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Abstract

Due to their unprecedented capability to discover patterns in data, Deep Learning (DL)
algorithms have emerged as a powerful and dominant set of techniques for solving
challenging problems that fall under the domain of Artificial Intelligence (AI). The
models trained using these algorithms, i.e., Deep Neural Networks (DNNs), are nowadays
being used in almost every industry for various applications, including safety-critical
applications, e.g., autonomous driving, healthcare, and security & surveillance. For
safety-critical applications, reliability against hardware-induced faults (e.g., soft errors,
device aging, and manufacturing defects) is one of the foremost concerns, as faults at
critical locations in a system can significantly degrade its application-level accuracy. The
high overheads of conventional redundancy-based fault-mitigation techniques (e.g., dual-
/triple-modular redundancy, instruction duplication, and error-correcting codes) coupled
with the compute-intensive nature of DNNs limit their applicability for DNN-based
applications, especially embedded applications. Therefore, alternative approaches are
required that can exploit the intrinsic characteristics of these networks to offer improved
resilience at low overhead (in terms of energy, area, and performance). Moreover, the
intrinsic resilience characteristics of DNNs can also be exploited for introducing carefully-
crafted designer-induced approximations to further improve the energy efficiency of the
systems and compensate for the overheads of fault-mitigation techniques.

To enable highly robust and energy-efficient DL systems, this PhD work aims at exploiting
the unique error-resilience characteristics of DNNs to mitigate the effects of hardware-
induced reliability threats at low cost and to further improve the energy efficiency of
DNN-based systems through judicious approximations (i.e., carefully-crafted designer-
induced approximations in less-sensitive computations/neurons for trading quality for
efficiency). To achieve this, this work explores opportunities at both the software
and hardware levels. In particular, this work develops novel concepts for substantially
reducing the frequency of critical faults by either modifying the system to have a biased
fault distribution (biased towards non-critical faults) or by transforming critical faults
into the ones that can be tolerated by the system due to the intrinsic resilience of
DNNs. Moreover, this work also develops concepts for effectively exploiting the intrinsic
resilience of DNNs to improve the energy efficiency by relaxing the accuracy bounds
of intermediate computations through designer-induced approximations. In fact, this
work shows that when prudently designed, approximations may be deployed without
having any application-level accuracy loss, which is crucial for safety-critical systems
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where energy efficiency and reliability both are important design metrics. Key highlights
of the novel contributions of this PhD thesis are:

Low-cost fault and aging mitigation for DL systems: This thesis develops the
following concepts and techniques for mitigating the effects of hardware-induced reliability
threats at low cost by leveraging the intrinsic error-resilience characteristics of DNNs.

1. Saliency-driven fault-aware mapping is proposed to enable reliable execution of
DNNs on the hardware accelerators with permanent faults without employing
fault-aware retraining. The technique defines mapping of different parts of the
given DNN on the hardware accelerator (subjected to faults) by leveraging the
saliency of DNN parameters and the faults in the hardware accelerator.

2. A framework for mitigating aging in the on-chip weight memory of DNN accelerators
is proposed. The framework jointly exploits hardware- and software-level knowledge
to improve the lifetime of on-chip weight memories with negligible energy overhead.
At the software-level, the effects of using different DNN quantization methods are
analyzed. Based on the insights gained from the analysis, a micro-architecture is
proposed that employs low-cost memory-write (and read) transducers to achieve
an optimal duty-cycle in the weight memory cells to minimize aging.

Approximations for Energy-Efficient DNN Implementations: To enable highly
energy-efficient DNN implementation by leveraging the intrinsic error-resilience of DNNs,
the following concepts and techniques are developed in this work.

1. Statistical techniques for error estimation of approximate adders are proposed that
enable fast yet accurate estimation of accuracy characteristics of different types
and configurations of approximate adders. These techniques enable efficient design
space exploration and selection of approximate modules. The insights gained from
using these techniques for analyzing cascaded approximate modules help in defining
effective application-specific approximations for DNNs.

2. A cross-layer approximation methodology is proposed that systematically combines
the hardware-level and the software-level techniques together to achieve high energy
efficiency. At the software level, a structured pruning technique is employed along
with the quantization of inputs and network parameters to reduce the computational
complexity and memory requirements of DNNs. At the hardware level, functional
approximations are employed in the arithmetic modules to further improve the
efficiency of DNN implementations.

3. The concept of curable approximations for DNN hardware accelerators is proposed
to benefit from approximations without compromising application-level accuracy.
The concept enables the design of high-performance DNN accelerators where ap-
proximation error(s) from one stage/part of the design is "completely" compensated
in the subsequent stage/part while offering significant efficiency gains.



4. Non-uniform post-training quantization is proposed for energy-efficient and low-
precision implementation of deep convolutional neural networks by leveraging the
key insight that DNN weights and activations are mostly concentrated near zero
and only a limited number of them have large magnitudes. The proposed method
also exploits correlation between activation values for partial compensation of
quantization errors enabling ultra energy-efficient DNN implementation.

In summary, this thesis presents several techniques for improving the robustness of
DNN inference systems against hardware-induced reliability threats at low overhead
cost by exploiting the unique error-resilience characteristics of DNNs. The thesis also
presents techniques for improving the energy efficiency of DNN inference through carefully-
crafted approximations that have minimal impact on the DNN accuracy while offering
significant efficiency gains. The techniques are not restricted to a single abstraction layer.
Specifically, for improving the energy efficiency, a cross-layer methodology is proposed
that systematically combines software-level and hardware-level techniques to achieve
higher benefits.





Kurzfassung

[Translation of the English version]

Aufgrund ihrer beispiellosen Fähigkeit, Muster in Daten zu entdecken, haben sich Deep
Learning (DL)-Algorithmen als leistungsfähige und dominierende Techniken zur Lösung
anspruchsvoller Probleme im Bereich der Künstlichen Intelligenz (KI) entwickelt. Die
mit diesen Algorithmen trainierten Modelle, d.h. Deep Neural Networks (DNNs), werden
heute in fast jeder Branche für verschiedene Anwendungen eingesetzt, darunter auch
sicherheitskritische Anwendungen, z.B. autonomes Fahren, Gesundheit sowie Sicherheit
und Überwachung. In sicherheitskritischen Anwendungen ist die Zuverlässigkeit gegen-
über hardwarebedingten Fehlern (z.B. Soft Errors, Gerätealterung und Fertigungsfehler)
eines der wichtigsten Anliegen, da Fehler an kritischen Stellen in einem System die
Genauigkeit auf Anwendungsebene erheblich beeinträchtigen können. Der hohe Overhead
konventioneller redundanzbasierter Techniken zur Fehlervermeidung (z.B. dual/triple
modular redundancy, Befehlsverdopplung und fehlerkorrigierende Codes) in Verbindung
mit der rechenintensiven Natur von DNNs schränkt ihre Anwendbarkeit für DNN-basierte
Anwendungen, insbesondere für eingebettete Anwendungen, ein. Daher werden alternative
Ansätze benötigt, die die intrinsischen Eigenschaften dieser Netzwerke ausnutzen, um
eine verbesserte Resilienz bei geringerem Overhead (in Bezug auf Energie, Fläche und
Leistung) zu bieten. Darüber hinaus können die intrinsischen Resilienzeigenschaften von
DNNs auch genutzt werden, um sorgfältig entworfene, designerinduzierte Approximatio-
nen einzuführen, um die Energieeffizienz von Systemen weiter zu verbessern und den
Overhead von Fehlerbehebungstechniken zu kompensieren.

Um hochgradig robuste und energieeffiziente DL-Systeme zu ermöglichen, zielt diese
Dissertation darauf ab, die einzigartige Fehlerresilienz von DNNs zu nutzen, um die Auswir-
kungen von hardwarebedingten Zuverlässigkeitsproblemen kostengünstig zu mildern und
die Energieeffizienz von DNN-basierten Systemen durch sinnvolle Approximationen weiter
zu verbessern (d.h. durch sorgfältig entworfene designerinduzierte Approximationen in
weniger empfindlichen Berechnungen/Neuronen, um Qualität gegen Effizienz zu tauschen).
Um dies zu erreichen, werden in dieser Arbeit Möglichkeiten sowohl auf Software- als auch
auf Hardware-Ebene untersucht. Insbesondere werden neuartige Konzepte entwickelt, um
die Häufigkeit kritischer Fehler signifikant zu reduzieren, indem entweder das System so
modifiziert wird, dass es eine einseitige Fehlerverteilung aufweist (einseitig auf unkritische
Fehler ausgerichtet), oder indem kritische Fehler in solche umgewandelt werden, die
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aufgrund der intrinsischen Resilienz von DNNs vom System toleriert werden können.
Darüber hinaus werden in dieser Arbeit Konzepte entwickelt, um die intrinsische Resilienz
von DNNs effektiv zu nutzen, um die Energieeffizienz zu verbessern, indem die Genauig-
keitsgrenzen von Zwischenberechnungen durch konstruktionsbedingte Approximationen
gelockert werden. Diese Arbeit zeigt, dass Approximationen ohne Genauigkeitsverlust
auf Anwendungsebene eingesetzt werden können, was für sicherheitskritische Systeme
entscheidend ist, bei denen sowohl Energieeffizienz als auch Zuverlässigkeit wichtige
Designkriterien sind. Die wichtigsten Highlights der neuen Beiträge dieser Dissertation
sind:

Kostengünstige Fehler- und Alterungsminderung für DL-Systeme: In dieser
Arbeit werden die folgenden Konzepte und Techniken entwickelt, um die Auswirkun-
gen von hardwarebedingten Zuverlässigkeitsrisiken durch die Nutzung der intrinsischen
Fehlerresilienz von DNNs kosteneffizient zu mindern.

1. Es wird ein fehlerbewusstes Mapping vorgeschlagen, um die zuverlässige Aus-
führung von DNNs auf Hardwarebeschleunigern mit permanenten Fehlern ohne
fehlerbewusstes Retraining zu ermöglichen. Die Technik definiert das Mapping
verschiedener Teile des gegebenen DNNs auf den (fehlerbehafteten) Hardwarebe-
schleuniger unter Verwendung der Ausprägung der DNN-Parameter und der Fehler
im Hardwarebeschleuniger.

2. Es wird ein Framework vorgeschlagen, um die Alterung des On-Chip-Speichers von
DNN-Beschleunigern zu reduzieren. Das Framework nutzt Wissen auf Hardware-
und Software-Ebene, um die Lebensdauer von On-Chip Weight-Memory mit ver-
nachlässigbarem Energieaufwand zu verbessern. Auf der Software-Ebene werden
die Auswirkungen der Verwendung verschiedener DNN-Quantisierungsmethoden
analysiert. Basierend auf den aus der Analyse gewonnenen Erkenntnissen wird
eine Mikroarchitektur vorgeschlagen, die kostengünstige Speicher-Schreib- (und
Lese-) Wandler verwendet, um einen optimalen Duty-Cycle in den Speicherzellen
des Weight-Memory zu erreichen und damit die Alterung zu minimieren.

Ansätze für energieeffiziente DNN-Implementierungen: Um eine extrem energieef-
fiziente DNN-Implementierung zu ermöglichen, indem die intrinsische Fehlerresilienz von
DNNs ausgenutzt wird, werden in dieser Arbeit die folgenden Konzepte und Techniken
entwickelt.

1. Es werden statistische Techniken zur Fehlerschätzung von approximativen Addie-
rern vorgeschlagen, die eine schnelle und dennoch genaue Schätzung der Genauig-
keitseigenschaften verschiedener Typen und Konfigurationen von approximativen
Addierern ermöglichen. Diese Techniken ermöglichen eine effiziente Untersuchung
des Entwurfsraums und die Auswahl approximativer Module. Die Erkenntnisse, die



aus der Anwendung dieser Techniken zur Analyse kaskadierter Approximationsmo-
dule gewonnen werden, helfen bei der Definition effektiver anwendungsspezifischer
Approximationen für DNNs.

2. Es wird eine schichtenübergreifende Approximationsmethodik vorgeschlagen, die
systematisch Techniken auf Hardware- und Software-Ebene kombiniert, um eine
hohe Energieeffizienz zu erreichen. Auf der Software-Ebene wird eine strukturierte
Pruning-Technik zusammen mit der Quantisierung von Eingaben und Netzwerk-
parametern eingesetzt, um die Rechenkomplexität und den Speicherbedarf von
DNNs zu reduzieren. Auf Hardware-Ebene werden funktionale Approximationen in
arithmetischen Modulen verwendet, um die Effizienz von DNN-Implementierungen
weiter zu verbessern.

3. Das Konzept der heilbaren Approximationen für DNN-Hardwarebeschleuniger wird
vorgeschlagen, um von Approximationen zu profitieren, ohne die Genauigkeit auf
Anwendungsebene zu beeinträchtigen. Das Konzept ermöglicht die Entwicklung
von leistungsfähigen DNN-Beschleunigern, bei denen Approximationsfehler aus
einer Stufe/einem Teil des Entwurfs in der nächsten Stufe/dem nächsten Teil
"vollständig"kompensiert werden, während gleichzeitig erhebliche Effizienzgewinne
erzielt werden.

4. Eine ungleichmäßige Quantisierung nach dem Training wird für eine energieeffi-
ziente Implementierung von Deep Convolutional Neural Networks mit niedriger
Genauigkeit vorgeschlagen. Dabei wird die wichtige Erkenntnis ausgenutzt, dass
die Gewichte und Aktivierungen von DNNs in der Regel nahe Null konzentriert
sind und nur eine begrenzte Anzahl von ihnen große Beträge aufweist. Die vor-
geschlagene Methode nutzt auch die Korrelation zwischen Aktivierungswerten,
um Quantisierungsfehler teilweise zu kompensieren, und ermöglicht so eine sehr
energieeffiziente DNN-Implementierung.

Zusammenfassend kann gesagt werden, dass in dieser Dissertation mehrere Techniken
vorgestellt werden, um die Robustheit von DNN-Inferenzsystemen gegenüber hardware-
bedingten Zuverlässigkeitsproblemen bei geringen Overhead-Kosten zu verbessern, indem
die einzigartige Fehlerresilienz von DNNs genutzt wird. Darüber hinaus werden Techniken
zur Verbesserung der Energieeffizienz von DNN-Inferenzsystemen durch sorgfältig entwi-
ckelte Approximationen vorgestellt, die nur minimale Auswirkungen auf die Genauigkeit
von DNNs haben und gleichzeitig signifikante Effizienzgewinne bieten. Diese Techni-
ken sind nicht auf eine einzelne Abstraktionsebene beschränkt. Insbesondere wird zur
Verbesserung der Energieeffizienz eine schichtenübergreifende Methodik vorgeschlagen,
die systematisch Techniken auf Software- und Hardware-Ebene kombiniert, um höhere
Vorteile zu erzielen.
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CHAPTER 1
Introduction

Over the past few years, the unprecedented capability to learn hierarchical representations
directly from raw data has enabled Deep Neural Networks (DNNs) to become state of the
art for many Artificial Intelligence (AI) applications [LBH15]. This evolution of DNNs has
mainly been possible because of the availability of large datasets and the advancements
in the parallel-computing hardware technology, which enabled the compute-intensive
training of these models through backpropagation algorithms [LBH15][KSH12]. Given
that DNNs have achieved (or surpassed) human-level accuracy in a wide range of applica-
tions [XLHL20][TYRW14], they are currently being used in a number of real-world sys-
tems and applications, including intelligent Internet of Things (IoT) and Cyber–Physical
Systems (CPS) [MAFSG18]. Autonomous vehicles [AQBAQR17][HWT+15][MAJD+20],
smart transportation systems [ZKKK19], smart healthcare systems [LKB+17][MWW+18]
[ERR+19], intelligent wearable systems [RPP21], smart homes [MPC16], smart grids
[ZAJ+19] and robotic systems [SBS+18] are a few examples of these real-world intelligent
systems. As most of these systems are categorized as resource constrained and/or safety
critical, the energy efficiency and dependability of the algorithms used at the backend
arise as the foremost concerns.

1.1 Motivation
Besides intelligent IoT and CPS, the proliferation of powerful computing devices in the
form of smart phones, personal computers and embedded GPU platforms has also given
rise to various applications that can benefit from deep learning (see Figs. 1.1 and 1.2).
Virtual assistants, content recommendation, search optimization, music composition,
adding sounds to silent movies, automatic machine translation, face recognition, data
restoration, route planning, visual art creation, automatic game playing and supersam-
pling are just a few examples of such applications [LBH15][Sar21][ME19]. Although
state-of-the-art DNNs have demonstrated remarkable performance in terms of accuracy
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Figure 1.1: Some prominent applications of deep learning.
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Figure 1.2: Current estimate and forecast of (a) number of smartphone users in the world
and (b) number of connected IoT devices. (data source: [Vai][ban])

for all these applications, a key challenge associated with them is that the high-accuracy
models are typically highly resource hungry. This is highlighted in Fig. 1.3 with the
help of computational requirements, size and accuracy of different DNNs trained on
the ImageNet dataset [DDS+09] for image classification. As shown in the figure, the
general trend is that the models that offer high accuracy require a higher number of
computations per inference. For example, the AlexNet model [KSH12] has around 60 mil-
lion parameters, requires around 725 MFLOPs to process one input image and offers
around 63.3% accuracy on the ImageNet validation set, while the VGG16 model [SZ14]
has around 138 million parameters, requires around 15.5 GFLOPs to process one input
image and offers around 74% accuracy. Both the AlexNet and the VGG16 models are
based on simple convolutional and linear layers. Advancements in network architectures,
i.e., introduction of residual blocks, inverted residual blocks, shortcut connections, depth-
wise separable convolutions and pointwise convolutions, have lead to improved accuracy
results with lesser number of computations and lower memory requirements. However,
the general trend is the same, as can be observed by comparing the characteristics of
ResNet18 and ResNet152 models.
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Figure 1.3: Characteristics of DNNs proposed for image classification on the ImageNet
dataset. (data source: [mmc][pap])

Recently, more complex architectures have been proposed, e.g., Vision Transformers
(ViT) [DBK+20], highlighting the same trend that more complex and deeper neural
networks lead to better accuracy results. The complexity (resource requirements) of
high-accuracy DNNs clearly highlights the need for techniques that can improve the
efficiency of DNNs without compromising the accuracy to enable their deployment in
resource-constrained scenarios.

Besides computational complexity, highlighting the dependability of DNNs is also impor-
tant, as these models are nowadays commonly being used in safety-critical systems. In
the past, several instances have been reported where a single bit-flip error in the system
could cause catastrophic accidents. For example, investigations related to the reported
cases of sudden unintended acceleration of cars manufactured by Toyota revealed that
a single bit-flip error in the electronic throttle control system could cause the driver
to lose control of the engine speed [EET], which in the worst case leads to fatal acci-
dents [Yos]. Moreover, thorough analysis of Boeing 737 MAX’s flight-control system,
which was performed after two 737 MAX crashed, also uncovered similar flaws in the
system [Leo]. These examples clearly highlight the importance of dependability of the
designed systems alongside other factors (e.g., energy/power efficiency). Recent works
such as [Cea19][HKP+18][Cea20] clearly show that similar dependability concerns exist
in DNN systems as well due to the imperfect nature of DNNs.

Driven by the compute-intensive nature of DNNs, specialized hardware accelerators
(e.g., TPU [JYP+17], MAERI [KSK18] and Eyeriss [CYES19]) are employed to offer
cost-effective and efficient DNN inference. However, these accelerators experience various
reliability threats, such as soft errors, device aging and manufacturing defects (for details
related to reliability threats see Section 2.5). These threats manifest as bit-flip errors
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Figure 1.4: Reliability threats, their manifestation, and impact on a DNN-based system’s
output. (The used stop sign picture is from the COCO dataset [LMB+14])

at the hardware level and thereby can severely impact the functionality of the system
as highlighted in the above examples; also see Fig. 1.4. As these threats raise several
safety concerns, it is crucial to ensure robustness against them. Moreover, safety-critical
systems are often required to meet industrial standards like ISO 26262 [ISO11] that allow
no more than 10 failures in 109 hours of device operation, which further emphasizes
the need for robustness against all types of reliability threats. Apart from addressing
the errors that can occur at run-time, handling manufacturing defects through post-
fabrication optimizations is also important, as these defects can significantly reduce the
manufacturing yield, specifically for wafer-scale engines [McL19]. Therefore, it is vital
to ensure robustness of these systems against all types of technology-induced reliability
threats alongside improving their energy efficiency.

1.2 Research Challenges and Objectives
Given the compute-intensive nature of high-accuracy DNNs, the foremost challenge is
how to enable their efficient deployment in resource-constrained systems. To address
this challenge, several techniques have been proposed in the literature, which range from
pruning and quantization at the software level all the way to functional approximations
at the hardware level (see details in Chapter 2). All these techniques are based on the
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fact that DNNs are (to some extent) inherently resilient to errors, and this resilience
can be exploited to trade a fraction of quality for a significant amount of efficiency gain.
However, DNNs respond differently to different types of errors. Moreover, the locations of
errors in a DNN also have a significant impact on the accuracy. Therefore, it is crucial to
classify these errors into critical and non-critical categories and identify the types that do
not impact the application-level accuracy much so that they can be exploited to achieve
high benefits (e.g., in terms of energy/power/area efficiency through approximations).
This analysis can help in identifying the approximations that can be deployed in a system
without compromising the application-level accuracy of the system, and it can also be
helpful for designing fault-mitigation techniques that incur low overheads, particularly
for application-specific scenarios.

As approximations can be applied at different abstraction levels and each approxima-
tion can have various configurations, tools and methods are required to efficiently and
accurately estimate the error characteristics of different configurations to select the
non-dominated configurations that offer the best quality-efficiency trade-offs for a given
scenario. These tools/methods are expected to provide a pivotal component for enabling
fast and automated design space exploration, specifically for approximate accelerators.
Recently, different approximation techniques such as self-healing [GHK+18][GHV+19] and
self-compensating [MHS19] approximations (including some of the works I co-authored)
have also been proposed for introducing functional approximations in the computational
units of hardware accelerators. However, the potential of these techniques has not been
explored for DNN-based applications. Moreover, the state-of-the-art DNN pruning and
quantization techniques have proven to be highly effective for improving the efficiency of
DNN inference systems; however, the interaction of these optimization techniques with
hardware-level approximations has not been studied so far.

In summary, related to approximations for improving the efficiency of DNN inference
systems, this work focuses on the following key questions:

• How and to what extent can the resilience of DNNs be exploited to judiciously
introduce approximations that can help in improving the power/energy, area and
performance efficiency of a DNN inference system?

• How to systematically design approximate DNN accelerators that offer better
quality-efficiency trade-off?

• How to integrate different DNN optimization techniques to achieve improved
efficiency (in terms of energy/power, area and performance) under given constraints
(e.g., required quality)?

Apart from energy/power efficiency, for safety-critical applications, reliability against
hardware-induced faults (e.g., soft errors, device aging, and manufacturing defects)
is also one of the foremost concerns, as faults at critical locations can result in a
significant drop in the application-level accuracy. The high overheads of conventional

5



1. Introduction

redundancy-based fault-mitigation techniques (e.g., dual-/triple-modular redundancy,
instruction duplication, and error-correcting codes) coupled with the compute-intensive
nature of DNNs limit the applicability of such techniques for DNN-based applications,
especially embedded applications. Moreover, retraining-based mitigation techniques
result in huge retraining costs, and they are also not applicable in some scenarios due
to security and privacy reasons. Therefore, alternative approaches are required that can
exploit the intrinsic characteristics of DNNs to offer improved resilience at low overhead
costs. These characteristics mainly include: (1) the overall functionality of a DNN is
distributed among its neurons and is not concentrated in certain neurons or parts of the
network, (2) each neuron contains critical and non-critical weights, and the locations
(indexes) of critical weights are not the same across neurons, and (3) each bit of a
weight value has a different significance and criticality, which depends on the value
of the weight as well as the number representation format used. Note that all these
characteristics are, in general, different from conventional applications that are composed
of different critical and non-critical modules. Towards developing low cost fault-mitigation
techniques, a common perception of DNNs is that they are highly resilient to errors.
However, studies have shown that DNNs are resilient to only certain types of errors
(not all types) [HKP+18][ZGBG18][KHM+18b]. Thus, this resilience of DNNs can be
exploited to design/modify DNN inference systems such that (in case of faults) their
error distribution is biased towards non-critical errors (i.e., the ones that can be tolerated
by the system) to offer high resilience against hardware-induced reliability threats.

In short, related to improving the resilience of DNNs against hardware-induced reliability
threats at low overhead costs, this work focuses on the following key questions:

1. How and to what extent can the inherent resilience of DNNs be exploited to mitigate
hardware-induced reliability threats?

2. How to offer efficient fault mitigation at low and moderate fault rates without
involving fault-aware retraining?

In summary, this research focuses on designing cost-effective solutions for improving the
robustness and energy/power efficiency of deep learning inference systems by exploiting
the inherent error-resilience of DNNs at appropriate abstraction levels.

1.3 Thesis Contributions
To address the research challenges highlighted in Section 1.2, this thesis aims at exploiting
the unique error-resilience characteristics of DNNs to improve the robustness of DNN
inference systems against technology-induced reliability threats such as soft errors, device
aging and manufacturing defects at low overhead costs. This research also intends to
improve the energy efficiency of these systems through judicious approximations (i.e.,
carefully crafted designer-induced faults in less-sensitive neurons) that can be tolerated
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due to error-resilience characteristics of DNNs. In fact, this research shows that when
prudently designed, approximations may be deployed without having any accuracy loss,
which is crucial for safety-critical systems where both energy efficiency and reliability are
important design metrics.

An overview of the contributions of this PhD thesis and the related publications is
illustrated in Fig. 1.5. The figure presents an integrated design flow for building robust and
energy-efficient deep learning inference systems, with the proposed techniques highlighted
in blue. To significantly benefit from the error resilience of DNNs for improving the
energy efficiency and robustness of DNN inference systems, first, the resilience of DNNs
to different types of errors/faults is analyzed. This resilience is then exploited to develop
novel concepts and strategies to improve energy efficiency of the systems by relaxing the
accuracy bounds of intermediate computations through conjoint software and hardware-
level approximations (designer-induced errors/faults) that can offer high savings while
having minimal or ideally no impact on the application-level accuracy of the system,
i.e., without jeopardizing the safety requirements. The resilience is further exploited to
improve the robustness of the system by substantially reducing the frequency of critical
faults, which is achieved either by modifying the system to have a biased fault distribution
(biased towards non-critical faults), or by transforming critical faults to non-critical faults.
Towards this, the key novel contributions of this PhD thesis are:

Low-cost fault and aging mitigation for DNN inference systems: The following
concepts and techniques are proposed as a part of this thesis for mitigating the effects of
hardware-induced reliability threats at low cost by leveraging the intrinsic error-resilience
characteristics of DNNs.

1. Saliency-driven fault-aware mapping: To enable reliable execution of DNNs on
hardware accelerators having permanent faults without involving fault-aware re-
training, the concept of saliency-driven fault-aware mapping is proposed in this
work. The method is based on the principle of mapping non-critical (less significant)
weights/parameters to the faulty locations.

2. A framework for mitigating aging in the on-chip weight memory of DNN accelerators:
Aging in SRAM-based on-chip memory is a primary concern that impacts the lifetime
of a fabricated device. To mitigate aging in the on-chip weight memory of DNN
accelerators, the DNN-Life framework is proposed in this work. The framework
jointly exploits software and hardware-level knowledge to improve the lifetime of
SRAM-based on-chip weight memory with negligible energy and area overheads. At
the software-level, the impact of different DNN quantization techniques on the aging
of on-chip SRAM cells is analyzed. Based on the insights gained from the analysis,
a design is proposed that employs low-cost memory-read and -write transducers to
achieve the optimal duty-cycle in the weight memory cells to minimize aging.

Approximations for Energy-Efficient DNN Deployment: The following concepts
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Figure 1.5: An overview of the integrated design flow for building robust and energy-
efficient deep learning systems. The proposed techniques are highlighted in blue. The
publications that are a part of this PhD thesis are mentioned in italic while other co-
authored publications are mentioned in non-italic format.

and techniques are proposed as a part of this thesis to enable highly energy-efficient DNN
inference by leveraging the error-resilience of DNNs through approximations.

1. Statistical techniques for error estimation of approximate adders: Fast-yet-accurate
error estimation of different types and configurations of approximate modules is
important to achieve efficient design space exploration of approximate modules.
Towards this, in this thesis different techniques are proposed to compute accuracy
characteristics of different types of approximate adders. The insights gained from
these techniques when used for analyzing cascaded approximate modules and
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approximate datapaths helped in defining application-specific approximations for
DNN accelerators.

2. A cross-layer approximation methodology: To achieve energy-efficient DNN inference,
a methodology is proposed in this thesis that systematically combines the software-
level and the hardware-level approximation techniques. At the software level, a
structured pruning technique is integrated with DNN quantization to reduce the
computational complexity and memory requirements of DNNs. At the hardware
level, functional approximation of arithmetic modules is considered to further
improve the efficiency of DNN inference systems.

3. The concept of curable approximations for high-performance accelerators: To benefit
from approximations without compromising application-level accuracy, the concept
of curable approximations is proposed in this thesis. The concept enables the
design of high-performance accelerators where approximation errors from one stage
of the system are completely compensated in the subsequent stage while offering
significant efficiency gains. This compensation of errors enables the system to
maintain the baseline accuracy and avoid any undesirable application-level accuracy
loss. This thesis also presents a case study for improving the performance of systolic
array-based DNN accelerators using curable approximations.

4. Non-uniform post-training quantization: To achieve energy-efficient and low-precision
implementation of deep convolutional neural networks, a non-uniform post-training
quantization technique is proposed. The technique leverages the insight that DNN
weights and activations are mostly concentrated around zero and only a limited
number of values have a large magnitude. This enables the use of non-uniform
quantization to simultaneously simplify the computational units (mainly Multiply-
Accumulate (MAC) units) and achieve a low quantization error to offer better
quality-efficiency tradeoffs than conventional quantization techniques. Alongside
a novel quantization technique and the supporting hardware architecture, the
proposed method also exploits correlation between activation values for partial
compensation of quantization errors enabling ultra energy-efficient DNN implemen-
tation.

1.4 Thesis Outline
The thesis is organized in eight chapters, where Chapter 1 introduces the need for high
performance deep learning models and the challenges associated with deploying such
models in resource-constrained embedded devices for efficient and reliable inference.
Chapter 2 presents the necessary background related to DNNs, hardware approximations,
different reliability threats and state-of-the-art DNN optimization and fault-mitigation
techniques. Chapters 3, 4, 5, 6 and 7 present concepts, techniques and evaluations of the
novel contributions of this thesis. Towards the end, Chapter 8 presents a summary of the
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novel contributions and findings of this thesis and also highlights some of the potential
future research directions. A brief outline of each chapter is given below.

Chapter 2 - Background and Related Work: This chapter presents the background
knowledge related to deep learning, prominent types of DNNs that are commonly used in
the embedded systems community for benchmarking, hardware-induced reliability threats
and techniques for improving the energy efficiency and robustness of DNN inference
systems. In particular, Section 2.1 presents the basics of deep learning, multi-layer
perceptrons and convolutional neural networks. Section 2.2 presents an overview of
state-of-the-art DNN hardware accelerators. Then, Section 2.3 highlights the key design
issues towards enabling efficient DNN inference. Afterwards, Section 2.4 covers the
prominent software-level and hardware-level techniques used for improving the energy
efficiency of DNN inference systems. Then, Section 2.5 presents an overview of different
reliability threats that can affect the functionality of nano-scale CMOS devices. The
section also highlights the impact such threats can have on the accuracy of state-of-the-art
DNNs. Towards the end, in Section 2.6, the chapter covers different low-cost techniques
designed for mitigating reliability threats in DNN inference systems without incurring
huge energy, area or performance overheads. [Parts are Published as [HHS18],
[HKP+18], [HS20a], and [HHS20a] in DATE’18, IOLTS’18, IOLTS’20, and
SCOPES’20, respectively]

Chapter 3 - Analytical Models and Design Space Exploration of Approximate
Modules: This chapter presents analytical models for efficient design space exploration
of approximate adders. The chapter presents a generic accuracy-configurable adder model
for Low-Latency Approximate Adders (LLAAs) in Section 3.1. Then, Section 3.2 covers
design space exploration of LLAAs and presents the proposed Quality-Area Optimal
Adder (QuAdo) configurations. The coverage of the proposed accuracy-configurable adder
model is presented in Section 3.3 along with the results that highlight the significance
of QuAdo configurations. Afterwards, Section 3.4 highlights the limitations of QuAdo,
specifically, the unexplored design space of Low-Power Approximate Adders (LPAAs).
To effectively compute the error estimates of LPAAs, Section 3.5 presents the proposed
methodology, PEMACx, for computing the PMF of error of approximate adders that are
composed of cascaded adder units. The usability of the model is highlighted in Section 3.6
which is then followed by the limitations of PEMACx in Section 3.7. A novel Data and
Application-aware Error estimation Methodology for approximate adders (DAEM) is then
presented in Section 3.8 to overcome the limitations of the earlier models. Sections 3.9
and 3.10 highlight the usability and limitations of DAEM (respectively), followed by
the links to the open-source libraries in Section 3.11. [Published as [HHHS17] and
[HHHS20] in DAC’17 and DAC’20, respectively]

Chapter 4 - Cross-Layer Optimizations for DNNs: This chapter presents the
proposed cross-layer methodology for optimizing DNNs in Section 4.1. Then, Section 4.2
presents different case studies to highlight the effectiveness of each individual technique
employed in the cross-layer methodology as well as their combined benefits. In particular,
Section 4.2 presents a novel structured pruning methodology in Section 4.2.1, the impact
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of various degrees of quantization on the accuracy of pruned DNNs in Section 4.2.2 and the
impact of hardware-level approximations in Section 4.2.3. [Published as [HMA+18]
and [HS22] in JOLPE’18 and MICPRO’22, respectively]

Chapter 5 - Neural Processing Arrays for Efficient DNN Inference: This
chapter presents the proposed techniques for improving the performance and energy
efficiency of Neural Processing Arrays (NPUs) used in DNN accelerators. Towards this,
first, Section 5.1 highlights different possible real-world scenarios for optimizing DNNs.
The section highlights that retraining is not possible in some scenarios, and therefore,
it is important to have optimization techniques that can still be employed to enable
highly energy and performance-efficient DNN inference. Then, Section 5.2 presents
the impact of functional approximations of arithmetic modules in DNN accelerators
on the accuracy of DNNs. Afterwards, Section 5.3 presents the proposed concept of
curable approximations and how it can be employed to design an efficient neural array.
Section 5.4 then highlights the potential of data-driven approximations and presents a
novel data representation format to enable significant simplification of MAC units used in
neural arrays. [Published as [HKS19] and [HSM+22] in DAC’19 and IJCNN’22,
respectively]

Chapter 6 - A Low-cost Technique for Mitigating the Effects of Permanent
Faults in DNN Accelerators: This chapter presents the proposed concept of fault-
aware mapping for mitigating permanent faults in the computational array of a systolic
array-based DNN accelerator. In particular, Section 6.1 presents the motivation behind the
work. Section 6.2 presents the proposed saliency-driven fault-aware mapping methodology
for salvaging DNN accelerators having permanent faults in the computational arrays.
Then, the effectiveness of the proposed technique for different DNNs and fault rates is
presented in Section 6.3. [Published as [HS20b] in RSTA’20]

Chapter 7 - Aging Mitigation for Improving the Lifetime of On-Chip Weight
Memories in DNN Accelerators: This chapter presents the proposed aging mitigation
framework for mitigating NBTI-induced aging in on-chip weight memories of DNN
accelerators. First, Section 7.1 presents the motivation behind the work. Then, Section 7.2
presents an overview of the proposed aging mitigation framework. Afterwards, Section 7.3
presents an analysis that highlights the impact of using different data representation
formats and quantization methods on the aging of SRAM-based on-chip weight memory
cells. The proposed aging-mitigation scheme along with the supporting microarchitecture
designed for mitigating NBTI-aging in the on-chip weight memory of DNN accelerators
is then presented in Section 7.4. [Published as [HS21] in DATE’21]

Chapter 8 - Summary and Future Outlook: This chapter concludes the thesis in
Section 8.1 and presents an outlook on potential future directions towards robust and
energy-efficient DNN systems in Section 8.2.
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CHAPTER 2
Background and Related Work

This chapter presents the background knowledge related to deep learning, types of DNNs
and state-of-the-art works related to energy-efficient and reliable DNN inference. In
particular, Section 2.1 presents the basics of deep learning and DNNs. Section 2.2 covers
the basics of DNN hardware accelerators. Then, Section 2.3 highlights the key design
issues towards enabling efficient DNN inference. Afterwards, Section 2.4 highlights
state-of-the-art techniques for improving the energy-efficiency of DNN inference. The
section covers both software-level and hardware-level techniques that can contribute
towards improving the energy efficiency of DNN inference systems. Section 2.5 highlights
different reliability threats, how they manifest in DNN systems and their impact on DNN
accuracy. Then, Section 2.6 covers different state-of-the-art techniques for mitigating
hardware-induced reliability threats. The section mainly focuses on low-cost techniques
that can improve the resilience of DNNs against reliability threats without incurring huge
overheads.

2.1 Deep Learning: Basics and Terminologies

2.1.1 Overview of Neural Networks

A Neural Network (NN) is an interconnected network of neurons. These neurons are
arranged in the form of layers (see Fig. 2.1(a)) to learn hierarchical representations of
data. A NN composed of three or more layers is typically termed as a Deep Neural
Network (DNN). The basic functionality of the most common type of neuron used in
state-of-the-art NNs can mathematically be written as:

O = f(
n�

i=1
wi ∗ ai + b) (2.1)
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Figure 2.1: (a) Illustration of a fully-connected neural network. (b) Functionality of a
neuron.

Here, O represents the output, ai represents the ith activation (input), wi represents the
ith weight, b represents the bias, f(.) represents a non-linear activation function (e.g.,
ReLU and tanh) used to introduce non-linearity in the network and n represents the
total number of inputs/weights, as shown in Fig. 2.1(b).

The most common type of DNN is a fully-connected neural network, a.k.a. Multi-Layer
Perceptron (MLP). An example of fully-connected network is shown in Fig. 2.1(a). As
can be seen in the figure, in a fully-connected network, all the neurons in each layer are
connected with all the neurons in the corresponding previous layer and all the neurons
in the corresponding next layer. The weights of the network can be represented using
W <l>

i,j notation, where W <l>
i,j represents the weight of the connection between neuron i of

layer l − 1 and neuron j of layer l. The functionality of each neuron in a fully-connected
network can thus be defined using the following equation:

A<l>
j = f<l>(

�
i

W <l>
i,j × A<l−1>

i + b<l>
j ) (2.2)

where, b<l>
j represents the bias and A<l>

j represents the output of neuron j in layer l.
f<l>(.) represents the activation function used for all neurons in layer l. The activation
function can be any non-linear function; however, Sigmoid, Tanh, and ReLU are the
most commonly used activation functions.

2.1.2 Overview of Deep Neural Network Training
The main advantage of deep learning over conventional machine learning techniques is that
it enables the users to train high accuracy models directly using raw data. The models
are trained using the back-propagation algorithm [LBH15]. In the back-propagation
algorithm, first, a batch of data samples is passed through the network to compute the
loss, which is typically based on the difference between the observed and the expected
outputs of the model. The loss is then used to compute gradients for all the weights and
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biases of the model. The computed gradients are then used to update the corresponding
weights and biases in a way that reduces the loss. To achieve high accuracy, the training
dataset is expected to be large and a true representative of the expected test set. The
training set is usually divided into small batches, and one batch is used at a time to
update the model parameters. This type of training process is typically referred to as
mini-batch gradient descent. Note that one complete pass over the training set is defined
as one epoch, and proper training of a model can require up to a few hundred epochs,
depending on the complexity of the problem.

DNN training is a delicate task as it can lead to a number of problems. One of the most
prominent issues associated with DNN training is over-fitting (see Fig. 2.2). Over-fitting
mainly refers to the problem in which the model learns not only the important features in
the training data but also the noise, which leads to reduced performance on unseen test
data. To achieve high accuracy on unseen test data, it is important to avoid over-fitting
and ensure that the model is able to generalize well. Various solutions have been proposed
in the literature to avoid over-fitting. The most prominent one is early stopping. To
detect over-fitting, a validation set is used, which is independent of the training and
the test sets. The accuracy of the model on the validation set is monitored during
training (evaluated usually after every epoch), and as soon as the validation accuracy
starts decreasing after reaching a maximum value, the training process is stopped and
the model with the best validation accuracy is forwarded as the output (see Fig. 2.3).
This is mainly because the decrease in the validation accuracy corresponds to an increase
in the generalization error. Other methods such as data augmentation and regularization
are also commonly used to address over-fitting.

Underfit Optimal Overfit 

Classification 
boundary

Figure 2.2: Comparison between under-fitting, optimal and over-fitting scenarios. Note,
under-fitting results in high training error and high test error and over-fitting results in
low training error but high test error. Only the optimal scenario results in low training
error and low test error.

2.1.3 Convolutional Neural Networks
A widely used type of DNNs is the Convolutional Neural Networks (CNNs). As the name
suggests, CNNs are mainly based on convolutional layers. The weights in these layers are
arranged in the form of 3D filters which are traversed across the 2D space of the input
activations (input feature maps) to generate the outputs. Each filter is responsible for
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Figure 2.3: Illustration of early stopping. The validation accuracy increases to a point
and after that it starts decreasing due to over-fitting.

generating one output feature map, and all the feature maps (generated using different
filters of a layer) combined form the input of the subsequent layer. The dimensions of
the weights of the lth convolutional layer can be given as H<l>

f × H<l>
f × M<l> × N<l>.

Here, N<l>, M<l> and H<l>
f represent the number of filters, the number of channels

in each filter and the number of rows/columns of the filters of layer l, respectively.
A specific weight in convolutional layer l can be represented as W <l>

{(r,c),(C,F )}, where
r, c, C and F represent the row, column, channel and the filter number, respectively.
Similarly, the dimension of the output activations of convolutional layer l can be given as
x<l> × y<l> × N<l>, where x<l> and y<l> represent the number of rows and columns
(respectively) in the output feature maps and N<l> represents the number of feature
maps, which is equivalent to the number of filters in layer l. A detailed view of a
convolutional layer is shown in Fig. 2.4(a), and an example CNN architecture is shown
in Fig. 2.4(b).
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Maps

(b)(a)

…

Convolutional 
Layer Output Feature 

MapsFilter 1

Filter N N

M
M

Nth feature 
map

Output

FC 6

FC 7

FC 8

Feature
Extractor

ClassifierCONV 1

Filter 2

Input Image

CONV 2

CONV 3

CONV 4

CONV 5

Convolutional
Layers

Pooling
Layer

Figure 2.4: (a) Detailed view of a convolutional layer. (b) A convolutional neural
network architecture for image classification application. The network is composed of
five convolutional (CONV) layers and three fully-connected (FC) layers.

As illustrated in Fig. 2.4(b), a CNN contains other types of layers as well apart from
convolutional and fully-connected layers. Other commonly used layers are pooling layers,
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which are used to down-sample the input feature maps, and normalization layers, which
are used to standardize the inputs to the next layer. Note that depending on the type of
CNN, the types of convolutional layers can also be different. Other types of convolutional
layers include transposed convolution and dilated convolution layers.

Apart from MLPs (discussed in Section 2.1.1) and CNNs, there are many other types of
DNNs such as Recurrent Neural Networks (RNNs) and Graph Neural Networks (GNNs).
RNNs are usually designed to process variable length sequences, such as speech and text,
while GNNs are used to process graph data. However, without any loss of generality, this
thesis mainly focuses on CNNs for evaluations as they are widely used for benchmarking
embedded deep learning systems.

2.2 DNN Hardware Accelerators
DNNs fall under the umbrella of embarrassingly-parallel workloads and, therefore, can
significantly benefit from hardware-level parallelism. Towards this, several special-
ized hardware accelerator designs have been proposed to enable resource-efficient DNN
inference at the edge. Some of these accelerator designs include Tensor Processing
Unit (TPU) [JYP+17], Eyeriss [CKES17], DaDianNao [CLL+14], ShiDianNao [DFC+15],
Cambricon-X [ZDZ+16], FlexFlow [LYL+17], SCNN [PRM+17] and Bit Fusion [SPS+18].
These accelerators are mainly composed of (1) massively-parallel neural arrays to perform
a large number of MAC operations in parallel and (2) dedicated memory hierarchy to
minimize costly DRAM accesses and maximize local data reuse.

The TPU [JYP+17] is one of the prominent DNN accelerators developed by Google
mainly to accelerate DNN inference process for cloud-based applications. At the core, the
TPU employs a systolic array composed of 256 × 256 Processing Elements (PEs). Each
PE contains a MAC unit and a few registers. The PEs are connected in a 2D grid-like
manner to enable high local data reuse and reduce the number of costly memory accesses.
Most of the case studies in this thesis are based on a similar hardware design. Fig. 2.5a
presents an overview of the hardware, Fig. 2.5b presents the details of the PE design,
and Fig. 2.5d together with Fig. 2.5c presents how filters are unrolled and mapped onto
the processing array of the architecture. Fig. 2.5c also illustrates the architectural details
of the processing array. As can be seen from the figure, each PE mainly communicates
with only its immediate neighboring PEs, and the boundary PEs are the only ones
that communicate with modules outside of the processing array to receive weights and
activations or to output partial sums.

Fig. 2.6 presents the flow followed to process convolution layers using the array presented
in Fig. 2.5. Assuming the number of columns in the array to be K and the number of
rows to be N , first a set of N × K weights from K different filters are mapped onto the
processing array using the vertical weight channels. The mapping is carried out using
the flow presented in Fig. 2.5d, where each array column is mapped with weights from a
different filter and only N number of weights from a filter are mapped at one time. The
weights are then kept stationary inside the array while the activation values are fed from
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the left using the activation channels. The activations have to be arranged in such a way
that PEs can operate in lockstep to generate the partial sums (see Fig. 2.6c).
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Figure 2.5: (a) Overview of a DNN hardware accelerator. (b) A detailed view of the PE
architecture. (c) A detailed view of a TPU-like systolic array. The shades of the PEs
together with (d) show the mapping policy adopted for such arrays.

For example, in the first clock cycle, the top left corner PE multiplies the first weight
from the first filter with the first input activation from the first input set and then stores
the partial sum output in its partial sum register (see Fig. 2.6c). In the second clock cycle,
the PE in the second row first column receives the second input activation from the first
input set, multiplies it with the second weight from the first filter, adds the product with
the partial sum received from the above neighbor (which was generated in the previous
clock cycle), and then stores the updated partial sum in its partial sum register. In the
same clock cycle, the PE in the top left corner multiplies the first activation from the
second input set with the first weight of the first filter and the PE in the first row second
column multiplies the first activation from the first input with the first weight of the
second filter. This way, after N clock cycles, the array outputs its first partial sum from
the first column, and at its peak, it can perform N × K MAC operations in parallel and
can output K partial sums per clock cycle.

18



2.3. Design Issues for Efficient DNN Inference

PE PE

PE PE

PE

PE

PE PE PE

...

...

...

......... Processing 
Array

(a)

...

Filter 1

…

Filter K

…

A block 
containing N
weights

Blocks Mapped 
in the First 
Iteration ...

ܽଵ,ଵழ௟வ ܽଵ,ଶழ௟வ ܽଵ,ଷழ௟வ ܽଵ,଺ழ௟வܽଵ,ସழ௟வ ܽଵ,ହழ௟வܽଶ,ଵழ௟வ ܽଶ,ଶழ௟வ ܽଶ,ଷழ௟வ ܽଶ,଺ழ௟வܽଶ,ସழ௟வ ܽଶ,ହழ௟வܽଷ,ଵழ௟வ ܽଷ,ଶழ௟வ ܽଷ,ଷழ௟வ ܽଷ,଺ழ௟வܽଷ,ସழ௟வ ܽଷ,ହழ௟வܽସ,ଵழ௟வ ܽସ,ଶழ௟வ ܽସ,ଷழ௟வ ܽସ,଺ழ௟வܽସ,ସழ௟வ ܽସ,ହழ௟வܽହ,ଵழ௟வ ܽହ,ଶழ௟வ ܽହ,ଷழ௟வ ܽହ,଺ழ௟வܽହ,ସழ௟வ ܽହ,ହழ௟வ

Activation map of layer ݈

(b)

PE PE

PE PE

PE

PE

PE PE PE

...

...

...

......... Processing 
Array

...

Partial
sum flow 
direction
during 
execution 
(one step 
per cycle)

(c)

ܽଵ,ଵழ௟வܽଵ,ଶழ௟வܽଵ,ଷழ௟வܽଵ,ସழ௟வ
ܽଵ,ଶழ௟வܽଵ,ଷழ௟வܽଵ,ସழ௟வܽଵ,ହழ௟வ

…

…

…
… …………

Clock cycle
013 24

Input 
set 1

Input 
set 2

Figure 2.6: Flow for performing convolution using the hardware shown in Fig. 2.5.
(a) Mapping of weights onto the processing array. (b) An example activation map.
(c) Sequence of execution.

Note, if the number of weights in a filter is more than the number of rows in the array,
the whole filter cannot be mapped to the array at the same time, as also illustrated
in Fig. 2.6a. In such a case, the filter has to be divided into blocks of size N . The
partial sums generated from the blocks are accumulated using the accumulation units
(see Fig. 2.5a) to generate the final outputs.

