Motivation

Lowest order finite element discretizations for time-harmonic wave problems suffer from the pollution effect. That is, as the wavenumber $|k|$ increases, the gap between FEM error and best approximation widens. E.g., for the 1D Helmholtz equation we observe

- Higher polynomial degrees are better!
- Analogous result for Maxwell's equations with constant scalar coefficients: We need $|h k / p|$ sufficiently small and $p \gtrsim \log |k|$ to suppress pollution, [2].
- Question: Extension to Maxwell's equations with piecewise smooth coefficients?

Maxwell problem

Let $\Omega \subseteq \mathbb{R}^{3}$ be a simply connected and bounded domain with smooth and simply connected boundary Γ and outer normal unit vector \mathbf{n}.
For a given wavenumber $k \in \mathbb{R}$ with $|k| \geq 1$, a given right-hand side \mathbf{f} and a given tangent field \mathbf{g}, we look for a solution \mathbf{u} of the equation

$$
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} \mathbf{u}-k^{2} \varepsilon \mathbf{u}=\mathbf{f} & \text { in } \Omega, \\
\mu^{-1} \operatorname{curl} \mathbf{u} \times \mathbf{n}-i k \mathbf{u}_{T}=\mathbf{g} & \text { on } \Gamma,
\end{aligned}
$$

where μ is the magnetic permeability, ε is the electric permittivity, i is the imaginary unit and $\mathbf{u}_{T}:=\mathbf{n} \times(\mathbf{u} \times \mathbf{n})$.
We assume that the tensor fields μ and ε are real-valued, symmetric positive definite and piecewise smooth in Ω.

A shift theorem for vector fields

As a consequence of the seminal work [1] every divergence-free vector field \mathbf{v} on the considered domain Ω can be written as

$$
\mathbf{v}=\operatorname{curl} \mathbf{R v}+\mathbf{K v}
$$

where \mathbf{R} and \mathbf{K} are pseudodifferential operators of orders -1 and $-\infty$, respectively. In essence, \mathbf{R} is a right-inverse to the curl-operator. The operators \mathbf{R} and \mathbf{K} are essential for the proof of the subsequent theorem, which generalizes the main result of [5].

Theorem 1

Assume that Ω is decomposed into smooth subdomains $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$, and let ν be a realvalued SPD tensor field that is piecewise smooth and discontinuous only across subdomain interfaces. For $\ell \in \mathbb{N}_{0}$ let $\mathbf{v} \in \mathrm{H}(\operatorname{curl}, \Omega)$ with $\left.\operatorname{curl} \mathbf{v}\right|_{\mathcal{G}_{i}} \in \mathbf{H}^{\ell}\left(\mathcal{G}_{i}\right)$ as well as $\nu \mathbf{v} \in \mathrm{H}(\operatorname{div}, \Omega)$ with $\left.\operatorname{div} \nu \mathbf{v}\right|_{\mathcal{G}_{i}} \in \mathbf{H}^{\ell}\left(\mathcal{G}_{i}\right)$.
If $\nu \mathbf{v} \cdot \mathbf{n}=h$ on Γ for some $h \in \mathrm{H}^{\ell+\frac{1}{2}}(\Gamma)$, then there exists a decomposition $\mathbf{v}=\mathbf{z}+\nabla \varphi$ such that
$\sum_{i=1}^{n}\|\mathbf{Z}\|_{\mathbf{H}^{\ell+1}\left(\mathcal{G}_{i}\right)} \lesssim \sum_{i=1}^{n}\|\operatorname{curl} \mathbf{v}\|_{\mathbf{H}^{\ell}\left(\mathcal{G}_{i}\right)}, \quad\|\varphi\|_{\mathrm{H}^{\ell+2}(\Omega)} \lesssim\|h\|_{\mathrm{H}^{\ell+\frac{1}{2}}(\Gamma)}+\sum_{i=1}^{n}\|\operatorname{div} \nu \mathbf{v}\|_{\mathbf{H}^{\ell}\left(\mathcal{G}_{i}\right)}$, and $(\nu \mathbf{v}, \nabla \xi)_{\mathbf{L}^{2}(\Omega)}=0$ for all $\xi \in \mathrm{H}^{1}(\Omega)$. As a consequence, $\left.\mathbf{v}\right|_{\mathcal{G}_{i}} \in \mathbf{H}^{\ell+1}\left(\mathcal{G}_{i}\right)$ for all \mathcal{G}_{i}.

A similar result holds if the boundary condition $\nu \mathbf{v} \cdot \mathbf{n}=h$ is replaced by $\mathbf{v}_{T}=\mathbf{g}$ for a tangent field $\mathbf{g} \in \mathbf{H}^{\ell+\frac{1}{2}}(\Gamma)$.

References

[^0]
Wavenumber-explicit estimates

While Theorem 1 leads to an essential finite regularity shift, the subsequent theorem provides wavenumber-explicit analytic regularity shifts for the considered Maxwell problem.

