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Kurzfassung

Schematisierungen stellen Daten auf eine Weise dar, die bestimmte Eigenschaften hervor-
hebt, während andere Aspekte der Daten weniger präzise dargestellt werden. Sie sind ein
oft verwendetes Werkzeug, um Daten zu untersuchen, zu verstehen und sie für bestimmte
Zwecke leichter zugänglich zu machen. Schematisierungen werden häufig zur Darstel-
lung von Geodaten verwendet um Komplexität zu reduzieren und dadurch Karten und
Geovisualisierungen leichter und schneller lesbar zu machen. Dies kann auf verschiedene
Arten erreicht werden. So können die Grenzen zwischen Regionen für unterschiedliche
Zoomstufen vereinfacht und Details weggelassen werden, die nicht sichtbar wären (z. B. in
digitalen Versionen politischer Karten). Oder indem alle geraden Linien einer Karte ent-
lang eines sehr eingeschränkten Satzes vordefinierter Orientierungen ausgerichtet werden
(z.B. Liniennetzen wie U-Bahn-Karten). Oder aber durch die Darstellung von Elementen
auf einer Karte als simple geometrische Formen um Vergleichbarkeit zwischen Objekten
zu erleichtern (z. B. in bestimmten Kartogrammarten), um nur einige zu nennen.

Die Erstellung einer schematischen Darstellung ist für eine:n Designer:in oft eine zeitin-
tensive Aufgabe und kleine Änderungen können ein komplett neues Design erfordern. Es
besteht ein steigendes Interesse daran, Teile des Designprozesses durch geeignete algo-
rithmische Lösungen zu unterstützen oder vollständig zu automatisieren. Aus praktischer
Sicht ermöglicht eine solche algorithmische Unterstützung, eine größere Menge möglicher
Designs zu testen, ohne viel manuelle Arbeit zu verschwenden. Aus theoretischer Sicht
zeigt sich jedoch, dass in vielen gängigen Designprozessen schwierige Probleme verborgen
sind. Daher müssen automatisierte Ansätze (insbesondere wenn sie darauf abzielen, ein
mehr oder weniger fertiges, qualitativ hochwertiges Endergebnis zu liefern) diese Aufgabe
durch den Einsatz geeigneter Werkzeuge bewältigen.

Dies kann in Form einer Kodierung des Entwurfsproblems als mathematische Formulierung
erfolgen, für die bereits vorhandene und hochoptimierte Solver existieren. Oder man kann
versuchen, herauszufinden, welcher Bestandteil einen Prozesses schwer lösen lässt, indem
man Eingabeinstanzen einschränkt oder zulässt, dass die Laufzeit nur mit bestimmten
Parametern der Eingabe extrem skaliert, von denen in einer realen Anwendung erwartet
werden kann, dass sie klein sind.

In dieser Doktorarbeit wollen wir uns verschiedenen schematische Darstellungspro-
blemen von zwei Seiten nähern. Einerseits untersuchen wir die Komplexität der Lö-
sung, indem wir mithilfe Polynomialzeitreduktionen zeigen, dass ein Problem NP-schwer
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oder NP-vollständig ist. Und zum anderen präsentieren wir mathematische Constraint-
Programming-Formulierungen, Heuristiken, parametrisierte XP- oder FPT-Algorithmen
oder polynomiale Zeitalgorithmen für eingeschränkte Eingabeklassen, die es uns ermöglich
trotz der theoretischen Komplexität Lösungen für diese Probleme zu finden.



Abstract

Schematic representations display data in a way that highlights certain properties at the
cost of being less accurate for other aspects of the data. They are an ubiquitous tool to
explore and understand data as well as making it more immediately accessible for specific
purposes. Schematic representations (or schematizations) are commonly used to display
geospatial data with the goal of reducing complexity and thereby making the map more
readily readable. This can be done by simplifying borders between regions for different
zoom levels and omitting detail, which would not be visible (e.g. in digital versions of
political maps), by orienting all straight lines of a map along a very restricted set of
predefined orientations (e.g. in transit maps like metro networks) or by distorting the
shape of elements on a map into simple geometric primitives to facilitate easy identification
and comparability between objects (e.g. in some cartograms), to name just a few.

The creation of a schematic representation (geospatial or otherwise) is often a time-
intensive task for a designer and small changes, might require large scale redesigns. There
has been rising interest in supporting or completely automating parts of the design process
with suitable algorithmic solutions. From a practical perspective, any such algorithmic
support enables a designer to explore a larger set of possible designs, without wasting a
large amount of manual work. However from a theoretical perspective it turn out that in
many common design task there are difficult or intractable problems hidden. Therefore
automated approaches (in particular when aiming to provide a more or less finished
high-quality output) have to tackle these task by employing the appropriate tools.

This might take the form of encoding the design problem as a mathematical formulation,
for which already existing and highly optimized solvers can be used. Or one can aim to
identify, which part of a problem is the source for the intractability by restricting input
instances or allowing the runtime to only scale problematically with certain parameters
of the input, which we can expect to be small in a real world setting.

In this thesis we aim to approach various schematic representation problems from tow
sides. On one hand we investigate the complexity of solving, by showing that a problem
formulation is NP-hard or NP-complete using polynomial time reductions. And on the
other hand, we provide mathematical constraint programming formulations, heuristics,
parameterized XP- or FPT-algorithms or polynomial time algorithms for restricted input
classes, which allow us to find solutions to (some) of these problems, in spite of their
theoretical hardness.
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CHAPTER 1
Introduction

Visualizations are a fundamental tool to understand, explore and work with data. Schema-
tizations (sometimes also called diagrams) of data are, in their most general sense, a
visualization, which focuses on one or a few aspects of the data, while relaxing how
correctly other aspects of the data are represented to enhance the readability of the
aspects in focus. While the relaxed aspects are often abstracted and/or distorted, they
are usually less important for the purpose of the schematization. What the particular
aspect in focus is, is heavily dependent on the specific schematization, which determines
the abstracted aspects and the tools used for the abstraction.

(a) (b)

Figure 1.1: (a) Photomicrograph
and (b) banding diagram of chro-
mosomes.

For example, Figure 1.1a (Credit: SANCHITA20.
Cropped by Mikael Häggström. Used unchanged un-
der CC BY 4.0 License) depicts a photomicrograph
of human chromosomes, i.e., a realistic depiction
of the actual shape of chromosomes. However a
researcher might be interested in the information
of the genes encoded in specific bands of such a
chromosome. A schematized representation of the
set of chromosomes, which sorts the chromosomes
and displays them with straight parallel bound-
aries of similar width is shown in Figure 1.1b (used
unchanged under CC0 1.0 license). This schematiza-
tion emphasizes readability, in particular the order
and length of encoded genes on the chromosome,
while distorting actual shape and position. This
thesis concerns itself with specific schematizations
and some of the geometric challenges hidden within their computation. This introduction
points to various related publications as illustrative examples. More thorough literature
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(a) Harry Becks tube map. (b) Circular arc map
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(c) Demers cartogram

Figure 1.2: Different examples of schematic maps for geospatial data. (a) A pioneering
example of schematic network maps in Henry (Harry) Becks 1933 underground map.
The map is drawn in the octolinear style and is a central example for schematic transit
maps. Used with permission ©TfL from the London Transport Museum collection. (b) A
circular arc schematization of a political map of the United States [44]. (c) A Demers
cartogram representing the states of the US with squares, whose size is relative to their
population in 2016 [90].

reviews of the topics discussed in the individual chapters are included within the chapters
themselves.

A very popular application area of schematization is geospatial data visualization. Geospa-
tial data is data in which data points are associated with geographical features. This
data is often visualized as a map. Examples include transit networks maps (Figure 1.2a),
which emphasize the connectivity of a given network over the geographic accuracy of
the depicted stations in the network, political maps (Figure 1.2b), whose geometrically
complex boundaries are often simplified and abstracted using geometrically simple shapes,
and some types of cartograms (Figure 1.2c), which abstract the shape of a region entirely
by representing them with a singular geometric object.

Schematic representations of transit networks are the focus of the first part of this thesis.
Transit networks are present in almost every densely populated area in the world and
include bus, tram and metro networks. We will mostly focus on metro networks here
(often also called tube or subway system). Common questions passengers try to answer
with a schematic map are “how do I get from one station to the next?” and “how long
do I have left in my travel?” (a task measured by the number of stations rather than
the actual distance) [109]. The archetypical design of a schematic representation of such
a transit network to answer such questions was pioneered in the London Underground
Map by Henry Beck (more commonly called Harry Beck) in 1933 (Figure 1.2a). His
design draws the stations as circles and connects them with lines representing connecting
railway tracks. However the connections, which in the actual network can include turns
and curves are abstracted to straight line edges restricted to be parallel to one of four
directions (horizontal, vertical and the two 45◦ diagonals). Based on the maximum of
eight connections, that are possible for a single station, this design is called octolinear 1.

1The nomenclature octolinear is not unique. The alternative word octilinear is based on the word
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The metrolines are represented as colored polylines following a path through the network.
This design abstracts the geographical positions of stations, both absolute (geographical
features like the river Thames are also abstracted if present at all) and relative (distances
between adjacent stations are uniform). The uniformity of distances between stations
models that distances in the network are usually measured by number of stops. Harry
Beck already stated some design criteria and in recent years multiple attempts have been
made to formalize these criteria [95, 132, 133].

The octolinear design has obvious connections to a well establish research topic in the
area of graph drawing, namely orthogonal drawings, which in the same terminology could
be called tetralinear drawings (only using horizontal and vertical edges). However while
bend minimal topology preserving orthogonal drawings can be computed in polynomial
time using flow networks as shown in Tamassia’s seminal work [119], the additional two
directions make this problem a lot harder. Specifically the problem becomes NP-hard [96],
which intuitively means that we do not expect to find an efficient algorithm for this
problem, which scales nicely with the size of the input (for a slightly more thorough
introduction, we refer to the next section, which introduces theoretical concepts used in
this thesis). Since Beck’s original design, various alternatives in drawing style have also
been investigated. Orthoradial layouts [93, 92, 9] place stations on the intersection of
concentric circles and radially emanating rays from their center. Edges are placed either
on radial segments of these circles or straight line segments of the rays. Other styles also
working with curved elements include curvylinear methods based on Bézier curves [53]
and circular arc schematization [67, 61, 44].

A direct generalization of octo-/tetralinear designs is the k-linear design, which allow
edges to be parallel to one of k possible directions. They are the focus of Chapter 3 of
this thesis.

Computational metro map research focuses on creating a layout of a given a network
that conforms to a specified drawing style and optimizes some formulated quality criteria
which vary throughout different models. Additionally official metro-maps contain other
components, that are important for a usable schematic transit map. Some are design
elements, which are beneficial for the user (legends, pictographic representations of
landmarks, color choices, styling of bends, intersections, interchanges, one-way stations,
etc. [133]). These elements are usually added as a post-processing step. Station labels are
an important feature, which have been considered as an algorithmic optimization problem
either as a secondary step assuming a fixed topological layout of the network [91] or even
in the layout process [97]. Various geometric challenges can be hidden in the placement
of additional information on a map. For example, Niedermann and Haunert [91] use
a conflict graph between labels, encoding overlap between them and then employing
maximal independent set algorithms to compute the set of labels that can be displayed.

rectilinear drawings (graph drawings with only horizontal and vertical edges). In contrast octolinear is
based on the common prefix octo- indicating a relation to the number 8 based on greek word οχτώ. We
decided on octolinear for reasons of uniformity, since the corresponding designs using six directions are
more commonly called hexalinear rather than hexilinear, based on the common prefix hexa-.
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1. Introduction

(a) Moscow metro (Lebedev
Studio and ©ГУП «Москов-
ский метрополитен»)

(b) SMW 2019 logo (courtesy
of Maxwell J. Roberts,
tubemapcentral.com)

(c) Japanese train map
(credit [104] via [7])2.

Figure 1.3: Examples of schematic transit maps, which include shapes that (a) do not
conform to the chosen style like the circular shapes in the otherwise octolinear metro
map of Moscow or (b-c) follow a predefined shape entirely.

Here we want to focus on a particular component of real world metro maps, namely the
inclusion of shapes that deliberately go against the defined drawing style. This can be
done with the purpose of further abstraction, e.g., drawing circular lines as actual circles
within an octolinear layout like in the official Moscow metro map (Figure 1.3a) or for
artistic or advertisement reasons, by including logos either partially as in the Schematic
Mapping Workshop 2019 logo (Figure 1.3b) or distorting the entire map to a shape,
e.g., the stylized train map in the shape of the yin and yang symbol (Figure 1.3c). The
inclusion of arbitrary shapes into otherwise style-conforming metro maps is the topic of
Chapter 4.

The application of transit map schematization is a large focus of the first part of this
thesis, as evidenced by Chapters 3 and 4. However there are other applications of
schematization, which are worth investigating in their own right. The second half of
this thesis, i.e., Chapters 5, 6 and 7 discuss various such applications. Chapter 5 in
particular is of interest here since it falls in both categories, thereby forming a bridge
between the topics, since it is concerned with a theoretical question about separating
geometric objects using simple geometric separators, but at the same time it can be
motivated partially again from transit map schematization, where tariff zones or other
area highlighting can be interpreted as a schematic variant of such a geometric separator.

Tariff zones (see Figure 1.4 for an example of tariff/fare zones in the London subway
2Avelar and Hurni [7] provide the link http://www.ika.ethz.ch/publications/avelar, which as of the

writing of this thesis is not accessible anymore.
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Figure 1.4: Map of the modern london subway system indicating tariff (or fare) zones.
While zones are generally nested, some boundary zones (like 2/3 and 3/4) are complex
shapes, and split up into smaller contiguous areas. Used unchanged under CC BY-SA
4.0 license.

system) are a common feature of maps that visualize transit systems of larger geographical
areas. These are geometric shapes, which enclose a subset of stations in a shape (which
itself is often schematized in a style similar to the actual map) to indicate travel fares
for journeys in the network. Such areas can be simple, nested or even disconnected.
Automated methods usually do not consider the placement of such tariff zones when
computing a layout. When considering this task as a post-processing step, this becomes
a special case of the much more fundamental problem, of finding the most simple (an
possibly schematized) separator between two sets of points. In Chapter 5 we consider a
variant of this fundamental underlying geometric problem. We generalize the contained
points to a given set of polygons of one color, which need to be separated from polygons
of a different color using a low complexity polygon. These low complexity polygons can
be thought of a the most simplified separator between the two sets.

In the following two chapters we move slightly away from the motivation of transit network
schematization and onto schematic representations of other concepts. In particular we
focus on representations of graphs using simple geometric shapes in the plane in Chapter 6
and images emerging from the intersection pattern of curves, which are used as solutions
for puzzles in Chapter 7.

Transit networks are examples of a specific class of graphs. However more general
classes of graphs can also be visualized in a schematic way. A well-known possibility to
visualize and represent graphs are geometric contact and intersection representations.
In such a representation every vertex is represented by a (usually simple) geometric
object, which is placed in the plane. Edges are represented by contact or intersection

5



1. Introduction

(a) δ = 4 (b) δ = 5 (c) δ = 6 (d) δ = 7

Figure 1.5: Unit disk contact representations of a (a) 4- and (b) 5-star. A (c) 6-star and
therefore also any larger star like (d) a 7-star can not be represented this way since a
leaf vertex inevitably contacts at least one other leaf.

of the geometric objects of the two vertices of the edge. For a set of geometric objects
A, such a representation is then called an A-contact representation or A-intersection
representation. Usually the set simply consists of a single object of fixed size (e.g. unit
disk contact representations) or congruent copies of varying sizes (e.g. disk contact
representations). In fact if we consider the graph G on all regions of a map, which
contains an edge between neighboring regions, then the map itself can be viewed as a
contact representation of G using the geometric shapes of the regions. The graph G
is called the dual graph of the map. If we restrict the map to simpler shapes than the
geographically correct outlines, we obtain a schematic representation, which is commonly
used for some variants of cartograms, e.g., using circles (Dorling cartograms [46]) or
squares (Demers cartograms [90]).

Contact and intersection representation are a very well-studied topic in computational
geometry and graph theory. There are fundamental connections between graph theoretic
or algorithmic concepts and contact or intersection representations. For example, it is
well known that graphs, which can be represented with touching disks in the plane are
exactly planar graphs [74] and that any planar graph admits a contact representation
with low complexity polygons (at most 8 corners, which are sometimes necessary) [137,
4].

On the algorithmic side contact and intersection graphs are used for their properties that
are guaranteed through the existence of their geometric representation. Such properties
can be, for example, a bound on the maximum degree of a vertex (in unit disk contact
representation it is at most 6, as shown in Figure 1.5) or that vertices can easily be
separated into strips of disconnected subgraphs if they can be represented by unit sized
objects. These properties can then be leveraged to obtain more efficient algorithmic
results on other hard problems, like a 2-approximation of maximum independent set
in unit disk graphs [40], a problem which is Poly-APX-complete in general graphs [16].
Unit disk intersection graphs are also used to model communication networks between
communication nodes with uniform range [75] and even quantum computing [123].

Using disk intersection graphs as a model for such communication networks also leads to

6



Figure 1.6: Map of the Austrian states. Note that Salzburg is in fact adjacent to Tirol
along two distinct and not connected pieces of border. Used unchanged under CC BY
2.5 license.

the following problem. Can we realize a given communication graph with communication
nodes, such that the topology of the network is exactly the unit disk intersection
representation of the nodes? This obviously boils down to the NP-hard recognition
question. In recent years unit disk intersection graph recognition has even be proven to be
∃R-complete (a complexity class located between NP and PSPACE) [68, 82] and even when
we already know that the graph is planar, it remains NP-hard [27] (in the case of unit disk
contact representation this extends down to outerplanar graphs [72]). On the other hand,
for some very simple graph classes this can be decided in linear time [72]. In Chapter 6
we continue this line of research and investigate the hardness of the unit disk intersection
graph recognition question for outerplanar graphs, embedded trees and caterpillars.

For the last section we return to the already introduced concept of a dual graph. Assume
we have a map which is represented as the intersection pattern of a set of intersecting
curves in the plane. The dual graph of the map could possibly contain multiples of certain
edges if a single region is adjacent to a neighbor over more than one distinct border (see
Figure 1.6 for an example). One application where we want to avoid such edge multiples
in the dual graph are picture puzzles, where the solution picture is represented as such
an intersection pattern of curves. The puzzles in question, which are the focus of the
last section, are so called curved nonograms (introduced by van de Kerkhof et al. [70]),
which use curves to subdivide the plane. Solving procedures for nonograms have been
considered in previous work [12, 18, 71], but our focus is on the creation of such schematic
subdivisions of the plane, i.e., the creation of the puzzles. Recently a Dagstuhl seminar
report [29] discussed challenges in the creation of these puzzles. In particular the curved
nature of the region outlines might lead to some undesired properties in the created
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subdivisions. Since the actual geometry of the boundaries is important, Chapter 7 tackles
the question how hard it is to remove these undesired properties from a given curve
arrangement by only adding a single new curve. Interestingly while the specific geometry
of the arrangement is important for the puzzle it is actually irrelevant to answer this
question, for which only the topology of the dual graph needs to be considered.

The rest of this thesis is structured as follows. Chapter 2 will introduce some basic con-
cepts, which are relevant for the thesis, although specific definitions, which are relevant to
only a single chapter are defined within the chapter in question. Chapters 3 and 4 present
results about the computation of schematic transit maps and Chapter 5 investigates the
underlying geometric problem of including tariff zones in a schematic map. Chapter 6
pivots and focuses on the recognition question of unit disk graphs for restricted graph
classes and Chapter 7 represents the last content chapter and investigates the creation of
schematic puzzles. Finally we close the thesis with a summary and conclusion in Chapter 8.

Before we continue with the next chapter, we give a short overview of the five main
chapters, as well as their relevant keywords. As every chapter is based on a publication,
we also list the relevant publications, as well as possible alternative versions (preliminary
or under review). The relevant publications are also given at the start of each chapter.

Chapter 3: Computing Data-Driven k-linear Irregular Transit Maps
Despite growing interest in more general multilinear or (k-linear)
metro maps that deviate from the well-established octolinear de-
facto design standard for transit maps, generic algorithms to draw
metro maps based on a system of k ≥ 2 not necessarily equidistant
slopes have not been investigated thoroughly. In this chapter we
present and implement an adaptation of the octolinear mixed-
integer linear programming approach of Nöllenburg and Wolff [97]
that can draw metro maps schematized to any set C of arbitrary
orientations. We further present a data-driven approach to determine a suitable set
C by either detecting the best rotation of an equidistant orientation system or by
clustering the input edge orientations using a k-means algorithm. We demonstrate the
new possibilities of our method using six real-world transit systems, specifically Montreal,
Vienna, Washington, Sydney, Berlin and London.

Keywords: [metro map layout | C-oriented schematization | mixed integer linear programming]
Related Publications: Workshop [88], Conference [89], Journal [121]
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Chapter 4: Including User Defined Geometric Motifs in Transit Maps
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Transit maps are often advertised on a web page or pamphlet
highlighting routes from source to destination stations. To visually
support such route-finding, designers often distort the layout by
embedding symbolic shapes (e.g., circular routes) in order to guide
readers’ attention (e.g., Moscow map in Figure 1.3a and Japan
railway map in Figure 1.3c). However, manually producing such
maps is labor-intensive and the effect of shapes remains unclear.
In this chapter, we propose an approach to generalize such mixed
metro maps that take user-defined shapes as an input. In this
mixed design, lines used to approximate the shapes are arranged
symbolically, while the remaining lines follow classical layout convention. A three-step
algorithm, including (1) detecting and selecting routes for shape approximation, (2) shape
and layout deformation, and (3) aligning lines on a grid, is integrated to guarantee good
visual quality. Our contribution is the definition of the mixed metro map problem and the
formulation of design criteria so that the problem can be resolved systematically using the
optimization paradigm. Finally, we evaluate the performance of our approach and perform
a user study to test if the embedded shapes are recognizable or reduce the map quality.

Keywords: [shape matching | grid-based | multistyle schematization]
Related Publications: Poster [14], Conference/Journal [15]

Chapter 5: Finding Minimum-Link Containment Fences
The placement of tariff zones can be thought of as computing min-
imum complexity containing areas for a given set of vertices of a
graph. While stations are usually thought of as points in the plane,
in an actual render of a map, they are depicted as circles or pill-
shaped objects (and therefore are 2D shapes similar to polygons).
We study a variant of this problem inspired by the geometric mul-
ticut problem, where we are given a set P of colored and pairwise
interior-disjoint polygons in the plane. The objective is to compute
a set of simple closed polygon boundaries (fences) that separate the
polygons in such a way that any two polygons that are enclosed by
the same fence have the same color, and the total number of links
of all fences is minimized. We call this the minimum link fencing (MLF) problem and
consider the natural case of bounded minimum link fencing (BMLF), where P contains a
polygon Q that is unbounded in all directions and can be seen as an outer polygon. We
show BMLF is NP-hard in general and it is XP-time solvable when each fence contains at
most two polygons and the number of segments per fence is the parameter (i.e. there is a
polynomial time algorithm for every fixed value of maximum segments per fence). We also
present an O(n log n)-time algorithm if the convex hull of P \ {Q} does not intersect Q.

Keywords: [XP-algorithm | minimum-link metric | polygon nesting | polygon separation]
Related Publications: Workshop [20], Conference [21]
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1. Introduction

Chapter 6: Representing Graph Connections with Intersecting Unit Disks
A unit disk intersection representation (UDR) of a graph G repre-
sents each vertex of G as a unit disk in the plane, such that two disks
intersect if and only if their vertices are adjacent in G. A UDR with
interior-disjoint disks is called a unit disk contact representation
(UDC). Previous work has investigated the hardness of deciding
if a given graph can be represented as a UDR or a UDC, with a
central result from Breu and Kirkpatrick [27] showing that both
questions are NP-hard even for planar graphs. These results have
been strengthened for UDCs. Klemz et al. [72] show that it remains
NP-hard for outerplanar graphs and, if the embedding of the graph
is given and should be reflected in the UDC it is NP-hard even for
trees [25]. We provide analogous results for UDRs and show that it is NP-hard to decide if
an outerplanar graph or an embedded tree admits a UDR. We further provide a linear-time
decidable characterization of caterpillar graphs that admit a UDR. Finally we show that it
can be decided in linear time if a lobster graph admits an x-monotone UDR, which is a UDR
in which the disks of the spine of the caterpillar are placed in an x-monotone chain. It re-
mains an open question if every caterpillar, which has a UDR also has an x-monotone UDR.

Keywords: [geometric intersection graph | unit disk graph | graph recognition | NP-hardness]
Related Publications: Workshop [23], Conference [22]

Chapter 7: Guaranteeing Properties of Curved Schematic Area Partitions
Schematized images are used to indicate the correct solution of
nonogram puzzles. While a classical nonogram puzzle is represented
as a grid, with the result resembling a pixelated image, there have
been variants proposed [70], which result in a visually more pleasing
picture by using curves rather than straight lines. However these
curved nonograms using curve arrangements present new challenges.
A face in a curve arrangement is called popular if it is bounded
by the same curve multiple times. Motivated by the automatic
generation of curved nonogram puzzles, we investigate possibilities
to eliminate the popular faces in an arrangement. This can be
done by breaking up and reconnecting curves in the nonogram, a
methods which has been investigated recently [29]. However, we
aim for a method, which considers the given arrangement as fixed in order to not change
the outline of the represented image. To do so we consider the problem of removing
popular faces by inserting a single additional curve. This turns out to be NP-hard;
however, it becomes tractable when the number of popular faces is small: We present a
probabilistic FPT-approach in the number of popular faces.

Keywords: [puzzle generation | curve arrangements | fixed-parameter tractable (FPT)]
Related Publications: Workshop [100], Conference [101]
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CHAPTER 2
Preliminaries

Specific notations and concepts crucial for the singular main chapters are explained
within those chapters. However there are some basic concepts, which are relevant to
most of this thesis. Any experienced reader might skip this chapter.

All chapters in this thesis use graphs in some capacity. We will start by introducing the
concept of a graph and some basic graph theory in Section 2.1. And finally there are
multiple reductions in this thesis proving a lower bound to the hardness of solving some
problem. The basic knowledge for this is given in Section 2.3, which reviews necessary
concepts of complexity theory.

2.1 Graphs
A graph G = (V, E) is (if not otherwise defined) a tuple of two sets, i.e., the vertices V
and the edges E ⊆ V 2. Every edge e ∈ E connects exactly two vertices u ∈ V and v ∈ V .
We will often use the notation e = (u, v) and we will call u and v endpoints of e. We
will say that u and v are adjacent or connected by e (which can also be stated as “u
and v are neighbors”) and that e is incident to u and v. The degree of a vertex v is the
number of unique edges, which are incident to v. We will call a vertex with a degree of k
a degree-k vertex. Degree-1 vertices are also often called leafs.

Edges can be either directed or undirected. An undirected edge e does not differentiate
between the two vertices, i.e., e = (u, v) = (v, u). A directed edge e′ will have a designated
source and target, i.e., e′ = (u, v) ̸= (v, u). If the edges of a graph are directed, we will
refer to this graph as a directed graph, otherwise we will call it an undirected graph. If
directionality is not specified, we assume that the graph is undirected. In a directed
graph, we can differentiate the in-degree and the out-degree of a vertex v, which are
the number of unique edges, which have v as their target and their source, respectively.
Sometimes we assign a number to an edge of a graph. Such a number is referred to as
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2. Preliminaries

the weight of the edge. If a graph contains edge weights it is called a weighted graph,
otherwise it is an unweighted or unit-weight graph.

An edge, which has the same vertex as source and target is referred to as a loop. Two
edges, which have the same source and target as each other are called multi-edges. If
a graph contains multi edges, we call it a multi-graph. If a graph contains neither
multi-edges nor loops, we call this graph simple1. If not otherwise specified, we will
assume all graphs to be simple, unweighted and undirected graphs.

We can traverse a graph G by specifying a list of k vertices in order, such that, there is
always an edge between two consecutive vertices. If no vertex repeats in the list, we call
this list a path of length k in G. If vertices are allowed to repeat, which also allows edges
to be traversed twice, we call this list a walk of length k in G. If there is an edge between
the first and the last vertex, this traversal is closed, i.e., a closed path or a closed walk.
If a graph contains a closed path of length more than 1, we say that G contains a cycle.
Note that in a simple graph, any cycle is at least of length 3, since edges can not be used
twice.

If for all pairs of vertices u, v ∈ V , there is a path from u to v we call G connected,
otherwise it is disconnected. If a connected graph G contains a single vertex v, whose
removal would turn G into a disconnected graph (this is also called disconnecting G),
then v is a cut-vertex. If G does not contain a cut-vertex, it is bi-connected, i.e., one
would need to remove at least two vertices to disconnect G.

Subgraphs A subgraph H = (V ′, E′) of a larger graph G = (V, E) is a graph that
is contained in G. This means that V ′ ⊆ V and E′ ⊆ E. If for every vertex v ∈ V ′,
every edge that has v as an endpoint is contained in E′, we call H = (V ′, E′) an induced
subgraph of E. Moreover we say that H is induced by V ′. For a disconencted graph G,
we will call a maximally connected subgraphs, i.e., a connected subgraph of G, which
itself is not a subgraph of a larger connected subgraph of G, a connected component of G
and we will say that G consists or is made up of its connected components.

Drawings A graph G is an abstract object, which represents connectivity information
between the different objects represented by the vertices. However, we often use graphs
to describe the connectivity of objects in some space (e.g., between geo-spatial objects or
points embedded into the two dimensional plane R2). In this case it is natural to assign
a position to the vertices, which is usually given as coordinates in the plane. This is
sometimes written as a mathematical function f : V → R2, where f(v) is the coordinate
of v. Similarly, the edges are also “drawn” in the plane as curves. We can again write
this as a function g : E → C, where C is a set of curves, i.e., for every e = (u, v) there is
a function g(e) = c ∈ C, such that c : [0, 1] → R2, c(0) = u and c(1) = v. The tuple of

1We would like to point out here that some terms appear in different definitions, e.g., “simple” will
also describe properties of a polygon later on. However it will be clear from context, which definition is
being used in the main chapters.
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Figure 2.1: Examples of drawings of the same graph, with different node and edge
positions, but the same embedding (a-b) and a drawing of the same graph with a different
embedding.

functions f and g is called a drawing Γ = (f, g) of G. If two curves g(e) and g(e′) cross,
then the point they have in common is called their crossing point. We do not consider
shared starting and endpoints of curves crossing points. If no two curves have a crossing
point in a drawing, we will call such a drawing plane. In a plane drawing, we can define
the concept of a face, which is an area bounded by curves of edges, that does not contain
a curve. The vertices of the edges, whose curves bound a face form a cycle, such that, no
subset of these vertices forms a cycle. We say that all of these vertices are incident to
the face. A drawing usually has a number of bounded inner faces and one unbounded
outer face.

Embeddings In a planar drawing, we sometimes use the concept of the radial order of
neighbors of a vertex v around v. This refers to the order in which we encounter edges,
if we start at one edge incident to v and proceed to rotate around v clockwise. If two
drawings have the same rotational order around a vertex v, then they are equivalent at v.
If two drawings have the same rotational order around every vertex and have the same
outer face, we will say that they have the same embedding (See Figure 2.1).

