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Abstract
Polygonal wheels are a widespread problem in the railway industry. Oscillation phenomena appearing at the wheelset
may provide an environment where the wheel polygonization is promoted essentially. The flexibility of the wheelset was
highlighted as an important influence on these phenomena in curves with a small radius of curvature at trams in recent
studies. A dynamic vibration absorber applied on the wheelset may reduce oscillations at the wheelset significantly and
is studied as a potential mitigation measure of wheel polygonization. A basic system model, representing a wheelset
with non-driven independently rotating wheels, is used to investigate the mechanism and performance of this passive
remedy. Influences of different parameter combinations of the absorber are discussed systematically. The efficiency
of the dynamic vibration absorber is analysed further with a more detailed multibody system model of a two-axle
tram bogie. Results reveal that an adequately tuned absorber might significantly reduce the possible development and
further evolution of predominant polygonal orders. Additionally, basic guidelines for the design of the dynamic vibration
absorber applied at the wheelset are pointed out.
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Introduction
Polygonal wheels, which have a periodic irregularity around
the wheel circumference superimposed on a constant wheel
radius, are a type of wheel out-of-roundness (OOR). The
phenomenon is found in a broad range of rolling stock
vehicles, including high-speed vehicles, locomotives, freight
wagons, metros, and trams. It is a fundamental problem in the
railway industry, as out-of-round wheels excite the wheelset,
especially in the vertical direction, resulting in a detrimental
influence, e.g. ride comfort, vehicle and track components,
life cycles of the wheels.

The literature points out that there are multiple generation
mechanisms The state-of-the-art until 2003 is summarized
in [1]. The review gives a classification of different
types of defects on railway wheel tread and discusses
reasons for the development of OOR railway wheels.
Tao et al. presented potential causes, consequences,
simulation methods, and potential mitigation measures to
prevent wheel polygonization in a recent review paper
[2]. This survey focuses on wheel polygonization in
metro vehicles, locomotives, and high-speed trains in
China. Characteristics, consequences, potential remedies,
and development mechanisms of wheel polygonization at
Chinese high-speed railway systems are discussed in [3].
A recent paper by Iwnicki et al., [4], reviews potential
formation mechanisms, measurement methods, computer
simulation techniques and potential mitigation methods.

The majority of researchers have the consensus that wheel
polygonization is a consequence of a ’fixed-frequency’ or
a ’fixed wavelength’ mechanism, and the underlying cause
must be related to a resonance of the vehicle–track dynamic
system. Influencing factors such as material hardness [5],

initial imbalances of the wheelset [6], wheel flats [7],
wheelset flexibility [2; 8–11], rail flexibility [12; 13], self-
excitation [14–16], and P2 resonance [2; 13; 17] have been
pointed out. The literature suggests that there might be
different explanations for different types of rolling stock.

Trams differ from conventional railways essentially.
Whereas conventional railway vehicles use almost exclu-
sively solid-axle wheelsets, independently rotating wheels
(IRW) are frequently found at trams. The use of wheelsets
in the axlebridge design with independently rotating wheels,
as shown in Figure 8 later, may allow consistently flat floors
in the car body of low-floor trams. Resilient wheels may
be applied to tram wheelsets for their beneficial effect on
preventing squealing and impact noise [18]. In addition to
the vehicles, the infrastructure of tramway networks features
specific characteristics. A typical operation route contains
a great variety of curves with small radius of curvature
due to the urban structure and proximity of surrounding
facilities. Phenomena emerging in curves with a small radius
of curvature at tramways are addressed in this study, as high
lateral creepages and thus intensive wear can arise in these
curves.

A (not published) internal technical measurement report,
[19], indicated that vibrations of wheelsets might occur
during negotiating curves with a small radius of curvature at
specific tram lines. Recurring periods of respective periodic
wheelset oscillations of about ∼ 50Hz at typical speeds of
15–19 km/h are suggested to promote the measured wheel
polygonization at tram wheels featuring 17 to 20 waves. A
preliminary study, [20], indicated the possible appearance
of self-excited vibrations at trams when negotiating a
curve with a small radius of curvature. Key parameters
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that influence the onset of such self-excited vibrations
and subsequent vibrational behaviour were identified by
introducing an appropriate minimal model in a more detailed
study, [16]. Results revealed that the negative slope in the
creep force–lateral creepage characteristics is necessary but
not sufficient for potential self-excitation for a realistic
range of parameters. The combination and interaction of the
motions between the resilient wheel and the wheelset axle are
pointed out to be essential for the potential loss of stability
and sustained self-excited vibrations. It is highlighted that
the frequency of the unstable mode is related to the second
bending mode of the wheelset. Necessary conditions to
operate in the negative regime in the creep force–lateral
creepage characteristics relate to the relationship between
the angle of attack, the curve radius and the vehicle speed.
Results also indicated that reducing the slope of the falling
regime in the creep force–lateral creepage characteristics is
likely to avoid unstable conditions and suppress subsequent
self-excitation.

