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Kurzfassung

Regression modelliert die bedingte Verteilung einer oder mehrerer Zufallsvariablen (Ant-
wortvariablen) gegeben den Prädiktoren. Wenn die Prädiktoren hochdimensional sind, wird
die Regressionsaufgabe noch herausfordernder. Sufficient Dimension Reduction (SDR; auf
Deutsch: Ausschöpfende Dimensions Reduktion) begegnet diesem Problem, indem die Di-
mensionalität der Prädiktoren reduziert wird, während sämtliche relevante Information über
die Zielvariable erhalten bleibt. Unter den SDR Methoden tragen lineare Projektionen auf
niedrigdimensionale Teilräume nicht nur dazu bei, das Problem handhabbarer zu machen,
sondern auch – was besonders wichtig ist – die Interpretierbarkeit zu verbessern.

In dieser Arbeit werden drei lineare SDR Methoden oder Methodenklassen vorgestellt. Die
erste Methode, Neural Network SDR (NNSDR), behandelt effizient Datensätze mit enor-
mem Datenvolumen und hoher Prädiktor-Dimensionalität. NNSDR kombiniert die lineare
Projektion der Prädiktoren mit dem gleichzeitigen Lernen neuronaler Netzwerke. Dabei wird
sowohl von der Anpassung des neuronalen Netzwerks als auch von vorwärts SDR gleichzei-
tig profitiert, um einen Prozess aufzubauen, der eine Vorhersagegenauigkeit bietet, die mit
Neuronalen Netzwerken vergleichbar ist. Gleichzeitig bleibt die Transparenz bezüglich der
Relevanz der Prädiktoren und der intrinsischen Regressionsdimension erhalten.

Die heute gesammelten Daten können strukturelle Merkmale aufweisen, die von frühe-
ren Regressionsmethoden nicht berücksichtigt werden und zu einem Verlust in Inferenz
führt. Unsere zweite Methodenklasse führt SDR Inferenz bei Regressionen mit matrixwer-
tigen Prädiktoren durch. Das allgemeine Problem eines Inferenzmodels für die bedingte
Verteilung der Antwortvariablen gegeben tensorwertige Prädiktoren wird in unserer dritten
Methodenklasse behandelt. Generalized Multi-Linear Model SDR ermöglicht flexible lineare
Reduktionen, die die Informationen in beliebigen tensorwertigen Daten mit Verteilung in
der quadratischen Exponentialfamilie erfassen. Wir zeigen die Konsistenz und asymptotische
Normalität der ausschöpfenden Reduktion. Für kontinuierliche tensorwertige Prädiktoren
entwickeln wir ein rechnerisch effizientes Schätzverfahren für ihre ausschöpfenden Reduk-
tionen, das auch auf Situationen anwendbar ist, in denen die Dimension der Reduktion die
verfügbare Stichprobengröße übersteigt. Für Regressionen mit binären tensorwertigen Prä-
diktoren orientiert sich das Schätzverfahren an Algorithmen, die zum Trainieren neuronaler
Netzwerke verwendet werden, um große Mengen von Beobachtungen zu verarbeiten, die in
allgemeinen hochdimensionalen diskreten Umgebungen oft erforderlich sind.





Abstract

Regression models the conditional distribution of a random variable(s) (response(s)) given
a set of predictors. When the predictors are high-dimensional, the regression task becomes
even more challenging. Sufficient Dimension Reduction (SDR) addresses this issue by reduc-
ing the dimensionality of the predictors while retaining all relevant information about the
response variable. Among SDR methods, linear projections to lower dimensional subspaces
make the problem not only more manageable but, importantly, also more interpretable.

Three linear SDR methods, or class of methods, are presented in this thesis. The first
method, Neural Network SDR, efficiently handles datasets of huge data size and high pre-
dictor dimensionality. NNSDR combines linear projection of the predictors with neural
network learning simultaneously borrowing strength from NN fitting and forward SDR to
build a process that enjoys predictive accuracy comparable to NN methods while being
transparent about predictor importance and intrinsic regression dimension.

The data collected today can exhibit structural features that past regression techniques
do not take into consideration and that may result in inferential loss. Our second class of
methods carry out SDR inference on regressions with matrix-valued predictors. The general
problem of building inference models for the conditional distribution of a response given
multi-way array-valued predictors is addressed in our third class of methods. Generalized
Multi-Linear Model SDR, allows for flexible linear reductions capturing the information
in arbitrary tensor-valued data with distribution in the quadratic exponential family. We
prove the consistency and asymptotic normality of the sufficient reduction. For continuous
tensor-valued predictors, we develop a computationally efficient estimation procedure of
their sufficient reductions, which is also applicable to situations where the dimension of
the reduction exceeds the available sample size. For regressions with binary tensor-valued
predictors, the estimation procedure draws inspiration from algorithms used for training
neural networks to be able to process large amounts of observations often required in general
high-dimensional discrete settings.
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1 Introduction

Sufficient Dimension Reduction (SDR) is a statistical technique that combines statistical
sufficiency with dimension reduction in regression and classification. The goal of SDR is to
find a mapping of the predictors to a lower dimension space without changing the conditional
distribution of the response. If such lower dimensional image of the predictors exists, it is
sufficient for the regression or classification of the response. In other words, SDR replaces
the input variable with a reduced version of itself while retaining all the information about
the target variable.

The phrase “sufficient dimension reduction” with the meaning herein was introduced in
the late 1990’s [Coo98] in the context of regression graphics and a search of a “sufficient
summary plot” of a response Y versus a transformation R(X) of the input (predictor)
variables X ∈ Rp that retains all of the relevant regression information. Professor Cook
draws the distinction between SDR and the term “sufficient dimensionality reduction” in
the machine learning literature by [GT03], where the underlying ideas are quite different
from those associated with SDR and the methodology is not dimension reduction in the
usual sense [see Bur10].

SDR methodology can be based on both likelihood (model) and non-likelihood (model-
free) approaches. In the model-based approach, which was developed relatively more re-
cently [BDF16; BF15; Coo07; CF08; CF09], either the joint family of distributions of (Y,X),
or the conditional family of distributions for X | Y is assumed to be known.

In the model-free approach, which is the most researched branch of SDR, reductions are
typically constrained to be linear and the goal is to estimate the mean subspace [CL02] or
central subspace [CN94] subspace. Model-free SDR comprises of three classes of methods:
Inverse regression based, semi-parametric and nonparametric. For a review, see, e.g., [AC09;
MZ13; Li18; GGK+21].

This thesis contains model-free and model-based SDR methods for a variety of regression
and classification settings.

1.1 Contribution of this Thesis

This thesis starts with an introduction into SDR Chapter 2. In Chapter 3 we present
the joint work with [KFB22] Lukas Fertl under the supervision of Prof. Efstathia Bura.
Continuing in Chapter 4 we present [PKB21], where the author had both theoretical and
application contributions. He devised all implementation algorithms, carried out the simu-
lations, checked all theoretical results and revised and extended Theorem 1 in [PKB21], for
which he also provided a new proof. The author also made publicly available the R imple-
mentation code for the methods and the simulations. This work also led to the main part of
this thesis, the yet unpublished new method in Chapter 5 for regressions with tensor-valued
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1 Introduction

predictors, which generalizes the ideas from [PKB21] while exploiting some lessons learned
in the development of [KFB22].

1.2 General Notation

Here we present the general notation used throughout. Specific notation linked to particular
concepts introduced later is provided in conjunction with those concepts. For a full notation
overview see the Notation Index.

Let X represent a p-dimensional measurable random vector. Unless specified otherwise,
non-boldface X denotes a univariate random variable, that is p = 1.

For two random variables X and Z, independence is indicated by X ⊥⊥ Z, while equality
in distribution is denoted as X ∼ Znotation1X ∼ Zequal in distribution.

We use to the following convention for non-random objects, with exceptions. Scalars
are represented by lower-case letters, such as a, b, p, q. Vectors are denoted by lower-case
boldface letters, like a, b, p, q. Matrices are indicated by upper-case boldface letters, such
as A, B.

For a matrix A, the transpose is AT . If applied to a vector a ∈ Rp, the vector is treated
as a p × 1 matrix. For invertible matrices A, the inverse is represented as A−1, while for
all matrices, the notation A† denotes the Moore-Penrose inverse [AM05].

The span of a p× q dimensional matrix A is given by span(A) = {Ax : x ∈ Rq}, which
is a subset of Rp, representing the set of all linear combinations of the columns of A.

The vectorization vec(A) of a p× q dimensional matrix A is a pq vector constructed by
stacking the columns of A. The half vectorization of a square matrix A of dimension p× p
is a vector vech(A) of size p(p+1)/2, defined as the stacked columns of the lower triangular
part of A, including the diagonal elements.

For square matrices A we also have the determinant det(A) and its trace tr(A). Another
conventient operation is the overloaded diagonal operator diag. There are two scenarios to
consider. First, when the argument x ∈ Rp is a vector, diag(x) represents a p× p diagonal
matrix with its diagonal elements being x. Second, for a square matrix A ∈ Rp×p, diag(A)
denotes a vector of dimension p comprising of the diagonal elements of A.

The p×p identity matrix is represented by Ip, while the standard unit vectors are denoted
as ej , corresponding to the jth column of the identity matrix Ip. Usually, the dimension of
the standard unit vector is not explicitly provided if it is clear from the context.
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2 Sufficient Dimension Reduction (SDR)

For an informal illustration of the general idea, consider the following regression models.
Let Y and X be jointly distributed, ϵ be a mean zero error with finite variance. If Y is
continuous, linear regression conjectures the model

Y = a+ bTX + ϵ,

where is ϵ is a random variable with mean zero, constant variance and stochastically inde-
pendent from X. If Y is binary, the logistic regression model typically used is

logit(P (Y = 1 | X)) = a+ bTX + ϵ,

where logit(x) = log x− log(1−x) is the logit function. Another example is the generalized
additive model (GAM) [HT90],

log(Y ) = a+ g1(b
T
1 X) + ...+ gq(b

T
q X) + ϵ

where gj are smooth functions for j = 1, . . . , q. An example of heteroscedastic linear
regression is

Y = a+ bT1 X + g(bT2 X)ϵ,

where g is a real-valued function.
What all of those regression models have in common is their functional dependence on

linear combinations of X. In general, the assumption is that there exists a function g
depending on BTX, for B ∈ Rp×q, describing the relation to the response Y with an error
term ϵ independent of X;

Y = g(BTX, ϵ). (2.1)

Assuming that q ≤ p, relation (2.1) means that the lower q-dimensional BTX contains all
the information about Y in X. We can replace X with the q ≤ p linearly transformed
covariates without incurring any information loss.

In an abstract regression or classification problem, which is inference about the conditional
distribution of the response Y given the predictors X, (2.1) is equivalent to

Y | X ∼ Y | BTX. (2.2)

The goal of linear SDR is to estimate a linearly reduced set of variables BTX that
satisfy (2.2). Relation (2.2) requires the conditional distribution Y | X and is referred to
as forward regression. This allows the interpretation of X as observed data; that is, X can
be considered fixed.

Provided (Y,X) has a joint distribution, [Coo07] pointed out that

X | (Y,BTX) ∼ X | BTX (2.3)

3



2 Sufficient Dimension Reduction (SDR)

is equivalent to (2.2). This formulation is referred to as inverse regression and requires only
the inverse conditional distribution X | Y . It is the basis for the word “sufficient” in SDR by
relating SDR to statistical sufficiency [Fis22] by treating Y as non-random model parameter
while the predictors X are considered as data. In this setup, the reduced variables BTX in
(2.3) are a sufficient statistic for the parameter Y and, because of the equivalence of (2.3)
and (2.2), it is also a sufficient reduction for the regression of Y on X.

Another variation is the formulation given joint distribution (Y,X) as

(Y ⊥⊥ X) | BTX (2.4)

which is equivalent to (2.2) and (2.3) under its requirement of joint distribution.
Up to now, we only considered linear reductions. The methodology of SDR is applicable

to non-linear reductions as well. For completeness, we define a sufficient reduction in the
general setting.

Definition 1 (Sufficient Reduction [Coo07]). A reduction R : Rp → Rq for q ≤ p is a
sufficient reduction for the regression or classification problem Y | X if at least one of the
following statements hold.

Forward reduction: Y | X ∼ Y | R(X),

Inverse reduction: X | (Y,R(X)) ∼ X | R(X),

Joint reduction: (Y ⊥⊥ X) | R(X).

Remark 1. In Definition 1 there are no explicit assumptions about the nature of Y or
X. The response may be any random variable, univariate or multivariate, continuous or
discrete. The predictors are treated here as p-dimensional vectors, but this is not limiting
as they can be any structured random object such as matrix or tensor (multidimensional
array), as will be done later. This is due to the structural equivalence (isomorphic spaces,
inducing the “same” probability structure) of the underlying probability spaces induced by
bijections between the vectorized versions of matrices (tensors) and vectors (with possibly
additional structure. See Section 2.4.3 and Chapters 4 and 5).

This thesis focuses on linear SDR, which we simply refer to as SDR in the sequel. Specif-
ically, we assume there exists a matrix B ∈ Rp×q such that the sufficient reduction in
Definition 1 has the form R(X) = BTX.

In the linear SDR setting, the coordinate matrix B is not identifiable. This can be seen
easily from (2.1) as follows. Let A be an invertible q × q matrix, then

Y = g(BTX, ϵ) = g(A−1ABTX, ϵ) = g̃(ABTX, ϵ) = g̃( ,BTX, ϵ)

where ,B = BAT . Replacing B with ,B leads to the same statements as before, just with
different coordinates. Only the subspace spanB = span ~B is invariant. Abstracting this
from a specific coordinate matrix B gives the actual target of SDR as the estimation of
a subspace S ⊆ Rp. If S = spanB such that R(X) = BTX is a sufficient reduction by
Definition 1, then the linear subspace S is called a dimension reduction subspace (Li [Li91]
introduced this term).

Definition 2 (Dimension Reduction Subspace). Let B ∈ Rp×q for q ≤ p and suppose
R(X) = BTX is a sufficient reduction of the regression problem Y | X. The subspace
S = spanB is called a dimension reduction subspace.

4



2.1 Central Subspace

2.1 Central Subspace

Ideally, the maximum reduction in dimension is sought. Therefore, the aim is to infer the
smallest dimension reduction subspace or central subspace SY |X [CN94; Coo98].

Definition 3 (Central Subspace). The central subspace SY |X for the regression or classifi-
cation problem Y | X is defined to be the intersection of all dimension reduction subspaces,

SY |X =
∩

{S ⊆ Rp : S is a dimension reduction subspace for Y | X}
if and only if it is itself a dimension reduction subspace.

In Definition 3 the central subspace in defined under the condition that the intersection
of dimension reduction subspaces is itself a dimension reduction subspace. This raises a
valid first question; does the central subspace exist? The general answer is no. Without
any additional assumptions the existence cannot be guaranteed. Consider the following
counter example; Let X = (X1, X2) ∈ R2 be uniformly distributed on the unit circle
{x ∈ R2 : x21 + x22 = 1}, and Y = X2

1 + ϵ with ϵ ⊥⊥ X being standard normal distributed
ϵ ∼ N (0, 1). Then Y = (eT1 X)2+ ϵ = 1− (eT2 X)2+ ϵ which means that both span(e1) and
span(e2) are dimension reduction subspaces. Therefore, the intersection of the dimension
reduction subspaces is a subset of the singleton {0} = span(e1) ∩ span(e2), which is not a
dimension reduction subspace.

To ensure the existence of the central subspace, some (mild) assumptions are needed. For
example [Coo98, Prop. 6.4] gives the existence of the central subspace for continuous X by
assuming that X has a density with convex support. For more details see [Coo98; CL95;
YLC08; CC02].

If the central subspace exists, it is unique by construction. Methods for estimating the
central subspace SY |X often require conditions with the most prominent being the following
two [Coo18];

Condition 1 (Linearity Condition). Let B ∈ Rp×q be a basis for the central subspace
SY |X , that is spanB = SY |X , then E[X | BTX] is a linear function of BTX.

Condition 2 (Constant Variance Condition). Let B as in Condition 1, then Var(X | BTX)
is constant (not random).

Cook [Coo98, Prop. 4.2] shows the equivalence of Condition 1 to

E[X | BTX]− E[X] = PY |X(ΣX)T (X − E[X])

where ΣX = Var(X) and PY |X(ΣX) is the projection onto SY |X with respect to the inner
product corresponding to the positive definite matrix ΣX , that is

PY |X(ΣX) = B(BTΣXB)−1BTΣX .

A usefull implication [Li91, Thm. 3.1] of the linearity Condition 1 is that the first moment
SDR subspace SFMSDR defind as

SFMSDR = Σ−1
X span(E[X | Y ]− E[X]) (2.5)

5



2 Sufficient Dimension Reduction (SDR)

is a subset of the central subspace; i.e., SFMSDR ⊆ SY |X . By this relation the first moment
SDR subspace SFMSDR is the direct target of many inverse regression methods.

Another useful relation [Li18; Coo98] is

SY |X = ATSY |(AX−b)) (2.6)

for any invertible A ∈ Rp×p and arbitrary vectors b ∈ Rp. This allows to work with
standardized data Z = Σ

−1/2
X (X − EX) instead as

SY |X = Σ
−1/2
X SY |Z .

2.2 Central Mean Subspace

A major disadvantage of the central subspace is the challenge of estimation. This is due to
the dependence of Y on X which can manifest itself in any conditional moment. Depending
on the needs of the data analysis, those higher moments may not be of interest. A classic
example of this is to use SDR as a preprocessing tool for further prediction models which
struggle with the curse of dimensionality. If the goal of the prediction is purely to give an
estimate of the expected value, only the information about the first moment E[Y | X] is
needed. This is the purpose of mean dimension reduction subspaces introduced in Cook and
Li [CL02].

Definition 4 (Mean Dimension Reduction Subspace [CL02, Def. 1]). Let S ⊆ Rp be a
subspace with basis matrix B ∈ Rp×q, that is S = spanB. if

Y ⊥⊥ E[Y | X] | BTX,

then S is a mean dimension reduction subspace for the regression of Y on X.

The defining property Y ⊥⊥ E[Y | X] | BTX is equivalent to the following statements
[CL02, Thm. 1];

Cov(Y,E[Y | X] | BTX) = 0,

E[Y | X] is a function of BTX.

As in the case of the central subspace, the smallest (if it exists) mean dimension reduction
subspace is the main goal of inference.

Definition 5 (Central Mean Subspace [CL02, Def. 2]). The central mean subspace SE[Y |X]

for the regression or classification problem Y | X is defined to be the intersection of all
mean dimension reduction subspaces,

SE[Y |X] =
∩

{S ⊆ Rp : S is a mean dimension reduction subspace for Y | X}

if and only if it is itself a mean dimension reduction subspace.

6



2.3 Classic SDR methods

Similar to the central subspace the existence of the central mean subspace can not be
guaranteed. Similar assumptions to those required for the existence of the central subspace,
for example if X has open and convex domain, ensure the central mean subspace exists.

In general, any dimension reduction subspace is also a mean dimension reduction sub-
space. Moreover, the central mean subspace is always a subset of the central subspace
SE[Y |X] ⊆ SY |X , if they exist.

Example 1 (Different mean and central subspace). Let X = (X1, X2, X3) ∼ N3(0, I3),
ϵ ∼ N (0, 1), and

Y = X1 + ϵX2

By X ⊥⊥ ϵ, the conditional distribution of Y given X is an affine linear transformation
of a standard normal variable ϵ, obtaining Y | X ∼ N (X1, X

2
2 ). With E[Y | X] = X1 =

eT1 X we get the mean subspace SE[Y |X] = span e1. The central subspace, on the other
hand, captures all the information about the conditional distribution, includes the variance,
therefore SY |X = span(e1, e2).

A common assumption is to assume a mean regression model with additive error

Y = g(BTX) + ϵ (2.7)

with zero conditional mean E[ϵ | X] = 0 and finite variance Var(ϵ) < ∞. This is the case for
the first three of the four examples at the beginning of this chapter. Under this model the
central subspace and the central mean subspace, if they exist, are identical SE[Y |X] = SY |X .

2.3 Classic SDR methods

Before we describe some of the classic SDR methods, we introduce some convenient notation.
Let PA(Σ) be the projection onto the span of a full column rank matrix A with respect

to the inner product induced by a symmetric positive definite (PSD) matrix Σ given by

PA(Σ) = A(ATΣA)−1ATΣ.

When B is a basis of the central subspace; that is, SY |X = span(B), then we write PA(Σ)
also as PY |X(Σ). This avoids the need to specify B. We write PA(Ip) simply as PA, which
in addition to being idempotent is always symmetric. The projection onto the orthogonal
complement under the inner product corresponding to Σ is writen as QA(Σ) = Σ−PA(Σ)
with the same abbreviations as for PA(Σ).

Observing that the conditioning on BTX is equivalent to conditioning on PBX we get
E[X | BTX] = E[X | PBX]. The same applies to other conditional expressions.

In many methods it is assumed that the parameter matrix B identifying a subspace
through its span is semi-orthogonal. The set of all p × q semi-orthogonal matrices with
q ≤ p is called the Stiefel manifold (see Section 5.3.1)

Stp×q = {A ∈ Rp×q : ATA = Iq}. (2.8)

The set for q > p with the condition AAT = Ip, is also called the Stiefel manifold. To avoid
confusion, we only use the term or notation for the Stiefel manifold in the case of q ≤ p.
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2 Sufficient Dimension Reduction (SDR)

2.3.1 Sliced Inverse Regression (SIR)

The method deemed to kick start the modern understanding of SDR is Sliced Inverse Regres-
sion (SIR) [Li91]. SIR is based on the idea of the centered inverse regression curve (IRC)
E[X | Y ]−E[X] being contained in a lower dimensional subspace SSIR. With the linearity
Condition 1, [Li91, Prop. 3.1] states that the centered IRC is contained in span(ΣXB),
where ΣX = VarX. As a consequence, the variance of the IRC, Var(E[X | Y ]), is singular.
The eigenvectors of Σ−1

X Var(E[X | Y ]) with non-zero eigenvalues span the linear subspace
SSIR ⊆ spanB = SY |X .

To estimate B, SIR first standardizes the i.i.d. samples (Yi,Xi) as ,Zi = ,Σ−1/2
X (Xi − ,µ).

The estimates ,ΣX and ,µ are the usual moment estimates of the marginal variance Var(X)
and the mean E[X], respectively. With the standardized predictors ,Zi, we need to estimate
E[Z | Y ], which is done by slicing. The response domain is split into a finite set of mutually
disjoint slices and replace the continuous responce Y with a discrete version encoding slice
membership. This approach will occur multiple times and deserves its own definition.

Definition 6 (Slices). Let Y be a univariate random variable. For continuous Y , a slicing
of size s of n observations Yi ∈ R of Y is a disjoint cover of {Yi : i = 1, . . . n} ⊂ R consisting
of s intervals Sj , called slices, each containing at least one observation Yi. For categorical
Y , the slices typically coincide with the values of Y .

In both cases, nj is the number of observations contained in the slice

nj =
n∑

i=1
Yi∈Sj

1 =
∑
i∈Sj

1

where the summation over i ∈ Sj is a short hand notation for the summation over all
i = 1, . . . , n such that Yi ∈ Sj .

With s slices Sj of Y , we compute the within slice means ,mj = n−1
j

∑
i∈Sj

,Zi. The

estimate ,ΣE[Z|Y ] of Var(E[Z | Y ]) is then defined to be

,ΣE[Z|Y ] =
1

n

s∑
j=1

(,mj − ,µ)(,mj − ,µ)T .
where ,µ is the overall sample mean. The q dimensional SIR estimate is then given by
SSIR = ,Σ−1/2

X span(v1, . . . , vq) with v1, . . . , vq being the first q eigenvectors of ,ΣE[Z|Y ].

Remark 2. Including discrete random variables in Definition 6 is a simple way to extend all
slicing based methods to discrete random variables without any additional nomenclature.
This is a natural extension because slicing is nothing else than converting a continuous
random variable into a discrete random variable.

2.3.2 Sliced Average Variance Estimation (SAVE)

[CW91] pointed out that SIR is non-exhaustive for the central subspace. The problem is
illustrated with a slightly adapted example. Let (X1, X2) = X ∼ N2(0, I2) be bivariate
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2.3 Classic SDR methods

standard normal and Y = X2
1 + ϵ with ϵ ⊥⊥ X, zero mean and finite variance. The central

subspace is SY |X = span e1 and the regression model fulfills all the requirements of SIR,
but the conditional mean E[X | Y ] = 0. As a result, the SIR subspace SSIR = {0}, “which
is not a very interesting subspace” [CW91, direct citation].

To overcome this issue, [CW91] also introduced a new method called Sliced Average
Variance Estimation (SAVE). In addition to the assumptions of SIR the constant variance
Condition 2 is required. Based on the same concept, SAVE uses the conditional variance
Var(X | Y ) instead of the conditional mean E[X | Y ]. For the standardized variables
Z = Σ

−1/2
X (X − EX), the law of total variance gives

Ip = Var(Z) = Var(E[Z | PY |ZZ]) + E[Var(Z | PY |ZZ)]

= PY |Z Var(Z)PY |Z +Var(Z | PY |ZZ)

= PY |Z +Var(Z | PY |ZZ).

where the linearity Condition 1 and constant variance Condition 2 was used in conjunction
with PY |Z being symmetric and idempotent. Rearranging gives

span(Ip −Var(Z | PY |ZZ)) = spanPY |Z ⊆ SY |Z .

Reversing the standardization on the central subspace with (2.6) yields the SAVE subspace.

SSAVE = Σ
−1/2
X span(Ip −Var(Z | PY |ZZ)) ⊆ Σ

−1/2
X SY |Z = SY |X .

The sample version is based on the same slicing idea as SIR. Let (Yi,Xi) be n i.i.d. obser-
vations. We start by standardizing Xi as Zi = ,Σ−1/2

X (Xi − ,µ) where ,µ and ,ΣX are the
sample esimates of the mean and covariance of X. Then, as in SIR, split the range of the
Yi’s into s slices and let Ỹi = j if Yi is in the j’th slice. For every slice j = 1, . . . , s, the
conditional covariance is estimated as

,Σj =
1

nj

∑
i=1
Ỹi=j

ZiZ
T
i

where nj is the number of responces Yi in slice nr. j, that is Ỹi = j. Next, we estimate
(Ip−Var(Z | PY |ZZ))2. The square comes from the idea that both matrices have the same
span, but its square is guaranteed to be positive semidefinite. This is done by weighted
combining the slice variances as

,V =

s∑
j=1

nj

n
(Ip − ,Σj)

2.

The final estimate is given by computing the q eigenvectors vk of ,V for the largest eigen-
values with k = 1, . . . , q. The SAVE estimate of a basis is then ,B = ,Σ−1/2

X (v1, . . . , vq).
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2 Sufficient Dimension Reduction (SDR)

2.3.3 Parametric Inverse Regression (PIR)

Proposed in [BC01] the method Parametric Inverse Regression (PIR) was developed to
estimate the dimension of the central subspace SY |X . Setting up the scene by observing
that the slicing performed in SIR results in p-univariate regressions on a discrete random
variable. The idea is now to use smooth parametric curves instead of the indicator functions
on the slices and use a multivariate linear model instead of Var(E[X | Y ]) to recover SFMSDR

in (2.5).
Let fj be s known smooth functions collected in a vector valued function f(y), for example

f(y) = (y, y2, . . . , ys). The multivariate linear regression model is then

X = µ+A(f(Y )− E[f(Y )]) + ϵ (2.9)

where E[ϵ | Y ] = 0 and Var(ϵ | Y ) = Var(X | Y ) = ΣX|Y . Under model (2.9), the linearity
Condition 1 holds, which yields Σ−1

X span(A) ⊆ SY |X .
Solving the least squares problem at the population level yields

A = Cov(X,f(Y ))Var(f(Y ))−1 and µ = EX −AEf(Y )

leading to SPIR = Σ−1
X span(A) ⊆ SY |X [BC01; PKB21; Li18].

A method for estimation on the sample level given n i.i.d. observations (Xi, Yi) proceeds
as follows. Let ,ΣX , ,ΣX,F and ,ΣF be the moment estimates of Var(X), Cov(X,f(Y ))

and Var(F ), respectively. Then compute the q first left singular vectors of ,Σ−1
X

,ΣX,F
,Σ−1
F

to get the estimate ,B ∈ Rp×q for span(B) ⊆ SY |X .

Remark 3. Given that span(A) = span(AC) for any invertible q × q matrix C we can set
C = Var(f(Y ))−1Cov(f(Y ),X)Var(X−1). This leads to a generalized eigenvalue problem
also usable as a basis for a sample level algorithm. For example [Li18] uses this approach.

Remark 4. Letting f(y) = y, the univariate identity, PIR reduces to ordinary least squares
(OLS) as ,B ∝ ,Σ−1

X
,ΣX,Y ∈ Rp×1, the well known OLS estimate.

Remark 5. PIR is also a generalization of SIR. This can be seen by setting the fj ’s to
indicator functions over the slices of SIR.

2.3.4 Principal Fitted Components (PFC)

The concept of Principal Fitted Components (PFC) was introduced in [Coo07] and extended
in [CF08]. In a nutshell, PFC is a slightly restricted model-based version of PIR by assuming
X | Y to be multivariate normal. The conditional inverse regression model is similar to
(2.9) and given by

X = µ+ Γγ(f(Y )− E[f(Y )]) + ϵ (2.10)

with the additional assumption of ϵ ∼ Np(0,Σϵ) and Γγ ∈ Rp×s is of known rank q, that
is Γ is a p× q full rank matrix and γ is q× s also full rank q with q ≤ min(p, s). Note that
A = Γγ in (2.9).

Given the full probabilistic model (2.10) and an i.i.d. sample (Xi, Yi), in [CF08] an MLE
estimate of SPIR = Σ−1

X span(Γ) ⊆ SY |X was derived. For the exact form, let ,ΣX , ,ΣX,F

and ,ΣF be the moment estimates of Var(X), Cov(X,f(Y )) and Var(F ), respectively.

10



2.3 Classic SDR methods

Then, the OLS estimate for A, as in the PIR model, for the regression of X on f(Y ) is
given by ,A = ,Σ−1

X,F
,ΣF . Then, define the fitted and residual covariance estimates as

,Σfit = ,A,ΣF
,AT , ,Σres = ,ΣX − ,Σfit.

The next step is to compute the SVD of ,Σ−1/2
res

,Σfit
,Σ−1/2
res = ,U diag(,λ1, . . . , ,λp) ,UT to get,ΣMLE = ,Σres + ,Σ1/2

res diag(0, . . . , 0, ,λq+1, . . . , ,λp),Σ1/2
res .

The MLE of SPIR = Σ−1
X span(Γ) ⊆ SY |X under (2.10) is then

,Σ−1
X span(,Γ) = ,Σ−1/2

MLE spanq(,Σ−1/2
MLE

,Σfit
,Σ−1/2
MLE)

where spanq denotes the span of the first q eigenvectors of its argument.

Remark 6. If s = q the MLE covariance matrix ,ΣMLE = ,Σres.

2.3.5 Minimum Average Variance Estimation (MAVE)

Introduced in Xia et al. [XTL+02], the Minimum Average Variance Estimation (MAVE)
targets the central mean subspace SE[Y |X]. It operates under model (2.7) so that it is the
first forward regression based SDR method. It requires neither the linearity nor the constant
variance conditions on the marginal distribution of X, but the marginal fourth moments to
exists, that is E |Y |4 < ∞ and E ∥X∥4 < ∞. Also, g in (2.7) as well as both E[X | Y ] and
E[XXT | Y ] are assumed to have bounded, continuous third derivatives. MAVE uses local
linear regression to approximate g based on the following theorem shown by [XTL+02].