2.2 Graph Classes
Graphs can be grouped into different classes with similar properties. We will introduce
some relevant graph classes and their relative inclusions here.

Trees. If a graph does not contain a cycle, we will call it a tree. A tree with n vertices
contains exactly n − 1 edges, and in fact any connected graph on n vertices with n − 1
edges is a tree. A graph whose connected components are all trees is called a forest If a
tree contains only one vertex v of degree larger than 1, i.e., all other vertices are leafs,
then this tree is called a star and v is called the center.

Paths and Beyond. Analogue to paths and cycles contained within graphs, if an
entire graph forms a path, then we call this graph also a path and similarly if the entire

13
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graph forms a cycle, we call the graph a cycle. If the subgraph of a tree G induced by all
vertices of degree larger than 1 is a path (which is also called the spine), then G is called
a caterpillar. If the subgraph of a tree G induced by all vertices of degree larger than 1
is a caterpillar, G is called a lobster. This definition can be continued, with each step
increasing the distance of vertices to the spine. In trees, this distance is unbounded.

Planar Graphs. If a graph has a drawing without crossings in the plane, we call
it planar. Simple planar graphs have at most 3|V | − 6 edges. If a planar graph has a
plane drawing, such that, all vertices are incident to the outer face, this graph is called
outerplanar. All previously mentioned graph classes of this section are subclasses of
outerplanar graphs, i.e., every graph that is in one of the previously mentioned graph
classes is also outerplanar.

Bi- and k-partite Graphs. If all vertices of a graph G can be partitioned into two
sets A and B, such that, there exists no edge of G, which has both endpoints in the same
set, then G is bipartite. If a similar partition can be done with k sets, the we call G
k-partite. If any pair of vertices, which are in different sets are connected with an edge,
such a graph is also called a complete bipartite or complete k-partite graph.

2.3 Complexity Theory
Complexity theory is a vast field of research and we can not hope to give a comprehensive
introduction here. Instead we simply aim to explain the concepts relevant to this
thesis, which includes the complexity classes P, NP, FPT and XP. We would like
to point the interested reader to the works of Arora and Barak [5] for a thorough
introduction to complexity theory and to Downey and Fellows work [47] for details about
parameterized complexity. We assume familiarity with the concepts of a deterministic
and non-deterministic Turing machine as well as with the Landau’s Symbols (also called
big-O notation).

An alphabet Σ is a finite set of symbols. A word over Σ is a string of characters of Σ. We
denote the set of all words of length k using the symbols of Σ by Σk. In general the set
of all words of any length over the alphabet is Σ∗. A language L is a set of such strings,
i.e., L ⊆ Σ∗. We can equally call L a decision problem, since the natural question to be
answered for a given word w is to decide wether w ∈ L. A Turing machine decides L if it
computes a function fL : Σ∗ → {0, 1} that maps every word in L to 1 and every other
word to 0. We can now define a class of decision problems based on the number of steps
needed by a Turing machine to decide the languages in the class. One such class will be
called a complexity class. Let w be a word of length n. All decision problems, for which
the question w

?∈ L, can be decided in c ·T (n) steps by a deterministic Turing machine (for
a constant c and a computable function T : N → N) are in the complexity DTIME(T (n))
and NTIME(T (n)) is similarly defined for non-deterministic Turing machines.
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P and NP. Two of the most relevant classes are directly related to these definitions. The
classes are P and NP. The class P is defined as P = �

c>0 DTIME(nc). This is all decision
problems, which can be decided polynomially many steps by a deterministic algorithm
relative to the length of the input word. The class NP is defined as NP = �

c>0 NTIME(nc).
These are all decision problems, which can be decided in polynomially many steps by
a non-deterministic Turing machine. However more intuitively, one can also state that
these are all problems, for which we can verify in polynomial time if a given solution is
correct. The relationship between these two complexity classes is the topic of a famous
and long standing open problem in computer science, as it is still unknown if there is a
decision problem contained in NP, which is not in P and this question, often stylized as
P ?= NP, is one of the Millennium Prize Problems2.

Reductions, Hardness and Completeness. We say that one decision problem L1
(over an alphabet Σ1) can be reduced in polynomial time to a second decision problem L2
(over an alphabet Σ2) if there is a polynomial-time computable function g : Σ∗

1 → Σ∗
2,

which maps any word w1 ∈ Σ∗
1 to a word g(w1) ∈ Σ∗

2, such that, w1 ∈ L1 if and only if
g(w1) ∈ L2. We also call L1 poly-time reducible to L2 and write L1 ≤poly L2. We call a
problem L NP-hard, if every other problem in NP is poly-time reducible to L. This can be
conceptualized as a problem, which is at least as hard to solve as any problem contained
in NP (and possibly even harder). Note that it is sufficient to show that one already
proven NP-hard problem is poly-time reducible to L, since poly-time reducability is a
transitive relation. For any complexity class C, if a problem L is C-hard and L ∈ C, we
say that L is C-complete. Therefore any problem L ∈ NP, which is NP-hard is therefore
also NP-complete. Most problems, that are discussed in the main chapters of this thesis,
are NP-hard, or even NP-complete.

Parameterized Complexity It is clear that P ⊂ NP and, as mentioned above, it is
an open question if this is a proper inclusion. These complexity classes group problems
based on the time (number of steps) required to solve them, relative to the size of the
input. Problems, which are NP-hard are often described as being “difficult to solve” or
even “infeasible”, as it is generally assumed, that P is not equal to NP. However the
difficulty of a problem instances, might be due to a specific property of the instance
rather than simply its size. In order to analyze what properties of a problem instance are
contributing to the complexity of finding a solution, Parameterized Complexity introduces
the concept of a parameter. Such a parameter is supposed to capture a specific aspect
of a problem instance under the assumption that the size of the parameter does not
increase according to the instance size. Then we can allow the number of steps to depend
in a larger (possibly an arbitrarily large) way on the size of this parameter, while the
dependency on the rest of the instance is kept in check.

To give an example, a common parameter is the size of the solution. Consider the classical
problem of Vertex Cover, which, given a graph, asks for a subset V c of vertices, such

2https://www.claymath.org/millennium-problems/

15



2. Preliminaries

that every edge of the graph is incident to at least one of the vertices in V c. This is
a famously NP-hard problem [69], however when considering the parameter k = |V c|,
the question “Is there a vertex cover of cardinality at most k?” can be solved in time
O


1.2738k + (k · n)


.

We can now extend how a problem represented. Recall that so far a problem was a subset
L ⊆ Σ∗. We now define a parameterized problem Lp as a subset of Σ∗ × N and a singular
instance of a parameterized problem is a word w ∈ Σ∗ together with a a natural number
k ∈ N. Now if we can decide if an instance (w, k) ∈ Lp, where w is of length n in at most
O(f(k) · p(n)) steps, where f is a computable function and p(n) is a polynomial that
depends exclusively on the the size of w and not on the size of the parameter, then Lp is
fixed parameter tractable (in the class FPT), i.e., for every fixed value of the parameter k,
the runtime is the same polynomial. A larger class, which allows a lot more dependency
on the parameter is the class XP. The problem Lp is in XP if the decision can be made in
O(nf(k)), where f is again a computable function. This intuitively means, that for every
fixed parameter value we only need polynomially many steps, however the polynomial
can be dependent not only on n but also on k. We can state that P ⊆ FPT ⊆ XP ⊆ NP,
where the inclusions are believed to be strict. In fact there is an entire hierarchy of
complexity classes between P and NP, however no knowledge beyond FPT and XP will
be required for this thesis.
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CHAPTER 3
Computing Data-Driven k-linear

Irregular Transit Maps

This chapter is (partially) based on the following publications:
[121]: Nöllenburg & Terziadis – Towards Data-Driven Multilinear Metro Maps
(Cartographic Journal, to appear)
[89]: Nickel & Nöllenburg – Towards Data-Driven Multilinear Metro Maps
(Diagrams’20)
[88]: Nickel & Nöllenburg – Drawing k-linear Metro Maps
(Schematic Mapping Workshop’19)

Metro maps are ubiquitous schematic network diagrams that aid public transit passengers
in orientation and route planning in almost all types of urban public transit systems
worldwide. Since Henry Beck’s classic schematic London Tube Map of 1933, metro maps
have developed a common visual language and adopted similar design principles [133]. De-
signing professional metro maps is still mostly a manual task today, even if cartographers
and graphic designers are supported by digital drawing tools.

3.1 Related Work
Algorithms for automated layout of metro maps have received substantial interest in
the graph drawing and network visualization communities as well as in cartography and
geovisualization over the last 20 years [95, 133, 131, 133]. The vast majority of metro
map layout algorithms focus on so-called octolinear (sometimes also called octilinear)
metro maps, which are limited to Henry Beck’s classical and since then widely adopted
45◦-angular grid of line orientations [58]. However, not all metro maps found in practice
are strictly octolinear. In fact there is does not seem to be a one-size-fits-all layout for
every network.
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There is empirical evidence from usability studies that the best set of line orientations for
drawing a metro map depends on different aspects of the respective transit network, and
it may not always be an octolinear one [112, 111]. A chain of recent publications [93, 92,
9] developed a Topology-Shape-Metrics Framework for orthoradial graph drawing. In this
style all edges are either radial segments of concentric circles or straight-line segments
of lines through the center of the circles. Orthoradial drawings of metro maps have
received come attention outside of scientific research, for example through the change
in the official metro map of Cologne, Germany to an orthoradial map [76]. Another
framework, which is capable of computing ortho-radial maps is the octi-framework of
Bast et al. [11, 10], which uses repeated (or simultaneous) shortest path computation on
a predefined grid. This discretization enables alternative layouts, however it is restricted
to those that are easily expressible as a regular grid.

In this chapter we present an algorithmic approach using global optimization for computing
(unlabeled) metro maps in the more flexible k-linearity setting, where each edge in the
drawing must be parallel to one of k ≥ 2 equidistant orientations whose pairwise angles
are multiples of 360◦/2k. In this sense, a k-linear map for k = 4 corresponds to the
traditional octolinear setting. In fact, most octolinear maps use a horizontally aligned
orientation system, i.e., a system that includes a horizontal orientation. It is possible
though, for some transit networks and city geometries, that a rotation of the orientation
system by an angular offset yields a more topographically accurate metro map layout.
Hence we also consider such rotated k-linear maps. In addition to equiangular k-linear
orientation systems, we further study irregular multilinear (or C-oriented) maps [111], in
which the edges are parallel to any given, not necessarily equiangular set C of orientations.
There exist a number of metro map layout algorithms (see [95, 132, 133] for comprehensive
surveys) that would technically permit an adaptation to a different underlying angular
grid, yet most previous papers optimize layouts in the well-known octolinear setting
only and do not discuss extensions to different linearities. A few algorithms for generic
multilinear or k-linear layouts exist [87, 83, 43, 30], but they are aimed at paths or
polygons rather than entire metro maps. In the field of graph drawing many algorithms
for planar orthogonal network layouts with k = 2 as well as for polyline drawings with
completely unrestricted slopes are known [48], but they do not generalize to k-linearity
and multilinearity.

Contributions. We first present two efficient approaches for deriving suitable, data-
dependent linearity systems (rotated k-linear and irregular multilinear) by minimizing
the angular distortion of the input edge slopes (Section 3.3). We then adapt the
octolinear mixed-integer linear programming (MIP) model of Nöllenburg and Wolff [98]
by generalizing their mathematical layout constraints to k-linearity and multilinearity
(Section 3.4). The main benefit of this model in comparison to other approaches is that
it defines sets of hard and soft constraints and guarantees that the computed layout
satisfies all the hard constraints, while the soft constraints are globally optimized. The
trade-off for providing such quality guarantees from a global optimization technique is
that computation time is typically higher compared to other methods [132]. By modeling
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fundamental metro map properties such as strict adherence to the given linearity system
and topological correctness as hard constraints, we obtain layouts that satisfy these layout
requirements strictly. The soft constraints optimize for line straightness, compactness, and
topographicity [110], i.e., low topographical distortion. Our modifications yield a flexible
MIP model, whose complexity measured by the number of variables and constraints
grows linearly with the number of orientations k. We finally demonstrate the effect of
horizontally aligned and rotated k-linear and multilinear orientation systems by providing
sample layouts of six metro networks and evaluating the resulting number of bends and
angular distortions for typical small values of k = 3, 4 and 5 (Section 3.5).

3.2 Preliminaries
We reuse the notation of Nöllenburg and Wolff [98]. The input is represented as an
embedded planar1 metro graph G = (V, E) with n vertices and m edges. Each vertex
v ∈ V represents a metro station with x- and y-coordinates and each edge e = (u, v) ∈ E
is a segment linking vertices u and v that represents a physical rail connection between
them. Let L be a line cover of G, i.e., a set of paths in G such that each edge e ∈ E
belongs to at least one path L ∈ L. An element L ∈ L is called a line and corresponds
to a metro line in the underlying transit network. Note that multiple lines can pass
through the same edge. Finally, k ≥ 2 is an input parameter that defines the number of
available edge orientations in the orientation system C. The set C and the parameter k
can be part of the input or they can be derived automatically from the input geometry,
see Section 3.3. Figure 3.1 shows some examples of orientation systems. Since every
orientation can be used in two directions this yields 2k available drawing directions. Let
K be this set of 2k directions. We note that every edge is assigned exclusively to an
outgoing direction of its incident vertices, which implies that the maximum degree of
G can be at most 2k. Thus the maximum degree in G provides a lower bound on the
required number of orientations.

The general algorithmic metro map layout problem studied in this chapter is to find
a C-oriented schematic layout of (G, L), i.e., a graph layout that preserves the input
topology, uses only edge directions parallel to an orientation from C, and optimizes a
weighted layout quality function (here composed of line straightness, topographicity, and
compactness). If C corresponds to a k-linear orientation system, we also call the layout
k-linear instead of C-oriented; otherwise it can alternatively be called multilinear.

3.3 Orientation systems
A set of edge orientations (or an orientation system) C = {c1, . . . , ck} is a set of k angles
(expressed in radian), where 0 ≤ c1 < · · · < ck < π. We distinguish three different kinds of
possible edge orientation sets. An edge orientation set C is called regular (or equiangular)

1For non-planar metro graphs we temporarily introduce a dummy vertex for each edge crossing, which
preserves the crossing in the output layout.
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Figure 3.1: Coordinate axes for different orientation systems. (c) illustrates a point p
with the redundant coordinates p = (0, 1,

√
2, 1).

if the angles {c1, . . . ck} divide the range [c1, c1 + π) into k parts of equal size π/k, i.e.,
ci − ci−1 = π/k for all i ∈ {2, . . . , k}. Otherwise we call C irregular. The special case of
a regular orientation system C, in which c1 = 0 is called aligned. Note that a classical
octolinear layout is based on the aligned orientation system Co = {0, π/4, π/2, 3π/4}.

Opposed to an aligned orientation system, which is fully specified by defining the number
k of orientations, we have more degree of freedom in a regular (non-aligned) and an
irregular system. The next two sections describe how to derive a suitable system C from
the geometric properties of the input data. The idea behind this approach is to better
minimize the topographic distortion of the schematized edges compared to their input
direction.

We measure the distortion distG(C) of a system C with respect to a metro graph G by
summing up the difference in slope between each edge e ∈ E (with slope γe (mod π))
and the angle c ∈ C which is closest to γe:

distG(C) =
�
e∈E


min
c∈C

|c − γe|


.

Note here already, that the closest direction γe is chosen independently for all edges.
In an actual schematization, the direction of one edge can influence the direction of
another and therefore not every edge can necessarily be drawn in the direction that would
minimize |c − γe|. Let distΓ(C) be the distortion of a computed schematic map Γ of G,
in which every edge has an assigned direction ce, then

distΓ(C) =
�
e∈E

|ce − γe|

and distG(C) ≤ distΓ(C). Moreover, distG is in general not a tight lower bound for the
actually minimum obtainable distortion of a schematization of G. More precisely, let G′

20



3.3. Orientation systems

be a metro graph and let G be the set of all possible k-linear schematizations of G′. Then
for the distortion-minimal schematization ∆′ = arg min∆∈G dist∆(C) it might be that
distG(C) < dist∆′(C). We ask the reader to keep this difference in optimizing distG(C)
and dist∆(C) in mind.

3.3.1 Regular orientation systems
Fixing a single angle in a regular orientation system C fixes all other orientations. It is
therefore sufficient to specify the first orientation c1 ∈ C. We denote by Copt a regular
orientation system minimizing the distortion, i.e., distG(Copt) ≤ distG(C) for any k-regular
orientation system C. The next lemma will help us to find such a system efficiently.

Lemma 3.1. For any integer k and metro graph G there is an optimal regular orientation
system C with distG(C) = distG(Copt), in which at least one orientation c ∈ C is equal to
the slope of an input edge.

Proof. Let Copt be a minimum-distortion regular orientation system. For each edge e ∈ E
we define copt(e) to be the orientation c ∈ Copt that minimizes the distortion |c − γe|
of e. Let ε be a sufficiently small angle such that a rotation of Copt by ε in clockwise
(resp., counterclockwise) direction results in an orientation system Ccw (resp., Cccw) with
ccw(e) = copt(e) − ε and cccw(e) = copt(e) + ε. This implies that in these rotations, every
edge e moves (in slope) either strictly closer to of strictly farther away from copt(e). Let
Ecw

+ and Ecw− be the sets of edges that increase and decrease, respectively, their distance
to copt(e) during the clockwise rotation of the orientation system by ε. Analogously,
we define Eccw

+ and Eccw− for a counterclockwise rotation by ε. Note that if there is
an edge that is in Ecw

+ and Eccw
+ simultaneously, its slope coincides with a direction

in the orientation system and we are done. So assume that every edge is either in
Ecw− or in Eccw− and therefore |Ecw− | + |Eccw− | ≥ |Ecw

+ | + |Eccw
+ |. If |Ecw

+ | < |Ecw− |, then
distG(Ccw) < distG(Copt) which contradicts the minimality of Copt. If |Ecw

+ | > |Ecw− | then
|Eccw

+ | < |Eccw− | and distG(Cccw) < distG(Copt), which again contradicts the minimality of
Copt. So finally, we must have |Ecw

+ | = |Ecw− | and then distG(Ccw) = distG(Copt). We can
thus continue the clockwise rotation until one of two things will happen. Either the slope
of an edge will coincide with a direction in the rotated orientation system, in which case we
are done, or the bisector between two of the rotated orientations coincides with the slope
of an edge. If we continue the rotation, this edge will change from Ecw

+ to Ecw− and hence
|Ecw

+ | < |Ecw− |. A further minimal rotation will thus result in distG(Ccw) < distG(Copt),
which contradicts the minimality of Copt.

By this lemma we can restrict our search to regular orientation systems in C(E) = {C |
∃e ∈ E : γe ∈ C}, i.e., to orientation systems, where at least one orientation coincides
with the slope of an edge in E. The set C(E) contains O(|E|) elements and we select Copt
as the one yielding the minimum distG(C) for all C ∈ C(E). Since the graph of a metro
network is assumed to be planar, this procedure runs in O(|V |) time if the input graph
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(a) Example network (c) Cut at 0◦

c1c2c3

(d) 1-dimensional data
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(e) Resulting clustering

(b) Edge slopes (f) Cut at 94◦

c1c2c3

(g) 1-dimensional data
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(h) Resulting clustering

Figure 3.2: Illustration how the slopes of the edges of a network (a) are interpreted as a
set of circular data (b). 2 distinct cases of clustering are shown in (c-e) and (f-h). We
can cut the data (c & f) to obtain a 1-dimensional list of data points (d & g). After
using a k-median clustering algorithm, we obtain an orientation system (e & h) from the
median of every cluster. It is clear to see that the quality of the clustering is dependent
on the choice of cut, e.g., 0◦ in (c) or 94◦ in (f). Note that our data range is only 0◦ to
180◦ and three points have been mirrored in (f) and (h) for illustrative purposes.

is planar2. In order to compare different values k = 1, . . . , t we can compute optimal
k-linear regular orientation systems for each value of k in a total time of O(t|E|2).

3.3.2 Irregular orientation systems

In an irregular orientation system C with k orientations, each orientation can be selected
independently. By sorting all slopes of edges (which can be expressed as their angle with
the x-axis) present in the input we obtain a list of cyclical one dimensional values. We
measure the distance between two slopes by the smaller angle between them. Recall
that γe is the slope of an edge e in the input. We can interpret an orientation system
as a clustering of the set Γ = {γe | e ∈ E} of all input edge slopes, where each cluster
is formed around the closest orientation in C. By a similar argument as in the proof of
Lemma 3.1, we can state that in a distG-optimal irregular orientation system all chosen
directions can be assumed to be the slope of an edge in the input. Our goal is to find a

2Note that we are working with non-planar graphs, whose edges can be in Θ(|V |2), however actual
real world metro networks tend to have few or no crossings, which makes the assumption of planarity
reasonable.
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set C of k orientations that minimizes distG(C). To this end we can use a 1-dimensional
k-medians clustering of the set Γ.

The dynamic programming algorithm [94] solves the 1-dimensional k-medians clustering
problem of n points exactly with a running time of O(n2k). Their approach uses a
dynamic program and a precomputed auxiliary matrix as a look-up table, which contains
the distances between all pairs of elements. For more details we refer the reader to the
original publication [94].

The difference to Nielsen and Nock’s setting is that our data, while one-dimensional, are
cyclic. For example, if we look at an edge which forms a π/2 + δ angle with the x-axis,
for some δ > 0, then the 1-dimensional cluster algorithm would claim it has a distance
of π/2 + δ to the representative direction, while in fact we would measure the smaller
opposite angle, i.e., π/2 − δ. We have to account for this cyclic nature. To do so, we
can make use of the fact that (a) if we cut the cyclic data and flatten it into a list (as
shown in Figure 3.2) exactly at the boundary between two clusters of an optimal cyclical
clustering, then the 1-dimensional clustering results in the same set of clusters and (b)
clusters of slopes will never overlap and therefore there are exactly n such candidate gaps
(see Figures 3.2c and 3.2f) at which we can cut the data and flatten it. This of course
creates in n calls to the dynamic program, resulting in a total runtime of O(n3k). There
exist bespoke algorithms for optimal circular clustering like the FOCC algorithm [41],
which achieves an optimal clustering in O(kn log2 n) time, however we decided on the
dynamic program of Nielsen and Nock since it is (a) easy to implement and (b) not the
bottleneck of our approach since any clustering is followed by a the construction and
subsequent solving of a mixed integer program.

However, during the experiments this led to a number of instances, for which, with
the orientations resulting from a distG-optimal clustering, the mixed integer program
admitted no solution. Possible reasons for this are discuss at the end of Section 3.5.3.
Note that since Nielsen and Nock’s dynamic programming approach [94] is optimal, this
is not an issue of their particular approach, but instead of the k-medians clustering itself
and would persist, even if we would use the FOCC algorithm. In contrast, simply sorting
all edges by slope and cutting the cyclical order at 0, lead to clustered directions, for
which a solution existed in all cases. All further tables, results and figures, which refer to
irregular clustering were computed using the cut at 0 unless explicitly stated otherwise.

3.4 MIP Model

Next we sketch how the constraints of the MIP model of Nöllenburg and Wolff [98] must
be modified in order to compute more general C-oriented metro maps for a given arbitrary
set C of k orientations. In our description we focus on the differences to the octolinear
MIP model [98].
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3. Computing Data-Driven k-linear Irregular Transit Maps

3.4.1 Hard Constraints
The hard constraints comprise four aspects: C-oriented coordinate system, assignment of
edge directions, combinatorial embedding, and planarity.

Coordinate System. Every vertex u of G has two Cartesian coordinates in the plane
R2, specified as x(u) and y(u). In order to address vertex coordinates for a flexible number
k of orientations, we define a redundant system of k coordinates z0, . . . , zk−1, which are
all real-valued variables in the MIP model and can all be obtained by rotating the x-axis
counterclockwise by one of the angles in the orientation system C = {θ0, . . . , θk−1} ⊂ [0, π).
We define the coordinate zi(u) using x(u) and y(u) as zi(u) = cos (θi) ·x(u)+sin (θi) ·y(u).

In order to be able to express later that two vertices u, v are collinear on a line with
slope in C, we need the orthogonal orientation zo

i for each coordinate zi. Note that while
zo

i can coincide with other coordinates, this is guaranteed only in a regular orientation
system with an even number of orientations. In general, this is not the case and we need
to define a second set of redundant coordinates, see Figures 3.1a, 3.1b and 3.1d. Using a
rotation by π/2 we obtain zo

i (u) = − sin (θi) · x(u) + cos (θi) · y(u).

Edge Directions and Minimum Length. Every edge (u, v) ∈ E has an original
direction in the input layout of G, defined as the direction from u to v. Our C-oriented
coordinate system splits the plane into exactly 2k sectors numbered from 0 to 2k − 1 for
each vertex u ∈ V , see Figure 3.3a. We store the sector in which an edge (u, v) lies in
the input drawing as a constant secu(v) that we call the original sector of (u, v).

Next we define an integer variable dir(u, v) to encode the selected direction of the edge
(u, v) in a C-oriented solution. The range for dir(u, v) includes the original sector secu(v)
and s ≥ 1 admissible neighboring sectors in both directions. In their original MIP model
Nöllenburg and Wolff [98] uses s = 1, which results in a range of three admissible edge
directions for each edge.

For each edge (u, v) we define the set S(u, v) of admissible directions3 as S(u, v) = {i |
secu(v) − s ≤ i ≤ secu(v) + s}. For each i ∈ S(u, v) we define its corresponding direction
number as seci

u(v) and define a binary variable αi(u, v) of which only one can be true at
any given time (3.1). These are then used to assign the correct value of dir(u, v) (3.2).�

i∈S(u,v)
αi(u, v) = 1 (3.1)

dir(u, v) =
�

i∈S(u,v)
seci

u(v) · αi(u, v) (3.2)

We further define dir(v, u) = dir(u, v) + k for the opposite edge (v, u).

To guarantee that the output layout draws the edge (u, v) in the selected direction dir(u, v)
we need to ensure that the variables of u and v for the orthogonal coordinate axis zo

i

3All index calculations are modulo 2k.
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(a) For edges (u, n3), (u, n0) the direc-
tion value decreases from 5 to 0.

z0

z1
z2

(b) k = 3, irregular

Figure 3.3: (a) For edges (u, n3), (u, n0) the direction value decreases from 5 to 0. (b)
The difference in angle between the orientations z0 and z1 (red arrow) is significantly
smaller than between z1 and z2 (blue arrow).

are equal, i.e., zo
dir(u,v)(u) = zo

dir(u,v)(v) (3.3a) and that the coordinates zdir(u,v)(u) and
zdir(u,v)(v) differ by at least the minimum edge length Lmin, i.e., zdir(u,v)(v)−zdir(u,v)(u) ≥
Lmin (3.3b).

zo
i′(u) − zo

i′(v) ≤ M(1 − αi(u, v))
−zo

i′(u) + zo
i′(v) ≤ M(1 − αi(u, v))

(3.3a)

zi′(v) − zi′(u) ≥ −M(1 − αi(u, v)) + Lmin if i < k

zi′(u) − zi′(v) ≥ −M(1 − αi(u, v)) + Lmin if i ≥ k
(3.3b)

Note four things. First, the constraints are created for every i ∈ S(u, v). Second, we
use i′ = i mod k, since we only have k coordinates, but 2k possible directions. Third, we
need to distinguish whether the direction i is smaller than the number k of orientations,
in which case u must have a smaller value than v in coordinate zi, or otherwise if i ≥ k
then v must have the smaller coordinate and we need to invert the difference in (3.3b).
And fourth, every triple of constraints for which αi(u, v) = 0 is trivially satisfied by using
a sufficiently big constant M in the constraints. Due to (3.1), αi(u, v) = 1 for exactly one
index i and only for that index i the constraints have the desired effect on the coordinates.

Combinatorial embedding. We want to keep the combinatorial embedding, i.e.,
the topology of the input layout, which translates into preserving the cyclic order of the
neighbors of each vertex. This can be expressed by requiring that the edge direction
values strictly increase when visiting the incident edges in counterclockwise input order.
There is exactly one exception, namely when going from the last used sector to the first
one. Figure 3.3a illustrates this situation, where the crossover point lies between the
neighbors n3 and n0, marked in red. Here we can add an offset of 2k instead to make
the condition hold. Since this must happen exactly once, we can use binary variables
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3. Computing Data-Driven k-linear Irregular Transit Maps

β1(v), β2(v), . . . , βdeg(v)(v) to select the respective edge pair in equations (3.4) and (3.5).

deg(v)�
i=1

βi(v) = 1 (3.4)

dir(v, u1) + 1 ≤ dir(v, u2) + 2k · β1(v)
dir(v, u2) + 1 ≤ dir(v, u3) + 2k · β2(v)

...
dir(v, udeg(v)) + 1 ≤ dir(v, u1) + 2k · βdeg(v)(v)

(3.5)

Planarity. For every pair of non-adjacent edges e = (u, v) and e′ = (u′, v′) we need to
find (at least) one separation line between e and e′ in a direction of K to guarantee that
e, e′ do not intersect. We define a set of 2k binary variables γi(e, e′) for which we require
that at least one of them is set to true.

2k−1�
i=0

γi(e, e′) ≥ 1 (3.6)

Now we ensure that every pair of edges e, e′ has a minimum distance dmin in the selected
directions, i.e., both endpoints of e have a distance of at least dmin to both endpoints of
e′.

zi′(u′) − zi′(u) ≥ −M(1 − γi(e, e′)) + dmin

zi′(u′) − zi′(v) ≥ −M(1 − γi(e, e′)) + dmin

zi′(v′) − zi′(u) ≥ −M(1 − γi(e, e′)) + dmin

zi′(v′) − zi′(v) ≥ −M(1 − γi(e, e′)) + dmin

(3.7)

Note that the constraints are created for every 0 ≤ i < 2k, that we use i′ = i mod k and
that the first k sets of these equation look like (3.7), while the rest needs to invert the
differences, e.g., −zi′(u′) + zi′(u), since they change sides with respect to direction zi′ .

3.4.2 Soft constraints
Soft constraints model the aesthetic quality criteria to be optimized in the layout. We
adapt the three criteria of the octolinear MIP [98] to arbitrary orientation systems: line
straightness, topographicity, and compactness. Each requires a set of linear constraints
and a corresponding linear term in the objective function.

Line straightness. We optimize for line straightness by minimizing the number
and angles of bends along the metro lines in L. First we create a variable θ(u1, u2, u3)
for all pairs of consecutive edges e1 = (u1, u2), e2 = (u2, u3) along some path L ∈ L
that represents the cost of a potential bend between e1 and e2 on the metro line L. To
assign θ(u1, u2, u3) we subtract the direction of e2 from the direction of e1. If the edges
do not have the same direction, the difference dir(u1, u2) − dir(u2, u3), which we will

26



3.4. MIP Model

call ∆ diru1,u2,u3 , will either be positive or negative and ∆ diru1,u2,u3 ∈ [−2k + 1, 2k − 1].
From [98] we know that θ(u1, u2, u3) = min{|∆ diru1,u2,u3 |, 2k − |∆ diru1,u2,u3 |}, i.e.,
θ ∈ [−k + 1, k − 1]. Using two binary correction variables δ1 and δ2 we can ensure that θ
takes the desired minimal value (3.8), which then lets us define the bend cost function (3.9).

