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Abstract

Forecasting is a critical cornerstone in the efficient operation of smart grids. This thesis in-
troduces an integrated approach that prioritizes advanced forecasting methods to optimize op-
erational efficiency and minimize energy consumption and costs. The core objectives revolve
around three vital aspects: wind power generation forecasting, energy demand prediction, and
the evaluation of forecasting methodologies.

To tackle the complexities of wind power forecasting, a novel deep neural network-based model,
Neural Expansion Analysis for Time Series Forecasting (N-BEATS), is proposed. N-BEATS
leverages a tailored loss function to mitigate forecast bias and provides insightful outputs by
decomposing components like trend and seasonality. Demonstrating its competitiveness, the
model surpasses established counterparts in terms of accuracy and superiority across various
scenarios, using real-world wind power data spanning 15 European countries.

In the realm of energy demand prediction for grid optimization, this study underscores the
critical importance of considering both qualitative and quantitative indicators. Metrics such as
mean absolute percentage error (MAPE) and root mean square error (RMSE) gauge forecast
quality, while the tangible results for a given energy community, encompassing aspects like
load coverage, supply capacity, on-site energy ratios, and electricity expenses, assess forecast
value. This holistic framework accentuates the intrinsic link between precise predictions and the
enhancement of energy community performance. It underscores the necessity of incorporating
both quality and value indicators in the selection of an optimal forecasting approach.

Moreover, this study scrutinizes the efficacy of diverse forecasting techniques in streamlining en-
ergy community operations amid volatile energy prices. Diverse methods, ranging from machine
learning algorithms to statistical models, are deployed to anticipate energy and domestic hot
water (DHW) demand. The outcomes endorse advanced approaches such as XGBoost, Prophet,
and Neural Basis Expansion Analysis for Time Series with Exogenous variables (NBEATSx) for
their superiority over rudimentary methods, translating into substantial savings and substantial
reductions in grid imports and exports compared to baseline models.

Collectively, this integrated study underscores the pivotal role of precise forecasts in optimiz-
ing energy community operations and achieving self-sufficiency. The introduction of a deep
learning approach as a wind power forecasting model, alongside sophisticated machine learn-
ing algorithms for energy demand prediction, not only enhances accuracy but also provides
interpretable outputs. The findings accentuate the necessity of integrating both quality and
value indicators when selecting an appropriate forecasting approach, offering valuable insights
for practitioners and policymakers navigating the intricacies of energy community management
amidst a backdrop of volatile energy prices.
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Kurzfassung

Die Prognose ist ein entscheidender Eckpfeiler für den effizienten Betrieb intelligenter Strom-
netze. Diese Dissertation stellt einen integrierten Ansatz vor, der fortschrittliche Prognosemeth-
oden implementiert, um die betriebliche Effizienz zu optimieren und den Energieverbrauch sowie
die Kosten zu minimieren. Die Kernziele drehen sich um drei wesentliche Aspekte: die Prog-
nose der Windleistung, die Vorhersage des Energiebedarfs in einer Stromgemeinschaft und die
Bewertung von Prognosemethoden.

Um die Komplexität der Windleistungsprognose zu bewältigen, wird ein neues Modell auf Ba-
sis von Deep Neural Networks, das Neural Expansion Analysis für die Zeitreihenprognose (N-
BEATS), vorgestellt. N-BEATS nutzt eine maßgeschneiderte Verlustfunktion, um Prognose-
fehler zu minimieren, und liefert aufschlussreiche Ergebnisse durch die Zerlegung von Kompo-
nenten wie Trend und Saisonalität. In verschiedenen Szenarien übertrifft das Modell etablierte
Methoden hinsichtlich Genauigkeit und zwar anhand von realen Windenergiedaten aus 15 eu-
ropäischen Ländern.

Im Bereich der Vorhersage des Energiebedarfs zur Optimierung eines Mehrparteienhauses betont
diese Studie die entscheidende Bedeutung sowohl qualitativer als auch quantitativer Indikatoren.
Metriken wie der mittlere absolute Prozentsatzfehler (MAPE) und die Quadratwurzel des mit-
tleren quadratischen Fehlers (RMSE) bewerten die Prognosequalität, während die konkreten
Ergebnisse für eine gegebene Energiegemeinschaft Aspekte wie Lastabdeckung, Versorgungska-
pazität, Eigenenergieverbrauch und Stromkosten bewerten. Dieser ganzheitliche Ansatz betont
die intrinsische Verbindung zwischen präzisen Vorhersagen und der Verbesserung der Effizienz
von Energiegemeinschaften. Er unterstreicht die Notwendigkeit, sowohl qualitative als auch
quantitative Indikatoren bei der Auswahl eines optimalen Prognoseansatzes zu berücksichti-
gen.

Darüber hinaus untersucht diese Studie die Wirksamkeit verschiedener Prognosetechniken bei
der Optimierung des Betriebs von Energiegemeinschaften angesichts volatiler Energiepreise. Un-
terschiedliche Methoden, von maschinellem Lernen bis hin zu statistischen Modellen, werden
eingesetzt, um den Energie- und Warmwasserbedarf vorherzusagen. Die Ergebnisse befürworten
fortschrittliche Ansätze wie XGBoost, Prophet und NBEATSx aufgrund ihrer Überlegenheit
gegenüber klassischen Methoden. Dies führt zu erheblichen Einsparungen und deutlichen Re-
duzierungen der Netzimporte und -exporte im Vergleich zu Basismodellen.

Insgesamt unterstreicht diese integrierte Studie die Schlüsselrolle präziser Prognosen bei der
Optimierung des Betriebs von Energiegemeinschaften und der Erreichung von Autarkie. Die
Ergebnisse betonen die Notwendigkeit der Integration sowohl qualitativer als auch quantitativer
Indikatoren bei der Auswahl eines geeigneten Prognoseansatzes und bieten wertvolle Erkennt-
nisse für Fachleute und Entscheidungsträger.
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1. Introduction

1.1. Motivation

The increasing integration of renewable energy sources, energy storage technologies, and
load management techniques in smart grids has led to the emergence of local energy
communities (LECs) as key components of sustainable energy systems. LECs strive to
optimize energy generation, consumption, and storage within their boundaries, aiming
for self-sufficiency and reduced reliance on the central grid. To achieve these goals,
accurate forecasting of both renewable energy generation and energy demand is crucial.

However, several challenges hinder the efficient operation of LECs. Firstly, wind power
generation, which has immense potential as a renewable energy source, exhibits inherent
uncertainty and stochastic behavior due to the random nature of wind speed. Accurate
forecasting of wind power generation is essential for effective scheduling and integration
into the grid. Existing forecasting models often struggle to capture the non-linear and
stochastic characteristics of wind speed, limiting their accuracy and hindering optimal
decision-making in LECs.

Secondly, energy demand within LECs is subject to fluctuations influenced by factors
such as weather conditions, user behavior, and the availability of renewable energy
sources. Accurate forecasting of energy demand is essential for load management, re-
source allocation, and optimal utilization of renewable energy generation and storage
capacities. Traditional forecasting approaches often rely solely on statistical methods
and fail to capture the complex dynamics and interdependencies within LECs, limiting
their effectiveness in supporting decision-making processes.

Moreover, the selection of an appropriate forecasting approach for LECs is often based
solely on quality metrics, such as mean absolute percentage error (MAPE) or root mean
square error (RMSE), without considering the value of the forecast in terms of its impact
on LEC performance measures and cost optimization. This approach neglects the specific
characteristics and requirements of LECs, leading to suboptimal outcomes and potential
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1. Introduction

financial losses.

To address these challenges, there is a need for an integrated approach that combines
advanced forecasting techniques tailored to the unique characteristics of LECs. Such
an approach should provide accurate and interpretable forecasts of wind power gener-
ation and energy demand, enabling optimal decision-making for LEC operation, load
management, and cost optimization.

Therefore, this study aims to develop and evaluate an integrated forecasting framework
for LECs, incorporating novel methodologies such as neural expansion analysis for time
series forecasting (N-BEATS) for wind power generation forecasting and advanced ma-
chine learning algorithms for energy demand forecasting. By considering both quality
and value indicators, the study seeks to provide a comprehensive assessment of the
forecast performance in terms of accuracy, cost optimization, and LEC performance
measures. The contributions are based on three first-author publications in scientific
journals (Putz et al. (2021), Putz et al. (2023), Putz et al. (2024)). The findings of this
research will contribute to the advancement of forecasting methodologies for LECs and
provide valuable insights for practitioners and policymakers in enhancing the efficiency
and sustainability of local energy communities.

1.2. Research questions

This thesis aims to answer three research questions related to integrated renewable
energy forecasting in energy communities. This Section describes each of the research
questions in detail and then provides an overview on the relation between the research
questions. In accordance with rigorous professional peer-review processes, the studies
presented in this thesis have undergone comprehensive evaluation and scrutiny, ensuring
the robustness and credibility of the research findings.

The core objective of this study is to develop an integrated forecasting framework for
local energy communities (LECs) that addresses the challenges of wind power genera-
tion and energy demand forecasting. The primary goal is to improve the accuracy and
interpretability of forecasts, enabling optimal decision-making for LEC operation, load
management, and cost optimization. The study aims to achieve this objective by combin-
ing advanced methodologies, such as neural expansion analysis for time series forecasting
(N-BEATS) for wind power forecasting and advanced machine learning algorithms for
energy demand forecasting. The evaluation of forecast performance will consider both
quality metrics and value indicators, providing a comprehensive assessment of forecast
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1.2. Research questions

effectiveness for LECs.

Research question 1: How does the novel N-BEATS approach for wind power fore-
casting, considering the uncertainty and stochastic behavior of wind speed, compare to
established models in terms of accuracy and forecast bias reduction?

In the first contribution of this thesis (Putz et al. (2021)), a novel approach, called
N-BEATS, for wind power forecasting in the presence of uncertainty and stochastic be-
havior of wind speed is presented. The results demonstrate that N-BEATS outperforms
established models, providing comprehensive and accurate forecasts while addressing the
issue of forecast bias through a tailored loss function.

The study expects that the N-BEATS approach will demonstrate competitive perfor-
mance and even outperform established models in terms of accuracy for wind power
forecasting. Additionally, it anticipates that the tailored loss function used in N-BEATS
will effectively mitigate forecast bias, leading to improved forecast quality.

Building upon the advancements in wind power forecasting from the first study, the
subsequent studies delve into the broader context of energy communities and their de-
mand forecasting challenges. They explore the importance of accurate energy demand
forecasts, considering the random nature of weather, and emphasize the value of fore-
casts in optimizing the operation of local energy communities and minimizing energy
consumption and costs.

Research question 2: How can the quality and value of energy demand forecasts
be assessed and optimized to support the effective and continuous operation of energy
communities, considering the random nature of weather and the interconnected dynamics
of the energy system?

The core objective of the second contribution is to develop a comprehensive framework
for assessing the quality and value of energy demand forecasts in the context of energy
communities (Putz et al. (2023)). By considering both quality metrics and value indi-
cators, the study aims to evaluate the performance of different forecasting approaches
and highlight the connection between accurate forecasts and improved energy commu-
nity performance measures, providing insights for optimal decision-making and resource
utilization.

Research question 3: How effective are different forecasting methods in supporting the
forecast-based optimal control of local energy communities under high and volatile energy
prices, and what are the implications for selecting and utilizing forecasting methods in

3



1. Introduction

the context of LECs?

The core objective of the third contribution (Putz et al. (2024)), which is currently
under review, is to assess the true value of energy demand forecasts in the context of
local energy communities (LECs) by considering different energy price scenarios. The
study aims to evaluate the effectiveness of various forecasting methods in the forecast-
based optimal control of LECs, with a focus on minimizing energy consumption and
costs under uncertain energy price conditions, and provide guidance for practitioners
and policymakers on the selection and utilization of forecasting methods in LECs.

The three studies collectively contribute to the field of energy forecasting and opti-
mization in the context of renewable energy integration and local energy communities.
While the first study focuses on wind power forecasting using the N-BEATS approach,
the second and third studies extend the scope to energy demand forecasting in energy
communities. The second study emphasizes the assessment of quality and value indi-
cators for forecasting approaches, while the third study examines the effectiveness of
forecasting methods specifically in relation to high and volatile energy prices. Together,
these studies provide a comprehensive understanding of the challenges, methodologies,
and implications of accurate forecasting for optimal decision-making and performance
optimization in local energy communities.

1.3. Structure of the thesis

The structure of this thesis is outlined as follows: Chapter 2 provides a comprehensive
literature review on forecasting and optimization in local energy communities. It begins
with an introduction to the concept of energy communities, followed by an examina-
tion of state-of-the-art forecasting models and optimization techniques relevant to wind
power generation and energy demand. The chapter also discusses the social and regu-
latory aspects of energy communities. Progress beyond the current state-of-the-art is
summarized at the end of the chapter in Section 2.3.

Chapter 3 details the methods employed to address the research questions. This includes
the presentation of the N-BEATS approach for wind power forecasting and advanced
machine learning algorithms for energy demand forecasting. Each method is explained
in a dedicated section, starting with an overview of the problem and followed by a
detailed mathematical formulation and nomenclature. The chapter is based on Putz
et al. (2021), Putz et al. (2023) and Putz et al. (2024).
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1.3. Structure of the thesis

The presentation of results in Chapter 4 is divided into two parts: Section 4.1 showcases
the outcomes related to the first research question regarding N-BEATS applied to wind
power forecasting. Section 4.2 presents the findings pertaining to the second and third
research questions. Case studies are conducted to evaluate the effectiveness of different
forecasting methods under varying energy price scenarios in the context of local energy
communities. The chapter is based on Putz et al. (2021), Putz et al. (2023) and Putz
et al. (2024).

Chapter 5 consolidates the overall findings of the research questions and provides a
synthesis of the results obtained from the wind power and energy demand forecasting
studies. It offers insights into the implications and significance of the research outcomes
for decision-making in local energy communities. The chapter is based on Putz et al.
(2021), Putz et al. (2023) and Putz et al. (2024).

The final chapter, Chapter 6, concludes the thesis by summarizing the key findings,
discussing their implications, and providing an outlook on potential future research
directions in the field of forecasting and optimization for local energy communities.
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1. Introduction

Figure 1.1.: Relation and implementation of the research questions based on three contributions (Putz
et al. (2021), Putz et al. (2023), Putz et al. (2024))
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2. State-of-the-art and progress beyond

This chapter provides a comprehensive review of recent scientific literature pertaining
to energy communities and their associated challenges, with a focus on forecasting and
optimization. Section 2.1 introduces the importance of accurate energy forecasting for
renewable integration, specifically highlighting the challenges and stochastic nature of
wind power generation. Section 2.2 is divided into two parts: In Subsection 2.2.1,
the focus shifts to energy demand forecasting for local energy communities, exploring
state-of-the-art models and techniques that account for the dynamic interplay between
renewable resources, energy storage, and load management. Subsection 2.2.2 examines
the optimization of operation and participation in energy communities, considering social
and policy aspects, such as participation models, contracts, and regulatory frameworks.
Lastly, Section 2.3 highlights the thesis’s contribution to progressing beyond the current
state-of-the-art, presenting novel approaches and methodologies that extend the existing
knowledge in the field.

2.1. Very short-term wind power forecasting

Zhao et al. (2012) finds that wind power forecasting methods can be divided into two
major groups: physical and statistical approaches. Physical methods described by Khalid
and Savkin (2012), Nielsen and Madsen (2000) and Sanchez (2006) use physical laws that
govern the atmosphere behaviour and rely on extensive meteorological information to
estimate the local wind speed and direction. Taslimi Renani et al. (2016) explains that
statistical methods use extensive historical data and optimise model parameters in order
to minimise the error between the predicted and the observed values. Prasad et al.
(2009), Zhang et al. (2017) show that the statistical approaches have been proven to
deliver more accurate results for very short-term prediction as long as overfitting issues
are avoided which are described by Croonenbroeck and Ambach (2015).

According to Lydia et al. (2016), statistical approaches can be further categorised into
classical models, machine learning (ML) models and hybrid models. Classical models are
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2. State-of-the-art and progress beyond

often limited in terms of adaptability. As a result, researchers have become increasingly
interested in ML algorithms. The neural networks (NN), which are excellently researched
in the field of forecasting, are a prime example thereof. They offer great advantages,
such as modeling nonlinear relationships, learning from data and strong parallelisation.
A large variety of reliable approaches based on neural networks are shown by Okumus
and Dinler (2016), Celik and Kolhe (2013), Chitsaz et al. (2015) and Taslimi Renani et al.
(2016). However, due to the considerable success of deep learning in other applications
this architecture has also been applied to the forecasting of wind power.

deep learning includes modern NN architectures, which are composed of the combina-
tions of fundamental structures such as multilayer perceptrons, recurrent NNs (RNNs)
and convolutional NNs (CNNs). They use sophisticated mechanisms for learning and
are therefore are far more complex than simple neural networks. Hochreiter and Schmid-
huber (1997) proposes the long short-term memory (LSTM) address the problem of the
vanishing or exploding gradient that occurs during the learning process of RNNs. An
LSTM consists of a cell and several non-linear gates that control the information inside
the cell and choose which data should be kept and propagated to the next time step.
The success of LSTMs is evident, including in forecasting. Yan et al. (2018) shows that
they deliver better results than ML models, such as ARIMA, support vector machine
and classical NNs. One reason for the big success of LSTMs is that they can be combined
impressively well with other methods resulting in so-called hybrid approaches.

Currently, hybrid models are considered as the most promising approaches, further sub-
stantiated by the fact that an ES+LSTM (exponential smoothing) approach, which is a
hybrid model and proposed by Smyl (2020), won the M4 competition founded by Zheng
et al. (2017). The M4 competition is the continuation of three previous ones intended
to identify the most accurate forecasting method(s) for different types of predictions.
Hybrid approaches for wind power prediction that deliver satisfactory results are based
on LSTMs and signal decomposition described by Memarzadeh and Keynia (2020), Liu
et al. (2018) and Wang et al. (2015). Independently, other architectures have been pro-
posed, such as the WaveNet architecture by Oord et al. (2016) for speech synthesis,
which uses so-called dilated causal convolutions to learn the long range dependencies.

Another architecture was introduced by Chorowski et al. (2015), based on the so-called
attention mechanism developed for sequence to sequence learning proposed by Chorowski
et al. (2014). This approach uses encoder-decoder architectures, where the encoder
(RNN) learns a representation of the input while the decoder (RNN) is trained to predict
the target sequence one step at a time using the representation learned by the encoder.
Inspired by the success of attention models, a so-called Transformer model has been
developed by Vaswani et al. (2017), that removes RNNs altogether and uses attention,

8



2.1. Very short-term wind power forecasting

in combination with feed-forward NNs to achieve state-of-the-art results. In addition,
the proposal by Li et al. (2020) has already been improved for forecasting as well as
for natural language processing, such as Bidirectional Encoder Representations from
Transformers (BERT) described by Devlin et al. (2019).

2.1.1. Meta-learning

Meta-learning, described by Hu et al. (2018), Ma et al. (2020), Zang et al. (2020), also
known as learning how to learn, has recently emerged as a potential learning paradigm
that can absorb information from one task and generalise that information to unseen
tasks proficiently. This structure is helpful in real-world applications for the following
reasons:

• Sufficiently large datasets may be unavailable or contain gaps with missing infor-
mation.

• ML paradigms can easily be broken when trying to handle uncommon situations
that humans are able to handle comfortably, leading to undesired outcomes.

• It is possible to learn something new without training the model from the beginning
due to a certain degree of similarity to the base dataset.

2.1.2. Most promising forecast approaches

So far, a wide variety of approaches has been applied to wind power forecasting that
hybridise or build upon some of the most successful classical methods and have led to the
discovery of completely new areas of ML. The state-of-the-art architectures are currently
considered the most promising according to Benidis et al., 2022:

• The expansion of hybrid models and further research thereof with advanced LSTMs
as their core component have great potential according to Benidis et al. (2022).
For instance, using optimised Wavelet Transformation, feature selection, LSTM
and crow search algorithm for forecasting delivers outstanding results shown by
Memarzadeh and Keynia (2020), and so do similar approaches such as the study
by Wang et al. (2015).

9



2. State-of-the-art and progress beyond

• The principle of dilated causal convolutions is used by the WaveNet architecture
founded by Oord et al. (2016) and Alexandrov et al. (2019). It offers very efficient
training due to the use of high parallelism. This advantage increases the WaveNet’s
competitiveness against common RNN architectures.

• The attention mechanism described by Chorowski et al. (2014) and particularly the
transformer proposed by Vaswani et al. (2017), where the mechanism is extended
to intra- or self-attention to learn where to focus on in order to get good feature
representations is described by Li et al. (2020).

• Pure deep learning approaches, such as N-BEATS. It is a deep neural architec-
ture based on backward and forward residual links and a very deep stack of fully
connected layers. The architecture has a number of desirable properties, being
interpretable, applicable without modification to a wide array of target domains,
and fast to train. One conclusion of the M4 was that hybrid statistical models
are superior, while pure ML models may offer one or two pleasant surprises but
only by a small margin as shown in Makridakis et al. (2018). This was further
evidenced by six of the pure ML models submitted to the competition not even
meeting the competition benchmark. Nevertheless, a recent study by Oreshkin
et al. (2020) shows that N-BEATS is capable of achieving higher forecast accuracy
than the winner of the M4 competition.

2.2. Forecasting in energy communities

This section presents the current state of research on the respective topics and is divided
into two major parts. The first part explains as follow: Proven and state-of-the-art
forecast models for load and DHW demand forecasting in the context of LECs. The
emphasis is placed on machine learning (ML)-based approaches. Commonly used metrics
that measure the quality of a forecast, as well as papers that address its value are
mentioned. Lastly, the second part highlights the impact of high and volatile energy
prices on integrated forecasting in an energy community.

2.2.1. Forecasting models in ECs

The two main types of demand forecasts related to LECs described below are load
and DHW forecasts. There are numerous proven and successfully applied cases in the
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2.2. Forecasting in energy communities

literature:

• In Eseye et al. (2019), a ML-based hybrid feature selection method is proposed to
obtain the most relevant and non-redundant features for improved short-term fore-
casting of electricity demand in decentralised energy systems. The binary genetic
algorithm (BGA1) is applied for the feature selection process, and Gaussian Pro-
cess Regression (GPR2) is used for measuring the fitness score of the features. The
primary focus of this contribution is to provide an effective and efficient hybrid ML-
based feature selection approach for electricity demand forecasting models. This
paper’s findings verify that the combination of effective feature selection methods
and forecasting models has robust forecasting power compared to forecasting with
arbitrary features without predictor selection methods.

• In Nguyen et al. (2020), forecasting approaches are classified into four main cate-
gories: support vector regression (SVR3), recurrent neural networks like long short-
term memory (LSTM4), random forest (RF5), and statistical methods like multiple
linear regression (MLR6), autoregressive integrated moving average (ARIMA), or
k-nearest neighbour (kNN).

• In Dimitropoulos et al. (2021), four ML algorithms are proposed (LSTM, SVR,
MLR, and eXtreme gradient boosting (XGBoost7) to produce high-accuracy short-
term forecasts up to 6 hours ahead. The best-performing algorithm for accuracy
was found to be XGBoost, which performed reasonably well in different forecast
horizons, thus making it possible to achieve short-term forecasts. The approach re-
quires very few previous observations to make extremely accurate forecasts for the
next hour, and particularly good forecasts for the next three and six hours, demon-

1Genetic Algorithms are a subclass of Evolutionary Computing and are population-based optimisation
methods. It is inspired by Darwin’s theory of evolution.

2Gaussian process regression is a nonparametric, Bayesian approach to regression. It has several ben-
efits, working well on small datasets and having the ability to provide uncertainty measurements on
the predictions.

3In machine learning (ML), support-vector machines (SVMs) are supervised learning models with
associated learning algorithms that analyze data for classification and regression analysis.

4Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used
in the field of deep learning (DL).

5Random Forest is an ensemble learning method for classification, regression and other tasks that
operates by constructing a multitude of decision trees at training time.

6Linear regression is a linear approach to modelling the relationship between a scalar response and one
or more explanatory variables. The case of one explanatory variable is called simple linear regression;
for more than one, the process is called multiple linear regression.

7Gradient boosting is a ML technique for regression and classification problems, which produces a
prediction model in the form of an ensemble of weak prediction models, typically decision trees.
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strating its efficiency in an energy community environment, where the availability
of data is often limited.

• In Pirbazari et al. (2021b), an ensemble approach with two levels is proposed to
develop forecasting models for energy and DHW consumption of household com-
munities at multi-steps ahead. In the first level, multiple forecasting algorithms as
base learners predict both target outputs in one step forward. In the second level,
the predictions for each target are used to train a meta learner aimed at generating
multi-step predictions separately for each target. Three influential factors are con-
sidered input variables in the forecasting models: time variables, meteorological
data, historical electricity consumption, and photovoltaic (PV) power output. Be-
fore model development, two feature selection techniques and two ML algorithms
were used to select the optimal subset of input variables. The results show that
applying an ensemble learning strategy enables the model to provide more robust
and accurate results than individual predictive methods. Moreover, deep recurrent
neural networks, as strong predictive algorithms for time series prediction tasks,
provide the model with highly accurate base estimations. Additionally, because
the ensemble model is not reliant on the structure of a particular deep network, it
can adapt better to new datasets than individual neural networks that are heavily
tuned for a given dataset. Finally, unlike the boosting approach, which involves
sequential learning, the applied stacking strategy offers the ability to train base
learners separately, thereby reducing training time in distributed computational
environments.

• In Muzumdar et al. (2021), state-of-the-art methods for short-term load forecast-
ing on varying loads of each customer were tested and analysed. It was observed
that the integration of LSTM, SVR, and RF as base predictors can help in reduc-
ing the errors significantly, as these methods can handle uncertain load patterns to
achieve robustness and improve accuracy. In addition, the parameters were further
tweaked after rigorous testing on different loads of consumers. The output of each
predictor is ensembled using the proposed efficacy-based dynamic weighted aver-
aging method for final decision making. It helps to significantly reduce forecasting
errors. In the model, LSTM helps to address the problem of higher inconsistency
in load, as it works well for temporal correlation learning. random forest offers
higher stability and robustness against outliers, while SVR works well for the ag-
gregated load. Nevertheless, no other influencing variables, such as weather, were
considered, although LECs were highly dependent on them.

• In Tits et al. (2020), a methodology and case study are proposed to evaluate
the impact of the size of an LEC and the availability of historical data on its
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predictability. Through random sampling of various numbers of residents, several
virtual ECs were generated. The 24-h-ahead hourly load forecast is based on ridge
auto-regression and a baseline model (3-week MA) on previous month observations
and on various exogenous calendar features. Results show that, according to the
constraints of the community, a compromise can be achieved around a community
of 10-30 participants and a history of about 2-12 months. Furthermore, the ML-
based model may be more efficient for both small and large communities as soon
as sufficient historical data are available.

• In Györi et al. (2019), the potentials of six prediction methods were investigated
to forecast loads. The predictions are used to balance loads and align energy
production and consumption. Commonly used forecast approaches were applied:
baseline naïve persistence, autoregressive integrated moving average (ARIMA), or-
dinary least square (OLS) regression, dual-stage attention-based recurrent neural
network, gradient tree boosting, and multi-layer artificial neural network (ANN).
The given prediction quality indicates that the expected nonlinear relationship
between the weather data is complex as the exogeneous data did not provide a
significant improvement in prediction quality. In comparison, shallow models pro-
vided a lower (better) MAPE score. Analysing the parameters during grid search
indicated that increasing the model size by adding layers to the ANN and chang-
ing the activation function from linear to a rectified linear unit (ReLU) decreased
performance, which may indicate overfitting on the problem parameters.

Additional results from the literature described above showed that the aggregate load of
communities with larger consumers was more accurately predicted by ML-based models.
This would appear to imply that the ML-based model can take advantage of the more
repetitive patterns of these large consumers. This can be explained by the fact that more
demanding households tend to include large appliances with regular schedules, such as
heat pumps, water heaters, and heated pools. It is worth noting that this effect could
be offset by flexible load-scheduling strategies for collective self-consumption.

