is employed at the lower Prandtl numbers (Pr = 1 and Pr = 2), while a
more refined grid, with Nx ×Ny ×Nz = 2048 × 1024 × 513 points, is used when the
larger Prandtl numbers are considered (Pr = 4 and Pr = 8). The computational grid
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Case Reτ We Pr Nx ×Ny ×Nz (NS+CH) Nx ×Ny ×Nz (Energy)

SP 300 - - 512× 256× 257 -
DL1 300 3.0 1.0 1024× 512× 513 1024× 512× 513
DL2 300 3.0 2.0 1024× 512× 513 1024× 512× 513
DL3 300 3.0 4.0 1024× 512× 513 2048× 1024× 1025
DL4 300 3.0 8.0 1024× 512× 513 2048× 1024× 1025

Table 4.1 – Overview of the simulation parameters. For a fixed shear Reynolds number Reτ = 300
and Weber number We = 3, we consider a single-phase flow case and four non-isothermal drop-
laden flows characterized by different Prandtl numbers: from Pr = 1 to Pr = 8. The grid
resolution is modified accordingly so as to satisfy DNS requirements.

has uniform spacing in the homogeneous directions, while Chebyshev-Gauss-Lobatto
points are used in the wall-normal direction. We refer the reader to table 4.1 for an
overview of the main physical and computational parameters of the simulations. For
the employed grid resolution, the Cahn number is set to Ch = 0.01 while, to achieve
convergence to the sharp interface limit, the corresponding phase field Péclet number
is Peφ = 1/Ch = 100.

All simulations are initialized by releasing a regular array of 256 spherical drops with
diameter d = 0.4h (corresponding to d+ = 120 w.u.) inside a fully-developed turbulent
flow field (obtained from the preliminary single-phase simulation). To ensure the
independence of the results from the initial flow field condition, each case is initialized
with a slightly different flow field realization. Naturally, the fields are equivalent in
terms of statistics as they are all obtained from a statistically steady turbulent channel
flow. The volume fraction of the drops is Φ = Vd/(Vc + Vd) = 5.4%, with Vd and Vc

the volume of the drops and carrier fluid, respectively.

The initial condition for the temperature field is such that all drops are initially warm
(initial temperature θd,0 = 1), while the carrier fluid is initially cold (initial tempera-
ture θc,0 = 0). To avoid numerical instabilities that might arise from a discontinuous
temperature field, the transition between drops and carrier fluid is initially smoothed
using a hyperbolic tangent kernel. Figure 4.1 (which is an instantaneous snapshot
captured at t+ = 1000, for Pr = 1) shows a volume rendering of the temperature field
(blue-cold, red-hot), inside which deformable drops (whose interface, iso-level φ = 0,
is shown in white) are transported.

4.2 Results

Results obtained from the numerical simulations will be first discussed from a quali-
tative viewpoint, by looking at instantaneous flow and drops visualizations, and then
analyzed from a more quantitative viewpoint, by looking at the drop size distribution
(DSD), and at the effect of the Prandtl number Pr on the average drops and fluid
temperature. To explain the numerical results, and to offer a possible parametriza-
tion of the heat transfer process in drop-laden flows, we will also develop a simplified
phenomenological model of the system. Finally, we will characterize the temperature
distribution inside the drops, elucidating the effects of Pr and of the drop size on
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Drop Section Temperature
Heat flux

Figure 4.1 – Rendering of the computational setup employed for the simulations. A swarm of large
and deformable drops is released in a turbulent channel flow. The temperature field is volume-
rendered (blue-low, red-high) and the drops interface is shown in white (iso-level φ = 0). Drops
have a temperature higher than the carrier fluid (close-up view). The snapshot refers to Pr = 1
and t+ = 1000.

it. Note that, unless differently mentioned, results are presented using the wall-unit
scaling system but for the temperature field, which is made dimensionless using the
initial temperature difference as a reference scale (which is a natural choice in the
present case).

4.2.1 Qualitative discussion

The complex dynamics of drops immersed in a non-isothermal turbulent flow is visu-
alized in figure 4.1, where the drops (identified by iso-contour of φ = 0) are shown
together with a volume-rendered distribution of temperature in the carrier fluid. Also
shown in figure 4.1 is a close-up view of the temperature distribution inside the drop.
We can notice that most of the drops – because of their deformability – gather at
the channel center, as also observed in previous studies in similar configurations
[140, 148, 106].

Once injected into the flow, each drop starts interacting with the flow and with the
neighboring drops. The result of the drop-turbulence and drop-drop interactions is
the occurrence of breakage and coalescence events. A breakage event happens when
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Figure 4.2 – Influence of topology changes on heat transfer: Time sequence of a breakage event
(top row, panels a-e) and of a coalescence event (middle and bottom rows, panels f -p). During a
breakage event, heat is transferred from the drops to carrier fluid thanks to the high surface/volume
ratio of the pinch-off region. In the middle and bottom rows, the mixing between parcels of fluid
with different temperatures can be appreciated. The two sequences refer to the case Pr = 1 and
snapshots are separated by Δt+ = 15. As a reference, the Kolmogorov-Hinze scale, d+H , is also
reported.

the flow vigorously stretches the drop, leading to the formation of a thin ligament that
breaks and generates two child drops. Upon separation, surface tension forces tend
to retract the broken filaments and restore the drop spherical shape. A coalescence
event is observed when two drops come close to each other. The small liquid film that
separates the drops starts to drain, and a coalescence bridge is formed. Later, surface
tension forces enter the picture, reshaping the drop and completing the coalescence
process. The dynamic competition between breakage and coalescence events, and
their interaction with the turbulent flow, determines the number of drops, their size
distribution, and their shape/morphology (i.e., curvature, interfacial area, etc.).
In the present case, drops not only exchange momentum with the flow and with the
other drops but also heat. Starting from an initial condition characterized by warm
drops (with uniform temperature) and cold carrier fluid, and because of the imposed
adiabatic boundary conditions, the system evolves towards an equilibrium isothermal
state. During the transient to attain this thermal equilibrium state, heat is transported
by diffusion and advection inside each of the two phases, and across the interface of the
drops (see the temperature field inside and outside the drops, figure 4.1). The picture
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Figure 4.3 – Instantaneous visualization of the temperature field (red-hot; blue-cold) on a x+−y+

plane located at the channel center for t+ = 1500. Drops interface (iso-level φ = 0) are reported
using white lines. Each panel refers to a different Prandtl number: Pr = 1 (panel a), Pr = 2
(panel b), Pr = 4 (panel c) and Pr = 8 (panel d). By increasing the Prandtl number (from top to
bottom), the heat transfer becomes slower.
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is then further complicated by the occurrence of breakage and coalescence events. This
is represented in figure 4.2. When breakage occurs (figure 4.2, top row), a thin filament
is generated (figure 4.2a-c), which then leads to the formation of a smaller satellite drop
(figure 4.2d-e). The filament and the satellite drop, given the large surface-to-volume
ratio, exchange heat very efficiently, and become rapidly colder. In contrast, when a
coalescence occurs (figure 4.2, bottom row), two drops having different temperatures
merge together. This induces an efficient mixing process, during which cold parcels
of one drop become warmer and vice versa, warm parcels of the other drops become
colder. Overall, breakup and coalescence events induce heat transfer modifications
that are in general hard to predict a priori, since they do depend on the relative size
of the involved parents/child drops.

Naturally, the problem of heat transfer in drop-laden turbulence is strongly influenced
by the Prandtl number of the flow. This can be appreciated by looking at figure 4.3,
where we show the instantaneous temperature field, together with the shape of the
drops, at a certain instant in time (t+ = 1500) and at the different Prandtl numbers:
Pr = 1 (panel a), Pr = 2 (panel b), Pr = 4 (panel c) and Pr = 8 (panel d). In each
panel, the temperature field is shown on a wall-parallel x+-y+ plane located at the
channel center (z+ = 0) and is visualized with a blue-red scale (blue-low, red-high).
We observe that the temperature field changes significantly with Pr. In particular, we
notice an increase in the drop-to-fluid temperature difference for increasing Pr, going
from Pr = 1 (top panel) where this difference is small, to Pr = 8 (bottom panel)
where this difference is large. The heat transfer from the drops to the carrier fluid
becomes slower as Pr increases, consistently with a physical situation in which the
Pr number is increased by reducing the thermal diffusivity of the fluid while keeping
the momentum diffusivity constant (i.e. constant kinematic viscosity, and hence shear
Reynolds number). Also, the temperature structures, both inside and outside the
drop, become thinner and more complicated at higher Pr, since their characteristic
length scale, the Batchelor scale η+θ ∝ Pr−1/2, becomes smaller for increasing Pr
[9, 10]. In addition, smaller drops have, on average, a lower temperature compared to
larger drops, regardless of the value of Pr. All these aspects will be discussed in more
detail in the next sections.

4.2.2 Drop Size Distribution

To characterize the collective dynamics of the drops, we compute the drop size distri-
bution (DSD) at steady-state conditions, averaging over a time window Δt+ = 3000,
from t+ = 3000 to 6000. The achievement of steady-state conditions is here evaluated
by monitoring global flow properties, like flow rate and wall stress, and drop proper-
ties, like the number of drops and the overall drops surface. It is worth mentioning
that a quasi-equilibrium DSD, very close to the steady one, is already achieved around
t+ ≃ 750, and only minor changes occur to the DSD afterward.