−θ(u1, u2, u3) ≤ ∆ diru1,u2,u3 −2k · δ1 + 2k · δ2

θ(u1, u2, u3) ≥ ∆ diru1,u2,u3 −2k · δ1 + 2k · δ2
(3.8)

costbends =
�
L∈L

�
(u1,u2),(u2,u3)∈L

θ(u1, u2, u3) (3.9)

Topographicity. In order to support the mental map [84] of the user, we want the
shape of the output drawing to resemble the input drawing as closely as possible. For
this we try to preserve the input directions of the edges. Formally we want to minimize
the difference between the input direction and the output direction. However we have
to consider the type of orientation system that is in use. Specifically, for aligned and
regular orientation systems, we simply minimize �

(u,v)∈E | dir(u, v) − secu(v)|. In order
to minimize the absolute value we define a new variable ξ(u, v) = | dir(u, v) − secu(v)| by
imposing (3.10) and minimizing ξ(u, v) in the cost function (3.11). The topographicity
cost function that is minimized is simply the sum over all ξ-variables (3.11).

dir(u, v) − secu(v) ≤ ξ(u, v)
− dir(u, v) + secu(v) ≤ ξ(u, v)

(3.10)

costtopo =
�

(u,v)∈E

ξ(u, v) (3.11)

Here every edge (u, v), which is drawn in a sector that deviates from its input sector secu(v)
incurs a penalty of exactly the number of deviated sectors (which in our experiments has
been capped to at most one and therefore every edge either produces a penalty of 1 or
no penalty).

The attentive reader might already have spotted that this lines up for aligned and regular
orientation systems, since they use equiangular orientations. In an irregular system on
the other hand, a deviation of one sector to the left could be a very small actual angle
difference in the produced drawing, while a similar deviation of one sector to the right
could, at the same time, mean a large angle difference (see Figure 3.3b). To account
for this, we can define an individual sector deviation penalty for every edge and every
possible deviation of that edge.

Let e = (u, v) be an edge with an input sector secu(v). Then we adapt the constraints
(3.10) as follows.

dir(u, v) − secu(v) ≤ ξ1(u, v)
− dir(u, v) + secu(v) ≤ ξ2(u, v)

(3.12)
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Now ξ1 > 0 corresponds to a counterclockwise deviation of an edge, while ξ2 > 0
corresponds to a clockwise deviation. We can multiply each variable with an individual
constant weight to account for the actual angle difference of the corresponding deviation
in an irregular orientation system.

costtopo =
�

(u,v)∈E

(we
1 · ξ1(u, v)) +

�
(u,v)∈E

(we
2 · ξ2(u, v)) (3.13)

While the penalty weights we
1 and we

2 can be chosen freely, we aim to replicate the scale of
the aligned and regular systems, where a deviation of α = 2π/2k, i.e., the only available
deviation by exactly one sector, equals a penalty of 1. Let β be the angle between two
orientations of an irregular orientation system. Then we choose the penalty for an edge,
which deviates from one orientation to the other as w = β/α = kβ/π.

Compactness. To ensure a compact layout we minimize the total edge length of
the output drawing. Here we use that the Euclidean length of an edge e = (u, v) in
a C-oriented layout is defined by the maximum absolute value |zi(u) − zi(v)| in all k
coordinates (the projections in all other directions are shorter), which we model by a
variable λ(u, v). The compactness cost function is the sum of all edge lengths.

zi(u) − zi(v) ≤ λ(u, v)
−zi(u) + zi(v) ≤ λ(u, v)

(3.14)

costlength =
�

(u,v)∈E

λ(u, v) (3.15)

Objective Function. The objective function to be minimized is composed of the
three different terms costbends, costtopo and costlength defined above. Each term can be
weighted with factors f1, f2, f3 depending on their relative importance.

minimize f1 · costbends + f2 · costtopo + f3 · costlength (3.16)

3.4.3 Improvements
Further, Nöllenburg and Wolff [98] devised several practical improvements to accelerate
their method.

Planarity on Demand. The number of planarity constraints (Sect. 3.4.1) grows
quadratically with the number of edges, but most of them are never critical as any
reasonable layout satisfies them trivially. So they suggested ways of reducing the number
of necessary constraints and to add them only on demand, which immediately carries over
to our generalized implementation. In practice, whenever we find a new best solution
during the iterative solving process of the MIP, we check if any edges cross. If this is
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not the case, we have found a valid intermediate solution, otherwise we add planarity
constraints forcing each of the two edges to be non-overlapping with all other edges and
continue the search.

Contraction of low degree vertices. Another speed-up method is to make use of the
assumption that sequences of vertices with degree 2 (chains of edges between interchange
or terminal stations) are usually drawn in the same direction. We can therefore remove
these edges and replace them with a dummy edge, whose minimal length is set to a large
enough value, such that, all stations can be re-inserted on this edge in a final solution
even at its minimal length. To allow further flexibility, we in fact replace each chain
of such edges not by one, but by a chain of three edges, such that, there is enough
space for the reinsertion of the stations. Finally, after re-inserting the station on this
edge we distribute the stations equally along the chain of three edges to achieve a more
well-distributed look in the final map. While the application of this edge contraction
is a commonly used method, it stands somewhat in contrast to the goal of accurately
representing the original edge direction of each individual edge. It should therefore not
be seen as a strict improvement, but rather as a speed-up tool with a trade-off.

3.5 Experiments
We performed experiments on real-world metro networks to compare the computational
performance and visual quality of the computed metro maps with different linearity
systems.

3.5.1 Setup
We generated schematic layouts of the metro networks of Montreal (n = 65, m = 66),
Vienna (n = 90, m = 96), Washington DC (n = 97, m = 101), Sydney (n = 173,
m = 181), Berlin (n = 242, m = 293) and London (n = 267, m = 320) using aligned,
regular and irregular orientation systems with k ∈ {3, 4, 5} orientations (Berlin and
London were restricted to k ∈ {4, 5} due to the existence of vertices with degree 7 or
8). All layouts were created with two different weight vectors for the objective function,
a more balanced setting (f1, f2, f3) = (3, 2, 1) and one emphasizing bend minimization
(f1, f2, f3) = (10, 5, 1), resulting in 96 instances in total. For all layouts we added planarity
constraints on demand and used s = 1 admissible neighboring sectors for each original
edge direction (recall Section 3.4.1). Finally we contracted chains of degree two vertices
as described in Section 3.4.3.

The experiments were run on a computing cluster with 3 nodes, each with 1024GB RAM
and two 24-core AMD EPYC 7402, 2.80GHz. All experiments were restricted to a single
thread within IBM ILOG CPLEX. The operating system runs a Linux kernel version
4.15.0-208. Our implementation uses IBM ILOG CPLEX 12.8 to solve the integer linear
programs as single threads. Each experiment had an allocated available memory space of
32GB for Vienna, Montreal, Sydney, and Washington and 60GB for London and Berlin.
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Input (a) 3-A (b) 3-R (c) 3-I (d) 4-A

(e) 4-R (f) 4-I (g) 5-A (h) 5-R (i) 5-I

Figure 3.4: Sydney generated with objective function weights (f1, f2, f3) = (3, 2, 1) for
k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I) orientation systems.
All shown instances reached the time-out limit of 1 hour.

To reflect a reasonable real world application and to showcase the ability of the MIP
approach to compute reasonable results before reaching optimality, we set a time limit of
1 hour, chosen as a compromise between an attempt of finding as many optimal solutions
to the instances as possible and modeling a reasonable use case, which would not require
the user to let the solver run over night. To judge the quality and performance of a
layout, we use several measurements. Line straightness was measured by the bend cost in
the MIP (see Section 3.4.2). The sector deviation is a coarse measure of topographicity,
counting how many edges are not drawn in their preferred direction (see Section 3.4.2).
Sector deviation is measured in total and on average per edge. Another measure of
topographicity is the angular distortion, i.e., the actual angular difference between input
edges and schematized output edges, which is measured on average per edge. Finally
we measure the runtime in seconds (instances which reached the computation time limit
of 1 hour are marked with a clock symbol ) and the optimality gap of the best found
solution after the time limit as given by the solver in percent.

3.5.2 Results
Here we show a representative set of nine layouts of the Sydney metro network in Fig-
ure 3.4, a similar set of the Vienna metro network in Figure 3.5 and the performance
and quality measurements in Tables 3.1 and 3.2, respectively. Additionally a comparison
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Input (a) 3-A (b) 3-R (c) 3-I (d) 4-A

(e) 4-R (f) 4-I (g) 5-A (h) 5-R (i) 5-I

Figure 3.5: Vienna generated with objective function weights (f1, f2, f3) = (3, 2, 1) for
k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I) orientation systems.
All shown instances have been solved to optimality within the time-out limit of 1 hour.

between the three methods of determining the set C of drawing directions is depicted in
Figure 3.6 for the weight vector (f1, f2, f3) = (3, 2, 1). Similar plots and tables for the five
other networks and the weights (f1, f2, f3) = (10, 5, 1) can be found in the supplementary
material. The 1-hour time limit for CPLEX was reached by all Sydney instances. Note,
however, that during the process of solving the MIP, we have access to intermediate, but
possibly suboptimal solutions. Even in instances, which run out of time (like Sydney),
we tend to find intermediate solutions, which are visually already quite close to the final
solutions (at the 1 hour time limit) after only a few minutes of computation. As shown
in Table 3.1, the optimality gap of all solutions is at most 20%. Since solving these
instances as close to optimality as possible increases comparability between instances
via the taken measurements, we set the rather long time limit.

Specific instances in this section will be referred to by name followed by their number
of orientations k and the weights f1, f2, f3 in parentheses. Our first observation from
generalizing the model of Nöllenburg and Wolff [98] is that the MIP model size, i.e., the
numbers of constraints and variables scale linearly with the number k of orientations.
So as long as k is a (small) constant the asymptotics with respect to the graph size
parameters n and m remain the same. Yet, in practice, doubling the size of the model
may yield a significant slow-down in the actual solution time.

An initial comparison between the metrics for the two different weight vectors (3, 2, 1)
and (10, 5, 1) makes clear that, while the specific values are different, the overall trends
are very similar, as was expected.
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Table 3.1: Metric results for the Sydney network displaying the results for the different
parameters, i.e., the number of available directions (k) and the orientation system
(Aligned, Regular, Irregular). Metrics are the number of bends, sector deviation (total
and per edge), distortion per edge, the runtime in seconds (instances which reached the
computation time limit of 1 hour are marked with a clock symbol ) and the optimality
gap in percent (listed as number between 0 and 1). For one set of objective function
weights and linearity k combination the best value across all orientation systems of every
metric is marked in bold.

instance Sydney
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends 42.0 43.0 35.0 49.0 49.0 49.0 63.0 64.0 72.0
sector deviation 41.0 32.0 29.0 11.0 8.0 18.0 12.0 10.0 14.0↰per edge 0.42 0.33 0.3 0.11 0.08 0.19 0.12 0.1 0.14
distortion per edge 1.0 0.78 1.03 0.31 0.38 0.62 0.63 0.71 0.43
time in seconds(3

,2
,1

)

optimality gap 0.2 0.2 0.16 0.13 0.12 0.1 0.11 0.08 0.07
bends 31.0 32.0 35.0 48.0 47.0 47.0 59.0 59.0 59.0
sector deviation 36.0 32.0 24.0 8.0 10.0 17.0 12.0 12.0 18.0↰per edge 0.37 0.33 0.25 0.08 0.1 0.18 0.12 0.12 0.19
distortion per edge 0.88 0.84 1.02 0.29 0.33 0.59 0.65 0.68 0.49
time in seconds 2216.0(1

0,
5,

1)

optimality gap 0.09 0.07 0.05 0.01 0.02 0.01 0.01 0.01 0.0

Comparing the number of bends, we can see in Table 3.1 that increasing k leads to a
greater number of bends. This can be explained in part by an increase in forced bends,
where the probability that consecutive edges in a metro line cannot possibly be drawn
in the same direction increases with k. This could be counteracted by increasing the
parameter s, i.e., allowing more than two admissible neighboring sectors for each edge
(an action which in turn will have an effect on the time needed to solve the MIP). The
difference in bends between the aligned, the regular and the irregular orientation systems
is small and when emphasizing the bend cost more (by increasing f1 from 3 to 10), we
obtain almost identical values across the board with the exception of the two larger
instances Berlin and London, where the irregular system leads to a larger number of
bends with an increase of around 11% to 15% (Berlin) and 24% to 68% (London) when
comparing the best aligned or regular map to the best irregular map. We observe here
already that the irregular system for k = 5 for London obtains very poor metrics overall,
indicating that the heuristic determination of suitable directions for the map was not
successful for this instance. Unsurprisingly we have almost always fewer bends, when
emphasizing the objective function that minimizes bends with the sole exception of the
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regular Vienna-5 instance, where a reduction in sector deviation offsets the larger amount
of bends.

Table 3.2: Metric results for the Vienna network displaying the results for the different
parameters, i.e., the number of available directions (k) and the orientation system
(Aligned, Regular, Irregular). Metrics are the number of bends, sector deviation (total
and per edge), distortion per edge, the runtime in seconds (instances which reached the
computation time limit of 1 hour are marked with a clock symbol ) and the optimality
gap in percent (listed as number between 0 and 1). For one set of objective function
weights and linearity k combination the best value across all orientation systems of every
metric is marked in bold.

instance Vienna
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends 11.0 13.0 11.0 19.0 20.0 23.0 26.0 22.0 29.0
sector deviation 23.0 14.0 35.0 6.0 8.0 4.0 8.0 14.0 6.0↰per edge 0.43 0.26 0.65 0.11 0.15 0.07 0.15 0.26 0.11
distortion per edge 0.69 0.84 0.7 0.32 0.39 0.42 0.57 0.58 0.57
time in seconds 687.0 262.0 2661.0 116.0 1403.0 209.0 804.0 3181.0 2739.0(3

,2
,1

)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bends 9.0 10.0 10.0 19.0 19.0 19.0 25.0 24.0 26.0
sector deviation 22.0 20.0 36.0 6.0 9.0 8.0 7.0 11.0 7.0↰per edge 0.41 0.37 0.67 0.11 0.17 0.15 0.13 0.2 0.13
distortion per edge 0.7 0.79 0.74 0.32 0.41 0.41 0.59 0.6 0.54
time in seconds 84.0 74.0 319.0 45.0 60.0 47.0 109.0 382.0 168.0(1

0,
5,

1)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Overall sector deviation decreases or remains stagnant with increasing k with a more
pronounced drop from k = 3 to k = 4 than from k = 4 to k = 5. In contrast, the actual
distortion per edge of the computed map is smallest for k = 4. This is surprising, since
with a higher k and the same allowed discrepancy of one sector to the left or right, one
would expect that edges are forced to be closer to their original edge direction. A possible
explanation would be that the available directions for a single edge are too restrictive
leading to a large number of conflicts and in particular a larger number of edges which
have to “escape” to one of the neighboring sectors. This seems unlikely since as explained
above the actual sector deviation per edge is mostly smaller for k = 5 than for k = 4.
This leads us to conjecture that for our chosen test instances, the selected angles for the
k = 5 orientation systems happened to be less suited for the instances when compared to
the angles of the k = 4 orientation systems.

Comparing the aligned to the regular orientation system, we can see that, while they
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are often comparable, in some instances like Montreal-3-(10, 5, 1) there is a significant
difference in sector deviation of up to 0.17 per edge. In turn, Washington-4-(3, 2, 1)
shows a 0.11 increase in sector deviation per edge for regular systems, indicating that
here the heuristically chosen directions are in fact less suitable for a schematic map
than the fixed aligned directions. The comparison with the irregular system looks very
similar, although slightly more promising. For some instances (e.g., Montreal, Vienna,
and Washington for k = 4, 5), the irregular orientation system is significantly better
than the other two. Overall the deviation is comparable and for Berlin-4 it (somewhat
surprisingly) tends to be worse than in the aligned setting, with differences of up to 0.3
(average sector deviation per edge).

The general picture of the actual angle distortion is again comparable for most instances
between the regular and the aligned setting, with no clear trend visible. The irregular
setting is also often close to the other two for this metric, with some notable exceptions.
For Sydney-4 and Berlin-4 it is significantly worse, while for Washington-5, Sydney-5,
and Berlin-5 the opposite is true. It might be the case that with increasing k, the
irregular system is increasing its ability to approximate the slopes in the input in a more
fine-grained way. Again, rather unsurprisingly, we increase the angle distortion, when
we emphasize line straightness with weights (10, 5, 1). A surprising observation is that
angle distortion is generally smaller for k = 4 than for k = 5.

Due to the time limit, runtime results are only comparable between the three smallest
instances Montreal, Vienna and Washington. Here too, there is no clear trend. Montreal
is solved quickest for k = 3, for Vienna, we see that k = 4 has the lowest runtime, while
Washington acutally preforms best for k = 5.

3.5.3 Discussion

Our approach of increasing topographicity in metro maps through data-driven orientation
systems seems to be working in a reasonable number of computed instances. Choosing
an irregular orientation system is a valid option to increase topographicity, even if the
irregular set of slopes is unfamiliar. Moreover we can see that in isolated instances
distortion can be lower when restricted to a smaller set of directions, which might be an
indication that some input maps lend themselves more naturally to a specific k, which is
not always the octolinear k = 4 or the highest possible number.

The actual metro maps produced by our system, we can see one major caveat of our
approach to minimize distortion by deciding the directions based on the input. While
for most edges we have a very suitable representative direction in the orientation system,
the constraints of the MIP might still force an edge to be drawn in a different sector. In
Figure 3.4(c) the top left end of the yellow line is drawn to the top, despite there being
a direction available which is closer to its general direction in the input. However due
to the other yellow line occupying this direction already it is drawn in a direction with
more topographic distortion.
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Figure 3.6: Plots of the results of the experiments for the objective function weights
(f1, f2, f3) = (3, 2, 1). Every metric is shown as a colored line, the columns are the three
orientation systems.
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On a positive note we can see that irregular orientation systems can create metro maps that
resemble the input more closely than typical aligned systems. This can be seen when com-
paring Figures 3.4 (a) and (c), (d) and (f) respectively. We can also see that most of the lay-
outs, which are not using an aligned orientation system do not include the horizontal direc-
tion. This might be helpful in labeling these metro maps, since it is difficult to place the vi-
sually preferred horizontal labels along a horizontal line with clear association to a station.

Concerning the contraction method used, it should be pointed out that while this is a
commonly used approach and decreases the number of edges significantly resulting in a
beneficial effect on the runtime, metro maps very commonly employ bends within such a
sequence of degree two stations. While it would be possible to encode such an additional
bend in the MIP, it would require us to a priori fix where such a bend can be. This is a
limitation of the MIP, since a number of possible and relevant solutions are cut off with
this.

It remains to discuss the clustering method for irregular orientation systems. A stated
in Section 3.3.2, we aimed to find a suitable irregular orientation system based on the
slopes of edges present in the input map. To this end we employed a 1-dimensional
k-medians clustering algorithm, partitioning these slopes into appropriate clusters, which
are in turn represented by their median direction. We had to adjust for the circular
nature of a set of slopes. This can be done by turning it into normal 1-dimensional
data, via cutting between two elements and flattening the circular list of slopes into a
regular 1-dimensional one. If we cut at all possible |E| intervals between two consecutive
elements, we can choose the clustering, which yields the lowest sum of intra-cluster costs
and therefore the lowest overall error.

However this resulted in some instances whose constructed MIP did not admit a feasible
solution. A reason for this could be that the resulting irregular orientation systems contain
an orientation c with a large angular difference to its neighboring orientations. As a result
the interval for slopes whose closest orientation is c becomes comparatively large. If four
or more edges with a shared endpoint all consider c to be their representative orientation,
any MIP which allows for a sector deviation of at most 1 (see Section 3.4.2) is infeasible.
We would therefore advise to exercise caution in the use of irregular orientation systems,
in particular when the differences between one orientation and its neighbors become large.

In contrast, by choosing the (arbitrary) cutting point at 0 degrees resulted in feasible
instances for all tested cases. This underlines that the optimality of the clustering of
slopes in the input does not necessarily correlate with the actual optimality of an irregular
orientation system, but is instead a coarse approximation. Section 3.6 also points out
how further research might aim to improve this.

3.6 Conclusion
We presented and implemented an adaptation of an existing MIP model for octolinear
metro maps [98] that can draw metro maps schematized to any set C of arbitrary
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orientations. This is supplemented by a data-driven approach to optimize the set C based
on k-means clustering of the input edge orientations or by finding the best rotation of a
regular orientation system. Finally we performed, presented, and discussed experiments
of our system and its results for different real-world metro maps.

An approach to choose a suitable k for a given input might be to use the smallest k
which generates visually appealing layouts in order to find a middle ground between
the schematic appearance of the metro map and geographic accuracy. This leads to the
general idea, that it is still important for a metro map designer to consider a number of
possible layouts in different linearities for a given input network in order to find the most
suitable metro map style. Hence our system should not be understood as a stand-alone
method to metro map generation, but rather as an automated tool to help pre-select
possible candidates for layouts and increase the number of layout settings a designer
can explore at low time cost. This pre-selection might be refined in the future if a more
global metric to judge the quality of a metro maps is devised.

As future work, we want to include station labeling [91]. Similarly, there is additional
functionality which can be encoded in the MIP (like preventing bends in stations). One
motivation for k-linearity is based on the idea that certain linearities are more suited
to a metro network than others. It would be interesting to compare user performance
between maps of different linearities with a user study. Further there is a clear path
for additional investigations, when it comes to deriving the drawing directions based
on the input. Currently the clustering is executed after contracting degree two stations.
However, since the goal is to represent all edges as close as possible, there is a possibility
to base the directions on the complete input map instead of the contracted one. And
finally, the idea of basing the design decisions of the algorithm on the input data can
be extended to, for example, the decision how exactly we should contract the chains of
degree two edges. In particular in large transit maps, there are sometimes such chains,
which form quite generous loops around other edges or geographic obstacles in their input
geography, a feature which we might want to preserve to increase topographicity, but
also to avoid representing such a chain with a direct connection between its start and
end point, which might pose a significant obstacle.

As mentioned in the previous section, the connection between the optimality of the
clustering of the edge-slopes and its suitability for a schematic map is unclear. A
possibility to improve on this would be to consider a constrained clustering variant, which
aims to capture the goal more directly. Since we suspect that the infeasibility of the
MIP models stems from neighboring edges all being clustered in the same cluster and
therefore all attempting to be drawn in the same direction, a clustering which constrains
neighboring edges to be grouped in different clusters might improve this relationship.
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CHAPTER 4
Including User Defined Geometric

Motifs in Transit Maps

This chapter is (partially) based on the following publications:
[15]: Batik et al. – Shape-Guided Mixed Metro Map Layout
(Computer Graphics Forum)
[14]: Batik et al. – Mixed Metro Maps with User-Specified Motifs (GD’21, poster)

A metro or transit map used to show transportation line services is an intuitive, schematic
representation of a transit network. Here, a schematic representation is a simplified
network geometry (e.g., straightened lines, uniform spacing of stations, etc.), to facilitate
effective way-finding activities [110]. Such nicely arranged representations make transit
maps popular visual metaphors for network visualization in physics, biology, engineering,
etc. [132]. However, manually creating schematic maps is not straightforward and requires
intensive iterative processes. Automatic approaches have been thus investigated to solve
this high-complexity problem [133], however, most existing approaches aim for one single
style. For example, an octolinear (also octilinear) layout limits all edge orientations to
horizontal, vertical, or diagonal at 45◦ [98, 116, 126]. A curvilinear layout constrains
metro lines as continuous and smooth curves [53]. Other styles such as concentric
circles [54] that align metro lines along concentric circles, or multilinear [89] designs that
relax octolinear layout by allowing multiple edge directions were also proposed and their
algorithmic complexity and perceptual effectiveness were investigated.

However, in reality, if we take a close look at the handcrafted metro maps by professional
designers [32, 139], multiple styles are often incorporated in a single diagram. Designers
often distinguish primary and secondary information to emphasize the difference between
specific lines in the system. To achieve this, some lines in the map are arranged using
a simple geometry (e.g., circle, etc.) or an iconic shape (e.g., heart, etc.), while the
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(a) Schematic Mapping Workshop logo (b) Embedded heart

Figure 4.1: Examples of shape-embedded layouts, including (a) the logo of Schematic
Mapping Workshop 2019 (courtesy of Dr. Maxwell J. Roberts), and (b) an example
illustration from One Metro World [32] (courtesy of Mr. Jug Cerović).

remaining lines follow the layout convention. The official Moscow map with a circular
route highlighted is a typical example [86], while maps with more complicated shapes [139]
are more often used for advertising purposes or special events [77, 128]. Figure 4.1a shows
more examples, where a designer embedded the Vienna metro map to create a workshop
logo [122]. Cerović explains the influence of shapes in mental map development [32].
Nevertheless, as summarized by Wu et al. [133], creating transit maps is an iterative
process, and an automatic approach provides opportunities for scientists to effectively
investigate advantages and disadvantages of various metro maps.

There exist automatic approaches for synthesizing metro maps with more than one
style; however, supported geometry (i.e., shape) is limited to either polylines [136] or
circles [134] to the best of our knowledge. This chapter presents a more general approach
to the mixed layout problem, which allows the integration of specific shapes and classical
metro map layout. This is achieved by introducing a user-defined guide shape, represented
as single or multiple polylines, as input. Figure 4.1b shows an example, where we embed
a heart shape into the Taipei metro system. This is done with a three-step approach by
firstly matching routes for shape approximation, then deforming the network layout, and
finally, aligning lines on a grid. Note that each individual step here has been categorized
as a challenging problem [55, 133, 80]. To guarantee the visual quality of the generated
maps, the guide shape should be recognizable in the final layout, while the remaining
part of the layout should still fulfill the classical octolinear design criteria [98]. Our
contributions in the chapter are summarized:

• A general definition and solution for the mixed metro map problem beyond the
state-to-the-art.

• An algorithmic approach to perform shape matching, shape approximation, and
metro line alignment as a whole.
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(a) Input (b) Matching (c) Smooth (d) Octolinear (e) Grid alignment

Figure 4.2: Algorithmic pipeline of our layout approach. (a) The input metro network
and a user-specified shape. (b) Shape and route matching, shown in blue. (c) Shape
fitting using a smooth layout. (d) Shape fitting using an octolinear layout. (e) Final
layout after aligning stations and lines on a modified grid, which includes the shape.

• Quantitative and qualitative evaluation to test shape recognizability and the corre-
sponding influence on route planning tasks.

The chapter is structured as follows: In Section 4.1, we summarize the state-of-the-art
literature relevant to our approach. We then begin with a definition of the proposed
problem, followed by an explanation of the design criteria and a high-level description of
our algorithm (Section 4.2). The method used to solve the proposed problem is detailed
in Sections 4.3-4.5. We collect several results (Section 4.6), examine the approach
performance and quality (Section 4.7), and conclude this chapter and propose open topics
in Section 4.8.

4.1 Related Work
Metro maps are designed to help passengers navigate transit lines when taking trains
in a rail system. Since train routes are fixed and passengers mainly need to know at
which station to get on or off a train, some sort of distortions are allowed in metro
maps for improving readability. Since exact geographic information is no longer needed,
cartographers usually enlarge downtown areas to label station names and prevent visual
clutters [102, 114]. The stations on metro lines are re-positioned to fulfill several criteria,
such as even spacing of stations [42, 79], minimum direction changes in routes [108], and
the relative positions of stations [111]. Generally, the layout of a metro map can be
curvilinear, multilinear [111], k-linear (including octolinear, hexalinear, and tetralinear)
[89], and even based on concentric circles [107, 93]. In addition to the network map, text
or image labels are placed around stations for passengers to connect the map and the
real world [103]. The labels are expected to be overlap-free, close to their corresponding
stations, and have consistent orientations if they represent neighboring stations.

Schematic Layout Approaches. So far the most commonly used metro map layout
is octolinear, which was introduced by Henry Beck for the London Underground in
1933. It is known that computing an optimal octolinear layout is NP-hard [96]. Several
categories of methods were then introduced to pursue high-quality metro map layouts
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within a reasonable computation time. The first category is line simplification, which
attempts to find a set of linked line segments to represent each path on the map [87,
83, 49, 31, 78]. During the simplification process, the deviation between each station
and the closest line segment is bounded, and the number of line segments is minimized.
The second is local optimization. Methods in this category iteratively move stations to
nearby positions to align edges in octolinear directions [8, 6]. Several strategies, such as
simulated annealing [130], ant colony optimization [129], magnetic force field [37], and
least-squares optimization [45] were applied to prevent the algorithm from falling into
local minimums. The third category is to formulate a metro map layout problem into a
mixed-integer linear program [98, 134], which distinguishes hard constraints that must be
fulfilled and soft constraints that are globally optimized. Typically, the octolinear layout
is mandatory since edge orientation is formulated using a set of binary variables in the
model, whereas other aesthetic requirements can be relaxed if they conflict with others.
Finally a recent result computes shortest paths between candidate positions of stations
on a predefined grid [11, 10]. This was formulated as an ILP, but heuristic solutions
through repeated applications of shortest path algorithms can be obtained very quickly.
In addition to methods belonging to the above-mentioned categories, the works of [126]
and [127] applied a two-step deformation technique to achieve the goal. Their methods
first compute curvilinear layouts of metro maps and then rotate each edge to the closest
octolinear direction. Each step solves a least-squares optimization problem. Compared
to previous works, our approach allows embedding a guide shape with arbitrary edge
directions into a schematic metro map, which is challenging to integrate with their
frameworks.

Station Names Labeling. Station names are essential in metro maps, yet the labeling
problem itself is also NP-hard [59, 91]. Several previous methods solve the layout and the
labeling problems in two steps to reduce the computation cost [126, 135]. Niedermann
and Haunert in particular present a general framework for labeling network maps [91].
Since occlusions could be inevitable when the layout does not provide enough space for
labeling, the methods of [91, 138, 118] systematically scale certain edges on the map to
solve the problem. There are also methods considering both layout and labeling problems
simultaneously when computing metro maps [117, 116, 98]. Please refer to [133] for
details as our work does not focus on the labeling problem.

4.2 Overview

Our approach was developed by firstly investigating several real-world examples [139,
86, 32] and existing design criteria [110, 133], and then summarizing common design
principles for our mixed metro map layout. Secondly, we transform these design principles
to aesthetic constraints. Finally, these aesthetic constraints are formulated into equations
for a mathematical model that can be solved systematically. We will demonstrate these
design principles, followed by an introduction of our approach pipeline achieving these
goals.
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4.2.1 The Mixed Metro Map Problem
We define the mixed metro map problem more generally by relaxing the user-specified
shape constraints introduced by Wu et al. [136, 134]. Note that to retain consistency,
we follow the terminology and symbols used in the recent transit map survey [133]. A
transit network is defined as N = (S, C), where S = {v1, v2, ..., vn} represents a vertex
set of stations and C = {e1, e2, . . . , em} is an edge set describing station connectivity. A
path cover T of N is used to describe a set of paths, in N , indicating the different service
lines in the transportation system. Note that each connection e ∈ C belongs to one or
more paths in T . Moreover, a guide shape P , which can consist of one or more open or
closed polylines P = {p1, p2, ..., pk}, is introduced to express the user’s design goal.