2.2.1.1. Assessments of forecasts

In the literature, forecasts are always judged based on their quality. On this topic,
quality can be equated with accuracy according to Duan et al. (2019). There are many
widely used and well-established KPIs that are conditionally well suited for this purpose.
A guide to understanding how a “good" forecast is quantified or can be defined depends
on particular factors according toMurphy (1993). In the context of forecasting for LECs,
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certain factors shown in Table 2.1 are selected.

Aspect Definition considered

Bias Correspondence between mean forecast and mean observation yes

Assocation Overall strength of linear relationship between
individual pairs of forecasts and observations yes

Accuracy Average correspondence between individual pairs
of forecasts and observations yes

Skill Accuracy of forecasts of interest relative to accuracy
of forecasts produced by standard of reference yes

Reliability Correspondence between conditional mean observation and
conditioning forecast, averaged over all forecasts yes

Resolution Difference between conditional mean observation and
unconditional mean observation, averaged over all forecasts no

Sharpness Variability of forecasts as described by distribution of forecasts no

Discrimination 1
Correspondence between conditional mean
forecast and conditioning observation, averaged over
all observations

no

Discrimination 2 Difference between conditional mean forecast
and unconditional mean forecast, averaged over all observations no

Uncertainty Variability of observations as described by
distribution of observations no

Table 2.1.: Definitions of certain factors for forecast quality described by Murphy (1993).

To quantify the described factors, several KPIs are widely applied in demand forecasting.
Table 2.2 explains the most frequently used KPIs and their strengths and weaknesses
summarised by Hyndman et al. (2006).

With this toolset of metrics, the quality of a forecast can be assessed. However, these
metrics do not provide information about the true value of a forecast. In fact, forecasts
have no intrinsic value in themselves. Instead, the value is in assisting users or organ-
isations that use these forecasts in their decision making. To generate economic value,
forecasts need to be appropriate to the business context. Based on Murphy (1993), the
value of a forecast can be quantified in several ways. For example, it can be in terms
of monetary benefits or expenses, or in terms of non-monetary gains or losses. Four
attributes were identified as requirements to quantify the value of a forecast, and how
they align in the context of LECs is shown in Table 2.3.

These requirements can be fulfilled with a suitable choice or with a real example of an
LEC. Thus, a further set of KPIs is obtained that relate to the LEC and thus represent
a value metric for the forecast of load and DHW demand. These can be related to the
known forecast metrics in the subsequent step. Several research groups have contributed
extensive work on the topic of energy forecasting for LECs. Similarly, there is much
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Type of error KPI Strength / Weakness

Scale-dependent MAE
Mean Absolute Error

(S) simple to apply and easy to understand
(W) not meaningful for assessing a method’s
accuracy across multiple series

Percentage

MAPE
Mean Absolute Percentage Error
sMAPE
symmetric MAPE

(S) comparable between different data series
(W) being infinite or undefined if there are
zero values
(W) can have extremely skewed distribution
when values are close to zero
(S) sMAPE penalizes positive and negative
errors in the same way

Scale-free MASE
Mean Absolute Scaled Error

(S) scale independent
(W) infinite or undefined when all
observations are equal

Table 2.2.: Definitions of commonly used forecast KPIs. Strengths (S) and weaknesses (W) are high-
lighted for each error class.

Impact on value Translated in the context of LECs

Courses of action available
to the decision maker

Existence of PV or other generation assets to have a
generation surplus at least during a certain period

The payoff structure
(e.g., benefits or expenses)

Existence of battery storage or other controllable assets
to shift the generation surplus to a certain period where
energy scarcity reigns

Quality of the information
used as a basis for decision
making in the absence of
the forecasts

Existence of a fallback method (e.g., baseline forecasts
that use measurements from one week or one day
before)

Quality of the forecasts Commonly used forecast KPIs like MAPE or RMSE

Table 2.3.: The four determinants that are required in the context forecast value to allow an evaluation.

research that deals with the optimal operation of LECs. Nevertheless, only a few have
combined the two topics and investigated them from a forecasting perspective. At this
point, Coignard et al. (2021) is worth mentioning, which attempts to determine the
quality and value of forecasts based on the self-sufficiency of LECs. However, this work
only deals with load forecasting. Furthermore, only self-consumption is considered,
which provides a solid basis for decision making, but further KPIs are still necessary.
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2.2.1.2. Integrated forecasting with model predictive control

Previous research on energy forecasting in communities such as Nia et al., 2021 has fo-
cused on a range of issues related to the accuracy, reliability, and usefulness of forecasting
methods for predicting energy demand and supply in diverse types of communities and
settings. Tziolis et al., 2023, Inteha et al., 2022, Mokarram et al., 2023 and Pirbazari
et al., 2021a have reviewed a variety of statistical and machine learning techniques, such
as time series analysis, artificial neural networks, and support vector machines, to model
energy consumption and production patterns and to improve the accuracy of forecasts.
Each of these methods has its strengths and limitations, and the choice of method de-
pends on the specific characteristics of the problem being addressed. These findings
have important implications for energy forecasting in LECs, where accurate and reliable
forecasting is crucial for energy planning and management.

Other researchers have examined the potential benefits of integrating forecast-based con-
trol systems, such as MPC, into energy management systems in communities. MPC is a
control strategy that is increasingly being used in LECs to optimise energy management
and improve system efficiency described by Joe et al., 2023 and Orozco et al., 2022.
MPC works by using a predictive model of the energy system to anticipate future en-
ergy demand and production, and then uses this information to make real-time control
decisions that optimise energy consumption and production explained by Kumar et al.,
2023. Maltais and Gosselin, 2022, Bourdeau et al., 2019a and Nakabi and Toivanen,
2021 show that this approach allows for more efficient and dynamic energy management
and can help to reduce energy costs and improve system reliability. A few researchers,
i.e. Khan et al., 2023, have focused on integrating energy forecasting models in an MPC
to to further improve energy management and controlling of LECs.

Muzumdar et al., 2021 showed that energy forecasting in LECs faces several challenges,
including the availability and accuracy of data, the complexity of the energy system,
and the need for appropriate forecasting models. However, these challenges also present
opportunities for innovation and development of new forecasting techniques, such as
the use of big data, advanced analytical, and hybrid models that combine different
forecasting methods. Meeting these challenges and leveraging these opportunities will
be crucial for enabling LECs to effectively plan and manage their energy resources stated
by Coignard et al., 2021.

The evaluation of energy forecasts in the literature is typically based on their quality,
which is often equated with accuracy. Several commonly used KPIs are suitable for
evaluating the accuracy of forecasts. The criteria for defining a “good" forecast examined
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by Murphy, 1993, however, may vary depending on the specific context and factors being
considered. Using simple accuracy metrics, one can evaluate the quality of a forecast.
However, it is important to note that the value of a forecast itself is not intrinsic. Rather,
its value lies in its ability to assist users or organisations in making informed decisions.
To generate economic value, forecasts must be relevant to the specific business context.
As outlined by Murphy, 1993, the value of a forecast can be measured in several ways,
such as in terms of monetary benefits or expenses, or in terms of non-monetary gains
or losses. To quantify the value of a forecast in an LEC framework one comprehensible
value metric for instance is the total cost.

2.2.2. The impact of high and volatile energy prices on communities

Liu et al., 2023 shows that electricity prices in Europe have been rising in recent years
due to a variety of factors, including increasing demand for electricity, the transition to
renewable energy sources and the phasing out of fossil fuel subsidies. Additionally, there
has been increasing volatility in electricity prices due to factors such as weather events,
the closure of power plants, and the emergence of innovative technologies. According
to Bojnec, 2023, there has also been increasing volatility in electricity prices due to
the increasing reliance on variable renewable energy sources, such as wind and solar
energy, which are affected by weather conditions. This has led to the need for more
flexible electricity generation and storage capacity to manage the intermittent nature of
these sources. Overall, according to the study by Leal et al., 2023, the trend in Europe
is towards higher and more volatile electricity prices, which will have implications for
electricity consumers and the energy sector as a whole, including the following:

• High and volatile energy prices can have a range of economic impacts on commu-
nities, including increased energy bills for households and businesses, which can
reduce disposable income and impact spending and investment decisions described
by Shi and Sun, 2017 and Liu et al., 2022. Increased operating costs for energy-
intensive industries can affect their competitiveness and profitability. Reduced
affordability of energy for low-income households can lead to energy poverty and
social exclusion.

• High and volatile energy prices can have environmental impacts on communities
demonstrated by Li et al., 2019 and Al-Ghandoor et al., 2009, including increased
energy consumption and greenhouse gas emissions, as high energy prices may dis-
courage the adoption of energy-efficient technologies and practices. Reduced in-
centives for the adoption of renewable energy sources, may cause fossil fuels prices
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to be more competitive.

• High and volatile energy prices can have social impacts on communities according
to Akkemik, 2011, including increased stress and uncertainty for households and
businesses, as they may struggle to budget for and manage energy costs. Increased
inequality, as low-income households may be disproportionately affected by high
energy prices. Quality of life may be lowered, as high energy prices may limit
access to essential services and amenities, such as heating and transportation.

Therefore, understanding the impact of high and volatile energy prices on communities
is an important research topic, as it can inform policies and strategies to mitigate these
impacts and support the transition to more sustainable and resilient energy systems.

2.3. Contribution to the progress beyond state-of-the-art

In relation to the research questions defined in Section 1.2 and the literature presented in
this Chapter, this thesis’ contribution to the progress beyond state-of-the-art is presented
in the following.

In respect to research question one, a deep neural network model was developed that
predicts very short-term wind power generation. The approach developed in this thesis
includes the following novelties:

• The N-BEATS architecture is applied on VSTWPF for the first time since the
N-BEATS algorithm gained attention due to its remarkable results.

• It is one of the first attempts to model an interpretable time series forecast using
deep learning methods in the field of wind power forecasting. The approach is
parameterised in such a way that the individual parts of the result like trend and
seasonality are interpretable while not having any noticeable impact on the forecast
accuracy. Current deep learning approaches often have difficulties in providing
interpretability of results. Either this possibility does not exist at all, or it is
associated with an increased computational effort or a decrease in accuracy.

• A customized loss function is proposed that is well suited for the use in wind
power forecasting. With the implementation of a loss function that is optimally
designed for the application, a decisive advantage of deep learning can be exploited.
The first-time usage of a so-called pinball sMAPE error metric in a deep learning
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architecture provides reliable and exceptionally accurate very short-term forecasts
results in the short term.

In order to address the second research question a novel multi-step short-term forecasting
framework is presented that predicts load and DHW demand values in a flexible manner,
ideally integrated in a model predictive control (MPC). Additionally, this framework
proposes a novel method for describing a building’s thermal behaviour using a second-
order RC chain to evaluate building performance in combination with forecast inputs.
The progress of this work, which goes beyond the current state of the research, is outlined
in the following items:

• Comparison and evaluation of widely used forecasting methods for load and DHW
demand in a cost-and comfort-optimised LEC using selected KPIs.

• Grey box model of a dynamic thermal building model based on a linear programming-
based optimisation framework with differential algebraic equations that is fully
integrated with the forecast module.

• A selection of LEC KPIs was used to evaluate the forecasts’ value. Findings related
to cost and comfort level are derived, and a statement about the impact of improved
forecasts on LEC KPIs is highlighted.

In order to address the third research question the multi-step short-term forecasting
framework is further extended with respect to high and volatile energy prices and outlines
how this work advances the current state of the art in this research topic:

• This study assessed the value of modern forecast approaches in the context of an
LEC with respect to high and volatile energy prices, an important but understudied
topic. In particular, NBEATSx, a further development of NBEATS that can take
advantage of future weather covariates, is, for the first time, applied to forecast
energy demand and DHW.

• The study compared the accuracy of several different forecasting methods (per-
fect foresight, naïve approach, multiple regression, k-nearest neighbour, XGBoost,
Prophet, and NBEATSx, as well as two hypothetical methods) and utilised their
results as input for an LEC operated by an MPC; this provided valuable insights
for practitioners and policy makers seeking to optimise the operation of these
buildings.

• The study used advanced forecasting methods such as XGBoost, Prophet, and
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NBEATSx, which are not commonly used in the context of LECs as forecast-
based optimal control input. The results of this study provide evidence for the
effectiveness of these methods in optimising the operation of LECs and highlight
the importance of accurate forecasts.
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This chapter describes in detail the methods that are developed to answer the research
questions defined in Section 1.2. Therefore, this chapter is divided into two major
parts, each focusing on one of the methods where the second part is further separated
into two parts. In Section 3.1, a deep neural architecture to answer the first research
question is presented. Next, Section 3.2.1 presents a grey-box building model with
integrated forecasting as posed by the second research question, and in Section 3.2.2,
the grey-box model from the previous question and the forecast algorithm from the first
research question are further developed to answer the third research question. Each
section is organized as follows. We start with an overview on the methodology including
flow charts, then we continue with a description of the problem including mathematical
formulation, and finally we present nomenclature. This chapter is based on Putz et al.
(2021), Putz et al. (2023) and Putz et al. (2024).

3.1. Deep neural architecture for very short term wind power
forecasting

3.1.1. N-BEATS

The N-BEATS architecture itself does not rely on time-series-specific feature engineer-
ing or input scaling. Instead, it uses a small set of key principles. For instance, it does
not treat forecasting as a sequence-to-sequence problem, but rather as a non-linear mul-
tivariate regression problem. This leads to the basic building block which has a fork
architecture and is shown in Figure 3.1.

The basic block has an input xl and two output vectors x̂l, ŷl where the length of the
input is a multiple of the forecast horizon. The output vectors describes the block’s
forward forecast ŷ and the block’s best estimate which is the so-called backcast x̂ as
proposed by Oreshkin et al. (2020). The backcast represents the contribution to the
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Figure 3.1.: The architecture has two residual branches, one running over backcast prediction of each
layer and the other one is running over the forecast branch of each layer. Basically the
backcast branch can be understood as sequential analysis of the input time series. The
basic block uses a lookback sample as input for the stacked dense layers network with ReLu
activation. This network delivers two coefficients as output Θb, Θf , which are fed into the
basis layers following mapping of gf,b to retrieve the forecast and backcast.

decomposition of the input. Thus, it learns the parameters of the context. The input of
the l-th block xl are residual outputs of the previous blocks. In particular, this network
consists of fully-connected (dense) layers with a rectified linear unit (ReLu)proposed by
Nair and Hinton (2010) regressor shown in Equation 3.1 with weights Wr,l and bias br,l,
referring to x as the input of the architecture, using residual blocks and layer superscripts
(r and l respectively) and denoting the fully connected layer with weights Wr,l and bias
br,l.

hr,l−1 = ReLu(Wr,lxr,l−1 + br,l) (3.1)

The output is forked and fed into the basis layer network to retrieve the forecast and
the backcast predictors of expansion coefficients Θf

l and Θb
l , shown in Equation 3.2.

Θf,b
r,l = Wr,l(hr,l−1) (3.2)

They are projected on gb,f consisting of the set of basis functions vb,f
i and summed up

to obtain the results x̂l and ŷl shown in Equation 3.3 and Equation 3.4.

x̂l =
dim(Θb

l )�
i=1

Θb
l,iv

b

i
(3.3)

ŷl =
dim(Θf

l
)�

i=1
Θf

l,iv
f

i
(3.4)
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The residual principle is used to stack many layers together. Basically, the classical
residual architecture adds the input of the stack of layers to its output before passing
the result to the next stack which adds the input of the stack of layers to its output as
described by He et al. (2015). This architecture has already been extended by Huang
et al. (2018) by introducing extra connections from the output of each stack to the
input of every other stack that follows it. On the one hand this extension improved
the trainability of deep neural network architectures. On the other hand they result
in network structures that are difficult to interpret. The proposed architecture was
enhanced to provide interpretability, shown in Figure 3.2 proposed by Oreshkin et al.
(2020). In general the skip connections facilitate to determine whether the intermediate
layer is useful or not. In this architecture the skip connections are modelled in a different
way, to make subsequent blocks have an easier job forecasting by removing the backcast
outputs from the next block’s inputs. It is actually similar to an unrolled LSTM, where
the skip connections act like forget gates in an LSTM in order to remove information
that is not needed. It passes the processed inputs to the next block, facilitating the
preparation of more accurate forecasts. At the same time, each block has a forecast
output that is added up with subsequent forecasts in the block to provide a combined
forecast. It is possible to stack hundreds of layers and residual blocks effectively using
this principle.

Figure 3.2.: The basic blocks are multi-layer fully connected networks with ReLu activation function.
They provide the expansion coefficients Θb,f and are connected according doubly residual
stacking architecture.

In contrast to classical approaches deep learning approaches for time series forecasting
often suffer from lack if interpretability. This is one of the most challenging obstacles
when it comes to applying those approaches in practice as stated by Ismail et al. (2020).
N-BEATS can be made interpretable by setting the functions gb,f , that can be either
learned or instead engineered to account for different effects such as trend and seasonality.
By changing the mapping functions gb,f for Θb,f to a trend and seasonality form makes
the stack outputs interpretable, shown in Figure 3.3. A typical characteristic of trend is
that most of the time it is a monotonic function, or at least a slowly varying function. In
order to obtain this behaviour gb,f is set to be a polynomial of small degree, a function
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slowly varying across the forecast horizon. To model seasonality a cyclical, recurring
fluctuation is required. An intuitive choice for a cyclical function is the Fourier series.

Figure 3.3.: Schematic example for a cyclical or monotonic functions y(x) for gb,f .

The output components of the model can be separated and analysed. By knowing the
nature of each basis layer, the user can estimate the contribution of each component,
since the total global output is a simple sum of the partial outputs of each block. Thus
providing interpretability. It was observed that the impact of this change on the error is
negligible. It is similar to how the hidden state of an RNN is shared across all time steps.
In addition to interpretability and accuracy benefits, as measured on several well-known
datasets, the model is very fast to train and easy to apply.

Consequently, N-BEATS uses a dense layer as a multivariate regression block with a
ReLu for non-linearity, which gets repeated many times. This architecture is actu-
ally very similar to an unrolled LSTM, where skip connections act like forget gates in
LSTM to remove unneeded information and pass the processed input to the next block,
facilitating the production of better forecasts.

3.1.2. Loss Function

The most used error metrics for forecasting are the mean absolute percentage error
(MAPE) shown in Equation 4.2 and the symmetric mean absolute percentage error
(sMAPE) shown in Equation 3.6. These were also used in the M4 competition Makri-
dakis et al. (2018).

MAPE = 100%
n

n�
t=1

|yt − ŷt|
|yt| (3.5)
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sMAPE = 100%
n

n�
t=1

|yt − ŷt|
|yt + ŷt| /2 (3.6)

Both are similar in that they normalise the absolute difference between prediction and
observed values. The approach may produce more accurate results, because training,
validation and performance error metric goals are identical and ideally aligned by using
MAPE during training as well as for performance evaluation. Nevertheless, there occur
two main issues:

• Firstly, the denominator (yt + ŷt) can become negative or even 0. In the case of
wind power forecasting, 0 can occur and has to be treated separately. In brief,
both nominator and denominator become 0, a case that is basically undefined.

• Secondly, the sMAPE treats over- and underprediction unequally. As an example
for underprediction, if the observed value is 100 and the predicted value 90, then
the sMAPE delivers 5.26%. By contrast, a target value of 100 and predicted value
of 110 constitutes an overprediction and delivers a sMAPE of 4.76%. There are
modifications of the sMAPE that allow to measuring the direction of the bias,
which provides additional information about the quality of the result.

In this work it, is found that during backtests the models tend to have a positive bias. A
solution for this is for example the pinball function, shown in Equation 3.7 and described
by Smyl (2020). It is an asymmetric function, that penalises actual values that are above
and below a certain quantile τ in different ways in order to counteract the bias.

Lt =

(yt − ŷt) τ if yt ≥ ŷt

(ŷt − yt) (1 − τ) if ŷt > yt

(3.7)

The τ parameter can be adjusted, and it is advised to keep it low to avoid overforecasting.
The basic pinball loss is an important loss function on its own; minimizing it produces
quantile regression as explained by Smyl (2020). Setting τ ∈ (0,0.5) tends to compensate
overestimation bias, and setting τ ∈ (0.5,1) tends to compensate under-estimation bias.
In this work, an adaptation of the pinball function (pinball-sMAPE) from 3.8 is shown
in Equation as a loss function within the N-BEATS is introduced. This is a novel
solution for N-BEATS to alleviate the well-known bias problem. A convenient feature
of NN-based systems is used: the simplicity of creating a loss function aligned with any
business/scientific targets.
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Pt = 100%
n

n�
t=1


(yt−ŷt)
(yt+ŷt)τ if yt ≥ ŷt

(ŷt−yt)
(yt+ŷt) (1 − τ) if ŷt > yt

(3.8)

In the case of the pinball-sMape the denominator becoming 0 could only occur if the
actual and predicted values are both 0 at the same timestep, since only non-negative
values are allowed. All yt = 0 rows are dropped in order to prevent division-by-zero
errors. This approach does not have a noticeable effect on the model because there exist
hardly any of such cases in the used datasets. This can be explained by the fact that
the datasets show aggregated numbers from several wind farms across a country and an
occurence with no generation at all is rare. The majority of zero generation values can
be traced back to missing or invalid measurement values.
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3.2. Forecast models for model predictive control of a local
energy community

In this section, the key components and methodologies that underpin the research ques-
tions 2 and 3 are elucidated, providing a detailed insight into how these studies were
conducted and their contributions to the field of sustainable energy management.

3.2.1. Integrated assessment with constant energy tariff

The structure of the methodical framework is formed by two core components, as Figure
3.4 shows. On the one hand, there is a functional block that contains the forecast
methods that are used to predict electrical household load and DHW demand. These
forecasting methods are the systems under test (SUT) and are further described in
Section 3.2.1.1. On the other hand, there is the building MPC block, which acts purely
as the test environment for forecasting methods. It enables the possibility to calculate
cost-and energy-related performance indicators in the context of communal housing but
is not under intrinsic review within this research. Section 3.2.1.2 provides a detailed
description of this system and its underlying assumptions. The motivation to simulate
the interplay of time series load forecasting with an energy community, including the
optimal utilisation of electrical storage capacity and even the active usage of thermal
building masses, is to get an isolated view of how forecast accuracy can deplete the
quality of an otherwise optimally designed and controlled energy system.
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Figure 3.4.: Schematical structure of the implemented methodology.

Both functional blocks operate in a closed loop, as shown in Figure 3.5. In general,
forecasts for load and DHW demand are triggered once a day (e.g., 00:00) to optimally
schedule battery operation and heating/cooling in the energy community. The forecast
horizon is 48 hours, with a time resolution of 15 minutes. Thus, forecast values are
available for the following optimisations, which have a planning horizon of 24 hours.
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t = 0

history forecast #1optimization #1
t = 1

history forecast #1optimization #2
t = 95

history forecast #1 optimization #96
t = 96

history forecast #2optimization #97

01.07.2021 00:00 02.07.2021 00:00 03.07.2021 00:00

Figure 3.5.: Cyclic operation of forecast and control systems.

3.2.1.1. Forecasting methods

Several state-of-the-art forecasting approaches have been implemented, and their results
are benchmarked in the context of quality and value. The quality metrics used for the
forecasting algorithms are listed in Section 3.2.1.1, and the datasets used are outlined
in Section 3.2.1.1. The forecasts are based on historical data; derived time features and
additional features, such as external weather forecasts, are summarised in Table 3.1.

Feature Unit/Scale Category

minute of the hour 0/15/30/45

seasonality/calendarhour of the day 0-23
day of the week 0-6
week of the year 0-52

ambient air temperature °C weatherglobal solar irradiance W m−2

24h lagged demand W demand168h lagged demand W

Table 3.1.: The complete feature set for demand consists of lagged demand, seasonal (or calendar) pa-
rameters, and weather parameters. The features used for each forecasting algorithm may vary
due to various restrictions. For instance, the prediction method Prophet does not support
multivariate forecasting. Thus, only seasonality/calendar features were considered.

The implemented forecasting approaches used in this study are listed below and imple-
mented in Python 3.10:
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• Perfect: This method represents real measurements as a forecast (perfect forecast)
to get results from the MPC, which can be compared with realistic methods af-
terwards. These results provide information about how much the MPC results
with theoretically perfect input parameters (i.e., if forecasts and real conditions
completely match and no errors were made) differ from the actual results.

• Naïve: The naïve forecast is based purely on historical data and takes the respec-
tive daily pattern as a forecast that has the same or similar seasonality. Holidays
are not considered in this approach. As a result, the naïve forecast can be very
inaccurate under certain circumstances, since the stochastic behaviour of weather
naturally means that the sun can be shining clearly one day, and the sky is heavily
overcast the next. However, the naïve forecast has another aspect that should
not be neglected in terms of a backup mechanism. In the introduction, the reli-
ability of a forecast is briefly described, and the data used in case an advanced
forecast technique fails. In this scenario, the naïve forecast can act as a best guess
and a fallback method. The naïve approach serves as another main benchmark,
in addition to the perfect forecast, as it is assumed to be always available. In
the literature, this approach is often referred to as the baseline, which must be
outperformed by other more advanced forecast approaches in terms of accuracy.

• Multiple regression: A widely used method in the field of time series analysis,
which has proven to be especially useful in load forecasting shown by Amral et
al. (2007). Regression analysis has the advantage of being easy to implement,
interpret, and has fast execution time as explained by Hinman and Hickey (2009).
Multiple regression fits a linear model with coefficients w = (w1, ..., wp) according
to ordinary least squares approach. The residual sum of squares between the
measured values X and the predicted values y by the approximation is minimized
according to Equation 3.9.

min
w

∥Xw − y∥ (3.9)

This approach was implemented in Python with the Scikit-learn package founded
by Pedregosa et al. (2011) with fit_intercept set to True and n_jobs set to None
due to the relative small problem.

• K-Nearest neighbours: The principle behind the nearest neighbour method is to
find a predefined number of training samples closest in distance to the new point
and predict the label from these according to Fan et al. (2019). Despite its sim-
plicity, nearest neighbours has been successfully applied in many classification and
regression problems. In this study, uniform weights were used so that each point
in the local neighbourhood contributed uniformly to the classification of a query
point. The number of n_neighbors is set to 3 and weights=distance to assign
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weights proportional to the inverse of the distance from the query point. This ap-
proach was implemented with the Scikit-learn package by Pedregosa et al. (2011).

• XGBoost: This is a tree boosting system for supervised learning problems that
is used widely by data scientists to achieve state-of-the-art results on many ML
challenges as described by Chen and Guestrin (2016b). XGBoost is built upon
decision trees, ensemble learning and gradient boosting. Decision trees create a
model that predicts the value by evaluating a tree of if-then-else true/false feature
questions, and estimating the minimum number of questions needed to assess the
probability of making a correct decision. The term gradient boosting comes from
the idea of boosting or improving a single weak model by combining it with a
number of other weak models in order to generate a collectively strong model.
With XGBoost, trees are built in parallel, instead of sequentially like GBDT. It
follows a level-wise strategy, scanning across gradient values and using these partial
sums to evaluate the quality of splits at every possible split in the training set. In
the context of load or DHW demand forecasting, the model can be represented
as a linear combination of weighted input features, which are the same as for the
multiple regression approach. It was developed with deep consideration for system
optimisation and the principles of ML. The number of n_estimators was set to 50
and other parameters were set to default according to the XGBRegressor interface.
This approach was implemented based on Chen and Guestrin (2016a).

• Prophet: This is a modular regression model with interpretable parameters that
can be intuitively adjusted. The concept is based on an additive model in which
nonlinear trends g(t) fit with yearly, weekly, and daily seasonality s(t) with holiday
effects h(t) and an error term ε(t) to represent changes which are not accommo-
dated by the model as described by Taylor and Letham (2018) and shown in
Equation 3.10.

y(t) = g(t) + s(t) + h(t) + ε(t) (3.10)

This approach is parameterised to address the high volatility of the demand of
a small energy community, and has been successfully applied to short-term load
forecasting for example by Beydoun et al. (2021) and Rocha et al. (2020). The
prediction method is parameterised with a changepoint_prior_scale set to 0.01 and
frequency set to 15min and only supports univariate time series forecasting. Apart
from that, the parameters are set to default according to the Prophet forecaster
interface. This approach was implemented based on Taylor and Letham (2018).

