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A B S T R A C T

The parametrization of shell structures using the so-called solid shell concept has been widely
exploited in the last decades. This trend is mainly attributed to the relatively simple kinematic
treatment of solid shells in the corresponding finite element formulation in conjunction with
the use of unmodified three-dimensional material laws, among other aspects. In the present
investigation, we provide a comprehensive finite element implementation of solid shells incor-
porating: (i) the use of Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS)
methods to prevent locking issues, (ii) the phase-field approach for triggering fracture events,
and (iii) some representative inelastic material models. The current modular implementation
has been integrated into the FE package ABAQUS via the user-defined routine UEL. Several
representative examples demonstrate the applicability of the present formulation.

. Introduction

Shells are ubiquitous in many engineering applications and structures. The use of shell-like structures can be traced back to the
rigin of civilizations. Differing from beam and column structures, which primarily rely on 1D elements to withstand the external
oading, shell structures use curved, often thin, surfaces to create strong and lightweight architectural forms. The new industrial
nd high-tech revolution during the 21st century is leading to a new paradigmatic use of shells. For instance, contemporary shell
tructures often incorporate parametric design, new materials and digital fabrication techniques in conjunction with biomimetic
esigns, which aim at developing lightweight and adaptive designs that resemble the efficiency and resilience of natural shells.

Recent developments generally demand the comprehensive understanding of fracture events in shells, especially when these
tructures are made from materials which exhibit nonlinear responses, such as elasto-plastic, visco-elastic materials, among many
thers. The development of robust numerical methods for the description of inelastic material response in conjunction to fracture
n shells still represents a scientific and technical challenge. Within this concern, the advent of the phase-field approach has been
rofusely exploited in the last two decades, offering a solid-rooted and versatile computational method for the prediction of fracture
vents in solids. Stemming from the seminal energetic vision of Griffith [1], which was revisited by Francfort and Marigo [2] and
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Nomenclature

Latin Symbols

𝐀 Macroscopical tensor accounting for the microscopic viscous stretches
𝐛 Left Cauchy–Green tensor
𝐁(𝐝) Displacement-strain operator
𝐂 Right Cauchy–Green tensor
𝐝 Nodal displacements
𝑑1, 𝑑2, 𝑑3 Dimensionless parameters accounting for stress triaxiality
𝐄 Green–Lagrange strain tensor
𝐄𝑖, 𝐞𝑖 Cartesian basis vectors
𝐅 Deformation gradient tensor
𝑔(d) Phase-field degradation function
𝐆𝑖, 𝐠𝑖 Contravariant basis vectors
𝐆𝑖, 𝐠𝑖 Covariant basis vectors
𝐺𝑖𝑗 , 𝑔𝑖𝑗 Contravariant metric tensors
𝐺𝑖𝑗 , 𝑔𝑖𝑗 Covariant metric tensors
ℎ Element size
H Thickness of numerical sample
𝐈 Second identity tensor
𝐼𝑛 N-th invariant
𝐉, 𝐣 Jacobian matrix
𝐽 Determinant of the deformation gradient tensor
𝐤[∙∙] Jacobi stiffness matrix
𝑘(𝛼) Isotropic hardening modulus
𝐾 Linear hardening coefficient
�̂� Gateaux directional derivative
L Length of numerical sample
𝐋𝑝 Plastic velocity gradient
𝑚 Testing rate sensitivity for visco-hyperplasticity
𝐌 Matrix for interpolation of EAS enhancing strains
𝐌𝑒 Mandel stress tensor
𝐍 Reference outward normal vector
𝐍(𝝃) Shape functions
𝑛𝑛 Number of nodes
𝐧𝑎 Principal elastic strain directions
�̄� Microdeformation mapping tensor
�̄�𝐗 Pre-microdeformation mapping tensor
𝐏 First Piola–Kirchhoff stress tensor
𝐑𝑒 Elastic rotation tensor
R, r Radius of numerical sample
𝐒 Second Piola–Kirchhoff stress tensor
𝑡 Current experiment time
𝐓 Traction vector
𝐮 Displacement field
𝑈 (𝐽 ) Volumetric contribution to the Helmholtz free energy density
𝐔𝑒 Elastic stretch tensor
𝑣 Testing rate
W Width of numerical sample
𝐗 Position vector in the reference configuration
2
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Greek Symbols

𝛼 Plastic hardening parameter
𝛼sat Saturation level for plastic hardening
d𝛺 Volume differential
𝜕𝛺 Boundary of the solid in the current configuration
𝜕𝛺0 Boundary of the solid in the initial configuration
𝛤𝑐 Internal discontinuity
�̇� Lagrange plastic multiplier, rate of accumulated plastic strain
𝛾𝑙(d,∇𝐗d) Crack energy density
�̇�0 Referential plastic strain rate
𝜅 Bulk modulus
𝜆 Microscopical stretch
𝜇 Shear modulus
𝜇visco,𝛾 Viscous shear modulus for viscous branch 𝛾
𝛺 Body domain in the current configuration
𝛺0 Body domain in the initial configuration
𝛱 Potential energy
𝜓 Parameter accounting for stress triaxiality
𝛹 Helmholtz free energy density
𝛹0 Threshold for the Helmholtz free energy density
𝛹 elas Elastic contribution to the Helmholtz free energy density
𝛹plas Plastic contribution to the Helmholtz free energy density
𝛹visco,𝛾 Viscous contribution of the subnetwork 𝛾 to the Helmholtz free energy density
𝛹vplas Viscoplastic contribution to the Helmholtz free energy density
𝝈 Cauchy stress tensor
𝜎𝑦 Yield stress
𝝉 Kirchhoff stress tensor
𝜏𝛾 Relaxation time for the viscous branch 𝛾
𝛶 Internal variables stored at integration point level
𝜺 Elastic strain tensor
𝜀𝑎 Principal elastic strains
𝝋 Mapping motion vector
𝝇 Nodal incompatible strains
𝝃𝑖 Curvilinear coordinates
𝝃𝐴,𝐵,𝐶,𝐷 Collocation points for ANS interpolation of shear locking
𝝃𝑀,𝑁,𝑂,𝑃 Collocation points for ANS interpolation of trapezoidal locking

Other math symbols

C,c Constitutive Jacobi matrix
 Clausius-Duhem dissipated energy
𝐶 Critical energy release rate
 Internal variables
 Small conditioning parameter
𝓁 Length scale parameter
𝐗 Initial microscopical stretch space
𝐱 Current microscopical stretch space
d Phase-field parameter
V∙ Space of admissible magnitudes
P Fourth-order projector tensor
[∙] Residual vector
3



Engineering Fracture Mechanics 304 (2024) 110123A. Valverde-González et al.

h
f
b
s
m
h
o
s

t
a
T
s
w
t
f

Acronyms

ANS Assumed Natural Strain
EAS Enhanced Assumed Strain
FEM Finite Element Method
UEL User Element Subroutine

Superscripts and subscripts

[∙]+ Tensile (positive) contribution
[∙],𝐴 Partial derivative with respect to 𝐴
[∙]− Compressive (negative) contribution
[∙]−1 Inverse of a matrix
[∙]0 Magnitude evaluated at the center of the element
[∙]𝐛 Magnitude in bottom shell surface
̄[∙] Prescribed variables (vector)/ Deviatoric contribution (matrix)
[∙]𝑒 Elastic contribution of a matrix/vector
[∙]ext External contribution
[∙]𝑛 Magnitude in previous converged time step
[∙]𝑘𝑛+1 Magnitude in current time step at iteration 𝑘
[∙]𝑝 Plastic contribution of a matrix/vector
[∙]𝐭 Magnitude in top shell surface
̃[∙] EAS-enhanced contribution

tr[∙] Trace operator
[∙]𝐮 Displacement-derived contribution

Math operators

⊗ Dyadic tensor product operator
𝛥[∙] Increment of a magnitude
𝛿[∙] Variation of a magnitude
𝛥∗[∙] Directional derivative operator
𝑣[∙] Lie’s derivative operator
||∙|| Norm of a magnitude
𝜕[∙] Partial derivative of a magnitude
∇𝐗[∙], ∇𝐱[∙] Material gradient operator

subsequently regularized by Bourdin et al. [3], phase-field methods of fracture have being developed for different purposes. We
recall the different approaches for the treatment of tension-compression decomposition [4–7] and alternative approaches [8,9],
ductile fracture [10–16], multi-physics fracture [17–21], concrete-like materials [22] and anisotropic solids [23–25], among many
others.

However, the use of phase-field methods of fracture in shells have received a more reduced attention so far. Several investigations
ave been carried out in the last decade recalling different structural models, see [26–30]. Alternative works have been devoted
or the fracture modeling in solid shells, which are characterized by the parametrization of the director vectors of the top and
ottom surfaces of the shell body, see [31–34], where different numerical technologies to alleviate locking events are employed
uch as Enhanced assumed strain (EAS) and the Assumed natural strain (ANS) methods, among others. Moreover, the solid shell
odeling technique holds an advantage over other methods due to its capacity to directly incorporate sophisticated models such as
yperplasticity, visco-hyperelasticity, visco-hyperplasticity, thermo-mechanical, and more. This is attributed to the full integration
f the Finite Element framework. For further insights into the conformity of constitutive models with the Helmholtz free energy in
olid shells, refer to [35,36].

At present, only few formulations integrating solid shell parametrization with fracture modeling attributes within the spirit of
he phase-field method have been implemented [37,38], and more recently extended to thermo-mechanical fracture [36,39,40],
nd global-local FE approaches [41]. The bibliography notably lacks references on inelastic fracture modeling in solid shells.
herefore, the aim of this work is to present the development of a phase-field approach for the simulation of fracture events in
olid shells using the EAS and the ANS methods to prevent locking observed in the response of inelastic materials. Specifically,
e particularize the material response prior to fracture stemming from: (i) the hyper-plastic material from Borden et al. [13], (ii)

he viscous-hyper-elastic proposed by Linder et al. [42] and further developed by [43], and (iii) an innovative visco-hyper-plastic
4

ormulation developed by Chester [44]. Careful attention is devoted to the numerical treatment of the implemented formulation
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and the corresponding numerical implementation. This approach will undergo comprehensive testing through various numerical
examples. First, for validation purposes, experiments are conducted on a notched square tensile plate and, a double-notched
asymmetric specimen especially to compare with the benchmark example. Subsequently, cylindrical samples under mixed loading
conditions will be explored, involving diverse bending and traction scenarios. Despite the additional computational cost they incur
and the possibility of encountering convergence issues, the EAS and ANS methods come in handy in these analyses in alleviating
locking pathologies stemming from the structure.

The organization of the manuscript is as follows. Section 2 introduces the fundamental kinematic formulation for nonlinear
ontinuum Mechanics problems for solid shells with full integration, the phase-field approach for fracture and the EAS and ANS
echniques for the mitigation of locking effects. Subsequently, Section 3 presents the variational formulation for the inelastic
roblem, delving deeply into the particularities for the hyperplastic, visco-hyperelastic and visco-hyperplastic models. Efforts
xhibited in Section 4 are directed to simulate various numerical tests, first to validate the trio of implemented inelastic approaches
nd then, moving to more complex problems, to test its functionality in addressing fracture for solid shells with full integration
hile, at the same time, avoiding locking pathologies. Some final remarks and conclusions are provided in Section 5. In order to

hed light on the employed technique, an appendix is provided for the FE implementation with the intention of providing the reader
he opportunity to replicate such results.

. Basic formulation

.1. Kinematic definitions for nonlinear solid shells

Let 𝛺0 ⊂ R𝑛 be a reference configuration for the n-dimensional Euclidean space with its delimiting boundary 𝜕𝛺0 ⊂ R𝑛−1.
For each position vector in the reference configuration 𝐗 ∈ 𝛺0, we define a primary field of vector values displacement field
𝐮(𝐗, 𝑡) ∶ 𝛺0 × [0, 𝑡] →R𝑛 and the phase-field damage variable d(𝐗, 𝑡) ∶ 𝛺0 × [0, 𝑡] → [0, 1] for each time instant 𝑡, see Fig. 1.

The shell body is parameterized by a set of curvilinear coordinates 𝜉𝑖 (𝑖 = 1, 2, 3), whose first two coordinates represent an in-plane
mid-surface (𝜉1, 𝜉2), whereas third direction (𝜉3) represents thickness direction, with 𝝃 = {𝜉1, 𝜉2, 𝜉3}. The body undergoes deformation
due to Dirichlet boundary conditions prescribed by displacement field �̄� on 𝜕𝛺0,𝐮 and Neumann conditions of traction �̄� = 𝐏 ⋅ 𝐍
n 𝜕𝛺0,𝐭 , with 𝐏 being the first Piola–Kirchhoff stress and 𝐍 being the reference outward normal. The motion from the reference
onfiguration 𝐗 ∈ 𝛺0 onto the current configuration 𝐱 ∈ 𝛺𝑡 is defined via a singular valued continuous map 𝝋(𝐗, 𝑡) ∶ 𝛺0×[0, 𝑡] →R3,

such that 𝐱 = 𝝋(𝐗, 𝑡) = 𝐗 + 𝐮(𝐗, 𝑡) for each time instant 𝑡.
The covariant and contravariant basis vectors in curvilinear setting on the reference (𝐆𝑖) and the current (𝐠𝑖) configurations are

defined as

𝐆𝑖(𝝃) ∶=
𝜕𝐗(𝝃)
𝜕𝜉𝑖

; 𝐠𝑖(𝝃) ∶=
𝜕𝐱(𝝃)
𝜕𝜉𝑖

(1)

The relations between the covariant and contravariant basis reads 𝐆𝑖 ⋅𝐆𝑗 = 𝛿𝑗𝑖 , where 𝛿𝑗𝑖 is the Dirac’s delta. The metric tensor
s defined as

𝐆 ∶= 𝐺𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 = 𝐺𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 , (2)

ith 𝐺𝑖𝑗 = 𝐆𝑖 ⋅𝐆𝑗 and 𝐺𝑖𝑗 = 𝐆𝑖 ⋅𝐆𝑗 . Contravariant and covariant base vectors can be obtained as

𝐆𝑖 = 𝐺𝑖𝑗𝐆𝑗 ; 𝐆𝑖 = 𝐺𝑖𝑗𝐆𝑗 , (3)

nd correspondingly we can obtain

𝐆𝑖 ⋅𝐆𝑘 = 𝐺𝑖𝑗𝐆𝑗 ⋅𝐆𝑘 = 𝐺𝑖𝑗𝛿𝑘𝑗 = 𝐺𝑖𝑘. (4)

The definition of the displacement derived deformation gradient that maps the unit reference element d𝐗 onto the current
lement d𝐱 is given by

𝐅𝐮 ∶=
𝜕𝝋(𝐗, 𝑡)
𝜕𝐗

= 𝐆 + ∇𝐗𝐮. (5)

The displacement dependent Green–Lagrange strain tensor 𝐄𝑢 in curvilinear settings can be written in terms of deformation gradient
as

𝐄𝑢 = 1
2
[

(𝐅𝑢)T ⋅ 𝐅 −𝐆𝑖 ⋅𝐆𝑗
]

(𝐆𝑖 ⊗𝐆𝑗 ) = 1
2
[

𝐠𝑖 ⋅ 𝐠𝑗 −𝐆𝑖 ⋅𝐆𝑗
]

𝐆𝑖 ⊗𝐆𝑗 = 1
2
[

𝑔𝑖𝑗 − 𝐺𝑖𝑗
]

𝐆𝑖 ⊗𝐆𝑗 . (6)

ecalling the solid shell approach, the position vectors of reference 𝐗 and current 𝐱 configurations are represented by the points
rom the bottom (𝐗𝐛) and top (𝐗𝐭) surface respectively as, see Fig. 1

𝐗(𝝃) = 1
2
(1 + 𝜉3)𝐗𝐭 (𝜉1, 𝜉2) +

1
2
(1 − 𝜉3)𝐗𝐛(𝜉1, 𝜉2); 𝐱(𝝃) = 1

2
(1 + 𝜉3)𝐱𝐭 (𝜉1, 𝜉2) +

1
2
(1 − 𝜉3)𝐱𝐛(𝜉1, 𝜉2), (7)

here the subscripts 𝑏 and 𝑡 denote the corresponding points in the bottom and the top surface.
5
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Fig. 1. Description of the shell body in the curvilinear setting. The coordinate systems for the reference 𝛺0 and current 𝛺𝑡 configurations are denoted by {𝐄𝑖}𝑖=1,3
nd {𝐞𝑖}𝑖=1,3, respectively; the points in the reference and current configurations are denoted by 𝐗 and 𝐱 respectively, whereas the corresponding Jacobi matrices
re given by 𝐉 and 𝐣.

.2. The phase-field approach for fracture of solid shells

The phase-field approach for fracture arises from the postulation made by Griffith [1], establishing the competition between
he strain energy 𝛹 and the energy required for the system to create new surfaces coined as crack energy. Within this context, the
otential of the system takes the form

𝛱𝛺(𝐄) +𝛱𝛤𝑐 = ∫𝛺0

𝛹 (𝐄) d𝛺 + ∫𝛤𝑐
𝐶 d𝛤 . (8)

ere, 𝛹 (𝐄) is the strain energy density function, 𝛤𝑐 is the internal discontinuity, and 𝐶 is the critical energy release rate along
he crack set 𝛤𝑐 . Notice that, within the context of the solid shell formulation, total Green–Lagrangian strain 𝐄 is used for the
omputation of 𝛹 . Concerning the surface energy 𝛱𝛤𝑐 associated with the sharp crack (Fig. 2(a)), it is approximated with a smeared
rack as in Fig. 2(b) using the phase-field parameter d ∈ [0, 1], and an internal length scale 𝓁 ∈ R+ controlling the width of the
meared crack. Here d = 0 represents an intact material, whereas d = 1 represents a fully damaged material. Consequently, the crack

energy function takes the form

𝛱𝛤𝑐 = ∫𝛤𝑐
𝐶d𝛤 ≈ ∫𝛺0

𝐶𝛾𝑙(d,∇d) d𝛺, (9)

where 𝛾𝑙(d; ∇d) is the crack energy density. Without any loss of generality, in the sequel, we employ the AT2 formulation [3,45]
hich leads to the expression

∫𝛺0

𝛾𝑙(d,∇d) d𝛺 = ∫𝛺0

𝐶
[

d2

2𝓁
+ 𝓁

2
|∇d|2

]

d𝛺. (10)

Due to the smeared nature of the damage, the strain energy functional is modified to degrade the stiffness by adding a degradation
unction 𝑔(d). Consequently, the potential defined in Eq. (8) takes the form

𝛱𝛺(𝐄) +𝛱𝛤𝑐 = ∫𝛺0

𝑔(d)𝛹 (𝐄) d𝛺 + ∫𝛺0

𝐶𝛾𝑙(d,∇𝐗d) d𝛺. (11)

Here, the degradation function 𝑔(d) of the strain energy density has a quadratic dependence on the phase-field parameter

𝑔(d) = (1 − d)2 +, (12)
6

where  is a small parameter used to avoid ill-conditioning of the stiffness matrix upon damage.
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Fig. 2. Phase-field approach for fracture: Sharp (a) and diffusive (b) crack morphologies. (c) Application of ANS method: identification of collocation points
for the alleviation of (Left image) transverse shear (𝝃𝐴 = (0,−1, 0), 𝝃𝐵 = (1, 0, 0), 𝝃𝐶 = (0, 1, 0) and 𝝃𝐷 = (−1, 0, 0)), and (Right image) trapezoidal locking
(𝝃𝑀 = (−1,−1, 0), 𝝃𝑁 = (1,−1, 0), 𝝃𝑂 = (1, 1, 0) and 𝝃𝑃 = (−1, 1, 0)) pathologies.