2.3 Design Issues for Efficient DNN Inference

2.3.1 Computational Complexity of DNNs
As highlighted in Section 1.1 with the help of Fig. 1.3, high-accuracy DNNs are in general
highly compute intensive as they require a large number of floating-point operations
(FLOPs) to process each input sample. For example, the AlexNet model [KSH12]
requires around 725 MFLOPs to process one input image while the VGG16 model [SZ14],
which offers better accuracy than the AlexNet model, requires around 15.5 GFLOPs per
input image. This compute-intensive nature of DNNs translates to high energy/power
requirements and makes it challenging to achieve efficient deployment of these DNNs
in resource-constrained scenarios. Although specialized DNN hardware accelerators are
commonly used to achieve better efficiency (as highlighted in Section 2.2), the gains
are usually insufficient to meet real-world constraints. Therefore, other optimization
techniques are required that can reduce the computational as well as memory requirements
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of DNNs without compromising their application-level accuracy.

2.3.2 Diversity in State-of-the-art DNN Architectures

Over the years, different DNN architectures have been proposed. Even within CNNs
designed for image classification application, designs range from simple CNNs composed
of conventional convolutional and fully-connected layers (e.g., AlexNet and VGG) to
ResNets composed of residual blocks to CNNs composed of depth-wise separable and
point-wise convolutional layers (e.g., MobileNet). This diversity in DNN architectures
makes it challenging for the same accelerator to offer optimal efficiency gains for two
different DNN architectures [CYES19]. Moreover, within each DNN, layers can have
different configurations, which further adds to the difficulty. To address this challenge,
configurable hardware accelerators such as FlexFlow [LYL+17] and EyerissV2 [CYES19]
have been proposed in the literature. These accelerators are not only capable of supporting
various configurations for the compute fabric but are also capable of supporting different
dataflows. This flexibility together with works like SmartShuttle [LYL+18] that are used
to optimize off-chip memory accesses, enables the user to define optimal execution policy
for each individual DNN layer based on the user-defined constraints.

Given that state-of-the-art works can be employed to define and enable optimal DNN
execution policy, a part of this thesis focuses on reducing the computational complexity of
DNNs through software-level optimizations and designing complementary techniques that
can further add to the efficiency of DNN hardware accelerators through approximations.

2.4 State-of-the-Art Techniques for Enabling Energy
Efficient DNN Inference

To enable highly resource-efficient DNN inference, various optimization techniques have
been proposed in the literature. The spectrum of these techniques spans the complete
hardware-software computing stack. At the software level, techniques like Neural Archi-
tecture Search (NAS), pruning and quantization have been proposed to reduce the size
and computational complexity of DNNs. While at the hardware level, techniques like
hardware-level approximations, design of specialized DNN accelerators and aggressive
voltage scaling are employed. Table 2.1 presents a summary of the key state-of-the-
art techniques proposed for improving the energy and performance efficiency of DNN
inference process. The details of the techniques are presented in the following subsections.

2.4.1 Software-level Optimizations

This section highlights different state-of-the-art software-level optimization techniques
that can be employed to reduce the size and complexity of DNNs.
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Table 2.1: Techniques for improving the energy and performance efficiency of DNN
inference process.

Abstraction
Layer

Type of
Approximations Related work Brief Description Cost Benefits

Software

Unstructured
Pruning

[HMD15]
[LKD+16]

This technique iteratively removes
less significant parameters from a
DNN (regardless of their locations)
to reduce its memory footprint and
computational requirements. The
technique is mainly useful for reducing
the memory footprint of DNNs, and
in cases where the pruning policy
is not aligned with the underlying
inference hardware, it can lead to
energy overheads.

Loss in
accuracy or
high training
cost

Less memory
requirements
and less
number of
computations

Structured
Pruning

[AHS17a]
[NML+20]
[EES+20]

It removes less significant groups of
parameters from a DNN to reduce its
size and computational complexity.
The groups are based on some
predefined templates that can lead to
better accuracy-efficiency trade-offs.

Loss in
accuracy or
high training
cost

Less memory
requirements,
less number of
computations,
and structured
sparsity

Quantization
[GAGN15]
[HMD15]
[JKC+18]

It converts the DNN weights and
activations from floating-point to
limited-precision fixed-point/integer
format. It can also be performed by
grouping the parameters into multiple
clusters and assigning a single
floating-/fixed-point value to all the
parameters in the same cluster.

Loss in
accuracy or
high training
cost

Less memory
requirements
and less
complex
hardware
modules

Neural
Architecture

Search (NAS)
[EMH19]

[BMO+21]

It enables to search for more accurate
models from a predefined search space.
It mainly replaces heuristics-based
manual DNN architecture design
process with sophisticated push-button
methodologies. Moreover, hardware-
aware NAS techniques have also been
proposed that take into account the
execution latency, energy consumption,
memory footprint, etc. of candidate
options as well along with their accuracy
to reach to efficient-yet-accurate DNNs.

Loss in
accuracy or
high training
cost

Less complex
and/or high
accuracy DNNs

Hardware

Hardware
Accelerators

[JYP+17]
[CYES19]
[LYL+17]
[SPS+18]

In this group of works, specialized
hardware is designed to accelerate
the execution of compute-intensive
operations involved in DNN inference.
The design is based on user-defined
constraints and can be for improving
the latency or energy characteristics
of the system.

Specialized
hardware
cost

Low power,
energy, area,
and/or latency

Functional
Approximations

[GMP+11]
[KGE11]

[REHS+16]

In this group of works, the
functionality of arithmetic modules is
simplified/approximated to reduce
the hardware cost and achieve power,
energy, area and/or latency benefits.

Less reliable
Low power,
energy, area
and/or latency

Voltage/
Frequency

Scaling

[RBKS17]
[VCC+13]
[ZRGG18]
[BOO+23]

In this group of works, the
functionality of arithmetic modules
is approximated through aggressive
voltage/frequency scaling that leads to
timing errors in some locations.

Less reliable
Low power,
energy
and latency

Data
Approximations

[ATBS11]
[SMBJ14]
[ACV05]

[YPT+16]
[LPMZ11]

In this group of works, the functionality
of memory subsystems is simplified/
approximated, for example, using
memory cells composed of less number
of transistors or by using approximate
caches or DRAMs.

Less reliable
Low power,
energy, area
and/or latency
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2.4.1.1 Pruning

High-accuracy DNNs are intrinsically over-parameterized and, therefore, have to be
optimized, especially for edge-based applications. Pruning, in the context of DNN
optimizations, mainly refers to removing non-essential (less important) parameters from
a DNN to reduce its size and complexity. Various types of pruning techniques have been
proposed in the literature, depending on the granularity and user requirements. For
example, pruning can be applied at element level, where each individual weight/parameter
is checked against a criterion and pruned if it falls in the non-essential category according
to the defined criterion. Apart from removing individual parameters, groups of parameters,
such as filters, filter kernels and even layers, can also be removed to reduce the complexity
and memory footprint of DNNs. In general, element-wise pruning is referred to as
fine-grained pruning, while all other types, in which groups of parameters are removed,
fall under the umbrella of course-grained pruning.

Fine-grained Pruning: The most convenient and most rewarding technique in terms
of reducing the number of parameters in a DNN is fine-grained (element-level) pruning,
in which each individual parameter is checked against a criterion and removed if it falls
in the non-essential category. Fig. 2.7(b) presents a pruned version of the DNN shown in
Fig. 2.7(a), where pruning is achieved through fine-grained pruning. The figure clearly
shows that fine-grained pruning results in unstructured sparse matrices. Earlier works
towards pruning of neural networks include the Optimal Brain Damage [LDS89] and
the Optimal Brain Surgeon [HS92] methods. Recently, Han et al. [HPTD15] proposed a
three-step method to reduce the size and computational complexity of DNNs. First, they
train a DNN to learn which connections are important. Then, they remove non-essential
(unimportant) connections from the DNN. Finally, they fine-tune the remaining weights
to regain the accuracy lost due to pruning. They further proposed that learning the right
connections is an iterative process. Therefore, the process of pruning followed by fine
tuning should be repeated multiple times, with only a fraction of weights removed at
a time, to achieve higher compression ratios. Deep Compression [HMD15] employed a
similar method for pruning and combined it with weight sharing and Huffman coding to
significantly reduce the memory footprint of DNNs.

Course-grained Pruning: Although fine-grained pruning has the capability to sig-
nificantly reduce the number of parameters (and memory footprint) of DNNs, it does
not guarantee energy or latency benefits. This is mainly because (1) the network pa-
rameters are stored in a compressed format and, therefore, have to be uncompressed
before corresponding operations and (2) the underlying hardware architecture (in most
cases) is not specifically designed to take advantage of fine-grained sparsity in pruned
DNNs. Therefore, specialized hardware accelerators are required to process data using
compressed sparse DNNs. Some examples of such accelerators include EIE [HLM+16]
and SCNN [PRM+17]. Yu et al. [YLP+17] argued that it is essential to align the pruning
method to the underlying hardware architecture to achieve efficiency gains. A mismatch
between the type of sparsity a pruning method can introduce and the organization and
architecture of processing units in the hardware can lead to high overheads. Based on
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Figure 2.7: (a) An example FCNN. (b) An example of connection pruning. (c) An
example of neuron pruning.

this observation, Yu et al. in [YLP+17] proposed two different pruning methods, i.e.,
SIMD-aware weight pruning and node pruning. SIMD-aware weight pruning maintains
weights in aligned fixed-size groups to fully utilize the available SIMD units in the
hardware. Node pruning removes less significant nodes from the network to reduce the
computational complexity and memory footprint of DNNs while maintaining the dense
matrix format of weight matrices (e.g., see Fig. 2.7(c)).

Similar to node pruning, several other structured pruning techniques have also been
proposed. Anwar et al. [AHS17a] highlighted that conventional (fine-grained) pruning
techniques result in irregular network structure that incurs high overhead cost and also
result in under-utilization of parallel-processing units in regular hardware accelerators
during inference process. To address this issue, they proposed various types of struc-
tured sparsity for CNNs, i.e., channel-wise, kernel-wise and intra-kernel strided sparsity.
Fig. 2.8b presents an example of filter pruning, while Fig. 2.8c highlights the main
differences between different types of structured pruning for CNNs.

Apart from the above-mentioned structured pruning techniques, pattern-based prun-
ing [NML+20] and layer pruning [EES+20] techniques also exist in the literature. Pattern-
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Figure 2.8: (a) Processing flow of two consecutive convolutional layers. (b) An example
of filter (or channel) pruning. (c) Different types of structured pruning.

based pruning falls in between structured pruning and fine-grained pruning, as it allows
to prune each filter kernel differently based on a predefined set of templates. The key
advantage of pattern-based pruning over filter pruning is that it enables comparatively
more compression and efficiency gain. Layer pruning techniques add another dimension
to the compression by enabling the designers to drop complete layers from DNNs. Layer
pruning is mainly beneficial for cases with stringent latency constraints.

2.4.1.2 Quantization

Quantization refers to the process of mapping values from a high-precision range to a
low-precision range with lesser number of quantization levels. The number of quantization
levels in the range defines the number of bits required to represent and store each data
value. Therefore, a low-precision format with less number of quantization levels can
significantly reduce the storage requirements and inference cost of DNNs.

The main goal of DNN quantization is to improve the storage and energy efficiency of
DNNs without affecting their accuracy. Various techniques have been proposed to achieve
this goal. The most commonly used quantization is 8-bit range linear quantization, where
floating-point weights and activations are converted to 8-bit fixed-point format. The range
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linear quantization further can be divided into two types: (1) asymmetric quantization;
and (2) symmetric quantization. In asymmetric quantization, the minimum and maximum
observed values in the float range are mapped to the minimum and maximum possible
values (respectively) in the integer/fixed-point range as shown in Fig. 2.9c; however, in
symmetric quantization, the float range is defined using the maximum absolute observed
value as shown in Fig. 2.9b.

Non-linear (or non-uniform) quantization techniques have also been studied in the lit-
erature [JVS+19][HMD15]. These techniques are mainly inspired by the non-uniform
probability distribution of DNN data structures [JVS+19]. Fig. 2.9a presents an illus-
tration of the difference between uniform and non-uniform quantization schemes. The
key advantage of non-uniform quantization over uniform quantization in the context of
DNNs is that it can significantly reduce the average quantization error when both are
subjected to the same number of quantization levels budget. This is mainly because the
data distribution of DNN data structures is not uniform and, in general, concentrated
towards zero. However, note that non-uniform quantization leads to energy and per-
formance improvements only when used with specialized hardware, as general-purpose
CPUs, GPUs and accelerators are usually designed for conventional fixed-point and
floating-point number formats.
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Figure 2.9: (a) Difference between uniform and non-uniform quantization. (b) 8-bit
symmetric quantization. (c) 8-bit asymmetric quantization.

To push quantization to its limits, works like XNOR-Net [RORF16], Binarized Neural
Network (BNN) [HCS+16] and DoReFa-Net [ZWN+16] have explored the potential of
aggressive quantization. However, aggressive quantization leads to significant accuracy
loss even with retraining. Mixed-precision quantization techniques have also been studied,
where different precision formats can be used for different layers, filters and even channels
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in the same DNN [WLL+19][GKD+21]. However, mixed-precision quantization is only
useful in cases where the underlying hardware is capable of supporting different precision
formats.

2.4.1.3 Neural Architecture Search

Designing DNNs manually based on heuristics is a time-consuming process. Therefore,
to meet the growing demand for highly accurate and efficient models for edge-based
applications, different automated Neural Architecture Search (NAS) techniques have
been proposed [EMH19], including hardware-aware NAS [BMO+21]. Fig. 2.10 shows the
general flow adopted for NAS. First, a search space is defined using a base architecture
and the possible types of modules and connections each block in the base architecture
can have. Then, the search strategy defines how the search space is traversed. The
search strategy faces the exploration/exploitation dilemma, where the search strategy is
expected to converge to a solution fast, while ensuring that the solution is highly effective
(close to the optimal solution). The evaluation strategy defines the process for estimating
the accuracy and performance metrics (such as latency, energy consumption, and memory
footprint) of candidate solutions. The estimates are then sent back to the search strategy
block to guide the search towards better architectures. Note that all NAS algorithms
involve training of candidate solutions and, therefore, are effective only in cases where
reasonable compute resources are available. Even though most of the state-of-the-art NAS
techniques employ surrogate models for estimating the accuracy and performance metrics
of candidate solutions to accelerate the search process, the complete search can still take
multiple GPU days for complex problems and larger design spaces. Moreover, surrogate
models bring in other challenges such as training a surrogate for each objective (in a
multi-objective optimization) independently leads to false dominant solutions as each
surrogate brings some approximation error. A prominent work towards addressing this
challenge is Hardware-Aware Pareto-Ranking NAS (HA-PR-NAS) [BOEMN23], where
a single surrogate is used to rank the models instead of estimating their accuracy and
performance metrics.

Search 
Space

Search 
Strategy

Evaluation
Strategy

Optimal DNN 
Architecture

Candidate Models

Estimated Results

Figure 2.10: Overview of Neural Architecture Search (NAS) process.

2.4.2 Hardware-level Approximations
Approximate Computing (AC) is an emerging computing paradigm that enables the
designers to push the boundaries of efficiency gains beyond what can typically be achieved
using conventional techniques [VCRR15][SHR+16][XKM16][Mit16]. AC achieves this
by trading application quality for efficiency gains. This accuracy-efficiency trade-off
can be achieved using various methods, for example, through functional approximation
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of arithmetic modules (through logic simplification, as shown in Fig. 2.11) or through
voltage underscaling.
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Figure 2.11: (a) An example of functional approximation, where a 2x2 multiplier is
approximated to reduce the area and energy costs. (b) A generic flow for approximating
datapaths.

Functional Approximations: A number of recognition, mining and synthesis applica-
tions are inherently error resilient, and this error-resilience property of the applications
can be exploited to trade a bit of quality for a significant amount of energy, perfor-
mance and area efficiency. Functional approximations of the arithmetic modules in
the datapaths of hardware accelerators is one of the widely explored ways for achiev-
ing quality-efficiency trade-offs. These approximations mainly involve modifications
in the circuitry/architecture of the modules to improve their hardware characteris-
tics. Towards this, a number of efforts have been carried out for designing approximate
adders [GMP+11][GMRR12][SAHH15][MHH+16][VBI08], multipliers [REHS+16][KGE11]
and dividers [VKAK+17]. For high-performance applications, in which latency is the
foremost constraint, low-latency approximate adders have been proposed, for example,
ETA-II [ZGY09], ETA-IIM [ZGY09], ACA [VBI08][KK12], GDA [YWY+13]. For low-
power applications, low-power approximate modules, such as low-power approximate
adders [GMP+11][MAFL10], multipliers [KGE11][REHS+16] and dividers [VKAK+17]
have been proposed. An example of functional approximate of 2×2 approximate multiplier
module is shown in Fig. 2.11a.

Other Types of Approximations: Apart from functional approximation of arithmetic
modules, voltage scaling can also be exploited to achieve quality-efficiency trade-off
in the computational units of a hardware accelerator [RBKS17][VCC+13]. Various
data approximation techniques have also been proposed to reduce the energy consump-
tion associated with memory subsystems. These techniques mainly include load value
approximation [SMBJ14][SSMJ15][YPT+16], memoization [ACV05][KKS15][SJLM14],
memory access skipping [SLJ+13][YPT+16], refresh rate reduction [LPMZ11] and in-

27



2. Background and Related Work

exact reads/writes [RVF+15]. Although data approximations can also significantly
contribute towards efficiency gains, in this thesis, we mainly focus on precision reduction
to reduce the energy consumption associated with memory subsystems and functional
approximations to improve the efficiency of computational units.

Hardware-Level Approximations for DNNs: Venkataramani et al. [VRRR14]
highlighted that DNNs are mostly used for error-resilient applications, and therefore,
approximations can be employed to improve the efficiency of DNN inference systems
under such scenarios. Towards this, AxNN [VRRR14] proposed a selective approximation
technique, where less significant neurons are approximated. AxNN [VRRR14] also
proposed the concept of approximation-aware training of DNNs to counter the impact of
approximation errors in the system. As approximation-aware training is not possible in
some scenarios, ALWANN [MVS+19] proposed a layer-wise approximation methodology
to select an appropriate type of approximate multiplier for each individual layer of
the given DNN without involving training. Other techniques that include BiScaled-
DNNs [JVS+19] and Compensated-DNNs [JVS+18] target different data representation
formats to significantly reduce the hardware complexity and energy requirements of
DNNs. Apart from functional approximation of arithmetic modules in DNN accelerators,
voltage-scaling techniques such as ThunderVolt [ZRGG18], GreenTPU [PBCR19] and
MATIC [KHM+18a] can also be employed to increase the energy efficiency of the DNN
inference process at the cost of minor accuracy loss.

2.5 Reliability Threats
State-of-the-art high-accuracy DNNs are extremely resource hungry due to their huge
memory and compute requirements [SCYE17]. Therefore, specialized hardware accelera-
tors are employed to achieve efficient DNN inference [JYP+17][CKES17]. On the one
hand, accelerators fabricated using nano-scale technology can increase the efficiency of
a system, while on the other, they bring unique reliability challenges. Some of these
challenges are associated with the limitations of the fabrication process, while others
are due to the extremely small sizes of transistors. The following text provides a brief
introduction to different hardware-induced reliability threats.

• Soft Errors are transient faults caused by high-energy particle strikes on a chip.
These high-energy particles can be alpha particles emitted from the impurities in
the packaging materials of the chip or neutrons from cosmic radiations [Bau05].
These faults manifest as bit-flips in the system and can propagate to the application
layer and affect the application-level accuracy of the system. External factors such
as temperature and altitude profoundly impact the Soft Error Rate (SER).

• Aging in nano-scale electronic devices occurs due to various physical phenomena
such as Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Time-
Dependent Dielectric Breakdown (TDDB) and Electromigration (EM). It typically
affects the hardware characteristics of different components, for instance, the
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threshold voltage (VT H) of transistors [KGPK08] and width/connectivity of wires.
In the early stages, aging results in timing errors, and later it can even transform
into permanent faults.

• Process Variations are deviations in the hardware characteristics from the
expected values due to imperfections in the fabrication process [RTGM13]. In
general, these variations manifest as timing errors in a system and are usually
addressed by adding guardbands, e.g., by reducing the operating frequency of the
device. Extreme variations can even lead to permanent faults, which affects the
yield of the manufacturing process.

To highlight the impact of the above-mentioned reliability threats that manifest as
bit-flip errors at the hardware level on the application-level accuracy of DNNs, Fig. 2.12
presents the accuracy results when different number of bit-flips are inserted at different
bit locations of the weights of layer 1 of the pre-trained VGG-f network1. For this analysis,
the faults are divided into two types: (1) 0 to 1 bit-flips and (2) 1 to 0 bit-flips. Moreover,
single-precision floating-point format is considered for both weights and activations (see
Fig. 2.12c). Fig. 2.12a presents the results related to 0 to 1 bit-flips and Fig. 2.12b
presents the results related to 1 to 0 bit-flips. As can be observed from the figure, the 1 to
0 bit-flips do not affect the DNN accuracy much (see Fig. 2.12b); however, even a single
0 to 1 bit-flip at a critical location in the DNN can drastically reduce the accuracy (see
Fig. 2.12a). In general, the criticality of a bit depends on its location in the weight along
with the data representation format used for representing the weight values. Moreover,
the location of the fault inside the network can also have a significant impact on the DNN
accuracy; however, we observed from experiments that the behavior is mainly dominated
by the location within the weights as that can significantly impact the dominating path
inside the network and thereby the network accuracy. A detailed study of the impact
of bit-flip errors in DNNs is presented in [NANK19]. In summary, from this analysis,
it can be concluded that DNNs are not resilient to all types of faults. Some types of
faults result in significant accuracy degradation, while others can be exploited to design
cost-effective fault-mitigation techniques or improve the overall efficiency of the system
by trading quality for efficiency.

2.6 State-of-the-Art Techniques for Mitigating Reliability
Threats in DNN Systems

As highlighted in Section 2.5, hardware-induced reliability threats can significantly
degrade the accuracy of a DNN-based system. Therefore, it is essential to mitigate these
threats to ensure reliable results. Conventionally, techniques like aggressive guardbanding
and spatial/temporal redundancy (e.g., Error Correction Codes (ECC) [LM76], Dual
Modular Redundancy (DMR) [VZBT10], Triple Modular Redundancy (TMR) [LV62] and

1The pre-trained VGG-f is downloaded from [VL15]
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(a) 0’b to 1’b bit flip errors (b) 1’b to 0’b bit flip errors
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Figure 2.12: (a) and (b) show the impact of bit-flip errors on the accuracy of the
VGG-f network trained for ImageNet classification; (c) Single-precision floating-point
format [HKP+18], i.e., the format considered for the evaluation presented in (a) and (b).

instruction duplication [OSM02]) are used to address reliability issues. However, such
techniques lead to high performance and/or energy overheads. The huge overheads of
these techniques coupled with the compute- and memory-intensive nature of DNNs make
them infeasible for DNN-based systems. Therefore, alternate techniques are required that
can improve the resilience of DNNs against hardware-induced reliability threats at low
cost. Table 2.2 presents a summary of the key low-cost techniques proposed for mitigating
different types of reliability threats in DNN systems. The details of the techniques are
presented in the following subsections.

2.6.1 Permanent Fault Mitigation
A major challenge associated with technology scaling is the increase in fault rates, i.e.,
moving to smaller technology nodes results in an increase in the number of permanent
faults as well as the probability of occurrence of soft errors [Con03]. Addressing permanent
faults is important as it affects the manufacturing yield of the fabrication process, which
eventually affects the cost of devices [KP86]. Considering the error resilience of DNNs,
one possible solution could be to simply let the faults propagate. However, prior works
have shown that permanent faults in DNN accelerators can severely impact the accuracy
of DNNs [ZGBG18].

To address permanent faults in systolic arrays (which are the core of most of the state-
of-the-art DNN accelerators [JYP+17][CKES17][LYL+17]), Kim et al. in [KR89] and
Kung et al. in [KL83] proposed techniques to enhance the fabrication yield at the cost of
some performance loss. The basic idea behind these techniques is to eliminate an entire
row/column for each faulty PE. This requires additional complex bypassing circuitry along
with additional registers, which translates to high performance penalty, specifically at high
fault rates. More sophisticated techniques have been proposed in [LJL89][EAKHAK94]
that can reduce the performance loss, but at the cost of even higher design complexity.
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Table 2.2: An overview of different Hardware (HW) and Software (SW) fault-mitigation
techniques for deep learning inference systems.

Technique Abstraction
Layer

Related
Works Brief Description Cost Targeted Faults Other

Dependencies

Fault-Aware
Training SW [KHM+18b]

[ZGBG18]

It incorporates the information of
faults in the training process to
make the DNN aware of the faults
present in the system.

Design-time
cost is high

Permanent faults
in memory

Fault map
extraction

Fault-Aware
Pruning

HW
Architecture
+ SW

[ZGBG18]

This technique leverages the
inherent resilience of DNNs to
dropped computations to mitigate
permanent faults in the
computational array of a DNN
accelerator. In case of higher
number of faults, the technique is
coupled with fault-aware training
to offer better performance.

Run-time
cost is low

Permanent faults
in computational
array

Modifications in
HW architecture
+ fault map
extraction

Range
Restriction SW [Cea20]

[HHS20b]

These techniques are based on the
observation that faults in DNNs
result in abnormal intermediate
activation values. Therefore,
restricting the activation values to
pre-determined ranges and treating
all out-of-the-range values as faulty
can help improve the resilience of
DNNs to faults.

Both Design-
time and
run-time
costs are low

Transient Faults
(i.e., Soft Errors)

Modifications in
HW architecture
in case of
specialized HW

Algorithm-
based Fault
Tolerance

SW [ZDL+20]
[HSTK21]

This technique is based on
checksum computation and is
proposed to protect matrix
multiplication operations. The
technique has been extended to
offer cost-effective error detection
and correction for convolution
operations as well.

Run-time
cost is low

Transient faults
in computational
units and data
corruption

No

Voltage
Scaling

HW
Architecture
+ Circuit

[ZRGG18]

This approach employs razor
flip-flops to detect timing errors in
the computational array of a DNN
accelerator. To mitigate these
errors, it exploits resilience of DNNs
to dropped computations. When a
timing error is detected in a PE, the
computation of the next PE is
dropped and the additional cycle is
used to push the rectified output
back into the pipeline.

Run-time
cost is low

Timing errors
in computational
units (i.e., Aging)

No

Radiation
Hardening Circuit [GXM14]

[AGGC18]

This approach is used to make
hardware less prone to radiation-
induced faults using stronger cells
or through designing hardware
components with special
characteristics that are based on
resilience characteristics of DNNs.
For example, SRAM cells with
biased error characteristics, biased
towards ‘0’.

Run-time
cost is low

Transient Faults
(i.e., Soft Errors) No

Redundancy
HW
Architecture
+ SW

[CW90]
[Sha]

It introduces selective spatial and
temporal redundancy to fortify
critical components/computations
against errors.

Run-time
cost is
moderate
to high

Transient,
intermittent
and permanent
faults

No
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Another set of techniques propose to add redundancy such that each redundant PE in the
architecture is dedicated for a limited region of the computing array [TH12][TF17]. These
techniques offer better performance compared to the above techniques; however, as they
are based on redundancy, the performance improvements are limited and the level of fault
mitigation that can be achieved completely depends on the level of redundancy in the
array. Along similar lines Liu et al. [LCX+21] proposed a hybrid computing architecture
for fault-tolerant DNN inference. The architecture employs a set of additional (redundant)
dot-product computing units to recompute all the computations mapped to faulty PEs.
Note that all the above-mentioned techniques are application agnostic, i.e., the solutions
are valid for all the applications and use cases that can benefit from systolic arrays.

As highlighted in Section 2.5, DNNs exhibit resilience to specific types of faults and this
resilience can be exploited to develop low-cost fault-mitigation techniques. Towards this,
Zhang et al. in [ZGBG18] proposed Fault-Aware Pruning (FAP) to mitigate the effects
of permanent faults in DNN accelerators without affecting the performance. As the name
suggests, FAP exploits resilience of DNNs to weight pruning. It achieves this by bypassing
all the faulty MAC units in the systolic array of a DNN accelerator. This bypassing of
MAC units corresponds to pruning at a higher abstraction level. Note that fault maps
can be extracted at the post-fabrication testing stage using BIST (built-in-self-test)-like
methods [AKS93][FFR16]. Zhang et al. [ZGBG18] also proposed hardware modifications
required to realize the concept. The modifications are highlighted in Fig. 2.13. Further,
they also proposed a Fault-Aware Pruning + Training (FAP+T) technique which allows
to tune a model for a given faulty chip using its fault map. A generic flow for fault-aware
training is shown in Fig. 2.14. Note that fault-aware retraining of DNNs is a widely used
technique to mitigate faults in DNN-based systems, e.g., see [ZBG19][XXL+19][DFD+15].
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Figure 2.13: Modified systolic array design for permanent fault mitigation through
fault-aware pruning
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Figure 2.14: Generic flow for fault-aware (re-)training.

2.6.2 Aging Mitigation

Aging in CMOS devices manifests as timing errors. Similar to other types of errors,
these errors can also significantly degrade the accuracy of DNNs as shown in [ZRGG18].
To prevent timing errors, traditionally voltage and frequency guardbands are incorpo-
rated while considering the worst-case aging effects [MSZ+11]. Adaptive techniques
have been proposed to mitigate the performance degradation associated with guardband-
ing [MSZ+11][KKS09]; however, these techniques still result in high overheads. Moreover,
all the above-highlighted techniques are application agnostic and do not benefit from the
inherent resilience of DNNs to certain types of errors.

To mitigate timing errors in the computational array of a systolic-array-based DNN
accelerator at low cost, Zhang et al. proposed TE-Drop [ZRGG18]. TE-Drop exploits
resilience of DNNs to computation skipping. To detect timing errors in the array, it
employs Razor flip-flops. Upon detection of a timing error in a MAC unit, instead
of re-executing the erroneous MAC operation, it captures the correct output in an
alternate partial-sum register operating on a delayed clock and then steals a cycle from
the downstream PE by bypassing it to feed in the rectified output back in the pipeline.
Fig. 2.15 presents the hardware modifications required to realize the concept. Pandey et al.
proposed a different design, GreenTPU [PBCR19], to achieve the same. The GreenTPU
mainly identifies error-causing activation patterns in the systolic array and prevents
further timing errors from similar inputs by adaptively boosting the operating voltage of
the specific MAC units that are expected to experience timing errors [PBCR19]. Note
that although both the techniques, i.e., TE-Drop [ZRGG18] and GreenTPU [PBCR19],
have been proposed to improve energy efficiency of DNN accelerators through voltage
scaling, they can be exploited to mitigate aging as well.

Aside from aging in the computational array of DNN accelerators, NBTI aging in SRAM
cells is also a serious concern. Various techniques have been proposed in the literature to
address this issue. At the circuit level, structural modifications have been proposed to
bring down the aging rate in SRAM cells [RSR+10][SZBP08]. For example, Ricketts et
al. [RSR+10] proposed an asymmetric SRAM cell structure for workloads having biased
bit distribution. However, due to high data dependence, this technique is effective only
in specific scenarios. Recovery boosting through dedicated recovery-accelerating units
is another method for reducing aging of SRAM cells [SG11]. However, the additional

33



2. Background and Related Work

PE PE PE...

. . .

. . .

. . .

Accumulation Units

PE PE PE

PE PE PE

. . .

. . .

Systolic 
Array

PE PE PE

PE

. . .

PE

PE

PE

...

...

...
. . .

……… …

…

…

…

…

Weights 
(Matrix A)

Ac
tiv

at
io

ns
(M

at
rix

 B
)

X +

Partial Sums

Ac
tiv

at
io

n

PE

Weight

0 1

…
X +

PE
0 1

…

Psum Psum’

CLK+Δ

CLK+Δ Error = Bypass 
current MAC 

unit

CLK

CLK

Difference in 
inputs correspond 

to error

Additional partial 
sum register to 
capture correct 

output

Figure 2.15: Architectural modifications required in PEs of a systolic-array-based DNN
accelerator to realize TE-Drop

circuitry required in this increases the energy consumption of the system [ZSBH11].
At the architecture level, periodic inversion of data has been studied to reduce aging
in on-chip SRAMs [JW12]. Although it is considered to be one of the most effective
techniques, it cannot guarantee optimal aging mitigation, specifically in cases where the
same data is reused periodically, e.g., in DNN-based systems. Calimera et al. [CLMP11]
proposed a technique to boost recovery of unutilized memory cells. However, as the
technique requires online monitoring support, it incurs high energy and area overheads.
Other techniques employ circular shifts to mitigate NBTI aging [KCR11]. However, such
techniques are effective only in cases where the overall distribution of bits is relatively
balanced. Moreover, these techniques employ barrel shifters that result in high energy and
area overheads. In short, state-of-the-art techniques do not offer optimal level of aging
mitigation for SRAM-based on-chip weight and activation memories of DNN accelerators.
Therefore, novel methods are required to mitigate aging of SRAM cells used for DNN
workloads.

2.6.3 Soft Error Mitigation

Similar to other types of hardware-induced reliability threats, technology scaling results
in a drastic increase in the soft error rate as well, i.e., chips fabricated using smaller
technology nodes are more prone to soft errors. Various techniques have been proposed
to address soft errors in DNN accelerators. Li et al. [LHS+17] studied the propagation of
soft errors in DNNs during the inference stage using fault-injection experiments. The
experiments indicate that using just-enough data precision can significantly reduce the
impact of soft errors on the accuracy of DNNs. Based on similar observations, Chen
et al. [Cea20] and Hoang et al. [HHS20b] propose to limit the activation values to pre-
determined ranges, as critical faults typically result in abnormal activations with high
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magnitude that can propagate to the output to cause misclassification. Moreover, Salami
et al. [SUK18] propose to combine three individual mechanisms to achieve cost-effective
application-aware fault mitigation. The three mechanisms are: (1) Word Masking, which
sets all the bits of the corrupted register to ‘0’; (2) Bit Masking, which masks the faulty
bit with the sign bit of the register; (3) Sign-bit Masking, which masks the sign bit
with the MSB of the register. Note that Word Masking and Bit Masking are adopted
from Minerva [RWA+16]. Both the works (i.e., [SUK18] and [RWA+16]) are based on
the assumption that there is no limit on the number of faults that can be detected,
and fault detection is achieved using Razor shadow latches, which result in only minor
overhead cost [SUK18]. Apart from the above techniques, Zhao et al. [ZDL+20] proposed
Algorithm-Based Fault Tolerance (ABFT) techniques to protect all types of convolution
operations in DNN accelerators against soft errors using checksum techniques.

2.7 Chapter Summary
In this chapter, background knowledge related to deep learning, types of DNNs and
available techniques for improving energy efficiency and reliability of DNN inference is
discussed. In particular, the chapter covered the basics of deep learning, Multi-Layer
Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). Then, different tech-
niques for improving the energy efficiency of DNN inference are discussed. Towards this,
the chapter covered both software-level and hardware-level techniques. In software-level
techniques, DNN pruning, quantization and Neural Architecture Search are covered in
detail as these offer the best quality-efficiency trade-off for generating resource-friendly
DNN models. In hardware-level techniques, DNN accelerators and hardware-level ap-
proximations are covered in detail. Given that DNNs are highly useful for safety-critical
applications as well, the chapter also presented a brief overview of different hardware-
induced reliability threats and their impact on the accuracy of DNNs. The chapter then
highlighted the need for low-cost techniques for improving the reliability of DNN inference
systems and covered the most prominent techniques designed for DNN accelerators.
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CHAPTER 3
Analytical Models and Design

Space Exploration of Approximate
Modules

Approximate circuits exploit the error resilience of applications to trade-off quality for
energy, area, and/or performance efficiency. Adders, being one of the fundamental opera-
tors in many processing applications, have received a significant amount of attention from
the approximate computing community. Using low-power and low-latency approximate
adders can have a significant impact on the energy efficiency and performance of a
system. Towards improving the energy efficiency and performance of a system using
approximate adders, first, this chapter presents a generic accuracy-configurable adder
model for Low-Latency Approximate Adders (LLAAs) in Section 3.1. The model helps
in analytically analyzing the structural properties of different LLAA configurations and
identifying the optimal designs that offer the best quality-efficiency trade-offs. The
analysis in Section 3.2 shows that, given a latency constraint, it is possible to effortlessly
select the optimal LLAA configuration without involving any optimization strategy or
numerical simulation. After the design space exploration of LLAAs, in Section 3.5, the
chapter presents an analytical model for evaluating the error characteristics of Low-Power
Approximate Adders (LPAAs) composed of cascaded approximate units. The analyt-
ical model is capable of covering the complete design space that can be constructed
using the optimal LLAA configurations and approximate full-adder designs. This makes
the proposed model highly effective for selecting the most suitable high-performance
(low-latency) and low-power adder configuration for a given scenario.

Further, the chapter highlights that the data distribution of inputs can have a significant
impact on the output quality of an approximate module. Therefore, in cases where input
distribution is not uniform or input bits cannot be assumed independent of each other, a
data-driven approach is necessary to accurately estimate the error characteristics of an
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approximate module. Towards this, in Section 3.8, the chapter presents DAEM, a data
and application-driven error estimation methodology. The evaluation shows that DAEM
offers better error estimates compared to conventional methods in cases where input data
distribution is not uniform. In the end, the chapter highlights some of the limitations of
the proposed approaches and the importance of simulation-based error estimation and
application-specific approximations.

3.1 Generic Accuracy-Configurable Adder Model for
Low-Latency Adders

High-performance (low-latency) adders, such as fast/parallel-prefix adders, are widely
used for applications that have strict latency and throughput constraints. Although
these adders provide significant performance benefits, they lead to serious power and area
overhead due to the presence of parallel carry generation logic. Coincidentally, most of the
applications that involve an intense level of data processing are somewhat error resilient
and, therefore, can benefit from the concepts of approximate computing to improve per-
formance [VCRR15][SHR+16][XKM16][Mit16]. Towards this, several LLAA designs have
been proposed, for example, ETA-II [ZGY09], ETA-IIM [ZGY09], ACA [VBI08][KK12],
GDA [YWY+13], etc., that offer performance improvements beyond that of the conven-
tional accurate adder designs. Each LLAA design has its own unique error and hardware
characteristics and, therefore, performs better than other configurations under certain
scenarios. Almost all LLAAs can be categorized as block-based adders, as they employ
smaller sub-adders units that operate in parallel to generate the output bits. A few
example LLAAs are shown in Fig. 3.1.
The availability of a vast variety of high-performance approximate adders makes it
difficult for the designer to choose a suitable configuration for a particular application.
To overcome this challenge, a unified model whose design space covers all/most of the
LLAA configurations is necessary. The main advantage of such a model is that it can be
used to build generic algorithms/methodologies for characterizing adder designs, which
enables efficient design space exploration. In this context, this section first presents the
GeAr adder model [SAHH15] and highlights its limitations. Then, the section introduces
the proposed extended accuracy-configurable adder model QuAd, which overcomes all
the limitations of the GeAr model and covers the complete design space of LLAAs.

3.1.1 GeAr Adder model
Let N be the length of the operands to be added. The GeAr adder makes use of k L-bit
sub-adders that operate in parallel to compute the output. The length of the sub-adders
is always less than or equal to N , i.e., L <= N . In GeAr, the sub-adders are mainly
composed of two parts: (1) R-bits part, i.e., the resultant bits part, which generates sum
bits for the adder’s output; and (2) P -bits part, i.e., prediction bits part, which is used to
predict the carry-in for the resultant part of the sub-adder. Each sub-adder contributes
R-bits to the output, except for the first sub-adder, which contributes L = R + P bits
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Figure 3.1: Example configurations of ACA-I (a) and GDA (b).

to the output. Based on the above description, a GeAr adder configuration can fully
be described using three parameters, i.e., N , R, and P , and can be represented as
GeAr(N, R, P ). The number of sub-adders (k) required for a given GeAr(N, R, P ) can
be computed using k = (N − P )/R. Note, k has to be an integer for a configuration
to be a valid GeAr configuration. A generalized architectural view of the GeAr adder
model is presented in Fig. 3.2.

Example: To understand the functionality of the GeAr adder, consider GeAr(12, 2, 6)
configuration for adding two 12-bit numbers. Here, N = 12, R = 2 and P = 6. Using
k = (N − P )/R, it can be observed that three sub-adders are required to compute the
output of the adder, as shown in Fig. 3.3a. As illustrated in the figure, the first sub-adder
(positioned at the least significant location) contributes eight bits (i.e, L = R + P bits)
to the output and all rest of the sub-adders contribute two bits (i.e., R bits) each, while
using six previous bits (i.e., P bits) for predicting the carry-in to the resultant part.
Note, the adder produces accurate output for all the cases where the maximum carry
propagation length is less than P . An error occurs only in cases where all the P -bits of a
sub-adder are in the propagate mode and the carry-out of the previous sub-adder is 1.
For example, see Fig. 3.3c, which illustrates the scenario of sub-adder 2 in detail.

Limitations of the GeAr model: The GeAr model only supports configurations in
which all the sub-adders have the same sub-adder length (i.e., L) and the same number
of resultant (i.e., R) and prediction (i.e., P ) bits. In short, adder configurations having
sub-adders of different lengths and different R and P bits are not supported by the GeAr
adder model.
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Figure 3.3: An example illustrating the functionality of low-latency adders. (a) Addition
of two 12-bit operands using GeAr(12, 2, 6) configuration. (b) Accurate addition of the
example operands. (c) Example case of sub-adder 2 which leads to error in the output
bits.
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3.1.2 QuAd Adder model

The restrictions imposed on the length of the sub-adders and the number of resultant
and prediction bits in the GeAr adder model lead to a limited design space. Therefore,
to cover the complete design space of LLAAs, an extended accuracy-configurable adder
model is proposed in this work, i.e., QuAd. Along with the configurations supported
by the GeAr adder model, QuAd also supports the configurations in which sub-adders
have different lengths and different number of resultant (R) and prediction (P ) bits.
Therefore, to define an N -bit QuAd adder configuration, a resultant bit vector, i.e.,
Rvect = {R1, R2, R3, ..., Rk}, and a prediction bit vector, i.e., Pvect = {P1, P2, P3, ..., Pk},
are required. Here, Ri and Pi define the number of resultant and prediction bits in the
ith sub-adder, respectively, and k represents the total number of sub-adders. The sum
bits from the resultant parts of all the sub-adders and the carry-out from the last (kth)
sub-adder are concatenated to generate the N + 1-bit output. Note, P1 is always equal
to zero, as the first sub-adder is responsible for generating the sum bits for all the least
significant locations covered by the first sub-adder. Based on the above description, a
generic QuAd configuration can be defined as QuAd{[R1, R2, ..., Rk], [0, P2, P3, ..., Pk]}.
Fig. 3.4 presents a generic representation of an N -bit QuAd adder.
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Figure 3.4: A generic N -bit QuAd adder composed of k sub-adders, where each ith

sub-adder sums two Ri + Pi number of bits to generate Ri number of output bits, except
for the last sub-adder which contributes Ri + 1 number of bits.

3.2 Design Space Exploration of Low-latency Adders for
Uniformly Distributed Inputs

As highlighted in Section 3.1.2, the QuAd adder model significantly increases the overall
design space of the low-latency adders. This section presents a systematic process for
exploring the extended design space of LLAAs and reaching the final set of optimal
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configurations. In the first step, the process restricts the design space of QuAd to
configurations that satisfy Pi < Pi−1 + Ri−1 constraint for all i ∈ 2, 3, ..., k. Then,
based on a set of properties that compare error and structural characteristics of different
configurations, the process proposes that, provided a latency constraint (Lmax), a quality-
area optimal configuration (QuAdo) can effortlessly be selected from the remaining design
space. A flow of the steps involved in design space exploration is presented in Fig. 3.5.

Removal of Sub-optimal 
Configurations, i.e., ܲ݅ >= ௜ܲିଵ + ܴ௜ିଵ

Property-I: For a 
configuration composed of 
two sub-adder units, the 
optimal error measures are 
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Step 1: In section 3.1

Step 2, 3 and 4: In section 3.2

Property-II: Decomposition 
of the least-significant sub-
adder into any number of 
non-overlapping sub-adders 
has no impact on the overall ܧܵܯ and ܦܧܯ of the adder

Library of configurations 
that satisfyܲ݅ < ௜ܲିଵ + ܴ௜ିଵExtended Design 
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configurationsܳ݀ܣݑ௢
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Property-III: Using ܮ୫ୟ௫ sized 
sub-adders at the most 
significant locations, and a 
single sub-adder for remaining 
 bits, provides the (୫ୟ௫ܮ%ܰ)
adder with minimum ݔܽܯா

Figure 3.5: Process for exploring the design space of LLAAs covered by QuAd adder
model.

3.2.1 Early Design Space Reduction

This section shows that for each configurations having Pi >= Ri−1 +Pi−1 (∀ i ∈ 2, 3, ..., k)
there exists a configuration that satisfies Pj < Rj−1 + Pj−1 (∀ j ∈ 2, 3, ..., k) and provides
better/same output quality while consuming lesser resources. To illustrate the above,
this section presents a comparison between the Probability Mass Function (PMF)1 of
error of three possible configuration types: (1) Pi = Ri−1 + Pi−1; (2) Pi < Ri−1 + Pi−1;
and (3) Pi > Ri−1 + Pi−1.

1A Probability Mass Function (PMF) defines the probability distribution of a discrete random variable.
It defines the probability of each possible value of the random variable. For example, for a discrete
random variable X, P (X = x) defines the probability of X being x, where x ∈ Z.
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1) Pi = Ri−1 + Pi−1: Fig. 3.6a shows an example configuration for the case Pi =
Ri−1 +Pi−1. As can be seen in the figure, the condition Pi = Ri−1 +Pi−1 is true for i = 3.
The corresponding PMF of error of the configuration is shown on the right of Fig. 3.6a.
The PMF of error of an approximate adder defines all the possible error values along with
their occurrence probabilities. Note, the PMF of error of an approximate module provides
a better understanding of the output quality of the module, as it can be used to compute
most of the error metrics. The PMF of error can formally be defined as P (E = ew),
where ew corresponds to the error magnitude that can have any value between 0 and
2N+1 − 1. As can be seen in the figure, the example configuration results in an error
of 2R1 = 24 for some input combinations and no error for the rest of the combinations.
The error occurs only when the input bits corresponding to the location of P2-bits are in
carry propagation mode and a carry-out is generated by the least significant R1 − P2
bits. Ideally, in the case the adder is accurate, the generated carry would propagate to
the output; however, because of the truncated carry-chain in the example configuration,
the carry results in an error of 2R1 magnitude.

2) Pi < Ri−1 + Pi−1: To compare the case of Pi = Ri−1 + Pi−1 with that of Pi < Ri−1 +
Pi−1, an example configuration corresponding to the case Pi < Ri−1+Pi−1∀i ∈ {2, 3, ..., k}
is presented in Fig. 3.6c. The configuration is selected such that the number of carry
prediction bits used for each sum bit is the same as that of the configuration presented
in Fig. 3.6a. Thus, the error distribution of both configurations is the same. However, as
the number of sub-adders in QuAd{[4, 4], [0, 2]} are less than the number of sub-adders
in QuAd{[4, 2, 2], [0, 2, 4]}, the total resources consumed by QuAd{[4, 4], [0, 2]} are also
less. Therefore, Fig. 3.6c provides a resource-efficient substitute for the configuration
shown in Fig. 3.6a.

3) Pi > Ri−1 + Pi−1: Fig. 3.6b shows an example configuration which satisfies Pi >
Ri−1 + Pi−1 at least for one sub-adder. As can be seen from the figure, the prediction
bits of the third sub-adder are extended even beyond the length of the second sub-adder,
i.e., P3 > R2 + P2. In this particular case, the PMF of error shows that a new error term
with a magnitude of 2R1+R2 − 2R1 is introduced in the PMF, along with the increased
probability of error of 2R1 . Therefore, it can be concluded that the approximation error,
in this case, is significantly higher than the cases presented in Figs. 3.6a and 3.6c. Note,
this increase in error is mainly due to the fact that the adder is using a lesser number of
bits for predicting the carry-in for R2-bits.

In summary, it can be concluded that:

• the configurations that satisfy the Pi = Ri−1 + Pi−1 constraint (for any i ∈
{2, 3, ..., k}) provide better accuracy than similar corresponding configurations with
Pi > Ri−1 + Pi−1 (for any i ∈ {2, 3, ..., k}); and

• the configurations that satisfy the Pi < Ri−1 + Pi−1 constraint (∀i ∈ {2, 3, ..., k})
offer the same accuracy as compared to the similar corresponding configurations
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Figure 3.6: Three different QuAd configurations along with their respective PMFs of
error. (a) Pi = Pi−1 + Ri−1, (b) Pi > Pi−1 + Ri−1 and (c) Pi < Pi−1 + Ri−1.
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with Pi = Ri−1 + Pi−1 (for any i ∈ {2, 3, ..., k}), while requiring lesser amount of
area/energy resources.

In short, for configurations that satisfy the Pi >= Ri−1 + Pi−1 constraint (for any
i ∈ {2, 3, ..., k}), there exists a substitute configuration with Pi < Ri−1 + Pi−1 (for
all i ∈ {2, 3, ..., k}) that offers the same/better output quality while consuming lesser
resources. Therefore, in QuAd, Pi is always less than Ri−1 + Pi−1 for all sub-adder units.

3.2.2 Quality-Area Optimal (QuAdo) Configurations

Let N be the length of the operands and Lmax be the latency constraint in terms of sub-
adder length. Then, the term QuAdo{N, Lmax} defines the quality-area optimal LLAA
configuration. The adder makes use of k = ⌈N/Lmax⌉ number of non-overlapping sub-
adders to compute the output, where k −1 most significant sub-adders are of length Lmax

and the least significant sub-adder has the length equivalent to the remaining number of
bits, i.e., N%Lmax. To demonstrate the superiority of the QuAdo configurations over
rest of the QuAd configurations, three different error metrics are considered in this work,
i.e., Mean Error Distance (MED) [LHL13], Mean Square Error (MSE) [GW08] and
Maximum Error Magnitude (MaxE). The following text presents three properties along
with their proofs to demonstrate the optimality of QuAdo configurations.

