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Abstract

Confronting many-body problems in quantum field theory entails managing vast
amounts of data, thus, being confronted with the challenge of balancing
computational feasibility and accuracy of functional dependencies. This thesis
elaborates on quantum tensor cross interpolation (QTCI), an innovative
approach that merges two effective methods for handling tensors in
multi-dimensional space-time: the quantics representation and tensor cross
interpolation (TCI). QTCI benefits from both methods having distinct strategies
in addressing numerical challenges. While the first method focuses on separating
various length scales, TCI uses the restructured data to construct matrix product
states (MPS) and compressing them, while maintaining an acceptable error. In
this thesis, QTCI was used to solve the Dyson equation for the Hubbard model
in one-, two-, and three-dimensional k-space featuring a self-energy inspired by a
self-energy deep in the Mott phase. It was found that the method is able to
reliably and efficiently compress vast amounts of data while retaining an
acceptable error. The computational effort increases with dimension, complexity
of the function and accuracy which limits the applicability of QTCI depending
on the computational resources available. Within the framework of this thesis, it
was demonstrated that the maximum bond dimension 𝐷max, a measurement
quantifying the complexity of functions compressed by QTCI, is linked to both
the inverse temperature 𝛽 and dimensionality n of the system by a universal
power-law 𝐷max(𝛽 , n) = 𝐴n · 𝛽(n−1)0.253 with a dimension dependent factor 𝐴n.
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1 Introduction

Solid-state physics naturally deals with a large number of interacting particles of
the scale of 1024 making it impossible to keep track of every particle interaction.
For most materials it is sufficient to combine interactions into an effective
potential [1]. These materials are weakly correlated systems meaning that
individual particle-particle interactions can be omitted and instead the collective
interaction of all particles is used when calculating the motion of a single
particle. Theories describing effective one-particle systems include density
functional theory and the Hartree-Fock theory, two methods commonly used to
determine electronic properties in material science. These theories yield accurate
results when, for example, the interaction energy is significantly smaller than the
kinetic energy or if the interaction length of the particle is by several scales
smaller than the distance between interacting particles, leading to a screened
potential and a weak effective interaction.

However, for some materials, like Mott insulators or superconductors, the
correlation of particles is substantial for the material’s properties, making it
much harder to computationally deal with. The challenge is that correlated
many-body systems inherently deal with countless degrees of freedom in a
exponentially growing Hilbert space making it very expensive in both time and
memory to reasonably work with them. The Green’s function formalism of
quantum field theory (QFT) gives us the tools to calculate the propagators of the
particle under investigation and, thus, approximate the system’s properties [2].
Other methods in QFT tackling correlated many-body problems include the
Bethe-Salpeter equation which, in contrast to the one-particle Green’s function,
is used to evaluate the two-particle correlation function [3].

However, these functions are complex tensors in high-dimensional space-time
becoming especially challenging to calculate with when moving to two- or three-
dimensional space. Recent advances in data compression, notably through singular

1



value decomposition (SVD), have made the management of such data more feasible
[4]. The n-dimensional tensor is transformed into its matrix product state (MPS)
where each physical variable is assigned a set of singular values. By omitting the
smallest singular values, the tensor gets condensed to its essential characteristics,
thus, reducing its degrees of freedom. When using SVD the complete tensor must
be available, thus, requiring sufficient memory.

Recently in 2023, an alternative approach was proposed [5] to combine two
mathematical methods dealing with high-dimensional tensors, namely the
quantics representation [6] and the skeleton approximation [7], creating quantics
tensor cross interpolation (QTCI). Each method addresses the problem from a
different angle, making QTCI a highly efficient combination of two promising
techniques. Conceptually, the quantics representation rearranges the data,
separating different length scales, a concept commonly used in renormalisation
group theory [8]. On the other hand, building the MPS using the skeleton
approximation allows one to effectively compress areas of less entangled length
scales while keeping a high degree of accuracy. Since QTCI has been introduced
rather recently the method is in its early phase of development and testing. This
thesis aims at enhancing the understanding of the method by applying it to
simple problems of quantum field theory. Three main objectives will be
investigated, namely the compressibility of the tensor with varying parameters,
like temperature or the chemical potential, the accuracy of the reconstructed
function, and lastly the correlation between temperature and compressibility.
Furthermore, comparing the performance of QTCI and SVD will give valuable
insight on what method is when preferable over the other.
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2 System and Method

The foundation of this thesis is formed by the Green’s function formalism of QFT
which will be briefly introduced in what follows. The next part will give a detailed
account of the method used in this thesis, namely QTCI, and its mathematical
motivation.

2.1 1-Particle Propagator

Studying solids by solving the Hamiltonian for huge numbers of particles is
cumbersome as quantum systems are defined in the Hilbert space growing
exponentially with the number of particles. Instead, one may be solely interested
in the propagation of a single particle in the system corresponding to the
probability of a particle at r, t to be found at position r′ later in time t′.
Experimentally, this is done by angle-resolved photoemission spectroscopy to
calculate the single-particle spectral function. To experimentally determine the
two-particle correlation function, resonant inelastic X-ray scattering [9] or
neutron scattering are employed [10].

The path the particle takes in between is visualised by Feynman diagrams, see
fig. 2.1, and the calculations are provided by the Green’s function formalism.

𝐺 = 𝐺0 +𝐺0Σ𝐺

↓ℳ =ℱ+{⌋↓ℳΣ

Figure 2.1: The interacting Green’s function on the left is built from the unper-
turbed Green’s function 𝐺0 (denoted as a single line) and the self-
energy Σ containing all one-particle irreducible Feynman diagrams
(and thus the interaction between particles).
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As a first step, the Green’s function [2, 11, 12] for one particle in the Heisenberg
picture is introduced

𝐺(r′, t′, r, t) = −i⟨�̂�(r′, t′), �̂�†
(r, t)⟩𝜃(t′ − t)± i⟨�̂�†

(r, t), �̂�(r′, t′)⟩𝜃(t− t′) (2.1)

where the ± refers to fermions (anti-symmetric) and bosons (symmetric)
respectively. Causality is preserved by the Heaviside function meaning that a
particle is added to (removed from) the system at t < t′ ( t′ < t) and removed
(added) at some later point in time t′ (t). Reversing t and t′ also changes the
time ordering which can be reproduced by the time ordering operator T .
Performing a Wick’s rotation t ↔ −i𝜏 | 0 < 𝜏 < 𝛽 transforms equation 2.1 to

𝐺(r′, 𝜏 ′, r, 𝜏) = −⟨T �̂�(r′,−i𝜏 ′)�̂�
†
(r,−i𝜏)⟩. (2.2)

As a next step, the definition of the thermal expectation value ⟨. . .⟩ and the density
matrix for the grand canonical distribution with the grand potential Ω in the
Schrödinger picture is used and the time ordering operator is omitted by setting
𝜏 > 𝜏 ′,

𝐺(r′, 𝜏 ′, r, 𝜏) = −tr
(︁
𝑒𝛽(Ω−ℋ)𝑒ℋ𝜏𝜓(r, 𝜏)𝑒−ℋ𝜏𝑒ℋ𝜏 ′𝜓(r′, 𝜏 ′)𝑒−ℋ𝜏 ′

)︁
(2.3)

= − 1

𝑍
tr

(︁
𝑒−(𝛽−𝜏+𝜏 ′)ℋ𝜓(r)𝑒−ℋ(𝜏−𝜏 ′)𝜓(r′)

)︁
. (2.4)

Here the partition function 𝑍 = 𝑒−𝛽Ω for the grand canonical ensemble is
introduced. Cyclic invariance of the trace allows changing the order of the
arguments in the second line. From equation 2.3 it is deduced that the
propagator depends solely on the time difference 𝜏 − 𝜏 ′ (𝜏 ′ − 𝜏) for 𝜏 > 𝜏 ′

(𝜏 ′ > 𝜏) due to the time-independence of the Hamiltonian ℋ. Due to the
(anti-)periodicity, the Fourier series expansion can be written as [13]

𝐺(r′, 0, r, 𝜏) =
1

𝛽

∞∑︁
n=−∞

𝐺(r, r′, 𝜔n)𝑒
−i𝜔n𝜏 (2.5)
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with the discrete Matsubara frequencies

i𝜔n =
(2n+ 1)i𝜋

𝛽
and i𝜔n =

i𝜋 n
𝛽

(2.6)

for fermions and bosons respectively. These frequencies are poles of the Fermi-
(Bose-) function.