4.2.2 Design Principles
Based on criteria collected for layout approaches [133] and open criteria raised by the
design studio [139, 32], we summarize the design principles for our mixed metro maps as
follows:

D1 Constrained Layouts: To increase legibility [133, 110] line configurations are
often simplified to an octolinear design [98]. In such a layout, the preservation of
the input topology is often assumed as a constraint [133].

D2 Topographic Accuracy and Relative Positions of Stations: The topo-
graphic accuracy has been discussed as an important factor in a schematic repre-
sentation [110] to preserve users’ mental map of a city. Relative positions between
pairs of stations should be maintained.

D3 Spatially-separated Stations: To avoid overlaps between stations, a minimum
distance between stations is incorporated. This distance is preferably uniform [58,
98].

D4 Simplification of Trajectories: Paths are expected to be as smooth as possi-
ble [58, 98].

The aforementioned design rules have been defined previously [133] and are applied to
real-world metro maps in general. In this chapter, we further propose design criteria,
which allow us to achieve the desired affect when embedding the guide shape in the final
layout.

D5 Translation and Scale Invariant Shape Embedding: The shape can be
translated and scaled when embedding it, while we exclude rotation to avoid adding
another layer of recognition complexity [120].

D6 Shape Representation: The edges in the transit network should be appropriately
selected to approximate the shapes. Perceptually, the embedded shape in the layout
should be recognizable.
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D7 Hybrid Edge Orientation: Edges that are used to approximate the guide
shape should follow the shape structure, while the remaining edges follow the
aforementioned classical design.

4.2.3 Mixed Metro Map Pipeline

Figure 4.2 gives a conceptual overview of the proposed algorithmic pipeline. Initially, the
user needs to select a transit network and provide a target shape as input to our approach.
Figure 4.2(a) shows an example, where the transit network is drawn with colored lines
and a user-specified shape (heart) is marked in gray. In the second step, as shown in
Figure 4.2(b), we scale and translate the guide shape in order to find an appropriate
sub-network to approximate this shape (Section 4.3). Once the guide shape is uniformly
scaled and translated, we adapt a two-step deformation procedure inspired by Wang et
al. [126, 127] in order to create a relatively well-representative network embedding. Here,
we first generate a smooth layout (Figure 4.2(c)) to balance mutual distance between
stations and straighten lines with degree 2 stations, followed by synthesizing a nearly
octolinear layout (Figure 4.2(d)). This optimization process is detailed in Section 4.4. In
the last step, to guarantee that the metro lines are fully aligned on a grid (Figure 4.2(e)),
we introduce a grid alignment approach while retaining the mixed layout structure (see
Section 4.5).

4.3 Route Matching and Shape

We compute a metro map layout that exhibits the given guide shape. Limited by the
metro network’s route structure, determining the optimal size and position of the guide
shape is essential. However, we do not rotate either the guide shape or the metro map
when computing the map layout because their orientations are restricted. For example,
the upright direction of a “heart” shape is meaningful to humans; and the relative
positions of stations help passengers navigate themselves in an urban area. An upside
down metro map would conflict with users’ mental map and decrease the map’s usability.
To determine the position of a guide shape, we first determine a path W consisting of
metro connections e ∈ C. Then, we scale and translate the guide shape P to align with
the path W . Note that the guide shape’s size and position will not be updated during
the deformation process.

We focus on an automatic approach for aligning guide shapes and metro maps, which
determines a path inside the transit network visually similar to the guide shape P .
However, as outlined at the start of this chapter, there are use cases (artistic or advertising
purposes), where specific lines must lie on iconic shapes. We optionally let designers
define W manually.
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4.3.1 Automatic Route Matching
We search for a path W = (e1, e2, ..., ek) on the transport network that is visually similar
to the user-defined guide shape. Since the guide shape P can be arbitrary and the path
W similar to P may not exist, we insert dummy edges into the network to enhance visual
quality. Specifically, if the geographic distance between two stations vi and vj ∈ S is
smaller than a predefined threshold and no edge connecting vi and vj exists, we insert a
dummy edge to connect the two stations (Figure 4.3). We prefer to use as few dummy
edges as possible to represent the guide shape.

Next we adapt the shape-preserving Dijkstra algorithm [56] to find a path W that
can approximate P . The cost of a path in the shape-preserving Dijkstra algorithm, in
contrast to the normal shortest path algorithm, is given by similarity between the path
and P . Specifically, we quantify the difference between the path W and the P using
the direction-based integral Fréchet distance [19] between W and P , which we write as
δ(W, P ). We also use the concept of the partial similarity [19] δpartial(W, P ), which is
defined by a subpath P ′ of P , which minimizes δ(W, P ′) (see Figure 4.3).

The cost of a connection is given by the difference between the slope of the metro
connections and the slope of the corresponding section of the guide shape. So in case
the difference between those slopes is small, the additional cost of the connection for the
path is small, too. Rather than considering the Euclidean distance between points in the
original shape-preserving Dijkstra algorithm [56], the direction-based integral Fréchet
distance is beneficial for our use case because it is scale and translation invariant (i.e., P
is given with an arbitrary size and position). It provides a robust mapping between P
and W , and small variations between two lines are not disproportionately penalized.

In our implementation, we grow the path W from a station on the metro map until none
of the inserted stations can reduce the Fréchet distance. Let W0 be the initial empty
path and Wk be the path composed of k + 1 stations. Namely, the growing process can
be expressed as W0 → W1 → W2 → ... → W . At each step k, we examine all neighboring
stations of Wk and insert the station v into a queue if it can reduce the direction-based
integral Fréchet distance. In other words, δ(Wk + v, P ) < δ(Wk, P ). Then, for each
station u in the queue, we compute the partial matching δpartial(Wk + u, P ) to obtain a
subsection of the guide shape P that is the most similar to Wk + u. The station u that
has the shortest distance δpartial will be inserted to extend the path from Wk to Wk+1.
Note that we only consider subsections of the guide shape P with the intent, that Wk+1
approximates P better than Wk in each iteration. The algorithm repeats until the queue
is empty.

Using paths with a few dummy edges to represent the guide shape is preferable. To
achieve this goal, we give dummy edges a high cost and real metro edges a small one.
Since the starting vertex of path W is unknown, we run the Dijkstra method from each
potential starting station and select the path W that has the least cost δ(W, P ). If the
guide shape consists of multiple polylines, for example the eye-formed shape shown in
Figure 4.10, we perform the route matching only for the the polyline containing the top
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W ′
W

(a) Path W visually similar
to the guide

P
p0

(b) (Partial) guide
shape

(c) Smooth deformation (d) Grid alignment

Figure 4.3: (a) A path W , which is visually similar to the guide shape and a possible
next iteration W ′. Dummy edges are shown with dotted lines. (b) The complete guide
shape P is shown in black and a subsection of the guide shape used for partial similarity
matching is drawn with an orange stroke. (c) Smooth deformation and (d) grid alignment
steps, where shape stations v′

i ∈ S′
shape and the corresponding edges that approximate a

circular guide shape are visualized in blue, while stations and connections that do not
approximate the guide shape are shown in red.

left vertex, and all other polylines are placed at the correct scaling and offset to the
matched one.

Once the path W is obtained, we transform the metro network to align W with the guide
shape P . As mentioned previously, we assume that the guide shape and the metro map are
in the right orientation, and thus the transformation contains only translation and scaling.
For simplicity, the alignment is achieved based on the bounding boxes of P and W .

4.4 Deformation
After aligning the guide shape P with the metro network, we deform the metro network
to fulfill the design principles outlined in Section 4.2.2. This process is inspired by the
two-step approach of Wang et al. [126]. First, we create a smooth layout (Figure 4.2.c)
that aims to space stations evenly, avoid sharp bends, and maximize angular resolution.
Additionally, the guide shape P is approximated by aligning metro stations with segments
of P (Figure 4.4). The smooth, as well as the mixed layout, are created using the least
squares optimization by minimizing constraints iteratively.

In the following sections, we denote the geographic position of a station by vi ∈ S, the
transformed position in the smooth optimization stage by v′

i ∈ S′, and in the mixed stage
by ṽi ∈ S̃. We assume that the input metro network is planar. Otherwise, we planarize
the network by inserting dummy stations if two connections intersect.

To approximate the guide shape, a subset of stations v′
i ∈ S′

shape are pushed toward the
guide shape segments that are located closest to them. As a result, the edges e′

i ∈ C ′
shape

connecting those stations can represent the guide shape P . Figure 4.4 illustrates the
connections and stations that should and should not approximate the guide shape. It
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v∗i

v′j

pj

pi

v∗j
P

v′i

Figure 4.4: The station v′
j , rather than v′

i, is used to approximate the guide shape. This
guarantees that no other metro line is closer to the guide shape. Therefore, v′

j is added
to S′

shape, but not v′
i.

deserves noting that we use W only to align the guide shape with the network, rather
than to define C ′

shape. The reason is that the automatically computed path W represents
only the overall shape of the guide shape and may miss details. Therefore, we update
S′

shape at each step of the smooth deformation. This is done as follows: let v∗
i be a

reflection of v′
i over the closest point pi on the guide shape. We assign v′

i to S′
shape if the

line segment between v′
i and v∗

i does not intersect any of the edges in C ′, as illustrated
in Figure 4.4. Otherwise, such an intersection implies that another station and metro
line must be closer to the guide shape.

4.4.1 Smooth Layout

We optimize four constraints to compute the smooth layout,

Ωsmooth = wcΩc + wlΩl + waΩa + wpΩp. (4.1)

Specifically, Ωc forces the layout to approximate the guide shape. Ωl causes uniform
edge lengths, Ωa maximizes angular resolutions, and Ωp minimizes the distance of the
position of a metro station vi ∈ S to its geographical location. The corresponding weight
to balance the potentially contrary constraints is denoted by w. Let D(v′

i) be the degree
of v′

i. The constraint Ωc penalizes the distance of smooth stations and the polyline and
is given as

Ωc =
�

v′
i∈S′

shape

D(v′
i)|pi − v′

i|2. (4.2)

To implement the Design principles D1 to D4 (outline in Section 4.2.2), three energy
terms are applied to all stations vi ∈ C. The constraint Ωl forces stations to be evenly
spaced. This eliminates the information about the geographic distance between stations,
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but creates a more uniform and balanced layout. Ωl is given by

Ωl =
�

{i,j}∈C

|(v′
i − v′

j) − sijRij(vi − vj)|2 ,

where sij = L

|vi − vj | and Rij =
	
cos θij − sin θij

sin θij cos θij

�
, (4.3)

L denotes the target length of the edges. This length is equal for all edges where stations
are not dummy nodes, and equals the average length of the metro connections in the
initial layout. In case vi or vj of {i, j} ∈ C is a dummy node and not a regular station,
the target length for {i, j} ∈ C is L/2. Besides, θ describes the unknown angle of a
connection {i, j} ∈ C ′ and R is a rotation matrix, ensuring that the rotation of the
connection is not penalized.

The constraint Ωa aims to maximize the angle between connections sharing a station.
This separates the different metro lines in case of station with a degree > 2 (e.g. an
interchange), making it easier for the user to distinguish two metro lines. In case of a
station with degree = 2, the metro lines are straightened naturally. Ωa is formulated as

Ωa =
�

v′
i∈S′

�
{i,j},{i,k}∈C′

shape

|v′
i − (v′

j + c′
ij + tan(π − θi

2 )c′
jk)|2, (4.4)

where c′
ij = 1

2(v′
k − v′

j). θi depends on the number of outgoing connections of v′
i, namely,

θi = 2π/D(v′
i).

To preserve the overall geographic structure of the metro system, we add the energy term
Ωp. This term can avoid large deformations of the network and avoid a conflict with the
mental map of users. For example, to avoid a layout where stations located in the north
of a city are moved to the south. Ωp is given as:

Ωp =
�
vi∈S

|v′
i − vi|2. (4.5)

4.4.2 Mixed Layout
Following the smooth optimization stage, we create a mixed layout. Similar to the
previous step, we differentiate between connections ẽj ∈ C̃shape that aim to approximate
the guide shape and octolinear connections ẽi ∈ C̃octo that do not contribute to the
recognisability of the shape. Octolinear edges should have an octolinear slope (e.g. a
multiple of π

4 ), whereas shape connections approximate P and should align to a section of
the guide shape P . The differentiation between octolinear and shape connections is based
on the assignment used for the smooth stage. Therefore, if a connection was in C ′

shape in
the smooth layout, then this edge is treated as a shape edge ẽi ∈ C̃shape. Otherwise, the
edge is an octolinear one.
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(a) (b)

(c) (d)

Figure 4.5: Montreal metro map created with a cloverleaf-shaped guide inspired by the
city’s logo. (a) Geographically accurate layout with the automatically computed path P
highlighted. The input guide shape is shown on the bottom left. (b) The smooth layout,
(c) the mixed layout and (d) the final grid-aligned layout.

To determine the mixed layout, each connection ẽi ∈ C̃octo is assigned to its closest
octolinear slope. In case of a conflict, the Hungarian algorithm is applied to reassign the
octolinear slope of each edge by minimizing the sum of rotations. We minimize the term

Ωo =
�

{i,j}∈C̃octo

|(θ′
ij + ∆θij) − θ̃ij |2, (4.6)

to rotate octolinear edges ẽi ∈ C̃octo, where θ′
ij denotes the angle of the connection after

the smooth optimization, ∆θij is the difference between θ′
ij and the target angle, and θ̃ij

is the current slope of the connection {i, j} ∈ C̃octo. Further we apply the constraints
Ωp and Ωc equally as for the smooth layout. The mixed layout is than computed by
minimizing

Ωmixed = woΩo + wpΩp + wcΩc. (4.7)

During the smooth and the mixed deformation stages, the planarity is checked after each
optimization step. In case of an intersection the corresponding stations are moved back
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to the position at the previous iteration. An energy term is applied to avoid the same
intersection in the following optimization step. If the distance between a station and
a connection is below a pre-defined threshold, we apply an energy term to move them
apart.

4.5 Grid Alignment
While the previous mixed layout step tries to align the shape edges with the shape and
the remaining edges with an octolinear direction, the resulting layout may still contain
some edges that are not fully octolinear yet. Our goal is to compute a final layout, which
is as similar to the mixed layout as possible, while all edges of Cocto are exactly aligned
with one of the octolinear directions and all edges of Cshape are tracing the guide shape.

This issue can not easily be resolved by simply snapping every edge to the closest
octolinear direction. However we can adapt an existing layout algorithm developed by
Bast et al. [11], which computes octolinear layouts of metro maps given as geographical
inputs on predefined grids, and renders edges as piece-wise octolinear curves.

We will proceed by giving a description of the original approach first and then we will
describe all adaptions we made to accommodate for our setting.

4.5.1 The Octi framework
In their Octi framework for metro map layout, Bast et al. [11, 10] consider a geographic
network N as input. Let xmin, ymin, xmax and ymax be the minimal maximal x and y
coordinate over all stations in N respectively. A grid graph G = (VG, EG) (with cell
diagonals) is created, with a cell size d equal to the average distance between two stations
in N multiplied by a factor fd with ⌈(xmax − xmin)/d⌉ columns and ⌈(ymax − ymin)/d⌉
rows. The dimensions are chosen, such that, N can be placed on top of G and the
axis-aligned bounding box of N is completely contained in that of G. Now every edge
{a, b} of the grid is replaced with a path a, ab, ba, b of length three. The two nodes ab

and ba are called the port of a in the direction of b and the port of b in the direction of
a, respectively, while a and b are called the sink nodes of their respective ports. Note
that every port node has as many ports as its original degree. Finally for every sink
node, edges are introduced to create the complete graph on its port nodes. Every edge
between two ports of different sink nodes has weight ccop, every connection of a port to
its own sink node has a (sufficiently large) weight csink and every connection {ab, ac}
in the complete graph between port nodes of a node a have one of four possible values,
inversely proportional to the angle ∡bac.

Let x(s) and y(s) be the x and y coordinates of a station s in N . Now the candidate
set V c(s) of a station s is defined as all sink nodes of G, which have a distance of r or
smaller to (x(s), y(s)).

By iterating over all edges of N in a computed order Σ, the edges are routed as paths
through the grid. For the first edge {s, t}, this is done – conceptually – by temporarily
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(a) P on G

ppppppppppppppppp

(b) Subsampling (c) Removal (d) Connections

Figure 4.6: Adaption of the underlying grid, based on the guide shape P . (a) P is
overlayed on G. (b) P is subsampled to ensure similar distances on P as on G. (c)
Edges of G, which intersect P and vertices of G, which are too close to a vertex of P
are removed. (d) Vertices of P are reconnected with vertices of G, which are within a
certain distance range.

adding virtual vertices as and at to G and adding the edges (ax, k) for k ∈ V c(x) and
x ∈ {s, t}. Every such edge is relative to the distance of x and k. Now a shortest path
Πs,t between as and at is computed, as and at are removed from G, the positions for s
and t are fixed to the first and last sink node of Πs,t and the piece-wise octolinear path
between s and t is obtained by concatenating all sink nodes of Πs,t or the sink nodes
of port nodes in Πs,t. This is now done for all edges of Σ. Should an endpoint of an
edge already be fixed to a grid node, no virtual vertex is added and the shortest path is
instead computed to or from the already fixed position.

Two main factors require adaption of this process, namely the additional design principle
D7, i.e., the presence of the guide shape and that we do not use an input map with
geographical station positions, but the mixed layout, which lets us assume that our input
is already reasonably close to the final layout we want to compute.

4.5.2 Adaptions

We reduce the size of the map by removing stations and reinserting them afterwards,
similar to Section 4.4.2. While the original algorithm [11] uses a similar approach and
retains any vertex with degree three or higher, we also retain every vertex of Socto of
degree two, if its two adjacent edges are not assigned to the same (or opposing) octolinear
angles, since the mixed layout already aims – in accordance with design principle D4 –
to simplify line trajectories. Moreover, the mixed layout also, by design principle D6,
approximates P and we therefore also keep all stations in Sshape.

Next, all computed paths are paths in G. Recall that P is given as a polygonal shape. To
ensure that the distances along the shape are comparable to the average distances in the
grid, P is subsampled, however, no vertices are removed towards this goal to ensure that
no essential features of P are lost. We need a suitable representation of P in G. This is
done by overlaying P onto G, removing all edges of G, which cross an edge of P and all
vertices, which are closer than a small threshold value dmin to a vertex of P . Then we
reconnect a node pi ∈ P with a node a ∈ G if their distance d′ is dlow ≤ d′ ≤ dup, where
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Figure 4.7: Taipei Metro map (a) created without (b) and with (c) a heart-shaped
guide, shown in the top right of (a). The final maps (b & c) have been labeled as a
post-processing step.

dlow < d < dup. We choose dlow and dup, such that the connecting edges are roughly the
same size as the cell size of the grid. Since the nodes on the guide shape are not perfectly
aligned with nodes in G the connecting edges are not necessarily octolinear. We could
approximate the shape using nodes of G, however we emphasize design principle D6 over
D7 and allow some edges to deviate from the octolinear or shape aligned directions. This
process is illustrated in Figure 4.6

The newly introduced edges also need to be assigned weights. Port-to-sink connections
for shape nodes are weighted the same as for normal nodes of G. Edges between port
nodes of different sinks are weighted with chop/2 or chop/20 if one or both sinks belong
to P respectively. These cost reductions are intended to encourage the routing of edges
in N using edges of P . Connections between port nodes of the same sink node are again
weighted inversely proportional to the angle of their connected edges, however, since the
shape is not necessarily octolinear, we need to be able to derive these weights based on
any arbitrary angle θ and we therefore use 2π − θ. Since θ ≤ π, we retain the desired
property that no path of length two between two ports of the same sink is ever cheaper
than their direct connecting edge.

Since the mixed layout already assigns and aligns stations and edges with the guide
shape, we first and foremost want to ensure that these edges are still routed along edges
of P . Therefore we ensure that all edges of Cshape appear in Σ before any edge of Cocto.

When computing V c(s) for a station s ∈ Sshape, we drastically reduce its size. In
particular, we only keep the two nodes of G which, based on our experiments, are closest
to s. After routing all edges, all previously removed stations are reinserted and finally all
maximal sequences of stations of degree two are equally distributed.
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(a) (b)

(c) (d)

Figure 4.8: Berlin metro and S-Bahn map, consisting of 272 stations. The layout is
created with a stadium-shaped guide and a path W for the stadium is provided. (a)
Geographically accurate layout with the path W highlighted. The input guide shape is
shown on the bottom left. (b) The smooth layout, (c) the mixed layout and (d) the final
grid-aligned layout.

4.6 Experimental Results

The route matching and the computation of the smooth and mixed layout was performed
on a a MacBook Pro (2017) with a 2.9 GHz Quad-Core Intel processor. The grid
alignment was implemented in Python 3.8 using the NetworkX 2.6.3 module for shortest
path and the bentley-ottman module 7.2.0 for segment crossing computation. It was
computed on a standard laptop running Ubuntu 21.20 with an Intel Core i5 processor (8
× 2.6 GHz) and 16GB of memory. The grid size factor fd was 0.2 for Moscow, Paris and
Berlin and 0.3 for all other instances. The edge weights in G were set to chop = 20 and
dmin, dlow and dup were set to d

5 , d
2 and 3d

2 , respectively.

Our test cases can be grouped into two scenarios/potential use-cases for our approach.
In the first cases the path W was computed automatically as outlined in Section 4.3.1.
Figure 4.7 shows the metro system of Taipei with a heart shape, and Figure 4.5 shows the
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Network Figure Guide Route(s) Smooth(s) Mixed(s) Total(s)
Lisbon (60) Figure 4.11 Coast – 1.47 0.39 1.86
Montreal (68) Figure 4.5 Clover 3.82 1.67 0.20 5.69
Taipei (96) Figure 4.7 Heart 4.94 4.77 0.53 10.24
Moscow (204) Figure 4.12 Circle – 39.44 5.98 45.42
Berlin (272) Figure 4.8 Stadium – 133.21 21.12 154.33
Berlin (272) Figure 4.9 Bear 80.15 167.47 25.21 272.84
Paris (304) Figure 4.10 Eye 223.52 189.45 25.46 438.43

Table 4.1: Test instances and guide shapes with number of vertices (after planarization
and before subsampling, respectively) in parenthesis with their corresponding runtimes
for the route matching and deformation processes. All times are given in seconds. Shapes
marked with ⋆ were manually defined, and therefore have no route matching time.

one of Montreal with a cloverleaf shape, taken from the city’s logo. Figures 4.9 and 4.10
use more complex guide shapes embedded in larger metro networks, demonstrating the
capabilities and limitations of our approach.

For the second type of test case, we provide a manually defined path W . In Figure 4.8 a
layout of the Berlin metro and train network is created where the ring line is emphasized
in an stadium shape. The provided path W is highlighted. For the Moscow system
(Figure 4.12) a similar concept is applied. For the Lisbon metro network (Figure 4.11) a
schematic representation of the coastline guide the train connection reaching from top
right to bottom left. Table 4.1 lists all the presented test-cases, the number of stations of
the networks, the guide shape, and if W was provided or automatically computed.

4.7 Evaluation and Discussion

In this section, we examine the performance of our approach, and the visual quality of
the maps generated using our system.

4.7.1 Performance Evaluation

The measured computation times for the figures of the chapter are summarized in
Table 4.1. We observe that the running time increases based on the network sizes and
route sizes. As the grid alignment is built based on the shortest path algorithm with
complexity N(|V |2), the runtimes are not yet competitive for real-time applications (a
minute for smaller instances like Montreal and Lisbon, multiple minutes for medium
instances like Singapore and Moscow and up to 15 minutes for the large instances Berlin,
Paris, since we did not parallelize our code).
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Figure 4.9: Berlin metro and S-Bahn map created with a bear-shaped guide, shown in
the bottom right. The guide shape is inspired by the logo of Berlin.

Figure 4.10: Paris metro map created with an eye-shaped guide consists of multiple
polylines, shown in the bottom left.
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Figure 4.11: Lisbon metro and train map. Created with an curved guide shape, aiming
to schematize the right and bottom train line that follows the coast. The guide shape is
shown at the top left.

Figure 4.12: Moscow metro map. Created with a circular guide.
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Figure 4.13: An example of the shape recognition task.

4.7.2 Visual Quality Evaluation

To examine the visual quality of our layouts, we conducted an online user study. As
previously summarized in Section 4.2.2, one goal of our approach is to make the embedded
shapes recognizable on maps (D6) so that they become helpful for general route-finding
tasks that can be done on the maps. Therefore, we are interested in two research
questions, including (1) Are shapes in maps significant enough to be identified? and
(2) Are embedded shapes helpful or harmful for route planning tasks in comparison to
classical design? For the shape recognizability (E1), we asked the participants to mark a
shape if they saw one using a polyline drawing tool via mouse clicking. To evaluate the
map usability (E2), we explicitly asked participants to trace and count the number of
stations between a start station and a destination station. The tasks are done on classical
octolinear maps and our mixed metro maps. To analyze the result of (E1), we overlay
the polyline coordinates with the map and annotate each result manually. As for (E2),
we analyze task accuracy and time performance on both map styles. The study begins
with example training, followed by formal questions on small (approx. 100 stations),
medium (approx. 200 stations), and large (approx. 300 stations) networks.

We received in total 65 results, while we removed one incomplete answer and one which did
not pass our training exercises. We analyzed 63 results from the participants (16 females,
40 males, and 7 not disclosed) with ages ranging from 20 to 59. Five are professional
transit map users (e.g., cartographers, designers, transport company employees, etc). 15
are everyday users, 25 are frequent users, and 15 are occasional users. One participant
rarely uses a transit map and two participants never used it. Figure 4.13 gives an
example of a route marking result from a participant, and Figure 4.14a and 4.14b shows
a summary of the route finding task accuracy. For (E1), we prepared maps from cities in
several countries and with different guide shapes, including Montreal (flower), Singapore
(heart), Paris (circle), Berlin (bear), and Paris (eye). More than 95% of the participants
marked the shapes correctly in the the Montreal (flower), Singapore (heart), and Paris
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(circle) maps. The eye in the Paris (eye) map was recognized by 89% of the participants.
The coarse shape of the bear was recognized by 60% of the participants, while none of
them identified the teeth of the bear. We assume this could be because the teeth are a
small portion of the entire shape and the stations are not sufficient enough to represent
it. Except for the Berlin (bear) map (58%), more than 97% participants considered
the shapes in the study significant. We also asked participants if the symbolic shapes
helped them recognize the maps. This is done trough a 5 Point Likert Scale Analysis (yes,
partially yes, neutral, partially no, and no). When the shapes are simple (flower (3.75),
heart (3.51), and circle (3.71)), the answers lean toward positive, while if the shapes are
complicated (bear (2.85) and eye (3.31)), the preference is close to neutral or negative.

For (E2), we compare task performance on a classical octolinear layout and a layout with
embedded shapes on Montreal (flower), Singapore (circle), and Berlin (stadium). With
simple shapes (e.g., circle, stadium, etc.), we see a slight improvement in task accuracy
on Singapore and Berlin mixed maps (Figure 4.14a), and the time used to accomplish
the route planning tasks is reduced in general (Figure 4.14b). The Berlin (stadium) has
better accuracy because the stadium is a nice shape for representing a circular route
of this network. We also received some explicit feedback from the participants. Ten
participants mentioned in the feedback form that they found the shape design interesting
and potentially helpful, especially when the shapes are simple, while two participants
disliked embedding artificial shapes due to the inaccuracy introduced in comparison to
more topographically correct maps. Two participants mentioned that corners on the
shapes were important features that were expected to be mapped to stations in the
final result. It is an interesting observation, while we did not come up with an intuitive
extension to achieve this. One participant suggested that embedding a shape covering a
larger area would increase the map’s memorability. Another two participants mentioned
that the embedded shapes might influence their planning decisions since they introduced
additional bends in the map.

4.7.3 Limitations and Discussion
Although the route matching generally found a good alignment between the guide shape
and the metro network in our test cases, we cannot guarantee their global optimality.
In addition, formalizing and predicting the recognizability of shapes is a hard task,
especially on shapes with multiple polylines. Likely in such a scenario not all features
and subsections of a shape contribute equally to the recognizability. Our approach does
not differentiate sub-regions of the guide shape and treats the entire guide shape equally.

Our deformation process creates the layout by minimizing sets of local constraints, which
may cause unexpected results. For example, when deforming the transit network, the
guide shape can prevent areas with a higher station density to expand, like in the Moscow
map (Figure 4.12), where a larger circular route would be beneficial. Note that we also
do not claim that any shape will be appropriate for a transit map. However, we see other
potentials in the marketing, such as logo (Figure 4.1) and poster design [139]. Another
limitation is inherited from the octolinear transit map design, where we do not accept
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(a) (b)

Figure 4.14: (a) Accuracy and (b) time of the route finding task. The time is recorded in
seconds and the error bars represent the standard errors.

a station degree that is larger than eight. In our implementation, we split high-degree
stations into multiple stations with degrees less than eight in a pre-processing step.

The grid alignment requires that the vertices of P are connected with a suitable set of
vertices of the grid, which results in non-octolinear edges at the interface between the
grid and P . The iterative computation might not always find a routing for all edges,
although even for large networks, we found layouts where only few number of edges
(< 5) fail. An example is the layout of Tokyo, shown in Figure 4.15. The running
time bottleneck of the grid alignment is the grid size and the shortest path algorithm.
However, the underlying method of using repeated shortest path computations has
been shown to be highly efficient on both octolinear [11] and flexible grids [10] and has
recently been made openly available as part of a toolchain for transit map generation [28].
Finally, our current approach applies a post-processing labeling technique [91], which
can potentially produce rather small text labels. The implementation is available at
https://github.com/TobiasBat/Shape-Guided-Mixed-Metro-Map-Layout.

4.7.4 Contrast to Chapter 3
Both this and the previous chapter are concerned in some way with the generation
of transit maps, a task for which they use quite different approaches. Here we would
like to shortly discuss some of the differences and if and how the two approaches could
reasonably be combined.

The smooth and the octolinear layout generated in this chapter (before the grid alignment
step) are not necessarily strictly octolinear as they are produced by a force directed
method, which aims to provide but can not guarantee octolinearity. This problem is
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Figure 4.15: Tokyo metro map with a heart shaped guide guide. Five edges could not
be routed. The grid alignment was computed based on the smooth layout and only the
dense center of the map is shown.

fixed with the grid alignment phase, which makes the resulting layout more similar to
the layouts generated in Chapter 3. However there are still edges to and from the guide
shape, which do not adhere to the linearity and the grid alignment is based on a method
which can insert edge bends at computation time, while the MIP of the previous chapter
has to predefine bend points if they should appear in a final layout. The resulting maps
are therefore visually quite different.

Concerning different linearities, all steps of the pipeline in this chapter can deal with
different linearities to an extend. Wile the force directed methods can simply increase
the number of directions to which we snap the edges, the case is slightly more tricky for
the grid alignment. There has been recent work [10] which has shown the high flexibility
of using the method of Bast et al. [11] in particular when it comes to different underlying
grids. The main difference is the conceptualization of the edges in contrast to the MIP
of Nöllenburg and Wolff [98].

