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Kurzfassung

Die vorliegende Arbeit fasst die im Rahmen des Dissertationsprojekts “Test Bed Control”
erarbeitenden Ergebnisse zusammen. Das Projekt wurde von der Österreichischen For-
schungsförderungsgesellschaft (FFG, Projektnummer 841331) gefördert und war ein Ko-
operationsprojekt zwischen der Fa. MELECS (bzw. in weiterer Folge Siemens) und dem
Institut für Mechanik und Mechatronik (Abteilung für Regelungstechnik und Prozessau-
tomatisierung) der Technischen Universität Wien.

Projektziel war die Echtzeitemulation der verteilt-parametrischen Oberleitungsdyna-
mik auf einem Power-Hardware-in-the-Loop (PHiL) Pantographenprüfstand um realitäts-
nahe Tests von Hochgeschwindigkeitsstromabnehmern bereits vorab im Labor durchfüh-
ren zu können und so Einsparungen bei kostspieligen und aufwendigen Zulassungsfahrten
zu erzielen.

Harte Echtzeitanforderungen sowohl an die Simulation des zugrundeliegenden mathe-
matischen Oberleitungsmodells als auch an die Prüfstandsregelung müssen erfüllt wer-
den. Dies geht jedoch idealerweise nicht zulasten der Modellgüte und so werden hier we-
sentliche Resultate des Modellierungsprozesses dargestellt. Dies betrifft unter anderem
die Herleitung von absorbierenden Randbedingungen für die Finite-Elemente und Finite-
Differenzen diskretisierten partiellen Differentialgleichungen (Euler-Bernoulli-Balken un-
ter axialer Vorspannung) als auch das anschließend eingesetzte, optimierte Integrations-
verfahren.

Ein modellprädiktiver Impedanzregler wird entwickelt, der die Dynamik des nichtli-
nearen, echtzeitfähigen Oberleitungsmodells am Stromabnehmerprüfstand einregelt und
erlaubt so die komplexe Interaktion Stromabnehmer/Oberleitung bereits vorab im Labor
zu untersuchen.

Die Konsistenz in den physikalischen Erhaltungsgrößen Impuls und Energie, die per-
manent zwischen Stromabnehmer und Prüfstand bzw. zwischen Stromabnehmer und Ober-
leitungsmodell ausgetauscht werden, wird durch eine eigens eingeführte virtuelle Korrek-
turkraft sichergestellt. Dies führt zu einer realitätsnahen Kopplung zwischen Prüfling und
Prüfstand.

Im ersten Teil der Arbeit wird eine kurze Einführung in die Problemstellung und Moti-
vation gegeben. Im Anschluss werden die Projektziele dargestellt und die entwickelte Me-
thodik zur Erreichung derselbigen skizziert. Nach einer Übersicht der wissenschaftlichen
Erkentnisse folgt abschließend ein Abdruck der veröffentlichten Beiträge in Peer-Review-
Zeitschriften.
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Abstract

This thesis summarizes the main (academic) results developed by the applicant during the
three year period of the project “Test Bed Control”, an FFG-funded (Austrian Research
Promotion Agency, project number 841331) cooperation between MELECS (respectively
Siemens) and the Institute of Mechanics and Mechatronics, Department of Process Au-
tomation and Control at the Vienna University of Technology.

The project’s goal was to emulate the distributed-parameter dynamics of a railway
catenary on a full-scale pantograph power hardware-in-the-loop (PHiL) test rig to allow
for close-to-reality testing of trains’ current collectors (also called pantographs).

Strict real-time requirements on the mathematical model and the test rig control tasks
had to be met. Key results of the modeling process to derive at a nonlinear real-time-
capable catenary model that still retains high-fidelity are presented. Therefore, absorbing
boundaries for the finite-difference and finite-element discretized (moving) Euler-Bernoul-
li-Beam (EBB) dynamics were constructed.

A model predictive impedance controller is then deployed on a full-scale pantogra-
ph test rig to emulate the nonlinear catenary dynamics to the unit under test (UUT). The
consistency in the conserved quantities momentum and energy that are permanently ex-
changed between the unit-under-test and the test rig respectively the catenary model have
been guaranteed by an artificial virtual correction force to allow for a physically accurate
coupling between the test rig and the pantograph.

In the first part of the current work a short summary including the problem statement
and motivation is given. Then the goals of the project are formulated and afterwards the
methodology developed and applied to reach these goals is sketched. The summary of the
scientific results is followed by the scientific contributions of the applicant’s dissertation.
The second part contains reprints of peer-reviewed journal publications.
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Part I

Introduction
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Chapter 1

Motivation

The requirements for modern (high-speed) pantographs are strongly increasing. They have
to establish a stable connection with the catenary under all operating conditions, including
different train configurations and weather conditions. Additionally, strict requirements on
the resulting contact force are imposed by norms and national regulations. Not only is
a corridor for the velocity-dependent mean contact force defined in EN 50367 but more
recent issues of this standard for example also regulate the contact force’s variance. This
leads to increased efforts and costs in the homologation process, where cumbersome track
tests are necessary to tune the pantograph’s airfoils and static contact force. This is espe-
cially true for multi-traction operation, where more than one pantograph is in contact with
the catenary, and all of them need to meet the norm requirements.

One promising approach to reduce homologation risks and the amount of (unplanned)
track tests are power hardware-in-in-loop (PHiL) tests, where the pantograph is put in
interaction with a virtual catenary on a test rig. The test rig should then behave like a real-
world catenary and so the dynamics of the catenary/pantograph interaction could already
be investigated and tuned beforehand in the laboratory.

However, significant challenges have to be mastered before reaching the goal of realis-
tically emulating the catenary behavior on a test rig. The catenary dynamics show complex
distributed-parameters wave propagation phenomena and nonlinearities due to one-sided
droppers (attached to the carrier wire and effectively holding the contact wire). At these
droppers, partial wave reflections occur and they additionally show very low stiffness when
compressed. Lastly, one continuous segment of the catenary is often way longer than 1km
which could easily render the resulting computational domain too large for real-time com-
putations, as necessary for PHiL tasks. Artificially reducing the computational domain
leads to spurious reflections of the just weakly-damped oscillations on the newly intro-
duced computational boundaries which drastically reduces the catenary model’s fidelity.
One approach to face this problem are absorbing boundaries that, however, have so far not
been derived for the (moving) Euler-Bernoulli beam under axial pre-tension.

Even with a real-time capable catenary model at hand, the task of tracking its dynamics
on a test rig is challenging. Suitable impedance control concepts need to be developed that
take the special catenary model structure into account and control the test rig actuators to
follow the catenary’s dynamics.
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Figure 1.1 Full-scale PHiL pantograph test rig of Siemens Mobility Austria GmbH

Finally, an accurate PHiL test run not only tracks the relevant dynamics but also estab-
lishes a reliable, stable, and physical-trustworthy coupling between the UUT and the test
rig, respectively the virtual catenary by tracking the exchanged conserved quantities mo-
mentum and energy at both interfaces. Because of test rig limitations (limited-bandwidth
actuation, modeling errors, …), a drift in the energy error may occur and special care has
to be taken to obtain trustworthy PHiL test runs.
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Chapter 2

Goals

In order to reach the final objective of a high-fidelity catenary emulation on a PHiL test
rig the following tasks have to be mastered:

1. development of a high-fidelity real-time capable catenary model,

2. design of an impedance controller that emulates the model’s dynamics on the test
rig,

3. implementation of the catenary emulation on a full-scale pantograph test rig,

4. ensure physical trustworthy PHiL test runs by proper impedance coupling between
the test rig and the UUT.

Different model reduction techniques were implemented and evaluated to finally obtain
a satisfactory catenary model. First, the catenary is mathematically white-box modeled,
resulting in two PDEs that are coupled via nonlinear (one-sided) stiffnesses. Then, a coor-
dinate transformation is applied to obtain a pantograph-fixed formulation of the catenary
dynamics, which now moves through the computational domain. Two general, widely-
applicable methods to construct absorbing boundary layers were formulated to allow for
shorter computational domains without the negative side effects of wave reflection at the
artificial domain boundaries.