Calculations of an explicit expression depending on 𝜔n for the unperturbed
Green’s function for fermions starts with equation 2.1

𝐺0(r, t) = −i⟨T �̂�(r, t)�̂�
†
(0, 0)⟩0. (2.7)

Rewriting the field operators in the basis of plane waves
�̂�(r, t) = 1√

𝑉

∑︀
k 𝑎k𝑒

kx−i(𝜖k−𝜇)t changes the equation to

𝐺0(r, t) =
−i

𝑉

∑︁
k′k

⟨𝜃(t)𝑎k𝑎†k − 𝜃(−t)𝑎†k𝑎k⟩𝑒ikr−i(𝜖k−𝜇)t. (2.8)

Furthermore, the equilibrium average at zero temperature (𝑇 = 0) ⟨𝑎†k𝑎k′⟩0 =

𝛿kk′𝜃(𝜇− 𝜖k) is considered

𝐺0(r, t) =
−i

𝑉

∑︁
k′k

(𝜃(t) (1− 𝜃(𝜇− 𝜖k))− 𝜃(−t)𝜃(𝜇− 𝜖k)) 𝑒
ikr−i(𝜖k−𝜇)t. (2.9)

As a last step, the Fourier transform is used to give a concise expression for the
unperturbed Dyson equation

𝐺0(k, 𝜔n) =
1

i𝜔n − 𝜖k + 𝜇
. (2.10)

For an interacting system, 𝐺0 is not sufficient to describe the system and the
self-energy Σ is introduced, leading to an expression for the perturbed Green’s
function

𝐺(k, 𝜔n) = (𝐺0(k, 𝜔n)− Σ(k, 𝜔n))
−1 =

1

i𝜔 − 𝜖k + 𝜇− Σ(k, 𝜔n)
. (2.11)

In terms of Feynman diagrams, Σ contains all one-particle irreducible diagrams.
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2.2 Hubbard Model

The Hubbard model is used to study a handful of material exhibiting correlated
electron systems in a lattice structure. It is an extension of the tight-binding
model in the sense that it includes a pair-wise interaction term while keeping
the tight-binding aspect of electrons being localised at the atom sites. Solids well-
approximated by the Hubbard model may exhibit characteristics of both the nearly
free electron model and the atomic limit, depending on the interaction that can be
estimated by self-consistent methods like constrained random phase approximation
(cRPA) [13]. The expression of the Hamiltonian in second quantisation is

ℋ = −
∑︁
⟨i,j⟩

∑︁
𝜎

t 𝑐†i𝜎𝑐j 𝜎 − 𝜇
∑︁
i,𝜎

ni𝜎 + 𝑈
∑︁
i

ni↑ni↓. (2.12)

The creation 𝑐†i𝜎 and annihilation 𝑐i𝜎 operators create or destroy the particle with
spin 𝜎 ∈ {↑, ↓} occupying the quantum state i. The number operator ni𝜎 = 𝑐†i𝜎𝑐i𝜎
counts the number of electrons at site i with spin 𝜎. The first term corresponds to
the hopping term which is defined by the hopping amplitude t allowing the electron
to tunnel between sites, with the sum running over all nearest neighbours ⟨i, j⟩
. The chemical potential 𝜇 is proportional to the change in energy for adding an
electron to the system. The final term characterises the on-site interaction between
two electrons. Thereby, 𝑈 is the interaction strength mimicking the screened
Coulomb repulsion.

Tuning just a few parameters the model is able to describe a wide range of
scenarios. For example, with 𝑈 ≪ t the on-site electron interaction becomes
small, resembling a weakly interacting electron system. In contrast, 𝑈 ≫ t at
half-filling allows for little hopping leading to an insulating behaviour. The
Hubbard model upholds the Pauli exclusion principle as well as the localisation
of the electrons by discrete sums over the atom sites.

Solving the Schrödinger equation for half-filling and 𝑈 = 0 in one dimension [1,
2], starts with the Fourier-transformed annihilation and creation operators

𝑐†i𝜎 =
1√
𝑁

∑︁
k

𝑒ik ri𝑐†k 𝜎 and 𝑐i𝜎 =
1√
𝑁

∑︁
k

𝑒ik ri𝑐k 𝜎. (2.13)
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Substitution into 2.12 yields:

ℋ = − 1

𝑁

∑︁
⟨i,j⟩

∑︁
𝜎

t

(︃∑︁
k

𝑒ik rj𝑐†k 𝜎

)︃ (︃∑︁
k′

𝑒−ik′ri𝑐k′𝜎

)︃
− 𝜇

𝑁

∑︁
i

∑︁
k ,𝜎

𝑐†k 𝜎𝑐k 𝜎 (2.14)

= − 1

𝑁

∑︁
k ,k′

∑︁
𝜎

t
(︁
𝑒ik

′
+ 𝑒−ik′

)︁
𝑐†k 𝜎𝑐k′𝜎

∑︁
j

𝑒irj(k−k′) − 𝜇
∑︁
k ,𝜎

𝑐†k 𝜎𝑐k 𝜎 (2.15)

In the last step, the relation ri = rj ± 𝑎 was used with 𝑎 = 1 being the lattice
constant as only hopping between nearest neighbours is allowed.

ℋ = − 1

𝑁

∑︁
k ,k′

∑︁
𝜎

t
(︁
𝑒ik

′
+ 𝑒−ik′

)︁
𝑐†k 𝜎𝑐k 𝜎𝑁 𝛿(k − k′)− 𝜇

∑︁
k ,𝜎

𝑐†k 𝜎𝑐k 𝜎 (2.16)

= −
∑︁
k ,𝜎

2t cos(k 𝑎)𝑐†k 𝜎𝑐k 𝜎 − 𝜇
∑︁
k ,𝜎

𝑐†k 𝜎𝑐k 𝜎 (2.17)

From the last line the eigenvalue can be easily deduced as

𝜖k = −2t cos k − 𝜇. (2.18)

Generalised to arbitrary dimension this equation gives

𝜖k = −2
∑︁
i

ti cos ki − 𝜇. (2.19)

with the sum over i depending on the system’s dimensions.
To determine the Fermi surface for an arbitrary dimension 𝑑 the energy

dispersion is plotted in the first Brillouin zone k ∈ [−𝜋 , 𝜋]𝑑, see fig. 2.2a for
𝑑 = 2. When holding the energy constant, lines form in k-space representing the
Fermi surface up to which the electrons occupy energy states, see fig. 2.2b.

2.3 Matrix Product State (MPS)

Matrix Product States (MPS) are motivated by the complexity of quantum
systems that grow exponentially with the degrees of freedom, an obstacle also
known as "curse of dimensionality"[6, 14]. This can be demonstrated with a
particle in three-dimensional space having three spatial degrees of freedom.
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Figure 2.2: (a) energy dispersion in two dimensions. (b) depiction of the Fermi
surface (lines of constant energy) for different discrete Fermi energies.

Thus, the particle is correctly describable in R3. When considering the particle’s
momentum, three more degrees of freedom have to be considered. Now a Hilbert
space of six dimensions is required and for every particle added to the system six
more degrees of freedom are added. This makes high-dimensional systems hard
to study and one is quickly limited by the available computation time and
memory.

The idea of MPS is to use compression in order to capture essential
information omitting insignificant or repetitive data while retaining an
acceptable accuracy, thereby reducing the computational cost and memory
required. Mathematically, this means decomposing any state into a network of
lower-order tensors and contracting over inner indices following a specific
pattern, thereby exploiting less than maximum entanglement between the
different degrees of freedom [14]. This is visualised in fig. 2.3 where an arbitrary
matrix 𝐴 with n physical indices u1, u2, . . . , un is gradually decomposed into its
MPS form. Conceptually, the n-dimensional matrix transforms into the product
of n matrices each taking one physical index ui as argument. For the matrix
multiplication sums over hidden indices (green lines in fig. 2.3) are introduced
providing the possibility to manipulate the individual products. For a large
enough number of hidden (green) indices, the MPS is an exact representation of
𝐴 merely being rewritten into a different form. The advantage of MPS reveals
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itself when introducing a cut-off, limiting the accuracy but simultaneously
reducing memory and computation time. This is demonstrated when considering
the singular value decomposition (SVD) for 𝐴 [4]. SVD factorised any matrix
into three matrices: a rotation 𝑉 †, a rescaling 𝑆 and another rotation 𝑈 :

𝐴 = 𝑈 𝑆 𝑉 †. (2.20)

The rectangular matrix 𝑆 has only diagonal non-zero elements. These values are
called the singular values 𝑆ii = si sorted according to value, s1 being the largest
of them. This representation of 𝐴 can be truncated by setting all singular values
smaller than a predefined threshold to zero. SVD can also be generalised to a
matrix of dimension 𝑑n, by grouping the indices accordingly.