• Fictive methods: Besides comparing existing forecasting approaches, the purpose
of this paper is to provide information on other likely future developments and
to assess their impact. For this purpose, two fictive forecast approaches that are
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more accurate than the best real ones are implemented. Random values based on
a uniform function are used as a basis, which are multiplied by the perfect forecast.
The random values were scaled depending on the average error of all implemented
prediction methods for each time step. Thus, the fictive methods will perform more
accurately than the other methods, but they will still have higher errors during
the day instead of uncommonly high errors during the night.

KPIs for forecasting methods
To assess forecast results in terms of quality or accuracy, several commonly used error

metrics are applied, which address the aspects described in Table 2.1. One of the most
frequently used KPI for forecast results, MAPE , is used as the basis for the accuracy
aspects shown in Equation 3.11 with yt as the measured value and ŷt as the forecasted
value at timestep t and described by Deb et al. (2017) and Martínez-Álvarez et al.
(2015).

MAPE = 1
T

T�
t=1

 |yt − ŷt|
|yt| · 100


(3.11)

Additionally the symmetric MAPE shown in Equation 3.12 is used to tackle the issue of
MAPE by putting heavier penalty on positive errors than on negative errors as explained
by Makridakis and Hibon (2000). However, if yt is zero, the forecast ŷt is likely close to
zero. Thus, a division by a number close to zero is involved and has to be excluded in
the calculation.

sMAPE = 1
T

T�
t=1

 |yt − ŷt|
(yt + ŷt)

· 200


(3.12)

The normalized RMSE (nRMSE) facilitates comparisons between models with different
scales. It relates the RMSE to the observed range of the variable. Thus, the nRMSE
can be interpreted as a fraction of the overall range shown in Equation 3.13.

nRMSE = 1
max(yt) − min(yt)

	

� 1
T

T�
t=1

(yt − ŷt)2 (3.13)

To overcome the issues of skewed distributions, such as MAPE and sMAPE , when values
are close to zero, division by zero, and supporting scale independency at the same time,
the mean absolute scaled error (MASE) proposed by Hyndman et al. (2006) is used and
shown in Equation 3.14. It gives an indication of the effectiveness of the forecasting
algorithm with respect to a naïve forecast. A value greater than one 1 indicates that
the algorithm is performing poorly compared to the naïve forecast. Another advantage
is that MASE is independent of the forecast scale since it is defined using the ratio of
mean absolute errors in the forecast.
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MASE = 1
T

T�
t=1

 yt − ŷt
1

n−1
�n

i=2 |yi − yi−1|

 (3.14)

The reliability aspect is inherent in the implemented model, as it is considered over
a period of one year. This means that factors such as seasonality, days of the week,
and weather are included in the model. This specifically facilitates evaluating forecast
algorithms in varying situations and ranking them according to their accuracy in certain
situations. For example, it is worth mentioning how (in)accuracy at certain time periods
(e.g., at noon or at night rest) affects the overall result.

Data
To solve the optimisation problem, it is necessary to forecast load and DHW consump-

tion several steps in advance. Thus, a forecasting class is implemented, including widely
used prediction methods based on traditional statistical and state-of-the-art ML ap-
proaches reviewed by Bourdeau et al. (2019b). In contrast to the research of Coignard
et al. (2021), which uses a similar approach but is only based on historical data, ex-
ogenous influencing factors such as weather variables are included in this paper. In
addition, not only load but also DHW demand is a matter of forecasting. This module’s
complete integration into the optimisation framework is a significant contribution of this
research. The data used for forecasting were retrieved from Schlemminger et al. (2021),
an open-source dataset from southern Germany. In real-world applications, data are un-
fortunately often not sufficiently available. Above all, there is a lack of adequate history.
To take this circumstance into account, only the year 2021 was used as a dataset. In this
case, the dataset was divided into two halves of the year, with a split date of 01.07.2021
00:00:00. This means that at the beginning of the experiment, only six months of in-
formation is available. However, the available history grows as the forecast models are
retrained on Mondays at 00:00:00 with the maximum available history to prevent ex-
cessively high errors due to outdated model fitting. To forecast load demand, DHW
demand is excluded and vice versa to have only weather effects and calendar data as
exogenous variables. Figure 3.6 shows the correlation between the features.
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Figure 3.6.: The colour encoded heat map shows the relationship between all features and the dependent
variables. For instance, load demand has a strong relationship with the same load one
day and one week ago. Moreover, an inverse relationship between load demand and total
temperature can be observed, which can be interpreted that load demand is generally higher
the lower the total temperature is due to heating effects.

The exogenous weather data is not subject to any errors to conserve the selectivity for
the errors made by the tested forecast algorithms. This is especially important as the
proposed method uses the exogenous data not only for the forecasts itself but also for the
operation of the MPC, which relies on weather data. If this data forecast was inaccurate
it would cause effects on the resulting operation through both ways. This would make the
segregation of impacts in this dynamic system tremendously more complex and would
be a research question for its own. For completeness, it must be mentioned that the
naive forecast has a disadvantage compared to the other forecasting methods in such a
setting because it can not profit from the perfect knowledge of the future weather.
For training and prediction, the forecasting module was adjusted to achieve the required
accuracy and computational speed due to the large number of runs. Prior to the pilot
period, various hyperparameters and characteristics were systematically tested for the
different algorithms. Practically, walk-forward cross-validation was applied, which sig-
nifies a sliding window on the training dataset and a rolling extension of the training

34



3.2. Forecast models for model predictive control of a local energy community

dataset for each fold. The optimum configuration was chosen by repeating this pro-
cedure with several algorithms and hyperparameters. For training, the CPU Intel(R)
Core(TM) i7-11850H @ 2.50GHz was used. The distributions of load as well as the
DHW demand throughout three sample months representing the seasons of summer,
autumn, and winter are shown in Figure 3.7. Generally, DHW demand is less volatile
than load demand. However, the peak values are similar to those of the load.
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Figure 3.7.: Distribution of load demand (top) and DHW demand (bottom) according to different seasons
(summer, autumn, and winter). In winter, the load demand is considerably higher compared
to summer due to the more required illumination. The DHW demand is generally higher in
winter, since more baths are taken usually. Furthermore, during summer and autumn, the
load demand is decreased at noon because less illumination is required.

3.2.1.2. Building MPC

The proposed forecasting methods are used as input parameters in a building energy
control and simulation system to perceive cost-optimal operation for a fictional LEC in
a multi-apartment residential building. The setup is based on the characteristics of a
typical LEC, with the goal of distributing and using the renewable energy produced at
the local level in an optimal manner across all energy sectors, both thermal and electrical,
and close to real time. Thus, the main goal is to use the flexibilities already present within
the LEC as optimally as possible in accordance with the provided objective functions.
An MPC framework was used for control and simulation. By solving an optimisation
problem for the entire prediction horizon of 24 hours, the MPC design calculates the
control set points for each time step and then applies the initial values of the computed
controls to the system. The following subchapters describe the details of the assumed
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communal building and LEC, how it is abstracted and simulated in this study, and which
performance indicators can be drafted from the results.

Building and energy system components
A core part of the hypothetical energy community introduced here is the building model.
It is based on the general case of a three-storey multi-apartment building with a gross
floor area (GFA) of 842.4 m2 and a conditioned floor area (CFA) of 735.8 m2 distributed
over nine dwellings. The underlying building with all the included boundary conditions
was defined as a reference case for zero-energy residential buildings in Austria within
the nationally funded research project Sol4City1. The buildings’ disposition towards
efficiency, including the highly insulated building hull, the heating, ventilation, and
air conditioning (HVAC) systems, and the overall architectural design make it a likely
candidate for hosting the participants of a LEC.

Figure 3.8.: Rendered 3-D illustration of the defined sample building, including the roof-mounted PV
generator.

Detailed heat transmittance figures for the building hull can be found in Table 3.2.
Heating and cooling are achieved via fluid-based thermal concrete core activation of
the ceilings. The allowed room comfort temperature range was set between 21.5 °C
and 25 °C, with the possibility that the MPC controller could use the thermal inertia
of the building for load-shifting purposes. DHW demand totals were set to 30 L/d at
45 °C (cold water 10 °C) per person, based on typical values from SIA 2024 (2015). A
ground source borehole heat exchanger together with a 10 kWel brine to water heat pump
supply the room heating and cooling load and the DHW demand. In combination with
the roof-mounted 21 kWp PV generator, this example building is expected to meet the

1Sol4City Project: https://nachhaltigwirtschaften.at/de/sdz/projekte/sol4city.php
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net zero-energy standard for the reference climate of Graz, Austria.

Parameter North East South West

External wall Area (in m2) 88 83 75 60
External wall U-value construction (in W m−2 K−1) 0.116 0.116 0.116 0.116
Windows Area (in m2) 35.1 40.4 48.7 65.4
Windows U-value tot (in W m−2 K−1) 0.75 0.75 0.75 0.75
Windows g-value 0.49 0.49 0.49 0.49
Top floor ceiling Area (in m2) 280 280 280 280
Top floor ceiling U-value construction (in W m−2 K−1) 0.114 0.114 0.114 0.114

Table 3.2.: Physical parameters of the building hull. U-values (sometimes referred to as heat trans-
fer coefficients or thermal transmittances) are used to measure how effective elements of a
building’s fabric are as insulators. That is, how effective they are at preventing heat from
transmitting between the inside and the outside of a building. The g-value is a measure of
how much solar heat (infrared radiation) is allowed through a particular part of a building.
A low g-value indicates that a window lets through a low percentage of solar heat.

Model formulation and operation
The implemented energy system and the derived control-oriented model are structured

according to Figure 3.10 and are built around an electricity balance hub that enables
energy exchange between the electricity grid, the roof-mounted PV generator of 20 kWp,
electric household loads, a collective battery energy storage system (BESS) of 20 kWh
capacity, and a heat pump system. A distinct feature in this setup is the use of a dy-
namic thermal building model, which incorporates thermal building inertia and does
therefore introduce an additional measure of flexibility to the optimisation. The optimi-
sation problem is formulated as a linear programming problem with differential algebraic
equations. This was realised with a Python-based framework and the GEKKO package,
as it offers a powerful toolset for MPC applications proposed by Beal et al. (2018) of this
type. A variable time base is used to implement 15-minute steps for the first two hours
of the horizon and hourly steps for the remaining 24 hours. This ensures high accuracy
for the immediate future but reduces computing effort significantly.
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Symbol Type Description

t Time
i Iterator for the time step within the optimization horizon
Costel v Total cost for electricity from grid
PGrid,in v Electrical power from the grid into the EC balance hub
PGrid,out v Electrical power from the EC balance hub out to the grid
PHP v Electrical power demand of the heat pump
PEl p Electrical household power demand
PBat,charge v Battery charging power
PBat,discharge v Battery discharging power
PP V p Electrical power generation of the PV system
cGrid,in p Electricity cost for consumption
cGrid,out p Electricity cost for grid feed-in
Q̇SH v Heat flow from heat pump to the building for space heating
Q̇SC v Heat flow from heat pump to the building for space cooling
Q̇DHW p Heat flow from heat pump to supply the DHW demand
COPSH p Heat pump coefficient of performance (COP) for space heating loads
COPSC p Heat pump COP for space cooling loads
COPDHW p Heat pump COP for DHW loads
EBat v Electrical energy stored in the battery
ηcharge p Battery system charging efficiency
ηdischarge p Battery system discharging efficiency
Φ v Zone comfort objective function
ehi v Zone comfort higher boundary violation
elo v Zone comfort lower boundary violation
fweight p Weighting factor comfort objective
TZone v Mean temperature in the building thermal zone
TBuilding v Mean temperature of the building structure
TAmb p Ambient temperature
Q̇Building v Heat flow into the building structure
Q̇Zone v Heat flow into the building thermal zone
Q̇solar p Heat flow into the building through the windows
Q̇env v Heat flow from the building structure through the building envelope
Q̇B2Z v Heat flow from the building structure to the thermal zone
Q̇loss v Heat flow from the thermal zone to the outside via the envelope
CZone p Thermal capacity of the thermal zone
CBuilding p Thermal capacity of the building structure
Renv p Thermal resistance of the building envelope part 1
Rloss p Thermal resistance of the building envelope part 2 and other leaks
RB2Z p Thermal resistance from the building structure to the thermal zone

Table 3.3.: Collection and description of the symbols used for the mathematical model description (Types
v:variable, p:fixed parameter).

The mathematical model can be divided into two interconnected thematic sections that
focus on two objectives. In Equation 3.15, the first objective is minimising electrical
energy cost. The variable time steps are used here to calculate the energy imports and
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exports in every step. In addition, the stored energy in the battery at the last time step
is considered.

min Costel =
�n

i=0 [PGrid,ini · cGrid,in − PGrid,outi · cGrid,out · (ti+1 − ti)] − EBatn · cGrid,out

subject to

(3.15)

The energy balance hub is formed by Equations 3.16 and 3.17, with energy consumers
on the left and energy suppliers on the right side of the equation.

PHP + PEl + PBat,charge + PGrid,out = PP V + PGrid,in + PBat,discharge (3.16)

0 ≤ PEl, PGrid,out, PGrid,in, PP V (3.17)

Equations 3.18 to 3.23 describe the geothermal heat pump system in a simplified manner
using constant time constant COPs. This simplification is justified as the focus is not on
heat pump performance and the COPs in the proposed geothermal heat pump system
are less effected by seasonal effects than for example in air source heat pumps. Detailed
building system simulations for the demonstration case conducted with IDA ICE2 show
that the temperature range on the brine side is typically within 5 K which does not
significantly affect the COP during the course of the year. Adding onto that, an annual
temperature degradation of the geothermal borehole is prevented by using it as a heat
sink for the cooling demand in summer and therefore regenerating it during the course
of the year. The higher COP for space heating is caused by a lower flow temperature
level and the low COP for space cooling is considering the reverse operation of the heat
pump in this case.

PHP = Q̇SH

COP SH
+ Q̇SC

COP SC
+ Q̇DHW

COP DHW
(3.18)

0 ≤ PHP ≤ 10 kW (3.19)

0 ≤ Q̇DHW ≤ 15 kW (3.20)

0 ≤ Q̇SH ≤ 17.5 kW (3.21)

0 ≤ Q̇SC ≤ 9 kW (3.22)

COP SH = 4, COP SC = 2, COP DHW = 3 (3.23)

In Hoppmann et al. (2014) it is shown that the economically perfect sizing of PV gener-
ators and BESS for domestic use follow roughly the ratio of 1 kWh storage capacity per
1 kWp for the PV system which was used to dimension this BESS. The parameters de-
fined in Equations 3.24 to 3.28 are provided by industry partners in the research project
Sol4City.

2https://www.equa.se/de/ida-ice
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EBat

dt
= PBat,charge

ηcharge
− PBat,discharge · ηdischarge (3.24)

0 ≤ EBat ≤ 20 kWh (3.25)

0 ≤ PBat,charge ≤ 20 kW (3.26)

0 ≤ PBat,discharge ≤ 20 kW (3.27)

ηcharge = ηdischarge = 0.94 (3.28)

Energy costs are defined in Equations 3.29 and 3.30.

cGrid,in = 0.20e/kWh (3.29)

cGrid,out = 0.04e/kWh (3.30)

The second thematic section of the equation system is based on a 3R2C lumped-
parameter grey box building model, also shown in Figure 3.10. The average temper-
ature of the thermal zones in the building must suffice with the comfort boundaries set
in Equations 3.32 and 3.33. To ensure this, a second objective function is introduced
in Equation 3.31, which represents an l1-norm error function with a dead-band. A
weight factor for the comfort objective is added to enable balancing with the economic
objective.

min
TZone

Φ = (ehi + elo) · fweight

subject to

(3.31)

ehi ≥ TZone − 25 ◦C (3.32)

elo ≥ 21.5 ◦C − TZone (3.33)

ehi ≥ 0 (3.34)

elo ≥ 0 (3.35)

Equations 3.36 to 3.40 form the core of the thermal building model, with the differential
heat balance equations for the building structure and the thermal zone.

Q̇SH − Q̇SC = Q̇Building + Q̇B2Z + Q̇env (3.36)

Q̇Zone = Q̇B2Z − Q̇loss + Q̇solar + PEl (3.37)

Q̇Building = CBuilding · dTBuilding

dt
(3.38)

Q̇Zone = CZone · dTZone

dt
(3.39)
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0 ≤ Q̇solar (3.40)

The heat transfer from the building structure to the thermal zone is described in Equa-
tion 3.41.

Q̇B2Z = TBuilding − TZone

RB2Z
(3.41)

Equations 3.42 and 3.43 define heat losses through the building envelope and leaks.

Q̇env = TBuilding − TAmb

Renv
(3.42)

Q̇loss = TZone − TAmb

Rloss
(3.43)

The building model parameters are listed in Table 3.4 and were extracted with a dynamic
parameter estimation process based on time series simulation data. These data were
generated with a highly detailed virtual model of the sample building generated with
the software IDA ICE according to Hedengren et al. (2014).

Symbol Value Dimension

CBuilding 245.6 kWh K−1

CZone 3.2526 kWh K−1

RB2Z 0.00015862 K W−1

Renv 0.099999996 K W−1

Rloss 0.003409852 K W−1

Table 3.4.: Building model parameters retrieved from parameter estimation based on time series simu-
lation data.

The described model is used within a two-stage process for every control time step,
as shown in Figure 3.9. In the first step, the initial state derived from the previous
cycle and the fixed input parameters household load and DHW demand are fed with
predicted values from the forecast method component. Based on these input data, an
optimisation for the operation in the next 24 hours is performed. The optimised control
variables for the zone-heating/cooling power and the batteries’ charging or discharging
are then used for the second stage and locked in place for the first 15-minute time step.
Again, using the initial condition from the last control iteration, the forecast data for
electricity and DHW demand are now based on historic measurement data. This results
in the second stage being different from the first and, therefore, enables the evaluation
of the impacts of forecasting inaccuracies. The system state after the second solve run
is then used as the initial condition for the next control iteration. This setup reflects
an offset-free MPC control loop with controller and plant where the forecast deviation
represents the disturbance and the plant’s state space can be fully observed and fed
back to the controllers’ state. Using the same model and initial state conditions for the
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optimiser and the plant mitigates model mismatches and offsets. This ensures that the
control error is purely affected by forecast quality.

Figure 3.9.: MPC internal optimization and simulation process showing how different forecast and his-
toric measured data is used and how control signals and the initial system states are handled.

Energy and cost-related KPIs
KPIs are indispensable for quantifying a building’s energy flexibility and estimating how
different features influence the sharing of renewable energies and the reduction of peak
energy loads. Indicators are useful for effectively showing the concept of energy flexibility,
providing a common language between energy players as described by Airò Farulla et al.
(2021). Moreover, the use of energy KPIs can contribute to determining the proper
technologies for systems that are able to store energy and to improve buildings’ load-
shifting potential proposed by Jensen et al. (2017). In the selected literature according
to Junker et al. (2018), Salom et al. (2014) and Lopes et al. (2016), KPIs are used to
investigate aspects of LECs. For this work, the classification for LEC KPIs proposed in
Airò Farulla et al. (2021) is used: load-matching indicators.
Load-matching indicators are a helpful tool for a preliminary performance assessment
due to the clarity of their mathematical descriptions. When derived from high-time-
resolution data, load-matching KPIs fully illustrate the relationship between local en-
ergy demand and supply. They also illustrate hourly, daily, and seasonal effects; the
relationship between load and generation; the production patterns of various renewable
energy technologies; and the effects of implemented control strategies. However, it is
impossible to determine which KPI values are best for the examined energy systems
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without fully understanding all their characteristics.
The percentage of the electrical demand that is met by on-site power generation is known
as the load cover factor and is indicated in Equation 3.44. The load cover factor value
is 0 at times when there is no on-site generation, while the maximum values occur when
self-generation and the profile shape of the energy load meet explained by Salom et al.
(2011), with gt as on-site electricity generation, St as stored energy, ζt as power losses,
and lt as electric power load.

γload =
�T

t=1 min [gt − St − ζt, lt]�T
t=1 lt

(3.44)

The amount of on-site generation that is utilised by the building, in contrast, is known as
the supply cover factor shown in Equation 3.45. In Salom et al. (2011), these two KPIs
are often used to research various energy systems at both neighbourhood and single-
building levels. However, they do not directly provide data on net energy, consumption,
or supply, as well as data on power exchange peaks and connection capacity utilisation.

γsupply =
�T

t=1 min [gt − St − ζt, lt]�T
t=1 gt

(3.45)

The ratio of energy demand to energy availability from nearby renewable sources is
known as the on-site energy ratio (OER), as shown in Equation 3.46. If the OER is
1, it signifies that the renewable energy sources (RES) supply meets the demand for
energy when viewing a net yearly balance. A number greater than 1 indicates that the
yearly energy supply from domestic renewable energy sources is greater than the annual
energy demand. The various kinds of energy are not considered independently in the
OER. Without considering the energy mismatch for each energy type, it describes the
situation in which demand is met by on-site production.

OER =
�T

t=1 g(t)dt�T
t=1 l(t)dt

(3.46)
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3.2.2. Forecast models for model predictive control considering energy price
uncertainty

In the context of this study, the LEC used was a multi-unit residential building that is
designed to optimise the use of renewable energy produced at the local level in an optimal
manner across all energy sectors, both thermal and electrical and in close to real-time
as proposed by Putz et al., 2023. The LEC was optimised, with the goal of distributing
and using the renewable energy produced at the local level in an optimal manner as well
as considering comfort boundaries in terms of indoor room temperature.
To achieve this goal, the LEC is equipped with a range of technologies and systems,
such as photovoltaic panels, heat pumps, and battery energy storage systems. These
technologies and systems are integrated and controlled by a building energy control and
simulation system. The control and simulation system uses forecasted energy demand,
DHW demand and weather data as input parameters to optimise the operation of the
LEC in accordance with the provided objective functions. MPC is a control technique
that involves predicting the future behaviour of a system based on a set of input variables,
and then optimising the control actions based on this prediction. In the context of LECs,
MPC can be used to optimise the operation of the energy system by minimising energy
consumption and costs while maximising the use of renewable energy sources. This
is achieved by solving an optimisation problem for the entire prediction horizon of 48
hours, which calculates the control set points for each time step based on the forecasted
energy demand. The control set points are then applied to the system, and the process is
repeated at regular intervals, such as 15 minutes, to continuously optimise the operation
of the LEC. The use of MPC in LECs requires accurate forecasts of energy demand and
production, which can be obtained using various forecasting methods and tools. The
MPC framework used in this study is based on Putz et al., 2023.
The structure of the methodical framework was formed by two core components, as
shown in Figure 3.10. On the one hand, there is a functional block containing the forecast
methods used to predict energy and DHW demand. These forecasting methods were the
systems under test (SUT) and are further described in Section 3.2.2.1. On the other
hand, there is the building MPC block, which acted purely as the test environment for
forecasting methods. It enabled the calculation of cost- and energy-related performance
indicators in the context of communal housing, which is further described in Section
3.2.2.3.
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3.2. Forecast models for model predictive control of a local energy community

Figure 3.10.: Schematic structure of the implemented methodology. External forecasts are provided for
PV production and weather variables, which are used for the dynamic thermal building
model as well as price scenarios. In this study, energy and DHW demand were the subjects
to forecast. The MPC framework provided optimal control of the battery energy storage
system and the heat pump system. Different energy price scenarios were used to assess
their impact on LEC KPIs.

The forecast component delivers forecasts for energy and DHW demand every day at
the same time (i.e. midnight) for the upcoming 48 hours at a 15-minute time grid. The
forecasts are based on real-time measurements and exogenous weather data from a local
weather service provider. Subsequently, the predictions are used as input parameters for
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the optimisation problem, which outputs a collection of set-points for the upcoming 24
hours for flexible assets such as battery energy storage systems. Lastly, the first value
of the calculated set-point sequence is sent to the virtual twin. This is referred to as
an open-loop environment. The MPC framework runs an optimisation every 15 minutes
and retrieves updated forecast time series daily. The open-loop environment delivers the
first set-point at t = 0 of a flexible asset and is used as the initial set-point of the same
asset in the following time step t = 1. This leads to optimisation runs that are coupled
across time, where at each successive optimisation step, the horizon is shifted and more
information becomes available.

3.2.2.1. Forecasting methods

The forecasting methods used in the study include perfect foresight, naïve approach,
multiple regression, k-nearest neighbour, XGBoost, Prophet and two hypothetical fore-
cast methods called favourable and excellent. These forecast approaches are described
in detail in Putz et al., 2023 and used in the same configuration. To extend the ex-
isting forecasting module another well-performing forecast approach called NBEATSx
proposed by Olivares et al. (2021), a further developed approach of NBEATS described
by Oreshkin et al. (2019) was implemented during this study.

3.2.2.2. Neural Basis Expansion Analysis with Exogenous variables

NBEATS is a deep-learning forecasting method that uses attention mechanisms to enable
the model to learn complex patterns in the data and make accurate predictions. It is
well-suited for handling time series data. The attention mechanism is implemented
using a multi-headed attention layer that allows the model to weigh the importance of
different input features at each time step based on their relevance to the prediction task.
The NBEATS model consists of two main components: a basis expansion component
and a forecast component. The basis expansion component is responsible for learning
the underlying patterns in the data, while the forecast component is responsible for
making predictions. The two components are connected by an attention layer, which
enables the model to focus on the most relevant features when making a prediction.
The NBEATS model is only capable of considering past covariates as regressors for the
backcast period of the target value yback. Continuing the development of this architecture
led to NBEATSx, which incorporates covariates in its analysis denoted as X, as shown
in Figure 3.11. To assist with related work, the same annotation is used as proposed in
Olivares et al., 2021.
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3.2. Forecast models for model predictive control of a local energy community

Figure 3.11.: The NBEATSx is made up of blocks, which are organised as a series of fully connected
networks with ReLU-based nonlinearities as described and depicted by Olivares et al.,
2021. These blocks overlap using the doubly residual stacking principle to generate both
backcast ŷback

s,b and forecast ŷfor
s,b outputs for the b-th block within the s-th stack. Finally,

the predictions ŷfor are obtained by combining the outputs from all the stacks. The
architecture consists of S stacks, with each consisting of B blocks. yback represents the
input of the first block, which consists of L lags of the time series y to be predicted and the
exogenous matrix X. The residual connections with the backcast output of the previous
block are included in the inputs of each of the subsequent blocks.

The principle of the basic block is to deliver forecast and backcast parts which are fed
to the next block. A fully connected neural network (FCNN) is applied on yback

s,b−1 and
Xs,b−1 to learn hidden units hs,b, as shown in Equation 3.47.

hs,b = FCNNs,b


yback

s,b−1, Xback
s,b−1


(3.47)

The hidden units are linearly adapted into the forecast θfor
s,b shown in Equation 3.48 and

the backcast θback
s,b described by Equation 3.49 which are called expansion coefficients

proposed by Putz et al. (2021).

θback
s,b = LINEARback (hs,b) (3.48)

θfor
s,b = LINEARfor (hs,b) (3.49)

The operation that gives NBEATS its name called basis expansion is applied between the
learnt coefficients and the block’s basis vectors Vback

s,b and Vfor
s,b leading to the backcast

yback
s,b and forecast yfor

s,b shown in Equation 3.50 and Equation 3.51.

yback
s,b = Vback

s,b θback
s,b (3.50)
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yfor
s,b = Vfor

s,b θfor
s,b (3.51)

The first part of the doubly residual stacking principle, which is shown in Equation 3.52,
can be understood as the composition of the modelled signal and prepares the inputs
of the subsequent layer. The second part, described by Equation 3.53, aggregates the
partial forecast blocks into stacks.

yback
s,b+1 = yback

s,b − ŷback
s,b (3.52)

ŷfor
s =

B�
b=1

ŷfor
s,b (3.53)

The final result is obtained by aggregating all stack predictions shown in Equation 3.54.