Property-I: The configurations having the least number of P -bits and the maximum
possible length for the most significant sub-adder offers the lowest MSE and MED.

Consider the adder configuration shown in Fig. 3.6c that satisfies the Pi < Ri−1 + Pi−1
constraint for all i ∈ {2, 3, ..., k}. The configuration is composed of two sub-adders
and, therefore, has only one error term, i.e., EA = 2R1 , equivalent to the carry-out of
sub-adder 1. The corresponding probability of error, i.e., P [E]A, can be defined as the
probability with which the least significant (R1 − P2) bits generate a carry while the
P2-bits are in propagate mode. Assuming the input bits to be independent of each other
and uniformly distributed, the probability of error can mathematically be represented as:

P [E]A = ρ[pr]P2 ×
R1−P2−1�

i=0
ρ[gr] × ρ[pr]i (3.1)

Here, ρ[gr] = ρ[(ai == 1)&&(bi == 1)] defines the probability of carry generation and
ρ[pr] = ρ[((ai == 1)&&(bi == 0)) || ((ai == 0)&&(bi == 1))] defines the probability
of carry propagation. Moreover, ai and bi represent the ith bit of operands A and B,
respectively.

Provided the error magnitude and the corresponding error probability, the MED and
MSE of the configuration can be written as:
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MEDA = P [E]A × EA

= 2R1 × ρ[pr]P2 ×
R1−P2−1�

i=0
ρ[gr] × ρ[pr]i

(3.2)

MSEA = P [E]A × (EA)2

= 22R1 × ρ[pr]P2 ×
R1−P2−1�

i=0
ρ[gr] × ρ[pr]i

(3.3)

Now, if the configuration in Fig. 3.6c is modified such that the length of the most
significant sub-adder remains the same, while the number of overlapping bits between
the two sub-adders is reduced by one bit, which results in configuration ’B’ shown in
Fig. 3.7. The corresponding error magnitude and probability of error of configuration ’B’
in terms of the parameters of configuration ’A’ can be written as:

P [E]B = ρ[pr]P2−1 ×
R1−P2−1�

i=0
ρ[gr] × ρ[pr]i

EB = 2R1−1 (3.4)

As can be seen from Eqs. 3.1 and 3.4, the decrease in the number of prediction bits of
the most significant sub-adder while maintaining its overall length results in an increase
in the error probability and a decrease in the error magnitude. The MSE and MED of
configuration ’B’ in terms of the parameters of configuration ’A’ can be written as:

MEDB = 2R1−1 × ρ[pr]P2−1 ×
R1−P2−1�

i=0
ρ[gr] × ρ[pr]i

= MEDA/(2 × ρ[pr])

MSEB = 22R1−2 × ρ[pr]P2−1 ×
R1−P2−1�

i=0
ρ[gr] × ρ[pr]i

= 1/2 × (MSEA/(2 × ρ[pr]))

Assuming inputs to be uniformly distributed, 2 × ρ[pr] equals 1, as ρ[pr] = 0.5. Therefore,
it can be said that MED of configuration ‘B’ is equivalent to that of the MED of
configuration ‘A’. However, the MSE of configuration ‘B’ is half of the MSE of configu-
ration ‘A’. Similar to the above case, if the number of overlapping bits between the two
sub-adders of configuration ‘B’ are decreased further while keeping the length of the most
significant sub-adder the same, further decrease in MSE can be achieved. Therefore, it
can be concluded that the configuration with no prediction bits in the most significant
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Figure 3.7: An illustrative view of QuAd{[3, 5], [0, 1]}, where the length of the most sig-
nificant sub-adder is the same as the length of most significant sub-adder of configuration
‘A’ and the overlap between the sub-adders is 1-bit, i.e., Pk = 1.

sub-adder, i.e., Pk = 0, while having maximum possible length, i.e., Rk = Lmax provides
optimal MSE and MED while consuming minimum area resources.
Property-II: In the case of uniformly distributed inputs, the configuration of the lower
part (N − Lmax bits) of the adder does not affect the MSE and MED values.
Property-I demonstrated that in a two sub-adder configuration, the minimum MSE
and MED values are achieved when there is no overlap between the sub-adders and
Rk = Lmax. This property, with the help of configurations ‘C’ and ‘D’ in Fig. 3.8,
shows that the decomposition of the least significant sub-adder into any number of
non-overlapping sub-adders does not impact the overall MSE and MED of the adder
configuration.
The probability of error (P [E]), the error magnitude (E), and the respective MSE and
MED of configuration ‘C’ can mathematically be represented as:

P [E]C =
R1−1�
i=0

ρ[gr] × ρ[pr]i

EC = 2R1

MEDC = |EC | × P [E]C = 2R1 ×
R1−1�
i=0

ρ[gr] × ρ[pr]i

MSEC = E2
C × P [E]C = 22R1 ×

R1−1�
i=0

ρ[gr] × ρ[pr]i
(3.5)

As ρ[gr] = 1
22 and ρ[pr] = 1

2 for inputs having uniform distribution, the P [E]C can be
simplified to:
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Figure 3.8: Structural comparison of two low-latency approximate adders composed of
disjoint sub-adder units.
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Table 3.1: Error cases of configuration ‘D’ along with their respective error probabilities
and magnitudes.

Error Case Error Probability Error Magnitude
Carry-out only from R1a ρ1a − ρ1a × ρ1b 2R1a

Carry-out only from R1b ρ1b − ρ1a × ρ1b 2R1a+R1b

Carry-out from both R1a and R1b ρ1a × ρ1b 2R1a + 2R1a+R1b

P [E]C = 1
22 (1 + 1

2 + ... + 1
2R1−1 ) = 1

22 (2 − 1
2R1−1 ) = 2R1 − 1

2R1+1 (3.6)

Using Eqs. 3.5 and 3.6, MEDC and MSEC can be simplified to:

MEDC = 2R1 − 1
2

MSEC = 2R1(2R1 − 1)
2

(3.7)

To understand the impact of dividing the lower sub-adder of configuration ‘C’ into parts
on the MED and MSE of the configuration, consider configuration ‘D’ (see Fig. 3.8b)
in which sub-adder 1a and 1b are non-overlapping sub-adders and have a cumulative
length equivalent to the length of sub-adder 1 of configuration ‘C’, i.e., R1 = R1a + R1b.
The error in configuration ‘D’ occurs whenever there is a carry-out from R1a and/or R1b.
The probabilities of carry-out from sub-adders 1a and 1b (i.e., ρ1a and ρ1b, respectively)
can be written as:

ρ1a =
R1a−1�

i=0
ρ[gr] × ρ[pr]i = 2R1a − 1

2R1a+1

ρ1b =
R1b−1�

i=0
ρ[gr] × ρ[pr]i = 2R1b − 1

2R1b+1

(3.8)

The three possible error cases of configuration ‘D’ along with their error probabilities
and magnitudes are listed in Table 3.1.

Considering the error cases in Table 3.1, the MED of configuration ‘D’ can be written
as:

MEDD = (ρ1a − ρ1a × ρ1b) × 2R1a + (ρ1b − ρ1a × ρ1b) × 2R1a+R1b+
(ρ1a × ρ1b) × (2R1a + 2R1b+R1b) (3.9)

Simplifying the above equation leads to:
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MEDD = ρ1a × 2R1a + ρ1b × 2R1a+R1b (3.10)

Inserting the values of ρ1a and ρ1b from Eq. 3.8 leads to:

MEDD = 2R1a − 1
2 + 2R1a+R1b − 2R1a

2 = 2R1a+R1b − 1
2

which is equivalent to MEDC in Eq. 3.7, as R1 = R1a + R1b. Similarly, using the
information in Table 3.1, the MSE of configuration ‘D’ can be written as:

MSED = (ρ1a − ρ1a × ρ1b) × 22R1a × (ρ1b − ρ1a × ρ1b) × 22(R1a+R1b)+
(ρ1a × ρ1b) × (2R1a + 2R1a+R1b)2 (3.11)

Simplifying the above equation leads to:

MSED = ρ1b × 22(R1a+R1b) + ρ1a × 22R1a + (ρ1a × ρ1b) × (2 × 2R1a × 2R1a+R1b)

Inserting values of ρ1a and ρ1b from Eq. 3.8 leads to:

MSED = 22R1a+R1b(2R1b − 1) + 2R1a(2R1a − 1) + 2R1a(2R1a − 1)(2R1b − 1)
2

Further simplification of the above equation leads to:

MSED = 2R1a+R1b(2R1a+R1b − 1)
2

which is equivalent to MSEC in Eq. 3.7, as R1 = R1a + R1b. Therefore, based on the
above mathematical analysis, it can be concluded that the configurations in Fig. 3.8 have
equal MSE and MED values.

Property-III: For a configuration composed of disjoint sub-adders, the minimum MaxE

is achieved when the least possible number of sub-adders are used and the sub-adders at
the most significant locations are of the maximum possible length, i.e., Lmax.

In a configuration composed of disjoint (non-overlapping) sub-adders, the maximum
error value, i.e., MaxE , is always the sum of the carry-outs from k − 1 least significant
sub-adders. Therefore, MaxE can mathematically be written as:
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MaxE =
k−1�
i=1

2
�i

j=1 Rj

From the above equation, it can be inferred that, to minimize MaxE , it is important to
minimize k (i.e., the number of sub-adders) and the value of carry-out from each sub-
adder at the lower significance location than the most significant sub-adder. Therefore, a
configuration having all the sub-adders (except the least significant sub-adder, in case
N%Lmax is not zero) equivalent to the maximum possible sub-adder length results in
the lowest MaxE value, where all the sub-adders are disjoint. Hence, the quality-area
optimal adder can be defined as:

QuAdo(N, Lmax) = QuAd{[(N%Lmax), Lmax, ..., Lmax], [0, ..., 0]} (3.12)

3.3 Design Space Coverage and Performance of QuAd
This section presents a comparison between the design space of the QuAd and the
existing LLAAs. The section also presents experimental results showing that the QuAdo

configurations indeed offer the best quality-efficiency trade-offs. The area results are
obtained by synthesizing Verilog implementation of the configurations using Xiline ISE
for XILINX Virtex 6 XC6VLX75T FPGA. Note, although the results are presented for
FPGA only, the QuAd adder model is not specific to FPGA and is equally valid for
ASICs as well, where the sub-adders can be realized using any existing type of adders,
e.g., Kogge-Stone Adder (KSA), etc.

3.3.1 Design Space Coverage and Exploration
To demonstrate the design space coverage of QuAd, without any loss of generality, the
design space of 8-bit QuAd configurations is plotted against the design space of existing
8-bit LLAAs in Figs. 3.9 and 3.10. The design space of exiting LLAAs mainly includes
GeAr [SAHH15], ACA [VBI08][KK12], ETA [ZGY09] and GDA [YWY+13]. The figures
clearly show that QuAd not only covers all the state-of-the-art adder configurations
but also span configurations that are not covered by the existing LLAAs. Moreover,
the figures also highlight that QuAd uncovers configurations that offer better quality-
efficiency trade-offs than existing adders. This is illustrated for each value of Lmax. Note
that the MSE and MED results presented here are generated using exhaustive simulations
assuming uniform input distribution.

In line with the analysis in Section 3.2.2, Figs. 3.9 and 3.10 show that more than one QuAd
configurations offer optimal MED-area and MSE-area trade-offs. Therefore, to highlight
the significance of QuAdo configurations over the rest of the possible configurations
that offer optimal trade-offs, the maximum error magnitude (MaxE) of all optimal
configurations from Figs. 3.9 and 3.10 is plotted in Fig. 3.11. The figure clearly shows
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Figure 3.9: Design space of 8-bit low-latency adder for various Lmax using MED error
measure. The plot for Lmax = 1 is not shown as it contains only one configuration with
8 sub-adders having R − bits = 1 and P − bits = 0.
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Figure 3.10: Design space of 8-bit low-latency adder for various Lmax using MSE error
measure. The plot for Lmax = 1 is not shown as it contains only one configuration with
8 sub-adders each having R − bits = 1 and P − bits = 0.
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that the QuAdo configurations provide minimum MaxE for each Lmax and, therefore,
should be considered optimal in terms of MSE, MED, and MaxE error measures.
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Figure 3.11: MaxE of 8-bit adder configurations that provide optimal MED and MSE
results while consuming minimum area.

3.3.2 Performance in Real-World Applications

To demonstrate the effectiveness of QuAdo configurations for real-world applications,
this section shows the results of low-pass image filtering and image blending applications
when performed with QuAdo configurations. For image filtering, a 3x3 averaging kernel
is assumed. The hardware accelerator is realized using several compression stages, as
illustrated in Fig. 3.12. The compression is performed using full-adders and half-adders,
while the final addition in the last stage is performed using an 8-bit approximate low-
latency adder. The output of the adder is concatenated with the remaining least significant
bits to get the overall sum. The sum is then divided by 9 to get the final output of
the filter. The results for various configurations of LLAA are summarized in Figs. 3.13
and 3.14. As can be seen from the figures, for both cases, i.e., for Lmax = 4 (Fig. 3.13)
and Lmax = 6 (Fig. 3.14), QuAdo configurations offer the best quality in terms of MSE
as well as SSIM.

For image blending, element-wise addition of images is considered in this work. The
addition is carried out using an 8-bit LLAA and the addition is followed by a division by
2 to generate the final output. Similar to the filtering application, various LLAAs are
employed to study the impact of approximations on the output quality of the application.
The results in Fig. 3.15 clearly show that QuAdo configuration offers optimal quality in
terms of MSE and SSIM quality metrics.

To highlight the resource efficiency of the QuAdo configurations used in the above analysis,
the area numbers of all the configurations are computed for XILINX Virtex 6 XC6VLX75T
FPGA. The numbers are summarized in Table 3.2. The results clearly show that QuAdo

configurations offer the best resource efficiency compared to the rest of the corresponding
adder configurations. This, coupled with the conclusion from Figs. 3.13, 3.14 and 3.15,
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Figure 3.12: Image low-pass filtering accelerator detail.
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Figure 3.13: Image lowpass filtering results for various approximate low-latency adders
with Lmax = 4.
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Figure 3.14: Image lowpass filtering results for various approximate low-latency adders
with Lmax = 6.
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Figure 3.15: Image blending results for various approximate low-latency adders with
Lmax = 6.
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Table 3.2: Area results for various low-latency approximate adders.
Adder Configuration Lmax Area [LUTs]

ACA-I 6 18
GeAr{8, 2, 4} 6 12

QuAd{[4, 4], [0, 2]} 6 10
$QuAd{[1,1,6],[0,0,0]} 6 8
QuAd{[2,6],[0,0]} 6 8

ACA-I 4 20
GeAr{8, 2, 2} 4 12

QuAd{[4, 3, 1], [0, 1, 3]} 4 12
QuAd{[4,4],[0,0]} 4 8

shows that QuAdo configurations offer the best quality-efficiency trade-off compared to
other LLAA configurations.

3.4 Limitations of QuAd and the Unexplored Design Space
of Low-power Approximate Adders

Although QuAdo configurations offer the optimal quality-efficiency trade-offs compared
to other LLAA configurations covered by the QuAd model, the design space of ap-
proximate adders is not limited to LLAAs. Another class of approximate adders, i.e.,
Low-power Approximate Adders (LPAAs), has also gained a lot of attention due to
the ever-growing demand for ultra resource-efficient computing systems. These adders
are usually constructed using smaller building blocks, such as approximate full-adders.
IMPACT [GMP+11]) designs are a few of the earliest approximate full-adder designs
proposed for trading accuracy for power and energy efficiency. These full-adders are cas-
caded to build large multi-bit LPAAs, as illustrated with the help of a generic multi-stage
N -bit adder in Fig. 3.16.

AU0

…
௨ܣ , … , ଴ܣ

…
,௨ܤ … , ଴ܤ

AU1

…
௩ܣ , … , ௨ାଵܣ

…
௩ܤ , … , ௨ାଵܤ

AUM-1

…
,ேିଵܣ … , ௪ܣ

…
,ேିଵܤ … , ௪ܤ

௢௨௧ܥ ୧୬ܥ
…ܵ௨, … , ܵ଴…ܵ௩ , … , ܵ௨ାଵ…ܵேିଵ, … , ܵ௪

…

Figure 3.16: A generic N -bit adder composed of M cascaded Adder Units (AUs). The
AUs can be accurate (e.g., accurate full-adders) or approximate (e.g., approximate full-
adders), and approximations are typically employed at lower significance locations. The
adder takes in two N -bit operands A and B and a carry-in (Cin) signal as inputs to
generate an N + 1-bit output, i.e., an N -bit sum (S) and a carry-out (Cout) signal. Each
AU can be of arbitrary bit-width regardless of the bit-width of rest of the AUs.
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Given the vast design space of approximate full-adders (e.g., see [AKL16][GMP+11]), it is
challenging for a designer to select appropriate adder configurations for a particular appli-
cation and scenario. Choosing the optimal design requires comparison between all possible
configurations in terms of output quality and resource-efficiency. Although exhaustive
simulations can be used to estimate quality and hardware metrics, such methods can be
highly time consuming. As shown in Fig. 3.17, the exponential growth in the simulation
time of an adder with the increase in the adder bit-width can make exhaustive simulation-
based approaches in-feasible for practical scenarios, specifically for large adders. Hence,
cost-effective error and hardware metric estimation techniques are required to enable effi-
cient design space exploration. Towards this, various methodologies have been proposed
to analyze the error characteristics of approximate adders [WLG+18][MHH+17][AHS17b];
however, such methodologies have mainly focused on statistically analyzing LLAAs, and
not the LPAAs. Moreover, the works that focused on LPAAs targeted only specific
configurations or just the overall error occurrence probability estimation [AHS17b]. The
following section presents a novel lightweight method for efficiently computing the PMF
of error of LPAAs composed of cascaded approximate units. Fig. 3.18, highlights the
significance of the proposed methodology for efficient design space exploration of LPAAs.
Note that the PMF of error can be used to estimate almost all types of error metrics,
e.g., MSE, MED, and error rate.
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Figure 3.17: Execution time for computing PMF of error of different adders composed of
smaller cascaded approximate full-adder units using exhaustive simulations.
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Figure 3.18: A flow for design space exploration of approximate adders composed of
cascade of approximate adder units, where our novel contribution is highlighted in blue.
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3.5 PEMACx: Methodology for Computing PMF of Error
of Approximate Adders composed of Cascaded Adder
Units

Building an accurate lightweight method for computing the PMF of error of an LPAA
composed of cascaded approximate units poses two key challenges:

1. The probability distribution of the Cin of each AU/stage (except the first) has to
be calculated. This is due to the fact that the probability distribution of the Cin of
a stage entirely depends on the types of AUs used in the earlier stages and their
corresponding input distributions.

2. The overall PMF of error of an adder composed of cascaded AUs cannot simply be
computed by convolving the PMFs of error of all the individual AUs (as proposed
in [MHH+17][WLG+18]). This is mainly because the probability distribution of Cin

of each AU depends on the previous stages, and a change in the input distribution
of even one of the previous stages can alter the probability distribution of Cin and
thereby the error distribution of the current stage. Moreover, an error generated in
a stage with Cout having a specific value will appear in the subsequent stage only
in combinations where Cin has the same value. For example, the Type 1 adder
shown in Table 3.3 produces an error of either 0 or +1 when Cout is 1, and an error
of 0 or -1 when Cout is 0.

Table 3.3: Truth tables and error characteristics of prominent state-of-the-art low-power
full-adders (as proposed in [AKL16][GMP+11]). The output combinations in which the
resultant sum, or carry-out, or both are erroneous are highlighted in red.

Inputs Accurate FA Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7ܣ ܤ ௜௡ܥ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ ݉ݑܵ ௢௨௧ܥ ݎ݋ݎݎܧ
0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 -1 1 1 2 1 0 0

0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 -1 1 0 0 1 0 0 1 0 0

0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 -1 1 0 -1 0 1 0 1 1 1

1 0 0 1 0 0 0 0 -1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0

1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1

1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 -2 0 1 0

1 1 1 1 1 0 1 1 0 0 1 -1 0 1 -1 1 1 0 1 1 0 1 1 0 1 1 0

# of Error Cases 0 2 2 3 3 4 2 2

MSE 0 0.25 0.25 0.375 0.375 0.5 1 0.25

MED 0 0.25 0.25 0.375 0.375 0.5 0.5 0.25

To address the aforementioned challenges, this section presents a novel lightweight method,
PEMACx, to compute the PMF of error of adders composed of cascaded approximate
units. The proposed analytical method recursively computes two separate PMFs of error,
i.e., one PMF of error per Cout value, and the probability distribution of Cout at each
stage using the PMFs of the previous stage and the probability distribution of inputs of
the current stage. Note that the PMFs at a stage contains information of the PMFs of
the current stage along with the information of all the previous stages. Computing two
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separate PMFs of error at each stage is important to keep track of the error distribution
for each Cin value in the subsequent stage.

Fig. 3.19 shows the overall methodology for computing the PMF of error of an approximate
adder composed of smaller cascaded approximate units. The methodology takes the
adder configuration, the probability distribution of each bit of the two operands and
the probability distribution of the carry-in (Cin) as inputs. Then, in the first step, it
initializes the input PMF of error for cases with Cin = 0 as PEI{Cin=0}(0) = 1 and for
cases with Cin = 1 as PEI{Cin=1}(0) = 1. In Step 2, starting from the first stage of the
adder, the methodology recursively perform the following steps for each stage.

(a) Using the probability distribution of the corresponding input bits and the error
characteristics of the current AU, the methodology computes four partial PMFs of
error in parallel, i.e., one for each {Cin, Cout} combination. The partial PMF of error
for the combination {Cin = x, Cout = y} is represented as PPECS{Cin=x,Cout=y},
where x and y ∈ {0, 1}. The partial PMFs are computed using Algo. 3.2, which is
discussed in detail in Section 3.5.2.

(b) Using the probability distribution of the corresponding input bits and the func-
tionality of the current adder stage, the methodology computes the probability
distribution of Cout of the current stage.

(c) Using the computed partial PMFs of the current stage and the PMFs of error
from the previous stage, the methodology computes two separate PMFs of error,
i.e., one for each Cout value. The PMFs of error at the current stage for Cout = 0
and Cout = 1 are represented as PEO{Cout=0} and PEO{Cout=1}, respectively. The
mathematical formulation is discussed in Section 3.5.1.

After performing Step 2 for all the stages, in Step 3, the methodology combines the two
PMFs of error from the last stage of the adder to get the overall PMF of error, which
then can be used to compute the desired error metrics, e.g., MSE, MED, and error rate.
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Figure 3.19: Flow of the proposed methodology for computing PMF of error and the
desired error metrics of an adder composed of cascaded approximate units.
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3.5.1 Mathematical Model
Assume PEI{Cin=0} and PEI{Cin=1} as the input PMFs of error for Cin = 0 and Cin = 1
cases, respectively, at the current adder stage. Further assume that the probability
distribution of input bits is represented using the following terminology.

• P (Cin) is the probability of Cin being 1

• P (Cin) is the probability of Cin being 0 and is equal to 1-P (Cin)

• P (Cout) is the probability of Cout being 1

• P (Cout) is the probability of Cout being 0 and is equal to 1-P (Cout)

• P (Ai) is the probability of Ai being 1

• P (Ai) is the probability of Ai being 0 and is equal to 1-P (Ai)

• P (Bi) is the probability of Bi being 1

• P (Bi) is the probability of Bi being 0 and is equal to 1-P (Bi)

where, considering h ≤ i ≤ j, {Ah, Ah+1, ..., Aj}, {Bh, Bh+1, ..., Bj} and Cin are inputs
to the current stage. Given PEI{Cin=0}, PEI{Cin=1} and the input probabilities, the
probability of error value E at the output of a stage can be computed using the following
equation, assuming independence between stages.

P EO(E) =
∞�

x=−∞
(P EI{Cin=0}(x) × P P ECS{Cin=0}(E − x)) +

∞�
x=−∞

(P EI{Cin=1}(x) × P P ECS{Cin=1}(E − x)) (3.13)

Here, PPECS{Cin=0} and PPECS{Cin=1} correspond to partial (un-normalized) PMF of
error of the current stage for the cases with Cin = 0 and Cin = 1, respectively. However,
as mentioned earlier, computing the PMF of error of the complete adder recursively
requires separate PMFs of error for each Cout value. Therefore, the aforementioned
equation is divided into two parts based on the value of Cout. The partial PMF of error
for cases with Cout = 0 can be written as:

P P EO(Cout=0)(E) =
∞�

x=−∞
(P EI{Cin=0}(x) × P P ECS{Cin=0,Cout=0}(E − x)) +

∞�
x=−∞

(P EI{Cin=1}(x) × P P ECS{Cin=1,Cout=0}(E − x)) (3.14)
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Similarly, the partial PMF of error for cases with Cout = 1 can be written as:

P P EO(Cout=1)(E) =
∞�

x=−∞
(P EI{Cin=0}(x) × P P ECS{Cin=0,Cout=1}(E − x)) +

∞�
x=−∞

(P EI{Cin=1}(x) × P P ECS{Cin=1,Cout=1}(E − x)) (3.15)

The resultant PMFs are called partial because:
∞�

i=−∞
P P EO{Cout=0}(i) = P (Cout = 0)

∞�
i=−∞

P P EO{Cout=1}(i) = P (Cout = 1)

(3.16)

and P (Cout = 0) (or P (Cout = 1)) is not necessarily equal to 1. The aforementioned
equations can also be realized using convolution (represented using ‘*’) and vector sum
operations, as shown in the following equation.

P P EO{Cout=0} = P P ECS{Cin=0,Cout=0} ∗ P EI{Cin=0}+
P P ECS{Cin=1,Cout=0} ∗ P EI{Cin=1}

P P EO{Cout=1} = P P ECS{Cin=0,Cout=1} ∗ P EI{Cin=0}+
P P ECS{Cin=1,Cout=1} ∗ P EI{Cin=1}

(3.17)

To ensure that the probability of Cout is used only once in the next stage, the partial
PMFs are normalized by the corresponding sums, i.e.,

if P (Cout = 0) ̸= 0 then P EO{Cout=0} = P P EO{Cout=0}/P (Cout = 0)

else P EO{Cout=0}(E) =
�

1 E = 0
0 otherwise

if P (Cout = 1) ̸= 0 then P EO{Cout=1} = P P EO{Cout=1}/P (Cout = 1)

else P EO{Cout=1}(E) =
�

1 E = 0
0 otherwise

(3.18)

Note, the above equations are recursively used for each stage, where the PMFs of error and
the Cout probability are treated as input PMFs of error and Cin probability (respectively)
of the next stage.

3.5.2 Generalized Methodology
Based on the mathematical model presented in Section 3.5.1, a generalized methodology
can be formulated and then used for computing the PMF of error of an adder composed
of cascaded approximate AUs. The overall algorithm is summarized in Algo. 3.1 and is
composed of the following steps:
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Algorithm 3.1: Pseudo-code for computing PMF of Error of an Adder
1 Inputs: AACV : Approximate Adder Configuration Vector; IP VA: Input Probability Vector of operand

A; IP VB : Input Probability Vector of operand B; P (Cin): Probability of input carry bit; EV s: Error
Vectors of all elementary adder units; CiV s: Carry in Vectors of all elementary adder units; CoV s:
Carry out Vectors of all elementary adder units

2 Outputs: P E: Overall PMF of Error
3 Initialize: P E0: P E0(0) = 1; P E1: P E1(0) = 1
4 for h = {0, 1, 2, ..., M − 1} do
5 Evaluate P V IC using Eq. 3.19
6 CiV = Carry in Vector of AACV (h)
7 CoV = Carry out Vector of AACV (h)
8 EVC = 2h−1 × EV of AACV (h)
9 for i = {0, 1} do

10 for j = {0, 1} do
11 Compute index vector (I), where CiV == i && CoV == j
12 Compute P P E{i,j} using I, EVC , and P V IC in Algo. 3.2
13 end
14 end
15 P P E0 = P P E{0,0} ∗ P E0 + P P E{1,0} ∗ P E1
16 P P E1 = P P E{0,1} ∗ P E0 + P P E{1,1} ∗ P E1
17 P (Cout) = [P V IC].[CoV of AACV (h)]′
18 if h ̸= M − 1 then
19 if 1 − P (Cout) ̸= 0 then
20 P E0 = P P E0/(1 − P (Cout))
21 else
22 P E0(0) = 1 and 0 otherwise
23 end
24 if P (Cout) ̸= 0 then
25 P E1 = P P E1/P (Cout)
26 else
27 P E1(0) = 1 and 0 otherwise
28 end
29 P (Cin) = P (Cout)
30 else
31 P E = P P E0 + P P E1
32 end
33 end
34 return P E

1. First, Error Vector (EV ), Carry-in Vector (CiV ), and Carry-out Vector (CoV )
are defined for each possible type of the AU. The vectors store the error value,
carry-in bit and carry-out bit corresponding to each possible input combination of
an elementary AU. The vectors of the approximate adder types shown in Table 3.3
are presented in Table 3.4.

2. Then, the approximate adder configuration and the probability distribution of the
input bits, which are used as inputs to the method, are defined. The adder configura-
tion to be analyzed is represented using an Approximate Adder Configuration Vector
(AACV ) of length M , i.e., {A0, A1, A2, ..., AM−1}, where Ai defines the type of the
ith AU. The probability distribution of inputs A and B is defined in terms of Input
Probability Vectors (IPV s), i.e., IPVA and IPVB . The IPV s define the probabil-
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Algorithm 3.2: Pseudo-code for computing PPE
1 Inputs: EV : Error Vector of the sub-block; P V IC: Probability Vector of Input Combinations; I:

Indexes
2 Outputs: P P E: Partial PMF of Error
3 Initialize: P P E: Empty
4 for i = {0, 1, ..., length(I) − 1} do
5 P P E(EV (I(i))) = P P E(EV (I(i))) + P V IC(I(i))
6 end
7 return P P E

Table 3.4: Functional and error vectors of the approximate full-adders proposed
in [GMP+11] and [AKL16].

Adder Type EV CiV CoV

Accurate FA {0, 0, 0, 0, 0, 0, 0, 0} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 0, 1, 0, 1, 1, 1}
Type 1 {0, 0, 1, 0, −1, 0, 0, 0} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 1, 1, 0, 1, 1, 1}
Type 2 {1, 0, 0, 0, 0, 0, 0, −1} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 0, 1, 0, 1, 1, 1}
Type 3 {1, 0, 1, 0, 0, 0, 0, −1} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 1, 1, 0, 1, 1, 1}
Type 4 {0, 0, −1, −1, 1, 0, 0, 0} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 0, 0, 1, 1, 1, 1}
Type 5 {0, −1, 0, −1, 1, 0, 1, 0} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 0, 0, 1, 1, 1, 1}
Type 6 {0, 2, 0, 0, 0, 0, −2, 0} {0, 1, 0, 1, 0, 1, 0, 1} {0, 1, 0, 1, 0, 1, 0, 1}
Type 7 {0, 0, 0, 1, 0, 1, 0, 0} {0, 1, 0, 1, 0, 1, 0, 1} {0, 0, 0, 1, 0, 1, 1, 1}

ity distribution of each individual bit of the input operands and are represented as
IPVA = {P (A0), P (A1), ..., P (AN−1)} and IPVB = {P (B0), P (B1), ..., P (BN−1)}.
Similarly, the probability distribution of carry-in is defined using P (Cin).

3. In the next step, the Probability Vector of all the Input Combinations (PV IC)
of the current AU is computed. Assuming independence between the input bits,
PV IC of the current stage can be computed using the following equation.

P V IC =

[P (Ah).P (Ah+1).....P (Aj).P (Bh).P (Bh+1).....P (Bj).P (Cin),

P (Ah).P (Ah+1).....P (Aj).P (Bh).P (Bh+1).....P (Bj).P (Cin),

P (Ah).P (Ah+1).....P (Aj).P (Bh).P (Bh+1).....P (Bj).P (Cin),
...

P (Ah).P (Ah+1).....P (Aj).P (Bh).P (Bh+1).....P (Bj).P (Cin)] (3.19)

Here, h ≤ j and bits {Ah, Ah+1, ..., Aj}, {Bh, Bh+1, ..., Bj} and Cin are inputs to
the current stage.

4. Next, the partial PMFs of error for all combinations of {Cin, Cout} are computed
using Algo. 3.2. The algorithm only uses EV and PV IC of the current AU and
accumulates the probabilities of the cases which result in the same error value to
generate the partial PMFs of error. Note, for each AU in the AACV , the EV of

64



3.6. Model Validation and Usability

the elementary adder unit is scaled as per the significance location of the adder
unit, as mentioned in Line 8 of Algo. 3.1.

5. Then, the partial PMFs of error of the current stage along with the input PMFs
of error associated with Cin = 0 and Cin = 1 are used for computing the partial
PMFs of Error for Cout = 0 and Cout = 1 cases, as mentioned in Section 3.5.1 using
Eq. 3.17. This is realized using Lines 15 and 16 in Algo. 3.1.

6. Next, P (Cout) of the current stage is computed using the dot product of PV IC
and CoV vectors (see Line 17 in Algo. 3.1).

7. Now, if the current stage is not the most significant stage, the partial PMFs
associated with Cout = 0 and Cout = 1 are normalized using P (Cout), as mentioned
in Lines 19-28 of Algo. 3.1. Then, these PMFs and P (Cout) are defined as inputs
to the subsequent stage, and Steps 3-7 are repeated until the most significant
stage is reached. However, if the current stage is the most significant stage, the
partial PMFs are accumulated to generate the overall PMF of error of the adder
configuration (see Line 31 in Algo. 3.1).

Note, the above methodology is not limited to approximate full-adder units, rather it is
valid for any possible size and type of AU as long as the AUs are connected in cascade to
construct large multi-bit adders, as shown in Fig. 3.16.

3.6 Model Validation and Usability

3.6.1 Model Validation
To validate the proposed methodology, the results of PEMACx are compared with
exhaustive simulation results for various approximate adder configurations. All the
simulations are performed using MATLAB 2018b running on an Intel Core-i5 with 16
GB of RAM. Figs. 3.20 and 3.21 show the comparison between the error measures (i.e.,
MSE and MED) computed using exhaustive simulations and PEMACx for different 8-bit
and 12-bit approximate adders. Note, for this experiment, the inputs are assumed to
be uniformly distributed, i.e., P (Cin) = P (Ai) = P (Bi) = 0.5 ∀ i ∈ {0, 1, ..., N − 1}.
As evident from the figures, the results generated using PEMACx are exactly the same
as the results achieved using exhaustive simulations. To highlight the efficiency of the
proposed methodology, Fig. 3.22 presents the execution time of PEMACx for different
adder lengths along with the time required to generate the same results using exhaustive
simulations. As evident from the figure, PEMACx requires significantly less amount of
time than exhaustive simulations. For example, for an 8-bit adder composed of cascaded
approximate adder units, the exhaustive simulations require 1.272 sec to generate the
PMF of error, while the proposed PEMACx methodology requires only 0.00043 sec to
generate the exact same output.
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Figure 3.20: Error characteristics of different 8-bit low-power adders composed of
approximate adder types shown in Table 3.3 computed using Exhaustive simulations and
PEMACx. (a) and (b) illustrate the MSE and MED, respectively, of adders with two
least-significant full-adders approximated using a specific type of approximate unit. (c)
and (d) illustrate the MSE and MED, respectively, of adders with six least-significant
full-adders approximated.
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Figure 3.21: Error characteristics of different 12-bit low-power adders composed of
approximate adder types shown in Table 3.3 computed using Exhaustive simulations and
PEMACx. (a) and (b) illustrate the MSE and MED, respectively, of adders with four
least-significant full-adders approximated using a specific type of approximate unit. (c)
and (d) illustrate the MSE and MED, respectively, of adders with eight least-significant
full-adders approximated.

66



3.6. Model Validation and Usability

9.36E-02
1.27E+00

2.07E+01
3.62E+02

5.91E+03
9.70E+04

1.28E-04 4.32E-04 9.58E-04 4.40E-03
4.18E-02

4.71E-01

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

6 8 10 12 14 16

Ex
ec

ut
io

n
Ti

m
e

[s
ec

(lo
g

sc
al

e)
]

Bit-Width

Exhaustive
PEMACx

Figure 3.22: Execution time of PEMACx and exhaustive simulations for different adder
lengths.

Table 3.5: Hardware characteristics of accurate and type 1-5 approximate FAs
from [SHR+16].

Accu.FA Type 1 Type 2 Type 3 Type 4 Type 5
Power [nW] 1130 771 294 198 416 0
Area [GE] 4.41 4.23 1.94 1.59 1.76 0

3.6.2 Design Space Exploration for an 8-bit Low-power Adder

To illustrate the usability of PEMACx, it is employed for performing a design space
exploration for an 8-bit low-power adder. For this exploration, only the Type 1-5
approximate full-adders shown in Table 3.3 and the accurate full-adder are used as AUs.
The power and area characteristics of the full-adders are summarized in Table 3.5. For
this exploration, the PEMACx flow shown in Fig. 3.18 is used for computing the error
metrics and a simple additive model for power estimation of multi-bit adder configurations.
The proposed methodology explored the complete design space, i.e., a total of 1,679,616
configurations, in 653.24 sec. Fig. 3.23 shows the complete design space, where the
Pareto-optimal configurations are highlighted with red triangles. The Pareto-optimal
configurations are the ones that have accurate FAs at the most significant locations,
Type 5 approximate FAs at the least significant locations, and Type 2, 3, or 5 FA in
between the two sets. Note, for this analysis, the inputs are assumed to be uniformly
distributed.

3.6.3 PEMACx for Low-Latency, Low-Power Approximate Adders

To illustrate the usability of PEMACx for low-latency, low-power adders such as the
QuAdo designs and the designs presented in [MAFL10], the results of PEMACx are
compared with the results generated using exhaustive simulations for 8-bit and 12-bit
QuAdo adders considering different Lmax values. To enable the use of PEMACx for
computing the PMF of error of QuAdo adders, another approximate full-adder unit
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Figure 3.23: Design space of 8-bit approximate adders using accurate and Types 1-5
approximate FAs shown in Table 3.3. The pareto-optimal configurations are highlighted
using red triangles.

(Type 8) is defined with EV = {0, 0, 0, −2, 0, −2, −2, −2}, CiV = {0, 1, 0, 1, 0, 1, 0, 1}
and CoV = {0, 0, 0, 0, 0, 0, 0, 0} and then used at the MSB location of all the sub-adders,
except the most significant sub-adder (see Fig. 3.24). Fig. 3.25 shows that the MSE
results generated using PEMACx are the same as the ones obtained through exhaustive
simulations.

Sub-Adder 1Sub-Adder 2Sub-Adder 3

,ேିଵܤ} … , ,ଵܤ ,ேିଵܣ}{଴ܤ … , ,ଵܣ {଴ܣ
N N

N

FAAAU FAHAFA FA

Sub-Adder 1Sub-Adder 3ܥ௢௨௧ {ܵேିଵ, … , ܵଵ, ܵ଴} ୫ୟ୶ܮ୫ୟ୶ܮ%ܰ…

ܰ-bit adder with no carry propagation between sub-adders

…

LSBMSB

Figure 3.24: An example illustration of high-performance (low-latency) low-power adder.
Each sub-adder is of Lmax length except for the first sub-adder which is of remainder
number of bits (N%Lmax). Here, HA represents a half-adder, FA represents a full-adder,
and AAU is an approximate adder unit which only computes the sum bit.

68



3.7. Limitations of PEMACx and the Motivation for Application and Data-Aware Analysis
Methodology

1

100

10000

1 2 3 4 5 6 7M
SE

[lo
g

sc
al

e]

Lmax

QuAd
PEMACx

1
100

10000
1000000

1 2 3 4 5 6 7 8 9 10 11M
SE

[lo
g

sc
al

e]

Lmax

QuAd
PEMACx

(a) (b)

Figure 3.25: MSE of different 8-bit (a) and 12-bit (b) QuAdo adder configurations
computed using exhaustive simulations and PEMACx.

3.7 Limitations of PEMACx and the Motivation for
Application and Data-Aware Analysis Methodology

The QuAd analysis presented in Section 3.2.2 and the PEMACx methodology presented
in Section 3.5 have two major shortcomings:

1. The operands are assumed to be independent of each other.

2. The bits of each operand are assumed to be independent of each other.

Apart from the above assumptions, the QuAd analysis further assumed that the inputs
are uniformly distributed. Although these assumptions are in line with most of the works
in the literature, such as [SS15][MHH+17][LHL15], they are not perfectly valid in all
real-world use cases, and therefore, the actual output quality can deviate significantly
from the estimated quality computed using these analytical models. To understand
this, consider two different image processing applications with comparable workloads:
a low-pass filtering application with a 4x4 smoothing kernel and a template matching
application with a template size of 4x4. Both applications require the addition of 16
values that can be executed using approximate adders.

Depending on the intended use case and deployment environment of the system, the input
to the approximate components may have some specific characteristics. For both the above-
mentioned applications, three different types of input data are considered: (1) satellite
imagery, (2) sports stadium surveillance, and (3) sky images. Note that irrespective of
the input distribution, both the applications, i.e., the low-pass filtering application and
the template matching application, require accumulation of data that is coming from the
pixel neighborhood, and usually, in images, neighboring pixels are highly correlated due
to spatial locality. For the motivational analysis, the GeAr model [SAHH15] is used, as
it covers various state-of-the-art LLAAs and can be configured by defining the number
of prediction bits (P ) and resultant bits (R), i.e., GeAr(N, R, P ). Assuming parallel
cascaded addition, four stages of adders are required to compute the final sum. The
considered accelerator utilized GeAr(8,2,2) for the first stage additions, GeAr(9,2,3) for
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the second stage additions, GeAr(10,2,2) for the third stage additions, and GeAr(11,2,3)
for the final stage addition. The adder configurations are shown in Fig. 3.26. Fig. 3.27
compares the MSE computed using the analytical model proposed in [MHH+17] with
the MSE computed using functional simulations for different applications and datasets.
It can be observed from the figure that the MSE computed using [MHH+17] turns out to
be the same value for all the cases. This is mainly because [MHH+17] assumes input bits
to be independent (uncorrelated) and uniformly distributed. On the contrary, functional
simulations show that MSE of the same accelerator configuration can vary across datasets
and applications. Thus, it is essential to consider the actual data distribution of inputs
and the correlation between input bits and operands for accurate error estimation.

Apart from considering the actual input data distribution, there is also a need to consider
the time required for computing the error estimates. Fig. 3.27 shows that the execution
time for functional simulations increases proportionally with the increase in the number
of input samples. Thus, the time required for functional simulations using actual input
samples can be significantly higher than the analytical method [MHH+17], which in this
case requires only 5 × 10−3 seconds to compute the error estimates.
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Figure 3.26: The structure of different GeAr adder configurations.

Target Research Problem: As highlighted in the above case study, there is a dire need
for an analytical method that can offer fast yet accurate error estimation for approximate
adders. The method should take into consideration the data and application knowledge
to provide realistic (i.e., accurate in real-world settings) error estimates in a reasonable
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Figure 3.27: (a) Comparison of MSE evaluated using functional simulations and using
the analytical modeling (assuming uniform distribution). (b) Execution time of functional
simulations for template matching application as a function of number of input samples.

amount of time. Moreover, the methodology should be generic enough to be applicable
to a wide variety of approximate adders, i.e., it should not be limited to a specific set of
approximate adders and/or configuration sets.

3.8 DAEM: A Data and Application Aware Error Analysis
Methodology for Approximate Adders

To develop an effective data and application-aware error estimation methodology, this
section first highlights different factors that must be considered to achieve a methodology
that can offer a fast yet accurate estimation of error. Fig. 3.28a shows the Error Maps
(EMAP s) for a few notable 8-bit LLAA configurations from Speculative Adders (ACA),
Segmented Adders (ESA), and Carry Select Adders (SCSA) classes. The EMAP of an
approximate adder is computed by populating the error values for each possible input
combination. In the figure, x1 and x2 are the two adder operands. It can be observed
that the error varies as a function of the input combination and not as a function of a
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Figure 3.28: (a). Example EMAP for 8-bit ACA with k = 5, ESA with k = 2, and SCSA
with k = 2. The white colored locations in EMAP represents accurate combinations.
(b)Joint input probability distribution generated using neighboring pixels of two visually
different sets of gray scale images shown in (c).

single operand. Thus, it is important to consider the complete EMAP of approximate
adders to achieve better error estimates. Apart from the EMAP s of approximate adders,
the input distribution can also have a significant impact on the error estimates. Fig. 3.28b
illustrates two sample 2D joint probability distributions generated using input data from
two visually different sets of grayscale images (shown in Fig. 3.28c) for a low-pass filtering
application. The distributions highlight that not all the input combinations are equally
likely. Most of the high probability values are concentrated along the diagonal of the 2D
joint input PMFs, which shows a significant correlation between inputs. Specifically, for
applications that process data from spatial neighborhoods, the joint input probability
distribution shall be highly concentrated in specific regions. In contrast, for applications
that process data from independent sources, the joint input probability distribution
shall be more spread out. Thus, a two-dimensional joint input probability distribution
captures the probabilities as well as the interdependence of inputs and provides the data
and application-specific knowledge required to develop a more accurate error estimation
methodology. The next section employs 2D input PMF and EMAP s to develop an error
estimation model for a two-operand adder. The model shall later be extended for a
cascade of approximate adders.

3.8.1 Error estimation for an approximate adder
Assume the model of a standalone approximate adder, adding two operands x1 and x2,
is defined as follows:
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x1 �+x2 = y + eO (3.20)

where, �+ represents approximate addition, y is the accurate output, and eO is the error
induced due to approximation. Let PMF(X1,X2) be the two dimensional joint PMF
representing the application-aware data dependence of the operands of an approximate
adder, and it is mathematically defined as:

PMFX1,X2(x1, x2) = P (X1 = x1, X2 = x2) ∀ x1 and x2

Now, let PMFeG be the probability distribution of the error generated due to the
approximate addition of x1 and x2. PMFeG is mathematically defined as:

PMFeG(e) = P (eG = e) where e ∈ Z∗ ∧ e ≤ 2n−1

PMFeG can be computed by using the joint input PMF, i.e., PMFX1,X2 , and the pre-
computed error map, i.e., EMAP , of the specific approximate adder being used as explained
in Algorithm 3.3. In particular, PMFeG is computed by looking up EMAP for all the
instances of similar error values and summing the probabilities of all the combinations of
inputs (stated in PMFX1,X2) that result in the same error value. PMFX1,X2 can either
be provided by the application engineer to the methodology or populated by logging the
instances of input combinations of the adder, assuming all modules in the system to be
accurate.

For a standalone approximate adder with inputs that are error free, the error introduced
by the approximate adder itself is the only source of error in the system. Hence, the
PMF of output error, i.e., PMFeO, can be defined using the following equation.

PMFeO = PMFeG

Algorithm 3.3: Computing PMFeG for a single approximate adder
1 Inputs: EMAP i.e. Error Map of a specific adder AND P MFX1,X2 i.e. the joint PMF of inputs of a

specific adder
2 Outputs: P MFeG i.e. PMF of error generated
3 Evals = Set of all unique error values in EMAP

4 P MFeG declaration as Empty Sparse Vector
5 for each Eval in Evals do
6 Points = (EMAP == Eval)
7 P MFeG(Eval) = Sum (P MFX1,X2 (Points))
8 end
9 return P MFeG
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3.8.2 Error estimation for an intermediate approximate adder
To develop a scalable error analysis methodology that could be extended for cascaded
additions, consider an approximate adder that can be located anywhere in an adder
tree. For example, consider adder 3 in Fig. 3.29a, which adds the outputs of adder 1
and adder 2. As per Eq. 3.20, the inputs to adder 3 are y1 + eO1 and y2 + eO2, i.e., the
accurate outputs y1 and y2, as well as the approximation errors eO1 and eO2. Therefore,
it can be said that the error at the output of adder 3 is composed of two different error
terms:

1. Error generated by adder 3 itself, which is characterized by PMFeG3 . PMFeG3

can be computed by using the data and application-aware joint input PMFY1,Y2

with Algorithm 3.3.

2. Error propagated to adder-3 by adders 1 and 2. This error is defined by PMFeP ,
and it can be computed by convolving input error PMFs, assuming the errors to be
independent of each other, similar to the assumption considered in [LGLG08]:

PMFeP3 = PMFeO1 ∗ PMFeO2 (3.21)

Here, PMFeP3 represents the PMF of the propagated error for adder 3, PMFeO1 and
PMFeO2 relates to the PMF of error generated by adder 1 and adder 2, which are
connected to the inputs of adder 3 as shown in Fig. 3.29, and ‘*’ represents the convolution
operator. Assuming the generated and propagated errors to be independent of each other,
the PMF of cumulative output error of adder 3 can be mathematically written as:

PMFeO3 = PMFeG3 ∗ PMFeP3 (3.22)

The computed PMF of error at each adder node n, i.e., PMFeOn , can be used to compute
other error metrics such as MSE and MED using the following equations:

MEDOn = |En|.PeOn , (3.23)
MSEOn = |En|2.PeOn (3.24)

Here, En represents the magnitude vector of PMFeOn and PeOn represents the corre-
sponding probability vector of PMFeOn .

The above analysis provides error estimates for an intermediate approximate adder placed
within an accelerator or adder tree. Since design space exploration requires careful
evaluation of multiple approximate adder variants for each adder node, the problem at
hand is to devise an effective and practical methodology that systematically computes
the cumulative error due to approximations at the output of the accelerator/adder tree.
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Figure 3.29: (a) Error generated and propagated by an nth adder. Here, n = 3, i.e., the
3rd adder is adding the sums obtained from the 1st and 2nd adders. (b) A configuration
set (ct) is defined using the type of approximate adder (adder variant) used at each
adder node. In the illustrated example of Fig. (a), each adder is using the same type of
approximate adder, i.e., Type 1. Thus, the adder variant 1 is mentioned for each adder
node in Fig. (b). (c) Adjacency matrix provides the connectivity of the adder nodes.