In the case of MPS each index ui one SVD can be performed, starting with u1

in this example (see the first line of fig. 2.3)

𝐴(u1, u2, ..., un) = 𝐴((u1), (u2, ..., un)) =
r1∑︁
𝛼1

𝑈u1,𝛼1𝑆𝛼1,𝛼1(𝑉
†)𝛼1,(u2,...,un) (2.21)

=

r1∑︁
𝛼1

𝑀u1
1𝛼1

𝐴(𝛼1,u2),(u3,...,un). (2.22)

controlling the accuracy of the new representation by truncating the singular values
𝑆𝛼1,𝛼1 at a suitable threshold r1. For the second variable u2, the truncated matrix
𝑆 and 𝑉 † were multiplied and the matrix 𝑈u1,𝛼1 was replaced by a set of 𝑑 vectors
𝑀u1

1,𝛼1
before performing another SVD giving (second line of fig. 2.3)

𝐴(u1, u2, ..., un) =
r1∑︁
𝛼1

r2∑︁
𝛼2

𝑀u1
1,𝛼1

𝑈(𝛼1,u2),𝛼2𝑆𝛼2,𝛼2(𝑉
†)𝛼2,(u3,...,un) (2.23)

=

r1∑︁
𝛼1

r2∑︁
𝛼2

𝑀u1
1,𝛼1

𝑀u2
𝛼1,𝛼2

𝑆𝛼2,𝛼2(𝑉
†)𝛼2,(u3,...,un). (2.24)

𝑀u2
𝛼1,𝛼2

can be interpreted as a set of 𝑑 matrices. Repeating the SVD for each
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index results in a truncated MPS

𝐴(u1, u2, ..., un) =
∑︁

𝛼1,...𝛼n

𝑀u1
1,𝛼1

𝑀u2
𝛼1,𝛼2

. . . 𝑀un−1
𝛼n−1,𝛼n

𝑀un
𝛼n−1,1

(2.25)

as depicted in the last line of fig. 2.3. The sums over 𝛼i are indicated by the green
lines. The higher the entanglement between the variables, the more terms have to
be added up to attain the required accuracy.

...

...
A

...

...

...

Figure 2.3: Conceptual construction of a MPS. Site by site the multi-dimensional
tensor is deconstructed (from top to bottom) into the product of tensors
of lesser dimension each taking one physical index as argument (black
lines). The accuracy can be tuned by truncation of the sums over the
hidden indices (green lines).

The SVD can be performed in any arbitrary order of ui meaning that
performing SVD for index u2 before u1 does not change the outcome.

Among the methods for obtaining a MPS besides SVD are [4], the Schmidt
Decomposition [4] and the Tensor Cross Interpolation (TCI) [15, 16]. They all
share the principle of reducing a high-dimensional matrix to lower rank tensor
networks, thereby interchanging costly matrix multiplication over full rank
matrices, with sums over inner indices.
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2.4 Skeleton Approximation

For this thesis, TCI was used, which we will discuss in the following section
starting from a single two-dimensional matrix and calculating its skeleton
decomposition [7]. It starts with a 𝑀 × 𝑁 matrix 𝐴 with all row indices being
denoted as I and all column indices as J. 𝐴(I,J) denotes the full matrix. To
obtain an approximate rank 𝐷 factorisation, 𝐷 rows {ℐ1, ℐ2, ..., ℐ𝐷} = ℐ ∈ I and
𝐷 columns {J1,J2, ...,J𝐷} = J ∈ J are selected, see fig. 2.4 [15]. Using a
skeleton approximation this matrix can be decomposed into

𝐴(I,J) ≈ 𝐴CI(I,J) = 𝐴(I,J )[𝐴(ℐ,J )]−1𝐴(ℐ,J) (2.26)

with the so-called pivot matrix 𝐴(ℐ,J ), which is formed by the elements contained
in both ℐ and J [16]. In contrast to SVD, where the full rank matrix has to be
available, cross-interpolation (CI) allows us to generate an approximate with only
a few elements of the exact matrix which removes memory limitations of having
to store the full rank matrix. The CI has two properties:

1. The approximation is exact if 𝐴 is of rank ≤ 𝐷 [15–18]. This is shown when
calculating the determinant of an arbitrary matrix put into a 2 × 2 block

form 𝐴′ =

(︃
𝐴′

11 𝐴′
12

𝐴′
22 𝐴′

22

)︃

det𝐴′ = det[𝐴′
11] det[𝐴

′
22 − 𝐴′

21𝐴
′−1
11 𝐴

′
12] (2.27)

by introducing the Schur complement 𝐴′
22 − 𝐴′

21𝐴
′−1
11 𝐴

′
12. Therefore, when

adding an additional linearly dependent row and column to the pivot matrix
𝐴(ℐ,J ) (which was chosen from linearly independent rows and columns) the
determinant of the new pivot matrix

det

(︃
𝐴(ℐ,J ) 𝐴(ℐ, y0)
𝐴(x0,J ) 𝐴(x0, y0)

)︃
= 0 (2.28)

vanishes. Thus, the determinant of the Schur complement, namely
𝐴(x0, y0)− 𝐴(x0,J )[𝐴(ℐ,J )]−1𝐴(ℐ, y0), must vanish too, showing that the
reconstruction of the added row and column is exact.
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2. The approximation is exact at the positions of the selected rows and columns
i ∈ ℐ or j ∈ J as the relation 𝐴(i, j) = 𝐴(i,J )𝐴(ℐ,J )−1𝐴(ℐ, j) proves [15].

Figure 2.4: Visualisation of the skeleton approximation. The big red triangles are
the pivots, the smaller red ones automatically generated pivots. Blue
triangles are entirely interpolated by the sparse representation on the
right [15].

The skeleton approximation is quasi-optimal meaning that, unlike SVD, it does not
optimally compress a n × n tensor. Therefore, the error is larger for the skeleton
approximation [19] compared to a SVD of the same rank [4].

||𝐴− 𝐴r
SVD||2 =

√︁
𝜎2
r+1 + 𝜎2

r+2 + . . .+ 𝜎2
n (2.29)

||𝐴− 𝐴r
TCI||2 ≤ 𝜎r+1

√︀
1 + r(n− r) (2.30)

|| · ||2 denotes the Euclidean norm with 𝜎r+1 being the first singular value truncated
for a SVD of rank r.

2.5 Tensor Cross Interpolation (TCI)

In the next step, the cross interpolation for a single matrix is generalised to n-
dimensional tensors producing an iterative method that allows us to unfold a
high-dimensional tensor into a tensor train (TT) [15, 16]. Although practically
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not feasible, the following paragraph will give pedagogical insights into TCI before
elaborating on a more practical algorithm.

A function with n discrete variables 𝐴(u1, u2, ..., un), each variable taking 𝑑

different values, is depicted as a box with n legs sticking out of it, being the physical
indices ui, see fig. 2.5 left [15]. When regrouping the indices into one single index
and a multi-index 𝐴(u1),(u2,u3,...,un) CI can be applied generating the pivot matrix
(blue in fig. 2.5) and two sums over 𝐷1 hidden indices, which correspond to the
𝜖-rank of the CI (indicated by the green line in figure 2.5). As the tensor is reduced
to a small amount of its original elements only a finite number of terms are summed
up.

In a second step, the indices are once again regrouped into 𝐷1 indices of the
pivot matrix and the second index u2 leading to 𝐴(u1,u2),(u3,u4,...,un) which is then
cross-interpolated adding another pivot matrix and two more green lines
representing the sums over the inner indices. This procedure, one by one, unfolds
the multi-index tensor into a tensor train, where each index is separated from the
rest.

Figure 2.5: Abstract visualisation of constructing a TT. One by one the indices
are grouped together at ui and cross interpolated until the full matrix
unfolds into a TT [15].

When translating the above into a practical algorithm with as few calls to the
function 𝐴(u1, u2, ..., un) as possible, keeping computation time and cost low, the

13



tensor is first split n − 1 times to obtain the first pivot. When splitting the
tensor at an arbitrary position 𝛼 with 1 ≤ 𝛼 ≤ n it creates two sets of multi-
indices i(𝛼) = (u1, u2, ..., u𝛼) and j(𝛼) = (u𝛼, u𝛼+1, ..., un). For each multi-index, 𝐷𝛼

subsets of multi-indices are considered for the CI, denoted as ℐ𝛼 = {i1, i2, ..., i𝐷𝛼}
and J𝛼 = {j1, j2, ..., j𝐷𝛼} of size 𝛼 and n− 𝛼 + 1 respectively.

Example 1 elaborates on the method for a tensor of dimension 𝑑4 meaning that
each variable u𝛼 can take 𝑑 values. The tensor is split at position 𝛼 = 3 creating
multi-indices i(3) and j(3) containing 𝛼 = 3 and n−𝛼+1 = 4− 3+1 = 2 elements
respectively. As a next step, the subsets ℐ3 and J3 are chosen each containing
𝐷3 = 2 elements. Increasing 𝐷𝛼 means including more samples in ℐ3 and J3,
thereby increasing the overall accuracy of the representation.