Complying with the anzats generated due to Eq. (7), the phase-field variable is averaged by the values at the top (d𝑡) and bottom
(d𝑏) surfaces of the solid shell as

d(𝝃) = 1
2
(1 + 𝜉3)d𝑡(𝜉1, 𝜉2) +

1
2
(1 − 𝜉3)d𝑏(𝜉1, 𝜉2). (13)

2.3. Interpolation of the enhancing strains: the EAS method

As will be described in the forthcoming Section, the alleviation of membrane and Poisson thickness locking is performed by
the EAS technique, which enhances the displacement-derived Green–Lagrangian strain tensor 𝐄𝑢 by considering an incompatible
Green–Lagrangian strain tensor �̃� via additive decomposition of the total Green–Lagrangian tensor 𝐄 as 𝐄 = 𝐄𝑢 + �̃�, see [46] for
more details. Retrieving the orthogonality condition with respect to the discrete approximation stress field, the enhanced strains are
interpolated at the element level using the operator 𝐌(𝝃):

�̃� =
[det𝐉𝟎

det𝐉

]

𝐓𝐌(𝝃)𝝇, (14)

where 𝝇 is the vector containing all the incompatible modes of strains; 𝐉 = {𝐆1,𝐆2,𝐆3} and 𝐉𝟎 = {𝐆1(0),𝐆2(0),𝐆3(0)} are the Jacobian
in the reference configuration and its evaluation at the element center, respectively; and matrix 𝐓 accounts for the terms 𝐉 and 𝐉𝟎
as 𝑇𝑖𝑗 = 𝐆𝑖 ⋅𝐆𝑗(0). For the local operator 𝐌(𝝃), defined in isoparametric coordinates 𝜉, without any loss of generality, we adopt the
model proposed in Vu-Quoc and Tan [47]. Further details on the interpolation are given in Section 3.1.2.

It is worth mentioning that the consideration of assumed strains requires the modification of the right Cauchy–Green tensor 𝐂:

𝐂 ∶= 𝐂𝑢 + �̃� = 2(𝐄𝑢 + �̃�) +𝐆. (15)

2.4. The ANS method

Transverse shear and trapezoidal locking effects are alleviated using the ANS technique. Such locking arises from the poor
displacement interpolation over the thickness. In this regard, Dvorkin and Bathe [48] treatment of the shear components of
the Green–Lagrange strain tensor (𝐸13 and 𝐸23) and those developed by Betsch and Stein [49] for the transverse normal strain
components (𝐸 ) are used. The ANS interpolation of the shear components considers four collocation points, which are defined
7
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in the natural space as (Fig. 2(c), left): 𝝃𝐴 = (0,−1, 0), 𝝃𝐵 = (1, 0, 0), 𝝃𝐶 = (0, 1, 0) and 𝝃𝐷 = (−1, 0, 0). Consequently, the modified
nterpolation reads

⎡

⎢

⎢

⎣

𝐸𝐴𝑁𝑆13

𝐸𝐴𝑁𝑆23

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(1 − 𝜉2)𝐸13(𝝃𝐴) + (1 + 𝜉2)𝐸13(𝝃𝐶 )

(1 + 𝜉1)𝐸23(𝝃𝐵) + (1 − 𝜉1)𝐸23(𝝃𝐷)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑁𝐴𝐸13(𝝃𝐴) +𝑁𝐵𝐸13(𝝃𝐶 )

𝑁𝐶𝐸23(𝝃𝐵) +𝑁𝐷𝐸23(𝝃𝐷)

⎤

⎥

⎥

⎦

. (16)

The proposed ANS interpolation for the treatment of the thickness strain component 𝐸33 accounts for the definition of four
ollocation points located on the corners of the shell midsurface (Fig. 2(c), right): 𝝃𝑀 = (−1,−1, 0), 𝝃𝑁 = (1,−1, 0), 𝝃𝑂 = (1, 1, 0) and
𝑃 = (−1, 1, 0). The associated modified interpolation component reads

𝐸𝐴𝑁𝑆33 =
4
∑

𝑚=1
𝑁𝑚(𝜉1, 𝜉2)𝐸33, 𝑚 =𝑀,𝑁,𝑂, 𝑃

𝑁𝑚(𝜉1, 𝜉2) =1
4
(

1 + 𝜉1𝑚𝜉
1) (1 + 𝜉2𝑚𝜉

2) , with 𝜉1𝑚, 𝜉
2
𝑚 = ±1.

(17)

The ANS method is combined with the EAS method in the current formulation in order to modify the interpolation associated
with the transverse shear strains components 𝐸13 and 𝐸23, and the transverse normal component 𝐸33.

3. Modeling framework and finite element implementation details

This Section is devoted to presenting the variational formalism for the three material models for fully-integrated solid shells
including fracture events through the phase-field approach of fracture and inelastic material effects within the context of nonlinear
Continuum Mechanics. It is important to highlight that this trio of approaches stems from derivations based on the field Hu–Washizu
principle, presented in Section 3.1.1, which will be used as the starting landmark in this Section. Accordingly, details on the its FE
implementation are provided in Section 3.1.2. Additional details are given in Appendix, where we offer code listings that can serve
as valuable aids during the implementation process.

Subsequently, delving into their distinct theoretical aspects, each inelastic model is individually discussed, encompassing: (i)
ductile fracture in hyperplasticity by Borden et al. [13] (Section 3.2); (ii) Visco-hyperelastic material following the work of Valverde-
González et al. [43] and proposed by Linder et al. [42] (Section 3.3); and (iii) the visco-hyperplastic framework proposed by Chester
in [44] which can be found as open source in the website of the author are outlined in Section 3.4.

3.1. Governing functional and finite element implementation

3.1.1. Governing functional
Stemming from the use of the EAS method, in the present contribution, we adopt the additive decomposition of the Green–

Lagrange strain tensor into the displacement derived part 𝐄𝑢 and an enhancing counterpart �̃�, leading to 𝐄 = 𝐄𝑢 + �̃�. As a
consequence, the multi-field Hu–Washizu formulation represents the point of departure for the proposed modellling approach, where
the displacement field 𝐮, the enhancing strain �̃�, the stress field 𝐒, and the phase-field parameter d are the independent fields. The
total potential energy functional reads

𝛱(𝐮, �̃�,𝐒, d) = ∫𝛺0

[𝑔(d)𝛹+(𝐄) + 𝛹−(𝐄)] d𝛺 + ∫𝛺0

𝑔(d)[𝐒 ∶ �̃�] d𝛺 + ∫𝛺0

𝐶
[

d2

2𝓁
+ 𝓁

2
|∇d|2

]

d𝛺 −𝛱ext(𝐮), (18)

here 𝛱ext(𝐮) is the external contribution due to the prescribed boundary conditions; 𝐒 is the second Piola–Kirchhoff stress tensor;
nd 𝛹+ and 𝛹− are the tensile and compressive contributions to the stored energy, respectively, meaning that only tensile states
o contribute to crack growth. Consider the variation of primary fields (𝐮, �̃�,𝐒, d) as (𝛿𝐮, 𝛿�̃�, 𝛿𝐒, 𝛿d) in the appropriate spaces

(V𝑢,Vd,V�̃� ,V𝐒). It is worth noting that V𝑢 =
{

𝛿𝐮 ∈ [𝐻1(𝛺0)] ∶ 𝛿𝐮 = 𝟎 on 𝜕𝛺0,𝐮
}

is the space of admissible displacement variations,
V�̃� = {𝛿�̃� ∈ 𝐿2(𝛺0)} is the space of the admissible enhancing strains, V𝐒 = {𝛿𝐒 ∈ 𝐿2(𝛺0)} denotes the space stress field, and
Vd =

{

𝛿d ∈ [𝐻1(𝛺0)] ∶ ∇𝐗𝛿d ⋅ 𝐍 = 0 on 𝜕𝛺0
}

is the space of admissible test functions for the phase-field damage parameter. Upon
ecalling the orthogonality condition between the spaces of the enhanced strains and the stresses, the stress field can be removed
n the subsequent derivations. Accordingly, the approximate solution can be obtained via the stationary value of the governing
unctional, Eq. (18):

𝛿𝛱 = 𝜕𝛱
𝜕𝐮

⋅ 𝛿𝐮 + 𝜕𝛱
𝜕�̃�

∶ 𝛿�̃� + 𝜕𝛱
𝜕d

𝛿d + 𝜕𝛱
𝜕∇𝐱d

⋅ ∇𝐱𝛿d − 𝛿𝛱ext = 0. (19)

he second law of thermodynamics can be ensured using the Clausius-Duhem inequality. With  representing the dissipated energy,
t becomes apparent that, for internal variables , the local actions take the form:

 =
[

𝐒 − 𝜕𝐄𝛹
]

∶ �̇� − 𝜕𝛹 ∶ ̇ ≥ 0. (20)

dding the damage as an internal variables due to Eq. (19), and keeping the room for other internal variables, Eq. (20) takes the
orm,

 =
[

𝐒 − 𝜕 𝛹
]

∶ �̇� − 𝜕 𝛹 ∶ ḋ − 𝜕 𝛹 ∶ ̇ ≥ 0. (21)
8
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Note that in degenerated shell elements, the lack of full integration necessitates additional modifications to satisfy the Clausius-
Duhem inequality within constitutive modeling.

Consequently, the following general expression of the weak form of the multi-field problem is reached

𝛿𝛱(𝐮, �̃�, d) =∫𝛺0

(

𝑔(d)[𝐒 ∶ 𝐄𝑢]+ + [𝐒 ∶ 𝐄𝑢]−
)

d𝛺 + ∫𝛺0

𝑔(d)[𝐒 ∶ �̃�] d𝛺

+ ∫𝛺0

𝐶
[

d

𝓁
𝛿d + 𝓁∇d ⋅ ∇𝛿d

]

d𝛺 + ∫𝛺0

𝑔′(d)𝛹+(𝐮) d𝛺 − 𝛿𝛱ext(𝐮) = 0.
(22)

Here 𝑔′(d) = −2(1 − d), is the derivative of the degradation function. Residual equations for the FEM discretization for each of the
primary fields can be obtained as

𝐮(𝐮, �̃�, d, 𝛿𝐮) = 𝛿𝐮T
[

∫𝛺0

𝑔(d)𝐁(𝐝)T ⋅ 𝐒 d𝛺
]

− 𝛿𝛱ext(𝐮) = 0, (23)

�̃�(𝐮, �̃�, d, 𝛿�̃�) = 𝛿�̃�T
[

∫𝛺0

𝑔(d)𝐌T(𝝃) ⋅ 𝐒 d𝛺
]

= 0, (24)

d(𝐮, �̃�, d, 𝛿d) = 𝛿dT
[

∫𝛺0

𝐶
[

1
𝓁
𝐍T(𝝃)d + 𝓁𝐁d(𝝃)T ⋅ ∇𝐗d

]

d𝑉 + ∫𝛺0

𝑔′(d)𝐍T(𝝃)𝛹+(𝐮)d d𝛺
]

= 0. (25)

In line with [38], the reference and the current geometries are interpolated through standard trilinear shape functions 𝑁𝐼 (𝐍(𝝃)
n matrix notation) as

𝐗 =
𝑛𝑛
∑

𝐼=1
𝑁𝐼 (𝝃)𝐗𝐼 = 𝐍(𝝃)𝐗 and 𝐱 =

𝑛𝑛
∑

𝐼=1
𝑁𝐼 (𝝃)𝐱𝐼 = 𝐍(𝝃)𝐱, (26)

whereas the interpolation of the displacement field (𝐮), its variation (𝛿𝐮) and its increment (𝛥𝐮) renders

𝐮 ≈ 𝐍(𝝃)𝐝, 𝛿𝐮 ≈ 𝐍(𝝃)𝛿𝐝, 𝛥𝐮 ≈ 𝐍(𝝃)𝛥𝐝. (27)

In the previous expressions, 𝐗𝐼 and 𝐱𝐼 are the discrete nodal values and 𝑛𝑛 = 8, being arranged into the respective global vectors
𝐗 and 𝐱 for both configurations; 𝐝 represents the nodal displacement vector at the element level.

The compatible strain field (𝐄𝑢), its variation (𝛿𝐄𝑢) and its increment (𝛥𝐄𝑢) are computed via the displacement-strain 𝐁(𝐝)
perator as

𝐄𝑢 ≈ 𝐁(𝐝)𝐝, 𝛿𝐄𝑢 ≈ 𝐁(𝐝)𝛿𝐝, 𝛥𝐄𝑢 ≈ 𝐁(𝐝)𝛥𝐝. (28)

hereas the assumed strains at the element level are interpolated through the operator 𝐌(𝝃) as

�̃� ≈ 𝐌(𝝃)𝝇, 𝛿�̃� ≈ 𝐌(𝝃)𝛿𝝇, 𝛥�̃� ≈ 𝐌(𝝃)𝛥𝝇. (29)

In line with the previous scheme, the phase-field (d), its variation (𝛿d), and its increment (𝛥d) are computed as

d = 𝐍(𝝃)d, 𝛿d = 𝐍(𝝃)𝛿d, 𝛥d = 𝐍(𝝃)𝛥d, (30)

here d are the nodal phase-field values. Finally, the material gradient of the phase-field, its variation and its increment are
interpolated via the operator 𝐁d as

∇𝐗d = 𝐁d(𝝃)d, ∇𝐗𝛿d = 𝐁d(𝝃)𝛿d, ∇𝐗𝛥d = 𝐁d(𝝃)𝛥d. (31)

Note that as described in [38], the assumed strains are condensed out at the element level. This is exploited for the construction of
he tangent matrices, since the tangent matrices resulting from the linearization procedure through the Gateaux directional derivative
or the displacement and the phase-field are solved using a staggered solution scheme. The corresponding tangent operators can be
omputed as follows

�̂�[𝐮](𝐮, 𝛿𝐮, 𝛥𝐮, d, �̃�, 𝛥�̃�) = 𝐮(𝐮, 𝛿𝐮, d, �̃�) + 𝛥𝐮𝐮𝛥𝐮 + 𝛥�̃�
𝐮𝛥�̃� + 𝛥d𝐮𝛥d, (32)

�̂�[�̃�](𝐮, 𝛥𝐮, d, �̃�, 𝛿�̃�, 𝛥�̃�) = �̃�(𝐮, d, �̃�, 𝛿�̃�) + 𝛥𝐮�̃�𝛥𝐮 + 𝛥�̃�
�̃�𝛥�̃� + 𝛥d�̃�𝛥d, (33)

�̂�[d](𝐮, 𝛥𝐮, d, 𝛿d, 𝛥d, �̃�, 𝛥�̃�) = d(𝐮, d, 𝛿d, �̃�) + 𝛥𝐮d𝛥𝐮 + 𝛥�̃�
d𝛥�̃� + 𝛥dd𝛥d, (34)

where 𝛥∗[∙] represents the directional derivative operator with respect to the field ∗. The resulting system renders

⎡

⎢

⎢

⎢

⎢

𝐤𝑑𝑑 𝐤𝑑𝜍 𝟎

𝐤𝜍𝑑 𝐤𝜍𝜍 𝟎

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

𝛥𝐝

𝛥𝝇

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

𝐮
ext

𝟎

⎤

⎥

⎥

⎥

⎥

−

⎡

⎢

⎢

⎢

⎢

𝐮
int

�̃�
int
d

⎤

⎥

⎥

⎥

⎥

(35)
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Algorithm 1 Algorithmic implementation of the solid shell fracture with inelastic response.

1: Input: Given {𝐝𝑛, 𝝇𝑛, d𝑛, 𝛶𝑛}, compute {𝐝(𝑘)𝑛+1, 𝝇
(𝑘)
𝑛+1, d

(𝑘)
𝑛+1, 𝛶

(𝑘)
𝑛+1}.

2: Compute 𝛥𝐝 = 𝐝(𝑘)𝑛+1 − 𝐝𝑛 and 𝛥d(𝑘) = d
(𝑘)
𝑛+1 − d𝑛.

3: Loop over the integration points based on the previous converged configuration 𝑡𝑛
3.1 Compute the curvilinear basis 𝐆𝑛 and 𝐠𝑛.
3.2 Compute the B-operator 𝐁𝑛.
3.3 Modify the B-operator due to ANS method.
3.4 Compute the constitutive matrix CALG,𝑛 and stress tensors 𝐒𝑛 (stored as SVARS).
3.5 Interpolate the nodal phase-field values.
3.6 Compute the EAS-operator 𝐌𝑛.

4: Compute the matrices: 𝐤𝜍𝑑,𝑛, 𝐤𝜍d,𝑛 and 𝐤𝜍𝜍,𝑛 and the internal force vector 𝐑𝜍int,𝑛.

5: Compute: 𝛥𝝇(𝑘)𝑛 = −
[

𝐤𝜍𝜍,𝑛
]−1

[

𝐑𝜍int,𝑛 + 𝐤𝜍𝑑,𝑛𝛥𝐝(𝑘) + 𝐤𝜍d,𝑛𝛥d
(𝑘)].

6: Update the enhancing parameters: 𝝇(𝑘)𝑛+1 = 𝝇𝑛 + 𝛥𝝇
(𝑘)
𝑛 .

7: Loop over the integration points at the current tentative time step 𝑡(𝑘)𝑛+1
7.1 Compute the curvilinear basis 𝐆(𝑘)

𝑛+1 and 𝐠(𝑘)𝑛+1.
7.2 Compute the B-operator 𝐁(𝑘)

𝑛+1.
7.3 Modify the B-operator due to ANS method.
7.4 Compute 𝐂 ∶= 𝐂𝑢 + �̃�.
7.5 Compute the total deformation gradient 𝐅 in Cartesian coordinates.
7.6 Compute the constitutive block: the tangent C(𝑘)

ALG,𝑛+1, stress tensors 𝐒(𝑘)𝑛+1, the internal variables 𝛶 (𝑘)
𝑛+1, and the intact

free energy 𝛹 (𝑘)
𝑛+1.