Figure 4.4 shows the DSD obtained for the different cases considered here: Pr = 1
(dark violet), Pr = 2 (violet), Pr = 4 (pink), and Pr = 8 (light pink). Drop size
distribution profiles are statistically the same. Small differences are due to the initial
turbulence field, which is different for each simulation (see 4.1). The DSDs have been
computed considering, for each drop, the diameter of the equivalent sphere computed
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Figure 4.4 – Steady-state drop size distributions (DSD) obtained for: Pr = 1 (dark violet,
circles), Pr = 2 (violet, squares), Pr = 4 (pink, diamonds) and Pr = 8 (light pink, triangles). The
Kolmogorov-Hinze (KH) scale d+H is reported with a vertical dashed line while the two analytical

scaling laws: d+eq
−3/2

for the coalescence-dominated regime (small drops, gray region) and d+eq
−10/3

for the breakage-dominated regime (larger drops, white region) are reported with dash-dotted lines.

as:

d+eq =

�
6V +

π

�1/3

, (4.1)

where V + is the volume of the drop. Also reported in figure 4.4 is the Kolmogorov-
Hinze scale, d+H , which can be computed as [121, 132, 145]:

d+H = 0.725

�
We

Reτ

�−3/5

|�c|−2/5 , (4.2)

where �c is the turbulent dissipation, here evaluated at the channel center where
most of the drops collect because of their deformability [98, 148, 106]. Although
recently challenged [129, 158, 115], the Kolmogorov-Hinze scale [85, 72] still represents
a convenient estimate to evaluate the critical diameter below which drop breakage is
unlikely to occur. Based on the Kolmogorov-Hinze scale, we can identify two different
regimes [57, 40, 42]. For drops smaller than the Kolmogorov-Hinze scale, we find the
coalescence-dominated regime (left, gray area), in which drops, that are smaller than
the critical scale, are generally not prone to break (although violent breakages can
happen also for smaller drops). For drops larger than the Kolmogorov-Hinze scale,
we find the breakage-dominated regime (right, white area) in which drops breakage is
more likely to happen. Each regime is characterized by a specific scaling law, which
describes the behaviour of the drops number density as a function of the drop size

[57, 40, 32]: PDF ∼ d+eq
−3/2

, below Kolmogorov-Hinze scale, and PDF ∼ d+eq
−10/3

above it. The two scalings are represented by dot-dashed lines in figure 4.4.
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We note that, for equivalent diameters above the Hinze scale, our results follow quite
well the theoretical scaling law and match the drops/bubbles size distributions ob-
tained in literature considering similar flow instances [43, 45, 149, 42, 37]. Below the
Hinze scale, for equivalent diameters in the range 25 < d+eq < d+H our results match
reasonably well the theoretical scaling law. For equivalent diameters d+eq < 25 w.u.,
we observe an underestimation of the DSD compared to the proposed scaling. This is
linked to the grid resolution, and in particular to the problem in describing very small
drops [149, 135].

Time evolution of the drop size distribution

We report here the drop size distributions obtained at different time instants. In
particular, we show here the results obtained for the case Pr = 1, which with any
loss of generality, can be applied to all the cases analyzed being the Reynolds and
Weber numbers considered the same (Reτ = 300 and We = 3.0). Figure 4.5 shows the
resulting time evolution of the drop size distribution. The different time instants are
reported with different colors, from black (initial stages of the simulation) to gray (later
stages of the simulation). The Kolmogorov-Hinze (KH) scale, d+H = 114 w.u., and the
initial drop size, d+ = 120 w.u., are reported with vertical dashed lines. Likewise,
the scaling laws for the coalescence and breakage-dominated regime are reported with
dash-dotted lines. Analyzing the results, we can observe that for the first time instant
reported (t+ = 735; black-full circles), the drop size distribution partially deviates
from the steady-state distribution obtained for t+ ≥ 3000. It is worth observing that
memory of the initial condition is somehow visible as there is a peak at approximately
the initial size, this peak is slightly shifted towards smaller values due the initial
mass leakage that occurs in the initial stages of the simulations. However, already
at t+ = 1100 (light black, full squares) and for the subsequent time instants, the
deviation from the steady-state size distribution (t+ ≥ 3000) becomes marginal and
memory of the initial conditions is completely lost and the peak vanishes. For these
latter stages, the size distribution can be well approximated using a combination of

the two scaling laws: d+
−3/2

for the coalescence-dominated regime and d+
−10/3

in the
breakage-dominated regime.

4.2.3 Mean temperature of drops and carrier fluid

We now focus on the average temperature of the drops and of the carrier fluid. We
consider the ensemble of all drops as one phase, and the carrier fluid as the other
phase (using the value of the phase field as a phase discriminator), and we compute
the average temperature for each phase. The evolution in time of the drops and carrier
fluid temperature, θd and θc respectively, is shown in figure 4.6, for the different
values of Pr. Together with the results obtained by current DNSs, filled symbols,
in figure 4.6 we also show the predictions obtained by a simplified phenomenological
model (solid lines), the details of which will be described and discussed later (see
section 4.2.4). We start considering the DNS results only. As expected, we observe
that the average temperature of the drops (violet to pink symbols) decreases in time,
while the average temperature of the carrier fluid (blue to cyan symbols) increases
in time, until the thermodynamic equilibrium, at which both phases have the same
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temperature, is asymptotically reached. For this reason, simulations have been run
long enough for the average temperature of both phases to be sufficiently close to the
equilibrium temperature. In particular, we stopped the simulations at t+ ≃ 6000,
when the condition

(θd − θeq)

(θd,0 − θeq)
≤ 0.05 , (4.3)

with θd,0 the initial temperature of the drops, is satisfied by all simulations. The
equilibrium temperature, θeq, can be easily estimated a-priori: since the two walls
are adiabatic, and the homogeneous directions are periodic, the energy of the system
is conserved over time. After some algebra, and recalling the definition of volume
fraction, Φ = Vd/(Vd + Vc), we obtain the equilibrium temperature:

θeq = θc,0(1− Φ) + θd,0Φ , (4.4)

which is represented by the horizontal dashed line in figure 4.6.
Figure 4.6 provides also a clear indication that the higher the Prandtl number, the
larger the time it takes for the system to reach the equilibrium temperature, θeq. The
trend can be observed for both the drops and carrier fluid, as the two phases are
mutually coupled (the heat released from the drops is adsorbed by the carrier fluid).
This result confirms our previous qualitative observations, see figure 4.3 and discussion
therein, that a large Pr (small thermal diffusivity) reduces the heat released by the
drops. It is also interesting to observe that the behaviour of the mean temperature of
the two phases appears self-similar at the different Pr.
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4.2.4 A phenomenological model for heat transfer rates in droplet
laden flows

In an effort to provide a possible interpretation of the previous results – and in partic-
ular to explain the average temperature behaviour shown in figure 4.6 –, we develop a
simple physically sound model of the heat transfer in drop-laden turbulence. We start
by considering the heat transfer mechanisms from a single drop of diameter d∗ to the
surrounding fluid:

m∗
dc

∗
p

∂θ∗d
∂t∗

= H∗A∗
d (θ

∗
c − θ∗d) , (4.5)

where m∗
d, A

∗
d, and c∗p are the mass, external surface, and specific heat of the drop,

H∗ is the heat transfer coefficient, while θ∗d and θ∗c are the drops and carrier fluid
temperature. The heat transfer coefficient can be estimated as the ratio between
the thermal conductivity of the external fluid, λ∗, and a reference length scale, here
represented by the thermal boundary layer thickness δ∗t :

H∗ ∼ λ∗/δ∗t . (4.6)

With this assumption, and recalling that ρ∗ = ρ∗c = ρ∗d, equation 4.5 becomes:

∂θ∗d
∂t∗

=
6

Pr

ν∗

d∗δ∗t
(θ∗c − θ∗d) . (4.7)
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Reportedly [142], the thermal boundary layer thickness, δ∗t , can be expressed as
δ∗t = δ∗Pr−α where δ∗ is the momentum boundary layer thickness, and α is an ex-
ponent that depends on the flow condition in the proximity of the boundary where
the boundary layer evolves. In particular, the exponent α ranges from α = 1/3 for
no-slip conditions, usually assumed for solid particles, to α = 1/2, usually assumed
for clean gas bubbles. For an in-depth discussion on the topic, we refer the reader to
appendix B. As a consequence, the heat transfer rate observed from drops/bubbles is
expected to be larger than that observed from solid particles, since the no-slip bound-
ary condition generally weakens the flow motion near the interface [92, 68, 12]. We can
now rewrite the equation of the model in dimensionless form, using the initial drop-
to-carrier fluid temperature difference Δθ∗ = θ∗d,0− θ∗c,0 as reference temperature, and

ν∗/u∗2
τ as reference time:

∂θd
∂t+

= 6Re−1
δ Pr−1+α

�
d+

�−1
(θc − θd) , (4.8)

where d+ is the drop diameter in wall units, while Reδ = u∗
τδ

∗/ν∗ is the Reynolds
number based on the boundary layer thickness (which can be assumed constant among
the different cases). Equation 4.8 can be rewritten as:

∂θd
∂t+

= CPr−1+α
�
d+

�−1
(θc − θd) , (4.9)

where C is a constant whose value depends only on the flow structure, i.e. on Reδ.
Equation 4.9 describes the heat released by a single drop of dimensionless diameter d+.
Assuming now that the turbulent flow is laden with drops of different diameters the
general equation describing the heat released by the i-th drop of diameter d+i becomes:

∂θd,i
∂t+

= CPr−1+α
�
d+i

�−1
(θc − θd) = Fi , (4.10)

where Fi is the lumped-parameters representation of the right-hand side of the temper-
ature evolution equation for the i-th drop. As widely observed in literature [40, 147],
and also confirmed by the present study (figure 4.4), we can hypothesize an equilib-
rium drops-size-distribution (DSD) by which the number density of drops scales as

d+
−3/2

, in the sub-Hinze range of diameters (10 < d+ < 110), and as d+
−10/3

in the
super-Hinze range of diameters (110 < d+ < 240). With this approximation, and
considering 7 classes of drops diameter for the sub-Hinze range, and 4 classes for the
super-Hinze range, we can integrate equation 4.10 to obtain the time evolution of the
temperature of each drop in time:

θn+1
d,i = θnd,i +Δt+Fi . (4.11)

From a weighted average of the temperature (based on the number of drops in each
class, as per the theoretical DSD), we obtain the average temperature of the drops,
θd.