ŷfor =
S�

s=1
ŷfor

s (3.54)

Two possible configurations are proposed in Olivares et al. (2021), that can be distin-
guished by choosing different basis vectors Vback

s,b and Vfor
s,b . The basis vectors design how

the time series is decomposed and support the understanding of its underlying structure
and patterns since they perform a projection. For instance, decomposing into a trend
pattern can be done by selecting a polynomial function as a basis function. In the pro-
posed NBEATS approach without exogenous variables two different basis functions are
applied. The first one, which is responsible for extracting the trend part, is a polynomial
function shown in Equation 3.55, with time vector t = [0, 1, 2, ..., H − 2, H − 1] /H and
Npol as the maximum polynomial degree.

ŷtrend
s,b =

Npol�
i=0

tiθtrend
s,b,i ≡ T θtrend

s,b (3.55)

The second basis function which extracts seasonal patterns, is a harmonic function de-
scribed by Equation 3.56 and can be interpreted as Fourier transform coefficients. The
hyperparameter Nhr controls harmonic oscillations.

ŷseasonal
s,b =

⌊H/2−1⌋�
i=0

cos


2πi
t

Nhr


θseasonal

s,b,i + sin


2πi
t

Nhr


θseasonal

s,b,i+⌊H/2⌋ ≡ S θseasonal
s,b

(3.56)
The original NBEATS architecture by Oreshkin et al. (2019) consists of a trend stack
followed by a seasonality stack, each containing three blocks. To extend this architecture
to NBEATSx another stack must be defined that focuses on the exogenous part and
performs a basis expansion on it, as described by Equation 3.57.
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ŷexog
s,b =

Nx�
i=0

Xiθ
exog
s,b,i ≡ X θexog

s,b (3.57)

In this study, temperature and solar irradiance were used as exogenous weather variables.
Both are time-dependent and can be treated as seasonal covariates. Thus, the same
basic functions as shown in Equations 3.55 and 3.56 can be applied for decomposing the
exogenous influence.
Overall, NBEATSx is a powerful forecasting method that can to handle complex and
multivariate time series data and make accurate predictions. It has the advantage of
being able to capture complex patterns in the data and adapt to changing patterns over
time, but it can be computationally intensive and may require a large amount of training
data to achieve good performance. The computational aspect is not within the scope of
this study.

3.2.2.3. Model predictive control framework for building energy control and
simulation

The setup of this study was designed to align with the characteristics of a typical LEC,
with the primary objective of efficiently distributing and utilising locally generated re-
newable energy across both thermal and electrical energy sectors in near-real-time. To
achieve this goal, the existing flexibilities within the LEC are optimally utilised based
on the provided objective functions.
The MPC framework operates in two stages for each control time step. In the first stage,
using forecasted data, it computes optimal control variables for zone heating/cooling
and battery energy storage for the next 24 hours. These optimized control variables
are then applied for the initial 15-minute time step. In the second stage, using actual
measurements and historic data, the optimization process is rerun for the next 24 hours,
allowing us to assess the impact of forecasting inaccuracies on LEC performance. The
comprehensive energy system model described in Putz et al., 2023 within the MPC
framework considers a range of factors, including the building’s thermal characteristics,
HVAC systems, DHW demand, renewable energy generation (e.g., photovoltaic), and
energy storage (battery) dynamics. It is implemented as a linear programming problem
with differential algebraic equations using Python-based tools and the GEKKO pack-
age, ensuring high accuracy for immediate forecasting while minimizing computational
effort. These functions minimise the overall operational energy costs while maintaining
the comfort level in terms of indoor room temperature. It optimises the charging of bat-
teries and thermal building masses during surplus energy generation and strategically
discharges them during high-demand periods or when renewable energy supply is insuf-
ficient. Load shifting and state-of-charge management are integral aspects, all guided
by forecasting techniques to align energy storage actions with predicted generation and
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consumption patterns. The objective is to enhance energy efficiency, reduce costs, and
maximize the utilization of renewable energy resources within the LEC. To adapt the
MPC method described in Putz et al., 2023 for use with time variable electricity prices
the additional Equations 3.58 and 3.59 are implemented to prohibit the charging of the
battery energy storage system with energy from the grid. This is because the electric
battery in the underlying energy community is intended to raise the self-consumption
rate of on-site electricity generation and not to do price-driven energy trading with the
grid.

PBat,charge ≤ PP V (3.58)

PBat,discharge ≤ PHP + PEl (3.59)

3.2.2.4. Price scenarios

Currently, most electricity tariffs are based on a flat tariff structure, which serves as the
baseline for this study. A constant rate of 0.20e per kWh for purchasing and 0.04e per
kWh for feed-in over the whole contractual period was chosen, as these values were typical
for Austrian household electricity prices before the energy price surge of 2022 and ensure
comparability with the research results in Putz et al. (2023). Other major electricity
tariff structures exist, such as time-of-use, demand charge and real-time-pricing described
by Houben et al. (2023). Time-of-use is a variable rate for the price depending on the
time of the day or type of day. The demand charge tariff includes an additional power
rate in e per kW as a penalty, which is multiplied with the highest peak demand. This
tariff structure is especially prevalent in the US. The real-time-pricing tariff passes spot
market prices down to the consumer as for example common in Norway. Real-time
pricing tariffs are already available for household customers in Austria3 together with
day-ahead price forecasts and offer cost benefits for time flexible electric load. To assess
the impact of different price scenarios a real-time pricing tariff for three different years
was used as input for the MPC framework. The time series day-ahead price data for
the years 2020, 2021 and 2022 were used as input for the proposed framework as those
years show a gradual transition from low and stable electricity prices in 2020 to high
volatile prices by the end of 2022. The data for day-ahead electricity prices were retrieved
from the transmission system operator in Austria APG4. Figure 3.12 shows the hourly
distribution for each year and outlines the increasing price as well as rising volatility for
2022 compared to 2020. Because the effective energy price for LECs also includes taxes
and fees imposed by the energy supplier and the grid operator, Equations 3.60 and 3.61

3https://www.awattar.at/
4https://markttransparenz.apg.at/

50



3.2. Forecast models for model predictive control of a local energy community

were implemented to calculate the final consumption and feed-in tariffs. It was assumed
that energy suppliers must add the regular Austrian value-add tax (VAT) ftax of 20 % to
the electricity market price for imported electricity. The LEC also taxes its earnings for
exporting electricity, as they are normally not seen as nonprofit organisations in Austrian
tax law. The grid fee cgrid of 0.09e/kWh only applies to the imported electricity, as
it is typically paid by the recipient of energy. Additionally the assumed contract with
the energy supplier includes specific handling fees with fhandling fee import of 3 % and
fhandling fee export of 9 % on top of the day-ahead market price.

cGrid,import = (cday ahead + |cday ahead| · fhandling fee import) · (1 + ftax) (3.60)

cGrid,export = (cday ahead − |cday ahead| · fhandling fee export) · (1 − ftax) (3.61)

To compare the LEC KPIs with respect to different price scenarios, the other input data,
such as energy and DHW demand are the same for each of the four scenarios, only the
electrical price data vary. Table 3.5 shows the statistical indicators in terms of mean,
standard deviation, minimum, maximum and percentile values for the day-ahead price
of electricity.

scenario mean std min P25% P50% P75% max

flat tariff 0.2 0 0.2 0.2 0.2 0.2 0.2
2020 0.132 0.019 0.048 0.121 0.131 0.143 0.272
2021 0.279 0.111 -0.032 0.196 0.25 0.343 0.887
2022 0.478 0.2 -0.79 0.323 0.46 0.625 1.257

Table 3.5.: Statistical values in terms of mean, standard deviation, minimum, maximum and percentile
values for day-ahead electricity prices per year in e per kWh. In 2021 and 2022, negative
prices appeared and the volatility as well as the average value grew substantially.

3.2.3. Data

In this study, data for an LEC were collected. The data included energy, DHW demand,
photovoltaic (PV) production, solar irradiance, and ambient temperature for a period
of one year. The energy consumption data included the total electricity demand of the
LEC, as well as the demand for different end-uses, such as lighting, appliances, heating,
ventilation and air conditioning (HVAC). The energy production data included the total
electricity production of the LEC and the production from PV panels.
The dataset used for forecasting was obtained from Schlemminger et al., 2021, an open-
source repository in southern Germany. Unfortunately, in real-world scenarios, data are
frequently inadequate, particularly with respect to historical information. To mitigate
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Figure 3.12.: Hourly distribution of day-ahead prices in Austria for the years 2020, 2021 and 2022. The
increase of price level as well as volatility is apparent.

this issue, only the year 2021 was used for the dataset, and it was divided into two halves:
the first half and the second half, with a split date of midnight on July 1, 2021. At the
start of the experiment, only six months of data were available. However, the available
historical data increases as the forecast models are retrained every Monday at midnight
using the most recent data to avoid excessive errors caused by outdated model fitting.
The exogenous weather data were not altered to maintain the specificity of the errors in-
troduced by the tested forecast algorithms. This was critical since the proposed method
employs exogenous data not just for the forecasts themselves but also for the operation
of the MPC, which relies on weather data. Inaccurate weather forecasting would have
an impact on the resulting operation through both pathways, making the segregation of
impacts in this dynamic system more complicated and a research question of its own. To
meet the accuracy and computational speed requirements of the large number of runs,
the forecasting module was adjusted during training and prediction. Prior to the pilot
period, various hyperparameters and characteristics were systematically tested for differ-
ent algorithms. To achieve this, walk-forward cross-validation was used, which involved
a sliding window on the training dataset and a rolling extension of the training dataset
for each fold, as described in Putz et al., 2023. In particular for NBEATSx to train
the neural network, the MAE was minimised using ADAM (stochastic gradient descent
with momentum proposed by Kingma and Ba (2017)) which is common in the literature
according to Smyl, 2020. For hyperparameter optimisation, the approach proposed by
Lago et al. (2018) was used to guide the search for well-performing configurations. Table
3.6 summarises the chosen hyperparameters for NBEATSx.
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Hyperparameter Considered Value

Input size of feature window (one week) L ∈ {672}
Output size for 48 hours ahead forecasting H ∈ {192}
Activation function ReLU
FCNN layers within each block 2
FCNN hidden neurons on each layer of a block Nh ∈ {50, ..., 500}
Degree of trend polynomials Npol ∈ {2, 3, 4}
Number of Fourier basis (seasonality smoothness) Npol ∈ {1, 2}
objective loss function MAE

Table 3.6.: Hyperparameters of the NBEATSx network. The configuration that performed best on the
validation set was selected automatically.

The NBEATSx approach was implemented in PyTorch5 founded by Paszke et al. (2019).
The optimal configuration was chosen by repeating this procedure with multiple algo-
rithms and hyperparameters. The training was conducted on a CPU Intel(R) Core(TM)
i7-11850H @ 2.50 GHz.

5https://pytorch.org/
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This chapter showcases the results obtained from the three studies conducted to address
the research questions. The chapter begins with Section 4.1, which provides results of
the wind power forecasting using the N-BEATS approach based on Putz et al. (2021).
Subsequently, Section 4.2 consists of Subsection 4.2.1 highlighting the forecast-based
optimal control results based on Putz et al. (2023), showcasing the outcomes for a
full year as well as specific time slots within the year. Furthermore, Subsection 4.2.2
expands on the case study based on Putz et al. (2024) by incorporating energy price and
uncertainty, revealing the findings of this integrated analysis.

4.1. NBEATS performance on short term wind power
forecasting

In this section, the proposed N-BEATS model for VSTWPF is applied to the real-world
datasets described in Section 4.1.1. Additional models based on classical statistical
methods and machine learning methods are implemented to compare them with N-
BEATS in terms of accuracy. These models are briefly described in Section 4.1.2. The
results regarding accuracy are shown in Section 4.1.3.

4.1.1. Dataset and Training

Real-world open-source1 wind power datasets from 15 different European countries by
Open power system data platform (2020) are used and can be found attached in Appendix
A. Each data set represents the aggregated wind power of a country that is used and
processed by control area operators. Currently, time series are mainly processed hourly.
However, the trend is moving to finer time intervals. Therefore, data sets with a 30-
minute and 15-minute resolution have also been examined:

• 15min (01/01/2020 - 30/09/2020): AT, DE, NL

• 30min (01/01/2020 - 30/09/2020): CY (with gaps), GB, IE

• 60min (01/01/2019 - 30/09/2020): DK, ES, FI, FR, GR, IT, NO, PL, RO

1https://open-power-system-data.org/
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The dataset of CY has some gaps in the history, and it is of interest to see how well the
models can handle such cases.
The proposed method uses only windpower time series as input since it is a univariate
time series forecasting architecture. The input is a time series of consecutive measured
wind power values. N-BEATS does not process exogenous factors and influencing quan-
tities such as wind speed. As a result, depending on the configuration, the predicted
wind power for the next time step or a whole time series for the next time steps is ob-
tained. In addition to this, further result components such as trend and seasonality are
delivered.
Datasets are split into train, validation and test subsets. Table 4.1 shows the dates
where these splits are located within the datasets for 15min, 30min and 60min time sets.
In the first step the time series gets filtered to replace missing or NaN entries with 0.
After splitting the datasets for each country a model is fitted with training and validated
with validation data which leads to 15 different trained models. For performance evalu-
ation the test sets are processed into multi-step time windows consisting of analysis and
subsequent forecast time series (measured values). In general, the analysis window has
multiple times the length of the forecast time series. The proposed approach delivers
the forecast time series dependent on analysis time series. The predicted time series is
followingly compared to the actual one to assess accuracy.

time resolution countries set begin

15 minute AT, DE, NL
train 01/01/2020
validation 30/06/2020
test 15/08/2020

30 minute CY (with gaps), GB, IE
train 01/01/2020
validation 30/06/2020
test 15/08/2020

60 minute DK, ES, FI, FR, GR, IT, NO, PL, RO
train 01/01/2019
validation 28/02/2020
test 15/06/2020

Table 4.1.: Split of datasets into training for fitting the model, validation for hyperparameter tuning and
test to assess performance.

N-BEATS is implemented in Python2 with tensorflow according to Abadi et al. (2016)
as well as in PyTorchForecasting by Beitner (2020). The learning progress and results
are visualised via TensorBoard described by Abadi et al. (2016). Table 4.2 lists the
configuration of the model.

2https://www.python.org/about/
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parameter value

optimizer Adam
tensorflow v2.6
PyTorchForecasting v0.7
learning rate optimised by PyTorch Lightning
max epochs 50
batch size 128
early stopping true
reduce on plateau patience 1000
share stacks true
stack types trend + seasonality
weight decay 0.01
max. lookback horizon variable - 24 time steps (6h-48h)
forecast horizon variable - 4 time steps (15minute-12h)
shuffling of samples true
hidden dense layers 512
layers in residual block 4
loss function pinball sMAPE

Table 4.2.: Overview of the parameters for the N-BEATS approach.

4.1.2. Models

The models that are used for comparision are outlined below.

• ARIMA - Autoregressive Integrated Moving Average ARIMA(p, d, q)(P, D, Q)m

model implemented via statsmodels.tsa.arima.model.ARIMA from statsmodel in
Python. A seasonal ARIMA model is used where m refers to the number of periods
in each season and P,D,Q refer to the autoregressive, differencing, and moving
average terms for the seasonal part of the ARIMA model.

• MLP - multilayer perceptron, which is a feed forward NN with a single hidden
layer. In general, this is the most commonly used NN with an activation function.
MLP utilises a supervised learning technique called backpropagation for training.
For activation, the commonly used sigmoidal function is employed. The imple-
mentation is chosen through tensorflow in Python according to Pełka and Dudek
(2019).

• LSTM - a long-short-term memory, which can be classified as an RNN in the DL
sector, implemented via tensorflow in Python. In contrast to standard MLP ar-
chitecture, the LSTM has feedback connections for enhancement and avoids the
vanishing of the gradient. The cell has the ability to forget part of its previously
stored memory and replace it with part of the new information. In general, an
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LSTM consists of a cell, input gate, output gate and forget gate. The cell remem-
bers information and all the other gates control the flow of information into and
out of the cell. LSTM became very popular for time series forecasting due to its
robust results. It is widely used and researched for VSTWPF.

• WT-LSTM - wavelet transformation with LSTM as hybrid model implemented via
pywt and tensorflow in Python. This hybrid approach delivers significantly more
accurate results compared to conventional models. In addition, the M4 competi-
tion stated that hybrid approaches will be more frequently used in the future due
to their great potential. A prime example thereof is the WT-LSTM, where the
Wavelet transformation is used to examine the stochastic nature of wind power.
This leads to a decomposition where breakpoints and discontinuities are provided
by the WT. Additional techniques, such as feature selection are used to further
improve the accuracy according to Memarzadeh and Keynia (2020).

• LSTM-MSNet - LSTM with classical decomposition and multiple seasonal patterns
(MSNet) implemented via tensorflow in Python according to Bandara et al. (2020).
Its superiority lies in the fact that it is a globally trained LSTM, which means that
a single prediction model is built across all the available time series to retrieve
the so-called cross series knowledge of related time series. This can be further
improved by including multi-seasonal decomposition.

• ES-RNN - exponential smoothing with an RNN, which is a multivariate hybrid DL
algorithm is implemented via tensorflow in Python according to Smyl (2020). The
ES decomposes the time series into level, trend and seasonality components. The
RNN is trained with all series, has shared parameters and is used to learn common
local trends among the series while the ES parameters are specific to each time
series. The models are combined by including the output of the RNN as the local
trend component in the ES model.

4.1.3. Results

Samples of forecasts with different forecast horizons are shown in Figure 4.1. Table
4.3 provides an overview of the forecasting metrics for Germany. The mean absolute
percentage error (MAPE), symmetric mean absolute percentage error (sMAPE), mean
percentage error (MPE), R2 score and mean average absolute error (MAE) are used as
metrics.
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Figure 4.1.: Top left figure shows a sample of a 15 minutes ahead forecast (Dataset with 15 minutes
time resolution). Bottom left figure shows a sample of a 1 hour ahead forecast (Dataset
with 15 minutes time resolution). Top right figure shows a sample of a 1 hour ahead forecast
(Dataset with 1 hour time resolution). Bottom right figure shows a sample of a 4 hour ahead
forecast (Dataset with 1 hour time resolution).

The MPE is a metric to evaluate over- and underprediction while the MAPE is a metric
for overall accuracy. A positive bias means underprediction and vice versa. The most
remarkable result to emerge from the data is that N-BEATS outperforms all other used
models in terms of accuracy with a MAPE of 3.98%. Generally, a MAPE below 4% is
considered as major improvement. The hybrid model approaches deliver similar accuracy
with ES-RNN as the second most accurate model with a MAPE of 4.04%. N-BEATS
also delivers the lowest bias with an MPE of -0.56. In Section 4.1.4.1 other loss functions
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model MAPE in % sMAPE in % MPE in % R2 score

ARIMA 7.83 5.25 -2.22 0.965
MLP 15.32 9.37 -2.87 0.934
LSTM 12.11 7.21 -3.66 0.957
WT-LSTM 4.71 4.12 -1.26 0.982
LSTM-MSNet 4.22 3.89 -1.09 0.986
ES-RNN 4.04 3.67 -0.99 0.991
N-BEATS 3.98 3.34 -0.56 0.998

Table 4.3.: Overview of the forecasting metrics for German dataset with a forecast horizon of 15 minutes.
The N-BEATS results are highlighted.

for N-BEATS are examined and it is shown that the pinball sMAPE as the selected loss
function overall improves the approach. It has been observed that a τ of 0.375 delivers
the most accurate results accross all datasets.
Figure 4.2 displays the MAPE for each country. The table shows that N-BEATS delivers
stable and accurate results for most countries and that it is most accurate approach for
10 out of 15 countries. Despite CY having some gaps in its history, there is no significant
impact on the forecast accuracy since the error metrics are in the same range as for the
other countries.

Figure 4.2.: MAPE for each country.

The forecast error varies throughout the year and hour of day as shown in Figure 4.3.
During spring and autumn the forecast inaccuracy peaks. This is because the wind often
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fluctuates the most during these periods. The fact that the wind is most discontinuous
during these seasons obviously makes forecasting more difficult. This behavior is highly
dependent on location. Similar behavior is observed by examining the dependence of the
forecast error on time of day. Generally, stronger winds do not occur until the afternoon,
after the sun has warmed the ground and warmer air masses rise. This results in more
turbulence, which increases the difficulty of forecasting. Overall the approach delivers
robust results with minor variation since the error fluctuations are within the range of
approximately 1% MAPE.

Figure 4.3.: Forecasting error in relation to time of the year (month) and time of day (hour).

4.1.4. Sensitivity analysis

This section examines the impact of varying some model parameters, such as different
loss functions and time resolutions of datasets on the result in terms of accuracy.

4.1.4.1. Different Loss Functions

Different loss functions also provide different results in terms of accuracy. Table 4.4
shows the MAPE for the N-BEATS model for different loss functions. The result shows
that the pinball sMAPE function significantly improves the accuracy.

4.1.4.2. Time Resolution

In general, historical time series occur in different resolutions. Often, an intermediate
step exists to interpolate the time series to the desired resolution. The most commonly
used time resolutions are 15 minutes, 30 minutes and 60 minutes. Table 4.5 summarises
the errors at different time resolutions and forecast horizons.
Figure 4.4 reports the coefficient of determination for Germany for each approach. It
was noted that some approaches (ARIMA, MLP) tend to overpredict more than others
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loss function MAPE

MAE 7.72
MAPE 9.18
RMSE 12.25
sMAPE 8.78
pinball sMAPE, τ = 0.25 9.62
pinball sMAPE, τ = 0.375 3.98
pinball sMAPE, τ = 0.5 8.78

Table 4.4.: Sensitivity analysis of the loss function for N-BEATS. The analysis is carried out with the
Germany dataset and a forecast horizon of 15 minutes.

resolution 15min 30min 1h 2h 4h 6h 8h 10h 12h

15 min 3.78 5.99 7.98 13.89 17.23 22.51 27.47 32.88 36.33
30 min - 4.04 6.48 11.72 14.37 19.94 26.92 31.11 34.11
60 min - - 4.12 9.27 12.76 18.34 24.83 30.72 33.88

Table 4.5.: Sensitivity analysis of the time resolution for N-BEATS. The forecast horizon varies from 15
minutes to 12 hours. For the time resolutions of 15 and 30 minutes, only the corresponding
data sets were examined. For the others, all data sets were examined and the result values
are calculated by averaging them. Results are displayed in MAPE percentages.

(LSTM, WT-LSTM, LSTM-MSNet). The developed architecture, however, is in most
cases only accompanied by a relatively small overprediction, which depends on the data
set. For the selected example forecast in Figure 4.1, it can be seen that N-BEATS also
tends to overpredict for Italy dataset. In contrast, it was observed that for some other
data sets this issue is negligible. Overprediction can be dealt with to a large extent by
a suitable selection of τ . However, this parameter has to be tuned for each model and
cannot be determined in general.
Figure 4.5 shows the forecast error distributions of all results by varying the forecast
horizon from 15 minutes up to 12 hours ahead. The analysis horizon is set as a multiple
of the forecast horizon. Several tests have shown that an analysis period of 4 to 6 times
the forecast horizon delivers the best results. After comparing the results with similar
publications in this field, such as Okumus and Dinler, 2016, it can be concluded that
the accuracy of the results of the proposed architecture is exceptionally good for very
short-term results, in the range of 4 hours or shorter. Moreover, it was observed that the
error varies greatly for longer forecast horizons and is highly dependent on the dataset.
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Figure 4.4.: Scatter plot of forecasted vs observed wind power for all implemented models. Left figure
displays the coefficient of determination for forecast horizon of 15 minutes for Germany.
Right figure displays the coefficient of determination for forecast horizon of 1 hours for
Germany.

Figure 4.5.: The MAPEs for all countries are depicted as distribution for the corresponding forecasting
horizon to be predicted as well as the median and extremas for the 15-minutes, 30-minutes
and hourly sample rates.
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4.2. Forecast-based optimal control of a local energy
community

In the following Subsection 4.2.1 and 4.2.2, the outcomes and implications from research
question 2 and 3 are explored. These two interconnected papers collectively contribute
to a comprehensive understanding of forecasting models performance and their impact
on LECs. Through rigorous analysis and evaluation, valuable insights into the accuracy
and forecast value of advanced forecasting methods, their suitability for optimizing LEC
operation, and the influence of different energy price scenarios are unveiled.

4.2.1. Performance Evaluation of Forecasting Models in the context of
LECs

This section is divided into two parts to distinguish between forecast-related KPIs and
LEC-related KPIs. All simulations were conducted with a horizon from 01.07.2021 00:00
to 31.12.2021 23:45.

4.2.1.1. Forecast quality

The calculation of the errors is based on 24-hour time windows and compared with
the actual value, since forecasts are updated once a day. Figure 4.6 shows the sample
results of each prediction method, excluding the fictive ones, for the load as well as
DHW demand for 2 days in July. The naïve forecast performed the worst and was
very volatile in contrast to the other methods. A certain structure can be identified in
which statistical methods (multiple regression, kNN) have more volatility than the ML
approaches (XGBoost, Prophet) at certain periods of time.
Table 4.6 summarises all error metrics regarding load and DHW demand. The results
show that for load forecasting, Prophet was the most accurate, slightly better perform-
ing than XGBoost in every aspect. Additionally, these highly advanced forecasting
approaches have about a 14 % lower MAPE than the naïve method. Moreover, predict-
ing DHW demand is more difficult compared to the load indicated by the higher error
metrics. Another interesting result is that one prediction method is not always the best
performer in all metrics. For instance, Prophet and XGBoost deliver different results
in terms of MAPE and sMAPE. This is because MAPE and sMAPE work differently
for values close to zero. Based on the DHW dataset, it appears that the distribution
is extremely skewed due to the values close to zero as well as different penalisations
of positive and negative errors for MAPE . Another interesting aspect that should not
be neglected is the time required for training and prediction. In general, advanced ML
methods require much more time for training. However, when it comes to executing
the predictions, XGBoost shines with a comparable short execution time in contrast to
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Figure 4.6.: Forecasted result samples for load demand (top) and DHW demand (bottom) for two days
in July.

Prophet.

forecast approach Accuracy Time in s

MAPE sMAPE nRMSE MASE Train Pred.

electricity

Naïve 37.31 36.26 0.1478 1.000 0.1 0.1
Multiple Regression 27.85 24.15 0.0876 0.836 3.4 0.5
k-Nearest Neighbor 27.60 24.77 0.1061 0.916 6.6 0.9
XGBoost 23.89 21.79 0.0885 0.877 14.2 1.2
Prophet 23.53 21.54 0.0857 0.826 13.8 1.1
Favorable Forecast 19.99 20.38 0.0699 0.509 0.1 0.1
Excellent Forecast 14.95 15.15 0.0521 0.403 0.1 0.1

domestic
hot
water

Naïve 77.39 46.83 0.1004 1.000 0.1 0.1
Multiple Regression 65.78 28.82 0.0616 0.836 3.2 0.4
k-Nearest Neighbor 62.86 31.77 0.0711 0.913 4.5 0.8
XGBoost 58.17 27.43 0.0594 0.841 12.3 1.1
Prophet 55.82 28.63 0.0601 0.837 12.8 1.0
Favorable Forecast 45.15 23.66 0.0523 0.740 0.1 0.1
Excellent Forecast 35.59 18.08 0.0498 0.666 0.1 0.1

Table 4.6.: Comparison of forecasting approaches with respect to errors for load and DHW demand.
The metrics used are MAPE, sMAPE, nRMSE, and MASE, which are widely used in the
literature. Favorable and excellent forecasts are hypothetical forecasting methods designed to
achieve a certain accuracy. The best performers are highlighted with bold letters, excluding
fictive forecasts.