Theorem 1. Assume model (2.7), then

SE[Y |X] = span
(
argmin~B∈Stp×q

E(Y − E[Y | ~BTX])2
)
. (2.11)

Proof. The mean regression model (2.7) states Y = g(BTX) + ϵ with span(B) = SE[Y |X].
Therefore,

E(Y − E[Y | ~BTX])2

= E(g(BTX)− E(Y | ~BTX))2 + 2E([g(BTX)− E(Y | ~BTX)]ϵ) + Var(ϵ)

= E(g(BTX)− E(Y | ~BTX))2 +Var(ϵ) ≥ Var(ϵ) (2.12)

where the middle term is zero because E(ϵ | X) = 0 which yields

E([g(BTX)− E(Y | ~BTX)]ϵ) = E([g(BTX)− E(Y | ~BTX)]E(ϵ | X)) = 0.

If ~B is such that span( ~B) = span(B), then (2.12) gives with E(Y | ~BTX)] = E(Y |
BTX)] = g(BTX) that

E(Y − E[Y | ~BTX])2 = Var(ϵ).

On the other hand, if span( ~B) ̸= span(B), then E(Y | ~BTX) ̸= g(BTX), and therefore

E(Y − E[Y | ~BTX])2 = E(g(BTX)− E(Y | ~BTX))2 +Var(ϵ) > Var(ϵ).

This means that only matrices ~B such that span( ~B) = SE[Y |X] solve the minimization
problem in (2.11).
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2 Sufficient Dimension Reduction (SDR)

Using the tower property, we rewrite the objective in Theorem 1 as

E(Y − E[Y | BTX])2 = E[E{(Y − E[Y | BTX])2 | BTX}] = E[σ2(BTX)]

where the average variance of the regression residuals Eσ2(BTX) gives the method its
name.

MAVE estimation is carried out as follows. Suppose (Yi,Xi) is a sample of n i.i.d.
observations. We start with a local linear expansion

E[Y | BTXi] ≈ ai(x0) + si(x0)
TBT (Xi − x0)

at a point x0. Since g in (2.7) is differentiable, the intercept is given by a(x0) = g(BTX0)
and the slope vector by s(x0) = ∇g(BTX0). Because the function g is unknown, we need
to approximate its value and slope at x0. [XTL+02] use local linear regression smoothing
to approximate the residual variance at x0 by

σ2(BTXi) =

n∑
i=1

(Yi − E[Y | BTXi])
2 ≈

n∑
i=1

(ai(x0) + si(x0)
TBT (Xi − x0))

2wi(B
Tx0)

with wi(B
Tx0) ≥ 0 being weights that sum to 1, that is

∑n
i=1wi(B

Tx0) = 1 at any
point x0. A common approach of selecting such weights is based on a symmetric kernel
Kh(x1,x2) = k(∥x1−x2∥2/h) with k : R+ ,→ R+ continuous and monotonically decreasing.
The parameter h is called bandwidth and controlls the kernel scaling. The default choice
in MAVE is the Gaussian kernel Kh(x̃) = k(∥x̃∥2) = exp(−∥x̃∥2/2). The weights need to
sum to 1, so that

wi(B
Tx0) =

Kh(B
TXi,B

Tx0))∑n
j=1Kh(BTXi,BTx0)

.

This results in observations Xi close to x0 having a strong influence (big weights) on the
local regression. The bigger the distance of an observation Xi to x0, the less its influence,
where the decrease in influence is controlled by the bandwidth h.

Finally, MAVE estimates B ∈ Stp×q by performing local linear regression at all observa-
tions Xj . That gives the sample version of the objective function as the sum of residual
variance estimates,

E(Y − E[Y | ~BTX])2 ≈ 1

n

n∑
j=1

n∑
i=1

(Yi − E[Y | BTXi])
2

≈ 1

n

n∑
j=1

n∑
i=1

(
Yi − ai(Xj)− si(Xj)

TBT (Xi −Xj)
)2
wi(B

TXj).

An algorithmic solution to this objective requires estimating ai(Xj) ∈ R, si(Xj) ∈ Rq for
i, j = 1, . . . , n and B ∈ Rp×q. Those are n2(q + 1) + pq parameters of whose only the
pq of B are of interest. A closed form solution for the complete problem does not exist.
Alternatively, fixing either B or all the local linear regression parameters ai(Xj) ∈ R,
si(Xj) ∈ Rq gives a closed form solution for minimizing the objective. Then we alternate
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2.3 Classic SDR methods

between the marginal objectives till convergence of the parameter estimate ,B subject to,B ∈ Stp×q. The constraint that ,B be in the Stiefel manifold is simply for algorithmic
stability as it resolves the ambiguity of Bb in a local region. The estimated subspace is
span( ,B). See [XTL+02; Xia07; Li18] for more details on the estimation procedure.

The MAVE algorithm requires two user choices. First, we need a starting value for,B in the alternating optimization routine. Any mean subspace estimate can be chosen.
[XTL+02] came up with a better targeted initial value for ,B the process of which they
called outer product of gradients (OPG) described in detail Section 2.3.6. Second, the
bandwidth h needs a value. A good choice based on asymptotic results combined with
exhaustive testing is provided in [Xia07] as h = 2.34n−1/(max(p,3)+6). This particular choice
is only valid if the procedure is applied to standardized data due to two reasons. First, it
is a single bandwidth parameter for all axes with possibly different scaling. Second, this
particular choice is based on marginal variance of 1. In contrast to SIR and SAVE, the
predictors are standardized separately, as follows. If ,µ = (,µ1, . . . , ,µp) is the sample mean
vector of X and ,σ2 = (,σ2

1, . . . , ,σ2
p) = diag(,ΣX) are the diagonal elements of the moment

estimate of the variance of X,

( ,Zi)j =
(Xi)j − ,µj,σj , i = 1, . . . , n. (2.13)

2.3.6 Outer Product of Gradients (OPG)

This method was introduced in Xia et al. [XTL+02] as a component of their main method
MAVE described in Section 2.3.5. It provides an initial estimate for the central mean
subspace SE[Y |X] and is independent of the specific method MAVE. The Outer Product
of Gradients (OPG) method is based on Theorem 2 (see [XTL+02, Lemma 1] and [Li18,
Thm. 11.1]) which is an observation dating back to [Li91].

Theorem 2. Let g̃(x) = E[Y | X = x] be differentiable and Σ∇ = E[∇g̃(X)∇g̃(X)T ].
Then,

span(Σ∇) ⊆ SE[Y |X]. (2.14)

Proof. Model (2.7) implies g̃(x) = E[Y | X = x] = E[Y | BTx = BTx] = g(BTx).
Differentiating yields

∇xg̃(x) = ∇xg(B
Tx) =

∂(BTx)

∂x
∇BTxg(B

Tx) = B∇g(BTx) (2.15)

Therefore,

Σ∇ = E
(∇xg(B

TX)∇xg(B
TX)T

)
= B E

(∇g(BTX)∇g(BTX)T
)
BT

which completes the proof.

To derive a sample level estimation procedure, we need a method to estimate the gradi-
ents at the given observation positions. The solution provided in [XTL+02] is local linear
regression [FG92; Fan93; RW94]. The target objective at the population level is to minimize

E
[
(Y − (a(x0) + s(x0)

T (X − x0)))
2K

(
X − x0

h

)]
.
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2 Sufficient Dimension Reduction (SDR)

with respect to a(x0) ∈ R and s(x0) ∈ Rp. The function K is called kernel. The kernel
choice of OPG is K(u) = exp(−∥u∥2/2) which creates weights in the LLR objective with
respect to the standard Gaussian distance to x0. The bandwidth h ∈ R+ controls how
distant observations influence the local regression. The smaller the bandwidth the smaller
the influence of distant observations. In OPG, local linear regression provides gradient
estimates at x0 for g̃ by the slope vector b(x0).

The sample level algorithm for n i.i.d. observations (Yi,Xi) is to first standardize the
predictors Xi marginally as in (2.13). This allows to use a single bandwidth h for all
components. [Xia07] suggest using h = 2.34n−1/(max(p,3)+6). Then, fit local linear regression
at every sample Xi (replacing x0 with Xi) to obtain [XTL+02; Li18]

(,ai,si
)

=

( n∑
j=1

(
1

Xj −Xi

)(
1

Xj −Xi

)T

K

(
Xj −Xi

h

))−1

n∑
j=1

(
1

Xj −Xi

)
YjK

(
Xj −Xi

h

)

This computes a slope vector ,si at every observation. Considering the slope vectors ,si as
local gradient approximations, the OPG method estimates the outer product of gradients
as ,Σ∇ =

1

n

n∑
i=1

,si,sTi .
The OPG estimate of the mean subspace is given by span( ,B), where ,B consists of the first
q eigenvectors of ,Σ∇.

2.4 SDR methods for Matrix- or Tensor-Valued Predictors

Tensors are a mathematical tool to represent data of complex structure in Statistics. In this
thesis, tensors are considered as a generalization of matrices to higher dimensions: A tensor
is a multi-dimensional array of numbers. For example, the special case of a second-order
tensor is a matrix, while a third-order tensor can be represented as a cube of numbers.

Complex data are collected at different times and/or under several conditions often in-
volving a large number of multi-indexed variables represented as tensor-valued data [KB09].
They occur in large-scale longitudinal studies [e.g. Hof15], in agricultural experiments and
chemometrics and spectroscopy [e.g. LR92; Bur95]. Also, in signal and video processing
where sensors produce multi-indexed data, e.g. over spatial, frequency, and temporal di-
mensions [e.g. DC07; KR05], in telecommunications [dFM07]. Examples of multiway data
include 3D images of the brain, where the modes are the 3 spatial dimensions, and spatio-
temporal weather imaging data, a set of image sequences represented as 2 spatial modes
and 1 temporal mode.

Classic SDR methods (Section 2.3) are poorly equipped to handle such complex data
structures. This is because SDR methods are applied to the vectorized data, thus losing
information about the matrix- or tensor-structure. This loss of structural information results
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in reduced estimation efficiency, and adversely affects interpretability. Moreover, because
the dimension of the vectorized data is the product of the matrix- or tensor-axis dimensions,
vectorization often leads to a “big p, small n” setting.

To properly handle matrix- or tensor-valued data we need to introduce some concepts
multilinear algebra as well as our notation.

2.4.1 Notes on Multilinear Algebra

Let A ∈ Rq1×...×qr denotes an order1 r tensor, where r ∈ N is the number of modes or axes
(dimensions) of A and Ai1,...,ir ∈ R is its (i1, . . . , ir)th entry. For example, a p× q matrix B
has two modes, the rows and columns. For matrices Bk ∈ Rpk×qk , k ∈ [r] = {1, 2, . . . , r},
the multi-linear multiplication , or Tucker operator [Kol06], is defined element wise as

(A× {B1, . . . ,Br})j1,...,jr =

q1,...,qr∑
i1,...,ir=1

Ai1,...,ir(B1)j1,i1 · · · (Br)jr,ir

which results in an order r tensor of dimension p1 × ... × pk. The k-mode product of the
tensor A with the matrix Bk is

A×k Bk = A× {Iq1 , . . . , Iqk−1
,Bk, Iqk+1

, . . . , Iqr}.
The notation A×k∈S Bk is short hand for the iterative application of the mode product
for all indices in S ⊆ [r]. For example A×k∈{2,5}Bk = A×2B2×5B5. By only allowing S
to be a set, this notation is unambiguous because the mode product commutes for different
modes; i.e., A×j Bj ×k Bk = A×k Bk ×j Bj for j ̸= k.

Example 2. Let A,B1,B2 be matrices (of matching dimensions). In this bilinear setting
the relation to the well known matrix-matrix multiplications is

A×1 B1 = B1A, A×2 B2 = ABT
2 , A

2×
k=1

Bk = A×
k∈{1,2}

Bk = B1ABT
2 .

The operator vec maps an array to a vector. Specifically, vec(B) stands for the pq × 1
vector of the p×q matrix B resulting from stacking the columns of B one after the other. For
a tensor A of order r and dimensions q1, . . . , qr, vec(A) is the q1q2 . . . qr × 1 vector with the
elements of A stacked one after the other in the order r then r−1, and so on. For example,
if A is a 3-dimensional array, vec(A) = (vec(A:,:,1)

T , vec(A:,:,2)
T , . . . , vec(A:,:,q3)

T )T . We
use the notation A ≡ B for objects A,B of any shape if and only if vec(A) = vec(B).

The inner product between two tensors of the same order and dimensions is

⟨A,B⟩ =
∑

i1,...,ir

Ai1,...,irBi1,...,ir

This leads to the definition of the Frobenius norm for tensors, ∥A∥F =
√⟨A,A⟩ and is

the straightforward extension of the Frobenius norm for matrices and vectors. The outer
1Also referred to as rank, therefore the variable name r, but this term is not used as it leads to confusion

with the concept of rank of a matrix.
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product between two tensors A of dimensions q1, . . . , qr and B of dimensions p1, . . . , pl is a
tensor A ◦ B of order r + l and dimensions q1, . . . , qr, p1, . . . , pl, such that

A ◦ B ≡ (vecA)(vecB)T .

Let K : Rq1,...,q2r → Rq1qr+1,...,qrq2r be defined element wise with indices 1 ≤ ij + 1 ≤ qjqr+j

for j = 1, ..., r as

K(A)i1+1,...,ir+1 = A⌊i1/qr+1⌋+1,...,⌊ir/q2r⌋+1,(i1 mod qr+1)+1,...,(ir mod q2r)+1

where ⌊ . ⌋ is the floor operation and amod b is the integer division remainder of a/b. The
mapping K is a linear operation and maps an order 2r tensor to an order r tensor by
reshaping and permuting its elements. This operation allows defining a generalization of
the Kronecker product to tensors, which we define as A⊗B = K(A◦B). Based on the well
known relation vec(AXBT ) = (B⊗A) vec(X), it is technically more convenient to consider
a reversed variation on that theme. This is the “reverse” operation B ⊗A = Kr(A ◦ B). In
Lemma 1 this relation between the outer product and the Kronecker product is generalized
to the iterated outer and Kronecker product

r◦
k=1

Ak = A1 ◦ . . . ◦Ar,
r°

k=1

Ak = A1 ⊗ . . .⊗Ar.

Note the reverse order of the Kronecker product in (2.16).

Lemma 1. Given r ≥ 2 matrices Ak of dimension pj×qj for k = 1, . . . , r, then there exists
a unique permutation matrix Sp,q such that

vec
1°

k=r

Ak = Sp,q vec

r◦
k=1

Ak. (2.16)

The permutation Sp,q with indices p = (p1, . . . , pr) and q = (q1, . . . , qr) is defined recursively
as

Sp,q = S(Πr−1
k=1 pk,pr

)
,
(Πr−1

k=1 qk,qr
)(Iprqr ⊗ S(p1,...,pr−1),(q1,...,qr−1)

)
(2.17)

with initial value
S(p1,p2),(q1,q2) = Iq2 ⊗Kq1,p2 ⊗ Ip1

where Kp,q is the commutation matrix from Abadir and Magnus [AM05, Ch. 11], that is
the permutation such that vecAT = Kp,q vecA for every p× q dimensional matrix A.

Proof. Magnus and Neudecker [MN86, Lemma 7] states that

vec(A2 ⊗A1) = (Iq2 ⊗Kq1,p2 ⊗ Ip1)(vecA2 ⊗ vecA1) (2.18)
= (Iq2 ⊗Kq1,p2 ⊗ Ip1) vec(A1 ◦A2).
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2.4 SDR methods for Matrix- or Tensor-Valued Predictors

This proves the statement for r = 2. The general statement for r > 2 follows via induction.
Assuming (2.16) holds for r − 1, the induction step is then;

vec
1°

k=r

Ak = vec
(
Ar ⊗

1°
k=r−1

Ak

)
(2.18)
=

(
Iqr ⊗KΠr−1

k=1 qk,pr
⊗ IΠr−1

k=1 pk

)
vec

(
(vecAr)⊗ vec

1°
k=r−1

Ak

)

= S(Πr−1
k=1 pk,pr

)
,
(Πr−1

k=1 qk,qr
) vec[(vec 1°

k=r−1

Ak

)
(vecAr)

T
]

(2.16)
= S(Πr−1

k=1 pk,pr
)
,
(Πr−1

k=1 qk,qr
) vec[S(p1,...,pr−1),(q1,...,qr−1)

(
vec

r−1◦
k=1

Ak

)
(vecAr)

T
]

(a)
= S(Πr−1

k=1 pk,pr
)
,
(Πr−1

k=1 qk,qr
)(Iprqr ⊗ S(p1,...,pr−1),(q1,...,qr−1)

)
vec

[(
vec

r−1◦
k=1

Ak

)
(vecAr)

T
]

= Sp,q vec

r◦
k=1

Ak.

Equality (a) uses the relation vec(CabT ) = (Idim(b) ⊗ C) vec(abT ) for a matrix C and
vectors a, b.

Remark 7. The permutation matrix Kp,q represents a perfect outer p-shuffle of pq elements.
For tensors of order at least 2, the matricization (or flattening or unfolding) is a reshaping

of the tensor into a matrix along a particular mode. For a tensor A of order r and dimensions
q1, . . . , qr, the k-mode unfolding A(k) is a qk ×

Π
l=1,l ̸=k ql matrix with elements

(A(k))ik,j = Ai1,...,ir with j = 1 +
r∑

l=1
l ̸=k

(il − 1)
l−1Π
m=1
m ̸=k

qm.

A generalization of the well known identity vec(ABC) = (CT ⊗A) vecB is given by

vec
(
A

r×
k=1

Bk

)
=

( 1°
k=r

Bk

)
vecA.

Furthermore, we have

(A⊗ B)
r×

k=1

(vecCk)
T =

<
A

r×
k=1

Ck,B
>
=

<
A,B

r×
k=1

CT
k

>
= (vecB)T

( 1°
k=r

Ck

)
vecA

as well as for any tensor A of even order 2r and matching square matrices Bk holds

K(A)

r×
k=1

(vecBk)
T = (vecA)T vec

( 1°
k=r

BT
k

)

17



2 Sufficient Dimension Reduction (SDR)

The gradient of a function F(X ) of any shape, univariate, multivariate or tensor valued,
with argument X of any shape is defined as the p× q matrix

∇XF =
∂(vecF(X ))T

∂(vecX )
,

where the vectorized quantities vecX ∈ Rp and vecF(X ) ∈ Rq. This is consistent with the
gradient of a real-valued function f(x) where x ∈ Rp as ∇xf ∈ Rp×1 [Har97, ch. 15].

2.4.2 Multilinear Algebra in R

The vectorization vec(A) is simply as.vector(A) (or c(A)). Matricization can be implemented
using axis permutation aperm followed by a change of dimensions. An implementation of
A(k) for an multidimensional array A is given by;

1 mat <- function(A, k) {
2 matrix(aperm(A, c(k, seq_along(dim(A))[-k])), prod(dim(A)[k]))
3 }

Using the relation (A×kB)(k) = BA(k) alows for a simple implementation of the k-mode
product of a tensor A and a matrix B. We only need to “undo” the matricization after the
matrix matix product BA(k).

1 mode.product <- function(A, B, k) {
2 C <- B %*% mat(A, k)
3 dim(C) <- c(nrow(B), dim(A)[-k])
4 aperm(C, order(c(k, seq_along(dim(A))[-k])))
5 }

Given an implementation of the mode product A×k B it is a simple loop to implement
the multi-linear multiplication A×k∈M Bk for M being the set of modes for the iterated
mode product between the multidimensional array A and a list of matrices Bs.

1 mlm <- function(A, Bs, modes = seq_along(Bs)) {
2 for (k in seq_along(modes)) {
3 A <- mode.product(A, Bs[[k]], modes[k])
4 }
5 A
6 }

The outer products A◦B is exactly what the base R function outer computes and kronecker

computes the generalized Kronecker product A⊗B as described above (R’s implementation
of kronecker is also based on the relation A ⊗ B = K(A ◦ B).) An (even more general)
implementation of K (that is for ncomp =2) is the following.

1 kronperm <- function(A, dims = dim(A), ncomp = 2, revers = FALSE) {
2 # force ‘A‘ to have a multiple of ‘ncomp ‘ dimensions
3 dim(A) <- c(dims, rep(1L, length(dims) %% ncomp))
4 # Shuffle ‘A‘’s axis
5 perm <- matrix(seq_along(dim(A)), ncol = ncomp)
6 perm <- t(if (revers) perm else perm[, ncomp :1])
7 K <- aperm(A, as.vector(perm), resize = FALSE)
8 # collapse consecutive dimensions
9 dim(K) <- apply(matrix(dim(K), ncol = ncomp), 1, prod)
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2.4 SDR methods for Matrix- or Tensor-Valued Predictors

10 K
11 }

The kronperm function allows for some tricks. Specifically, it can compute the perumtation
of the comutation matrix Kp,q from [MN99]. At the same time it provides the permutation

1 shuffle <- function(...) as.vector(t(cbind(...)))
2 kronperm(seq_len(prod(p, q)), shuffle(p, q), ncomp = length(p), TRUE)

correponsing to the permutation matrix Sp,q from Lemma 1.

Remark 8. The functions provided are simplified versions of the implementations used for
the simulations in Sections 5.5.1 and 5.5.2, as well as the data examples in Sections 5.6.1
and 5.6.2. While the simplified code performs adequately in terms of performance, there is
certainly room for improvement.

2.4.3 Central Dimension-Folding Subspace

In the context of (linear) SDR, the first SDR approach [LKA10] performs a bi-linear or
multi-linear reduction of the matrix- or tensor-valued predictors, respectively. To clarify
this, consider the matrix-valued predictor case. Let (Y,X) be jointly distributed, Y is
univariate and the predictors X are p1 × p2 random matrices. Assume there are matrices
Bj ∈ Rpj×qj where qj ≤ pj for i = 1, 2 such that

Y ⊥⊥ X | BT
1 XB2. (2.19)

By the well known relation vec(AXC) = (CT ⊗A) vecX, statement (2.19) is equivalent
to

Y ⊥⊥ X | (B2 ⊗B1)
T vecX

which makes (B2⊗B1)
T vecX a sufficient reduction of X for the regression on Y by Defi-

nition 3. Those two statements are identical. For example, suppose X contains longitudinal
data, that is X = (X,1, . . . ,X,p2) where X,t are measurements of the same features over
multiple time points t = 1, . . . , p2. The interpretation of X is then different for the rows
which correspond to different features and columns indexing time. The bi-linear reduction
BT

1 XB2 keeps this relation of rows to features and columns to time. This interpretation
is lost by vectorizing without the Kronecker structure. This is where the bi- or multi-linear
reductions gain estimation efficiency through the Kronecker constraint while preserving
interpretability, opposed to an unconstraint vectorized reduction B vecX.

In the spirit of Definitions 2 and 4, we provide an equivalent definition of the generalization
of [LKA10, Def. 1] as discussed in the same paper [LKA10, Sec. 6].

Definition 7 (Dimension-Folding Subspace). Let X be a tensor-valued random variable of
dimension p1 × . . .× pr and Bk ∈ Rpk×qk with pk ≤ qk for k = 1, . . . , r. If

Y ⊥⊥ X | X
r×

k=1

Bk

then S = span(Br) ⊗ . . . ⊗ span(B1) is a dimension-folding subspace for the regression or
classification problem of Y on X .
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2 Sufficient Dimension Reduction (SDR)

Again, in analogy to the central (mean) subspace Definitions 3 and 5, we are usually
interested in the smallest dimension-folding subspace, if it exists.

Definition 8 (Central Dimension-Folding Subspace). The central dimension-folding sub-
space SY |X⊗ for the regression or classification problem Y | X is defined to be the intersec-
tion of all dimension-folding subspaces,

SY |X⊗ =
∩

{S ⊆ Rpr ⊗ . . .⊗ Rp1 : S is a dimension-folding subspace for Y | X}
if and only if it is itself a dimension-folding subspace.

Every dimension-folding subspace is also a dimension reduction subspace2 [LKA10], since
vec

(X ×r
k=1Bk

)
=

(°1
k=r Bk

)
vecX . The other direction is not the case, in general. This

is well illustrated by a counter-example. Let X be a 3 × 3 random matrix with standard
normal entries Xij ∼ N (0, 1), and Y = X1,1 + X2

2,1 + X2
1,2 + ϵ for ϵ ⊥⊥ X, ϵ ∼ N (0, 1).

The central subspace SY |X = span(e1, e2, e4) ⊂ R9 is of dimension 3, but the central
dimension-folding subspace SY |X⊗ = span(e1, e2)⊗span(e1, e2) = span(e1, e2, e4, e5) ⊂ R9

is 4 dimensional. In summary, if they exist,

SY |vecX ⊆ SY |X⊗

is always the case, but equality is not guaranteed.
Similar to the central (mean) subspace relations, the relation [LKA10; DC15]

SY |X⊗ =

(
1°

k=r

AT
k

)
SY |Z⊗ (2.20)

where Z = (X − µ)×r
k=1Ak holds for invertible matrices Ak and arbitrary offset µ.

The first formal SDR methods for r-mode tensor-valued data where folded-SIR, folded-
SAVE and folded-DR, introduced in [LKA10]. They directly generalized and adapted the
classic SDR methods SIR, SAVE, and DR to accommodate tensor predictor structures.
Their approach is applicable to inverse regression methods for regressions with the marginal
predictor distribution satisfying the tensor versions of the linearity Condition 1 and/or con-
stant variance Condition 2, depending on the needs of the underlying conventional method
(see [LKA10] for details). A major drawback is that their approach requires the vector-
ized variance-covariance structure Σ = Var(vecX). This leads to high computational costs
while demanding more observations to provide a reasonable estimate of Σ. We concentrate
on later methods that circumvent this drawback, described next.

2.4.4 Longitudinal Sliced Inverse Regression (LSIR)

Aimed specifically at longitudinal data, Longitudinal Sliced Inverse Regression (LSIR)
[PFB12] reduces matrix-valued predictors X given a univariate response Y . The matrix
structure comes from arranging multi-variate features, measured at different time points,
in a matrix structure. One axis of the matrix indexes features, the other time points.

2Identified, in our notation, Rpr ⊗ . . . ⊗ Rp1 with Rp for p =
Πr

k=1 pk and setting X = vecX . We will
continue with similar identifications, if the meaning is clear, without any further mention.
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2.4 SDR methods for Matrix- or Tensor-Valued Predictors

We drop the specific interpretation of the data as longitudinal and simply consider matrix-
valued predictors X ∈ Rp1×p2 . This allows to extend the method to arbitrary r-mode tensor
X , in a straightforward manner.

[PFB12] requires the linearity Condition 1. Assuming additionally a Kronecker structure
of B = B2 ⊗ B1 and Var(vecX) = Σ = Σ2 ⊗ Σ1, they show that the SIR subspace has
also a Kronecker structure. In other words, under those assumptions, SSIR = SE[Y |X] =
SY |X⊗ ⊆ SY |X .

The sample level LSIR estimate for n i.i.d. observations (Yi,Xi) where Yi is univariate
and Xi are matrix valued of dimension p1 × p2 is as follows. The first step is to perform a
mode-wise standardization. This requires computing the mode-wise covariance estimates

,Σ1 =
1

np2

n∑
i=1

(Xi − ,µ)(Xi − ,µ)T , ,Σ2 =
1

np1

n∑
i=1

(Xi − ,µ)T (Xi − ,µ)
where ,µ = n−1

∑n
i=1Xi is the sample mean of the Xi’s. With those we standardize the

observations as ,Zi = ,Σ−1/2
1 (Xi − ,µ),Σ−1/2

2 .

As in SIR, the responses are discretized by slicing (see Section 2.3.1). Let Ỹi = j if Yi is
in the j’th of j = 1, . . . , s slices and denote with nj the number of observations in the j’th
slice. For every slice we compute its (within slice) mean

,µj =
1

nj

n∑
i=1
Ỹi=j

,Zi

used to compute the (in-between slices) mode-wise covariances

,Ω1 =
1

sp2

s∑
j=1

,µj ,µT
j ,

,Ω2 =
1

sp1

s∑
j=1

,µT
j ,µj .

Letting ,U1, ,U2 denote the p1 × q1, p2 × q2 dimensional matrices consisting of the first q1,
q2 eigenvectors of ,Ω1, ,Ω2, respectively. It remains to reverse the standardization to get the
LSIR estimate ,B = ,B2 ⊗ ,B1 = ,Σ−1/2

2
,U2 ⊗ ,Σ−1/2

1
,U1

for span(B) ⊆ SY |X⊗ .
Generalizing this procedure to r-mode tensors X is straightforward. One only needs to

matricize appropriately and use multi-linear instead of bilinear operations. Letting p =Πr
k=1 pk, the mode-wise covariances ,Σk for k = 1, . . . , r have the form

,Σk =
pk
np

n∑
i=1

(Xi − ,µ)(k)(Xi − ,µ)T(k).
The bilinear standardization is replaced by its multi-linear analog

,Zi = (Xi − ,µ) r×
k=1

,Σ−1/2
k
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which are used to compute the (within slice) means ,µj , for j = 1, . . . , s, computed as in the
matrix case with the difference they are now r-tensors instead of matrices. The (in-between
slice) mode-wise covariances are given by

,Ωk =
pk
sp

s∑
j=1

(,µj)(k)(,µj)
T
(k)

Suppose the pk × qk matrices ,Uk consist of the first qk eigenvectors of ,Ωk, for every mode
k = 1, . . . , r. Then, the generalized LSIR estimate is

,B =

1°
k=r

,Σ−1/2
k

,Uk

for estimating span(B) ⊆ SY |X⊗ .

2.4.5 Tensor Sliced Inverse Regression (TSIR)

Another variation of SIR, adapted specifically for r-mode tensor data, is Tensor Sliced
Inverse Regression (TSIR) from [DC15]. It requires a weaker version of the linearity Con-
dition 1. For SY |X⊗ = span(Br) ⊗ . . . ⊗ span(B1) with Bk ∈ Rpk×qk where qk ≤ pk, the
assumption is that E[X | X ×k Bk] is a linear function of X ×k Bk for all k = 1, . . . , r.
Under this assumption, they show that

E[X | Y ] = E[X | Y ]

r×
k=1

PBk
(Σk)

T (2.21)

where Σk = E[X(k)X T
(k)] are the k’th-mode variance-covariance matrices. Letting Γk be a

basis of span(ΣkBk), for k = 1, . . . , r, we can reformulate (2.21) as

E[X | Y ] = E[X | Y ]

r×
k=1

PΓk

with SY |X⊗ =
°1

k=r span(Σ
−1
k Γk). Note that PΓk

is symmetric which makes transposing
unnecessary. Based on this, TSIR estimates the central dimension-folding subspace SY |X⊗

by minimizing ||||||E[X | Y ]− E[X | Y ]

r×
k=1

PΓk

||||||2
F
.

Let (Xi, Yi) be an i.i.d. sample of n realizations of (X , Y ) for X being p1×. . .×pr dimensional
and Y univariate. The suggested procedure in [DC15] for TSIR proceeds as follows.