To obtain the mean temperature of the carrier fluid, we consider that (adiabatic con-
dition at the walls), the heat released by the drops is entirely absorbed by the carrier
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fluid. The heat released by the drops with a certain diameter d∗i , can be computed as:

Q∗
i = m∗

dc
∗
p

∂θd
∂t+

N∗
d (i) , (4.12)

where N∗
d (i) is the number of drops for that specific diameter (as per the DSD). The

overall heat released by all drops can be calculated as the summation over all different
classes of diameters:

Q∗
tot =

Nc�
i=1

Q∗
i , (4.13)

where Nc is the employed number of classes. Finally, the mean temperature of the
carrier fluid is

θ
∗,n+1

c = θ∗,nc +Δt+
Q∗

tot

m∗
cc

∗
p

. (4.14)

In dimensionless form (dividing by the initial drop-to-carrier fluid temperature Δθ∗)
equation 4.14 becomes:

θ
n+1

c = θnc +Δt+Qtot . (4.15)

The results of the model are shown in figure 4.6. Interestingly, under the simplified
hypothesis of the model (chiefly, the spherical shape of the drops, constant drop-size-
distribution evaluated at the equilibrium), we observe that the behaviour of the mean
temperature is very well captured by the model (represented by the solid lines in
figure 4.6)

∂θd
∂t+

= CPr−2/3
�
d+

�−1
(θc − θd) , (4.16)

i.e. when α = 1/3 – typical of boundary layers around solid objects (i.e. solid parti-
cles). Reasons for this behaviour might be traced back to the weakening of convective
phenomena induced by the interface of the drops [141]. This effects is more pronounced
at the beginning of the simulation when large drops are not yet present. In addition, it
must be also noticed that drops are strongly advected by the mean flow, and the flow
condition at the drop surface can be different from the slip one and is in general not of
simple evaluation. Given the relationship ∂θd/∂t ∼ Pr−2/3 postulated by the model
(equation 4.16), which provides results in very good agreement with the numerical
ones, it seems reasonable to rescale the time variable as:

t̃+ =
t+

Pr(1−α)
=

t+

Pr(2/3)
. (4.17)

A representation of the DNS results in terms of the rescaled time, equation 4.17, is
shown in figure 4.7. We observe a nice collapse of the two sets of curves – drops and
carrier fluid (red and blue) – for the different values of Pr, which clearly demonstrates
the self-similar behaviour of θ. For this reason, the rescaling of time t̃+ = t+/Pr2/3,
will be also used in the following.
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4.2.5 Heat transfer from particles and drops/bubbles

It is now important to discuss the behaviour of the heat transfer coefficient (and its
dimensionless counterpart, the Nusselt number Nu), also in the context of available
literature results. Naturally, similar considerations can be made to evaluate the mass
transfer coefficient, in particular at liquid/gas interfaces [92, 12].
For solid particles, a balance between the convective time scale near the surface, and
the diffusion time scale, gives a heat transfer coefficient [87]:

H∗ ∝ Pr−2/3 , (4.18)

and the corresponding Nusselt number:

Nu ∝ ReβPr1/3 , (4.19)

where β is an exponent that depends on the flow conditions and links the boundary
layer thickness to the particle Reynolds number. Usually, β = 1/3 for small Reynolds
numbers [87] while β = 1/2 for large Reynolds numbers [130, 165, 112].
Using similar arguments (balance between convective and diffusion time scales), but
considering now that at the surface of a drop/bubble a slip velocity, and therefore a
certain degree of advection, can be observed [92, 12, 68], the heat transfer coefficient
is found to scale as:

H∗ ∝ Pr−1/2 , (4.20)
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and the corresponding Nusselt number as:

Nu ∝ ReβPr1/2 , (4.21)

where also in this case the exponent β does depend on the considered Reynolds number.
Two regimes are usually defined [152]: a low Reynolds number regime, for which β =
1/2, and a high Reynolds number regime, for which β = 3/4. An alternative approach,
which gives similar predictions, is to use the penetration theory of Higbie [71], in which
turbulent fluctuations are invoked to estimate a flow exposure (or contact) time, to
compute the heat/mass transfer coefficient. Such an approach has been widely used
in bubble-laden flows [35, 67, 68, 118].
We can now evaluate the heat transfer coefficient from our DNS at different Pr, and
compare it to the proposed scaling laws. Note that the heat transfer coefficient is
obtained as:

H =
(θ

n+1

d − θ
n

d )

AΔt(θ
n+1/2

d − θ
n+1/2

c )
, (4.22)

where the numerator represents the temperature difference of the drops between the
time steps n and n + 1, while the denominator represents the temperature difference
between the drop and the carrier fluid evaluated halfway in time between step n and
n+1 (i.e. at n+1/2). The quantity A is the total interfacial area between drops and
carrier fluid, while Δt is the time step used to evaluate the heat transfer. Here, we
have evaluated the heat transfer coefficient taking the heat released by the drops as a
reference; an equivalent result, but with the opposite sign, can be obtained using the
heat absorbed by the carrier fluid as a reference, and taking into account the different
volume fraction of the two phases.
The dimensionless heat transfer coefficient, equation 4.22, is shown as a function of
Pr, and at different time instants (based on the dimensionless time t̃+, equation 4.17),
in figure 4.8. Further details on the time evolution of H are given in Appendix 4.2.8.
For a better comparison, the results are normalized by the value of the heat transfer
coefficient for Pr = 1. The two reference scaling laws, H ∼ Pr−2/3 obtained for
α = 1/3 and H ∼ Pr−1/2 obtained for α = 1/2 are also shown by a dotted and
a dashed line. We note that at the beginning of the simulations (see for example
t̃+ = 250), the heat transfer coefficient is close to H ∼ Pr−2/3, while at later times it
tends towards H ∼ Pr−1/2, hence approaching the scaling law proposed for heat/mass
transfer in gas-liquid flows [92, 105, 12, 67, 68, 36, 118].
A possible explanation is that, as time advances, the shape of the drops becomes
complex, and coalescence/breakups more frequent, thus inducing a higher degree of
internal mixing that is associated with a heat transfer increase. This is reflected in a
heat transfer process that is slower at the beginning, H∗ ∼ Pr−2/3, and faster at later
times H∗ ∼ Pr−1/2.

4.2.6 Influence of the drop size on the average drop tempera-
ture

In the previous sections, we have studied the behaviour of the mean temperature field
of the drops and of the carrier fluid considered as single entities. However, while this
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description is perfectly reasonable for the carrier fluid – which can be considered a
continuum – it can be questionable for the drops, which are not a continuum phase by
nature. We now take the dispersed nature of the drops into account and we evaluate,
for each drop, the equivalent diameter and the corresponding mean temperature.

This is sketched in figure 4.9, where the average temperature of each drop (represented
by a dot) is shown as a function of its equivalent diameter, at different time instants
(between t+ = 1050 and t+ = 2400). Each panel refers to a different Prandtl number.
Note that, at t+ = 2400, the case Pr = 1 has almost reached the thermodynamic equi-
librium (figure 4.6). It is clearly visible that, regardless of the considered time, small
drops have an average temperature close to the equilibrium one. This is particularly
visible at smaller Prandtl numbers, i.e. when heat transport is faster, but it can be ob-
served also at larger Pr. In contrast, the average temperature of larger drops is larger.
Hence, the average temperature of the drops seems directly proportional to the drop
size, as can be argued considering that the heat released by the drop, and hence its
temperature reduction, is ∂θd/∂t ∝ d−1 (equation 4.14). It is therefore not surprising
that the scatter plot at a given time instant is characterized by dots distributing in a
stripes-like fashion, with a slope that decreases with time. This behaviour is observed
at all Pr, although the range of drops temperature (y axis) at small Pr is definitely
narrower (because of their larger heat loss) compared to that at large Pr. It is also in-
teresting to note – in particular at Pr = 4 and Pr = 8 (panels c and d) – the presence
of drops with a temperature smaller than the equilibrium one (dots falling below the
horizontal line that marks the equilibrium temperature). We can link this behaviour
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to the small relaxation time of small drops that therefore adapt quickly to the local
temperature of the carrier fluid, which can be smaller than the equilibrium one for
two main reasons. First, at the early stages of the simulations, and at high Prandtl
numbers, the temperature of the carrier fluid is lower than the equilibrium one. Sec-
ond, temperature fluctuations (of both negative and positive signs) are present also in
the carrier fluid. These fluctuations, in the form of hot/cold striations, are more likely
observed at large Pr (see the striation-like structures at Pr = 8 in figure 4.3d).

4.2.7 Temperature fluctuations inside the drops

In many applications, in particular, to evaluate mixing efficiency and flow homogeneity,
not only the average temperature of drops is important, but also its space and time
distribution inside the drops. To understand it, we now look at the PDF of the
temperature fluctuations inside the drops,

θ�d = θd − θd , (4.23)
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where θd is the local temperature inside the drop, and θd is the average temperature
of all drops at a certain time (as per figure 4.6). Results are shown in figure 4.10. The
first row of figure 4.10 shows the probability density function of θ�d at different Pr, and
at two different time instants: t+ = 600 (panel a, left) and t+ = 1500 (panel b, right).
The second row of figure 4.10 shows the PDFs obtained at two different rescaled time
instants, t̃+ = t+/Pr2/3: t̃+ = 600 (panel c, left) and t̃+ = 1500 (panel d, right).
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Figure 4.10 – Probability density function (PDF) of the temperature fluctuations, θ�d = θd − θd
inside the drops. Each case is reported with a different color (violet to light pink) depending on the
Prandtl number. The first row shows the PDFs obtained at two different time instants: t+ = 600
(panel a) and t+ = 1500 (panel b). The second row shows the PDFs obtained at two rescaled
time instants t̃+ = 600 (panel c) and t̃+ = 1500 (panel d), where the rescaled time is computed as
t̃+ = t+/Pr2/3. For panels c-d, the corresponding t+ is reported between brackets.