Figure 4.7 shows the absolute error distribution for load and DHW demand for each
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Figure 4.7.: Absolute error distribution for each prediction method on an hourly basis for load demand
(top) and DHW demand (bottom).

hour. During the day, higher errors occur, and overnight errors are much lower for both
predicted variables. Error peaks for load demand occur in the morning and late afternoon
to evening routine, depending on user behaviour. In this case, it can be assumed that
the largest proportion of residents spend their time outside the community (e.g., at
work) over the day, particularly over midday. As expected, the naïve method has the
lowest accuracy every hour. Another surprising outcome is that Prophet performs more
accurately during the day and XGBoost is slightly more accurate overnight.

4.2.1.2. Energy community balance

The optimisation problem and the described management approach were simulated in
the setup application proposed in Section 3.2.1.2, considering EBat,init = 0.2 kWh, a total
domestic hot water demand of 9180.65 kWh and total PV production of 13 026.50 kWh.
The results are shown in Table 4.7 and plotted in Figure 4.8.
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Naïve Mult. Regr. kNN XGBoost Prophet Favorable Excellent Perfect

Grid_in 4 845.12 4 776.61 4 747.08 4 716.18 4 734.96 4 683.96 4 650.83 4 496.80
Grid_out 4 307.43 4 276.97 4 236.63 4 214.75 4 238.05 4 158.02 4 119.64 3 971.91
DHW 9 180.65 9 180.65 9 180.65 9 180.65 9 180.65 9 180.65 9 180.65 9 180.65
HP_el 5 665.98 5 640.61 5 644.82 5 640.14 5 637.89 5 661.30 5 662.96 5 662.17
BESS_ch. 3 238.43 3 132.41 3 181.86 3 166.25 3 164.79 3 205.69 3 191.66 3 171.47
BESS_disch. 2 901.13 2 808.43 2 850.04 2 839.72 2 839.64 2 874.52 2 858.45 2 843.34
Load 7 561.08 7 561.08 7 561.08 7 561.08 7 561.08 7 561.08 7 561.08 7 561.08
PV_el 13 026.50 13 026.50 13 026.50 13 026.50 13 026.50 13 026.50 13 026.50 13 026.50
BESS_start 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
BESS_end 9.83 10.56 10.86 10.40 10.74 11.15 11.20 8.41
BESS_gain 9.63 10.36 10.66 10.20 10.54 10.95 11.00 8.21
BESS_loss 327.67 313.61 321.16 316.33 314.61 320.22 322.21 319.92

Table 4.7.: The energy community results in kWh including all energy demands and generations for
total scheduled horizon. The best performing results are marked in bold (excluding fictive
and perfect forecast methods).
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Figure 4.8.: The results for assets relative to the perfect forecast.

Unsurprisingly, the more accurate the forecasts, the less energy is needed from the grid.
At the same time, the cumulative results also show that the lower the forecast error,
the less energy is fed into the grid. It can therefore be assumed that there is a clear
correlation between forecast accuracy and the degree of self-consumption in terms of
load cover and supply cover factors. In other words, the more accurate the forecasts
are, the more local renewable energy is used by the energy community itself. The heat
pump operates consistently over all forecast variants. This is because the comfort level
(i.e., room temperature) must be maintained within certain ranges; any deviations in
the objective are penalised. Another result can be seen for charging and discharging the
battery. In general, these two values are little to hardly dependent on forecast accuracy.
However, the naïve forecast means that more use is made of the battery. This also
resulted in the largest value for storage losses.
Table 5.3 shows the evaluation of the LEC according to the KPIs for each forecasting
method. In the results shown previously, Prophet provided the most accurate forecasts.
An examination of the load cover factor and supply cover factor shows that XGBoost
performs better, or in other words, achieves a higher level of self-consumption. From
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this, it can be deduced that the most accurate forecasting method, as measured by
certain defined forecast quality metrics, does not necessarily lead to the best LEC result
in terms of self-consumption.

Perfect Naïve Mult. Regr. kNN XGBoost Prophet Favorable Excellent

Load Cover
Factor 0.660 0.634 0.638 0.640 0.643 0.641 0.646 0.648

−4.16 % −3.42 % −3.05 % −2.69 % −2.92 % −2.20 % −1.80 %
Supply Cover
Factor 0.687 0.660 0.663 0.666 0.668 0.666 0.673 0.675

−4.05 % −3.63 % −3.15 % −2.87 % −3.14 % −2.18 % −1.75 %
On-Site
Energy Ratio 0.960 0.959 0.962 0.961 0.962 0.962 0.960 0.960

−0.11 % 0.20 % 0.10 % 0.18 % 0.21 % −0.02 % −0.05 %

Table 4.8.: Benchmarking of all prediction methods with MPC management of energy community. The
examined KPIs are load cover factor, supply cover factor and on site energy ratio.

The on-site energy ratio is subject to only minor fluctuations; forecast accuracy is not
considered to have a significant impact on this KPI. Since the building has an on-site
energy ratio of almost 1, it can be considered a nearly zero-energy building (nZEB).
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4.2.2. Forecast-based Optimal Control Strategies in LECs under price
uncertainty

All simulations were conducted with a horizon from 01.07.2021 00:00 to 31.12.2021 23:45
and extrapolated to a full year to increase comparability with other studies. All input
data for the MPC were identical for each scenario; only the price changed in each scenario
to set the price as the unique sensitivity. The major findings of this study are presented
at the end of this section, as well as any limitations of the study that could not be
accommodated. Furthermore, opportunities for future research are provided, which
emerged over the course of the study.

4.2.2.1. Comparison of the accuracy of forecasting methods

To draw conclusions about the forecast quality, several suitable metrics were applied.
In general, one single metric was not sufficient; several applicable metrics were used
to obtain a full understanding of which forecast algorithm delivered the most accurate
results. Thus, three different and widely used metrics in the scientific field were used to
assess quality. The first metric is the MAE, which is shown in Equation 4.1, is one of
the most common error metrics in the field of forecasting. It provides information about
the average magnitude of forecast errors, is robust to outliers and simple to understand.
However, it assigns equal weight to all errors, which may not be appropriate in situations
where large errors are more significant.

MAE = 1
T

T�
t=1

(|yt − ŷt|) (4.1)

The second used metric was the MAPE, as shown in Equation 4.2. Because it is a relative
metric, it was used to compare the accuracy of forecasts across different datasets. MAPE
can be misleading if the actual values are zero or close to zero.

MAPE = 1
T

T�
t=1

 |yt − ŷt|
|yt| · 100


(4.2)

To account for the scale and the variance of forecast errors, the nRMSE, shown in
Equation 4.3, was the third metric used. It provides a standardised measure but could
be difficult to interpret.

nRMSE = 1
max(yt) − min(yt)

	

� 1
T

T�
t=1

(yt − ŷt)2 (4.3)

Additionally, the Mean Squared Error (MSE) was utilised, as depicted in Equation 4.4.
MSE calculates the average of the squares of the errors, which penalizes larger errors
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more significantly than MAE. This can be advantageous in situations where large errors
are particularly undesirable.

MSE = 1
n

T�
i=1

(yt − ŷt)2 (4.4)

Furthermore, the Mean Absolute Scaled Error (MASE) was employed to assess forecast
accuracy. MASE, presented in Equation 4.5, compares the MAE of the forecast to the
MAE of a naive or benchmark forecast, providing insight into the relative accuracy of
the forecast. This metric is valuable for evaluating forecast performance in comparison
to a baseline, especially when assessing the effectiveness of forecasting models across
different time series or datasets.

MASE = MAE
1

T −1
�T

i=2 |yt − yt−1| (4.5)

In this study, MAE, MAPE, MSE, and nRMSE are opted as primary error metrics for
the following reasons:

1. Interpretability: MAE, MAPE, MSE, and nRMSE are intuitively interpretable
metrics that provide a clear sense of the magnitude of forecast errors. This in-
terpretability is valuable, especially in the context of energy forecasting for multi-
apartment buildings and energy communities, as it allows stakeholders to readily
understand the practical implications of forecast accuracy.

2. Robustness to Outliers: MAE, MAPE, and MSE are robust to the presence of
outliers in the data. Given the dynamic and occasionally unpredictable nature of
energy consumption and generation in these settings, robustness to extreme values
is a desirable characteristic in error metrics.

3. Meaningful Percentage Error: MAPE, in particular, provides a percentage-based
error measure that is meaningful for stakeholders, as it quantifies the relative
forecast error. This is valuable for understanding the significance of errors in the
context of energy cost and planning.

4. Normalised Metric (nRMSE): nRMSE is included to account for the scale of the
data and to facilitate comparisons across different forecasting horizons or datasets.
Normalisation ensures that the metric remains meaningful even when dealing with
variables of varying magnitudes.

5. Penalising large errors: MSE calculates the average of the squares of the errors,
which penalises larger errors more significantly than MAE. This can be advanta-
geous in situations where large errors are particularly undesirable.
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6. Direct comparison to a baseline: MASE compares the MAE of the forecast to the
MAE of a naive or benchmark forecast, providing insight into the relative accuracy
of the forecast. This metric is valuable for evaluating forecast performance in
comparison to a baseline, especially when assessing the effectiveness of forecasting
models across different time series or datasets.

Together, these metrics offer a comprehensive evaluation of forecast accuracy, captur-
ing different aspects such as average error magnitude, squared error, relative accuracy
compared to a benchmark forecast, and robustness to outliers.
As presented in Section 3.2.2, forecast methods were applied to energy and DHW de-
mand. Table 4.9 summarises the error metrics for each prediction method. The results
of the comparison showed that the accuracy of the forecasting methods varied depend-
ing on the metrics being used. In general, the approaches for predicting energy demand
included NBEATSx, Prophet and XGBoost, the best performers. The k-nearest neigh-
bour and multiple regression were intermediate solutions and the naïve approach was a
simple but weak performer. The metrics for predicting DHW demand appear contra-
dictory at first but can be explained because MAE and nRMSE are absolute measures.
Thus, they do not consider the scale or magnitude of the actual values and treat all
errors equally. Consequently, NBEATSx forecast errors were generally smaller in mag-
nitude than Prophet. On the other hand, Prophet delivered a remarkable MAPE that
considers the magnitude of the actual values. In conclusion, which forecast method
performed better depended on the specific context and requirements of the problem.
Because total cost was an important research question in this study, the absolute er-
ror metric was weighted as more significant because it could be associated with cost
increases or reductions. Hence, NBEATSx was, overall, selected as the best-performing
forecast approach for energy and DHW demand in this study. The two hypothetical
approaches, favourable and excellent, are later used in the analysis of the LEC KPIs to
provide a possible outlook for more accurate forecast methods that could be developed
in the future.
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energy

MAE MAPE nRMSE MSE MASE training
in W in % in W 2 in sec

Naïve 662.45 37.31 0.1478 911 469 1.0 0.1
Multiple Regression 528.79 27.85 0.1101 491 428 0.953 3.4
k-Nearest Neighbor 581.98 27.60 0.1329 718 440 0.989 6.6
NBEATSx 411.15 22.96 0.0956 371 773 0.741 22.4
XGBoost 496.78 23.89 0.1109 500 207 0.895 14.2
Prophet 487.34 23.53 0.1074 469 455 0.878 13.8
Favourable Forecast 214.79 19.99 0.0438 76 614 0.385 0.1
Excellent Forecast 171.84 14.95 0.0349 49 798 0.309 0.1

domestic hot water

Naïve 897.45 77.39 0.1004 1 477 951 1.0 0.1
Multiple Regression 702.57 65.78 0.0776 878 426 0.738 3.2
k-Nearest Neighbor 790.86 62.86 0.0892 1 164 396 0.831 6.6
NBEATSx 654.29 68.20 0.0737 729 665 0.656 19.7
XGBoost 660.18 58.17 0.0746 813 319 0.694 12.3
Prophet 675.49 55.82 0.0757 836 793 0.71 12.8
Favourable Forecast 627.74 45.15 0.0721 680 339 0.593 0.1
Excellent Forecast 607.71 35.59 0.0707 620 785 0.542 0.1

Table 4.9.: Comparison of forecasting approaches with respect to errors in energy and DHW demand.
The metrics used are MAE, MAPE, MSE, nRMSE and MASE, which are widely applied
in the topic of forecasting. Favourable and excellent forecasts are hypothetical forecasting
methods designed to achieve a certain level of accuracy. The best performers are highlighted
with bold letters, excluding hypothetical forecasts. Additionally, average time for training
each forecast model is listed.

To assess the costs of forecast errors appropriately, the errors must be distinguished by
time step, because an error at a certain hour does not necessarily inflict the same cost
if the same error occurs at a different hour. In other words, small forecast errors may
inflict higher costs compared to higher forecast errors at various times of the day. To
address this circumstance, Figure 4.9 shows the absolute forecast error for three selected
approaches (naïve, Prophet and NBEATSx) for each hour of the day. In general, at the
beginning of the day and in the late afternoon, forecast errors are greater than overnight
due to the swarm behaviour of consumers. This result, combined with Table 4.9, shows
when forecast errors lead to excessive costs or reduce the possible revenue due to fewer
grid exports. This fact has been discussed in detail in previous work Putz et al., 2023.
The total costs consist of the grid energy exchange, the PV, which receives remuneration
for feed-in, and the battery storage, which can only be charged by PV generation.
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Figure 4.9.: Hourly distribution of absolute forecasting error for load demand (top) and DHW demand
(bottom) for naïve, Prophet and NBEATSx approaches. To make the results comprehensible,
the absolute error was aggregated to an hourly value instead of displaying the error for every
15 minutes.

To assess the real value of each forecast, Table 4.10 summarises the total grid imports,
exports and sum of annual energy transferred to the battery in kWh for every scenario
and each forecast method.
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Grid in

FT 2020 2021 2022

Naïve 9609.2 9883.8 10332.0 10420.4
LR 9526.6 9838.0 10224.5 10247.0
kNN 9533.2 9768.4 10128.2 10230.8
NBEATSx 9358.5 9675.2 10046.0 10028.3
XGBoost 9452.9 9748.4 10158.0 10161.1
Prophet 9482.1 9729.6 10088.6 10095.0
Favourable 9200.3 9539.8 9809.3 9985.0
Excellent 9173.9 9495.1 9826.9 9907.6
Perfect 8972.3 9309.3 9571.6 9612.8

Grid out

FT 2020 2021 2022

Naïve 8526.2 8693.3 8919.3 9003.8
LR 8529.6 8747.5 8885.6 8898.8
kNN 8516.1 8662.9 8839.1 8923.8
NBEATSx 8313.5 8519.7 8678.8 8678.0
XGBoost 8461.0 8662.2 8836.9 8834.6
Prophet 8468.9 8643.3 8794.6 8800.2
Favourable 8157.7 8391.8 8459.7 8525.2
Excellent 8120.6 8336.1 8447.4 8471.1
Perfect 7928.0 8140.4 8190.7 8190.3

Battery charge

FT 2020 2021 2022

Naïve 6405.3 6782.9 7163.7 7652.7
LR 6244.1 6617.4 7031.5 7556.7
kNN 6350.6 6714.9 7108.1 7609.8
NBEATSx 6345.1 6735.9 7100.2 7606.0
XGBoost 6316.9 6668.9 7071.7 7616.2
Prophet 6319.6 6655.4 7078.0 7594.1
Favourable 6363.8 6779.6 7165.5 7697.8
Excellent 6370.5 6763.2 7172.2 7716.4
Perfect 6355.9 6757.8 7157.3 7719.9

Table 4.10.: The total energy figures for the LEC results in kWh, including energy exchange with the
grid and battery charge for every forecast method and each scenario with flat tariff (FT).

In general, grid import, export and battery usage increased in scenarios with higher
and more volatile energy prices. The grid import in 2022 has already increased by
3.2 % compared to 2020 for the perfect forecast and by 7.1 % compared to the flat tariff
scenario. In a realistic environment that uses the naïve approach, grid import increased
by 8.4 % when comparing flat tariff and 2022 price data. The study showed that a
highly sophisticated method such as NBEATSx also delivers an increase of 7.2 %, which
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is already close to perfect foresight. Similarly, grid export increased at a smaller rate.
Contrary to this, battery usage increased remarkably. In numbers, the total energy
charged/discharged by the battery increased by almost 14 % for all forecast methods
compared to the variable tariff in 2020, 2021 and 2022. Additionally, battery usage
increased by approximately 20 % compared to the flat tariff and 2022 scenarios. There
are three major conclusions:

1. By investigating the grid usage of an LEC, which is controlled by an MPC with
minimising total energy costs and maximising comfort level as objective, higher
and volatile energy prices lead to significant higher grid import and export.

2. The impact of forecast accuracy on total energy costs is even more substantial
in the case of higher and volatile energy prices. This effect is exceeded by the
previous one and leads to a greater impact of forecast accuracy on LEC results
during higher and volatile energy prices.

3. Battery use is increased significantly, which leads to reduced battery life due to
the increased number of load cycles.

Figure 4.10 presents the total energy and costs compared to the perfect approach for
naïve, NBEATSx and Prophet methods for each scenario. This result shows how far the
forecast approaches are from the optimum. In summary, grid imports are rising, and
at the same time battery usage is decreasing. Nevertheless, a more accurate forecast
approach, such as NBEATSx or Prophet, has a lower total cost increase compared to
the naïve approach.

76



4.2. Forecast-based optimal control of a local energy community

Import Export
Charging Cost

Revenue
Total Cost

0

5

10

15

20

25

Re
lat

ive
de

via
tio

n
to

Pe
rfe

ct
in

% Naive
FT
2020
2021
2022

Import Export
Charging Cost

Revenue
Total Cost

0.0

2.5

5.0

7.5

10.0

12.5

Re
lat

ive
de

via
tio

n
to

Pe
rfe

ct
in

% NBEATSx
FT
2020
2021
2022

Import Export
Charging Cost

Revenue
Total Cost

−2

0

2

4

6

8

10

Re
lat

ive
de

via
tio

n
to

Pe
rfe

ct
in

% Prophet
FT
2020
2021
2022

Figure 4.10.: Energy and cost results for naïve (left), NBEATSx (centre) and Prophet (right) approaches
in relative deviation to the perfect forecast results. Grid exchange increased and battery
usage decreased with higher and more volatile energy prices. At the same time, costs
increased substantially in 2022 due to extreme price conditions. NBEATSx and Prophet
could deliver more accurate forecasts and weaken the cost increase in comparison to the
naïve approach.

In a typical real-world environment, the naïve approach is used as a reference; thus,
more sophisticated forecast methods must be benchmarked with this baseline. Figure
4.11 shows the relative deviation of NBEATSx and Prophet, as well as excellent forecast
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results compared to the naïve approach results. By simply using an approach such
as NBEATSx or Prophet, the total costs can be reduced significantly, in particular
for high-price scenarios. Moreover, if the trend of more accurate forecast approaches
continues, the possible cost reduction is even greater, as presented by the excellent
forecast approach.

78



4.2. Forecast-based optimal control of a local energy community

Import Export
Charging Cost

Revenue
Total Cost

−10

−8

−6

−4

−2

0

Re
lat

ive
de

via
tio

n
to

Na
ive

in
%

NBEATSx
FT
2020
2021
2022

Import Export
Charging Cost

Revenue
Total Cost

−10

−8

−6

−4

−2

0

Re
lat

ive
de

via
tio

n
to

Na
ive

in
%

Prophet
FT
2020
2021
2022

Import Export
Charging Cost

Revenue
Total Cost

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Re
lat

ive
de

via
tio

n
to

Na
ive

in
%

Excellent
FT
2020
2021
2022

Figure 4.11.: Energy and cost results for NBEATSx (left), Prophet (centre) and excellent (right) ap-
proaches in relative deviation to the naïve forecast results. Grid exchange and battery
usage decreased with higher and more volatile energy prices, except for the case of ex-
cellent forecast in 2022. Total costs could decrease significantly in 2022 due to smaller
forecast errors. The excellent forecast results show that significant cost reductions are
further possible if forecast errors decrease in the future.

Table 4.11 summarises the total costs for each forecast method and price scenario. Ad-
ditionally, the relative difference between the perfect and naïve approach is shown. Best
performers, except for the favourable and excellent approaches, are emphasised and
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marked in bold. A significant result was that a year of high and volatile prices did
not directly imply high total costs. On the contrary, it offers opportunities to optimise
consumption and flexibility to benefit from price volatility, as it is the case for the price
scenario in 2022.

Total costs in e

FT 2020 2021 2022

Naïve 1580.80 1071.74 2468.28 1541.11
LR 1564.13 1049.40 2395.63 1377.36
kNN 1565.99 1051.94 2396.54 1443.28
NBEATSx 1539.17 1041.90 2401.46 1389.51
XGBoost 1552.14 1043.09 2396.94 1396.86
Prophet 1557.66 1040.88 2379.57 1369.61
Favourable 1513.74 1024.59 2336.84 1357.80
Excellent 1509.96 1019.58 2344.40 1337.37
Perfect 1477.34 997.42 2295.55 1233.89

Difference to Perfect in %

FT 2020 2021 2022

Naïve 7.0 7.45 7.52 24.9
LR 5.87 5.21 4.36 11.63
kNN 6.0 5.47 4.4 16.97
NBEATSx 4.19 4.46 4.61 12.61
XGBoost 5.06 4.58 4.42 13.21
Prophet 5.44 4.36 3.66 11.0
Favourable 2.46 2.72 1.8 10.04
Excellent 2.21 2.22 2.13 8.39

Difference to Naïve in %

FT 2020 2021 2022

LR -1.05 -2.08 -2.94 -10.62
kNN -0.94 -1.85 -2.91 -6.35
NBEATSx -2.63 -2.78 -2.71 -9.84
XGBoost -1.81 -2.67 -2.89 -9.36
Prophet -1.46 -2.88 -3.59 -11.13
Favourable -4.24 -4.4 -5.33 -11.89
Excellent -4.48 -4.87 -5.02 -13.22
Perfect -6.54 -6.93 -7.0 -19.93

Table 4.11.: Total costs based on actual flat tariff prices for energy purchase and feed-in and price
scenarios 2020, 2021 and 2022. In addition, the relative difference between the perfect and
naïve approach is shown; the best results except fictive approaches are marked in bold.

An additional major finding is that NBEATSx, which was selected as the most accurate
forecast approach in Section 4.2.2.1, on average, emerged as the most accurate forecasting
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approach, consistently outperforming other methods in terms of traditional error metrics
such as MAE, MAPE, nRMSE, MSE and MASE. However, a compelling aspect of this
finding is that despite its superior accuracy, NBEATSx does not consistently translate
into the best LEC performance in terms of total costs. This observation might initially
appear counter intuitive, given the volatile and non-constant nature of energy prices. To
elucidate this apparent paradox, it is crucial to consider the concept of forecast value,
which extends beyond mere accuracy. In dynamic and fluctuating energy markets, fore-
cast errors can have significant financial implications. In such scenarios, even a small
deviation from the actual values can result in substantial cost differentials. Prophet,
although ranking slightly lower in terms of accuracy when compared to NBEATSx, ex-
cels in delivering more valuable forecasts under conditions where forecast errors can lead
to excessive costs. This is a critical consideration, especially in the context of LECs,
where cost optimization is a primary objective. Furthermore, it is noteworthy that a
simpler forecasting approach, multiple regression, yields similar total cost results for the
year 2022. This highlights the importance of evaluating forecasting methods not only
in terms of accuracy but also with a keen eye on their practical implications and cost-
effectiveness within the specific operational context. In summary, this study underscores
the multifaceted nature of forecasting methods’ performance in LECs, where accuracy
and forecast value are intertwined. While NBEATSx excels in accuracy, it may not al-
ways lead to the most cost-effective LEC operation as Table 5.1 shows. Prophet’s ability
to deliver valuable forecasts in volatile price scenarios and the competitive performance
of a simpler approach like multiple regression further emphasise the need for a holistic
evaluation approach that considers both accuracy and forecast value.
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5. Discussion and synthesis of results

This chapter serves as a platform for the discussion and synthesis of the findings ob-
tained from the three studies, aiming to address the initial research questions. Section
5.1 and 5.2 focus on the individual results outlined in Section 4, providing a comprehen-
sive analysis and interpretation of the results. Through these discussions, key insights
and implications of the findings are explored, shedding light on their significance and
contributing to the broader understanding of the research area. Finally, the Section 5.3
synthesizes the collective results, providing comprehensive answers to the initial research
questions and offering valuable insights for future research and practical applications.
This chapter is based on Putz et al. (2021), Putz et al. (2023) and Putz et al. (2024).

5.1. Deep neural architecture for short term wind power
forecasting

The evidence in this work demonstrates that N-BEATS is a new, valuable and pure DL
approach for VSTWPF. It can compete and outperform statistical and classical ML
as well as hybrid models. This work tailors the N-BEATS approach by customising a
pinball loss function which is a cutting-edge solution to the forecast bias.

Considerable progress has been made with regard to interpretability. One of the
most common criticisms of deep learning methods for time series is that they are a
black box and the inner processes are not intuitively interpretable. Thus, it is not
possible to understand how the result is obtained, in contrast to classical models such
as ARIMA, the N-BEATS forecast is discomposed into distinct, human-interpretable
outputs. These outputs can be used by utilities or system operators to facilitate their
decision making, as highlighted in Figure 5.1. Therefore, any developed model that is
interpretable, or at least being interpretable, is beneficial.
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Figure 5.1.: Constraining N-BEATS by adapting g(θ) to a monotonic and cyclical graph produces an
interpretable output. The resulting components, i.e., trend and seasonality, are extracted
and may be considered in further processes. A sample output for Austria and a forecast
window of 24 time steps which is equivalent to 6 hours is shown.

Regarding meta-learning, the learning process can be decomposed into an inner and
outer training loop according to Antoniou et al., 2019. The inner training loop focuses
on task-specific knowledge while the outer loop focuses on across-task knowledge. This
can be analogised to N-BEATS, where Θ is learnt inside the blocks and makes use of
the parameters that are learnt from the outer loop, where gradient descent trains the
weight matrices that Θ depends on. As the input passes through the blocks, Θ is slowly
updated, and as the backcast is residually stacked with the input, it conditions the
learning of Θ as the data feeds through the blocks.

Taken together, these findings confirm that a pure DNN model can deliver competitive
forecast results, in contrast to the conclusion of the M4 competition. Moreover, during
the implementation of the other models it was found that N-BEATS needs less time to be
implemented. It does not require any decomposition and hardly any data pre-processing
which is an essential and time-consuming part of the modeling process. Many ML or
statistical approaches require additional preliminary steps, such as deseasonalisation
or differencing, since they do not deal with non-stationary or non-linear relationships
between input and output. In fact, working with raw historic data and using built-in
mechanisms, such as residual links, backcast, and the aggregation of partial forecasts,
leads to accurate and reliable forecasts.
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5.2. Strengths and Limitations of forecast-based optimal
control approach

In this Section, the insights gathered from the investigations conducted by research ques-
tion 2 and 3 are combined. These studies collectively explore the intricate dynamics of
local energy communities and their optimization strategies. Section 5.2.1 delves into
the realm of advanced forecasting methodologies, shedding light on their potential to
enhance the performance of local energy communities. Meanwhile, Section 5.2.2 nav-
igates the intricate landscape of optimal control strategies within these communities,
emphasizing the crucial role of real-time decision-making under volatile energy prices.

5.2.1. Discussion of integration of advanced forecasting in LECs

In this section, the previously shown results are examined in more detail, and various
conclusions are drawn from them. There is a correlation between forecast KPIs and some
LEC KPIs. Building on this, it is also possible to provide evidence of cost reduction using
more accurate forecasting methods. For this purpose, the prices for energy purchase,
0.20e/kWh and feed-in 0.04e/kWh are multiplied at current flat tariff conditions and
extrapolated up to one year for easier comparison. Table 5.1 summarises the derived costs
for each prediction method and compares them with the perfect and naïve forecasts.