Split the range of Y into s disjoint and contiguous slices Sj (Definition 6), and initialize,Γj for j = 1, . . . , r (for example, using the LSIR estimates). Next, compute the within slice
means ,µj =

1

nj

∑
i∈Sj

Xi
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where nj is the j’th slice size, and perform cyclic updates of ,Γk for k = 1, . . . , r by setting
the columns of ,Γk to the qk leading eigenvectors of

,Ωk =
1

n

s∑
j=1

nj(,µj)(k)

(,µj

r×
l=1:l ̸=k

P.Γl

)T

(k)

until the objective function

1

n

s∑
j=1

nj

||||||,µj − ,µj

r×
k=1

P.Γk

||||||2
F

converges. The TSIR estimate is then given by span( ,B) =
°1

k=r span(
,Ω−1
k

,Γk) where,Ω−1
k = n−1

∑n
i=1(Xi)(k)(Xi)

T
(k).

An interesting follow-up is given in a later section [DC15, Sec. 3.2] of the same paper.
Based on the fact that SIR estimate is the MLE for the central subspace if vecX | Y
is multivariate normal, a slightly different method, TSIR-K, is proposed. The K stands
for Kronecker for the additional assumption of a Kronecker structure of the vectorized
covariance. Meaning, Cov(vecX) =

°1
k=r Σk is assumed in addition to the weakened

linearity condition. Under this additional assumption, TSIR-K works by first standardizing
the observations as ,Zi = (Xi − ,µ) r×

k=1

,Σ−1/2
k

where ,Σk =
1

n

n∑
i=1

(Xi − ,µ)(Xi − ,µ)T
are (unscaled, scaling is of no concern for this to work) estimates of Σk, for k = 1, . . . , r.
Then, apply TSIR to the standardized data ,Zi to get an estimate ,SY |Z⊗ . The subspace

estimate for SY |X⊗ then uses (2.20) to get the estimate ,SY |X⊗ =
(°r

k=1
,Σ−1/2
k

) ,SY |Z⊗ .
Listing this as a separate method has two reasons.
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3 Fusing SDR with Neural Networks

In this chapter, we consider the forward regression model (2.7),

Y = g(BTX) + ϵ,

where Y can be a real valued multivariate or categorical random variable, X is a p-variate
random vector, B ∈ Rp×q of rank q < p, ϵ ∈ R is a random variable with E[ϵ | X] = 0 and
Var(ϵ) < ∞, and g is an unknown continuously differentiable non-constant function. The
projection BTX is a linear sufficient dimension reduction since E[Y | X] = E[Y | BTX].
Our goal is to estimate the linear projection.

We present Neural Network SDR (NNSDR; [KFB22]) and its sibling method Neural Net-
work OPG (NNOPG; [KFB22]). The key idea behind both methods is to model the de-
pendence of Y on X with a neural network (NN). This solves a particular drawback of
forward regression methods like MAVE, OPG or CVE which are computationally demand-
ing, rendering them infeasible for big data regression or classification problems. Specifically,
if the number of features p and the sample size n increase, which is a setting encountered
increasingly frequently and where neural networks come into play. The latter can handle
gigantic amounts of data while proven to be well equipped to perform almost any predictive
regression or classification task. Moreover, this leads to a straightforward way to predict
the response at the same time via NNs, something missing from most SDR methods where
dimension reduction is separate from model fitting.

In NNOPG, we use the relation (2.15), which states that ∇xg(B
Tx) = BT∇zg(z)|z=BTx.

The gradients are based on the neural network fitting the conditional expected value x ,→
E[Y | X = x] = g(BTX). The network itself is oblivious of any reduction, it is only trained
to be as predictive as possible. On the other hand, NNSDR explicitly models the reduction
into the neural network by incorporating the reduction as a part of the network itself. This
is realized by fitting x ,→ E[Y | BTX = BTx] = g(BTx) where the reduction B is a part
of the network.

While the general approach is applicable to a wide range of different neural network archi-
tectures, NNOPG and NNSDR are built upon the simplest of neural networks, introduced
next.

3.1 Multi Layer Perceptron (MLP)

Historically, neural networks draw inspiration from the inner workings of the human brain.
Analogous to the brain’s neural network, (artificial) neural networks consist of intercon-
nected nodes (neurons), linked by weighted connections (synapses). In the brain, the
synapses serve as wires for electrical or chemical signals, each possessing a specific strength.
The different strengths of synapses controll the electrical flow between neurons. When a neu-
ron, connected to multiple others, receives electrical signals through its inbound synapses,
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3 Fusing SDR with Neural Networks

it does nothing untill an inbound signal thresholds is reached. Then, it fires, which sends
a signal into its outbound synapses. This in turn propagates signals though the brain,
controlled by neurons acting as signal gates and the synapses regulate the signal through
their strength.

Given this oversimplified view of the human brain, a Multi Layer Perceptron (MLP;
[Gur97; MP43; GBC16; JWH+21]) is the simplest of modern neural networks. It derives
its name from the Rosenblatt perceptron [Ros58], a variant of the McCulloch-Pitts neuron
[MP43], which is a linear binary classifier modeling a single neuron. For a modern neural
network, the binary output is replaced by a univariate real-valued function called an ac-
tivation function. Putting multiple perceptrons in parallel forms a single layer. Chaining
multiple layers leads to an MLP, a “network of neurons”.

Definition 9 (Layer, MLP and Activation Function). A Multi Layer Perceptron with L
layers is a function f : Rn0 → RnL with the structure

f(x;Θ) = (fL ◦ fL−1 ◦ . . . ◦ f1)(x)
where Θ = (W1, b1, . . . ,WL, bL) are the network parameters. Each layer fl for l = 1, . . . , L
is of the form

fl(x;Wl, bl) = ϕl(Wlx+ bl)

which is an affine linear transformation with weights Wl ∈ Rnl×nl−1 , bias bl ∈ Rnl and a
component-wise applied activation function ϕl : R → R which is non-constant, continuous
and almost everywhere differentiable.

The input x is the input layer, that can be seen as a placeholder for the inputs features
while the last layer fL is denoted output layer. All layers fl inbetween, that is for l =
1, . . . , L−1, are known as hidden layers. It is also common in the machine learning literature
(even though not consistently applied) to count the number of hidden layers. This means
that a 1 (hidden) layer MLP has two layers f = f1 ◦ f2 in reference to Definition 9. See
Figure 3.1 for an example of a 2 layer MLP with n0 = 4 input features x ∈ R4, n1 = 5
neurons in the first hidden layer, n2 = 4 neurons in the second hidden layer and univariate
output nL = n3 = 1.

To specify an MLP, one must choose a number of hyperparameters. Those are the number
of layers L, with the number of neurons nl in each hidden layer as well as the activation
function ϕl, of each layer. Usually, the only non-free hyperparameters are the input and
output dimensions n0 and nL and the output activation function ϕL, as they are inherent to
the problem on hand. A common choise for the activation function is the Rectified Linear
Unit defined as

ReLU(x) = max(0, x)

where it is common to use the ReLU in all hidden layers. From now on we opt for ReLU
as the hidden activation function throughout the remainder of this chapter. Meaning ϕ =
ϕl = ReLU for all hidden layers l = 1, . . . , L − 1. It has proven itself as the number one
choise due to its simplicity while performing extremely well in almost all tasks. Alternative
widely-used options involve sigmoid functions such as the hyperbolic tangent (tanh).

In Definition 9 the output can be multivariate, but for the sake of simplicity we focus on
univariate output only, even though the methodology is applicable to multi-variate outputs.
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x1
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ŷ

Input 1sd Hidden 2nd Hidden Output

f1 f2 f3
x ŷ
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f = f1 ◦ f2 ◦ f3

Figure 3.1: Example Architecture of a 2 layer MLP (that is 2 hidden and 1 output layer).

As justification for the following approach we refer to a result from [Hor91] known as the
Universal Approximator Theorem which established that 1-layer MLPs can approximate
continuously differentiable functions on a compact set arbitrarily well.

Theorem 3 ([Hor91, Thm 3]). Let MLP∞(ϕ) be the set of all one layer MLPs with arbitrar-
ily many neurons in the first layer and an activation function ϕ which is non-constant and
bounded, then MLP∞(ϕ) is uniformly m dense in Cm(Rp) on compact sets, where Cm(Rp)
is the space of all m-times differentiable functions on Rp.

For m = 1, applied to the forward regression model (2.7) with x ,→ g(BTx) ∈ C1(Rp),
we get that for every µ > 0 there exists an f ∈ MLP∞(ϕ) such that

sup
x∈K

(|g(BTx)− fMLP2(x;Θ)|+ ∥∇xg(B
Tx)−∇xfMLP2(x;Θ)∥) ≤ ν.

where K ⊂ Rp is compact. This means that the conditional expectation E(Y | X = x) =
g(BTx) as well as its gradients can be approximated arbitrarily well by an MLP as long as
we make it big enough.

Remark 9. We stated before that our default activation function would be the rectified
linear unit ReLU. The ReLU is not bounded and as such Theorem 3 is not applicable.
We still choose the ReLU function due to experience showing no difference in performance.
Moreover, [Hor91, Thm 1] states that MLP∞(ϕ) is uniformly dense in Lk(µ) on every
compact set for any finite measure µ in Rp and requires only bounded activation function
ϕ. This is applicable to ReLU by observing that ReLU can be used to construct a bounded
activation function as ϕ(x) = ReLU(x − 1) − 2ReLU(x) + ReLU(x + 1). This is a linear
combination which can be mimicked by a ReLU MLP by combining three neurons to mimic
a single neuron with ϕ as activation function. As such MLPs with ϕ as activation function
are a subset of MLP∞(ϕ) ⊂ MLP∞(ReLU), which makes it dense in Lk(µ).
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3 Fusing SDR with Neural Networks

3.1.1 A simple Neural Network Framework in R

Here we implement a simple neural network framework in base R from scatch. Using this
simple framework we implement NNOPG (see Section 3.2) and NNSDR (see Section 3.3)
pinpointing the exact workings of the estimation procedure.

Remark 10. The following implementation is intended for deductive and research purposes.
It allows for a comprehensive understanding and manipulation of every aspect. The imple-
mentations used in Section 3.5.2 is written in TensorFlow [MAP+15] using the R package
tensorflow [AT20]. While the TensorFlow framework is user-friendly and very powerful,
some minor details may become complex when facing specific research questions or new
concepts not yet addressed by the frameworks API. This can result in patchwork code, ob-
scuring the underlying concepts and challenging to understand. Something we encountered
during the development of NNSDR.

Before we start implementing the framework we provide a demonstraton of the intended
usage of our framework. This demonstration serves as a guide for the implementation
process and motivates our design decisions.

1 # Generate some toy data
2 sample.size <- 101
3 X <- matrix(rnorm(4 * sample.size), 4)
4 y <- sin(X[1, ]) + rnorm(sample.size, 0, 0.1)
5

6 # Construct the neural network f(x) = f3(f2(f1(x))) from Figure 3.1
7 network <- NN(
8 Layer(c(4, 6), activation = relu), # f1 : x .→ ReLU(W1x+ b1) = h1

9 Layer(c(6, 4), activation = relu), # f2 : h1 .→ ReLU(W2h1 + b2) = h2

10 Layer(c(4, 1)) # f3 : h2 .→ W3h2 + b3 = .y
11 )
12

13 # Train the network using RMSprop
14 history <- rmsprop(network, X, y, loss = mse)
15

16 # Plot the training loss over epochs
17 plot(history, main = "history", xlab = "epochs", ylab = "loss")
18

19 # Predict response
20 y_hat <- network(X)
21

22 # Compute gradients ∇xf(x) evaluated at all samples
23 G <- grad(network)(X)

We start with the implementation of a single layer as in Definition 9, that is a function
x ,→ ϕ(Wx+b), which is the result of the constructor Layer. For convenience we only want
to provide the input and output dimensions as well as the activation function and let the
constructor initialize the weights for us. But we also want to be able to set the parameters
of a layer if needed. In foresight we add two additional parameters, dropout and constraint.
The layer itself simply remembers their values which are used in the routines for training
the neural network.

1 Layer <- function(weights, bias = 0, activation = identity,
2 dropout = 0, constraint = NULL
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3.1 Multi Layer Perceptron (MLP)

3 ) {
4 if (!is.matrix(weights)) {
5 # Xavier Uniform Initialization
6 bound <- sqrt(6 / sum(weights))
7 weights <- matrix(runif(prod(weights), -bound, bound), weights [2])
8 }
9 # ensures to remembered

10 force(bias)
11 force(activation)
12 force(dropout)
13 force(constraint)
14 # return function x .→ ϕ(Wx+ b)
15 function(x) activation(weights %*% x + bias)
16 }

Next we define several activation functions commonly used in neural networks and their
derivatives. We assigns these derivatives as attributes to their respective functions, allowing
to compute gradients of the network using the backpropagation algorithm discussed later.

The relu function implements the ReLU activation function, while logit implements the
logistic function. Other built-in functions such as the identity, exponential function, and
hyperbolic tangent are also given derivatives.

1 relu <- function(x) pmax(x, 0)
2 attr(relu, "deriv") <- function(x) 0 < x
3

4 logit <- function(x) 1 / (1 + exp(-x))
5 attr(logit, "deriv") <- function(x) {
6 ex <- exp(x)
7 ex / (1 + ex)^2
8 }
9

10 # Add derivatives to builtins
11 attr(identity, "deriv") <- function(x) 1 + (0 * x)
12 attr(exp, "deriv") <- exp
13 attr(tanh, "deriv") <- function(x) cosh(x)^(-2)
14 attr(abs, "deriv") <- function(x) 1 - 2 * (x < 0)

With the derivatives provided by the functions themself, we have a convenient way of
differentiation as

1 grad <- function(fun) attr(fun, "deriv")

which we can use for any activation function ϕ as grad(activation) to get its gradient ∇ϕ.
Evaluation of the gradient ∇ϕ(x) at x is then grad(activation)(x).

These derivative functions are critical for the backpropagation algorithm. Backpropaga-
tion enables the computation of gradients of a neural network f( . ;θ) with respect to its
input ∇xf(x;θ) or its parameters ∇θf(x;θ). This algorithm is a clever application of the
chain rule. It begins with a forward pass, where the network is evaluated, storing inter-
mediate values. Then, during the subsequent backward pass, the gradient is propagated
backward through the network using the chain rule in conjunction with the intermediate
values stored in the forward pass, effectively computing the desired gradient.

Given layers fl with differentiable activation functions, we can construct an MLP as in
Definition 9. The differentiability of the activation functions enables the computation of
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3 Fusing SDR with Neural Networks

the gradient ∇xf(x;θ) via backpropagation.
By attaching the gradient to the "deriv" attribute of the network, we create a differentiable

network function, say network <-NN(...). This network can be evaluated on input data x by
network(x), and its gradients are obtained using grad(network)(x).

1 NN <- function(...) {
2 layers <- unlist(list(...))
3 # MLP as concatenation of layers
4 network <- function(x) {
5 for (layer in layers) x <- layer(x)
6 x
7 }
8 # Network Derivative using Backprop algorithm
9 attr(network, "deriv") <- function(x) {

10 G <- apply(matrix(x, NROW(x)), 2, function(x_i) {
11 # Forward Pass
12 z <- list() # layer output (befor activation)
13 for (l in seq_along(layers)) {
14 layer <- environment(layers [[l]])
15 z[[l]] <- layer$weights %*% x_i + layer$bias
16 x_i <- layer$activation(z[[l]])
17 }
18 # Backward Pass
19 G_i <- diag(nrow(x_i))
20 for (l in rev(seq_along(layers))) {
21 layer <- environment(layers [[l]])
22 phi.prime <- as.vector(grad(layer$activation)(z[[l]]))
23 G_i <- G_i %*% (phi.prime * layer$weights)
24 }
25 G_i
26 })
27 drop(‘dim <- ‘(G, c(NROW(x), nrow(G) / NROW(x), ncol(G))))
28 }
29

30 network
31 }

At this point we have implemented all the required functionality except for training a
neural network. To develop training routines, we need loss functions that define the training
objective. Similar to activation functions, the loss functions need to be differentiable to
facilitate gradient based optimization. Therefore, we use the same pattern of attaching
the derivatives to the loss itself. The derivative is computed with respect to the second
argument of the bivariate loss function, which, by convention is the predicted response in
contrast to the observed response expected as the first argument.

The code next defines the mean squared error and the binary cross-entropy loss. The
latter can be used for binary classification tasks expecting 0 or 1 class labels as its first ar-
gument and the second argument is in the open (0, 1) interval interpreted as the probability
of being a member of the class with label 1.

1 mse <- function(y, y_hat) mean((y - y_hat)^2)
2 attr(mse, "deriv") <- function(y, y_hat) (2 / length(y)) * (y_hat - y)
3

4 binary.cross.entropy <- function(y, y_hat) {
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3.1 Multi Layer Perceptron (MLP)

5 -(y * log(y_hat) + (1 - y) * log(1 - y_hat))
6 }
7 attr(binary.cross.entropy, "deriv") <- function(y, y_hat) {
8 (1 - y) / (1 - y_hat) - y / y_hat
9 }

The loss L specifies the training objective L(y, f(x;θ)) to be minimized. For gradient
based optimization, we need to compute the gradient ∇θL(y, f(x;θ)). Similar to comput-
ing the gradient ∇xf(x;θ) of a neural network with respect to its input, we implement
the gradient of the objective ∇θL(y, f(x;θ)) with respect to the network parameters via
backpropagation.

The additional parameter, dropout, determines whether dropout should be used for gradi-
ent computation. Dropout, introduced in [SHK+14], is a regularization technique commonly
used in neural networks to prevent overfitting and improve generalization performance.
Dropout randomly “drops out” a subset of neurons from the network, effectively generat-
ing a sparse network. This is equivalent to setting the “dropped” neurons output and the
gradient elements corresponding to the parameters of that neuron to zero. When applied
iteratively, the trained network essentially becomes a moving average over a sequence of
sparser networks. We add this functionality directly into the backpropagation algorithm,
enabling dropout to be easily applied in different optimization algorithms by setting the
dropout flag to TRUE.

1 backprop <- function(network, x, y, loss = mse, training = FALSE) {
2 layers <- environment(network)$layers
3 z <- vector("list", length(layers)) # layer output (befor activation)
4 h <- vector("list", length(layers)) # layer output (after activation)
5 active <- vector("list", length(layers)) # dropout active neurons
6

7 # Forward Pass
8 y_hat <- x <- as.matrix(x)
9 for (l in seq_along(layers)) {

10 layer <- environment(layers [[l]])
11 z[[l]] <- layer$weights %*% y_hat + layer$bias
12 if (training && layer$dropout) {
13 prob <- c(layer$dropout, 1 - layer$dropout)
14 active [[l]] <- sample(0:1, nrow(layer$weights), TRUE, prob)
15 } else {
16 active [[l]] <- 1
17 }
18 y_hat <- h[[l]] <- active [[l]] * layer$activation(z[[l]])
19 }
20

21 # Backward Pass
22 gradients <- vector("list", length(layers))
23 G <- grad(loss)(y, y_hat)
24 for (l in rev(seq_along(layers))) {
25 layer <- environment(layers [[l]])
26 grad.phi.z <- active [[l]] * grad(layer$activation)(z[[l]])
27 h_lm1 <- if (l > 1) h[[l - 1]] else x
28 gradients [[l]] <- list(
29 weights = tcrossprod(G * grad.phi.z, h_lm1) / ncol(x),
30 bias = rowMeans(G * grad.phi.z)
31 )
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32 G <- crossprod(layer$weights, G * grad.phi.z)
33 }
34

35 gradients
36 }

The gradient provided by backprop is a nested list of partial gradients. This approach
has the advantage of avoiding the need to unpack parameter subsets, but it also has the
disadvantage of not allowing direct use of vectorized operations. Therefore, we implement
a recursive version of Map called rMap which provides a multivariate, flexible and recursive
way to apply a function to elements of one or more vectors or lists, with the capability
to handle nested lists and apply the same function to each level of nesting. For example
rMap(‘+‘,list(1,list(2,3)), list(10,list(20,30))) computes list(11,list(22,33)).

1 rMap <- function(fun, ...) {
2 if (is.list(..1)) {
3 Map(rMap, ..., MoreArgs = list(fun = fun))
4 } else {
5 fun(...)
6 }
7 }

Before we proceed with our chosen training routine, we want to perform a single param-
eter update step given a gradient or gradient-like object. Extracting this into a separate
function allows different optimization algorithms to update parameters without needing to
understand the internal details of the network. This simplifies the optimization routines
while making them more general at the same time.

Two additional features are needed. First, we want to ensure that any constraints (e.g.,
semi-orthogonality) imposed on the layer weights are preserved. These constraints are
specified by the second additional parameter, constraint, in the Layer constructor, which
has been ignored until now. Additionally, we use a trick to drop the bias term when
required. This means configuring a layer in the form of x ,→ ϕ(Wx) without the additive
bias term. This works because the internal value of FALSE is equal to 0, effectively configures
the layer to be the function x ,→ ϕ(Wx + 0), while the update routine checks if the bias
term is of logical type and has value FALSE. If this is the case, the update ignores the bias
term.

1 gradient.step <- function(network, gradient, step.size = 1e-2) {
2 layers <- environment(network)$layers
3 for (l in seq_along(layers)) {
4 layer <- environment(layers [[l]])
5 layer$weights <- layer$weights - step.size * gradient [[l]]$weights
6 if (!identical(layer$bias, FALSE)) {
7 layer$bias <- layer$bias - step.size * gradient [[l]]$bias
8 }
9 if (is.function(layer$constraint)) {

10 layer$weights <- layer$constraint(layer$weights)
11 }
12 }
13 }

The final step is to implement RMSprop, which stands for root mean squared propagation
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3.1 Multi Layer Perceptron (MLP)

[Hin12]. It is a variation of stochastic gradient descent, a gradient based iterative opti-
mization routine with gradients computed from mini-batches. Building on other similar
methods, RMSprop intends to accelerate learning while eliminating the need to manually
tune the step size for parameter updates. This is accomplished by an adaptive learning rate
applied to every parameter. The basic idea is to keep track of the moving average of the
element wise squared gradient, and then use the square root of the moving average to scale
the gradient for every parameter, essentially providing a per parameter adaptive learning
rate. Provided the current values of the element wise squared gradients G2 and a gradient
of the loss G = ∇θL(yb, f(Xb)), where Xb, yb is a random subset of the full data set (a
mini-batch), the update rule for the parameters θ of the network has the form (see [Hin12;
GBC16] for more details.)

G2 ← νG2 + (1− ν)G⊙G,

θ ← θ − λ√
G2 + ϵ

⊙G.

The parameters ν = 0.9, λ = 10−2, and ϵ = 10−8 are fixed, while the initial value of
G2 is set to 0. The symbol ⊙ denotes the Hadamard product, representing element wise
multiplication. Similarly, element wise operations are applied for division and square root
calculations.

1 rmsprop <- function(network, x, y, loss = mse,
2 epochs = 100, batch.size = 32
3 ) {
4 if (!is.matrix(y)) y <- t(y)
5

6 # initialize squared gradient accumulator
7 G2 <- rep(list(weights = 0, bias = 0),
8 length(environment(network)$layers))
9

10 # main training loop
11 sapply(seq_len(epochs), function(.) {
12 # generate random batches
13 batches <- matrix(sample.int(ncol(x),
14 (ncol(x) %/% batch.size) * batch.size
15 ), nrow = batch.size)
16

17 # iterate (almost) entire data set in batches
18 for (batch in seq_len(ncol(batches))) {
19 # sub-set the batch from the data set
20 x_batch <- x[, batches[, batch], drop = FALSE]
21 y_batch <- y[, batches[, batch], drop = FALSE]
22 # compute the gradient with current batch
23 G <- backprop(network, x_batch, y_batch, loss, TRUE)
24 G2 <<- rMap(function(g, g2) 0.9 * g2 + 0.1 * g^2, G, G2)
25 step <- rMap(function(g, g2) g / (sqrt(g2) + 1e-8), G, G2)
26 gradient.step(network, step)
27 }
28

29 loss(y, network(x))
30 })
31 }
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With all of that in place we are done with our framework providing all the needed func-
tionality to provide a simple and clean implementation of the following introduced methods
NNOPG and NNSDR.

3.2 Neural Network OPG (NNOPG)

The Neural Network Outer Product of Gradients (NNOPG) method, introduced in [KFB22],
is the first phase of the NNSDR method (see Section 3.3). Yet, it is a self standing method
for the estimation of the central mean subspace SE[Y |X] based on Theorem 2. It uses the
same objective as OPG, but instead of local linear regression it uses a neural network to
model the conditional distribution E[Y | BTX] under the forward regression model (2.7).
Similar to local linear regression in OPG, which provides gradient estimates at the sample
points, any neural network framework (e.g., [MAP+15]) provides gradients of the network
approximating any function at the requested input, in our case the sample points.

Assume the mean forward model Y = g(BTX)+ϵ as in (2.7) and let fOPG( . ;Θ) : Rp → R
be an MLP modeling the conditional mean function x ,→ E[Y | X = x]. Moreover, let
L : R×R ,→ R+ be a differentiable loss function. Assuming (Y,X) to be jointly distributed
for arbitrary Y and multivariate X ∈ Rp, we let

TOPG(Θ) = EL(Y, fOPG(X;Θ))

be the objective for the NNOPG estimator on the population level. In this setup the MLP
fOPG is parameterized by the weights and biases collected in Θ as in Definition 9.

The selection of the loss function L is guided by the structure of model (2.7) and the
conditional distribution of Y given X. If, for example, the error term in (2.7) is normally
distributed, the squared error loss function agrees with the loss induced by the likelihood
function as a measure of discordance between observed data and the assumed distribution.
For situations where Y follows a Bernoulli or multinomial distribution, the cross entropy
loss function is appropriate. Conversely, if Y is Poisson distributed, the deviance serves
as the natural choice for the loss function. Generally, the loss function can be thought of
as the likelihood in the sense that the latter captures the information in the data about a
parameter of interest. This also agrees with the loss function employed in generalized linear
models for conditional distributions within the exponential family.

For estimation of span(B) = SE[Y |X], we minimize the objective function TOPG, that is

ΘOPG = argmin
Θ

TOPG(Θ). (3.1)

The parameters ΘOPG then parameterize the neural network fOPG such that the conditonal
mean E[Y | X = x] ≈ fOPG(x; ,ΘOPG). Then, let

ΣOPG = E[∇xfOPG(X, ,ΘOPG)(∇xfOPG(X, ,ΘOPG))
T ] (3.2)

which is an approximation to Σ∇ in Theorem 2 satisfying span(Σ∇) = SE[Y |X]. We obtain
the NNOPG subspace SNNOPG = span(ΣOPG).
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3.3 Neural Network SDR (NNSDR)

Based again on the mean forward regression model (2.7), the Neural Network Sufficient Di-
mension Reduction (NNSDR) method is introduced. In contrast to NNOPG that estimates
E(Y | X), NNSDR approximates the conditional mean E[Y | BTx] = g(BTx) where we
incorporate the reduction matrix B directly into the neural network model. The idea is
to recreate the function x ,→ g(BTx) in a literal sense by modeling the reduction BTx
as the first layer of an MLP with a linear activation function. This also resolves a prob-
lem of NNOPG, which suffers from the curse of dimensionality. The estimation accuracy of
NNOPG is adversely affected by growing input dimension as learning a non-linear functions
and their gradients with a high dimensional input space is difficult.

Let fNN be a MLP by Definition 9 with L+ 1 layers of the form

fNN(x;ΘNN) = (f0 ◦ f1 ◦ . . . fL)(x)

with weight and bias parameters collected in ΘNN. The first layer (number 0) has the
simplified form

f0(x;B) = BTx

which corresponds to a layer with weights BT , bias b = 0 and a linear activation function
ϕ0(x) = x. The remaining layers for l = 1, . . . , L have the usual form

fl(x;Wl, bl) = ϕl(Wlx+ bl)

with weights Wl, bias bl and an activation function ϕl. A visualization is provided in
Figure 3.2.

x1

x2

x3

x4

ŷ

Input Reduction 1sd Hidden 2nd Hidden Output

x BTx ŷ
f0 f1 f2 f3

x ŷ
fNN

Figure 3.2: Illustration of the NNSDR neural network fNN architecture.
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Remark 11. Through the linear activation function ϕ0(x) = x in the first layer, the first
two layers collapse into a single affine transformation followed by the activation function of
the second hidden layer. Because the input x and the output of the second hidden layer
f1(f0(x)) are both in Rp, but the in-between first hidden layer f0(x) is of lower dimension
q, this is equivalent to a reduced rank constraint on the weights of the collapsed first two
layers.

The population training objective is then

TNN(Θ) = EL(Y, fNN(X;Θ)) (3.3)

where Θ are collective parameters of the NNSDR neural network fNN which includes the
reduction matrix B. With the reduction matrix B incorporated in the network parameters
Θ we get the NNSDR subspace as SNN = span(BNN) where BNN is extracted from

ΘNN = argmin
Θ

TNN(Θ).

Remark 12. The reduction in the first layer is conceptually similar to autoencoders (e.g.
[Kra91; KW19]) with the defining difference that autoencoders are analogous to non-linear
PCA and independent of the response.

3.4 Dimension Estimation

Up to this point, we have assumed to know the true reduction dimension q. However,
in practice, this dimension remains unknown. This section describes the ladle estimator,
proposed by [LL16], as it fits well into our method for deriving an estimate ,q for the reduction
dimension.

The ladle estimator relies on a sample-based approximation ,M , of a population matrix
M with dimensions p × p, to estimate the rank of M . It integrates information from the
eigenvalues and the variability of the eigenvector directions of ,M to estimate q. The key
idea is that the eigenvalues ,λj of ,M tend towards zero for j > q, while the directions of the
corresponding eigenvectors experience significant variability.

Let ,Bk = (,b1, . . . ,,bk) constitute the first k eigenvectors of ,M . To assess the directional
variability in the eigenvectors of ,M , we employ bootstrapping on ,M to obtain N additional
estimates, denoted as M∗

i for i = 1, . . . , N , and B∗
k,i represents the first k eigenvectors of

M∗
k,i. Subsequently, we define vN (k) as

vN (k) =
1

N

N∑
i=1

(
1−

|||det ,BT
k B

∗
k,i

|||)
as a metric for the directional variability, where k = 1, . . . , p − 1. For k = 0, vN (0) is set
to 0. The range of vN is [0, 1], with vN being 0 when all B∗

k,i and ,Bk span the same space,
and vN (k) = 1 when the column spaces of B∗

k,i are orthogonal to ,Bk.
The final dimension estimate is then

,q = argmin
k=0,...,p−1

( ∑k
i=0 vN (k)

1 +
∑p−1

i=0 vN (i)
+

,λk+1

1 +
∑p

i=1
,λi

)
.
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In our context, ,ΣOPG in (3.2) corresponds to ,M and serves as an estimate of Σ∇ in (2)
corresponding to M . The bootstrap estimates involve drawing N bootstrap samples and
re-computing an estimate of Σ∇. To recompute we bootstrap the given data sample but
do not refit the neural network. That means that the parameters ,ΘOPG are estimated only
once. This way we get all N Σ⋆

OPG,i for very cheap (i = 1, ..., N), compared to training costs.
The k first eigenvectors of Σ⋆

OPG,i are the bootstrapped estimates B∗
k,i used to compute vN

at every k.
Typically, considering all k = 0, ..., p−1 is neither necessary nor feasible. As recommended

in [LL16], it is often sufficient to set an upper bound, e.g., q ≤ ⌈p/ log(p)⌉, which we have
adopted as a default bound.

3.5 Algorithm

In this section we provide the technical details and needed tricks to solve the optimiza-
tion problems (3.1) and (3.3) satisfactory. The methods are implemented in R using the
R-package tensorflow [AT20] which provides an interface to the TensorFlow [MAP+15]
machine learning framework providing almost all the basic algorithms and concepts needed
for our approach.