Considering first figure 4.10a (t+ = 600), we notice that all PDFs have a rather regular
shape, characterized by the presence of both positive and negative fluctuations (with
respect to the average temperature), with a slight asymmetry towards the positive ones
(positive fluctuations are more likely observed). A comparison between the curves
obtained at different Pr shows that the range of temperature fluctuations is wider
at larger Pr. This is due to the small thermal diffusivity at large Pr, which allows
temperature fluctuations in the drop to survive much longer before they are damped
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and spread by diffusion. Naturally, at later times (figure 4.10b, t+ = 1500), the range
of temperature fluctuations reduces. Indeed, as heat is transferred from the drops to
the carrier fluid, the maximum temperature of drops reduces, and so does the range of
temperature fluctuations inside the drop. This trend is more pronounced for negative
fluctuations, as the minimum temperature inside the drops is somehow bounded by the
temperature of the carrier fluid (which increases only a little, from θc,0 = 0 to θeq =
0.054, during the simulation). This latter observation is visible in the shape of the
PDFs at Pr = 1, 2 and 4, since the system is closer to the thermal equilibrium at this
time instant (the thermal equilibrium is identified in panel b by a vertical dashed line
and marked with a label, θPr

eq ): a sharp drop of the PDF, which does not significantly

trespass the θPr
eq limit, is observed. In contrast, positive temperature fluctuations are

subject to relatively weaker constraints (they are only bounded by the maximum initial
temperature of the drops). This results in a PDF that gets asymmetric, positively-
skewed. It is also interesting to observe the development of a pronounced peak about
the equilibrium temperature θPr

eq , which corresponds to the presence of small drops
(generated by breakages events) that – given their small thermal relaxation time and
heat capacity – almost immediately adapt to the equilibrium temperature (see also
figure 4.2d,f).

However, a discussion on the temperature fluctuations, captured from flows at dif-
ferent Pr and after the same time t+ from the initial condition, could be misleading
because it puts in contrast flows at different thermal states (i.e. different average
temperatures, and different temperature gradients, see figure 4.6). To filter out this
effect, we compute the PDFs of the temperature fluctuations at the same rescaled time
instants t̃+ = t+/Pr2/3. By doing this, all cases can be considered at similar thermal
conditions (see also figure 4.7). The resulting PDFs, at t̃+ = 600 and t̃+ = 1500,
are shown in figure 4.10c-d. Note that, for the sake of clarity, the corresponding t+,
which is different from case to case, is reported between brackets in the legend. In
the rescaled time units, the collapse between the different curves is quite nice. The
slight difference between the curves is due to the fact that, although the system is
at the same thermal state (same t̃+), it is at a different flow state (different t+), i.e.
the instantaneous drop size distributions are different. This gives the slightly larger
negative fluctuations at larger Pr (which, being at a later stage, is characterized by
the presence of smaller and colder drops), and slightly larger positive fluctuations at
smaller Pr (which, being at an earlier flow state, is characterized by the presence of
larger and warmer drops).

From a closer look at figure 4.10d (t̃+ = 1500), we note very clearly the constraint
set by the thermal equilibrium condition: the PDF cannot significantly trespass the
limit represented by θeq (vertical dashed line), which is very similar for all Pr, given
the similar thermal state.Also visible is the peak, already discussed in figure 4.10b,
that emerges very close to the equilibrium temperature θeq, and which is due to the
presence of small drops that adapt quickly to the local temperature of the carrier
fluid. As previously noticed in figure 4.10c, the higher probability of finding small
drops at lower Pr is also responsible for the narrowing of the PDF (reduction of
positive temperature fluctuations).
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4.2.8 Time evolution of the heat transfer coefficient

In this section, we report the time evolution of the heat transfer coefficientH, evaluated
as per equation 4.22, for the different values of the Prandtl number Pr considered here.
Results are shown in figure 4.11 as a function of the dimensionless time t̃+ = t+/Pr2/3.

Considering figure 4.11a, we can observe that the heat transfer coefficient exhibits
a self-similar behaviour, and after an initial transient (after t̃ > 1000) it attains a
steady-state condition for all the different cases. Upon rescaling of the heat transfer
coefficient H by the factor Pr2/3, we observe a fair collapse of all curves on top of
each other. Some minor differences are perhaps observed at high Prandtl numbers.
Note indeed that at high Prandtl numbers the curves become a bit more noisy, as the
rescaling factor amplifies the fluctuations of the heat transfer coefficient.
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Figure 4.11 – Time evolution of the heat transfer coefficient as a function of the dimensionless
time t̃+ = t+/Pr2/3 for the different Prandtl numbers considered. In panel a, the heat transfer is
shown as per equation 4.22, while in panel b it is rescaled by the factor Pr2/3.

4.3 Conclusions

In this work, we studied heat transfer in a turbulent channel flow laden with large
and deformable drops. The drops are initially warmer than the carrier fluid and as
the simulations advance, heat is transferred from the drops to the carrier fluid. Sim-
ulations considered a fixed value of the Reynolds number, Reτ = 300, and Weber
number, We = 3, and analyzed different Prandtl number values, from Pr = 1 to
Pr = 8. The Prandtl number is changed by changing the thermal diffusivity. The
investigation is based on the DNS of turbulent heat transfer, coupled with a phase-
field method, used to describe interfacial phenomena. First, we focused on the drops
dynamics, observing that after an initial transient (up to t+ = 1000), the drop size
distribution (DSD) reaches a quasi-equilibrium condition where it follows the scaling

d+eq
−3/2

in the coalescence-dominated regime and d+eq
−10/3

in the breakage-dominated
regime. The threshold between the coalescence-dominated and the breakage-dominate
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regimes is represented by the Kolmogorov-Hinze scale. Then, we characterize the be-
haviour of the average temperature of the drops and of the carrier fluid: as expected,
the average temperature of drops decreases in time, while the average temperature of
the carrier fluid increases in time, until reaching the equilibrium condition of uniform
temperature in the whole system. We clearly observed that the higher the Prandtl
number, the larger the time it takes for the system to reach the equilibrium tempera-
ture. Interestingly, the time behaviour of the temperature profiles of both drops and
carrier fluid is self-similar.
Building on top of these numerical results, we developed a phenomenological model
that can accurately reproduce the time evolution of the mean temperatures at all
Prandtl numbers considered here. This model gave us the opportunity to introduce
a new self-similarity variable (time, t̃+) that accounts for the Prandtl number effect,
and by which all results collapse on a single curve. In addition, we also computed
the heat transfer coefficient H (and its dimensionless counterpart, the Nusselt number
Nu) and showed that it scales as H ∼ Pr−2/3 (which corresponds to a Nusselt number
scaling Nu ∼ Pr1/3) at the beginning of the simulation, and tends to H ∼ Pr−1/2 (or,
alternatively, Nu ∼ Pr1/2) at later times. These different scalings are consistent with
previous literature predictions and can be explained via the boundary layer theory
(appendix B). The effects of the Prandtl number on the temperature distribution
inside the drops have been investigated. We observe that by increasing the Prandtl
number, the PDFs become wider and thus large temperature fluctuations are more
likely to be observed. Interestingly, when the PDFs are compared at the same rescaled
time t̃+ (i.e. accounting for the Prandtl number effect), all curves collapse on top of
each other, with only minor differences possibly due to the different instantaneous drop
size distribution. The effect of the drop size was also discussed: small drops adapt
faster to the equilibrium temperature, thanks to their small heat capacity, compared
to larger drops. Finally, it must be pointed out that, since the different phases of a
multiphase flow can have different thermophysical properties, Prandtl numbers can
be also different from phase to phase. This aspect, which was not considered in the
present work, will be the topic of a future study.
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Heat transfer in turbulent dispersed multiphase flows is a complex and rich-in-physics
phenomenon. When heat is initially confined in the dispersed fluid and then trans-
ferred to the carrier fluid, the whole heat transfer process is significantly influenced
by the presence of the interface separating the fluids, and by all related interfacial
phenomena. Indeed, deformation, breakage and coalescence events, which normally
affect drops in turbulent flows, can impact the heat transport by intensifying or ham-
pering the mixing of heat. A central role in the heat transfer process is played by the
thermophysical properties of the fluids, namely surface tension, density, viscosity and
thermal diffusivity. All these properties directly or indirectly impact the heat transfer
efficiency. Surface tension, viscosity and density (the latter only within the passive
scalar approximation) indirectly influence heat transfer, acting on the flow field and
drops dynamics, which, in turn, act on the heat transport. By contrast, thermal dif-
fusivity directly influence heat diffusion, and consequently it has a direct effect on the
overall heat transport. In most two-phase systems, the dispersed and carrier phase
have different thermophysical properties, therefore the heat mixing inside the drops
can differ from the heat mixing in the carrier fluid. Such differences increase as the
ratio between the drops over carrier property increases.

This chapter aims at evaluating the effect produced by thermophysical properties con-
trasts on the heat transfer process in a drop-laden turbulent flow. The study here
reported focuses in particular on the analysis of the effects induced by viscosity con-
trasts. Density and thermal diffusivity contrasts, instead, will not be taken into ac-
count. The investigation is performed by coupling direct numerical simulation (DNS)
of turbulence with a phase-field method (PFM) for the interface description.