To reach the second goal, a model predictive impedance controller was developed that
incorporates a test rig model as well as a reduced version of the nonlinear real-time cate-
nary model. The control goal is to drive the position and velocity differences between both
models to zero by using the test rig actuation. Due to the predictive nature of the controller
the phase-lag is almost completely eliminated and constraints on the test rig actuation are
incorporated in the control design too.

However, tracking just position and velocity is not sufficient as this may result in a
drift in the exchanged energy. Thus, the energy transfer between (1) the UUT and the
test rig and (2) the UUT and the catenary model are tracked. A virtual correction force
as an additional control input of the MPC is introduced. This force acts in addition to
the measured contact force as an input to the catenary model and is utilized to reduce the
momentum and energy error during the test run.
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Chapter 3

Methodology

In this section, the main methods that were developed and applied to reach the goals for-
mulated in Chapter 2 are briefly outlined, and references to the author’s own publications
and further literature are provided.
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mast pantograph contact wire𝑣𝜁
.

𝑤(𝜁, 𝑡) carrier wire dropper

Figure 3.1 Typical catenary set-up with a train moving with velocity 𝑣.

3.1 Catenary modeling
Figure 3.1 shows a typical catenary with its main components. Via droppers the contact
wire is attached to the carrier wire which itself is mounted on masts. The droppers show
very high stiffness when elongated and negligible resistance when subjected to pressure.
Usually, their lengths are adjusted in a way that warrants uniform stiffness in vertical direc-
tion. The carrier, as well as the contact wire, can both be well described by Euler-Bernoulli
bending beams (EBB) under axial pretension [1, 2]:

𝜌𝐴𝑤𝑡𝑡 + 𝛽𝑤𝑡 + 𝐸𝐼𝑤𝜁𝜁𝜁𝜁 − 𝑇𝑤𝜁𝜁 = 𝑓 (𝜁, 𝑡) , (3.1)

with the displacement field 𝑤(𝑡, 𝜁) over time 𝑡 and spatial coordinate 𝜁 and a subscript
denotes derivatives w.r.t. to the coordinate. 𝜌𝐴 is the mass per unit length, 𝛽 a coefficient
of velocity-proportional damping, 𝐸𝐼 the bending stiffness, and 𝑇 is the axial tensile force.

The masts can either be modeled via fixed carrier wire segments or via very stiff springs
(as done here via a force density):

𝑓m,𝑖,ca(𝜁, 𝑡) = −𝛿(𝜁 − 𝜁m,𝑖)𝑘m𝑤ca(𝜁m,𝑖, 𝑡) , (3.2)

with the Dirac delta distribution 𝛿, 𝜁m,𝑖 as the position of mast number 𝑖, and the displace-
ment of the carrier wire at the mast’s positions: 𝑤ca(𝜁m,𝑖, 𝑡).

The droppers are modeled as one-sided stiffnesses that are only active in tensile direc-
tion and act on the contact and carrier wires:𝑓d,𝑖,co(𝜁, 𝑡) = −𝑓d,𝑖,ca(𝜁, 𝑡) = 𝛿(𝜁 − 𝜁d,𝑖)𝐹d,𝑖(𝑡)𝐹d,𝑖(𝑡) = { 𝑘d,𝑖 (𝑙d,𝑖(𝑡) − 𝑙d,𝑖,0) if 𝑙d,𝑖(𝑡) > 𝑙d,𝑖,00 otherwise

(3.3)

with 𝑙d,𝑖,0 as the undeformed length of dropper 𝑖, its instantaneous length 𝑙d,𝑖(𝑡), and stiff-
ness 𝑘d,𝑖.

The pantograph moves with constant velocity 𝑣 along the catenary and generates a
point force: 𝑓panto,co(𝜁, 𝑡) = 𝛿(𝜁 + 𝑣𝑡 − 𝜁panto,0)𝐹panto(𝑡) , (3.4)

with the pantograph’s initial position 𝜁panto,0.
A realistic model of the catenary is formulated by Eqs. (3.1)–(3.4). Different solution

techniques (e.g. Finite-Differences (FD) or Finite-Elements (FE)) exist to solve such a
system of coupled PDEs.
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However, one continuous section of contact wire is often 1500m long and comput-
ing such a long segment with high-fidelity in real-time is not yet realizable with today’s
hardware.

3.1.1 Moving Coordinate Transformation
To describe the dynamics of Eq. (3.1) in moving coordinates a new spatial coordinate is
introduced, as published in [3]: 𝑥 = 𝜁 − 𝑣𝑡 . (3.5)

The equation of motion (3.1) for the displacement field 𝑤 = 𝑤(𝑥, 𝑡) now reads:

𝜌𝐴𝑤𝑡𝑡 + 𝛽𝑤𝑡 = −𝐸𝐼𝑤𝑥𝑥𝑥𝑥 + (𝑇 − 𝜌𝐴𝑣2)𝑤𝑥𝑥 + 𝛽 𝑣 𝑤𝑥 + 2 𝑣 𝜌𝐴𝑤𝑡𝑥 + 𝑓 , (3.6)

with the boundary conditions:

𝑥 ∈ 𝒟 , 𝒟 = {𝑥 ∣ −𝐿domain2 ≤ 𝑥 ≤ 𝐿domain2 }𝑤(𝑥 ∈ 𝜕𝒟, 𝑡) = 𝑤′(𝑥 ∈ 𝜕𝒟, 𝑡) = 0 , 𝑡 ≥ 0 , (3.7)

The spatial coordinate 𝑥 now moves with train speed 𝑣 and the pantograph is thus fixed
in the computational domain, through which the whole catenary now travels. Figure 3.2
visualizes this situation. The computational domain is described by the red rectangle and
the absorbing layers (derived in Section 3.1.6) are in the intervals 𝑥 ∈ [−𝐿domain2 , −𝐿interior2 ]
and 𝑥 ∈ [𝐿interior2 , 𝐿domain2 ]. Additionally, the different wave speeds in up- and downstream
direction (Doppler-effect) are sketched in the upper part of Figure 3.2.

3.1.2 Discretization of PDEs
Different methods exist for solving PDEs like (3.6)-(3.7), the most well-known being
the Finite-Difference method (FDM), the Finite-Element method (FEM), or the Fourier-
Galerkin method. For the former two absorbing boundaries for Eq. (3.6) were obtained
using two different approaches. Both discretization methods will be briefly introduced.

3.1.2.1 Finite-Difference Method

The FDM divides the (spatial and temporal) solution space into a uniform grid and ap-
proximates the derivatives in the PDE by differential quotients, built by using the solution
values at adjacent grid points.

May a function 𝑢(𝑥) be sufficiently smooth and differentiable, then a Taylor-series
approximation can be formulated around an arbitrarily chosen point 𝑥0:

𝑢(𝑥0 + ℎ) = 𝑢(𝑥0) + ℎ𝑢′(𝑥0) + 𝒪(ℎ2) . (3.8)

7



𝑣
. 𝑥 = 𝜁 − 𝑣𝜏

. 𝑤(𝑥, 𝑡)

𝐿interior𝐿domain

boundary layer

Figure 3.2 The catenary model from Figure 3.1 after applying the coordinate transforma-
tion (3.5). The pantograph now remains at a fixed position 𝑥panto while the catenary moves
through the computational domain. The absorbing boundary layers are shown in yellow,
and at the top, the different wave propagation speeds in up- and downstream direction are
sketched.

Eq. (3.8) is an approximation of the original function’s value at 𝑥0 + ℎ provided that ℎ is
sufficiently small. Rearranging leads to an approximation of the first derivative by using
the function values 𝑢(𝑥0) and 𝑢(𝑥0 + ℎ):

𝑢′(𝑥0) ≈ 𝑢(𝑥0 + ℎ) − 𝑢(𝑥0)ℎ , (3.9)

and is called forward Euler method. By utilizing higher-order terms or algebraic operations
of Taylor-series’, different (more sophisticated) approximations can be obtained.