For training neural networks we opted for the Root Mean Squared Propagation (RMSprop)
[Hin12] algorithm, which is a variation of Stochastic Gradient Descent (SDG) [Bot98]. It
provides adaptive learning rates for individual parameters during the stochastic optimiza-
tion. This avoids the problem of a fixed learning rate used in SGD, particularly useful with
parameters operating on different scales while at the same time avoids the need to search
for a good learning rate. It is even advised for almost all applications to keep the default
hyperparameters of the algorithm.

To overcome the problem of small sample sizes, a setting where neural networks usually
struggle, we employ dropout [SHK+14] during training. Dropout is a regularization tech-
nique commonly used in neural networks to prevent overfitting and improve generalization
performance. Dropout randomly “drops out” a subset of neurons in each layer, that is to
set the output of “dropped” neurons to zero. This effectively creating a sparser network.
Applied independently to each training sample this leads to some sort of moving average
over the sequence of sparser networks. The result is a more robust network with better gen-
eralization performance. It is simple, yet powerful and widely used in practice to prevent
overfitting, a crucial tool in our setting. We experimented with different default values and
arrived to the conclusion that a dropout rate of 40% is a good default for “small” sample
sizes.1

Another specific issue requires attention, specifically concerning the identifiability of the
matrix B as a basis for the mean subspace SE[Y |X] in conjunction with ensuring training
stability. We can resolve the problem, in a manner similar to other methods, by constraining
the matrix B to the Stiefel manifold (2.8). The constraint enforcement involves a straight-
forward approach: after each parameter update, we project the parameters associated with
the matrix B back onto the Stiefel manifold. While a QR decomposition could serve this

1The term “small” is ambiguous and depends strongly on the problem on hand. A rough rule of thumb is
that everything with a sample size up to 1,000 is definitely small.
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purpose, it has the drawback of causing significant changes in the parameters, leading to
catastrophic instabilities during network training. This instability arises because all param-
eters in the network are interconnected. To overcome this challenge, we employ a stable
projection technique, one that minimally alters the parameters themselves. This is achieved
by utilizing a polar decomposition [Con97, p. 242] to enforce the constraint.

Given a sample (Yi,Xi) of i.i.d. samples drawn from the joint distribution of (Y,X). The
model specific configurations, such as the choice of the loss function L, the number of layers
L, the number of neurons in each layer nl for l = 1, . . . , L, and the activation function ϕl

in each layer, are additional hyperparameters needed by the algorithm. Only one network
needs to be specified, as the NNSDR network is constructed from the NNOPG network.
Additionally, the batch size and the number of epochs for training must be defined. A
reasonable default choice for the batch size is 32, and the number of epochs may be set to
200. The selection of 200 epochs is somewhat arbitrary, driven primarily by the observation
that almost all experiments converge within this range. It is crucial to note that due to the
high dropout rate, training can be extended as overfitting is prevented through dropout.

The NNSDR estimation procedure is a two stage process. The first stage is the NNOPG
estimator providing initial value used by the second stage, which computes the NNSDR
estimate.

Stage 1 (NNOPG) : Randomly initialize the parameter vector ΘOPG for weights as in
Definition 9 for the MLP fOPG. Optimize the sample version of the objective function
(3.1) given by

TOPG(Θ) =
1

n

n∑
i=1

L(Yi, fOPG(Xi;ΘOPG))

using RMSprop (or similar optimization methods) resulting in parameters,ΘOPG = (,W1,,b1, . . . , ,WL,,bL).
Estimte the OPG matrix ,ΣOPG from (3.2) as

,ΣOPG =
1

n

n∑
i=1

∇xfOPG(Xi, ,ΘOPG)(∇xfOPG(Xi, ,ΘOPG))
T . (3.4)

If the true mean subspace dimension q is unknown, estimate q as the estimated rank
of Σ∇ using the sample version (3.4) via the ladle estimator from Section 3.4 (keep
the parameters ,ΘOPG fixed).

Compute the first q eigenvectors of ,ΣOPG forming the columns of ,BOPG ∈ Rp×q.

Stage 2 (NNSDR) : Construct a new neural network of the form in Section 3.3 where all
layers with index l = 2, . . . , L are identical to NNOPG network. Ensure that ,ΣOPG

is semi-orthogonal and initialize the parameter vector ΘNN as

( ,BT
OPG,0,

,W1
,BOPG,,b1, . . . , ,WL,,bL).

Minimize the sample version

TNN(Θ) =
1

n

n∑
i=1

L(Yi, fNN(Xi;Θ))
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3.5 Algorithm

of the objective (3.3) while ensuring that the first layer weights are semi-orthogonal
and the bias is zero. After optimizing, the transpose of the first layer weights contains
the estimate ,BNN.

The NNOPG estimate requires only the first stage, whereas the NNSDR estimate relies
crucially on the two-stage approach. If the second stage is initialized randomly, the prob-
ability of failure is very high. The optimization of TNN is extremely challenging without
well-chosen initial values. This is rooted in the fact that for big p and small mean sub-
space dimension q a random initialization of the parameters associated with B ∈ Rp×q

often results in them being nearly orthogonal to the true mean subspace SE[Y |X]. Conse-
quently, the first layer loses all information about the response, leading to a breakdown in
the optimization. This is the reason for the development of NNOPG in the first place.

Under the squared error loss L(y, ,y) = (y− ,y)2 for a univariate response Y , the NNOPG
objective in (3.1) is identical to the OPG objective (see Section 2.3.6). Under certain
regularity conditions [XTL+02], the OPG objective is known to be consistent for estimating
span(Σ∇) = SE[Y |X], as stated in Theorem 2. A similar scenario, under the square error
loss for univariate Y , arises for the NNSDR objective in (3.1), which is identical to the
MAVE objective (see Section 2.3.5). As demonstrated in Theorem 1, the MAVE estimate
is consistent, and this consistency extends to the NNSDR estimate as well if fNN( . ; ,ΘNN)
is a consistent estimator of g in (2.7).

However, it is important to note that both cases hinge on establishing the functional
approximation consistency of neural networks, a challenging problem that, to the best of
our knowledge, remains an open question.

Remark 13. An appealing characteristic of NNSDR, unlike MAVE, is its inherent appli-
cability for online training when new data become available, thanks to the SDG based
optimization algorithm. More precisely, the method seamlessly adjusts the parameters of
NNSDR through additional gradient steps given new data.

3.5.1 Implementation in R

Using our framework from Section 3.1.1 an implementation of NNOPG is.
1 nnopg <- function(X, y, dims, network = NULL,
2 loss = mse, epochs = 200, batch.size = 32
3 ) {
4 if (is.null(network)) {
5 # Use default network architecture
6 network <- NN(
7 Layer(c(nrow(X), 512), activation = relu, dropout = 0.4),
8 Layer(c(512, 1), activation = identity)
9 )

10 }
11 # train the network
12 rmsprop(network, X, y, loss, epochs, batch.size)
13 # Outer Product of Gradients (3.2)
14 Sigma <- var(t(grad(network)(X)))
15 # Reduction subspace basis as dims first eigenvectors
16 eigen(Sigma)$vectors[, seq_len(dims), drop = FALSE]
17 }
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To ensure the semi-orthogonality of the first layers weights, corresponding to the esti-
mated reduction, we need to implement the polar decomposition based contraint.

1 semi.orthogonal <- function(A) with(La.svd(A), u %*% vt)

With NNOPG as first stage of NNSDR we have;

1 nnsdr <- function(X, y, dims, opg.net = NULL,
2 loss = mse, epochs = 200, batch.size = 32
3 ) {
4 if (is.null(opg.net)) {
5 # Use default OPG network architecture
6 opg.net <- NN(
7 Layer(c(nrow(X), 512), activation = relu, dropout = 0.4),
8 Layer(c(512, 1), activation = identity)
9 )

10 }
11 # Invoke NNOPG for an initial estimate
12 B.opg <- nnopg(X, y, dims, opg.net, loss, epochs, batch.size)
13 # Get first OPG network layer
14 f_1 <- environment(environment(opg.net)$layers [[1]])
15 new.layers <- c(
16 # f0 : x .→ BT

OPGx
17 Layer(t(B.opg), bias = FALSE, constraint = polar),
18 # f1 : x .→ ϕ1((W1BOPG)x+ b1)
19 Layer(
20 weights = f_1$weights %*% B.opg,
21 bias = f_1$bias,
22 activation = f_1$activation,
23 dropout = f_1$dropout),
24 # remaining OPG layers f2, . . . , fL
25 environment(opg.net)$layers[-1]
26 )
27 network <- do.call(NN, new.layers)
28 # train NNSDR network
29 rmsprop(network, X, y, loss, epochs, batch.size)
30 # extract finetuned reduction matrix B from first layer
31 t(environment(environment(network)$layers [[1]])$weights)
32 }

3.5.2 MNIST handwritten digits dataset

We demonstrate NNSDR on the MNIST dataset [LBB+98], which cannot be analyzed by
other forward regression based SDR methods such as OPG, MAVE, or CVE, due to its size.
However, for neural networks, this dataset can be considered the “Hello World” dataset.

The MNIST dataset [LBB+98] consists of 60,000 labeled grayscale images of handwritten
digits, each with dimensions of 28 by 28 pixels, along with a test set containing 10,000
labeled images. It is a 10-class classification problem with a predictor dimension of 784.
For the multi-class classification problem, we use the categorical cross-entropy loss

L(y, ,y) = 10∑
i=1

yi log(,yi)
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where y ∈ {0, 1}10 represents one-hot encoded labels and ,y ∈ (0, 1)10 denotes the neural
network outputs. The neural network is a 2-layer MLP with 256 and 128 hidden units and
ReLU activation, respectively, followed by 10 output neurons representing each digit with
a softmax output activation

softmax(x) =
exp(x)

∥ exp(x)∥1
where ∥x∥1 =

∑p
i=1 |xi|. This normalizes softmax(x) to sum to 1 with exp is applied

element wise. We achieve a test set classification accuracy of approximately 97% after
training for 15 epochs with a dropout rate of 1/3. Subsequently, we apply NNSDR which
simultaneously fits a prediction model on the reduced data. Figure 3.3 illustrates the data
projected onto a 2 dimensional subspace using the NNSDR estimated reduction, revealing
visually distinguishable clusters. In contrast, PCA reduction appears to blur clusters other
than those corresponding to digits 0 and 1. Table 3.1 shows the classification accuracy of
the NNSDR network (Stage 2) as a prediction model using reduced data across various
dimensions, yielding approximately 70% accuracy for the 2 dimensional reduction shown in
Figure 3.3. Starting at dimension q = 6 for p = 784, which is a reduction to less than 1%
of the original size, an classification accuracy of more than 90% is achieved.

q 1 2 3 4 5 6 7 8 9 10 784

Train 39.3 68.8 82.0 87.7 89.3 93.0 94.0 95.0 95.7 96.1 99.5
Test 40.2 69.5 82.0 87.5 89.3 92.9 93.6 94.4 94.9 95.4 97.9

Table 3.1: Training and test accuracy of the refinement network for reduction dimensions
q = 1, ..., 10 for the MNIST dataset with the last column for q = p, meaning no
reduction.
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3 Fusing SDR with Neural Networks

Figure 3.3: 2D reduction of the MNIST dataset using PCA (left panels) and NNSDR (right
panels).
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4 Kronecker Parametric Inverse
Regression (KPIR)

In this chapter we present Kronecker Parametric Inverse Regression (KPIR) and Kronecker
Principal Fitted Components (KPFC), extensions of PIR (see Section 2.3.3) and PFC (see
Section 2.3.4), respectively, to matrix valued predictors X [PKB21]. Both methods built
on the corresponding PIR model (2.9) and PFC model (2.10) by assuming a Kronecker
structure of A or Γ, γ, respectively.

4.1 Matrix-Valued Inverse Regression Models

The setup is as in Section 2.3.3 except that the predictors X are matrix valued of dimension
p1 × p2. To accommodate the matrix structure we adapt the PIR model (2.9) by assuming
that X decomposes into separate row and column components. This is accomplished by
replacing the linear dependence of X in the inverse regression model PIR by a bilinear
dependence of the form

X = µ+α1F (Y )αT
2 + ϵ (4.1)

where F (Y ) is a known matrix valued function in Y of dimension q1 × q2 and mean zero
EF (Y ) = 0. The pk × qk matrices αk are unconstrained for k = 1, 2. The first matrix α1

describes the row mean structure of X and α2 the column mean structure. The error is
assumed to be centered E[ϵ] = 0 and has conditional variance Var(vec ϵ | Y ) = Var(vecX |
Y ) = ∆Y . The vectorized form of model (4.1) is

vecX = vecµ+ (α2 ⊗α1) vecF (Y ) + vec ϵ. (4.2)

The vectorized model (4.2) and the bilinear model (4.1) are equivalent. In the vectorized
form the relation to the PIR model (2.9) is clear under the constraint on the parameter
matrix A = α2 ⊗α1. This is why we call it Kronecker PIR.

Remark 14. The indexing scheme, where the indices in α2 ⊗ α1 are “reversed,” align with
the convention of Chapter 5. In (4.1) and (4.2), these indices correspond to the modes of
the matrix F (Y ). The rows count as the first mode and the columns as the second. This
particular indexing scheme will be convenient in the multilinear setting of Chapter 5, and
it is adopted here for the sake of consistency.

In [PFB12] was shown that the first moment based SDR subspace SFMSDR under model
(4.2) is given by

SFMSDR = Σ−1
X span(E[X | Y ]) = Σ−1

X span(α2 ⊗α1) = ∆−1 span(α2 ⊗α1)
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4 Kronecker Parametric Inverse Regression (KPIR)

where ΣX = Var(vecX) and ∆ = E(∆Y ). The inclusion of the first moment SDR subspace
in the central subspace is a direct result of the linearity Condition 1 on X, but equality
requires knowledge of the model. The dimension of the subspace is given by the rank
of α2 ⊗ α1, which is the product of the ranks of α1, α2. Therefore, dim(SFMSDR) =
rank(α1) rank(α2).

The PFC model (2.10) adapted for matrix valued predictors X has the form

X = µ+ Γ1γ1F (Y )γT
2 Γ

T
2 + ϵ (4.3)

where Γk ∈ Rpk×dk are semi-orthogonal, γk ∈ Rdk×qk , for k = 1, 2, and ϵ ∼ N (0,∆).
The PFC model (4.3) is a restricted KPIR model in that it requires αk have a fixed rank
dk = rank(αk), which in turn yields the factorization αk = Γkγk for γk of full rank dk
(which requires qk ≤ dk) for k = 1, 2. Vectorization of (4.3) yields the equivalent model

vecX = vecµ+ (Γ2γ2 ⊗ Γ1γ1) vecF (Y ) + vec ϵ

= vecµ+ (Γ2 ⊗ Γ1)(γ2 ⊗ γ1) vecF (Y ) + vec ϵ

which shows the relation to the PFC model (2.10) as the matrices Γ = Γ2 ⊗ Γ1 and
γ = γ2 ⊗ γ1 both have Kronecker constraints.

The first moment SDR subspace follows directly from the KPIR model, of which the
KPFC model is a constrained version. Letting dk = rank(αk), then

SFMSDR = Σ−1
X span(Γ2 ⊗ Γ1) = ∆−1 span(Γ2 ⊗ Γ1)

as span(αk) = span(Γkγk) = span(Γk), for k = 1, 2.
Assuming additionally that ΣX is separable, that is ΣX = Σ2 ⊗ Σ1 for Σk ∈ Rpk×pk ,

k = 1, 2, we get
SFMSDR = span(Σ−1

2 Γ2 ⊗Σ−1
1 Γ1).

A slightly less restrictive alternative assumption is the separability of ∆ = E∆Y =
EVar(vecX | Y ) = ∆2 ⊗∆1 which yields

SFMSDR = span(∆−1
2 Γ2 ⊗∆−1

1 Γ1).

4.2 Estimation Procedures

We provide multiple approaches for estimating the component matrices α1, α2 under model
(4.1) and Γ1, Γ2 for model (4.3). We operate under the assumption that the dimensions
d1, d2 are known.

Before we describe the different estimation procedures we introduce a notation for gath-
ering an i.i.d. sample (Xi, Yi) in a convenient matrix form, used throughout the remainder
of this chapter. The observed predictors Xi are collected in the p1p2 × n matrix X with
the ith column containing the vectorized and centered observations vec(Xi − ,µ) where,µ = n−1

∑n
i=1Xi. For the matrix valued function F (Yi) of the responses Yi, we collect

the data similarly in an q1q2 × n matrix F with columns consisting of the vectorized and
centered functions vec(F (Yi)− ,ν) with ,ν = n−1

∑n
i=1 F (Yi).
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Remark 15. Storing the data in a matrix, with columns indexing observations, offers several
advantages. First, there is no need to transpose sample-level versions of the model. Second,
in multilinear models, such as those discussed in Chapter 5, it is very confusing on the
sample level when the first mode indexes observations, requiring the addition of 1 in mode
products. To eliminate this confusion, samples are arranged in the last mode, aligning with
indexing observations in columns. Third, when using the programming language R, one can
simplify many operations by leveraging the built-in recycling feature of most R functions,
avoiding the need for cumbersome workarounds.

4.2.1 Least Squares Kronecker PIR (KPIR (ls))

We start with a least squares approach for the estimation of SFMSDR under the KPIR
model (4.2). Using the notation introduced at the beginning of this chapter, the sample
level version of model (4.2) is

X = (α2 ⊗α1)F+ ϵ

where the error term ϵ is a matrix with i.i.d. columns ϵi with zero mean E[ϵi] = 0 and
conditional variance Var(ϵi | Y = yi) = ∆yi .

The basis for the least squares estimate, as well as the other methods introduced later,
is the following result.

Theorem 4. Assume the data collected in X follow model (4.2). Let ,A = XFT (FFT )−1

denote the ordinary least squares estimate in the unconstrained model X = AF + ϵ. The
solutions ,α1, ,α2 of

(,α2, ,α1) = argmin
α2,α1

∥ ,A− ,α2 ⊗ ,α1∥2F (4.4)

converge in probability to α1 and α2 under the KPIR model (4.2); i.e.,

,α2 ⊗ ,α1
p−−→ α2 ⊗α1

and ,α2 ⊗ ,α1 is asymptotically normal.

Proof. By [VP93, Thm. 2.1] we rewrite the optimization objective of (4.4) as

∥ ,A− ,α2 ⊗ ,α1∥F = ∥R( ,A)− vec(,α2) vec(,α1)
T ∥F

where R : Rp1p2×q1q2 → Rp2q2×p1q1 is a permutation and reshaping operation (that is
vec(R(A)) is a permutation of vec(A), see also Section 2.4.1, particularly Lemma 1). By
[VP93, Corollary 2.2] the rank 1 approximation R1( ,A) of R( ,A) based on SVD solves the
least squares problem (4.4). Under model (4.2), which is equivalent to (4.1), the true
parameter matrix A = α2 ⊗ α1 is separable and the OLS estimate ,A p−→ A is consistent
and asymptotically normal. Since R is continuous, R( ,A)

p−→ R(A) by the continuous
mapping theorem. Moreover, in a neighborhood of A the rank 1 approximation R1( ,A) is
unique and continuous. Therefore, applying the delta method to the asymptotically normal
least squares estimate ,A, we also obtain that R1( ,A) is asymptotically normal with mean
R1(A) = R(A). Applying the inverse operation R−1 gives

,α2 ⊗ ,α1 = R−1(R1( ,A))
p−−→ R−1(R1(A)) = R−1(R(A)) = A = α2 ⊗α1.

By the delta method, ,α2 ⊗ ,α1 is asymptotically normal with mean α2 ⊗α1.
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All decompositions obtained as a solution to (4.4) will be referred to as VLP approxima-
tions. This is because it is based on the results obtained by Van Loan and Pitsianis in their
paper [VP93].

We also need an estimate of ∆ = E∆Y , which, given estimates ,α1, ,α2, has a least
squares estimate

,∆ls =
1

n− rank(F)
(
X− (,α2 ⊗ ,α1)F

)(
X− (,α2 ⊗ ,α1)F

)T (4.5)

leading to the least squares estimate ,SKPIR(ls) = ,∆−1
ls span(,α2 ⊗ ,α1) of SFMSDR.

4.2.1.1 Implementation in R

Next a short R implementation of [VP93, Framework. 1] with p and q are the dimension
tuples (p1, p2) and (q1, q2), respectively. The matrix A to be VLP approximated has to
have dimension p1p2 × q1q2.

1 approx.kron <- function(A, p, q) {
2 R <- aperm(‘dim <- ‘(A, c(p, q)), c(2, 4, 1, 3))
3

4 with(svd(‘dim <- ‘(R, p * q), 1, 1), list(
5 alpha2 = matrix(sqrt(d[1]) * u, p[2]),
6 alpha1 = matrix(sqrt(d[1]) * v, p[1])
7 ))
8 }

With the VLP approximation approx.kron, an implementation of KPIR(ls) is straightfor-
ward.

1 kpir.ls <- function(X, F, p, q, d) {
2 # Solve least squares problem .A = XFT (FFT )−1

3 A <- t(solve(tcrossprod(F), tcrossprod(F, X)))
4 # VLP approximation .A ≈ .α2 ⊗ .α1

5 A <- with(approx.kron(A, c(p[2], q[2]), c(p[1], q[1])),
6 kronecker(alpha2, alpha1)
7 )
8 # Least Squares Delta estimate .∆ls

9 Delta <- tcrossprod(X - crossprod(A, F)) / (ncol(X) - qr(F)$rank)
10

11 # Basis estimate of SFMSDR ≈ .∆−1
ls span(.Γ2 ⊗ .Γ1) ⊆ .∆−1

ls span(.α2 ⊗ .α1)
12 Gamma1 <- La.svd(alpha1, d[1], 0)$u
13 Gamma2 <- La.svd(alpha2, d[2], 0)$u
14 solve(Delta, kronecker(Gamma2, Gamma1))
15 }

4.2.2 Maximum Likelihood Kronecker PIR (KPIR (mle))

By further assuming X | Y under the vectorized KPIR model (4.2) follows a normal dis-
tribution, we can derive a maximum likelihood estimate. Specifically, on the sample level,
this means

vec(Xi) ∼ Np1p2(vec(µ) + (α2 ⊗α1) vec(F (Yi)− EF (Y )),∆), (4.6)
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The log-likelihood (dropping the constant factor and scaling by 2) for n i.i.d. observations,
collected in X and F, is

l(α1,α2,∆) = −n log |∆| − (X− (α2 ⊗α1)F)∆−1(X− (α2 ⊗α1)F)T . (4.7)

Remark 16. The full likelihood including the marginal mean µ = EX leads to the MLE of
µ as ,µ = n−1

∑n
i=1Xi. This is already included in X, which in turn leads to the identical

full maximum likelihood solutions for the remaining parameters α1, α2 and ∆.

Solving the score equations for ∆ fixing both α1 and α2 gives

,∆ =
1

n

(
X− (α2 ⊗α1)F

)(
X− (α2 ⊗α1)F

)T (4.8)

while the score equations for α1, α2 do not possess a closed form solution. To solve this we
opt for an iterative algorithm for maximizing the log-likelihood (4.7) by alternating between
an (arbitrary) numeric optimization algorithm for α1, α2 fixing ∆ and updating ∆ with
fixed α1, α2. This is repeated until convergence (or a maximum number of iterations
is exceeded). We determine convergence in the I’th iteration by the two criteria ∥ ,∆I −,∆I−1∥ ≤ δ∥ ,∆I−1∥ and ∥ ,AI − ,AI−1∥ ≤ δ∥ ,AI−1∥ with ,AI = ,α2I ⊗ ,α1I for a small constant
δ > 0. The whole procedure is initialized with the least squares estimates from Section 4.2.1.
After convergence, the subspace SFMSDR is estimated as

,SKPIR(mle) = ,∆−1 span(,Γ2 ⊗ ,Γ1)

where ,Γk are the first dk left singular vectors of ,αk for k = 1, 2.

4.2.2.1 Implementation in R

For the MLE version of KPIR, we implement an iterative algorithm. We safeguard the
method by adding a maximum number of iterations to avoid (in theory never occurring)
infinite loops. The additional delta is used in the break condition. Using optim, a numeric
optimization routine in base R, we have an implementation of KPIR(mle).

1 kpir.mle <- function(X, F, p, q, d, max.iter = 10, delta = 1e-2) {
2 # Solve least squares problem
3 A <- t(solve(crossprod(F), crossprod(F, X)))
4 # VLP approximation
5 alphas <- approx.kron(A, c(p[2], q[2]), c(p[1], q[1]))
6 A <- do.call(kronecker, alphas)
7 # MLE Delta estimate given alphas
8 Delta <- tcrossprod(X - crossprod(A, F)) / ncol(X)
9 Delta.inv <- solve(Delta)

10

11 # negative log likelihood (with Delta fixed)
12 log.likelihood <- function(par) {
13 alpha2 <- matrix(head(par, p[2] * q[2]), p[2])
14 alpha1 <- matrix(tail(par, p[1] * q[1]), p[1])
15 error <- X - crossprod(kronecker(alpha2, alpha1), F)
16 sum(error * (error %*% Delta.inv))
17 }
18
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19 # Iterate till convergence (or max iter reached)
20 for (iter in seq_len(max.iter)) {
21 # Optimize log-likelihood for alpha1, alpha2 with fixed Delta.
22 opt <- optim(par = c(alpha2, alpha1), fn = log.likelihood)
23 # Store previous alphas and Delta (for break consition).
24 alphas.last <- alphas
25 Delta.last <- Delta
26 # Unpack combined optimized alphas
27 alpha2 <- matrix(head(par, p[2] * q[2]), p[2])
28 alpha1 <- matrix(tail(par, p[1] * q[1]), p[1])
29 A <- kronecker(alpha2, alpha1)
30 # Recompute MLE Delta estimate with fixed alphas
31 Delta <- tcrossprod(X - crossprod(A, F)) / ncol(X)
32 Delta.inv <- solve(Delta)
33

34 # Check break conditions
35 if (norm(Delta - Delta.last, "F") < delta * norm(Delta.last, "F")) {
36 if (norm(B - B.last, "F") < delta * norm(B.last, "F")) {
37 break
38 }
39 }
40 }
41

42 # FMSDR subspace basis
43 Gamma2 <- La.svd(alpha2, d[2], 0)$u
44 Gamma1 <- La.svd(alpha1, d[1], 0)$u
45 Delta.inv %*% kronecker(Gamma2, Gamma1)
46 }

4.2.3 Kronecker PFC (KPFC)

The KPFC model (4.3) leads to a different log-likelihood with parameters Γk, γk and ∆,
for k = 1, 2, with data X and F as

l(Γ1,Γ2,γ1,γ2,∆) =

− n log |∆| − (X− (Γ2 ⊗ Γ1)(γ2 ⊗ γ1)F)∆−1(X− (Γ2 ⊗ Γ1)(γ2 ⊗ γ1)F)T (4.9)

which we scaled by 2 and dropped the constant factor.

Remark 17. As in the KPIR log-likelihood (4.7), the MLE for µ = EX in (4.9) is the
sample mean.

We let Γ = Γ2 ⊗ Γ1 be a semi-orthogonal p1p2 × d1d2 matrix and γ = γ2 ⊗ γ1 be full
rank d1d2, but otherwise unconstrained of dimensions d1d2 × q1q2. Substituting in (4.9)
gives the PFC log-likelihood

l(Γ,γ,∆) = −n log |∆| − (X− ΓγF)∆−1(X− ΓγF)T .

The maximum likelihood estimates for the PFC log-likelihood were derived in [CF08]. With,A = XTF(FFT )−1 being the multivariate regression coefficients and PF = FT (FFT )−1F the
hat matrix for the same linear regression, we let ,∆fit denote the variance of the fitted values

48



4.2 Estimation Procedures

and ,∆res the estimated residual variance given by

,∆fit =
1

n
XPFXT =

1

n
XXT − ,∆res.

Now we compute the singular value decomposition ,U ,D ,UT = ,∆−1/2
res

,∆fit
,∆−1/2

res used to
provide the PFC maximum likelihood estimate of ∆ given by

,∆ = ,∆res + ,∆1/2
fit

,U ,D>d1d2
,UT ,∆1/2

fit (4.10)

where ,D>d1d2 = diag(0, . . . , 0, ,λd1d2+1, . . . , ,λp1p2). Given ,∆,

span(,Γ) = ,∆1/2 spand1d2(
,∆−1/2 ,∆fit

,∆−1/2), (4.11),γ = (,ΓT ,∆−1,Γ)−1,ΓT ,∆−1 ,A (4.12)

where spand denotes the span of the first d left singular vectors of its argument. The
matrix ,Γ is only specified up to its span which is the meaning behind the notation. For
computational purposes we simply take any semi-orthogonal matrix ,Γ which fulfils (4.11).

Remark 18. If d1d2 = q1q2 then ,∆ = ,∆res which is due to rank( ,∆fit) = q1q2 resulting in,D>d1d2 = 0.

The parameters of interest are the components of Γ = Γ2⊗Γ1 which we retrieve from the
PFC estimate ,Γ using the VLP approximation in Theorem 4. The resulting components,Γ1, ,Γ2 are least squares estimates of the objective ∥,Γ−Γ2 ⊗Γ1∥F which do not guarantee
to maximize the log-likelihood (4.9).

There are basically two ways of getting different estimates for the first moment subspace
SFMSDR in the form of a folded subspace. One is to apply the VLP approximation to ,Γ,γ to
get estimates ,α1, ,α2 from which we estimate ,Γ1, ,Γ2 as their d1, d2 first left singular vectors,
respectively. The alternative is to first compute ,Γ and then apply the VLP approximation
to obtain ,Γ1, ,Γ2. In both cases, the estimated subspace is

,SKPFC = ,∆−1 span(,Γ2 ⊗ ,Γ1).

Remark 19. Here we are only interested in estimating SFMSDR. In [PKB21] there are
three variations on how to decompose the estimates. The basic approach is to estimate
∆−1 span(α2⊗α1) where the span is based on the dk first eigenvectors of the ,αk’s. The three
different ways of estimating the αk’s are: (a) First, decompose ,Γ,γ ≈ ,α2 ⊗ ,α1. The other
two first decompose ,Γ ≈ ,Γ2⊗ ,Γ1 and then compute ,γ = ((,Γ2⊗ ,Γ1)

T ,∆−1(,Γ2⊗ ,Γ1))
−1(,Γ2⊗,Γ1)

T ,∆−1 ,A instead of using (4.12). Then either (b) decompose (,Γ2⊗ ,Γ1),γ ≈ ,α2⊗ ,α1 or (c)
approximate ,γ ≈ ,γ2⊗,γ1 to get ,αk = ,Γk,γk. The latter two versions (b) and (c) give the same
estimated subspace because span(,Γ2⊗ ,Γ1) = span((,Γ2⊗ ,Γ1),γ) = span((,Γ2⊗ ,Γ1)(,γ2⊗ ,γ1))
based on ,γ and ,γ2 ⊗ ,γ1 having full row rank.