In order to mimic a realistic two-phase flow, an oil-water system will be considered,
where water and oil have different viscosities but the same density and thermal dif-
fusivity, which is a reasonable approximation for most oil-water mixtures. Two cases
are investigated: the first case is characterized by warm water drops in a cold turbu-
lent channel flow of oil, while the second case is characterized by warm oil drops in
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a cold turbulent channel flow of water. The second case thus corresponds to the first
case with the two fluids (oil and water) being switched. In addition, a case where the
dispersed and carrier fluids have equal viscosities is simulated, as a reference. The oil
considered for the present simulations has a viscosity four times larger than the water
viscosity. The Prandtl number (ratio of momentum over thermal diffusivity) is set
for the carrier phase and is automatically determined for the dispersed phase. More
specifically, since a constant density and thermal diffusivity are considered, the ratio
between the Prandtl number in the drops and the Prandtl number in the carrier fluid
will be exactly equal to the viscosity ratio. The shear Reynolds number is also set for
the carrier phase in each case, and its value is chosen in order to maintain a constant
Péclet number in the system, namely a constant ratio between convective and diffusive
heat transfer. This setup allows to focus on the effect of the viscosity ratio on the
velocity field and consequently on the heat convection, while keeping a constant heat
diffusion.
The objective of this study is to evaluate the impact of the viscosity ratio on the macro-
scopic heat transfer process, characterizing first the drops dynamics in terms of drop
size distribution, and analysing then the time behaviour of the average temperature
of the drops and carrier fluid.
The chapter is organized as follows: in section 5.2.1 the results are discussed from a
qualitative viewpoint; then a more quantitative analysis is reported in 5.2.2 and 5.2.3,
where the drop size distribution and the time evolution of the temperature field are
discussed, respectively.

5.1 Simulation setup

A turbulent channel flow, driven by an imposed constant pressure gradient in the
streamwise direction, is adopted for all the simulated cases. The dimensions of the
computational domain are Lx × Ly × Lz = 4πh× 2πh× 2h. The value of the Weber
number is kept constant and equal to We = 3.0, which is representative of liquid-liquid
systems.
The influence of the viscosity on the heat transfer process is studied by considering
two different viscosity ratios µr, where µr = µd/µc, being µd the drops viscosity
and µc the carrier fluid viscosity. The chosen viscosity ratios are µr = 0.25 and
µr = 4, which mimic the real-case scenarios of water drops in oil and oil drops in
water, respectively, considering an oil which has a viscosity four times larger than the
water viscosity. A reference case with µr = 1, namely with matched viscosity in the
two phases, is additionally considered. The density and thermal diffusivity are kept
constant. Therefore the density ratio, ρr (ratio of drops over carrier density) and the
thermal diffusivity ratio, αr (ratio of drops over carrier thermal diffusivity) are both
unitary, which is a reasonable assumption for oil-water mixtures.
The Prandtl number, Pr, is set for the carrier phase and defined based on the carrier
phase properties, according to Eq. 2.47. A value of Pr = 16 is chosen for the oil
carrier phase (i.e. in the case with µr = 0.25), while a value of Pr = 4 is chosen for
the water carrier phase (i.e. in the case with µr = 4). An intermediate value of Pr = 8
is used in the carrier phase of the reference case. The value of the Prandtl number
in the dispersed phase is determined by the imposition of the viscosity ratio. Indeed,
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the ratio of Prandtl numbers, Prr, between the dispersed and carrier phase can be
obtained from

Prr =
νr
αr

=
µr

ρrαr
, (5.1)

where νr is the kinematic viscosity ratio (ratio of drops over carrier kinematic viscos-
ity). Since ρr and αr are unitary, the Prandtl ratio results in

Prr = µr , (5.2)

thus the Prandtl in the dispersed phase, Prd, can be calculated as

Prd = µrPr . (5.3)

The shear Reynolds is also set for the carrier phase and defined based on the carrier
phase properties, according to Eq. 2.45. In order to keep a constant Péclet number
in the system - the dimensionless number that quantifies the ratio between diffusive
and convective heat transfer, defined as Pe = ReτPr - a shear Reynolds of Reτ = 150
is set in the oil carrier phase (i.e. in the case with Pr = 16 and µr = 0.25), while a
shear Reynolds of Reτ = 600 is imposed in the water carrier phase (i.e. in the case
with Pr = 4 and µr = 4). This choice allows to have a constant Péclet of Pe = 2400
in the two systems. In addition to the three drop-laden simulations, three isothermal
single-phase flow simulations are performed with the corresponding shear Reynolds
numbers, in order to provide initial velocity fields for the multiphase simulations.

The grid resolution used to resolve the continuity, Navier-Stokes and Cahn-Hilliard
equations is equal to Nx ×Ny ×Nz = 1024× 512× 1025 in the non-matched-viscosity
cases, and Nx × Ny × Nz = 1024 × 512 × 513 in the reference case. A more refined
grid is instead adopted to solve the energy equation for all the three cases, with
Nx × Ny × Nz = 2048 × 1024 × 1025 points. The computational grid has uniform
spacing in the homogeneous directions, while a Chebyshev-Gauss-Lobatto spacing is
used in the wall-normal direction. In table 5.1 an overview of the main physical and
computational parameters of the simulations is given. Considering the chosen grid
resolution, the Cahn number is set to Ch = 0.01, and the phase field Péclet number
is therefore set as Peφ = 1/Ch = 100, to achieve convergence to the sharp interface
limit.

The grid resolution, above mentioned, has been chosen considering that when the drops
and the carrier fluid have different viscosities, the local Reynolds number inside the
drops changes with respect to the shear Reynolds number characterizing the carrier
fluid. As a consequence, the range of spatiotemporal scales that needs to be resolved
to comply with the DNS requirements changes as well. In order to properly simulate
the flow in both the drops and carrier fluid, thus with the only purpose of choosing an
adequate grid, the ratio between the drops and carrier Reynolds has been estimated
as 1/µr, considering that the density ratio is ρr = 1 and using the same characteristic
length scale h (channel height) and velocity scale uτ (friction velocity) used for the
carrier fluid. We consider this estimation to be cautionary, since we expect the drop
size to be at most comparable to the channel height, and the velocity scale in the drops
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Case Reτ Pr µr ρr αr We Nx ×Ny ×Nz Nx ×Ny ×Nz

(NS+CH) (Energy)

SP1 150 - - - - - 512× 256× 513 -
SP2 300 - - - - - 512× 256× 513 -
SP3 600 - - - - - 512× 256× 513 -
DL1 150 16 0.25 1 1 3.0 1024× 512× 1025 2048× 1024× 1025
DL2 300 8 1 1 1 3.0 1024× 512× 513 2048× 1024× 1025
DL3 600 4 4 1 1 3.0 1024× 512× 1025 2048× 1024× 1025

Table 5.1 – Overview of simulation parameter. Three viscosity ratio are considered, µr = 0.25, 1
and 4. The Prandtl and shear Reynolds number, imposed for the carrier fluid, are Pr = 16 and
Reτ = 150 for µr = 0.25, Pr = 8 and Reτ = 300 for µr = 0.25 and Pr = 4 and Reτ = 600 for
µr = 4. The density and thermal diffusivity ratios are kept unitary and the Weber number is fixed,
We = 3.0, for all the cases. In addition, three single phase simulations are performed, for the three
different shear Reynolds numbers. The grid resolution employed to solve the Navier-Stokes and
Cahn-Hilliard equation (NS+CH) and the energy equation are also illustrated.

internal flow to be comparable or smaller than the friction velocity. The Reynolds in
the dispersed phase, Reτ d, can be therefore estimated as

Reτ d ≃ Reτ
µr

. (5.4)

In table 5.2 we report for each simulation the shear Reynolds set for the carrier phase
Reτ and the Reynolds estimated in the dispersed phase Reτ d, with the corresponding
grid size in wall units for the carrier phase, based on Reτ , and for the dispersed
phase, based on Reτ d. All dimensions refer to the channel centre, where most drops
are located. In addition, the Kolmogorov scale, which is used here to provide an
estimation of the smallest length scale inside the drops and in the carrier fluid, has
been computed as follows

η+k =

�
1

�+

�1/4

η+k,d =

�
µ3
r

ρ3r�
+

�1/4

(5.5)

for the drops and carrier respectively, where �+ is the turbulent dissipation at the
channel center evaluated in the region characterized by φ ≥ 0 for the drops, and by
φ ≤ 0 for the carrier.
For the resolution of the energy field, a more refined grid is chosen in order to resolve
all the spatiotemporal scales down to the Batchelor scale, which is defined based on
the Kolmogorov scale as ηθ = ηk/

√
Pr. In table 5.3, similarly to table 5.2, we report

the Prandtl set for the carrier phase Pr and the Prandtl calculated in the dispersed
phase Prd, with the more refined grid size in wall units for the carrier phase, based
on Reτ , and for the dispersed phase, based on Reτ d. Additionally, the Batchelor scale
in the carrier and dispersed phases are also included, where their values have been
calculated as

η+θ =
η+k√
Pr

η+θ,d =
η+k,d√
Prd

(5.6)
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respectively, based on the value of the Kolmogorov scale reported in 5.2. It can be
noticed that for all the cases presented here, the estimated Kolmogorov and Batchelor
scales are of the order of the grid spacing or slightly bigger, thus ensuring a correct
resolution of all the relevant scales.

Case µr Reτ Δx+ Δy+ Δz+ η+k Reτ d Δx+,d Δy+,d Δz+,d η+k,d

DL1 0.25 150 1.84 1.84 0.46 3.54 600 7.36 7.36 1.84 1.34
DL2 1 300 3.68 3.68 1.84 4.17 300 3.68 3.68 1.84 4.16
DL3 4 600 7.36 7.36 1.84 4.84 150 1.84 1.84 0.46 13.7

Table 5.2 – Grid resolution of the flow field and Kolmogorov scale at the channel center, reported
in wall units according to the shear Reynolds of the carrier fluid, Reτ , (Δx+, Δy+, Δz+ and η+k ),

and according to the estimated shear Reynolds of the drops, Reτ d, (Δx+,d, Δy+,d, Δz+,d and
η+k,d), for the three considered viscosity ratios.