Example 1

n = 4 𝛼 = 3 𝐷3 = 2

i(3) = (u1, u2, u3) ; j(3) = (u3, u4)

ℐ3 = {(u1, u2, u3)1, (u1, u2, u3)2}
J3 = {(u3, u4)1, (u3, u4)2}

In order to construct the original tensor concatenation over the multi-indices is
executed symbolised by ⊕, which means combining multiple matrices to form one
large matrix, hence

𝐴(u1, ..., u𝛼−1 ⊕ u𝛼 ⊕ u𝛼+1, ..., un) = 𝐴(u1, u2, ..., un) (2.31)

which is also valid for ℐ and J with

ℐ ⊕ J = {i⊕ j|i ∈ ℐ, j ∈ J }. (2.32)

In example 2 the concatenation of two matrices is explicitly calculated.
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Example 2

ℐ1 =

{︃
0.1 0.2

0.3 0.4

}︃
J2 =

{︁
0.5 0.6

}︁

ℐ1 ⊕ J2 =

{︃
ℐ1 ℐ1

J2 J2

}︃
=

⎧⎪⎨⎪⎩
0.1 0.2 0.1 0.2

0.3 0.4 0.3 0.4

0.5 0.5 0.6 0.6

⎫⎪⎬⎪⎭
With these notations at hand two more tensors 𝑇𝛼 and 𝑃𝛼 are introduced cor-

responding to the (yellow) three-legged tensor and the (blue) Pivot matrix in fig.
2.5 respectively.

𝑇𝛼(i, u𝛼, j) ≡ 𝐴(i⊕ u𝛼 ⊕ j) | i ∈ ℐ𝛼−1; j ∈ J𝛼+1 (2.33)

𝑃𝛼(i, j) ≡ 𝐴(i⊕ j) | i ∈ ℐ𝛼 ; j ∈ J𝛼+1 (2.34)

Hence, the tensor 𝑇𝛼 is of dimension 𝐷𝛼 × 𝑑 × 𝐷𝛼+1 and contracts over the
physical index u𝛼 and two virtual indices, whereas 𝑃𝛼 is of dimension 𝐷𝛼 × 𝐷𝛼.
Solely, the first and the last tensor 𝑇1(i, u1, j) and 𝑇n(i, un, j) have dimension
1× 𝑑×𝐷𝛼 and 𝐷𝛼 × 𝑑× 1 respectively, hence being two-legged instead of three-
legged. Furthermore, it is noteworthy that the elements of 𝑇𝛼 are constructed
from slices of the original tensor 𝐴(ℐ𝛼−1, u𝛼,J𝛼+1) along the physical index u𝛼.
Fig. 2.6 visualises the procedure for seven physical (black lines) and 12 hidden
indices (green lines). For 𝑃𝛼 (blue boxes) the indices are transposed due to the
inverse 𝑃−1

𝛼 . With the full unfolded TCI uncovered 𝐴 can simply be expressed via
matrix multiplication by

𝐴(u1, ..., un) ≈ 𝐴𝑇 𝐶 𝐼(u1, ..., un) ≡
n∏︁

𝛼=1

𝑇𝛼(i, u𝛼, j)𝑃−1
𝛼 (i, j) (2.35)

or more compact with i(𝛼) ∈ ℐ𝛼 and j(𝛼) ∈ J𝛼

𝐴𝑇 𝐶 𝐼(u1, ..., un) ≡
n∏︁

𝛼=1

𝑇 u𝛼
𝛼 𝑃−1

𝛼 (2.36)

= [𝑇1]
u1

1j(2)
[𝑃1]

−1
j(2)i(1)

[𝑇2]
u2

i(1)j(3)
...[𝑃n−1]

−1
j(n)i(n−1) [𝑇n]

un

i(n−1)1
. (2.37)
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Figure 2.6: Tensor train for seven physical indices u1, . . . , u7, summed over a subset
of rows (ℐ𝛼) and columns (J𝛼), represented by matrix multiplication
of 𝑇𝛼 and 𝑃𝛼 [15].

With an expression for the TCI established it is yet to be found how to select the
rows and columns of ℐ and J for a working algorithm.

Nesting condition

The nesting condition [15, 16] restricts the selection of the pivots by constructing
ℐ𝛼 (J𝛼) from elements of ℐ𝛼−1 (J𝛼+1). Thus, when defining I𝛼 (J𝛼) as the set of
multi-indices u𝛼 of size 1 the relation arises

ℐ𝛼 ⊂ ℐ𝛼−1 ⊕ I𝛼 (2.38)

J𝛼 ⊂ J𝛼 ⊕ J𝛼+1 (2.39)

This ensures that for any multi-index i(𝛼−1) ∈ ℐ𝛼−1 and j(𝛼+1) ∈ J𝛼+1,
𝐴TCI(i

(𝛼−1) ⊕ u𝛼 ⊕ j(𝛼+1)) is exact [15]. Additionally, the approximation is exact,
if the interpolation rank 𝐷𝛼 equals the rank of the original tensor 𝐴(i ⊕ u𝛼 ⊕ j)

for any 𝑇𝛼 and (i, j) [16]. Example 3 demonstrates the nesting condition for a
matrix with an arbitrary number n of physical indices {u1, u2, . . . , un} each
taking 2 values.
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Example 3

ℐ1 = {(0.1), (0.2)}
ℐ2 = {(0.1, 0.3), (0.2, 0.4)}
ℐ3 = {(0.1, 0.3, 0.5), (0.2, 0.3, 0.6)}

Jn−2 = {(0.12, 0.13, 0.15), (0.12, 0.14, 0.16)}
Jn−1 = {(0.12, 0.13), (0.12, 0.14)}
Jn = {(0.11), (0.12)}

For visualisation purposes, the pivots can be drawn as a tree diagram, see
equ. 2.40. Expanding the tree gives further pivots, while keeping the nesting
condition intact.

(2.40)

2.5.1 Finding pivots

The accuracy and efficiency of the TCI depends heavily on the choice of pivots. It
is critical to balance finding the best set of pivots as well as running an efficient
algorithm [16]. In general, searching for the maximum-volume cross

vol 𝐴(ℐ,J ) = | det𝐴(ℐ,J )| (2.41)

is expedient and efficient as the values included in the cross are exactly represented
in the skeleton representation [16, 20]. Another method is introducing the error
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tensor Π to build a MPS via TCI [15]

Πu𝛼u𝛼+1
𝛼 ≡ 𝐴(ℐ𝛼−1 ⊕ I𝛼 ⊕ J𝛼+1 ⊕ J𝛼+2) (2.42)

𝜖Π(i
(𝛼−1), u𝛼, u𝛼+1, j(𝛼+1)) ≡

⃒⃒⃒
Πu𝛼u𝛼+1

𝛼 − [𝑇𝛼]
u𝛼

i(𝛼−1) k
[𝑃𝛼]

−1
k l [𝑇𝛼+1]

u𝛼

l j(𝛼+2)

⃒⃒⃒
. (2.43)

with Πu𝛼u𝛼+1
𝛼 being a four-legged tensor with two physical indices u𝛼 and u𝛼+1,

see fig. 2.7. Due to the nesting condition introduced above the error function in
equation 2.42 is equivalent to

𝜖Π(i
(𝛼−1), u𝛼, u𝛼+1, j(𝛼+2)) = |𝐴− 𝐴TCI|(i(𝛼−1), u𝛼, u𝛼+1, j(𝛼+2)) (2.44)

meaning that improving the choice of pivots for a single factorisation improves
the overall TCI [15]. With the error function at hand the algorithm can proceed

Figure 2.7: Error function on the left stems from the TCI. Green lines represent
sums over indices, black lines physical indices [15].

finding its first pivot with 𝐷𝛼 = 1 adding the new found crosses to ℐ𝛼 and J𝛼+1

before moving to the next site Π
u𝛼+1u𝛼+2

𝛼+1 . Pivots are chosen to maximise the error
function, in that, by adding values that produce the maximum error to ℐ and J
these elements become exact, minimising the overall error by the greatest extent
possible. This method is known under the name of "Active Learning" in machine
learning [21]. The concept allows the algorithm to choose the data from which it
learns by itself and therefore provides a better performance with less training. In
this fashion, the algorithm adds pivots for each site completing one "sweep"
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when reaching the very last site Π
un−1un

n−1 . The process is reversed sweeping
backwards from the very last site to the first one. Thus, by sweeping back and
forth more pivots are successively added and the approximation is enhanced
while also keeping the nesting condition intact [16]. The construction of the TCI
is aborted when either the error falls below a desired tolerance, after which, as a
precaution, two more sweeps are performed, to avoid any local minima, or the
number of sweeps exceeds a predefined maximum.

For finding a suitable pivot either the full-sized tensor Πu𝛼u𝛼+1
𝛼 is searched which

would result in a brute force search over (𝐷𝛼𝑑)
2 elements (full search). For a more

time-efficient method the error function is iteratively improved scanning (i(𝛼−1), u𝛼)

and (u𝛼+1, j(𝛼+2)) alternatively until a local maximum is found or the number of
iterations exceeds a bound value. This would correspond to O(𝐷𝛼𝑑) elements
searched (rook pivoting) [15].