Theorem 2

Let Ω be decomposed into subdomains $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ and suppose that the boundary Γ and all subdomain interfaces are analytic. Furthermore, suppose that the coefficients μ and ε are piecewise analytic on Ω, and that $\mathbf{f} \in \mathrm{H}(\operatorname{div}, \Omega)$ is piecewise analytic as well. Then, if the given tangent field \mathbf{g} is analytic, the solution \mathbf{u} of the considered Maxwell problem satisfies

$$
\sum_{i=1}^{n}\|\mathbf{u}\|_{\mathbf{H}^{\ell}\left(\mathcal{G}_{i}\right)} \lesssim\left(|k|^{-1}+\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}+|k|\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}\right) A^{\ell}(\ell+|k|)^{\ell}
$$

for all $\ell \in \mathbb{N}_{0}$, where $A>0$ and the hidden constant depend on $\mathbf{f}, \mathbf{g}, \mu, \varepsilon$ and the geometry, but are independent of ℓ and the wavenumber k. As a consequence, \mathbf{u} is piecewise analytic

Theorem 2 is a key ingredient in the "regularity splitting" of solutions of the Maxwell problem. This regularity splitting is crucial for the proof of quasi-optimality of finite element approximations under the scale resolution condition
$|h k / p| \quad$ suffifiently small and $\quad p \gtrsim \log |k|$.

Regularity splitting

Theorem 1 and Theorem 2 are essential for the proof of the following splitting result. For simplicity, we consider only the case $\mathbf{g}=0$ and $\operatorname{div} \mathbf{f}=0$. Furthermore, let $C_{k}>0$ be the stability constant of the Maxwell problem, i.e., the smallest number such that

$$
\|\operatorname{curl} \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}+|k|\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}+|k|^{1 / 2}\left\|\mathbf{u}_{T}\right\|_{\mathbf{L}^{2}(\Gamma)} \leq C_{k}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)}
$$

The subsequent theorem requires that C_{k} grows at most algebraically in k.

Theorem 3

Under the hypothesises of Theorem 2, let \mathbf{u} be the solution of the considered Maxwel problem subject to $\mathbf{g}=0$ and a divergence-free and piecewise regular \mathbf{f}. In addition, assume that $C_{k} \leq C|k|^{\theta}$ for some $C>0$ and $\theta \in \mathbb{R}$. Then, \mathbf{u} can be written as $\mathbf{u}=\mathbf{u}_{\mathbf{H}^{2}}+\mathbf{u}_{\mathcal{A}}$ with

$$
\sum_{i=1}^{n}\left\|\mathbf{u}_{\mathbf{H}^{2}}\right\|_{\mathbf{H}^{2}\left(\mathcal{G}_{i}\right)} \lesssim|k|^{-1} \sum_{i=1}^{n}\|\mathbf{f}\|_{\mathbf{H}^{2}\left(\mathcal{G}_{i}\right)} \quad \text { and } \quad \sum_{i=1}^{n}\left\|\mathbf{u}_{\mathcal{A}}\right\|_{\mathbf{H}^{\prime}\left(\mathcal{G}_{i}\right)} \lesssim|k|^{\lambda} M^{\ell+1}(\ell+|k|)^{\ell}
$$

for all $\ell \in \mathbb{N}_{0}$. Furthermore, $\lambda \in \mathbb{R}$ depends only C and θ, and $M>0$ depends on the geometry, μ, ε and \mathbf{f}.

Based on this theorem we can employ techniques from [2] to conclude quasi-optimality of finite element approximations under the conditions $|h k / p|$ sufficiently small and $p \gtrsim \log |k|$

Numerical experiments

We consider

- Domain $\Omega:=B_{1}(0) \subseteq \mathbb{R}^{3}$,
- Subdomains $\mathcal{G}_{1}:=B_{1 / 2}(0)$ and $\mathcal{G}_{2}:=B_{1}(0) \backslash \mathcal{G}_{1}$
- Right-hand side $\mathbf{f}(x, y, z)=(z, 0,0)^{T}$, boundary data $\mathbf{g}=0$,
- In outer subdomain \mathcal{G}_{2} we set $\mu=\varepsilon=\mathrm{I}$, and in the inner ball \mathcal{G}_{1} we choose

$$
\mu^{-1}:=\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right) \quad \text { and } \quad \varepsilon:=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right),
$$

- Computations based on Nédélec type-II elements of degree p using NGSolve [4],
- Exact solutions unknown, we computed reference solutions by higher order methods.

For $p=1$, the plot indicates an increasing gap between the finite element solution and best approximation for rising k. For $p=2$, the gap does hardly increase between $k=10$ and $k=20$. That means, for $p=2$ the pollution effect is weakened!

[^0]: [1] M. Costabel and A. McIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z. 265 (2010), no. 2, 297-320.
 [2] J. M. Melenk and S. Sauter, Wavenumber-explicit hp-FEM analysis for Maxwell's equations with impedance boundary conditions, Found. Comp. Math., To appear.
 [3] J. M. Melenk and D. Wörgötter, Wavenumber-explicit regularity by decomposition for Maxwell's equations in piecewise smooth media, Work in progress.
 [4] J. Schöberl, Finite Element Software NETGEN/NGSolve version 6.2., https://ngsolve.org/
 [5] C. Weber, Regularity Theorems for Maxwell's Equations, Math. Meth. in Appl. Sci. 3 (1981), 523-536.