Forecast
approach

Total costs
in e

Difference to
Perfect in e

Difference to
Naïve in e

Difference to
Perfect in %

Difference to
Naïve in %

Naïve 1 592.68 112.37 - 7.59 -
Multiple
Regression 1 567.66 87.35 25.03 5.90 1.57

kNN 1 559.05 78.74 33.63 5.32 2.11
XGBoost 1 548.48 68.17 44.21 4.60 2.78
Prophet 1 554.10 73.79 38.59 4.98 2.42
Favorable 1 540.07 59.76 52.62 4.04 3.30
Excellent 1 529.88 49.57 62.80 3.35 3.94
Perfect 1 480.31 - 112.37 - 7.06

Table 5.1.: Derived costs based on actual flat tariff prices for energy purchase and feed-in. Accumulated
energy is extrapolated to one year for easier comparison.

Based on these results, a feasible cost reduction of up to 3 % can be assumed by using
more sophisticated forecast algorithms instead of naïve prediction. In this case, XG-
Boost is used in contrast to the naïve approach. It demonstrates that predictions of
significantly greater quality do result in a marginally higher value in terms of KPIs for
the energy community. The results show that XGBoost provides better results in terms
of costs compared to Prophet, although it is less accurate. This outcome is of particular
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importance and can be explained by the fact that it is not only the average error that
matters, but at what time and to what extent the error occurs. Figure 5.2 shows the
comparison of XGBoost and Prophet approaches in regard of the average load cover
factor which is directly related to the costs involved.
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Figure 5.2.: Detailed comparison between XGBoost and Prophet showing average load cover factor dif-
ference to perfect forecast for each hour of the day. XGBoost provides very similar results
to the perfect forecast during the early morning hours, and Prophet provides a significantly
lower LCF, causing more grid purchases. During the hours when there is a substantial
amount of PV generation, both perform almost identically. In the evening hours, though,
Prophet outperforms XGBoost and delivers higher LCFs than the perfect forecast due to an
increased usage of the battery.

The complex interaction of all assets and their constraints can lead to results, which are
not intuitive at first sight, but deliver the finding that evaluating forecasts based only
on accuracy might be misleading. An in-depth investigation has shown that there is no
apparent and time-coherent relationship between forecast errors and the costs caused
by them. The explanation for this is that, due to the dynamics of the building, there
are always different primary system conditions, such as various interior temperatures
or stored energy in the battery, or in the building mass. On the basis of this, it can
be deduced that a forecast error does not always have the same impact on costs across
the board. This means that the day with the largest deviation is not necessarily the
day with the worst cost balance deviation. To quantify this fact, Figure 5.3 shows the
average resulting electricity price per hour which directly indicates when the individual
forecasts cause the highest cost deviations from the Perfect scenario. Comparing this
with the absolute errors shown in Figure 4.7 indicates when a forecast error has a major
cost impact.
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Figure 5.3.: The average electricity prices are calculated on the basis of the demand and the costs incurred
for each time step. The demand is composed of the electrical demand of the heat pump,
the household electricity demand and the energy for charging the battery. The total costs
consist of the costs caused by the grid, the PV, which receives remuneration for feedin,
and the battery, which can only be charged by PV generation. The figure shows for each
forecast method how severe the deviation of the average electricity price is in comparison to
the perfect scenario at a certain hour of the day, which is caused by the forecast error.

Due to increasingly accurate forecasts in the future, it can be assumed that there is
also potential for the degree of self-consumption. Based on these results, it can be
assumed that just around a 1 % improvement potential if one assumes that a highly
sophisticated algorithm such as XGBoost or Prophet is already being used. In most
cases, however, it should be assumed that the naïve method is implemented and thus
expects a self-consumption improvement of theoretically 3 %. Additionally, the results
of the favorable and excellent forecast show an ongoing trend to further increase the
value of such an forecast-based optimised control. Nevertheless, the improvement from
a current state-of-the art method to a hypothetical better method, demonstrated by
the excellent forecast, is less than that from a naive approach to XGBoost. Figure 5.3
represents the connection between quality in terms of accuracy of a forecast method
and value in terms of cost reduction of the energy community.

From another point of view, the whole energy community, all members added together,
has annual costs of electricity and heating of 1592.68e. On average, this would mean a
household bill of 176.96e per year, or 2.16e per m2. The results show that the use of
more accurate forecast algorithms results in a price reduction of almost 3 % compared
to a naïve forecast. This means that the total bill would decrease by 48e per year.
The cost difference using a modern forecasting algorithm is about 0.05e per m2 per
year. At first glance, this reduction appears negligible. Nevertheless, it must be noted
at this point that the simulated multi-party house already complies with all the latest
norms and building standards, and thus unfortunately does not reflect most households
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in the building stock. This is verified by the total on-site energy ratio, which is close
to 1 and means that it is almost a zero-energy building. Thus, it can be assumed
that the calculated value represents a lower limit, and that the savings are significantly
higher in, for example, poorly insulated buildings or even old stock as long as there is a
degree of freedom in energy pricing. This price gradient could be provided by an on-site
PV generator like in the demonstrated building as well as any other electricity source
taking part in the energy community or even time or power dependent grid tariffs. The
investigation of such a building already provides a topic that would be interesting and
necessary to investigate. However, the data situation for such buildings is a significant
challenge, since they are typically not equipped with sensors for recording measured
values.

heating in
kWh

cooling in
kWh

heating in
kWh m−2 a−1

cooling in
kWh m−2 a−1

Perfect 6 970.30 1 718.76 18.95 4.67
Naïve 7 015.22 1 705.00 19.07 4.63
Mult. Reg. 6 947.32 1 685.68 18.88 4.58
kNN 6 976.15 1 681.46 18.96 4.57
XGBoost 6 956.15 1 682.04 18.91 4.57
Prophet 6 939.69 1 684.53 18.86 4.58
Favorable 6 976.79 1 714.48 18.96 4.66
Excellent 6 974.85 1 718.06 18.96 4.67

Table 5.2.: Heating demand and cooling demand summed up for the period from 01.07.2021 to 31.12.2021.
From this, the specific heating and cooling demand in kWh m−2 a−1 was extrapolated to a
whole year for a living space of 735.8 m2.

Another interesting finding from Table 5.2 is that some of the forecasts results in lower
heating and cooling energy compared to the perfect scenario. This is surprising at
first sight, considering that, in Figure 5.3, this exact scenario uses the least amount of
energy from the grid. An explanation for this, can be found in the dynamic building
model section. The forecasts affect the operation of the heat pump system and the
expected heat gains in the building in a way that leads to a violation of the zone’s
temperature boundaries for some points in time. In these cases, the optimal control is
not always able to correct for forecast inaccuracies simply due to the dynamic weight
of the building. For some forecast algorithms, this causes a slightly lower mean zone
temperature during the heating season and a higher mean zone temperature during the
cooling season. In terms of this, energy demand is reduced slightly over the course of
a year. Because this violation of temperature constraints is also a reduction in user
comfort, it must be considered as a pivotal indicator. Comparing XGBoost and Prophet
as the two most promising approaches, Prophet causes more comfort violations.
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In addition to the previously outlined results, several other aspects pose challenges re-
lated to forecasting in the context of energy communities. The major concerns identified
during the compilation of this paper are briefly outlined below.

• When building ML models, the quantity and quality of historical data are crucial.
Initially, there are many settings to understand and optimise. In addition, there
are several hyperparameters that must be adjusted by the modeller based on the
chosen model. Due to the difficulty in obtaining high-quality labelled datasets, this
problem remains unresolved. The main cause of this is that service providers and
utility corporations keep real-time and historical data private, owing to different
security and privacy issues as described by Zhou et al., 2016.

• Current research, such as Van der Meer et al., 2018, shows that many forecast-
ing studies for PV energy generation offer only solutions for single solar farms.
They nevertheless form a network in a distribution system and are geographically
dispersed. In comparison to single-location methodologies, spatiotemporal predic-
tion algorithms are thought to be more accurate and practical for future smart
microgrids. Because the volatile PV generation in combination with the described
framework is outside the scope of this work, it is worth further investigation.

• Another challenge that motivates the research community to use ML in a way that
is helpful and intelligible for both expert and novice users is heterogeneous users
and their varied skill levels. For instance, a few of the mentioned papers solely pay
attention to residential or business clients. Additionally, ML models must be able
to accommodate both huge and small heterogeneous data while maintaining their
efficiency.

• Data acquired for distributed energy generation or load forecasting are frequently
obtained in private locations, making them vulnerable to privacy problems. Addi-
tionally, excessive data transfer necessitates the purchase of costly communication
equipment. It is therefore impracticable to provide all the data to a single place
for deep learning model training. It is crucial to develop new models that can
be trained locally on remote devices using the collected data to solve the afore-
mentioned issues. This process is known as federated learning, and it involves
cooperatively establishing a shared regional learning platform.

• The importance of probabilistic forecasting of load demand and renewable energy
source generation cannot be overstated according to Hong and Fan, 2016. Un-
certainty quantification is necessary for accurate and trustworthy forecasting as
shown by Abdar et al., 2021. The main goal of uncertainty quantification is to
reveal trustworthy confidence scores for predicting outcomes produced by ML tech-
niques and for information that the ML method has not correctly learned. In the
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past few years, it has gained noticeable interest from the research community. Cur-
rent studies, such as Raz et al., 2020 and Wang et al., 2019, show its applications
and advantages. Therefore, there is still a need for more research in this field to
improve the accuracy and dependability of ML models.

5.2.2. Discussion on forecast-based optimal control in local energy
communities with energy price uncertainty

In the context of the literature review, the results of this study provide insight into the
effectiveness of different forecasting methods for predicting energy and DHW demand in
an LEC. The results showed that the accuracy of the forecasts had a significant impact
on the total energy costs for the LEC, also shown in Putz et al., 2024. In general, more
accurate forecast methods directly imply lower total costs. However, the most accurate
forecast method, NBEATSx, did not result in the lowest total costs. The results of this
study were consistent with previous research on energy forecasting in communities; they
demonstrated, that accurate forecasts are critical for optimising the operation of energy
systems and minimising energy consumption and costs. The results also highlight the
importance of using appropriate forecasting methods and tools that are well-suited for
the specific characteristics of the energy system and the data being used.

Introducing additional KPIs, such as Load Cover Factor, Supply Cover Factor, On-
site Energy Ratio, and Grid Interaction Index, provides a more comprehensive assess-
ment of forecasting methods’ value proposition within LECs. By integrating these KPIs
alongside traditional error metrics, stakeholders can gain deeper insights into the prac-
tical implications and cost-effectiveness of forecasting approaches, facilitating informed
decision-making and optimisation of LEC operations.

• The Load Cover Factor (LCF) described in Equation 5.1 measures the proportion
of energy demand covered by on-site energy generation within the local energy
community. A higher LCF indicates greater self-sufficiency in meeting energy
demand locally.

LCF = On-site Energy Generation
Total Energy Demand · 100% (5.1)

• The Supply Cover Factor (SCF) described in Equation5.2 measures the proportion
of energy demand covered by on-site energy generation and storage capacity within
the local energy community. It provides a holistic view of the community’s ability
to meet its energy demand.

SCF = (On-site Energy Generation + Energy Storage Capacity)
Total Energy Demand · 100% (5.2)
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• The On-site Energy Ratio (OER) described in Equation5.3 measures the ratio
of on-site energy generation to total energy consumption within the local energy
community. It reflects the extent to which the community relies on on-site energy
generation.

OER = On-site Energy Generation
Total Energy Consumption · 100% (5.3)

• The Grid Interaction Index (GII) described in Equation 5.4quantifies the level
of interaction between the local energy community and the external energy grid.
A higher GII indicates greater reliance on the external grid, while a lower GII
suggests a higher degree of self-consumption and local energy generation.

GII = (Grid Imports + Grid Exports)
Total Energy Consumption (5.4)

The results shown in Table 5.3 indicate that while LCF values for each year (2020,
2021, 2022) varied slightly, Prophet method consistently achieved the highest values,
indicating a greater degree of coverage of energy demand by on-site generation.
Additionally, SCF values remained relatively consistent across methods and years, with
Prophet also achieving the highest values, indicating a high level of coverage of energy
demand by on-site generation and storage. Similarly, OER values were consistent
across methods and years, with Prophet consistently achieving the highest ratio of
on-site energy generation to total energy consumption. Furthermore, GII values showed
minimal variation across methods and years, with kNN method achieving slightly higher
values compared to others.

In conclusion, the comprehensive assessment of forecasting methods conducted in
this study reveals a nuanced understanding of their performance within LECs. While
NBEATSx initially demonstrates superior accuracy compared to Prophet, the evaluation
of LEC KPIs demonstrates that Prophet delivers higher value in terms of self-sufficiency,
energy generation, and interaction with the external grid. As a result, despite its lower
accuracy metric, Prophet ultimately leads to lower total costs within LEC operations.
This highlights the importance of considering not only accuracy but also the broader
implications of forecast value when selecting forecasting methods for optimising LEC
operation and minimising costs.

There are some limitations to this study that should be considered when interpreting
the results:

1. The study was conducted using data from a single LEC, which may not be repre-
sentative of other LECs. Therefore, the results should be treated carefully before
directly transferring them to other communities.
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Load Cover Factor Supply Cover Factor

2020 2021 2022 2020 2021 2022

Naïve 0.573 0.819 0.837 0.127 0.574 0.819
LR 0.568 0.82 0.838 0.13 0.574 0.82
kNN 0.576 0.822 0.842 0.129 0.58 0.821
NBEATSx 0.575 0.823 0.842 0.13 0.581 0.823
XGBoost 0.573 0.822 0.839 0.13 0.577 0.822
Prophet 0.577 0.825 0.837 0.131 0.58 0.825
Favourable 0.58 0.828 0.837 0.131 0.589 0.83
Excellent 0.582 0.83 0.837 0.131 0.589 0.831
Perfect 0.586 0.836 0.834 0.134 0.596 0.839

On-site Energy Ratio Grid Interaction Index

2020 2021 2022 2020 2021 2022

Naïve 0.856 0.124 0.57 0.815 0.852 0.131
LR 0.859 0.126 0.573 0.818 0.856 0.131
kNN 0.862 0.125 0.576 0.817 0.859 0.132
NBEATSx 0.861 0.125 0.58 0.821 0.859 0.132
XGBoost 0.858 0.127 0.577 0.82 0.855 0.131
Prophet 0.855 0.126 0.579 0.824 0.851 0.131
Favourable 0.858 0.127 0.584 0.828 0.854 0.136
Excellent 0.858 0.128 0.586 0.83 0.854 0.135
Perfect 0.856 0.131 0.595 0.838 0.853 0.137

Table 5.3.: Comparison of KPIs across implemented Forecasting Methods for the LEC. The table presents
the values of Load Cover Factor, Supply Cover Factor, On-site Energy Ratio, and Grid
Interaction Index for the years 2020, 2021, and 2022, evaluated across forecasting methods
including Naïve, LR (Linear Regression), kNN (k-Nearest Neighbors), NBEATSx, XGBoost,
Prophet, Favourable, Excellent, and Perfect. The values provide insights into the effectiveness
of each method in optimizing LEC operation and minimizing total costs.

2. The study considered a limited set of forecasting methods and KPIs; there may
be other methods and KPIs that could provide additional insights. For example,
the study did not consider the impact of weather conditions and weather forecast
errors, since historical weather predictions were not available or external factors
affecting forecast accuracy.

3. The study did not consider the economic impacts of the different forecasting meth-
ods, such as the costs associated with implementing and using different methods
nor computational effort. This is a key factor to consider when evaluating the
value of forecasts but may get neglectable due to economies of scale.

Given these limitations, there are several directions for future research that could build
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on the results of this study. For example, further research in the field of LECs could
explore additional dimensions of sensitivity analyses to enhance our understanding
of forecasting models’ robustness and performance. Investigating the sensitivity of
hyperparameters, such as neural network architectures and training settings, could shed
light on the optimal configurations for different LEC scenarios. Additionally, assessing
the impact of varying data sources, including the integration of real-time data and
alternative renewable energy generation inputs, would contribute to the refinement of
forecasting models tailored to specific LEC contexts.

Furthermore, future studies might consider sensitivity analyses that encompass a
broader spectrum of operational variables within LECs. This could involve examining
the sensitivity of energy storage system sizing, demand-side management strategies,
or the integration of emerging technologies like electric vehicles. By conducting com-
prehensive sensitivity analyses across these dimensions, researchers can provide LEC
stakeholders with more actionable insights for informed decision-making in dynamic
energy environments.

The research framework employed in this study demonstrates significant methodological
adaptability, making it applicable to diverse compositions within LECs. As elucidated
in previous work, the comprehensive grey-box building model at the core of this
methodology offers flexibility that extends to various LEC contexts, encompassing
residential, commercial, and industrial components. The framework can be customized
for different building types and sizes by estimating specific building parameters,
ensuring its suitability for a wide range of scenarios.

Moreover, this methodology exhibits geographic variability, accounting for variations
in climate typical of different regions. This adaptability is achieved through two key
factors: the ability to adjust the grey-box building model to accommodate varying local
climate conditions and the capacity to incorporate different weather data sources. This
enables precise modeling and forecasting in diverse geographic settings, enhancing the
framework’s applicability across a spectrum of climates.

In terms of market structures, while the study predominantly addressed flat tariff and
spot market pricing inputs, it acknowledges the importance of considering additional
market configurations. Future research endeavors could explore the integration of
various pricing mechanisms, such as time-of-use pricing, demand response programs, or
real-time market dynamics. This broader perspective would offer insights into how the
framework functions under a variety of market conditions.
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To emphasize the versatility of this approach, a case study was presented based on
a three-storey multi-apartment building. This model was chosen as a reference case
for zero-energy residential buildings in Austria, showcasing the framework’s real-world
applicability. While the focus was on this specific case, the methodology remains
readily adaptable to diverse building profiles and LEC scenarios. Encouraging further
investigations to explore its adaptability and robustness in different settings, this
research lays the foundation for broader applications.

Additionally, as energy systems become more complex and the demand for sustainable
energy grows, the need for accurate and reliable energy forecasting in LECs is more
important than ever. Future research in this field should focus on developing new models
and techniques that can address emerging challenges and opportunities, such as the need
for more accurate data, the integration of innovative technologies and energy sources, and
the increasing importance of environmental factors in energy planning and management.
Addressing these challenges and exploring new research directions, it can pave the way
for more sustainable and efficient energy systems in LECs.

5.3. Findings with respect to the research questions

The detailed key findings referring to each research question are outlined in this Section.
We will state the research questions once again and answer them with the findings and
insights gained in this work. We start with research question one.

Research question 1: How does the novel N-BEATS approach for wind power
forecasting, considering the uncertainty and stochastic behavior of wind speed, compare
to established models in terms of accuracy and forecast bias reduction?

The results show that it is possible to build a pure deep-learning model for time
series predictions that takes long-term trends and seasonality into consideration and
surpasses the accuracy of existing models that combine ML and statistical approaches
when applied to the same datasets. N-BEATS emerged as the top-performing model
in terms of accuracy, achieving a MAPE of 3.98%. This result represents a significant
improvement, as a MAPE below 4% is considered substantial. The hybrid model
approaches, particularly ES-RNN, also demonstrated competitive accuracy, with a
MAPE of 4.04%. However, N-BEATS exhibited the lowest bias, with an MPE of
-0.56. This indicates that N-BEATS consistently provided accurate forecasts without
significant over- or underprediction.
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The evaluation of different loss functions for N-BEATS revealed that the pinball sMAPE
loss function improved the overall approach. Notably, a τ value of 0.375 yielded the
most accurate results across all datasets.

Analysing the forecast accuracy for each country, N-BEATS consistently delivered
stable and accurate results for the majority of countries. It outperformed other models
in 10 out of 15 countries. Even for a country with data gaps in its history, the forecast
accuracy remained within the same range as other countries, indicating the robustness
of the approach.

The study also investigated the variation in forecast errors throughout the year and
during different times of the day. Inaccuracies were observed to peak during spring and
autumn, attributed to the fluctuating nature of wind patterns during these seasons. The
dependence of forecast error on the time of day showed that stronger winds typically
occur in the afternoon, resulting in increased turbulence and forecasting challenges.
Despite these variations, the overall approach consistently delivered robust results, with
error fluctuations within approximately 1% MAPE.

To assess the sensitivity to forecast horizons, the study examined forecast error distri-
butions by varying the forecast horizon from 15 minutes up to 12 hours ahead. Results
indicated that an analysis period of 4 to 6 times the forecast horizon produced the best
results. Comparisons with similar publications in the field confirmed that the proposed
architecture achieved exceptionally accurate short-term forecasts, particularly within a
range of 4 hours or shorter. However, it was observed that forecast errors varied sig-
nificantly for longer horizons and were highly dependent on the dataset being considered.

Although it seems tempting to apply the approach to other areas, the findings might
not be transferable since energy related problems often require domain knowledge,
which ML has no ability to tackle. Nevertheless, this approach, which is particularly
suitable for STWPF specifically, can be a powerful addition to the repertoire of every
forecaster. Results so far have been very promising, and the approach could eventually
be implemented in real-world forecasting applications in order to assist decision makers.

Overall, the study demonstrated the vital importance of accurate demand and gener-
ation forecasting, with N-BEATS emerging as the top-performing model. The results
showcased the model’s accuracy, stability, and robustness across different countries and
highlighted its effectiveness for very short-term forecasts. These findings have significant
implications for transmission system operators, distribution system operators, and
market participants in the energy market, as accurate forecasting is crucial for grid
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management, resource planning, market optimization, and overall operational efficiency.

Research question 2: How can the quality and value of energy demand forecasts
be assessed and optimized to support the effective and continuous operation of energy
communities, considering the random nature of weather and the interconnected dynamics
of the energy system?

The second study compared different forecasting methods for load and DHW demand.
The results showed that Prophet was the most accurate for load forecasting, slightly
outperforming XGBoost in every aspect. Both advanced methods had a lower MAPE
compared to the naive method. However, predicting DHW demand was more challeng-
ing, resulting in higher error metrics. It was found that different prediction methods
performed better in different metrics, indicating the influence of the data distribution
and error calculations. Training time was longer for advanced ML methods, but
XGBoost had a shorter execution time for predictions compared to Prophet.

The absolute error distribution for load and DHW demand showed higher errors during
the day, with lower errors overnight. The naive method consistently had the lowest
accuracy throughout the day. Surprisingly, Prophet performed more accurately during
the day, while XGBoost was slightly more accurate overnight.

There was a correlation between forecast accuracy and the degree of self-consumption,
indicating that more accurate forecasts led to higher self-consumption of local renewable
energy. The results also showed that the most accurate forecasting method did not
necessarily result in the highest value in terms of self-consumption. The evaluation
of LEC metrics revealed that XGBoost achieved a higher level of self-consumption
compared to Prophet, despite being less accurate in terms of forecasting.

Cost analysis demonstrated that using more sophisticated forecast algorithms instead
of the naive approach could lead to a feasible cost reduction of up to 3%. XGBoost
provided better cost results compared to Prophet, although it was less accurate. The
average load cover factor, directly related to costs, also favored XGBoost over Prophet.

The results highlighted the complex interaction of various assets and their constraints,
showing that evaluating forecasts based solely on accuracy could be misleading. Forecast
errors did not always have the same impact on costs due to the dynamic nature of the
building and its systems. There were instances where lower heating and cooling energy
were observed compared to the perfect scenario, but this resulted in comfort violations.
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XGBoost caused fewer comfort violations compared to Prophet.

The study also identified several challenges related to forecasting in the context of
energy communities. These challenges included the availability and quality of historical
data, spatio-temporal prediction algorithms for distributed energy generation, accom-
modating heterogeneous users and data sizes, privacy concerns, and the importance of
probabilistic forecasting and uncertainty quantification.

In conclusion, the study demonstrated the trade-offs between forecast accuracy, self-
consumption, and costs in energy communities. It emphasized the need for considering
multiple metrics and understanding the specific requirements and constraints of the
system when selecting forecasting methods. It also highlighted the importance of ad-
dressing challenges related to data availability, privacy, and uncertainty quantification
in future research.

Research question 3: How effective are different forecasting methods in supporting
the forecast-based optimal control of local energy communities under high and volatile
energy prices, and what are the implications for selecting and utilizing forecasting
methods in the context of LECs?

Different forecasting methods have varying levels of effectiveness in supporting the
forecast-based optimal control of LECs under high and volatile energy prices. The
implications for selecting and utilizing forecasting methods in the context of LECs
are multifaceted and depend on several factors, including the specific characteristics
of the LEC, the accuracy of the forecasting methods, and the operational objectives.
NBEATSx is identified as one of the most accurate forecasting methods in the study.
It consistently delivers low MAE, MAPE and nRMSE values. However, the study
highlights that NBEATSx’s superior accuracy doesn’t always translate directly into the
lowest total energy costs. Prophet, while ranking slightly lower in terms of accuracy
compared to NBEATSx, excels in delivering more valuable forecasts in scenarios where
forecast errors can lead to excessive costs. This is critical in the context of LECs where
cost optimization is a primary objective. Prophet’s ability to capture the value of
forecasts in volatile price scenarios makes it a valuable choice.

The study emphasizes that the total cost of LEC operation is not only dependent
on forecast accuracy but also on the cost implications of forecast errors. In high
and volatile energy price scenarios, even small forecast errors can lead to significant
cost differentials. Simple forecasting approaches like multiple regression also yield
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competitive performance in terms of total cost. This suggests that forecasting methods
should be evaluated not only on their accuracy but also on their practical implications
and cost-effectiveness within the specific operational context of the LEC. The concept
of forecast value is crucial in the context of LECs. It extends beyond accuracy and
considers the financial implications of forecast errors. LECs need forecasts that are not
just accurate but also valuable in terms of cost savings or revenue generation. More
accurate forecasts do not always guarantee the most cost-effective LEC operation.
Forecast methods should be selected based on their ability to deliver valuable forecasts
that align with the financial objectives of the community.

The study highlights that the impact of forecast accuracy on total energy costs is even
more substantial in scenarios with higher and more volatile energy prices. In such
scenarios, selecting the right forecasting method becomes critical. LECs should consider
the specific energy price scenarios they are likely to encounter and select forecasting
methods that perform well under those conditions.

The research underscores the need for a holistic evaluation approach that considers
both accuracy and forecast value. LEC stakeholders should assess forecasting methods
based on their ability to optimize costs, rather than relying solely on accuracy metrics.
The choice of forecasting method should align with the LEC’s operational goals, risk
tolerance, and the specific market conditions it operates in.

The study identifies several directions for future research, including exploring the
sensitivity of forecasting methods to hyperparameters, assessing the impact of weather
conditions, and considering the economic costs associated with different methods.
Future studies should also investigate the integration of various pricing mechanisms and
market configurations, such as time-of-use pricing and demand response programs.

In summary, the effectiveness of forecasting methods in supporting forecast-based
optimal control of LECs under high and volatile energy prices is contingent on their
ability to provide valuable forecasts that align with the financial goals of the community.
While accuracy is important, it is not the sole determinant of effectiveness. LECs
should carefully evaluate forecasting methods based on their ability to optimize costs
and consider the specific operational context and market conditions in which they
operate.
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5.4. Comparison with respect to the research questions

Table 5.4 provides an overview of the key findings for each research question, highlighting
the simplified questions addressed and the key insights derived from the analyses. Table
5.5 presents a comparison of research findings across various aspects, including fore-
casting methodology, accuracy metrics, operational implications, cost considerations,
forecast value, sensitivity analyses, and future research directions. This comparative
analysis offers insights into the diverse methodologies employed, the metrics used to
evaluate forecasting performance, and the implications for operational decision-making
in energy communities.
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RQ1 How does N-BEATS compare to existing models for wind power forecasting?

Key Findings

N-BEATS is the most accurate model.
Forecast Bias can be mitigated by choosing proper loss function.
Interpretabilty can be achieved using DL models.
The importance of considering long-term trends and seasonality in wind power forecasting.
Insights into the effectiveness of different loss functions in improving forecast accuracy.
Robustness of N-BEATS across different countries and data scenarios.

RQ2 How to assess and optimize demand/DHW forecasts for LECs?