2.5.2 Quantics Tensor Cross Interpolation (QTCI)

Quantics tensor cross interpolation combines two methods highly efficient in
describing many-body problems, quantics tensor trains (QTT) and TCI [5]. As
the latter was already described above, the subsequent section will elaborate on
QTT. The main idea of QTT is that instead of using a standard equidistant grid
to discretise function variables, exponentially different length scales are
introduced [22]. With a single variable u𝛼 decomposed into a set of binary
variables only taking 𝜎𝛼,i ∈ {0, 1}, the function
𝑓(u𝛼) = 𝑓(𝜎𝛼,1, 𝜎𝛼,2, . . . , 𝜎𝛼,𝑅) = 𝑓𝜎 reduces to a 2× ...× 2 (𝑅-way) tensor, with
𝑅 depending on the grid-size 2𝑅. Example 4 shows the quantisation of two
different u𝛼.

Example 4

𝑅 = 5

𝑓(0) → 𝑓(0, 0, 0, 0, 0)

𝑓(3) → 𝑓(0, 0, 0, 1, 1)

In example 5, the binary variables or qubits of same length scale are grouped
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together when building the tensor train [6]. This allows separating different
length scales when weakly entangled by compressing the corresponding tensor or
embracing the entanglement where needed by increasing the tensor’s rank. This
becomes also essential when adding dimensions n as the entanglement is
expected to be largest for two qubits of the same length scale.

Example 5

𝑅 = 3 n = 2

𝑓(*, 1) → 𝑓(*, 0, *, 0, *, 1)
𝑓(5, *) → 𝑓(1, *, 0, *, 1, *)
𝑓(5, 1) → 𝑓(1, 0, 0, 0, 1, 1)

Unfolding the quantised tensor into a QTT gives the equation:

𝑓𝜎 =
n𝑅∏︁
𝛼=1

𝑀𝜎𝛼
𝛼 = [𝑀1]

𝜎1
1𝛼1

[𝑀2]
𝜎2
𝛼1𝛼2

...[𝑀n𝑅]
𝜎n𝑅
𝛼(n𝑅−1)1

. (2.45)

Note that identical indices imply the sum over that index (Einstein notation).
Similarly as before, 𝜎𝛼 corresponds to the physical indices and 𝛼i to the virtual
(inner) indices. Equation 2.45 is the exact representation of function 𝑓𝜎 reshaped
into a tensor train. Its bond dimension increases exponentially with each site 𝛼

towards the chain’s centre 𝐷′
𝛼 = 2min{𝛼,n𝑅−𝛼} [5]. This exact decomposition (full

rank) is visualised in fig.2.8.

For certain systems it is beneficial to group indices together [5]. Fusing indices
that are expected to have high levels of entanglement saves the cost of compressing
a barely compressible tensor, but instead resources can be focused on compressing
less entangled indices. When dealing with n dimensional systems, it suggests itself
fusing indices of the same length scale. For QTT this means that instead of 2 values
each index can take 2n values. Thereby, the number of outer indices decreases by
a factor of 1/n meaning that for the QTT only 𝑅 arguments have to be taken into
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account, visually corresponding to a TT with 𝑅 legs sticking out.

𝜎𝛼 = (𝜎𝛼,1, 𝜎𝛼,2, ..., 𝜎𝛼,𝑅) | 𝜎𝛼,i ∈ {0, 1} (2.46)

�̃�𝛼 =
n∑︁

i=1

2i−1𝜎𝛼,i ∈ {0, ..., 2n − 1} (2.47)

Example 6 calculates the fused representation for a simple 3D system. Instead of
taking only two values 𝜎𝛼 ∈ {0, 1}, one variable may take �̃�𝛼 ∈ {0, . . . , 2n − 1}
when fusing n indices {u1, u2, . . . un} together. For the right slot 𝑓(*, *, u3), in the
first line, the binary representation remains the same taking values {0, 1}. Moving
on the middle index 𝑓(*, u2, *), in the second line, the binary variables takes the
two values {0, 2}, and the index on the left 𝑓(u1, *, *), in the third line takes values
{0, 4}. Simply taking the sum of all dimensions gives the fused representation.

Example 6

𝑅 = 3 n = 3 �̃�𝛼 ∈ [0, 7]

𝑓(0, 0, 3) → 𝑓(0, 1, 1)

𝑓(0, 1, 0) → 𝑓(0, 0, 2)

𝑓(5, 0, 0) → 𝑓(4, 0, 4)

𝑓(5, 1, 3) → 𝑓(4, 1, 7)

For the algorithm, the function variables u𝛼 have to be normalised to lie in [0, 1]

before being discretised to the 2𝑅 grid [5]. In example 7 the function variable u1

is normalised before being transformed into its qubits representation.

Example 7

𝑅 = 5 u1 ∈ [0, 2𝜋)

𝑓(0) → 𝑓(0, 0, 0, 0, 0)

𝑓(2𝜋 /25) → 𝑓(1/25) → 𝑓(0, 0, 0, 0, 1)

To achieve compression and save computational cost TCI has to enter the
equation. In this way dominant features can be still accurately reproduced,
whereas less important contributions are truncated. When performing TCI
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equation 2.37 changes to

𝑓𝜎 =
n𝑅∏︁
𝛼=1

𝑇 𝜎𝛼
i𝛼,j𝛼

𝑃−1
i𝛼,j𝛼

(2.48)

= [𝑇1]
𝜎1

1j(2)
[𝑃1]

−1
j(2)i(1)

[𝑇2]
𝜎2

i(1)j(3)
[𝑃2]

−1
j(3)i(2)

...[𝑇n𝑅]
𝜎n𝑅

i(n𝑅−1)1
(2.49)

with i(𝛼) ∈ ℐ𝛼 and j(𝛼) ∈ J𝛼 representing the pivot crosses. Although
considerably truncated towards the centre, bond dimension 𝐷𝛼 is expected to
grow exponentially in the beginning as on large length scales there are no details
to spare without losing a considerable amount of information, following 𝐷𝛼 = 𝐷′

𝛼

[6]. When reaching a maximum bond dimension 𝐷max, the entanglement between
different length scales peaks leading to more and more features being compressed,
𝐷𝛼 ≪ 𝐷′

𝛼. In general, the bond dimension reaches a plateau after 𝐷max or slowly
starts to decrease, as entanglement decreases. If finer length scales do not yield
any additional information, say entanglement between different length scales
vanishes, the bond dimension drops to 2, which can be represented as a product
state, dropping the sums over the inner indices [4]. Maximum bond dimension is
closely related to the overall error, thus increasing bond dimension allows for
describing more complex physical systems with intricate structure [14].

Figure 2.8: Exemplary bond dimensions for a QTCI. For 𝛼 ≤ 6 exponential growth
(not compressible), 𝛼 ∈ [7, 12] constant 𝐷𝛼 (compressible), 𝛼 ∈ [13, 17]
exponential decrease (compressible, entanglement diminishes), 𝛼 > 17
𝐷𝛼 = 2 (no entanglement).

Besides TCI there are other ways to achieve a compressed tensor train, with
SVD being one of the most commonly used methods. By truncating all singular
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values smaller than a predefined truncation threshold, SVD optimally suppresses
its maximum bond dimension 𝐷max for a given tolerance 𝜖 whereas TCI is quasi-
optimal by finding a local minimum for 𝐷max (generally being slightly higher than
for SVD) [5, 15]. SVD makes use of the full rank tensor to find an optimal solution
which consequentially involves exponentially long run time even if the tensor is
highly compressible. In contrast, TCI does not require evaluating or storing the full
rank tensor which gives it a major advantage over SVD when it comes to memory
usage and computation time as TCI constructs the TT from a few sampled values.
As for the numerical effort, SVD requires O(𝐷2

m𝑎xn𝑅 𝐷′
𝛼) values to be calculated

[4] with 𝐷′
𝛼 being the uncompressed tensor’s dimension of site 𝛼 whereas TCI

needs O(𝐷2
maxn𝑅) [5].
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3 Results and Discussion

All calculations of the QTCI were performed in julia 1.9 using the package
presented in the paper from Ritter et al. (2023) [5]. It is important to note that
julia uses 1-based indexing. In order to align with the programming language the
library uses bits {1, 2}, instead of {0, 1}. Thus, the bit representation of example
5 changes to

Example 8

𝑅 = 3 n = 2

𝑓(*, 2) → 𝑓(*, 1, *, 1, *, 2)
𝑓(6, *) → 𝑓(2, *, 1, *, 2, *)
𝑓(6, 2) → 𝑓(2, 1, 1, 1, 2, 2)

For simple calculations an Apple M2 processor was used. High-demanding calcu-
lations were performed on the Vienna Science Cluster (VSC) [23].