Case µr Pr Δx+
θ Δy+θ Δz+θ η+θ Prd Δx+,d

θ Δy+,d
θ Δz+,d

θ η+θ,d

DL1 0.25 16 0.92 0.92 0.46 0.88 4 3.68 3.68 1.84 0.67
DL2 1 8 1.84 1.84 0.92 1.47 8 1.84 1.84 0.92 1.72
DL3 4 4 3.68 3.68 1.84 2.42 16 0.92 0.92 0.46 3.42

Table 5.3 – Grid resolution of the temperature field and Batchelor scale at the channel center,
reported in wall units according to the shear Reynolds of the carrier fluid, Reτ , (Δx+

θ , Δy+θ , Δz+θ
and η+θ ), and according to the estimated shear Reynolds of the drops, Reτ d, (Δx+,d

θ , Δy+,d
θ , Δz+,d

θ

and η+θ,d), for the three considered viscosity ratios. The Prandtl numbers in the carrier fluid, Pr

and in the drops Prd, employed for the estimation of the Batchelor scale, are also reported.

All drop-laden simulations are initialized with a regular array of 256 spherical drops
with diameter d = 0.4h inside a fully-developed turbulent flow field (obtained from
the preliminary single-phase simulations). The drops volume fraction is Φ = Vd/(Vc+
Vd) = 5.4%, where Vd and Vc are the volume of the drops and carrier fluid, respectively.
The temperature field is initialized so that all drops are initially warm (with an initial
temperature of θd,0 = 1) and the carrier fluid is initially cold (initial temperature
θc,0 = 0). The transition between drops and carrier fluid in the temperature field
is initially smoothed by means of an hyperbolic tangent kernel, to avoid numerical
instabilities that might arise from a discontinuous temperature field.
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5.2 Results

In the following, the results obtained from the numerical simulations will be discussed
from a qualitative viewpoint, by means of instantaneous drops, temperature and flow
visualizations, and then evaluated from a more quantitative viewpoint, by looking at
the influence of the viscosity ratio on the drop size distribution and on the average
drops and fluid temperature.

5.2.1 Qualitative observations

In Figure 5.1 a qualitative view of the instantaneous temperature and velocity fields
can be observed together with the drops interface, at a certain instant in time (t=6)
and for the three different viscosity ratios: µr = 0.25 top row, µr = 1 middle row
and µr = 4 bottom row. The temperature field, θ, is shown on the left column while
the velocity fluctuation magnitude field, |u�|, is shown on the right column, where

|u�| =
�

u�2 + v�2 + w�2 (being u�, v� and w� the velocity fluctuations components).
In each panel the temperature and velocity fields are visualized on a wall-parallel
x+ − y+ plane located at the channel center (z+ = 0). The temperature is shown
with a blue-red scale (blue, low; red, high) while the velocity fluctuation is shown with
a white-black scale (white, low; black, high). The drops interface, identified by the
iso-contour of φ = 0, is marked with a thin white line in each snapshot. We start by
looking at the temperature field in the three different cases (Fig. 5.1a, 5.1c and 5.1e).
We notice that in all the cases the temperature field is characterized by a similar range
of values, and that the drop-to-fluid temperature difference is roughly the same. This
seems to suggest that the three fields are at a similar stage of the thermal transient,
in which drops have lost a similar amount of heat providing it to the carrier fluid.
Focusing then exclusively on the carrier fluid, we observe that for µr = 0.25 (panel a)
the carrier temperature field is characterized by rather large structures, with significant
temperature variations that can be appreciated by the presence of white-to-blue and
blue-to-black colour contrasts. Moving on to µr = 1 (panel c) and further to µr = 4
(panel e), the smallest size of the temperature structures reduces progressively with
respect to µr = 0.25, as well as the temperature variations, as the colour contrasts
are less pronounced and a more uniform temperature field can be observed. This
outcome is coherent with the increase of the shear Reynolds in the carrier fluid, from
Reτ = 150 (when µr = 0.25) up to Reτ = 600 (when µr = 4), which causes a reduction
of the smallest turbulent structures and enhances the mixing of heat. An analogous
difference, although less clear, can be noticed in the drops temperature field: for the
high viscosity ratio µr = 4 the smallest temperature structures are slightly bigger
than for µr = 1 and than for µr = 0.25, as well as the temperature variations per each
drop. In accordance with these observations, we notice that for µr = 0.25, namely
when drops are less viscous than the carrier fluid, smaller temperature structures and
a higher mixing are visible inside the drops with respect to the carrier fluid, while for
µr = 4, namely when drops are more viscous than the carrier fluid, finer structures
and a higher mixing are evident in the carrier fluid with respect to the drops. We
now move on to discussing the velocity fluctuation fields (Fig. 5.1b, 5.1d and 5.1f).
We notice that, similarly to the temperature structures, the velocity structures in
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the carrier fluid reduce their size while the ones in the drops increase their size as
the viscosity ratio is increased (from panel b to panel d and further to panel f). As
expected, there is a qualitative match between the velocity field and the corresponding
temperature field for each case, as areas with a uniform temperature correspond to
areas with uniform intensity of the velocity fluctuations.
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Figure 5.1 – Instantaneous visualizations of the temperature field (left column) and of the veloc-
ity fluctuation magnitude field (right column), for three different viscosity ratios µr (sketch and
definition reported on the top left corner of the figure): µr = 0.25 top row; µr = 1 middle row;
µr = 4 bottom row. The temperature field is coloured with a blue-red scale (blue, low; red, high);
the velocity fluctuation is coloured with a white-black scale (white, low; black, high). The drops
interface (iso-contour φ = 0) is marked by a white thin line.
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5.2.2 Drop size distribution

The drops dynamics is here analysed by computing the DSD at steady-state conditions.
The steady state conditions are achieved approximately after t = 6 outer units; the
DSD is obtained by averaging over a time window of Δt = 5, from t = 7 to 12. The
steady state is evaluated by monitoring flow properties, as flow rate and wall stress,
as well as drops properties like the overall drops surface area. Figure 5.2 reports the
DSD obtained for the different considered cases: µr = 0.25, representing the case of
water drops in oil, is shown in blue, while µr = 4, representing the case of oil drops in
water, is shown in yellow. The reference case, µr = 1, is reported in gray. The drop
size has been characterized using the equivalent diameter, deq, i.e. the diameter of an
equivalent spherical drop with the same volume as the drop considered [145]:

deq =

�
6V

π

�1/3

(5.7)

where V is the volume of the drop.
The three distributions are statistically similar but do not fully collapse on each other,
as a trend can be slightly appreciated: as the viscosity ratio is increased, thus increas-
ing the drops viscosity with respect to the carrier viscosity, the probability of having
small drops (deq < 0.15 outer units) reduces, while the probability of having big drops
increases. This outcome is in agreement with the reduction of drops deformability
associated with an increase of viscosity, as discussed in chapter 3. In figure 5.2 the
Kolmogorov-Hinze scale, dH , is also marked for each case by a dashed line, with the
colour of the corresponding DSD. The Kolmogorov-Hinze scale can be computed as

dH = 0.725

�
We

Reτ

�−3/5

|�c|−2/5 (5.8)

with �c the turbulent dissipation, here evaluated at the channel center where drops are
mostly located. The Kolmogorov-Hinze scale slightly differ among the different cases,
as they are characterized by a different shear Reynolds and turbulent dissipation.

The scalings characterizing the coalescence-dominated regime, PDF ≃ d
−10/3
eq , and

the breakage-dominated regime, PDF ≃ d
−3/2
eq , are reported with a dash-dotted line.

Analogously to results of the DSDs obtained in section 4.2.2, our results are in agree-
ment with the theoretical scaling law for equivalent diameters above the Kolmogorov-
Hinze scale. Below the Kolmogorov-Hinze scale, our results match reasonably well
the theoretical scaling law for equivalent diameters in the range 0.15 < deq < dH .
An underestimation of the DSD with respect to the theoretical scaling law occurs in-
stead for equivalent diameters deq < 0.15. This is related to the limitation of the grid
resolution, and specifically to the difficulty in describing very small drops.

5.2.3 Mean temperature of drops and carrier fluid

We now characterize the heat transfer between the drops and the carrier fluid by
looking at the average temperature of each fluid. Using the phase field as a phase
discriminator, we compute the average temperature in the drops phase (ensamble of
all drops), θd, and in the carrier phase, θc. In 5.3 the evolution in time of θd and
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Figure 5.2 – Steady state DSD obtained for µr = 0.25 (blue, squares), µr = 1 (gray, circles)
and for µr = 4 (yellow, diamonds). The Kolmogorov-Hinze scale dH is reported with a vertical

dashed line, while the two analytical scaling laws, d
−2/3
eq for the coalescence-dominated regime,

and d
−10/3
eq for the breakage-dominated regime, are reported with dash-dotted lines.