Key Findings

Cost reduction of up to 3% by using more sophisticated forecast algorithms.
Prophet delivers superior accuracy but using XGBoost leads to lower total costs.
There is no apparent and time-coherent relationship between forecast errors and costs caused by them.
Building characteristics have high impact on overall performance.
The impact of forecast accuracy on self-consumption and overall system efficiency.
Identification of challenges related to data availability and privacy concerns in forecasting for LECs.
The significance of probabilistic forecasting and uncertainty quantification in demand forecasting.

RQ3 How effective are forecasting methods for LECs under high and volatile energy prices?

Key Findings

NBEATSx is more accurate than Prophet but doesn’t always lead to lowest costs.
Prophet achieved the highest value indicating a greater degree of coverage of energy demand by on-site generation.
Consideration of market conditions and pricing mechanisms in selecting forecasting methods for LECs.
Importance of forecast value beyond accuracy in optimizing LEC operations.
Implications of forecasting errors on operational costs and decision-making in LECs.

Table 5.4.: Key findings for each research question (RQ) in the study.
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Aspect Research Question 1 Research Question 2 Research Question 3

Forecasting Methodology

ARIMA Naive Naive
MLP Multiple Regression Multiple Regression
LSTM kNN kNN
WT-LSTM XGBoost XGBoost
LSTM-MSNet Prophet Prophet
ES-RNN N-BEATSx
N-BEATS

Accuracy Metrics

MAPE MAPE MAE
sMAPE sMAPE MAPE
MPE nRMSE nRMSE
R2 MASE MSE

MASE

Operational Implications Transmission & Distribution Operators Local Energy Communities Local Energy Communities

Cost Considerations Economic Viability Cost Reduction Cost Reduction
Computational Efficiency Self-Consumption Self-Consumption

Forecast Value Forecast Accuracy vs. Value Trade-offs Accuracy vs. Cost-effectiveness Accuracy vs. Cost-effectiveness

Sensitivity Analyses Forecast Horizon Forecast Errors Forecast Errors
Seasonal Variations Operational Constraints Market Conditions

Future Research Directions Hyperparameter Sensitivity Data Availability Integration of Pricing Mechanisms
Weather Impact Privacy Concerns Market Configurations

Table 5.5.: Comparison of Research Findings: A comprehensive overview of the methodologies, metrics, implications, and future research directions across the three
research questions explored.
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The research questions posed in this dissertation were worth analyzing, as they
addressed significant gaps in the current understanding of true value of forecasting
methods in the context of energy systems, particularly in LECs and wind power
forecasting. By examining the accuracy and true value of various forecasting techniques,
this research aimed to provide valuable insights for improving energy management and
decision-making processes within LECs and optimizing the utilization of wind power
resources.

The chosen methods were deemed appropriate for addressing the research questions at
hand across all three papers. Each method was carefully selected based on its suitability
for the specific objectives of the research questions. For instance, the use of advanced
machine learning techniques like N-BEATS, N-BEATSx, XGBoost and Prophet allowed
for the exploration of cutting-edge forecasting approaches, while traditional methods
such as Multiple Regression provided valuable comparative insights. Overall, the combi-
nation of these methods enabled a comprehensive analysis of forecasting methodologies
in diverse energy contexts.

The synthesis of results and the general findings from this work reveal several important
insights into forecasting methods for energy systems, spanning from wind power
forecasting to demand forecasting in LECs. Key findings include the identification
of highly accurate models like N-BEATS, N-BEATSx, XGBoost and Prophet, the
importance of considering cost implications in forecasting decisions, and the impact of
building characteristics on forecast performance. These results contribute to a deeper
understanding of how forecasting methods can be optimized and adequately utilized for
efficient energy management and resource allocation.

The promises from this contribution beyond the state-of-the-art and novelties have
been confirmed through the validation of forecasting approaches and the generation
of actionable insights for real-world energy applications across wind power forecasting
and LEC investigations. By demonstrating the effectiveness of advanced techniques
like N-BEATS, N-BEATSx, XGBoost and Prophet in forecasting energy demand
and generation, this research has advanced the state-of-the-art in energy forecasting
methodologies and paved the way for more accurate and reliable energy management
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strategies in LECs and wind power utilization.

While this work has made significant contributions to the field of energy forecasting,
it is not without its limitations. One limitation is the reliance on historical data from
a single reference LEC and wind power sites in Europe, which may not fully capture
the variability and complexity of energy systems in different contexts or countries. To
overcome this limitation, future work could involve the collection and analysis of data
from multiple LECs and wind power sites to ensure the generalizability and robustness
of the findings. Additionally, addressing the computational challenges associated with
complex forecasting models could enhance the scalability and applicability of these
methods in practical settings.

Looking ahead, there are several directions for future research that build on the work
presented. These include investigating the application of forecasting methods in emerg-
ing energy technologies such as smart grids and renewable energy integration, exploring
the potential of machine learning algorithms for predictive control in energy systems,
and conducting comparative studies to evaluate the performance of forecasting meth-
ods across different energy markets and regulatory regimes or even focus on a universal
forecasting service.

104



7. References

Books

Duan, Qingyun, Florian Pappenberger, Andy Wood, Hannah L Cloke, and John Schaake
(2019). Handbook of hydrometeorological ensemble forecasting. Vol. 845. Springer
Berlin (cit. on p. 13).

Journal Articles

Abdar, Moloud, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-
hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, et al. (2021). “A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges”. In: Information Fusion 76, pp. 243–297 (cit. on
p. 89).

Airò Farulla, Girolama, Giovanni Tumminia, Francesco Sergi, Davide Aloisio, Maurizio
Cellura, Vincenzo Antonucci, and Marco Ferraro (2021). “A Review of Key Perfor-
mance Indicators for Building Flexibility Quantification to Support the Clean Energy
Transition”. In: Energies 14.18, p. 5676 (cit. on p. 42).

Akkemik, K. Ali (2011). “Potential impacts of electricity price changes on price formation
in the economy: a social accounting matrix price modeling analysis for Turkey”. In:
Energy Policy 39.2. Special Section on Offshore wind power planning, economics and
environment, pp. 854–864. issn: 0301-4215. doi: https://doi.org/10.1016/j.
enpol.2010.11.005. url: https://www.sciencedirect.com/science/article/
pii/S0301421510008116 (cit. on p. 18).

Bandara, Kasun, Christoph Bergmeir, and Hansika Hewamalage (2020). “LSTM-MSNet:
Leveraging Forecasts on Sets of Related Time Series With Multiple Seasonal Patterns”.
In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14. issn:
2162-2388. doi: 10.1109/tnnls.2020.2985720. url: http://dx.doi.org/10.1109/
TNNLS.2020.2985720 (cit. on p. 58).

Beal, Logan, Daniel Hill, R Martin, and John Hedengren (2018). “GEKKO Optimization
Suite”. In: Processes 6.8, p. 106. doi: 10.3390/pr6080106 (cit. on p. 37).

Benidis, Konstantinos, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang
Wang, Danielle Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider,

105

https://doi.org/https://doi.org/10.1016/j.enpol.2010.11.005
https://doi.org/https://doi.org/10.1016/j.enpol.2010.11.005
https://www.sciencedirect.com/science/article/pii/S0301421510008116
https://www.sciencedirect.com/science/article/pii/S0301421510008116
https://doi.org/10.1109/tnnls.2020.2985720
http://dx.doi.org/10.1109/TNNLS.2020.2985720
http://dx.doi.org/10.1109/TNNLS.2020.2985720
https://doi.org/10.3390/pr6080106


7. References

David Salinas, Lorenzo Stella, Franç ois-Xavier Aubet, Laurent Callot, and Tim
Januschowski (Dec. 2022). “Deep Learning for Time Series Forecasting: Tutorial and
Literature Survey”. In: ACM Computing Surveys 55.6, pp. 1–36. doi: 10 . 1145 /
3533382. url: https://doi.org/10.1145%2F3533382 (cit. on p. 9).

Bojnec, Štefan (2023). “Electricity Markets, Electricity Prices and Green Energy Tran-
sition”. In: Energies 16.2. issn: 1996-1073. doi: 10.3390/en16020873. url: https:
//www.mdpi.com/1996-1073/16/2/873 (cit. on p. 17).

Bourdeau, Mathieu, Xiao qiang Zhai, Elyes Nefzaoui, Xiaofeng Guo, and Patrice Chatel-
lier (2019a). “Modeling and forecasting building energy consumption: A review of
data-driven techniques”. In: Sustainable Cities and Society 48, p. 101533. issn: 2210-
6707. doi: https://doi.org/10.1016/j.scs.2019.101533. url: https://www.
sciencedirect.com/science/article/pii/S2210670718323862 (cit. on p. 16).

Bourdeau, Mathieu, Xiao qiang Zhai, Elyes Nefzaoui, Xiaofeng Guo, and Patrice Chatel-
lier (2019b). “Modeling and forecasting building energy consumption: A review of data-
driven techniques”. In: Sustainable Cities and Society 48, p. 101533 (cit. on p. 33).

Celik, Ali N. and Mohan Kolhe (2013). “Generalized feed-forward based method for
wind energy prediction”. In: Applied Energy 101. Sustainable Development of Energy,
Water and Environment Systems, pp. 582–588. issn: 0306-2619. doi: https://doi.
org/10.1016/j.apenergy.2012.06.040. url: http://www.sciencedirect.com/
science/article/pii/S0306261912004850 (cit. on p. 8).

Chitsaz, Hamed, Nima Amjady, and Hamidreza Zareipour (2015). “Wind power forecast
using wavelet neural network trained by improved Clonal selection algorithm”. In:
Energy Conversion and Management 89, pp. 588–598. issn: 0196-8904. doi: https:
//doi.org/10.1016/j.enconman.2014.10.001. url: http://www.sciencedirect.
com/science/article/pii/S0196890414008814 (cit. on p. 8).

Chorowski, Jan, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua
Bengio (2015). “Attention-based models for speech recognition”. English (US). In:
Advances in Neural Information Processing Systems 2015-January. 29th Annual Con-
ference on Neural Information Processing Systems, NIPS 2015 ; Conference date:
07-12-2015 Through 12-12-2015, pp. 577–585. issn: 1049-5258 (cit. on p. 8).

Coignard, Jonathan, Maxime Janvier, Vincent Debusschere, Gilles Moreau, Stéphanie
Chollet, and Raphaël Caire (2021). “Evaluating forecasting methods in the context
of local energy communities”. In: International Journal of Electrical Power & Energy
Systems 131, p. 106956 (cit. on pp. 15, 16, 33).

Croonenbroeck, Carsten and Daniel Ambach (2015). “A selection of time series models
for short- to medium-term wind power forecasting”. In: Journal of Wind Engineering
and Industrial Aerodynamics 136, pp. 201–210. issn: 0167-6105. doi: https://doi.
org/10.1016/j.jweia.2014.11.014. url: http://www.sciencedirect.com/
science/article/pii/S016761051400244X (cit. on p. 7).

106

https://doi.org/10.1145/3533382
https://doi.org/10.1145/3533382
https://doi.org/10.1145%2F3533382
https://doi.org/10.3390/en16020873
https://www.mdpi.com/1996-1073/16/2/873
https://www.mdpi.com/1996-1073/16/2/873
https://doi.org/https://doi.org/10.1016/j.scs.2019.101533
https://www.sciencedirect.com/science/article/pii/S2210670718323862
https://www.sciencedirect.com/science/article/pii/S2210670718323862
https://doi.org/https://doi.org/10.1016/j.apenergy.2012.06.040
https://doi.org/https://doi.org/10.1016/j.apenergy.2012.06.040
http://www.sciencedirect.com/science/article/pii/S0306261912004850
http://www.sciencedirect.com/science/article/pii/S0306261912004850
https://doi.org/https://doi.org/10.1016/j.enconman.2014.10.001
https://doi.org/https://doi.org/10.1016/j.enconman.2014.10.001
http://www.sciencedirect.com/science/article/pii/S0196890414008814
http://www.sciencedirect.com/science/article/pii/S0196890414008814
https://doi.org/https://doi.org/10.1016/j.jweia.2014.11.014
https://doi.org/https://doi.org/10.1016/j.jweia.2014.11.014
http://www.sciencedirect.com/science/article/pii/S016761051400244X
http://www.sciencedirect.com/science/article/pii/S016761051400244X


Journal Articles

Deb, Chirag, Fan Zhang, Junjing Yang, Siew Eang Lee, and Kwok Wei Shah (2017).
“A review on time series forecasting techniques for building energy consumption”. In:
Renewable and Sustainable Energy Reviews 74, pp. 902–924 (cit. on p. 32).

Eseye, Abinet Tesfaye, Matti Lehtonen, Toni Tukia, Semen Uimonen, and R John Millar
(2019). “Machine learning based integrated feature selection approach for improved
electricity demand forecasting in decentralized energy systems”. In: IEEE Access 7,
pp. 91463–91475 (cit. on p. 11).

Fan, Guo-Feng, Yan-Hui Guo, Jia-Mei Zheng, and Wei-Chiang Hong (2019). “Applica-
tion of the weighted k-nearest neighbor algorithm for short-term load forecasting”. In:
Energies 12.5, p. 916 (cit. on p. 30).

Al-Ghandoor, A., J.O. Jaber, I. Al-Hinti, and I.M. Mansour (2009). “Residential past and
future energy consumption: Potential savings and environmental impact”. In: Renew-
able and Sustainable Energy Reviews 13.6, pp. 1262–1274. issn: 1364-0321. doi: https:
//doi.org/10.1016/j.rser.2008.09.008. url: https://www.sciencedirect.
com/science/article/pii/S1364032108001263 (cit. on p. 17).

Hedengren, John D., Reza Asgharzadeh Shishavan, Kody M. Powell, and Thomas F.
Edgar (2014). “Nonlinear modeling, estimation and predictive control in APMonitor”.
In: Comput. Chem. Eng. 70, pp. 133–148 (cit. on p. 41).

Hinman, Jennifer and Emily Hickey (2009). “Modeling and forecasting short-term elec-
tricity load using regression analysis”. In: Journal of Institute for Regulatory Policy
Studies, pp. 1–51 (cit. on p. 30).

Hochreiter, Sepp and Jürgen Schmidhuber (Dec. 1997). “Long Short-term Memory”. In:
Neural computation 9, pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735 (cit. on
p. 8).

Hong, Tao and Shu Fan (2016). “Probabilistic electric load forecasting: A tutorial re-
view”. In: International Journal of Forecasting 32.3, pp. 914–938 (cit. on p. 89).

Hoppmann, Joern, Jonas Volland, Tobias S Schmidt, and Volker H Hoffmann (2014).
“The economic viability of battery storage for residential solar photovoltaic systems–A
review and a simulation model”. In: Renewable and Sustainable Energy Reviews 39,
pp. 1101–1118 (cit. on p. 39).

Houben, Nikolaus, Armin Cosic, Michael Stadler, Muhammad Mansoor, Michael
Zellinger, Hans Auer, Amela Ajanovic, and Reinhard Haas (2023). “Optimal dispatch
of a multi-energy system microgrid under uncertainty: A renewable energy community
in Austria”. In: Applied Energy 337, p. 120913. issn: 0306-2619. doi: https://doi.
org/10.1016/j.apenergy.2023.120913. url: https://www.sciencedirect.com/
science/article/pii/S0306261923002775 (cit. on p. 50).

Hu, Jianming, Jiani Heng, Jingwei Tang, and Miaolin Guo (2018). “Research and appli-
cation of a hybrid model based on Meta learning strategy for wind power deterministic
and probabilistic forecasting”. In: Energy Conversion and Management 173, pp. 197–

107

https://doi.org/https://doi.org/10.1016/j.rser.2008.09.008
https://doi.org/https://doi.org/10.1016/j.rser.2008.09.008
https://www.sciencedirect.com/science/article/pii/S1364032108001263
https://www.sciencedirect.com/science/article/pii/S1364032108001263
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/j.apenergy.2023.120913
https://doi.org/https://doi.org/10.1016/j.apenergy.2023.120913
https://www.sciencedirect.com/science/article/pii/S0306261923002775
https://www.sciencedirect.com/science/article/pii/S0306261923002775


7. References

209. issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.2018.07.052.
url: http://www.sciencedirect.com/science/article/pii/S019689041830788X
(cit. on p. 9).

Hyndman, Rob J et al. (2006). “Another look at forecast-accuracy metrics for inter-
mittent demand”. In: Foresight: The International Journal of Applied Forecasting 4.4,
pp. 43–46 (cit. on pp. 14, 32).

Inteha, Azfar, Nahid-Al-Masood, Farhan Hussain, and Ibrahim Ahmed Khan (2022).
“A Data Driven Approach for Day Ahead Short Term Load Forecasting”. In: IEEE
Access 10, pp. 84227–84243. doi: 10.1109/ACCESS.2022.3197609 (cit. on p. 16).

Jensen, Søren Østergaard, Anna Marszal-Pomianowska, Roberto Lollini, Wilmer Pasut,
Armin Knotzer, Peter Engelmann, Anne Stafford, and Glenn Reynders (2017). “IEA
EBC Annex 67 Energy Flexible Buildings”. In: Energy and Buildings 155, pp. 25–34.
issn: 0378-7788. doi: https://doi.org/10.1016/j.enbuild.2017.08.044. url:
https://www.sciencedirect.com/science/article/pii/S0378778817317024
(cit. on p. 42).

Joe, Jaewan, Piljae Im, Borui Cui, and Jin Dong (2023). “Model-based predictive control
of multi-zone commercial building with a lumped building modelling approach”. In:
Energy 263, p. 125494. issn: 0360-5442. doi: https://doi.org/10.1016/j.energy.
2022.125494. url: https://www.sciencedirect.com/science/article/pii/
S0360544222023763 (cit. on p. 16).

Junker, Rune Grønborg, Armin Ghasem Azar, Rui Amaral Lopes, Karen Byskov Lind-
berg, Glenn Reynders, Rishi Relan, and Henrik Madsen (2018). “Characterizing the
energy flexibility of buildings and districts”. In: Applied Energy 225, pp. 175–182.
issn: 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2018.05.037. url:
https://www.sciencedirect.com/science/article/pii/S030626191830730X
(cit. on p. 42).

Khalid, M. and A. V. Savkin (2012). “A Method for Short-Term Wind Power Prediction
With Multiple Observation Points”. In: IEEE Transactions on Power Systems 27.2,
pp. 579–586. doi: 10.1109/TPWRS.2011.2160295 (cit. on p. 7).

Khan, Samee Ullah, Noman Khan, Fath U Min Ullah, Min Je Kim, Mi Young Lee,
and Sung Wook Baik (2023). “Towards intelligent building energy management: AI-
based framework for power consumption and generation forecasting”. In: Energy and
Buildings 279, p. 112705. issn: 0378-7788. doi: https://doi.org/10.1016/j.
enbuild.2022.112705. url: https://www.sciencedirect.com/science/article/
pii/S0378778822008763 (cit. on p. 16).

Kumar, Pratyush, James B. Rawlings, Michael J. Wenzel, and Michael J. Risbeck (2023).
“Grey-box model and neural network disturbance predictor identification for economic
MPC in building energy systems”. In: Energy and Buildings 286, p. 112936. issn:
0378-7788. doi: https://doi.org/10.1016/j.enbuild.2023.112936. url: https:

108

https://doi.org/https://doi.org/10.1016/j.enconman.2018.07.052
http://www.sciencedirect.com/science/article/pii/S019689041830788X
https://doi.org/10.1109/ACCESS.2022.3197609
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.08.044
https://www.sciencedirect.com/science/article/pii/S0378778817317024
https://doi.org/https://doi.org/10.1016/j.energy.2022.125494
https://doi.org/https://doi.org/10.1016/j.energy.2022.125494
https://www.sciencedirect.com/science/article/pii/S0360544222023763
https://www.sciencedirect.com/science/article/pii/S0360544222023763
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.05.037
https://www.sciencedirect.com/science/article/pii/S030626191830730X
https://doi.org/10.1109/TPWRS.2011.2160295
https://doi.org/https://doi.org/10.1016/j.enbuild.2022.112705
https://doi.org/https://doi.org/10.1016/j.enbuild.2022.112705
https://www.sciencedirect.com/science/article/pii/S0378778822008763
https://www.sciencedirect.com/science/article/pii/S0378778822008763
https://doi.org/https://doi.org/10.1016/j.enbuild.2023.112936
https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://www.sciencedirect.com/science/article/pii/S0378778823001664


Journal Articles

//www.sciencedirect.com/science/article/pii/S0378778823001664 (cit. on
p. 16).

Lago, Jesus, Fjo De Ridder, and Bart De Schutter (2018). “Forecasting spot electricity
prices: Deep learning approaches and empirical comparison of traditional algorithms”.
In: Applied Energy 221, pp. 386–405. issn: 0306-2619. doi: https://doi.org/10.
1016/j.apenergy.2018.02.069. url: https://www.sciencedirect.com/science/
article/pii/S030626191830196X (cit. on p. 52).

Leal, Pedro, Rui Castro, and Fernando Lopes (2023). “Influence of Increasing Renewable
Power Penetration on the Long-Term Iberian Electricity Market Prices”. In: Energies
16.3, p. 1054 (cit. on p. 17).

Li, Kunming, Liting Fang, and Lerong He (2019). “How population and energy price
affect China’s environmental pollution?” In: Energy Policy 129, pp. 386–396. issn:
0301-4215. doi: https://doi.org/10.1016/j.enpol.2019.02.020. url: https:
//www.sciencedirect.com/science/article/pii/S030142151930103X (cit. on
p. 17).

Liu, Donglan, Xin Liu, Kun Guo, Qiang Ji, and Yingxian Chang (2023). “Spillover
Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under
Climate Risk”. In: International Journal of Environmental Research and Public Health
20.2. issn: 1660-4601. doi: 10.3390/ijerph20021116. url: https://www.mdpi.com/
1660-4601/20/2/1116 (cit. on p. 17).

Liu, Hui, Xiwei Mi, and Yanfei Li (2018). “Smart multi-step deep learning model for wind
speed forecasting based on variational mode decomposition, singular spectrum analy-
sis, LSTM network and ELM”. In: Energy Conversion and Management 159, pp. 54–
64. issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.2018.01.010.
url: http://www.sciencedirect.com/science/article/pii/S0196890418300104
(cit. on p. 8).

Liu, Jia, Yuekuan Zhou, Hongxing Yang, and Huijun Wu (2022). “Uncertainty energy
planning of net-zero energy communities with peer-to-peer energy trading and green
vehicle storage considering climate changes by 2050 with machine learning methods”.
In: Applied Energy 321, p. 119394 (cit. on p. 17).

Lopes, Rui Amaral, Adriana Chambel, João Neves, Daniel Aelenei, and João Martins
(2016). “A Literature Review of Methodologies Used to Assess the Energy Flexibility
of Buildings”. In: Energy Procedia 91. Proceedings of the 4th International Conference
on Solar Heating and Cooling for Buildings and Industry (SHC 2015), pp. 1053–1058.
issn: 1876-6102. doi: https://doi.org/10.1016/j.egypro.2016.06.274. url:
https://www.sciencedirect.com/science/article/pii/S1876610216303745
(cit. on p. 42).

Lydia, M., S. Suresh Kumar, A. Immanuel Selvakumar, and G. Edwin Prem Kumar
(2016). “Linear and non-linear autoregressive models for short-term wind speed fore-

109

https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://www.sciencedirect.com/science/article/pii/S0378778823001664
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.02.069
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.02.069
https://www.sciencedirect.com/science/article/pii/S030626191830196X
https://www.sciencedirect.com/science/article/pii/S030626191830196X
https://doi.org/https://doi.org/10.1016/j.enpol.2019.02.020
https://www.sciencedirect.com/science/article/pii/S030142151930103X
https://www.sciencedirect.com/science/article/pii/S030142151930103X
https://doi.org/10.3390/ijerph20021116
https://www.mdpi.com/1660-4601/20/2/1116
https://www.mdpi.com/1660-4601/20/2/1116
https://doi.org/https://doi.org/10.1016/j.enconman.2018.01.010
http://www.sciencedirect.com/science/article/pii/S0196890418300104
https://doi.org/https://doi.org/10.1016/j.egypro.2016.06.274
https://www.sciencedirect.com/science/article/pii/S1876610216303745


7. References

casting”. In: Energy Conversion and Management 112, pp. 115–124. issn: 0196-8904.
doi: https://doi.org/10.1016/j.enconman.2016.01.007. url: http://www.
sciencedirect.com/science/article/pii/S0196890416000236 (cit. on p. 7).

Ma, Z., S. Guo, G. Xu, and S. Aziz (2020). “Meta Learning-Based Hybrid Ensemble
Approach for Short-Term Wind Speed Forecasting”. In: IEEE Access 8, pp. 172859–
172868. doi: 10.1109/ACCESS.2020.3025811 (cit. on p. 9).

Makridakis, Spyros and Michele Hibon (2000). “The M3-Competition: results, conclu-
sions and implications”. In: International journal of forecasting 16.4, pp. 451–476 (cit.
on p. 32).

Makridakis, Spyros, Evangelos Spiliotis, and Vassilis Assimakopoulos (June 2018). “The
M4 Competition: Results, findings, conclusion and way forward”. In: International
Journal of Forecasting 34. doi: 10.1016/j.ijforecast.2018.06.001 (cit. on pp. 10,
24).

Maltais, Louis-Gabriel and Louis Gosselin (2022). “Energy management of domestic hot
water systems with model predictive control and demand forecast based on machine
learning”. In: Energy Conversion and Management: X 15, p. 100254. issn: 2590-1745.
doi: https : / / doi . org / 10 . 1016 / j . ecmx . 2022 . 100254. url: https : / / www .
sciencedirect.com/science/article/pii/S2590174522000770 (cit. on p. 16).

Martínez-Álvarez, Francisco, Alicia Troncoso, Gualberto Asencio-Cortés, and José C
Riquelme (2015). “A survey on data mining techniques applied to electricity-related
time series forecasting”. In: Energies 8.11, pp. 13162–13193 (cit. on p. 32).

Memarzadeh, Gholamreza and Farshid Keynia (2020). “A new short-term wind speed
forecasting method based on fine-tuned LSTM neural network and optimal input sets”.
In: Energy Conversion and Management 213, p. 112824. issn: 0196-8904. doi: https:
//doi.org/10.1016/j.enconman.2020.112824. url: http://www.sciencedirect.
com/science/article/pii/S0196890420303629 (cit. on pp. 8, 9, 58).

Mokarram, Mohammad Jafar, Reza Rashiditabar, Mohsen Gitizadeh, and Jamshid
Aghaei (2023). “Net-load forecasting of renewable energy systems using multi-input
LSTM fuzzy and discrete wavelet transform”. In: Energy 275, p. 127425. issn: 0360-
5442. doi: https: //doi.org /10 .1016/ j.energy . 2023.127425. url: https :
//www.sciencedirect.com/science/article/pii/S0360544223008198 (cit. on
p. 16).

Murphy, Allan H (1993). “What is a good forecast? An essay on the nature of goodness
in weather forecasting”. In: Weather and forecasting 8.2, pp. 281–293 (cit. on pp. 13,
14, 17).

Muzumdar, Ajit A, Chirag N Modi, Chintamani Vyjayanthi, et al. (2021). “Designing a
robust and accurate model for consumer centric short term load forecasting in micro-
grid environment”. In: IEEE Systems Journal (cit. on pp. 12, 16).

110

https://doi.org/https://doi.org/10.1016/j.enconman.2016.01.007
http://www.sciencedirect.com/science/article/pii/S0196890416000236
http://www.sciencedirect.com/science/article/pii/S0196890416000236
https://doi.org/10.1109/ACCESS.2020.3025811
https://doi.org/10.1016/j.ijforecast.2018.06.001
https://doi.org/https://doi.org/10.1016/j.ecmx.2022.100254
https://www.sciencedirect.com/science/article/pii/S2590174522000770
https://www.sciencedirect.com/science/article/pii/S2590174522000770
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112824
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112824
http://www.sciencedirect.com/science/article/pii/S0196890420303629
http://www.sciencedirect.com/science/article/pii/S0196890420303629
https://doi.org/https://doi.org/10.1016/j.energy.2023.127425
https://www.sciencedirect.com/science/article/pii/S0360544223008198
https://www.sciencedirect.com/science/article/pii/S0360544223008198


Journal Articles

Nakabi, Taha Abdelhalim and Pekka Toivanen (2021). “Deep reinforcement learning
for energy management in a microgrid with flexible demand”. In: Sustainable Energy,
Grids and Networks 25, p. 100413. issn: 2352-4677. doi: https://doi.org/10.1016/
j.segan.2020.100413. url: https://www.sciencedirect.com/science/article/
pii/S2352467720303441 (cit. on p. 16).