3.8.3 Methodology

Building on the analysis presented in Sections 3.8.1 and 3.8.2, this section presents a
systematic methodology for Data and Application-aware Error Analysis (DAEM) for an
application kernel composed of N − 1 adders for adding N operands. DAEM allows any
adder variant (from the supported adders) to be evaluated for each of the N − 1 adders.
Note that, for a case with V adder variants, a total of T = V (N−1) configurations are
possible. Thus, a tth configuration set, ct, can be specified by an array, ct={v1,v2,...,vN−1},
where vn ∈ {1, 2, ..., V } and represents the adder variant of the nth enumerated adder.
In general, DAEM requires sample data, application code and error maps (EMAP ) of
the V approximate adder variants to provide an estimate of error metrics (e.g., PMF of
error, MSE, and MED) for all the T configuration sets. Fig. 3.30 illustrates the complete
flow of DAEM. The steps are explained in detail in the following paragraph.
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Figure 3.30: Proposed data and application-aware error analysis methodology for approx-
imate adders.
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First, a simulation of the accurate version of the application kernel is required using
scenario-specific realistic sample data (Step 1) to generate 2D joint input probability
distributions for all the adders in the application kernel. To achieve this, DAEM requires
accurate simulation code for the application with two trivial modifications. Firstly, a code
snippet is added that enumerates the adders from 1 to N − 1 (Step 2 in Fig. 3.30) in their
execution order (for example, see Fig. 3.29(a)). These node IDs are later used in Step 5 to
generate an adjacency matrix (A), similar to the example shown in Fig. 3.29(c). Secondly,
as the accurate simulation runs, the inputs to each adder have to be logged (Step 3)
to build the corresponding 2D joint input probability distribution PMFX1,X2 . The 2D
joint input probability distributions enable the generation of PMFeG for each adder
in each configuration set, i.e., PMFeGn,t , as explained in Section 3.8.1. The adjacency
matrix (A), the computed PMFeGs, and the list of configuration sets are passed to
Step 6. Step 6 runs T times to compute the error metrics for T configurations. For each
configuration, the adjacency matrix (A) is traversed column-wise from left to right and
PMFeOn is evaluated (Step-7). PMFeON−1,t

, the PMF of output error of N − 1th node,
defines the PMF of the overall error of the accelerator, and hence, it is used in Step 8
to compute the MSE and MED error metrics of the tth configuration set.

3.9 Usability and Effectiveness of DAEM
This section presents the evaluation results of DAEM achieved for multiple application
scenarios. The scenarios include a few synthetic applications/data and a few representative
kernels from image and video processing. For each of these cases, the estimated error
measures are compared with those obtained from the state-of-the-art error estimation
model of [MHH+17] and those obtained using functional simulations. For the analyses,
different variants of GeAr adder [SAHH15] are considered as it is a well-cited and generic
model that can be configured to mimic the functionality of a majority of the prominent
state-of-the-art LLAAs including ACA-I, ACA-II, ETAII, and GDA.

3.9.1 Comparison with state-of-the-art [MHH+17]
First, the effectiveness of DAEM is evaluated for a synthetic scenario where error metrics
of a standalone LLAA are estimated considering different input distributions. The
evaluation is performed for five different configuration sets (T=5). The adder variants
considered for this evaluation are: GeAr(8,1,4), GeAr(8,1,5), GeAr(8,2,2), GeAr(9,2,3)
and GeAr(10,2,4). The configurations are illustrated in Fig. 3.31.

The three different input distributions considered are:

1. Uniformly distributed uncorrelated inputs.

2. Uncorrelated Gaussian distribution with µ = [127; 127] and Σ = [10; 01] × 103.

3. Correlated Gaussian distribution with µ = [127; 127] and Σ = [10.95; 0.951] × 103.
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Figure 3.31: The configurations of the GeAr adder model used for evaluation using
synthetic data.
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Figure 3.32: Comparison of DAEM, analytical model by Mazahir et al. [MHH+17]
and functional simulations. The MSE and MED results are obtained for 6 different
configurations of GeAr for three different input distributions. Each GeAr configuration
is represented in its generic form (N, R, P).
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Fig. 3.32 presents a comparison between the error measures estimated using DAEM and
the analytical model of [MHH+17] for all three input distributions. Since DAEM operates
on 2D joint input PMFs, these distributions can be directly employed to compute the
PMF of error. However, since the analytical model of [MHH+17] operates only on 1D
input PMFs, the marginal PMFs calculated using the 2D joint input distribution are
used for computing the error estimates. To generate the reference values for the analysis,
time-consuming Monte-Carlo simulations are performed. For these simulations, 100 000
input combinations are sampled from each of the above-mentioned three distributions to
create three different datasets. These datasets are then used for functional simulations
to compute the reference MSE and MED error measures.

The estimated MED (Fig. 3.32a) and MSE (Fig. 3.32b) for both the uncorrelated input
distributions illustrate that the proposed model can offer accuracy equivalent to that
of the state-of-the-art method [MHH+17]. In fact, the error estimated by both DAEM
and [MHH+17] matches the results of the functional simulations for the uncorrelated
input distributions. However, as illustrated in the previous sections, in some real-world
applications, the inputs of adders are correlated and therefore resemble the Gaussian
correlated distribution in the sense of correlation between inputs. For the Gaussian
correlated case, DAEM generates accurate estimates of MSE and MED for all the
considered configurations, while [MHH+17] fails to produce correct results. Thus, it can
be said that DAEM outperforms state-of-the-art techniques by leveraging 2D joint input
distribution.

To highlight the significance of DAEM for real-world applications, Fig. 3.33 presents
a comparison between MSE values estimated using three different techniques for two
different applications realized using approximate accelerators. The results are presented
for three different datasets: Sky, Stadium, and Satellite. The applications considered
are (1) low-pass filtering using a 4x4 kernel and (2) template matching using a 4x4
kernel. The adder tree used for this analysis is composed of approximate adders where
GeAr(8,2,2) is used for the first stage additions, GeAr(9,2,3) is used for the second stage
additions, GeAr(10,2,2) is used for the third stage additions, and GeAr(11,2,3) is used
for the final stage. Each dataset contains 10 images of the corresponding landscape.
Note that all these images are collected using Google Images and Google Maps. For
DAEM, the required 2D joint input PMFs are computed for each case using 5 randomly
selected images from the corresponding dataset, while the rest of the 5 images are used
for generating the ground truth using functional simulations. Fig. 3.33 clearly shows
that in all cases, the MSE estimated using DAEM is more realistic than the estimates
generated by [MHH+17]. It can also be observed from the figure that the error estimates
provided using DAEM follow the same trend as that of the functional simulations. Thus,
it can be concluded that DAEM results in better error estimates than state-of-the-art
approaches.

Although, the error measures computed using DAEM are better compared to the state-of-
the-art method, the estimated values do not exactly match the results achieved through
functional simulations. This deviation from the correct values can be attributed to two
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Figure 3.33: Comparison of Error in Estimated MSE for two image processing applications
for three datasets.

main reasons:

1. Approximation errors in earlier stage adders may trigger changes in the joint input
PMFs of the adders in the subsequent stages. Capturing these variations requires
a significantly complex and compute-intensive method. Therefore, to keep the
methodology lightweight, these variations are ignored.

2. In a real-world setting, the input distribution at test time can be significantly
different from the distribution observed and used during designing (in Step 3 of
Fig. 3.30) for error estimation.

3.9.2 DAEM in video processing
Videos captured in a static setting, such as surveillance videos, provide a common use
case where the background is mostly static and hence the overall visual information
across frames is almost the same. Because of this, a short chip acquired from such a static
camera can be used as a representative sample for the whole video and hence can be
used as training data for the DAEM methodology. Thus, the error measures predicted by
DAEM over the training dataset are expected to stay the same for the testing data. To
illustrate this, 4x4 average filtering is applied on each frame of a video using approximate
adders. For this analysis, the container video, which is a standard input in the video
processing domain and is available at http://trace.eas.asu.edu/yuv/, is considered. The
video is captured using a static camera. For evaluation, per frame MSE for 10 different
configuration sets (T=10) is computed for a total of 300 frames. Fig. 3.34 shows the
results acquired for each configuration set. It can be observed from the figure that the
relative standing of MSE for each configuration set is mostly consistent. Thus, DAEM
can be efficiently employed to relatively rank the suitability of a configuration set for
approximation. This can further be employed to perform the design space exploration
and hence can aid in the selection of the most suitable configuration set.

To demonstrate the efficacy of DAEM for static videos, an average filtering application
with a kernel size of 4x4 is considered. For this evaluation, 120 different configuration sets
(T=120) are considered. Fig. 3.35 shows the MSE estimates acquired using DAEM and
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Figure 3.34: Variations in per frame MSE across frames of standard container video for
4x4 approximate low pass filtering application. The results are illustrated for 10 different
configuration sets.

compares them with [MHH+17] and functional simulations. The results are generated
for two standard videos (‘Container’ and ‘Coastguard’). In each case, 5 initial frames of
the video are used as the training set for DAEM to define the 2D joint input PMFs. The
results are generated for frames 6-25. For illustrative purposes, the configuration sets
are sorted based on their MSE values achieved through functional simulations and then
plotted in the figure. The figure clearly shows that the results of DAEM are almost in
complete accordance with the simulated results and are better than the state-of-the-art
approach.

3.9.3 Time Requirements for Error Estimation using DAEM

DAEM is composed of two main computing blocks as shown in Fig. 3.30. The first block
comprises Steps 1-5, which are required to be executed only once. Note, it is assumed
that EMAP s are generated beforehand as they only depend on the approximate adder
variants. The simulations performed for generating joint input probability distributions
take most of the time in this block. The second block comprises Steps 6-8. These steps
are required to be repeated for each configuration set. Therefore, Steps 6-8 are executed
T times in total; however, these steps are not computationally intensive and incur very
low computational cost.

Table 3.6 presents a comparison between the time taken by DAEM, the method proposed
by Mazahir et al. in [MHH+17] and exhaustive simulations to generate the low-pass
filtering results presented in Fig. 3.35. For this comparison, T was assumed to be 120,
i.e., the simulations were performed for 120 different configurations. It can be observed
from the table that DAEM falls in between exhaustive simulations and [MHH+17], i.e.,
it requires very less amount of time compared to exhaustive simulations and much higher
time compared to [MHH+17]. This is mainly because [MHH+17] does not involve any
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Figure 3.35: Comparison of DAEM with state-of-the-art [MHH+17] and simulated
results for 4x4 low-pass filtering application for two standard videos: (a) Container (b)
Coastguard.

functional simulations while DAEM requires simulations in the earlier steps to build
2D joint input probability distributions for the adders. The table clearly shows that
Steps 1-5 consume most of the execution time, i.e., 71.687 sec, while the time required
for the remaining steps (6-8) to evaluate all T configuration sets is quite close to the
time required for [MHH+17]. Hence, for very large T , DAEM can achieve execution time
comparable to [MHH+17] while offering significantly better error estimates.

Table 3.6: Timing comparison of error estimation schemes with simulations (sec)

t Mazahir [MHH+17] Simulations DAEM
10 0.005 18,416.00 71.687 + 0.006
30 0.015 55,245.00 71.687 + 0.018
60 0.031 110,497.00 71.687 + 0.036
90 0.047 165,746.00 71.687 + 0.054
120 0.062 220,995.00 71.687 + 0.073
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3.10 Limitations of DAEM
The scalability of DAEM can be limited in certain scenarios, depending on the following
two key factors:

1. Hardware accelerators are usually composed of cascaded modules, where the output
of one module is used as input to the next. In such a case, approximations in earlier
stages can affect the joint input probability distribution of later stages. Therefore,
based on the level of approximations deployed in earlier stages, the estimated joint
input probability distributions of the later stages can deviate from the estimated
distributions (estimated through profiling), which indirectly affects the accuracy of
error estimates. Hence, the proposed approach can be considered highly effective
for shallow accelerators, i.e., accelerators having less number of cascaded stages,
but may not produce reliable results for deeper datapaths where the number of
cascaded stages is large.

2. The number of possible input combinations of a computing module increases
exponentially with the increase in the input bit-width. This translates to huge
memory requirements for the error maps and the joint input probability distributions
and thereby limits the applicability of DAEM in such scenarios. For example, to
store an error map of an 8-bit approximate adder in 8-bit integer format, a total
of 216 bytes (i.e., 64 KB) of memory is required; however, for a 16-bit adder, the
memory requirement comes out to be 232 bytes (i.e., 4 GB).

3.11 Open-source Libraries
To facilitate further research and development in the area of approximate computing and
for the sake of reproducibility, the implementations of both QuAd and PEMACx, along
with the supporting snippets, have been open-sourced and are available at https://
sourceforge.net/projects/quad-code/ and https://github.com/mahanif/
PEMACx, respectively.

3.12 Chapter Summary
This chapter covered multiple error estimation and design space exploration methods
for approximate adders. First, it presented QuAd, a configurable adder model that
covers the entire design space of low-latency approximate adders. The analysis of QuAd
configurations showed that, given a latency constraint, it is possible to effortlessly select
the optimal low-latency approximate adder configuration (QuAdo). Although QuAdo

offers quality-area optimal designs, the design space covered by QuAd only includes
low-latency adders. Therefore, to efficiently explore the design space of low-power adders,
the chapter, after QuAd, presented PEMACx, a methodology to efficiently compute
PMF of error of approximate low-power adders that are composed of smaller cascaded
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approximate adder units. Note, all types of error metrics such as MSE, MED, and ER
can be computed using the PMF of error. Hence, PEMACx enables the users to efficiently
quantify the quality of low-power approximate adders based on the user-defined error
metric. The chapter demonstrated the effectiveness of the proposed methodology for
analyzing the error characteristics of low-power, as well as a class of high-performance
(low-latency), adders. Further, the chapter highlighted that the input data distribution
could have a significant impact on the output quality of an approximate adder. Therefore,
in cases where the input distribution is not uniform or the input bits cannot be assumed
independent of each other, a data-driven approach is necessary to accurately estimate the
quality of an approximate module. Towards this, the chapter presented DAEM, a data
and application-driven error estimation methodology. The evaluation showed that DAEM
is suitable for shallow datapaths and cannot produce highly accurate results for deeper
circuits. Hence, it is useful for simple audio-visual applications such as filtering but cannot
be used for large dot-product operations involved in, for example, DNNs. This points
towards the significance of simulation-based evaluation of complex applications and also
the need for specialized approximation/optimization techniques that can effectively trade
application-level accuracy for efficiency without involving intermediate error estimation.
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CHAPTER 4
Cross-Layer Optimizations for

Deep Neural Networks

As highlighted in Chapter 2, different hardware-level and software-level techniques
have been proposed in the literature to improve the energy efficiency of DNNs. To
significantly benefit from the error-resilience of DNNs, these techniques can be integrated
in a systematic manner. Towards this, this chapter first presents a methodology that
combines the most effective hardware-level and software-level approximation/optimization
techniques in a cross-layer framework (see Section 4.1). Then, multiple case studies are
presented in Section 4.2 that highlight the effectiveness of each individual technique
employed in the framework as well as their combined benefits.

4.1 Cross-Layer Optimization Framework for DNNs
Exploiting a single approximation type at a single abstraction layer results in limited
benefits. Multiple types of approximations from different abstraction layers can be
combined to achieve significant efficiency gains. Fig. 4.1 presents a novel cross-layer
approximation methodology for DNNs that combines effective software-level and hardware-
level techniques in a synergistic manner. The methodology is composed of the following
steps:

• Pruning: At the software level, the most effective technique used for optimizing
DNNs is pruning. Therefore, Step 1 of the methodology employs iterative pruning
to eliminate ineffectual weights from the DNNs. In iterative pruning algorithms,
first the saliency of each weight/filter in the given DNN is computed using its L1
or L2-norm, and then, a small set of least significant weights/filters are pruned
from the network. The pruned network is then (optionally) fine-tuned for a limited
number of epochs to regain a fraction of the lost accuracy. This process is repeated
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Figure 4.1: Our Cross-Layer Optimization Flow for DNNs.

until a point is reached where any further pruning results in accuracy drop below the
user-defined accuracy constraint. Note, iterative pruning is preferred over one-shot
pruning because it reevaluates the significance of the remaining weights/filters after
every pruning step and, thereby, results in more reduction in the network size and
computational complexity compared to one-shot approaches (e.g., [LAT18]).

• Quantization: Once the pruning is complete, Step 2 performs a search for an
effective quantization policy to reduce the bitwidth of the weights and the activations
of each layer of the DNN. Alongside reducing the size of DNNs, quantization also
enables the use of simplified logic units at the hardware level. The quantization
process can also (optionally) be followed by fine-tuning to adapt to the quantization
error introduced due to the limited precision of weights and activations. Note,
both pruning and quantization can be combined in a single unified framework
to achieve optimal results. However, such a framework requires sophisticated
optimization algorithms to explore the combined optimization space (for example,
see CLIP-Q [TM18]) and, therefore, result in high complexity of search.

• Hardware-Level Approximations: At the hardware level, Step 3 explores the
design space of approximate units, such as approximate adders and multipliers,
to select the configurations that offer the best quality-efficiency trade-offs. The
considered design space also includes configurations/modules that exhibit internal
self-healing characteristics [GHV+19]. Once the design space of the approximate
units has been reduced, Step 4 employs behavioral simulations using functional
implementation of the approximate units to accurately quantify the impact of
approximations on the functionality of the input DNN. Based on the results, the
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configuration that offers the optimal savings while meeting the accuracy constraint
is selected. This step can also (optionally) be followed by fine-tuning to partially
compensate for the lost accuracy due to hardware-level approximations.

4.2 Case Studies for Improving Energy and Performance
Efficiency of DNN Implementation

4.2.1 Structured Pruning
This section presents a novel methodology for pruning filters/neurons from a pre-trained
DNN. Fig. 4.2 illustrates the overall flow of the methodology. The methodology receives
a pre-trained DNN, a user-defined accuracy constraint, and a user-defined cost function
as inputs. The cost function is used to compute the relative importance of filters/neurons
within the network, which is then used to identify the least significant filters/neurons
that have minimal impact on the model’s accuracy while offering significant model size
reduction (or efficiency gain). Some possible cost functions are listed in Table 4.1. The
main steps of the methodology are as follows:

1. First, the methodology computes the significance of all the filters/neurons in each
layer of the given DNN using a suitable saliency measure, e.g., L1-norm, as adopted
in this study.

2. Then it creates as many copies of the DNN as the number of layers - 1. Then,
for each copy l, where l ∈ {the set of all the layers except the last layer of the
DNN }, it keeps all except the lth layer intact and removes x% of the least significant
filters/neurons from the lth layer.

3. The accuracy for each pruned network is computed using the validation dataset
and registered in θ alongside the total number of parameters of the corresponding
layer.

4. Once the accuracy for all the created networks have been registered, the cost of
each layer is computed using the user-defined cost function (C) and the values
registered in θ.

5. The networks are then sorted based on their costs and the DNN which incurs the
least cost is kept while all the rest are discarded.

6. The selected network is then fine-tuned for y number of epochs and its accuracy is
estimated using the validation dataset.

7. The estimated accuracy is then compared with the user-defined accuracy constraint
(Ac). If the network meets the constraint, the pre-trained network is replaced with
the pruned network and the complete process is repeated. Otherwise, if the pruned
DNN does not meet the constraint, the pruned DNN is discarded and the (updated)
pre-trained model is forwarded as the output of the algorithm.
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Figure 4.2: Proposed structured pruning methodology

Experimental setup: To illustrate the effectiveness of the proposed method, it is
evaluated for two different DNNs, LeNet5 and VGG11, using two different datasets,
MNIST and Cifar10. The details of the settings used for experiments are summarized in
Table 4.1.

Impact of structured pruning on DNN accuracy and network size: Fig. 4.3
presents the results obtained by applying the proposed methodology on the LeNet5
network trained on the MNIST dataset. Figs. 4.3a, 4.3b and 4.3c are generated using cost
functions CA, CB and Cc (listed in Table 4.1), respectively. Different cost functions are
employed to analyze the impact of varying relative weights of the number of parameters
in a layer and the DNN accuracy after pruning (before any fine-tuning). As can be
seen from the figures, the network maintains its baseline accuracy until it is significantly
pruned, i.e., until around 90% reduction in the network size. After the 90% mark, the
DNN becomes increasingly sensitive to pruning, and this trend is consistent across all
the considered cost functions. However, employing intermediate fine-tuning (i.e., setting
y > 0) can help in maintaining the baseline accuracy till even higher percentage reduction.
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Table 4.1: Settings used in the experiments

Network and
Dataset Network Architecture

%age of filters
pruned per

iteration (x)
Cost function (C)

Number of
epochs

(y)

1 LeNet-5 for
MNIST

CONV(6, 1, 5); CONV(16, 6, 5);
FC(120, 400); FC(84, 120);
FC(10, 84)

20
CA = 100 − Accuracy 0, 1, 2
CB = 100 − (Accuracy + Pi/

�
i∈{alllayers} Pi) 0, 1, 2

CC = 100 − (Accuracy + 4 ∗ Pi/
�

i∈{alllayers} Pi) 0, 1, 2, 4

2 LeNet-5 for
Cifar10

CONV(6, 3, 5); CONV(16, 6, 5);
FC(120, 400); FC(84, 120);
FC(10, 84)

20
CA = 100 − Accuracy 0, 1, 2
CB = 100 − (Accuracy + Pi/

�
i∈{alllayers} Pi) 0, 1, 2

CC = 100 − (Accuracy + 4 ∗ Pi/
�

i∈{alllayers} Pi) 0, 1, 2, 4

3 VGG11 for
Cifar10

CONV(64, 3, 3); CONV(128, 64, 3);
CONV(256, 128, 3); CONV(256, 256, 3);
CONV(512, 256, 3); CONV(512, 512, 3);
CONV(512, 512, 3); CONV(512, 512, 3);
FC(10, 512)

20
CA = 100 − Accuracy

0, 1, 2

CB = 100 − (Accuracy + Pi/
�

i∈{alllayers} Pi)
0, 1, 2

CC = 100 − (Accuracy + 4 ∗ Pi/
�

i∈{alllayers} Pi)
0, 1, 2, 4

This can be observed by comparing the y = 0 cases with the corresponding y > 0 cases.
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cost function, the amount of compression achieved per iteration increases 

significantly in the initial iterations of the algorithm

Lack of intermediate fine-tuning 
leads to early decrease in accuracy

After significant 
compression the network 

becomes increasingly 
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Figure 4.3: Results of structured pruning when applied to the LeNet5 network trained
on the MNIST dataset. The sub-figures are generated using different cost functions, i.e.,
(a) CA, (b) CB , and (c) CC , and different number of intermediate fine-tuning epochs (i.e.,
y) mentioned in Table 4.1.

Impact of using different cost functions: By comparing Fig. 4.3a with 4.3b, it can
be observed that having a (non-zero) factor for the number of parameters in a layer in the
cost functions (see equations of CA, CB and CC in Table 4.1) results in relatively higher
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compression in the initial iterations of the methodology. Therefore, if the methodology
can be executed only for a limited number of iterations due to limited computational
resources, a cost function with a higher factor for the number of parameters is preferable.
However, it should be noted that assigning a larger weight value to the number of
parameters in the cost function may lead to undesirable accuracy degradation, specifically
during the final few iterations, or when used for a simple network trained on a relatively
complex dataset, as can be observed by comparing Fig. 4.4a with Figs. 4.4b and 4.4c.
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Figure 4.4: Results of structured pruning when applied to the LeNet5 network trained
for the Cifar10 dataset. The sub-figures are generated using different cost functions, i.e.,
(a) CA, (b) CB , and (c) CC , and different number of intermediate fine-tuning epochs (i.e.,
y) mentioned in Table 4.1.

Impact of dataset complexity on the reduction in DNN size through pruning:
By comparing the results presented in Fig. 4.3 and Fig. 4.4, it can be observed that the
pruning methodology is not as effective in case of the LeNet5 trained on the Cifar10
dataset as it is for the LeNet5 trained on the MNIST dataset. This is mainly due to
the difference in the complexity of the two datasets. As can be seen in Fig. 4.5, the
MNIST dataset is composed of black-and-white images of handwritten digits while the
Cifar10 dataset is composed of colored images of objects. In general, more parameters
are required to learn complex patterns than to learn simple patterns. This is why the
DNN accuracy drops abruptly for the LeNet5 network trained on the Cifar10 with the
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reduction in network parameters.

Figure 4.5: A few example images from: (a) the MNIST dataset; and (b) the Cifar10
dataset.

Impact of network complexity on the reduction in DNN size through pruning:
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Figure 4.6: Results of structured pruning when applied to the VGG11 network trained
on the Cifar10 dataset. The sub-figures are generated using different cost functions, i.e.,
(a) CA, (b) CB , and (c) CC , and different number of intermediate fine-tuning epochs (i.e.,
y) mentioned in Table 4.1.
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To analyze the effectiveness of the proposed technique for larger networks, two different
DNNs, LeNet5 and VGG11, trained on the Cifar10 dataset are considered. Fig. 4.4
shows the results of the proposed technique when applied to the LeNet5 network, and
Fig. 4.6 shows the results of the technique when applied to the VGG11 network. By
comparing Fig. 4.4 and Fig. 4.6, it can be observed that the proposed technique (with
y > 0) achieved higher compression for the VGG11 network (i.e., around 95%) than
for the LeNet5 network (i.e., around 30%) while maintaining their respective baseline
accuracy. From this, it can be concluded that the proposed technique helps in reducing
the non-essential parameters, and it is more effective for larger networks that have higher
number of non-essential parameters.

4.2.2 Quantization
Quantization is another technique besides pruning that is highly effective for reducing
the size of DNNs. Apart from DNN size reduction, it also enables the use of simplified
hardware modules and thereby offers the opportunity to further increase the energy
efficiency of DNN implementations. As most embedded systems support 8-bit precision or
higher, post-training quantization techniques that do not incur additional training/fine-
tuning costs are sufficient to convert the models to low-precision variants. Therefore,
in this study, only the post-training quantization approaches are considered, with the
restriction that all the layers have the same bitwidth. To quantize the weights of a layer,
the following equations is employed:

ˆW <l>
i = round(W <l>

i × W <l>
scale) (4.1)

W <l>
scale = 2

floor(log2(
2n−1 − 1

max(abs(W <l>)) ))

where W <l> is the set of all the weights in the lth layer of the DNN, W <l>
i is the ith

element in W <l>, ˆW <l> defines quantized weights, W <l>
scale is the scale for converting the

weights and n represents the bitwidth.

To quantize the activations, first, the activation values generated using a small subset of
sample images from the training set are profiled. Then, the activation scale is defined
using the following equation:

A<l>
scale = 2

floor(log2(
2n−1 − 1

max(abs(A<l>)) ))

where A<l> is the set of all the logged activations from the input of the lth layer and
A<l>

scale defines the activation scale. During the run time, the activations are scaled using
the following equation:
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ˆA<l>
i = floor(A<l>

i × A<l>
scale) (4.2)

where ˆA<l> defines the quantized activations. Note that W <l>
scale and A<l>

scale are intentionally
kept in the power-of-2 format in order to simplify the intermediate conversion of activation
values between the layers. The power-of-2 format transforms the multiplication operations
to shift operations and thereby enables cost-efficient implementation of dynamic fixed-
point representation.

Fig. 4.7b shows the accuracies of five different variants of the LeNet5 network, having
different pruning ratios, when exposed to different levels of quantization. The variants
are marked with the help of labels in Fig. 4.7a. By analyzing Fig. 4.7b, it can be observed
that the variants that are more pruned are more sensitive to quantization. It can also be
observed that the accuracy of all the networks drops sharply after a specific quantization
level, which is the same for all the networks. The same trend is observed for the LeNet5
and the VGG11 networks trained with the Cifar10 dataset, as can be seen in Figs. 4.8
and 4.9, respectively. From this analysis, it can be deduced that (1) quantization indeed
can offer benefits without significant loss in accuracy, (2) aggressive quantization leads
undesirable accuracy degradation, and (3) higher pruning levels are more beneficial than
quantization.
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Figure 4.7: Network compression (structured pruning followed by quantization) results for
the LeNet5 trained on the MNIST dataset. (a) Network compression through structured
pruning. (b) Quantization of different pruned DNNs marked in (a) using Eqs. 4.1 and 4.2.
(c) Quantization of the DNNs marked in (a) using Eqs. 4.1 and 4.3.
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Figure 4.8: Network compression (structured pruning followed by quantization) results for
the LeNet5 trained on the Cifar10 dataset. (a) Network compression through structured
pruning. (b) Quantization of different pruned DNNs marked in (a) using Eqs. 4.1 and 4.2.
(c) Quantization of the DNNs marked in (a) using Eqs. 4.1 and 4.3.

Besides Eq. 4.2 for evaluation, the impact of using Eq. 4.3 for quantizing the activation
values on the accuracy of DNNs is also evaluated.

ˆA<l>
i = round(A<l>

i × A<l>
scale) (4.3)

The results generated using Eq. 4.3 are shown in Figs. 4.7c, 4.8c, and 4.9c. By comparing
Figs. 4.7b, 4.8b, and 4.9b with Figs. 4.7c, 4.8c, and 4.9c, it can be observed that using
Eq. 4.3 leads to better accuracy results, mainly due to the use of rounding operation
instead of flooring operation, as it leads to less quantization error.

4.2.3 Hardware-level Approximations: Impact of self-healing and
non-self-healing designs on DNN Accuracy

This section analyzes the impact of using different types of approximate arithmetic
modules on the accuracy of pruned and quantized networks. Mainly, two different
types of approximate modules are considered: (1) modules designed using conventional
approaches, and (2) modules designed using self-healing-based approaches. The main
difference between these approaches is highlighted in Fig. 4.10. Fig. 4.10a shows the
conventional method of deploying approximation in a system, where each individual
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Figure 4.9: Network compression (structured pruning followed by quantization) results for
the VGG11 trained on the Cifar10 dataset. (a) Network compression through structured
pruning. (b) Quantization of different pruned DNNs marked in (a) using Eqs. 4.1 and 4.2.
(c) Quantization of the DNNs marked in (a) using Eqs. 4.1 and 4.3.
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Figure 4.10: A comparison between conventional and self-healing approaches
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module is approximated (without considering the overall computational flow) to trade-off
accuracy for efficiency. The key drawback of this approach is that, in order to meet a user-
defined quality constraint, the level of approximation that can be introduced in a system
is limited. Therefore, such techniques cannot offer significant power/performance gains.
To overcome this limitation, approaches for approximating systems using complementary
approximate modules [GHK+18, GHV+19] have been introduced. The complementary
modules are selected/designed such that they negate each other’s adverse effects. This
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Figure 4.11: Types of 8x8 approximate multipliers considered for simulations
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approach enables better quality-efficiency trade-off compared to conventional approaches.
Figs. 4.10b and c show two different methods of how this concept can be realized.
Fig. 4.10b shows two complementary approximate modules in the first stage and treats
the second stage as the healing stage. Fig. 4.10c shows a single approximate module with
internal complementary modules and treats the second stage as the healing stage. Note
that both of these systems require a healing stage to recover from approximation errors,
therefore, this concept can only be applied to cases where it is possible to have a healing
stage at the end, e.g., in dot-product engines.
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Figure 4.12: The foremost 2x2 multiplier designs used for building conventionally ap-
proximate and self-healing approximation-based multipliers

97



4. Cross-Layer Optimizations for Deep Neural Networks

Table 4.2: Error characteristics of the multiplier configurations presented in Fig. 4.11
Multiplier Configurations

1 2 3 4 5 6 7 8 9 10 11 12
MSE 0.25 9.75 266.25 3102.30 24806.00 7.50 7.75 78.00 78.25 404.25 2128.00 18065.00
MED 0.13 1.13 7.13 23.13 55.13 0.94 1.02 3.38 3.44 8.29 19.94 53.67
Mean Error -0.13 -1.13 -7.13 -23.13 -55.13 0.00 -0.13 0.00 -0.13 -4.13 -0.25 -0.13

Table 4.3: Hardware characteristics of the multiplier configurations presented in Fig. 4.11
Multiplier Configurations

Accu. Ax.1 Ax.2 Ax.3 Ax.4 Ax.5 Ax.6 Ax.7 Ax.8 Ax.9 Ax.10 Ax.11 Ax.12
Area [Cell Area] 753 716 696 616 609 571 726 711 727 701 665 672 654
Power [µW] 46.0 45.0 44.9 40.8 41.0 39.0 45.5 44.8 45.1 43.8 43.2 43.5 42.9
Delay [ns] 1.92 1.86 1.73 1.73 1.73 1.73 1.95 1.77 1.87 1.73 1.74 1.73 1.73
PDP [fJ] 88.4 83.7 77.7 70.6 70.9 67.4 88.7 79.3 84.2 75.8 75.2 75.2 74.3

As the dot-product operation is one of the fundamental operations in DNNs, the self-
healing approximation concept can be applied by approximating the multiplication
operations while keeping the addition operation accurate. Fig. 4.11a shows the baseline
8x8 multiplier design considered in this work. The design is based on Baugh-Wooley algo-
rithm [BW73a]. The multiplier is implemented mainly using 2x2 multipliers. Fig. 4.12a
shows the accurate 2x2 multiplier design while Figs. 4.12b, 4.12c, and 4.12d show the ap-
proximate variants that are used to implement approximate 8x8 multiplier configurations
shown in Fig. 4.11. The 2x2 multiplier designs shown in Fig. 4.12b and 4.12d approximate
3×3 to 7 and 5 (i.e., less than 9), respectively, while the design in Fig. 4.12c approximates
3×3 to 11 (i.e., greater than 9). Figs. 4.11b-4.11m shows all the different approximate 8x8
multiplier configurations considered for evaluation in this work. The error characteristics
of these configurations are presented in Table 4.2. Note, for this work we assume that the
same type of multiplier is used for all the multiplication operations in a DNN inference.
Figs. 4.11b-4.11f illustrate the configurations that generate uni-directional errors, i.e.,
only negative errors. These configurations correspond to designs generated using conven-
tional approaches. Figs. 4.11g-4.11m illustrate configurations that generate bi-directional
errors, as these configurations are composed of both types of approximate modules,
i.e., the ones that generate positive errors and the ones that generate negative errors.
These configurations correspond to designs generated using self-healing approaches. The
hardware characteristics of all the configurations are presented in Table 4.3. These results
are obtained by implementing the multipliers in Verilog and synthesizing using Cadence
Genus for 65 nm technology node using TSMC 65 nm library.

Fig. 4.13 shows the results when the approximate multiplier configurations shown in
Fig. 4.11 are used for different variants of the LeNet5 network having different pruning
ratios. The pruning and accuracy characteristics of the considered networks are marked
with the same labels in Fig. 4.7. As can be seen in Fig. 4.13, with the increase in the
number of pruning ratio, the model becomes increasingly sensitive to approximations.
Similar results are observed for other cases in Figs. 4.14 and 4.15. From Fig. 4.15, it
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can also be observed that even moderate level of approximations in multipliers can
significantly degrade the accuracy of a DNN. This is mainly due to the fact that the
impact on the accuracy depends also on the data distribution.
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Figure 4.13: Effects of using approximate multipliers for inference of MNIST test images
using different compressed LeNet5 variants marked in Fig. 4.7.
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Figure 4.14: Effects of using approximate multipliers for inference of Cifar10 test images
using different compressed LeNet5 variants marked in Fig. 4.8.
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Figure 4.15: Effects of using approximate multipliers for inference of Cifar10 test images
using different compressed VGG11 variants marked in Fig. 4.9.
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4.2.4 Execution Time Analysis of the Proposed Cross-layer Approach

The overall execution time of the proposed cross-layer approach depends on various
factors, e.g., the size of the network, the size of the input samples and the number of
samples used for estimating the accuracy at intermediate steps. Table 4.4 presents the
average execution time per iteration of the structured pruning algorithm. It clearly
highlights that an increase in the number of samples for intermediate evaluation or
the number of epochs for intermediate fine-tuning results in an increase in the overall
execution time. Note that the table presents the average time per iteration, as the number
of iterations depends on the cost function and the user-defined accuracy constraint (see
from Figs. 4.3, 4.4, and 4.6). Table 4.5 presents the time required for evaluating the
impact of quantization and approximation on the accuracy of the DNNs. Similar to the
structured pruning case, the table presents the average time for evaluating the impact of
quantizing a DNN to a specific bitwidth, as the overall time depends on the number of
bitwidths considered in the search. However, for approximation, the overall execution
time is presented, as, based on our implementation, the execution time can vary across
configurations.

Table 4.4: Execution time of structured pruning algorithm for different cases
Network and
dataset

No. of samples for
intermediate evaluation y Average simulation

time per iteration

LeNet with
MNIST

512

0 1.67
1 4.21
2 7.44
4 12.46

10000

0 3.39
1 6.38
2 9.23
4 14.68

LeNet with
Cifar10

512

0 2.86
1 9.95
2 15.62
4 28.29

5000

0 5.49
1 12.37
2 18.86
4 32.98

VGG11 with
Cifar10

512

0 3.78
1 15.19
2 26.35
4 49.24

5000

0 10.5
1 21.61
2 33.06
4 54.91
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Table 4.5: Simulation time for evaluating the performance of quantization and approxi-
mation

Network and dataset
No. of

samples for
evaluation

Average simulation time per
bitwidth for evaluating the impact

of post-training quantization

Simulation time for evaluating
the impact of accurate and 13

approximate configurations
LeNet with MNIST 10000 0.54 7.77
LeNet with Cifar10 5000 1.23 17.42
VGG11 with Cifar10 5000 4.72 69.68

4.3 Chapter Summary
State-of-the-art DNNs are highly overparameterized and resource-hungry. To enable the
use of DNNs in resource constraint devices, several optimization techniques have been
proposed at different abstraction layers of the computing stack. This chapter presented
a novel cross-layer methodology to optimize DNNs. At the software level, it employs
structured pruning along with quantization of inputs and network parameters to reduce
the computational complexity and memory requirements of DNNs. At the hardware
level, it deploys functional approximations in the arithmetic modules to further improve
the efficiency by exploiting the error resilience characteristics of DNNs. The chapter
also presented different case studies to investigate the effectiveness of each individual
optimization technique employed in the cross-layer methodology in order to justify the
proposed optimization flow. Note that although the case studies presented in the chapter
considered only LeNet5 and VGG11 architectures, based on the results it can be concluded
that the proposed technique can offer reasonable amount of compression and energy
savings for other types of DNNs as well including ResNet and MobileNet architectures.
However, based on the compactness of the given network and the complexity of the
dataset/problem, the effectiveness of the proposed methodology can vary. The results in
the chapter highlighted that software-level approximation/optimization techniques (such
as pruning and quantization) offer far more potential for reducing the computational
complexity and improving the efficiency of DNN inference compared to hardware-level
functional approximation of modules. However, hardware-level approximations can
further improve the efficiency when coupled with pruning and quantization. The results
also highlighted that functional approximations of the arithmetic modules can lead to
undesirable accuracy degradation. This is mainly due to the fact that the impact on the
DNN accuracy also depends on the data distribution of inputs, which highlights the need
for data-driven approximations.
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CHAPTER 5
Neural Processing Arrays for

Efficient Deep Neural Network
Inference

This chapter presents novel techniques for improving the efficiency of Neural Processing
Units (NPUs). The outline of the chapter is illustrated in Fig 5.1. First, Section 5.1
highlights different real-world settings for optimizing DNNs and discusses that under
some scenarios, retraining is not possible to compensate for the accuracy lost due to
approximations. Therefore, techniques that offer efficiency gains without affecting the
accuracy under such scenarios are required to be explored. Afterward, Section 5.2
presents a study on the impact of approximations in neural arrays on the accuracy
of DNNs. The study shows that moderate and high-intensity approximations lead to
significant degradation in the application-level accuracy, and therefore, mitigation of
approximation errors is essential. Towards this, Section 5.3 presents the concept of
curable approximations and a neural array design based on the concept. The potential of
data-driven approximations for DNNs is discussed in Section 5.4. The section presents
a novel number representation format that enables simplification of MAC units in the

Real-world Settings for 
Optimizing DNNs

(Section 3.1)

Analysis of the 
Resilience of DNNs to 
Approximation Errors

(Section 3.2)

Curable Approximations 
for Building Efficient 

Neural Arrays
(Section 3.3)

Data-Driven 
Approximations for 

Efficient DNN Execution
(Section 3.4)

Summary of Methods for Improving the Efficiency of DNN Execution by Exploiting Approximations
(Section 3.5)

Figure 5.1: Chapter Overview.
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neural arrays. At the end, Section 5.5 presents the summary of the chapter.

5.1 Real-World Settings for DNN Optimization

Training DNN models for complex applications is computationally intensive and moreover
requires extensive data to achieve high accuracy. Most of the DNN optimization techniques
are either embedded in the training process to train and compress the models simultane-
ously [HPN+16] or utilize retraining to counter the effects of approximations [ZGBG18].
However, extensive training data and computational resources are not always available.
For example, consider a case where a vendor has released a DNN IP but has not made the
training dataset available, for example, models trained on JFT-300M dataset [SSSG17],
which is an internal Google dataset used for training image classification models. In such
a case, as extensive training data is not available, it would not be possible for the user to
retrain the model properly after applying approximations. Any significant modification
to the network without proper retraining can affect the model’s generalizability or some
other characteristics.

Based on the availability of the training data and computational resources, there can be
four different scenarios. The scenarios are listed in Fig. 5.2. As can be seen in the figure,
retraining is only possible when both training data and sufficient computational resources
are available. In all rest of the three cases, retraining is not possible. For the case where
retraining is possible, aggressive pruning and quantization can be performed by exploiting
retraining, and networks can be pruned by more than 90% [HMD15] and quantized to as
low as 1-bit precision [RORF16][CHS+16]. However, for the cases where retraining is not
possible, approximations can lead to significant accuracy loss. Therefore, it is essential
to adopt approximations that have the least possible impact on the intermediate outputs
while offering maximum efficiency gains.
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Figure 5.2: Different Settings for Optimizing DNNs.
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5.2 Impact of Using Approximate Modules in Neural
Processing Arrays

This section presents an analysis of the impact of using hardware-level approximations
in neural arrays on the accuracy of DNNs. For this analysis, an 8-bit quantized version
of the LeNet-5 network [VL15] trained on the CIFAR-10 dataset [KH+09] is considered.
Moreover, it is assumed that approximations are deployed only in the multipliers. The
baseline 8x8 multiplier design used in this analysis is based on Baugh-Wooley algo-
rithm [BW73a] and is constructed using smaller 2x2 multipliers (similar to the design
presented in Section 4.2.3). The approximate 8x8 multiplier variants are generated by
replacing 2x2 accurate multipliers with 2x2 approximate multipliers. For this analysis,
mainly, three different 8x8 approximate multipliers (Type 1, Type 2, and Type 3) are
constructed by using the 2x2 approximate multiplier design proposed in [KGE11] for
the least significant one, three, and four 2x2 multipliers, respectively. The error and
hardware characteristics of the considered 8x8 multipliers are shown in Table 5.1. The
approximation error of each multiplier is represented in terms of Mean Error Distance
(MED) and is computed assuming uniform input distribution.

Table 5.1: Error and hardware characteristics of different multipliers used for implementing
the LeNet network for classifying the cifar-10 images. The hardware results are generated
for 65 nm technology node using Cadence Genus tool with TSMC 65 nm library.

Latency
[ps]

Area
[cell area]

Power
[µW ] MED

Accurate 1966.3 746 46.81 0
Approx_Mul_1 1915.9 710 45.64 0.125
Approx_Mul_2 1738.1 689 45.4 1.125
Approx_Mul_3 1728.5 682 44.87 3.125

Fig. 5.3 shows the impact of using the approximate multipliers on the classification
accuracy of the network. Note that, for this analysis, we assume homogeneous array
architecture, i.e., all the processing elements have exactly the same configuration and
experience the same level of approximation. It can be observed from the figure that the
classification accuracy of the network decreases with the increase in the approximation
level. Moreover, the classification accuracy falls below the baseline even for the least
approximate variant of the hardware, which can significantly degrade the performance
and dependability of a safety-critical system. These results are in line with the results
presented in Section 4.2.3, where it is highlighted that hardware-level approximations
result in notable accuracy degradation, even in the case of pruned networks. Therefore,
there is a need to design approximate hardware such that the effects of approximations
can be compensated, enabling significant performance and energy-efficiency gains while
ensuring accurate/near-accurate results that have no impact on the application-level
accuracy of safety-critical applications.
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Figure 5.3: Effects of deploying approximations in multipliers on the accuracy of the
LeNet-5 network trained on the Cifar-10 dataset.

5.3 Curable Approximations for Building Efficient Neural
Processing Arrays

This section presents a novel methodology for building approximate datapaths. The
methodology utilizes modules with curative properties to compensate (or completely
rectify) the errors that occurred in the previous stages/modules of a cascaded system.
Each module accepts an error signal in a compressed form from its previous stage along
with the inputs, compensates for the error, and generates an approximate output with
a compressed error signal containing the information of the error in the current stage,
which should be compensated in the subsequent stage.

5.3.1 Methodology for Designing Datapaths with Curable
Approximations

To understand the concept consider a reference system composed of N cascaded stages/
modules, as shown in Fig. 5.4a. An approximated version of the system is illustrated in
Fig. 5.4b, where all the modules are approximated to achieve efficiency gains at the cost
of some accuracy loss. As illustrated in the figure, each module generates output with
some level of inaccuracy and thereby adds some amount of uncertainty in the overall
output. The final output of the system is not accurate and can deviate significantly from
the desired output based on the number of stages and the level of approximation deployed
in each stage. Therefore, such design methods are unusable for many safety-critical
applications and other high precision computing scenarios.

Fig. 5.4c illustrates the proposed variant of the reference system. The system is composed
of three types of modules: 1) Deterministic Approximate (DAx) module (see Fig. 5.5a);
2) Cure & Deterministic Approximate (C&DAx) module (see Fig. 5.5b); and 3) Cure
(Cu) module (see Fig. 5.5c). The DAx module generates approximate output along with
a compressed yet deterministic error signal that can be used by the subsequent stage to
decipher the exact amount of error occurred in the previous stage and compensate for it.
The C&DAx module compensates for the error that occurred in the previous stage and
generates an approximate output and a compressed error signal for the subsequent stage.
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Figure 5.4: Methods for building systems with cascaded modules. Here, f(ϵi) represents
a reversible function of the error from the ith stage, i.e., ϵi, which represents the error in
a compressed form.

The last stage of the system is required to be a Cu stage to ensure completely accurate
output. The stage is mainly responsible for compensating the error that occurred in the
second to the last stage. Note that in some cases the Cu stage can be the N th stage
while in others, where it is not possible to design a cure stage while meeting the required
functionality and efficiency gains, an additional stage, i.e., N + 1th, is introduced to
generate the accurate output. However, an alternative to this can be not using the cure
stage, which introduces a small error equivalent to the approximation error in the last
stage (see Fig. 5.4d). Using the proposed methodology, unlike the system in Fig. 5.4b, the
system in Fig. 5.4c (Fig. 5.4d) produces accurate (near-accurate) output while benefiting
from the approximations in the modules.
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Figure 5.5: Functionality of different modules used in Fig. 5.4. Oi represents the accurate
expected output and ϵi represents the approximation error generated by the ith stage.
The functions fDAx(.) and fC&DAx(.) are approximate variants of the corresponding
accurate module and fCu(.) can also be a variant of the corresponding accurate module
or just an additional correction module. f(ϵi) represents a reversible function of the error
from the ith stage.

5.3.2 Designing Efficient Neural Array using Curable Approximations

5.3.2.1 Designs of Required MAC units

To employ the proposed methodology for designing efficient neural processing arrays,
first, the required MAC units are designed and then integrated in PEs for building an
array. In this work, an array structurally similar to the array in Tensor Processing
Unit (TPU) architecture [JYP+17] is designed. Moreover, 8-bit fixed-point precision is
assumed for multiplications and the maximum possible partial sum size (within the array)
is assumed to be 19-bit, which is sufficient for an 8x8 array. Note that, for DNN inference,
8-bit quantized DNNs offer almost the same accuracy as their full-precision counterparts,
specifically for classification tasks [JKC+18][Inc]. An example computational array is
shown in Fig. 5.8b and will be discussed in the next subsection.

Fig. 5.6 shows the Baugh-Wooley algorithm [BW73b] for multiplying two 8-bit signed
operands. The sign extension can be performed by either extending the P15 bit directly
or by adding 1s at the most significant location of the last partial product. This work
employed the latter along with the Wallace tree architecture to design different required
types of high-performance MAC units.

