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Motivation

Lowest order finite element discretizations for time-harmonic wave problems suffer from the
pollution effect. That is, as the wavenumber |k| increases, the gap between FEM error and
best approximation widens. E.g., for the 1D Helmholtz equation we observe
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•Higher polynomial degrees are better!

•Analogous result for Maxwell’s equations with constant scalar coefficients: We need |hk/p|
sufficiently small and p & log |k| to suppress pollution, [2].

•Question: Extension to Maxwell’s equations with piecewise smooth coefficients?

Maxwell problem

Let Ω ⊆ R3 be a simply connected and bounded domain with smooth and simply connected
boundary Γ and outer normal unit vector n.

For a given wavenumber k ∈ R with |k| ≥ 1, a given right-hand side f and a given tangent
field g, we look for a solution u of the equation

curlµ−1 curlu− k2εu = f in Ω,

µ−1 curlu× n− ikuT = g on Γ,

where µ is the magnetic permeability, ε is the electric permittivity, i is the imaginary unit
and uT := n× (u× n).

We assume that the tensor fields µ and ε are real-valued, symmetric positive definite and
piecewise smooth in Ω.

A shift theorem for vector fields

As a consequence of the seminal work [1] every divergence-free vector field v on the considered
domain Ω can be written as

v = curlRv +Kv,

where R and K are pseudodifferential operators of orders −1 and −∞, respectively. In
essence, R is a right-inverse to the curl-operator. The operators R and K are essential
for the proof of the subsequent theorem, which generalizes the main result of [5].

Theorem 1
Assume that Ω is decomposed into smooth subdomains G1, ...,Gn, and let ν be a real-
valued SPD tensor field that is piecewise smooth and discontinuous only across subdomain
interfaces. For ` ∈ N0 let v ∈ H(curl,Ω) with curlv|Gi

∈ H`(Gi) as well as νv ∈ H(div,Ω)
with div νv|Gi

∈ H`(Gi).

If νv · n = h on Γ for some h ∈ H`+1
2(Γ), then there exists a decomposition v = z +∇ϕ

such that
n∑
i=1

‖z‖H`+1(Gi)
.

n∑
i=1

‖curlv‖H`(Gi)
, ‖ϕ‖H`+2(Ω) . ‖h‖

H`+1
2(Γ)

+

n∑
i=1

‖div νv‖H`(Gi)
,

and (νv,∇ξ)L2(Ω) = 0 for all ξ ∈ H1(Ω). As a consequence, v|Gi
∈ H`+1(Gi) for all Gi.

A similar result holds if the boundary condition νv · n = h is replaced by vT = g for a
tangent field g ∈ H`+1

2(Γ).
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[4] J. Schöberl, Finite Element Software NETGEN/NGSolve version 6.2., https://ngsolve.org/.

[5] C. Weber, Regularity Theorems for Maxwell’s Equations, Math. Meth. in Appl. Sci. 3 (1981), 523–536.

Wavenumber-explicit estimates

While Theorem 1 leads to an essential finite regularity shift, the subsequent theorem
provides wavenumber-explicit analytic regularity shifts for the considered Maxwell problem.

Theorem 2
Let Ω be decomposed into subdomains G1, . . . ,Gn and suppose that the boundary Γ and all
subdomain interfaces are analytic. Furthermore, suppose that the coefficients µ and ε are
piecewise analytic on Ω, and that f ∈ H(div,Ω) is piecewise analytic as well. Then, if the
given tangent field g is analytic, the solution u of the considered Maxwell problem satisfies

n∑
i=1

‖u‖H`(Gi)
.

(
|k|−1 + ‖curlu‖L2(Ω) + |k| ‖u‖L2(Ω)

)
A` (` + |k|)` ,

for all ` ∈ N0, where A > 0 and the hidden constant depend on f , g, µ, ε and the geometry,
but are independent of ` and the wavenumber k. As a consequence, u is piecewise analytic.

Theorem 2 is a key ingredient in the ”regularity splitting” of solutions of the Maxwell prob-
lem. This regularity splitting is crucial for the proof of quasi-optimality of finite element
approximations under the scale resolution condition

|hk/p| suffifiently small and p & log |k|.

Regularity splitting

Theorem 1 and Theorem 2 are essential for the proof of the following splitting result. For
simplicity, we consider only the case g = 0 and div f = 0. Furthermore, let Ck > 0 be the
stability constant of the Maxwell problem, i.e., the smallest number such that

‖curlu‖L2(Ω) + |k| ‖u‖L2(Ω) + |k|1/2 ‖uT‖L2(Γ) ≤ Ck ‖f‖L2(Ω) .

The subsequent theorem requires that Ck grows at most algebraically in k.

Theorem 3
Under the hypothesises of Theorem 2, let u be the solution of the considered Maxwell
problem subject to g = 0 and a divergence-free and piecewise regular f . In addition, assume
that Ck ≤ C|k|θ for some C > 0 and θ ∈ R. Then, u can be written as u = uH2 +uA with

n∑
i=1

‖uH2‖H2(Gi)
. |k|−1

n∑
i=1

‖f‖H1(Gi)
and

n∑
i=1

‖uA‖H`(Gi)
. |k|λM `+1(` + |k|)`

for all ` ∈ N0. Furthermore, λ ∈ R depends only C and θ, and M > 0 depends on the
geometry, µ, ε and f .

Based on this theorem we can employ techniques from [2] to conclude quasi-optimality of
finite element approximations under the conditions |hk/p| sufficiently small and p & log |k|.

Numerical experiments

We consider

•Domain Ω := B1(0) ⊆ R3,

• Subdomains G1 := B1/2(0) and G2 := B1(0) \ G1,

•Right-hand side f(x, y, z) = (z, 0, 0)T , boundary data g = 0,

• In outer subdomain G2 we set µ = ε = I, and in the inner ball G1 we choose

µ−1 :=

3 1 0
1 3 1
0 1 3

 and ε :=

2 1 0
1 2 0
0 0 3

 ,

•Computations based on Nédélec type-II elements of degree p using NGSolve [4],

•Exact solutions unknown, we computed reference solutions by higher order methods.
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For p = 1, the plot indicates an increasing gap between the finite element solution and best
approximation for rising k. For p = 2, the gap does hardly increase between k = 10 and
k = 20. That means, for p = 2 the pollution effect is weakened!