For a one-dimensional problem like (3.6) with discretizations Δ𝑥 and Δ𝑡 the solution
grid is shown in Figure 3.3. The geometric arrangement of nodal values that are needed
for the computation of new values is called stencil. One is exemplarily shown in Figure 3.3
for the interior nodes of the EBB (in green). Additionally, since the green stencil can not
be applied for the computation at nodes with 𝑘 = 0 and 𝑘 = 1, a generic boundary stencil
is sketched (in blue).

3.1.2.2 Finite-Element Method

With the FEM the solution domain is split into small elements and the solution field on
each element is approximated via simple trial-functions which have strong local support,
i.e. are only active on the corresponding element (respectively its vicinity), such that the
overall solution can be obtained by summation over all elements.

First, the original problem (3.6) is written in implicit form:

𝐷(𝑤(𝑥, 𝑡)) = 𝜌𝐴𝑤𝑡𝑡+𝛽𝑤𝑡+𝐸𝐼𝑤𝑥𝑥𝑥𝑥−(𝑇 −𝜌𝐴𝑣2)𝑤𝑥𝑥−𝛽𝑣𝑤𝑥−2𝑣𝜌𝐴𝑤𝑡𝑥−𝑓 = 0 , (3.10)

8



𝑎10
𝑎02𝑎0−1

interior
stencil

TIME

SPACE0 1 𝑁ABC𝑥 − 1
𝑛 − 𝑁ABC𝑡 + 1

𝑛 − 1
𝑛

𝑛 + 1 0𝜇T0

0𝜇T1

0𝜇T𝑁ABC𝑡 −1

ABC stencil

𝑢𝑛+10 𝑢𝑛+11

Δ𝑥
Δ𝑡

Figure 3.3 An explicit interior stencil (green) for the EBB and a generic boundary layer
stencil for 𝑘 = 0.

and multiplied with test functions 𝜓𝑖 ∶ 𝒟 → ℝ and integrated over the computational
domain 𝒟: ∫𝒟𝜓𝑖(𝑥)𝐷(𝑤(𝑥, 𝑡))d𝑥 = 0 , for 𝑖 = 1, … , 2𝑛e , (3.11)

with 𝑛e − 1 being the number of finite elements in the computational domain. The dis-
placement field 𝑤(𝑥, 𝑡) is then approximated by a linear combination of 2𝑛e trial functions,
that are chosen here to be identical to 𝜓𝑖(𝑥):

𝑤(𝑥, 𝑡) ≈ �̄�(𝑥, 𝑡) = 2𝑛e∑𝑖=1 𝜓𝑖(𝑥)𝑞𝑖(𝑡) , with 𝑞𝑖(𝑡) ∶ ℝ → ℝ , (3.12)

The node displacements 𝑤𝑖 and rotations 𝜑𝑖 = 𝜕𝑤𝑖𝜕𝑥 of the nodes are chosen as time-
dependent coefficients 𝑞𝑖(𝑡), see Figure 3.4a. The trial functions are accordingly split
into 𝜓𝑤𝑖 (𝑥) and 𝜓𝜑𝑖 (𝑥) and describe the contribution of the particular degree of freedom
(DoF) to the overall solution. They are chosen to have only local support and are zero on
almost the whole domain, see Figure 3.4b. Using (3.12) in the weak formulation (3.11)
yields 2𝑛e ordinary differential equations for the 2𝑛e unknowns 𝑞𝑖(𝑡):∫𝒟 𝜓𝑖(𝑥)𝐷 ⎛⎜⎝

2𝑛e∑𝑗=1 𝜓𝑗(𝑥)𝑞𝑗(𝑡)⎞⎟⎠ d𝑥 = 0 , for 𝑖 = 1, … , 2𝑛e . (3.13)

All DoFs are collected into one vector 𝑸c (with subscript c as a placeholder for ca (carrier)
or co (contact wire):

𝑸c(𝑡) = [𝑤1(𝑡) 𝜑1(𝑡) … 𝑤𝑛e
(𝑡) 𝜑𝑛e

(𝑡)]T . (3.14)
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∆𝑥𝑤1 𝑤2𝜑1 −𝜑2

(a) Hermitean beam element of which the FEM-
discretized EBB is made up. Each node has one dis-
placement and one rotational DoF (𝑤 respectively𝜑). The undeformed beam element is sketched in
gray.

𝜓(𝑥)
1
0 𝑥𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1

element 𝑖 element 𝑖 + 1𝜓𝑤𝑖 𝜓𝑤𝑖+1

𝜓𝜑𝑖
(b) Shape functions 𝜓𝑤𝑖 (𝑥) (solid) and 𝜓𝜑𝑖 (𝑥)
(dashed) of beam node 𝑖. Additionally, the shape
function of the displacement of node 𝑖+1 is sketched
in gray.

Figure 3.4 Hermitian beam element (left) and shape functions for displacement and rota-
tion (right).

Then a stacked vector of all catenary DoFs can be built:

𝑸 = [𝑸ca𝑸co
] , (3.15)

with which Eq. (3.13) can be elegantly written in matrix form (with sparsely populated
system matrices since each element is only interacting with its neighbours):

𝐌�̈� + 𝐃�̇� + 𝐊e𝑸 = 𝑭 . (3.16)

with the global mass matrix 𝐌, damping matrix 𝐃, and stiffness matrix 𝐊e. All external
forces (e.g. pantograph, gravity) are considered in 𝑭 and a dot denotes derivatives w.r.t.
time 𝑡.

The (nonlinear) coupling due to droppers between the carrier and contact wire as well
as the coupling between the masts and the carrier wire are described by time-varying en-
tries in the stiffness matrix that is a direct output of the FEM discretization process:

𝐊(𝑡, 𝑸) = 𝐊e + 𝐊m(𝑡) + 𝑛d∑𝑖=1 𝐊d,𝑖(𝑡)𝜎(𝑙d,𝑖(𝑡) − 𝑙d,0,𝑖) , (3.17)

with 𝐊e as the stiffness matrix obtained during the FE discretization, see Eq. (3.16), and𝐊m respectively 𝐊d contains the stiffness terms due to the masts and droppers, with the
latter being active only when elongated as expressed with the Heaviside step function 𝜎(•).
The typical structure of 𝐊(𝑡, 𝑸) is shown in Figure 3.5 where all non-zero entries are
marked with a dot and the off-diagonal entries stem from active (i.e. elongated) droppers.

The full FE nonlinear equation of motion for the whole catenary reads:

𝐌�̈�(𝑡) + 𝐃�̇�(𝑡) + 𝐊 (𝑡, 𝑸(𝑡)) 𝑸(𝑡) = 𝑭 (𝑡, 𝑸(𝑡)) , (3.18)

and dedicated time-integration schemes exist to solve these.
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Figure 3.5 Typical structure of the sparse catenary stiffness matrix 𝐊(𝑡, 𝑸) that is obtained
during the FE discretization process of the catenary dynamics.

3.1.3 Newmark Time-Integration
At the end of the FE discretization process, a set of coupled second-order ODEs (3.18)
was obtained that still need to be solved in real-time. A widely used numerical integration
scheme for FE-discretized PDEs are Newmark time-integration methods (solving with
FDM (see Section 3.1.2.1) would theoretically also be possible).

As described in [4] the choice of the integrator is delicate. The dynamics of Eq. (3.18)
describe lightly damped wave propagations with high stiffness elements (dropper and
masts) and nonlinearities due to one-sided droppers. The integration time-step has to be
sufficiently large to allow for real-time computation but still guarantee a stable and accurate
simulation.

For the Newmark time-integration it is assumed that the DoF vectors 𝑸 and �̇� at the
next time instant (corresponding to 𝑡 + Δ𝑡) can be written as:𝑸𝑘+1 = 𝑸𝑘 + Δ𝑡�̇�𝑘 + (Δ𝑡)2 [(12 − 𝛽Nm) �̈�𝑘 + 𝛽Nm�̈�𝑘+1] , (3.19)�̇�𝑘+1 = �̇�𝑘 + Δ𝑡 [(1 − 𝛾Nm) �̈�𝑘 + 𝛾Nm�̈�𝑘+1] , (3.20)

with parameters 𝛽Nm and 𝛾Nm. Often, 𝛽Nm = 0.25 and 𝛾Nm = 0.5 are used to avoid
numerical damping and guarantee unconditional stability with linear time-invariant (LTI)
system dynamics.