However, other potential excitation mechanisms, such as
P2 resonance or forced excitations due to initial wheel OOR,
might also excite the bending modes of the elastic wheelset
axle, [2]. Wheel polygonization might develop from an
initial, small amplitude wheel OOR, present on the running
surface of railway wheels, even when they are new, to larger
radius deviations with a dominant order due to wear in
the wheel–rail interface [21]. In [10], the impact of tram
characteristics on wheel polygonal wear evolution resulting
from forced excitation due to initial wheel OOR is discussed.
There, analysis of evolution tendency curves (ETC), which
will also be addressed in this study, revealed that structural
modes of the wheelset’s axle, particularly the first and second
bending mode, and the flexibility of the resilient wheel
dominate the evolution of potentially predominant OOR
orders in the frequency range of interest.

In order to suppress and/or reduce wheel polygonization,
different mitigation measures have been studied in the
last years. A frequently used passive strategy has been
to re-profile wheels, [2]. Improving the technology of
manufacturing and assembling the wheel rims as a potential
remedy is discussed in [22]. Reducing the tangential
wheel–rail contact forces by applied friction modifiers may
be another universal countermeasure for any vehicle type,
[1]. Repairing wheel polygonization with brake shoes or
tread cleaners is a more practical approach, [2]. Another
approach is to harden wheel treads, [2; 3]. This may result in
reduced growth rates of high-order polygonization. Although
the associated problems may still be present. Optimizing the
rail–wheel profile combination to reduce the evolution of
wheel polygonization can be another approach, [10].

A dynamic vibration absorber (DVA), also called a tuned
mass damper (TMD), is a well-established system that
has been widely used to attenuate undesirable vibrations
of mechanical structures at particular excitations (’fixed
frequency’), [23; 24]. DVA is a vibration system that works
as a passive secondary oscillatory system, applied to a
primary system to absorb and dissipate vibration energy.
The short review of wheel polygonization in curves with
small radius at curvature at trams above has pointed out
the significant influence of the second bending mode of
the wheelset (’fixed frequency’) on wheel polygonization.

By applying a dynamic vibration absorber on the wheelset,
(1) the onset of self-excited vibrations of the wheelset with
respect to the effect of the falling friction effect may be
avoided and (2) the wear evolution of predominant orders
caused by forced excitation due to initially OOR wheels in
the frequency range of the second bending mode may be
reduced essentially. As a consequence, effective mitigation
of the wheel polygonization at the specific tram line might
be achieved. A basic understanding of the mechanism and
the performance of a vibration absorber attached to the
wheelset as a countermeasure of polygonal wheels is lacking
in the scientific literature and will be the focus of this
paper. The dynamic properties and the evolution tendencies
of predominant polygonal orders of tram wheelsets attached
with DVAs during negotiating in curves with a small radius
of curvature will be analysed by simulation.

In the next section, a 3-DOF system model is intro-
duced. It will help to improve the understanding of the
system behaviour and the mechanism of the dynamic
vibration absorber attached at the tram wheelset. Parameter
combinations of the dynamic vibration absorber and their
influences on the stability in first approximation will be
discussed. Bifurcation theory and continuation method will
be applied to gain further insight into the effects of key
parameters. In particular, the influence of the damping
and the stiffness of the vibration absorber on self-excited
vibrations and the amplitudes of occurring limit cycles
will be revealed. Parameter combinations are identified
where self-excitation is suppressed for a realistic range of
parameters. Further, a potential reduction of the amplitudes
of the resonance phenomena associated with the second
bending mode of the wheelset and caused by forced
excitation due to initially OOR wheels is discussed. Based on
the findings of the basic system model, a well-tuned absorber
is attached on the wheelsets of a more detailed system model
of a two-axle tram bogie to evaluate the efficiency of the
DVA. Dynamic properties of the wheelset and the evolution
tendency curves of the outer and inner front wheel with
and without a DVA attached at the wheelset are presented.
Finally, concluding remarks will be given.

Basic system model
A basic 2-DOF model, representing the leading wheelset of a
tram bogie with non-driven, independently rotating resilient
wheels, has been introduced in [16]. This system model
constitutes a simple, yet fundamental model to study the
influence of key parameters on the vibrational behaviour with
respect to the lateral dynamic behaviour of the free-rolling
wheelset negotiating a sharp curve.

The model considers the leading wheelset of the tram
bogie, as shown in Figure 8 more clearly, during steady-
state constrained curving, where the outer wheel and the rear
inner wheel are in flange contact and may be considered to
be constantly aligned with the rail. The bogie frame guides
both wheelsets and, therefore, corresponding angles of attack
arise. At the leading wheelset the angle of attack is denoted
by γ.