Nia, Ali Roozbeh, Anjali Awasthi, and Nadia Bhuiyan (2021). “Industry 4.0 and de-
mand forecasting of the energy supply chain: A literature review”. In: Computers &
Industrial Engineering 154, p. 107128 (cit. on p. 16).

Okumus, Inci and Ali Dinler (2016). “Current status of wind energy forecasting and
a hybrid method for hourly predictions”. In: Energy Conversion and Management
123, pp. 362–371. issn: 0196-8904. doi: https://doi.org/10.1016/j.enconman.
2016.06.053. url: http://www.sciencedirect.com/science/article/pii/
S0196890416305428 (cit. on pp. 8, 62).

Olivares, Kin G, Cristian Challu, Grzegorz Marcjasz, Rafał Weron, and Artur Dubrawski
(2021). “Neural basis expansion analysis with exogenous variables: Forecasting elec-
tricity prices with NBEATSx”. In: International Journal of Forecasting, submitted
Working Paper version available at arXiv:2104.05522 (cit. on pp. 46–48).

Oreshkin, Boris N, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio (2019). “N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting”. In:
arXiv preprint arXiv:1905.10437 (cit. on pp. 46, 48).

Orozco, Camilo, Alberto Borghetti, Bart De Schutter, Fabio Napolitano, Giorgia Pu-
lazza, and Fabio Tossani (2022). “Intra-day scheduling of a local energy community
coordinated with day-ahead multistage decisions”. In: Sustainable Energy, Grids and
Networks 29, p. 100573. issn: 2352-4677. doi: https://doi.org/10.1016/j.segan.
2021.100573. url: https://www.sciencedirect.com/science/article/pii/
S2352467721001375 (cit. on p. 16).

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. (2019).
“Pytorch: An imperative style, high-performance deep learning library”. In: Advances
in neural information processing systems 32 (cit. on p. 53).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830 (cit. on pp. 30, 31).

Pirbazari, Aida Mehdipour, Ekanki Sharma, Antorweep Chakravorty, Wilfried Elmen-
reich, and Chunming Rong (2021a). “An Ensemble Approach for Multi-Step Ahead
Energy Forecasting of Household Communities”. In: IEEE Access 9, pp. 36218–36240.
doi: 10.1109/ACCESS.2021.3063066 (cit. on p. 16).

Pirbazari, Aida Mehdipour, Ekanki Sharma, Antorweep Chakravorty, Wilfried Elmenre-
ich, and Chunming Rong (2021b). “An ensemble approach for multi-step ahead energy

111

https://doi.org/https://doi.org/10.1016/j.segan.2020.100413
https://doi.org/https://doi.org/10.1016/j.segan.2020.100413
https://www.sciencedirect.com/science/article/pii/S2352467720303441
https://www.sciencedirect.com/science/article/pii/S2352467720303441
https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.053
https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.053
http://www.sciencedirect.com/science/article/pii/S0196890416305428
http://www.sciencedirect.com/science/article/pii/S0196890416305428
https://doi.org/https://doi.org/10.1016/j.segan.2021.100573
https://doi.org/https://doi.org/10.1016/j.segan.2021.100573
https://www.sciencedirect.com/science/article/pii/S2352467721001375
https://www.sciencedirect.com/science/article/pii/S2352467721001375
https://doi.org/10.1109/ACCESS.2021.3063066


7. References

forecasting of household communities”. In: IEEE Access 9, pp. 36218–36240 (cit. on
p. 12).

Prasad, R. D., R. C. Bansal, and M. Sauturaga (2009). “Some of the design and method-
ology considerations in wind resource assessment”. In: IET Renewable Power Gener-
ation 3.1, pp. 53–64. doi: 10.1049/iet-rpg:20080030 (cit. on p. 7).

Putz, Dominik, Michael Gumhalter, and Hans Auer (2021). “A novel approach to multi-
horizon wind power forecasting based on deep neural architecture”. In: Renewable
Energy 178, pp. 494–505. issn: 0960-1481. doi: https://doi.org/10.1016/j.
renene.2021.06.099. url: https://www.sciencedirect.com/science/article/
pii/S0960148121009654 (cit. on pp. 2–6, 21, 47, 55, 83).

Putz, Dominik, Michael Gumhalter, and Hans Auer (2023). “The true value of a forecast:
Assessing the impact of accuracy on local energy communities”. In: Sustainable Energy,
Grids and Networks 33, p. 100983. issn: 2352-4677. doi: https://doi.org/10.1016/
j.segan.2022.100983. url: https://www.sciencedirect.com/science/article/
pii/S2352467722002284 (cit. on pp. 2–6, 21, 44, 46, 49, 50, 52, 55, 73, 83).

Putz, Dominik, Michael Gumhalter, and Hans Auer (2024). “Assessing the true value of
forecast-based optimal control of a local energy community with respect to high and
volatile energy prices”. In: Sustainable Energy, Grids and Networks - currently under
review (cit. on pp. 2, 4–6, 21, 55, 83, 90).

Raz, Ali K, Paul C Wood, Linas Mockus, and Daniel A DeLaurentis (2020). “System of
systems uncertainty quantification using machine learning techniques with smart grid
application”. In: Systems Engineering 23.6, pp. 770–782 (cit. on p. 90).

Salom, Jaume, Anna Joanna Marszal, Joakim Widén, José Candanedo, and Karen
Byskov Lindberg (2014). “Analysis of load match and grid interaction indicators in
net zero energy buildings with simulated and monitored data”. In: Applied Energy
136, pp. 119–131. issn: 0306-2619. doi: https://doi.org/10.1016/j.apenergy.
2014.09.018. url: https://www.sciencedirect.com/science/article/pii/
S0306261914009659 (cit. on p. 42).

Sanchez, Ismael (2006). “Short-term prediction of wind energy production”. In: Inter-
national Journal of Forecasting 22.1, pp. 43–56. url: https://EconPapers.repec.
org/RePEc:eee:intfor:v:22:y:2006:i:1:p:43-56 (cit. on p. 7).

Shi, Xunpeng and Sizhong Sun (2017). “Energy price, regulatory price distortion and
economic growth: A case study of China”. In: Energy Economics 63, pp. 261–271.
issn: 0140-9883. doi: https://doi.org/10.1016/j.eneco.2017.02.006. url:
https://www.sciencedirect.com/science/article/pii/S0140988317300609
(cit. on p. 17).

Smyl, Slawek (2020). “A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting”. In: International Journal of Forecasting 36.1.
M4 Competition, pp. 75–85. issn: 0169-2070. doi: https://doi.org/10.1016/

112

https://doi.org/10.1049/iet-rpg:20080030
https://doi.org/https://doi.org/10.1016/j.renene.2021.06.099
https://doi.org/https://doi.org/10.1016/j.renene.2021.06.099
https://www.sciencedirect.com/science/article/pii/S0960148121009654
https://www.sciencedirect.com/science/article/pii/S0960148121009654
https://doi.org/https://doi.org/10.1016/j.segan.2022.100983
https://doi.org/https://doi.org/10.1016/j.segan.2022.100983
https://www.sciencedirect.com/science/article/pii/S2352467722002284
https://www.sciencedirect.com/science/article/pii/S2352467722002284
https://doi.org/https://doi.org/10.1016/j.apenergy.2014.09.018
https://doi.org/https://doi.org/10.1016/j.apenergy.2014.09.018
https://www.sciencedirect.com/science/article/pii/S0306261914009659
https://www.sciencedirect.com/science/article/pii/S0306261914009659
https://EconPapers.repec.org/RePEc:eee:intfor:v:22:y:2006:i:1:p:43-56
https://EconPapers.repec.org/RePEc:eee:intfor:v:22:y:2006:i:1:p:43-56
https://doi.org/https://doi.org/10.1016/j.eneco.2017.02.006
https://www.sciencedirect.com/science/article/pii/S0140988317300609
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017


Journal Articles

j.ijforecast.2019.03.017. url: http://www.sciencedirect.com/science/
article/pii/S0169207019301153 (cit. on pp. 8, 25, 52, 58).

Taslimi Renani, Ehsan, Mohamad Fathi Mohamad Elias, and Nasrudin Abd. Rahim
(2016). “Using data-driven approach for wind power prediction: A comparative study”.
In: Energy Conversion and Management 118, pp. 193–203. issn: 0196-8904. doi:
https : / / doi . org / 10 . 1016 / j . enconman . 2016 . 03 . 078. url: http : / / www .
sciencedirect.com/science/article/pii/S019689041630214X (cit. on pp. 7, 8).

Taylor, Sean J and Benjamin Letham (2018). “Forecasting at scale”. In: The American
Statistician 72.1, pp. 37–45 (cit. on p. 31).

Tziolis, Georgios, Chrysovalantis Spanias, Maria Theodoride, Spyros Theocharides,
Javier Lopez-Lorente, Andreas Livera, George Makrides, and George E. Georghiou
(2023). “Short-term electric net load forecasting for solar-integrated distribution sys-
tems based on Bayesian neural networks and statistical post-processing”. In: Energy
271, p. 127018. issn: 0360-5442. doi: https : / / doi . org / 10 . 1016 / j . energy .
2023.127018. url: https://www.sciencedirect.com/science/article/pii/
S0360544223004127 (cit. on p. 16).

Van der Meer, Dennis W, Joakim Widén, and Joakim Munkhammar (2018). “Review
on probabilistic forecasting of photovoltaic power production and electricity consump-
tion”. In: Renewable and Sustainable Energy Reviews 81, pp. 1484–1512 (cit. on p. 89).

Wang, Jian-Zhou, Yun Wang, and Ping Jiang (2015). “The study and application of a
novel hybrid forecasting model – A case study of wind speed forecasting in China”.
In: Applied Energy 143, pp. 472–488. issn: 0306-2619. doi: https://doi.org/10.
1016/j.apenergy.2015.01.038. url: http://www.sciencedirect.com/science/
article/pii/S0306261915000446 (cit. on pp. 8, 9).

Yan, Ke, Xudong Wang, Yang Du, Ning Jin, Haichao Huang, and Hangxia Zhou (Nov.
2018). “Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep
Learning Strategy”. In: Energies 11, p. 3089. doi: 10.3390/en11113089 (cit. on p. 8).

Zang, Haixiang, Lilin Cheng, Tao Ding, Kwok W. Cheung, Zhinong Wei, and Guoqiang
Sun (2020). “Day-ahead photovoltaic power forecasting approach based on deep con-
volutional neural networks and meta learning”. In: International Journal of Electrical
Power and Energy Systems 118, p. 105790. issn: 0142-0615. doi: https://doi.org/
10.1016/j.ijepes.2019.105790. url: http://www.sciencedirect.com/science/
article/pii/S014206151930740 (cit. on p. 9).

Zhang, Wenyu, Zongxi Qu, Kequan Zhang, Wenqian Mao, Yining Ma, and Xu Fan
(2017). “A combined model based on CEEMDAN and modified flower pollination al-
gorithm for wind speed forecasting”. In: Energy Conversion and Management 136,
pp. 439–451. issn: 0196-8904. doi: https : / / doi . org / 10 . 1016 / j . enconman .
2017.01.022. url: http://www.sciencedirect.com/science/article/pii/
S0196890417300213 (cit. on p. 7).

113

https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.03.017
http://www.sciencedirect.com/science/article/pii/S0169207019301153
http://www.sciencedirect.com/science/article/pii/S0169207019301153
https://doi.org/https://doi.org/10.1016/j.enconman.2016.03.078
http://www.sciencedirect.com/science/article/pii/S019689041630214X
http://www.sciencedirect.com/science/article/pii/S019689041630214X
https://doi.org/https://doi.org/10.1016/j.energy.2023.127018
https://doi.org/https://doi.org/10.1016/j.energy.2023.127018
https://www.sciencedirect.com/science/article/pii/S0360544223004127
https://www.sciencedirect.com/science/article/pii/S0360544223004127
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.038
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.038
http://www.sciencedirect.com/science/article/pii/S0306261915000446
http://www.sciencedirect.com/science/article/pii/S0306261915000446
https://doi.org/10.3390/en11113089
https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105790
https://doi.org/https://doi.org/10.1016/j.ijepes.2019.105790
http://www.sciencedirect.com/science/article/pii/S014206151930740
http://www.sciencedirect.com/science/article/pii/S014206151930740
https://doi.org/https://doi.org/10.1016/j.enconman.2017.01.022
https://doi.org/https://doi.org/10.1016/j.enconman.2017.01.022
http://www.sciencedirect.com/science/article/pii/S0196890417300213
http://www.sciencedirect.com/science/article/pii/S0196890417300213


7. References

Zhao, Pan, Jiangfeng Wang, Junrong Xia, Yiping Dai, Yingxin Sheng, and Jie Yue
(2012). “Performance evaluation and accuracy enhancement of a day-ahead wind
power forecasting system in China”. In: Renewable Energy 43, pp. 234–241. issn:
0960-1481. doi: https://doi.org/10.1016/j.renene.2011.11.051. url: http:
//www.sciencedirect.com/science/article/pii/S0960148111006549 (cit. on
p. 7).

Zheng, Huiting, Jiabin Yuan, and Long Chen (Aug. 2017). “Short-Term Load Fore-
casting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature
Importance Evaluation”. In: Energies 10, p. 1168. doi: 10.3390/en10081168 (cit. on
p. 8).

Zhou, Kaile, Chao Fu, and Shanlin Yang (2016). “Big data driven smart energy manage-
ment: From big data to big insights”. In: Renewable and Sustainable Energy Reviews
56, pp. 215–225 (cit. on p. 89).

Conference Papers

Amral, N, CS Ozveren, and D King (2007). “Short term load forecasting using mul-
tiple linear regression”. In: 2007 42nd International universities power engineering
conference. IEEE, pp. 1192–1198 (cit. on p. 30).

Beydoun, Hana, Ahmad Khan, and S Ali Arefifar (2021). “Comparative Analysis of Time
Series and Artificial Intelligence Algorithms for Short Term Load Forecasting”. In:
2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).
IEEE, pp. 1–7 (cit. on p. 31).

Chen, Tianqi and Carlos Guestrin (2016a). “XGBoost: A Scalable Tree Boosting Sys-
tem”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM,
pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http:
//doi.acm.org/10.1145/2939672.2939785 (cit. on p. 31).

Chen, Tianqi and Carlos Guestrin (2016b). “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pp. 785–794 (cit. on p. 31).

Dimitropoulos, Nikos, Nikolaos Sofias, Panagiotis Kapsalis, Zoi Mylona, Vangelis Mari-
nakis, Niccolo Primo, and Haris Doukas (2021). “Forecasting of short-term PV pro-
duction in energy communities through Machine Learning and Deep Learning algo-
rithms”. In: 2021 12th International Conference on Information, Intelligence, Systems
& Applications (IISA). IEEE, pp. 1–6 (cit. on p. 11).

Györi, Alexey, Mathis Niederau, Violett Zeller, and Volker Stich (2019). “Evaluation of
Deep Learning-based prediction models in Microgrids”. In: 2019 IEEE Conference on
Energy Conversion (CENCON). IEEE, pp. 95–99 (cit. on p. 13).

114

https://doi.org/https://doi.org/10.1016/j.renene.2011.11.051
http://www.sciencedirect.com/science/article/pii/S0960148111006549
http://www.sciencedirect.com/science/article/pii/S0960148111006549
https://doi.org/10.3390/en10081168
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785


Conference Papers

Nair, Vinod and Geoffrey E. Hinton (2010). “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress,
pp. 807–814. isbn: 9781605589077 (cit. on p. 22).

Nguyen, TTQ, TPT Tran, Vincent Debusschere, Christophe Bobineau, and Rémy Rigo-
Mariani (2020). “Comparing high accurate regression models for short-term load fore-
casting in smart buildings”. In: IECON 2020 The 46th Annual Conference of the IEEE
Industrial Electronics Society. IEEE, pp. 1962–1967 (cit. on p. 11).

Nielsen, Torben Skov and Henrik Madsen (2000). “WPPT - A Tool for Wind Power
Prediction”. English. In: Prediction.Procedings of Wind Power for the 21st Century,
Kassel, Germany, 25-27 September 2000. Prediction.Procedings of Wind Power for
the 21st Century, 25-27 September ; Conference date: 01-01-2000 (cit. on p. 7).

Pełka, Paweł and Grzegorz Dudek (2019). “Pattern-Based Forecasting Monthly Electric-
ity Demand Using Multilayer Perceptron”. In: Artificial Intelligence and Soft Comput-
ing. Ed. by Leszek Rutkowski, Rafał Scherer, Marcin Korytkowski, Witold Pedrycz,
Ryszard Tadeusiewicz, and Jacek M. Zurada. Cham: Springer International Publish-
ing, pp. 663–672. isbn: 978-3-030-20912-4 (cit. on p. 57).

Rocha, Luiz Gonzaga, Symone Gomes Soares Alcalá, and Lina Paola Garces Negrete
(2020). “Short-term electric load forecasting using neural networks: A comparative
study”. In: 2020 IEEE PES Transmission & Distribution Conference and Exhibition-
Latin America (T&D LA). IEEE, pp. 1–6 (cit. on p. 31).

Salom, Jaume, Joakim Widén, José Candanedo, Igor Sartori, Karsten Voss, and Anna
Marszal (2011). “Understanding net zero energy buildings: evaluation of load match-
ing and grid interaction indicators”. In: Proceedings of building simulation. Vol. 6,
pp. 2514–2521 (cit. on p. 43).

Tits, Mickael, Benjamin Bernaud, Amel Achour, Maher Badri, and Lotfi Guedria (2020).
“Impacts of size and history length on energetic community load forecasting: a case
study”. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, pp. 1391–1397 (cit. on p. 12).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is All You Need”. In:
url: https://arxiv.org/pdf/1706.03762.pdf (cit. on pp. 8, 10).

Wang, Bin, Jie Lu, Zheng Yan, Huaishao Luo, Tianrui Li, Yu Zheng, and Guangquan
Zhang (2019). “Deep uncertainty quantification: A machine learning approach for
weather forecasting”. In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 2087–2095 (cit. on p. 90).

115

https://arxiv.org/pdf/1706.03762.pdf


7. References

Other sources

Abadi, Martín et al. (2016). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. arXiv: 1603.04467 [cs.DC] (cit. on p. 56).

Alexandrov, Alexander, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin
Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram,
David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang
(2019). GluonTS: Probabilistic Time Series Models in Python. arXiv: 1906.05264
[cs.LG] (cit. on p. 10).

Amral, N, CS Ozveren, and D King (2007). “Short term load forecasting using mul-
tiple linear regression”. In: 2007 42nd International universities power engineering
conference. IEEE, pp. 1192–1198 (cit. on p. 30).

Antoniou, Antreas, Harrison Edwards, and Amos Storkey (2019). How to train your
MAML. arXiv: 1810.09502 [cs.LG] (cit. on p. 84).

Beitner, Jan (2020). PyTorch Forecasting - Pytorch Forecasting aims to ease
timeseries forecasting with neural networks for real-world cases and research
alike. https://pytorch-forecasting.readthedocs.io/en/latest/ accessed: 2020-11-10.
url: https://pytorch-forecasting.readthedocs.io/en/latest/ (cit. on p. 56).

Beydoun, Hana, Ahmad Khan, and S Ali Arefifar (2021). “Comparative Analysis of Time
Series and Artificial Intelligence Algorithms for Short Term Load Forecasting”. In:
2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).
IEEE, pp. 1–7 (cit. on p. 31).

Chen, Tianqi and Carlos Guestrin (2016a). “XGBoost: A Scalable Tree Boosting Sys-
tem”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM,
pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http:
//doi.acm.org/10.1145/2939672.2939785 (cit. on p. 31).

Chen, Tianqi and Carlos Guestrin (2016b). “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pp. 785–794 (cit. on p. 31).

Chorowski, Jan, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio (2014). End-
to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Re-
sults. arXiv: 1412.1602 [cs.NE] (cit. on pp. 8, 10).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:
1810.04805 [cs.CL] (cit. on p. 9).

Dimitropoulos, Nikos, Nikolaos Sofias, Panagiotis Kapsalis, Zoi Mylona, Vangelis Mari-
nakis, Niccolo Primo, and Haris Doukas (2021). “Forecasting of short-term PV pro-
duction in energy communities through Machine Learning and Deep Learning algo-

116

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1906.05264
https://arxiv.org/abs/1906.05264
https://arxiv.org/abs/1810.09502
https://pytorch-forecasting.readthedocs.io/en/latest/
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://arxiv.org/abs/1412.1602
https://arxiv.org/abs/1810.04805


Other sources

rithms”. In: 2021 12th International Conference on Information, Intelligence, Systems
& Applications (IISA). IEEE, pp. 1–6 (cit. on p. 11).

Györi, Alexey, Mathis Niederau, Violett Zeller, and Volker Stich (2019). “Evaluation of
Deep Learning-based prediction models in Microgrids”. In: 2019 IEEE Conference on
Energy Conversion (CENCON). IEEE, pp. 95–99 (cit. on p. 13).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). Deep Residual Learn-
ing for Image Recognition. arXiv: 1512.03385 [cs.CV] (cit. on p. 23).

Huang, Gao, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger (2018).
Densely Connected Convolutional Networks. arXiv: 1608 . 06993 [cs.CV] (cit. on
p. 23).

Ismail, Aya Abdelsalam, Mohamed Gunady, Héctor Corrada Bravo, and Soheil Feizi
(2020). Benchmarking Deep Learning Interpretability in Time Series Predictions.
arXiv: 2010.13924 [cs.LG] (cit. on p. 23).

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimiza-
tion. arXiv: 1412.6980 [cs.LG] (cit. on p. 52).

Li, Shiyang, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and
Xifeng Yan (2020). Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting. arXiv: 1907.00235 [cs.LG] (cit. on pp. 9,
10).

Nair, Vinod and Geoffrey E. Hinton (2010). “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress,
pp. 807–814. isbn: 9781605589077 (cit. on p. 22).

Nguyen, TTQ, TPT Tran, Vincent Debusschere, Christophe Bobineau, and Rémy Rigo-
Mariani (2020). “Comparing high accurate regression models for short-term load fore-
casting in smart buildings”. In: IECON 2020 The 46th Annual Conference of the IEEE
Industrial Electronics Society. IEEE, pp. 1962–1967 (cit. on p. 11).

Nielsen, Torben Skov and Henrik Madsen (2000). “WPPT - A Tool for Wind Power
Prediction”. English. In: Prediction.Procedings of Wind Power for the 21st Century,
Kassel, Germany, 25-27 September 2000. Prediction.Procedings of Wind Power for
the 21st Century, 25-27 September ; Conference date: 01-01-2000 (cit. on p. 7).

Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu (2016). WaveNet:
A Generative Model for Raw Audio. arXiv: 1609.03499 [cs.SD] (cit. on pp. 8, 10).

Open power system data platform (2020). https://data.open-power-system-
data.org/time_series/2020-10-06/ accessed: 2020-10-30. url: https://data.open-
power-system-data.org/time%5C_series/2020-10-06/ (cit. on p. 55).

117

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/2010.13924
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1907.00235
https://arxiv.org/abs/1609.03499
https://data.open-power-system-data.org/time%5C_series/2020-10-06/
https://data.open-power-system-data.org/time%5C_series/2020-10-06/


7. References

Oreshkin, Boris N., Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio (2020).
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting.
arXiv: 1905.10437 [cs.LG] (cit. on pp. 10, 21, 23).

Pełka, Paweł and Grzegorz Dudek (2019). “Pattern-Based Forecasting Monthly Electric-
ity Demand Using Multilayer Perceptron”. In: Artificial Intelligence and Soft Comput-
ing. Ed. by Leszek Rutkowski, Rafał Scherer, Marcin Korytkowski, Witold Pedrycz,
Ryszard Tadeusiewicz, and Jacek M. Zurada. Cham: Springer International Publish-
ing, pp. 663–672. isbn: 978-3-030-20912-4 (cit. on p. 57).

Rocha, Luiz Gonzaga, Symone Gomes Soares Alcalá, and Lina Paola Garces Negrete
(2020). “Short-term electric load forecasting using neural networks: A comparative
study”. In: 2020 IEEE PES Transmission & Distribution Conference and Exhibition-
Latin America (T&D LA). IEEE, pp. 1–6 (cit. on p. 31).

Salom, Jaume, Joakim Widén, José Candanedo, Igor Sartori, Karsten Voss, and Anna
Marszal (2011). “Understanding net zero energy buildings: evaluation of load match-
ing and grid interaction indicators”. In: Proceedings of building simulation. Vol. 6,
pp. 2514–2521 (cit. on p. 43).

Schlemminger, Marlon, Tobias Ohrdes, Elisabeth Schneider, and Michael Knoop (Nov.
2021). WPuQ. Version 2.0. Zenodo. doi: 10.5281/zenodo.5642902. url: https:
//doi.org/10.5281/zenodo.5642902 (cit. on pp. 33, 51).

Tits, Mickael, Benjamin Bernaud, Amel Achour, Maher Badri, and Lotfi Guedria (2020).
“Impacts of size and history length on energetic community load forecasting: a case
study”. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, pp. 1391–1397 (cit. on p. 12).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is All You Need”. In:
url: https://arxiv.org/pdf/1706.03762.pdf (cit. on pp. 8, 10).

Wang, Bin, Jie Lu, Zheng Yan, Huaishao Luo, Tianrui Li, Yu Zheng, and Guangquan
Zhang (2019). “Deep uncertainty quantification: A machine learning approach for
weather forecasting”. In: Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 2087–2095 (cit. on p. 90).

118

https://arxiv.org/abs/1905.10437
https://doi.org/10.5281/zenodo.5642902
https://doi.org/10.5281/zenodo.5642902
https://doi.org/10.5281/zenodo.5642902
https://arxiv.org/pdf/1706.03762.pdf


Appendices

119





Appendix A.

Deep neural architecture for very short
term wind power forecasting

Figure A.1.: Aggregated wind power production in GW for AT, DE, NL in 15-minute time resolution
between 01/01/2020 and 30/09/2020.

Figure A.2.: Aggregated wind power production in GW for CY, GB, IE in 30-minute time resolution
between 01/01/2020 and 30/09/2020. Cyprus has some gaps in its history.
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Appendix A. Deep neural architecture for very short term wind power forecasting

Figure A.3.: Aggregated wind power production in GW for DK, ES, FI, FR, GR, IT, NO, PL, RO in
hourly time resolution between 01/01/2019 and 30/09/2020.
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Appendix B.

Forecast models for model predictive
control of a local energy community
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Figure B.1.: Absolute error distribution for each prediction method on an hourly basis for load demand.
Three different months were examined (July, October, and December) to show the behaviour
of error in different seasons according to switching weather conditions.

123



Appendix B. Forecast models for model predictive control of a local energy community
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Figure B.2.: Absolute error distribution for each prediction method on an hourly basis for DHW demand.
Three different months were examined (July, October, and December) to show the behaviour
of error in different seasons according to changing weather conditions.
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Figure B.3.: Average load cover factor for each timestep and forecasting method. During the dawn hours,
the LCF drops to a minimum, as there is no PV generation available yet and the battery
storage is most certainly empty. During the sun hours, however, the LCF is close to 1, which
means that the demand can be almost completely covered by self-generation on average. In
the evening hours, the advantage of a battery becomes apparent, which increases the LCF.
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Figure B.4.: MAPE distribution for each prediction method on an hourly basis for load demand (left)
and DHW demand (right).
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