7.7 Transform operators from step 7.6 to curvilinear setting.
7.8 Interpolate the nodal phase-field values.
7.9 Compute the EAS-operator 𝐌(𝑘)

𝑛+1.
7.10 Compute the phase-field operators 𝐁d(𝑘)

𝑛+1 .
7.11 Compute the geometrical stiffness matrix and modify due to ANS method.

8: Construct the element matrices and the internal force vectors of the complete system.
9: Compute the static condensation of the EAS variables.

10: Perform the final assembly.

After the condensation of the assumed strains, the resulting system of algebraic equation reads
[

�̄�𝑑𝑑 𝟎
𝟎 𝐤d̄d̄

] [

𝛥𝐝
𝛥d

]

=
[

𝐮
ext
𝟎

]

−
[ ̄𝐮

int
d

int

]

(36)

where �̄�𝑑𝑑 and ̄𝐮
int are the modified stiffness and residual computed from the static condensation as

�̄�𝑑𝑑 = 𝐤𝑑𝑑 − 𝐤𝑑𝜍
[

𝐤𝜍𝜍
]−1 𝐤𝜍𝑑 , ̄𝐮

int = 𝐮
int − 𝐤𝑑𝜍

[

𝐤𝜍𝜍
]−1 𝐑𝜍int. (37)

3.1.2. Finite element implementation
The current computational framework is integrated into the FE code ABAQUS using the user-defined capability UEL. Throughout

the solution process, we focus our attention on the algorithmic treatment within the time increment [𝑡𝑛, 𝑡
(𝑘)
𝑛+1] (with 𝛥𝜏 = 𝑡(𝑘)𝑛+1 − 𝑡𝑛),

where 𝑡𝑛 and 𝑡(𝑘)𝑛+1 identify the previous converged state and the prospective current time step at the global iteration 𝑘, respectively.
The point of departure in each time step are the data, {𝐝𝑛, 𝝇𝑛, d𝑛, 𝛶𝑛}, where 𝝇𝑛 are the incompatible strains stored as elements

level as state-dependent variables (SVARS in ABAQUS) [50], and 𝛶𝑛 are the internal variables of each material model, that are
tored at integration point level. Then, the nonlinear solution scheme aims at achieving equilibrium solution states at time step
+ 1, determining the corresponding values at {𝐝(𝑘)𝑛+1, 𝝇

(𝑘)
𝑛+1, d

(𝑘)
𝑛+1, 𝛶

(𝑘)
𝑛+1}, at the element level iteration 𝑘.

The essential flowchart outlining the FE implementation is described in Algorithm 1. Furthermore, for a more comprehensive
nderstanding, numerous listings featuring the coded subroutines responsible for executing the mentioned procedures are provided
n Appendix.

We can start the description of the detailed implementation via the computation of the discretized curvilinear basis vectors, that
re given by the Listing 1 corresponding to the steps 3.1 and 7.1 of such Algorithm. These basis vectors can be computed as

𝐆𝑖 =
𝜕𝐗
𝜕𝜉𝑖

=≈
𝑛𝑛
∑

𝑁𝐼,𝜉𝑖 (𝝃)
⎡

⎢

⎢

𝑋𝐼
𝑌𝐼

⎤

⎥

⎥

, with 𝑖 = 1, 2, 3, (38)
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𝐠𝑖 =
𝜕𝐱
𝜕𝜉𝑖

= 𝐆𝑖 +
𝜕𝐮
𝜕𝜉𝑖

≈
𝑛𝑛
∑

𝐼=1
𝑁𝐼,𝜉𝑖 (𝝃)

⎡

⎢

⎢

⎣

𝑋𝐼
𝑌𝐼
𝑍𝐼

⎤

⎥

⎥

⎦

+
𝑛𝑛
∑

𝐼=1
𝑁𝐼,𝜉𝑖 (𝝃)

⎡

⎢

⎢

⎣

𝑑𝐼𝑥
𝑑𝐼𝑦
𝑑𝐼𝑧

⎤

⎥

⎥

⎦

, with 𝑖 = 1, 2, 3, (39)

where𝑁𝐼,𝜉𝑖 (𝝃) represents the partial derivative of the shape function𝑁𝐼 (𝝃) with respect to the natural coordinate 𝜉𝑖. The computation
f the displacement-strain 𝐁(𝐝) operator is given by the partial derivative of the vectors 𝐠𝑖 with respect to the displacement vector

𝐼 of the node 𝐼 as

𝜕𝐠𝑖
𝜕𝐝𝐼

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑔𝑖𝑥
𝜕𝐝𝐼
𝜕𝑔𝑖𝑦
𝜕𝐝𝐼
𝜕𝑔𝑖𝑧
𝜕𝐝𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑁𝐼,𝜉𝑖 (𝝃) 0 0

0 𝑁𝐼,𝜉𝑖 (𝝃) 0

0 0 𝑁𝐼,𝜉𝑖 (𝝃)

⎤

⎥

⎥

⎥

⎥

⎦

, with 𝑖 = 1, 2, 3 and 𝐼 = 1,… , 𝑛𝑛. (40)

Then, the column entries of the strain–displacement operator 𝐁𝐼 (𝐝) of the node 𝐼 can be expressed as (see the Listing 2 corresponding
to steps 3.2 and 7.2 of Algorithm 1):

𝐁𝐼 (𝐝) =
𝜕�̄�
𝜕𝐝𝐼

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐸𝑢11
𝜕𝐝𝐼
𝜕𝐸𝑢22
𝜕𝐝𝐼
𝜕𝐸𝑢33
𝜕𝐝𝐼

2
𝜕𝐸𝑢12
𝜕𝐝𝐼

2
𝜕𝐸𝑢13
𝜕𝐝𝐼

2
𝜕𝐸𝑢23
𝜕𝐝𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐠T1
𝜕𝐠1
𝜕𝐝𝐼

𝐠T2
𝜕𝐠2
𝜕𝐝𝐼

𝐠T3
𝜕𝐠3
𝜕𝐝𝐼

𝐠T1
𝜕𝐠2
𝜕𝐝𝐼

+ 𝐠T2
𝜕𝐠1
𝜕𝐝𝐼

𝐠T1
𝜕𝐠3
𝜕𝐝𝐼

+ 𝐠T3
𝜕𝐠1
𝜕𝐝𝐼

𝐠T2
𝜕𝐠3
𝜕𝐝𝐼

+ 𝐠T3
𝜕𝐠2
𝜕𝐝𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐠T1𝑁𝐼,𝜉1

𝐠T2𝑁𝐼,𝜉2

𝐠T3𝑁𝐼,𝜉3

𝐠T1𝑁𝐼,𝜉2 + 𝐠T2𝑁𝐼,𝜉1

𝐠T1𝑁𝐼,𝜉3 + 𝐠T3𝑁𝐼,𝜉1

𝐠T2𝑁𝐼,𝜉3 + 𝐠T3𝑁𝐼,𝜉2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (41)

It is noteworthy that the previous operators should be accordingly modified through the use of the ANS method (if activated),
irst, for alleviating trapezoidal locking, following Eq. (17) as (see Listing 3):

𝐁ANS,trap
𝐼 (𝐝, �̃�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐠T1𝑁𝐼,𝜉1

𝐠T2𝑁𝐼,𝜉2

𝐠T3𝑁𝐼,𝜉3 +
4
∑

𝑚=1
𝐠T3,𝑚𝑁

𝑚𝑁𝐼,𝑚,𝜉3

𝐠T1𝑁𝐼,𝜉2 + 𝐠T2𝑁𝐼,𝜉1

𝐠T1𝑁𝐼,𝜉3 + 𝐠T3𝑁𝐼,𝜉1

𝐠T2𝑁𝐼,𝜉3 + 𝐠T3𝑁𝐼,𝜉2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (42)

nd, then, for shear locking, the B-operator is modified according to Eq. (16) as (see Listing 4):

𝐁ANS,shear
𝐼 (𝐝, �̃�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐠T1𝑁𝐼,𝜉1

𝐠T2𝑁𝐼,𝜉2

𝐠T3𝑁𝐼,𝜉3

𝐠T1𝑁𝐼,𝜉2 + 𝐠T2𝑁𝐼,𝜉1

𝐠T1𝑁𝐼,𝜉3 + 𝐠T3𝑁𝐼,𝜉1 +
1
2
𝑁𝐴(𝐠T1,𝐴𝑁𝐼,𝐴,𝜉3 + 𝐠T3,𝐴𝑁𝐼,𝐴,𝜉1 ) +

1
2
𝑁𝐵(𝐠T1,𝐵𝑁𝐼,𝐵,𝜉3 + 𝐠T3,𝐵𝑁𝐼,𝐵,𝜉1 )

𝐠T2𝑁𝐼,𝜉3 + 𝐠T3𝑁𝐼,𝜉2 +
1
2
𝑁𝐶 (𝐠T2,𝐶𝑁𝐼,𝐶,𝜉3 + 𝐠T3,𝐶𝑁𝐼,𝐶,𝜉2 ) +

1
2
𝑁𝐷(𝐠T2,𝐷𝑁𝐼,𝐷,𝜉3 + 𝐠T3,𝐷𝑁𝐼,𝐷,𝜉2 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (43)

Listings 3 and 4 correspond to the Steps 3.3 and 7.3 of Algorithm 1. The following step is the computation of the enhanced
ounterpart of the right Cauchy–Green tensor �̃�, done through the Green–Lagrange enhanced strain tensor �̃�. For this, the 𝐌(𝜉)
ensor is assembled following the seven modes proposed by Vu-Quoc and Tan [47]. They are defined in the isoparametric space as:
11
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𝐌(𝜉) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1 0 0 0 0 0 0
0 𝜉2 0 0 0 0 0
0 0 𝜉3 𝜉1𝜉3 𝜉2𝜉3 0 0
0 0 0 0 0 𝜉1 𝜉2

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(44)

Then, the enhancing counterpart �̃� is assembled following Eq. (14), see Listing 7. This information comes in handy in step 7.4
of Algorithm 1 to compute right Cauchy–Green tensor as Eq. (15) states.

The next procedure shall be the computation of the stress tensors, the constitutive matrix and the intact free energy density
combined with the phase-field approach. First, we assemble the deformation gradient 𝐅 in Cartesian coordinates (step 7.5),
which basically consists in following Eq. (5), but by using the second identity tensor 𝐈 instead of 𝐆. Then, we compute the
constitutive material law (step 3.4 and 7.6) and since three different inelastic models are being presented in this work, further
details regarding the implementation is detailed in subsequent Sections 3.2–3.4. However, it is noteworthy to mention the conversion
of this magnitudes from cartesian to curvilinear coordinates, which corresponds to step 7.7 (Listing 5) and is required for the FE
computation of the solid shells:

𝐒 = 𝑆𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 (45)

C = 𝐶𝑖𝑗𝑘𝑙𝐆𝑖 ⊗𝐆𝑗 ⊗𝐆𝑘 ⊗𝐆𝑙 (46)

At last, the geometric part of the stiffness matrix at the element level requires the computation of the derivative of the B-operator
with respect to the kinematic field in order to compute (step 7.11 of Algorithm 1) 𝐒 ∶ 𝛥𝛿𝐄𝑢, where 𝛥𝛿𝐄𝑢 stands for the linearized
virtual strains (see Listing 8):

𝐒 ∶ 𝛥𝛿𝐄𝑢 = 𝛿𝐝
[

[

𝜕𝐁(𝐝)
𝜕𝐝

]T
𝐒
]

𝛥𝐝 =
𝑛𝑛
∑

𝐼=1

𝑛𝑛
∑

𝐾=1
𝛿𝐝T

𝐼𝐼𝐾𝛥𝐝T
𝐾 , (47)

here

𝐼𝐾 = 𝑆11𝑁𝐼,𝜉1𝑁𝐾,𝜉1 + 𝑆
22𝑁𝐼,𝜉2𝑁𝐾,𝜉2 + 𝑆

33𝑁𝐼,𝜉3𝑁𝐾,𝜉3 + 𝑆
12 (𝑁𝐼,𝜉1𝑁𝐾,𝜉2 +𝑁𝐼,𝜉2𝑁𝐾,𝜉1

)

+

𝑆13 (𝑁𝐼,𝜉1𝑁𝐾,𝜉3 +𝑁𝐼,𝜉3𝑁𝐾,𝜉1
)

+ 𝑆23 (𝑁𝐼,𝜉2𝑁𝐾,𝜉3 +𝑁𝐼,𝜉3𝑁𝐾,𝜉2
)

. (48)

If ANS is present, Eq. (48) has to be modified accordingly (Listing 9). First, if the ANS contribution for trapezoidal locking
lleviation is activated, following Eq. (17), the modification reads:

𝐼𝐾 = 𝑆11𝑁𝐼,𝜉1𝑁𝐾,𝜉1 + 𝑆
22𝑁𝐼,𝜉2𝑁𝐾,𝜉2 + 𝑆

33
4
∑

𝑚=1
𝑁𝑚𝑁𝐼,𝑚,𝜉3𝑁𝐾,𝑚,𝜉3

+ 𝑆12 (𝑁𝐼,𝜉1𝑁𝐾,𝜉2 +𝑁𝐼,𝜉2𝑁𝐾,𝜉1
)

+ 𝑆13 (𝑁𝐼,𝜉1𝑁𝐾,𝜉3 +𝑁𝐼,𝜉3𝑁𝐾,𝜉1
)

+ 𝑆23 (𝑁𝐼,𝜉2𝑁𝐾,𝜉3 +𝑁𝐼,𝜉3𝑁𝐾,𝜉2
)

. (49)

whereas for tackling shear locking, the expression is modified according to Eq. (16):

𝐼𝐾 = 𝑆11𝑁𝐼,𝜉1𝑁𝐾,𝜉1 + 𝑆
22𝑁𝐼,𝜉2𝑁𝐾,𝜉2 + 𝑆

33𝑁𝐼,𝜉3𝑁𝐾,𝜉3 + 𝑆
12 (𝑁𝐼,𝜉1𝑁𝐾,𝜉2 +𝑁𝐼,𝜉2𝑁𝐾,𝜉1

)

+

𝑆13
[

1
2
𝑁𝐴(𝑁𝐼,𝐴,𝜉2𝑁𝐾,𝐴,𝜉3 +𝑁𝐼,𝐴,𝜉3𝑁𝐾,𝐴,𝜉2 ) +

1
2
𝑁𝐵(𝑁𝐼,𝐵,𝜉2𝑁𝐾,𝐵,𝜉3 +𝑁𝐼,𝐵,𝜉3𝑁𝐾,𝐵,𝜉2 )

]

+

𝑆23
[

1
2
𝑁𝐶 (𝑁𝐼,𝐶,𝜉2𝑁𝐾,𝐶,𝜉3 +𝑁𝐼,𝐶,𝜉3𝑁𝐾,𝐶,𝜉2 ) +

1
2
𝑁𝐷(𝑁𝐼,𝐷,𝜉2𝑁𝐾,𝐷,𝜉3 +𝑁𝐼,𝐷,𝜉3𝑁𝐾,𝐷,𝜉2 )

]

. (50)

With this, we can construct the element matrices and the internal force vectors (step 8 of Algorithm 1) which are present in the
system of equations presented in Eq. (35). The final assembly is constructed by applying the static condensation (step 9 of Algorithm
1), thus reaching Eq. (36).

We have postulated all the basic ingredients to synthesize our material formulation for the FE code of ABAQUS. Now, we delve
into the particularities of each of the material models considered.

3.2. Phase-field fracture for hyperplasticity

According to Borden et al. [13], capturing the ductile fracture within the context of the phase-field approach of fracture is
conducted via the decomposition of the free energy function of Helmholtz 𝛹 into elastic 𝛹 elas and plastic contributions 𝛹plas.
Therefore, the functional given in Eq. (18) takes the form

𝛱(𝐂, �̃�, 𝛶 , d) =
[

𝑔(d)𝛹 elas
+ (𝐂,𝐂𝑝) + 𝛹 elas

− (𝐂,𝐂𝑝) + 𝑔(d)𝛹plas(𝛶 )
]

d𝛺 + 𝐶
[

d2 + 𝓁
|∇d|2

]

d𝛺, (51)
12
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where 𝛶 is a set of plastic variables containing 𝐂𝑝, where 𝐂 = 𝐅T ⋅ 𝐅, and 𝐂𝑝 = (𝐅𝑝)T ⋅ 𝐅𝑝 are the right Cauchy–Green deformation
ensor and the plastic contributions, respectively. We use the same degradation function 𝑔(d) for the elastic and plastic parts. In this
oncern, plastic energy threshold is ruled a bit different as in [13] assuming a total energetic threshold 𝛹0 instead of an only plastic
hreshold as in the referential work, using the operator ⟨𝛹 − 𝛹0⟩ defined as

⟨𝛹 − 𝛹0⟩ =

{

0 if (𝛹 − 𝛹0) < 0
𝛹 − 𝛹0 if (𝛹 − 𝛹0) > 0

(52)

or the sake of clarity, we rephrase the total energy functional given in Eq. (51) as

𝛱(𝐂,𝐂𝑝, 𝛶 , d) = ∫𝛺0

⟨𝛹 (𝐂,𝐂𝑝, 𝛶 , d) − 𝛹0⟩ d𝛺 + ∫𝛺0

𝐶
[

d2

2𝓁
+ 𝓁

2
|∇d|2

]

d𝛺, (53)

ith

𝛹 (𝐂,𝐂𝑝, 𝛶 , d) = 𝑔(d)𝛹 elas
+ (𝐂,𝐂𝑝) + 𝛹 elas

− (𝐂𝑒,𝐂𝑝) + 𝑔(d)𝛹plas(𝛶 ). (54)

The hyperelastic constitutive model which ruling the elastic response prior plastic evolution is defined based upon a volumetric-
deviatoric decomposition introduced by Amor et al. [4], which considers the tensile and compressive contributions in the strain
energy function as

𝛹 elas
+ =

{

𝑈 (𝐽 ) + �̄� (�̄�,𝐂𝑝) if 𝐽 ≥ 1
�̄� (�̄�,𝐂𝑝) if 𝐽 < 1

; 𝛹 elas
− =

{

0 if 𝐽 ≥ 1
𝑈 (𝐽 ) if 𝐽 < 1

(55)

In the previous expression 𝑈 (𝐽 ) and �̄� (�̄�,𝐂𝑝) stand for the volumetric and isochoric additive contributions to the strain energy
density, 𝐽 = det𝐅𝑒, and �̄� = 𝐽 𝑒−2∕3𝐂. In line with Eq. (54), only the tensile contributions contribute to the crack growth. Both
volumetric and isochoric contributions use the specific forms

𝑈 (𝐽 ) = 1
2
𝜅
[

1
2
(𝐽 2 − 1) − ln 𝐽

]

; �̄� (�̄�,𝐂𝑝) = 1
2
𝜇(�̄� ∶ 𝐂𝑝−1 − 3), (56)

where 𝜅 and 𝜇 are the volumetric and shear modulus, respectively. Second Piola–Kirchhoff stress can be easily obtained as

𝐒 = 𝜇(𝐽 )2∕3
[

𝐂𝑝−1 − 1
3
(𝐂 ∶ 𝐂𝑝−1)𝐂−1

]

+ 1
2
𝜅((𝐽 )2 − 1)𝐂−1. (57)

t can be observed that an hybrid approach is being used, where only split in the strain energy is considered, but not within the
tresses.