The contact mechanics and the coupled oscillations of the
leading wheelset are represented by the model of Figure 1.
By applying a dynamic vibration absorber to the primary
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Figure 1. Dynamic vibration absorber attached to minimal model and lateral creep force–creepage characteristics, adapted from
[16].

system insights into the effect of its key parameters can
be gained. The lateral motion of the primary system is
represented in the model by the state variables yA and yR
assuming that a lateral motion of the contact point of the
inner wheel can be excited by the compliance of the wheelset
axle and the resilient wheel. The motion of the DVA is
represented by the state variable yT . The considered effective
lateral motion yA comprises contributions from the elasticity
of a common axle with two rigid wheels, or as in our case,
from bending of the elastic support for the two independently
rotating wheels. The considered effective lateral motion of
the resilient wheel yR originates from contributions from
camber and lateral displacement.

Figure 1 shows all required parameters. The lumped
parameters for the lateral motion of the rim w.r.t. the hub are
the effective stiffness cR and the damping coefficient dR. The
effective stiffness cA and the damping coefficient dA for the
wheelset axle also consider a contribution from the primary
suspension. The reduced mass mA takes the wheelset axle
and the wheel hub into account. The equivalent mass of the
resilient wheel is mR. The absorber mass mT is elastically
connected to the wheel hub by a linear spring cT and damper
dT .

The outer wheel of the leading wheelset is aligned with
the outer rail, represented by a circular path of radius rC .
It moves with constant velocity Ω rC and yaw rate Ω. The
lateral dynamic equations of motion read

mA aAy
= − cA(yA − l)− dA ẏA + cR(yR − yA)

+ dR(ẏR − ẏA) + cT (yT − yA)

+ dT (ẏT − ẏA)

(1)

mT aTy
= − cT (yT − yA)− dT (ẏT − ẏA) (2)

mR aRy
= − cR(yR − yA)− dR(ẏR − ẏA)− Fy (3)

with

aAy
= Ω2rC cos γ − Ω2yA + ÿA ,

aTy = Ω2rC cos γ − Ω2yT + ÿT ,

aRy
= Ω2rC cos γ − Ω2yR + ÿR

Fy is the lateral creep force, described with Polach’s for-
mulation for the lateral creep force–creepage characteristics,
[25]. It acts at the wheel–rail contact of the inner wheel. The
lateral creepage νy for the inner wheel is given by

νy =
ẏR − Vc
V0

(4)

with Vc = sin γ V0 ≈ γ V0. V0 is the rolling speed of the
inner wheel. The coefficient of friction µ is determined by

µ = µ0

[
(1−A) e−Bνy +A

]
(5)

A = µ∞/µ0 is the ratio of the friction coefficients with
µ0 as the maximum friction coefficient and µ∞ defined
at infinite slip velocity. Coefficient B is the exponential
friction decrease. The resulting lateral creep force–creepage
characteristics with nominal parameters in Table 1 are shown
in Figure 1.

Stability in first approximation
A small perturbation of the steady-states during curving
with constant yaw rate Ω and constant angle of attack γ is
presumed. Therefore, the equations of motion, (1), (2), and
(3) are linearised with respect to the corresponding steady-
states in the falling regime for the considered sharp curve.
The steady-states are denoted by index 0. The linearisation of
the lateral creep force–creepage characteristics is determined
by the gradient k, similarly to [16],

k =
∂Fy

∂νy

∣∣∣∣
νy0=γ

(6)
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Table 1. Baseline parameters of the minimal model.

Symbol Parameter Value Units

rC Curve radius at outer wheel 25.75 m
γ Angle of attack -0.04 rad
Ω rC Running speed of the outer wheel 4.15 m/s
FN Normal force 35000 N
mR Equivalent mass of wheel rim 125 kg
mA Reduced mass of wheelset axle and wheel hub 400 kg
cR Effective stiffness coefficient of resilient wheel 4.9× 107 N/m
dR Effective damping coefficient of resilient wheel 9500 Ns/m
cA Effective stiffness coefficient of wheelset axle/primary suspension 5.2× 107 N/m
dA Effective damping coefficient of wheelset axle/primary suspension 7250 Ns/m
A Ratio of friction coefficients µ∞/µ0 0.36 -
B Coefficient of exponential friction decrease 0.7 s/m
µ0 Coefficient of friction 0.35 -

The lateral creep force of the free rolling inner wheel
with rolling speed V0 = Ω(rC cos γ − yR0) ≈ Ω(rC − yR0)
results to

Fy = Fy0 + k (νy − νy0) , νy = ẏR/V0 − γ (7)

The linearised equations of motion for small
perturbations ∆y = y − y

0
with state-vector y =

[yA, yT , yR, ẏA, ẏT , ẏR]
T read in state-space representation

∆ẏ = A∆y (8)

with system matrix A in the Appendix. In Table 1 the
baseline parameters of the minimal model are listed.