Remark 20. KPIR(ls) is based purely on model (4.1) without any distributional assump-
tions. All three KPIR(mle) and the two versions of KPFC assume X | Y to be normal
distributed. KPIR(mle) is based on model (4.1) whereas the two versions of KPFC are
based on model (4.3).
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4 Kronecker Parametric Inverse Regression (KPIR)

4.2.3.1 Implementation in R

Combining both versions in a single method toggled with version we get.
1 kpfc <- function(X, F, p, q, d, version = 2) {
2 # Solve least squares problem
3 A <- t(solve(tcrossprod(F), tcrossprod(F, X)))
4 P.F <- crossprod(F, solve(tcrossprod(F), F))
5 Delta.fit <- tcrossprod(X, X %*% P.F) / ncol(X)
6 Delta.res <- tcrossprod(X) / ncol(X) - Delta.fit
7 # Compute Delta
8 tmp <- matpow(Delta.res, -1 / 2)
9 SVD <- La.svd(D %*% Delta.fit %*% D)

10 D <- SVD$d * (seq_along(SVD$d) > prod(d))
11 tmp <- matpow(Delta.res, 1 / 2)
12 Delta <- Delta.res + tmp %*% (SVD$u * D) %*% SVD$vt %*% tmp
13 Delta.inv <- matpow(Delta, -1)
14

15 # MLE estimte of (full) Gamma
16 tmp <- matpow(Delta, -1 / 2)
17 Gamma <- matpow(Delta, 1 / 2) %*%
18 La.svd(tmp %*% Delta.fit %*% tmp, prod(d))$u
19

20 # version 1 computes ‘gamma ‘ and VLP approx. ‘Gamma gamma ‘
21 if (version = 1) {
22 tmp <- crossprod(Gamma, Delta.inv)
23 gamma <- solve(tmp %*% Gamma, tmp %*% A)
24

25 # VLP approx
26 alphas <- approx.kron(Gamma %*% gamma, p, q)
27 Gamma1 <- La.svd(alphas [[1]], d[1])$u
28 Gamma2 <- La.svd(alphas [[2]], d[2])$u
29 # version 2 VLP approx. ‘Gamma ‘ directly
30 } else {
31 Gammas <- approx.kron(Gamma, p, d)
32 Gamma1 <- Gammas [[1]]
33 Gamma2 <- Gammas [[2]]
34 }
35

36 # FMSDR estimated subspace
37 Delta.inv %*% kronecker(Gamma2, Gamma1)
38 }

In Figure 4.1 the computational dependence of KPIR(ls), KPIR(mle) and KPFC, in both
version KPFC(v1) and KPFC(v2), are visualized similar to [PKB21, Fig. 1].

A real data application is given in conjunction with GMLM in Section 5.6.1.
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4.2 Estimation Procedures

Compute ,A = XFT (FFT )−1

Approximate ,α1, ,α2 with VLP
from ,A and ,∆ls as in (4.5)

KPIR(ls)
Initial values ,α1, ,α2 with

VLP from ,A, then alternate
computing ,∆ by (4.8) and
maximizing ,α1, ,α2 in (4.7).

KPIR(mle)

Compute ,∆ by (4.10) and,Γ, ,γ as in (4.11), (4.12)

Approx. ,α1, ,α2 via VLP from,Γ,γ and ,Γ1, ,Γ2 be the d1, d2 first
left singular vectors of ,α1, ,α2

KPFC(v1)

Approx. ,Γ1, ,Γ2 via VLP from ,ΓKPFC(v2)

Figure 4.1: Flow Chart of KPIR and KPFC algorithms.
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5 Generalized Multilinear Models

5.1 The Generalized Multi-Linear Model (GMLM)

We assume the distribution of X | Y belongs to the quadratic exponential family, in order
to simplify modeling and keep estimation feasible. We assume that X | Y is a full rank
quadratic exponential family with density

fηy(X | Y = y) = h(X ) exp(ηT
y t(X )− b(ηy))

= h(X ) exp(⟨t1(X ),η1y⟩+ ⟨t2(X ),η2y⟩ − b(ηy)) (5.1)

where t1(X ) = vecX and t2(X ) is linear in X ◦ X . The dependence of X on Y is fully
captured in the natural parameter ηy. The function h is non-negative real-valued and b is
assumed to be at least twice continuously differentiable and strictly convex. An important
feature of the quadratic exponential family is that the distribution of its members is fully
characterized by their first two moments. Distributions within the quadratic exponential
family include the tensor normal and tensor Ising model (a generalization of the (inverse)
Ising model which is multi-variate Bernoulli with up to second order interactions) and
mixtures of these two.

In model (5.1), the dependence of X and Y is absorbed in ηy, and t(X ) is the minimal
sufficient statistic for the pseudo-parameter ηy = (η1y,η2y) with

t(X ) = (t1(X ), t2(X )) = (vecX ,T2 vech((vecX )(vecX )T )), (5.2)

where the d × p(p + 1)/2 dimensional matrix T2 with p =
Πr

i=1 pi ensures that η2y is of
minimal dimension d. The matrix T2 is of full rank d and unique to different members of
the quadratic exponential family. We can reexpress the exponent in (5.1) as

ηT
y t(X ) = ⟨vecX ,η1y⟩+ ⟨T2 vech(X ◦ X ),η2y⟩

= ⟨vecX ,η1y⟩+ ⟨vec(X ◦ X ), (T2D
†
p)

Tη2y⟩
where Dp is the duplication matrix from Abadir and Magnus [AM05, Ch. 11], defined so
that Dp vechA = vecA for every symmetric p× p matrix A, and D†

p is its Moore-Penrose
pseudo inverse. The first natural parameter component, η1y, captures the first order, and
η2y, the second order relationship of Y and X . The quadratic exponential density of X | Y
can then be expressed as

fηy(X | Y = y) = h(X ) exp
(
⟨vecX ,η1y⟩+ ⟨vec(X ◦ X ), (T2D

†
p)

Tη2y⟩ − b(ηy)
)

(5.3)

The exponential family in (5.3) is easily generalizable to any order. This, though, would
result in the number of parameters becoming prohibitive to estimate, which is also the
reason why we opted for the second order exponential family in our formulation.
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5 Generalized Multilinear Models

By the equivalence of forward SDR (2.2) and inverse SDR (2.3), in order to find the
sufficient reduction R(X ) we need to infer η1y, and η2y. This is reminiscent of generalized
linear modeling, which we extend to a multi-linear formulation next. Suppose Fy is a known
mapping of y with zero expectation EY FY = 0. We assume the dependence of X and Y is
reflected only in the first parameter and let

η1y = vec η +B vecFy, (5.4)

η2 = ((T2D
†
p)

†)T vec(cΩ), (5.5)

where η ∈ Rp1×...×pr , Ω ∈ Rp×p is positive definite with p =
Πr

j=1 pj , and c ∈ R is a
known constant determined by the distribution to ease modeling. That is, we assume that
only η1y depends on Y through B. The second parameter η2 captures the second order
interaction structure of X , which we assume not to depend on the response Y . In order to
relate individual modes of X to the response, allowing flexibility in modeling, we assume
Fy takes values in Rq1×...×qr ; that is, Fy is a tensor valued independent variable. This,
in turn, leads to imposing corresponding tensor structure to the regression parameter B.
Thus, (5.4) becomes

η1y = vec

(
η + Fy

r×
j=1

βj

)
, (5.6)

where B =
°1

j=r βj and the component matrices βj ∈ Rpj×qj are of known rank for
j = 1, . . . , r.

As the bilinear form of the matrix normal requires its covariance be separable, the mul-
tilinear structure of X also induces separability on its covariance structure (see, e.g., Hoff
[Hof11]). Therefore, we further assume that

(T2D
†
p)

Tη2y = (T2D
†
p)

Tη2 = vec

(
c

1°
j=r

Ωj

)
, (5.7)

where Ωj ∈ Rpj×pj are symmetric positive definite matrices for j = 1, . . . , r. Requiring
Ω =

°1
j=r Ωj substantially reduces the number of parameters to estimate in Ω. The

assumption that the Ωj ’s be positive definite is possible due to the constant c.
Equation (5.7) is underdetermined since (T2D

†
p)T has full column rank d < p2 (with a non-

strict inequality if X is univariate) but η2 is uniquely determined given any Ω as ((T2D
†
p)†)T

has full row rank. We let ξ = (vec η, vecB, vechΩ) be the unconstrained p(p+ 2q + 3)/2-
parameter vector and θ = (vec η, vecB, vechΩ) be the constrained parameter vector, where
B =

°1
j=r βj and Ω =

°1
j=r Ωj . We also let Ξ and Θ denote the unconstrained and

constrained parameter spaces, with ξ and θ varying in Ξ and Θ, respectively. The parameter
space Ξ is an open subset of Rp(p+2q+3)/2 so that (5.3) is a proper density. We relax the
assumptions for βk and Ωk later as a consequence of Theorem 9 in Section 5.3.2.

In a classical generalized linear model (GLM), the link function connecting the natural
parameters to the expectation of the sufficient statistic ηy = g(E[t(X ) | Y = y]) is invertible.
Such a link may not exist in our setting, but for our purpose what we call the “inverse” link
suffices. The “inverse” link ~g exists as the natural parameters fully describe the distribution.
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5.1 The Generalized Multi-Linear Model (GMLM)

As in the non-minimal formulation (5.3), we define the “inverse” link through its tensor
valued components

g1(ηy) = E[X | Y = y], (5.8)
g2(ηy) = E[X ◦ X | Y = y] (5.9)

as ~g(ηy) = (vec g1(ηy), vec g2(ηy)). Under the quadratic exponential family model (5.3), a
sufficient reduction for the regression of Y on X is given in Theorem 5.

Theorem 5 (Generalized Multi-Linear SDR). A sufficient reduction for the regression
Y | X under the quadratic exponential family inverse regression model (5.3) with natural
parameters (5.6) and (5.7) is given by

R(X ) = (X − EX )

r×
k=1

βT
j . (5.10)

The reduction (5.10) is minimal if βj are full rank for all j = 1, . . . , r.

Proof. A direct implication of Bura, Duarte, and Forzani [BDF16, Theorem 1] is that, under
the exponential family (5.3) with natural statistic (5.2),

αT (t(X )− E t(X ))

is a sufficient reduction, where α ∈ R(p+d)×q with span(α) = span({ηy −EY ηY : y ∈ SY }).
Since EY FY = 0, EY η1Y = E[vec η −B vecFY ] = vec η. Thus,

ηy − EY ηY =

(
η1y − EY η1Y

η2 − EY η2

)
=

(
B vecFy

0

)
.

as η2 does not depend on y. The set {vecFy : y ∈ Sy} is a subset of Rq. Therefore,

span ({ηy − EY ηY : y ∈ SY }) = span

({(
B vecFY

0

)
: y ∈ SY

})
⊆ span

(
B
0

)
,

which obtains that(
B
0

)T

(t(X )− E t(X )) = BT vec(X − EX ) = vec
(
Fy

r×
k=1

βk

)
is also a sufficient reduction, though not necessarily minimal, using B =

°r
k=1 βk. When

the exponential family is full rank, which in our setting amounts to all βj being full rank
matrices, j = 1, . . . , r, then Bura, Duarte, and Forzani [BDF16, Thm 1] also obtains the
minimality of the reduction.

The reduction in vectorized form is vecR(X ) = BT vec(X − EX ), where B =
°1

k=r βk

with span(B) = span({η1y −EY η1Y : y ∈ SY }), using SY to denote the set of values of the
random variable Y .

Theorem 5 obtains that the sufficient reduction R(X ) reduces X along each dimension
linearly. The graph in Figure 5.1 is a visual depiction of the sufficient reduction.
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5 Generalized Multilinear Models

R(X )

X − EX

βT
1

β
T
3

βT
2

Figure 5.1: Visual depiction of the sufficient reduction in Theorem 5.

Example 3 (Vector valued x (r = 1)). Given vector valued predictor X ∈ Rp, the tensor
order is r = 1, then the collection of parameters is θ = (η,β,Ω) with η ∈ Rp, β ∈ Rp×q

∗
and Ω ∈ Symp×p

++ where fy ∈ Rq are known functions of the response Y . The conditional
density of X | Y = y is given by

fθ(x | Y = y) = h(x) exp(⟨x,η1y(θ)⟩+ ⟨vec(x ◦ x),η2(θ)⟩ − b(ηy(θ)))

= h(x) exp((η + βfy)
Tx+ cxTΩx− b(ηy(θ))).

using the relation of θ to the natural parameters given by η1y(θ) = η+βfy and η2(θ) = cΩ.

Example 4 (Matrix valued X (r = 2)). Assuming X to be matrix valued, that is r = 2,
θ = (η,β1,β2,Ω1,Ω2), where the intercept term η ∈ Rp1×p2 is now matrix valued. Similar
to Example 3 with Fy ∈ Rq1×q2 being matrix valued, the conditional density of X | Y = y
reads

fθ(X | Y = y) = h(X) exp(⟨vecX,η1y(θ)⟩+ ⟨vec(X ◦X),η2(θ)⟩ − b(ηy(θ)))

= h(X) exp(tr((η + β1Fyβ
T
2 )X

T ) + c tr(Ω1XΩ2X
T )− b(ηy(θ))).

5.2 Maximum Likelihood Estimation

Suppose (Xi, Yi) are independently and identically distributed with joint cdf F (X , Y ), for
i = 1, . . . , n. The empirical log-likelihood function of (5.3) under (5.6) and (5.7), dropping
terms not depending on the parameters, is

ln(θ) =
1

n

n∑
i=1

(<
η + Fyi

r×
k=1

βk,Xi

>
+ c

<
Xi

r×
k=1

Ωk,Xi

>
− b(ηyi)

)
. (5.11)
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5.2 Maximum Likelihood Estimation

The maximum likelihood estimate of θ0 is the solution to the optimization problem

,θn = argmax
θ∈Θ

ln(θ) (5.12)

with ,θn = (vec,η, vec ,B, vech ~Ω) where ,B =
°1

k=r
,βk and ,Ω =

°1
k=r

,Ωk.
A straightforward and general method for parameter estimation is gradient descent. To

apply gradient based optimization, we compute the gradients of ln in Theorem 6.

Theorem 6. For n i.i.d. observations (Xi, yi), i = 1, ..., n the log-likelihood is of the form
in (5.11) with θ being the collection of all GMLM parameters η, B =

°1
k=r βk and Ω =°1

k=r Ωk for k = 1, ..., r. Let G2(ηy) be a tensor of dimensions p1, . . . , pr such that

vecG2(ηy) = (T2D
†
p)

†T2D
†
p vec g2(ηy).

Then, the partial gradients with respect to η,β1, . . . ,βr,Ω1, . . . ,Ωr are given by

∇ηln = vec
1

n

n∑
i=1

(Xi − g1(ηyi)),

∇βj
ln = vec

1

n

n∑
i=1

(Xi − g1(ηyi))(j)

(
Fyi×

k∈[r]\j
βk

)T

(j)
,

∇Ωj ln = vec
c

n

n∑
i=1

(Xi ⊗Xi −K(G2(ηyi)))×
k∈[r]\j

(vecΩk)
T

which obtains ∇ln = (∇ηln,∇β1 ln, . . . ,∇βr ln,∇Ω1 ln, . . . ,∇Ωr ln). If T2 is the identity ma-
trix Ip(p+1)/2, then G2(ηy) = g2(ηy).

Proof. We first note that for any exponential family with density (5.1) the term b(ηyi)
differentiated with respect to the natural parameter ηyi is the expectation of the statistic
t(X ) given Y = yi. In our case we get ∇ηyi

b = (∇η1yi
b,∇η2b) with components

∇η1yi
b = E[t1(X ) | Y = yi] = vecE[X | Y = yi] = vec g1(ηyi)

and

∇η2b = E[t2(X ) | Y = yi] = E[T2 vech((vecX )(vecX )T ) | Y = yi]

= E[T2D
†
p vec(X ◦ X ) | Y = yi] = T2D

†
p vec g2(ηyi).

The gradients are related to their derivatives by transposition, ∇η1yi
b = Db(η1yi)

T and
∇η2b = Db(η2)

T . Next we provide the differentials of the natural parameter components
from (5.6) and (5.7) in a quite direct form, without any further “simplifications”, because
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5 Generalized Multilinear Models

the down-stream computations won’t benefit from re-expressing the following

dη1yi(η) = d vec η,

dη1yi(βj) = vec
(
Fyi

r×
k=1
k ̸=j

βk ×j dβj

)
,

dη2(Ωj) = ((T2D
†
p)

†)T vec(c dΩ)

= c((T2D
†
p)

†)T vec
( j+1°

k=r

Ωk ⊗ dΩj ⊗
1°

l=j−1

Ωl

)
.

All other combinations, namely dη1yi(Ωj), dη2(η) and dη2(βj), are zero. Continuing with
the partial differentials of ln from (5.11)

dln(η) =
n∑

i=1

(⟨dη,Xi⟩ −Db(η1yi)dη1yi(η)) =
n∑

i=1

(vecXi − vec g1(ηyi))
Td vec η

= (d vec η)T vec
n∑

i=1

(Xi − g1(ηyi)).

For every j = 1, ..., r we get the differentials

dln(βj) =

n∑
i=1

(<
Fyi

r×
k=1
k ̸=j

βk ×j dβj ,Xi

>
−Db(η1yi)dη1yi(βj)

)

=

n∑
i=1

<
Fyi

r×
k=1
k ̸=j

βk ×j dβj ,Xi − g1(ηyi)
>

=

n∑
i=1

tr

(
dβj

(
Fyi

r×
k=1
k ̸=j

βk

)
(j)

(Xi − g1(ηyi))
T
(j)

)

= (d vecβj)
T vec

n∑
i=1

(Xi − g1(ηyi))(j)

(
Fyi

r×
k=1
k ̸=j

βk

)T

(j)
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5.2 Maximum Likelihood Estimation

as well as

dln(Ωj) =

n∑
i=1

(
c
<
Xi

r×
k=1
k ̸=j

Ωk ×j dΩj ,Xi

>
−Db(η2)dη2(Ωj)

)

= c
n∑

i=1

(<
Xi

r×
k=1
k ̸=j

Ωk×jdΩj ,Xi

>
−(T2D

†
p vec g2(ηyi))

T ((T2D
†
p)

†)T vec
( j+1°

k=r

Ωk⊗dΩj⊗
1°

l=j−1

Ωl

))

= c

n∑
i=1

(<
Xi

r×
k=1
k ̸=j

Ωk ×j dΩj ,Xi

>
− (vecG2(ηyi))

T vec
( j+1°

k=r

Ωk ⊗ dΩj ⊗
1°

l=j−1

Ωl

))

= c
n∑

i=1

(
vec(Xi ◦ Xi − G2(ηyi))

T vec
( j+1°

k=r

Ωk ⊗ dΩj ⊗
1°

l=j−1

Ωl

))

= c

n∑
i=1

K(Xi ◦ Xi − G2(ηyi))

r×
k=1
k ̸=j

(vecΩk)
T ×j (d vecΩj)

T

= c(d vecΩj)
T

n∑
i=1

(
(Xi ⊗Xi −K(G2(ηyi)))

r×
k=1
k ̸=j

(vecΩk)
T
)
(j)

= c(d vecΩj)
T vec

n∑
i=1

(Xi ⊗Xi −K(G2(ηyi)))

r×
k=1
k ̸=j

(vecΩk)
T

Now, applying the identity dA(B) = (d vecB)T∇BA gives the required partial gradients.
Finally, if T2 is the identify matrix, then

vecG2(ηy) = (T2D
†
p)

†T2D
†
p vec g2(ηy) = DpD

†
p vec g2(ηy) = vec g2(ηy)

where the last equality holds because Np = DpD
†
p is the symmetrizer matrix from Abadir

and Magnus [AM05, Ch. 11]. For the symmetrizer matrix Np holds Np vecA = vecA if
A = AT , while

vec g2(ηy) = vecE[X ◦ X | Y = y] = vecE[(vecX )(vecX )T | Y = y]

is the vectorization of a symmetric matrix.

Although the general case of any GMLM model can be fitted via gradient descent using
Theorem 6, this may be very inefficient. In Theorem 6, T2 can be used to introduce flexible
second moment structures. For example, it allows modeling effects differently for predictor
components, as described in Section 5.2.2 after Eqn. (5.20). In the remainder, we focus on
T2’s that are identity matrices. This approach simplifies the estimation algorithm and the
speed of the numerical calculation in the case of tensor normal predictors. In the case of the
tensor normal distribution, an iterative cyclic updating scheme is derived in Section 5.2.1,
which has much faster convergence, is stable and does not require hyper parameters, as will
be discussed later. On the other hand, the Ising model does not allow such a scheme. There
we need to use a gradient based method, which is the subject of Section 5.2.2.

59



5 Generalized Multilinear Models

5.2.1 Tensor Normal

The tensor normal, also known as the multilinear normal, is the extension of the matrix
normal to tensor-valued random variables and a member of the quadratic exponential family
(5.3) under (5.7). Dawid [Daw81] and Arnold [Arn81] introduced the term matrix normal
and, in particular, Arnold [Arn81] provided several theoretical results, such as its density,
moments and conditional distributions of its components. The matrix normal distribution
is a bilinear normal distribution; a distribution of a two-way array, each component rep-
resenting a vector of observations [OAvR13]. Kollo and von Rosen [KvR05], Hoff [Hof11],
and Ohlson, Ahmad, and von Rosen [OAvR13] presented the extension of the bilinear to
the multilinear normal distribution, what we call tensor normal, using a parallel extension
of bilinear matrices to multilinear tensors [Com09].

The defining feature of the matrix normal distribution, and its tensor extension, is the
Kronecker product structure of its covariance. This formulation, where the covariates are
multivariate normal with multiway covariance structure modeled as a Kronecker product of
matrices of much lower dimension, aims to overcome the significant modeling and compu-
tational challenges arising from the high computational complexity of manipulating tensor
representations [see, e.g., HL13; WSS+22].

Multilinear tensor normal models have been used in various applications, including med-
ical imaging [BP07; DKZ09], spatio-temporal data analysis [GH14], regression analysis for
longitudinal relational data [Hof15]. One of the most important uses of the multilinear
normal (MLN) distribution, and hence tensor analysis, is perhaps in magnetic resonance
imaging (MRI) [OAvR13]. A recent survey [WSS+22] and references therein contain more
information and potential applications of multilinear tensor normal models.

Suppose X | Y = y follows a tensor normal distribution with mean µy and covariance Σ =°1
k=r Σk. We assume the distribution is non-degenerate which means that the covariances

Σk are symmetric positive definite matrices. Its density is given by

fθ(X | Y = y) = (2π)−p/2
rΠ

k=1

det(Σk)
−p/2pk exp

(
−1

2

/
X − µy, (X − µy)

r×
k=1

Σ−1
k

\)
.

For the sake of simplicity and w.l.o.g., we assume X has 0 marginal expectation; i.e.,
EX = 0. Rewriting this in the quadratic exponential family form (5.3), determines the
scaling constant c = −1/2. The relation to the GMLM parameters η,βk and Ωk, for
k = 1, . . . , r is

µy = Fy

r×
k=1

Ω−1
k βk, Ωk = Σ−1

k , (5.13)

where we used that η = 0 due to 0 = EX = EE[X | Y ] = EµY in combination with
EFY = 0. Additionally, all the Ωk’s are symmetric positive definite, because the Σk’s are.
This lead to another simplification since then T2 in (5.2) equals the identity. This also
means that the gradients of the log-likelihood ln in Theorem 6 are simpler. We obtain

g1(ηy) = E[X | Y = y] = µy,

G2(ηy) = g2(ηy) = E[X ◦ X | Y = y] ≡
1°

k=r

Σk + (vecµy)(vecµy)
T .
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In practice, we assume we have a random sample of n observations (Xi,Fyi) from the joint
distribution. We start the estimation process by demeaning them. Then, only the reduction
matrices βk and the scatter matrices Ωk need to be estimated. To solve the optimization
problem (5.12), with η = 0 we initialize the parameters using a simple heuristic approach.
First, we compute moment based mode-wise marginal covariance estimates ,Σk(X ) and,Σk(FY ) as

,Σk(X ) =
1

n

n∑
i=1

(Xi)(k)(Xi)
T
(k),

,Σk(FY ) =
1

n

n∑
i=1

(Fyi)(k)(Fyi)
T
(k).

From those we compute for every mode k = 1, . . . , r the first j = 1, . . . , qk eigenvectors
vj(,Σk(X )), vj(,Σk(FY )) and eigenvalues λj(,Σk(X )), λj(,Σk(X )) of the marginal covariance
estimates. We set

Uk = (v1(,Σ1(X )), . . . , vqk(
,Σqk(X ))),

Dk = diag(v1(,Σ1(X ))v1(,Σ1(FY )), . . . , vqk(
,Σqk(X ))vqk(

,Σk(FY ))),

Vk = (v1(,Σ1(FY ), . . . , vqk(
,Σqk(FY )).

The initial value of βk is ,β(0)
k = Uk

√
DkV

T
k , (5.14)

and the initial value of Ωk is set to the identity Ω
(0)
k = Ipk , for k = 1, . . . , r.

Given ,β1, . . . , ,βr, ,Ω1, . . . , ,Ωr, we take the gradient ∇βj
ln of the tensor normal log likeli-

hood ln in (5.11) applying Theorem 6 and keep all other parameters except βj fixed. Then,
∇βj

ln = 0 has the closed form solution

βT
j =

( n∑
i=1

(
Fyi×

k ̸=j

,Ω−1
k

,βk

)
(j)

(
Fyi×

k ̸=j

,βk

)T

(j)

)−1( n∑
i=1

(
Fyi×

k ̸=j

,βk

)
(j)

(Xi)
T
(j)

),Ωj .

(5.15)
Equating the partial gradient of the jth scatter matrix Ωj in Theorem 6 to zero ( ∇Ωj ln = 0)
gives a quadratic matrix equation. This is due to the dependence of µy on Ωj . In practice
though, it is faster, more stable, and equally accurate to use mode-wise covariance estimates
via the residuals ,Ri = Xi − ,µyi = Xi −Fyi

r×
k=1

,Ω−1
k

,βk. (5.16)

The estimates are computed via

Σ̃j =
n∑

i=1

( ,Ri)(j)( ,Ri)
T
(j),

where s̃Σ̃j = ,Ω−1
j . For scaling we use that the mean squared error has to be equal to the

trace of the covariance estimate,

1

n

n∑
i=1

⟨ ,Ri, ,Ri⟩ = tr
1°

k=r

,Ω−1
k =

rΠ
k=1

tr ,Ω−1
k = s̃r

rΠ
k=1

tr Σ̃k,
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so that

s̃ =

(( rΠ
k=1

tr Σ̃k

)−1 1

n

n∑
i=1

⟨ ,Ri, ,Ri⟩
)1/r

(5.17)

resulting in the estimates ,Ωj = (s̃Σ̃j)
−1. Estimation is then performed by updating the

estimates ,βj via (5.15) for j = 1, . . . , r, and then recompute the ,Ωj estimates simultaneously
keeping the ,βj ’s fixed. This procedure is repeated until convergence.

A technical detail for numerical stability is to ensure that the scaled values s̃Σ̃j , assumed
to be symmetric and positive definite, are well conditioned. Thus, we estimate the condition
number of s̃Σ̃j prior to computing the inverse. In case of ill- conditioning, we use the
regularized ,Ωj = (s̃Σ̃j + 0.2λ1(s̃Σ̃j)Ipj )

−1 instead, where λ1(s̃Σ̃j) is the first (maximum)
eigenvalue. Experiments showed that this regularization is usually only required in the first
few iterations.

Furthermore, if the parameter space follows a more general setting as in Theorem 9,
updating may produces estimates outside the parameter space. A simple and efficient
method is to project every updated estimate onto the corresponding manifold.

A standard method to compute the MLE of a Kronecker product is block-coordinate
descent, also referred to as the “flip-flop algorithm.” This algorithm was proposed indepen-
dently by Mardia and Goodall [MG93] and Dutilleul [Dut99] and was later called “flip-flop”
algorithm by Lu and Zimmerman [LZ05] for the computation of the maximum likelihood
estimators of the components of a separable covariance matrix. Manceur and Dutilleul
[MD13] extended the “flip-flop” algorithm for the computation of the MLE of the separable
covariance structure of a 3-way and 4-way normal distribution and obtained a lower bound
for the sample size required for its existence. The same issue was also studied by Drton,
Kuriki, and Hoff [DKH20] in the case of a two-way array (matrix). Our algorithm uses a
similar “flip-flop” approach by iteratively updating the βk’s and Ωk’s, one after the other.

5.2.1.1 Implementation in R

An by itself nice function is to compute an per-mode Kronecker decomposed covariance
estimate. It assumes an tensor valued data set X with the last axis indexing observations.
Based on Equation (5.16) with scaling (5.17) which is applicable in general (not only the
residuals as in the reference equations). The center argument allows to avoid the recentering
of an already centered argument.

1 mcov <- function(X, center = TRUE) {
2 dimX <- head(dim(X), -1)
3

4 if (center) {
5 X <- X - as.vector(rowMeans(X, dims = length(dimX)))
6 }
7

8 tr.Sigma <- prod(dimX) * mean(X^2)
9 lapply(seq_along(dimX), function(j) {

10 Sigma <- var(t(mat(X, j)))
11 (tr.Sigma / sum(diag(Sigma)))^(1 / length(dimX)) * Sigma
12 })
13 }
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Assuming the predictors Xi are provided in the form of an p1 × . . .× pr × n dimensional
array with the last axis of size n indexing the observations. The predictor functions Fyi are
passed as a q1 × . . .× qr × n dimensional array. The parameter proj.betas and proj.Omegas

are lists of functions which project their argument to the corresponding matrix manifold as
described in Sections 5.3.1 and 5.3.2. An implementation of GMLM for tensor normal data
is then;

1 gmlm.tensor.normal <- function(X, F, max.iter = 100,
2 proj.betas = vector("list", length(dim(X))),
3 proj.Omegas = vector("list", length(dim(X))),
4 cond.threshold = 25, eps = 1e-6
5 ) {
6 dimX <- head(dim(X), -1)
7 dimF <- head(dim(F), -1)
8 modes <- seq_along(dimX)
9

10 # Centering X ← X − EX and F ← F − EF
11 X <- X - as.vector(rowMeans(X, dims = length(dimX)))
12 F <- F - as.vector(rowMeans(F, dims = length(dimF)))
13

14 # initialize Σk = Ω−1
k = Ipk with log(det(Ω)) = 0 and βk’s as in (5.14)

15 Sigmas <- Map(diag, dimX)
16 Omegas <- Map(diag, dimX)
17 log.det.Omega <- 0
18 dirsX <- Map(function(Sigma) {
19 with(La.svd(Sigma, nu = 0), sqrt(d) * vt)
20 }, mcov(X, sample.axis, center = FALSE))
21 dirsF <- Map(function(Sigma) {
22 with(La.svd(Sigma, nu = 0), sqrt(d) * vt)
23 }, mcov(F, sample.axis, center = FALSE))
24 betas <- betas.init <- Map(function(dX, dF) {
25 s <- min(ncol(dX), nrow(dF))
26 crossprod(dX[1:s, , drop = FALSE], dF[1:s, , drop = FALSE])
27 }, dirsX, dirsF)
28

29 # loss (optim. objective, neg. log likelihood)
30 R <- X - mlm(F, Map(‘%*%‘, Sigmas, betas))
31 loss <- mean(R * mlm(R, Omegas)) - log.det.Omega
32

33 # Iterative block coordinate descent (flip-flop type)
34 for (iter in seq_len(max.iter)) {
35 # Update betas (5.15)
36 for (j in seq_along(betas)) {
37 FxB_j <- mlm(F, betas[-j], modes[-j])
38 FxSB_j <- mlm(FxB_j, Sigmas[-j], modes[-j])
39 betas[[j]] <- crossprod(Omegas [[j]], solve(
40 tcrossprod(mat(FxSB_j, j), mat(FxB_j, j)),
41 tcrossprod(mat(FxB_j, j), mat(X, j))
42 ))
43 # Project betas onto their manifold
44 if (is.function(proj_j <- proj.betas [[j]])) {
45 betas[[j]] <- proj_j(betas[[j]])
46 }
47 }
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48

49 # Update Omegas (with regularization if needed)
50 R <- X - mlm(F, Map(‘%*%‘, Sigmas, betas))
51 Sigmas <- mcov(R, center = FALSE)
52 for (j in seq_along(Sigmas)) {
53 min_max <- range(eigen(Sigmas [[j]], TRUE, TRUE)$values)
54 if (min_max [2] > cond.threshold * min_max [1]) {
55 diag(Sigmas [[j]]) <- diag(Sigmas [[j]]) + 0.2 * min_max [2]
56 }
57 Omegas [[j]] <- solve(Sigmas [[j]])
58 # Project Omegas onto their manifold
59 if (is.function(proj_j <- proj.Omegas [[j]])) {
60 Omegas [[j]] <- proj_j(Omegas [[j]])
61 Sigmas [[j]] <- solve(Omegas [[j]])
62 }
63 }
64

65 # Numerically more stable version for log(det(Ω))
66 log.det.Omega <- sum(mapply(function(Omega) {
67 sum(log(eigen(Omega, TRUE, TRUE)$values))
68 }, Omegas) / dimX)
69 # Update current loss
70 loss.last <- loss
71 loss <- mean(R * mlm(R, Omegas)) - log.det.Omega
72

73 # check break consition
74 if (abs(loss.last - loss) < eps * abs(loss.last)) {
75 break
76 }
77 }
78

79 betas
80 }

5.2.2 Ising Model

The Ising1 model [Len20; Isi25; Nis05] is a mathematical model originating in statistical
physics to study ferromagnetism in a thermodynamic setting. It describes magentic dipoles
(atomic “spins”) which can take two states (±1) while allowing two-way interactions be-
tween direct neighbours on a lattice, a discrete grid. The model assumes all elementary
magnets to be the same, which translates to all having the same coupling strength (two-
way interactions) governed by a single parameter relating to the temperature of the system.
Nowadays, the Ising model, in its general form, allows for different coupling strength for
every (symmetric) interaction as well as an external magnetic field acting on every magnetic
dipole separately. A modern review is given by Nguyen, Zecchina, and Berg [NZB17].