In the first system, edges follow predefined edges of a grid, which can be at various
inclines. In the second, an edge is parallel to an angle, which is not fixed in the plane.
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To illustrate this difference, the reader can recall that while there are nice regular tetra-,
hexa- and octolinear grids that tile the plane and can therefore be used as an underlying
grid for the system of Bast et al. [10], there is no such nice grid for, e.g., a dekalinear
system (i.e. a system which includes 5 different edge directions), a use case which can
easily be formulated in the MIP.

In the other direction it would be exceptionally tricky to define adherence to a guide
shape within the MIP if the edges are not assigned to the shape and already fixed in
the plane, since the choice of one edge following the incline of an edge of the shape also
carries an implication of where it should be placed in the plane and what the inclines of
surrounding edges should be.

We do not see an easy method of combining these two results as they have been presented
within this thesis and therefore leave it as an open question.

4.8 Conclusion
In this chapter, we introduced a new layout approach for synthesizing more engaging,
mixed-style metro maps. This is achieved by embedding recognizable shapes into a
classical metro map. The presented algorithm handles automatic and interactive route
matching, shape-aware deformation, and finally, grid alignment sub-problems. With
our results and evaluation, we show that the synthesized maps are of good quality and
that the embedded shapes are intuitively recognizable. As a primary future research
direction, we aim to investigate embedding more complex shapes, but also in combination
with non-octolinear grids. One initial idea here is to decompose the network together
with the shape hierarchically. We also plan to investigate more scalable methods to
enable a real-time workflow for larger networks with proper labeling as well as to develop
systematic quality metrics on such representations that are heavily linked to human shape
recognition. Finally, we aim to conduct a usability test that covers the aforementioned
spectrum to examine the function of shapes in a layout design.
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CHAPTER 5
Finding Schematic Minimum-Link

Containment Fences

This chapter is (partially) based on the following publications:
[21]: Bhore et al. – Minimum Link Fencing (ISAAC’22)
[20]: Bhore et al. – Minimum Link Fencing (EuroCG’21)

In the geometric multicut problem [2], we are given κ disjoint sets of polygons in the
plane, each with a different color, and are asked for a subdivision of the plane such that
no cell of the subdivision contains multiple colors. The goal is to minimize the total
length of the subdivision edges.

A different kind of separation is achieved in the polygon nesting problem [124], where
for two polygons P and Q with P ⊂ Q one asks for a polygon P ′ with the smallest
number of links, such that P ⊂ P ′ ⊂ Q. There exists a series of work that addressed the

Figure 5.1: Two sets of polygons in the plane (left) with different colors (green and
yellow). The yellow set effectively acts as an outer polygon with holes. Separating the
two sets with, possibly intersecting, individual fences (middle) can lead to significantly
more links in the fences (here 16) than grouping same-colored polygons (right), which
achieves this with just seven links.

63



5. Finding Schematic Minimum-Link Containment Fences

algorithmic complexity of nesting problems for various polygon families [3, 60, 124, 39,
85]. See Section 5.1 for more detail.

In this chapter, we consider a variant of geometric multicut inspired by polygon nesting,
where we separate the sets from each other with a set of closed polygon boundaries called
fences, which enclose only polygons of one color and have the smallest possible number of
links. If one or more sets are not connected, we need to solve the combinatorial problem
of choosing which polygons should be grouped in each fence. Figure 7.1 illustrates the
problem. Some variants of the fencing problem already become NP-hard for point objects
with two colors, e.g., if we require the fence to be a single closed curve [50].

In this chapter, we assume the input sets are collections of polygons, one color covers the
plane minus a single polygonal hole (the outer polygon, a parallel to polygon nesting),
and we will focus on the case κ = 2 of two colors. We use n to denote the total number
of corners of the input polygons. Even in this simple setting the problem turns out to
be non-trivial. If both sets are connected, then the problem is equivalent to finding a
minimal nested polygon, which can be solved in O(n log n) time [3]. If both sets are not
connected we show this problem to be NP-hard in Section 5.2. Note the contrast to the
geometric multicut problem, which is polynomially solvable for κ = 2 [1] but becomes
NP-hard when κ = 3 [2]. In Section 5.3 we show that, when restricting every fence to
contain at most two polygons, the problem admits an XP-algorithm when parameterized
by the maximal number of segments per fence, a result which holds for any κ. Finally, in
Section 5.4, we show that the problem is polynomial-time solvable if the convex hull of
the second color (the inner polygons) is contained in the outer polygon and the first color
is connected. For a set P of polygons P1, . . . , Pn, each with corner points v1

1, . . . , v1
|P1|,

. . . , vn
1 , . . . , vn

|Pn|, respectively, we define the convex hull convex hull C(P) as the smallest
convex region Rc, s.t., ∀1 ≤ i ≤ n ∀1 ≤ j ≤ |Pi| : vi

j ∈ Rc.

Problem Definition. Throughout this chapter we consider polygons in R2 without
self-intersections but potentially with holes. Moreover, we consider a polygon as the bound-
ary together with its interior, unless stated otherwise. We consider the following problem.

Definition 5.1 (Minimum Link Fencing (MLF)). We are given n pairwise interior-
disjoint polygons P = {P1, . . . , P|P|} in the plane, with a coloring function f : P →
{1, . . . , κ}, which assigns a color to every input polygon. We write Pi = {P | f(P ) = i}.
We want to find a set of simple closed polygon boundaries F = {F1, . . . , Fm} such that the
total number of links |F | on the boundary of F = �k

i=1 Fi is minimized and if two polygons
Pa and Pb are enclosed by the same fence or are both in R2\�k

i=1 Fi, where Fi is the polygon
bounded by Fi, then f(Pa) = f(Pb). We call Fi a fence and F a minimum link fencing of P.

Note the important difference in Definition 5.1 between F, which is the set of all fences of a
solution, and F , which is the union over all fences, i.e., one (possibly disconnected) polygon.
Thus |F| is the number of fences and |F | is the number of all segments in these fences.
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(a) BMLF (b) SMLF (c) CMLF

Figure 5.2: Different problem inputs corresponding to (a) BMLF, (b) SMLF and (c) CMLF.
In (b) and (c) the convex hull of all input polygons indicated in gray.

Throughout the chapter we refer to R2 \ �|P|
i=1 Pi as the free space (between polygons).

We refer to P, which contains polygons of κ different colors, as κ-colored and to the
problem setting as the κ-colored problem. We consider several problem variations.

If there exists a polygon Q ∈ P which is unbounded in every direction, i.e. R2 \ Q is
finite, this polygon Q effectively acts as an outer boundary. In this case we call the
problem Bounded Minimum Link Fencing (BMLF). We denote the polygon Q as the
outer polygon. As a consequence, the size of the outer polygon automatically bounds the
length of any link in a fence. Else, in general, one fence could conain a very long link,
while retaining small complexity when counting the number of links only. Note that Q
can be emulated in an instance of Minimum Link Fencing, by adding a large rectangular
polygon Pc \ (R2 \ Q), i.e., a large rectangle, of which the area, which did not belong to Q
is cut out. Then we ensure that all polygons remain simple by connecting the unbounded
region outside Pc with the hole of Pc via a highly complex narrow channel (light blue
channel in Figure 5.2a). If Q is the only polygon of its color f(Q) we call this setting
Simply Bounded Minimum Link Fencing (SMLF). Moreover, if in an instance of SMLF
we have CH(�κ

i=1 Pi \ Q) ⊂ R2 \ Q, i.e., the convex hull of all input polygons except Q
does not intersect Q, we speak of Convex Bounded Minimum Link Fencing (CMLF). The
differences are illustrated in Figure 5.2.

5.1 Related Work
Despite the fact that the problem is natural and fundamental, little previous work exists.
The problem of enclosing a set of objects by a shortest system of fences has recently been
considered with a single set B1 [1]. The task is to “enclose” the components of B1 by a
shortest system of fences. This can be formulated as a special case of our problem with κ =
2 colors: We add an additional set B2, far away from B1 and large enough so that it is never
optimal to surround B2. Thus, we have to enclose all components of B1 and separate them
from the unbounded region. In this setting, there will be no nested fences. Abrahamsen
et al. [1] gave an O(n polylog n)-time algorithm for inputs that consist of n unit disks.

Some variations with additional constraints on the fence become NP-hard already for
point objects with two colors. For example, if we require the fence to be a single closed
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curve, it has been observed by Eades and Rappaport [50] already in 1993 that one can
model the Euclidean Traveling Salesman Problem of computing the shortest tour through
a given set of sites by placing two tiny objects of opposite color next to each site. If
we require the fence to be connected, the same construction will lead to the Euclidean
Steiner Tree Problem, which was shown to be NP-hard by Garey et al. in 1977 [57].

Polygon Nesting & Separation. Polygon nesting is considered to be a fundamental
problem in computational geometry, and has been extensively studied since its inception.
Aggarwal et al. [3] considered the problem of finding a polygon nested between two
given convex polygons that has a minimal number of vertices. They gave an O(n log k)
time algorithm for solving the problem, where n is the total number of vertices of the
given polygons, and k is the number of vertices of a minimal nested polygon. Das [39]
considered a variant of MLF in his thesis, which restricts every fence to enclose exactly
one polygon, and showed that the problem is NP-hard. Given a polygon Q of m vertices
inside another polygon P of n vertices, Ghosh [60] gave an O((n+m) log k) time algorithm
for constructing a minimum nested convex polygon, where k is the number of vertices
of the output polygon, improving upon the O((n + m) log(n + m)) time algorithm of
Wang and Chan [125]. However, on the other hand, given a family of disjoint polygons
P1, P2, . . . , Pk in the plane, and an integer parameter m, it is NP-complete to decide if
the Pi’s can be pairwise separated by a polygonal family with at most m edges. Mitchell
and Suri [85] presented efficient approximation algorithms for constructing separating
families of near-optimal size.

5.2 Two-colored BMLF is NP-hard
In this section we will call polygons of color 1 boundary polygons and polygons of color 2
inner polygons. An instance of planar 3, 4-SATconsists of a Boolean CNF-formula ϕ with
a set of variables V = {v1, . . . , vn} and a set of clauses C ⊂ 2V , such that every clause is a
disjunction of three literals and every variable occurs at most four times as a literal in a
clause. Additionally, we are given the embedded plane incidence graph Gϕ = (V ∪ C, E),
where E = {vc | v ∈ V , c ∈ C, v occurs as a literal in c}. It is known that deciding if a
3, 4-SAT-formula has a satisfying assignment is NP-complete [66].

Given an instance of planar 3, 4-SAT we create an instance of 2-colored BMLF P , emulating
the shape of Gϕ with one unbounded outer polygon Q and multiple boundary polygons of
the same color f(Q) = 1 (Figure 5.3), such that ϕ is satisfiable if and only if there exists
a minimum link fencing for P with at most a certain fixed number of total segments.

Note that each gadget is described as a basic construction of gray polygons, in which
inner polygons are placed. This is possible, because we will invert all gray polygons at
the end of the reduction, such that the area of their union makes up exactly the actual
free space of our entire construction, see Figure 5.3. Stating that fences are computed
inside the gray polygons should be understood as fences being placed in the free space
between polygons. Throughout this reduction we distinguish fences based on the inner
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polygons they include. We call two fences F and F ′ congruent, if and only if they enclose
the same set of inner polygons. We call two fencings F and F′ congruent if there is a
bijective mapping f : F → F′, such that, every F ∈ F is congruent to f(F ) ∈ F′.

Let P be an instance of BMLF and S1, S2, and S3 disjoint connected subsets of R2\∪P ∈PP .
We call the ordered set S = {S1, S2, S3} a non-collinear triple if there are no three points
p1 ∈ S1, p2 ∈ S2, and p3 ∈ S3 such that the straight-line segment s from p1 to p3 contains
p2 and s lies completely inside R2 \ ∪P ∈PP . The choice of S2 only matters if there exists
a straight-line segment in R2 \ ∪P ∈PP connecting points in S1 and S3. Therefore we can
often omit S2 from the description of the triple or assume it as arbitrarily chosen. We
call S2 the bend-set of S. Let F be a fencing of P, and S1, S2, and S3 a non-collinear
triple. We say a fence F ∈ F crosses the triple {S1, S2, S3} if the boundary of F contains
at least one point pi from each set Si for i = 1, 2, 3 and there is a cyclic traversal of
the boundary of F in which we see first p1, then p2 and finally p3. We write ]S1, S3[ to
denote the part of the boundary of F that lies in-between p1 and p3 and contains p2.

Observation 5.1. Any fence in a fencing for an instance of BMLF crossing a non-
collinear triple {S1, S2, S3} contains at least one bend in the interval ]S1, S3[.

For t > 0 let S1, . . . , St be non-collinear triples that are crossed by a fence F of a fencing F
for some instance of BMLF. Let Si = {Sj , Sj+1, Sj+2} for i = 1, . . . , t and j = 3(i − 1) + 1.
We say that the triples are crossed by F in-order if there exist points pi on F such that
pi is in the bend-set of Si and there exists a cyclic traversal of F in which we see the
points pi in order of their indices. Without loss of generality we will assume throughout
that when F crosses S1, . . . , St in-order it always crosses for some Si first the set Sj , then
the bend-set Sj+1, and finally Sj+2. We write ]Sa, Sb[ with a < b and a = 1, . . . , 3t − 1
for the part of the boundary of F that lies between a point pa ∈ Sa and pb ∈ Sb such that
there exist points pa, . . . , pb with pi ∈ Si that we see in this order in a cyclic traversal of
F . For a segment s of F we say it is completely contained in ]Sa, Sb[ if the start- and
endpoint of s are contained in ]Sa, Sb[ for any choice of points pa and pb.

We say two non-collinear triples S = {S1, S2, S3} and S ′ = {S′
1, S′

2, S′
3} are non-

overlapping if there exist no two segments that intersect all six elements of S ∪ S ′

in order S1, S2, S3, S′
1, S′

2, S′
3. In other words we require at least three different

straight-line segments to connect a point p1 ∈ S1 with a point p6 ∈ S′
3 and containing

points p2 ∈ S2, p3 ∈ S3, p4 ∈ S′
1, and p5 ∈ S′

2 in order of their indices. Observe that
by this definition the non-collinear triples {S1, S2, S3} and its reverse {S3, S2, S1} are
non-overlapping. For a sequence of non-collinear triples S1, . . . , St we say that the triples
are non-overlapping if Si is non-overlapping with Si+1 for i = 1, . . . , t + 1 mod t.

Observation 5.1 together with the definition of non-overlapping gives the following.

Observation 5.2. Any fence in a fencing for an instance of BMLF crossing t > 0 non-
overlapping non-collinear triples Si = {Sj , Sj+1, Sj+2} for i = 1, . . . , t and j = 3(i−1)+1
in-order contains at least t bends and therefore at least t−1 complete straight-line segments
in the interval ]S1, S3t[.
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Q

Figure 5.3: A (schematized) complete construction for a small instance (v1 ∨ v2 ∨ ¬v3) ∧
(v1 ∨ v3 ∨ v4). The incidence graph is shown in the top right. Fences are highlighted
in green. Also note that the boundary polygons make up most of the available area
including an unbounded outer polygon Q as shown in the bottom right corner. For better
readability, we will invert these colors in all subsequent figures.

We can now show a lower bound for the number of links a minimum-link fence uses in any
solution of a BMLF instance. The lower bound essentially follows from Observation 5.2
after observing that the segment closing the fence can never reuse one of the t−1 segments
that lie completely inside the sequence of non-collinear triples.

Lemma 5.1. Let P be an instance of BMLF and F a minimum-link fencing for P, then
any fence F ∈ F that crosses t > 0 non-overlapping non-collinear triples in-order consists
of at least t straight-line segments.

Proof. By Observation 5.2 the fence F has at least t − 1 straight-line segments Assume
F has also exactly t − 1 segments. Let S1, . . . , St be the non-overlapping non-collinear
triples and S1, . . . , S3t be the sets of the non-collinear triple in the order in which F
crosses them as above. Since F is a simple polygon there exists a polygonal chain C
starting at some point in S3t and ending at some point in S1. By Observation 5.2 there
are t − 1 straight-line segments which are completely contained in ]S1, S3t[ which implies
that C must consist of segments that are also completely contained in ]S1, S3t[.

Now, we charge every of the t − 1 segments to the piece of F that connects for each Si

with i = 1, . . . , t − 1 some point in Si+1 with some point in Si+2. Since the triples are
non-overlapping each such connection also requires a distinct segment. Then, for the
connection of S3t−1 and S3t we require at least one more segment. Let s be the segment
charged to the connection of S3t−4 to S3t−3. If we could extend this segment to also
intersect S3t we would violate that St−1 and St are non-overlapping. Symmetrically for the
segment charged to S2 and S3. Consequently, we require at least one more segment.

5.2.1 Variable gadget
Every variable gadget consists of eight T-polygons (two per clause in which the variable
can occur). Figure 5.4a illustrates the construction; T-polygons are marked in gray.
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ε ε

ε

(a) Variable gadget construction with ε-gaps. (b) Fencing for true-state. (c) Fencing for false-state.

Figure 5.4: The variable gadget and its two possible fencings.

Every T-polygon has an isosceles triangle as the arm of the T (the horizontal part of
the T shape) and a spike (alternatively called a true spike and a false spike) protruding
from the arm and two consecutive polygons overlap at the end of their arms. For every
variable v ∈ V, we construct a variable gadget G(v) as a circular arrangement of eight
overlapping T-polygons.

For every pair of overlapping T-polygons A and B, we place an inner polygon P , such
that P ⊂ A ∩ B. Let us fix some A, B, and P as above, then we place P such that its
three corner points have only a very small distance ε > 0 to some corner point of A ∩ B.
All three ε-length segments between a corner point of P and the closest corner point of
A ∩ B have to be crossed by every fence enclosing P .

Crucially, the variable gadget has only two minimum link fencings. These two states are
shown in Figure 5.4. We associate the one shown in Figure 5.4b to the variable gadget
encoding the value true and the one shown in Figure 5.4c to encoding false.

Lemma 5.2. There are exactly two minimum link fencings Ft and Ff of the variable
gadget, both of which will enclose only triangles in the same T-polygon with each fence,
resulting in a fencing with 12 links for the whole variable gadget, such that every other
minimum link fencing is congruent to either Ft or Ff .

Proof. To prove this lemma, we will first number the eight inner polygons of the variable
gadget A1, . . . , A8. Any fence inside the variable gadget can include any combination
of k inner polygons. We will prove this lemma, by enumerating for every k ∈ {1, 8}
all possible (non-symmetric) combinations of including these inner polygons; Note that
technically a fence is allowed to include non-consecutive inner polygons. Note that any
fence has to consist of at least 3 segments and clearly every inner polygon of G(v) can be
fenced alone with 3 segments. For any possible fence including multiple inner polygons,
we show the existence of a certain number of non-overlapping non-collinear triples, which
provide a lower bound on the number of segments for such a fence. All triples and
the resulting lower bounds on the number of segments in fencings including all possible
combinations of 2 to 8 inner polygons are shown in Subsection 5.2.2. Enumeration shows
that a fence F including k inner polygons, has the minimum amount of segments, if and
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only if the indices of the contained inner polygons are consecutive (assuming A8 and A1
to be consecutive). In particular, such a fence including 2, 3, 4, 5, 6, 7 or 8 inner polygons,
requires (and can be realized with) 3, 6, 8, 11, 13, 16 and 18 segments, respectively.

First observe that there are exactly two minimum link fencings, which include exactly
two neighboring inner polygons in one fence, both consisting of 12 segments total, both
are shown in Figures 5.4b and 5.4c. We can therefore exclude any fence including six
or more inner polygons, since they clearly require more segments by themselves, which
immediately eliminates the possibility of including 6 or more inner polygons in one fence.
Any fence including five inner polygons requires at least 11 segments and at least one
additional fence is needed, which increases the segment count to at least 14. Any fence
including four inner polygons requires at least 8 segments. If the remaining four segments
are fenced together, we require at least 16 segments. If they include a group of three
polygons, we require at least 14 segments. If two remaining polygons are grouped, we
require 11 segments, but at least one more fence (14 segments in total) are needed and if
all remaining polygons are fenced alone, we need 20 segments in total.

Next if three segments are fenced together, we require 6 segments and have five inner
polygons left. We already know that no fence including four or more segments can be part
of a minimum link fencing. If three of the remaining five polygons are grouped we arrive at
a total of at least 12 segments, with at least one more fence needed. If at most two polygons
are grouped, we need at least three more fences and arrive at a total of at least 15 segments.

Finally, polygons could be fenced individually. Clearly there must be an even number of
individually fenced polygons. If all eight polygons are fenced alone, we reach at least 24
segments, for six inner polygons fenced alone we get 18 segments, four individually fenced
polygons lead to 12 with at least one more fence needed. Two inner polygons being
fenced alone require at least 6 segments, with at least three more fences needed for the
six left over polygons, which require at least 9 segments leading to a total of 15 segments.

Therefore only two minimum link fencings exist, which require exactly 12 segments, and
they group two neighboring inner polygons pairwise. We call the fencing, which groups
inner polygons, which are both contained in a gray triangle with a true spike Ft and the
other Ff .

5.2.2 Complete enumeration of possible fences in a variable gadget

This section contains the complete enumeration of all possible cases, which are considered
in the proof of Lemma 5.2. In particular, we enumerate all possibilities of which k inner
polygons could be included in a single fence, but compensate for rotational and axial
symmetry, i.e., two groupings are considered rotationally symmetric if we can construct
one from the other, by a combination of shifting all indices of included polygons by the
same constant (recall that all computations are considered modulo 8, and we write the
index 0 and 8 interchangeably) and relabeling all indices i as 8 − i (mirroring the instance
at a straight line).
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Clearly there is exactly one possibility for fencing 0, 1, 7 or 8 inner polygons. Moreover,
the number of ways to choose k polygons to fence is also characterizing how to chose
8 − k polygons (which are not fenced) and therefore the number of cases is symmetric for
2 and 6, and 3 and 5. It remains to compute the correct number of cases for 2, 3 and 4.

Exclusively accounting for rotational symmetry, we can compute the number f r(k) with
the formula

f r(k) = 1
8 ·

�
d|gcd(k,8−k)

ϕ(d)


8/d

k/d

�

where ϕ is Eulers ϕ-function, i.e., the number of co-prime integers smaller than k including
1. Using this formula we obtain four cases for two polygons (non of which are symmetric
to each other), seven cases for three polygons (two of which can be eliminated due to the
additional axial symmetry) and ten cases for four polygons (three of which are symmetric).

All cases are shown below in two individual figures, one illustrating the lower bound (the
black numbers) on the left, using non-overlapping, non-colinear triples and one showing
that this bound is in fact tight, by providing a fence achieving this exact number of
segments (shown in blue).

3 5 5

7 7 9 9

3

Figure 5.5: Fences including 2 polygons
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Figure 5.6: Fences including 3 polygons

16 16
Figure 5.7: Fences including 7 polygons

18 18
Figure 5.8: Fences including 8 polygons
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Figure 5.9: Fences including 4 polygons
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Figure 5.10: Fences including 5 polygons
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Figure 5.11: Fences including 6 polygons
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Figure 5.12: Wires are constructed from consecutive gray triangles places such that
two consecutive triangles always contain a non-collinear triple, which are pairwise non-
overlapping.

5.2.3 Clause gadget

For every clause c ∈ C in which three variables v1, v2, v3 occur either as a positive or a
negative literal, we create a clause gadget G(c). A clause gadget consists of three chains of
an even number of gray triangles. These triangles are placed such that their hypotenuses
intersect at an angle of at most π as shown in Figure 5.12a. The triangles are sufficiently
long and thin, such that, we can define two sets in every gray triangle (one to either side
of the central line), such that, the second set a′ of the i-th triangle and the first set b
of the (i + 1)-th triangle form a non-collinear triple. By construction the non-collinear
triple between the (i − 1)-th and the i-th triangle and the one between the i-th and the
(i + 1)-th triangle are non-overlapping.

We place the three chains such that the three first triangles of the chains have a common
intersection. Moreover, they intersect in such a way that their hypotenuses pairwise
form 2π

3 angles (Figure 5.12b). The last gray triangle of the first, second and third chain
intersect a spike of G(v1), G(v2) and G(v3), respectively. They intersect a true or false
spike if the variable occurs as a positive or negative literal, respectively. We refer to each
chain of gray polygons as a wire. The length of a wire is the number of gray triangles in
its corresponding chain.

Let W1, W2, and W3 be the wires of a clause gadget G(c) for clause c, where Wi intersects
the spike of G(vi) for i ∈ {1, 2, 3}. We place an inner triangle, denoted the clause triangle
Bc of G(c), in the overlap of W1, W2, and W3. Moreover, for wire Wi with gray triangles
T i

j we place inner triangles Bi
j in the overlap of the j-th and (j +1)-th gray triangle of the

respective wire and a final triangle in the intersection with the spike of G(vi). In the follow-
ing we write T1, . . . , Tk for the gray triangles and B1, . . . , Bk for the inner polygons of one
wire Wi, if i is clear from the context. Hence, inner triangle Bi is contained in the gray tri-
angles Ti and Ti+1 and gray triangle Ti for i > 1 contains the inner triangles Bi and Bi+1.

Let B1, . . . , Bk be the inner polygons of a wire and F a fence containing Bi and Bj for
some i < j − 1 and i = 1, . . . , k − 2 but not Bz for i < z < j, then we say F bypasses
Bz. For indices 1 ≤ i1 < i2 < j1 < j2 ≤ k, we say two fences F1 and F2 containing some
polygons of the wire interleave if Bi1 and Bj1 are in F1 and F1 bypasses Bi2 as well as
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Figure 5.13: The highlighted areas show that b and c, c and d, and d and e form non-
collinear triples.

Bi2 and Bj2 are in F2 and F1 bypasses Bj1 .

Let F be a fence of a minimum link fencing F for a clause gadget G(c). Let s be a
segment contained in the union of the gray triangles that form G(c) such that F crosses s
in two points p and q. Then splitting F at s means the following. Delete F in an ε-region
around p and q this creates two polygonal-chains, say F ′ and F ′′ with endpoints p′ and
q′ on one side of s and p′′ and q′′ on the other. Connect p′ with q′ and p′′ with q′′ to form
the two new fences F ′ and F ′′. Clearly, |F ′| + |F ′′| = |F | + 2.

One isolated wire For the following we fix an arbitrary clause c. Let G(c) be the clause
gadget of c and W one of the wires of G(c) with inner polygons B1, . . . , Bk. We denote as
isolated wire the gray triangles of the chain of W that do not contain the clause triangle.

We are interested in how a minimum link fencing of an isolated wire looks like. Crucially,
we first show that a fence of a minimum link fencing of an isolated wire cannot bypass
any inner polygon of a wire. To cover all possible ways this could happen, we establish
two lemmata, which investigate (a) the possibility that a fence could bypass more than
one inner polygon (Lemma 5.3) and then (b) that there are two fences, which both
only bypass a single inner polygon at a time and therefore form an interleaving pattern
(Lemma 5.4).

Lemma 5.3. No fence in a minimum link fencing F of an isolated wire W of G(c)
bypasses two or more consecutive inner polygons of W .

Proof. Let B1, . . . , Bk be the inner polygons of an isolated wire W , T1, . . . , Tk the
corresponding gray triangles, and F ∈ F a fence that bypasses two or more consecutive
inner polygons of W . Also, throughout the proof, let Bi and Bj with i < j be two inner
polygons that are contained in F such that Bi+1, . . . , Bj−1 are bypassed by F .

Assume that i + 1 < j − 1, i.e., there are at least three consecutive inner polygons
bypassed by F . Let Bi+1, Bi+2 and Bi+3 be three such consecutive polygons. Now, we
find one sequence of at least three non-overlapping non-collinear triples by construction.
Let b, c, d, and e be four sets such that b and c, c and d, and d and e form such triples.
Compare Figure 5.13 for an illustration.

By Observation 5.2 F contains at least two complete segments in ]b, e[. Moreover, F
has to cross the same triples in reverse order since it is a simple polygons and contains
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Figure 5.14: We can locally shortcut any fence F passing a and b in both directions by
connecting the two intersection points of F with a (b)

both Bi and Bj for j > i + 3. Consequently, we find another two complete segments
in ]e, b[. We split F at b and e. This creates three fences F1, F2, and F3 for which it
holds that |F1| + |F2| + |F3| = |F | + 4. One fence does not contain any inner polygons
and can be deleted, let F2 be this fence. Since F2 was created by splitting along b and e
it contained at least four complete segments plus the two segments introduced in the
splitting operation. Hence, with |F | + 4 = |F1| + |F2| + |F3| ≥ |F1| + |F3| + 6 it follows
that |F | ≥ |F1| + |F3| + 2 > |F1| + |F3|. Since F was part of a minimum link fencing we
may conclude that F at most bypasses two consecutive inner polygons.

In the following let Bi+1 and Bi+2 be the two consecutive polygons bypassed by F . Conse-
quently, we know that F contains Bi and Bi+3. Figure 5.14 illustrates the following cases.

Assume F does not contain any other inner polygons, i.e., F contains only two inner poly-
gons. In this case we find a sequence of four non-overlapping non-collinear triples a′ and
b, b and c, c and d, d and e′ which have to be crossed by F . Moreover, F has to cross each
such triple in the reverse direction. Consequently, F has crossed eight non-overlapping
non-collinear triples and consists by Lemma 5.1 of at least eight segments. Replacing
F by two fences, both consisting only of triangles, creates a fencing with less segments
than F. It remains to argue the case that F contains more than two inner polygons.

Let F be such that there does not exist an inner polygon Bz contained in F with z > i+3.
Then there exists an inner polygon Bm ∈ F and m < i. Observe that there is a sequence
of four non-overlapping non-collinear triples a′ and b, b and c, c and d, d and e′, which is
as in the case before and a sequence of four non-overlapping non-collinear triples e′ and
d, d and c, c and b, and b and a which is almost as before, with the difference that we
use a set a which lies in Ti−1 and can be chosen as a segment which F intersects twice.
By Observation 5.2 we find that ]a′, a[ completely contains at least seven segments of F .
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We split F at a, let Fm and Fi be the resulting fences such that Fm contains Bm and
Fi contains Bi and Bi+3. It holds that |Fm| + |Fi| = |F | + 2 and |Fi| ≥ 8 since Fi

contains only Bi and Bi+3 and bypasses Bi+1 and Bi+2. Hence, |F | ≥ |Fm| + 6 since
|F | + 2 = |Fm| + |Fi| ≥ |Fm| + 8. Consequently, replacing Fi by two triangles only yields
a fencing with the same number of fences as F. In the following assume that we delete
Fi and introduce one triangular fence F∆ that includes only Bi+3. The goal is then to
include Bi into Fm using at most three segments.

Consider Fm and remove the segment introduced when splitting F at a. Let p and p′

be the two intersection points of F with a and assume p is closer to the base side of Ti−1.
Without loss of generality we assume that neither p nor p′ are vertices of F . Let ci be
the corner of Ti−1 that would be disconnected from the component containing a when
removing Ti from the plane. If there exists a point c in the component containing ci

such that the straight-line segments pc and p′c both do not intersect Bi, are completely
contained in Ti−1, and their supporting lines leave Bi in different half-planes, we just
add these two segments to Fm which now contains also Bi.