The influence of the DVA on the stability behaviour of the
minimal model in first approximation is discussed now. For
this purpose, the mass of the absorber is selected in advance
in order to achieve a compromise between the additional
weight of the unsprung mass at the bogie and the amplitudes
of the motion of the absorber. Stability maps are derived
analytically by applying the Routh-Hurwitz criterion, [26],
based on the characteristic equation of (8), which is of
6th order. Setting the Hurwitz determinant H5 = 0 and
the coefficient of the characteristic equation a6 = 0, yields
the oscillatory marginal and monotone marginal stability,
respectively. These expressions are evaluated numerically
in Figure 2. In Figure 2(a) the boundaries of stability are
presented as a function of the effective stiffness coefficients,
cR and cA. Static instability (divergence) occurs only for
very small parameter values, which are unrealistic from a
practical application point of view, and will not be further
taken into consideration. The baseline configuration of the
model, Table 1, is marked by a black circle. Obviously,
the baseline configuration is dynamically unstable with a
diverging oscillation (light grey area), when no DVA is
attached. The stability boundaries are denoted by 0⃝ in
Figure 2(a). Note, the effective negative slope of the lateral
creep force–creepage characteristics is essential for this
behaviour.

A stable behaviour may be achieved at the baseline
configuration, by adding a DVA. Figure 2(b) depicts the
behaviour of the baseline configuration as a function
of different DVA parameter combinations. For specific
combinations of the absorber stabilization is achieved (dark

grey area). A higher damping coefficient dT allows a
higher stiffness coefficient cT (black line). Interestingly,
the area of stiffness combinations, cA and cR, where a
dynamically unstable behaviour with diverging oscillations
occur, becomes smaller in Figure 2(a), when the stiffness
coefficient of the absorber cT is reduced at constant damping
coefficient dT = 7500Ns/m. This behaviour is illustrated
for four absorber parameter combinations. Corresponding
stability boundaries and their parameter combinations are
denoted by 1⃝– 4⃝ in Figure 2(a) and in Figure 2(b)
respectively. Note, in contrast to parameter combination
2⃝– 4⃝, the baseline configuration, black circle, is still

dynamically unstable with a diverging oscillation at the
parameter combination 1⃝, cT = 4× 107 N/m.

In the next section, a more systematic approach is shown
to analyse appropriate parameter combinations of the DVA
by investigating the nonlinear system behaviour.

Numerical analysis of the Hopf bifurcation
To gain further insight into the effects of the DVA
parameters, the behaviour of the nonlinear model with the
nonlinear creep force–creepage characteristics is assessed
before and after the loss of stability by means of numerical
continuation of the periodic solutions bifurcating from
the Hopf bifurcation curves, using the numerical software
package MatCont, [27].

Without the DVA, a family of stable periodic solutions
(black solid line) with small amplitudes are found between
the two supercritical Hopf bifurcation points, around cA =
4.8× 107 N/m and cA = 1.9× 108 N/m, which coexist
with the unstable steady-state solutions (black dashed line),
[16], Figure 3. Points H represent the Hopf bifurcation
points. For small and (very) large effective wheelset axle
stiffnesses cA, no limit cycles appear; in between, amplitudes
do not change significantly, with smaller amplitudes for
larger cA. The motion of the wheel rim y∗R0 is normalised
with yR0.

The positions of the Hopf bifurcation points shift when the
DVA is attached to the wheelset, coloured lines in Figure 3.
The range of axle stiffness configurations cA of unstable
steady-state solutions responsible for the (stable) limit cycles
decreases as the stiffness of the DVA cT is reduced while
maintaining constant absorber damping
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(a) Influence of DVA on the boundaries of stability (b) Baseline configuration for different DVA configurations

Figure 2. Stability maps.

Figure 3. Bifurcation diagram for normalised wheel rim motion
y∗
R over effective stiffness cA of the wheelset axle without and

with the DVA for stiffness parameter cT = 20× 106N/m,
cT = 30× 106N/m, and cT = 40× 106N/m.

dT = 7500Ns/m, which confirms the findings above.
Additionally, also the amplitudes of stable periodic solutions
decrease – only marginally for cT = 4× 107 N/m, brown
line, and cT = 3× 107 N/m, blue line, but essentially for
cT = 2× 107 N/m, green line.

This behaviour is reviewed in Figure 4. The coloured
lines present the Hopf bifurcation points for several DVA
damping coefficients dT . The two Hopf bifurcation points
shift towards each other until they merge as the stiffness
of the DVA cT decreases. For dT = 7500Ns/m, the Hopf
bifurcation points merge around cT = 1.7× 107 N/m. If
the DVA stiffness cT is reduced even further, the Hopf
bifurcation points disappear and no limit cycles occur. The
black line in Figure 4 will be discussed later.

Determining the governing equation for the stability limit,
i.e. the DVA parameter combinations where the Hopf points

Figure 4. Hopf bifurcation points for stiffness cT of the DVA
over effective stiffness cA of the wheelset axle; critical Hopf
bifurcation points ( ).

merge, allows to define those DVA parameter combinations
where self-excitation can be avoided.