Fig. 5.7 shows the designs of accurate, DAx, and C&DAx MAC units by illustrating
the accumulation steps for accumulating the partial-products and the partial sum. The
partial-products are generated from the multiplication of a weight and an activation
based on the Baugh-Wooley algorithm (as shown in Fig. 5.6) and the partial sum (19-bit
number) is the output from another MAC unit. Note that here a merged MAC design is
considered in which the partial-products (from the multiplication) and the partial sum are
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Figure 5.6: An 8x8 signed multiplication based on Baugh-Wooley algorithm.
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Figure 5.7: Different MAC unit designs based on Bough-Wooley algorithm and Wallace
tree architecture. The multiplicand and the multiplier are assumed to be 8-bit wide,
and the partial sums are assumed to be 19-bit wide. (a) Accurate Merged MAC. (b)
Deterministic Approximate (DAx) MAC. (c) Cure amd Deterministic Approximate
(C&DAx) MAC.

added simultaneously rather than performing the complete multiplication first and then
adding the partial sum. Each MAC design has five accumulation steps where the first
four steps are the compression steps followed by the final addition step. The compression
steps use full and half adders as compressors to compress the partial products and the
final step uses a multi-bit Ripple Carry Adder (RCA) for adding the final two arrays of
bits. Fig. 5.7a shows the accumulation steps of the Accurate Merged MAC. For building
DAx MAC (Fig. 5.7b), the final addition (in the 5th step) of the accurate merged MAC is
divided into two parts to improve the performance of the MAC unit, as the final addition
is the most delay-incurring step. The compressed error signal f(ϵ), which is the carry
out from the least-significant addition, is generated along with the approximate output
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for the subsequent module. For building C&DAx MAC (Fig. 5.7c) from accurate merged
MAC, the error bit (f(ϵ)) is added in the 1st compression step at the corresponding
significance location by replacing a half adder with a full adder. Through this the error
generated in the previous stage is compensated. However, to improve the performance,
the final addition (in the 5th step) is truncated, similar to DAx MAC shown in Fig. 5.7b.
For this scenario, the cure (Cu) module is composed of an RCA equivalent to the length
of the most significant RCA in the 5th step of the DAx and the C&DAx MAC units, i.e.,
almost half the length of the RCA used in the accurate merged MAC.

5.3.2.2 Neural Array Design

Fig. 5.8b shows the neural array design similar to the one used in the TPU architecture
[JYP+17]. The array is composed of multiple processing elements (PEs). The PE
architecture is shown in fig. 5.8a. In the array, each PE is connected to its neighboring
PE in a manner that it receives activations from its left neighboring PE (or input) and
partial sums from the above neighboring PE. The weights are communicated to the
respective PEs through vertical channels from top to bottom, and are stored inside the
PEs during the computation.

Fig. 5.8d shows the modified neural array architecture designed based on the proposed
methodology. The architecture of the PEs used in the array is shown in Fig. 5.8c. As the
partial sums are communicated from top to bottom in the array, the first row comprises
the approximate PEs containing DAx MAC (shown in Fig. 5.7b) at their core. Rest of
all the PEs are designed to have C&DAx MAC (shown in Fig. 5.7c) at their core. An
additional row is added at the bottom of the processing array to compensate for the error
occurred in the last row of the array composed of approximate PEs containing C&DAx
MAC units. The additional row is composed of Cu modules, which are adders of size
equivalent to the size of the most-significant adder in Step 5 of Fig. 5.7c.

Note that the proposed curable approximations method is orthogonal to most of the
circuit and architecture-level approximations. Therefore, it can be used in conjunction
with other approximations for significantly improving the performance and power/energy
efficiency of error-resilient systems, however, at the cost of some accuracy loss.

5.3.3 Results and Evaluation of the Proposed Neural Array Design

This subsection presents the performance, area and power results of the proposed neural
array. To compare the methodology with the state-of-the-art, the conventional systolic
array design shown in Fig. 5.8b is considered. Moreover, a systolic array composed of PEs
containing accurate merged MAC units (from henceforth referred to as Merged Accurate
systolic array) and an array composed of approximate PEs (from henceforth referred
to as Approximate systolic array) are also considered. The approximate systolic array
is constructed by using Type 3 approximate multiplier design (Approx_Mul_3 from
Section 5.2) in the conventional PEs, as shown in Fig. 5.9.
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Figure 5.8: (a) Processing Element (PE) design with conventional MAC. (b) Conventional
systolic array design similar to the systolic array of the TPU [JYP+17]. (c) Processing
Element (PE) design with merged MAC. (d) Modified systolic array design based on the
proposed methodology.
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5.3.3.1 Accuracy Comparison

As highlighted earlier, the proposed methodology results in a system that offers accuracy
equivalent to the reference system. To validate the results, a functional model of the
proposed neural array was implemented in MATLAB and used to simulate the LeNet-5
network trained on the Cifar-10 dataset. The test accuracy of the network came out to
be 74.43%, which is exactly the same reported with accurate simulations (see Fig. 5.3).

5.3.3.2 Performance, Area, and Power Evaluation of MACs

Table 5.2 presents the hardware results of the proposed MAC designs shown in Fig. 5.7, the
conventional MAC shown in Fig. 5.8a and the approximate MAC shown in Fig. 5.9. It can
be seen from the table that all the designs have almost the same power consumption, with
the approximate and the conventional accurate MACs having slightly less consumption
than others. The area numbers of the proposed MAC designs are close to each other;
however, the conventional MAC and the approximate MAC consume approximately
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19% and 10% more area compared to the proposed MACs respectively. The delay of
the proposed DAx and C&DAx MAC units is the same and is slightly less than 50%
of the delay offered by the conventional MAC and around 65% of the delay offered by
the accurate merged MAC. The approximate MAC has higher delay than that of the
accurate merged MAC due to the fact that its design is based on the conventional MAC
design. Note that all the hardware results are generated for 65 nm technology node using
Cadence Genus (Encounter) tool with TSMC 65 nm library.

Table 5.2: Hardware characteristics of different types of MAC units.
Latency

[ps]
Area

[Cell Area]
Power
[µW ]

Accurate MAC (Merged) 1871.1 746 66.56
DAx MAC 1214.2 744 66.3

C&DAx MAC 1214.2 746 68.13
Accurate MAC (Conventional) 2470.9 889 62.73

Approx MAC with Approx_Mul_3 2274.2 822 61.14

5.3.3.3 Performance, Area, and Power Evaluation of Neural Arrays

Fig. 5.10 shows the overall hardware characteristics of four different neural array designs
(i.e., Conventional, Approximate, Merged Accurate and Proposed) for two different
systolic array sizes (i.e., 4x4 and 8x8). As can be seen in Fig. 5.10a, the Proposed design
has less critical path delay compared to all other designs, which allows it to operate
at 1.91x the frequency of the Conventional, 1.72x the frequency of the Approximate,
and 1.47x the frequency of the Merged Accurate design. The area (in Cell Area unit)
and power numbers are shown in Fig. 5.10c and b, respectively. It can be observed
from the figures that the overall power and area of all the designs are approximately the
same, with Approximate offering a bit better power consumption and Accurate Merged
offering a bit better area. However, from Fig. 5.10d, it can be observed that the Proposed
design offers approximately 46% reduction in PDP (Power Delay Product) compared
to the Conventional, 38% compared to the Approximate, and 30% compared to the
Merged Accurate design. From these results, it can be concluded that the proposed
curable approximations method is highly effective for designing neural arrays.
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Figure 5.10: Comparison of the hardware characteristics of four different neural array
designs for 4x4 and 8x8 sizes.
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5.4 A Data-driven HW/SW Co-design Approach for
Energy-Efficient DNN Inference

As highlighted in Sec. 5.1, retraining DNNs is not possible under some scenarios due to a
lack of computational resources or training dataset. Therefore, the scope of the conven-
tional retraining-based DNN optimization techniques, e.g., aggressive pruning [HMD15]
and quantization [RORF16], is usually limited. Moreover, conventional approximations
also offer sub-optimal quality-efficiency trade-offs (see Sec. 5.2). Therefore, to significantly
improve the efficiency of DNNs without involving retraining, alternate techniques are
required to be explored. Post-training quantization techniques are proposed to improve
the DNN inference efficiency without involving retraining. These techniques achieve
efficiency gains mainly by converting DNN data structures to low-precision Fixed-Point
(FP) format. However, conversion to low-precision format introduces quantization errors,
leading to potentially noticeable accuracy loss, specifically when used to reduce the
precision below 8-bits. Techniques such as [JVS+18] have been proposed to reduce the
quantization error through dynamic compensation and enable less than 8-bit precision.
However, dynamic compensation requires additional hardware resources, which results in
diminishing returns. To overcome the above-mentioned limitations, this section presents
a novel data-driven algorithm and architecture co-design framework, CoNLoCNN, for
efficiently approximating DNNs to improve their power/energy efficiency without af-
fecting the application-level accuracy. Towards this, this section first highlights that a
low-precision data representation format that is aligned to the long-tailed data distri-
bution of DNN parameters (see Fig. 5.12) can result in low overall quantization error.
Moreover, the application-specific data distribution can also be exploited to simplify hard-
ware components, e.g., MAC units. Then, it presents a correlation-based low-cost error
compensation strategy that is required to be applied only once at the conversion-time to
partially compensate for the quantization errors. The section then finally presents a novel
quantization scheme, a supporting neural array design and a systematic methodology
for quantizing DNNs while exploiting error compensation strategies. A summary of the
novel contributions is shown in Fig. 5.11.

Data distribution-aware 
resource-efficient quantization 

and encoding scheme

Systematic methodology for 
approximating DNN using 
non-linear quantization

Specialized computational 
array

Energy-/performance-
efficient DNN inference
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4

3
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compensation of 

quantization error 1

Pretrained DNN

Figure 5.11: Novel contributions
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5.4.1 Strategies for Enabling Low-Precision and Energy-Efficient DNN
Inference

5.4.1.1 Strategy 1: Select quantization scheme based on data distribution
of the corresponding DNN data structures

Fig. 5.12 shows the distributions of weights, biases and activations of the layers of a
pre-trained AlexNet. It can be observed from the figure that the distributions of weights
and activations have long tails, i.e., majority of the values are concentrated in small
region and only a small set of values have large magnitude. Moreover, for each layer, the
distribution of weights is close to a Gaussian distribution with mean at zero. Considering
the long-tailed data distributions, a low-precision uniform quantization (for example,
see Fig. 5.13(a)) would result in high average/overall quantization error compared to a
non-uniform quantization (for example, see Fig. 5.13(b)) in which same (or less) number
of quantization levels are distributed based on the probability density, i.e., more number
of narrowly-spaced quantization-levels in dense regions and less number of widely-spaced
quatization-levels in light regions. Therefore, aligning quantization scheme with the data
distribution can reduce the average quantization error. However, a potential limitation of
this is that low-precision non-uniform quantization can result in a significant increase in
the maximum quantization error, which can increase the error variance. Hence, the ideal
quantization scheme should find a perfect balance between the average and the maximum
quantization error to minimize accuracy loss.

5.4.1.2 Strategy 2: Exploit correlation between neighboring feature map
values to reduce the effective mean and variance of quantization
errors

This section first presents an analysis of the impact of variations in bias values of a CNN
on its classification accuracy. Then, it presents a study of the correlation of data within
and across input feature maps of a layer. Afterwards, it presents a mathematical analysis
to highlight how the gained insights can be exploited to reduce the impact of quantization
error on intermediate outputs.

Impact of modifying the bias values in DNNs: Fig. 5.14 shows the impact of
modifying the bias values of different number of filters of a layer of a pre-trained AlexNet
on its classification accuracy. From Fig. 5.14(a) and Fig. 5.14(c) it can be observed that
when a small value, i.e., a value close to the range of original bias values (see Fig. 5.12(b)),
is added to the bias values of a number of filters, the accuracy of the DNN stays close
to its baseline accuracy. However, when the magnitude of the value added is large, it
significantly degrades the DNN accuracy. The difference between the impact of positive
and negative noise (added value) is mainly due to the ReLU activation functions in the
AlexNet, as a large negative bias leads to a large negative output which is then clipped to
zero by the ReLU function and thereby limits the impact on the final output. Fig. 5.14(b)
and Fig. 5.14(d) show that when the bias values of half of the selected filters are injected
with positive noise and half with negative noise (all having the same magnitude), the
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Long tails

(a) Distribution of weights of the layers (b) Distribution of biases of the layers

(c) Distribution of input and output activations of the layers

Figure 5.12: Distribution of weights, biases and activations of the first four convolutional
and layers of the AlexNet (in the form of half-violin plots and box plots). Note that
the output activations here represent the output of the layer before passing through
activation functions.

behavior of classification accuracy is dominated by the behavior of filters that are injected
with positive noise.

Given that large variations in bias values significantly affect the accuracy of DNNs, it
can be said that approximations that lead to mean shifts in the output activations can
degrade the application-level accuracy significantly. To highlight this further, Fig. 5.15
shows the results of an experiment where noise generated using a Gaussian distribution
was added to the bias values of the filters/neurons of different layers of a pre-trained
AlexNet. The results clearly show that when the noise is generated using smaller standard
deviation values and is injected to intermediate layers of the network, it does not affect
the accuracy much. However, when the noise is injected to the last layer of the network
or is generated using large standard deviation values, it leads to a significant drop in the
accuracy.
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Figure 5.13: Comparison between uniform and non-uniform quantization.
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Figure 5.14: Impact of altering the bias values of different number of randomly selected
filters/neurons (NF) of different layers of a trained AlexNet on its classification accuracy.
(a) and (c) show the impact when same amount of positive (or negative) value is added to
the bias values of the selected filters of layer 1 and 4, respectively. (b) shows the impact
when the bias values of half of the selected filters of layer 1 are injected with positive
noise and half with negative noise having the same magnitude. Similar to (b), (d) shows
the results for layer 4.
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AlexNet on its classification accuracy.

From the above analysis, the following three key observations/conclusions can be extracted.
(1) Small to moderate level of errors in the bias values of all the layers except the last layer
do not impact the accuracy much. (2) Mean shift in the output degrades the accuracy
only if it is large or is in the output of last layer of a DNN. (3) Resilience of DNNs
to small-to-moderate errors in bias values highlight the significance of large activation
values.

Intra-Feature Map Correlation: Fig. 5.16 shows the correlation between neighboring
activation values located at a constant shift from each other (represented using i and j in
the figure) in input feature maps of a convolutional layer. Based on the values reported
in the figure, it can be said that, there is a significant correlation between the neighboring
activation values in activation maps.
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Figure 5.16: Intra-feature map correlation of input activations of different layers of the
AlexNet and the VGG16. (a) Illustration of an input feature map (shown in blue) and its
shifted variant (shown with red border). i and j define the shifts in x and y directions,
respectively. (b) and (c) show the correlation between the input feature maps and their
shifted variants of layer 1 and layer 3 of the AlexNet, respectively. (d) shows correlation
between neighboring input activations of layer 12 of the VGG16.

Inter-Feature Map Correlation: Fig. 5.17 shows the distribution of correlation
between different input feature maps of a layer of the AlexNet. Fig. 5.17(a) shows that
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there is a significant correlation between the input feature maps of layer 1 of the DNN.
However, the distributions in Figs. 5.17(b), 5.17(c) and 5.17(d) show that, for layer away
from the input, the across-feature map correlation is almost centered around zero.
Based on the above analysis, it can be concluded that only intra-feature map correlation
can be exploited for designing an effective error compensation strategy.
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Figure 5.17: Correlation between input feature maps of different layers of the AlexNet.
(a) Correlation matrix of input feature maps of layer 1. (b) Distribution of the correlation
between input feature maps of layer 2. Similar to (b), (c) and (d) show distribtions of
layer 4 and layer 7, respectively.

Analysis of quantization error: To analyze the effects of quantization on the output
quality, consider a scenario in which the weights of a layer of a DNN are quantized
while the activations are kept in full-precision format. A quantized weight can be
mathematically represented as:

Wq = W + ∆W (5.1)

where W represents unquantized weight and ∆W represents quantization error. Now, if
it is assumed that W ∼ N (µW , σ2

W ) and ∆W ∼ N (µ∆W , σ2
∆W ), and that W and ∆W

are independent of each other, then

Wq ∼ N (µW + µ∆W , σ2
W + σ2

∆W ) (5.2)

Similar to the distribution of W , for activations, it is assumed that

A ∼ N (µA, σ2
A) (5.3)

Using the above equations and assuming the weights and activations to be independent,
Oq = �n

i=1 Wqi ∗ Ai can be transformed to

Oq ∼ N (n ∗ µA ∗ (µW + µ∆W ), n ∗ ((σ2
W + σ2

∆W +
(µW + µ∆W )2) ∗ (σ2

A + µ2
A) − µ2

A ∗ (µW + µ∆W )2)) (5.4)
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As highlighted in the earlier analysis, small deviations in the mean of output activations
do not impact the accuracy much; therefore, the main focus should be on comparing
the variance of Oq with the variance of unquantizaed output, i.e., O = �n

i=1 Wi ∗ Ai.
Subtraction of the variance of O from the variance of Oq leads to

n ∗ (σ2
∆W ∗ σ2

A + σ2
∆W ∗ µ2

A + σ2
A ∗ µ2

∆W + 2 ∗ σ2
A ∗ µW ∗ µ∆W ) (5.5)

Now, to reduce the intensity of this additional term, the intensities of σ∆W and µ∆W

are required to be reduced, which can be achieved by exploiting the high correlation
among the neighboring activation values in feature maps. Fig. 5.18(a) shows a possible
way of decomposing activation values of a block of feature map based on correlation
among neighboring values. In case of high correlation (for example, see Fig. 5.18(b)), the
variables x, y and z (shown in Fig. 5.18(a)) all have high values (i.e., close to 1). As ā2,
ā3 and ā4 represent the elements of a2, a3 and a4 (respectively) that are orthogonal to a1,
the variables ā2, ā3 and ā4 exhibit low variance compared to a2, a3 and a4, specifically in
cases where a2, a3 and a4 have a strong correlation with a1. This presence of xa1, ya1 and
za1 terms in the neighboring activations can be exploited to partially compensate/balance
the error introduced in the dot-product of weights and activations due to quantization of
weights, and it can be achieved by modifying the quantization scheme in such a way that
it balances the mean quantization error of the neighboring weights.

Example: To understand this, consider the activation block A shown in Fig. 5.18(c) and
2D filter W shown in Fig. 5.18(d). The output of dot-product of A and W comes out
to be 50.32. Now, quantize the weights of the filter are quantized to the nearest integer
values and then the dot-product operation is performed, the result comes out to be 57.7
(see Fig. 5.18(e)). However, if the second weight is mapped to its other nearest integer
value, i.e., 2 instead of 3 (see Figs. 5.18(e) and 5.18(f)), the mean absolute error (MAE)
in weights can be reduced from 0.225 to 0.025 and the absolute error in the output of
dot-product from 7.38 to 1.12. This shows that high correlation among the neighboring
values can be exploited to reduce the effective mean and variance of ∆W by minimizing
the local mean quantization error inside filter channels.

Impact of Adjusting Intra-channel Mean Quantization Error in Weights:

Fig. 5.19 highlights the impact of adjusting the mean error in filters on the output
accuracy of a DNN trained for image classification application. It mainly covers three
different cases: (1) No adjustment in the mean error of the weights; (2) Mean error
adjustment where the mean error of each filter is subtracted from the corresponding
weights; and (3) Mean error adjustment where the mean error of each filter channel is
subtracted from the corresponding weights. As can be seen in the figure, among the
three cases, intra-channel error adjustment leads to highest accuracy/compensation.
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exploiting correlation for error compensation on the output of dot-product operation.
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Figure 5.19: Impact of adjusting the inter- and intra-channel mean quantization error in
the weights of AlexNet. (a) Layer 1; (b) Layer 4.

5.4.2 Proposed Type of Non-Uniform Quantization and the Design of
Supporting DNN Hardware

Strategy 1 in Section 5.4.1 highlights that aligning quantization scheme with the data
distribution can help in reducing the adverse effects of quantization on DNN accuracy.
However, the key challenge is how to exploit this observation for improving the efficiency
of DNN systems. To address this, in this work, an Encoded Low-Precision Binary Signed
Digit (ELP_BSD) representation format is proposed. The format is mainly inspired
by the power-of-two representation, which enables the use of resource-friendly shift
operations instead of multiplications. The following subsections present details of the
proposed concept and data representation format.
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5.4.2.1 Initial Proposition

The main focus of this work is on exploiting non-uniform quantization to simplify
the MAC unit design and to reduce the bit-width of weights (wherever possible), as
both can significantly contribute towards reducing the overall inference cost. Power-
of-two quantization is one potential candidate, as it enables simplification of a costly
multiplication operation to a shift operation; moreover, it also offers the opportunity
to reduce the bit-width of weights by storing only the exponents. The power-of-two
quantization levels are aligned to the probability density function of weights, as can
be observed from Fig. 5.20(b). However, use of power-of-two quantization results in
a significant drop in application-level accuracy due to the reduction in the number
of quantization levels compared to a traditional FP quantization scheme; this can be
observed by comparing Fig. 5.20(b) with Fig. 5.20(a). Therefore, almost all the previous
works that use power-of-two quantization employ quantization-aware retraining to tune
the given DNN for the underlying quantization scheme and enable efficiency gains with
minimal accuracy loss. To avoid retraining, this work proposes the use of sum of signed
power-of-two quantization, where more than one signed power-of-two digits are combined
to offer additional quantization levels than simple power-of-two quantization, which
help in significantly reducing the overall quantization error and its impact on the DNN
accuracy while still benefiting from the key advantages of power-of-two quantization
scheme. Fig. 5.20(c) shows that addition of even a single low-range low-precision signed
power-of-two term can significantly increase the number of unique quantization levels.

5.4.2.2 Limitations of Initial Proposition and Proposed Improvements

One of the key issues with sum of signed power-of-two quantization is redundant repre-
sentations of values, which can result in diminishing returns. For example, 2x1 − 2x2 = 0
∀ x1 = x2. To reduce such redundancy, this work proposes to reduce the number of
possible power-of-two values per term. For example, if a number representation is given
as 2x1 − 2x2 and x1, x2 ∈ {0, 1, 2, 3}, to reduce redundancy, we can reduce the set of
possible values of x1 to {1, 3}. Fig. 5.20(d) shows that reducing the number of possible
power-of-two values for the first digit leads to a reduction in the amount of redundancy;
this can be observed from the reduced number of yellow semi-circles (representing the
range of the second term) at the center of the overall range. Note that this reduction in
redundancy can be exploited to further simplify the MAC unit design as well as to reduce
the bit-width of DNN weights. However, a drawback of this is that such optimizations
can result in a small decrease in the number of quantization levels, as highlighted in
Fig. 5.20(d). The redundancy can also be reduced by restricting some of the terms in
sum of power-of-two format to only positive (i.e., unsigned) values; for example, see
Fig. 5.20(e) where the second digit is restricted to only positive values.

5.4.2.3 ELP_BSD data representation

To efficiently represent low-precision sum of signed power-of-two numbers, this work
defines a novel data representation format, Encoded Low-Precision Binary Signed Digit

121



5. Neural Processing Arrays for Efficient Deep Neural Network Inference

Vertical black lines represent the quantization 
levels offered by the number format Distribution of weights

Range of FP stored in sign-magnitude format

0 2m …… 2n-2m……-2n+2m

-2n -2n-1 2m 2n-1 2n……

Width of the semi-circle defines the range of the signed power-of-two number format

0

Range of first signed power-of-two termWidth of yellow semi-circle is associated with 
the range of second signed power-of-two term

Overlapping, i.e., redundancy

2n1-2m2-2n1+2m2
0

Less overlapping can be achieved compared 
to (c) by using a larger value for ݉ଵ

2n1-2m2-2n1+2m2
0

(a)

(b)

(c)

(d)
Reduction in overlapping may lead to loss of 

some levels                      .

(e)
Less overlapping compared to (c)

Range of first power-of-two term
2n1-2n1+2m2

0

Range of second (unsigned) 
power-of-two term

Quantization levels 
introduced due to second term

ܹ = −1 ௔ × 2௜ , ݁ݎℎ݁ݓ ݅ ∈ ݉,݉ + 1,… , ݊ ܽ݊݀ ܽ ∈ {0,1}
ܹ = −1 ௔ × 2௜ + −1 ௕ × 2݆, ݁ݎℎ݁ݓ ݅ ∈ ݉1, ݉1+ 1,… , ݊1 ,݆ ∈ ݉2, ݉2+ 1,… , ݊2 , ܽ ∈ 0,1 ܽ݊݀ ܾ ∈ {0,1}

ܹ = −1 ௔ × 2௜ + 2݆, ݁ݎℎ݁ݓ ݅ ∈ ݉1, ݉1+ 1,… , ݊1 ,݆ ∈ ݉2, ݉2+ 1,… , ݊2 ܽ݊݀ ܽ ∈ {0,1}
2n1-1+2n2

Figure 5.20: Illustration of different data representation formats that show step-by-step
evolution of traditional quantization scheme to our ELP_BSD representation.

(ELP_BSD) representation. Fig. 5.21(a) shows how the specifications of an ELP_BSD
representation are defined, and Fig. 5.21(b) shows the corresponding binary representation
format. As shown in Fig. 5.21(b), the bits are divided into m groups, where each group is
responsible for representing a single signed power-of-two digit/term. Each group consists
of a sign bit and ceil(log2(di)) bits to represent the index of shift count mentioned in
the digit specification. Here di is the total number of different shift counts mentioned
for ith digit in the specification. Note that the sign bit is optional and only used when
the corresponding digit is signed. Fig. 5.21 also presents two examples to explain the
conversion of ELP_BSD numbers to values.

122



5.4. A Data-driven HW/SW Co-design Approach for Energy-Efficient DNN Inference

ELP_BSD{SF,[Signed, Shift count1,0,…,Shift count1,d1-1],…,[Signed, Shift countk,0,…,Shift countk,dk-1]}

Sign1 Shift count index1 Sign2 Shift count index2

Specifications of first digit

0=Unsigned 1=Signed
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Bits to represent second digit
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…

ceil(log2(dk))
1-bit if Signed == 1

else 0-bits

ELP_BSD{2-2, [1, 0, 1, 2, 3], [1, 0, 1]}:  
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Scaling factor

Supported shifts

Supported shifts for the second digit

Figure 5.21: (a) Specifications of an ELP_BSD format. (b) ELP_BSD format. (c) and
(d) Examples to explain conversion between ELP_BSD format and values.

5.4.2.4 Complementary Hardware Design

As shown in Fig. 5.21, ELP_BSD format mainly stores power-of-two digits in an encoded
format. To efficiently implement multiplication with a power-of-two digit at the hardware
level, shifters (e.g., barrel shifters) can be used. To realize a MAC unit for the processing
array, the shifter is followed by an adder that adds previously computed partial sum
to the newly computed product. Fig. 5.22(a) shows the MAC unit design for the case
where weights are represented using a single signed power-of-two digit (see Fig. 5.23 for
a detailed view of the same). If the same ELP_BSD format is used for all the weights,
the shifter can be designed such that index term/s from the encoded weights are used
directly to perform the corresponding amount of shifts/multiplication. Note that the set
of possible shift counts can be optimized to get a less complex shifter design.

For the case where weights are represented using an ELP_BSD format that contains
multiple digits, multiple of these units can be employed in parallel to perform the required
multiplications (for each individual digit) and generate partial sums, which then have
to be added together to generate the output. To achieve this addition, a compressor
tree is first employed to efficiently compress the operands, and then, the final output
is achieved using a multi-bit adder. Fig. 5.22(b) shows how multiple single digit MAC
units can be integrated in a Processing Element (PE) of a Neural Processing Array
(NPU), e.g., a Tensor Processing Unit (TPU) [JYP+17] like array. Fig. 5.22(c) shows
the processing array design of a TPU like architecture. The processing array follows a
weight stationary dataflow, i.e., where weights are kept stationary inside the PEs during
execution. The input activations are fed from the left and moved towards the right
cycle-by-cycle. Similarly, the partial sums flow from top to bottom. Note that this work
assumes that activations are represented in FP 2’s complement format, as changing the
format of activations won’t have any significant impact on the length of the adders in
PEs but using 2’s complement format simplifies the inversion block. Also note that in
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most of the case one to three single digit MAC units per PE are sufficient to meet the
user-defined accuracy constraints.
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Figure 5.22: (a) Single digit MAC design. (b) Modified processing element for an NPU.
(c) A Neural Processing Array architecture.

5.4.3 Novel Methodology for Efficient Approximation of CNNs
through Non-Uniform Quantization

Fig. 5.24 presents a novel methodology for approximating CNNs through non-uniform
quantization while exploiting the strategies mentioned in Section 5.4.1. The following
steps explain the working of the overall methodology.

1. Determine critical FP bit-width of activations: Starting from maximum allowed
FP bit-width (defined by the user) for activations, gradually reduce the bit-width of
activations to find the critical point after which the accuracy of the given DNN falls
below the user-defined Accuracy Constraint (AC). For this work, the bit-width of all
the activations is assumed to be the same. The key intuition behind this is that a
decrease in the activations’ bit-width results in a linear decrease in the width of MAC
units, which can significantly contribute towards improving the energy-efficiency of
the system. This step outputs critical bit-width for activations, denoted as CBWA.
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Figure 5.23: Detailed view of the single digit MAC unit shown in Fig. 5.22(a), assuming
activation bit-width to be 8-bits, encoded weight bit-width to be 4-bits and the array
size to be 256x256

2. Determine scaling factor for weights: Given the data representation format for
weights, the scaling factor is computed for the weights of each layer of the given DNN
individually. In this work, for ELP_BSD format, we compute the scaling factor using:
SF = max(weights)/2max(shift_counts).

3. Apply nearest neighbor quantization: Using the data representation format and
the scaling factors, generate a table of possible quantization levels (TQL) for each
layer of the given DNN. Then, to quantize the weights, replace the weights with their
corresponding nearest values in the table.

4. Apply error compensation algorithm: For each convolutional layer, pass the
weights (complete set of filters) to Algo. 5.1, which (partially) compensates for the
quatization errors by exploiting Strategy 2 mentioned in Section 5.4.1. Note, as most
of state-of-the-art CNNs are based on 3x3 or 5x5 filters, Algo. 5.1 focuses on reducing
the mean quantization error within filter channels. Given a filter channel, it mainly
computes the mean quantization error of the channel, finds the weights that can be
mapped to their other neighboring quantization level to reduce the error mean, sorts
all the located weights based on a cost function and starts altering the values starting
from the weights having the least cost and keeps altering till the absolute mean error
is decreasing.

5. Estimate the overall accuracy loss: This step computes the DNN accuracy to
check if the user-defined accuracy constraint is met. If the constraint is not satisfied,
the algorithm increases CBWA by 1 and performs accuracy evaluation again. If the
constraint is still not met and CBWA becomes equal to BWmax, it outputs the latest
quantized DNN.
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Figure 5.24: Proposed DNN quantization methodology

5.4.4 Results

5.4.4.1 Experimental Setup

To highlight the effectiveness of CoNLoCNN, in this work, two popular DNNs, i.e., AlexNet
and VGG16, are considered, as these networks are commonly used for benchmarking FP
DNN implementations. Both the networks are trained on ImageNet dataset. For accuracy
evaluation, the CoNLoCNN methodology is implemented using MatConvNet [VL15]
framework. For hardware results, the PE designs composed of different MAC units were
implemented in VHDL and synthesized for the TSMC 65nm technology using Cadence
Genus.

5.4.4.2 Effectiveness of the Proposed Error Compensation Strategy

To demonstrate the effectiveness of error compensation algorithm, i.e., Algorithm 5.1, it is
first tested over low-precision FP implementation of DNNs. Note, for this experiment, it
is assumed that the bit-width of weights and activations are the same and uniform across
all the layers of the given DNN. Fig. 5.25(a) shows the results for AlexNet with ImageNet
dataset. As can be observed from the figure, the proposed error compensation strategy
helps in reducing the adverse effects of quantization, specifically at lower bit-widths. For
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Algorithm 5.1: Pseudo-code for low-cost error compensation
1 Input: Un-quantized weights of a CONV layer (UnQunat_W ); Table of possible quantization levels

(T QL)
2 Result: Quantized weights (Quant_W )
3 Quant_W ← NNQuat(UnQunat_W , T QL); % Nearest neighbor quantization
4 Error_W ← UnQunat_W – Quant_W ; % Error in weights
5 for (i = 1; i ≤ No of filters ; i+ = 1) do
6 for (j = 1; i ≤ No of channels ; j+ = 1) do
7 Mean_Err = mean(Error_W ( :, :, i, j)); % Mean error of the channel
8 S ← Subset of UnQunat_W ( :, :, i, j) having corresponding error opposite in sign to

Mean_Err
9 SO ← Values of S quantized to closet levels in the opposite direction to the nearest neighbor

10 CostS = abs(S − SO)
11 Sorted_S ← Set of sorted values of S in order of increasing cost
12 for (k = 1; i ≤ No of values in Sorted_S ; k+ = 1) do
13 NewM eanErr ← Mean quantization error if the quantized value of Sorted_S(k) in

Quant_W is replaced with the corresponding value from SO
14 if abs(Mean_Err) > abs(New_Mean_Err) then
15 Accept the change in quantization level of value corresponding to Sorted_S(k) in

Quant_W
16 Mean_Err = New_Mean_Err

17 else
18 break
19 end
20 end
21 end
22 end

example, consider the case where the weights and activations are quantized to 5-bits, the
implementation without proposed error compensation offers lower accuracy compared to
the implementation that is passed through the the error compensation algorithm.
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Figure 5.25: (a) Effectiveness of our error compensation strategy when used with tradi-
tional FP quatization for the AlexNet. (b) Accuracy of the AlexNet vs. PDP for different
ELP_BSD data representations.

5.4.4.3 Effectiveness of CoNLoCNN for State-of-the-Art DNNs

To demonstrate the effectiveness of the proposed methodology, one single digit and
three two digit ELP_BSD data representation formats are considered in this work.
The complete details of the formats are listed in Table 5.3 along with the hardware
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characteristics of the PEs implemented using the corresponding MAC designs for a 32x32
processing array (array architecture is shown in Fig. 5.22(c)). Note, the scaling factor
(represented by x in the table) of the representations is not considered to be the same
across layers, and it is selected for each layer individually based on its parameters. For
each data representation format, five different activation bit-widths, i.e., 8-bit till 4-bit,
are considered to study the impact of change in activation bit-width on the accuracy of
the given DNN and the inference cost (in terms of hardware efficiency). Fig. 5.25(b) shows
the accuracy vs. PDP results achieved with CoNLoCNN for AlexNet considering the
ELP_BSD configurations mentioned in Table 5.3. Note, for each ELP_BSD configuration,
five points are plotted in the figure, which correspond to five different activation bit-widths,
i.e., 8-bit till 4-bit. The right most point belonging to the same configuration corresponds
to 8-bit activations while the left most corresponds to 4-bit activations. Fig. 5.25(b) also
includes the results achieved with the conventional and the booth multiplier-based designs
for comparison purposes. The figure clearly shows that all the considered ELP_BSD
formats result in significant reduction in the PDP compared to the conventional and the
booth multiplier-based designs. Moreover, the figure also shows that a decrease in the
bit-width of the activations from 8-bit to 6-bit offers further reduction in PDP without
significantly affecting the accuracy of AlexNet. However, further decrease in the bit-width
results in higher accuracy degradation. Further, it can be observed from the figure that
different ELP_BSD formats offer different accuracy-efficiency trade-offs. Quantitatively,
Fig. 5.25(b) shows that even the most power consuming considered CoNLoCNN design
offers (at least) around 50% reduction in PDP compared to the conventional and booth
multiplier-based designs, and if the accuracy constraint is 55%, around 75% reduction in
PDP can be achieved through CoNLoCNN.

5.4.4.4 Comparison with State of the Art

For comparison with state of the art, CoNLoCNN is compared with CAxCNN [RHK+20].
First, CAxCNN [RHK+20] is implemented using the developed framework. Then, Canoni-
cal Approximate (CA) representation with one non-zero digit is selected to generate results.
The weights of AlexNet are converted to CA format using their most expensive exhaustive
search algorithm to have a fair accuracy comparison. For AlexNet, CAxCNN with one
non-zero digit CA representation achieves 50.9 % top1 accuracy while CoNLoCNN with
ELP_BSD{SF,[1,0,1,2,3,4,5,6,7]} (i.e., the simplest format closest to one non-zero digit
CA representation) can offer 55.4% accuracy. This improvement is mainly due to the
proposed error compensation strategy, as the quantization levels offered by one non-zero
digit CA are almost the same as offered by ELP_BSD{SF,[1,0,1,2,3,4,5,6,7]} format with
the only difference being of ’0’, which is not present in ELP_BSD{SF,[1,0,1,2,3,4,5,6,7]}.
However, absence of ’0’ does not affect the accuracy as ELP_BSD{SF,[1,0,1,2,3,4,5,6,7]}
has ’1’ and ’-1’ quantization levels and error compensation. Moreover, even in the best
possible scenario, CA representation can reduce the weight bit-width to only 5 bits per
weight while ELP_BSD{SF,[1,0,1,2,3,4,5,6,7]} reduces the weight bit-width to 4 bits per
weight. Similar to AlexNet, for VGG-16, it is observed that CoNLoCNN offers 3% higher
accuracy compared to CAxCNN.
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Table 5.3: Hardware characteristics of the PEs designed using our methodology for some
of ELP_BSD representations and their comparison with booth multiplier-based and
conventional multiplier-based PEs.

Bit-width With 8-bit Activations

Configuration of MAC for PEs Weights Activations Area [cell 
area]

Power 
[uW]

Delay 
[ns] PDP [fJ]

ELP_BSD{x, [1,0,1,2,3,4,5,6,7]} 4
8 556 28.55 2.30 65.68
5 450 23.06 1.99 45.79

ELP_BSD{x, [1,0,1,2,3,4,5,6,7], 
[1,1,2,4,5]} 7

8 838 59.60 1.85 109.96
5 694 46.53 1.71 79.71

ELP_BSD{x, [1,0,1,2,3,4,5,6,7], 
[1,1,5]} 6

8 814 51.65 1.85 95.29
5 676 41.22 1.71 70.65

ELP_BSD{x, [1,0,2,5,7], 
[1,1,2,4,5]} 6

8 835 56.57 1.81 102.61
5 680 43.07 1.62 69.86

Booth Multiplier-based MAC 8 8 1195 86.73 2.49 216.12
Conventional FP 8 8 1179 83.56 3.56 297.47

5.5 Summary of Efficient Neural Array Design

Retraining DNNs is not feasible in some cases due to the lack of computational resources
and/or extensive training data. Therefore, alternate techniques are required that can
offer high-efficiency gains without affecting the accuracy of DNNs. Various approximation
techniques have been proposed in the literature to reduce the DNN inference cost.
However, they offer only limited gains when used with strict accuracy constraints.
Towards this, this chapter presented a curable approximation technique, which enables
high-efficiency gains at no accuracy loss by employing approximate modules having error
curing characteristics. Based on the concept, the chapter presented a novel neural array
design that offers over 30% reduction in PDP while offering the same DNN accuracy as an
accurate (non-approximate) array design. The chapter also highlighted the significance
of application and distribution-aware approximations. By exploiting the concept and the
advantages of power-of-two quantization, a novel non-linear quantization approach is
presented, which significantly reduces the complexity of MAC units used in the neural
arrays. Alongside the non-linear quantization method, a novel data representation format,
i.e., Efficient Low-Precision Binary Signed Digit (ELP_BSD) format, is also presented.
Using the proposed data representation format, DNN weights can be represented using
lower bit widths to reduce the overall memory requirements during inference. The chapter
also presented an error compensation strategy based on the correlation between activation
values, to reduce the impact of errors induced due to the non-linear quantization of
DNN parameters. The proposed CoNLoCNN methodology, which combines the novel
non-linear quantization, ELP_BSD data representation format and the compensation
strategy, offers about 75% reduction in PDP of the neural array at only 1.44% accuracy
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loss for AlexNet trained on the ImageNet dataset. Note that partial retraining can
be combined with the proposed techniques to overcome the accuracy loss, whenever
possible.
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CHAPTER 6
A Low-cost Technique for
Mitigating the Effects of

Permanent Faults in Deep Neural
Network Accelerators

As the semiconductor industry is moving towards smaller technology nodes, technology-
induced reliability threats are drastically increasing. These threats include permanent
faults that impact the yield of the manufacturing process, soft errors that affect the
functionality of the system at run-time, and aging that results is gradual degradation
of the fabricated hardware over time due to different phenomena like Bias Temperature
Instability (BTI) and Hot Career Injection (HCI).

This chapter presents a novel technique for mitigating permanent faults in the processing
array of a systolic array-based DNN accelerator. First, Section 6.1 presents the motivation
behind this work. Then, Section 6.2 presents a novel saliency-driven fault-aware mapping
technique for salvaging DNN accelerators having permanent faults. The section also
presents different hardware modifications for supporting the proposed mitigation technique
under different scenarios. It also explains how the filters/neurons in a DNN layer can be
permuted for realizing fault-aware mapping without any run-time overheads. Towards
the end, Section 6.3 highlights the effectiveness of the proposed technique by evaluating
it for different DNNs and fault rates.

6.1 Motivation and Problem Identification
DNN accelerators, such as TPU [JYP+17] and Eyeriss [CYES19], are fabricated using
nanoscale technologies. The imperfections in the nanoscale manufacturing processes
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result in defects in the fabricated chips. These defects can take a wide variety of forms,
from permanent faults (e.g., stuck-at faults) that affect the functionality of the chips to
variations that affect only the operating characteristics (e.g., through variability-driven
voltage and frequency guardbands to avoid timing errors) [Con03][HBD+13]. Moreover,
technology scaling that has played a vital role in improving the performance and efficiency
of digital systems offers these benefits at the cost of increased fault rates (related to both
permanent and transient faults). Prior works have highlighted that permanent faults
in DNN accelerators can significantly degrade the accuracy of DNNs [ZGBG18]. These
faults can be detected using post-fabrication testing. However, discarding every defected
chip affects the yield and increases the average per-unit cost of the chips [ZGBG18].

Improving the yield is one of the foremost challenges towards reducing the per-unit
cost of DNN accelerators. This is specifically important for devices manufactured
using smaller process nodes [KK98]. The significance of this challenge, in general,
increases with an increase in the size of the chip, aggressive technology scaling, and
the integration density [KK98]. Therefore, in the current nanometer regime, where
the number of Processing Elements (PEs)/cores per chip has drastically increased to
meet the performance requirements of modern applications, many integrated circuit (IC)
manufacturing companies sell their faulty chips under low performance categories after
making necessary modifications and without revealing this information to the end-users.
Two of the most prominent techniques, that are widely studied (and employed) for yield
enhancement, are:

• Product binning: This approach is mainly used to categorize the manufac-
tured products based on their characteristics observed during post-fabrication
testing [SKMB03][pro]. The binning process is used to reduce the large variances in
the characteristics by dividing the products into categories with smaller variances.
This process is commonly used by chip manufactures such as Intel and AMD to
improve their manufacturing yield [Hru] [Wit].

• Redundancy: In this approach, spare components are added in the design to
replace the defected ones after post-fabrication testing [SKMB03][ZHXL08][MW07].

Apart from the aforementioned techniques, several other techniques have been studied
that offer yield enhancement at the cost of some performance loss [KR89][KL83]. Re-
cently, Zhang et al. in [ZGBG18] proposed Fault-Aware Pruning (FAP) specifically for
mitigating the effects of permanent faults in the processing array of systolic array-based
DNN accelerators. The technique offers fault mitigation without affecting the perfor-
mance of the system. The method works on the principle of dropping the computations
associated with parameters that are mapped on faulty MAC units. Note that faults in
the fabricated hardware can be detected using an initial BIST (built-in-self-test) like
method [AKS93][FFR16]. Zhang et al. in [ZGBG18] also proposed hardware modifica-
tions that enable bypassing of faulty computational units at low cost to realize the FAP
method. Further, they proposed a Fault-Aware Pruning + Training (FAP+T) approach
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that offers better accuracy due to fault-aware retraining of the model. However, these
methods “tend to either be ineffective or lack efficiency” in situations where any of the
following conditions hold.

1. The additional circuitry used for bypassing the MAC units is faulty. In this case,
the faults can propagate to the output of the hardware and result in accuracy
degradation.

2. The number of chips manufactured is large and the number of computational units
in the DNN accelerator design is also significant. In this case, the number of faulty
chips can be large with each having a distinct fault map. For example, Fig. 6.1a
shows the possible number of distinct fault maps that can exist for different systolic
array sizes, and Fig. 6.1b shows the possible number of distinct fault maps for
different array sizes and having the total number of faulty PEs less than or equal to
five. As can be seen from the figure, with an increase in the size of the systolic array,
the number of possible fault maps increases exponentially. Moreover, the number of
possible fault maps for larger array sizes is greater than the number of chips usually
manufactured of the same type/configuration. In such a case, chances of each faulty
chip having a distinct fault map are significant, and fine-tuning/training a neural
network for each faulty chip is impractical due to their gigantic computational
overheads, specifically for deeper and complex DNNs (see Fig. 6.2).

3. The training dataset is not available, e.g., in a case where a vendor has released
a trained DNN but has not made the training data available. This limits the
applicability of fault-aware retraining, as dataset generation is a costly and time-
consuming process. Moreover, training/fine-tuning with a smaller dataset can lead
to sub-optimal performance.

4. The fault map is changing with time, e.g., due to aging.

In all the above-mentioned scenarios, the state-of-the-art techniques result in undesirable
accuracy degradation or significant training/fine-tuning overheads. Therefore, there is
a need for a technique that can mitigate the effects of permanent faults without any
significant design-time or run-time costs.

6.2 SalvageDNNs: A Methodology for Salvaging DNN
Accelerators using Fault-Aware Mapping

This section presents a novel methodology for salvaging DNN accelerators having perma-
nent faults in the computational array of a systolic array-based DNN accelerator using
saliency-driven fault-aware mapping, without requiring extensive retraining as typically
required by state-of-the-art. Figure 6.3 illustrates the overview of the methodology.
In Step 1 , the DNN accelerator design is modified such that the components having
permanent faults can be disconnected from the main datapath to mitigate the effects
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Figure 6.1: Trends illustrating the relation between the possible number of fault maps vs.
the number of rows/columns in a systolic array: (a) when number of faulty PEs ≤ total
PEs in the array, and (b) when number of faulty PEs ≤ 5
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Figure 6.2: Time required for training different DNNs (i.e., VGG16, VGG11, ResNet18,
and ResNet20) with different datasets (i.e., ImageNet and Cifar-10) for one epoch using
a Core i7 machine with one GTX1080Ti.

of the faults. In Step 2 , the saliency of the weights of the input DNN is computed.
Based on the saliency, dataflow, architectural characteristics of the modified accelerator
design and the fault map of the fabricated hardware, Step 3 then defines mapping of
neurons/filters of a layer of the input DNN on different segments of the hardware. The
mapping is defined such that the sum of saliency of the weights that have to be pruned
(mapped on the faulty/disconnected parts of the hardware) is minimized. Step 4 makes
the required modifications in the input DNN by permuting the filters/neurons based on
the mapping defined by Step 3 to avoid any run-time overheads due to highly memory
intensive data rearrangement operations. Steps 3 and 4 are repeated for each layer
(starting from the first layer) and the resultant network is forwarded to Step 5 after
setting all the weights that correspond to faulty/disconnected computational units based
on the given dataflow scheme to zero. In Step 5 , required adjustments are made to
DNN parameters to (partially) compensate for the accuracy loss incurred due to pruning.
The details of these steps are presented in the following subsections.

6.2.1 Hardware Design Optimization/Enhancements for Permanent
Fault Mitigation

Fig. 6.4c highlights the hardware modifications proposed in [ZGBG18] for realizing FAP
approach.

The baseline systolic array architecture and the Processing Element (PE) design are
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Figure 6.3: Overview of the proposed SalvageDNN methodology for saliency-driven
fault-aware mapping of DNNs on a hardware with permanent faults.

shown in Figure 6.4a and 6.4b, respectively. The additional multiplexer in Fig. 6.4c is
inserted to bypass the MAC unit in case it is faulty. The proposed modification can help
mitigate the effects of permanent faults in the MAC units, but faults can occur in other
hardware component as well, e.g., the added multiplexer circuitry. In case a fault occurs
in the multiplexer, the design in Fig. 6.4c is incapable of mitigating it. To overcome this
limitation, different hardware enhancements are studied in this work. Note that the PE
design in Fig. 6.4c, from here onward, is also referred as SOA_PE.

Figs. 6.4d, 6.4e and 6.4f show three different architectural modifications studied in this
work. These designs offer different trade-offs between the hardware overhead vs. the
average amount of MAC units dropped/disconnected from the datapath in case of a
fault. Note that dropping MAC units impacts the DNN inference accuracy directly, as it
corresponds to dropping corresponding weights mapped onto those MAC units. Fig. 6.4d
shows the design where, in case of a fault in the MAC unit inside a PE, the complete
set of MAC units above and including the MAC in the faulty PE are cutoff from the
datapath. In case of a fault in the multiplexer of a PE, additionally the MAC unit in the
subsequent PE is also disconnected by using its multiplexer. This design is, henceforth,
referred as C_PE in the thesis. The main advantage of this design is that it incurs low
hardware overhead. However, the DNN accuracy can drop significantly, depending on
the locations and number of faults. Fig. 6.4e illustrates a hybrid design that combines
the best of both worlds, i.e., in case of a fault in the MAC unit of a PE, the MAC unit
can be bypassed and, in case of a fault in the multiplexer, the complete set of MAC units
including the MAC in the subsequent PE can be cutoff from the datapath. This design,
from here onward, is referred as BNC_PE. The main advantage of this design is that it
can handle faults in the MAC units as well as the multiplexers without much overhead
cost compared to that of the design shown in Fig. 6.4c.
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Figure 6.4: (a) The baseline systolic array design similar to the TPU. (b) The conventional
PE design. (c) The modified PE proposed in [ZGBG18] for permanent fault mitigation
using the FAP and the FAP+T techniques. (d), (e) and (f) show our novel additional
PE designs for handing permanent faults. Note, the changes in the PEs with respect to
the conventional PE design, i.e., (b), are shown in color.

Fig. 6.4f shows the third design, which is a modified version of BNC_PE. It contains
an additional connection compared to BNC_PE for bypassing two adjacent MAC units
in a column, which enables us to bypass the intermediate multiplexer in case it is faulty.
This design is referred as DBNC_PE in the following sections. Similar to DBNC_PE,
a design can be made where n adjacent MAC units can be bypassed. However, there are
two main shortcomings of this approach: (1) it leads to high overheads due to the need
of a larger multiplexer and additional registers required for partial sums to maintain the
computational flow; and (2) if n consecutive PEs have faults in their multiplexers, error
can still propagate to the output. Due to these limitations and considering the fact that
fault rates are usually very low, in this work, we limit n to 2, as shown in Fig. 6.4f.
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6.2.2 Saliency Computation of DNN Parameters
This work studies the impact of two different saliency computation methods on the
effectiveness of the proposed methodology. The methods are as follows.