The plastic response obeys a standard 𝐽2 flow theory associative elastoplastic constitutive model with isotropic hardening.
onsidering that the flow is isochoric, the Jacobian for the plastic part takes the form

det𝐅𝑝 = 1 → 𝐽 = det𝐅𝑒. (58)

Moreover, the standard yield function 𝐽2 is given by

𝑓 (τ, 𝛼) = ||𝐬|| −
√

2
3
𝑘(𝛼); 𝐬 = dev[𝝉], (59)

where 𝛼 is the hardening parameter, 𝑘(𝛼) is the isotropic hardening modulus, and 𝝉 is the Kirchhoff stress. The function has to be
adapted for a phase-field approach for ductile fracture as the deformation is dominated by plastic strain. Therefore, the degradation
function is added to the yield surface as

𝑓 (τ, 𝛼, d) = ||𝐬|| − 𝑔(d)
√

2
3
𝑘(𝛼), (60)

representing shrinkage in the yield surface as the damage progress. The hardening law can be introduced using the choice 𝑘(𝛼). For
example,

𝑘(𝛼) =

{

𝜎𝑦 Perfect plasticity
𝜎𝑦 +𝐾𝛼 Linear isotropic hardening

(61)

where 𝜎𝑦 is the yield stress and 𝐾 is the linear hardening coefficient. The flow rule postulated by [51] is adopted which states that
under maximum plastic dissipation, the flow rule reads

dev[𝑣𝐛𝑒] = −2
3
�̇�tr[𝐛𝑒] 𝐬

||𝐬||
, (62)

where 𝐛𝑒 = 𝐅𝑒 ⋅ 𝐅𝑒𝑇 is the elastic left Cauchy–Green tensor, 𝑣[∙] is the Lie derivative operator, �̇� is the Lagrange plastic multiplier
from the minimization problem, and dev[∙] is the deviatoric operator in the current configuration that reads dev[∙] = ∙ − 1

3 tr[∙]𝐈,
with tr[∙] being the trace operator. Eq. (62) only determines the isochoric part of dev[𝑣𝐛𝑒], meaning that the spherical part of such

𝑒 2
13

tensor is determined by the isochoric contribution, i.e., det𝐛 = 𝐽 .
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In line with Borden et al. [13], two approaches to compute the effective plastic work are considered, one based on stress
riaxiality, and one without. The first approach is postulated in absence of stress triaxiality effects, and the rate of the plastic strain
nergy density reads

�̇�plas = �̇�||𝐬||, (63)

which tells no extra information regarding the state of stress.
For the second approach, that include triaxility effects, we refer [52–54] and the Gurson-Tvergaard-Needleman (GTN) model [55,

56], that establishes the failure of ductile materials as a combination of effective plastic strain and the level of stress triaxiality.
Following [13], Eq. (63) can be modified to include the stress triaxiality as

�̇�plas = �̇�
||𝐬||
𝜓

, (64)

where 𝜓 is a dimensionless parameter that accounts for stress triaxiality, expressed as

𝜓 = 𝑑1 + 𝑑2 exp
[

𝑑3
𝜏𝑚
||𝐬||

]

; 𝜏𝑚 = tr[𝝉]
3

, (65)

where 𝑑1, 𝑑2 and 𝑑3 are dimensionless coefficients. In the sequel, both Eqs. (63) and (64) can be considered as possible candidates
o account for the plastic work affecting the crack growth.

With regard to the algorithmic treatment, following Eq. (60), in order to update the plastic flow, the updated configuration
at time 𝑡𝑛+1 must fulfill the Karush-Kuhn-Tucker (KKT) conditions, which reads

𝑓 (𝜏𝑛+1, 𝛼𝑛+1) ≤ 0; 𝛥𝛾 ≥ 0; 𝛥𝛾𝑓 (𝜏𝑛+1, 𝛼𝑛+1) = 0. (66)

Here the Kirchhoff stress is updated as 𝝉𝑛+1 = 𝑔(d)[𝜇 dev[�̄�𝑒𝑛+1] + tr[𝝉𝑛]𝐈], and 𝛥𝛾 = 𝛾𝑛+1 − 𝛾𝑛. For each time increment, we
calculate an elastic predictor on �̄�𝑒𝑛+1 whose particular expression takes the form

�̄�e trial
𝑛+1 = 𝐟𝑛+1�̄�𝑒𝑛𝐟

T
𝑛+1; 𝐟𝑛+1 = det[𝐟𝑛+1]−1∕3𝐟𝑛+1; 𝐟𝑛+1 = 𝐈 + ∇𝑥𝑛𝐮𝑛. (67)

with update of the hardening parameter as

𝛼𝑛+1 = 𝛼𝑛. (68)

If the trial state satisfies the discrete KKT conditions, then it is accepted as the updated configuration. If they are not
satisfied, the trial state is dismissed and the configuration is updated according to the following flow and hardening laws

dev[�̄�𝑒𝑛+1] = dev[�̄�𝑒 trial
𝑛+1 ] − 2

3
𝛥𝛾tr[�̄�𝑒𝑛+1]𝐧𝑛+1; 𝐧𝑛+1 =

𝐬𝑛+1
||𝐬𝑛+1||

, (69)

𝛼𝑛+1 = 𝛼𝑛 +
√

2
3
𝛥𝛾. (70)

This update leads to the algorithm that we plot in Algorithm 2, that closely follows [13]. For the computation of an UEL
ubroutine updated Lagrangian approach, Cauchy stress can be obtained using Kirchhoff stress using the transformation 𝝈 = 𝐽−1𝝉,

and the Jacobian tangent matrix c𝙰𝙻𝙶 can be obtained numerically.

3.3. Phase-field fracture for visco-hyperelasticity

Concerning the constitutive formulation for the visco-hyperelastic material, we adopt the model adopted in Valverde-González
et al. [43] based on the particular approach from Linder et al. [42]. This formulation relies on the consideration of the microstructure
as highly mobile and flexible macro-molecules behaving as idealized polymer networks, thus leading to the constitutive behavior
of rubber viscoelasticity. The network consists of macromolecules of polymer being strongly cross-linked with a sub-network of
highly mobile and temporary entanglement mechanisms. The elastic response is due to the cross-linking, whereas the viscoelastic
behavior is caused by the subnetwork. This Maxwellian rheological system is represented in Fig. 3(a). Its material response can be
defined based on a hyper-viscoelastic decomposition following the distinction between tensile and compressive states that Eq. (18)
postulates. With the arguments and the system presented in the previous Section, the Helmholtz free energy function 𝛹 for the
visco-hyperelastic problem is postulated as

𝛹 (𝐂,𝐀, 𝐽 ) = 𝛹 elas(𝐂, 𝐽 ) +
n
∑

𝛾=1
𝛹visco,𝛾 (𝐂,𝐀). (83)

Here the total strain 𝛹 is divided into two terms: (i) 𝛹 elas, dedicated to the hyperelastic constitutive part and (ii) 𝛹visco,𝛾 ,
14

dedicated to every 𝛾 viscous branch. In addition to both terms, 𝑛 makes reference to the number of viscous terms contained within
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Algorithm 2 Algorithmic box for the return-mapping 𝐽2 plastic flow algorithm adapted from [13].

1: Input: 𝐅𝑛+1, 𝐅𝑛, �̄�𝑒𝑛, 𝛼𝑛.
2: Compute the damaged elastic predictor

𝐟𝑛+1 = 𝐅𝑛+1 ⋅ 𝐅−1
𝑛 ; 𝐟𝑛+1 = det[𝐟𝑛+1]−1∕3𝐟𝑛+1; �̄�𝑒trial

𝑛+1 = 𝐟𝑛+1�̄�𝑒𝑛𝐟
T
𝑛+1 (71)

𝐬trial
𝑛+1 = 𝑔(d)𝜇 dev[�̄�e trial

𝑛+1 ] . (72)

3: Compute plastic loading

𝑓 trial
𝑛+1 = ||𝐬trial

𝑛+1 || − 𝑔(d)
√

2
3
𝑘(𝛼𝑛). (73)

If Eq. 73 ≤ 0, exit algorithm. Otherwise, go to Step 4.
4: Return-mapping algorithm

𝐼𝑒 trial
𝑛+1 = 1

3
tr[�̄�𝑒 trial

𝑛+1 ]; �̄� = 𝑔(d)𝜇𝐼𝑒 trial
𝑛+1 . (74)

Solve the following equation to obtain the increment in the Lagrange multiplier

𝑓 (𝛥𝛾) =
𝑓 trial
𝑛+1

2�̄� + 2
3 𝑔(d)𝐾

. (75)

Update the stress and hardening coefficient as

𝐬𝑛+1 = 𝐬trial
𝑛+1 − 2�̄�𝛥𝛾𝐧, (76)

𝛼𝑛+1 = 𝛼𝑛 +
√

2
3
𝛥𝛾. (77)

5: Compute Kirchhoff stress

𝐽𝑛+1 = det𝐅𝑛+1; 𝑝𝑛+1 =
1
2
𝑔(d)𝜅

(

𝐽𝑛+1 −
1

𝐽𝑛+1

)

, (78)

𝝉𝑛+1 = 𝐬𝑛+1 + 𝐽𝑛+1𝑝𝑛+1𝐈. (79)

6: Find 𝐼𝑒𝑛+1 and update the intermediate configuration

det
[ 𝐬𝑛+1
𝑔(d)𝜇

]

+ 𝐼𝑒𝑛+1𝐈 = 1 → �̄�𝑒𝑛+1 = dev[�̄�𝑒𝑛+1] + 𝐼
𝑒
𝑛+1𝐈. (80)

7: Compute energies: due to updated Lagrangian, the terms for 𝛹 elas and 𝛹plas read as

𝛹 elas
+ =

{

𝑈 (𝐽 ) + 1
2𝜇(tr[�̄�

𝑒] − 3) if 𝐽 ≥ 1
1
2𝜇(tr[�̄�

𝑒] − 3) if 𝐽 < 1
𝛹 elas
− =

{

0 if 𝐽 ≥ 1
𝑈 (𝐽 ) if 𝐽 < 1

(81)

Without triaxiality: �̇�plas = �̇�||𝐬||; With triaxiality: �̇�plas = �̇�
||𝐬||
𝜓

. (82)

the rheological model, and 𝐀 here is the macroscopical tensor that accounts for the microscopical stretches 𝜆 in the system of
polymer chains.

Reflecting first the hyperelastic term, we highlight that is split into the corresponding volumetric (𝑈 (𝐽 )) and isochoric (�̄� )
contributions specialized to a standard neo-Hookean approach

𝛹 elas(𝐂, 𝐽 ) = �̄� + 𝑈 (𝐽 ); �̄� =
𝜇
2
(𝐼1 − 3), 𝑈 (𝐽 ) = 𝜅

2
(𝐽 − 1)2. (84)

here 𝐼 is the first deviatoric invariant 𝐼 = tr[�̄�] = 𝐽−2∕3tr𝐂.
15
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Fig. 3. (a) Maxwellian rheological model of the response of the material consisting of the elastic branches, representing the strongly cross-linked network, and
the viscous branches, representing the highly mobile with entanglements subnetwork. (b) Brownian motion of non-interacting point particles submerged in a
viscous medium, which serves as the starting microscopic point to synthetize the macroscopic visco-hyperelasticity theory.

For the viscoelastic part of the model, a contribution built from the Brownian particle movement is considered, see Fig. 3(b),
considering the probability 𝑝(𝑥, 𝑡) of finding a particle in a certain state governed by its position 𝑥 at a certain time 𝑡. Such
contribution is embedded into the framework of continuous rubber viscoelasticity by considering those particles as polymer chains
and by defining the probability function based on the stretch state 𝝀 rather than the position as 𝑝(𝝀, 𝑡). From this definition, we can
trace the evolution of a stretch space 𝐱 connected locally to a material point with position 𝐱 in the current configuration 𝛺𝑡 ⊂R𝑛

and map its evolution from the initial stretch space 𝐗, linked to a material point with position 𝐗 in the reference configuration
𝛺0 ⊂R𝑛, by means of the microdeformation map �̄�. For further details on the implementation of the microscopic model, the reader
is referred to [42]. Recalling this constitutive model, via the definition of �̄�, it is possible to account for the micromechanics of the
system by defining in Eq. (85)

�̄� = �̄� ⋅ �̄�𝐗, (85)

where �̄�𝐗 stands for the pre-deformation map tensor. The definition for the tensor accounting the stretch state 𝐀 is reached after
performing some operations in Eq. (85) reads

𝐀 = �̄�𝐗 ⋅ �̄�T
𝐗. (86)

Considering that the tensor 𝐀 provides the information concerning the microdeformation of the visco-elastic subnetwork in the
initial configuration and it depends on macroscopic variables, the time evolution can be computed as

�̇� = 1
𝜏𝛾

(�̄�−1 − 𝐀), (87)

where 𝜏𝛾 is the relaxation time associated to the viscous mechanism 𝛾. Based on this definitions, we reach the expression for the
viscous additional term in the Helmholtz free energy 𝛹visco as

𝛹visco,𝛾 (𝐂,𝐀) = 1
2
𝜇visco,𝛾 [(𝐀(𝛾) ∶ �̄�) − ln(det𝐀(𝛾))]. (88)

With 𝜇visco,𝛾 being the viscous shear modulus for each mechanism 𝛾.
We propose a formulation for visco-hyperelasticity where crack growth only accounts while in a tension state. Therefore,

following Eq. (18), we decompose the elastic strain energy density 𝛹 to distinguish between tensile 𝛹+ and compressive states
𝛹−. For this, we employ again the isochoric-volumetric decomposition of Amor and co-authors [4], that is adopted as

𝛹+(𝐂,𝐀, 𝐽 ) =
{

𝛹 elas(𝐂) +
∑n
𝛾=1 𝛹

visco,𝛾 (𝐂,𝐀) if 𝐽 ≥ 1
�̄� (𝐂) +

∑n
𝛾=1 𝛹

visco,𝛾 (𝐂,𝐀) if 𝐽 < 1
(89)

𝛹−(𝐽 ) =

{

0 if 𝐽 ≥ 1
𝑈 (𝐽 ) if 𝐽 < 1

(90)

The expression for the second Piola–Kirchhoff stress rightfully obtained from the free Helmholtz energy reads

𝐒 ∶= 𝜇
(

𝐽−2∕3𝐈 −
𝐼1𝐂−𝟏

)

+ 𝜅𝐽 (𝐽 − 1)𝐂−1 + 𝐽−2∕3P ∶
(

𝜇visco,𝛼𝐀(𝛾)), (91)
16
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where P is the fourth-order projector operator whose particular expression takes the form

P ∶ (∙) = ∙ − 1
3
[(∙) ∶ 𝐂]𝐂−1. (92)

Finally, a numerical tangent C𝙰𝙻𝙶 is computed for the completion of the current material model.

3.4. Phase-field fracture for visco-hyperplasticity

With the aim of the visco-hyperplastic formulation, we modify the return-mapping algorithm presented in Section 3.2 to consider
test rate dependence that affects the plastic regime of the sample. Modeling hyperelastic–viscoplastic behavior requires some
modifications in the original hyperplasticity formulation to be performed:

• Though we make a distinction between compressive and tensile stresses as stated in Eqs. (53)–(54), for the numerics, we
use Kirchhoff-Saint Venant isotropic material, whose derivations and implementations are presented in [35,36,41] which can
easily incorporate the dependence of testing rate in the return mapping algorithm.

• We utilize Mandel stress instead of the deviatoric part of the Kirchhoff stress for the elastic predictor, see Eq. (59).

For the Kirchhoff-Saint Venant isotropic material, the Helmholtz free energy function follows

𝛹 (𝐄) = 1
2
𝜆(tr[𝐄])2 + 𝜇tr[𝐄2]. (93)

Upon considering 𝐄 dependency on the Eq. (93), the expression for the second Piola–Kirchhoff stress 𝐒 reads

𝐒 = 𝜆(tr[𝐄])𝐈 + 2𝜇𝐄. (94)

Due to the visco-plasticity, total deformation gradient 𝐅 can be decomposed into elastic and plastic parts as 𝐅 = 𝐅𝑒𝐅𝑝. Moreover,
the Mandel stress tensor 𝐌𝑒 takes the form

𝐌𝑒 = 𝐂𝑒 ⋅ 𝐒, (95)

where 𝐂𝑒 = 𝐅𝑒𝑇 ⋅ 𝐅𝑒 is the elastic right Cauchy–Green tensor. The Mandel stress is given by the simple constitutive relation by
modifying Eq. (94) as:

𝐌𝑒 = 𝜆(tr[𝐄𝑒])𝐈 + 2𝜇𝐄𝑒. (96)

It is important to note that the strain measure employed is the elastic Green–Lagrange tensor 𝐄𝑒 = ln𝐔𝑒, where 𝐔𝑒 is the elastic
stretch, that is related to the elastic deformation gradient as 𝐅𝑒 = 𝐑𝑒𝐔𝑒, where 𝐑𝑒 is the elastic rotation tensor. With this, the
expression for the Cauchy stress 𝝈 takes the form from Eq. (96) as

𝝈 = 𝐽−1𝐑𝑒 ⋅𝐌𝑒 ⋅ (𝐑𝑒)T. (97)

To account for the elastic part of the model, on the contrary to the volumetric-deviatoric decomposition by Amor et al. [4]
considered in both Sections 3.2 and 3.3, we employ the split based on the spectral decomposition by Miehe et al. [5] of the elastic
strain tensor 𝜺 using the principal strains 𝜀𝑎, and the principal strains directions 𝐧𝑎 as

𝜺 =
3
∑

𝑎=1
𝜀𝑎𝐧𝑎 ⊗ 𝐧𝑎. (98)

With this at hand, the expression for the free Helmholtz elastic energy considering positive (tensile) and negative (compressive)
terms takes the form

𝛹 elas
+ = 1

2
𝜆⟨tr[𝜀]⟩2+ + 𝜇tr[⟨𝜀⟩2+]; 𝛹 elas

− = 1
2
𝜆⟨tr[𝜀]⟩2− + 𝜇tr[⟨𝜀⟩2−]. (99)

rom these expressions, it is easy to propose a total potential functional that accounts only for tensile states affecting the crack
rowth following the one formulated in Eq. (18). From here, a elasto-viscoplastic constitutive model with isotropic hardening (with
2 flow theory), is introduced. Assuming that the plastic flow is incompressible (see Eq. (58)), the time evolution equation for the
lastic deformation gradient is given by

�̇�𝑝 = 𝐋𝑝 ⋅ 𝐅𝑝. (100)

here 𝐋𝑝 is the plastic velocity gradient and can be written as

𝐋𝑝 =
√

1
2
�̇�𝐧. (101)

Here, the direction of the plastic flow 𝐧 is defined by the deviatoric part of the Mandel stress as

𝐧 = 𝐬 ; 𝐬 = dev[𝐌𝑒], (102)
17
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and the equivalent plastic shear strain rate �̇� is given by

�̇� = �̇�0

(

||𝐬||
√

2𝑘(𝛼)

)1∕𝑚
, (103)

Here, �̇�0 is the referential shear strain rate and 𝑚 is the testing rate sensitivity, the ratio between �̇� and �̇�0 defines the viscous
character of return mapping plasticity algorithm. The evolution equation for the hardening parameter 𝑘(𝛼) can be computed as

�̇�(𝛼) = 𝐾(𝛼sat − 𝛼)�̇� , (104)

where 𝛼 is the hardening parameter, 𝛼sat is the saturation level for the deformation resistance and 𝐾 is the linear hardening
coefficient. The yield function corresponding to the plastic loading is expressed as

𝑓 (𝐌𝑒, 𝛼) = ||𝐬|| −
√

2𝑘(𝛼)
(

�̇�
�̇�0

)𝑚
. (105)

Due to the presence of damage, the degradation is added to Eq. (105) as

𝑓 (𝐌𝑒, 𝛼) = ||𝐬|| − 𝑔(d)
√

2𝑘(𝛼)
(

�̇�
�̇�0

)𝑚
. (106)

To account for the viscoplastic work affecting the crack growth, the rate of the contribution to the Helmholtz free energy 𝛹vplas

has the expression of Eq. (63), without stress triaxiality.