θc are reported for the three considered cases: the colours blue, gray and yellow are
associated with the water phase, the reference phase and the oil phase, respectively,
for both drops and carrier fluid. For each colour, the full circle symbol indicates the
drops phase, while the vertical trait symbol indicates the carrier phase. The case with
water drops in an oil carrier fluid corresponds to the viscosity ratio µr = 0.25; the
case with oil drops in a water carrier fluid corresponds to the viscosity ratio µr = 4;
finally the reference case, with drops and carrier of a unspecified fluid, corresponds
to the viscosity ratio µr = 1. We notice that, as expected, the average temperature
of the drops decreases in time, while the average temperature of the carrier fluid
increases in time, until the thermodynamic equilibrium is asymptotically reached. At
the equilibrium, the phases will have the same temperature, θeq. Since the two walls
are adiabatic and the homogeneous directions are periodic, the energy of the system
is conserved over time. Therefore, after some algebra, θeq can be easily estimated a
priori as

θeq = θc,0(1− Φ) + θd,0Φ , (5.9)

with θd,0 and θc,0 the initial temperature of the drops and of the carrier fluid, respec-
tively, and recalling the definition of the volume fraction, Φ = Vd/(Vd+Vc). In 5.3 the
equilibrium temperature is reported with a horizontal dashed line. Simulations have
been run long enough for the average temperature of both phases to be sufficiently
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close to the equilibrium temperature, according to the following condition:

(θd − θeq)

(θd,0 − θeq)
≤ 0.1 . (5.10)

We observe that the average temperature of the drops shows a nearly identical be-
haviour in the three different cases. Consequently, also the average temperature of the
carrier fluid evolves with an almost identical behaviour in the three cases, as the two
phases are mutually coupled (the heat released by the drops is absorbed by the carrier
fluid). This outcome is in accordance with the previous qualitative observations, in
relation to figure 5.1, which shows that the three cases are at a similar stage of the
thermal transient. Since, however, the heat mixing appears qualitatively different in
the water phases with respect to the oil phases, we attribute the identical evolution
of the drops/carrier average temperature to the following reason: the mixing of heat
is accelerated in the water phase and decelerated in the oil phase, with respect to the
drops/carrier of the reference case, and the two effects balance each other, resulting
in the same heat transfer rate. Hence, for µr = 0.25 the mixing is faster in the drops
and slower in the carrier with respect to the drops/carrier of µr = 1, and viceversa
for µr = 4, where the mixing is faster in the carrier fluid and slower in the drops with
respect to the drops/carrier of µr = 1.
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Figure 5.3 – Time evolution of the mean temperature of drops and carrier fluid for the different
viscosity ratios considered. The water, the reference and the oil phases are reported with blue,
gray and yellow lines, respectively, for both drops and carrier fluid. The drops phase are marked
with a full circle symbol, while the carrier fluids are marked with a vertical trait symbol. The
equilibrium temperature of the system, θeq , is reported with a horizontal dashed line.
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5.3 Conclusions

In this work we studied the influence of viscosity on the heat transfer in a turbulent
channel flow laden with large and deformable drops. The drops are initially warmer
than the carrier fluid, thus the heat is transferred from the drops to the carrier fluid
until the thermodynamical equilibrium is attained, in which both fluids have the same
temperature. The viscosity contrast and the Prandtl number are chosen in order to
mimic an oil-water mixture, where the oil has a viscosity which is four times larger
than the water. In particular, we simulate a first case where water drops are dispersed
in an oil carrier fluid (with a viscosity ratio of µr = 0.25), and a second case where
oil drops are dispersed in a water carrier fluid (with a viscosity ratio of µr = 4).
For each case, a Prandtl number of Pr = 16 is imposed in the oil phase, while a
Prandtl number of Pr = 4 is imposed in the water phase. In addition, a reference
case with unspecified fluids is considered, characterized by µr = 1 and Pr = 8. The
shear Reynolds is chosen in order to maintain a constant Péclet of Pe = 2400 in all
cases. The study is performed by means of DNS of turbulent heat transfer, coupled
with a PFM for the description of the interfacial phenomena. We first investigate
the drops dynamics analysing the steady-state DSD, which shows that the number
of small drops (deq < 0.15) slightly decreases and the number of large drops slightly
increases as the viscosity ratio is increased. This is due to a reduction of the drops
deformability induced by an increase of the drops viscosity. Also, the DSD reasonably

follows the theoretical scaling d
−2/3
eq in the coalescence-dominated regime and d

−10/3
eq

in the breakage-dominated regime. Then we analyse the average temperature of the
drops and carrier fluid. We notice that the time evolutions of the drops average
temperature for the three viscosity ratios considered, as well as the evolutions of the
carrier average temperature, are almost coincident. Since an increase of the viscosity
is expected to reduce the heat mixing, while a decrease of the viscosity is expected to
enhance the heat mixing, we attribute this outcome to the following fact: for µr = 0.25
the enhancement of mixing in the water drops is compensated by its reduction in the
oil carrier, while for µr = 4 the opposite behaviour occurs (reduction of mixing in oil
drops and enhancement of mixing in water carrier). Both cases thus result in having
a drops/carrier average temperature evolution analogous to the one of the reference
case. We plan to confirm this explanation with further temperature and heat transfer
statistics. Moreover, future developments of this study would include more detailed
statistics on the temperature and velocity field in both drops and carrier fluid, as well
as an evaluation of the impact of deformation, breakage and coalescence on the heat
transfer process.
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6
Concluding remarks and future

developments

Throughout this thesis, the dynamics and heat transfer of large and deformable drops
(or bubbles) in turbulence has been studied with direct numerical simulations and
phase field method. The drops dynamics in a turbulent flow has been first charac-
terized in chapter 3, where the presence of density and viscosity contrasts between
the dispersed and carrier phase has been taken into account. In particular, the role
played by density and viscosity on drops topological and morphological modifications
was investigated, considering also two surface tensions. Both density and viscosity
have demonstrated to influence drops-turbulence interaction when the value of surface
tension is sufficiently low. In this case, density and viscosity act in an opposite way on
the deformability of the drop, and, for the density/viscosity ratios considered, viscos-
ity show a stronger effect on the overall drops dynamics. Specifically, increasing the
drops density slightly increases drops deformability: this effect manifests itself in an
increase of the probability of large deformations (high curvatures) of the drop surface,
and causes a larger global surface area. By contrast, increasing the viscosity decreases
drops deformability: this reduces breakage and coalescence rates and it affects the
drop shape reducing the probability of large deformations and the global drops sur-
face area. Surface tension has a significant effect on drops behaviour in turbulence,
and appears to be the only dominant parameter when sufficiently high: an increase of
surface tension reduces drops deformability, strongly impacting drops dynamics from
both a topological and morphological viewpoint. The presence of density and viscosity
contrasts in the system, in addition, has an impact on the drops internal flow, where
the turbulence intensity, as expected, depends by the properties of the drop. The
drops internal flow has been analysed in terms of turbulent kinetic energy: it has been
observed that an increase of density increases the turbulent kinetic energy, while a in-
crease of viscosity reduces the turbulent kinetic energy. The study of drops-turbulence
interaction is then extended in chapter 4 and in chapter 5 to the study of heat transfer
within the framework of the passive scalar approximation. Both chapters investigate
the heat transfer in a drop-laden turbulent flow, where warm drops release heat to
the carrier fluid until the thermal equilibrium is attained. First, in chapter 4, the
effect of the Prandtl number on the heat transfer process is investigated, changing the
Prandtl through a change of the thermal diffusivity, and considering equal properties
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of the fluids. It is found that an increase of the Prandtl number, as expected, slows
down the heat transfer process. It is then observed that the time behaviour of the
temperature profiles of both drops and carrier fluid is self-similar. A phenomenological
model is thus developed to explain this result, and the scaling t/Pr2/3 is introduced.
Accordingly, the heat transfer coefficient H (respectively its dimensionless counter-
part, the Nusselt number Nu) scales as H ∼ Pr−2/3 (respectively Nu ∼ Pr1/3) at
the beginning of the simulation, and tends to H ∼ Pr−1/2 (respectively Nu ∼ Pr1/2)
at later times. Finally, in chapter 5, properties contrasts are taken into account in the
study of heat transfer in drop-laden turbulence, focusing on the influence of viscosity
contrasts on the system. Different viscosity ratios are considered, while keeping a
constant density and thermal diffusivity. In this last work the parameters are chosen
in order to mimic an oil-water mixture, in which oil has a viscosity four times larger
than the water. More specifically, a case with warm water drops in cold oil and a case
with warm oil drops in cold water are simulated, as well as a reference case in which
the two fluids have equal viscosities. Interestingly, for these cases the time behaviour
of the temperature profile collapse on each other for all the viscosity ratios considered.
This result is attributed to the fact that an acceleration of the heat mixing in water
is compensated by a deceleration of the heat mixing in oil, thus causing an equal heat
transfer rate in all the cases (the oil-water cases and the reference case).
The heat transfer, and in general the behaviour of a passive scalar, in drop-laden
or bubble-laden flows, strongly depends on the turbulent flow field of the two-phase
system. In particular, when the scalar transfer from the drops to the carrier fluid is
considered, the turbulent flow field inside the drop and in the vicinity of the interface
is crucial for the prediction of the heat transfer rate between the phases. The charac-
terization of the drops internal turbulent flow is indeed a major future development of
this thesis. In particular, understanding how turbulence is generated and forced inside
the drops, and how this forcing depends on the drops thermophysical properties, would
be interesting questions to investigate. Moreover, the analysis of the drops internal
flow, would be valuable for the study of breakups, which are multi-scale phenomena
that strongly depend on the characteristics of the turbulence around and inside the
drop. A more direct follow-up of this work would be instead the study of the influence
of thermal diffusivity contrasts on the heat transfer between the phases. Future inves-
tigations could also focus on assessing the role played by breakups and coalescences
on the heat transfer and mixing processes.



A
Wall units scaling system

In the context of wall-bounded turbulent flows, the wall unit scaling system is usually
adopted. The dimensionless quantities in wall units, indicated with the superscript +,
can be obtained as follows

x+ =
xuτ

ν
u+ =

u

uτ
t+ =

tu2
τ

ν
φ+ =

φ�
β/α

, (A.1)

being ν = µc/ρc the kinematic viscosity, with all dimensional quantities without any
superscript. Considering the dimensionless quantities in outer units introduced in
section 2.4, we can relate the wall units and outer units scaling systems with the
following expressions:

x+ = Reτx
− u+ = u− t+ = Reτ t

− φ+ = φ− . (A.2)

In this thesis, results are presented in either outer units or wall units. The outer
units superscripts − are dropped throughout the thesis after the dimensional analysis
is presented in section 2.4, while wall units superscripts + are kept. All equations are
solved in the outer units scaling system.
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B
Effects of slip condition on the
velocity and thermal boundary

layer evolution

In this chapter, the equations that describe the evolution of the boundary layer are
derived and solved on a heated flat plate that is parallel to a constant unidirectional
flow.
In addition to the standard description of the boundary layer, where no-slip conditions
on the plate are considered [127, 15], here we consider also the effect of a slip velocity
on the velocity and thermal boundary layers [108, 11, 7]. Following the standard
approach [142], the continuity, Navier-Stokes and energy equations in 2D are:

∂u

∂x
+

∂v

∂y
= 0 , (B.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, (B.2)

u
∂T

∂x
+ v

∂T

∂y
= a

∂2T

∂y2
, (B.3)

where x is the direction parallel to the wall, and y the direction normal to the wall,
see figure B.1. The boundary conditions, accounting also for the slip velocity, read as:

u(x, y = 0) = k
∂u

∂y
(x, y = 0) , (B.4)

v(x, y = 0) = 0 , (B.5)

u(x, y → +∞) = u∞ , (B.6)

T (x, y = 0) = Tw , (B.7)
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(a) (b)

Figure B.1 – Sketch of the momentum and thermal boundary layer dynamics on a flat plate
characterized by a uniform temperature, Tw, larger than the free stream temperature, T∞. In
panel a no-slip conditions are enforced at the wall (corresponding to a slip parameter k = 0)
while in panel b partial slip is allowed at the wall. The qualitative behavior of the momentum
and thermal boundary layer thickness is also shown for the two cases. Both panels refer to a
super-unitary Prandtl number.