Given the above system of ordinary differential equations

ẏ = f(y,λ), y ∈ R6, λ ∈ R2, (9)

the parameter values λ2 := cT , for which the Hopf
bifurcation vanishes under variation of λ1 := cA, are
demanded. A Hopf bifurcation can be detected using the
extended system

f(y,λ) = 0, (10a)
JuR + ωuI = 0, (10b)
JuI − ωuR = 0, (10c)

uR,k = 1, (10d)
uI,k = 0, (10e)

The system (10) comprises 20 equations for the unknown
variables y, uR, uI , ω and λ1. Equation (10b) and (10c)
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are derived from the eigenvalue equation Ju = iωu, where
J = ∂f/∂y is the Jacobian matrix, u = uR + iuI the
eigenvector with its respective real uR and imaginary uI

parts, and iω the critical eigenvalue. There appear two
scaling conditions (10d) and (10e) for the eigenvector,
because every nontrivial complex multiple of the eigenvector
is also an eigenvector. For numerical reasons, index k ∈
{1, . . . , 6} should be ideally the index of the largest
component of the critical eigenvector u = uR + iuI . By
varying a second parameter λ2 the first parameter λ1 changes
and it may happen, that the Hopf bifurcation vanishes for
some special value of λ2. In this case, a pair of complex
eigenvalues (σ, σ) would approach the imaginary axis, touch
it tangentially and turn back. At the critical point the equation

∂ Reσ

∂λ1
= 0 (11)

holds. In order to determine the derivative of σ w.r.t. λ1, the
derivative of the equation for the eigenvalue

Ju− σu = 0

w.r.t. λ1 is formed. Here it must be taken into account that
also J and u depend on λ1:

∂(J− σE)

∂λ1
u+ (J− σE)

∂u

∂λ1
= 0. (12)

The second term can be eliminated using the critical left
eigenvector ψT at the bifurcation point using the dual or
adjoint equation

ψTJ− σψT = 0

with proper scaling conditions, e.g. ψk = 1. Therefore, the
system of equations is extended by 12 further equations.
Left-multiplying (12) by ψT the equation

ψT ∂(J− σE)

∂λ1
u = 0 (13)

is obtained. For the real part of ∂σ/∂λ1 the quantities

A = ReψTJ′u = ψT
RJ

′uR −ψT
I J

′uI ,

B = ImψTJ′u = ψT
RJ

′uI +ψ
T
I J

′uR,

α = ReψTu = ψT
RuR −ψT

I uI ,

β = ImψTu = ψT
RuI +ψ

T
I uR

are introduced, with J′ = ∂J/∂λ1, in our model

∂J

∂cA
=

−e4 ⊗ e1
mA

, (14)

and the relation

∂σR
∂λ1

=
Re(A+ iB)(α− iβ)

α2 + β2
=
Aα+Bβ

α2 + β2
= 0 (15)

is obtained. Figure 5, obtained from solving equations (10)
and (15), presents the stiffness/damping combinations of
the DVA, black line, where the Hopf bifurcation points
merge (critical Hopf bifurcation points). For critical Hopf
bifurcation points cT grows for increasing dT until dT ≈
50000Ns/m, after which cT decreases gradually. If the
DVA is designed with a parameter combination dT and

Figure 5. Critical Hopf bifurcation points for stiffness cT of the
DVA over damping coefficient dT of the DVA.

cT below this curve no self-excitation is expected. This
curve is also indicated by the black line in Figure 4. Figure
6 presents the maximum distance of yR w.r.t. L = 1.5m,
(a), and the maximum acceleration of ÿR, (b), over the
cycle to visualize how the system behaves for varied DVA
parameter combinations. The red line represents the critical
Hopf bifurcation points, below this curve no self-excitation
is expected. For each line, the damping of the DVA, dT ,
was held constant, while the stiffness, cT , was varied. Both
diagrams indicate that the respective maxima increase at
constant dT , for increasing cT . The maxima increase first,
close to the hopf point, drastically, then, only marginally, and
at the end of the computed parameter range cT , they do not
change significantly.

So far, the parameter range for the DVA, where no
onset of self-excitation of the system is expected, has been
found. In the next section, the design of the DVA will be
studied with respect to forced excitations due to initial wheel
OOR. Therefore, the creep force–creepage characteristics
is modified in a manner that no self-excitation occurs
for the baseline parameter configuration of the wheelset.
The coefficient of exponential friction decrease B, from
Polach’s nonlinear formulation for the creep force–creepage
characteristics listed in Table 1, is reduced to B = 0.4.