In statistics, the Ising model is used to model multivariate binary data. That is, the
states are 0, 1 instead of ±1. It is related to a multitude of other models; Graphical Models
and Markov Random Fields to describe conditional dependence [Lau96; WJ08; LR02], Potts

1Also known as the Lenz-Ising model as the physical assumptions of the model where developed by both
Lenz and Ising [Nis05]. Ising gave a closed form solution for the 1-dimensional lattice, that is, a linear
chain [Isi25].
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models [Bes74; CKG22] which generalize the Ising model to multiple states, the multivariate
Bernoulli distribution [Whi90; JKB97; DDW13] considering also interactions (tree-way and
higher), to give the most prominent.

The p-dimensional Ising model is a discrete probability distribution on the set of p-
dimensional binary vectors x ∈ {0, 1}p with pmf given by

Pγ(x) = p0(γ) exp(vech(xx
T )Tγ).

The scaling factor p0(γ) ∈ R+ ensures that Pγ is a pmf. It is equal to the probability of
the zero event P (X = 0) = p0(γ). More commonly known as the partition function, the
reciprocal of p0, is given by

p0(γ)
−1 =

∑
x∈{0,1}p

exp(vech(xxT )Tγ). (5.18)

By an abuse of notation, we let γjl denote the element of γ corresponding to xjxl in
vech(xxT )2. The “diagonal” parameter γjj expresses the conditional log odds of Xj = 1 |
X−j = 0, where the negative subscript in X−j describes the p−1 dimensional vector X with
the jth element removed. The off diagonal entries γjl, j ̸= l, are equal to the conditional
log odds of simultaneous occurrence Xj = 1, Xl = 1 | X−j,−l = 0. More precisely, the
conditional probabilities and the natural parameters are related via

γjj = log
Pγ(Xj = 1 | X−j = 0)

1− Pγ(Xj = 1 | X−j = 0)
,

γjl = log
1− Pγ(Xj = 1 | X−j = 0)Pγ(Xl = 1 | X−l = 0)

Pγ(Xj = 1 | X−j = 0)Pγ(Xl = 1 | X−l = 0)

Pγ(Xj = 1, Xl = 1 | X−j,−l = 0)

1− Pγ(Xj = 1, Xl = 1 | X−j,−l = 0)
.

(5.19)

Conditional Ising models, incorporating the information of covariates Y into the model,
were considered by Cheng et al. [CLW+14] and Bura et al. [BFG+22]. The direct way
is to parameterize γ = γy by the covariate Y = y to model a conditional distribution
Pγy(x | Y = y).

We extend the conditional pmf by allowing the binary variables to be tensor valued;
that is, we set x = vecX , with dimension p =

Πr
k=1 pk for X ∈ {0, 1}p1×···×pr . The

tensor structure of X is accommodated by assuming Kronecker product constraints to the
parameter vector γy in a similar fashion as for the tensor normal model. This means that
we compare the pmf Pγy(vecX|Y = y) with the quadratic exponential family (5.3) with
the natural parameters modeled by (5.6) and (5.7). A detail to be considered is that the
diagonal of (vecX )(vecX )T is equal to vecX . This gives the GMLM model as

Pγy(X | Y = y) = p0(γy) exp(vech((vecX )(vecX )T )Tγy)

= p0(γy) exp
(<

X ,Fy

r×
k=1

βk

>
+
<
X

r×
k=1

Ωk,X
>)

(5.20)

2Specifically, the element γjl of γ is a short hand for γι(j,l) with ι(j, l) = (min(j, l)− 1)(2p−min(j, l))/2+
max(j, l) mapping the matrix row index j and column index l to the corresponding half vectorization
indices ι(j, l).
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where we set η = 0 and T2 to the identity. This imposes an additional constraint to the
model, the reason is that the diagonal elements of Ω =

°1
k=r Ωk take the role of η, although

not fully. Having the diagonal of Ω and η handling the self interaction effects might lead to
interference in the optimization routine. Another approach would be to use the T2 matrix
to set the corresponding diagonal elements of Ω to zero and let η handle the self interaction
effect. All of those approaches, namely setting η = 0, keeping η or using T2, are theoretically
solid and compatible with Theorems 6, 9 and 10, assuming all axis dimensions pk are non-
degenerate, that is pk > 1 for all k = 1, . . . , r. Regardless, under our modeling choice the
relation between the natural parameters γy of the conditional Ising model and the GMLM
parameters βk and Ωk is

γy = DT
p vec(Ω+ diag(B vecFy)) = DT

p vec

(
1°

k=r

Ωk + diag

(
vec

(
Fy

r×
k=1

βk

)))
. (5.21)

In contract to the tensor normal GMLM, the matrices Ωk are only required to be sym-
metric. More specifically, we require Ωk, for k = 1, . . . , r, to be elements of an embedded
submanifold of Sympk×pk (see: Sections 5.3.1 and 5.3.2). The mode wise reduction matri-
ces βk are elements of an embedded submanifold of Rpk×qk . Common choices are listed in
Section 5.3.1.

To solve the optimization problem (5.12), given a data set (Xi, yi), for i = 1, . . . , n, we
use a variation of gradient descent.

5.2.2.1 Initial Values

The first step is to get reasonable starting values. Experiments showed that a good starting
value of βk, for k = 1, . . . , r, it to use the tensor normal estimates from Section 5.2.1,
considering Xi as continuous. For initial values of Ωk, a different approach is required.
Setting everything to the uninformed initial value, that is Ωk = 0 as this corresponds to
the conditional log odds to be 1 : 1 for every component and pairwaide interaction. This
is not possible, since 0 is a stationary point of the log-likelihood. This is directly observed
by taking a look at the partial gradients of the log-likelihood in Theorem 6. Instead, we
use a crude heuristic which threads every mode seperately and ignores any relation to the
covariates. It is computationaly cheap and better than any of the alternatives we considered.
For every k = 1, . . . , r, let the k’th mode second moment estimate be

,M2(k) =
pk
np

n∑
i=1

(Xi)(k)(Xi)
T
(k) (5.22)

which contains the k’th mode first moment estimate in its diagonal ,M1(k) = diag ,M2(k).
Considering every column of the matricized observation (Xi)(k) as a pk dimensional ob-
servation itself. The number of those artificially generated observations is n

Π
j ̸=k pj . Let

Zk denote the random variable those artificial observations are realization of. Then, we
can interpret the elements (,M1(k))j as the estimates of the probability P ((Zk)j = 1),
that is the marginal probability of the jth element of Zk being 1. Similar, for l ̸= j we
have (,M2(k))jl estimating P ((Zk)j = 1, (Zk)l = 1), the marginal probability of two-way
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interactions. Now, we set the diagonal elements of Ωk to zero. For the off diagonal el-
ements of Ωk, we equate the conditional probabilities P ((Zk)j = 1 | (Zk)−j = 0) and
P ((Zk)j = 1, (Zk)l = 1 | (Zk)−j,−l = 0) with the marginal probability estimates (,M1(k))j

and (,M2(k))jl, respectively. Use (5.19) then gives the initial estimates ,Ω(0)
k , with j ̸= l

component wise

(,Ω(0)
k )jj = 0, (,Ω(0)

k )jl = log
1− (,M1(k))j(,M1(k))l

(,M1(k))j(,M1(k))l

(,M2(k))jl

1− (,M2(k))jl
. (5.23)

5.2.2.2 Gradient Optimization

Given initial values, the gradients provided by Theorem 6 can be evaluated for the Ising
model. The first step therefore is to determine the values of the inverse link components
g1(γy) = E[X | Y = y] and G2(γy) = g2(γy) = E[X ◦ X | Y = y]. An immediate
simplification is that the first moment is a part of the second moment. Its values are
determined via vec(E[X | Y = y]) = diag(E[X ◦ X | Y = y](1,...,r)). This means only the
second moment needs to be computed, or estimated (see: Section 5.2.2.4) in the case of
slightly bigger p. For the Ising model, the conditional second moment with parameters γy

is given by the matricized relation

g2(γy)(1,...,r) = E[(vecX )(vecX )T | Y = y] = p0(γy)
∑

x∈{0,1}p
xxT exp(vech(xxT )Tγy).

(5.24)
The natural parameter γy is evaluated via (5.21) enabling us to compute the partial gradi-
ents of the log-likelihood ln (5.11) for the Ising model by Theorem 6 for the GMLM param-
eters βk and Ωk, k = 1, . . . , r, at the current iterate θ(I) = (β

(I)
1 , . . . ,β

(I)
r ,Ω

(I)
1 , . . . ,Ω

(I)
r ).

Using classic gradient ascent for maximizing the log-likelihood, we have to specify a learning
rate λ ∈ R+, usualy something like 10−3. The update rule is

θ(I+1) = θ(I) + λ∇θln(θ)
||
θ=θ(I) ,

which is iterated till convergence. In practice, iteration is performed until ether a maximum
number of iterations is exhausted and/or some break condition is satisfied. A proper choice
of the learning rate is needed as a too large learning rate λ causes instabilities, while a too
low learning rate requires an enormous amount of iterations. Generically, there are two
approach against the need to determine a proper learning rate. First, line search methods
determin an appropriate step size for every iteration. This works great if the evaluation of
the object function (the log-likelihood) is cheap. This is not the case in our setting, see
Section 5.2.2.4. The second approach is an adaptive learning rate. The basic idea is to track
specific statistics while optimizing and dynamically adapt the leaning rate via well tested
heuristics using the gathered knowledge from past iterations. We opted to use an adaptive
leaning rate approach, this not only removes the need to determine an appropriate leaning
rate, but also accelerates learning.

Our method of choise is RMSprop [Hin12] as outlined in Section 3.1.1 in the context of
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neural networks3. According to our experiments, RMSprop requires in the range of 50 till
1000 iterations till convergence while gradient ascent with a learning rate of 10−3 is in the
range of 1000 till 10000.

5.2.2.3 Small Data Sets

In case of a finite number of observations, specifically in data sets with a small number of
observations n, the situation where one components is always ether zero or one can occur.
Its also possible to observe two exclusive components. This situation of a “degenerate” data
set needs to be safeguarded against in practice. Working with parameters on a log-scale, this
gives estimates of ±∞. This is outside of the parameter space and breaks our optimization
algorithm.

The first situation where this needs to be addressed is in (5.23), where we set initial
estimates for Ωk. To avoid divition by zero as well as evaluating the log of zero, we
addapt (5.22), the mode wise moment estimates ,M2(k). A simple method is to replace
the “degenerate” components, that are entries with value 0 or 1, with the smallest positive
estimate of exactly one occurrence pk/np, or all but one occurrence 1− pk/np, respectively.

The same problem is present in gradient optimization. Therefore, before starting the
optimization, we detect degenerate combinations. We compute upper and lower bounds for
the “degenerate” element in the Kronecker product ,Ω =

°1
k=r

,Ωk. After every gradient
update, we check if any of the “degenerate” elements fall outside of the bounds. In that case,
we adjust all the elements of the Kronecker component estimates ,Ωk, corresponding to the
“degenerate” element of their Kronecker product, to fall inside the precomputed bounds.
While doing so, we try to alter every component as little as possible to ensure that the
non-degenerate elements in ,Ω, effected by this change due to its Kronecker structure, are
altered as little as possible. The exact details are technically cumbersome while providing
little insight.

5.2.2.4 Slightly Bigger Dimensions

A big challenge for the Ising model is its high computational complexity as it involves
summing over all binary vectors of length p =

Πr
k=1 pk in the partition function (5.18).

Computing the partition function exactly requires to sum all 2p binary vectors. For small
dimensions, say p ≈ 10, this is easily computed. Increasing the dimension beyond 20
becomes extremely expensive while it is impossible for dimension bigger than 30. Trying
to avoid the evaluation of the log-likelihood and only computing its partial gradients via
Theorem 6 does not resolve the issue. The gradients require the inverse link, in other words
the second moment (5.24), where, if dropping the scaling factor p0, still involves to sum 2p

summands. Basically, with our model, this means that the optimization of the Ising model
using exactly computed gradients is impossible for moderately sized problems.

For estimation of dimensions p bigger than 20, we use a Monte-Carlo method to estimate
the second moment (5.24), required to compute the partial gradients of the log-likelihood.

3The optimization algorithm RMSprop as described minimizes the objective. Therefore, we need to switch
the sign from − to + in the gradient update step for the maximization problem.
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Figure 5.2: Performance test for computing/estimating the second moment of the Ising
model of dimension p using ether the exact method or a Monte-Carlo (MC)
simulation.

Specifically, we use a Gibbs-Sampler to sample from the conditional distribution and approx-
imate the second moment in an importance sampling framework. This can be implemented
quite efficiently while the estimation accuracy for the second moment is evaluated exper-
imentally which seems to be very reliable. Simultaneously, we use the same approach to
estimate the partition function. This though, is in comparison inaccurate, and may only be
used to get a rough idea of the log-likelihood. Regardless, for our method, we only need the
gradient for optimization where appropriate break conditions, not based on the likelihood,
lead to a working method for MLE estimation.

5.2.2.5 Implementation in R

Here we provide a significantly simplified version of the Ising GMLM algorithm. A full
implementation is beyond the scope of this discussion. The simulations in Section 5.5.2 use
a complete implementation as described in Section 5.2.2 while the chess data example from
Section 5.6.2 uses an even different implementation which is capable of streaming data,
which is necessary for managing the gigantic amount of data involved.

With this in mind, we provide a pure R function to compute the second (uncentered)
moment M2(Γy) = g2(γy) from (5.24) of the Ising model. The given prameters are Γy =
vec(Ω+ diag(B vecFy)) as in (5.21).

1 ising.m2 <- function(Gamma) {
2 prob.accum <- m2.accum <- 0
3 bitmask <- bitwShiftL(1L, rev(seq_len(nrow(Gamma))) - 1)
4 for (i in seq.int(0, 2^nrow(Gamma) - 1)) {
5 x <- as.numeric(bitwAnd(i, bitmask) != 0L)
6 prob_i <- exp(sum(x * (Gamma %*% x)))
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7 prob.accum <- prob.accum + prob_i
8 m2.accum <- m2.accum + prob_i * outer(x, x)
9 }

10 list(m2 = m2.accum / prob.accum, log_p0 = -log(prob.accum))
11 }

The performance comparison in Figure 5.2 for the exact method uses the same base algo-
rithm but is implemented in C, which is magnitutes faster.

Next we give the simplified Ising GMLM method. It is only for matrix-valued X ∈
{0, 1}p1×p2 with very small p = p1p2 (see Section 5.2.2.4). The data is also assumed to be
non-degenerate (see Section 5.2.2.3). Finaly, we skip any optimization tricks. With all of
those assumptions and simplifications we get the following implementation.

1 gmlm.ising.simple <- function(X, F,
2 max.iter = 1000L, step.size = 1e-3, eps = 1e-8,
3 proj.betas = list(identity, identity),
4 proj.Omegas = list(identity, identity)
5 ) {
6 # Get problem dimensions
7 dimX <- dim(X)[1:2]
8 dimF <- dim(F)[1:2]
9 sample.size <- dim(X)[3]

10

11 # initialize β1,β2 as tensor normal estimates
12 fit_normal <- gmlm.tensor.normal(X, F, proj.betas = proj.betas)
13 beta_1 <- fit_normal$betas [[1]]
14 beta_2 <- fit_normal$betas [[2]]
15

16 init.Omega <- function(mode) {
17 n <- prod(dim(X)[-mode])
18 P2 <- tcrossprod(mat(X, mode)) / n
19 P2[P2 == 0] <- 1 / n
20 P2[P2 == n] <- (n - 1) / n
21 P1 <- diag(P2)
22 ‘P1^2‘ <- outer(P1, P1)
23

24 ‘diag <- ‘(log(((1 - ‘P1^2‘) / ‘P1^2‘) * P2 / (1 - P2)), 0)
25 }
26 Omega_1 <- init.Omega(1)
27 Omega_2 <- init.Omega(2)
28

29 # Initialize mean squared gradients
30 G2.beta_1 <- G2.beta_2 <- 0
31 G2.Omega_1 <- G2.Omega_2 <- 0
32

33 # Keep track of loss for break condition
34 loss <- Inf
35

36 # Iterate till a break condition triggers or till max. nr. of iterations
37 for (iter in seq_len(max.iter)) {
38

39 Omega <- do.call(kronecker, rev(Omegas))
40 G.beta_1 <- G.beta_2 <- 0
41 R2 <- 0 # second order residual accumulator
42 loss.last <- loss
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43 loss <- 0 # negative log-likelihood
44

45 for (i in seq_len(sample.size)) {
46 params_i <- Omega + diag(as.vector(mlm(F[, , i], betas)))
47 ising_i <- ising.m2(params_i)
48

49 # accumulate loss
50 vecX_i <- as.vector(X[, , i])
51 loss <- loss - sum(vecX_i * (params_i %*% vecX_i)) + ising_i$log_p0
52

53 R2_i <- tcrossprod(vecX_i) - ising_i$m2
54 R1_i <- array(diag(R2_i), dimX)
55

56 G.beta_1 <- G.beta_1 + tcrossprod(R1_i, F[, , i] %*% t(betas [[2]]))
57 G.beta_2 <- G.beta_2 + crossprod(R1_i, betas [[1]] %*% F[, , i])
58

59 R2 <- R2 + as.vector(R2_i)
60 }
61

62 # check break conditions
63 if (abs(loss.last - loss) < eps * loss.last) { break }
64

65 K.R2 <- kronperm(R2, dims = c(dimX, dimX))
66 G.Omega_1 <- as.vector(K.R2 %*% as.vector(Omega_2))
67 G.Omega_2 <- as.vector(as.vector(Omega_1) %*% K.R2)
68

69 # Accumulate root mean squared gradiends
70 G2.beta_1 <- 0.9 * G2.beta_1 + 0.1 * G.beta_1 * G.beta_1
71 G2.beta_2 <- 0.9 * G2.beta_2 + 0.1 * G.beta_2 * G.beta_2
72 G2.Omega_1 <- 0.9 * G2.Omega_1 + 0.1 * G.Omega_1 * G.Omega_1
73 G2.Omega_2 <- 0.9 * G2.Omega_2 + 0.1 * G.Omega_2 * G.Omega_2
74

75 beta_1 <- beta_1 + step.size / (sqrt(G2.beta_1) + eps) * G.beta_1
76 beta_2 <- beta_2 + step.size / (sqrt(G2.beta_2) + eps) * G.beta_2
77 Omega_1 <- Omega_1 + step.size / (sqrt(G2.Omega_1) + eps) * G.Omega_1
78 Omega_2 <- Omega_2 + step.size / (sqrt(G2.Omega_2) + eps) * G.Omega_2
79

80 # Project parameters onto manifold
81 beta_1 <- proj.betas [[1]](beta_1)
82 beta_2 <- proj.betas [[2]](beta_2)
83 Omega_1 <- proj.Omegas [[1]](Omega_1)
84 Omega_2 <- proj.Omegas [[2]](Omega_2)
85 }
86

87 list(beta_1, beta_2)
88 }

5.3 Manifolds

Theorem 5 identifies the sufficient reduction for the regression of Y on X in the population.
Any estimation of the sufficient reduction requires application of some optimality criterion.
As we operate within the framework of the exponential family, we opted for maximum
likelihood estimation (MLE). For the unconstrained problem, where the parameters are
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simply B and Ω in (5.4), maximizing the likelihood of X | Y is straightforward and yields
well-defined MLEs of both parameters. Our setting, though, requires the constrained opti-
mization of the X | Y likelihood subject to B =

°1
j=r βj and Ω =

°1
j=r Ωj . Theorems 8

and 9 provide the setting for which the MLE of the constrained parameter θ is well-defined,
which in turn leads to the derivation of its asymptotic normality.

The main problem in obtaining asymptotic results for the MLE of the constrained pa-
rameter θ = (η, vecB, vechΩ) stems from the nature of the constraint. We assumed that
B =

°1
k=r βk, where the parameter B is identifiable. This means that different values of

B lead to different densities fθ(X | Y = y), a basic property needed to ensure consistency
of parameter estimates, which in turn is needed for asymptotic normality. On the other
hand, the components βj , j = 1, . . . , r, are not identifiable, which is a direct consequence
of the equality β2⊗β1 = (cβ2)⊗ (c−1β1) for every c ̸= 0. This is the reason we formulated
Θ as a constrained parameter space instead of parameterizing the densities of X | Y with
respect to the components β1, . . . ,βr. The same is true for Ω =

°1
k=r Ωk.

In addition to identifiable parameters, asymptotic normality obtained in Theorem 10 re-
quires differentiation. Therefore, the space itself needs to admit defining differentiation,
which is usually a vector space. This is too strong an assumption for our purposes. To
weaken the vector space assumption we consider smooth manifolds. The latter are spaces
which look like Euclidean spaces locally and allow the notion of differentiation. The more
general topological manifolds are too weak for differentiation. To make matters worse, a
smooth manifold only allows first derivatives. Without going into details, the solution is a
Riemannian manifold. Similar to an abstract smooth manifold, Riemannian manifolds are
detached from our usual intuition as well as complicated to handle in an already complicated
setting. This is where an embedded (sub)manifold comes to the rescue. Simply speaking,
an embedded manifold is a manifold which is a subset of a manifold from which it inherits
its properties. If a manifold is embedded in a Euclidean space, almost all the complication
of the abstract manifold theory simplifies drastically. Moreover, since a Euclidean space is
itself a Riemannian manifold, we inherit the means for higher derivatives. Finally, smooth
embedded submanifold structure for the parameter space maintains consistency with exist-
ing approaches and results for parameter sets with linear subspace structure. These reasons
justify the constraint that the parameter space Θ be an smooth embedded submanifold in
an open subset Ξ of a Euclidean space.

Now, we directly define a smooth manifold embedded in Rp without any detours to the
more generel theory. See for example Lee [Lee12; Lee18], Absil, Mahony, and Sepulchre
[AMS08], and Kaltenbäck [Kal21] among others.

Definition 10 (Manifolds). A set A ⊆ Rp is an embedded smooth manifold of dimension d
if for every x ∈ A there exists a smooth4 bi-continuous map φ : U ∩A → V , called a chart,
with x ∈ U ⊆ Rp open and V ⊆ Rd open.

We also need the concept of a tangent space to formulate asymptotic normality in a way
which is independent of a particular coordinate representation. Intuitively, the tangent
space at a point x ∈ A of the manifold A is the hyperspace of all velocity vectors ∇γ(0)T

of any curve γ : (−1, 1) → A passing through x = γ(0), see Figure 5.3. Locally, at
4Here smooth means infinitely differentiable or C∞.
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TxA

∇γ1(0)
T

∇γ2(0)
T

x

Figure 5.3: Visualization of the tangent space TxA at x of the torus A. The torus A is
a 2-dimensional embedded manifold in R3. The tangent space TxA ⊂ R3 is a
2-dimensional hyperplane visualized with its origin 0 shifted to x. Moreover,
two curves γ1, γ2 on the torus are drawn with x = γ1(0) = γ2(0). The curve
velocity vectors ∇γ1(0)

T and ∇γ2(0)
T are drawn as tangent vectors with root

x.

x = γ(0) with a chart φ we can written γ(t) = φ−1(φ(γ(t))) which gives that span∇γ(0)T ⊆
span∇φ−1(φ(x))T . Taking the union over all smooth curves through x gives equality. The
following definition leverages the simplified setup of smooth manifolds in Euclidean space.

Definition 11 (Tangent Space). Let A ⊆ Rp be an embedded smooth manifold and x ∈ A.
The tangent space at x of A is defined as

TxA = span∇φ−1(φ(x))T

for any chart φ with x in the pre-image of φ.

Definition 11 is consistent since it can be shown that two different charts at the same
point have identical span.

The Submersion Theorem is a very powerfull tool to determin if a particular set is a
manifold (provided without proof). For our use the most interesting case is if A is a
Euclidean space, like Rp or Rp×q.

Theorem 7 (Submersion Theorem, [AMS08, Prop 3.3.3]). Let f : A → B be a smooth
function between manifolds A,B with dim(M) > dim(N ). If y ∈ B is a point such that for
all x ∈ f−1(y) ⊆ A the differential df(x) has full rank, then f−1(y) is a closed embedded
submanifold of dimension dim(A)− dim(B).

Not directly related to manifolds in general but needed in Section 5.3.2 is the concept
of a spherical set, which is a set A, on which the Frobenius norm is constant. That is,
∥ . ∥F : A → R is constant. Another set property is to be a cone, denoting a scale invariant
set A, that is A = {cA : A ∈ A} for all c > 0.
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5.3.1 Matrix Manifolds

A special kind of manifolds are the matrix manifolds, which are submanifold of Rp×q. A good
reference for this kind of manifolds in [AMS08]. Here we introduce some common matrix
manifolds which are usefill as building blocks for the Kronecker Manifolds of Section 5.3.2.

The noncompact Stiefel manifold is the set of all full column rank matrices

Rp×q
∗ = {A ∈ Rp×q : det(ATA) ̸= 0}

which is a open subset of Rp×q. This is a generalization of the general linear group, as in
the case of square matrices (p = q) they are identical Rp×q

∗ ≃ GLp(R). To see why Rp×q
∗ is

open, consider the smooth function f : A ,→ det(ATA), then Rp×q
∗ = f−1(0)c where f−1(0)

is closed as preimage under a continuous function. Its dimension is pq as open subset of a pq
dimensional manifold, moreover it is also a cone because scaling a matrix with a non-zero
constant does not change its rank.

Another simple matrix manifold is the set of symmetric matrices

Symp×p = {A ∈ Rp×p : AT = A}
which is a closed convex cone in Rp×p. A well known and widely used matrix manifold in
statistics is the Stiefel manifold for p ≥ q given by

Stp×q = {A ∈ Rp×q : ATA = Iq}
which is compact and spherical with dimension pq− 1

2q(q+1). The Stiefel manifold contains
the semiorthogonal matrices. For q = 1, the Stiefel manifold is identical to the hypersphere
Stp×1 ≃ Sp−1 while in the other extreme where p = q the Stiefel manifold is the special linear
group Stp×p ≃ SLp(R). To see why the Stiefel manifold is actually a submanifold of Rp×q,
consider the function f : Rp×q → Symq×q : A ,→ ATA−Iq. The Stiefel manifold is then the
preimage f−1(0p×p). In order to apply Theorem 7, we need to show that 0q×q is a regular
point of f , that is Df(A) has full rank ∀A ∈ f−1(0q×q) = Stp×q. To show that Df(A) has
full rank, we show that ∀C ∈ Symq×q there exists a B ∈ TARp×q such that the directional
derivatives at A in direction B is equal to C, that is C = Df(A)[B] = BTA + ATB.
Setting B = 1

2AC obtains Df(A)[B] = 1
2(C

TATA + ATAC) = C, which shows that
0q×q is a regular point of f . Now we can apply Theorem 7 which gives that Stp×q is
a closed submanifold of Rp×q of dimension dim(Stp×q) = dim(Rp×q) − dim(Symq×q) =
pq − q(q + 1)/2. The Stiefel manifold is also spherical because for every A ∈ Stp×q we get
∥A∥F =

√
tr(ATA) =

√
q.

We are also interested in the set of all matrices of fixed rank r,

Rp×q
rank=r = {A ∈ Rp×q : rankA = r}

which can be shown to be a smooth embedded submanifold of dimension dim(Rp×q
rank=r) =

r(p + q − r). Similarly to [UV20, Sec. 9.2.2], we sketch the derivation. Let B ⊆ Rp×q
rank=r

be the set of matrices where the left upper r × r block is invertible. Then, A ∈ B can be
written as a block matrix

A =

(
B C
C E

)
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A has rank r if and only if the Schur complement f(A) = E −DB−1C of the block D is
zero. Then f−1(0) is an embedded submanifold by Theorem 7 of dimension pq−(p−r)(q−r).
Now, as every rank r matrix contains a invertible r × r submatrix we split the space into
matrices where the same submatrix is invertible. For every such set we can permute rows
and columns mapping the invertible submatrix to the left upper r × r block. For the
complete set we construct an atlas from the atlas of f−1(0) by concatenating the row and
column mappings with the charts of f−1(0).

Another important matrix manifold is comprised of the symmetric positive definite (SPD)
matrices

Symp×p
++ = {A ∈ Symp×p : xTAx > 0 ∀x ∈ Rp

∗}.
The manifold structure of the SPD matrices is based on the smooth and bijective relation
between the SPD matrices and their Cholesky decomposition [Lin19]. The Cholesky de-
composition of a SPD matrix A is A = LLT where L is a lower triangular matrix with
positive diagonal entries. The Cholesky decomposition of a SPD matrix is unique, which
gives a bijection A ,→ L which is also smooth. As such the SPD matrices are an embed-
ded submanifold if the set of lower triangular matrices is an embedded manifold. This is
certainly the case as the lower triangular matrices are simply a hyperplane. The subset
of matrices with positive diagonal elements is an open subset in the hyperplane of lower
triangular matrices, which makes it an embedded submanifold.

An overview of the discussed, and some additional embedded matrix manifolds, is given
in Table 5.1.

Remark 21. The Grassmann Manifold of q dimensional subspaces in Rp is not listed in
Table 5.1 since it is not embedded in Rp×q.

5.3.2 Kronecker Product Manifolds

As a basis to ensure that the constrained parameter space Θ is a manifold, which is a
requirement of Theorem 9, we need Theorem 8.

Theorem 8 (Kronecker Product Manifolds). Let A ⊆ Rp1×q1\{0},B ⊆ Rp2×q2\{0} be
smooth embedded submanifolds. Assume one of the following conditions holds.

- “sphere condition”: At least one of A or B is spherical and let d = dimA+ dimB.