T (x, y → +∞) = T∞ , (B.8)

where k is a parameter that controls the amount of slip at the wall (no-slip for k = 0,
up to free-slip for k → +∞), u∞ and T∞ are the free stream velocity and temperature,
and Tw is the constant temperature of the flat plate.
To solve the system of equations, we use the method of similarity transformation.
First, we consider the continuity and Navier-Stokes equations. Following Blasius [15],
we introduce the following similarity transformation:

η = y

�
u∞
νx

. (B.9)

We can define a dimensionless stream function, f(η), which depends only on the
variable η,

f(η) =
ψ(x, y)√
u∞νx

, (B.10)

from which we can express the two dimensionless velocity components:

u

u∞
= f �;

v

u∞
=

1

2

�
u∞ν

x
(ηf � − f) , (B.11)

where f � denotes the first derivative with respect to η (same notation is used for higher
order derivatives). Upon substitution of these variables in the continuity and Navier-
Stokes equations, we obtain the governing equation for the dimensionless stream func-
tion f(η):

f ��� +
1

2
ff �� = 0 , (B.12)
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together with the boundary conditions:

f �(η = 0) = kf ��(η = 0) , (B.13)

f(η = 0) = 0 , (B.14)

f �(η → +∞) = 0 . (B.15)

Considering now the energy equation for the dimensionless temperature θ

θ =
T − T∞
Tw − T∞

, (B.16)

and using the similarity transformation, the governing equation for the dimensionless
temperature becomes:

θ�� +
1

2
Prfθ� = 0 , (B.17)

where Pr = ν/α is the Prandtl number, and the following boundary conditions are
applied:

θ(η = 0) = 1 , (B.18)

θ(η → +∞) = 0 . (B.19)

The governing equations B.12 and B.17, which constitute a boundary value problem,
are solved numerically via a shooting method which, avoiding the imposition of the
boundary condition B.6, stabilizes the computation over a wider range of η. The
equations are solved for different values of k, from k = 0 (no-slip) up to k = 5, at
which the velocity at the wall (η = 0) is ≃ 70% of the free stream velocity. The
resulting velocity profiles, (rotated by 90 degrees to be consistent with the sketch
of figure B.1) are shown in figure B.2 for different values of k . Panel a shows the
effect of k on the streamwise component of the velocity, while panel b shows the
effect of k on the temperature profile. All the results refer to Pr = 1, for which the
temperature solution can be obtained as θ = 1− f �. For the no-slip case (k = 0), the
Blasius solution (velocity and temperature, shown by the red circles) is recovered. As
expected, by increasing k, the amount of slip at the plat increases. As a consequence,
the temperature profiles are also modified, generating larger temperature gradients at
the plate. This corresponds to an heat transfer increase, as also observed in previous
studies [108, 7].
Of specific importance in the context of the model developed in the present paper, is
the evaluation, as a function of the slip parameter k and for different values of Pr, of
the ratio between the velocity and the thermal boundary layer thickness, respectively
defined [108]:

δ =

� +∞

0

(1− f �)dη , and δt =

� +∞

0

θdη . (B.20)

The ratio δt/δ is shown in figure B.3 as a function of Pr and for different values of
the slip parameter k (different symbols). We notice that, when the no-slip condition
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Figure B.2 – Streamwise velocity (panel a) and temperature profiles (panel b) obtained for different
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interpretation and are obtained considering Pr = 1. For the no-slip case (k = 0), the classical
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is enforced (k = 0), the ratio δt/δ ∼ Pr−1/3, in agreement with the thermal boundary
layer theory on flat plates [142]. However, when a slip condition is introduced at the
wall (k > 0), the ratio δt/δ relaxes onto the scaling δt/δ ∼ Pr−1/2. This indicates
that, at a given Pr, the thermal boundary layer for the slip case becomes thinner
compared to the no-slip case, and the heat transfer increases. In other words, heat
transfer coefficients for drops/bubbles (slip surfaces) can be higher compared to the
corresponding values for solid particles (no-slip surfaces) [68]. In particular, based on
the previous observations, and on the model developed in Sec. 4.2.4, we can obtain
the following scalings for the heat transfer coefficients:

H∗ ∝ Pr−2/3 for no-slip, (B.21)

H∗ ∝ Pr−1/2 for free-slip. (B.22)
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C15 F. Mangani‡, G. R. Godoberto, K. A. Schicho, F. Zonta and A. Soldati.
Droplets inhalation and deposition in human upper airways. 1st Science Day
- Faculty of Mechanical and Industrial Engineering - TU Wien, Vienna (Aus-
tria), February 21, 2024.

* Online conference.
† Presentation speaker.
‡ Poster speaker.
� Minisymposium co-organizer and co-chair.

C.3 Co-supervised projects

S1 ”Dynamics of droplets in the human upper airways” - Student: Alex Werdaner
(Batchelor thesis - TU Wien).

S2 ”Analysis of heat transfer in drop-laden turbulent flow” - Student: Koen Mulder
(Internship - Eindhoven University of Technology / TU Wien).

S3 ”Voronoi tessellation of droplets in the human upper airways” - Student: Felix
Stiessen (Master project - TU Wien).

S4 ”Large Eddy simulation of human nasal airflow” - Student: Markus Lenarcic
(Master thesis - TU Wien).

C.4 HPC projects

P1 Effect of density and viscosity on large deformable BubbLes in tUrbu-
lEnt flowS - BLUES, Project ID: ISCRA B HP10BT74F1, 1 mln CPU Hours,
MARCONI-100, CINECA HPC Centre, Bologna (Italy), 2021.

P2 Viscosity stratified fluids in turbulent channel flow, Project ID: 71026,
20 mln CPU Hours, VSC4 & VSC5, Vienna Scientific Cluster, Vienna (Austria),
2022.

P3 BubbLe-modUlated Mixing in turbulENce - BLUMEN, Project ID:
EHPC-REG-2022R01-048, 18 mln CPU Hours, DISCOVERER, Sofia Tech, Sofia
(Bulgaria), 2022.

P4 Heat transfer in multiphase turbulence, Project ID: EHPC-EXT-2022E01-
003, 57 mln CPU Hours, LUMI-C, Finnish IT centre for science, Kajaani (Fin-
land), 2023.

C.5 Advanced courses

A1 Shared memory parallelization with OpenMP*, Vienna Scientific Cluster
(VSC), Vienna (Austria), November 5-6, 2020. Coordinated by: Dr. Claudia
Blaas-Schenner.
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A2 Parallelization with MPI*, Vienna Scientific Cluster (VSC), Vienna (Aus-
tria), November 23-27, 2020. Coordinated by: Dr. Claudia Blaas-Schenner.

A3 CUDA for dummies*, Vienna Scientific Cluster (VSC), Vienna (Austria),
December 10-11, 2020. Coordinated by: Dr. Claudia Blaas-Schenner.

A4 From Lagrangian Chaos To Turbulence In Dilute Polymer Solution*,
Basque Center For Applied Mathematics, Bilbao (Spain), March 15-26, 2021.
Coordinated by: Prof. I. Fouxon.

A5 Fortran for Scientific Computing*, High Performance Computing Center
(HLRS), Stuttgart (Germany), April 12-16, 2021. Coordinated by: Rolf Raben-
seifner.

A6 Parallel I/O*, Vienna Scientific Cluster (VSC), Vienna (Austria), May 18-19,
2021. Coordinated by: Dr. Claudia Blaas-Schenner.

A7 Physics of Granular Suspensions: Micro-Mechanics of Geophysical
Flows*, International Centre for Mechanical Sciences (CISM), Udine (Italy),
July 14-18, 2021. Coordinated by: Prof. M. Mazzuoli and Prof. L. Lacaze.

A8 XIV Workshop & Summer School ”Multiphase Flows”, IMP PAN,
Gdańsk (Poland), September 2-3, 2021. Coordinated by: J. Pozorski.

A9 Virtual School on Numerical Methods for Parallel CFD*, CINECA HPC
Center, Bologna (Italy), December 13-27, 2021. Coordinated by: Dr. G. Amati.

A10 Complex Flows and Complex Fluids, International Centre for Mechanical
Sciences (CISM), Udine (Italy), April 4-8, 2022. Coordinated by: Prof. F.
Toschi.

A11 Sports Physics and Technology, International Centre for Mechanical Sci-
ences (CISM), Udine (Italy), September 19-23, 2022. Coordinated by: Prof. C.
Clanet and Prof. A. Hosoi.

A12 CINECA GPU Hackathon* CINECA HPC Center, Bologna (Italy), June
5,12,19-21, 2023. Coordinated by: CINECA Team.

A13 Liquid Interfaces, Drops and Sprays, International Centre for Mechanical
Sciences (CISM), Udine (Italy), June 26-30, 2023. Coordinated by: Prof. A.
Amirfazli, Prof. V. Bertola and Prof. M. Marengo.

* Online course.
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