Plugging Eqs. (3.19)-(3.20) into the equations of motion (3.16) leads after rearrange-
ments to the time integration update equations:𝐊DM,𝑘�̈�𝑘+1 = 𝑭𝑘+1 , (3.21)𝐊DM,𝑘 = 𝐊𝑘(𝑘Δ𝑡, 𝑸𝑘)𝛽Nm (Δ𝑡)2 + 𝐃𝛾NmΔ𝑡 + 𝐌 , (3.22)𝑭𝑘+1 = 𝑭𝑘+1 − 𝐃 [�̇�𝑘 + Δ𝑡(1 − 𝛾Nm)�̈�] −𝐊𝑘(𝑘Δ𝑡, 𝑸𝑘) [𝑸𝑘 + Δ𝑡�̇�𝑘 + (Δ𝑡)2 (12 − 𝛽Nm) �̈�𝑘] . (3.23)
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Equation (3.21) yields the acceleration vector at the next time instant from which via
Eqs. (3.19) and (3.20) the velocity and displacements/rotations are directly obtained.

All operations in Eqs. (3.19)–(3.23) involve sparse matrices and vectors and can be
carried out very efficiently. The inverse of 𝐊DM,𝑘 in (3.21) (needed for solving for �̈�𝑘+1) is
not explicitly computed since highly sophisticated algorithms exist for solving this type of
equation systems in linear runtime 𝒪(𝑛), with 𝑛 being the matrix dimension. On the other
hand, solving a dense system of linear equations requires runtime 𝒪(𝑛2) which clearly has
to be avoided in time-demanding real-time tasks.

The time-integrated dynamics for the special case of an LTI system can be written in
standard explicit linear state-space form with the state vector:

𝒙𝑘 = [𝑸𝑘�̇�𝑘] . (3.24)

However, in this case the system matrices become densely populated and incorporating
the nonlinear dropper behavior is deemed laborious. Nevertheless, these considerations
will become important in Section 3.1.6, when an absorbing boundary layer is derived by
using an optimal control law.

3.1.4 Absorbing Boundaries for Partial Differential Equations
Standard boundary conditions of PDEs (e.g. Neumann or Dirichlet) lead to total wave
reflections back into the computational domain and consequently for an undamped prob-
lem the energy inside the domain stays constant. However, as already described at the
beginning of Section 3.1 an open domain solution with only a limited simulation domain
is sought and thus the need for absorbing boundary conditions arises. These boundaries
are transparent to outward traveling waves and ideally no wave reflections occur.

For a limited number of certain PDEs absorbing boundary conditions were already
derived, e.g. for the two-dimensional wave equation in [5]. However, these analytical
solutions are often limited to relatively simple PDEs, and for the (moving) EBB under
axial pretension no absorbing boundary conditions could be found in literature and had to
be developed.

Two different solution strategies were devised:

• an optimization-based approach where the values of an FD stencil are obtained by
formulating an optimization problem,

• a controlled boundary layer, where forces and torques are applied at boundary nodes
to dampen outward travelling waves.

Both methods are generically applicable to a wide range of PDEs that describe wave prop-
agation phenomena and where a dispersion relation can be derived, which describes the
connection between the spatial frequency 𝜔𝑥 ∈ ℝ and the temporal frequency 𝜔𝑡 ∈ ℝ:

𝑓 (𝜔𝑥, 𝜔𝑡) = 0 . (3.25)

12
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Figure 3.6 Graphical overview of the optimization-based approach for obtaining absorbing
boundary stencil coefficients.

The dispersion relation can be obtained by plugging the harmonic wave solution:�̃�(𝑥, 𝑡) = ei(𝜔𝑥𝑥+𝜔𝑡𝑡) (3.26)

into the PDE, e.g. (3.6) or (3.1). Likewise, by using the discrete version of Eq. (3.26):�̃�𝑗𝑘 = (ei𝜔𝑥Δ𝑥)𝑗 (ei𝜔𝑡Δ𝑡)𝑘 (3.27)

in the discretized PDE the discrete dispersion relation can be obtained.

3.1.5 Optimization-Based Approach
A graphical overview of the method is given in Figure 3.6. First, the PDE is discretized
by the FDM (see Section 3.1.2.1) which yields a stencil for the inner nodes (exemplarily
shown in the green circle of Figure 3.6). Then the discrete dispersion relation is computed
and one out of two performance objectives has to be selected. After defining the boundary
stencil size (generically shown in Figure 3.3 and the center of Figure 3.6) the optimization
algorithm yields stencil coefficients realizing a stable absorbing boundary.

3.1.5.1 Performance Criterion

The performance criterion is based on simulating the harmonic wave solution (3.27) on
a small test domain for several time steps with ABCs in place and then comparing the
solution with the unbounded domain solution (by continuation of the harmonic wave). The
initial condition is formed by the harmonic wave solution and then simulated forward by
using the EBB stencil (sketched in green in Figure 3.3) respectively the boundary stencils
(sketched in blue in Figure 3.3). The difference between both solutions (the simulated one
and the unbounded domain’s) can than be taken as an error measure:

𝑒OE = 𝑁OE𝑡∑𝑛=2
𝑁OE𝑥∑𝑘=2 ∥𝑤𝑛𝑘 − �̃�𝑛𝑘∥ , (3.28)
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where 𝑤𝑛𝑘 are the results of the small-domain simulations, �̃�𝑛𝑘 are the harmonic wave so-
lutions, 𝑁OE𝑡 is the number time steps of the simulation, and 𝑁OE𝑥 is the number of inner
nodes that are evaluated by the OE-objective. The final OE-objective is then obtained by
accumulating over different frequencies:

𝐽OE = 𝜔𝑥,max∫0 𝑤(𝜔𝑥)𝑒OE(𝜔𝑥)d𝜔𝑥 , (3.29)

where 𝑤(𝜔𝑥) is a weighting function, used to emphasize the accuracy at frequencies of
interests.

3.1.5.2 Stability Criterion

In general, even an allegedly well-performing ABC stencil can introduce long-term in-
stabilities at certain frequencies and thus a dedicated stability criterion is introduced. A
small test domain is defined with a few inner nodes and the ABCs in place. The dynamics
are then formulated in state-space form (by using all node displacements of the previous
time instants that are needed to compute the new values). Linear system dynamics analysis
methods can then readily be applied and thus the eigenvalues of the system matrix can be
investigated: the finite-difference scheme with ABCs in place is asymptotically stable if,
and only if, all eigenvalues lie inside the unit circle, i.e. have a magnitude lower than one.

3.1.5.3 Results

In [Publication A] the performance of the proposed method was demonstrated on two sim-
ulation cases, with the first being an EBB under axial pretension, for which no absorbing
boundaries have been derived before. The problem setup is depicted in Figure 3.7 (top).
The dynamics of a very long beam could be simulated by applying ABCs. In the lower
part of Figure 3.7 time snippets of the simulation are shown. At 𝑡 = 𝑇1 the simulation
is started with an initial deflection of 0.5. In the next time instants dispersion phenomena
are visible (frequency-dependent propagation speeds: lower frequencies travel slower) and
between 𝑇2 < 𝑡 < 𝑇5 the absorption of the first wave packets on the left boundary can be
observed. Due to the clamped boundary condition on the right boundary, the waves are
fully reflected back into the computational domain and are finally absorbed at 𝑇5 < 𝑡.

The second simulation case is a two-dimensional wave equation, for which absorbing
boundaries have already been analytically derived [5]. However, it was demonstrated that
with the proposed method different characteristics could be tuned for, e.g. the incident
angle of incoming waves or frequency weighting.