Now assume such a point does not exist. By construction there exists a straight-line
segment starting at p, p′ respectively, ends at the boundary of Ti, and also intersects the
boundary of Ti. Let s be such a segment for p and s′ one for p′ and let q and q′ be their
endpoints on the boundary of Ti. Sine p is closer to the base of Ti−1 we may assume
that the supporting line of s leaves Bi to the right and the one of s′ leaves Bi to the left,
and s and s′ do not intersect. Connect the two endpoints of s and s′ with one segment
along the boundary of Ti. This uses at most three segments as required.

In preparation for the next case we are going to remove one additional segment. Consider
a set a′′ that is intersected by s, such a set is indicated in Figure 5.14. Since F contained
Bi it had to contain at least one point of a′′ as well. Moreover, since F was a minimum
link fence containing Bi

1 we may assume that there is a vertex v of F that is now a vertex
of Fm and there is a straight-line segment starting at v, intersecting a′′, intersecting
the boundary of Ti twice, and it lies in Ti−1 and does not intersect Bi. Let q′′ be the
endpoint of this segment. Replace the segments vp, pq, and qq′ by vq′′ and qq′′. That
is only two additional segments.

Finally, assume that there exist inner polygons Bm, Bl ∈ F such that m < i and l > i + 3.
Split F as above at a and also at some set e in Ti+3. This leaves three fences Fm, Fl,
and Fi. Similarly to above |F | + 4 = |Fm| + |Fl| + |Fi| ≥ |Fm| + |Fl| + 8 from which we
derive |F | ≥ |Fm| + |Fl| + 4. By the above argumentation we can hence replace F by two
fences Fm and Fl such that the new fencing has the same number of segments. But now,
observe that there is a sequence of non-overlapping non-collinear triples which Fi all has
to cross, namely a′ and b, b and c, c and d, d and e, e′ and d, d and c, c and b, and b and
a. By Observation 5.2 intervals ]a′, e[ and ]e′, a[ completely contain three segments each.
Moreover, these sets can be chosen in such a way that the segments introduced when

1We are only aiming to contradict minimality with respect to inclusion of polygons in the fence, for a
given set of polygons we may still assume that the initial fence was as short as possible.
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splitting F do only contain points of a and e. See also Figure 5.14 for an illustration.
Hence, |Fi| ≥ 10 and consequently |F | ≥ |Fm| + |Fl| + 6.

We now know that no fence of a minimum link fencing of an isolated wire bypasses
two or more consecutive inner polygons of that wire. However, it might still bypass an
unbounded number of polygons in total. Since there is a sequence of four non-overlapping
non-collinear triples for a fence that includes Bi and Bi+2 we obtain the following
observation for a fence bypassing at least one inner polygon.

Observation 5.3. Let F be a minimum link fencing of an isolated wire W of G(c), let
B1, . . . , Bk be the inner polygons of W , and F ∈ F a fence that bypasses z > 0 inner
polygons, then F contains at least 4z + 2 segments.

While it is not possible anymore by Lemma 5.3 to bypass multiple consecutive polygons
there could still be multiple fences in a minimum link fencing that interleave and bypass
many individual inner polygons.

Lemma 5.4. A minimum link fencing F of an isolated wire W of G(c) does not contain
two distinct fences that interleave.

Proof. Let B1, . . . , Bk be the inner polygons of W and assume that there are fences
F, F ′ ∈ F of W that interleave. By Lemma 5.3 we know neither F nor F ′ can bypass two
or more consecutive inner polygons. Consequently, there exist inner polygons Bi, Bi+1,
Bi+2, and Bi+3 such that without loss of generality Bi, Bi+2 ∈ F and Bi+1, Bi+3 ∈ F ′.

First, assume that F and F ′ only contain these four polygons. By Observation 5.3 each
fence bypassing one polygon contains at least six segments. Hence, |F | + |F ′| ≥ 12. By
replacing F and F ′ by two new fences, consisting of a triangle each, one containing Bi

and Bi+1 and the other containing Bi+2 and Bi+3, we create a new fencing with six
segments less. A contradiction to F being a minimum link fencing.

Now consider the case that F and F ′ might contain more inner polygons. First assume all
further inner polygons of F are before Bi and all further inner polygons of F ′ are after Bi+3.
Observe that then |F | + |F ′| ≥ 14 since we need to add at least one segment to each fence.
We split the fences F and F ′ in the gray triangles Ti−1, Ti+3 respectively. We first consider
just F . After splitting we now have two fences F<i and Fi. Let F<i be the fence containing
all inner polygons before Bi and Fi the fence containing Bi and Bi+2. By Observation 5.3
we have |Fi| ≥ 6. Consequently |F | = |F<i| + |Fi| − 2 ≥ |F<i| + 6 − 2 = |F<i| + 4 and
hence |F<i| ≤ |F | − 4. Doing the same for F ′ we obtain F ′

<i and F ′
i . As before we can

replace Fi and F ′
i by two triangles F∆ and F ′

∆. In total the new fencing created like this
has |F<i| + |F∆| + |F ′

<i| + |F ′
∆| ≤ |F | + |F ′| − 8 + 6 = |F | + |F ′| − 2 segments.

Finally, F and F ′ could contain polygons both before Bi and after Bi+3. By Lemma 5.3
we know that then the fences repeatedly interleave until at some inner polygon one fence
stops. Let m < l and without loss of generality let Bm be the last polygon included
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Figure 5.15: All six non-collinear triples of a fence bypassing exactly one inner polygon.

by F and Bl the first polygon included by F ′ and assume that between Bl and Bm

the two fences interleave, i.e., F includes Bm, Bm−2, etc. and F ′ contains Bm−1, Bm−3
, etc.. Moreover, F contains Bl−1 and F ′ contains Bm+1 We can split F and F ′ as
before in Tl−2 and Tm+2 using just four segments. Let F<m and Fm be the fences
created from splitting F such that Fm contains Bm, . . . , Bl−1 and F<m the remaining
polygons contained in F . Analogously for F ′ and F<l and Fl. Let M be the number of
bypassed polygons for F and L the number of bypassed polygons for F ′. We get that
|F | + |F ′| = |F<m| + |Fm| + |F<l| + |Fl| − 4. We also know from Observation 5.3 that
|Fm| ≥ 4M + 2 and |Fl| ≥ 4L + 2. Hence, |F | + |F ′| ≥ |F<m| + |F<l| + 4M + 4L and
hence |F<m| + |F<l| ≤ |F | + |F ′| − 4M − 4L. Finally, we can replace Fm and Fl by a
series of triangular fences that in sum have 3 · (M + L + 2)/2 which results in

|F<m| + |F<l| + 3/2(M + L + 2) − 4 ≤ |F | + |F ′| − 4M − 4L + 3/2(M + L + 2) − 4
= |F | + |F ′| − (5/2(M + L) + 1).

This concludes the proof as F cannot have been a minimum link fencing for W .

With both of these Lemmata established, we can state the generalized result in the
following Lemma.

Lemma 5.5. A minimum link fence F of an isolated wire W of G(c) does not contain a
fence F ∈ F such that F bypasses an inner polygon Bi with i ∈ {2, . . . , k − 1} of W .

Proof. Let B1, . . . , Bk be the inner polygons of W. Assume that F bypasses an inner
polygon Bj for 2 ≤ j ≤ k − 1. By Lemma 5.3 we know that F never bypasses more than
one consecutive inner polygon at a time. Hence, we know that Bj−1 and Bj+1 are both
contained in F . We distinguish if F bypasses Bj above or below (both cases are shown
in Figure 5.16).

Assume F bypasses Bj above as shown in Figure 5.16 (a). Then we construct a new
fence including also Bj as follows. Let s1 and s2 be two segments such that s1 lies inside
the gray triangle ti−1 of W that contains Bj−1 and Bj and s2 such that it lies inside the
gray triangle ti of W containing Bj and Bj+1. More specifically, we choose s1 such that
its supporting line leaves Bj−1 and Bj in one and Bj−2 in the other half-plane. Similarly,
we chose s2 such that its supporting line leaves Bj and Bj+1 in one and Bj+2 in the
other half-plane. The segments s1 and s2 can then be extended such that they meet in
a point that is inside the overlap of ti−1 and ti and below Bj . Moreover, they can be
extended such that they intersect any fence that contains Bj−1 and Bj+1 at least twice
below Bj−1 and Bj+1 respectively. See Figure 5.16(a) for an illustration.
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Figure 5.16: Rerouting of segments to include a bypassed inner polygon.

Symmetrically we find two segments s′
1 and s′

2 whose intersection point is above Bj and
whose supporting lines leave Bj−1 and Bj in the same half-plane and Bj+1 in the other,
Bj+1 and Bj in the same and Bj−1 in the other respectively. Again, these segments can
be extended to intersect F twice, this time above Bj−1 and Bj+1. See Figure 5.16(b) for
an illustration.

As F contains at least four segments inside ti−1 and ti we can replace those by s1, s2, s′
1,

and s′
2 which yields a fence with at most equal number of links. Now, deleting the single

fence that fenced Bj removes at least three links, a contradiction to F being a minimum
link fencing.

We can apply this procedure to all bypassed polygons. Since no fence can be interleaving
with F , we can simply remove all fences, which included any polygon Bi completely and
still obtain a valid fencing, contradicting that F is a minimum link fencing.

In the following we are going to bound the number of consecutive polygons that are
contained in one minimum link fence of an isolated wire. We compare this then to a fence
containing all inner polygons of an isolated wire. Such a fence, by construction, contains
2z non-collinear triples and hence requires 2z segments by Lemma 5.1. Figure 5.17
shows these triples. Constructing such a fence is straight-forward by following these
non-collinear triples. The following lemma summarizes this statement.

Lemma 5.6. Let F be a minimum link fencing of an isolated wire W of G(c), any fence
F ∈ F that contains z > 2 consecutive inner polygons of W has at least 2z segments and
such a fence exists.

Lemma 5.7. Let F be a minimum link fencing of an isolated wire W of G(c), then every
fence of F contains at most three consecutive inner polygons.

81



5. Finding Schematic Minimum-Link Containment Fences

Figure 5.17: Non-collinear triples in a fence including a series of consecutive inner
polygons.

Proof. Let B1, . . . , Bk be the inner polygons of W . By Lemma 5.5 we can assume that
the inner polygons of W contained in F are consecutive in the sequence of inner polygons.
Let F ∈ F be a fence containing z > 3 inner polygons of W .

By Lemma 5.6 we know that F consists of 2z segments. We replace F with a fence F1
including the two first polygons included in F and a fence F2 including all z − 2 following
inner polygons. Again by Lemma 5.6 it follows that |F2| = 2z − 4 and it holds that
|F1| = 3. In sum, we get that |F1| + |F2| = 2z − 4 + 3 = 2z − 1 ≤ |F |, a contradiction.

Lemmata 5.7 and 5.6 now lead to a characterization of minimum link fences of isolated
wires.

Lemma 5.8. Let F be a minimum link fencing of an isolated wire W of G(c) with k inner
polygons, then F has in total 3k/2 segments and F ∈ F contains exactly two consecutive
inner polygons Bi and Bi+1 for i odd.

Proof. Let B1, . . . , Bk be the inner polygons of W . By Lemma 5.7 every fence in F
contains either one, two, or three consecutive inner polygons. Let fi be the number of
fences in F containing i inner polygons. Then the number of segments of the fencing F can
be computed as |F| ≥ 3f1 + 3f2 + 6f3 since for one or two inner polygons we always can
use one triangle and for three inner polygons we have six segments by Lemma 5.6. Now,
let ki be the number of segments in a fence containing i inner polygons. From this we get
that fi = ki/i. Substituting in the previous calculation we get |F| ≥ 3k1 + 3/2k2 + 2k3.
Hence, maximizing the number of inner polygons in fences containing also two polygons
minimizes the number of segments in the fencing. Since k is always even the minimum is
attained at 3/2k, i.e., when all inner polygons are part of a fence containing only two
inner polygons as claimed.

Integrating the clause triangle So far we only considered one arbitrary isolated
wire of G(c). To put things together we need to consider the interaction of the three
wires of G(c). Specifically, we need to show that no fence in a minimum link fencing of
G(c) contains inner polygons from two different wires.

We extend the definition of bypassing an inner polygon of a wire to a whole clause gadget.
Let F be a fence for G(c), then F bypasses an inner polygon Bi

j of wire Wi of G(c) if F
contains the clause triangle Bc or some inner polygon of a wire Wi′ with i′ ̸= i and F
contains Bi

l for wire Wi with l > j. We say F bypasses the clause triangle of G(c) if F
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contains inner polygons of at least two different wires of G(c) but not the clause triangle
Bc of G(c).

As for an isolated wire we can show that no inner polygon for a whole clause gadget
can be bypassed. This can be seen after observing that no fence can bypass the inner
polygons of an isolated wire without violating Lemma 5.5. The remainder of the proof is
then a careful case enumeration, see Section 5.2.4.

Lemma 5.9. Let F be a minimum link fencing of G(c) and B1, . . . , Bk the inner polygons
of one of the wires of G(c). Then there is no fence F ∈ F that bypasses an inner polygon
Bi with i ∈ {1, . . . , k − 1}.

Proof. Assume there exists a fence F that bypasses some polygons of G(c). If F only
bypasses and contains polygons of one isolated wire W and is contained in the gray
triangles of W we can apply Lemma 5.5 contradicting the existence of F .

Next, assume that F lies not only in the gray triangles of W but still only contains and
bypasses inner polygons of W . This implies that F contains B1 of W as else we could
by construction find a fence that is restricted to only the gray triangles of W . Let Tc

be the triangle intersecting T1 of W and containing Bc. If F was not restricted to the
T = Tc ∪ T1 ∪ . . . ∪ Tk we could replace F by a congruent minimum link fence that is
only contained T by either splitting F if a whole segment is outside of T or moving the
one corner that lies outside of T which is always possible by construction. After that we
can again apply Lemma 5.5 by considering Tc and Bc part of the isolated wire.

This means that F has to include either Bc or two inner polygons of different wires if
F is to bypass any polygon of G(c). Now assume F was bypassing any inner polygon
Bi of some wire W and i > 1. Let FT be F ’s restriction to T = Tc ∪ T1 ∪ . . . ∪ Tk. Add
one temporary segment to FT to close the fence, this can always be done in Tc. Now we
can apply Lemma 5.5 to FT . Each proof of one of the lemmata leading to Lemma 5.5
implies a procedure of how to split FT . This results in two or more fences. Among those
exists one that contains Bj with smallest j. Let F j

T be this fence. Either F j
T is such

that it still contains the segment added initially to FT in which case we just remove this
segment and obtained a fencing with less segments or F j

T does not contain this segment
anymore. Recall, that every procedure we implicitly defined saves at least two segments.
Hence, adding the segment we had added to FT to the remainder of F − FT still creates
a fencing with one segment less.

Consequently, we may assume that F bypasses any combination of B1
1 , B2

1 , B3
1 , or Bc.

Without loss of generality we assume a fence F bypasses the first inner polygon B1
1 of

wire W1. We can again show that the amount of non-collinear triples between the lines a
and b is four, inducing at least four bends in this part of F .

We define twelve sets a, a⋆, a′, a′′, b, b⋆, b′, b′′, c, c⋆, c′ and c′′, as shown in Figure 5.18. Any
fence crossing the following pairs of sets contains a non-collinear triple starting at one
set and ending at the other:
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Figure 5.18: The twelve sets.
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Figure 5.19: Non-collinear triples for any fence bypassing B1

• a and b

• a and c

• b and c

• a and a⋆

• a and a′

• a′ and a′′

• b and b⋆

• b and b′

• b′ and b′′

• c and c⋆

• c and c′

• c′ and c′′

Recall that F is a fence bypassing B1
1 hence F has to include some B1

j for j > 1. More
precisely, we may assume that F contains B1

2 as else we could find a shorter fence by the
above discussion. Let F ′ be the fence that contains B1

1 . We make a case distinction over
which subset of {Bc, B2

1 , B1
2 , B3

1 , B3
2} the fence F ′ contains as well.

Note that regardless of inclusion or exclusion of the clause triangle, any fence crossing a
and b, a and c or b and c has one non-collinear triple starting at one and ending at the other
line segment. We therefore only analyze the cases, which do not contain the clause triangle.

We analyze these cases one by one. In all cases we will turn F and F ′ into shorter fences
F̂ , F̂ ′

1, and F̂ ′
2 where F̂ is going to be the fence including at least B1

1 and B2
1 and is

formed by just including B1
1 instead of bypassing it. The fences F̂ ′

1 and F̂ ′
2 containing the

remaining triangles are going to be formed by splitting F ′ at some point and removing
the remaining empty part. We call this shortcutting F ′ at the segment where we split it.
Note that we can include B1

1 into F̂ at no additional cost. This reduces the number of
segments in F contradicting that it is a minimum link fencing. To shorten the notation
we write [a, b, c] for a sequence of non-collinear triple that F has to cross.
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∅: If B1
1 is contained in its own fence, we could instead reroute F (Figure 5.19),

and omit F ′ entirely, reducing the number of segments.

{B2
1} and F ′ has to cross the sets [a⋆, a, b, b⋆, b, a, a⋆]: We can shortcut F along

b for an additional cost of one segment, which omits three segments, which are necessarily
contained in the sequence [b, a, a⋆, a, b].

{B2
2} and F ′ has to cross the sets [a⋆, a, b, b′, b′′, b′, b, a, a⋆]: This fence can be

shortcut along b′ for an additional cost of one segment, which omits five segments, which
are necessarily contained in the sequence b′, b, a, a⋆, a, b, b′.

{B2
1 , B2

2} and F ′ has to cross the sets [a⋆, a, b, b′, b′′, b′, b, a, a⋆]: This case can
be resolved in the same way as {B2

1}.

{B2
2 , B3

2} and F ′ has to cross the sets [a⋆, a, b, b′, b′′, b′, b, c, c′, c′′, c′, c, a, a⋆]: This
fence can be shortcut along b′ and along c′, splitting it into two fences containing only
inner polygons of the same wire. This can be done at an additional cost of two segments
saving five segments, which are necessarily contained in the sequence b′, b, a, a⋆, a, c, c′.

{B2
1 , B2

2 , B3
2} and F ′ has to cross the sets [a⋆, a, b, b′, b′′, b′, b, c, c′, c′′, c′, c, a, a⋆]:

This fence can be shortcut along b and along c′, splitting it into two fences containing only
inner polygons of the same wire. This can be done at an additional cost of two segments
saving four segments, which are necessarily contained in the sequence b, a, a⋆, a, c, c′ and
one segment, necessarily contained in the sequence c′, c, b.

{B2
1 , B2

2 , B3
1 , B3

2} and F ′ has to cross the sets [a⋆, a, b, b′, b′′, b′, b, c, c′, c′′, c′, c, a, a⋆]:
This fence can be shortcut along b and along c, splitting it into two fences containing

only inner polygons of the same wire. This can be done at an additional cost of two seg-
ments saving three segments, which are necessarily contained in the sequence b, a, a⋆, a, c.

{B2
1 , B3

1} and F ′ has to cross the sets [a⋆, a, b, b⋆, b, c, c⋆, c, a, a⋆]: This case can
be resolved in the same way as {B2

1 , B2
2 , B3

1 , B3
2}.

{B2
1 , B3

2} and F ′ has to cross the sets [a⋆, a, b, b⋆, b, c, c′, c′′, c′, c, a, a⋆]: This
case can be resolved in the same way as {B2

1 , B2
2 , B3

2}.

{B2
1 , B2

2 , B3
1} and F ′ has to cross the sets [a⋆, a, b, b′, b′′, b′, b, c, c⋆, c, a, a⋆]: This

case can be resolved in the same way as {B2
1 , B2

2 , B3
1 , B3

2}.

Finally, we show that no minimum link fence of a clause gadget can ever fence two polygons
that are in different wires. Again, this is shown essentially via a case enumeration that
considers how a minimum link fence includes the first two to three polygons of each wire
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Figure 5.20: Non-collinear triples in a fence including at least (a) four or (b) five inner
polygons of a wire.

together with the clause triangle. In each case we can conclude that there exists a fence
with fewer segments that in fact does not use the inner polygons of two distinct wires.

Lemma 5.10. Let F be an optimal fencing of a clause gadget, then there exists no fence
F ∈ F, which includes inner polygons belonging to two different wires.

Proof. Assume there is a fence F , which includes inner polygons of two wires. By
Lemma 5.9, we know that all inner polygons of a wire included in F are consecutive
in that wire. First also assume that F contains m > 3 inner polygons of a single wire
W1. We split such a fence at a set a in T 1

1 (again using the sets marked in Figure 5.18)
into two fences F̂ containing all m inner polygons of the wire and Fo and we have
|F̂ | + |Fo| = |F | + 2. By Lemma 5.6, we know that F̂ contains at least 2m ≥ 8 segments.
Assume m to be odd, then we can replace F̂ with fences containing two consecutive
polygons each (exactly m−3

2 ), plus one containing three inner polygons, resulting in
3m−9

2 + 6 segments, which is smaller than 2m − 2 for any odd m > 5, yielding a better
solution and contradicting F being a minimum link fence. Assume m to be even. Then
by Lemma 5.8, we obtain 3m

2 segments in total, which is smaller than 2m − 3 for any even
m > 4, again yielding a better solution and contradicting F being a minimum link fence.

It remains to analyze the cases m = 4 and m = 5. Assume m = 4. We obtained Fo

by shortcutting F at a and therefore |Fo| = |F | + 1. Since there are seven segments
completely contained in the part of F (the part of F starting and ending at a, and
being completely contained in W1) which is now omitted (using Observation 5.2), we can
cover the four inner polygons of W1 with two triangles, using only six segments, which
contradicts F being a minimum link fence.

Assume now m = 5. Since there are seven segments completely contained in the part of F
which is now omitted (using Observation 5.2), we can cover the five inner polygons of W1
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with two fences including three and two inner polygons, respectively, i.e., |F̂1| + |F̂2| = 9.
Therefore we can transform F into a fence, which includes less than 4 inner polygons of
W1 (in this case we turned it into Fo, which contains none), and it suffices to analyze all
cases, in which we contain at most the first one, two or three inner polygons of any wire.

We again enumerate all cases, which are not symmetric to each other. We label these
cases with the included polygon of each wire with the highest index (since no polygon
of a wire is bypassed, this completely characterizes the included inner polygons). Also,
since we are only investigating non-symmetric cases, we assume that the largest index
of a polygon included in the first wire is greater or equal to the one in the second one,
which in turn is greater or equal to the one in the third.

The possible cases are given below. For every case, we can give a tight lower bound on the
number of segments, which are at least needed, for any fence including these inner polygons.
This bound is achieved by analyzing non-collinear triples of such a fence and by providing
a fence which achieves this bound. The complete enumeration is shown in Section 5.2.4.

• {B3
1 , B3

2 , B3
3}

• {B3
1 , B3

2 , B2
3}

• {B3
1 , B3

2 , B1
3}

• {B3
1 , B3

2}

• {B3
1 , B2

2 , B2
3}

• {B3
1 , B2

2 , B1
3}

• {B3
1 , B2

2}
• {B3

1 , B1
2 , B1

3}

• {B3
1 , B1

2}
• {B2

1 , B2
2 , B2

3}
• {B2

1 , B2
2 , B1

3}
• {B2

1 , B2
2}

• {B2
1 , B1

2 , B1
3}

• {B2
1 , B1

2}
• {B1

1 , B1
2 , B1

3}
• {B1

1 , B1
2}

For the first twelve of these fourteen cases, we show how F can be replaced with a set
of fences, which in sum contain less segments than F contradicting that F is a minimum
link fence; for details, we refer again to Section 5.2.4). All replacement fences (including
and excluding the clause triangle) are shown in Section 5.2.4. The only exceptions are
the two cases {B1

1 , B1
2 , B1

3} and {B1
1 , B1

2}. In both cases we can still replace F as shown
in Section 5.2.4, however this yields a fencing, which uses the same amount of segments
as F . Note that both fencings only contain fences, which are completely contained in
T = Tc ∪T1 ∪ . . .∪Tk (reusing the notation of the proof of Lemma 5.9). The replacements
for both cases contain at least one fence, which includes only the first polygon of a wire.
We will show that this implies that we can replace all fences in that wire with a different
set of fences, which uses a smaller number of segments and thereby again contradicting
that F is a minimum link fencing.

Let F1 be a fence in a wire including only the first polygon of that wire. Since every
wire contains an even number of inner polygons and no fence includes four or more
inner polygons by Lemma 5.7, we know that this wire has to contain at least one other
fence of size one or three. Let F2 ̸= F1 be a fence in the wire, such that, Bj is the
inner polygon with the smallest index contained in F2 and no other polygon Bk with
1 < k < j is contained in a fence of size one or three. Therefore there are an even
number of inner polygons between F1 and F2. In particular if F2 contains three inner
polygons, we can create new fences, such that, B2, B3, B4 are contained in one fence of

87



5. Finding Schematic Minimum-Link Containment Fences

(a) G(v) in correct state (b) G(v) in incorrect state

Figure 5.21: If G(v) is in the correct truth state (a) inclusion of the first inner polygon
of G(v, c) induces an additional cost of two links, otherwise (b) the additional cost is at
least three.

size three and B5, . . . , Bk+2 are contained in k−2
2 fences of size two. F1 and F2 require

nine segments in total, while we can replace them with two fences including B1, B2 and
B3, B4, respectively, requiring only six segments. If F2 contains one inner polygon, we
can create new fences, such that, B2 is contained in one fence of size one and B3, . . . , Bk

are contained in k−2
2 fences of size two. F1 and F2 require six segments in total, while

we can replace them with one fence including B1, B2, requiring only three segments.

We can now use Lemma 5.10 to argue that the clause triangle is only included in a
fence together with inner polygons of at most one wire. We say that such a wire is in a
satisfying state. The other two wires should therefore, by Lemma 5.8, only use fences
including two inner polygons; leading to 3(ka+kb+kc)

2 + 3 segments in total (ka, kb and kc

being the number of inner polygons in the wires). If we include the clause triangle in
a fence of a wire, we get the same amount of segments, however, we can choose fences,
such that, the last inner polygon of the wire which fences the clause triangle, is fenced
alone. This will be crucial in the argument of how the wires and therefore the clause
gadget interacts with the variable gadget.

Interaction with the variable gadgets It remains to describe the interaction between
the variable and clause gadgets. Depending on the state of the variable gadget we can fence
the last inner polygon of a wire in the fence of a variable gadget. We provide a fence with 5
segments (i.e., two additional ones) for the case, where the variable gadget is in the correct
state and the existence of six non-collinear triples for the other case, see Figure 5.21.

Lemma 5.11. The last inner polygon of a wire can be included in a fence of the variable
gadget, whose spike it is connected to for the cost of two additional segments if the variable
gadget is in the correct state and at least three additional segments otherwise.

Concluding the interaction between clause and variable gadget we show that given a
variable gadget is in the correct state w.r.t. a clause gadget we can fence the inner
polygons of the wires of a clause gadget using 3/2 segments per polygon and adding only
two segments to the fence of the variable gadget.
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Lemma 5.12. If and only if at least one of the connected variable gadgets is in the
correct state, the clause gadget can be fenced with a total of 3(ka+kb+kc)

2 segments plus
two additional segments to a fence of the variable gadget, which is connected to the wire
in the satisfying state.

Proof. Note that inclusion of the last polygon of a wire into a fence of a variable gadget
always incurs an additional cost (of two or three, depending on the state of the gadget).
The only reason a minimum link fencing would choose to do so is the fact that, such an
inclusion reduces the number of inner polygons, which have to be fenced in a wire from
the even number k down to the uneven number k − 1, which in turn allows the wire to
treat the clause triangle as its first inner polygon, and we save the three segments of the
clause triangle, leading to a cost of 3(ka+kb+kc)

2 and the variable gadget segment number
increases from 12 to 14.

Note further that a minimum link fencing would never choose to do so for two or three
wires, since the benefit of including the clause triangle in a fence of a wire can only be
achieved once. Assume that there is a second wire in the satisfying state, which add a
further charge of (at least) two additional segments at its variable gadget. By Lemma 5.10,
we know that the clause triangle is only included in a fence of one of the two wires. The
second wire has to fence an odd number of inner polygons and therefore has to include
either a fence of size one or three. It therefore still requires 3k

2 segments. Therefore only
one wire will ever be put in the satisfying state, even if two or all three variables would
allow their connected wires to be put in the satisfying state for an additional charge of
two segments each.

5.2.4 Complete enumeration of possible fences at the clause triangle
This section illustrates the enumeration argument of the proof of Lemma 5.10. Every case
is shown four times in a column. The first row shows the lower bound on the number of
segments for any fence including all polygons of this case, indicated by the three numbers
in the upper left corner. These labels should be read as XYZ corresponding to the case
{B1

X , B2
Y , B3

Z}. The second row shows that all given bounds are in fact tight, as they
can be achieved with the shown blue fences. The third and fourth row show (except for
cases 111 and 110), that such a fence can be replaced with a collection fences, which in
total achieve a lower number of segments, while either including (3rd row in green) or
excluding (4th row in red) the clause triangle, i.e., in both cases, the original fence was
not minimal.
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Figure 5.22: Fences including exactly 3 inner polygons of one and at most 3 of any other
wire.
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Figure 5.23: Fences including exactly 3 inner polygons of one and at most 3 of any other
wire.
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Figure 5.24: Fences including exactly 3 inner polygons of one and at most 3 of any other
wire.
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Figure 5.25: Fences including exactly 2 inner polygons of one and at most 2 of any other
wire.
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Figure 5.26: Fences including exactly 2 inner polygons of one and at most 2 of any other
wire.
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Figure 5.27: Fences including exactly 1 inner polygons of one and at most 1 of any other
wire.
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5.2.5 Correctness
It remains to argue the correctness of our reduction which then implies our main theorem.

Theorem 5.1. Two-colored BMLF is NP-hard even when restricting all fences to include
at most three polygons.

Proof. Given an instance of planar 3, 4-SAT, we create and place a variable gadget G(v)
for every variable v ∈ V and a clause gadget G(c) for every clause c, as described above.
The wires of G(c) connect to a true spike of G(v) if v appears as a positive literal and to
a negative spike if v appears as a negative literal in c.

Assume we are given a satisfying variable assignment for the instance of planar 3, 4-SAT.
By Lemma 5.12 in order to be able to find a fencing with 3(ka+kb+kc)

2 segments for
every clause gadget, at least one wire must be in the satisfying state. If one wire is in
the satisfying state we can include the last inner polygon of the wire for an additional
two segments if and only if the corresponding variable gadget is in the proper state
(Lemma 5.11). Since every clause has one variable, which satisfies this clause, we choose
this variable gadget to be in this state, and fence the variable gadget accordingly, leading
to twelve segments plus two segments, per clause, which is connected via a wire in the
satisfying state to it. Since in the variable assignment, every clause has such a literal
and every variable is either true or false, we can do this for every clause and are never
required to put a variable gadget both in its true and its false state. The final cost is
|V| · 12 + �

c∈C
(3(kc)

2 + 2), where kc is the number of inner polygons of all three wires of

G(c) summed up.