1. Norm-based method: In this approach, L1-norm (or L2-norm) of the weights,
neurons, and/or filters of the given DNN are computed. The L1/L2 scores define
the relative importance of the parameters.

2. Importance score propagation-based method: In this approach, the impor-
tance of each weight/neuron/filter is computed using its L1-norm and the saliency
of the connections between the corresponding neuron/filter and the output of the
DNN. Let s<l>

i defines the saliency of the connections between the ith neuron/filter
in the lth layer of the given DNN and the output of the DNN. The saliency of a
weight in a neuron/filter can be computed by multiplying the L1-norm of the weight
with the saliency of the connections between the neuron/filter and the output of
the DNN, i.e., in lth fully-connected layer it is computed by |W <l>

(i,j) | × s<l>
i and in

lth convolutional layer it is computed by |W <l>
{(r,c),(C,i)}| × s<l>

i . The saliency of the
connections between a neurons/filters in lth layer of the given DNN and the output
of the DNN can be computed by:

s<l>
i =

�
k

|W <l+1>
(k,i) | × s<l+1>

k (6.1)

in case l + 1th layer is a fully-connected layer, and it is computed by

s<l>
i =

�
k

�
r

�
c

|W <l+1>
(r,c),(i,k)| × s<l+1>

k (6.2)

in case l + 1th layer is a convolutional layer. In this work, s<last layer>
i = 1 ∀

i ∈ {1, 2, ...N<last layer>}.

Note, the aforementioned saliency computation methods are highly effective for comparing
the saliencies of weights within the same layer, i.e., not across layers. As the layers are
processed sequentially in most of the DNN accelerators, only the relative importance
of weights within a layer is required. Hence, the above the mentioned approaches are
sufficient for evaluating the importance of weights of a DNN.

6.2.3 Minimization of the Sum of Saliency of Pruned Weights
The objective of SalvageDNN is to map the least important weights on the components
disconnected from the datapath. To achieve this goal, the following steps are followed for
each layer of the given DNN.
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Algorithm 6.1: A Fast Method to Reduce the Sum of Saliency of the Weights
of a Layer that have to be Pruned due to Permanent Faults.
1 Inputs: A matrix Costs containing the costs of mapping neurons/filters to faulty columns of the array

and a vector Idx containing the indexes of faulty columns of the array
2 Outputs: A matrix Mapping which defines which neuron/filter has to be mapped to which faulty

column and a variable T Cost which defines the cost of this mapping scheme
3 Initialize: T Cost = 0, Mapping = Zeros(Number of Columns in Costs, 2) and NF_Idx = [1, 2, 3, ...

Number of neurons/filters in the layer]
4 for i = 1 to Number of columns in Costs at the start of the loop do
5 [val, row_id, col_id] = min(Costs)
6 Mapping(i,1) = NF_Idx(row_id)
7 Mapping(i,2) = Idx(col_id)
8 T Cost = T Cost + val
9 Costs ⇐ Costs after removing row_id row and col_id column

10 Idx ⇐ Idx after removing col_id column
11 NF_Idx ⇐ NF_Idx after removing row_id column
12 end
13 return T Cost and Mapping

• Disconnection Map (DM) Generation: DM is a matrix that defines which
MAC units are disconnected from the datapath in the processing array due to
permanent faults. The map is generated by setting the values corresponding to
the MACs that are disconnected from the array to 1. For example, if the MAC
unit in the first row and first column of the array is disconnected, the DM(1, 1) is
set to 1; otherwise, it is set to 0. The DM is constructed using the fault map of
the array. The fault map is represented using two matrices FMMAC and FMMUX ,
where FMMAC keeps track of the faulty MAC units and FMMUX keeps track of
the faulty multiplexers in the array. Note that the sizes of DM , FMMAC and
FMMUX are the same as the size of the array, and there is one-to-one mapping
between the elements of the matrix and respective hardware components in the
systolic array.

• Unrolling the Saliencies of Weights of a Layer into a Matrix S: The
saliency values after computation are organized in the same format as the weights
of the DNN. For each layer individually, the multidimensional saliency tensor is
required to be unrolled and stored in a 2D matrix, S. After unrolling, the matrix S
contains the saliencies of the weights of a layer in flattened form, i.e., each column
in the matrix contains saliency values of the weights of a neuron/filter. Note that
the unrolling is performed based on a pre-defined dataflow that is provided as input
by the user.

• Pruning Matrix (PM) Generation: The DM matrix is replicated in x and
y dimensions such that the number of columns and rows in the final matrix is at
least equivalent to the number of columns and rows in S. The additional columns
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(from the right) and rows (from the bottom) are then removed, and the resultant
matrix is stored in the Pruning Matrix (PM). The columns containing all zeros are
removed from the PM while keeping track of the original indexes of the non-zero
columns in a vector Idx.

• Defining Mapping Policy that Minimizes the Sum of Saliency of the
Weights to be Pruned: The objective of this step is to generate a mapping
policy that minimizes the sum of saliency of weights to be pruned. This can
mathematically be represented as:

argminmapping||S∗. ∗ PM || (6.3)

Here, S∗ represents a transformed version of S generated after applying rearrange-
ment of network parameters based on the mapping policy presented in Section 6.2.4.
The ‘.*’ operation represents element-wise multiplication of two matrices. In this
step, Algorithm 6.1 or Algorithm ?? are used to find the mapping sequence of
neurons/filters. Algorithm 6.1 is based on a greedy approach for fast generation of
an acceptable solution. However, Algorithm ?? is based on a branch and bound
approach to propose an optimal solution. The detailed descriptions of Algorithm 6.1
and Algorithm ?? are as follows.

Algorithm 6.1 presents a naive method to find a sub-optimal mapping policy. The
algorithm takes the Costs matrix and the Idx vector as inputs. The Costs matrix
contains the costs of mapping each neuron/filter to each faulty column of the systolic
array, and the Idx vector contains the indexes of the faulty columns of the array. The
Costs matrix is computed through matrix multiplication of transpose of S with PM .
Each row of the Costs matrix contains the cost of mapping a filter to each faulty column
of the array individually. The algorithm, at each iteration, finds the minimum value
in the matrix (line 5) and then associates the corresponding neuron/filter index from
NF_Idx with the index of the column of the array from Idx (lines 6 and 7). The costs
associated with the selected filter and the column of the array are then removed from
the Costs matrix (lines 9). Similarly, the index vectors are also updated (lines 10 and
11). The resultant matrix and vectors are then used in the next iteration. The algorithm
iterates for the number of filters to be mapped on the faulty columns (line 4), i.e., the
number of columns in the Costs matrix, and outputs the mapping (Mapping) and the
corresponding total cost (TCost).

Algorithm ?? presents a more robust approach for finding a suitable mapping policy
that offers minimum sum of saliency of weights to be pruned. The algorithm is based
on a branch and bound method, which recursively calls (line 19) the Branch&Bound
function (line 6) with a smaller problem, i.e., smaller Costs matrix (lines 14 till 17). The
algorithm keeps track of the cost of the already selected pairs in CS_Cost and restricts
the algorithm from searching in the same branch if the overall cost is more than the cost
of the reference mapping R_Mapping (lines 13 and 29). Note that at beginning of the
algorithm, the reference cost is computed using Algorithm 6.1 to speed-up the process.
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If, at some point, a mapping that has cost less than the cost of the reference mapping is
found, the reference mapping and the reference cost are updated (lines 29 till 31). As the
algorithm is meant to search in all the possible branches (combinations) and can take
endless amount of time for larger Costs matrices, the search is limited by applying a
limit on the number of miss hits (MH_Count), i.e., Termination_Limit (line 21), from
the last reference mapping update. The algorithm also employs a per branch search limit
(line 10) to decrease the number of searches in each branch and search only in a defined
number of nodes that offer minimum costs (lines 9 and 10).

6.2.4 Rearrangement of the Network Parameters

In most of the DNNs, the neurons/filters within a layer can be permuted without affecting
the functionality of the DNN. Fig. 6.5 illustrates this with the help of an example in which
two neurons in an FC layer are swapped. Fig. 6.6 illustrates a similar example for a CONV
layer in which two filters are swapped. To maintain the functionality, the corresponding
connections in the subsequent layer of the DNN are also swapped. This property helps
in maintaining the original structure and the dataflow inside the accelerator without
requiring additional data arrangement operations. The only exceptions are the DNNs
that have Local Response Normalization (LRN) layers, e.g., the AlexNet [KSH12]. In
such networks the computing sequence in the accelerator has to be slightly modified and
additional data arrangement operations might be required that can affect the efficiency
of the system. However, almost all the modern DNNs do not employ LRN layers, and
hence they can directly benefit from the proposed methodology.

6.2.5 Network Approximations (Optional)

After rearrangement and setting the corresponding weights that have to be mapped
on the disconnected computational units to zero, we compute the mean of the output
activations of the neurons and filters using a small subset of the validation dataset. The
mean values are compared with the mean values acquired through the original DNN,
and based on their difference, the biases of the neurons/filters are adjusted to partially
compensate for the effects of pruning. Note that, in case, the training dataset and
sufficient computational resources are available, fine-tuning can be employed instead for
regaining a fraction of the lost accuracy.

6.2.6 SalvageDNN under Static and Dynamic Conditions

This section explains with the help of examples how the proposed methodology helps
salvage a faulty DNN hardware. The practical cases can be broadly represented using two
different scenarios: (1) where the fault maps are extracted only after fabrication during
post-fabrication testing and each chip can have a distinct fault map; and (2) where the
fault map of a chip is changing over time due to aging and can be extracted using BIST
support available in the chip. Note that, for ease of understanding, in both the scenarios,
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Figure 6.5: Impact of rearranging neurons in a layer of a fully-connected DNN on the
arrangement of the weights to be mapped on the systolic array. (a) shows the arrangement
before swapping neurons 1 and 2 in the first hidden layer of a fully-connected DNN,
and (b) shows the arrangement after swapping the neurons. The left side of the figure
illustrates the state of the neural network and the right side shows the weights of the
first and second hidden layers in a manner in which they will be mapped on a systolic
array. Different colors are used to show the association between the neurons and weights.

it is assumed that only the faulty PEs are bypassed to avoid fault propagation. Moreover,
the saliency of the DNN parameters is computed using L1-norm.

Scenario 1: Different hardware chips can have different fault maps, i.e., the fault maps
can vary across chips. To explain how SalvageDNN handles such a scenario, consider an
example where four filters (see Fig. 6.7a), each having four values (i.e., weights), have to
be mapped on a 4x4 systolic array to perform the dot-product operations. The filters are
unrolled and mapped on the systolic array based on the baseline systolic array design
shown in Fig. 6.4a. Fig. 6.7 highlights four different example cases, each representing a
systolic array belonging to a different chip. The cases are explained as follows:

• Case 1: None of the PEs in the array is faulty (see Fig. 6.7b)

• Case 2: The array has two faulty PEs (see Fig. 6.7c)

• Case 3: The array has the same number of faulty PEs as in Case 2, but at different
locations (see Fig. 6.7d)

• Case 4: The array has a higher number of faulty PEs than Case 2 and Case 3, and
also at different locations (see Fig. 6.7e).
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Figure 6.6: Impact of rearranging filters in a layer of a CNN on the arrangement of the
weights in the neural network. (a) shows the arrangement of filters and their channels
before swapping filters 1 and 2 in the lth convolutional layer of a CNN, and (b) shows
the arrangement after swapping the filters. Note that a swap of filters in the lth layer
of a CNN requires a swap of the respective channels in the l + 1th layer of the CNN to
maintain the functionality.

In Case 1 (Fig. 6.7b), the mapping does not affect the accuracy of the results, as there
are no faulty PEs in the array, which have to be bypassed during execution. In Case 2
(Fig. 6.7c), the filters are mapped onto the columns such that the sum of absolute weights
mapped on the faulty PEs is minimum, which in this case is achieved by mapping filters
1, 2, 3, and 4 on columns 2, 1, 4, and 3 respectively, of the systolic array. In Case 3
(Fig. 6.7d), the fault map of the array is different from the ones presented in earlier two
cases. Therefore, the mapping can be different, depending on the fault map and the filter
values. As can be seen in Fig. 6.7d, to minimize the sum of absolute weights mapped onto
the faulty PEs, filters 1, 2, 3, and 4 are now mapped on columns 2, 3, 4 and 1 respectively.
Similarly, in Case 4 (Fig. 6.7e) the mapping is defined based on its fault map. Here, it
is important to clarify that, similar to the state-of-the-art FAP technique [ZGBG18],
SalvageDNN also adjusts the DNN for each faulty chip individually based on its fault
map. However, unlike state of the art, SalvageDNN does not employ any retraining, and
therefore, requires less time and resources for making the adjustments compared to the
retraining-based approaches, as shown later in Section 6.3.2.5. Moreover, SalvageDNN
also does not require access to the training dataset, which in most of the practical cases
is not available (as stated in Section 6.1). Details regarding how the proposed technique
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Figure 6.7: An example illustration of how the mapping would vary across chips having
different fault maps. The grids shown in b, c, d, and e corresponds to 4x4 systolic arrays
from 4 different chips. Each small box inside a grid represents a single Processing Element
(PE). The PEs with black cross (x) over them in c, d, and e correspond to faulty PEs.
The filters considered in this example are shown in a.

minimizes the cost are presented in Algorithm 6.1 and Algorithm ??.

Scenario 2: The fault maps can change over time, e.g., due to wear-out. To explain how
SalvageDNN can be used in this scenario without incurring high overheads, consider an
example where four filters (see Fig. 6.8a), same as shown in Fig. 6.7a, have to be mapped
on a 4x4 systolic array. Fig. 6.8 illustrates three different cases that are:

• Case 1: None of the PEs in the systolic array is faulty (see Fig. 6.8b)

• Case 2: The array has two faulty PEs (see Fig. 6.8c)

• Case 3: With time, the number of faulty PEs in the array presented in Case 2 has
increased to three (see Fig. 6.8d)

Cases 1 and 2 are the same as presented in Fig. 6.7. In Case 1, the mapping policy
does not affect the accuracy of the results as there are no faulty PEs in the array. In
Case 2, filters 1, 2, 3, and 4 are mapped on columns 2, 1, 4, and 3 respectively (see
Fig. 6.8c), to minimize the sum of saliency of weights that are mapped onto the faulty
PEs. However, in Case 3, once the fault map is updated using BIST, the mapping of
filters should also be updated to achieve a lower cost. As can be seen in Fig. 6.8d, the
minimum sum is achieved by mapping filters 1, 2, 3, and 4 on columns 3, 1, 2, and 4
respectively. Note that, with the mapping policy of Case 2 and the fault map of Case 3,
the sum of absolute weights mapped on the faulty PEs would have been 1.25, while with
the updated mapping, the sum is 0.78, as can be observed in Fig. 6.8d.
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Figure 6.8: An example illustration of how the mapping would change if the fault map of
the DNN hardware changes over time. The grid shown in b, c, and d corresponds to a
systolic array, where each small box represents a single Processing Element (PE). The
PEs with black cross (x) over them in c and d correspond to faulty PEs detected during
post-fabrication testing and the PE with red cross (x) over it in d correspond to the PE
which experienced fault over time due to wear-out.

Associated testing and re-configuring overheads: Post-fabrication testing is an
essential part of the manufacturing process, which is required to verify the functional
correctness of the fabricated hardware. It is also used for identifying faulty components
in the hardware [PBGM09][NHK+99][SV05]. Therefore, no additional cost is usually
required to extract the initial fault map. As Scenario 1 considered only the initial
fault maps, no additional effort is required, apart from the usual cost necessary for
post-fabrication testing. The extracted fault map are used, in our case, for re-configuring
the fault tolerant systolic arrays, as well as for determining the DNN mapping using the
proposed, SalvageDNN, methodology. Note that storing the fault map requires some
memory. However, it is relatively small (e.g., one bit per PE) as it completely depends
on the size and type of the systolic array. Unlike Scenario 1, Scenario 2 requires online
BIST support to extract the updated fault map at regular intervals. The cost of such
a support is usually high; however, it can be reduced by using algorithm-based fault
detection and localization techniques [ABF+87]. The algorithm-based techniques have
proven to be very effective for regular hardware structures composed of homogeneous
components, such as systolic arrays.

144



6.3. Results and Discussion

6.3 Results and Discussion

6.3.1 Hardware Synthesis Results

Table 6.1 presents the hardware characteristics of the conventional PEs and SOA PEs
designed for different systolic array sizes. The results are generated following an ASIC
design flow using Cadence Genus tool with the TSMC 65nm technology library. As
can be seen in the table, in all the listed systolic array sizes, the MAC units consume
approximately 66% of the area of the respective PEs, and the multiplexer inside each
SOA PE consumes approximately 6% of the area of the respective PE. This shows that
mitigating permanent faults in the MAC and MUX units of the array can significantly
improve the yield of DNN hardware manufacturing process.

Table 6.1: Hardware characteristics of the components used in different sizes of the
baseline and the state-of-the-art fault-tolerant systolic arrays. The bit-widths of the
partial sums in 8x8, 16x16, 32x32 and 256x256 arrays were set to 19, 20, 21 and 24,
respectively, assuming the bit-width of weights and activations to be 8-bit.

Area [cell area] Delay [ns] Power [µW]

8x8 Array

Baseline PE 931 2.17 76.77
SOA PE 972 2.21 80.10
MAC 620 1.97 62.11
2-to-1 MUX 56 0.24 2.69

16x16 Array

Baseline PE 950 2.23 77.09
SOA PE 993 2.26 82.09
MAC 632 2.01 62.01
2-to-1 MUX 59 0.25 2.88

32x32 Array

Baseline PE 965 2.32 77.62
SOA PE 1010 2.35 81.10
MAC 640 2.10 61.10
2-to-1 MUX 62 0.25 2.90

256x256 Array

Baseline PE 1006 2.65 77.40
SOA PE 1058 2.68 80.64
MAC 661 2.44 61.66
2-to-1 MUX 70 0.28 3.39

Fig. 6.9 presents a comparison of the hardware characteristics of the PEs designed for
different sizes and types of the systolic arrays discussed in Section 6.2.1. The figure shows
that the fault-tolerant PEs consume slightly more area as compared to the corresponding
baseline PEs, depending on the complexity of the bypassing/cutoff circuitry in the design.
For example, a PE with dual bypass and cutoff circuitry (i.e., DBNC_PE) consumes
approximately 25% more area, and a PE with cutoff circuitry (i.e., C_PE) consumes
approximately 1% additional area, when compared to the corresponding baseline PE
used for the same size of the systolic array. The variations in PE area with array size
are due to the fact that the bit-width of the partial sums increases with an increase in
the number of rows in the array. Similar to the area characteristics, the critical path
delay of a PE also depends on the design and the size of the systolic array. However,
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(a) Hardware Characteristics of PEs used in Different Types of 8x8 Systolic Arrays
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Figure 6.9: Hardware synthesis results of the PEs of different sizes and types of systolic
array designs.

the variations in the delay are relatively small, i.e., at the maximum 6.5% for the 8x8
systolic array composed of DBNC_PE, when compared to the baseline PE belonging
to the same sized systolic array. The trend in the power characteristics is approximately
similar to the trend observed in the area characteristics of the PEs. Hence, the options
illustrated in Fig. 6.4, Section 6.2.1 provide different design trade-offs between hardware
characteristics (i.e., area, latency, power) and resilience.

6.3.2 Impact of Fault-Aware Mapping (SalvageDNN) on DNN
Accuracy

6.3.2.1 Experimental Setup

For analyzing the effectiveness of SalvageDNN for mitigating the effects of permanent
faults, different variants of VGG model (i.e., VGG11 trained with the Cifar-10 [KH+09],
VGG11 trained with ImageNet [DDS+09] and VGG16 trained with ImageNet [DDS+09])
are considered in this work. The pre-trained DNNs are taken from the Neural Network
distiller [ZJZ+18], which is an open-source tool for neural network compression. The
details of the models are presented in Table 7.2, and a few key characteristics of the
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datasets are highlighted in Table 6.3. To quantize the DNN weights and activations to
8-bits, the same neural network distiller tool is employed. For fault injection, similar
to the well-established works in the reliability community, a random distribution of
the faults across the array is considered. For each experiment, multiple iterations are
performed using different seed values. To achieve a fair comparison, same seed values are
used across experiments involving different types and sizes of arrays as well as fault rates.
Moreover, the relative sizes of MAC and MUX units are also taken into consideration for
distributing faults in the arrays.

Table 6.2: DNNs and the datasets used for evaluation.
Network and

Dataset Network Architecture Baseline
Accuracy (%)

VGG11 for
Cifar-10

Layers: CONV(64, 3, 3, 3); CONV(128, 64, 3, 3); CONV(256, 128, 3, 3);
CONV(256, 256, 3, 3); CONV(512, 256, 3, 3); CONV(512, 512, 3, 3);

CONV(512, 512, 3, 3); CONV(512, 512, 3, 3); FC(10, 512)
85.38%

VGG11 for
ImageNet

Layers: CONV(64, 3, 3, 3); CONV(128, 64, 3, 3); CONV(256, 128, 3, 3);
CONV(256, 256, 3, 3); CONV(512, 256, 3, 3); CONV(512, 512, 3, 3);

CONV(512, 512, 3, 3); CONV(512, 512, 3, 3); FC(4096, 25088);
FC(4096, 4096); FC(1000, 4096)

68.04% (Top1)
88.07% (Top5)

VGG16 for
ImageNet

Layers: CONV(64, 3, 3, 3); CONV(64, 64, 3, 3); CONV(128, 64, 3, 3);
CONV(128, 128, 3, 3); CONV(256, 128, 3, 3); CONV(256, 256, 3, 3);
CONV(256, 256, 3, 3); CONV(512, 256, 3, 3); CONV(512, 512, 3, 3);
CONV(512, 512, 3, 3); CONV(512, 512, 3, 3); CONV(512, 512, 3, 3);

CONV(512, 512, 3, 3); FC(4096, 25088); FC(4096, 4096);
FC(1000, 4096)

70.85% (Top1)
90.0% (Top5)

6.3.2.2 Comparison with State-of-the-art FAP Approach

Fig. 6.10 illustrates the effectiveness of the FAP and the proposed techniques for mitigating
the effects of permanent faults in a 256x256 systolic array composed of SOA_PEs used
for executing the VGG11 network trained with the Cifar-10 dataset. To have a fair
comparison of the proposed method with the state-of-the-art FAP approach, a similar
evaluation methodology is adopted as reported in [ZGBG18]. This means, for this
evaluation, it is assumed that faults can only occur in the MAC units of the array, and
not in the MUXes or other components of the PEs. From this experiment, the following
Table 6.3: A summary of the key characteristics of the datasets used in the evaluation of
SalvageDNN and the comparison with the state-of-the-art

Dataset Characteristics

Cifar-10

Number of Training Images 50000
Number of Testing Images 10000

Size of Images 32 x 32 x 3
Number of Classes 10

ImageNet

Number of Training Images ∼14 million
Number of Testing Images 100000

Size of Images 224x224x3
Number of Classes 1000
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key observations can be made:

Figure 6.10: Impact of number of faulty MAC units in a 256x256 systolic array, composed
of SOA_PEs, on the accuracy of the VGG-11 network trained on the Cifar-10 dataset.

• The FAP approach results in a rapid decrease in the DNN accuracy with increasing
fault rate compared to the SalvageDNN methodology.

• At lower fault rates (i.e., below the 6% mark), SalvageDNN helps in maintaining
the baseline accuracy of the DNN. However, the DNN accuracy when mapped
only using the FAP approach starts decreasing instantly with the increase in the
fault rate. This highlights the practical significance of the proposed SalvageDNN
methodology, as, due to the advancements in the fabrication processes, typically
lower fault rates are observed in practical settings.

• The error bars in the figure, which shows the standard deviation of the accuracy
across multiple iterations of the same experiment when performed using a different
seed value, highlights that the accuracy is highly dependent on the locations
of the faulty PEs in the array. Therefore, the FAP approach, which uses fixed
mapping, results in higher standard deviation values compared to the SalvageDNN
methodology. This is mainly because SalvageDNN make faults-aware adjustments
in the DNNs to map less significant weights on faulty/disconnected PEs.

• The type of the saliency computation method and the algorithm for minimizing
the cost function do not impact the result much. Note that Algorithm ?? provides
sightly better results at higher fault rates. However, based on the computational
requirements of Algorithm ??, Algorithm 6.1 with L1 norm should be preferred.

6.3.2.3 Comparison with State-of-the-art FAP+T Approach

Fig. 6.11 illustrates the impact of using SalvageDNN along with fault-aware retraining
on the accuracy of the VGG11 trained on Cifar10 dataset. The subfigures present
a comparison between the "FAP+T" [ZGBG18] and the "SalvageDNN + retraining"
techniques. As can be seen from the figure, both the approaches perform equally well.

148



6.3. Results and Discussion

(a) (b)

(c) (d)
Figure 6.11: Impact of using SalvageDNN before applying fault-aware training on the
accuracy of the VGG11 network trained for the Cifar10 classification. The subfigures
show the comparison between FAP + retraining and SalvageDNN + retraining when the
underlying hardware has: (a) 10% faulty PEs, (b) 30% faulty PEs, (c) 50% faulty PEs,
and (d) 70% faulty PEs

Therefore, if the training dataset and sufficient computational resources are available
for retraining, then retraining should be employed to regain a significant percentage of
the lost accuracy. The number of epochs required to regain the accuracy seems to be
dependent on the number of faulty PEs in the array. This can be observed from Fig. 6.11,
where Figs. 6.11a, 6.11b, 6.11c, and 6.11d present the test accuracies achieved after every
epoch of retraining for the cases when 10%, 30%, 50%, and 70% of the total PEs are
faulty respectively. For example, in Fig. 6.11a, the baseline accuracy is regained after
only one epoch of retraining; however, in Fig. 6.11c, it took five epochs to reach the
saturation point.

6.3.2.4 Evaluation for DNNs Trained on Larger Datasets

Fig. 6.12 illustrates a comparison of the proposed approach with the state-of-the-art
FAP approach for the case when both are used for the VGG11 network trained on the
ImageNet dataset. The systolic array considered for this evaluation is a 256x256 sized
array composed of SOA_PEs. As can be seen from the figure, for lower fault rates,
i.e., until around 0.06 (6%), the SalvageDNN methodology helps maintain the baseline
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(a) (b)
Figure 6.12: Comparison of SalvageDNN with the state-of-the-art FAP approach when
used for the VGG11 network trained on the ImageNet dataset, which has to be mapped
on a 256x256 sized systolic array. The two commonly used accuracy metrics, i.e., the
Top1 and the Top5 accuracies, are shown for cases having different number of faulty PEs,
in subfigures (a) and (b) respectively

(a) (b)
Figure 6.13: Comparison of SalvageDNN with the state-of-the-art FAP approach when
used for the VGG16 network trained on the ImageNet dataset, which has to be mapped
on a 256x256 sized systolic array. The two commonly used accuracy metrics, i.e., the
Top1 and the Top5 accuracies, are shown for cases having different number of faulty PEs,
in subfigures (a) and (b) respectively

accuracy, while the accuracy achieved with FAP approach is significantly lower, even
when only 2% of the total PEs are faulty. Similar results are observed in Fig. 6.13 for
the VGG16 network trained on the ImageNet dataset.

6.3.2.5 Comparison of execution time of SalvageDNN with retraining-based
approaches

Table 6.4 presents a comparison between the execution time of the SalvageDNN and
the FAP+T for different DNNs. The details of the DNNs and the datasets used in
this comparison are presented in Tables 6.2 and 6.3 respectively. As can be seen from
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Table 6.4: Execution time comparison of SalvageDNN with retraining-based approach,
i.e., FAP+T [ZGBG18], for different networks trained on different datasets

Execution Time (sec) SalvageDNN
SpeedupNetwork Dataset Retraining (Single Epoch) SalvageDNN (Algo. 1 + L1-norm)

VGG11 Cifar-10 24.63 1.12 21.99x
VGG11 ImageNet 6005.93 112.67 53.31x
VGG16 ImageNet 9871.38 113.26 87.16x

the tables, the execution time depends mainly on the complexity and size of the DNN.
However, it also depends on the size of the dataset for retraining-based approaches.
Note that, in all the cases, SalvageDNN requires an order of magnitude less time for
execution than the time required for a single epoch of retraining. Note that the amount
of savings grow with the increase in the size and complexity of the dataset and the
DNN. For example, the time required for running SalvageDNN for the VGG16 trained
on the ImageNet dataset is around 87x lesser than the time required for a single epoch
of retraining.

6.3.2.6 Impact of Permanent Faults in MACs and MUXes and the
Effectiveness of the Proposed Systolic Array Designs

Fig. 6.14 shows the impact of permanent faults on the accuracy of the VGG11 trained on
the Cifar10 dataset when executed using different types and sizes of systolic arrays (for
designs see Fig. 6.4 in Section 6.2.1. For these experiments, it is assumed that permanent
faults can occur in the multiplexers of the fault-tolerant array as well. To have a fair
comparison across arrays, relative areas of MAC and multiplexer units are also taken
into consideration for fault injection. By analyzing Fig. 6.14, following observations can
be made:

• SalvageDNN outperforms the state-of-the-art FAP approach in all the cases.

• The DNN accuracy drops significantly for all the cases in which the systolic array is
composed of C_PEs, even at lower fault rates, as shown in Figs. 6.14a and 6.14b.
This is due to the fact that all the PEs that have at least one of their downstream
PEs containing a permanent fault are disconnected. Therefore, the probability of a
PE getting disconnected at a specific fault rate is significantly higher in the arrays
composed of C_PEs.

• With an increase in the number of bypass connections in a PE for fault mitigation,
the average DNN accuracy at a specific fault rate increases. For example, this can
be observed by analyzing the DNN accuracy in Figs. 6.14a, 6.14c and 6.14e at 2%
fault rate mark. The DBNC_PE almost maintains the baseline accuracy, whereas
the accuracy offered by C_PE equals 10% (i.e., equivalent to that of a random
selection).
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(a) 256x256 Array with C_PEs (b) 8x8 Array with C_PEs

(c) 256x256 Array with BNC_PEs (d) 8x8 Array with BNC_PEs

(e) 256x256 Array with DBNC_PEs (f) 8x8 Array with DBNC_PEs

Figure 6.14: Impact of permanent faults in the proposed systolic array designs on the
accuracy of the VGG-11 network trained on the Cifar-10 dataset. Here, BP corresponds
to propagation-based method.

• The resultant DNN accuracy at any fault rate increases with the decrease in the
size of the systolic array. This can be observed by comparing Figs. 6.14a, 6.14c
and 6.14e with Figs. 6.14b, 6.14d and 6.14f, respectively. This is mainly due to
the increased probability of disconnection of a MAC unit in the proposed systolic
array designs with the increase in array size at any fault rate greater than zero.

In short, designs with more bypass connections are better for mitigating the effects of
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permanent faults in the multiplexer units; however, they result in high area, power/energy,
and delay overheads, which increases exponentially with the number of bypass connections.

6.4 Chapter Summary
Alongside the need for developing highly energy and performance efficient DNN acceler-
ators, there is a need to improve the yield of the fabrication process as well to reduce
the per unit cost of DNN accelerators. Towards this, this work presented SalvageDNN,
a methodology to enable reliable execution of DNNs on faulty hardware accelerators.
At the core, it is a fault-aware mapping technique that leverages the saliency of DNN
parameters along with the concept of fault-aware pruning for mapping less significant
weights onto faulty components to achieve fault mitigation at a lower cost and without
any run-time overheads. The proposed technique uses rearrangement of DNN parameters
at the software-level to avoid any additional data rearrangement operations at run-time.
The work analyzed novel hardware modifications for mitigating faults in the bypass
multiplexer units as well. The analysis shows that faults in multiplexers, in general,
increase the number of disconnected PEs and, thereby, impact the effectiveness of the
proposed as well as the state-of-the-art techniques. Comparison with the state-of-the-art
techniques shows that SalvageDNN offers better accuracy results. Moreover, the results
show that SalvageDNN can complement fault-aware retraining-based approaches as well.
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CHAPTER 7
Aging Mitigation for Improving
the Lifetime of On-Chip Weight

Memories in Deep Neural
Network Accelerators

Aging is one of the foremost reliability concerns in nanoscale devices. It results in
gradual degradation of the fabricated hardware over time due to different phenomena
such as Bias Temperature Instability (BTI) and Hot Career Injection (HCI). Studies
have shown that Negative BTI (NBTI)-induced aging is the most dominant type of aging
in CMOS devices fabricated using smaller technology nodes, specifically below 65 nm
technology node. Given that DNN accelerators employ large on-chip SRAMs (along with
other optimization techniques) for reducing the number of off-chip memory accesses and
that DNNs are highly vulnerable to faults in sensitive locations, this work focuses on
developing a low-cost technique for mitigating aging in on-chip SRAM cells.

This chapter presents a novel aging mitigation framework for mitigating NBTI-induced
aging in on-chip weight memories of DNN accelerators. First, Section 7.1 presents
the motivation behind this work in detail. Then, Section 7.2 presents an overview of
the proposed framework. The framework comprises two main blocks: (1) analysis of
the probability distribution of weight-bits under different settings; and (2) design of
an effective aging mitigation scheme based on the insights gained from the analysis.
Section 7.3 presents an analysis that highlights the impact of using different data
representation formats and quantization methods for the weights of a DNN on the
distribution of the weight-bits. The analysis provides useful insights for designing an
effective aging mitigation scheme. The scheme and the supporting micro-architecture
designed for mitigating NBTI-aging in on-chip weight memory of DNN accelerators
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composed of 6T-SRAM cells is presented in Section 7.4.

7.1 Motivation and Problem Identification
DNNs usually require a large number of parameters to offer high accuracy, which comes
at the cost of high memory requirements; see Fig. 7.1a. Dedicated memory hierarchies
are designed to trade-off between the low-cost storage offered by the off-chip DRAMs
and the energy-/performance-efficient access offered by the on-chip SRAMs [SCYE17];
see Fig. 7.1b for access energy statistics. The benefits of SRAMs and the inclination of
the deep learning community towards designing larger and complex models to achieve
ultra-high accuracy have led to an increasing trend towards using larger on-chip memories
in DNN accelerators [CLL+14][JYP+17], with the recent wafer-scale chips having up to
18 GBs of on-chip memory [McL19]. However, due to continuous technology scaling,
SRAMs are becoming increasingly vulnerable to different reliability threats such as soft
errors and aging [HBD+13][SNT+20][HEAK13]. Studies have shown that even a single
fault in a critical neuron can significantly degrade the application-level accuracy of a DNN-
based system [HKP+18]. Earlier works have mainly focused on analyzing and mitigating
the effects of faults in DNN accelerators through fault-aware retraining [KHM+18a].
However, no prior work has analyzed and optimized the aging of the on-chip weight
memories of DNN accelerators, especially considering diverse dataflows of different DNNs
and the impact of different types of quantizations on the bit-level distribution of weights.
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Figure 7.1: (a) Accuracy and size comparison of few of the state-of-the-art DNNs (b)
Access energy comparison of SRAM with DRAM (data source: [SCYE17]).

Aging due to NBTI in CMOS devices: In PMOS transistors, when a negative
gate-to-source voltage is applied, it can break down the Si-H bond at the oxide-interface
and result in a gradual increase in the threshold voltage (Vth) over the device lifetime.
This increase in the threshold voltage results in poor drive current and a reduction in
the noise margin [KGPK08]1. To overcome this Vth shift, the operating frequency of the
device has to be reduced by more than 20% over its entire lifetime [GSK+15]. However,
due to strict performance and energy constraints (specifically for embedded applications),

1A similar phenomenon called PBTI happens in NMOS transistors, though NBTI has been considered
relatively more serious compared to PBTI [HBD+13].
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the Vth shift cannot be addressed mainly through design-time delay margins or adaptive
operating frequency adjustments [SZBP08], as they lead to a significant reduction in
performance and energy efficiency. Therefore, alternate opportunities have to be explored
to overcome this challenge [GSK+15]. One such opportunity lies in the fact that the
NBTI aging phenomenon is partially reversed by removing the stress from the transistors.

NBTI Aging in On-chip Memories: On-chip memories are typically built using
6T-SRAM cells to achieve high density and energy efficiency. A 6T-cell is composed of
two inverters coupled with two access transistors, as shown in Fig. 7.2a. The inverters
store complementary values to store a bit. Each inverter has a PMOS transistor and an
NMOS transistor. Depending on whether the cell is storing ‘0’ or ‘1’, one of the PMOS
transistors is always under stress, when the transistor is on. As aging of a cell is defined
by its most-aged transistor, the lowest aging is achieved when both the PMOS transistors
have aged equally, i.e., they have received on-average the same amount of stress over
their lifetime. In other words, this means that a cell experiences minimum NBTI-induced
aging when the percentage of the entire lifetime for which the cell stores a ‘1’ (duty-cycle)
is 50% (see Fig. 7.2b). Note that NBTI aging strongly depends on average long-term
stress and weakly on short-term statistics [AVG07]. Therefore, the key challenge in aging
mitigation of on-chip SRAMs is to balance the long-term stress (i.e., duty-cycle over the
entire lifetime) on PMOS transistors without affecting system-level performance.
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Figure 7.2: (a) A 6T-SRAM Cell; and (b) its SNM degradation after 7 years [KCR11]

Limitations of Earlier Works: Various techniques have been proposed at the cir-
cuit level and at the architecture level for mitigating aging in on-chip SRAM cells.
At the circuit level, structural modifications have been proposed to reduce the aging
rate [RSR+10][SZBP08]. For example, Ricketts et al. [RSR+10] proposed an asymmetric
SRAM structure for workloads having biased bit distribution. However, due to high data
dependence, this technique is applicable only in specific scenarios. Recovery boosting
through dedicated recovery accelerating circuit is another method for enhancing the
lifetime of SRAM cells [SG11]. However, it increases power/energy consumption due to
the requirement of additional transistors per cell [ZSBH11]. At the architecture level,
periodic inversion of data is used to reduce aging in on-chip SRAM-based caches [JW12].
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However, periodic inversion of data cannot guarantee optimal duty-cycle, specifically in
cases where the same data is reused periodically, e.g., in DNN-based systems. Calimera
et al. in [CLMP11] improved recovery of un-utilized portions of memory. However,
they achieve this at high energy & area cost incurred due to online monitoring sup-
port. Their technique also suffers from severe performance degradation in dynamic
conditions. Another set of techniques employs circular shifts to cater NBTI aging in
registers [KCR11]. However, such techniques are effective only in cases where the overall
distribution of bits is relatively balanced. Moreover, these techniques employ barrel
shifters that incur high area and power overheads. The work in [SKTH15] proposed a
configurable micro-architecture for reducing aging rate of video memories, but it only
works for streaming video applications.

In summary, the state-of-the-art techniques either incur high area and power overheads
or are designed for specific workloads. All the above-mentioned techniques cannot be
employed for DNN accelerators because of the unique properties of DNN workloads,
which will be highlighted in the following sections.

Additional Challenges from the DNN Inference Perspective: The dataflow (i.e.,
computation scheduling) for processing data using a given DNN is defined based on the
DNN architecture and the hardware architecture to achieve maximum energy/performance
efficiency. Modifying the dataflow to balance the duty-cycle in on-chip SRAM cells can
significantly degrade the system-level efficiency. Therefore, an aging mitigation technique
that does not require any alteration to the dataflow or the data mapping in on-chip SRAM
is desired.

7.2 Overview of DNN-Life Framework
This work presents DNN-Life, a novel aging analysis and mitigation framework for on-chip
6T-SRAM-based weight memories of DNN accelerators. To mitigate aging, it mainly
exploits the fact that the NBTI aging can be minimized by balancing the duty-cycle
in 6T-SRAM cells. DNN-Life achieves this through a low-cost data encoding scheme
that accounts for diverse DNN workloads. The two main blocks of the framework are
highlighted in Fig. 7.3 and are explained as follows:

1. Analysis: The first block studies the probability of occurrence of ’1’ at each bit
location in a weight-word to find critical insights that can help develop a low-cost
aging-mitigation scheme. The analysis is performed for multiple different pre-trained
DNNs, number representation formats, and quantization methods to consider all the
possible variations. The detailed analysis and insights are presented in Section 7.3.

2. Architecture: Based on the insights gathered from the analysis, a data encoder and
an aging controller are designed. The encoder is responsible for encoding the weights
before writing them to the on-chip weight memory. The aging controller is responsible
for generating control signals for the encoder module such that the duty-cycle in each
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SRAM cell is balanced. The control data is stored to be used later by the decoder
module to transform the data back before sending it to the computational modules.
The encoder module is deployed inside the accelerator right before the weight memory,
and the decoder is placed right after the memory, as illustrated in Fig. 7.4a. The
details of the micro-architecture are presented in Section 7.4.

7.2.1 DNN Hardware Architecture
The baseline DNN hardware architecture used in this work is based on a well-established
DNN accelerator model, i.e., Dense CNN [DJS+18]. The accelerator is composed of an
Activation Buffer, a Weight Buffer, a Processing Array, and an Accumulation Unit; see
Fig. 7.4a. The proposed weight-memory aging-mitigation modules are also shown in the
figure, integrated with the other modules (for details of the aging-mitigation modules,
see Section 7.4). The activation and weight buffers act as intermediate storage for the
activations and weights, respectively, to reduce the number of costly off-chip memory
accesses. The buffers feed data to the processing array for computations. For this
work, a memory hierarchy similar to Bit-Tactical [DJS+18], DaDianNao [CLL+14] and
TPU [JYP+17] is considered, according to which: 1) the activation buffer is large enough
to store all the activations of a single layer of a DNN; 2) the activation memory can
feed N number of activation values to the processing array at a time; and 3) the weight
memory can provide f × N weights to the processing array at a time. The processing
array (see Fig. 7.4b) is composed of f number of Processing Elements (PEs) that share
the activations, and therefore, the array can perform N number of multiplications for f
different filters at the same time. Each PE has an adder tree to compute the sum of the
products. The computed sum is passed to the accumulation unit where it is added to the
corresponding partial sums to generate the output activation value. Note, as the filters
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can be significantly large, the computation of each output activation can take several
cycles, depending on the filter size.

7.2.2 Dataflow in the DNN Accelerator

To perform the computations of a DNN layer using the accelerator described in Sec. 7.2.1,
the 4D weight tensors have to be partitioned into smaller blocks (so-called tiles) that can
be accommodated in the on-chip weight memory. The main goal of the partitioning is to
maximize the use of available PEs. The input/output feature maps and the filters/neurons
all are divided into tiles, depending on the available on-chip storage for the corresponding
data type. Works like SmartShuttle [LYL+18] have proposed methods to find effective
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tiling configurations and computation scheduling policy that optimize the number of
off-chip memory accesses a given DNN and memory hierarchy.

Fig. 7.5 illustrates the policy employed for partitioning the weight tensors of a CONV
layer. Note that the well-established tiling technique is employed to demonstrate that the
proposed technique is beneficial for a wide-range of existing DNN hardware accelerators.
The figure also illustrates the sequence in which the blocks are fetched and moved to
the on-chip weight memory for computations. The filters are first divided into sets of f
number of filters. Afterwards, a chunk of data (grey boxes in Fig. 7.5) is selected from a
set to be moved onto the on-chip weight memory. The selected chunk contains a block of
data of size r × c × ch from the same location of each filter in the set. The sequence in
which the grey boxes are traversed defines rest of the dataflow. The sequence followed for
this work is illustrated with the help of steps in Fig. 7.5. Note that f is defined based on
the size of the processing array, i.e., the number of filters it can process in parallel, r, c
and ch values are defined based on the size of the PEs. Moreover, if the on-chip memory
is large and can accommodate multiple sets of blocks, then multiple sets are moved to
the memory.

7.3 Analysis of the Probability Distribution of
Weight-Bits of DNNs & the Impact on Duty-Cycle

This section presents an analysis that highlights the rationale behind the proposed
architectural modifications and hardware design.

7.3.1 Analysis of the Probability Distribution of Weight-Bits
For this analysis, two different DNNs the AlexNet and the VGG16 networks, both trained
with the ImageNet dataset, are considered. To study the variations across different data
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representations for weights, 32-bit floating point representation (IEEE 754 standard) and
8-bit integer format achieved using range-linear symmetric and asymmetric quantization
techniques [LTA16] are considered. Fig. 7.6 illustrates the probability of observing a ‘1’
at each bit-location of a word for all considered data representation formats and DNNs.
By analyzing the probability distributions, the following observations can be made:

1. The probability of observing a ‘1’ at a particular bit-location of a randomly selected
weight depends on the DNN, the data representation format, and the method used
to transform the data to the particular format. For example, the probability of
observing a ‘1’ at a particular bit-location in a randomly selected weight represented
in a symmetric 8-bit representation format is almost the same across all the bit-
locations within a DNN for both the considered DNNs, however, it varies across
DNNs. Similarly, the probability of observing a ‘1’ at lower bit-locations in 32-bit
floating-point representation format is approximately 0.5; however, the distribution of
bits at higher bit-locations varies significantly across bit-locations and DNNs.

2. A particular data representation format does not guarantee a probability distribution
that offers 0.5 probability at all the bit-locations, i.e., a distribution that can potentially
lead to a balanced duty-cycle. For example, out of all the studied cases, only the
probability distribution of the AlexNet for 8-bit integer symmetric quantization offers
close to 0.5 probability for all the bit-locations.

3. The average probability of observing a ‘1’ across bit-locations in a particular data
representation format is also not guaranteed to be equal to 0.5. For example, see
the distributions of 8-bit asymmetrically quantized DNNs. Even for symmetric
quantization, specifically for the VGG-16 case, the average across bit-locations is
0.4. Therefore, barrel shifter-based balancing techniques are also ineffective in such
scenarios.

7.3.2 A Probabilistic Model-based Analysis for Aging of 6T-SRAM
On-chip Weight Memory of a DNN Accelerator
The following subsections present an analysis based on a probabilistic model to analyze
the effectiveness of different aging mitigation techniques.

7.3.2.1 Probabilistic Model

Assume the on-chip memory of a given DNN accelerator is a grid composed of I × J
6T-SRAM cells. For mapping the weights onto the memory, the following conditions are
assumed: (1) the same dataflow as presented in Fig. 7.5 is considered for computations;
(2) each block of weights is kept in the on-chip memory for a constant (CT ) amount of
time, and it is fetched only once per inference (similar to the dataflow in [DJS+18]); (3)
each block of data has the same size as on-chip weight memory and fits perfectly on it,
i.e., it covers all the cells. Based on the aforementioned conditions and the given DNN
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distribution.

size, the parameters of the DNN can be divided into K blocks, which translates to K
number of data mappings onto the on-chip weight memory. Now, if the same DNN is
used repeatedly for processing data, assuming the same dataflow, a single on-chip weight
memory cell is mapped with only K different bits. Furthermore, if overall the probability
of observing a ‘1’ is given by ρ, the probability of getting a duty-cycle less than and
equal to a ratio b/K, or greater than and equal to 1 − b/K, can be computed using the
following equation, except when b/K = 0.5 where the probability is 1.

Pb/K =
b�

i=0


K

i


ρi × (1 − ρ)K−i +

K�
i=K−b


K

i


ρi × (1 − ρ)K−i (7.1)

Here, b is an arbitrary variable with the range from 0 to floor(K/2). Note that we
combine the cases in which duty-cycle ≤ b/K and duty-cycle ≥ 1 − b/K, because in a
symmetric 6T-SRAM cell both the types cause the same level of stress in one of the
two PMOS transistors and, therefore, result in the same level of aging. Assuming the
above computed probability to be the same for all the cells of the on-chip memory, i.e.,
considering uniform probability distribution, the probability of at least n number of cells
(out of I × J) experiencing duty-cycle ≤ b/K or ≥ 1 − b/K can be computed using the
following equation.

Pn =
I×J�
i=n


I × J

i


P i

b × (1 − Pb)I×J−i (7.2)
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7.3.2.2 An Example Case Study

Let us consider a scenario where K = 20 and ρ = 0.5 (i.e., the best-case scenario with
balanced bit distribution), and I × J = 8192. Fig. 7.7a shows the probability for each
possible value of b computed using Eq. 7.1. Note that even for b/K = 0.3, the probability
is over 0.1, i.e., more than 10% of the cells are expected to experience a duty-cycle ≤ 0.3,
or ≥ 0.7. This highlights that even if the probability of occurrence of ‘1’ at different bit
locations is 0.5 (i.e., ρ = 0.5), it does not ensure a balanced duty-cycle in all the cells.
To study the case further, consider a bit-shifting-based aging mitigation technique that
offers up to 7 shifts. Such a technique can increase the number of different bits mapped
to a single cell. For the given example, it can theoretically increase the value of K to
160, assuming the bits to be independent of each other and the ideal shifting policy.
Fig. 7.7b shows the updated probabilities for different b/K values when K is set to 160
in the above-mentioned example. By comparing Fig. 7.7b with Fig. 7.7a, it can be said
that larger K results in lower probabilities at b/K other than 0.5. This implies that by
significantly increasing K, while having ρ = 0.5, close to ideal duty-cycle can be achieved
for all the cells.
Now, instead of a bit-shifting-based aging mitigation, if an inversion-based duty-cycle
balancing technique is employed, where every other write to the same location is inverted,
for the given scenario, the value of K remains the same, as it is even. Moreover, as ρ
is defined to be 0.5, the inversion-based policy has no impact on ρ either. Therefore,
the same probabilities are observed, as presented in Fig. 7.7a. However, note that the
inversion-based policy is highly useful for achieving ρ = 0.5 in cases where the distribution
of bits is initially biased towards either ‘0’ or ‘1’.