Forced excitation due to initial wheel OOR
A potential mitigation of the wear evolution of predominant
orders caused by forced excitation due to initial wheel
OOR, as described in the introduction, might be achieved
by tuning the DVA to the corresponding dominant structural
frequency of the primary system. A well-tuned absorber
will resonate out of phase with this structural motion and
may reduce resonant vibration amplitudes essentially as
its damper dissipates energy, [28]. The efficiency of the
countermeasure is illustrated by analysing the frequency
response of the basic system model with and without the
DVA under forced excitation. The system is assumed to
be excited by a harmonic excitation force FOORy

with
frequency ω and constant amplitude η expressed by

FOORy = η sin(ωt) (16)
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Figure 6. Stability maps.

Figure 7. Influence of the DVA on the frequency response.

that originates from the wheel OOR and acts at the wheel–
rail contact of the inner wheel in the lateral direction.

The frequency response y∗R, normalised with steady-state
yR0, is computed by sweeping the excitation frequency in the
range of interest and is presented in Figure 7. Corresponding
to the number of modes of the system two peaks are present,
when the DVA is not attached, blue line. The first peak at the
blue line is around 50Hz and corresponds to the flexibility of
the wheelset axle. It is significantly greater than the second
one around 120 Hz, which can be associated with the resilient
wheel.

The design procedure of a DVA for a 1-DOF system was
introduced by Den Hartog [29] and was further extended by
Thomson [30]. At a multi-DOF system, only one specific
mode can be targeted with a dynamic vibration absorber,
since it is only effective in a narrow frequency range. If the
modes of a multi-DOF system are well separated, the design
procedure is essentially equivalent to that of a 1-DOF system,
[28]. Here, the resonance amplitude of the mode associated
with the flexible mode of the wheelset shall be minimized.
For simplicity, Den Hartog’s criteria for a 1-DOF system,
[29], is utilized to design appropriate parameters of the DVA.
They are given in Table 2. Note, with the selected parameter

Table 2. Parameters of the dynamic vibration absorber in the
basic system model.

Symbol Parameter Value Units

mT Equivalent mass 40 kg
cT Stiffness coefficient 4.3× 106 N/m
dT Damping coefficient 6850 Ns/m

combination of the DVA there is no self-excitation expected
even if the baseline configuration of the creep force–creepage
characteristics, Table 1, is considered, see Figure 5.

Due to the application of the DVA, three peaks
corresponding to three modes are expected. Yet, only
two distinctive peaks are visible, grey line, in Figure 7.
The first distinctive peak is located around 50Hz and its
location (frequency) is slightly shifted in comparison to
the configuration without the DVA. Another one is around
120 Hz similar to the blue line. The third peak, which is
very close to the frequency of the mode associated with the
flexibility of the wheelset around 50Hz and is not clearly
visible. Obviously, the presence of the DVA reduces the
amplitude of the resonance peak around 50Hz significantly.
Also, the resonant peak associated with the resilient wheel
decreases slightly due to the additional damping in the
system.

Generic system model of two-axle tram
bogie
In the basic system model above several simplifications
and assumptions have been made. Based on the previous
findings, the performance of the DVA is now reviewed by
discussing dynamic properties w.r.t. self-excitation of the
wheelset and the wear evolution of predominant orders w.r.t.
forced excitation due to initial wheel OOR in curves with
a small radius of curvature with a detailed generic system
model of a two-axle tram bogie.

The system model used in this study was presented in [20]
and is described here briefly. Only a single, non-driven, low-
floor tram bogie is considered for this analysis. Specifically,
a car body, a bogie frame located below the centre of the car
body, and two wheelsets in axlebridge design with resilient,
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Figure 8. Suspension model of tram with attached DVAs, adapted from [20].

independently rotating wheels are taken into account. The
model is set up in the multibody dynamics simulation
software SIMPACK, [31], see Figure 8, and comprises
rigid bodies, flexible bodies, and interconnection elements
(spring and damper elements). Omitted fore and aft cars are
substituted by additional support of the car body against
the inertial system w.r.t. pitch and roll by torsional spring-
damper elements. The car body is attached to a (virtual)
‘traction body’ that is moved with constant velocity along
the track.

The car body and the bogie frame are represented by rigid
bodies and connected by bushing elements that represent
the secondary springs and dampers. The flexibility of the
wheelsets in axlebridge design is accounted for by a linear
SIMBEAM element, [31]. The wheel hub and the wheel
rim of the wheels are represented by rigid bodies. The
elastic layer in between the wheel hub and the wheel rim
of the resilient wheel is approximated by linear, massless
springs and dampers, that are fixed at coordinate systems
of the wheel rim and hub. The Kelvin-Voigt model is
utilized. The wheel rim may undergo longitudinal, lateral,
vertical, roll, yaw, and torsional motions relative to the
wheel hub. Parameters are derived from experimental testing.
The primary suspension isolates the wheelsets from the
bogie frame and is also modelled utilising bushing elements.
Hertzian contact theory [32] is used to derive normal forces,
and the FASTSIM algorithm [33] to calculate creep forces in
wheel–rail contact problem, respectively. The flexibility of
the track is not considered.