Now assume that we are given a fencing of the created BMLF instance with exactly
|V| · 12 + �

c∈C
(3(kc)

2 + 2) segments. This implies that for every clause gadget, there is one

wire gadget in the satisfying state. We follow this wire up to the variable gadget, which
has to be in the true state if the wire is connected to a true spike and in a false state
otherwise. We set the corresponding variable of the variable gadget to true in the former
and to false in the latter case. Therefore every clause has one variable, which satisfies
the clause. Since no fencing of a variable gadget exists, in which both a wire connected
to a true spike and a wire connected to a false spike can be put into the satisfying state
(Lemma 5.11), the implied variable assignment is consistent. Finally, this might not
necessarily assign all variables to a fixed truth assignment, since even if a clause might
be satisfiable with two or even all three literals, we will never set more than one wire
into the satisfying state. All variables, which do not have a truth value assigned yet, can
safely be assigned a random value (e.g., true or false if their variable gadget is true or
false).

We conclude that the instance of planar 3, 4-SAT is satisfiable if and only if the constructed
two-colored BMLF instance admits a fencing with exactly |V| ·12+ �

c∈C
(3(kc)

2 +2) segments.
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5.3 An XP-algorithm for BMLF with at most two polygons
in each fence

In Section 5.2 we showed that BMLF is NP-hard when there are only two colors, each
fence contains at most three polygons, and each fence consists of at most five links. In
contrast, we are going to show in this section that BMLF can be solved in XP-time when
parameterizing the problem by the maximum number of links in any fence and allowing
at most two polygons per fence, i.e., the problem can be solved in polynomial-time when
fixing the maximum number of links in any fence and restricting each fence to contain at
most two polygons.

For our algorithm we make use of the following result derived from the work of Hershberger
and Snoeyink [63]. It allows us to compute for a given loop, i.e., a closed polygonal curve,
inside a polygon with holes, a minimum-link loop of the same homotopy in time O(nk),
where n is the complexity of the polygon and k is the size of the resulting fence.

Theorem 5.2 (Derived from Section 5.2 [63]). Given a polygon P without self-intersections
but potentially with holes of complexity n, an integer k, and a loop α lying in the interior
of P with O(nk) corners, we can decide in time O(nk) if there exists a loop α′ of the
same homotopy-class as α with at most k links.

Remark 1. It is worth noting that in the paper by Hershberger and Snoeyink [63]
Theorem 5.2 is only stated in text. The runtime is given as O(Cα + ∆α + ∆α′), where
Cα is the complexity of α, the free space between polygons is assumed to be triangulated
and ∆α and ∆α′ are the number of triangulation edges intersected by α and the fence
α′, respectively. However an example of an instance with multiple obstacles is given, in
which ∆α′ ∈ Ω(nk), where n is the number of corners over all polygons. Since in our
scenario we can find a path α such that Cα ∈ O(nk) and ∆α ∈ O(nk), we can make the
assumption that α′’s complexity is in O(nk).

Let P be a polygon without self-intersections. We denote with TP = {T1, . . . , Tz} a
triangulation of P with triangles T1, . . . , Tz. Note that we do not require any further
properties of TP . If P is clear from the context we omit it and set T = TP . Let T1, T2 ∈ T
be two triangles and let l be a line segment with endpoints p and q such that p ∈ T1
and q ∈ T2. We call l a splitting segment. Consider Figure 5.28a for an example for T1
and T2 if l contains no points of R2 \ P . Intuitively, a splitting segment separates the
holes that intersect the convex hull of T1 ∪ T2 into two sets. Let H be all the holes of P
that intersect or are fully contained in the interior of the convex hull of T1 ∪ T2. We say
that a hole H ∈ H is to the left (right) of l if the from p to q oriented supporting line
of l leaves H in the left (right) half-plane. We call two splitting segments of T1 and T2
equivalent if the same holes of H are to their respective left and right. Segments which
intersect holes are not splitting segments.
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T1

T2

l

lc

C

(a) A splitting segment lc equivalent to l and bitangent to two holes. (b) Bitangents

Figure 5.28: (a) We can obtain the splitting segment lc from a splitting segment l by
rotating l clockwise until it is a bitangent to two holes. (b) Any pair of two polygons
admits at most four bitangents, only one of which can not be rotated clockwise without
intersecting one of the polygons.

Lemma 5.13. Let P be a polygon without self-intersection, H a set of holes and T a
triangulation of P . Then for every pair of triangles T1, T2 ∈ T with T1 ̸= T2 there are at
most 4|H|2 different equivalence classes of splitting segments.

Proof. Let H∩ ⊆ H be the set of holes, which intersect the joint convex hull C of T1
and T2 or are fully contained in it. Let l be a splitting segment with endpoints p ∈ T1
and q ∈ T2. Observe, that since l is completely contained in C − H we, by definition of
equivalent splitting segments, can disregard any hole H ̸∈ H∩.

Let l ∈ C be a splitting segment of T1 and T2, which has a set L ⊆ H∩ of holes to its left
and a set R ⊆ H∩ to its right. There exists another splitting segment lc whose supporting
line is a bitangent on two holes, say HL ∈ L and HR ∈ R, such that lc has also L to
its left and R to its right. We obtain the splitting segment lc from l by rotating l first
around its center point until it touches either HL or HR in a point r and then continue
to rotate l around r until it touches the second hole, see Figure 5.28a. Since any pair of
holes has at most four bitangents (Figure 5.28b) there are at most 4|H∩|2 equivalence
classes.

Theorem 5.3. Given an instance P of BMLF with outer polygon Q ∈ P, we can decide
in time O(kn2k+4) if a minimum link fencing F of P exists, in which every fence contains
at most two polygons, each fence in the fencing has at most k segments, and n is the
number of corners in P.

Proof. Throughout, we consider the triangulation T of the free space of P . Let t + 1 be
the number of colors in the given instance and c1, . . . , ct be the colors of polygons in P
with ci ̸= f(Q) for all i = 1, . . . , t.

Observe that the homotopy of a fence including exactly one polygon P ∈ P is unique. We
find a path α with this homotopy in the triangulated free space between the polygons in
P by traversing the boundary of P clockwise and at every corner of the polygon adding
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every incident triangle of T in clockwise order to a list. This yields a series of triangles
from which we can construct a loop α such that P is contained in α. This can be done,
for example, by connecting all midpoints of triangulation segments of a triangle and its
successor in the loop. Then, we use Theorem 5.2 to obtain a minimum-link fence for P
from α or determine that no fence with at most k links exists. Computing all individual
fences requires O(|P|kn) = O(kn2) time.

Next, we consider every pair P1, P2 ∈ P with P1 ̸= P2, ci = f(P1) = f(P2) and
i ∈ {1, . . . , t}. Note that in contrast to a fence containing only one polygon, a fence
containing exactly two polygons can belong to several different homotopy-classes w.r.t.
the remaining polygons.

Now, we describe how to compute a minimum-link fence F for two polygons P1 and P2
of P. Recall that all polygons in P together have n corners. Since we have only O(n)
triangles in T we can iterate over all possible O(

�n
k

�
) ∈ O(nk) ordered tuples of k triangles.

Fix in the following such an ordered k-tuple (T1, . . . , Tk) of triangles in T . There are
only O(|P|2) many non-equivalent splitting segments connecting points in triangles Ti

and Ti+1 by Lemma 5.13. Consequently, we can iterate over the O((|P|2)k) = O(n2k)
many different combinations of splitting segments between consecutive triangles. In case
there are two consecutive triangles between which no possible splitting line exists we
reject this tuple of triangles. Assume in the following that we fix for every pair Ti and
Ti+1 a splitting segment li.

It remains to construct a plane loop α as input for the algorithm of Hershberger and
Snoeyink [63] or decide that no such loop exists for the fixed choices of triangles and
splitting segments. From the triangles T1, . . . , Tk and the splitting segments l1, . . . , lk we
derive a sequence of triangles τ1, . . . , τz of T that α has to visit. Since the triangulation T
is defined by the corners of polygons in P each splitting segment li gives rise to a unique
sequence of triangles. We concatenate all these sequences starting with the sequence
induced by l1 to obtain the sequence Θ = (τ1, . . . , τz). Observe, that triangles along this
sequence may repeat and that τ1 = τz.

It remains to decide if there exists a plane loop α visiting each triangle of Θ in order. To
make the following description simpler let si be the shared boundary of τi and τi+1. If
for no i with i ∈ {1, . . . , z − 1}, we find that si = si+1 we create a loop α by connecting
the centerpoint of si with the one of si+1. Since no boundary repeats, this is always
possible without any centerpoint and hence triangle being used twice. Finally, we add the
segment from the centerpoint of sz to the centerpoint of s1 which is also always possible
as τ1 = τz.

Now assume there exist at least two indices i and j with i ̸= j and i, j ∈ {1, . . . , z}
such that si = sj . Build the loop as before and let α1, . . . , αz be the segments in the
constructed loop. Since we allow repeated boundaries there exist subsequences among
the α1, . . . , αz that are repeated. In the following we assume that we only consider
inclusion maximal repeated subsequences. Let A = {α′

1, . . . , α′
a} be one occurrence of

such a subsequence of the αi’s that is repeated at least once and let Â be a different
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occurrence. Let s′
1, . . . , s′

a be the subsequence of the si’s that correspond to the triangle
boundaries passed by the segments in A and Â = {α̂1, . . . , α̂a}. Now observe that in
a plane loop the vertices of A and Â have to always appear in the same order along
s′

1, . . . , s′
a. If they would not, let s′

i and s′
i+1 for i ∈ {1, . . . , a − 1} be two segments such

that the vertices of A and Â on s′
i and s′

i+1 are not in the same order. Without loss
of generality assume the vertex of A on s′

i is above the one of Â and the opposite is
true for s′

i+1, then we find that αi and α̂i cross. Hence, the only decision to make is
to decide, for each pair of repeated subsequences, in which order their vertices appear
along the corresponding triangle-boundaries. Since every repeated subsequence implies
an intersection between two segments li and lj with i ̸= j and i, j ∈ {1, . . . , k} we find
that there are at most k2 such repeated sequences. Consequently, there are at most 2O(k)

possible ways to distribute the center points in each shared part along the boundaries.

To sum up, for one pair of polygons P1, P2 we have to consider O(n2k) possible non-
homotopy equivalent fences and for each homotopy we can check in O(n2 ·2k) if there exists
a plane loop α realizing it, leading to a total runtime of O(2k · n2k+2) to enumerate every
potential homotopy of a minimum link fence. For each of the O(n2k) different homotopies,
we can use Theorem 5.2 to compute a minimum link fence in O(kn), hence we can
compute a minimum link fences for all pairs of polygons in O(n2 · kn2k+2) = O(kn2k+4).

If for any polygon no fence, alone or in a pair with another polygon, with k or fewer links
is found, we return that no solution exists. Otherwise, let λuv be the number of links for
a minimum link fence containing Pu, Pv ∈ P and λu the number of links for a minimum
link fence containing only Pu ∈ P. Consider a complete graph G containing one vertex
u for each polygon Pu ∈ P and one more vertex x if |P| is odd. Set the edge-weights
w(u, v) = min{λuv, λu + λv} and w(x, u) = λu for Pu, Pv ∈ P . If for some Pu ∈ P or pair
Pu, Pv ∈ P no fence with ≤ k segments existed we remove that edge.

To find a minimum-link fencing of P it now suffices to compute a minimum weight perfect
matching in G. Let M be such a matching. Then, a minimum link fencing F of P can
be constructed from M in the following way. If uv ∈ M , we add the (pre-computed)
minimum link fences containing only Pu and Pv to F if the weight w(u, v) = λu + λv or
the fence containing Pu and Pv if w(u, v) = λuv. If |P| was odd we also find an edge
xu ∈ M and we add the fence containing only Pu to the fencing.

Finding a minimum weight perfect matching in a general graph with V vertices and E
edges can be done for example in O(V 2E) time via finding a maximum weight perfect
matching (e.g. [51]) in the same graph with edge weights set to maximum edge-weight
plus one minus the original edge-weight. Since G has O(|P|) vertices and O(|P|2) edges
we can compute this matching in O(|P|4) = O(n4), which is dominated by the initial
computation of the minimum link fences.
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Figure 5.29: Computing a new fence (orange) from the old fences (purple) and the convex
hull (blue).

5.4 An algorithm for two-colored CMLF
In this section we present an algorithm for solving two-colored CMLF. Computing a
minimum-link fence in this setting can be done by computing a fence for the convex
hull of the contained polygons with the algorithm by Wang [124] which runs in time
O(n log n) with n being the number of corners of the contained polygons. Throughout
this section an instance of CMLF is given as (P, Q) where Q is the outer polygon and P
is the set of polygons contained in Q.

Lemma 5.14. Given an instance (P, Q) of two-colored CMLF, let F be a solution for
(P, Q). There exists a solution F′ for the two-colored CMLF instance (CH(P), Q) with
|F | = |F ′|.

Proof. We construct a fence F ◦ for CH(P, Q) from F where the number of segments in
F ◦ is at most the total number of segments in F . Let (p1, . . . , pz) be the intersection
points between F and CH(P) ordered as they appear in a clockwise traversal of the
convex hull, and observe that z is even. Let pi, pi+1 be pairs of intersection points
between F and CH(P) such that the straight-line segment si connecting pi and pi+1 lies
on CH(P) and completely outside of F (see Figure 5.29). Consider the supporting line
ℓi of si. If the fence lies completely in one of the closed half-planes bounded by ℓi we
add si to F ◦. Assume this is not the case. As si is on CH(P) we get that ℓi does not
intersect any polygon in P. Moreover, as F consists of closed simple polygons we find
two intersection points p′

i and p′
i+1 that lie on ℓi, such that, the parts of F appearing in

a clockwise traversal from p′
i to pi, as well as the ones in a clockwise traversal from pi+1

to p′
i+1 lie outside of CH(P). We add the segment s′

i between p′
i and p′

i+1 to F ◦. Doing
this for every pair of intersections we obtain a set of segments F ◦, where all segments
are on the convex-hull of P. Note that it is possible for these segments to intersect; if
that is the case we only keep the parts until their intersection point. Finally, the start
and end-points of connected chains of segments in F ◦ lie on segments of fences in F. We
can convert F ◦ into a fence of CH(P) by connecting these endpoints along the fences in
F and that fence will be disjoint from P (except possibly touching P in corner points).

It remains to argue that indeed |F ◦| ≤ |F |. We partition F ◦ into two categories, segments
that coincide with segments in F and segments that do not. Each of them is either a
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full segment of F or originates from the intersection of at most two different s′
i’s and

a segment of F . Furthermore, we add z/2 segments s′
i that are not sub-segments of

segments in F . For each such s′
i we find at least one segment of F for which we did not

add any sub-segment to F ◦. These are the segments of F on which pi and pi+1 lie or
that are fully outside of F ◦.

Theorem 5.4. Two-colored CMLF can be solved in time O(n log n) where n is the number
of corners of polygons in P.

5.5 Conclusion
We have shown BMLF to be NP-hard even if every fence contains at most three polygons,
each fence has at most five links, and only two different colors of polygons are present.
Our reduction holds regardless of requiring disjoint fences or not. Note, that our reduction
can be adapted to not require the outer bounding polygon Q. Instead, we can replace Q
by one polygon with a narrow and very complex channel, connecting the “inside” with
the “outside”. On the algorithmic side, we gave an XP-algorithm for BMLF parameterized
by the maximum number of links in a fence and allowing at most two polygons per fence.
We also showed that two-colored CMLF can be solved in polynomial time.

It is open if one can eliminate the exponential dependency on the number of links in
our algorithm for BMLF. Furthermore, while our reduction holds when replacing the
outer bounding polygon, our algorithm does not since we cannot immediately apply
Theorem 5.2. Similarly, requiring the fences to be disjoint for BMLF is an interesting
open direction.

A generalization of the algorithmic result to the case with more than two colors is
interesting. It is reasonable to assume that the XPalgorithm simply generalizes to more
than one color, by treating all other colors as being part of the color of the outer polygon.

And finally the complexity of SMLF, where the convex hull of all inner polygons is not
entirely contained within the outer polygon is still open. Since our reduction is heavily
dependent on a large number of highly complex holes in the outer polygon, we do not
expect that it generalizes to SMLF.
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CHAPTER 6
Representing Network Topology

with Intersecting Unit Disks

This chapter is (partially) based on the following publications:
[22]: Bhore et al. – Unit Disk Representations of Embedded Trees, Outerplanar and
Multi-legged Graphs (GD’21)
[88]: Bhore et al. – Recognition of Unit Disk Graphs for Caterpillars, Embedded
Trees, and Outerplanar Graphs (EuroCG’21)

The representation of graphs as contacts or intersections of disks has been a major
topic of investigation in geometric graph theory and graph drawing. The famous circle
packing theorem states that every planar graph has a representation by touching disks
(of not-necessarily the same size) and vice versa [74]. Since then, a large body of research
has been devoted to the representation of planar graphs as contacts or intersections of
various kinds of geometric objects [33, 34, 52, 62]. In this chapter, we are interested
in unit-radius disks. A set of unit disks in R2 is a unit disk intersection representation
(UDR) of a graph G = (V, E), if there is a bijection between V and the set of unit disks
such that two disks intersect if and only if they are adjacent in G. Unit disk graphs are
graphs that admit a UDR. Unit disk contact graphs (also known as penny graphs) are
the subfamily of unit disk graphs that have a UDR with interior-disjoint disks, which is
thus called a unit disk contact representation (UDC). This can be relaxed to weak UDCs,
which permit contact between non-adjacent disks; see Figure 6.1 for examples.

6.1 Related Work
The objective of the recognition problem is to decide whether a given graph admits a
UDR. This problem has a rich history [25, 26, 64, 65]. Breu and Kirkpatrick [27] proved
that it is NP-hard to decide whether a graph G admits a UDR or a UDC, even for planar
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(a) Outerplanar graph (b) Caterpillar graph (c) Lobster graph

Figure 6.1: We investigate specific contact and intersection graphs of unit disks. In
a UDR (a-b) disks are allowed to overlap, and contact of two disks implies an edge
between their vertices. In a weak UDC the disks are interior disjoint, but contact between
non-adjacent disks is allowed. The disks of spine vertices are colored grey (b-c). Note
that the grey vertices in (c) are connected with an x-monotone polyline.

graphs. Klemz et al. [72] showed that recognizing outerplanar unit disk contact graphs
is already NP-hard1. Moreover recognition of unit disk graphs is ∃R-hard for general
graphs [82].

Recognition with a fixed embedding is an important variant of the recognition problem.
Given a plane graph G, the objective in this problem is to decide whether G admits a UDC
in the plane that preserves the cyclic order of the neighbors at each vertex. Some recent
works investigated the recognition problem of UDCs with/without fixed embedding, and
narrowed down the precise boundary between hardness and tractability; see [25, 36, 38,
72]. A remaining open question is to settle the complexity of recognizing non-embedded
trees that admit a UDC. Some of these works focused on weak UDCs, where disks of
non-adjacent vertices may touch. In this model, the recognition of non-embedded trees
that admit a weak UDC is NP-hard [38]. All results are summarized in Table 6.1.

While several results of the past years have shed light into the recognition complexity
gap for UDCs, not much is known in this regard for the more general class of UDRs since
the NP-hardness for planar graphs from 1998 [27].

Our Contribution. We investigate the unit disk graph recognition problem for sub-
classes of planar graphs, in particular trees, caterpillars and lobsters (which we summarize
under the name multi-legged graphs). Section 6.3 is a step-by-step explanation, how a
specific graph exhibits certain properties in every possible UDR.We show that recognizing
unit disk graphs remains NP-hard for non-embedded outerplanar graphs (see Figure 6.1a)
– strengthening the previous hardness result for planar graphs [27] – and for embedded
trees (Section 6.4). This line of research aims to extend earlier investigations showing
hardness for UDCs of outerplanar graphs [73] and embedded trees [25] to the UDR model
and builds in particular on the work of Bowen et al. [25].

1The authors originally presented an algorithm to recognize caterpillars that admit a UDC in linear
time [73]. However, due to a flaw in the proof the claim was weakened to a conjecture.
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graph class weak UDC UDC UDR
no

n-
em

be
dd

ed general ↑ NP-hard ↑ NP-hard ∃R-complete [82]
planar ↑ NP-hard NP-hard [27] NP-hard [27]
outerplanar ↑ NP-hard NP-hard [72] NP-hard (Thm.6.2)
trees NP-hard [38] open open
lobsters O(n) (monotone, Thm.6.4) open open
caterpillars O(n) [38] open O(n) (Thm.6.3)

em
be

dd
ed

general ↑ NP-hard ↑ NP-hard ↑ NP-hard
planar ↑ NP-hard ↑ NP-hard ↑ NP-hard
outerplanar ↑ NP-hard ↑ NP-hard ↑ NP-hard
trees ↑ NP-hard NP-hard [25] NP-hard (Thm.6.1)
lobsters ↑ NP-hard open open
caterpillars NP-hard [36] open open

Table 6.1: State of the art, our results, and open problems on unit disk graph recognition.
Upward arrows indicate that a result follows from the one below.

On the positive side, we provide a linear-time algorithm to recognize caterpillar graphs
(see Figure 6.1b) that admit a UDR (Section 6.5). In Section 6.6, we return to the
problem of recognizing unit disk contact graphs and extend the tractability boundary
for non-embedded graphs. While it was known that a weak UDC for caterpillar graphs
can be constructed in linear time (if one exists), and that the same recognition problem
is NP-hard for trees [38], we prove that we can decide in linear time if a lobster graph
admits a monotone weak UDC on the triangular grid, where a lobster is a tree whose
internal vertices form a caterpillar (see Figure 6.1c) and a weak UDC is monotone if the
disks of the path obtained by removing all leaves of the graph twice can be connected
with a monotone polyline through their centers. Table 6.1 summarizes our results and
remaining open problems.

6.2 Preliminaries
A graph G = (V, E) with V = {v1, . . . , vn} is a unit disk graph if there exists a set of
closed unit disks D = {d1, . . . , dn} in the plane and a bijective mapping d : V → D such
that d(vi) = di and vivj ∈ E if and only if di and dj intersect. We call D a unit disk
intersection representation (UDR) of G. If all disks in D are pairwise interior disjoint we
also call D a unit disk contact representation (UDC) of G. A graph is a unit disk contact
graph if it admits a UDC. A weak UDC permits contact between two disks di and dj , even
if vivj ̸∈ E.2

2Note that weak UDRs, in contrast, are not interesting, since a complete graph Kn can easily be
represented as a UDR and therefore every graph admits a weak UDR.
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Figure 6.2: Illustration of three simple observations based on Lemma 6.1.

A caterpillar graph G is a tree which yields a path, when all leaves are removed. We
call this path, the spine BG of G. Similarly a lobster graph G′ is a tree which yields a
caterpillar graph G′′, when all leaves are removed. The spine of G′ is the spine of G′′.
For each vertex v of the spine, we denote the set of vertices that are reachable from v on
a path that does not include any other spine vertex, as the descendants of v.

The UDR D of a graph G induces an embedding ED(G) of the graph G by placing every
vertex v at the center of d(v) and linking neighboring vertices by straight-line edges.
The UDR D also induces a polygon PD, which is defined as the convex hull of the center
points of all disks in D. We will therefore also use v as the center of d(v). Let a, b, c
be three points in R2. We use ∡abc to denote the clockwise angle defined between the
segments ab and bc. We use ∡didjdk as the clockwise angle ∡vivjvk in ED(G).

6.3 Basic Lemmata
In this section we state the construction and properties of a fundamental graph, the
augmented path, which will be central in the following sections. We start by stating
some structural restrictions on the angles between centers of disks in a UDR. Let G′ be
an induced subgraph of a graph G, such that G′ has three vertices v1, v2, and v3 and two
edges v1v2 and v2v3, i.e., G′ is a 3-chain.

Lemma 6.1. The angle ∡v1v2v3 of a UDR of G′ is minimal if |v1v2| = |v2v3| = 2.
Moreover a minimal angle is > π/3.

Proof. Without loss of generality, assume that |v1v2| ≥ |v2v3|. Then v1 can be moved
along the ray #      »v2v1 until |v1v2| = 2. Next it can be rotated around v2 until |v1v3| = 2.
Now ∡v1v2v3 = cos−1 (|v2v3|/4), which is monotonically decreasing in the interval 0 <
|v2v3| ≤ 2. Since cos−1 (2/4) = π/3 and we know that |v1v3| is strictly larger than 2, we
obtain the observation.

The following three simple observations showcase how the previous lemma is applied.
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Observation 6.1. Let G be a graph as shown in Figure 6.2a. Then in any UDR of G it
holds that ∡vi+1vivi−1 < 4π/3.

The statement follows from two applications of Lemma 6.1 on the angles ∡vi−1viv
′
i and

∡v′
ivivi+1.

Observation 6.2. Let G be a graph as shown in Figure 6.2b. Then in any UDR of G it
holds that ∡vi+1vivi−1 < π.

The statement follows from three applications of Lemma 6.1 on the angles ∡vi−1viv
′
i,

∡v′
iviv

′′
i and ∡v′′

i vivi+1.

Observation 6.3. Let G be a graph as shown in Figure 6.2c. Then in any UDR of G it
holds that ∡vi+1vivi−1 < 2π/3.

The statement follows from three applications of Lemma 6.1 on the angles ∡vi−1viv
′
i,

∡v′
iviv

′′
i and ∡v′′

i vivi+1.

Now let G′ be an induced subgraph of G, such that G′ has six vertices v1, v2, v′
2, v3, v′

3, v4
with edges vivi+1 for i ∈ {1, 2, 3} and viv

′
i for i ∈ {2, 3}. Let the clockwise rotational

order of the neighbors around v2 be fixed to v1, v′
2, v3 and around v3 to v2, v′

3, v4, see
Fig. 6.3a.

Lemma 6.2. In a UDR of G with the above defined induced subgraph G′ it holds that
∡v1v2v′

2 + ∡v′
2v2v3 + ∡v2v3v′

3 + ∡v′
3v3v4 > 5π

3 .

Proof. Without loss of generality, we assume that v2v3 is horizontal. Since we are looking
for a lower bound, due to Lemma 6.1 know that ∡v1v2v′

2 > π/3 and ∡v′
3v3v4 > π/3. If

∡v′
2v2v3 + ∡v2v3v′

3 ≥ π, then the lemma holds.

Now assume ∡v′
2v2v3 + ∡v2v3v′

3 < π and observe that this means that the two rays
r =

#      »

v2v′
2 and r′ =

#      »

v3v′
3 intersect. We orthogonally project v′

2 onto r′ creating q2 ∈ r′ and
v′

3 onto r creating q3 ∈ r. Observe that either |v2v′
2| > |v2q3| or |v3v′

3| > |v3q2|, since r
and r′ cross. We assume without loss of generality that |v2v′

2| > |v2q2| (see Figure 6.3b).
Note that ∡v′

2q2v′
3 = π

2 . Therefore moving v′
2 upwards on r will only increase its distance

to v3 and v′
3 and therefore we can increase the distance |v2v′

2| to 2 without creating
unwanted overlap of disks in the UDR of G′. Let c, c′ be circles of radius two around v2
and v′

2 respectively and let p be their intersection point to the right of r. Now we can
rotate v′

3 around v3 such that ∡v2v3v′
3 decreases until we hit either c or c′ at a point x.

Since v′
3 does not enter c or c′, this still keeps v′

3 at sufficient distance from v2 and v′
2.

In the first case (Figure 6.3c), note that a continuous movement of v′
3 along the boundary

of c towards p strictly decreases ∡v2v3v′
3 and we can place v′

3 at p. In the second case
(Figure 6.3d), note that |xv3| ≤ 2. Let x′ be the intersection point of c′ and a horizontal
line through v′

2. The tangent of c′ through x′ is vertical. A direct consequence is that
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(g) New configuration

Figure 6.3: Transformations of the placement of the disks in the proof of Lemma 6.2. The
movements described in the proof are indicated with green arrows. (a) v′

2 can be moved
to have a distance of 2 to v2. Vertex v′

3 can be rotated around v3 and then either (b)
v2 or (c) v′

2, continuously decreasing ∡v2v3v′
3 until v′

3 is placed at p. (d) The distance
between v2 and v3 can be stretched to a distance of 2 (e), while not changing any angle
and only increasing distances. These transformation lead to a final configuration (f) with
some fixed distances.

x lies exactly at x′ or lower on the boundary of c′. Therefore we obtain again that a
continuous movement of v′

3 along the boundary of c′ towards p strictly decreases ∡v2v3v′
3.

Next we observe that we can now simply increase v2v3 (as shown in Figures 6.3e and 6.3f),
since there exists a vertical line that intersects only v2v3. Finally we can apply the previous
procedure of rotating v′

3 again. The following distances are now by construction equal
to 2: |v1, v2|, |v2, v′

2|, |v2, v3|, |v3, v4|, |v2, v′
3|, |v′

2, v′
3|. Further in any UDR of G′, where

|v1v′
2| > 2 we can rotate v1 around v2 until |v1v′

2| = 2, a procedure which technically
puts d(v1) and d(v′

2) into contact, but since this only decreases ∡v1v2v′
2 it is sufficient

to prove the lower bound for this unreachable edge case. Similarly in any UDR of G′,
where |v′

3v4| > 2 we can transform it such that |v′
3v4| = 2, yielding the final configuration

shown in Figure 6.3g. It is now sufficient to analyze this case, where the only variable
distance is |v3v′

3|.
We can replace ∡v′

2v2v3 by ∡v′
2v2v′

3 + ∡v′
3v2v3 and observe the following angle values:

∡v1v2v′
2 = ∡v′

2v2v′
3 = π/3

Using the Law of Cosines, we obtain the following angles: ∡v2v3v′
3 = ∡v′

3v3v4 =
cos−1 (|v3v′

3|/4). Since the triangle △v2v3v′
3 is isosceles, we finally observe ∡v′

3v2v3 =
π − 2 · ∡v2v3v′

3 = π − 2 cos−1 (|v3v′
3|/4). Now we can plug everything into the sum and

considering that all angles can only come infinitesimally close to their lower bounds, we
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v1 vkv2 v5

v′5v′′2v′2

(a) Augmented path

vj vj+1 vj+2 vj+3

v′j+1 v′′j+1

v′j+2

L.2: > 5π
3

L.1: > π
3

<2π

(b) Angle (sum) restrictions

Figure 6.4: The induced subgraphs (a) G′ and (b) G′
j . Bounds on the angles are indicated

by which lemma enforces them. Note that the orange bound of 2π is the result of
Lemma 6.3.

obtain:

∡v1v2v′
2+∡v′

2v2v3+∡v2v3v′
3+∡v′

3v3v4 > 2π/3+π−2 cos−1 �|v3v′
3|/4

�
+2 cos−1 �|v3v′

3|/4
�

= 5π/3

We can see that the minimal angle turns out to be independent of the distance |v3v′
3|.

With the previous lemma established, we will now use it to show how angles and sums of
angles in a larger subgraph can be analyzed.

The augmented path. Let G′ be the the following graph. It consists of a chain
of vertices vi for i ∈ {1, . . . , k}, for any odd k (In the remainder of this section we will
assume that k is odd). The first and last vertex v1 and vk have no degree one neighbors.
All other vertices have either one degree one neighbor v′

i if i is even or two such neighbors
v′

i, v′′
i if i is odd (see Figure 6.4a). Let G′ be an induced subgraph of a larger graph

G. We will call G′ an augmented path of length k and we will refer to v1, . . . , vk as the
vertices of the augmented path, i.e., this term excludes the leaf neighbors (note that v1
and vk are not considered leaf neighbors, despite being of degree 1). From here on out
we will refer to the angle ∡vi+1vivi−1 also as the inner angle at vi. Conversely we refer
to the counter angle also as the outer angle, which is the sum ∡vi−1viv

′
i + ∡v′

ivivi+1 if i
is odd and ∡vi−1viv

′
i + ∡v′

iviv
′′
i + ∡v′′

i vivi+1 if i is even.