3.1.6 Control-Based Approach
The control-based approach for obtaining ABCs mimics the behavior of a so-called per-
fectly matched layer [6] by extending the original computational domain by boundary
nodes (yellow area in Figure 3.2 respectively light gray area in Figure 3.8) on which forces

14



𝑥𝑇 ABC
EBB

clamped BC

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 0 25 50 75 100

0
0.5

Time

Beam Position 𝑥 in m

𝑢(𝑥,𝑡
)

Figure 3.7 Setup of the simulation test case (top), where a part of an EBB (right half
of the depicted beam) is simulated and the elongated domain dynamics are obtained by
placing ABCs on the left boundary. In the lower part, time snippets of the simulation are
shown: The initial deflection is split in two wave packets which are either reflected (right
boundary) or absorbed (left boundary).
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Figure 3.8 Overview of the control-based approach for realizing ABCs: The original com-
putational domain is extended by a layer in which forces (and torques) are applied by using
a control law such that outward traveling waves are attenuated.

and torques are applied by a control law. This method was first described in [7] for FD-
discretized dynamics. A detailed derivation of this method (for FE dynamics) and further
investigations on the role of the (discretized) dispersion relation can be found in [Publica-
tion C] and [Publication D].

The proposed method is divided in four steps which are briefly sketched in the follow-
ing sub-chapters:

• Extension of the computational domain (with the nodes of the controlled boundary
layer)

• Modal approximation of the wave field

• Construction of the reference solution (based on the harmonic wave approximation)

• Formulation of the control problem (position tracking of the reference solution)

3.1.6.1 Extension of the Computational Domain

First, the original domain is extended by controlled boundary nodes (light gray area in
Figure 3.8) and the resulting DoFs of the new beam are collected into a vector 𝑸. Then the
dynamics of the beam (or just the first 𝑁𝑥 nodes) are written in state-space form by using
the state-vector defined in Eq. (3.24):

𝒙𝑘+1 = 𝐀𝒙𝑘 + 𝐁𝒖𝑘𝒚𝑘 = 𝐂𝒙𝑘 , (3.30)

where the control inputs are the forces and torques in the boundary layer nodes:

𝒖𝑘 = [𝐹1,𝑘 𝑀1,𝑘 𝐹2,𝑘 … 𝑀𝑁−1,𝑘 𝐹𝑁,𝑘 𝑀𝑁,𝑘]T . (3.31)
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3.1.6.2 Modal Approximation of the Wave Field

At each time instant, the wave field (displacement and rotation) of the first 𝑁𝑥 nodes (see
Figure 3.8) is then approximated by a sum of sine and cosine waves (to express phase
shifts) with different frequencies and amplitudes, where the amplitudes of the trigonomet-
ric functions are obtained via a least-squares approximation:

𝒈𝑘 = (𝐋T𝐋 + 𝜶)−1 𝐋T𝑸𝑘 = 𝐊mod𝒙𝑘 , (3.32)

with 𝒈𝑘 being a matrix of stacked amplitudes of the harmonic waves for the different fre-
quencies, 𝜶 a diagonal regularization matrix, and 𝐋 as a collection of constant coefficients
for the sine and cosine waves for the DoFs of each node. The DoFs of the first 𝑁𝑥 nodes
of the beam can now be approximated in modal coordinates:𝑸𝑘 = 𝐋𝒈𝑘 ≈ 𝑸𝑘 . (3.33)

3.1.6.3 Construction of the Reference Solution

Now that the DoFs of the first 𝑁𝑥 nodes can be approximated by Eq. (3.33) in modal
coordinates, a reference solution for the controller can be derived. The (undamped) beam
dynamics can be predicted for an arbitrary time instant 𝑘 + 𝑙 by defining shifting matrices,
e.g. for the displacement DoFs and the frequency 𝜔𝑥,𝑖:

𝐓𝑤𝑖,𝑙 = ⎡⎢⎢⎢⎣
cos (𝜔𝑥,𝑖Δ𝑥 + 𝛼𝑙) sin (𝜔𝑥,𝑖Δ𝑥 + 𝛼𝑙)
cos (𝜔𝑥,𝑖2Δ𝑥 + 𝛼𝑙) sin (𝜔𝑥,𝑖2Δ𝑥 + 𝛼𝑙)⋮ ⋮
cos (𝜔𝑥,𝑖𝑁Δ𝑥 + 𝛼𝑙) sin (𝜔𝑥,𝑖𝑁Δ𝑥 + 𝛼𝑙)

⎤⎥⎥⎥⎦ , (3.34)

where the dispersion relation is used to calculate 𝜔𝑡,𝑖 and subsequently the frequency-
dependent phase shift due to elapsed time: 𝛼𝑙 = 𝜔𝑡,𝑖𝑙Δ𝑡. The displacement field at time
instant 𝑘 + 𝑙 can then be calculated as a summation of all frequency contributions:

�̂�𝑘+𝑙 = 𝑁Ω∑𝑖=1 𝐓𝑤𝑖,𝑙𝒈𝑖,𝑘 . (3.35)

A reference trajectory can now easily be obtained by introducing a damping matrix 𝐃 in
Eq. (3.35): 𝐃𝑤 = diag (e−𝜎𝑤(0), e−𝜎𝑤(Δ𝑥), … , e−𝜎𝑤(𝑁𝑥Δ𝑥)) , (3.36)
where 𝜎𝑤(𝑥) is used to realize a desired damping profile, i.e. zero inside the original inte-
rior domain and rapidly growing in the boundary layer.

By additionally incorporating the rotational DoFs, the reference solution for the next𝑛p time instants can be written as:𝒀ref,𝑘 = 𝐓𝒈𝑘 = 𝐓𝐊mod𝒙𝑘 (3.37)

where 𝒀ref,𝑘 consists of the reference vectors of the next 𝑛p time instants and the damping
matrices 𝐃𝑤/𝜑 are already incorporated in 𝐓.
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3.1.6.4 Formulation of the Control Problem

Now that a reference trajectory over the next 𝑛p time instants can efficiently be computed
by a vector/matrix multiplication with Eq. (3.37) a quadratic cost function is defined that
penalizes the control error as well as the control inputs:

𝐽 = 𝑘+𝑛p∑𝑗=𝑘+1‖𝒚ref,𝑗 − 𝒚𝑗‖2𝒬ABC
+ 𝑘+𝑛c−1∑𝑗=𝑘 ‖𝒖𝑗‖2ℛABC

. (3.38)

𝒬ABC and ℛABC are weighting matrices that are used to penalize the applied forces and
torques relative to the position and rotation errors. Minimizing Eq. (3.38) by setting its
first derivative to zero eventually leads to a linear state-feedback law of the form:

𝒖𝑘 = 𝐊ABC𝒙𝑘 . (3.39)

Equation (3.39) is evaluated in each time-step and the resulting control input 𝒖𝑘 (consisting
of forces and torques) is directly applied to the boundary nodes, eventually realizing the
desired wave absorption behavior.

3.1.6.5 Results

In Figure 3.9 some simulation details are shown where a moving EBB under axial preten-
sion is simulated on a practically unbounded domain (black, dashed) with no influences
of the domain boundaries on the simulation results and on a shortened domain with con-
trolled boundary layers in place (gray, solid). Additionally, in the upper plot, the fading of
the dropper stiffness in the real-time catenary model is visualized (blue, dash-dotted) and
a spring is moving through the computational domain to demonstrate partial reflections
appearing on droppers (2nd and 3rd subplot). Outward traveling waves are well attenuated
inside the boundary region and in the last two subplots, the job of the controller is clearly
visible when both simulations (unbounded vs. limited domain) can be easily compared to
each other. No visible dynamics remain inside the inner domain after the wave packets hit
the boundaries.

3.1.7 Summary of Catenary Modeling
The modeling of the catenary as described in Section 3.1 was based on physical consid-
erations and so a white-box model of the complex catenary dynamics could be obtained
that is applicable to a wide range of different catenaries by directly changing the physical
parameters (e.g. wire cross-section, tension force, …). Special cases like multi-traction op-
eration, nonlinear pantograph models, or catenary span transitions can also be examined
with the current approach.