3.1 One dimension

In the following chapter the dispersion relation of a 1D tight-binding model will
be studied with the band dispersion

𝜖(k) = −2t cos(k)− 𝜇 (3.1)

and a self-energy Σ inspired by self-energy deep in the Mott phase [24] of

Σ(k , 𝜔) = 𝑈 /2 +
𝑈2

4

1

i𝜔n + 𝛼 𝜖(k)
(3.2)

The parameters 𝑈 , t and 𝛼 were set to 4.0, 2.0 and 1.0 respectively.
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(a) (b)

(c) (d)

Figure 3.1: Dependence of the (a) imaginary and (b) real part of 𝐺0, Σ, 𝐺 on k
in the first Brillouin zone for 𝜔0 = 𝜋 /𝛽 and 𝛽 = 100 at half-filling
𝜇 = 𝑈 /2. Panels (c) and (d) show 𝐺 for different fillings.

Figures 3.1(a,b) depict the real and imaginary part of the non-interacting
Green’s function 𝐺0(k , 𝜔), self-energy Σ(k , 𝜔) and the interacting Green’s
function 𝐺(k , 𝜔) for the lowest positive Matsubara frequency 𝜔0 = 𝜋 /𝛽 and
𝛽 = 100 at half-filling 𝜇 = 𝑈 /2. In fig. 3.1(a,b) the curves of Σ and 𝐺0 show
distinct peaks for the Fermi point, thus requiring a large grid size to accurately
display them (here 210 sampling points). For half-filling the extrema of 𝐺 are
located at k = ±𝜋 /2. The structure of 𝐺 is considerably flatter for half-filling
than for 𝐺0(k , 𝜔), Σ(k , 𝜔), meaning that it is also easy to compress. However,
when moving away from half-filling 𝜇 > 𝑈 /2 the function changes rapidly, and
sharp peaks emerge, see fig. 3.1(c,d). When further increasing 𝜇 the structure of
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the function becomes more complex and therefore, less compressible when
buliding the QTCI, cf. fig. 3.11b below.

Fig. 3.2 shows the dependence of the self-energy Σ(i𝜔n) for different k-points,
along high symmetry lines of a cubic lattice, and for different fillings. Using the
imaginary part of Σ(i𝜔n), the scattering rate (inverse life time) of the particle
can be determined, whereby the material can be characterised as an insulator (fig.
3.2(a) for k⃗(𝜋 , 0) and k⃗(𝜋 /2, 𝜋 /2) with Im Σ(i𝜔n) ̸= 0 for all n ∈ R) or a metal
(Im Σ(i𝜔n) = 0).

(a) (b)

Figure 3.2: Dependence of Im Σ on i𝜔n at different k-points for 𝜔0 = 𝜋 /𝛽 and
𝛽 = 100, (a) 𝜇 = 0, (b) 𝜇 = 𝑈 /2 (half-filling)
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Fig. 3.3 compares the Green’s function 𝐺 for different 𝛽 and frequencies at
half-filling 𝜇 = 𝑈 /2. At half-filling the structure of the function is hardly affected
when decreasing the temperature or increasing the frequency but the pole at
k = ±𝜋 /2 becomes sharper. However, when moving away from half-filling
𝜇 > 𝑈 /2 we dope the Mott insulator and the system becomes metallic. Here, the
effect of temperature steadily increases, making the structure of 𝐺 more intricate
with high and sharp peaks, see fig. 3.4. Therefore, 𝐺 outside half-filling requires
a larger grid size to be accurately resolved, which is also reflected in the bond
dimensions when calculating the QTCI, see fig. 3.5.

Figure 3.3: Imaginary part (left) and real part (right) of 𝐺(k , 𝜔n) at half-filling
𝜇 = 𝑈 /2 for different inverse temperature 𝛽 = {10, 100, 1000}, for 𝜔0

and for different frequencies 𝜔n = {𝜔0, 𝜔5, 𝜔10} and 𝛽 = 100 (bottom).
Increasing temperature has little effect on the function at half-filling.

In the next step the QTCI was calculated. The bond dimension of the TT is a
useful quantity to study the compressibility of the tensor. As a reference, the
bond dimension of the full rank tensor (blue) is plotted as well referring to an
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Figure 3.4: Imaginary part (left) and real part (right) of 𝐺(k , 𝜔n) outside of half-
filling 𝜇 = 𝑈 /2+4 for different inverse temperature 𝛽 = {10, 100, 1000},
𝜔0 and different frequencies 𝜔n = {𝜔0, 𝜔5, 𝜔10}, 𝛽 = 100 (bottom). De-
creasing temperature creates intricate structures with high and sharp
peaks that need a larger grid to be accurately represented.

incompressible data set. Figure 3.5 shows the bond dimension for the QTCI of 𝐺
with 𝑅 = 24 equalling 224 points on an equidistant grid and a maximum error
tolerance of 10−8. Although 224 sampling points are unnecessary, choosing 𝑅 to
be larger than required provides an excellent opportunity to test the methods
ability to compress the data adequately. The plot compares different inverse
temperatures, fig. 3.5(a), and orders of magnitude of the Matsubara frequency,
fig. 3.5(b). As expected the bond dimension grows exponentially in the
beginning meaning that different length scales in this range are highly entangled
and not compressible. The maximum bond dimension depends both on 𝛽 and 𝜔n

but either way stays well below the full rank of 212 bonds. After reaching a
maximum, the bond dimensions start to decrease showing that finer length scales
tend to be less entangled and thus compressible. As depicted in fig. 3.5(c) off
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(a) (b)

(c) (d)

Figure 3.5: Bond dimension for QTCI of 𝐺(k, 𝜔n) at half-filling 𝜇 = 𝑈 /2 (a,b)
and out of half-filling 𝜇 = 𝑈 /2 + 4 (bottom) for varying (a,c) inverse
temperature with 𝜔0, (b,d) order of magnitude of the Matsubara fre-
quency with 𝛽 = 100 fixed. The blue line represents the full rank
(exact) representation of the MPS.

half-filling (𝜇 > 𝑈 /2) lower temperatures require slightly higher bond dimensions
for an accurate display within the given error. From this follows that calculations
in the limit 𝑇 → 0 will be computationally more demanding due to its finer
structures. Notably, the maximum bond dimension 𝐷max stays constant when
decreasing the temperature. Similarly, for larger frequencies the maximum bond
dimension is reduced, see fig. 3.5(b,d). For high orders of magnitude of the
Matsubara frequency, the information gain is minimal as demonstrated by the
bond dimensions for 𝜔500 and 𝜔1000 being virtually identical.
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3.1.1 Error of QTCI

The error of the QTCI is determined dynamically by comparing the result of one
sweep with the tensor calculated in the sweep before. If the relative error falls below
a fixed tolerance 𝜖 two more sweeps are performed to rule out a local minimum
before moving on to the next site. Fig. 3.6 shows the error for 𝐺 for 𝛽 = 100,
𝜇 = 𝑈 /2 and a tolerance of 𝜖 = 10−8. The distinct spikes in fig. 3.6(b) at k = ±𝜋 /2
are due to |𝐺| falling near zero thus increasing the relative error abruptly. Overall,
the error closely matches the predefined tolerance 𝜖 when comparing the function
reconstructed from QTCI with the original one. This proves that the method to
improve the QTCI as well as to estimate the error is reliable. Notably, the error
exhibits a periodicity, displaying 64 peaks in the interval [0, 2𝜋), which might stem
from the separation of length scales.

(a) (b)

Figure 3.6: (a) Absolute and (b) relative error for the reconstructed values of the
QTCI for 𝐺(i𝜔0, k) with 𝛽 = 100, 𝜖 = 10−8.

3.1.2 Comparison of SVD and QTCI

Comparing bond dimension from QTCI with SVD for 𝐺(𝛽 = 100, i𝜔0, 𝜇 = 0)
confirms the conjecture that SVD compresses slightly more efficiently, see fig. 3.7.
It allows for an optimal compression by considering the whole tensor whereas QTCI
comes to a quasi-optimal result by iteratively building the interpolation with single
rows and columns of the tensor, see chapter 2.4. This means using SVD instead of
QTCI comes at the cost of increased memory demand and computation time but
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lowers the bond dimensions as demonstrated by fig. 3.7.

Figure 3.7: MPS built with SVD requires less bond dimensions, thus providing an
optimal compression, whereas QTCI requires less memory and compu-
tation time.
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3.2 Two dimensions

In two dimensions the band dispersion becomes

𝜖(k) = −2tx cos(kx)− 2ty cos(ky)− 𝜇. (3.3)

The relation simplifies for tx = ty = t which refers to an isotropic model.
Fig. 3.8 depicts the real and imaginary part of 𝐺, Σ, 𝐺0 in two dimensions for

𝛽 = 100, 𝜔0 and 𝜇 = 𝑈 /2. Function values vary little except in the region of
the Fermi surface where the function’s extrema are located. The imaginary parts
of the functions are negative throughout the first Brillouin zone thus preserving
causality. When comparing the curve of 𝐺 to Σ and 𝐺0 it becomes apparent, that
the Fermi surface deforms when including electronic interaction. Furthermore, the
peaks broaden similar to scenarios where temperature is increased, cf. fig. 3.9, as
the interaction makes scattering of the propagating electron more likely.