In the line of Section 3.2, we start by introducing the KKT conditions as in Eq. (66). The evolution equation (Eq. (100)) is
integrated using an exponential map as

𝐅𝑝𝑛+1 = exp (𝛥𝑡𝐋𝑝𝑛+1)𝐅
𝑝
𝑛. (107)

Consequently, we obtain the elastic deformation gradient 𝐅𝑒 as

𝐅𝑒𝑛+1 = 𝐅𝑛+1𝐅
𝑝−1
𝑛+1 → 𝐅𝑒𝑛+1 = 𝐅𝑛+1𝐅𝑝−1𝑛 exp (−𝛥𝑡𝐋𝑝𝑛+1), (108)

which introduces the trial state for the elastic deformation gradient, in the sense that

𝐅𝑒𝑛+1 = 𝐅𝑒 trial exp (−𝛥𝑡𝐋𝑝𝑛+1); 𝐅𝑒 trial = 𝐅𝑛+1𝐅𝑝−1𝑛 . (109)

Due to the polar decomposition in Eq. (109), the expression for updating the Mandel stress accounting the phase-field
degradation reads

𝐌𝑒
𝑛+1 = 𝐌𝑒 trial

𝑛+1 −
√

2𝜇𝛥𝛾𝐧𝑛+1; 𝐌𝑒 trial
𝑛+1 = 𝑔(d)[2𝜇(dev[𝐄𝑒 trial

𝑛+1 ]) + 𝜅(tr[𝐄𝑒 trial
𝑛+1 ])𝐈]. (110)

The deviatoric part of the Mandel stress takes the form

dev[𝐌𝑒
𝑛+1] = dev[𝐌𝑒 trial

𝑛+1 ] −
√

2𝜇𝛥𝛾𝐧𝑛+1. (111)

Finally, the hardening parameter 𝛼, is updated using backward Euler method as

𝛼𝑛+1 =
𝛼𝑛 + 𝛥𝛾𝐾𝛼sat
1 + 𝛥𝛾𝐾

. (112)

In line with the Algorithm 2, the Algorithm 3 presents the detailed algorithm for hyperelasticity–viscoplasticity. Note that Cauchy
tresses has to be computed after the return-mapping algorithm, see Eq. (97). In line with Sections 3.2–3.3, the tangent CALG is

computed numerically from the Cauchy stresses.

4. Numerical experiments

In order to examine the performance to failure of the three implemented material models and their differences in the 7-parameter
non-linear solid shell model, several numerical applications are presented in the sequel. Using the commercial Finite Element
software ABAQUS, the first of the experiments will consist in a validation example of a square tensile plate with a hole in the
enter, studying the influence of the plasticity parameters and the rate of the pulling test in the crack growth and propagation; such
eries of tests is conducted in Section 4.1. Further illustrations are made on the plasticity regime by replicating the double-notched
symmetric example of the paper by Ambati et al. [57] for the three solid shells approaches in order to shed light on the coupling of
he phase-field parameter and the plastic equivalent strains; such conducted tests are carried out in Section 4.2. Subsequently, the
rio of numerical frameworks is further extended to comprise cylindrical shell geometries subjected to tensile conditions (Section 4.3)
s well as mixed-mode loading scenarios (Section 4.4). Concerning the length scale parameter, our criterion for its selection follows
ℎ = 𝓁, where ℎ is the maximum element size in the crack trajectory.
18
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Algorithm 3 Algorithmic box for the return-mapping 𝐽2 visco-plastic flow algorithm.
1: Input: 𝐅𝑛+1, 𝐅𝑛, 𝛼𝑛.
2: Compute the damaged elastic predictor:

𝐅𝑒𝑛+1 = 𝐅𝑒 trial exp (−𝛥𝑡𝐋𝑝𝑛+1); 𝐅𝑒 trial = 𝐅𝑛+1𝐅𝑝−1𝑛 (113)

𝐑𝑒𝑛+1𝐔
𝑒
𝑛+1 = 𝐑𝑒 trial

𝑛+1 𝐔𝑒 trial
𝑛+1 exp (−𝛥𝑡𝐋𝑝𝑛+1) → 𝐄𝑒𝑛+1 = ln𝐔𝑒𝑛+1 = 𝐄𝑒 trial − 𝛥𝑡𝐋𝑝𝑛+1 (114)

𝐬trial
𝑛+1 = 𝑔(d)dev[𝐌𝑒

𝑛+1] = 𝑔(d)dev[2𝜇(dev[𝐄𝑒 trial]) + 𝜅(tr[𝐄𝑒 trial])𝐈] (115)

3: Compute plastic loading

𝑓 trial
𝑛+1 = ||𝐬trial

𝑛+1 || − 𝑔(d)
√

2𝑘(𝛼)
(

�̇�
�̇�0

)𝑚
. (116)

If Eq. (116) ≤ 0, exit algorithm. Otherwise, go to Step 4.
4: Return-mapping algorithm

The Lagrange multiplier is obtained by solving

𝑓 (𝛥𝛾) = ||𝐬trial
𝑛+1 || − 𝑔(d)

√

2𝑘(𝛼)
(

�̇�
�̇�0

)𝑚
− 𝑔(d)

√

2𝜇𝛥𝛾. (117)

Update the stress and hardening coefficient as

𝐬𝑛+1 = 𝐬trial
𝑛+1 −

√

2𝜇𝛥𝛾𝐧𝑛+1, (From here, we can easily compute 𝝈𝑛+1, see Eq. (97)) (118)

𝛼𝑛+1 =
𝛼𝑛 + 𝛥𝛾𝐾𝛼sat
1 + 𝛥𝛾𝐾

. (119)

5: Update plastic deformation gradient (and compute the kinematical calculations for the trail state)

𝐋𝑝𝑛+1 =
√

1
2
�̇�𝐧𝑛+1, (120)

𝐅𝑝𝑛+1 = exp (𝛥𝑡𝐋𝑝𝑛+1)𝐅
𝑝
𝑛. (121)

6: Compute energies for elastic an plastic state 𝛹 elas and 𝛹vplas as

𝛹 elas
+ = 1

2
𝜆⟨tr[𝜀]⟩2+ + 𝜇tr[⟨𝜀⟩2+]; 𝛹 elas

− = 1
2
𝜆⟨tr[𝜀]⟩2− + 𝜇tr[⟨𝜀⟩2−], (122)

�̇�vplas = �̇�||𝐬|| . (123)

4.1. Square tensile plate with a hole

Within this example a square plate is modeled as a benchmark example to shed light on the effects of variation of different
aterial model, where various parametric analyses will be performed to test the performance of the solid shell inelastic models.
he geometry is presented in Fig. 4(a), where it is observed that is subject to tension (with displacement control) in the upmost
urface and fixed in the bottomost end. Concerning discretization, 6,120 8-node hexahedrical shell elements are employed, with
ts distribution and orientation being plotted in Fig. 4(b). The material properties common to the three implemented material
pproaches used to conduct these experiments are exhibited in Table 1, as the rest of them will be discussed in the forthcoming
ubsections, where we will address the problem in detail for the (a) hyperplastic, (b) visco-hyperelastic and (c) visco-hyperplastic
ubroutines in detail, to evaluate the main qualitative and quantitative standpoints for every formulation.

.1.1. Results for hyperplasticity
We commence these series of baseline examples by testing the liability and performance of the solid shell formulation for phase-

ield in ductile fracture based in the work by Borden et al. [13], whose characteristic properties are listed in Table 2, where it is
19
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Fig. 4. (a) Dimensions and boundary condition setting and (b) mesh for the square plate with a hole subject to tension.

Table 1
Solid mechanics and phase-field parameters for the conducted plate with
a hole experiments.

Property (Unit) 𝜇 (MPa) 𝜅 (MPa) C (N∕mm) 𝓁 (mm)

Value 5.93 × 104 8.19 × 104 1.5 0.1

Table 2
Properties of the plasticity model: yield stress, hardening modulus and
coefficients considering triaxiality.

Property (Unit) 𝜎𝑦 (MPa) 𝐾 (MPa) 𝑑1 𝑑2 𝑑3
Value 350 500 0.1 3.8 0.0

observed that triaxiality effects are considered within this analysis, as they are an important part for the driving force of the crack
initiation and propagation. The main target is to validate the implemented formulation and for that mission, we will focus on the
obtained crack patterns and the force–displacement curves, which are compared with the referential work by [13]. In parallel with
that paper, we have carried out several analysis by changing the threshold limit that accounts for damage of the plastic strains in
the specimen, considering a range of 𝛹0 = {0, 5, 10, 15} N/mm that has been studied for the realization of such analysis.

After those initial indications, we simulate crack initiation and growth within this specimen following the boundary conditions
stated in Fig. 4(a), with the prescribed displacement indicated in this Figure. Starting with a qualitative address of the problem, we
plot the final isocontour of the phase-field fracture for each of the proposed examples with different threshold in Fig. 5. For the same
triaxiality effects, although the direction for propagation may differ if it is towards the bottomost or the topmost surface, the damage
band initiation is bifurcated into two inclined branches, meaning that the crack will propagate following one of the two directions,
thus resulting in a loss of symmetry in the crack trajectory. Total failure of the specimen, i.e., crack reaching the boundaries of the
specimen, is not fulfilled due to premature convergence issues, being due to the complexity that solid shells supposes for the strict
tolerances in the global Newton–Raphson scheme. However, predictions of such proposed solid shell meets the findings of previous
experimental and numerical evidence developed in previous works [57–59].

On the quantitative side, we are aiming to capture the same behavior exhibited in the papers by Borden et al. [13]. For this
purpose, we plot local displacement curves for each plastic threshold 𝛹0, along with a pure displacement case, in Fig. 6. In general,
results reveal that the elastic and plastic regimes in the different force–displacement curves follow the ‘‘no fracture’’ example for all
values of 𝛹0. On the case in absence of threshold, 𝛹0 = 0 N/mm, the softening happens before reaching the yield stress, thus the
plastic regime is exhibited in the reduction of the force and it can be seen as prolongued, due to a competition between the hardening
effect obtained from extra plastic strain and the degradation caused by the phase-field function 𝑔(d). For the cases considering
threshold, 𝛹0 > 0 N/mm it is observed that the original yield force is maintained meaning that the accumulation of damage is not
achieved until such threshold is overpassed. Upon yielding, the strain is dominated by plastic strain and degradation appears later
in the plastic regime when 𝛹0 is met. Such findings solidly agree with those obtained in Borden et al. [13], thus, proving that our
solid shell formulation is endowed to replicate such relevant results for ductile fracture.

4.1.2. Results for visco-hyperelasticity
Benchmark square plate with a hole specimen is tested following a viscoelastic regime, built-on the visco-hyperelastic element of

Valverde-González et al. [43] in the field of visco-hyperelasticity. To achieve such objective, we test this solid shell formulation for
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Fig. 5. Contour plots of the phase-field parameter for fracture for the final achieved increment in the hyperplastic tensile plate with a hole in the center, where
the pristine and broken states are denoted by the blue and red color, respectively.

Fig. 6. Force–displacement constitutive response using several different values for the work threshold 𝛹0 in the elasto-plastic tensile plate with a hole in the
center.

phase-field fracture in rate-dependent conditions. For that, we will only consider one viscous subdomain with a fixed viscous shear
modulus 𝜇visco = 6.5×104 MPa. This Sections encompasses three series of experiments changing the relaxation time 𝜏 = {0.1, 1, 10} s
and within each one of them, dependence on the test rate has been studied, considering 𝑣 = {0.01, 0.02, 0.05, 0.1, 0.2} mm∕s.

On the first place, focus has been devoted in capturing the isocontour phase-field fracture for the visco-hyperelastic square
plate with a hole. As can be observed in Fig. 7, the visco-hyperelastic specimen follows a classic Mode I fracture mode, with the
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Fig. 7. Contour plots of the phase-field parameter for visco-elastic fracture in the tensile shell with a hole in the center during: Mode I (a) crack initiation and
(b) propagation for the case with parameters for time relaxation 𝜏 = 1 s and displacement rate 𝑣 = 0.2 mm∕s.

Fig. 8. Force–displacement curves for the visco-elastic tensile shell with a hole in the center. They are been sorted in here by relaxation time employed,
encompassing (a) 𝜏 = 10 s, (b) 𝜏 = 1 s and (c) 𝜏 = 0.1 s.

crack nucleating and growing in the perpendicular direction where the load is applied. This pattern is repeated for all the tests
concerning this viscoelastic plate with a hole and as expected, is the representative failure trajectory for such specimen in such
material conditions, being this in line with [43].

Quantifying the mechanical responses, in Fig. 8 is plotted the force–displacement curves sorted by relaxation time and from
here, several standpoints are extracted. To begin with, it is observed how by increasing the relaxation time, as the viscous
effects have not vanished yet, the failure of the specimen is triggered to a higher rate, resulting in a more premature failure.
Furthermore, it is envisaged the increase of the peak forces with a bigger test velocity for the same relaxation times. It can also be
evidenced how slightly they decrease when the relaxation time is diminished, being more distinguishable when dropping for smaller
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Table 3
Properties of the viscoplasticity model: saturated deformation resistance, hard-
ening modulus, referential shear rate, test rate sensitivity exponent and energy
threshold.

Property (Unit) 𝛼sat 𝐾 (MPa) �̇�0 (s−1) m 𝛹0 (N/mm)

Value 2.5 500 1 × 10−3 0.05 10

Fig. 9. Force–displacement constitutive response for different testing rates in the square plate with a hole in the center following a viscoplastic regime. These
results are obtained for a (a) 𝐶 = 1.5 N/mm and (b) 𝐶 = 10 N/mm.

xperiment rates. Such findings are in agreement with the nonlinear viscoelasticity theory and therefore, it may be stated that the
mplementation of shell theory in the field of rate-dependent materials has been accomplished.

.1.3. Results for visco-hyperplasticity
Fulfilling this benchmark example, we run the solid shell example following the outlined visco-hyperplastic approach. The

haracteristic viscoplastic properties tested in this experiment are envisaged in Table 3. Considering that from the qualitative
tandpoint, the phase-field isocontour obtained matches with the one represented in Fig. 7, special focus is devoted to the
uantitative side of the analysis. To fully cover the potentiality that the hyperelastic–viscoplastic approach for solid shells can
each, we will have two different situations for the material considered.

First, the modeling considers a case where the critical energy release rate 𝐶 = 1.5 N/mm (the one plotted in Table 1) is not
large enough for the sample to stand for a considerable plastic regime and therefore, the mechanical behavior of the specimen is
dominated by the elastic behavior. The results obtained in the form of force–displacement curves are represented in Fig. 9(a) and we
can observe some analogies from the previous probes in viscoelasticity (Section 4.1.2), as the peak force augments along with the
velocity of the test. After the maximum force has been reached for both specimens, curves enter the softening regime characteristic
of the competition between phase-field degradation and plastic hardening and it can be envisaged that the duration of such part is
hugely sensitive on the displacement rate, commencing earlier and being more prolonged for smaller rates.

Further findings are obtained by increasing the critical energy release rate up to a value of 𝐶 = 10 N/mm, as the curves
epresented in Fig. 9(b) reveal that the plastic hardening regime and subsequently, the drop in load is lengthened as the displacement
ate is decreased. As the toughness of the model has been increased, also the softening of the instances is extended up to double
he displacement compared to the examples with smaller 𝐶 . The plots of these series of experiments exhibit the performance of
he visco-hyperplastic model for solid shell modeling in capturing not only the plastic regime but also its rate dependence, a feature
hat is brand new for Finite Element modeling in fully-integrated solid shells.

.2. Double-notched asymmetric specimen

Following Ambati et al. [57], it is examined the double-notched asymmetrically disposed specimen illustrated in Fig. 10(a), with
fixed bottomost surface and the topmost surface being displaced vertically and restrained horizontally. The employed material

roperties in solid mechanics and phase-field approach coincide with those plotted in Table 1. Concerning the discretization of the
odel, it includes 27,085 hexahedrical shell elements, with special refining being made in the central region between the notches
here the crack is expected to nucleate and grow, being zoomed in Fig. 10(b). Like the previous Section, several experiments

oncerning parametric analyses have been made with the three different materials to prove the potentiality of the implemented
23
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Fig. 10. (a) Dimensions and boundary condition setting and (b) zoomed mesh in the center for the double notched asymmetric specimen subject to tension.

4.2.1. Results for hyperplasticity
Tests comprising hyperplastic specimens in here match the findings of the work by Ambati et al. [57]. Following the

properties represented in Table 2, we have conducted experiments by changing the energy threshold in a range such as 𝛹0 =
{0, 1.5, 3, 4, 5} N/mm.