However, to derive a real-time capable catenary model a coordinate transformation is
introduced so that the pantograph as the UUT is fixed in the computational domain and the
catenary is now moving. With this approach, the computational domain can be drastically
reduced by only investigating the dynamics in the vicinity of the pantograph. However,
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Figure 3.9 Simulation study of a moving EBB under axial pretension with controlled
boundary layers according to Section 3.1.6 on both sides (gray area). Additionally, a drop-
per is moving through the computational domain (vertical dashed line) and in the upper
plot it is shown in blue how the dropper stiffness is linearly faded in/out inside the bound-
ary layers. The simulation on the truncated domain is shown in a gray solid line while the
reference simulation on a practically unbounded domain is shown in dashed black.
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wire 𝜌𝐴 (kg/m) 𝛽 (Ns/m) 𝐸𝐼 (Nm2) 𝑇 (N)

carrier 1.07 0.6 100 16e3
contact 1.35 0.2 150 20e3

dropper 1 2 3 4 5 … 9𝑥d,𝑖 (m) 5 10.5 17 23.5 30 symmetric𝑙d,0,𝑖 (m) 0.845 0.625 0.515 0.515 0.625 symmetric

𝛽Nm 𝛾Nm Δ𝑡 Δ𝑥 𝑛spans

catenary-fixed 0.25 0.5 0.2ms 0.25m 28
pantograph-fixed 0.255 0.525 2.2̇ms 1.00m 2

Table 3.1 Physical and simulation parameters of both catenary systems (reference and
real-time simulation)

one problem emerges: the treatment of the boundaries of the computational domain, as
standard boundary conditions lead to unphysical wave reflections back into the domain.
This was solved by deriving absorbing boundaries using two different approaches.

3.1.8 Results
The real-time capable catenary simulation is compared with the results obtained from a
very high-fidelity catenary simulation in fixed coordinates with a much finer temporal and
spatial discretization. Table 3.1 summarizes the catenary and simulation parameters.

Figure 3.10 shows the results of both simulations (displacement, contact force, and
force spectra). In both simulations a generic three-mass-oscillator was used as the panto-
graph model and the agreement between both models’ output is evident, as can be seen
from the displacement and force snapshots or from the spectogram (third subplot) over a
longer 6 s period (time needed to pass 7 catenary spans at a velocity of 250km/h).

While the low-frequency contributions are in very good agreement, the high-frequency
contents on the real-time model tend to be higher. This probably stems from non-optimal
performance of the boundary layer and the emerging dropper stiffnesses (even though a
linear fading as shown in Figure 3.9 was used).

3.1.9 Simplified Catenary Model for Linear Control Design
Even though the nonlinear reduced high-fidelity model is computable in real-time, it is not
directly applicable in classic linear control systems theory and also not in the (integrated)
impedance control concept described in Section 3.2.1. Due to time-dependencies (moving
droppers and masts) as well as the nonlinearities (one-sided droppers) the catenary model
can not be formulated as a linear time invariant (LTI) state-space model.

Therefore, a reduced catenary model that is initialized in each time instant by the states
of the nonlinear real-time catenary model is needed. For this reduced model it is assumed
that all droppers are slackened and can thus be omitted. This is especially true in the
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Figure 3.10 Comparison of simulation results of the real-time catenary model (black,
solid) with a high-fidelity reference simulation (gray dashed). A 3-DoF-oscillator was
used as a pantograph model in both cases. The first two plots show the displacement of the
pantograph’s contact point and the resulting force while the third plot shows a spectrogram
of the force signal over a longer 6 s period.
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vicinity of the pantograph since it normally pushes the contact wire upwards. Because
of the omitted droppers, there is no coupling to the carrier wire which can therefore be
omitted too. The reduced catenary model used for the impedance control design consists
of just the contact wire. Depending on the length of the modeled catenary, it may be
advantageous to only consider a segment around the pantograph.

The dynamics of the reduced model can then be formulated in linear state-space form:

̂𝒙cat(𝑘 + 1) = 𝐀cat ̂𝒙cat(𝑘) + 𝐁cat𝑢cat(𝑘) ,
̂𝒚cat(𝑘) = 𝐂cat ̂𝒙cat(𝑘) = [𝑤cat(𝑘)�̇�cat(𝑘)] . (3.40)

The states ̂𝒙cat(𝑘) of the simplified model are initialized in each time-step by using the
states of the fully nonlinear catenary model which is simulated in parallel:

̂𝒙cat(𝑘) = ̂𝒇 (𝒙cat(𝑘)) . (3.41)
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force𝑥tr − 𝑥cat…position erroṙ𝑥tr − ̇𝑥cat…velocity error∆𝑝 …momentum error∆𝐸 …energy error

Figure 3.11 Information flow in the PHiL catenary emulation on the test rig.

3.2 Test Rig Impedance Control
The basic information flow of the catenary emulation control concept is sketched in Fig-
ure 3.11. At the heart (depicted at the center) the controller of the integrated impedance
control (IIC) concept manages the information flow between the catenary model and the
test rig. It incorporates a simplified catenary model as well as a model of the (already
position-controlled) test rig (all in the same time-base). The primary goal of the model
predictive IIC is to output control inputs 𝑢tr to the faster inner position-tracking test rig
control loop such that the catenary dynamics are emulated on the test rig. As a second
control task it utilizes a virtual correction force 𝐹cor to the catenary model to drive the
momentum and energy errors in the PHiL run to zero. It thus has the ability to influence
both dynamics, the test rig’s as well as the catenary’s.

3.2.1 Test Rig Control
The control loop of the test rig is a position-tracking of the linear drive’s slider displace-
ment. The underlying model is made up of the principle of linear momentum of the slider:

𝑚�̈�tr = 𝐾f𝑖dmd − 𝑚𝑔 − 𝐹cogging − 𝐹friction − 𝐹d , (3.42)

with 𝑚 being the slider’s mass, 𝑤tr its displacement, 𝐾f the motor force constant, 𝑖dmd the
motor demand current (control input), 𝑔 the gravitational constant, 𝐹cogging the cogging
force due to the permanent magnets in the slider, 𝐹friction as the friction force, and 𝐹d as
unmodeled disturbance forces (estimated by an observer).

Additionally, some resonant frequencies of the test rig structure (industrial robot) were
partly excited by the test rig control and even amplified as these frequencies also appeared
in the force signal that eventually got fed into the catenary model. To prevent these frequen-
cies from appearing in the generated control input, the design plant of the test rig model
was modified to include a second output (besides the slider’s displacement), namely a fre-
quency weighting of 𝑖dmd. Figure 3.12 visualizes the modified design plant. The filter
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Figure 3.12 Modified design plant of the inner test rig control loop (the linear drive’s slider
displacement) that now additionally includes a frequency weighting of the control input.

function for the frequency weighting was chosen to:

𝐺freq. weighting = 𝑠𝜔𝑠2 + 2𝑠𝜁𝜔 + 𝜔2 (3.43)

with the unwanted frequency 𝜔 and a damping factor 𝜁.
A standard LQR control law was used on the design plant of Figure 3.12 with Eqs. (3.42)

and (3.43) with a sampling rate of 𝑇s,fast = 1/5000 s.
The closed-loop position-tracking dynamics can then be formulated in a slower time-

base 𝑇s,tr = 𝑇s,cat = 1/500 s as PT2 behavior in state-space form:

𝒙tr(𝑘tr + 1) = 𝐀tr𝒙tr(𝑘tr) + 𝐁tr𝑤tr,ref(𝑘tr) ,
𝒚tr(𝑘tr) = 𝐂tr𝒙tr(𝑘tr) = [𝑤tr(𝑘tr)�̇�tr(𝑘tr)] , (3.44)

The control input 𝑤tr,ref is then the output of the impedance controller and is used as a
reference position for the faster position-tracking inner test rig control loop that eventually
generates the current demand value to the linear drive.

3.2.2 Conserved Quantities
During an actual train ride there is a permanent exchange of momentum and energy be-
tween the pantograph and the catenary. In order to obtain physical trustworthy results in
PHiL testing the impedance model dynamics (in this case the catenary) needs to be accu-
rately tracked by the test rig and imposed to the UUT. There is a permanent exchange of
power signals and consequently physical conservation laws have to be taken into account
as well because momentum and energy is transferred at two interfaces:

• between the test rig and the UUT,

• from the UUT to the catenary model.