Figure 3.8: Heatmaps of the real (top) and imaginary part (bottom) for 𝐺, Σ and
𝐺0 at 𝛽 = 100, 𝜇 = 𝑈 /2 and 𝜔0. Adding or removing electrons is only
possible at low frequencies near the Fermi surface, cf. fig. 2.2.

When increasing the temperature, the structure becomes less intricate due to
higher scattering rate (lower life time) of the propagating particle and the peaks
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of the Fermi surface broaden as depicted in fig. 3.9.

Figure 3.9: Heatmaps of the real (left) and imaginary part (right) for 𝐺 at 𝛽 = 1.
The Fermi surface broadens when increasing temperature.

Fig. 3.10 shows the path through the high-symmetry points within the first
Brillouin zone of a square lattice. Due to 𝐺 being much smaller than 𝐺0 or Σ

the function values are depicted on the right y-axis. For half-filling 𝐺 is constant
around the Fermi surface. The symmetry of the structure allows for nested wave-
vectors meaning that �̃�(k) = 𝜖(k + q) with a constant wave vector q⃗. This gives
rise to instabilities of the system producing distinct material properties, like spin
density waves. However, this kind of physics is not included in our self-energy
equation 3.2.

(a) (b)

Figure 3.10: Path through the high symmetry points of a cubic lattice with the (a)
real and (b) imaginary part.

Building QTCI for the two-dimensional model approximately increases the
bond dimension tenfold (𝐷max ≈ {15; 130}) for 𝑅 = 24, 𝜖 = 10−8 and the lowest
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positive Matsubara frequency 𝜔0 compared to one dimension, see fig. 3.11. As in
the previous case the bond dimension stays significantly lower than the fully
entangled (exact) limit TT depicted in blue in fig. 3.11, thus once more reducing
the computational cost decisively. As before the bond dimension scales with the
inverse temperature outside half-filling 𝜇 = 𝑈 /2 + 4, meaning that the
computational cost increases with 𝛽, see fig. 3.11b, but stays stable for
half-filling 𝜇 = 𝑈 /2, see fig. 3.11a.

(a)
(b)

Figure 3.11: Bond dimension for the QTCI of 𝐺 for different inverse temperature
𝛽 at (a) half-filling 𝜇 = 𝑈 /2, (b) for 𝜇 = 𝑈 /2 + 4.

3.2.1 Error of QTCI

The error range of the QTCI in two dimensions is comparable to one dimension
when keeping to 𝜖 = 10−8, as depicted in fig, 3.12 for 𝐺 at 𝛽 = 100, 𝜇 = 𝑈 /2.
Noticeable are the white spots around the Fermi surface, exhibiting a smaller
error than the rest of the space. This is likely due to choosing pivots containing
large values for building the QTCI, thereby, decreasing the overall error the
most. In consequence, these values become exact, see chapter 2.5, paragraph
Nesting Condition. This suggests that the algorithm is focusing on high
resolution in regions with more intricate structures whereas in monotonic regions
a higher error is tolerated.
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(a) absolute error (b) relative error

Figure 3.12: Error for the QTCI of 𝐺 for 𝑅 = 24, 𝛽 = 100 and 𝜇 = 𝑈 /2. The
minimum of the absolute error function is at the Fermi surface where
values of 𝐺 are largest.

3.2.2 Effect of tolerance 𝜖 on maximum bond dimension
𝐷max

Building a MPS from QTCI naturally comes along with interpolating data,
thereby accepting a certain level of error. For QTCI this means limiting the bond
dimensions and suppressing numerically negligible entanglement between
different length scales. When providing a more accurate MPS and decreasing the
error, bond dimensions have to be increased. Fig. 3.13(a) demonstrates the
dependence of the bond dimension for each site 𝛼 on the tolerance 𝜖. The
algorithm calculates 𝜖 by comparing QTCI from the previous sweep with the
QTCI of the current sweep, and terminates the execution (after two additional
sweeps) when the difference of the two QTCI drops below 𝜖. Although 𝜖 does not
directly correspond to the absolute error of the QTCI compared to the original
function, it gives a practical tool to tune accuracy and complexity of the MPS.
Fig. 3.13(b) demonstrates the dependence of the maximum bond dimension
𝐷max on the tolerance, suggesting a logarithmic dependence, although the
relation displays significant dispersion at low temperature (𝛽 = 1000). The
logarithmic scaling means an acceptable increase in computational effort for
increasing the accuracy of the QTCI representation.
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Figure 3.13: (a) QTCI bond dimension for different tolerances. More bond di-
mensions are required to meet a smaller error. (b) Maximum bond
dimension 𝐷max increases when lowering the tolerance, suggesting a
logarithmic dependence.

3.2.3 Effect of chemical potential 𝜇

In order to move away from half-filling the chemical potential 𝜇 was modified

𝜇 ̸= 𝑈 /2 (3.4)

Such a chemical potential moves the pole of Σ away form 𝜇. The Green’s
function shows metallic behaviour with a sharp peak in Im 𝐺 and an equally
sharp trough in Re 𝐺, see fig. 3.4 for one dimension. Fig. 3.14 depicts the
two-dimensional interacting Green’s function 𝐺. The complexity of the structure
in k-space increases, compared to 𝜇 = 𝑈 /2 due to the sharper and more
pronounced structures. Figs. ??a,d) show 𝐺 at half-filling. When increasing
𝜇 = 𝑈 /2 + 2, see fig. 3.14(c,e), the troughs deepen and become narrower which is
further enhanced when moving to 𝜇 = 𝑈 /2 + 4, see fig. 3.14(cf). Therefore, a
higher resolution is required to accurately depict the function, which results in a
significantly higher demand in computational resources when calculating the
QTCI reflected by the increased bond dimensions primarily for higher 𝛽, see fig.
3.15. The orange curve shows the bond dimension for half-filling, with a
maximum bond dimension of 𝐷max = 253, whereas the higher values of 𝜇 are
represented by the green (𝜇 = 𝑈 /2 + 2, 𝐷max = 105) and yellow curve
(𝜇 = 𝑈 /2 + 4, 𝐷max = 91), respectively.

Summarily, when dealing with calculations off half-filling entanglement
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Figure 3.14: Heatmaps of real (top) and imaginary part (bottom) of 𝐺 for 𝛽 = 100,
𝜔0, 𝜇 = {𝑈 /2, 𝑈 /2+2, 𝑈 /2+4}. The structure of the function becomes
more complex when moving away from half-filling.

between different length scales gradually increases leading to an increase in bond
dimension. This increase is especially drastic at low temperature.

Figure 3.15: Bond dimensions of G for different chemical potentials 𝜇. The increase
in bond dimension demonstrates the more complex structure of 𝐺
when moving away from half-filling.
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3.2.4 Fused Quantics Representation

As mentioned in chapter 2.5.2, 𝐷max can be further reduced by fusing indices of
same length scale. This is favourable for certain systems where entanglement is
large between fused variables. Figure 3.16(a) compares the bond dimensions in
2D for 𝛽 = 100, 𝜔0, 𝑅 = 24, 𝜇 = 𝑈 /2. Fusing two indices
𝑓(𝜎1,1, 𝜎2,1, 𝜎1,2, . . . , 𝜎2,𝑅) → 𝑓(�̃�1, �̃�2, . . . , �̃�𝑅) proves to have hardly any influence
on the bond dimension 𝐷fused

𝛼
∼= 𝐷interleaved

𝛼 . Thus, using interleaved or fused
indices is interchangeable for this system as it neither decreases the bond
dimensions nor is favourable in terms of computation time. On the other hand,
when considering a zigzag like behaviour as displayed by 𝐺0 for 𝛽 = 100, 𝜔0,
𝑅 = 24, 𝜇 = 0 fusing sites, smoothes out the curve, minimally reducing bond
dimensions, see fig. 3.16(b). The zigzag curve of 𝐺0, especially noticeable at low
temperature 𝛽 = {100, 1000}, suggests that the entanglement between the two
variables of same length scale, one corresponding to the kx-direction the other
one to ky, is very high. Thus, every odd bond index tends to have a higher bond
dimension than its neighbours. Fusing the indices together, thus, eliminating
compression between variables of the same length scale, is expected to smooth
the curve. Such behaviour was also found when using SVD on multi-dimensional
functions [6].

(a) (b)

Figure 3.16: Bond dimension for fused sites. For the fused QTCI every second
site 𝛼 was skipped to make it easily comparable with its interleaved
counterpart. (a) Fusing sites does not have an effect for 𝐺, (b) whereas
the zig-zag curve of 𝐺0 is smoothed out.
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3.3 Three dimensions

Following the same scheme as for one and two dimensions the expression for the
band dispersion for three dimensions is

𝜖(k) = −2tx cos(kx)− 2ty cos(kz)− 2ty cos(kz)− 𝜇 (3.5)

or for a model symmetric in all three directions tx = ty = tz = t.