The evolution of the phase-field parameter for fracture is provided in Fig. 11. For all the three represented models, the crack
starts nucleating at both notch roots. However, for the subsequent propagation stage, there are important differences depending on
the value of the energy threshold. For specimens with the smaller thresholds, the crack starts propagating horizontally to the notch,
subsequently deviating towards the center of the sample as fracture reaches half of its width. As 𝛹0 is augmented, the two initial
cracks take a different path during propagation, eventually merging and dividing the sample into two separated pieces leading to
complete failure. These phase-field isocontours agree with the fracture map reached by the proposed model of Ambati et al. [57],
therefore, justifying the postulation of the threshold to account for the contribution of the plastic deformations. The quantitative
effect of the delay of the application of critical equivalent plastic strains in the damage model is highlighted in terms of load–
displacement curves in Fig. 12, where it is observed the onset of fracture being belated for increasing values of displacement by
augmenting 𝛹0.

4.2.2. Results for visco-hyperelasticity
Concerning the visco-hyperelastic material, we have covered several analysis in the double notched specimen pinpointing the

viscous dependence. To accomplish such task, the analyses have encompassed four different viscous mechanisms, with their viscous
shear modulus as 𝜇visco = {6.5 × 104; 60.0 × 104; 5.15 × 104; 1.0 × 104} MPa and relaxation times as 𝜏 = {5; 0.05; 100; 1 × 10−6} s,
respectively. With these properties at hand, three series of numerical experiments varying 𝐶 = {1.5, 5, 10} N/mm are considered
and within each one of them, the test velocity is modified in the ranges of 𝑣 = {0.05, 0.5, 5} mm/s.

The evolution of the fracture process for each one of the conducted specimens is exhibited in Figs. 13(a)–13(c), where it is
envisaged that, at the beginning, the trajectory of the crack coincides with the one without energy threshold for the hyperplastic
specimen (Fig. 11(a)), i.e., horizontal course. Nevertheless, there is no deviation towards the center in its evolution, as it continues
in Mode I upon reaching the boundary limits of the sample.

Comparing from a quantitative standpoint, Figs. 14(a)–14(c) display the force–displacement graphs for each test sorted by
different critical release rate. Comparing the different images, it can be observed how, as expected, the increase in the maximum load
is projected as 𝐶 is augmented. Within the graphs for similar fracture toughness, we envisage reflected the viscoelastic behavior,
as by increasing the displacement rate, the maximum force grows leading to a more premature final displacement for failure.
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Fig. 11. Contour plots of the phase-field parameter for the hyperplastic double-notched asymmetric shell. In here, it is represented the evolution for crack
nucleation and growth for (a) 𝛹0 = 0 N/mm, (b) 𝛹0 = 3 N/mm and (c) 𝛹0 = 5 N/mm.

4.2.3. Results for visco-hyperplasticity
Concerning the visco-hyperplastic approach, we have carried out a parametric analysis studying the dependence on the rate

sensitivity of the specimen by studying the variation of the exponent 𝑚. Reaching a similar result in terms of fracture as the visco-
hyperelastic sample (see Fig. 7), the parametric study encompasses a range of 𝑚 = {0.05, 0.1, 0, 5}, analyzing for each exponent three
different displacement rates 𝑣 = {0.05, 0.1, 0.5} mm/s. The rest of the plastic properties can be found in Table 3.

Force–displacement curves are represented for the different 𝑚 values in Figs. 15(a)–15(c). It is envisaged a predominant elastic
behavior for the samples with 𝑚 = 0.05 and 𝑚 = 0.1, where the curve upon reaching the peak force of its behavior quickly experiences
a softening behavior, being extended for smaller displacement rates, as predicted by the previous tests conducted on viscoplastic
specimens (see Section 4.1.3). However, once the exponent is augmented to a value of 𝑚 = 0.5, the dominant trajectory changes,
as the modification caused by the displacement rate is more highlighted on these cases. Indeed, specimens with higher values of 𝑚
demonstrate a reduction in the maximum force as the displacement rate decreases, ultimately resulting in a transition to the plastic
regime and leading to a bigger elongation prior to fracture. To distinguish the effect of the exponent 𝑚, the plot in Fig. 15(d) reflects
the enhancement in the viscous behavior such larger exponent causes, as it enlarges the hardening during the viscoplastic regime.
Therefore, from here, it is recommended that in order to reflect the visco-plastic behavior of the specimen, one should select a high
enough rate-sensitivity exponent 𝑚 to discern it.
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Fig. 12. Force–displacement constitutive response using several different values for the energy threshold 𝛹0 in the hyperplastic double-notched asymmetric
sample. In the micrograph is included a couple of relevant phase-field contour maps, where red and blue denote the broken and intact states, respectively.

Fig. 13. Contour plots of the phase-field parameter for visco-elastic fracture in the double notched asymmetric specimen during: (a) crack initiation, (b)
propagation and (c) fractured sample for the case with 𝐶 = 5 N/mm and displacement rate 𝑣 = 0.5 mm∕s.

Fig. 14. Force–displacement curves for the visco-elastic double-notched asymmetric specimen. They are been sorted in here by critical energy release rate
employed, encompassing (a) 𝐶 = 1.5 N/mm, (b) 𝐶 = 5 N/mm and (c) 𝐶 = 10 N/mm.
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Fig. 15. Visco-plastic double notched asymmetric specimen: the first three series of graphs display the variation of the specimen behavior for different 𝑚,
ncompassing (a) 𝑚 = 0.05, (b) 𝑚 = 0.1 and (c) = 𝑚 = 0.5. The representations in (d) for the same displacement rate of 𝑣 = 0.1 mm/s highlight such enhancements
ith the increase of the exponent.

Table 4
Solid mechanics and phase-field parameters for the cylindrical shell plate with a hole
experiments.

Property (Unit) 𝜇 (MPa) 𝜅 (MPa) C (N∕mm) 𝓁 (mm)

Value 3.35 × 104 8.19 × 104 1.5 0.1

4.3. Cylinder with hole - tensile conditions

The latter part of the experiments addresses failure in cylindrical specimens, known for their susceptibility to locking phenomena
nder mechanical loading conditions. The results under the tensile loading in the context of brittle failure can be seen in [36] for
omparison. This example, in particular, considers a half-cylindrical shell with a hole in the center under tensile conditions. The
eometrical description and boundary conditions are presented in Fig. 16(a). The description follows the radius of the cylinder
= 2 mm, and the length of the cylinder is considered to be 𝐿 = 20 mm. The circular hole in the center has a radius of 𝑟 = 0.15 mm,

and the thickness of the cylinder is considered as 𝐻 = 0.01 mm, representing a thin sheet. Concerning discretization, the model is
meshed with 12,491 hexahedrical elements. One of the sides is fully fixed, whereas, on the other side, a displacement-controlled
load is applied in tension. The rest of this Section details the effects of the different formulations and their corresponding results.

4.3.1. Results for hyperplasticity
Solid mechanics and phase-field properties considered for this example are plotted in Table 4 and plastic properties are exhibited

in Table 2. In line with the previous considerations, the effect of the variation of the energy threshold is emphasized, considering
a range of 𝛹0 = {0, 5, 10, 15, 20} N/mm for the analysis. Fig. 16(b) presents the force–displacement plots for the variation of the 𝛹0.
In parallel to the plane specimens, when the threshold is absent, the crack nucleation occurs without any yielding. Consequently,
the plastic regime is dominated by the reduction of the reaction force due to the damage. On the other hand, when the 𝛹 > 0,
27
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Fig. 16. (a) Geometrical description of the cylinder with the central hole. (b) Force–displacement curves for the variation of the threshold energy 𝛹0 in the
hyper-plastic problem.

Fig. 17. Hyper-plastic cylindrical shell under tension: (a) Nucleation of the crack, and (b) propagation of the crack when the threshold is 𝛹0 = 0 N/mm. (c)
Nucleation of the crack, and (d) propagation of the crack when the threshold 𝛹0 = 5 N/mm.

plastic yield is observed. As the threshold increases, the accumulation of the damage causes a delay in the fracture. Consequently,
this leads to more pronounced plastic effects. Moreover, if the 𝛹0 → ∞ leads to no fracture. In these cases, the damage initiation
and propagation is delayed and is properly reflected in Fig. 16(b).

Figs. 17(a)–17(b) present the crack nucleation and propagation of the crack when 𝛹0 = 0 N/mm, whereas Figs. 17(c)–17(d)
exhibit the crack nucleation and propagation when 𝛹0 = 5 N/mm. Due to the stress triaxiality, in the 𝛹0 = 0 N/mm case, the
damage band is split into two oppositely inclined symmetric branches. Consequently, the crack propagation follows both branches.
On the other hand, when 𝛹0 = 5 N/mm, the damage band at nucleation is split in the same directions, but it loses symmetry in further
stages. From this, we can extract that for the half-cylindrical shell under tensile conditions the unsymmetric crack propagation is
triggered when the energy threshold is 𝛹0 > 0.

4.3.2. Results for visco-hyperelasticity
The cylinder with a hole in the center is tested at a visco-hyperelastic regime. Employing the mechanical properties displayed

in Table 4, a series of numerical experiments with relaxation time 𝜏 = {1, 2} s are presented to study the dependence of the test
rates. Considering one viscous subdomain with a fixed viscous shear modulus 𝜇visco = 6.5×104 MPa, for a relaxation time of 𝜏 = 1 s,
displacement rates of 𝑣 = {0.6, 0.5, 0.4, 0.2, 0.1} mm∕s are adopted, whereas for 𝜏 = 2 s, test rates of 𝑣 = {0.3, 0.25, 0.2, 0.15, 0.05}
mm/s are considered. The reason for this unequal distribution of the test rate can be seen in Fig. 18, where it is observed that
by increasing the relaxation time, the viscous effects have not vanished and the failure of the specimen is triggered prematurely.
Additionally, the peak reactions constantly decrease as the load rate decreases. Concerning qualitative results, it is highlighted in
Fig. 19 that, due to the viscous effects, the crack nucleation and propagation are similar to the elastic regime where the crack
propagation is straight, leading to a pure Mode I failure.

4.3.3. Results for visco-hyperplasticity
For the visco-hyperplastic cylindrical shell, following mechanical properties plotted in Table 3, a threshold energy of 𝛹0 =

1 N/mm is chosen and the load rate is changed on the range of 𝑣 = {2, 0.5, 0.23, 0.15, 0.133, 0.1} mm∕s. Fig. 20(a) presents the
force–displacement graphs, and Fig. 20(b) presents the force-time graphs, both emphasizing the rate dependency of the structure.
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Fig. 18. Force-time curves for the visco-elastic behavior of cylinder with a hole under tensile loading. The results are sorted by relaxation time employed,
encompassing (a) 𝜏 = 1 s, (b) 𝜏 = 2 s.

Fig. 19. (a) Crack nucleation, and (b) propagation in visco-elastic cylinder shell with a hole under tensile conditions.

Due to the low threshold, as in the plastic case, the load reaction triggers an unstable crack growth (as the ones obtained in Fig. 19).
Moreover, the effects of the load rate on the structure can be seen. As the load rate increases, the maximum load-carrying capacity
of the structure also increases, reflecting the viscous effects.

4.4. Cylinder with hole - mixed loading conditions

This example considers the half-cylindrical shell with a hole in the center, now with mixed loading conditions. The same
dimensions and mesh as in the tensile tests are considered for this series of numerical examples. One side of the cylinder is fully
restrained, whereas, on the other side, a displacement-controlled load is applied in tension and bending. The reason for the tension
load alongside the bending load is to avoid the crack starting from the boundaries. Moreover, the bending of the cylinder allows
extensive use of the ANS and EAS parameters, which in its absence leads to numerical locking. Furthermore, the effects of different
material models are presented in the sequel.

4.4.1. Results for hyperplasticity
The considered material properties are plotted in Table 4, whereas the plastic properties are shown in Table 2. The effect of the

variation of the energy threshold is emphasized for mixed loading conditions, using a range of 𝛹0 = {0, 2.5, 5, 7.5, 10, 12.5, 15} N/mm
for the comprehensive analysis. Fig. 21(b) presents the force–displacement plots for the variation of the 𝛹0. Similar to the results in
the previous Section, when the threshold is absent, the crack nucleation occurs without any yielding. Moreover, due to the bending,
the damage at the boundary can be seen. On the other hand, when the 𝛹0 > 0, plastic yield can be seen. As the energy threshold
increases, damage accumulation is delayed. Consequently, this leads to more pronounced plastic hardening effects. Moreover, as
29
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Fig. 20. (a) Force vs. displacement curve in the cylinder with a hole under tensile conditions in the viscoplastic regime with threshold energy of 𝛹0 = 1 N/mm
nd relaxation time 𝜏 = 1 s. (b) Force vs. time curve in the cylinder with a hole under tensile conditions in viscoplastic regime with threshold energy of 𝛹0 = 1

N/mm and relaxation time 𝜏 = 1 s.

Fig. 21. (a) Geometrical description of the cylinder with a hole in a mixed loading condition. (b) Force–displacement plots for the variation of the threshold
energy 𝛹0 in the hyperplastic problem.

loading tests in Fig. 16(b), the alleviation of locking pathologies is evident as the force–displacement curves for mixed loading
closely match the magnitude observed in the pure tensile loading tests.

Figs. 22(a)–22(b) present the crack nucleation and propagation of the crack when 𝛹0 = 2.5 N/mm, whereas Figs. 22(c)–22(d)
resent the crack nucleation and propagation when 𝛹0 = 5 N/mm. Due to the stress triaxiality, the damage band is split, thus
ymmetry is lost. As a consequence, one can observe the unsymmetric crack propagation. As the threshold increases, the unsymmetry
n the crack bands starts to grow, which is evident from Fig. 22(d).

.4.2. Results for visco-hyperelasticity
The cylinder with a hole in the center is tested at the viscoelastic regime for mixed loading conditions to understand the difference

n viscous effect and the peak reaction force due to the viscous effect, and also, to evidence that locking pathologies are alleviated
y the activation of the ANS and EAS parameters. In this regard, we consider the mechanical properties displayed in Table 4 varying
elaxation time as in the previous Section considering one viscous subdomain with 𝜇visco = 6.5×104 MPa. Following this line, a series
f numerical experiments with relaxation time 𝜏 = {1, 2} s is presented with varying test rates to study the dependence of the test
ate, considering the displacement rates that are adopted in Section 4.3.2. Fig. 23(a) presents the force–displacement graph, whereas
ig. 23(b) addresses the force-time curves. As the relaxation time increases, the viscous effects do not vanish, as a consequence, the
aximum reaction force increases. As the magnitude of the curves is in the same level as the specimens for pure tensile loading

see Fig. 18), we can confirm that also the locking problem is solved for the visco-elastic regime. It is also important to note that
30
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Fig. 22. Hyper-plastic cylindrical shell under mixed loading:(a) Nucleation of the crack, and (b) propagation of the crack when the threshold 𝛹0 = 2.5 N/mm.
(c) Nucleation of the crack, and (d) propagation of the crack when the threshold 𝛹0 = 5 N/mm.

Fig. 23. (a) Force vs. Displacement, and (b) Force vs. Time for the visco-elastic mixed loading cylinder with a hole for relaxation time of 𝜏 = 1 s.

4.4.3. Results for visco-hyperplasticity
Lastly, we analyze the behavior of the visco-hyperplastic material in mixed loading conditions. Considering the plastic properties

displayed in Table 3, we adopt a threshold energy of 𝛹0 = 1 N/mm with the loading rate of 𝑣 = {0.5, 0.4, 0.3, 0.2, 0.1} mm∕s.
Figs. 24(a)–24(b) display the crack nucleation and propagation. It is envisaged as the plastic effect is more dominant, this results
in crack propagation according to the plasticity rule. Moreover, the crack propagation in the mixed loading follows a stable crack
growth even for low threshold energy, which fundamentally defers from the pure tensile loading. This could be attributed to the
combined effects of Mode I and Mode II failure modes at the crack tip. Furthermore, Fig. 25(a) presents the force–displacement, and
Fig. 25(b) presents the force-time plots for the various loading rates. It can be seen that as the load rate increases, the maximum
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Fig. 24. Crack nucleation and crack propagation in the cylinder with hole for viscoplastic mixed loading.

Fig. 25. (a) Force vs. Displacement, and (b) Force vs. Time for the visco-plastic mixed loading cylinder with a hole for relaxation time of 𝜏 = 1 s and
𝛹0 = 1 N/mm.

reactions increase, emphasizing the viscoplastic effects in the structure. Moreover, it is observed that the EAS and ANS formulations
effectively mitigate the issue of locking also in the context of visco-plastic behavior. This is evident as the resulting curves exhibit
values of the same magnitude as those corresponding to pure tensile loading, as illustrated comparing Fig. 25 with Fig. 20. This
consistency further reflects the efficacy of these formulations in addressing complex mechanical behaviors in structures prone to
exhibit locking problems.

5. Conclusions

This paper outlines the numerical implementation of a general purpose nonlinear FE code of hyper-plastic, visco-hyperelastic, and
visco-hyperplastic models into the solid shell model for fracture analysis. Specifically, the current formulation of such representative
inelastic material models has been integrated in conjunction with the EAS and ANS techniques, which effectively addresses and
mitigates locking pathologies and the incorporation of the phase-field approach to simulate cracking events. Despite the increase in
computational cost and the convergence issues mentioned earlier, these new developments represent a significant advancement on
the existing literature within the realm of inelastic fully-integrated solid shells.

First, the seminal experiments of a inelastic square tensile plate from Borden et al. [13] and the ductile fracture of a double-
notched asymmetric sample from Ambati et al. [57] have been used as verification of the proposed solid shell theory. In these
instances, the hyper-plastic formulation has demonstrated its ability to capture both crack trajectory and mechanical behavior
of these numerical experiments characterized by notable evolution of plastic effects. Second, in the context of the materials
encompassing viscous events, rate-dependent phenomena in these samples has been robustly simulated, aligning closely with
32

theoretical expectations.
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Consequently, this research has been extended to more relevant problems in the context of modeling of solid shells. In the context
f this, the analysis of large displacements and subsequently, ductile fracture of cylindrical solid shell specimens subject to mixed
oading conditions, encompassing both pulling and bending, has been captured. Notably, these simulations successfully account for
he alleviation of locking events in these scenarios.

Current results pinpoint the applicability of the proposed formulation, rendering to promising simulation tools for the evaluation
f real-life problems in the automotive and aerospace sectors, among others, where applications concerning shell structures with
nelastic mechanical effects and fracture are of relevant importance.
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Appendix. Code listing for FE implementation

The listings included in here are all related to Section 3.1.2. To facilitate the reader’s comprehension, we recommend following
this Appendix in conjunction with the aforementioned Section.