In order to damp the second bending mode of the wheelset
effectively, both the position and the degree of freedom of the
DVA are essential. Either translational or rotational degrees
of freedom can be utilized. The position of the absorber
should, if possible, be located where the modal amplitude
of the critical resonance mode is at its maximum [28]. The
analysis of the mode shape of the second bending mode
of the wheelset and the minimal model suggests the top of
the wheelset in axle bridge design, in close proximity to
the bearing of the axle, as an appropriate position of the
DVA, see Figure 8. The DVAs are attached on both sides,
with a torsional degree of freedom in the direction α; two

Table 3. Main parameters of the torsonal dynamic vibration
absorbers in the multibody system model..

Symbol Parameter Value Units

IT Moment of inertia 2 kgm2

cT Stiffness coefficient 1.74× 105 N/rad
dT Damping coefficient 300 Ns/rad

DVAs on each wheelset, respectively, four DVAs on the
bogie. Their parameters, listed in Table 3, are based on the
design parameters of the basic model but are adjusted and
optimized (stiffness and damping) by numerical simulation
considering the setup of the two torsional DVAs. At the
rear wheelset, similar observations have been made w.r.t.
self-excited vibrations and evolution tendencies of polygonal
wheels in comparison to the front wheelset [10; 16]. Thus,
the same parameter design is used at both wheelsets.

Figure 9 shows the influence of the DVA on the vibration
amplitudes of the lateral velocity of the inner wheel contact
point ẏRc, similar to ẏR in curves with a small radius of
curvature. The vehicle initially runs on a straight track and
enters a curve (after 3 s) with a constant radius of curvature
of 25 m without passing a transition clothoid. A disturbance
occurs after 3 s due to the discontinuity of the curvature. This
excites the system and results in vibrations. The longitudinal
velocity is set to 4 m/s. The steady-state curving conditions
correspond to the previous studies with the basic system
model; for the analysis of self-excitation the baseline creep
force–creepage characteristics, B = 0.7, is assumed again.
Without the DVAs, the amplitude of the oscillation increases
slowly and a stable limit cycle is reached at about t = 18 s.
The oscillation frequency is around 55 Hz and the unstable
mode can be associated with the second bending mode of
the elastic axle of the wheelset. Vibrations also occur for
the vehicle with the attached DVAs, but they attenuate very
quickly (grey line). This can be attributed to the additional
damping introduced by the DVAs. The negative damping
with respect to the falling regime in the lateral creep force–
creepage characteristics in the system, is no longer sufficient
to provoke self-excitation. After a critical, significantly
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Figure 9. Time history ẏRc(t) of the lateral motion of the wheel
rim contact point with and without attached DVA.

higher, negative slope in the lateral creep force-creepage
characteristics is reached, self-excitation may appear once
again. Nevertheless, the wheelsets are clearly less prone to
self-excitation in curves with small radius of curvature.

The wear evolution of predominant orders w.r.t. forced
excitation due to initial wheel OOR may be investigated by
a prediction method presented by Peng in [34]. Therefore,
the creep force–creepage characteristics is modified as
already described above so that no self-excitation occurs
for the baseline parameter configuration of the wheelset
with B=0.4. Peng’s method predicts OOR orders that
would grow predominantly at a given speed by means of
evolution tendencies curves (ETC) without conducting a
closed-loop simulation scheme to account for the changing
mutual influence between the OOR wheel and the dynamic
wheel–vehicle-track system. It consists of four main steps:
(1) input of an initial OOR order, (2) MBS simulation
of a dynamic vehicle-track interaction with pre-defined
operational conditions where the time history of contact
responses is computed, (3) wear model, and (4) output of
the evolution tendency. Here, the KTH (Royal Institue of
Technology) wear model [35; 36] is applied. The method
assumes a linear system behaviour between the initial wheel
OOR and the circumferential wheel wear, even though the
system dynamics contain non-linear elements. With this in
mind, ETCs combine

Evolution tendency = − cos(Phase)×Amplitude (17)

both the Amplitude and Phase spectrum of the wear
frequency response function between the excitation, i.e.
initial wheel OOR, and the circumferential wheel wear,
to provide the evolution direction for specific wheel OOR
orders in the considered frequency range. The corresponding
phase is the key indicator to determine the amplitude
and sign of the evolution tendencies. The wear frequency
response function can either be obtained by sweeping the
wheel velocity with a fixed OOR order, or, as necessary in
curves, by changing the OOR order and performing multiple
simulations at constant normal acceleration of the vehicle.
If the evolution tendency is above zero, the corresponding

initial wheel OOR orders tend to grow, otherwise, they tend
to diminish. Evolution tendencies are normalised in the ETC
as only the comparison of various frequencies and scenarios
are significant. Here, ETCs are normalized w.r.t. the highest
absolute value of the evolution tendencies. A higher absolute
value of the evolution tendency means faster evolution speed.
Consequently, it is expected that distinctive positive peaks in
the ETC will lead to orders that will grow predominantly at a
given vehicle speed. More information about the method and
its simulation scheme can be found in [34] and [10].