7.3.3 Challenges for Designing an Efficient Aging Mitigation System
Based on the above analysis, the following key challenges are identified for designing a
generic scheme for mitigating aging in 6T-SRAM-based on-chip weight memory of DNN
accelerators.

1. The probability of a cell experiencing a non-ideal duty-cycle is considerable even with
the state-of-the-art aging mitigation techniques that follow a fixed policy. Therefore,
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a more robust method is required that can ensure close to ideal duty-cycle in all the
SRAM cells without much overhead cost.

2. The probability distribution of bits and the duty-cycle is significantly affected by the
datatype used for representing the weights. Therefore, the mitigation technique should
be generic and independent of the datatype used, so that it is beneficial for various
DNN accelerators.

Moreover, in practical scenarios, each layer of a DNN can have a different size. Therefore,
each layer can take different amount of time for processing, which can vary significantly
across layers. Also, different DNNs can have different number of layers. A method that
keeps track of all these factors at a finer granularity can significantly reduce the aging
rates. However, such methods are super costly. This makes it extremely challenging to
develop a generic method that offers effective aging mitigation at reasonable overhead
costs.

7.4 A Micro-architecture for Mitigating Aging of the
On-Chip Weight Memory of DNN Accelerators

To address the above challenges, this work mainly exploits the fact that NBTI-aging
is more dependent on the average duty-cycle over the entire lifetime of the device and
less dependent on short-term averages [AVG07]. To achieve balanced duty-cycle in all
the SRAM cells, this work proposes a Write Data Encoder (WDE), which encodes the
weights before writing them to the on-chip weight memory, and a Read Data Decoder
(RDD), which performs the inverse function of the WDE while reading the data from
the on-chip memory and before passing it to the processing array. Fig. 7.4a shows the
integration of the proposed modules in the DNN accelerator presented in Fig. 7.4. This
work also proposes an aging mitigation controller that generates the required control
signals for the read and write transducers. The proposed micro-architectures of the WDE
and the aging mitigation controller are presented in Fig. 7.8.

Write Data Encoder (WDE): It leverages the inversion logic that, besides its low-
overhead compared to other techniques (as shown later in Section 7.5), helps achieve
perfectly balanced probability distribution of bits in the cells of the memory when the
distribution is originally biased towards either ‘0’ or ‘1’. The inversion logic in the
proposed micro-architecture is implemented using XOR gates, as they allow the aging
mitigation controller to enable or disable inversion using just a 1-bit enable (E) signal.
Another advantage of the proposed design is that RDD has the same micro-architecture as
WDE, and the same E signal (metadata) that is used to encode the weights is used (at a
later point in time) for decoding them before passing them for computations. Moreover,
the proposed WDE and RDD modules are highly scalable, as increasing the width of
the modules require only a linear increase in the number of XOR gates. Therefore, the
widths of these modules can be defined directly based on the configuration of the given
DNN accelerator, without affecting the energy efficiency of the system.
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Figure 7.8: Proposed micro-architecture for effective aging mitigation of 6T-SRAM weight
memory of DNN accelerators.

Aging Mitigation Controller: The controller is responsible for generating the enable
signal (E) that controls the inversion logic in WDE. The design is based on the observa-
tions made in Section 7.3 that the higher the number of different bits to be written on
an SRAM cell during its lifetime (i.e., K in Eq. 7.1) the lower the chances of observing
a deviation from the ideal duty-cycle (see Fig. 7.7 and the ideal point highlighted in
Fig. 7.2b). Therefore, to increase the number of different bits to be written on an SRAM
cell, a True Random Bit Generator (TRBG) is employed to generate the enable signal.
The TRBG module adds randomness to the data, which translates to extremely large K
value, before it is written onto the 6T-SRAM cells.

Note, in practical scenarios, the output of TRBGs can be biased towards either ‘0’ or ‘1’,
which can eventually affect the duty-cycle. Therefore, to mitigate this, the output of the
TRBG is also periodically inverted using an M -bit register before forwarding it as the
enable signal.

7.5 Results and Discussion
7.5.1 Experimental Setup
Fig. 7.9 shows the overall methodology followed for evaluating the proposed technique.
The evaluation is divided into two parts: (1) overhead estimation; and (2) aging estimation.
To quantify the overheads, the proposed aging mitigation modules are implemented in
Verilog and synthesized for 65nm technology node using Cadence Genus with TSMC
65nm library and compared against different state-of-the-art aging balancing circuits
synthesized using the same process.

To estimate aging, similar to [SKTH15][SKH16], Static Noise Margin (SNM) is used
as a metric to quantify NBTI-induced aging in 6T-SRAM cells. The SNM defines
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Figure 7.9: Overall experimental setup used for evaluation.

the noise tolerance that directly affects the read stability of a cell [AN06], i.e., if the
SNM of a cell is low, the cell is highly susceptible to read failures. As highlighted
in [KCR11][SKTH15][SKH16], SNM mainly depends on the duty-cycle over the entire
lifetime of the device, and the least amount of SNM degradation is achieved at 50%
duty-cycle mark, as shown in Fig. 7.2. To obtain SNM results, a device aging model
similar to the ones used in works like [SKTH15][SKH16] is employed. Based on the
models, the SNM degradation of a 6T-SRAM cell can be computed using the duty-cycle.
From the analysis, it is observed that the best SNM degradation for 6T-SRAM cell
after 7 years is 10.82% (at 50% duty-cycle), and the worst is 26.12% (at 0% and 100%
duty-cycle).

For large-scale simulations, the output of the aging model is integrated into a memory
simulator of the baseline DNN hardware (described in Section 7.2.1). The simulator
takes the DNN hardware configuration, dataflow, pre-trained DNN architecture and
test samples as inputs. To demonstrate the effectiveness of the proposed technique for
multiple different hardware accelerators, a memory simulator for a TPU-like hardware
architecture [JYP+17] is also implemented. The hardware configurations used for the
evaluation are presented in Table 7.1. The DNNs used are AlexNet and VGG-16 with
ImageNet dataset and a custom network with MNIST dataset. The details of the DNN
architectures are presented in Table 7.2. For each setting the duty-cycles are estimated
based on the values observed in 100 inferences. The bias balancing register is defined to
be a 4-bit register (i.e., M=4), for all the corresponding cases.

Table 7.1: Hardware configurations and settings used in evaluation
Baseline Accelerator (Section 7.2.1) TPU-like NPU [JYP+17]

Weight
memory size 512KB 256KB

Activation
memory size 4MB 24MB

PE array size 8 PEs (1 PE = 8 Multipliers) 256 x 256 PEs (1 PE = 1 MAC)
Networks AlexNet AlexNet, VGG-16 and Custom
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Table 7.2: DNNs and the datasets used for evaluation.

Network and
Dataset Network Architecture

AlexNet for
ImageNet

Layers: CONV(96,3,11,11);CONV(256,48,5,5);CONV(384,256,3,3);
CONV(384,192,3,3);CONV(256,192,3,3);FC(4096,9216);

FC(4096,4096);FC(1000,4096)

VGG-16 for
ImageNet

Layers: CONV(64,3,3,3);CONV(64,64,3,3);CONV(128,64,3,3);
CONV(128,128,3,3);CONV(256,128,3,3);CONV(256,256,3,3);
CONV(256,256,3,3);CONV(512,256,3,3);CONV(512,512,3,3);
CONV(512,512,3,3);CONV(512,512,3,3);CONV(512,512,3,3);

CONV(512,512,3,3);FC(4096,25088);FC(4096,4096);
FC(1000,4096)

Custom for
MNIST

Layers: CONV(16,1,5,5);CONV(50,16,5,5);FC(256,800);
FC(10,256)

7.5.2 Aging Estimation Results and Comparisons

This subsection analyzes the impact of using different aging mitigation policies on the
SNM degradation of the 6T-SRAM on-chip weight memory cells after 7 years. For
this analysis, four different policies are mainly considered: (1) No aging mitigation, (2)
Inversion-based, (3) Barrel shifter-based, and (4) DNN-Life. For the proposed DNN-Life,
three different cases are considered: (i) TRBG is not biased and it generates 0s and 1s
with equal probability (referred in the results as Bias=0.5 ); (ii) TRBG is biased and it
generates 1s with 0.7 probability, and the aging controller does not have a bias balancing
register (referred in the results as without bias balancing with Bias=0.7 ); and (iii) TRBG
is biased and it generates 1s with 0.7 probability and the aging controller has a 4-bit bias
balancing register (referred in the results as with bias balancing with Bias=0.7 ).

Moreover, three different data representation formats are considered for weights: (1)
32-bit floating point format; (2) 8-bit integer format when weights are quantized using
symmetric quantization method; and (3) 8-bit integer format when weights are quantized
using asymmetric quantization method.

Fig. 7.10 shows the distributions of SNM degradation in the memory cells obtained using
different aging mitigation policies and the pre-trained AlexNet model. The Y-axis of
each bar graph shows the percentage of the number of cells and the X-axis of each shows
SNM degradation levels. Note that, for these experiments, the baseline DNN accelerator
configuration presented in Table 7.1 and the dataflow shown in Fig. 7.5 with f = 8
are used. Also, it is assumed that only a single DNN (i.e., the AlexNet) is used for
data inference throughout the lifetime of the device. As can be seen in the figure, the
inversion-based and barrel shifter-based aging balancing reduce the SNM degradation of
the SRAM cells, however, they do not offer minimum SNM degradation (see 2 and 3 in
comparison with 1 in Fig. 7.10). This behavior is observed to be consistent across all the
data representation formats (see 2 till 7 in comparison with their respective without
aging mitigation graphs in Fig. 7.10). Specifically, the inversion-based aging balancing
offers sub-optimal aging mitigation in case of the 32-bit floating point format (see 2
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Figure 7.10: SNM degradation of 6T-SRAM on-chip weight memory cells of the baseline
DNN accelerator when used for performing inferences only using the AlexNet network.
Each bar graph shows the percentage of the number of cells (Y-axis) experiencing different
level of SNM degradation (X-axis).

in Fig. 7.10), where most of the cells experience around 10.8% SNM degradation (see a
in Fig. 7.10). However, this is not the ideal scenario as there are 4% cells that experience
highest level of SNM degradation (see b in Fig. 7.10) and a few that experience moderate
level of SNM degradation (see c in Fig. 7.10). Now, from the results of the proposed
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Figure 7.11: SNM degradation of 6T-SRAM on-chip weight memory cells of the baseline
DNN accelerator when used for performing inferences only using the VGG-16 network.
Each bar graph shows the percentage of the number of cells (Y-axis) experiencing different
level of SNM degradation (X-axis).

DNN-Life with bias balancing, it can be observed that it offers maximum aging-mitigation
(i.e., all the cells experience around 10.8% SNM degradation) in all the cases (see 8 , 9
and 10 in Fig. 7.10). Fig. 7.11 shows that the same pattern is observed for the VGG-16
network, i.e., comparing corresponding cases in 1 till 7 with 8 till 10 , it can be said
that DNN-Life with bias balancing offers optimal aging mitigation.

Impact of biased TRBG on aging balancing of 6T-SRAM on-chip weight
memory: Fig. 7.10 also illustrates the impact of using proposed design without bias
correction when the duty-cycle of TRBG is 0.7. As can be seen in the figure, for all the
data representation formats, having biased TRBG and no bias correction leads to less
reduction in SNM degradation of the 6T-SRAM cells (e.g., see 11 in comparison with
8 in Fig. 7.10). This behavior is consistent across all the data representation formats.

Impact of on-chip memory size on aging balancing for 6T-SRAM on-chip
weight memory: Fig. 7.12 shows the impact of on-chip weight memory size on the
aging of on-chip 6T-SRAM cells. For this analysis, the baseline DNN accelerator with
8-bit symmetrically quantized VGG-16 is considered. The weight memory sizes used are
mentioned at the top of the figure and the considered aging mitigation techniques are
mentioned on the left side of the figure. As can be seen in the figure, the effectiveness of
the state-of-the-art inversion-based and shifter-based techniques for large memory size
is relatively less. For example, the inversion-based approach provides reasonable aging
mitigation when the memory size is 512KB (see 1 in comparison with 2 in Fig. 7.12);
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Figure 7.12: Impact of different on-chip weight memory sizes in the baseline DNN
accelerator on the aging mitigation achieved using different techniques, when the inference
is performed using 8-bit quantized VGG-16 (quantized using symmetric range-linear
quantization method).

however, it does not offer good results when the size is 8MB (see 3 in comparison with
4 in Fig. 7.12). This is because of the fact that the number of distinct bits written onto

the same bit location decreases with the increase in the on-chip memory size, as explained
in Section 7.3. However, the proposed DNN-Life offers optimal aging-mitigation in all
the cases (see 5 till 8 in Fig. 7.12).

Impact across different hardware accelerators: Fig. 7.13 shows the impact of using
the proposed aging-mitigation technique for a TPU-like [JYP+17] Neural Processing Unit
(NPU) architecture that has an on-chip weight FIFO which is four tiles deep, where one
tile is equivalent to weights for 256 × 256 PEs. Each PE has a single MAC unit that can
perform 8-bit multiplication. For the implementation, the weight FIFO is assumed to be a
circular buffer-based design. The analysis is performed using the three different networks
mentioned earlier. All the DNNs are quantized to 8-bits using post-training symmetric
quantization. Considering the dataflow of the NPU, the parameter f was set to 256.
As can be seen in Fig. 7.13, the inversion-based aging mitigation policy offers optimal
results for the AlexNet and the VGG-16 networks (see 1 and 2 in Fig. 7.13). However,
when used for the custom DNN, almost all the memory cells experience significant SNM
degradation (see 3 in Fig. 7.13). The barrel shifter-based approach also offer sub-optimal
results (see 4 till 6 in Fig. 7.13). However, the proposed DNN-Life with bias balancing
offers maximum aging mitigation (see 7 till 9 in Fig. 7.13). This shows that DNN-Life
can be used for a wide range of DNN accelerators.
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Figure 7.13: SNM degradation of 6T-SRAM on-chip weight memory cells of a TPU-like
NPU when used for performing inferences using the AlexNet, the VGG-16 and the
custom DNN, individually. The networks are quantized to 8-bit format using symmetric
range-linear quantization method.

7.5.3 Area and Power Results

The area, power and delay characteristics of three different WDEs composed of different
aging balancing units are shown in Table 7.3. All three WDEs are designed for a data bus
width of 64-bits. It can be observed from the table that the barrel shifter-based WDE
consumes the most amount of area and power. The proposed design consumes slightly
more power and area compared to the inversion-based WDE. However, as shown in the
previous subsection, it offers best aging-mitigation under all possible scenarios, regardless
of the size of the given DNN, the distribution of weights, the data representation format
and the on-chip weight memory size. Note that, at the hardware level, we realized TRBG
using a 5-stage ring oscillator; however, it can be implemented using a pseudo-random
bit sequence generator as well.

Table 7.3: Hardware results of different Write Data Encoders (WDEs)

Delay [ps] Power [nW] Area [cell area]
Barrel Shifter based WDE 977.7 345190 9035
Inversion based WDE 811.6 10716 195
Proposed WDE with Aging
Mitigation Controller 581.8 13747 295
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7.6 Chapter Summary
To achieve high energy efficiency, DNN accelerators use large on-chip weight memories
composed of 6T-SRAM cells. However, 6T-SRAM cells are highly vulnerable to Negative
Biased Temperature Instability (NBTI)-induced aging, which can significantly reduce the
lifetime of DNN accelerators. Towards this, this chapter presented DNN-Life, an aging-
mitigation framework for reducing aging rates in the on-chip weight memories of DNN
accelerators. In the framework, first, the effects of using different data representation
formats on NBTI aging are studied. Then, based on the analysis, an aging-mitigation
scheme is proposed that makes use of memory write and read transducers along with a
True Random Bit Generator (TRBG) to reduce aging rates with minimal area and power
overheads. The results clearly show that the proposed DNN-Life framework enables
optimal aging mitigation in the on-chip weight memories of DNN accelerates at minimal
run-time costs.
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CHAPTER 8
Summary and Future Outlook

8.1 Thesis Summary
Deep Neural Networks have emerged as a promising set of techniques for solving complex
AI problems. The state-of-the-art accuracy of these networks has enabled their use in
safety-critical applications as well, e.g., autonomous driving, smart transportation, smart
healthcare, smart grids, security & surveillance and robotics. The foremost challenge
associated with deploying high-accuracy DNNs in real-world systems is that they are highly
compute and memory-intensive, which leads to high inference costs. Moreover, specialized
hardware accelerators are used to process these DNNs in an efficient manner; however,
they bring in various reliability concerns (e.g., soft errors, device aging, and manufacturing
defects) that can affect the functionality (or performance) of a DNN inference system
and, thereby, are extremely critical specifically for safety-critical applications.

To reduce the compute and memory requirements of DNNs and offer energy-efficient DNN
inference, various optimization techniques have been proposed (e.g., pruning, quantization,
hardware approximations and data approximations). However, most of these techniques
have been tested individually, which leads to limited efficiency gains. Besides that, not
all the techniques are applicable in all scenarios, e.g., some techniques work better than
others when coupled with retraining while others offer better trade-offs in cases where
retraining is not possible (because of data IP and privacy reasons). Therefore, systematic
application and scenario-specific cross-layer methodologies are required to significantly
improve the energy and performance-efficiency of DNN inference systems. Besides that,
to address reliability concerns, redundancy-based fault-mitigation techniques (e.g., dual-
/triple-modular redundancy, instruction duplication, and error-correcting codes) are
conventionally used, which lead to high overheads specifically when coupled with the
compute and memory-intensive nature of state-of-the-art DNNs. Therefore, alternative
approaches are required that can exploit the intrinsic error-resilience characteristics of
DNNs to offer improved reliability at low overhead costs.
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Towards addressing the above challenges, this thesis aimed at exploiting the unique
error-resilience characteristics of DNNs to improve the energy efficiency and robustness
of DNN inference systems.

For improving the efficiency, this work explored judicious approximations (i.e., carefully
crafted designer-induced faults in less-sensitive neurons) that can be tolerated due to error-
resilience characteristics of DNNs while offering significant efficiency gains. Opportunities
both at the software level and the hardware level have been explored. For hardware-level
approximations, first, different error estimation and design space exploration methods for
approximate adders have been proposed and studied in Chapter 3. It presented QuAd, a
configurable adder model that covers the entire design space of low-latency approximate
adders. The analysis of QuAd configurations showed that, given a latency constraint, the
optimal low-latency approximate adder configuration (QuAdo) can be selected effortlessly.
Then, to efficiently explore the design space of low-power approximate adders, PEMACx,
a methodology for efficient error estimation of low-power approximate adders composed
of smaller cascaded adder units, has been proposed. Afterwards, an analysis is presented
which shows that data distribution of inputs can have a significant impact on the output
quality of an approximate adder. Therefore, in cases where input distribution is not
uniform or input bits cannot be assumed independent, a data-driven approach is necessary
to accurately estimate the quality of an approximate module. Towards this, DAEM, a
data and application-driven error estimation methodology, is proposed. The evaluation
showed that DAEM is suitable for shallow datapaths and cannot produce highly accurate
results for deeper datapaths, which pointed towards the significance of simulation-based
evaluation and also the need for specialized approximation/optimization techniques
that can effectively trade application-level accuracy for efficiency without involving
intermediate error estimation.

Several specialized optimization techniques have been proposed for DNNs at different
abstraction layers of the computing stack. To enable the use of DNNs in highly resource-
constrained devices, in this work (in Chapter 4), a novel cross-layer methodology is
proposed. At the software level, the methodology employs structured pruning along
with quantization of activations and network parameters to reduce the computational
complexity as well as memory footprint of DNNs. At the hardware level, it deploys
functional approximations in the arithmetic modules of DNN accelerators to further boost
the efficiency by exploiting the error-resilience of DNNs. The results highlighted that
software-level optimizations offer far higher efficiency gains compared to hardware-level
approximations; however, hardware approximation does contribute towards pushing the
efficiency gains further. The results also highlighted that functional approximations of
the arithmetic modules in DNN accelerators can lead to undesirable accuracy degradation.
This is mainly because the error introduced in the system due to approximations also
depends on the data distribution of inputs, which highlights the need for data-driven
approximations.

Another key contribution of this thesis is a novel non-linear DNN quantization approach
presented in Chapter 5. The technique exploits the data distribution characteristics of
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DNNs, mainly the fact that DNN data structures have long tails where most of the values
are concentrated near zero. In general, to achieve lower overall quantization error, values
near zero should be quantized using higher resolution while the values far away from zero
can be quantized using lower resolution. To significantly benefit from this concept, this
work proposed a novel data representation format, i.e., Efficient Low-Precision Binary
Signed Digit (ELP_BSD) format, which is (on a broader scale) based on concept of
power-of-two quantization. The proposed data representation format not only reduces the
complexity of the MAC units used in neural arrays but also helps in reducing the bitwidth
of DNN parameters, which significantly reduces the DNN memory footprint and inference
cost. A correlation-based error compensation strategy is also presented to reduce the
impact of quantization errors introduced due to the non-linear quantization of DNN
parameters. The proposed CoNLoCNN methodology then combines the novel non-linear
quantization, ELP_BSD data representation format and the error compensation strategy
to offer about 75% PDP reduction at the cost of 1.44% accuracy loss for the AlexNet
network without involving retraining. Further, to enable functional approximation of
hardware modules without any application-level accuracy loss, this work proposed the
concept of curable approximations. The neural array designed based on the concept
showed over 30% PDP reduction while offering the same DNN accuracy as an accurate
(non-approximate) array design. Although the concept of curable approximations has
been tested only for DNNs in this work, its applicability is not limited to deep learning
domain.

Towards improving the resilience of DNN systems against hardware-induced reliability
threats, this thesis focused on developing low-cost techniques for addressing permanent
faults (manufacturing defects) in neural arrays and NBTI-induced aging in the on-
chip weight memory of DNN accelerators. For addressing permanent faults, this work
presented SalvageDNN in Chapter 6, a methodology to enable reliable execution of DNNs
on faulty hardware accelerators. At the core, it is a fault-aware mapping technique
that leverages the saliency of DNN parameters along with the concept of fault-aware
pruning for mapping less significant weights onto faulty components to achieve low-cost
fault mitigation. The proposed technique uses rearrangement of DNN parameters at
the software-level to avoid any run-time overheads. Comparison with state-of-the-art
techniques showed that SalvageDNN can offer comparable results at low and moderate
fault rates without incurring any retraining or run-time overheads.

For addressing NBTI aging in the on-chip weight memory of DNN accelerators, this work
presented DNN-Life in Chapter 7, an aging-mitigation framework for reducing NBTI-
aging rates in the on-chip weight memory cells of DNN accelerators. In the framework,
first, the effects of using different data representation formats on NBTI aging are studied.
Then, based on the analysis, an aging-mitigation scheme is proposed that makes use of
memory read and write transducers along with a random bit generator to reduce the
aging rates without incurring high area and power overheads. The results showed that
the proposed DNN-Life framework enables optimal aging mitigation in the on-chip weight
memories of DNN accelerates at negligible overhead cost.
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In summary, this thesis proposed various techniques that exploit the intrinsic charac-
teristics of DNNs to significantly improve the energy efficiency and robustness of DNN
inference systems.

8.2 Future Work
The field of deep learning is progressing at a rapid pace and new architectures are being
proposed and published on a daily basis. Moreover, the spectrum of deep learning
applications is also increasing at an accelerated pace. Towards this, there are several
opportunities to build upon the techniques proposed in this thesis. In the short term,
the following are some potential directions that can be explored:

1. Tuning the proposed techniques for newly published architectures: In
pursuit of high accuracy, new DNN architectures are being explored and re-
ported on daily basis. For example, recently, google proposed vision transform-
ers [DBK+20][DLLT21] to achieve better accuracy on image classification tasks.
Most of the techniques proposed in this thesis, as well as the ones reported in the
literature, have been mainly tested for conventional CNNs such as AlexNet, VGG,
MobileNet, ResNet and DenseNet models. Therefore, a possible direction is to
explore the resilience of newly proposed DNN architectures to different types of
errors and fine-tune the existing fault-mitigation, optimization and approximation
techniques for such architectures.

2. Low-cost techniques for mitigating soft error: Soft errors are non-deterministic
in nature and can occur in any component of the hardware. As these errors can
significantly degrade the accuracy of DNNs, mitigating these is essential, specif-
ically for safety-critical applications. Therefore, sophisticated low-cost soft error
detection and mitigation techniques are required to be explored to effectively detect
and address soft errors in DNN inference systems without incurring high over-
heads. Works like [Cea20] have proposed range-restriction methods to prevent
high-intensity errors from propagating towards the output. These studies have
mainly been performed for MLPs and conventional CNNs and have not considered
recurrent networks or auto-encoders. Therefore, a possible future direction could
be to study the effectiveness of range-restriction methods for advanced recurrent
and transformer networks and employ neuron-level redundancy together with range
restriction to develop more robust methods to mitigate soft errors in advanced
high-accuracy DNN inference systems.

3. Improving fault-aware (re)training method: Fault-Aware Training (FAT)
methods, such as [ZGBG18], have emerged to be the best for addressing permanent
faults in DNN accelerators. However, due to their high computational requirements
for tuning a given DNN for each faulty chip using its unique fault map, they can
incur huge training overheads depending on the number and types of faults in the
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hardware and the complexity of the DNN and the application. Towards this, a
possible direction could be to design frameworks that can reduce the overheads of
FAT techniques while still benefiting from their advantages. We have published a
proof-of-concept of this in [HS23].

In the long term, further technological advancements such as Processing In-Memory
(PIM) and Wafer-Scale Integration (WSI) technologies are likely to open new avenues for
building highly efficient deep learning systems.

1. PIM, specifically where the computations are performed directly using memory
cells, is an appealing solution to reduce the data movement required during DNN
execution. However, as in such systems (e.g., ReRAM devices) the dot-product
operations are carried out in the analog domain, they suffer from various practical
issues such as wire IR drop and limited precision, which make it challenging to build
reliable DNN accelerators. Therefore, improvements are required at the software
level as well as the hardware level to enable the true benefits of PIM for the deep
learning domain.

2. WSI is being exploited to build high-performance Wafer-Scale Engines (WSEs)
for large-scale DNNs, as it enables to integrate unprecedented amounts of on-chip
memory and computational units. However, the large size of WSEs implies higher
number of manufacturing defects, which can translate to significant yield loss.
Therefore, low-cost yield enhancement techniques are required for such systems to
increase the manufacturing yield without affecting the performance of the chips or
the DNNs. Apart from the increased likelihood of manufacturing defects, WSEs are
expected to experience higher number of soft and timing errors as well. Therefore,
methods for systematic integration of different low-cost fault-mitigation techniques
are required that can analyze the interactions between different techniques and
tune the available knobs in a way that leads to the best performance-reliability
trade-offs.

179





List of Figures

1.1 Some prominent applications of deep learning. . . . . . . . . . . . . . . . 2
1.2 Current estimate and forecast of (a) number of smartphone users in the world

and (b) number of connected IoT devices. (data source: [Vai][ban]) . . . . 2
1.3 Characteristics of DNNs proposed for image classification on the ImageNet

dataset. (data source: [mmc][pap]) . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Reliability threats, their manifestation, and impact on a DNN-based system’s

output. (The used stop sign picture is from the COCO dataset [LMB+14]) 4
1.5 An overview of the integrated design flow for building robust and energy-

efficient deep learning systems. The proposed techniques are highlighted in
blue. The publications that are a part of this PhD thesis are mentioned in
italic while other co-authored publications are mentioned in non-italic format. 8

2.1 (a) Illustration of a fully-connected neural network. (b) Functionality of a
neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Comparison between under-fitting, optimal and over-fitting scenarios. Note,
under-fitting results in high training error and high test error and over-fitting
results in low training error but high test error. Only the optimal scenario
results in low training error and low test error. . . . . . . . . . . . . . . . 15

2.3 Illustration of early stopping. The validation accuracy increases to a point
and after that it starts decreasing due to over-fitting. . . . . . . . . . . . 16

2.4 (a) Detailed view of a convolutional layer. (b) A convolutional neural network
architecture for image classification application. The network is composed of
five convolutional (CONV) layers and three fully-connected (FC) layers. . 16

2.5 (a) Overview of a DNN hardware accelerator. (b) A detailed view of the PE
architecture. (c) A detailed view of a TPU-like systolic array. The shades of
the PEs together with (d) show the mapping policy adopted for such arrays. 18

2.6 Flow for performing convolution using the hardware shown in Fig. 2.5. (a)
Mapping of weights onto the processing array. (b) An example activation
map. (c) Sequence of execution. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 (a) An example FCNN. (b) An example of connection pruning. (c) An example
of neuron pruning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 (a) Processing flow of two consecutive convolutional layers. (b) An example
of filter (or channel) pruning. (c) Different types of structured pruning. . 24

181



2.9 (a) Difference between uniform and non-uniform quantization. (b) 8-bit
symmetric quantization. (c) 8-bit asymmetric quantization. . . . . . . . 25

2.10 Overview of Neural Architecture Search (NAS) process. . . . . . . . . . . 26
2.11 (a) An example of functional approximation, where a 2x2 multiplier is ap-

proximated to reduce the area and energy costs. (b) A generic flow for
approximating datapaths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 (a) and (b) show the impact of bit-flip errors on the accuracy of the VGG-f
network trained for ImageNet classification; (c) Single-precision floating-point
format [HKP+18], i.e., the format considered for the evaluation presented in
(a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 Modified systolic array design for permanent fault mitigation through fault-
aware pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 Generic flow for fault-aware (re-)training. . . . . . . . . . . . . . . . . . . 33
2.15 Architectural modifications required in PEs of a systolic-array-based DNN

accelerator to realize TE-Drop . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Example configurations of ACA-I (a) and GDA (b). . . . . . . . . . . . . 39
3.2 A generic N -bit GeAr adder composed of k sub-adders, where each sub-adder

takes in L = R + P number of bits from both the operands to generate
respective R number of output bits. except for the first sub-adder which
computes the output for L = R + P number of bits. Also, the cout of the most
significant sub-adder is used as the carry-out of the adder. . . . . . . . . . 40

3.3 An example illustrating the functionality of low-latency adders. (a) Addition of
two 12-bit operands using GeAr(12, 2, 6) configuration. (b) Accurate addition
of the example operands. (c) Example case of sub-adder 2 which leads to
error in the output bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 A generic N -bit QuAd adder composed of k sub-adders, where each ith sub-
adder sums two Ri + Pi number of bits to generate Ri number of output bits,
except for the last sub-adder which contributes Ri + 1 number of bits. . . 41

3.5 Process for exploring the design space of LLAAs covered by QuAd adder
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Three different QuAd configurations along with their respective PMFs of error.
(a) Pi = Pi−1 + Ri−1, (b) Pi > Pi−1 + Ri−1 and (c) Pi < Pi−1 + Ri−1. . . 44

3.7 An illustrative view of QuAd{[3, 5], [0, 1]}, where the length of the most
significant sub-adder is the same as the length of most significant sub-adder of
configuration ‘A’ and the overlap between the sub-adders is 1-bit, i.e., Pk = 1. 47

3.8 Structural comparison of two low-latency approximate adders composed of
disjoint sub-adder units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Design space of 8-bit low-latency adder for various Lmax using MED error
measure. The plot for Lmax = 1 is not shown as it contains only one
configuration with 8 sub-adders having R − bits = 1 and P − bits = 0. . . 52

182



3.10 Design space of 8-bit low-latency adder for various Lmax using MSE error
measure. The plot for Lmax = 1 is not shown as it contains only one
configuration with 8 sub-adders each having R − bits = 1 and P − bits = 0. 53

3.11 MaxE of 8-bit adder configurations that provide optimal MED and MSE
results while consuming minimum area. . . . . . . . . . . . . . . . . . . . 54

3.12 Image low-pass filtering accelerator detail. . . . . . . . . . . . . . . . . . . 55
3.13 Image lowpass filtering results for various approximate low-latency adders

with Lmax = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.14 Image lowpass filtering results for various approximate low-latency adders

with Lmax = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.15 Image blending results for various approximate low-latency adders with

Lmax = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.16 A generic N -bit adder composed of M cascaded Adder Units (AUs). The AUs

can be accurate (e.g., accurate full-adders) or approximate (e.g., approximate
full-adders), and approximations are typically employed at lower significance
locations. The adder takes in two N -bit operands A and B and a carry-in
(Cin) signal as inputs to generate an N + 1-bit output, i.e., an N -bit sum
(S) and a carry-out (Cout) signal. Each AU can be of arbitrary bit-width
regardless of the bit-width of rest of the AUs. . . . . . . . . . . . . . . . . 57

3.17 Execution time for computing PMF of error of different adders composed of
smaller cascaded approximate full-adder units using exhaustive simulations. 58

3.18 A flow for design space exploration of approximate adders composed of cascade
of approximate adder units, where our novel contribution is highlighted in
blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.19 Flow of the proposed methodology for computing PMF of error and the desired
error metrics of an adder composed of cascaded approximate units. . . . . 60

3.20 Error characteristics of different 8-bit low-power adders composed of approxi-
mate adder types shown in Table 3.3 computed using Exhaustive simulations
and PEMACx. (a) and (b) illustrate the MSE and MED, respectively, of
adders with two least-significant full-adders approximated using a specific type
of approximate unit. (c) and (d) illustrate the MSE and MED, respectively,
of adders with six least-significant full-adders approximated. . . . . . . . . 66

3.21 Error characteristics of different 12-bit low-power adders composed of approx-
imate adder types shown in Table 3.3 computed using Exhaustive simulations
and PEMACx. (a) and (b) illustrate the MSE and MED, respectively, of
adders with four least-significant full-adders approximated using a specific type
of approximate unit. (c) and (d) illustrate the MSE and MED, respectively,
of adders with eight least-significant full-adders approximated. . . . . . . 66

3.22 Execution time of PEMACx and exhaustive simulations for different adder
lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.23 Design space of 8-bit approximate adders using accurate and Types 1-5
approximate FAs shown in Table 3.3. The pareto-optimal configurations are
highlighted using red triangles. . . . . . . . . . . . . . . . . . . . . . . . . 68

183



3.24 An example illustration of high-performance (low-latency) low-power adder.
Each sub-adder is of Lmax length except for the first sub-adder which is of
remainder number of bits (N%Lmax). Here, HA represents a half-adder, FA
represents a full-adder, and AAU is an approximate adder unit which only
computes the sum bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.25 MSE of different 8-bit (a) and 12-bit (b) QuAdo adder configurations computed
using exhaustive simulations and PEMACx. . . . . . . . . . . . . . . . . . 69

3.26 The structure of different GeAr adder configurations. . . . . . . . . . . . 70
3.27 (a) Comparison of MSE evaluated using functional simulations and using

the analytical modeling (assuming uniform distribution). (b) Execution time
of functional simulations for template matching application as a function of
number of input samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.28 (a). Example EMAP for 8-bit ACA with k = 5, ESA with k = 2, and SCSA
with k = 2. The white colored locations in EMAP represents accurate combi-
nations. (b)Joint input probability distribution generated using neighboring
pixels of two visually different sets of gray scale images shown in (c). . . . 72

3.29 (a) Error generated and propagated by an nth adder. Here, n = 3, i.e., the
3rd adder is adding the sums obtained from the 1st and 2nd adders. (b) A
configuration set (ct) is defined using the type of approximate adder (adder
variant) used at each adder node. In the illustrated example of Fig. (a), each
adder is using the same type of approximate adder, i.e., Type 1. Thus, the
adder variant 1 is mentioned for each adder node in Fig. (b). (c) Adjacency
matrix provides the connectivity of the adder nodes. . . . . . . . . . . . . 75

3.30 Proposed data and application-aware error analysis methodology for approxi-
mate adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.31 The configurations of the GeAr adder model used for evaluation using synthetic
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.32 Comparison of DAEM, analytical model by Mazahir et al. [MHH+17] and
functional simulations. The MSE and MED results are obtained for 6 different
configurations of GeAr for three different input distributions. Each GeAr
configuration is represented in its generic form (N, R, P). . . . . . . . . . 77

3.33 Comparison of Error in Estimated MSE for two image processing applications
for three datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.34 Variations in per frame MSE across frames of standard container video for
4x4 approximate low pass filtering application. The results are illustrated for
10 different configuration sets. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.35 Comparison of DAEM with state-of-the-art [MHH+17] and simulated results
for 4x4 low-pass filtering application for two standard videos: (a) Container
(b) Coastguard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Our Cross-Layer Optimization Flow for DNNs. . . . . . . . . . . . . . . . 86
4.2 Proposed structured pruning methodology . . . . . . . . . . . . . . . . . . 88

184



4.3 Results of structured pruning when applied to the LeNet5 network trained on
the MNIST dataset. The sub-figures are generated using different cost func-
tions, i.e., (a) CA, (b) CB, and (c) CC , and different number of intermediate
fine-tuning epochs (i.e., y) mentioned in Table 4.1. . . . . . . . . . . . . . 89

4.4 Results of structured pruning when applied to the LeNet5 network trained for
the Cifar10 dataset. The sub-figures are generated using different cost func-
tions, i.e., (a) CA, (b) CB, and (c) CC , and different number of intermediate
fine-tuning epochs (i.e., y) mentioned in Table 4.1. . . . . . . . . . . . . . 90

4.5 A few example images from: (a) the MNIST dataset; and (b) the Cifar10
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Results of structured pruning when applied to the VGG11 network trained on
the Cifar10 dataset. The sub-figures are generated using different cost func-
tions, i.e., (a) CA, (b) CB, and (c) CC , and different number of intermediate
fine-tuning epochs (i.e., y) mentioned in Table 4.1. . . . . . . . . . . . . . 91

4.7 Network compression (structured pruning followed by quantization) results for
the LeNet5 trained on the MNIST dataset. (a) Network compression through
structured pruning. (b) Quantization of different pruned DNNs marked in (a)
using Eqs. 4.1 and 4.2. (c) Quantization of the DNNs marked in (a) using
Eqs. 4.1 and 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 Network compression (structured pruning followed by quantization) results for
the LeNet5 trained on the Cifar10 dataset. (a) Network compression through
structured pruning. (b) Quantization of different pruned DNNs marked in (a)
using Eqs. 4.1 and 4.2. (c) Quantization of the DNNs marked in (a) using
Eqs. 4.1 and 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Network compression (structured pruning followed by quantization) results for
the VGG11 trained on the Cifar10 dataset. (a) Network compression through
structured pruning. (b) Quantization of different pruned DNNs marked in (a)
using Eqs. 4.1 and 4.2. (c) Quantization of the DNNs marked in (a) using
Eqs. 4.1 and 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.10 A comparison between conventional and self-healing approaches . . . . . . 95
4.11 Types of 8x8 approximate multipliers considered for simulations . . . . . 96
4.12 The foremost 2x2 multiplier designs used for building conventionally approxi-

mate and self-healing approximation-based multipliers . . . . . . . . . . . 97
4.13 Effects of using approximate multipliers for inference of MNIST test images

using different compressed LeNet5 variants marked in Fig. 4.7. . . . . . . 99
4.14 Effects of using approximate multipliers for inference of Cifar10 test images

using different compressed LeNet5 variants marked in Fig. 4.8. . . . . . . 99
4.15 Effects of using approximate multipliers for inference of Cifar10 test images

using different compressed VGG11 variants marked in Fig. 4.9. . . . . . . 99

5.1 Chapter Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Different Settings for Optimizing DNNs. . . . . . . . . . . . . . . . . . . . 104

185



5.3 Effects of deploying approximations in multipliers on the accuracy of the
LeNet-5 network trained on the Cifar-10 dataset. . . . . . . . . . . . . . . 106

5.4 Methods for building systems with cascaded modules. Here, f(ϵi) represents
a reversible function of the error from the ith stage, i.e., ϵi, which represents
the error in a compressed form. . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Functionality of different modules used in Fig. 5.4. Oi represents the accurate
expected output and ϵi represents the approximation error generated by the
ith stage. The functions fDAx(.) and fC&DAx(.) are approximate variants of
the corresponding accurate module and fCu(.) can also be a variant of the
corresponding accurate module or just an additional correction module. f(ϵi)
represents a reversible function of the error from the ith stage. . . . . . . 108

5.6 An 8x8 signed multiplication based on Baugh-Wooley algorithm. . . . . . 109
5.7 Different MAC unit designs based on Bough-Wooley algorithm and Wallace

tree architecture. The multiplicand and the multiplier are assumed to be
8-bit wide, and the partial sums are assumed to be 19-bit wide. (a) Accurate
Merged MAC. (b) Deterministic Approximate (DAx) MAC. (c) Cure amd
Deterministic Approximate (C&DAx) MAC. . . . . . . . . . . . . . . . . 109

5.8 (a) Processing Element (PE) design with conventional MAC. (b) Conventional
systolic array design similar to the systolic array of the TPU [JYP+17]. (c)
Processing Element (PE) design with merged MAC. (d) Modified systolic
array design based on the proposed methodology. . . . . . . . . . . . . . . 111

5.9 An approximate systolic array design based on Type 3 approximate multiplier
from Section 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10 Comparison of the hardware characteristics of four different neural array
designs for 4x4 and 8x8 sizes. . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.11 Novel contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.12 Distribution of weights, biases and activations of the first four convolutional

and layers of the AlexNet (in the form of half-violin plots and box plots).
Note that the output activations here represent the output of the layer before
passing through activation functions. . . . . . . . . . . . . . . . . . . . . . 115

5.13 Comparison between uniform and non-uniform quantization. . . . . . . . 116
5.14 Impact of altering the bias values of different number of randomly selected

filters/neurons (NF) of different layers of a trained AlexNet on its classification
accuracy. (a) and (c) show the impact when same amount of positive (or
negative) value is added to the bias values of the selected filters of layer 1
and 4, respectively. (b) shows the impact when the bias values of half of the
selected filters of layer 1 are injected with positive noise and half with negative
noise having the same magnitude. Similar to (b), (d) shows the results for
layer 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.15 Impact of adding noise generated using a Gaussian distribution to the bias
values of filters/neurons of different layers and different number of layers of a
trained AlexNet on its classification accuracy. . . . . . . . . . . . . . . . . 117

186



5.16 Intra-feature map correlation of input activations of different layers of the
AlexNet and the VGG16. (a) Illustration of an input feature map (shown in
blue) and its shifted variant (shown with red border). i and j define the shifts
in x and y directions, respectively. (b) and (c) show the correlation between
the input feature maps and their shifted variants of layer 1 and layer 3 of
the AlexNet, respectively. (d) shows correlation between neighboring input
activations of layer 12 of the VGG16. . . . . . . . . . . . . . . . . . . . . . 117

5.17 Correlation between input feature maps of different layers of the AlexNet. (a)
Correlation matrix of input feature maps of layer 1. (b) Distribution of the
correlation between input feature maps of layer 2. Similar to (b), (c) and (d)
show distribtions of layer 4 and layer 7, respectively. . . . . . . . . . . . . 118

5.18 Decomposition of activations, and an example illustrating the impact of
exploiting correlation for error compensation on the output of dot-product
operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.19 Impact of adjusting the inter- and intra-channel mean quantization error in
the weights of AlexNet. (a) Layer 1; (b) Layer 4. . . . . . . . . . . . . . . 120

5.20 Illustration of different data representation formats that show step-by-step
evolution of traditional quantization scheme to our ELP_BSD representation. 122

5.21 (a) Specifications of an ELP_BSD format. (b) ELP_BSD format. (c) and (d)
Examples to explain conversion between ELP_BSD format and values. . 123

5.22 (a) Single digit MAC design. (b) Modified processing element for an NPU. (c)
A Neural Processing Array architecture. . . . . . . . . . . . . . . . . . . . 124

5.23 Detailed view of the single digit MAC unit shown in Fig. 5.22(a), assuming
activation bit-width to be 8-bits, encoded weight bit-width to be 4-bits and
the array size to be 256x256 . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.24 Proposed DNN quantization methodology . . . . . . . . . . . . . . . . . . 126

5.25 (a) Effectiveness of our error compensation strategy when used with traditional
FP quatization for the AlexNet. (b) Accuracy of the AlexNet vs. PDP for
different ELP_BSD data representations. . . . . . . . . . . . . . . . . . . 127

6.1 Trends illustrating the relation between the possible number of fault maps vs.
the number of rows/columns in a systolic array: (a) when number of faulty
PEs ≤ total PEs in the array, and (b) when number of faulty PEs ≤ 5 . . 134

6.2 Time required for training different DNNs (i.e., VGG16, VGG11, ResNet18,
and ResNet20) with different datasets (i.e., ImageNet and Cifar-10) for one
epoch using a Core i7 machine with one GTX1080Ti. . . . . . . . . . . . 134

6.3 Overview of the proposed SalvageDNN methodology for saliency-driven fault-
aware mapping of DNNs on a hardware with permanent faults. . . . . . . 135

187



6.4 (a) The baseline systolic array design similar to the TPU. (b) The conventional
PE design. (c) The modified PE proposed in [ZGBG18] for permanent fault
mitigation using the FAP and the FAP+T techniques. (d), (e) and (f) show
our novel additional PE designs for handing permanent faults. Note, the
changes in the PEs with respect to the conventional PE design, i.e., (b), are
shown in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Impact of rearranging neurons in a layer of a fully-connected DNN on the
arrangement of the weights to be mapped on the systolic array. (a) shows
the arrangement before swapping neurons 1 and 2 in the first hidden layer of
a fully-connected DNN, and (b) shows the arrangement after swapping the
neurons. The left side of the figure illustrates the state of the neural network
and the right side shows the weights of the first and second hidden layers in a
manner in which they will be mapped on a systolic array. Different colors are
used to show the association between the neurons and weights. . . . . . . 141

6.6 Impact of rearranging filters in a layer of a CNN on the arrangement of the
weights in the neural network. (a) shows the arrangement of filters and their
channels before swapping filters 1 and 2 in the lth convolutional layer of a
CNN, and (b) shows the arrangement after swapping the filters. Note that
a swap of filters in the lth layer of a CNN requires a swap of the respective
channels in the l + 1th layer of the CNN to maintain the functionality. . . 142

6.7 An example illustration of how the mapping would vary across chips having
different fault maps. The grids shown in b, c, d, and e corresponds to 4x4
systolic arrays from 4 different chips. Each small box inside a grid represents
a single Processing Element (PE). The PEs with black cross (x) over them in
c, d, and e correspond to faulty PEs. The filters considered in this example
are shown in a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.8 An example illustration of how the mapping would change if the fault map
of the DNN hardware changes over time. The grid shown in b, c, and d
corresponds to a systolic array, where each small box represents a single
Processing Element (PE). The PEs with black cross (x) over them in c and d
correspond to faulty PEs detected during post-fabrication testing and the PE
with red cross (x) over it in d correspond to the PE which experienced fault
over time due to wear-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.9 Hardware synthesis results of the PEs of different sizes and types of systolic
array designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.10 Impact of number of faulty MAC units in a 256x256 systolic array, composed
of SOA_PEs, on the accuracy of the VGG-11 network trained on the Cifar-10
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.11 Impact of using SalvageDNN before applying fault-aware training on the
accuracy of the VGG11 network trained for the Cifar10 classification. The
subfigures show the comparison between FAP + retraining and SalvageDNN
+ retraining when the underlying hardware has: (a) 10% faulty PEs, (b) 30%
faulty PEs, (c) 50% faulty PEs, and (d) 70% faulty PEs . . . . . . . . . . 149

188



6.12 Comparison of SalvageDNN with the state-of-the-art FAP approach when
used for the VGG11 network trained on the ImageNet dataset, which has
to be mapped on a 256x256 sized systolic array. The two commonly used
accuracy metrics, i.e., the Top1 and the Top5 accuracies, are shown for cases
having different number of faulty PEs, in subfigures (a) and (b) respectively 150

6.13 Comparison of SalvageDNN with the state-of-the-art FAP approach when
used for the VGG16 network trained on the ImageNet dataset, which has
to be mapped on a 256x256 sized systolic array. The two commonly used
accuracy metrics, i.e., the Top1 and the Top5 accuracies, are shown for cases
having different number of faulty PEs, in subfigures (a) and (b) respectively 150

6.14 Impact of permanent faults in the proposed systolic array designs on the
accuracy of the VGG-11 network trained on the Cifar-10 dataset. Here, BP
corresponds to propagation-based method. . . . . . . . . . . . . . . . . . . 152

7.1 (a) Accuracy and size comparison of few of the state-of-the-art DNNs (b)
Access energy comparison of SRAM with DRAM (data source: [SCYE17]). 156

7.2 (a) A 6T-SRAM Cell; and (b) its SNM degradation after 7 years [KCR11] 157
7.3 Overview of the design-time steps involved in the proposed DNN-Life frame-

work. The right side shows a high-level view of how the proposed aging
mitigation module is connected with rest of the modules in a DNN accelerator.
The novel contributions of this work are represented using colored boxes. 159

7.4 (a) Architecture of the baseline DNN accelerator. The highlighted boxes,
i.e., Write Data Encoder (WDE), Read Data Decoder (RDD) and Aging
Controller, are the proposed modules for mitigating NBTI aging of weight
memory. (b) A detailed view of the processing array and the accumulation
unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5 Division of filters of a CONV layer of a DNN into smaller blocks that can be
accommodated in the on-chip weight memory. Different colors correspond
to different sets of filters/blocks. The gray colored boxes define one block
of r × c × ch × f size. The steps show the sequence in which the blocks are
moved to the on-chip fabric for scheduling their computations. . . . . . . 161

7.6 Distribution of bits of weights of different different DNNs when represented in
different data representation formats. Symmetric and asymmetric represent
which post-training quantization method is used to transform the data for
the corresponding distribution. . . . . . . . . . . . . . . . . . . . . . . . . 163

7.7 Probability of occurrence of b/K ≥ duty-cycle ≥ 1 − b/K when (a) K = 20,
and (b) K = 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.8 Proposed micro-architecture for effective aging mitigation of 6T-SRAM weight
memory of DNN accelerators. . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.9 Overall experimental setup used for evaluation. . . . . . . . . . . . . . . . 167