Listing 1: Computation of covariant and contravariant basis and metrics.

subroutine ks8metShellBody10(x,shapef,dshape,xi,nnode,ndim,
* gkov,gkon,gmkov,gmkon,detgkon)
IMPLICIT NONE

! ------- Definitions ....
do i=1,3

do j =1,3
do k=1,8

gkov(j,i) = gkov(j,i) + dshape(i,k)*x(j,k)
enddo

enddo
enddo

do i=1,3
do j=1,3

gkon(i,j) = gkov(i,j)
enddo

enddo
! ------- Compute the determinant

detgkon= ....
! ------- Compute the inverse for the Contravariant basis

do i=1,3
do j=1,3

gkon (i,j) = gkoni(i,j)
end do

end do
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! ------- Transpose gkon
! ------- covariant metric tensor -------

do i=1,ndim
do j=1,ndim

do k=1,ndim
gmkov(i,j) =gmkov(i,j) + gkov(k,i)*gkov(k,j)

end do
end do

end do
! ------- Calculate the inverse metrics contravariant gmkon -------

return
end

Listing 2: Computation of the displacement-strain 𝐁(𝐝) operator.
!---------------------------------------------------------

subroutine kBoperatorS10(Bop,gkov,dshape,nnode,ndim)
IMPLICIT NONE

! ------- Definitions ....
! ------- initialization

counter=1
do inode=1,8

Bop(1,counter)= dshape(1,inode)*gkov(1,1)
Bop(1,counter+1)= dshape(1,inode)*gkov(2,1)
Bop(1,counter+2)= dshape(1,inode)*gkov(3,1)

!----------------------------------------
Bop(2,counter)= dshape(2,inode)*gkov(1,2)
Bop(2,counter+1)= dshape(2,inode)*gkov(2,2)
Bop(2,counter+2)= dshape(2,inode)*gkov(3,2)

!----------------------------------------
Bop(3,counter) = dshape(3,inode)*gkov(1,3)
Bop(3,counter+1) = dshape(3,inode)*gkov(2,3)
Bop(3,counter+2) = dshape(3,inode)*gkov(3,3)

!----------------------------------------
Bop(4,counter) = dshape(1,inode)*gkov(1,2) +

* dshape(2,inode)*gkov(1,1)
Bop(4,counter+1) = dshape(1,inode)*gkov(2,2) +

* dshape(2,inode)*gkov(2,1)
Bop(4,counter+2) = dshape(1,inode)*gkov(3,2) +

* dshape(2,inode)*gkov(3,1)
!----------------------------------------

Bop(5,counter) = dshape(1,inode)*gkov(1,3) +
* dshape(3,inode)*gkov(1,1)

Bop(5,counter+1) = dshape(1,inode)*gkov(2,3) +
* dshape(3,inode)*gkov(2,1)

Bop(5,counter+2) = dshape(1,inode)*gkov(3,3) +
* dshape(3,inode)*gkov(3,1)

!----------------------------------------
Bop(6,counter ) = dshape(2,inode)*gkov(1,3) +

* dshape(3,inode)*gkov(1,2)
Bop(6,counter+1) = dshape(2,inode)*gkov(2,3) +

* dshape(3,inode)*gkov(2,2)
Bop(6,counter+2) = dshape(2,inode)*gkov(3,3) +

* dshape(3,inode)*gkov(3,2)
counter=counter+ndim

enddo

return
end
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Listing 3: Computation of the B-operator for the alleviation of trapezoidal locking.

!---------------------------------------------------------
!---------------------------------------------------------

subroutine kANStrapS10(Bop,ndim,nnode,ntens,gkovcT,frT,dshapeT,nANStrap)

IMPLICIT NONE
!initialization
!definition
node_st = 1
do innode = 1,nnode

do jq=1,nANStrap
BopAux(3,node_st) = BopAux(3,node_st) +

1 frT(jq)*dshapeT(jq,3,innode)*gkovcT(jq,1,3)

BopAux(3,node_st+1) = BopAux(3,node_st+1) +
1 frT(jq)*dshapeT(jq,3,innode)*gkovcT(jq,2,3)

BopAux(3,node_st+2) = BopAux(3,node_st+2) +
1 frT(jq)*dshapeT(jq,3,innode)*gkovcT(jq,3,3)

enddo
node_st = node_st + ndim

enddo

do i=1,ntens
do j=1,nnode*ndim

Bop(i,j) = Bop(i,j) + BopAux(i,j)
enddo

enddo

return
end

Listing 4: Computation of the B-operator for the alleviation of shear locking.

!---------------------------------------------------------
subroutine kANSshearS10(Bop,ndim,nnode,ntens,gkovc1q1 ,

1 gkovc2q2,frq,fsq,dshape1q1 ,dshape2q2 ,nANSshear)

IMPLICIT NONE

!initialization
!definition
node_st = 1
do innode = 1,nnode
! 13 component

BopAux (5,node_st) = BopAux(5,node_st)+
1 frq(1)*dshape1q1(1,1,innode)*gkovc1q1(1,1,3) +
2 frq(1)*dshape1q1(1,3,innode)*gkovc1q1(1,1,1) +
3 frq(2)*dshape1q1(2,1,innode)*gkovc1q1(2,1,3) +
4 frq(2)*dshape1q1(2,3,innode)*gkovc1q1(2,1,1)

BopAux (5,node_st+1) = BopAux(5,node_st+1)+
1 frq(1)*dshape1q1(1,1,innode)*gkovc1q1(1,2,3) +
2 frq(1)*dshape1q1(1,3,innode)*gkovc1q1(1,2,1) +
3 frq(2)*dshape1q1(2,1,innode)*gkovc1q1(2,2,3) +
4 frq(2)*dshape1q1(2,3,innode)*gkovc1q1(2,2,1)

BopAux (5,node_st+2) = BopAux(5,node_st+2)+
1 frq(1)*dshape1q1(1,1,innode)*gkovc1q1(1,3,3) +
35
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2 frq(1)*dshape1q1(1,3,innode)*gkovc1q1(1,3,1) +
3 frq(2)*dshape1q1(2,1,innode)*gkovc1q1(2,3,3) +
4 frq(2)*dshape1q1(2,3,innode)*gkovc1q1(2,3,1)

! 23 component

BopAux (6,node_st) = BopAux(6,node_st) +
1 fsq(1)*dshape2q2(1,2,innode)*gkovc2q2(1,1,3) +
2 fsq(1)*dshape2q2(1,3,innode)*gkovc2q2(1,1,2) +
3 fsq(2)*dshape2q2(2,2,innode)*gkovc2q2(2,1,3) +
4 fsq(2)*dshape2q2(2,3,innode)*gkovc2q2(2,1,2)

BopAux (6,node_st+1) = BopAux(6,node_st+1) +
1 fsq(1)*dshape2q2(1,2,innode)*gkovc2q2(1,2,3) +
2 fsq(1)*dshape2q2(1,3,innode)*gkovc2q2(1,2,2) +
3 fsq(2)*dshape2q2(2,2,innode)*gkovc2q2(2,2,3) +
4 fsq(2)*dshape2q2(2,3,innode)*gkovc2q2(2,2,2)

BopAux (6,node_st+2) = BopAux(6,node_st+2) +
1 fsq(1)*dshape2q2(1,2,innode)*gkovc2q2(1,3,3) +
2 fsq(1)*dshape2q2(1,3,innode)*gkovc2q2(1,3,2) +
3 fsq(2)*dshape2q2(2,2,innode)*gkovc2q2(2,3,3) +
4 fsq(2)*dshape2q2(2,3,innode)*gkovc2q2(2,3,2)

node_st = node_st + ndim
enddo

do i=1,ntens
do j=1,nnode*ndim

Bop(i,j) = Bop(i,j) + BopAux(i,j)
enddo

enddo

return
end

!---------------------------------------------------------

Listing 5: Conversion of stress and material Jacobi tangent from cartesian to curvilinear.

!-----------------Convert stresses from cartesian to curvilinear --------------------
subroutine kcarttocurv(stress_cart , gkon, stress)

IMPLICIT NONE

do k=1,3
do l=1,3

stress_curv(k,l)=0.0d0
do i=1,3

do j=1,3
stress_curv(k,l)=stress_curv(k,l)+gkon(i,k)*gkon(j,l)*stress_cart(i

,j)
enddo

enddo
enddo

enddo

do i=1,3
do j=1,3

stress_curv(i,j)=(stress_curv(i,j)+stress_curv(j,i))/2.d0
enddo

enddo
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stress(1)= stress_curv(1,1)
stress(2)= stress_curv(2,2)
stress(3)= stress_curv(3,3)
stress(4)= stress_curv(1,2)
stress(5)= stress_curv(2,3)
stress(6)= stress_curv(1,3)

return
end

!-----------------Convert Jacobi tangent from cartesian to curvilinear
--------------------

subroutine ks84koncacu(Cmat_Cart , gkon, cmat)
IMPLICIT NONE

DATA Nota/1,4,6,
1 4,2,5,
2 6,5,3/

do i=1,3
do j=1,3

do k=1,3
do l=1,3

Cmat_curv(i,j,k,l) = 0.d0
do m=1,3

do n=1,3 ! this to curvilinear
do p=1,3

do q=1,3
Cmat_curv(i,j,k,l)=Cmat_curv(i,j,k,l) + Cmat_Cart(m

,n,p,q)*gkon(m,i)*gkon(n,j)*gkon(p,k)*gkon(q,l)
enddo

enddo
enddo

enddo
enddo

enddo
enddo

enddo

cmat(:,:)=0.0d0
do kk=1,3

do mm=1,3
do pp=1,3

do qq=1,3
cmatR(Nota(kk,mm),Nota(pp,qq))=Cmat_curv(kk,mm,pp,qq)

end do
end do

end do
end do

do i=1,6
do j=1,6

cmat(i,j)= (cmatR(i,j)+cmatR(j,i)) / 2.0d0
enddo

enddo

return
end

Listing 6: Computation of the 𝐌(𝜉) operator.

!---------------------------------------------------------
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subroutine kEASMlocal(r,s,t,Weasloc,nEAS)

IMPLICIT NONE

!initialization
!definition

rr = 1 !11 component
ss = 2 !22 component
tt = 3 !33 component
rs = 4 !12 component
rt = 5 !13 component
st = 6 !23 component

indexcol = 1

Weasloc(rr,1) = xi1
Weasloc(ss,2) = xi2

Weasloc(tt,3) = xi3
Weasloc(tt,4) = xi1*xi3
Weasloc(tt,5) = xi2*xi3

Weasloc(rs,6) = xi1
Weasloc(rs,7) = xi2

return
end

Listing 7: Computation of �̃�.

!---------------------------------------------------------

subroutine kEASTransform(Weas,T0mat,gkovr,gkonr0,Weasloc,
1 ndim,nnode,detr0,detr,nEAS)

IMPLICIT NONE

!initialization
!definition

TOL = 1.0d-15

factor0= detr0/detr !relation between both determinants
do i=1,3

t11 = t11 + gkonr0(i,1)* gkovr(i,1)
t12 = t12 + gkonr0(i,1)* gkovr(i,2)
t13 = t13 + gkonr0(i,1)* gkovr(i,3)

t21 = t21 + gkonr0(i,2)* gkovr(i,1)
t22 = t22 + gkonr0(i,2)* gkovr(i,2)
t23 = t23 + gkonr0(i,2)* gkovr(i,3)

t31 = t31 + gkonr0(i,3)* gkovr(i,1)
t32 = t32 + gkonr0(i,3)* gkovr(i,2)
t33 = t33 + gkonr0(i,3)* gkovr(i,3)

enddo

!Matrix T

T0mat(1,1) = t11*t11*factor0
T0mat(1,2) = t21*t21*factor0
38



Engineering Fracture Mechanics 304 (2024) 110123A. Valverde-González et al.

34

39

44

49

54

59

64

69

74

79

84

89

94
T0mat(1,3) = t31*t31*factor0
T0mat(1,4) = t11*t21*factor0
T0mat(1,5) = t11*t31*factor0
T0mat(1,6) = t21*t31*factor0

T0mat(2,1) = t12*t12*factor0
T0mat(2,2) = t22*t22*factor0
T0mat(2,3) = t32*t32*factor0
T0mat(2,4) = t12*t22*factor0
T0mat(2,5) = t12*t32*factor0
T0mat(2,6) = t22*t32*factor0

T0mat(3,1) = t13*t13*factor0
T0mat(3,2) = t23*t23*factor0
T0mat(3,3) = t33*t33*factor0
T0mat(3,4) = t13*t23*factor0
T0mat(3,5) = t13*t33*factor0
T0mat(3,6) = t23*t33*factor0

T0mat(4,1) = (t11*t12 + t12*t11)*factor0
T0mat(4,2) = (t21*t22 + t22*t21)*factor0
T0mat(4,3) = (t31*t32 + t32*t31)*factor0
T0mat(4,4) = (t11*t22 + t12*t21)*factor0
T0mat(4,5) = (t11*t32 + t12*t31)*factor0
T0mat(4,6) = (t21*t32 + t22*t31)*factor0

T0mat(5,1) = (t12*t13 + t13*t12)*factor0
T0mat(5,2) = (t22*t23 + t23*t22)*factor0
T0mat(5,3) = (t32*t33 + t33*t32)*factor0
T0mat(5,4) = (t12*t23 + t13*t22)*factor0
T0mat(5,5) = (t22*t33 + t23*t32)*factor0
T0mat(5,6) = (t12*t33 + t13*t32)*factor0

T0mat(6,1) = (t11*t13 + t13*t11)*factor0
T0mat(6,2) = (t21*t23 + t23*t21)*factor0
T0mat(6,3) = (t31*t33 + t33*t31)*factor0
T0mat(6,4) = (t11*t23 + t13*t21)*factor0
T0mat(6,5) = (t21*t33 + t23*t31)*factor0
T0mat(6,6) = (t11*t33 + t13*t31)*factor0

do i=1,6
do j=1,6

if (abs(T0mat(i,j)).LT.TOL) then
T0mat(i,j) = 0.d0

endif
enddo

enddo

Weas = matmul(T0mat,Weasloc)
do i=1,6

do j=1,nEAS
if (abs(Weas(i,j)).LE.TOL) then

Weas(i,j) = 0.d0
endif

enddo
enddo

!initialization
do i=1,6

Etilde(i,1) = 0.d0
enddo

Etilde = matmul(Weas,EASstrain)

return
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end

Listing 8: Computation of the geometrical stiffness matrix.

!---------------------------------------------------------
subroutine kStiffGeomS10Alt(Kgdd,shapef,dshape,stress,ndim,nnode,

* ntens)

IMPLICIT NONE

!initialization
!definition

node_st=1 !initialization index of rows

do i=1,nnode

indexcol = 1 !initialization index of columns

do k=1,nnode

dNidr = dshape(1,i)
dNids = dshape(2,i)
dNidt = dshape(3,i)

dNkdr = dshape(1,k)
dNkds = dshape(2,k)
dNkdt = dshape(3,k)

Gamma =dNidr*dNkdr*stress(1)+ (dNidr*dNkds+dNids*dNkdr)*stress(4)+
* (dNidr*dNkdt + dNidt*dNkdr)*stress(5) + dNids*dNkds*stress(2)+
* (dNids*dNkdt + dNidt*dNkds)*stress(6) + dNidt*dNkdt*stress(3)

Kgdd(node_st,indexcol) = Gamma
Kgdd(node_st+1,indexcol+1) = Gamma
Kgdd(node_st+2,indexcol+2) = Gamma

indexcol = indexcol+3 !update index of columns

enddo !end k

node_st = node_st+3 !update index of rwos
enddo !end i

return
end

Listing 9: Computation of the geometrical stiffness matrix modified by the ANS technique.

!---------------------------------------------------------

subroutine kStiffGeomS10AltANS(Kgdd,shapef,dshape,stress,ndim,
1 nnode,ntens,gkovc1q1,gkovc2q2,frq,fsq,dshape1q1 ,dshape2q2 ,
2 nANSshear ,ANSshearpar ,gkovcT,frT,dshapeT,nANStrap,ANStrappar)

IMPLICIT NONE

!initialization
!definition
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node_st=1 !initialization index of rows

do i=1,nnode
indexcol = 1 !initialization index of columns

do k=1,nnode

dNidr = dshape(1,i)
dNids = dshape(2,i)
dNidt = dshape(3,i)

dNkdr = dshape(1,k)
dNkds = dshape(2,k)
dNkdt = dshape(3,k)

Gamma11 = dNidr*dNkdr
Gamma12 = dNidr*dNkds+dNids*dNkdr
Gamma22 = dNids*dNkds

!------- ANS shear
if (ANSshearpar.ne.0.d0) then

Gamma13 = frq(1)*(dshape1q1(1,1,i)*dshape1q1(1,3,k)) +
1 frq(1)*(dshape1q1(1,3,i)*dshape1q1(1,1,k)) +
2 frq(2)*(dshape1q1(2,1,i)*dshape1q1(2,3,k)) +
3 frq(2)*(dshape1q1(2,3,i)*dshape1q1(2,1,k))

Gamma23 = fsq(1)*(dshape2q2(1,2,i)*dshape2q2(1,3,k)) +
1 fsq(1)*(dshape2q2(1,3,i)*dshape2q2(1,2,k)) +
2 fsq(2)*(dshape2q2(2,2,i)*dshape2q2(2,3,k)) +
3 fsq(2)*(dshape2q2(2,3,i)*dshape2q2(2,2,k))

else

Gamma13 = dNidr*dNkdt + dNidt*dNkdr
Gamma23 = dNids*dNkdt + dNidt*dNkds

endif

!------- ANS trap
if (ANStrappar.ne.0.d0) then

Gamma33 = frT(1)*dshapeT(1,3,i)*dshapeT(1,3,k) +
1 frT(2)*dshapeT(2,3,i)*dshapeT(2,3,k) +
2 frT(3)*dshapeT(3,3,i)*dshapeT(3,3,k) +
3 frT(4)*dshapeT(4,3,i)*dshapeT(4,3,k)

else

Gamma33 = dNidt*dNkdt

endif

Gamma =Gamma11*stress(1)+ (Gamma12)*stress(4)+
1 (Gamma13)*stress(5) + Gamma22*stress(2)+
2 (Gamma23)*stress(6) + Gamma33*stress(3)

Kgdd(node_st,indexcol) = Gamma
Kgdd(node_st+1,indexcol+1) = Gamma
Kgdd(node_st+2,indexcol+2) = Gamma

indexcol = indexcol+3 !update index of columns

enddo !end k

node_st = node_st+3 !update index of rwos
41
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 enddo !end i

return
end

References

[1] Griffith A. The phenomena of rupture and flow in solids. Philos Trans A 1920;221:163–98. http://dx.doi.org/10.1098/rsta.1921.0006.
[2] Francfort G, Marigo J-J. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 1998;46(8):1319–42. http://dx.doi.org/10.

1016/S0022-5096(98)00034-9.
[3] Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. J Mech Phys Solids 2000;48(4):797–826. http://dx.doi.org/10.