This is visualized in Figure 3.13 where both power flows are sketched and ideally, these
quantities are consistent. Otherwise, it may for example be possible that on average more
energy is transferred into the impedance model than is actually exchanged between the
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Figure 3.13 The catenary dynamics are emulated on the test rig, leading to a momentum
and energy exchange between the pantograph and the test rig. Since the measured contact
force is taken as an input value to the catenary model, momentum and energy is also trans-
ferred into the catenary model. Ideally, the values of these exchanged conserved quantities
at both interfaces are equal.

UUT/test rig interface which may lead to inaccurate results (e.g. increased fuel consump-
tion in combustion engine PHiL testing as demonstrated in [8]).

To ensure consistency, the controller is not only allowed to utilize the test rig actua-
tion but also modify the measured contact force that is fed into the catenary model by an
additive correction force 𝐹cor:

𝐹cat(𝑘) = 𝐹tr(𝑘) + 𝐹cor(𝑘) , (3.45)

where 𝐹cat is the force that is fed into the catenary simulation and 𝐹tr is the measured
contact force at the test rig. By utilizing 𝐹cor the controller can ensure its second goal
(the first being impedance tracking): momentum and energy conservation/consistency by
keeping the cumulated difference between 𝐸tr(𝑘) (the energy exchanged at the test rig) and𝐸cat(𝑘) (the one transferred into the catenary model) small:

Δ𝐸(𝑘) = 𝐸tr(𝑘) − 𝐸cat(𝑘) ,
𝐸tr(𝑘) = 𝑘∑𝑗=0 𝑇s𝐹tr(𝑗)�̇�tr(𝑗) ,

𝐸cat(𝑘) = 𝑘∑𝑗=0 𝑇s (𝐹tr(𝑗) + 𝐹cor(𝑗)) �̇�cat(𝑗) .
(3.46)

Equation (3.46) shows that 𝐹cor can be used to reduce the energy error but on the other
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Figure 3.14 Overall control structure of the catenary emulation on the test rig.

hand the introduction of the correction force leads to a momentum error:Δ𝑝(𝑘) = 𝑝tr(𝑘) − 𝑝cat(𝑘)
= 𝑘∑𝑗=0 𝑇s𝐹tr(𝑗) − 𝑘∑𝑗=0 𝑇s (𝐹tr(𝑗) + 𝐹cor(𝑗))
= 𝑘∑𝑗=0 𝑇s𝐹cor(𝑗) .

(3.47)

While the minimization of the momentum error (3.46) can be directly incorporated into
classic linear feedback control design methods, the energy error is a nonlinear term due to
the multiplication of velocity (a state of the system) and force (a model input).

As outlined in [Publication B] constraints on the correction force 𝐹cor were re-formu-
lated in each time step such that a reduction of energy error is obtained:

|Δ𝐸(𝑘)| ≤ |Δ𝐸(𝑘 − 1)| . (3.48)

Depending on the sign of �̇�cat(𝑘) and Δ𝐸(𝑘 − 1) different expressions for the upper and
lower bounds of the correction force result, e.g. for �̇�cat(𝑘) > 0 and Δ𝐸(𝑘 − 1) > 0:

𝐹−
cor(𝑘) = (1 − 𝛼)Δ𝐸(𝑘 − 1)̇𝑥cat(𝑘)𝑇𝑠 + 𝐹tr(𝑘) ( ̇𝑥tr(𝑘)̇𝑥cat(𝑘) − 1) ,

𝐹+
cor(𝑘) = Δ𝐸(𝑘 − 1)̇𝑥cat(𝑘)𝑇𝑠 + 𝐹tr(𝑘) ( ̇𝑥tr(𝑘)̇𝑥cat(𝑘) − 1) , (3.49)

with 0 < 𝛼 < 1 being a user-chosen constant that describes the decay rate of the energy
error. Applying a correction force in between those bounds leads to a decay in energy error.
Additionally, different robustification heuristics were developed in order to guarantee a
small overall error in energy and momentum transfers as well as minimal impact on the
catenary dynamics.

3.2.3 Impedance Control
Figure 3.14 depicts a block diagram of the implemented control structure. A model predic-
tive controller is used in an integrated impedance control (IIC) architecture, meaning that
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the controller incorporates models of the virtual simulation environment (here a simpli-
fied catenary model) and the test rig. In contrast to the classic cascaded impedance control
structure, where just a reference signal for the underlying position tracking control is gen-
erated, the IIC structure allows for lag-free impedance tracking due to its model-based
predictive nature. Additionally, as already outlined in Section 3.2.2, a second control in-
put is introduced where the controller gains direct access to the catenary model excitation
via a virtual correction force 𝐹cor that is used to keep the conserved quantities energy and
momentum consistent throughout the PHiL test run.

The state vector of the design plant consists of the state vectors of a test rig model (in
this case a PT2 position tracking model of the closed inner test rig control loop (described
in Section 3.2.1, Eq. (3.44)), the simplified catenary model described in Section 3.1.9 and
the momentum error (3.47):

𝒙(𝑘) = [𝒙T
tr(𝑘) ̂𝒙T

cat(𝑘) Δ𝑝(𝑘)]T . (3.50)

With this state vector the following state-space system as the controller’s design plant is
constructed: 𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) + 𝑬𝑧(𝑘) ,

𝒚(𝑘) = 𝑪𝒙(𝑘) = ⎡⎢⎢⎣
𝑒pos(𝑘)𝑒vel(𝑘)Δ𝑝(𝑘)⎤⎥⎥⎦ = ⎡⎢⎢⎣

𝑤tr(𝑘) − 𝑤cat(𝑘)�̇�tr(𝑘) − �̇�cat(𝑘)Δ𝑝(𝑘) ⎤⎥⎥⎦ , (3.51)

with 𝑒pos and 𝑒vel being the position and velocity errors of the test rig dynamics to the
catenary’s dynamics. The control inputs are 𝑢tr(𝑘) as a reference trajectory to the underly-
ing test rig position tracking loop respectively 𝐹cor(𝑘) as the virtual correction force. The
disturbance input 𝑧 is the measured contact force on the test rig 𝐹tr(𝑘):

𝒖(𝑘) = [ 𝑢tr(𝑘)𝐹cor(𝑘)] , 𝑧(𝑘) = 𝐹tr(𝑘) . (3.52)

The system matrices in Eq. (3.51) are built as follows:

𝑨 = ⎡⎢⎢⎣
𝑨tr 0 0
0 𝑨cat 0
0 0 1⎤⎥⎥⎦ , 𝑩 = ⎡⎢⎢⎣

𝑩tr 0
0 𝑩cat
0 𝑇𝑠

⎤⎥⎥⎦ ,
𝑬 = ⎡⎢⎢⎣

0𝑩cat0 ⎤⎥⎥⎦ , 𝑪 = [𝑪tr −𝑪cat 0
0T 0T 1] . (3.53)

A vector of future control moves is defined:

𝑼 = [𝒖T(𝑘) 𝒖T(𝑘 + 1) … 𝒖T(𝑘 + 𝑁c − 1)]T (3.54)

with 𝑁c being the control horizon. A model predictive controller is then designed to cal-
culate the next 𝑁c control moves in each time instant anew. Therefore, a quadratic cost
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function is defined that penalizes the control error up to a prediction horizon 𝑁p as well as
the upcoming control moves via weighting matrices 𝐐 and 𝐑:

𝐽(𝑼, 𝒙, 𝑘) = 𝑁p∑𝑖=1 𝒙T(𝑘 + 𝑖)𝐐𝒙(𝑘 + 𝑖) + 𝑁c−1∑𝑖=0 𝒖T(𝑘 + 𝑖)𝐑𝒖(𝑘 + 𝑖) . (3.55)

Because of test rig limitations and, more importantly, to impose bounds on 𝐹cor (see Sec-
tion 3.2.2) a constrained optimization problem is formulated to obtain the vector of future
control moves: 𝑼∗ = arg min𝑼 𝐽(𝑼, 𝒙(𝑘), 𝑘)

subject to 𝐌𝐔𝑼 ≤ 𝜸𝒖, and𝐌𝐱𝑿 ≤ 𝜸𝒙 , (3.56)

where 𝑿 is the stacked vector of the states from time instant 𝑘 to 𝑘 + 𝑁p − 1 (analogous
to Eq. (3.54)) and 𝐌𝐱 and 𝐌𝐔 are matrices used to formulate linear state and input con-
straints. Although the optimization problem (3.56) is convex, in general, a closed-form
solution can not be directly obtained but iterative solvers have to be used.