189



7.10 SNM degradation of 6T-SRAM on-chip weight memory cells of the baseline
DNN accelerator when used for performing inferences only using the AlexNet
network. Each bar graph shows the percentage of the number of cells (Y-axis)
experiencing different level of SNM degradation (X-axis). . . . . . . . . . 169

7.11 SNM degradation of 6T-SRAM on-chip weight memory cells of the baseline
DNN accelerator when used for performing inferences only using the VGG-16
network. Each bar graph shows the percentage of the number of cells (Y-axis)
experiencing different level of SNM degradation (X-axis). . . . . . . . . . 170

7.12 Impact of different on-chip weight memory sizes in the baseline DNN ac-
celerator on the aging mitigation achieved using different techniques, when
the inference is performed using 8-bit quantized VGG-16 (quantized using
symmetric range-linear quantization method). . . . . . . . . . . . . . . . . 171

7.13 SNM degradation of 6T-SRAM on-chip weight memory cells of a TPU-like
NPU when used for performing inferences using the AlexNet, the VGG-16 and
the custom DNN, individually. The networks are quantized to 8-bit format
using symmetric range-linear quantization method. . . . . . . . . . . . . . 172

190



List of Tables

2.1 Techniques for improving the energy and performance efficiency of DNN
inference process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 An overview of different Hardware (HW) and Software (SW) fault-mitigation
techniques for deep learning inference systems. . . . . . . . . . . . . . . . 31

3.1 Error cases of configuration ‘D’ along with their respective error probabilities
and magnitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Area results for various low-latency approximate adders. . . . . . . . . . . 57
3.3 Truth tables and error characteristics of prominent state-of-the-art low-power

full-adders (as proposed in [AKL16][GMP+11]). The output combinations in
which the resultant sum, or carry-out, or both are erroneous are highlighted
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Functional and error vectors of the approximate full-adders proposed in [GMP+11]
and [AKL16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Hardware characteristics of accurate and type 1-5 approximate FAs from [SHR+16]. 67
3.6 Timing comparison of error estimation schemes with simulations (sec) . . 81

4.1 Settings used in the experiments . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Error characteristics of the multiplier configurations presented in Fig. 4.11 98
4.3 Hardware characteristics of the multiplier configurations presented in Fig. 4.11 98
4.4 Execution time of structured pruning algorithm for different cases . . . . 100
4.5 Simulation time for evaluating the performance of quantization and approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Error and hardware characteristics of different multipliers used for imple-
menting the LeNet network for classifying the cifar-10 images. The hardware
results are generated for 65 nm technology node using Cadence Genus tool
with TSMC 65 nm library. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Hardware characteristics of different types of MAC units. . . . . . . . . . 112
5.3 Hardware characteristics of the PEs designed using our methodology for some

of ELP_BSD representations and their comparison with booth multiplier-
based and conventional multiplier-based PEs. . . . . . . . . . . . . . . . 129

191



6.1 Hardware characteristics of the components used in different sizes of the
baseline and the state-of-the-art fault-tolerant systolic arrays. The bit-widths
of the partial sums in 8x8, 16x16, 32x32 and 256x256 arrays were set to 19,
20, 21 and 24, respectively, assuming the bit-width of weights and activations
to be 8-bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 DNNs and the datasets used for evaluation. . . . . . . . . . . . . . . . . . 147
6.3 A summary of the key characteristics of the datasets used in the evaluation of

SalvageDNN and the comparison with the state-of-the-art . . . . . . . . . 147
6.4 Execution time comparison of SalvageDNN with retraining-based approach,

i.e., FAP+T [ZGBG18], for different networks trained on different datasets 151

7.1 Hardware configurations and settings used in evaluation . . . . . . . . . . 167
7.2 DNNs and the datasets used for evaluation. . . . . . . . . . . . . . . . . . 168
7.3 Hardware results of different Write Data Encoders (WDEs) . . . . . . . . 172

192



List of Algorithms

3.1 Pseudo-code for computing PMF of Error of an Adder . . . . . . . . . . 63

3.2 Pseudo-code for computing PPE . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Computing PMFeG for a single approximate adder . . . . . . . . . . . 73

5.1 Pseudo-code for low-cost error compensation . . . . . . . . . . . . . . . 127

6.1 A Fast Method to Reduce the Sum of Saliency of the Weights of a Layer
that have to be Pruned due to Permanent Faults. . . . . . . . . . . . . 138

193



List of Abbreviations

Abbreviation Description Page
AAU Approximate Adder Unit 69
ABFT Algorithm-Based Fault Tolerance 35
AC Approximate Computing 26
ACA Accuracy-Configurable Adder 71
AI Artificial Intelligence 1
ASICs Application-Specific Integrated Circuit 51
AUs Adder Units 58
BIST Built-In-Self-Test 32
BTI Bias Temperature Instability 28
BW Bit-Width 126
CA Canonical Approximate 128
CBWA Critical Bit-Width for Activations 125
C&DAx Cure & Deterministic Approximate 106
Cin Carry-in 58
CMOS Complementary Metal-Oxide-Semiconductor 33
CNNs Convolutional Neural Networks 15
CONV Convolutional 16
Cout Carry-out 58
CPS Cyber–Physical Systems 1
Cu Cure 106
DAx Deterministic Approximate 106
DM Disconnection Map 138
DMR Dual Modular Redundancy 30
DNNs Deep Neural Networks 1
DRAM Dynamic Random Access Memory 17
ECC Error Correction Codes 29
EIE Efficient Inference Engine 22
ELP_BSD Encoded Low-Precision Binary Signed Digit 122
EM Electromigration 28
EMAP Error Map 71
ESA Equally Segmented Adders 71
FA Full Adder 58
FAP Fault-Aware Pruning 32
FAP+T Fault-Aware Pruning + Training 32
FC Fully-Connected 16
FLOPs Floating-Point Operations 2
FP Fixed-Point 113
FPGA Field Programmable Gate Array 51
GFLOPs Giga Floating-Point Operations 2
GNNs Graph Neural Networks 17
GPU Graphics Processing Unit 1

194



Abbreviation Description Page
HCI Hot Carrier Injection 28
HW Hardware 31
IoT Internet of Things 1
KSA Kogge-Stone Adder 51
LLAAs Low-Latency Approximate Adders 10
Lmax Maximum Latency Constraint 42
LPAAs Low-Power Approximate Adders 10
LRN Local Response Normalization 141
MAC Multiply–Accumulate 9
MaxE Maximum Error Magnitude 45
MED Mean Error Distance 45
MFLOPs Mega Floating-Point Operations 2
MLP Multi-Layer Perceptron 14
MSE Mean Square Error 45
MUX Multiplexer 145
NAS Neural Architecture Search 20
NBTI Negative-Bias Temperature Instability 33
NN Neural Network 13
NPUs Neural Processing Units/Arrays 11
PDP Power Delay Product 112
PE Processing Element 17
PEI Input PMF of Error 60
PEO PMF of Error at the Output of the Current Stage 60
PIM Processing In-Memory 179
PM Pruning Matrix 138
PMF Probability Mass Function 10
PMOS P-channel Metal-Oxide Semiconductor 156
PPE Partial PMF of Error 60
QuAdo Quality-Area Optimal 10
RCA Ripple Carry Adder 109
RDD Read Data Decoder 160
ReLU Rectified Linear Unit 14
RNNs Recurrent Neural Networks 17
SCSA Carry Select Adders 71
SIMD Single Instruction, Multiple Data 23
SNM Static Noise Margin 167
SRAM Static Random Access Memory 7
SSIM Structural Similarity Index 54
SW Software 31
TCost Total Cost 140
TDDB Time-Dependent Dielectric Breakdown 28
TMR Triple Modular Redundancy 30
TPU Tensor Processing Unit 17

195



Abbreviation Description Page
TQL Table of possible Quantization Levels 125
TRBG True Random Bit Generator 168
TSMC Taiwan Semiconductor Manufacturing Company 98
VHDL Very High-Speed Integrated Circuit Hardware Description Lan-

guage
126

ViT Vision Transformers 3
VT H Threshold Voltage 29
WDE Write Data Encoder 160
WSI Wafer-Scale Integration 179

196



Bibliography

[ABF+87] Jacob A Abraham, Prithviraj Banerjee, WK Fuchs, AL Narasimha Reddy,
et al. Fault tolerance techniques for systolic arrays. Computer, (7):65–75,
1987.

[ACV05] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for
floating-point multimedia applications. IEEE Transactions on Computers,
54(7):922–927, 2005.

[AGGC18] Arash Azizimazreah, Yongbin Gu, Xiang Gu, and Lizhong Chen. Tol-
erating soft errors in deep learning accelerators with reliable on-chip
memory designs. In 2018 IEEE International Conference on Networking,
Architecture and Storage (NAS), pages 1–10, 2018.

[AHS17a] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured prun-
ing of deep convolutional neural networks. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 13(3):1–18, 2017.

[AHS17b] Muhammad Kamran Ayub, Osman Hasan, and Muhammad Shafique.
Statistical error analysis for low power approximate adders. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
June 2017.

[AKL16] Haider AF Almurib, T Nandha Kumar, and Fabrizio Lombardi. Inexact
designs for approximate low power addition by cell replacement. In 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 660–665. IEEE, 2016.

[AKS93] Vishwani D Agrawal, Charles R Kime, and Kewal K Saluja. A tutorial
on built-in self-test. 2. applications. IEEE Design & Test of Computers,
10(2):69–77, 1993.

[AN06] Kanak Agarwal and Sani Nassif. Statistical analysis of sram cell stability.
In Proceedings of the 43rd annual design automation conference, pages
57–62, 2006.

197



[AQBAQR17] Mohammed Al-Qizwini, Iman Barjasteh, Hothaifa Al-Qassab, and Hayder
Radha. Deep learning algorithm for autonomous driving using googlenet.
In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 89–96. IEEE,
2017.

[ATBS11] Bartomeu Alorda, Gabriel Torrens, Sebastià Bota, and Jaume Segura. 8t vs.
6t sram cell radiation robustness: A comparative analysis. Microelectronics
reliability, 51(2):350–359, 2011.

[AVG07] Jaume Abella, Xavier Vera, and Antonio Gonzalez. Penelope: The NBTI-
aware processor. In 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007), pages 85–96. IEEE, 2007.

[ban] bankmycell. How many smartphones are in the world? https://www.
bankmycell.com/blog/how-many-phones-are-in-the-world.
Accessed: 2022-10-28.

[Bau05] Robert C Baumann. Radiation-induced soft errors in advanced semicon-
ductor technologies. IEEE Transactions on Device and materials reliability,
5(3):305–316, 2005.

[BMO+21] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail
Niar, Martin Wistuba, and Naigang Wang. A comprehensive sur-
vey on hardware-aware neural architecture search. arXiv preprint
arXiv:2101.09336, 2021.

[BOEMN23] Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and
Smail Niar. Multi-objective hardware-aware neural architecture search
with pareto rank-preserving surrogate models. ACM Transactions on
Architecture and Code Optimization, 20(2):1–21, 2023.

[BOO+23] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Mohammad Ab-
dullah Al Faruque, and Smail Niar. Hadas: Hardware-aware dynamic
neural architecture search for edge performance scaling. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6. IEEE, 2023.

[BW73a] Charles R Baugh and Bruce A Wooley. A two’s complement parallel array
multiplication algorithm. IEEE Transactions on computers, 100(12):1045–
1047, 1973.

[BW73b] Charles R Baugh and Bruce A Wooley. A two’s complement parallel
array multiplication algorithm. IEEE Transactions on Computers, C-
22(12):1045–1047, Dec 1973.

[Cea19] Z. Chen et al. Binfi: an efficient fault injector for safety-critical machine
learning systems. In ACM HPCA, page 69, 2019.

198

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world


[Cea20] Z. Chen et al. Ranger: Boosting error resilience of deep neural networks
through range restriction. arXiv preprint arXiv:2003.13874, 2020.

[CHS+16] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[CKES17] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits, 52(1):127–138, Jan 2017.

[CLL+14] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling
Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-
learning supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 609–622. IEEE, 2014.

[CLMP11] Andrea Calimera, Mirko Loghi, Enrico Macii, and Massimo Poncino.
Partitioned cache architectures for reduced nbti-induced aging. In 2011
Design, Automation & Test in Europe, pages 1–6, 2011.

[Con03] Cristian Constantinescu. Trends and challenges in vlsi circuit reliability.
IEEE micro, 23(4):14–19, 2003.

[CW90] L-C Chu and Benjamin W Wah. Fault tolerant neural networks with
hybrid redundancy. In 1990 IJCNN international joint conference on
neural networks, pages 639–649. IEEE, 1990.

[CYES19] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
9(2):292–308, 2019.

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255,
June 2009.

[DFC+15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting
vision processing closer to the sensor. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, pages 92–104, 2015.

199



[DFD+15] Jiacnao Deng, Yuntan Fang, Zidong Du, Ymg Wang, Huawei Li, Olivier
Temam, Paolo Ienne, David Novo, Xiaowei Li, Yunji Chen, et al.
Retraining-based timing error mitigation for hardware neural networks.
In 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 593–596. IEEE, 2015.

[DJS+18] Alberto Delmas, Patrick Judd, Dylan Malone Stuart, Zissis Poulos,
Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, and Andreas Moshovos.
Bit-tactical: Exploiting ineffectual computations in convolutional neural
networks: Which, why, and how. preprint arXiv:1803.03688, 2018.

[DLLT21] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet:
Marrying convolution and attention for all data sizes. Advances in Neural
Information Processing Systems, 34:3965–3977, 2021.

[EAKHAK94] MO Esonu, AJ Al-Khalili, S Hariri, and D Al-Khalili. Fault-tolerant design
methodology for systolic array architectures. IEE Proceedings-Computers
and Digital Techniques, 141(1):17–28, 1994.

[EES+20] Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong Zhang, and
Nilanjan Ray. To filter prune, or to layer prune, that is the question. In
Proceedings of the Asian Conference on Computer Vision, 2020.

[EET] EETimes. Acceleration case: Jury finds toy-
ota liable. https://www.eetimes.com/
acceleration-case-jury-finds-toyota-liable/. Accessed:
2022-10-28.

[EMH19] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. The Journal of Machine Learning Research,
20(1):1997–2017, 2019.

[ERR+19] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr
Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado,
Sebastian Thrun, and Jeff Dean. A guide to deep learning in healthcare.
Nature medicine, 25(1):24, 2019.

[FFR16] Donato O Forlenza, Orazio P Forlenza, and Bryan J Robbins. Logic-built-
in-self-test diagnostic method for root cause identification, January 26
2016. US Patent 9,244,757.

[GAGN15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In Interna-
tional Conference on Machine Learning, pages 1737–1746, 2015.

[GHK+18] Ghayoor A Gillani, Muhammad Abdullah Hanif, M Krone, Sabih H Gerez,
Muhammad Shafique, and André BJ Kokkeler. SquASH: Approximate
square-accumulate with self-healing. IEEE Access, 6:49112–49128, 2018.

200

https://www.eetimes.com/acceleration-case-jury-finds-toyota-liable/
https://www.eetimes.com/acceleration-case-jury-finds-toyota-liable/


[GHV+19] Ghayoor A Gillani, Muhammad Abdullah Hanif, Bart Verstoep, Sabih H
Gerez, Muhammad Shafique, and Andre BJ Kokkeler. Macish: Designing
approximate mac accelerators with internal-self-healing. IEEE Access,
7:77142–77160, 2019.

[GKD+21] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney,
and Kurt Keutzer. A survey of quantization methods for efficient neural
network inference. arXiv preprint arXiv:2103.13630, 2021.

[GMP+11] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghu-
nathan, and Kaushik Roy. Impact: imprecise adders for low-power ap-
proximate computing. In IEEE/ACM International Symposium on Low
Power Electronics and Design, pages 409–414. IEEE, 2011.

[GMRR12] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik
Roy. Low-power digital signal processing using approximate adders. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 32(1):124–137, 2012.

[GSK+15] Dennis Gnad, Muhammad Shafique, Florian Kriebel, Semeen Rehman,
Duo Sun, and Jörg Henkel. Hayat: Harnessing dark silicon and variability
for aging deceleration and balancing. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015.

[GW08] Rafael C. Gonzalez and Richard E. Woods. Digital image processing.
pearson education, 2008.

[GXM14] Jing Guo, Liyi Xiao, and Zhigang Mao. Novel low-power and highly
reliable radiation hardened memory cell for 65 nm cmos technology. IEEE
TCAS-I, 61(7):1994–2001, 2014.

[HBD+13] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muham-
mad Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip
systems in the nano-era: Lessons learnt and future trends. In Proceedings
of the 50th Annual Design Automation Conference, page 99. ACM, 2013.

[HCS+16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. Advances in neural information
processing systems, 29, 2016.

[HEAK13] Jörg Henkel, Thomas Ebi, Hussam Amrouch, and Heba Khdr. Thermal
management for dependable on-chip systems. In 2013 18th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 113–118. IEEE,
2013.

[HHHS17] Muhammad Abdullah Hanif, Rehan Hafiz, Osman Hasan, and Muhammad
Shafique. QuAd: Design and analysis of quality-area optimal low-latency

201



approximate adders. In Design Automation Conference (DAC), pages
1–6, 2017.

[HHHS20] Muhammad Abdullah Hanif, Rehan Hafiz, Osman Hasan, and Muhammad
Shafique. PEMACx: A probabilistic error analysis methodology for adders
with cascaded approximate units. In Design Automation Conference
(DAC), pages 1–6, 2020.

[HHS18] Muhammad Abdullah Hanif, Rehan Hafiz, and Muhammad Shafique.
Error resilience analysis for systematically employing approximate com-
puting in convolutional neural networks. In 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 913–916. IEEE,
2018.

[HHS20a] Muhammad Abdullah Hanif, Le-Ha Hoang, and Muhammad Shafique.
Cross-layer approaches for improving the dependability of deep learning
systems. In Proceedings of the 23th International Workshop on Software
and Compilers for Embedded Systems, pages 78–81, 2020.

[HHS20b] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique.
FT-ClipAct: Resilience analysis of deep neural networks and improving
their fault tolerance using clipped activation. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2020.

[HKP+18] Muhammad Abdullah Hanif, Faiq Khalid, Rachmad Vidya Wicaksana
Putra, Semeen Rehman, and Muhammad Shafique. Robust machine
learning systems: Reliability and security for deep neural networks. In
2018 IEEE 24th International Symposium on On-Line Testing And Robust
System Design (IOLTS), pages 257–260. IEEE, 2018.

[HKS19] Muhammad Abdullah Hanif, Faiq Khalid, and Muhammad Shafique.
CANN: Curable approximations for high-performance deep neural network
accelerators. In Design Automation Conference (DAC), pages 1–6. IEEE,
2019.

[HLM+16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. EIE: Efficient inference engine on com-
pressed deep neural network. ACM SIGARCH Computer Architecture
News, 44(3):243–254, 2016.

[HMA+18] M. A. Hanif, A. Marchisio, T. Arif, R. Hafiz, S. Rehman, and M. Shafique.
X-dnns: Systematic cross-layer approximations for energy-efficient deep
neural networks. Journal of Low Power Electronics, 14(4):520–534, 2018.

[HMD15] Song Han, Huizi Mao, and William J Dally. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149, 2015.

202



[HPN+16] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian
Tang, Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, et al. Dsd:
Dense-sparse-dense training for deep neural networks. arXiv preprint
arXiv:1607.04381, 2016.

[HPTD15] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. Advances in neural
information processing systems, 28, 2015.

[Hru] Joel Hruska. Some amd rx 460s can be modded to unlock missing cores,
additional performance. Online; accessed 20-October-2019.

[HS92] Babak Hassibi and David Stork. Second order derivatives for network prun-
ing: Optimal brain surgeon. Advances in neural information processing
systems, 5, 1992.

[HS20a] Muhammad Abdullah Hanif and Muhammad Shafique. Dependable deep
learning: Towards cost-efficient resilience of deep neural network accel-
erators against soft errors and permanent faults. In 2020 IEEE 26th
International Symposium on On-Line Testing and Robust System Design
(IOLTS), pages 1–4. IEEE, 2020.

[HS20b] Muhammad Abdullah Hanif and Muhammad Shafique. SalvageDNN:
Salvaging deep neural network accelerators with permanent faults through
saliency-driven fault-aware mapping. Philosophical Transactions of the
Royal Society A (RSTA), 378(2164):20190164, 2020.

[HS21] Muhammad Abdullah Hanif and Muhammad Shafique. DNN-Life: An
energy-efficient aging mitigation framework for improving the lifetime of
on-chip weight memories in deep neural network hardware architectures.
In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 729–734. IEEE, 2021.

[HS22] Muhammad Abdullah Hanif and Muhammad Shafique. A cross-layer
approach towards developing efficient embedded deep learning systems.
Microprocessors and Microsystems, page 103609, 2022.

[HS23] Muhammad Abdullah Hanif and Muhammad Shafique. Reduce: A frame-
work for reducing the overheads of fault-aware retraining. arXiv preprint
arXiv:2305.12595, 2023.

[HSM+22] Muhammad Abdullah Hanif, Giuseppe Maria Sarda, Alberto Marchisio,
Guido Masera, Maurizio Martina, and Muhammad Shafique. CoNLoCNN:
Exploiting correlation and non-uniform quantization for energy-efficient
low-precision deep convolutional neural networks. In 2022 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.

203



[HSTK21] Siva Kumar Sastry Hari, Michael B Sullivan, Timothy Tsai, and Stephen W
Keckler. Making convolutions resilient via algorithm-based error detection
techniques. IEEE Transactions on Dependable and Secure Computing,
19(4):2546–2558, 2021.

[HWT+15] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel
Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu,
Royce Cheng-Yue, et al. An empirical evaluation of deep learning on
highway driving. arXiv preprint arXiv:1504.01716, 2015.

[Inc] Google Inc. Tensorflow lite. https://www.tensorflow.org/mobile/tflite/.

[ISO11] Road vehicles – Functional Safety. Standard, International Organization
for Standardization, Geneva, CH, 2011.

[JKC+18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-arithmetic-only infer-
ence. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2704–2713, 2018.

[JVS+18] Shubham Jain, Swagath Venkataramani, Vijayalakshmi Srinivasan, Jung-
wook Choi, Pierce Chuang, and Leland Chang. Compensated-dnn: energy
efficient low-precision deep neural networks by compensating quantization
errors. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6, 2018.

[JVS+19] Shubham Jain, Swagath Venkataramani, Vijayalakshmi Srinivasan, Jung-
wook Choi, Kailash Gopalakrishnan, and Leland Chang. Biscaled-dnn:
Quantizing long-tailed datastructures with two scale factors for deep neu-
ral networks. In 2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2019.

[JW12] Tao Jin and Shuai Wang. Aging-aware instruction cache design by duty
cycle balancing. In 2012 IEEE Computer Society Annual Symposium on
VLSI, pages 195–200. IEEE, 2012.

[JYP+17] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor process-
ing unit. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pages 1–12. IEEE, 2017.

[KCR11] Saurabh Kothawade, Koushik Chakraborty, and Sanghamitra Roy. Analy-
sis and mitigation of nbti aging in register file: An end-to-end approach. In
2011 12th International Symposium on Quality Electronic Design, pages
1–7, 2011.

204



[KGE11] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. Trading accuracy
for power with an underdesigned multiplier architecture. In 2011 24th
Internatioal Conference on VLSI Design, pages 346–351. IEEE, 2011.

[KGPK08] Kunhyuk Kang, Saakshi Gangwal, Sang Phill Park, and Roy Kaushik.
NBTI induced performance degradation in logic and memory circuits:
How effectively can we approach a reliability solution? In 2008 Asia and
South Pacific Design Automation Conference, pages 726–731. IEEE, 2008.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[KHM+18a] Sung Kim, Patrick Howe, Thierry Moreau, Armin Alaghi, Luis Ceze, and
Visvesh Sathe. Matic: Learning around errors for efficient low-voltage
neural network accelerators. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. IEEE, 2018.

[KHM+18b] Sung Kim, Patrick Howe, Thierry Moreau, Armin Alaghi, Luis Ceze,
and Visvesh S Sathe. Energy-efficient neural network acceleration in the
presence of bit-level memory errors. IEEE Transactions on Circuits and
Systems I: Regular Papers, 65(12):4285–4298, 2018.

[KK98] Israel Koren and Zahava Koren. Defect tolerance in vlsi circuits: techniques
and yield analysis. Proceedings of the IEEE, 86(9):1819–1838, 1998.

[KK12] Andrew B Kahng and Seokhyeong Kang. Accuracy-configurable adder for
approximate arithmetic designs. In Proc. 49th Annual Des. Autom. Conf.,
pages 820–825, 2012.

[KKS09] Sanjay V Kumar, Chris H Kim, and Sachin S Sapatnekar. Adaptive
techniques for overcoming performance degradation due to aging in digital
circuits. In 2009 Asia and South Pacific Design Automation Conference,
pages 284–289. IEEE, 2009.

[KKS15] Georgios Keramidas, Chrysa Kokkala, and Iakovos Stamoulis. Clumsy
value cache: An approximate memoization technique for mobile gpu
fragment shaders. In Workshop on approximate computing (WAPCO’15),
page 2, 2015.

[KL83] HT Kung and Monica S Lam. Fault-tolerance and two-level pipelining
in vlsi systolic arrays. Technical report, CARNEGIE-MELLON UNIV
PITTSBURGH PA DEPT OF COMPUTER SCIENCE, 1983.

[KP86] Israel Koren and Dhiraj K Pradhan. Yield and performance enhancement
through redundancy in vlsi and wsi multiprocessor systems. Proceedings
of the IEEE, 74(5):699–711, 1986.

205



[KR89] Jung Hwan Kim and Sudhakar M. Reddy. On the design of fault-tolerant
two-dimensional systolic arrays for yield enhancement. IEEE Transactions
on Computers, 38(4):515–525, 1989.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[KSK18] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfigurable inter-
connects. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 461–475. ACM, 2018.

[LAT18] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip:
Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340, 2018.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[LCX+21] Cheng Liu, Cheng Chu, Dawen Xu, Ying Wang, Qianlong Wang, Huawei
Li, Xiaowei Li, and Kwang-Ting Cheng. Hyca: A hybrid computing
architecture for fault tolerant deep learning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2021.

[LDS89] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage.
Advances in neural information processing systems, 2, 1989.

[Leo] George Leopold. Boeing crashes highlight a wors-
ening reliability crisis. https://www.eetimes.eu/
boeing-crashes-highlight-a-worsening-reliability-crisis/.
Accessed: 2022-10-28.

[LGLG08] Alberto Leon-Garcia and Alberto. Leon-Garcia. Probability, statistics,
and random processes for electrical engineering. Pearson/Prentice Hall
3rd ed. Upper Saddle River, NJ, 2008.

[LHL13] Jinghang Liang, Jie Han, and Fabrizio Lombardi. New metrics for the
reliability of approximate and probabilistic adders. IEEE Transactions
on Computers, 62(9):1760–1771, 2013.

[LHL15] Cong Liu, Jie Han, and Fabrizio Lombardi. An analytical framework
for evaluating the error characteristics of approximate adders. IEEE
Transactions on Computers, 64(5):1268–1281, 2015.

206

https://www.eetimes.eu/boeing-crashes-highlight-a-worsening-reliability-crisis/
https://www.eetimes.eu/boeing-crashes-highlight-a-worsening-reliability-crisis/


[LHS+17] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W Keckler. Understanding
error propagation in deep learning neural network (dnn) accelerators and
applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12,
2017.

[LJL89] Hon F. Li, R Jayakumar, and C Lam. Restructuring for fault-tolerant
systolic arrays. IEEE transactions on computers, 38(2):307–311, 1989.

[LKB+17] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez. A
survey on deep learning in medical image analysis. Medical image analysis,
42:60–88, 2017.

[LKD+16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710,
2016.

[LM76] Len Levine and Ware Meyers. Special feature: Semiconductor memory
reliability with error detecting and correcting codes. Computer, 9(10):43–
50, 1976.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[LPMZ11] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G
Zorn. Flikker: Saving dram refresh-power through critical data par-
titioning. In Proceedings of the sixteenth international conference on
Architectural support for programming languages and operating systems,
pages 213–224, 2011.

[LTA16] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks. In International conference
on machine learning, pages 2849–2858, 2016.

[LV62] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. IBM journal of research and
development, 6(2):200–209, 1962.

[LYL+17] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei
Li. Flexflow: A flexible dataflow accelerator architecture for convolu-
tional neural networks. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 553–564. IEEE, 2017.

207



[LYL+18] Jiajun Li, Guihai Yan, Wenyan Lu, Shuhao Jiang, Shijun Gong, Jingya
Wu, and Xiaowei Li. Smartshuttle: Optimizing off-chip memory accesses
for deep learning accelerators. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 343–348. IEEE, 2018.

[MAFL10] Hamid Reza Mahdiani, Ali Ahmadi, Sied Mehdi Fakhraie, and Caro Lucas.
Bio-inspired imprecise computational blocks for efficient vlsi implementa-
tion of soft-computing applications. IEEE Transactions on Circuits and
Systems I: Regular Papers, 57(4):850–862, 2010.

[MAFSG18] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani.
Deep learning for iot big data and streaming analytics: A survey. IEEE
Communications Surveys & Tutorials, 20(4):2923–2960, 2018.

[MAJD+20] Sajjad Mozaffari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and
Alexandros Mouzakitis. Deep learning-based vehicle behavior prediction
for autonomous driving applications: A review. IEEE Transactions on
Intelligent Transportation Systems, 23(1):33–47, 2020.

[McL19] Paul McLellan. Hot chips: The biggest chip in the world.
https://community.cadence.com/cadence_blogs_8/b/
breakfast-bytes/posts/the-biggest-chip-in-the-world,
2019. Accessed: 2019-09-10.

[ME19] Marian Mazzone and Ahmed Elgammal. Art, creativity, and the potential
of artificial intelligence. In Arts, volume 8, page 26. MDPI, 2019.

[MHH+16] Sana Mazahir, Osman Hasan, Rehan Hafiz, Muhammad Shafique, and
Jörg Henkel. An area-efficient consolidated configurable error correction
for approximate hardware accelerators. In Proceedings of the 53rd Annual
Design Automation Conference, pages 1–6, 2016.

[MHH+17] Sana Mazahir, Osman Hasan, Rehan Hafiz, Muhammad Shafique, and
Jörg Henkel. Probabilistic error modeling for approximate adders. IEEE
Transactions on Computers, 66(3):515–530, 2017.

[MHS19] Sana Mazahir, Osman Hasan, and Muhammad Shafique. Self-
compensating accelerators for efficient approximate computing. Micro-
electronics Journal, 88:9–17, 2019.

[Mit16] Sparsh Mittal. A survey of techniques for approximate computing. ACM
Comput. Surv., 48(4):62:1–62:33, March 2016.

[mmc] https://mmclassification.readthedocs.io/en/latest/
model_zoo.html. Accessed: 2022-10-28.

208

https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/the-biggest-chip-in-the-world
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/the-biggest-chip-in-the-world
https://mmclassification.readthedocs.io/en/latest/model_zoo.html
https://mmclassification.readthedocs.io/en/latest/model_zoo.html


[MPC16] Homay Danaei Mehr, Huseyin Polat, and Aydin Cetin. Resident activity
recognition in smart homes by using artificial neural networks. In 2016
4th international istanbul smart grid congress and fair (ICSG), pages 1–5.
IEEE, 2016.

[MSZ+11] Evelyn Mintarno, Joëlle Skaf, Rui Zheng, Jyothi Bhaskar Velamala,
Yu Cao, Stephen Boyd, Robert W Dutton, and Subhasish Mitra. Self-
tuning for maximized lifetime energy-efficiency in the presence of circuit
aging. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 30(5):760–773, 2011.

[MVS+19] Vojtech Mrazek, Zdenek Vasícek, Lukás Sekanina, Muhammad Abdul-
lah Hanif, and Muhammad Shafique. Alwann: automatic layer-wise
approximation of deep neural network accelerators without retraining. In
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2019.

[MW07] Yury Markovsky and John Wawrzynek. On the opportunity to improve
system yield with multi-core architectures. In Proc. of the IEEE Workshop
on Design Manufacturability & Yield, 2007.

[MWW+18] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T
Dudley. Deep learning for healthcare: review, opportunities and challenges.
Briefings in bioinformatics, 19(6):1236–1246, 2018.

[NANK19] Mohamed A Neggaz, Ihsen Alouani, Smail Niar, and Fadi Kurdahi. Are
cnns reliable enough for critical applications? an exploratory study. IEEE
Design & Test, 37(2):76–83, 2019.

[NHK+99] Shigeru Nakahara, Keiichi Higeta, Masaki Kohno, Toshiaki Kawamura,
and Keizo Kakitani. Built-in self-test for ghz embedded srams using
flexible pattern generator and new repair algorithm. In International
Test Conference 1999. Proceedings (IEEE Cat. No. 99CH37034), pages
301–310. IEEE, 1999.

[NML+20] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin,
Yanzhi Wang, and Bin Ren. Patdnn: Achieving real-time dnn execution
on mobile devices with pattern-based weight pruning. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 907–922, 2020.

[OSM02] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Error detection
by duplicated instructions in super-scalar processors. IEEE Transactions
on Reliability, 51(1):63–75, 2002.

[pap] https://paperswithcode.com/sota/
image-classification-on-imagenet. Accessed: 2022-10-28.

209

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet


[PBCR19] Pramesh Pandey, Prabal Basu, Koushik Chakraborty, and Sanghamitra
Roy. Greentpu: Improving timing error resilience of a near-threshold
tensor processing unit. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2019.

[PBGM09] Michael D Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S
Mukherjee. Architectural core salvaging in a multi-core processor for
hard-error tolerance. In ACM SIGARCH Computer Architecture News,
volume 37, pages 93–104. ACM, 2009.

[PRM+17] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keck-
ler, and William J Dally. Scnn: An accelerator for compressed-sparse
convolutional neural networks. ACM SIGARCH Computer Architecture
News, 45(2):27–40, 2017.

[pro] Product binning. Online; accessed 20-October-2019 [Available at https:
//en.wikipedia.org/wiki/Product_binning].

[RBKS17] Rengarajan Ragavan, Benjamin Barrois, Cedric Killian, and Olivier Sen-
tieys. Pushing the limits of voltage over-scaling for error-resilient applica-
tions. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pages 476–481. IEEE, 2017.

[REHS+16] Semeen Rehman, Walaa El-Harouni, Muhammad Shafique, Akash Ku-
mar, Jorg Henkel, and Jörg Henkel. Architectural-space exploration of
approximate multipliers. In 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2016.

[RHK+20] Mohsin Riaz, Rehan Hafiz, Salman Abdul Khaliq, Muhammad Faisal,
Hafiz Talha Iqbal, Mohsen Ali, and Muhammad Shafique. CAxCNN:
Towards the use of canonic sign digit based approximation for hardware-
friendly convolutional neural networks. IEEE Access, 8:127014–127021,
2020.

[RORF16] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural net-
works. In European conference on computer vision, pages 525–542. Springer,
2016.

[RPP21] E Ramanujam, Thinagaran Perumal, and S Padmavathi. Human activity
recognition with smartphone and wearable sensors using deep learning
techniques: A review. IEEE Sensors Journal, 21(12):13029–13040, 2021.

[RSR+10] A Ricketts, Jawar Singh, Krishnan Ramakrishnan, Narayanan Vijaykrish-
nan, and Dhiraj K Pradhan. Investigating the impact of nbti on different
power saving cache strategies. In 2010 Design, Automation & Test in

210

https://en.wikipedia.org/wiki/Product_binning
https://en.wikipedia.org/wiki/Product_binning


Europe Conference & Exhibition (DATE 2010), pages 592–597. IEEE,
2010.

[RTGM13] Bharathwaj Raghunathan, Yatish Turakhia, Siddharth Garg, and Diana
Marculescu. Cherry-picking: exploiting process variations in dark-silicon
homogeneous chip multi-processors. In 2013 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 39–44. IEEE, 2013.

[RVF+15] Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy,
and Anand Raghunathan. Approximate storage for energy efficient spin-
tronic memories. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2015.

[RWA+16] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon
Wei, and David Brooks. Minerva: Enabling low-power, highly-accurate
deep neural network accelerators. In 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 267–278.
IEEE, 2016.

[SAHH15] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jorg Henkel. A
low latency generic accuracy configurable adder. In Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

[Sar21] Iqbal H Sarker. Deep learning: a comprehensive overview on techniques,
taxonomy, applications and research directions. SN Computer Science,
2(6):1–20, 2021.

[SBS+18] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox,
Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael
Milford, et al. The limits and potentials of deep learning for robotics. The
International journal of robotics research, 37(4-5):405–420, 2018.

[SCYE17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings of
the IEEE, 105(12):2295–2329, 2017.

[SG11] Taniya Siddiqua and Sudhanva Gurumurthi. Enhancing nbti recovery in
sram arrays through recovery boosting. IEEE transactions on very large
scale integration (VLSI) systems, 20(4):616–629, 2011.

[Sha] Stephen Shankland. Meet Tesla’s self-driving car computer
and its two AI brains. https://www.cnet.com/news/
meet-tesla-self-driving-car-computer-and-its-two-ai-brains/.

[SHR+16] Muhammad Shafique, Rehan Hafiz, Semeen Rehman, Walaa El-Harouni,
and Jörg Henkel. Cross-layer approximate computing: From logic to

211

https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/
https://www.cnet.com/news/meet-tesla-self-driving-car-computer-and-its-two-ai-brains/


architectures. In Proceedings of the 53rd Annual Design Automation
Conference, pages 1–6, 2016.

[SJLM14] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mahlke. Paraprox: Pattern-based approximation for data parallel applica-
tions. In Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems, pages 35–50,
2014.

[SKH16] Muhammad Shafique, Muhammad Usman Karim Khan, and Jörg Henkel.
Content-aware low-power configurable aging mitigation for sram memories.
IEEE Transactions on Computers, 65(12):3617–3630, 2016.

[SKMB03] Premkishore Shivakumar, Stephen W Keckler, Charles R Moore, and Doug
Burger. Exploiting microarchitectural redundancy for defect tolerance.
In Proceedings 21st International Conference on Computer Design, pages
481–488. IEEE, 2003.

[SKTH15] Muhammad Shafique, Muhammad Usman Karim Khan, Orcun Tüfek, and
Jörg Henkel. EnAAM: Energy-efficient anti-aging for on-chip video mem-
ories. In Proceedings of the 52nd Annual Design Automation Conference,
pages 1–6, 2015.

[SLJ+13] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. Sage: Self-tuning approximation for graphics engines.
In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 13–24, 2013.

[SMBJ14] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load value
approximation. In 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 127–139. IEEE, 2014.

[SNT+20] Muhammad Shafique, Mahum Naseer, Theocharis Theocharides, Christos
Kyrkou, Onur Mutlu, Lois Orosa, and Jungwook Choi. Robust machine
learning systems: Challenges, current trends, perspectives, and the road
ahead. IEEE Design & Test, 37(2):30–57, 2020.

[SPS+18] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau,
Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level dynami-
cally composable architecture for accelerating deep neural network. In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 764–775. IEEE, 2018.

[SS15] Deepashree Sengupta and Sachin S Sapatnekar. Femto: Fast error analysis
in multipliers through topological traversal. In Computer-Aided Design
(ICCAD), 2015 IEEE/ACM International Conference on, pages 294–299.
IEEE, 2015.

212



[SSMJ15] Mark Sutherland, Joshua San Miguel, and Natalie Enright Jerger. Texture
cache approximation on gpus. In Workshop on approximate computing
across the stack, page 2, 2015.

[SSSG17] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.
Revisiting unreasonable effectiveness of data in deep learning era. In
Proceedings of the IEEE international conference on computer vision,
pages 843–852, 2017.

[SUK18] Behzad Salami, Osman S Unsal, and Adrian Cristal Kestelman. On the
resilience of RTL NN accelerators: Fault characterization and mitigation.
In 2018 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pages 322–329. IEEE, 2018.

[SV05] Ethan Schuchman and TN Vijaykumar. Rescue: A microarchitecture for
testability and defect tolerance. In 32nd International Symposium on
Computer Architecture (ISCA’05), pages 160–171. IEEE, 2005.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[SZBP08] Jeonghee Shin, Victor Zyuban, Pradip Bose, and Timothy M Pinkston.
A proactive wearout recovery approach for exploiting microarchitectural
redundancy to extend cache sram lifetime. volume 36, pages 353–362,
2008.

[TF17] Itsuo Takanami and Masaru Fukushi. A built-in circuit for self-repairing
mesh-connected processor arrays with spares on diagonal. In 2017 IEEE
22nd Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 110–117. IEEE, 2017.

[TH12] Itsuo Takanami and Tadayoshi Horita. A built-in circuit for self-repairing
mesh-connected processor arrays by direct spare replacement. In 2012
IEEE 18th Pacific Rim International Symposium on Dependable Comput-
ing, pages 96–104. IEEE, 2012.

[TM18] Frederick Tung and Greg Mori. Clip-q: Deep network compression learning
by in-parallel pruning-quantization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7873–7882, 2018.

[TYRW14] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deep-
face: Closing the gap to human-level performance in face verification.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1701–1708, 2014.

[Vai] Lionel Sujay Vailshery. Number of internet of things (iot) con-
nected devices worldwide from 2019 to 2021, with forecasts from 2022

213



to 2030. https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/. Accessed: 2022-10-28.

[VBI08] Ajay K Verma, Philip Brisk, and Paolo Ienne. Variable latency speculative
addition: A new paradigm for arithmetic circuit design. In Proceedings of
the conference on Design, automation and test in Europe, pages 1250–1255.
ACM, 2008.

[VCC+13] Swagath Venkataramani, Vinay K Chippa, Srimat T Chakradhar, Kaushik
Roy, and Anand Raghunathan. Quality programmable vector processors for
approximate computing. In 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2013.

[VCRR15] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan.
Approximate computing and the quest for computing efficiency. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6, June 2015.

[VKAK+17] Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pedram,
and Zainalabedin Navabi. Truncapp: A truncation-based approximate
divider for energy efficient dsp applications. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, pages 1635–1638.
IEEE, 2017.

[VL15] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks
for matlab. In Proceedings of the 23rd ACM international conference on
Multimedia, pages 689–692. ACM, 2015.

[VRRR14] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghu-
nathan. Axnn: energy-efficient neuromorphic systems using approximate
computing. In 2014 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 27–32. IEEE, 2014.

[VZBT10] Ramakrishna Vadlamani, Jia Zhao, Wayne Burleson, and Russell Tessier.
Multicore soft error rate stabilization using adaptive dual modular redun-
dancy. In Proceedings of the Conference on Design, Automation and Test
in Europe, pages 27–32. European Design and Automation Association,
2010.

[Wit] With cpu chips having billions of transistors, what happens if a few go
bad? Online; accessed 20-October-2019.

[WLG+18] Yi Wu, You Li, Xiangxuan Ge, Yuan Gao, and Weikang Qian. An efficient
method for calculating the error statistics of block-based approximate
adders. IEEE Transactions on Computers, 68(1):21–38, 2018.

214

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/


[WLL+19] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-
aware automated quantization with mixed precision. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
8612–8620, 2019.

[XKM16] Qiang Xu, Nam Sung Kim, and T Mytkowicz. Approximate computing:
A survey. IEEE Des. & Test, 33(1):8–22, 2016.

[XLHL20] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training
with noisy student improves imagenet classification. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages
10687–10698, 2020.

[XXL+19] Dawen Xu, Kouzi Xing, Cheng Liu, Ying Wang, Yulin Dai, Long Cheng,
Huawei Li, and Lei Zhang. Resilient neural network training for accelera-
tors with computing errors. In 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160, pages 99–102. IEEE, 2019.

[YLP+17] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-
parna Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to the
underlying hardware parallelism. ACM SIGARCH Computer Architecture
News, 45(2):548–560, 2017.

[Yos] Junko Yoshida. Toyota case: Single bit flip that killed. https://www.
eetimes.com/toyota-case-single-bit-flip-that-killed/.
Accessed: 2022-10-28.

[YPT+16] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi
Esmaeilzadeh, Onur Mutlu, and Todd C Mowry. Rfvp: Rollback-free
value prediction with safe-to-approximate loads. ACM Transactions on
Architecture and Code Optimization (TACO), 12(4):1–26, 2016.

[YWY+13] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. On
reconfiguration-oriented approximate adder design and its application. In
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 48–54. IEEE, 2013.

[ZAJ+19] Maheen Zahid, Fahad Ahmed, Nadeem Javaid, Raza Abid Abbasi,
Hafiza Syeda Zainab Kazmi, Atia Javaid, Muhammad Bilal, Mariam
Akbar, and Manzoor Ilahi. Electricity price and load forecasting us-
ing enhanced convolutional neural network and enhanced support vector
regression in smart grids. Electronics, 8(2):122, 2019.

[ZBG19] Jeff Jun Zhang, Kanad Basu, and Siddharth Garg. Fault-tolerant systolic
array based accelerators for deep neural network execution. IEEE Design
& Test, 36(5):44–53, 2019.

215

https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/


[ZDL+20] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaim-
ing Ouyang, Franck Cappello, and Zizhong Chen. FT-CNN: Algorithm-
based fault tolerance for convolutional neural networks. IEEE Transactions
on Parallel and Distributed Systems, 32(7):1677–1689, 2020.

[ZDZ+16] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for
sparse neural networks. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[ZGBG18] Jeff Jun Zhang, Tianyu Gu, Kanad Basu, and Siddharth Garg. Analyzing
and mitigating the impact of permanent faults on a systolic array based
neural network accelerator. In 2018 IEEE 36th VLSI Test Symposium
(VTS), pages 1–6. IEEE, 2018.

[ZGY09] Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. An enhanced low-power
high-speed adder for error-tolerant application. In Proc. 12th Int. Symp.
Integ. Circuits,, pages 69–72, 2009.

[ZHXL08] Lei Zhang, Yinhe Han, Qiang Xu, and Xiaowei Li. Defect tolerance
in homogeneous manycore processors using core-level redundancy with
unified topology. In Proceedings of the conference on Design, automation
and test in Europe, pages 891–896. ACM, 2008.

[ZJZ+18] Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik. Neural
network distiller, June 2018.

[ZKKK19] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis
Kandris. A review of machine learning and iot in smart transportation.
Future Internet, 11(4):94, 2019.

[ZRGG18] Jeff Zhang, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg.
Thundervolt: enabling aggressive voltage underscaling and timing error
resilience for energy efficient deep learning accelerators. In Proceedings of
the 55th Annual Design Automation Conference, pages 1–6, 2018.

[ZSBH11] Bruno Zatt, Muhammad Shafique, Sergio Bampi, and Jörg Henkel. A
low-power memory architecture with application-aware power manage-
ment for motion & disparity estimation in multiview video coding. In
2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 40–47. IEEE, 2011.

[ZWN+16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng
Zou. Dorefa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

216


	Abstract
	Kurzfassung
	Publications of this PhD Thesis
	Other Co-Authored Publications
	Awards and Achievements
	Contents
	Introduction
	Motivation
	Research Challenges and Objectives
	Thesis Contributions
	Thesis Outline

	Background and Related Work
	Deep Learning: Basics and Terminologies
	DNN Hardware Accelerators
	Design Issues for Efficient DNN Inference
	State-of-the-Art Techniques for Enabling Energy Efficient DNN Inference
	Reliability Threats
	State-of-the-Art Techniques for Mitigating Reliability Threats in DNN Systems
	Chapter Summary

	Analytical Models and Design Space Exploration of Approximate Modules
	Generic Accuracy-Configurable Adder Model for Low-Latency Adders
	Design Space Exploration of Low-latency Adders for Uniformly Distributed Inputs
	Design Space Coverage and Performance of QuAd
	Limitations of QuAd and the Unexplored Design Space of Low-power Approximate Adders
	PEMACx: Methodology for Computing PMF of Error of Approximate Adders composed of Cascaded Adder Units
	Model Validation and Usability
	Limitations of PEMACx and the Motivation for Application and Data-Aware Analysis Methodology
	DAEM: A Data and Application Aware Error Analysis Methodology for Approximate Adders
	Usability and Effectiveness of DAEM
	Limitations of DAEM
	Open-source Libraries
	Chapter Summary

	Cross-Layer Optimizations for Deep Neural Networks
	Cross-Layer Optimization Framework for DNNs
	Case Studies for Improving Energy and Performance Efficiency of DNN Implementation
	Chapter Summary

	Neural Processing Arrays for Efficient Deep Neural Network Inference
	Real-World Settings for DNN Optimization
	Impact of Using Approximate Modules in Neural Processing Arrays
	Curable Approximations for Building Efficient Neural Processing Arrays
	A Data-driven HW/SW Co-design Approach for Energy-Efficient DNN Inference
	Summary of Efficient Neural Array Design

	A Low-cost Technique for Mitigating the Effects of Permanent Faults in Deep Neural Network Accelerators
	Motivation and Problem Identification
	SalvageDNNs: A Methodology for Salvaging DNN Accelerators using Fault-Aware Mapping
	Results and Discussion
	Chapter Summary

	Aging Mitigation for Improving the Lifetime of On-Chip Weight Memories in Deep Neural Network Accelerators
	Motivation and Problem Identification
	Overview of DNN-Life Framework
	Analysis of the Probability Distribution of Weight-Bits of DNNs & the Impact on Duty-Cycle
	A Micro-architecture for Mitigating Aging of the On-Chip Weight Memory of DNN Accelerators
	Results and Discussion
	Chapter Summary

	Summary and Future Outlook
	Thesis Summary
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Bibliography

		2023-11-28T19:10:22+0400
	Muhammad Abdullah Hanif


		2023-11-28T19:14:28+0400
	Muhammad Abdullah Hanif