Growing and diminishing wheel orders can be identified
in good approximation at a given vehicle speed with the
relationship

λ =
2πR

θ
v = λf (18)

where λ is the wavelength, R is the wheel radius, θ is the
polygonal order, v is the longitudinal velocity of the wheel,
and f is the excitation frequency.

The influence of the DVAs attached to the wheelsets
on the evolution of predominant orders at the outer and
inner wheel of the leading wheelset in curves with a small
radius of curvature (R=25 m) is presented in Figure 10. The
outer wheel is in flange root contact and the inner wheel
has a point of contact at the wheel tread. The evolution
tendency curves are normalized for the largest absolute
value of the evolution tendencies to be one. The evolution
tendency curves are dominated by the compliance of the
wheelset and fluctuate between two peaks at about 20 Hz
1 , 55 Hz 2 , and 120 Hz 3 [10]. 1 and 2 can be

related with the first and second bending mode of the axle
of the wheelset, respectively. The flexibility of the resilient
wheel can be associated with 3 . Similar observations
can be made at the rear wheelset. Increasing the radius of
curvature results in decreasing amplitudes at 1 – 3 in

the ETCs, but the location (frequency) 1 – 3 does not
change. The formation of polygonal wheels in the considered
frequency range corresponding to predominant polygonal
orders at a given speed is indicated by three distinctive
positive peaks associated with the structural modes of the
wheelset. In particular, the second positive peak, 2 , might
lead to predominant orders around 17–20 for typical speeds
in curves with a small radius of curvature. If there are
significantly lower or even negative evolution tendencies
directly before or after the positive peaks, e.g. 2 , a more
distinct formation of predominated orders is to be expected
[34].

The location (frequency) of 1 – 3 shifts slightly
compared to the baseline setup (blue line) when the DVAs
are attached (grey line). The qualitative shape of the ETCs
remains similar but the amplitudes at 2 reduce notably
with the attached DVAs. Especially, the second positive
peak, 2 , at the outer wheel decreases about two thirds
essentially by approximately two-thirds. Similarly, there is
also a reduction about half, evident at the inner wheel.
As a consequence, the development of predominant orders
associated with the second bending mode may decelerate
significantly. Additionally, the amplitudes at 1 and 3
decrease also slightly.
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Figure 10. (a) Outer wheel (b) Inner wheel. Influence of the DVAs on the evolution tendency curve with detail (green box).

Conclusions
This paper reports on basic research investigating a possible
mitigation mechanism with a dynamic vibration absorber
on potential wheel polygonization mechanisms and self-
excitation by means of simulation. Both phenomena are
associated with the second bending mode of the wheelset at
trams in curves with a small radius of curvature. The DVA is
considered as a simple countermeasure that does not require
significant modifications to wheelsets in place.

A basic 3-DOF minimal model was introduced to analyse
the influence of the DVA and its key parameters when
it is attached to the wheelset of a tram bogie. Stiffness
and damping combinations of the DVA were found where
self-excited vibrations of the wheelset w.r.t. the falling
friction effect, a potential mechanism for adverse wheel
polygonization, are likely to be avoided for a realistic
range of parameters. Reducing the stiffness of the dynamic
vibration absorber while keeping its damping coefficient
constant leads to a system behaviour that is less prone to self-
excitation. Further, it was shown that a potential mitigation of
the growth of the predominant orders caused by initial wheel
OOR may be achieved by tuning the DVA to the structural
frequency corresponding to the flexible wheelset axle. A
significant reduction of the amplitudes of the resonant

vibrations of the wheelset could be shown. A DVA parameter
combination was found where self-excitation of the wheelset
is avoided as well.

Main findings were reviewed with a more detailed generic
system model of a two-axle tram bogie. Based on the findings

from the basic system model and a mode shape analysis of
the second bending mode of the wheelset axle, an appropriate
design of two torsional dynamic vibration absorbers mounted
on the top of the respective wheelset was presented. Results
from simulations confirmed that the wheelsets are less prone
to self-excitations w.r.t. the falling friction effect due to the
attached DVAs. Evolution tendency curves, which predict
initial wheel OOR orders that will grow predominantly at a
given speed, indicated an essential reduction of the evolution
speed of wheel OOR orders also associated with the second
bending mode of the wheelset.

The detailed design of a DVA device, an integration
of the proposed DVA design guidelines into a tram
bogie, and accompanied experimental investigations are
intended and required to further evaluate the findings from
simulations. Wheel polygonization mechanisms related with
other wheelset modes, e.g. first bending mode or torsional
mode, may be addressed by a similar approach.
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APPENDIX
System matrix of 3-DOF model:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−
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mA

−
cT

mA

−
cR

mA

+ Ω2
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mA
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mA

−
dA
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−
dT

mA

−
dR

mA

dT

mA

dR

mA
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−
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+ Ω2 0
dT
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−
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0
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