1016/S0022-5096(99)00028-9.
[4] Amor H, Marigo J-J, Maurini C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J Mech Phys

Solids 2009;57(8):1209–29. http://dx.doi.org/10.1016/j.jmps.2009.04.011.
[5] Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator

splits. Comput Methods Appl Mech Engrg 2010;199:2765–78. http://dx.doi.org/10.1016/j.cma.2010.04.011.
[6] Freddi F, Royer-Carfagni G. Regularized variational theories of fracture: A unified approach. J Mech Phys Solids 2010;58(8):1154–74. http://dx.doi.org/

10.1016/j.jmps.2010.02.010.
[7] Steinke C, Kaliske M. A phase-field crack model based on directional stress decomposition. Comput Mech 2019;63(5):1019–46. http://dx.doi.org/10.1007/

s00466-018-1635-0.
[8] Wu J-Y, Nguyen VP. A length scale insensitive phase-field damage model for brittle fracture. J Mech Phys Solids 2018;119:20–42. http://dx.doi.org/10.

1016/j.jmps.2018.06.006.
[9] Dean A, Asur Vijaya Kumar P, Reinoso J, Gerendt C, Paggi M, Mahdi E, et al. A multi phase-field fracture model for long fiber reinforced composites

based on the puck theory of failure. Compos Struct 2020;251:112446. http://dx.doi.org/10.1016/j.compstruct.2020.112446.
[10] Alessi R, Marigo J-J, Vidoli S. Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal

2014;214(2):575–615. http://dx.doi.org/10.1007/s00205-014-0763-8.
[11] Duda FP, Ciarbonetti A, Sánchez PJ, Huespe AE. A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. Int J Plast 2015;65:269–96.

http://dx.doi.org/10.1016/j.ijplas.2014.09.005.
[12] Ambati M, Kruse R, De Lorenzis L. A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech

2016;57(1):149–67. http://dx.doi.org/10.1007/s00466-015-1225-3.
[13] Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation,

plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Engrg 2016;312:130–66. http://dx.doi.org/10.1016/j.cma.2016.09.005, phase
Field Approaches to Fracture.

[14] Dittmann M, Aldakheel F, Schulte J, Wriggers P, Hesch C. Variational phase-field formulation of non-linear ductile fracture. Comput Methods Appl Mech
Engrg 2018;342:71–94. http://dx.doi.org/10.1016/j.cma.2018.07.029.

[15] Dean A, Reinoso J, Jha N, Mahdi E, Rolfes R. A phase field approach for ductile fracture of short fibre reinforced composites. Theor Appl Fract Mech
2020;106:102495. http://dx.doi.org/10.1016/j.tafmec.2020.102495.

[16] Abrari Vajari S, Neuner M, Arunachala PK, Ziccarelli A, Deierlein G, Linder C. A thermodynamically consistent finite strain phase field approach to ductile
fracture considering multi-axial stress states. Comput Methods Appl Mech Engrg 2022;400:115467. http://dx.doi.org/10.1016/j.cma.2022.115467.

[17] Wu J-Y, Mandal TK, Nguyen VP. A phase-field regularized cohesive zone model for hydrogen assisted cracking. Comput Methods Appl Mech Engrg
2020;358:112614. http://dx.doi.org/10.1016/j.cma.2019.112614.

[18] Zhao Y, Wang R, Martínez-Pañeda E. A phase field electro-chemo-mechanical formulation for predicting void evolution at the Li–electrolyte interface in
all-solid-state batteries. J Mech Phys Solids 2022;167:104999. http://dx.doi.org/10.1016/j.jmps.2022.104999.

[19] Ulloa J, Noii N, Alessi R, Aldakheel F, Degrande G, François S. Variational modeling of hydromechanical fracture in saturated porous media: A
micromechanics-based phase-field approach. Comput Methods Appl Mech Engrg 2022;396:115084. http://dx.doi.org/10.1016/j.cma.2022.115084.

[20] Hageman T, Martínez-Pañeda E. A phase field-based framework for electro-chemo-mechanical fracture: Crack-contained electrolytes, chemical reactions
and stabilisation. Comput. Methods Appl. Mech. Eng. 2023;415:116235. http://dx.doi.org/10.1016/j.cma.2023.116235.

[21] Quinteros L, García-Macías E, Martínez-Pañeda E. Electromechanical phase-field fracture modelling of piezoresistive CNT-based composites. Comput Methods
Appl Mech Engrg 2023;407:115941. http://dx.doi.org/10.1016/j.cma.2023.115941.

[22] Abrari Vajari S, Neuner M, Arunachala PK, Linder C. Investigation of driving forces in a phase field approach to mixed mode fracture of concrete. Comput
Methods Appl Mech Engrg 2023;417:116404. http://dx.doi.org/10.1016/j.cma.2023.116404.

[23] Gültekin O, Dal H, Holzapfel GA. A phase-field approach to model fracture of arterial walls: Theory and finite element analysis. Comput Methods Appl
Mech Engrg 2016;312:542–66. http://dx.doi.org/10.1016/j.cma.2016.04.007, phase Field Approaches to Fracture.

[24] Bleyer J, Alessi R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput Methods Appl Mech Engrg
2018;336:213–36. http://dx.doi.org/10.1016/j.cma.2018.03.012.

[25] Mitrou A, Arteiro A, Reinoso J, Camanho PP. Modeling fracture of multidirectional thin-ply laminates using an anisotropic phase field formulation at the
macro-scale. Int J Solids Struct 2023;273:112221. http://dx.doi.org/10.1016/j.ijsolstr.2023.112221.

[26] Ulmer H, Hofacker M, Miehe C. Phase field modeling of fracture in plates and shells. PAMM 2012;12(1):171–2. http://dx.doi.org/10.1002/pamm.
201210076, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201210076.

[27] Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech 2014;69:102–9.
http://dx.doi.org/10.1016/j.tafmec.2013.12.002, introducing the new features of Theoretical and Applied Fracture Mechanics through the scientific expertise
of the Editorial Board.

[28] Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Engrg
2016;312:322–50. http://dx.doi.org/10.1016/j.cma.2016.01.020, phase Field Approaches to Fracture.

[29] Paul K, Zimmermann C, Duong TX, Sauer RA. Isogeometric continuity constraints for multi-patch shells governed by fourth-order deformation and phase
field models. Comput Methods Appl Mech Engrg 2020;370:113219. http://dx.doi.org/10.1016/j.cma.2020.113219.

[30] Kikis G, Ambati M, De Lorenzis L, Klinkel S. Phase-field model of brittle fracture in Reissner–Mindlin plates and shells. Comput Methods Appl Mech Engrg
2021;373:113490. http://dx.doi.org/10.1016/j.cma.2020.113490.

[31] Parisch H. A continuum-based shell theory for non-linear applications. Internat J Numer Methods Engrg 1995;38(11):1855–83. http://dx.doi.org/10.1002/
nme.1620381105.
42

http://dx.doi.org/10.1098/rsta.1921.0006
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://dx.doi.org/10.1016/j.jmps.2009.04.011
http://dx.doi.org/10.1016/j.cma.2010.04.011
http://dx.doi.org/10.1016/j.jmps.2010.02.010
http://dx.doi.org/10.1016/j.jmps.2010.02.010
http://dx.doi.org/10.1016/j.jmps.2010.02.010
http://dx.doi.org/10.1007/s00466-018-1635-0
http://dx.doi.org/10.1007/s00466-018-1635-0
http://dx.doi.org/10.1007/s00466-018-1635-0
http://dx.doi.org/10.1016/j.jmps.2018.06.006
http://dx.doi.org/10.1016/j.jmps.2018.06.006
http://dx.doi.org/10.1016/j.jmps.2018.06.006
http://dx.doi.org/10.1016/j.compstruct.2020.112446
http://dx.doi.org/10.1007/s00205-014-0763-8
http://dx.doi.org/10.1016/j.ijplas.2014.09.005
http://dx.doi.org/10.1007/s00466-015-1225-3
http://dx.doi.org/10.1016/j.cma.2016.09.005
http://dx.doi.org/10.1016/j.cma.2018.07.029
http://dx.doi.org/10.1016/j.tafmec.2020.102495
http://dx.doi.org/10.1016/j.cma.2022.115467
http://dx.doi.org/10.1016/j.cma.2019.112614
http://dx.doi.org/10.1016/j.jmps.2022.104999
http://dx.doi.org/10.1016/j.cma.2022.115084
http://dx.doi.org/10.1016/j.cma.2023.116235
http://dx.doi.org/10.1016/j.cma.2023.115941
http://dx.doi.org/10.1016/j.cma.2023.116404
http://dx.doi.org/10.1016/j.cma.2016.04.007
http://dx.doi.org/10.1016/j.cma.2018.03.012
http://dx.doi.org/10.1016/j.ijsolstr.2023.112221
http://dx.doi.org/10.1002/pamm.201210076
http://dx.doi.org/10.1002/pamm.201210076
http://dx.doi.org/10.1002/pamm.201210076
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201210076
http://dx.doi.org/10.1016/j.tafmec.2013.12.002
http://dx.doi.org/10.1016/j.cma.2016.01.020
http://dx.doi.org/10.1016/j.cma.2020.113219
http://dx.doi.org/10.1016/j.cma.2020.113490
http://dx.doi.org/10.1002/nme.1620381105
http://dx.doi.org/10.1002/nme.1620381105
http://dx.doi.org/10.1002/nme.1620381105


Engineering Fracture Mechanics 304 (2024) 110123A. Valverde-González et al.
[32] Schwarze M, Reese S. A reduced integration solid-shell finite element based on the eas and the ans concept—large deformation problems. Internat J Numer
Methods Engrg 2011;85(3):289–329. http://dx.doi.org/10.1002/nme.2966.

[33] Bishara D, Jabareen M. Does the classical solid-shell element with the assumed natural strain method satisfy the three-dimensional patch test for arbitrary
geometry? Finite Elem Anal Des 2020;168:103331. http://dx.doi.org/10.1016/j.finel.2019.103331.

[34] Alves de Sousa RJ, Cardoso RPR, Fontes Valente RA, Yoon J-W, Grácio JJ, Natal Jorge RM. A new one-point quadrature enhanced assumed strain (EAS)
solid-shell element with multiple integration points along thickness—Part II: Nonlinear applications. Internat J Numer Methods Engrg 2006;67(2):160–88.
http://dx.doi.org/10.1002/nme.1609.

[35] Kumar PKAV, Dean A, Sahraee S, Reinoso J, Paggi M. Non-linear thermoelastic analysis of thin-walled structures with cohesive-like interfaces relying on
the solid shell concept. Finite Elem Anal Des 2022;202:103696. http://dx.doi.org/10.1016/j.finel.2021.103696.

[36] Asur Vijaya Kumar PK, Dean A, Reinoso J, Paggi M. Nonlinear thermo-elastic phase-field fracture of thin-walled structures relying on solid shell concepts.
Comput Methods Appl Mech Engrg 2022;396:115096. http://dx.doi.org/10.1016/j.cma.2022.115096.

[37] Ambati M, De Lorenzis L. Phase-field modeling of brittle and ductile fracture in shells with isogeometric nurbs-based solid-shell elements. Comput Methods
Appl Mech Engrg 2016;312:351–73. http://dx.doi.org/10.1016/j.cma.2016.02.017, phase Field Approaches to Fracture.

[38] Reinoso J, Paggi M, Linder C. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: sormulation and finite
element implementation. Comput Mech 2017;59(6):981–1001. http://dx.doi.org/10.1007/s00466-017-1386-3.

[39] Asur Vijaya Kumar PK, Dean A, Reinoso J, Paggi M. Thermo-elastic solid shell formulation with phase field fracture for thin-walled FGMS. Thin-Walled
Struct 2022;179:109535. http://dx.doi.org/10.1016/j.tws.2022.109535.

[40] Kumar PKAV, Dean A, Sahraee S, Reinoso J, Paggi M. Non-linear thermoelastic analysis of thin-walled structures with cohesive-like interfaces relying on
the solid shell concept. Finite Elem Anal Des 2022;202:103696. http://dx.doi.org/10.1016/j.finel.2021.103696.

[41] Liu Z, Reinoso J, Paggi M. Phase field modeling of brittle fracture in large-deformation solid shells with the efficient quasi-newton solution and global–local
approach. Comput Methods Appl Mech Engrg 2022;399:115410. http://dx.doi.org/10.1016/j.cma.2022.115410.

[42] Linder C, Tkachuk M, Miehe C. A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber
viscoelasticity. J Mech Phys Solids 2011;59(10):2134–56. http://dx.doi.org/10.1016/j.jmps.2011.05.005.

[43] Valverde-González A, Reinoso J, Jha NK, Merodio J, Paggi M. A phase field approach to fracture for hyperelastic and visco-hyperelastic materials applied
to pre-stressed cylindrical structures. Mech Adv Mater Struct 2022;1–20. http://dx.doi.org/10.1080/15376494.2022.2121452.

[44] Chester S. 2008.
[45] Bourdin B, Francfort GA, Marigo JJ. The variational approach to fracture. Springer Netherlands; 2008, http://dx.doi.org/10.1007/s10659-007-9107-3.
[46] Bischoff M, Ramm E. Shear deformable shell elements for large strains and rotations. Internat J Numer Methods Engrg 1997;40(23):4427–49. http:

//dx.doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9.
[47] Vu-Quoc L, Tan X. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Methods Appl Mech Engrg 2003;192(9):975–1016.

http://dx.doi.org/10.1016/S0045-7825(02)00435-8.
[48] Dvorkin E, Bathe K-J. A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1984;1:77–88. http://dx.doi.org/

10.1108/eb023562.
[49] Betsch P, Stein E. An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun Numer Methods Eng

1995;11(11):899–909. http://dx.doi.org/10.1002/cnm.1640111104.
[50] Reinoso J, Blázquez A. Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP

composites. Compos Struct 2016;139:263–76. http://dx.doi.org/10.1016/j.compstruct.2015.12.009.
[51] Simo J, Hughes T. Computational inelasticity. Interdisciplinary applied mathematics, New York: Springer; 2000, http://dx.doi.org/10.1007/b98904.
[52] Bridgman PW. Studies in large plastic flow and fracture. Cambridge, MA and London, England: Harvard University Press; 1964, http://dx.doi.org/10.4159/

harvard.9780674731349.
[53] McClintock FA. A criterion for ductile fracture by the growth of holes. J Appl Mech 1968;35(2):363–71. http://dx.doi.org/10.1115/1.3601204.
[54] Rice J, Tracey D. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 1969;17(3):201–17. http://dx.doi.org/10.1016/0022-

5096(69)90033-7.
[55] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J Eng

Mater Technol 1977;99(1):2–15. http://dx.doi.org/10.1115/1.3443401.
[56] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 1984;32(1):157–69. http://dx.doi.org/10.1016/0001-

6160(84)90213-X.
[57] Ambati M, Gerasimov T, De Lorenzis L. Phase-field modeling of ductile fracture. Comput Mech 2015;55(5):1017–40. http://dx.doi.org/10.1007/s00466-

015-1151-4.
[58] Xue L. Ductile fracture modeling: theory, experimental investigation and numerical verification. Massachusetts Institute of Technology; 2009.
[59] Baragetti S, Villa F. A numerical model to assess the role of crack-tip hydrostatic stress and plastic deformation in environmental-assisted fatigue cracking.

Corros Rev 2017;35(4–5):343–53. http://dx.doi.org/10.1515/corrrev-2017-0017.
43

http://dx.doi.org/10.1002/nme.2966
http://dx.doi.org/10.1016/j.finel.2019.103331
http://dx.doi.org/10.1002/nme.1609
http://dx.doi.org/10.1016/j.finel.2021.103696
http://dx.doi.org/10.1016/j.cma.2022.115096
http://dx.doi.org/10.1016/j.cma.2016.02.017
http://dx.doi.org/10.1007/s00466-017-1386-3
http://dx.doi.org/10.1016/j.tws.2022.109535
http://dx.doi.org/10.1016/j.finel.2021.103696
http://dx.doi.org/10.1016/j.cma.2022.115410
http://dx.doi.org/10.1016/j.jmps.2011.05.005
http://dx.doi.org/10.1080/15376494.2022.2121452
http://dx.doi.org/10.1007/s10659-007-9107-3
http://dx.doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
http://dx.doi.org/10.1016/S0045-7825(02)00435-8
http://dx.doi.org/10.1108/eb023562
http://dx.doi.org/10.1108/eb023562
http://dx.doi.org/10.1108/eb023562
http://dx.doi.org/10.1002/cnm.1640111104
http://dx.doi.org/10.1016/j.compstruct.2015.12.009
http://dx.doi.org/10.1007/b98904
http://dx.doi.org/10.4159/harvard.9780674731349
http://dx.doi.org/10.4159/harvard.9780674731349
http://dx.doi.org/10.4159/harvard.9780674731349
http://dx.doi.org/10.1115/1.3601204
http://dx.doi.org/10.1016/0022-5096(69)90033-7
http://dx.doi.org/10.1016/0022-5096(69)90033-7
http://dx.doi.org/10.1016/0022-5096(69)90033-7
http://dx.doi.org/10.1115/1.3443401
http://dx.doi.org/10.1016/0001-6160(84)90213-X
http://dx.doi.org/10.1016/0001-6160(84)90213-X
http://dx.doi.org/10.1016/0001-6160(84)90213-X
http://dx.doi.org/10.1007/s00466-015-1151-4
http://dx.doi.org/10.1007/s00466-015-1151-4
http://dx.doi.org/10.1007/s00466-015-1151-4
http://refhub.elsevier.com/S0013-7944(24)00286-8/sb58
http://dx.doi.org/10.1515/corrrev-2017-0017

	A finite element implementation of phase-field approach of fracture for nonlinear solid shells including inelastic material behavior
	Introduction
	Basic formulation
	Kinematic definitions for nonlinear solid shells
	The phase-field approach for fracture of solid shells
	Interpolation of the enhancing strains: the EAS method
	The ANS method

	Modeling framework and finite element implementation details
	Governing functional and finite element implementation
	Governing functional
	Finite element implementation

	Phase-field fracture for hyperplasticity
	Phase-field fracture for visco-hyperelasticity
	Phase-field fracture for visco-hyperplasticity

	Numerical experiments
	Square tensile plate with a hole
	Results for hyperplasticity
	Results for visco-hyperelasticity
	Results for visco-hyperplasticity

	Double-notched asymmetric specimen
	Results for hyperplasticity
	Results for visco-hyperelasticity
	Results for visco-hyperplasticity

	Cylinder with hole - tensile conditions
	Results for hyperplasticity
	Results for visco-hyperelasticity
	Results for visco-hyperplasticity

	Cylinder with hole - mixed loading conditions
	Results for hyperplasticity
	Results for visco-hyperelasticity
	Results for visco-hyperplasticity


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Code listing for FE implementation
	References