28



core 1 core 2 core 3

tasks data acquisition catenary
simulation impedance MPC

sampling frequency 5kHz 500Hz 500Hz
turnaround time 0.05ms 0.33ms 1.77ms
memory usage 5.0 MB 7.2 MB 7.0 MB

Table 3.2 Utilization of the real-time platform cores during the test runs

3.3 Results of the Test Rig Catenary Emulation
The high-fidelity nonlinear catenary model developed in Section 3.1 is used in combina-
tion with the model predictive impedance controller described in Section 3.2.3 to finally
emulate the catenary dynamics on a full-scale PHiL test rig.

3.3.1 Implementation Details
A dSPACE ds1006 real-time computer comprising a quad-core 2.8GHz processor was
used for test rig control and catenary simulations. Table 3.2 gives an overview of the three
cores used and how they are utilized. In detail, the cores of the real-time computer were
utilized as follows:

Core 1 – data acquisition and test rig control The task on this core was set to a sam-
pling frequency of 5kHz to match the linear drive’s frequency with which motor
current demand values are internally processed, and the basic test rig position track-
ing controller described in Section 3.2.1 is placed in this task. The reference position
for this controller is calculated on core 3 (“impedance MPC”) and transferred to the
faster time base by linearly interpolating between the first two calculated control in-
puts (𝑢tr(𝑘) and the prediction of 𝑢tr(𝑘 + 1), the control input at the upcoming time
instant).

Data acquisition of all measurements and the observer for the linear drive’s states and
the contact force (including its low-pass filter) are placed there. Additionally, some
high-level control tasks (like switching the impedance model or enabling different
operating modes like position tracking or impedance tracking) are done here.

Core 2 – catenary simulation The nonlinear catenary simulation as described in Sec-
tion 3.1 is exclusively computed on this core. A low-pass-filtered/estimated value
of the measured contact force (possibly corrected by 𝐹cor) serves as the input to this
model.

For efficiently calculating the sparse-matrix algebra emerging in the time-integration
process (see Section 3.1.3) the C++ linear-algebra library Eigen [9] was used and
the rest of the catenary simulation was programmed in C++ too.
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The output of this core’s task is the high-fidelity nonlinear catenary simulation, re-
spectively the state vector of the reduced model used in the impedance MPC on
core 3, see Eq. (3.41).

Core 3 – impedance MPC The model predictive impedance controller described in Sec-
tion 3.2.3 operates on this core with the same sampling frequency of 500Hz as the
nonlinear catenary model of core 2.
The test rig states of the control model are initialized with the observer states from
core 1 while the catenary states of the reduced model are calculated on core 2, see
Eq. (3.41).
For solving the constrained MPC optimization problem (3.56) the iterative solver
qpOASES [10] was used that is based on an active set method [11]. The imple-
mented constraints were test rig displacement limitations as well as bounds imposed
on the correction force 𝐹cor to reduce the energy error.

The memory usage on each core shows a quite uniform utilization, demonstrating one of
the advantages of sparse algebra since only the non-zero matrix entries are stored and thus
a small memory footprint results. The short turnaround time on core 2 indicates that even
more catenary spans or a finer discretization could be used in future PHiL runs to further
increase the model’s fidelity.

3.3.2 Results
A virtual train ride with a travel speed of 250km/h and the parameters from Table 3.1
(slightly modified to Δ𝑥 = 1.25m, and 𝛽 = 0) is emulated on a full-scale pantograph test
rig (Figure 1.1) and a physical pantograph is put in interaction with a virtual catenary.

Figure 3.15 shows a 2.5 s snapshot of the PHiL test. The upper part shows the displace-
ment of the catenary at the pantograph’s contact point (the drop in the mean displacement
is caused by a manual reduction of the pressure inside the pantograph’s actuation during
the test run) as well as the resulting contact force and its power spectrum density. The
catenary dynamics are overall very well tracked. The high-frequency disturbances stem
from test rig vibration modes that are induced into the catenary simulation via the contact
force measurements.
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Figure 3.15 Results of a PHiL test run with a simulated 250km/h train ride. The upper
plot shows the displacement of the contact wire at the pantograph’s contact point, the
middle plot the resulting contact force and the lower plot shows the power spectral density
of the force signal.
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Chapter 4

Summary of the scientific publications

[Publication A] describes a general method to obtain highly absorbing boundary condi-
tions of arbitrary order of finite-difference discretized wave-like PDEs. The coefficients
of the boundary stencils are obtained by solving an optimization problem. Further, two
performance and one stability criterion are presented and so robustness can be traded with
performance by formulating a multi-objective optimization problem. The method is fi-
nally applied to two common engineering problems: the Euler-Bernoulli bending beam
under axial pre-tension and the two-dimensional wave equation.

In [Publication B] a catenary model in a moving-coordinate formulation based on a
physical white-box modeling process is presented that allows for great flexibility through
easy parametrization. The linear time-varying finite-difference model is then used in an
impedance control concept to track the catenary dynamics on a real pantograph test rig.
Furthermore, consistency in the conserved quantities momentum and energy was ensured
by the control concept by introducing a virtual correction force to the catenary model.

[Publication C] presents a nonlinear real-time capable finite-element model of the cate-
nary dynamics. The model is obtained by a physical modeling process and formulated in a
moving (train-fixed) coordinate system. An absorbing boundary control scheme prevents
unrealistic wave reflections at artificial domain boundaries. A reduced linear version of
the catenary model is used in a model predictive impedance control concept to emulate
the catenary dynamics on a pantograph PHiL test rig.

[Publication D] further investigates the boundary controller presented in [Publication
C]. For example the influence of different implementations of the nonlinear dispersion
relation on the accuracy of the absorption is investigated.
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Chapter 5

Scientific contributions of the applicant

The scientific contributions of this work are applicable to various forms of HiL test rigs
and are exemplarily demonstrated on an actual pantograph test rig. The derived absorbing
boundary methods are of generic nature and can be employed on different types of PDEs
where the computational domain would otherwise be too large for real-time computation.

Furthermore, an efficient way of modeling the catenary dynamics was shown and a
real-time capable simulation method handling the sparse system matrices while dealing
with nonlinearities was developed.

On a last step, trustworthy PHiL test runs were conducted by not only accurately track-
ing the impedance model dynamics but also ensuring consistency in the conserved quan-
tities energy and momentum.

Summarized, the scientific contributions of this work are:
Catenary modeling

• physical-based modeling process that allows for easy parametrization and great flex-
ibility

• moving-coordinate formulation and incorporation of the nonlinear dropper behavior

• real-time simulation of the catenary model by an efficient implementation of a solver
for nonlinear finite-element discretized dynamics

Absorbing boundaries for PDEs

• generic optimization-based approach for obtaining stencil coefficients in FD-discre-
tized wave-like PDEs

– derivation of two performance objectives (output-error and reflection coeffi-
cient)

– ensuring stability via constraints or as a second objective
– multi-objective optimization allows tuning the performance/stability trade-off
– formulation of absorbing boundaries for the EBB under axial pre-tension
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• absorbing boundaries via control

– emulation of a perfectly matched layer by utilizing forces and torques acting
on boundary nodes to realize absorption/damping profile

– modal-based derivation of a reference trajectory
– application to the EBB in moving coordinates

PHiL test rig control

• model predictive impedance control of nonlinear dynamics

• tracking of FD and FE discretized catenary dynamics

• consistency in the conserved quantities momentum and energy by introducing a vir-
tual correction force

• implementation on a state-of-the-art real-time computing platform and demonstra-
tion of the developed methods by PHiL tests.
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