- “cone condition”: Both A and B are cones and let d = dimA+ dimB− 1.

Then, {A⊗B : A ∈ A,B ∈ B} ⊂ Rp1p2×q1q2 is a smooth embedded d-manifold.

Proof. We start by considering the first case and assume that B is spherical with radius
1 w.l.o.g. We equip K = {A ⊗ B : A ∈ A,B ∈ B} ⊂ Rp1p2×q1q2 with the subspace
topology (see [Lee12; Kal21]). Define the hemispheres H+

i = {B ∈ B : (vecB)i > 0} and
H−

i = {B ∈ B : (vecB)i < 0} for i = 1, ..., p2q2. The hemispheres are an open cover of B
with respect to the subspace topology. Define for every H±

i , where ± is a placeholder for
ether + or −, the function

fH±
i
: A×H±

i → Rp1p2×q1q2 : (A,B) ,→ A⊗B
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Symbol Description C S
Rp×q All matrices of dimension p× q ✓ ✗

Dim: pq

Rp×q
∗ Full rank p× q matrices ✓ ✗

Dim: pq

Stp×q Stiefel Manifold, {U ∈ Rp×q : UTU = Iq} for q ≤ p ✗ ✓

Dim: pq − q(q + 1)/2

Sp−1 Unit sphere in Rp, special case Stp×1 of the Stiefel Manifold ✗ ✓

Dim: p− 1

O(p) Orthogonal Group, special case Stp×p of the Stiefel Manifold ✗ ✓

Dim: p(p− 1)/2

SO(p) Special Orthogonal Group {U ∈ O(p) : detU = 1} ✗ ✓

Dim: p(p− 1)/2

Rp×q
r Matrices of known rank r > 0, generalizes Rp×q

∗ ✓ ✗

Dim: r(p+ q − r)

Symmetric matrice ✓ ✗

Dim: p(p+ 1)/2

Symp×p
++ Symmetric Positive Definite matrices ✓ ✗

Dim: p(p+ 1)/2

Scaled Identity {aIp : a ∈ R+} ✓ ✗

Dim: 1

Symmetric r-band matrices (includes diagonal) ✓ ✗

{A ∈ Rp×p : A = AT ∧Aij = 0 ∀|i− j| > r}
Dim: (2p− r)(r + 1)/2

Auto correlation alike {A ∈ Rp×p : Aij = ρ|i−j|, ρ ∈ (0, 1)} ✗ ✗

Dim: 1

Table 5.1: Examples of embedded matrix manifolds. “Symbol” a (more or less) common
notation for the matrix manifold, if at all. “C” stands for cone, meaning it is
scale invariant. “S” means spherical, that is, constant Frobenius norm.
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which is smooth. With the spherical property of B the relation ∥A⊗B∥F = ∥A∥F for all
A⊗B ∈ K ensures that the function fH±

i
, constrained to its image, is bijective with inverse

function (identifying Rp×q with Rpq) given by

f−1

H±
i

:

((fH±
i
(A×H±

i ) → A×H±
i

C ,→
(
± ∥C∥F

∥R(C)ei∥2R(C)ei,± 1
∥C∥F ∥R(C)ei∥2R(C)R(C)Tei

)
where ± is + for a “positive” hemisphere H+

i and − otherwise, ei ∈ Rp2q2 is the ith
unit vector and R(C) is a “reshaping” permutation5 which acts on Kronecker products as
R(A ⊗ B) = (vecA)(vecB)T . This makes f−1

H±
i

a combination of smooth functions (0 is
excluded from A,B guarding against division by zero) and as such it is also smooth. This
ensures that fH±

i
: A×H±

i → fH±
i
(A×H±

i ) is a diffeomorphism.
Next, we construct an atlas6 for K which is equipped with the subspace topology. Let

(φj , Uj)j∈J be a atlas of A×B. Such an atlas exists and admits a unique smooth structure
as both A,B are embedded manifolds from which we take the product manifold. The images
of the coordinate domains fH(Uj) are open in K, since fH is a diffeomorphism, with the
corresponding coordinate maps

ϕH±
i ,j : fH±

i
(Uj) → φj(Uj) : C ,→ φj(f

−1

H±
i

(C)).

By construction the set {ϕH±
i ,j : i = 1, ..., p2q2,± ∈ {+,−}, j ∈ J} is an atlas if the charts

are compatible. This means we need to check if the transition maps are diffeomorphisms,
let (ϕH,j , Vj), (ϕ ~H,k

, Vk) be two arbitrary charts from our atlas, then the transition map
ϕ ~H,k

◦ ϕ−1
H,j : ϕ

−1
H,j(Vj ∩ Vk) → ϕ−1~H,k

(Vj ∩ Vk) has the form

ϕ ~H,k
◦ ϕ−1

H,j = φk ◦ f−1~H ◦ fH ◦ φ−1
j = φk ◦ (±id) ◦ φ−1

j

where ± depends on H, ~H being of the same “sign” and id is the identity. We conclude that
the charts are compatible, which makes the constructed set of charts an atlas. With that
we have shown the topological manifold K with the subspace topology admit a smooth atlas
that makes it an embedded smooth manifold with dimension equal to the dimension of the
product topology A×B; that is, d = dimA+ dimB.

It remains to show that the cone condition also admits a smooth manifold. K = {A⊗B :
A ∈ A,B ∈ ~B}, where ~B = {B ∈ B : ∥B∥F = 1}, holds if both A,B are cones. Since
g : B → R : B ,→ ∥B∥F is continuous on B with full rank 1 everywhere, ~B = g−1(1) is a
dimB − 1 dimensional embedded submanifold of B. An application of the spherical case
proves the cone case.

5Relating to K the operation R is basically its inverse as K(A ◦ B) = A ⊗ B with a mismatch in the
shapes only.

6A collection of charts {φi : i ∈ I} with index set I of a manifold A is called an atlas if the pre-images of
the charts φi cover the entire manifold A.
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Theorem 9 (Parameter Manifold). Let

KB =
{ 1°
k=r

βk : βk ∈ Bk

}
and KΩ =

{ 1°
k=r

Ωk : Ωk ∈ Ok

}
where Bk ⊆ Rpk×qk\{0} and Ok ⊆ Rpk×pk\{0} are smooth embedded manifolds which are
either spheres or cones, for k = 1, ..., r. Furthermore, let

CKΩ = {vechΩ : Ω ∈ KΩ ∧ (T2D
†
p)

†T2D
†
p vecΩ = vecΩ}

then the constrained parameter space Θ = Rp × KB × CKΩ ⊂ Rp(p+2q+3)/2 is a smooth
embedded manifold.

Proof. An application of Lemma 2 ensures that KB and KΩ are embedded submanifolds.
With T2 being a d × p(p + 1)/2 full rank matrix and the duplication matrix Dp is full

rank of dimension p(p+1)/2× p2 we have T2D
†
p to be d× p2 of full rank. This means that

P = (T2D
†
p)†T2D

†
p is a p2 × p2 projection of rank d and Ip2 − P is then a projection of

rank p2 − d. This leads to

CKΩ = {Ω ∈ KΩ : (Ip2 − P ) vecΩ = 0}.

To show that CKΩ is an embedded submanifold of KΩ we apply the “Constant-Rank Level
Set Theorem” Lee [Lee12, Thm 5.12] which states (slightly adapted) the following; Let A,
B be smooth manifolds and F : A → B a smooth map such that ∇aF has constant matrix
rank for all a ∈ A. Then, for every b ∈ F (A) ⊆ B, the preimage F−1({b}) is a smooth
embedded submanifold of A.

In our setting, we have F : KΩ → Rp2 defined as F (Ω) = (Ip2 − P ) vecΩ with gradient
∇ΩF = Ip2−P of constant rank. Therefore, F−1({0}) = CKΩ is an embedded submanifold
of KΩ.

Finally, the finite product manifold of embedded submanifolds is embedded in the finite
product space of their ambient spaces, that is Θ = Rp × KB × CKΩ ⊂ Rp ×Rp×q ×Rp×p is
embedded.

A powerful side effect of Theorem 9 is the modeling flexibinity it provides. For example,
we can perform low rank regression. Or, we may constrain two-way interactions between
direct axis neighbors by using band matrices for the Ωk’s, among others.

This flexibility derives from many different matrix manifolds that can be used as building
blocks Bk and Ok of the parameter space Θ in Theorem 9. A list of possible choices, among
others, is given in Table 5.1. As long as parameters in Θ are valid paramererization of a
density (or PMF) of (5.3) subject to (5.4) and (5.5), one may choose any of the manifolds
listed in Table 5.1 which are either cones or spherical. We also included an example which
is neither a sphere nor a cone. They may also be valid building blocks, but require more
work as they are not directly leading to a parameter manifold by Theorem 9. In case one
can show the resulting parameter space Θ is an embedded manifold, the asymptotic theory
of Section 5.4.1 is applicable.
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5.4 Statistical Properties

5.4.1 Asymptotic Consistency

Let Z be a random variable distributed according to a parameterized probability distribution
with density fθ0 ∈ {fθ : θ ∈ Θ} where Θ is a subset of a Euclidean space. We want to
estimate the parameter θ0 using n i.i.d. (independent and identically distributed) copies of
Z. We assume a known, real-valued and measurable function z ,→ mθ(z) for every θ ∈ Θ
and that θ0 is the unique maximizer of the map θ ,→ M(θ) = Emθ(Z). For the estimation
we maximize the empirical version

Mn(θ) =
1

n

n∑
i=1

mθ(Zi). (5.25)

An M-estimator ,θn = ,θn(Z1, ..., Zn) is a maximizer for the objective function Mn over the
parameter space Θ defined as ,θn = argmax

θ∈Θ
Mn(θ).

It is not necessary to have a perfect maximizer, as long as the objective has finite supremum,
it is sufficient to take an almost maximizer ,θn as defined in the following;

Definition 12 (weak and strong M-estimators). An estimator ,θn for the objective function
Mn in (5.25) with supθ∈ΘMn(θ) < ∞ such that

Mn(,θn) ≥ sup
θ∈Θ

Mn(θ)− oP (n
−1)

is called a strong M-estimator over Θ. Replacing oP (n
−1) by oP (1) gives a weak M-

estimator.

Theorem 10 (Asymptotic Normality). Assume Z = (X , Y ) satisfies model (5.3) subject to
(5.4) and (5.5) with true constrained parameter θ0 = (η0,B0,Ω0) ∈ Θ, where Θ is defined
in Theorem 9. Under the regularity Conditions 3-5 in the appendix, there exists a strong
M-estimator sequence ,θn deriving from ln in (5.11) over Θ. Furthermore, any strong M-
estimator ,θn converges in probability to the true parameter θ0 over Θ. That is, ,θn p−→ θ0.
Moreover, every strong M-estimator ,θn is asymptotically normal,

√
n(,θn − θ0)

d−→ Np(p+2q+3)/2(0,Σθ0)

with asymptotic variance-covariance structure Σθ0 given in (5.26).

Proof. The proof consists of three parts. First, we show the existence of a consistent strong
M-estimator by applying Theorem 12. Next, we apply Theorem 13 to obtain its asymptotic
normality. We conclude by computing the missing parts of the asymtotic covariance matrix
Σθ0 provided by Theorem 13.

We check whether the conditions of Theorem 12 are satisfied. On Ξ, the mapping ξ ,→
mξ(z) = mξ(X , y) = ⟨F (y)ξ, t(X )⟩ − b(F (y)ξ) is strictly concave for every z because
ξ ,→ F (y)ξ is linear and b is strictly convex by Condition 3. Since X | Y is distributed
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5 Generalized Multilinear Models

according to (5.3), the function M(ξ) = Emξ(Z) is well defined by Condition 4. Let
ξk = (vec ηk, vecBk, vechΩk), and fξk be the pdf of X | Y indexed by ξk, for k = 1, 2. If
ξ1 ̸= ξ2, then fξ1 ̸= fξ2 , which obtains that the true θ0 is a unique maximizer of θ0 ∈ Θ ⊆ Ξ
by applying van der Vaart [van98, Lemma 5.35]. Finally, under Condition 5, all assumptions
of Theorem 12 are fulfilled yielding the existence of an consistent strong M-estimator over
Θ ⊆ Ξ.

Next, let ,θn be a strong M-estimator on Θ ⊆ Ξ, whose existence and consistency was
shown in the previous step. Since z ,→ mξ(z) is measurable for all ξ ∈ Ξ, it is also measur-
able in a neighborhood of θ0. The differentiability of θ ,→ mθ(z) is stated in Condition 3.
For the Lipschitz condition, let K ⊆ Ξ be a compact neighborhood of θ0, which exists since
Ξ is open. Then,

|mθ1(z)−mθ2(z)| = |⟨t(X ),F (y)(θ1 − θ2)⟩ − b(F (z)θ1) + b(F (z)θ2)|
≤ (∥F (y)T t(X )∥2 + sup

θ∈K
∥∇b(F (y)θ)F (y)∥)∥θ1 − θ2∥2 =: u(z)∥θ1 − θ2∥2

with u(z) being measurable and square integrable derives from Condition 5. The existence
of a second-order Taylor expansion of θ ,→ M(θ) = Emθ(Z) in a neighborhood of θ0 holds
by Condition 5. Moreover, the Hessian Hθ0 is non-singular by the strict convexity of b
stated in Condition 3. Now, we can apply Theorem 13 to obtain the asymptotic normality
of

√
n(,θn − θ0) with variance-covariance structure

Σθ0 = Πθ0 E[∇mθ0(Z)(∇mθ0(Z))T ]Πθ0 (5.26)

where Πθ0 = Pθ0(P
T
θ0
Hθ0Pθ0)

−1P T
θ0

and Pθ0 is any p× dim(Θ) matrix such that it spans
the tangent space of Θ at θ0. That is, spanPθ0 = Tθ0Θ.

Finally, we compute a matrix Pθ0 such that spanPθ0 = Tθ0Θ for Θ = Rp×KB ×CKΩ as
in Theorem 9. Since the manifold Θ is a product manifold we get a block diagonal structure
for Pθ0 as

Pθ0 =

(Ip 0 0
0 PB0 0
0 0 PΩ0

)
where Ip is the identity matrix spanning the tangent space of Rp, which is identified with
Rp itself. The blocks PB0 and PΩ0 need to span the tangent spaces of KB and CKΩ,
respectively. Both KB and CKΩ are manifolds according to Theorem 8 under the cone
condition. The constraint manifold CKΩ is the intersection of KΩ with the span of the
projection (T2D

†
p)†T2D

†
p meaning that the differential vec dΩ on CKΩ fulfills vec dΩ =

(T2D
†
p)†T2D

†
p vec dΩ. Now, we can apply Lemma 2 for KB and KΩ which give

PB0 = Sp,q[Γβ1γβ1 , . . . ,Γβrγβr ],

PΩ0 = (T2D
†
p)

†T2D
†
pSp,p[ΓΩ1γΩ1 , . . . ,ΓΩrγΩr ]

where the matrices Sp,q, Γβj
, γβj

, ΓΩj and γΩj are described in Lemma 2 for the Kronecker
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5.4 Statistical Properties

manifolds KB and KΩ. Leading to

Pθ0 =

(Ip 0 0
0 Sp,q[Γβ1γβ1 , . . . ,Γβrγβr ] 0

0 0 (T2D
†
p)†T2D

†
pSp,p[ΓΩ1γΩ1 , . . . ,ΓΩrγΩr ]

) .

(5.27)

5.4.2 Asymptotic Normality

The following is a reformulation of Bura et al. [BDF+18, Lemma 2.3] which assumes Condi-
tion 2.2 to hold. The existence of a mapping in Condition 2.2 is not needed for Lemma 2.3.
It suffices that the restricted parameter space Θ is a subset of the unrestricted parameter
space Ξ, which is trivially satisfied in our setting. Under this, Theorem 11 follows directly
from Bura et al. [BDF+18, Lemma 2.3].

Theorem 11 (Existence of strong M-estimators on Subsets). Assume there exists a (weak
or strong) M-estimator ,ξn for Mn over Ξ, then there exists a strong M-estimator ,θn for Mn

over any non-empty Θ ⊆ Ξ.

Proof. Let ,ξn be a (weak/strong) M-estimator for the unconstrained problem. This gives
by definition, in any case, that

sup
ξ∈Ξ

Mn(ξ) ≤ Mn(,ξn) + oP (1).

Cause ∅ ̸= Θ ⊆ Ξ we have supθ∈ΘMn(θ) ≤ supξ∈ΞMn(ξ) and with Mn(ξ) < ∞ for any
ξ ∈ Ξ

P
(
sup
θ∈Θ

Mn(θ) < ∞
)
≥ P

(
sup
ξ∈Ξ

Mn(ξ) < ∞
)

n→∞−−−→ 1.

If supθ∈ΘMn(θ) < ∞, then, for any 0 < ϵn exists ,θn ∈ Θ such that supθ∈ΘMn(θ)− ϵn ≤
Mn(,θn). Therefore, we can choose ϵn ∈ o(n−1), which yields

P
(
Mn(,θn) ≥ sup

θ∈Θ
Mn(θ)− o(n−1)

)
≥ P

(
sup
θ∈Θ

Mn(θ) < ∞
)

n→∞−−−→ 1.

The last statement states

Mn(,θn) ≥ sup
θ∈Θ

Mn(θ)− oP (n
−1)

which is the definition of ,θn being a strong M-estimator over Θ.

Theorem 12 (Existence and Consistency of M-estimators on Subsets). Let Ξ be a convex
open subset of a Euclidean space and Θ ⊆ Ξ non-empty. Assume ξ ,→ mξ(z) is a strictly
concave function on Ξ for almost all z and z ,→ mξ(z) is measurable for all ξ ∈ Ξ. Let
M(ξ) = Emξ(Z) be a well defined function with a unique maximizer θ0 ∈ Θ ⊆ Ξ; that is,
M(θ0) > M(ξ) for all ξ ̸= θ0. Also, assume

E sup
ξ∈K

|mξ(Z)| < ∞,
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5 Generalized Multilinear Models

for every non-empty compact K ⊂ Ξ. Then, there exists a strong M-estimator ,θn of
Mn(θ) =

1
n

∑n
i=1mθ(Zi) over the subset Θ. Moreover, any strong M-estimator ,θn of Mn

over Θ converges in probability to θ0, that is ,θn p−→ θ0.

Proof. It follows the proof of Bura et al. [BDF+18, Proposition 2.4] with the same assump-
tions. The only exception is we only require Θ to be a subset of Ξ. This is accounted for
by replacing Lemma 2.3 in Bura et al. [BDF+18] with Theorem 11 to obtain the existence
of a strong M-estimator on Θ.

In the following we rewrite the log-likelihood (5.11) in a simpler form. This simplifies the
proof of Theorem 10 as well as provides the notation to express the regularity conditions
for Theorem 10 in a compact form.

Rewriting the first natural parameter component η1y defined in (5.4) gives

η1y = vec η+B vecFy = Ip vec η+((vecFy)
T ⊗Ip) vecB =

(
Ip (vecFy)

T ⊗ Ip
)( vec η

vecB

)
.

For the second natural parameter component η2, modeled in (5.5), we have

⟨η2,T2 vech((vecX )(vecX )T )⟩ = ⟨(T2D
†
p)

Tη2, vec(X ◦ X )⟩ = ⟨cΩ,X ◦ X⟩

which means that
c vecΩ = (T2D

†
p)

Tη2.

The inverse relation is

η2 = c((T2D
†
p)

†)T vecΩ = c((T2D
†
p)

†)TDp vechΩ,

describing the linear relation between η2 and vechΩ. This gives the following relation
between ηy = (η1y,η2) and ξ = (vec η, vecB, vechΩ) ∈ Ξ as

ηy =

(
Ip (vecFy)

T ⊗ Ip 0

0 0 c((T2D
†
p)†)TDp

)( vec η
vecB
vechΩ

) =: F (y)ξ (5.28)

where F (y) is a (p+d)×p(p+2q+3)/2 dimensional matrix valued function in y. Moreover,
for every y the matrix F (y) is of full rank p+ d.

The log-likelihood of model (5.1) for the unconstrained parameters ξ ∈ Ξ is

ln(ξ) =
1

n

n∑
i=1

(⟨t(X ),ηy⟩ − b(ηy)) =:
1

n

n∑
i=1

mξ(Zi)

where Zi = (Xi, Yi). Using (5.28) we can write

mξ(z) = ⟨t(X ),F (y)ξ⟩ − b(F (y)ξ).

The following are the regularity conditions for the log-likelihood required by Theorem 10.
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5.4 Statistical Properties

Condition 3. The mapping ξ ,→ mξ(z) is twice continuously differentiable for almost every
z and z ,→ mξ(z) is measurable. Moreover, η ,→ b(η) is strictly convex. Furthermore, for
every ~η holds P (F (Y )ξ = ~η) < 1.

Condition 4. It holds E ∥t(X )TF (Y )∥ < ∞ and E ∥t(X )TF (Y )∥2 < ∞.

Condition 5. The mapping η ,→ b(η) is twice continuously differentiable and for every
non-empty compact K ⊆ Ξ holds

E sup
ξ∈K

∥b(F (Y )ξ)∥ < ∞, E sup
ξ∈K

∥∇b(F (Y )ξ)TF (Y )∥2 < ∞,

E sup
ξ∈K

∥F (Y )T∇2b(F (Y )ξ)F (Y )∥ < ∞.

The following is a technical Lemma used in the proof of Theorem 10.

Lemma 2. Let Ak ⊆ Rpk×qk\{0} for k = 1, . . . , r be smooth embedded submanifolds as well
as ether a sphere or a cone. Then

K =
{ 1°
k=r

Ak : Ak ∈ Ak

}

is an embedded manifold in Rp×q for p =
Πr

k=1 pk and q =
Πr

k=1 qk. Furthermore, define
for j = 1, . . . , r the matrices

Γj =

1°
k=r

(Ipkqk if j = k else vecAk) =

j+1°
k=r

(vecAk)⊗ Ipjqj ⊗
1°

k=j−1

(vecAk) (5.29)

and let γj be pjqj × dj matrices with dj ≥ dimAj which span the tangent space TAjAj of A
at Aj ∈ Aj, that is span γj = TAjAj. Then, with the permutation matrix Sp,q defined in
(2.17), the pq ×∑r

k=1 dj dimensional matrix

PA = Sp,q [Γ1γ1,Γ2γ2, . . . ,Γrγr]

spans the tangent space TAK of K at A =
°1

k=r Ak ∈ K, in formula spanPA = TAK.

Proof. The statement that K is an embedded manifold follows via induction using Theo-
rem 8.

We compute the differential of the vectorized Kronecker product using Lemma 1 where
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5 Generalized Multilinear Models

Sp,q is the permutation (2.17) defined therein.

d vec
1°

k=r

Ak = vec
r∑

j=1

1°
k=r

(dAj if k = j else Ak)

= Sp,q vec
r∑

j=1

( r◦
k=1

(dAj if k = j else Ak)
)
= Sp,q

r∑
j=1

1°
k=r

(vec dAj if k = j else vecAk)

= Sp,q

r∑
j=1

( 1°
k=r

(Ipjqj if k = j else vecAk)
)
vec dAj = Sp,q

r∑
j=1

Γj vec dAj

= Sp,q[Γ1, . . . ,Γr]

(�vec dA1
...

vec dAr

)$
Due to the definition of the manifold this differential provides the gradient of a surjective
map into the manifold. The span of the gradient then spans the tangent space.

Now, we take a closer look at the differentials vec dAj for j = 1, . . . , r. Let φj be a chart
of Aj in a neighborhood of Aj . Then, Aj = φ−1

j (φj(Aj)) which gives

vec dAj = ∇φ−1
j (φj(Aj))

T vec dφj(Aj).

Therefore, for every matrix γj such that spanγj = TAjAj holds span∇φ−1
j (φj(Aj))

T =
spanγj by Definition 11 of the tangent space. We get

spanSp,q[Γ1, . . . ,Γr]

(�vec dA1
...

vec dAr

)$ = spanSp,q[Γ1γ1, . . . ,Γrγr] = spanPA

which concludes the proof.

Now, we are prepared to present the main result of this section. In combination with
Theorem 9, this Theorem establishes the asymptotic normality of the GMLM estimate,B =

°1
k=r

,βk of the vectorized reduction matrix B in Theorem 5, our primary inference
objective.

Theorem 13 (Asymptotic Normality for M-estimators on Manifolds). Let Θ ⊆ Rp be a
smooth embedded manifold. For each θ in a neighborhood in Rp of the true parameter θ0 ∈ Θ
let z ,→ mθ(z) be measurable and θ ,→ mθ(z) be differentiable at θ0 for almost all z. Assume
also that there exists a measurable function u such that E[u(Z)2] < ∞, and for almost all z
as well as all θ1,θ2 in a neighborhood of θ0 such that

|mθ1(z)−mθ2(z)| ≤ u(z)∥θ1 − θ2∥2.

Moreover, assume that θ ,→ E[mθ(Z)] admits a second-order Taylor expansion at θ0 in a
neighborhood of θ0 in Rp with a non-singular Hessian Hθ0 = ∇2

θ E[mθ(Z)]|θ=θ0 ∈ Rp×p.
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5.4 Statistical Properties

If ,θn is a strong M-estimator of θ0 in Θ, then ,θn is asymptotically normal
√
n(,θn − θ0)

d−→ Np(0,Πθ0 E[∇θmθ0(Z)(∇θmθ0(Z))T ]Πθ0)

where Πθ0 = Pθ0(P
T
θ0
Hθ0Pθ0)

†P T
θ0

and Pθ0 is any matrix whose span is the tangent space
Tθ0Θ of Θ at θ0.

Proof. Let φ : U → φ(U) be a coordinate chart7 with θ0 ∈ U ⊆ Θ. As φ is continuous we
get with the continuous mapping theorem on metric spaces van der Vaart [van98, Thm 18.11]
that φ(,θn) p−→ φ(θ0) which implies P (φ(,θn) ∈ φ(U))

n→∞−−−→ 1.
The next step is to apply van der Vaart [van98, Thm 5.23] to ,sn = φ(,θn). Therefore,

assume that ,sn ∈ φ(U). Denote with s = φ(θ) ∈ φ(U) ⊆ Rd the coordinates of the
parameter θ ∈ U ⊆ Θ of the d = dim(Θ) dimensional manifold Θ ⊆ Rp. With φ : U → φ(U)
being bijective, we can express mθ in terms of s = φ(θ) for every θ ∈ U as mθ = mφ−1(s).
Furthermore, denote

M(θ) = E[mθ(Z)] and Mφ(s) = E[mφ−1(s)(Z)] = M(φ−1(s)).

U
θ0

Θ ⊆ Rp

s0

ϕ(U)

ϕ(U) ⊆ Rd

ϕ

ϕ−1

RM Mϕ

Figure 5.4: Depiction of the notation used in the proof of Theorem 13. Example with p = 3
and d = dim(Θ) = 2.

By assumption, the function M(θ) is twice continuously differentiable in an neighbor-
hood8 of θ0. W.l.o.g. we can assume that U is contained in that neighborhood. Then,
using the chain rule, we get the gradient of Mφ at s0 to be 0 by

∇Mφ(s0) = ∇φ−1(s0)∇M(φ−1(s0)) = ∇φ−1(s0)∇M(θ0) = ∇φ−1(s0)0 = 0

because θ0 = φ−1(s0) is a maximizer of M . For the second-derivative, evaluated at s0 =
φ(θ0), we have

∇2Mφ(s0) = ∇φ−1(s0)∇2M(φ−1(s0))∇φ−1(s0)
T = ∇φ−1(s0)Hθ0∇φ−1(s0)

T

7By Definition 10, the chart φ : U → φ(U) is bi-continuous, is infinitely often continuously differentiable,
and has a continuously differentiable inverse φ−1 : φ(U) → U . Furthermore, the domain U is open
according to the trace topology on Θ, that means that their exists an open set O ⊆ Rp such that
U = Θ ∩O.

8A set N is called a neighborhood of u if there exists an open set O such that u ∈ O ⊆ N .
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using ∇Mφ(s0) = 0. This gives the second-order Taylor expansion of Mφ at s0 as

Mφ(s) = Mφ(s0) +
1

2
(s− s0)

T∇2Mφ(s0)(s− s0) +O(∥s− s0∥3)

We also need to check the local Lipschitz condition of mφ−1(s). Therefore, let Vϵ(s0) =

{s ∈ Rd : ∥s − s0∥ < ϵ} be the open ϵ-ball with center s0. Since φ(U) contains s0, and
is open in Rd, there exists an ϵ > 0 such that Vϵ(s0) ⊆ φ(U). Then, the closed ϵ/2 ball
V ϵ/2(s0) is a neighborhood of s0 and the supremum sups∈V ϵ/2(s0)

∥∇φ−1(s)∥ < ∞ due to

the continuouty of ∇φ−1 on φ(U) with V ϵ/2(s0) ⊂ Vϵ(s0) ⊆ φ(U). Then, for almost every
z and every s1 = φ(θ1), s2 = φ(θ2) ∈ V ϵ/2(s0) holds

|mφ−1(s1)(z)−mφ−1(s2)(z)| = |mθ1(z)−mθ2(z)|
(a)

≤ u(z)∥θ1−θ2∥ = u(z)∥φ−1(s1)−φ−1(s2)∥
(b)

≤ u(z) sup
s∈V ϵ/2(s0)

∥∇φ−1(s)∥∥s1 − s2∥ =: v(z)∥s1 − s2∥.

Here, (a) holds by assumption and (b) is a result of the mean value theorem. Now, v(z) is
measurable and square integrable as a scaled version of u(z). Finally, with φ being one-to-
one, we get that ,sn = φ(,θn) is a strong M-estimator for s0 = φ(θ0) of the objective Mφ.
Now, we apply van der Vaart [van98, Thm 5.23] to get the asymptotic normality of ,sn as

√
n(,sn − s0)

d−→ Nd(0,Σs0)

where the d× d variance-covariance matrix Σs0 is given by

Σs0 = (∇2Mφ(s0))
−1 E[∇smφ−1(s0)(Z)(∇smφ−1(s0)(Z))T ](∇2Mφ(s0))

−1.

An application of the delta method yields

√
n(,θn − θ0) =

√
n(φ−1(,sn)− φ−1(s0))

d−→ Np(0,∇φ−1(s0)
TΣs0∇φ−1(s0)).

We continue by reexpressing the p× p asymtotic variance-covariance matrix of ,θn in terms
of θ0 instead of s0 = φ(θ0). Therefore, let Φθ0 = ∇φ−1(φ(θ0))

T = ∇φ−1(s0)
T and observe

that for all s ∈ φ(U), the gradient of s ,→ mφ−1(s)(z) evaluated at s0 = φ(θ0) has the form

∇smφ−1(s0)(z) = ∇φ−1(s0)∇θmθ0(z) = ΦT
θ0∇θmθ0(z).

Then

∇φ−1(s0)
TΣs0∇φ−1(s0)

= ∇φ−1(s0)
T (∇2Mφ(s0))

−1 E[∇mφ−1(s0)(Z)(∇mφ−1(s0)(Z))T ](∇2Mφ(s0))
−1∇φ−1(s0)

= Φθ0(Φ
T
θ0Hθ0Φθ0)

−1ΦT
θ0 E[∇θmθ0(Z)(∇θmθ0(Z))T ]Φθ0(Φ

T
θ0Hθ0Φθ0)

−1ΦT
θ0

= Πθ0 E[∇θmθ0(Z)(∇θmθ0(Z))T ]Πθ0
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where the last equality holds by spanΦθ0 = Tθ0Θ by Definition 11 of the tangent space
Tθ0Θ.