𝜖(k) = −2t · (cos(kx) + cos(kz) + cos(kz))− 𝜇 (3.6)

Calculating in three dimensions considerably increases the computation time and
memory cost, making it necessary to switch from a regular Apple M2 processor
to the Vienna Science Cluster (VSC). Results were obtained for 𝑅 = 24, 𝜖 = 10−8

𝛽 = {1; 10; 100} and 𝜔0. A limit for the maximal bond dimension 𝐷max was not
set. To achieve the same error tolerance, 𝐷max ∼ 103 considerably increased by a
factor of ∼ 102 (∼ 103) compared to 2D (1D). As with the other dimensions the
effect of temperature on the structure of 𝐺 is low at half-filling 𝜇 = 𝑈 /2, see fig.
3.17.

Figure 3.17: Bond dimension of the QTCI of 𝐺 for three dimensions with varying
temperature at half-filling 𝜇 = 𝑈 /2. The cost for decreasing temper-
ature becomes slightly larger in three-dimensional space.

When considering 𝐺 outside of half-filling at 𝜇 = 𝑈 /2 + 4 the QTCI proves to
be computationally more challenging increasing 𝐷max by a few thousand bonds
per site, see fig. 3.18. With 𝛽 = 1000 the method runs into its limits with
building the QTCI with appropriate grid size (𝑅 = 24), e.g. taking several days
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to finish. This limitation could be avoided by parallelising building the QTCI
by patching [6]: Instead of deconstructing the whole tensor 𝐴, the k-space is
partitioned into smaller patches with the motivation that entanglement within a
single patch is low and therefore compressible. Although entanglement between
different patches is thereby neglected it guarantees parallelisability. Patches can
roughly be subdivided into those containing more complex structures within the
vicinity of the Fermi surface and these with more uniform data. Consequently,
𝐷max is individually and parallelly determined saving time and memory. As an
additional step, the size of the patches could be evaluated dynamically allowing to
increase resolution for structures of interest.

Figure 3.18: Bond dimension of the QTCI of 𝐺 for three dimensions with varying
temperature outside half-filling at 𝜇 = 𝑈 /2 + 4. Decreasing tempera-
ture significantly increased the bond dimension.

3.3.1 Fused Quantics Representation

When fusing indices of same length scale together for n = 3:

𝜎𝛼 = (𝜎𝛼,1, 𝜎𝛼,2, ..., 𝜎𝛼,𝑅) | 𝜎𝛼,i ∈ {0, 1} (3.7)

�̃�𝛼 =
3∑︁

i=1

2i−1𝜎𝛼,i ∈ {0, ..., 7} (3.8)

𝜎 → �̃� = {�̃�1, �̃�2, . . . , �̃�𝑅} (3.9)
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the number of physical indices reduces from 3𝑅 to 𝑅, see equ. 2.48 for reference.
Comparing results to n = 2, cf. fig. 3.16 and fig. 3.19, the bond dimensions
once again are hardly affected. Most notable is that 𝐷fused

max = 1768 is considerably
smaller than 𝐷interleaved

max = 2439 as the variables of the same length scale around
the site of 𝐷max are fused together. Therefore, the entanglement does not show
unlike with the interleaved QTCI which produces a larger 𝐷interleaved

max . Spikes are
moderately visible in fig. 3.19 but may also occur for three dimensional data [6].

Figure 3.19: Bond dimension in three dimensions with QTCI build from interleaved
function (orange) and fused sites (green) for 𝛽 = 10 and 𝜇 = 0. As
with fig. 3.16 fusing sites, smoothes out any zigzag behaviour.

3.4 Universal Power Law for 𝐷max

Computation time of QTCI strongly depends on the system’s bond dimensions
which in turn primarily depends on the grid size 𝑅 and the maximal bond
dimension 𝐷max. 𝑅 can be arbitrarily chosen and 𝐷max can be estimated from 𝛽

and the system’s dimensions n. Fig. 3.20 depicts the dependence of 𝐷max on 𝛽

outside half-filling at 𝜇 = 𝑈 /2 − 4. Fitting the linear dependence for a log-log
plot with a power law the universal relation

𝐷max(𝛽 , n) = 𝐴n · 𝛽(n−1)𝐵 (3.10)
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is derived, with the factor 𝐴n depending on n and a constant 𝐵 ∼= 0.253±0.00623.
As 𝐷max quantifies the entanglement across various length scales, this observation
may inspire further exploration into the underlying reasons for the power law and
prompt investigations into entangled systems extending beyond one dimension.
Among others, (functional) renormalisation groups [(f)RG] might provide a useful
approach, as RG, similarly to QTCI, inherently deals with the separation of length
scales, as demonstrated for the two-dimensional Ising-model by Wilson [8].

Figure 3.20: Maximum bond dimensions 𝐷max in dependence of the inverse tem-
perature 𝛽. Fitting a power law demonstrates a universal relation
between these two parameters for different dimensions n ∈ {1, 2, 3}.
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4 Conclusion and Outlook

Applying QTCI to build a MPS of the interacting Green’s function 𝐺 in k-space
establishes that the method is capable of efficiently compressing and simplifying
multi-dimensional tensors. Thus, QTCI provides an alternative route to the well
established SVD. Using a quantics representation for the k-values allows the
separation of different length scales. Assuming that different length scales are
minimally entangled, this reduces the required bond dimensions and cost of
building the MPS. As with the skeleton representation, QTCI does not require
the complete tensor to build the MPS, in contrast to SVD. The algorithm
searches iteratively for a new pivot, adding a new set of a row and a column to
the pivot matrix when the error is maximal. This generates a quasi-optimal
result, but is less time and memory consuming than calculating the SVD. QTCI
is especially efficient when applied to repetitive data but loses its advantages
when confronted with randomised tensors, as such structures are not
compressible.

The algorithm tunes the accuracy of the MPS representation to a given the
tolerance 𝜖. Although not directly corresponding to the error of the QTCI
compared to the original function, it is an adequate and efficient indicator of the
overall error. Bond dimension and, thus, computational cost, increase, when
demanding a higher accuracy. Nevertheless, correlation between 𝜖 and the
maximum bond dimension 𝐷max suggests a logarithmic dependency and,
therefore, a moderate increase.

The bond dimension 𝐷𝛼 per site 𝛼 generally reflects the complexity and intricacy
of a function. This is seen when going to low temperature (𝛽 = 1000) or moving
away from half-filling in the Hubbard-model (𝜇 ̸= 0). Dealing with the higher-
dimensional k-space proved to be particularly challenging, as 𝐷max for 𝛽 = 100
increased from O(101) for 1D to O(102) for 2D to O(103) for 3D. Additionally,
the grid size scales with 2n𝑅, thereby, increasing the number of sites by 𝑅 for each
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dimension added.
Fusing variables of same length scale together reduces the number of sites to

𝑅, each index now taking values from [0, 2n − 1]. In general fusing sites has
no significant advantage in terms of computation cost or compressibility, except
when the bond dimension exhibit a zigzag behaviour, meaning that entanglement
between the same length scale is larger than between different length scales. For
this case fusing variables smoothes out the curve of the bond dimensions.

Lastly, a universal power law for the dependence of 𝐷max on 𝛽 and the
system’s dimension n was found, stating that 𝐷max = 𝐴n · 𝛽(n−1)0.253. This
provides an estimation for computational cost based on just a few system
parameters. The mathematical derivation of this power law remains unclear, but
efforts motivated by renormalisation group theory to explain entanglement of
systems beyond one dimension might be applicable to this problem.

While it was established that QTCI is an efficient and reliable tool for dealing
with large amounts of data, it proved to be very time consuming for
three-dimensional k-space. This issue can be resolved, by parallelising the code
and implementing dynamic patching. This requires to split a large tensor into
more manageable sections. For each section the QTCI is calculated separately. It
thereby neglects entanglement between patches in favour of parallelisation.

Additionally, revising the selection process of new pivots may further reduce the
time requirement to build the MPS. As for now every (available) column and row is
considered and pivots are selected for producing the maximal error. Considering
only a reduced sample will find a less optimal compression, but simultaneously
reduce the computational cost and time for adding a new pivot. This approach
naturally requires a suitable sampling algorithm.

As a next step, QTCI may be applied to other problems in many-body physics.
The (functional) renormalisation groups inertly play into the concept of length
scale separation, as does QTCI. The two methods together seem to be a promising
combination.

Furthermore, studying critical phenomena with QTCI might be particularly
challenging. Naturally, the correlation length diverges when a system approaches
a critical point, opposing the basic concept of QTCI, stating that entanglement is
small and largely compressible. Investigating how QTCI performs when confronted
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with critical phenomena is an intriguing research topic for the future.
Lastly, QTCI is a very powerful tool for numerical integration. First compressing

complex structures, before calculating an integral, will prove an efficient alternative
to other common methods, like Monte-Carlo integration.
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