It remains to show that Πθ0 = Pθ0(P
T
θ0
Hθ0Pθ0)

†P T
θ0

for any p× k matrix Pθ0 such that
k ≥ d and spanPθ0 = Tθ0Θ. This also ensures that the final result is independent of the
chosen chart φ, since the tangent space does not depend on a specific chart. Therefore, let
Φθ0 = QR and Pθ0 = ~Q ~R be their thin QR decompositions, respectively. Both Q, ~Q have
dimension p× d With Q being semi-orthogonal, R is invertible of dimension d× d while ~R
is a d × k full row-rank matrix. With Q being semi-orthogonal the p × p matrix QQT is
an orthogonal projection onto spanQ = spanPθ0 = Tθ0Θ. This allows to express Pθ0 in
terms of Q as

Pθ0 = QQTPθ0 = QQT ~Q ~R =: QM .

From spanQ = spanPθ0 follows that the d× k matrix M is also of full row-rank. We get
MM † = Id = RR−1 as a property of the Moore-Penrose pseudo inverse with M being
of full row-rank. Another property of the pseudo inverse is that for matrices A,B, where
A has full column-rank and B has full row-rank, holds (AB)† = B†A†. This enables the
computation

Pθ0(P
T
θ0Hθ0Pθ0)

†P T
θ0 = QMM †(QTHθ0Q)−1(MM †)TQT

= QRR−1(QTHθ0Q)−1(RR−1)TQT = Φθ0(Φ
T
θ0Hθ0Φθ0)

−1ΦT
θ0 = Πθ0 .

Remark 22. Theorem 13 has as special case Theorem 5.23 in van der Vaart [van98], when Θ
is an open subset of a Euclidean space, which is the simplest form of an embedded manifold.

5.5 Simulations

In this section we report simulation results for the tensor normal and the Ising model where
different aspects of the GMLM model are compared against other methods. The comparison
methods are Tensor Sliced Inverse Regression (TSIR) [DC15], MGCCA [CKT21; GGL+24]
and the Tucker decomposition that is a higher-order form of principal component analysis
(HOPCA) Kolda and Bader [KB09], for both continuous and binary data. For the latter,
the binary values are treated as continuous. As a base line we also include classic PCA on
vectorized observations. In case of the Ising model, we also compare with LPCA (Logistic
PCA) and CLPCA (Convex Logistic PCA), both introduced in Landgraf and Lee [LL20]. All
experiments are performed at sample size n = 100, 200, 300, 500 and 750. Every experiment
is repeated 100 times.

We are interested in the quality of the estimate of the true sufficient reduction R(X ) from
Theorem 5. Therefore, we compare with the true vectorized reduction matrix B =

°1
k=r βk,

as it is compatible with any linear reduction method. The distance d(B, ,B) between B ∈
Rp×q and an estimate ,B ∈ Rp×q̃ is the subspace distance which is proportional to

d(B, ,B) ∝ ∥B(BTB)†BT − ,B( ,BT ,B)† ,BT ∥F ,
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the Frobenius norm of the difference between the projections onto the span of B and ,B. The
proportionality constant9 of d(B, ,B) ensures that the subspace distance is in the interval
[0, 1]. A distance of zero implies space overlap, a distance of one means that the subspaces
are orthogonal.

5.5.1 Tensor Normal

We generate a random sample yi, i = 1, . . . , n, from the standard normal distribution. We
then draw i.i.d. samples Xi for i = 1, ..., n from the conditional tensor normal distribution
of X | Y = yi. The conditional distribution X | Y = yi depends on the choice of the
GMLM parameters η, β1, ...,βr, Ω1, ...,Ωr, and the function Fy of y. In all experiments
we set η = 0. The other parameters and Fy are described per experiment. With the
true GMLM parameters and Fy given, we compute the conditional tensor normal mean
µy = Fy×r

k=1Ω
−1
k βk and covariances Σk = Ω−1

k as in (5.13).
We consider the following settings:

1a) X is a three-way (r = 3) array of dimension 2×3×5, and Fy ≡ y is a 1×1×1 tensor.
The true βk’s are all equal to e1 ∈ Rpk , the first unit vector, for k ∈ {1, 2, 3}. The
matrices Ωk = AR(0.5) follow an auto-regression like structure. That is, the elements
are given by (Ωk)ij = 0.5|i−j|.

1b) X is a three-way (r = 3) array of dimension 2×3×5, and relates to the response y via
a qubic polynomial. This is modeled via Fy of dimension 2×2×2 by the twice iterated
outer product of the vector (1, y). Element wise this reads (Fy)ijk = yi+j+k−3. All
βk’s are set to (e1, e2) ∈ Rpk×2 with ei the ith unit vector and the Ωk’s are AR(0.5).

1c) Same as 1b), except that the GMLM parameters βk are rank 1 given by

β1 =

(
1 −1
−1 1

)
, β2 =

( 1 −1
−1 1
1 −1

) , β3 =

(����
1 −1
−1 1
1 −1
−1 1
1 −1

)$$$$ .

1d) Same as 1b), but the true Ωk is tri-diagonal, for k = 1, 2, 3. Their elements are given
by (Ωk)ij = δ0,|i−j| + 0.5δ1,|i−j| with δi,j being the Kronecker delta.

1e) For the misspecification model we let X | Y be multivariate but not tensor normal.
Let X be a 5× 5 random matrix with normal entries, Y univariate standard normal
and fy a 4 dimensional vector given by fy = (1, sin(y), cos(y), sin(y) cos(y)). The true
vectorized reduction matrix B is 25×4 consisting of the first 4 columns of the identity;
i.e., Bij = δij . The variance-covariance matrix Σ has elements Σij = 0.5|i−j|. Both,
B and Ω = Σ−1 violate the Kronecker product assumptions (5.6) and (5.7) of the
GMLM model. Then, we set

vecX | (Y = y) = Bfy +N25(0,Σ).

9Depends on row dimension p and the ranks of B and .B given by (min(rankB + rank .B, 2p− (rankB +

rank .B)))−1/2.
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5.5 Simulations

Furthermore, we fit the model with the wrong “known” function Fy. We set Fy to be
a 2× 2 matrix with (Fy)ij = yi+j−2, i, j = 1, 2.

The final tensor normal experiment 1e) is a misspecified model to explore the robustness
of our approach. The true model does not have a Kronecker structure and the “known”
function Fy of y is misspecified as well.

The results are visualized in Figure 5.5. Simulation 1a), given a 1D linear relation between
the response Y and X , TSIR and GMLM are equivalent. This is expected as Ding and Cook
[DC15] already established that TSIR gives the MLE estimate under a tensor (matrix)
normal distributed setting. For the other methods, MGCCA is only a bit better than PCA
which, unexpectedly, beats HOPCA. But none of them are close to the performance of
TSIR or GMLM. Continuing with 1b), where we introduced a qubic relation between Y
and X , we observe a bigger deviation in the performance of GMLM and TSIR. This is
caused mainly because we are estimating an 8 dimensional subspace now, which amplifies
the small performance boost, in the subspace distance, we gain by avoiding slicing. The
results of 1c) are surprising. The GMLM model behaves as expected, clearly being the best.
The first surprise is that PCA, HOPCA and MGCCA are visually indistinguishable. This
is explained by a high signal to noise ration in this particular example. But the biggest
surprise is the failure of TSIR. Even more surprising is that the conditional distribution
X | Y is tensor normal distributed which in conjunction with Cov(vecX ) having a Kronecker
structure, should give the MLE estimate. The low-rank assumption is also not an issue, this
simply relates to TSIR estimating a 1D linear reduction which fulfills all the requirements.
Finally, a common known issue of slicing, used in TSIR, is that conditional multi-modal
distributions can cause estimation problems due to the different distribution modes leading
to vanishing slice means. Again, this is not the case in simulation 1c). An investigation
into this behaviour revealed the problem in the estimation of the mode covariance matrices
Ok = E[(X − EX )(k)(X − EX )T(k)]. The mode wise reductions provided by TSIR are

computed as ,O−1
k

,Γk where the poor estimation of ,Ok causes the failure of TSIR. The
poor estimate of Ok is rooted in the high signal to noise ratio in this particular simulation.
GMLM does not have degenerate behaviour for high signal to noise ratios but it is less robust
in low signal to noise ratio setting where TSIR performs better in this specific example.
Simulation 1d), incorporating information about the covariance structure behaves similar
to 1b), except that GMLM gains a statistically significant lead in estimation performance.
The last simulation, 1e), where the model was misspecified for GMLM. GMLM, TSIR as
well as MGCCA are on par where GMLM has a sligh lead in the small sample size setting
and MGCCA overtakes in higher sample scenarios. The PCA and HOPCA methods both
still outperformed. A wrong assumption about the relation to the response is still better
than no relation at all.

5.5.2 Ising Model

Assuming for X being a 2× 3 dimensional binary matrix with conditional matrix (tensor)
Ising distribution X | Y as in Section 5.2.2. We let for i = 1, . . . , n the response being i.i.d.
uniformly distributed in [−1, 1] establishing the conditional value in the i.i.d. samples from
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Figure 5.5: Visualization of the simulation results for the tensor normal GMLM. Sample size
on the x-axis and the mean of subspace distance d(B, ,B) over 100 replications
on the y-axis. Described in Section 5.5.1.

90



5.5 Simulations

Xi | Y = yi with GMLM parameters β1,β2, Ω1,Ω2. We let

β1 =

(
1 0
0 1

)
, β2 =

(1 0
0 1
0 0

)
and

Ω1 =

(
0 −2
−2 0

)
, Ω2 =

( 1 0.5 0
0.5 1 0.5
0 0.5 1

)
as well as

Fy =

(
sin(πy) − cos(πy)
cos(πy) sin(πy)

)
if not mentioned otherwise in a specific simulation setup given next.

2a) A fully linear relation to the response set to be Fy ≡ y being a 1 × 1 matrix with
βT
1 = (1, 0) and βT

2 = (1, 0, 0).

2b) The “base” simulation with all parameters as described above.

2c) Low rank regression with both β1 and β2 of rank 1 chosen as

β1 =

(
1 0
1 0

)
, β2 =

(0 0
1 −1
0 0

) .

2d) We conclude with a simulation relating to the original design of the Ising model. It
is a mathematical model to study the behaviour of Ferromagnetism Ising [Isi25] in a
thermodynamic setting modeling the interaction effects of elementary magnets (spin
up/down relating to 0 and 1). The model assumes all elementary magnets to be the
same, which translates to all having the same coupling strength (two-way interactions)
governed by a single parameter relating to the temperature of the system. Assuming
the magnets to be arranged in a 2D grid (matrix valued X ), their interactions are
constraint to direct neighbours. We can model this by choosing the true Ωk’s to
be tri-diagonal matrices with zero diagonal entries and all non-zero entries identical.
Since this is a 1D matrix manifold, we can enforce the constraint. Setting the true
interaction parameters to be

Ω1 =
1

2

(
0 1
1 0

)
, Ω2 =

(0 1 0
1 0 1
0 1 0

)
where 1/2 relates to an arbitrary temperature. The mean effect depending on Fy can
be interpreted as an external magnetic field.
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Figure 5.6: Visualization of the simulation results for Ising GMLM. Sample size on the x-
axis and the mean of subspace distance d(B, ,B) over 100 replications on the
y-axis. Described in Section 5.5.2.

The simulation results are visualized in Figure 5.6. Regardless of the simulation setting
2a-d), the comparative results are similar. We observe that PCA and HOPCA, both treating
the response X as continuous, perform poorly. Not much better are LPCA and CLPCA.
Similar to PCA and HOPCA they do not consider the relation to the response, but they are
specifically created for binary predictors. Next we have MGCCA which is the first method
considering the relation to the response y, clearly out-performing all the PCA variants. Even
better is TSIR, regardless of the treatment of the predictors X as continuous, achieving very
god results. Finally, the Ising GMLM model is the best in all the simulations although TSIR
gets very close in some settings.
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5.6 Data Analysis

5.6 Data Analysis

In this section we perform two applications of the GMLM model on real data. First example
is the tensor normal model applied to EEG data. Next, we perform a prove of concept data
analysis example for chess.

5.6.1 EEG

The EEG data10 is a small study of 77 alcoholic and 45 control subjects. Each data point
corresponding to a subject consists of a p1×p2 = 256×64 matrix, with each row representing
a time point and each column a channel. The measurements were obtained by exposing
each individual to visual stimuli and measuring voltage values from 64 electrodes placed on
the subjects’ scalps sampled at 256 time points over 1 second (256 Hz). Different stimulus
conditions were used, and for each condition, 120 trials were measured. We used only a
single stimulus condition (S1), and for each subject, we took the average of all the trials
under that condition. That is, we used (Xi, yi), i = 1, . . . , 122, where Xi is a 256 × 64
matrix, with each entry representing the mean voltage value of subject i at a combination
of a time point and a channel, averaged over all trials under the S1 stimulus condition, and
Y is a binary outcome variable with Yi = 1 for an alcoholic and Yi = 0 for a control subject.

For a comparison we reproduced the leave-one-out cross-validation EEG data analysis
[PKB21, Sec. 7] for the classification task. In this data set, p = p1p2 = 16384 is much
larger than n = 122. To deal with this issue, [PKB21] used two approaches. In the first,
pre-screening via (2D)2PCA [ZZ05] reduced the dimensions to (p1, p2) = (3, 4), (15, 15)
and (20, 30). In the second, simultaneous dimension reductions and variable selection was
carried out using the fast POI-C algorithm of [JAJ19] (due to high computational high
burden, only a 10-fold cross-validation was performed for fast POI-C).

In contrast to [PKB21], our GMLM model can be applied directly to the raw data of
dimension (256, 64) without pre-screening or variable selection. This was not possible for
KPIR as the time axis alone was in the large p small n regime with the p1 = 256 > n =
122 leading to a singular time axis covariance. The same issue is present in the GMLM
model, but the regularization trick used for numerical stability, as described in Section 5.2.1,
resolves this without any change to the estimation procedure. In general, the sample size
does not need to be large for maximum likelihood estimation in the tensor normal model.
In matrix normal models in particular, [DKH20] proved that very small sample sizes, as
little as 3,11 are sufficient to obtain unique MLEs for Kronecker covariance structures.

We use leave-one-out cross-validation to obtain unbiased AUC estimates. Then, we com-
pare the GMLM model to the best performing methods from [PKB21], namely KPIR (ls)
and LSIR from [PFB12] for (p1, p2) = (3, 4), (15, 15) and (20, 30).

In Table 5.2 we provide the AUC and its standard deviation. For all applied pre-screening
dimensions, KPIR (ls) has an AUC of 78%. LSIR performs better at the price of some
instability; it peaked at 85% at (3, 4), then dropped down to 81% at (15, 15) and then
increased to 83%. In contract, our GMLM method peaked at (3, 4) with 85% and stayed

10http://kdd.ics.uci.edu/databases/eeg/eeg.data.html
11The required minimum sample size depends on a non-trivial algebraic relations between the mode dimen-

sions, while the magnitude of the dimensions has no specific role.
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stable at 84%, even when no pre-processing was applied. In contrast, fast POI-C that carries
out simultaneous feature extraction and feature selection resulted in an AUC of 63%, clearly
outperformed by all other methods.

AUC (St. Dev.)
(p1, p2) = (3, 4) (15, 15) (20, 30) (256, 64)

FastPOI-C 0.63∗(0.22)
(2D)2PCR 0.83 (0.04) 0.50 (0.05) 0.53 (0.05)
LSIR 0.85 (0.04) 0.81 (0.04) 0.83 (0.04)
KPIR(ls) 0.78 (0.04) 0.78 (0.04) 0.78 (0.04)
KPIR(mle) 0.75 (0.05) 0.78 (0.04) 0.77 (0.04)
KPFC1 0.78 (0.04) 0.78 (0.04) 0.78 (0.04)
KPFC2 0.78 (0.04) 0.78 (0.04) 0.78 (0.04)
GMLM 0.85 (0.04) 0.84 (0.04) 0.84 (0.04) 0.84 (0.04)

∗Mean AUC based on 10-fold cross-validation.

Table 5.2: Mean AUC values and their standard deviation based on leave-one-out cross-
validation for the EEG imaging data (77 alcoholic and 45 control subjects)

5.6.2 Chess

The data set is provided by the lichess.org open database12. We downloaded November of
2023 consisting of more than 92 million games. We removed all games without position
evaluations. The evaluations, also denoted scores, are from Stockfish13, a free and strong
chess engine. The scores take the role of the response Y and correspond to a winning
probability from whites point of few. Positive scores are good for white and negative scores
indicate an advantage for black. We ignore all highly unbalanced positions, which we set
to be positions with absolute score above 5. We also remove all positions with a mate
score (one side can force check mate). Furthermore, we only consider positions after 10
half-moves to avoid oversampling the beginning of the most common openings including
the start position which is in every game. Finally, we only consider positions with white to
move. This leads to a final data set of roughly 64 million positions, including duplicates.

A chess position is encoded as a set of 12 binary matrices Xpiece of dimensions 8 × 8.
Every binary matrix encodes the positioning of a particular piece by containing a 1 if the
piece is present at the corresponding board position. The 12 pieces derive from the 6 types
of pieces, namely pawns (p), knights (N), bishops (B), queens (Q) and kings (K) of two
colors, black and white. See Figure 5.7 for a visualization.

We assume that Xpiece | Y = y follows an Ising GMLM model Section 5.2.2 with different
conditional piece predictors being independent. The independence assumption is for the sake
of simplicity even though this is clearly not the case in the underlying true distribution. By

12T. Duplessis. Lichess.org open database, 2013. visited on December 8, 2023
13The Stockfish developers (see AUTHORS file). Stockfish, since 2008. Stockfish is a free and strong UCI

chess engine. URL: https://stockfishchess.org
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this simplifying assumption we get a mixture model with the log-likelihood

ln(θ) =
1

12

∑
piece

ln(θpiece)

where ln(θpiece) is the Ising GMLM log-likelihood as in Section 5.2.2 for Xpiece | Y = y.
For every component the same relation to the scores y is modeled via a 2× 2 dimensional
matrix valued function Fy consisting of the monomials 1, y, y2, specifically (Fy)ij = yi+j−2.

By the raw scale of the data, millions of observations, it is computationally infeasible to
compute the gradients on the entire data set. Simply using a computationally manageable
subset is not an option. Due to the high dimension on binary data, which is 12 times
a 8 × 8 for every observation giving a total dimension of 768. The main issue is that a
manageable subset, say one million observations, still leads to a degenerate data set. In
our simplified mixture model, the pawns are a specific issue as there are multiple millions
of different combinations of the 8 pawns per color on the 6 × 8 sub grid the pawns can
be positioned. This alone does not allow to take a reasonable sized subset for estimation.
The solution is to switch from a classic gradient based optimization to a stochastic version.
This means that every gradient update uses a new random subset of the entire data set.
Therefore, we draw independent random samples form the data consisting of 64 million
positions. The independence of samples derived from the independence of games, and every
sample is drawn from a different game.

Validation: Given the non-linear nature of the reduction, due to the quadratic matrix
valued function Fy of the score y, we use a generalized additive model14 (GAM) to predict
position scores from reduced positions. The reduced positions are 48 dimensional continuous
values by combining the 12 mixture components from the 2 × 2 matrix valued reductions
per piece. The per piece reduction is

R(Xpiece) = β1,piece(Xpiece − EXpiece)β
T
2,piece

which gives the complete 48 dimensional vectorized reduction by stacking the piece wise
reductions

vecR(X ) = (vecR(Xwhite pawn), . . . , vecR(Xblack king)) = BT vec(X − EX ).

The second line encodes all the piece wise reductions in a block diagonal full reduction
matrix B of dimension 768× 48 which is applied to the vectorized 3D tensor X combining
all the piece components Xpiece into a single tensor of dimension 8 × 8 × 12. This is a
reduction to 6.25% of the original dimension. The R2 statistic of the GAM fitted on 105 new
reduced samples is R2

gam ≈ 46%. A linear model on the reduced data achieves R2
lm ≈ 26%

which clearly shows the non-linear relation. On the other hand, the static evaluation of the
Schach Hörnchen15 engine, given the full position (not reduced), achieves an R2

hce ≈ 52%.
The 42% are reasonably well compared to 51% of the engine static evaluation which gets the
original position and uses chess specific expert knowledge. Features the static evaluation
14using the function gam() from the R package mgcv.
15My own UCI chess engine.
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includes, which are expected to be learned by the GMLM mixture model, are; material
(piece values) and piece square tables (PSQT, preferred piece type positions). In addition,
the static evaluation includes chess specific features like king safety, pawn structure or rooks
on open files. This lets us conclude that the reduction captures most of the relevant features
possible, given the oversimplified modeling we performed.

Interpretation: For a compact interpretation of the estimated reduction we construct
PSQTs. To do so we use the linear model from the validation section. Then, we rewrite the
combined linear reduction and linear model in terms of PSQTs. Let B be the 768× 48 full
vectorized linear reduction. This is the block diagonal matrix with the 64× 4 dimensional
per piece reductions Bpiece = βpiece

2 ⊗βpiece
1 . Then, the linear model with coefficients b and

intercept a on the reduced data is given by

y = a+ bTBT vec(X − EX ) + ϵ (5.30)

with an unknown mean zero error term ϵ and treating the binary tensor X as continuous.
Decomposing the linear model coefficients into blocks of 4 gives per piece coefficients bpiece
which combine with the diagonal blocks Bpiece of B only. Rewriting (5.30) gives

y = a+
∑
piece

(Bpiecebpiece)
T vec(Xpiece − EXpiece) + ϵ

= ã+
∑
piece

⟨Bpiecebpiece, vec(Xpiece)⟩+ ϵ

with a new intercept term ã, which is of no interest to us. Finally, we enforce a color
symmetry, using known mechanism from chess engines. Specifically, mirroring the position
changes the sign of the score y. Here, mirroring reverses the rank (row) order, this is
the image in a mirror behind a chess board. Let for every Cpiece be a 8 × 8 matrix with
elements (Cpiece)ij = (Bpiecebpiece)i+8(j−1). And denote with M(A) the matrix mirror
operation which reverses the row order of a matrix. Using this new notation allows to
enforcing this symmetry leading to the new approximate linear relation

y = ã+
∑
piece

⟨Cpiece,Xpiece⟩+ ϵ

≈ ã+
∑

piece type

1

2
⟨Cwhite piece −M(Cblack piece),Xwhite piece −M(Xwhite piece)⟩+ ϵ

If for every piece type (6 types, not distinguishing between color) holds Cwhite piece =
−M(Cblack piece), then we have equality. In our case this is valid given that the es-
timates ,Cpiece fulfill this property with a small error. The 6 matrices (Cwhite piece −
M(Cblack piece))/2 are called piece square tables (PSQT) which are visualized in Figure 5.8.
The interpretation of those tables is straight forward. A high positive values (blue) means
that it is usually good to have a piece of the corresponding type on that square while a
high negative value (red) means the opposite. It needs to be considered that the PSQTs
are for quiet positions only, that means all pieces are save in the sense that there is no legal
capturing moves nore is the king in check.
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Figure 5.7: The chess start position and its 3D binary tensor representation, empty entries
are 0.
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Figure 5.8: Extracted PSQTs (piece square tables) from the chess example GMLM reduc-
tion.
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The first visual effect in Figure 5.8 is the dark blue PSQT of the Queen followed by a not
so dark Rook PSQT. This indicated that the Queen, followed by the Rook, are the most
value pieces (after the king, but a king piece value makes no sense). The next two are the
Knight and Bishop which have higher value than the Pawns, ignoring the 6th and 7th rank
as this makes the pawns a potential queen. This is the classic piece value order known in
chess.

Next, goint one by one through the PSQTs, a few words about the prefered positions for
every piece type. The pawn positions are specifically good on the 6th and especially on
the 7th rank as this threatens a promotion to a Queen (or Knight, Bishop, Rook). The
Knight PSQT is a bit surprising, the most likely explanation for the knight being good in
the enemy territory is that it got there by capturing an enemy piece for free. A common
occurency in low rated games which is a big chunk of the training data, ranging over all
levels. The Bishops sem to have no specific prefered placement, only a slight higher overall
value than pawns, excluding pawns iminent of a promotion. Continuing with the rooks, we
see that the rook is a good attacking piece, indicated by a save rook infiltration. The Queen
is powerfull almost everywhere, only the outer back rank squares (lower left and right) tend
to reduce her value. This is rooted in the queen being there is a sign for being pushed by
enemy pieces. Leading to a lot of squares being controled by the enemy hindering one own
movement. Finally, the king, given the goal of the game is to checkmate the king, a save
position for the king is very valuable. This is seen by the back rank (rank 1) being the only
non-penalized squares. Furthermore, the most save squares are the castling target squares
(g1 and c1) as well as the b1 square. Shifting the king over to b1 is quite common protecting
the a2 pawn providing a complete protected pawn shield infront of the king.
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6 Summary and Future Directions

In Chapter 3, we presented the Neural Network Sufficient Dimension Reduction (NNSDR)
method and its sibling method Neural Network Outer Product of Gradients (NNOPG)
[KFB22]. These methods target the mean subspace SE[Y |X]. We also presented a simplified
yet comprehensive reference implementation in R, showing the step-by-step implementa-
tion. We provided a data application highlighting its effectiveness with large datasets in
Section 3.5.2, a scenario where competing computationally expensive forward regression-
based SDR methods, MAVE and CVE, struggle or even fail. The need for such methods is
increasingly relevant in modern times, where massive datasets are commonplace, requiring
SDR methods capable of processing such huge datasets without the need for supercomputing
resources.

While theoretical guarantees are not provide, because of yet unresolved theoretical chal-
lenges inherent to neural networks, justification based on the Universal Approximator The-
orem [Hor91], along with additional simulations presented in [KFB22], points to that es-
tablishing theoretical consistency is possible.

Another direction for exploration involves bi- or multi-linear reductions, extending both
NNOPG using an approach based on the VLP decomposition [VP93], as seen in KPIR and
KPFC from Chapter 4, or employing a chain rule-based outer product of gradients variant
based on a Kronecker constraint to directly estimate mode-wise reductions. For NNSDR,
the immediate next step in the context of tensor-valued data is to replace the first linear
reduction layer with a multi-linear reduction layer, in analogy to GMLM from Chapter 5.

Shifting focus to matrix-valued predictors in Chapter 4, we introduced Kronecker Para-
metric Inverse Regression (KPIR) and Kronecker Principal Fitted Components (KPFC).
These methods target the estimation of the first moment SDR subspace SFMSDR, a subset
of the central subspace SY |X . They leverage additional information inherent to the matrix
structure of the data, thereby enhancing estimation accuracy while retaining structural in-
formation through bi-linear reduction for which theoretical guarantees are provided. We
also provided implementations in base R, displaying all the inner workings.

Generalizing these methods from matrix- to tensor-valued predictors is the immediate
next step. Alternatively, another perspective is to explore the least squares versions of
KPIR, which has weak assumptions, to avoid the need for estimating the full linear re-
duction, and subsequently applying VLP decomposition. Instead, direct estimation of the
mode-wise reduction components could be investigated. It is also worth noting the previ-
ously mentioned integration with neural networks.

In Chapter 5, we introduced the novel Generalized Multi-Linear Model (GMLM) SDR
method. It targets the central subspace SY |X for tensor-valued X under the assumption that
the inverse conditional distribution X | Y is a member of the quadratic exponential family.
Moreover, it is assumed that the second moment is Kronecker separable. Under the GMLM,
a multi-linear sufficient reduction is provided in Theorem 5. However, maximum likelihood
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6 Summary and Future Directions

estimation does not apply to the Kronecker components in the multi-linear reduction due
to lack of identifiability of Kronecker product components. This led to the development of
the parameter space as an embedded Kronecker product manifold in Section 5.3.2.

Using manifold theory, asymptotic consistency and normality for the MLE as a member of
an embedded parameter manifold is proven in Section 5.4, providing theoretical guarantees
for the proposed method. A fast and memory-efficient algorithm is developed for maximum
likelihood estimation under the tensor normal model in Section 5.2.1, including a simplified
implementation in R. A less efficient but generally applicable algorithm is used for the Ising
model in Section 5.2.2.

From provided simulations in Sections 5.5.1 and 5.5.2, we observe state-of-the-art per-
formance where the modeling versatility of the GMLM method allows the incorporation of
additional domain knowledge via modeling of the parameter space using domain-specific
matrix manifolds as discussed in Section 5.3.1 as the “building blocks” of the parameter
Kronecker manifold. We applied GMLM to EEG data in Section 5.6.1, showing excellent
results even without pre-screening.

The excellent performance without pre-screening demonstrates the applicability of GMLM
to tensor-valued X of dimension p1 × . . .× pr with sample size n < pk. We mentioned that
the number of needed observations can be very small, but no specifics were provided. Fu-
ture work could investigate the minimum number of observations, which in its full generality
depends on the problem size as well as on the dimension of the parameter manifold, and
probably even its structure.

We finished with a proof-of-concept data example in Section 5.6.2 using a mixture of 64-bit
Ising models covered by GMLM, showcasing its versatility. The implementation for the Ising
model with dimensions of p > 20 uses Monte Carlo-based methods to be computationally
feasible. Future directions could investigate pseudo-likelihood-based algorithms, potentially
allowing much bigger problems. In general, interesting future directions could weaken the
assumptions, specifically to allow general members of the exponential family, removing the
restriction to the quadratic exponential family. The theoretical part is straightforward
and basically provided by the general formulation of the asymptotic theory. The major
challenge therein is in its practical applicability by providing algorithmic approaches capable
of computing the MLE.

Another direction is to assume that the vectorized reduction matrix is a small sum of
Kronecker products B =

∑s
j=1

°1
k=r βs,k for small s. This effectively removes an implicit

rank-1 constraint, which arises from the relationship between the Kronecker product and
the outer product.
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Notation Index

°r
k=1Ak iterated Kronecker product,

16◦r
k=1Ak iterated outer product, 16

A×k∈S Bk multi-linear multiplication,
15

A ◦ B outer product, 16
A ≡ B vectorized equality, 15
A⊙ B Hadamard product, 33
A⊗ B Kronecker product, 16
A×k B k-mode product, 15
A(k) k-mode matricization, 17
TxA tangent space at x ∈ A of

A, 73
span(A) subspace spanned by A, 2
AT transpose, 2
A−1 inverse, 2
A† Moore-Penrose inverse, 2
Dp duplication matrix, 53
Ip identity matrix, 2
Kp,q commutation matrix, 16
PA Projection onto span of A,

7
PA(Σ) Projection onto span of A

w.r.t. inner product induced by
Σ, 7

Sp,q generalized outer to
Kronecker permutation, 16

ej standard unit vector, 2

det(A) determinant, 2
diag(A) vector of diagonal elements

of A, 2
diag(x) diagonal matrix with

diagonal x, 2
⟨A,B⟩ inner product, 15
logit(x) logit function, 3
Rp×q
∗ noncompact Stiefel

manifold, 74
Rp×q
rank=r matrices of fixed rank r, 74

GLp(R) general linear group, 74
Stp×q Stiefel manifold, 7, 74
Symp×p symmetric matrices, 74
Symp×p

++ symmetric positive definite
(SPD) matrices, 75

∇XF gradient of F w.r.t. X , 18
softmax(x) softmax activation

function, 41
ReLU(x) Rectified Linear Unit, 26
tr(A) trace, 2
vec(A) vectorization, 2, 15
vech(A) half vectorization, 2

SY |X Central Subspace, 5
SFMSDR first moment SDR

subspace, 5
SY |X⊗ Central Dimension-Folding

Subspace, 20
SE[Y |X] Central Mean Subspace, 6
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