Lemma 6.3. Let G be a graph with an induced subgraph G′, such that, G′ is an augmented
path of length k. In a UDR of G it holds that �k−2

i=1 ∡vi+2vi+1vi < (k − 2)π.

Proof. Consider an induced subgraph G′
j of G′ on vertices vj , vj+1, v′

j+1, v′′
j+1, vj+2, v′

j+2, vj+3
for an odd j < k (see Figure 6.4b). Due to Lemma 6.1, we know that ∡vjvj+1v′

j+1 > π/3.
Due to Lemma 6.2, we know that

∡v′
j+1vj+1v′′

j+1 + ∡v′′
j+1vj+1vj+2 + ∡vj+1vj+2v′

j+2 + ∡v′
j+2vj+2vj+3 > 5π/3.
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Now let W = ∡vjvj+1v′
j+1+∡v′

j+1vj+1v′′
j+1+∡v′′

j+1vj+1vj+2+∡vj+1vj+2v′
j+2+∡v′

j+2vj+2vj+3
and we can state that W > 2π. For the sum of angles on the inner side we have

∡vj+3vj+2vj+1 + ∡vj+2vj+1vj < 4π − W = 2π.

By adding up the sum of angles on the inner side of G′
j for all j ∈ {2, 4, . . . , k − 3} (i.e.

(k − 3)/2 many subgraphs) we obtain exactly �k−3
i=1 ∡vi+2vi+1vi. The bound from the

previous paragraph immediately yields

k−3�
i=1

∡vi+2vi+1vi <


k − 3

2


· 2π = (k − 3)π

We additionally have ∡vk−2vk−1v′
k−1 + ∡v′

k−1vk−1v′′
k−1 + ∡v′′

k−1vk−1vk > π. This also
means that ∡vkvk−1vk−2 < π. By adding up the sum of angles on the inner side of G′

j

for all j ∈ {2, 4, . . . , k − 3} plus ∡vkvk−1vk−2 we again obtain �k−2
i=1 ∡vi+2vi+1vi and in

total �k−2
i=1 ∡vi+2vi+1vi < (k − 2)π.

The previous lemma can intuitively be stated as follows. Assuming that the degree one
neighbors are placed to the left of the chain in a UDR of G′, the chain itself cannot bend
to the left.

Clearly at every vi, where i is even, the inner angle is smaller than π since there are two
leaf neighbors on the outside. In other words assuming that vi−1vi is horizontal, vivi+1
points downward. Corollary 6.1 intuitively states that if vi−1vi is horizontal and vi is
to the right of vi−1, while we can bend upward again at vi+1, vi+1vi+2 will still point at
least slightly downwards and cannot return to a horizontal state or even point upwards.

We next state a result, which again uses angle bounds to restrict the actual location of
disks in a UDR. We assume the same subgraph G′ as for the previous Lemma 6.3.

Lemma 6.4. If �k−2
i=1 ∡vi+2vi+1vi ≥ (k − 2.5)π, then in any UDR of G, vj for j ∈

{3, 4, . . . , k} lie to the right of the ray through v1 and v2.

Proof. We can assume that v1, v2 lie on a horizontal line ℓ. First observe that the lower
bound of (k − 2.5)π is only π below the upper bound stated in Lemma 6.3. This means
in particular that the UDR cannot place any disk with its center to the left of v1. Now
consider v3. Due to Observation 6.2, we know that ∡v3v2v1 < π. Therefore v3 is below
ℓ. Now consider v4. Due to Lemma 6.3, we know ∡v3v2v1 + ∡v4v3v2 < 4π − 2π = 2π.
Therefore v4 has to lie below v3. From here we can repeat the argument for every vi+2
and vi+3 using the line through vi and vi+1.

Note that the lower bounds in the previous lemma will later be enforced by placing a
similar subgraph to G′ opposite of G′ and mirrored so that in a UDR the chains can
only bend towards each other and additionally, the copy will be forced to be placed close
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enough, such that, there is not sufficient space for one of the chains to “turn around” and
be placed in the space between. The impossibility to turn around can also be formalized
as the sum of the inside angles being within a value of π of its upper bound. Additionally
we obtain a useful corollary of the observations used in the previous two proofs.

Corollary 6.1. The sum of the inner angles of two consecutive vertices vi, vi+1 is less
than 2π and as a direct consequence, if �k−2

i=1 ∡vi+2vi+1vi ≥ (k − 3)π the ray starting at
vi−1 through vi and the ray starting at vi+1 through vi+2 do not intersect.

Now we establish a minimum length of a UDR of G′ (defined exactly as in the previous
two lemmata), when it is restricted to a certain bounding box.

Lemma 6.5. Let L = �k−1
i=1 |vivi+1| and assume �k−2

i=1 ∡vi+2vi+1vi ≥ (k − 2.5)π. Then
in any UDR og G′, we have 2k − 5 < L ≤ 2k − 2.

Proof. This proof uses the assumed lower bound (k −2.5)π on the sum of the inner angles
to establish a constant lower bound on the sum of distances between consecutive vertices.
After arguing the upper bound of L, we will start to proof the lower bound of L by
defining the sum of all outer angles first (which inversely has an upper bound). We will
call the bound on the outer angles, the angle bound in order to avoid confusion with the
lower and upper bound of L, we want to proof. Then we will state some transformations
of G′, which do not change the sum of distances, and only decrease the sum of outer
angles, so the same angle bound applies. Next we split this sum into its component angles
and for each of them identify a minimum value. Some of these are trivial, while one
particular angle component needs to be expressed as a function of the sum of distances.
Analysis of this function reveals that, in order to obtain the minimum overall angle value
for this component, we can redistribute lengths, while maintaining the total value of the
sum of outer angles. Finally we show that the sum over all minimum values is still lower
bounded by a constant, which implies the lower bound of L we want to establish.

It is easy to see that L ≤ 2k − 2, since v1, . . . , vk is a sequence of k − 1 edges and the
centers of disks of consecutive vertices have a maximum distance of 2.

We can assume that v1v2 is horizontal with v1 on the left. We use the following shorthands
for angles (see also Figure 6.5):

• For all even i let αi = ∡v′
iviv

′′
i .

• For all even i let βi = ∡v′′
i vivi+1 + ∡vivi+1v′

i+1.

• For all odd i let βi = ∡v′
ivivi+1 + ∡vivi+1v′

i+1.

• For all even i let θi = ∡vi−1viv
′
i + ∡v′

iviv
′′
i + ∡v′′

i vivi+1

• For all odd i let θi = ∡vi−1viv
′
i + ∡v′

ivivi+1

111



6. Representing Network Topology with Intersecting Unit Disks

vj−1 vj vj+1 vj+2

v′j+1 v′′j+1

v′j+2

θj

αj

vj+3 vj+4

v′j+1 v′′j+1

v′j+2

αj+2

vj−2

θj−1

βj+1 βj+2

Figure 6.5: Shorthands used for angles in the proof of Lemma 6.5

Initially we observe that for all i ∈ {2, . . . , k − 1} we have ∡vi+1vivi−1 = 2π − θi as well
as (by Lemma 6.1) αi > π/3, ∡v1v2v′

2 > π/3 and ∡v′′
k−1vk−1vk > π/3. Next we can

express the sum of inner angles in terms of the outer angles

k−2�
i=1

∡vi+2vi+1vi =
k−1�
i=2

(2π − θi).

Using the angle bound assumed by the lemma, we can obtain a bound on the sum of
outer angles

k−1�
i=2

(2π − θi) ≥ (k − 2.5)π

(k − 1.5)π ≥
k−1�
i=2

θi.

The sum of all outer angles can be expressed with the α and β variables

k−1�
i=2

θi =
k−2�
j=2

βj +
(k−3)/2�

i=1
α2i + ∡v1v2v′

2 + ∡v′′
k−1vk−1vk.

In particular this means that we can use the bounds from Lemma 6.1 to obtain

k−1�
i=2

θi >
k−2�
j=2

βj + k − 3
2

π

3 + 2π

3 =
k−2�
j=2

βj + (k + 1)π
6 .

Combining the above we arrive at

(k − 1.5)π >
k−2�
j=2

βj + (k + 1)π
6
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Figure 6.6: Shorthands used for distances in the proof of Lemma 6.5

(5k − 8)π
6 >

k−2�
j=2

βj .

Next we consider how we can compute the values βj . We will call these variables
collectively β variables. The reader might recall that we already computed the value
of one β variable in the proof of Lemma 6.1, however, there we used the assumption
that |vjvj+1| = 2. Since we here want to investigate the possibility of a shorter distance
between vj and vj+1, we will instead treat it as a variable. The list of variables (depicted
in Figure 6.6) we will be using is

• xj = |vjvj+1|,
• yj = |vj+1v′

j+1| and zj = |vjv′′
j | if j is even and

• yj = |vjv′
j | and zj = |vj+1v′

j+1| if j is odd.

The value of βj is dependent on three variables xj , yj and zj . Since yi = yi+1, consecutive
β variables are not independent, however by treating them as independent we can obtain
a lower bound on their values.

Now we will again show that some assumptions can be made about these variables. First
assume a fixed value of βj in a valid UDR of G. Without loss of generality, assume that j
is even. We can assume that z ≥ y, since if yj > zj , we can simply mirror v′′

j and v′
j+1 on

the bisector of vjvj+1. Then we can assume that zj = 2 by the same argument as at the
start of the proof of Lemma 6.2 (as illustrated in Figure 6.3b). These transformations
have either not changed |v′′

j v′
j+1| and |vjv′

j+1| or have increased them. Therefore we
know that |v′′

j v′
j+1| > 2 and we can also apply the second transformation, which rotates

v′
j+1 around vj+1 to decrease ∡vjvj+1v′

j+1 until |v′′
j v′

j+1| = |vjv′
j+1| = 2. In total the new

value β′
j after these transformations is smaller than the original βj .

Note that, while these transformations will not create incorrect overlap between the disks
of vj , v′′

j , vj+1 and v′
j+1 in the UDR of G, they might create unwanted overlap with other

disks. In other words, the value of β′
j we have obtained now, might not be achievable in

a valid UDR. However since we only use this to obtain a lower bound for βj and therefore
the fact that this angle might not be achievable is not a problem.
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We will now use the remaining variables xj , yj and express β′
j as a function of these two

variables.

Since after the above transformations the triangle △viv
′′
i v′

i+1 is equilateral we state

β′
j = ∡v′′

j vjv′
j+1 + ∡v′

j+1vjvj+1 + ∡vjvj+1v′
j+1 = π

3 + ∡v′
j+1vjvj+1 + ∡vjvj+1v′

j+1.

We use γj = ∡v′
j+1vjvj+1 + ∡vjvj+1v′

j+1 to obtain

β′
j − π

3 = γj

and we can express γj as a function f(x, y)

γj = ∡v′
j+1vjvj+1+∡vjvj+1v′

j+1 = π−∡vj+1v′
j+1vj = π−cos−1


4 + y2

j − x2
j

4yj

�
= f(xj , yj).

Every fixed value of xj = C yields a uni-variate function f(C, yj), which can be interpreted
as a function describing the minimal angle value possible for xj = C and a variable yj .

Now consider the partial derivative fy in y of f(x, y)

fy(x, y) = x2 + y2 − 4

y2



−x4−2x2(y2+4)+(y2−4)2

y2

,

which describes the change in value of f(x, y), when y changes for a fixed x. By setting
fy(x, y) = 0, we find the extremal points of fy(x, y) at y = ±√

4 − x2 (of which obviously
only the positive value is interesting).

Since ∀y′ ̸= √
4 − x2 : f(x, y) < f(x, y′), we have a local minimum at y =

√
4 − x2 (note

that this is a local minimum of the uni-variate function f(C, y), but not necessarily of
the bi-variate function f(x, y)). We now substitute y =

√
4 − x2 to obtain

g(x) = f(x,
�

4 − x2) = π − cos−1
√

4 − x2

2

�

The functions f(x, y) and g(x) = f(x,
√

4 − x2) are illustrated and put into relation in
Figure 6.7.

For a given UDR of G, with fixed values for all x variables, we can state that

k−2�
j=2

γj ≥
k−2�
j=2

g(xj)
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xy

(a) Perspective view

x

(b) Top view
y

(c) Front view

Figure 6.7: A (a) perspective, (b) top and (c) front view of the two functions f(x, y) (the
orange surface) and g(x) (the blue line traced along the surface). At every point on the
blue line, it holds that y =

√
4 − x2. At every fixed x value (which can be though of as

horizontal cuts in (b)), the point on the blue line indicates the minimal value.

We now investigate the first derivative gx(x) and second derivative gxx(x) of this function3

gx(x) = − 1√
4 − x2

gxx(x) = − x√
4 − x23

It is easy to see that both derivatives are negative within the entire domain 0 < x ≤ 2.
Since gx(x) is entirely negative within the domain, we know that any increase (decrease)
of x will decrease (increase) the minimum value of g(x). Since gxx(x) is entirely negative
within the domain, we know that for two values x, x′, such that, x < x′ we have
g(x) − g(x + δ) < g(x′) − g(x′ + δ) for any δ ∈ R, 0 < δ < 2.In other words, the effect of
any increase (decrease) δ of x on the value of g(x) increases if x increases.

We use this to show that we can redistribute lengths between the different x variables, to
lower the minimal angle overall, while keeping the sum over all x variables equal. Assume
we are given a UDR of G, where there are at least two indices i, j, such that, xi < 2, xj < 2
and xi < xj . Further let δ = min(2 − xj , xi), let ξk = xk for all k ̸= i, j, let ξi = xi − δ
and let ξj = xj + δ. Clearly �k−2

i=2 xi = �k−2
i=2 ξi and for all 2 ≤ i ≤ k − 2 : 0 ≤ ξi ≤ 2.

Then the following holds

k−2�
j=2

g(xj) >
k−2�
j=2

g(ξj).

Through repeated application of this redistribution, we can arrive at a set of x variables,
where all variables are either 2 or 0 and there is exactly one variable, which has a (possibly)

3Both derivatives have been simplified using the assumptions x ∈ R and 0 < x ≤ 2.
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different value in the range [0, 2] (if there would be at least two such variables, we could
continue redistributing until there is only one of these variables). Let Ξi i = 1, . . . , k − 1
be these variables – we refer to them again collectively as Ξ variables – and let Ξp be the
variable, which is possibly not equal to 0 or 2. Now we will combine the bounds stated
so far:

kπ

2 + π

3 = (k − 1)5π

6 −
k−2�
j=2

π

3 >
k−2�
j=2

βj −
k−2�
j=2

π

3 >
k−2�
j=2

β′
j −

k−2�
j=2

π

3 =
k−2�
j=2

γj >
k−2�
j=2

g(Ξj).

Now let a be the number of Ξ variables equal to 0. Since g(x) is minimal for x = 2 within
the range [0, 2], we underestimate g(Ξp) with g(2) and obtain

kπ

2 + π

3 >
k−2�
j=2

g(Ξj) = (k − 2 − a) · g(2) + g(Ξp) + a · g(0) ≥ (k − 1 − a) · g(2) + a · g(0)

kπ

2 + π

3 >
(k − 1 − a)π

2 + aπ

1
3 > a

Recall that there are k − 2 − a variables xi, which are exactly of length 2, and we can
underestimate Ξp, by simply setting it to 0. Then the lemma follows from this final
inequality

L =
k−1�
i=1

xi >
k−2�
i=2

xi =
k−2�
i=2

Ξi = 2 (k − 2 − a) + Ξp > 2


k − 2 − 1
3


= 2k − 14

3 > 2k − 5

With the previous lemma we have established that the sum of distances is only at most a
constant value smaller than its maximum if the realization of G′ cannot fold in on itself
or spiral (which is the intuitive interpretation of the lower bound on the sum of inner
angles). This shows that we cannot use overlap between consecutive disks to reduce the
total width of a UDR of G′ beyond a constant offset of the maximal length if the angle
bound is enforced. The inner angles are not actually equal to π and in fact the path
through all vi’s has to follow a zig-zag pattern in order to properly represent G′ without
wrong overlaps.

We now define an auxiliary path starting at v1, ending at vk and containing all even
indexed vertices in-between. We call this path Z and we will refer to the distance |vivi+2|
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v2

v4

v1

v5

v3

ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2

ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4

v6 ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6ζ6

(a) Definition

ζj

xj xj+1
ρ

(b) Detail view

Figure 6.8: The definition (a) of the ζ variables between vertices of distance two and the
x variables and the angle ρ between them and (b) which are relevant for the definition of
a single ζ variable.

between two consecutive inner vertices vi, vi+2 of this path as ζi (see Figure 6.8a). Since
the inner angle at every vertex that is part of Z is smaller than π (which can easily
be shown via three applications of Lemma 6.1), Z only bends to the right and forms a
convex chain, i.e., for every consecutive triple of vertices vi, vi+1, vi+2, the vertex vi+2
lies locally to the right of the ray starting at vi through vi+1.

The next lemma states that similar to L the length of Z is also at most a constant value
less than 2k.

Lemma 6.6. If �k−2
i=1 ∡vi+2vi+1vi ≥ (k − 2.5)π then �(k−3)/2

i=2 ζ2i > 2k − 14.

Proof. A single ζi variable is determined by the variables xi, xi+1 and the angle ρ =
∡xixi+1xi+2 as shown in Figure 6.8b. Using the law of cosines, we arrive at the following
value (which we again interpret as a function h, here of three variables).

ζi =
�

x2
i + x2

i+1 − 2xixi+1 cos ρ = h(xi, xi+1, ρ)

By Lemma 6.1, we know that 2π/3 < ρ. Now we will use a similar redistribution argument
as in the proof of Lemma 6.5. We start again by stating the first and second derivatives
hρ(x, y, ρ) and hρρ(x, y, ρ) of h(x, y, ρ) in ρ.

hρ(x, y, ρ) = xy sin(ρ)
2
�

x2 + y2 − xy cos(ρ)

hρρ(x, y, ρ) = xy cos(ρ)
2
�

x2 + y2 − xy cos(ρ)
+ x2y2 sin2(ρ)

4
�

(x2 + y2 − xy cos(ρ)) 3

Neither hρ nor hρρ are equal to 0 anywhere within the bounds 0 < x1, x2 ≤ 2 and
2π/3 < ρ < π. Moreover, hρ is entirely positive, meaning that, for any fixed x and y any
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vi

vi−1vi−2vi−3

vi+1

vi+2

vi+3

π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3

π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3

5π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/3

5π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/3
ρ

Figure 6.9: Illustration of how an angle ρ < π causes bend towards the inside, which is
then propagated. The individual parts of the sum S are highlighted in different colors
and labeled with their individual lower bounds. Note how ρ is double counted in the red
and green sum.

increase of ρ will increase h(x, y, ρ). Conversely hρρ is entirely negative and therefore
we know that for two values ρ, ρ′, such that, ρ < ρ′ we have h(x, y, ρ) − h(x, y, ρ + δ) >
h(x, y, ρ′) − h(x, y, ρ′ + δ) for any δ ∈ R, 0 < δ < π/3.. In other words, the effect of any
increase (decrease) δ of ρ on the value of h(x, y, ρ) increases if ρ decreases. Recall that
this is an identical argument to the one in the proof of Lemma 6.5.

We can now again repeat this distribution – taking from smaller angles and redistributing
to larger angles, while keeping the sum over all outer angles equal and at the same time
decreasing the sum over all ζ variables – until all angles are either π or 2π/3 and exactly
one angle has possibly different value within the interval [2π/3, π].

Let ρi be one of the angles equal to 2π/3. By Lemma 6.2, we know that the following
two sums are both larger than 5π/3 (see Figure 6.9 for an illustration).

A = ∡v′′
i−1vi−1v′

i−1 + ∡v′
i−1vi−1vi + ρi

B = ρi + ∡vivi+1v′
i+1 + ∡v′

i+1vi+1v′′
i+1

Therefore we can express the sum S of outer angles at the vertices vi−1, vi and vi+1 as

S = ∡vi−2vi−1v′
i−1 + A + B − ρ + ∡v′′

i+1vi+1vi+2 >
(2 + 10 − 2)π

3 = 3π + π

3

We conclude that every angle ρj = 2π/3 adds an additional π/3 to the minimum value
of the sum of outer angles along the chain. Since the maximal value of the sum of outer
angles is (k − 2.5)π (and therefore only π/2 above the general lower bound of (2 − k)π
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established in Lemma 6.3), we know that at most one such angle can exist. Let ρj be
this angle and let ρk be the angle with a value in the interval ]2π/3, π].

Now consider that h(x, y, π) = x + y and therefore for any other angle ρm = π, we have
h(xm, xm+1, ρm) = xm + xm+1. Further consider that h(x, y, 2π/3) =

√
3. We use this

value for ζj and ζk (whose value can be overestimated as (xj + xj+1) and (xk + xk+1),
respectively) to obtain an underestimation for the sum over all ζ variables. Then

(k−3)/2�
i=1

ζ2i >

(k−3)/2�
i=1

ζ2i−ζj−ζk+2
√

3 >

(k−1)/2�
i=1

(x2i+x2i+1)−(xj+xj+1)−(xk+xk+1)+2
√

3

(k−1)/2�
i=1

(x2i + x2i+1) − (xj + xj+1) − (xk + xk+1) + 2
√

3 =
k−2�
i=2

xi − 8 + 2
√

3 >
k−2�
i=2

xi − 5

Using the fact that L is the sum over the x variables and the fact that x1 and xk−1 are
both at most 2 we obtain

k−2�
i=2

xi − 5 = L − x1 − xk−1 − 5 > L − 9

Now we use the bound proven in Lemma 6.5 which yields the lemma statement.

(k−3)/2�
i=1

ζ2i > L − 9 > 2k − 5 − 9 = 2k − 14

Observe that the lower bound on the sum of inner angles in the previous lemma can be
understood as the chain through all vi’s being x-monotone (recall the assumption of v1v2
being horizontal). Note that this implies that Z is also x-monotone.

Now that we know that we can identify a convex x-monotone chain of length 2k − O(1)
within every UDR of G′ we can finally provide a lower bound on the width of the UDR of
G′. The following lemma assumes that the UDR is heavily constrained in its height (in
particular it is bounded by a constant). It also still assumes that v1v2 is horizontal.

Lemma 6.7. In every UDR of G′ if �k−2
i=1 ∡vi+2vi+1vi ≥ (k − 2.5)π and the axis aligned

rectangular bounding box of all disks of the UDR is upper bounded in height by a constant
C, then the width of the bounding box is lower bounded by 2k − 14 − C.
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ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2ζ2 ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4ζ4
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O(1)

2k −O(1)

Figure 6.10: The x-monotone convex chain Z within its bounding box of height C. The
longest possible chain within the bounding box is indicated with the red line.

Proof. This lemma is straight forward. We identify the path Z. Due to the assumed lower
bound on the sum of inner angles, we know that this path is x-monotone and convex.
The longest possible x-monotone convex path that can be inscribed in a bounding box of
width W and height H is of length W + H (the path follows the box horizontally for
the entire width performs a 90 degree turn and follow is vertically for the entire height).
By Lemma 6.6 we know the length of Z is at least 2k − 14. Therefore the width of the
bounding box is at least 2k − 14 − C. The proof is illustrated in Figure 6.10.

In this section we have provided a step-by-step reasoning that the graph structure shown
in Figure 6.4a, i.e., an augmented path of length k, forces various properties in every
UDR, specifically if all leafs are forced to one side, the sum of angles on the other side
has an upper bound and if this sum is also lower bounded to be within a value of π of its
upper bound, a bounding box of the UDR with a constant height O(1) has a width of
2k − O(1).

In the following chapter we will present graph constructions that force the necessary
features for these properties to hold and we will use multiple copies of this graph to build
gadgets whose UDRs have very restricted geometry.

6.4 NP-Hardness Results

In this section, we prove that recognizing unit disk graphs, which is known to be NP-hard
for planar graphs [27], remains NP-hard for non-embedded outerplanar graphs and for
embedded trees.

Our proofs apply the generic machinery of Bowen et al. [25] to decide realizability of
polygonal linkages, which requires to construct gadgets that can model hexagons and
rhombi in a stable way. We give a high-level overview of their approach in Section 6.4.1.
Then we describe our constructions of the required stable structures with embedded tree
(Section 6.4.2) and outerplanar gadgets (Section 6.4.3).
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6.4. NP-Hardness Results

(a) A set P of polygons with hinges (b) A realization of (a)

Figure 6.11: An instance of PLR (a), where points belonging to the same hinge are
indicated with a dotted line connection. A placement of (rotated and/or translated)
copies of the polygons in P in the plane is a realization (b) if the points of the same
hinge are identified.

6.4.1 Summary of Foundational Hardness Results
Bowen et al. [25] proved that recognizing unit disk contact graphs is NP-hard for embedded
trees, via a reduction from planar 3-SAT, which uses an auxiliary construction formulated
as a realization of a polygonal linkage. Polygonal linkages are explained in Section 6.4.1.
The details of this auxiliary structure are explained in Section 6.4.1. Then a tree, whose
UDC is an approximation of the auxilliary structure and which mimics the shape and
mechanics. This construction is summarized in Section 6.4.1.

Polygonal Linkages

Bowen et al. [25] considered multiple problems in their work, one of which is the polygonal
linkage realizability (PLR) problem. A polygonal linkage is a set P of convex polygons and
a set H of hinges. One hinge is a set of two or more points on the boundaries of distinct
polygons. A polygonal linkage is realizable, if every p ∈ P can be placed in the plane
such that all polygons p ∈ P are interior disjoint and for every hinge h ∈ H , all points of
the hinge coincide. The problem variant PLR with fixed orientation additionally requires
that a predefined cyclic order of adjacent polygons around every hinge is kept. The set
H implicitly defines a graph GH = (P, E) (called a hinge graph), where (P1, P2) ∈ E
if there is a hinge h ∈ H containing two points p1, p2 on P1, P2, respectively. Bowen et
al. [25] proved that PLR with fixed orientation is NP-hard even if the hinge graph is a
tree. In our case and in the case of this reduction, hinges are only of size two, i.e., a
realization will identify exactly two points on distinct polygons per hinge. This means
that cyclic order around hinges is always kept by default. A polygonal linkage and its
realization are shown in Figure 6.11.
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(a) Auxiliary hexagonal grid structure
with embedded incidence graph

x = False

¬x = True

(b) False variable x. The connected wire on the top
left is in a true state and therefore corresponds to the
negated literal ¬x.

(c) Unsatisfied state (left) and one pos-
sible satisfied state (right) of the clause
gadget

x = True

¬x = False

(d) True variable x. The wire is in a false state. The
dotted hexagon indicates the overlap, if hexagons
would have inconsistent states.

Figure 6.12: Auxiliary structure details used by Bowen et al. [25]. All Figures are
recreations/adaptions from their paper. The incidence graph is embedded on a hexagonal
grid (a). The edges are short corridors in which the blue hexagons are fitted, hinged
at white vertices. Hexagons in the variable cycle (red line, grey backdrop) have two
states (b) and (d). The clause gadget (c) requires one hexagon, which does not enter
the junction.

Auxiliary Structure

The auxilliary structure mimics a hexagonal grid. This grid-like structure is obtained by
using a hexagonal tiling of the plane and then shrinking every hexagon by a small amount
to obtain narrow channels of fixed height between two hexagons. These large hexagons
are initially considered to have a fixed position and will later be hemmed in by a frame
construction, which limits their actual position to be close to this fixed position. At the
corners of the hexagons, three such channels meet to form a junction. The union of all
channels and junctions forms the grid-like structure. The hardness of PLR with fixed
orientation was proven via a reduction from planar 3-SAT. An instance of planar 3-SAT
consists of a Boolean formula ϕ over a set V of variables given as a set of disjunctive
clauses C and an incidence graph Gϕ = (V ∪ C, E), where v ∈ V appears as a literal in
c ∈ C if and only if (v, c) ∈ E. A representation of the incidence graph Gϕ is fitted into
the grid of the auxiliary structure, see Figure 6.12a.

A variable v of ϕ is represented in this grid as an alternating cycle of channels and
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Figure 6.13: The composition of the rigid structure as a realization of a polygonal linkage.
Hinges are indicated by points. The figure is a recreation of a similar figure in [25],
augmented with lines, which emphasize that the hinge graph of the auxiliary structure is
indeed a tree

junctions, indicated with a grey fill in Figure 6.12a. In such a cycle the channels can be
filled with smaller hexagons, connected to the large hexagon on the side of the channel –
which is on the “inside” of the variable cycle – via a junction. In a channel, one corner
of each of the small hexagons is connected to the large hexagon via a hinge such that
the small hexagon can be “flipped” around this junction. Due to the chosen size, the
hexagon can be realized in one of two states, i.e., flipped (almost) completely to one or
the other side, see Figures 6.12b and 6.12d. The distance of the hinges of neighboring
small hexagons is chosen in such a way that the state of one hexagon determines the
state of all hexagons in the channel, see Figure 6.12d. At each junction, we add an even
smaller hexagon with a hinge to the corner of that large hexagon, which is adjacent to
the channels on either side of the junction in the variable cycle. This propagates the
state of the hexagons in one channel through the junction into the other channel and so
throughout the entire cycle. See Figures 6.12b and 6.12d for a detailed explanation.

Wire gadgets are alternating paths of channels and junctions, which use the same
mechanism to propagate the state of the hexagons in the channels and therefore admit
two states overall.

Wire gadgets can be connected to a variable cycle at every junction using the third
unoccupied channel and adding a second very small hexagon in the junction. A wire
gadget is considered to transmit the value true, if and only if, part of the small hexagon
at the first channel of the wire gadget enters into the junction. By placing the small
hexagon on one or the other corner (cf. Figures 6.12b and 6.12d) the truth value which
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(a) Graph Tk and its UDC (b) Graph T ′
k and its UDC

Figure 6.14: The 2-stable approximations of a long thin rhombus (a) and a regular
hexagon (b). All Figures are recreations from Bowen et al. [25].

is transmitted can be “inverted”, in order to guarantee the correct transmission of truth
values for both positive and negative literals.

For every clause in ϕ, three such wire gadgets are connected to the variable cycles of
the occurring variables and the wires are routed to meet in a junction. This junction
contains a small hexagon connected to the corner of a large hexagon via a long and very
thin rhombus (in place of a line segment) such that an overlap-free realization is only
possible, if at least one connected wire gadget has no hexagon entering the junction and
is therefore in a true state, see Figure 6.12c.

In order to guarantee a sufficiently rigid placement of these hexagons, the entire con-
struction is surrounded by a set of six huge hexagons, and the hexagons acting as the
faces of the hexagonal grid are column-wise connected (cf. Figure 6.13). This confines
the position of the large hexagons to a position, very close to their fixed position [25].

Note that the hinge graph of the auxiliary structure is indeed a tree. In particular note
that we can replace the hexagons with outerplanar graphs and replace the hinges between
them with paths of length one to three and the entire construction remains an outerplanar
graph. The same way we can replace all hexagons with trees and replace the hinges with
vertex paths of length one to three and the entire construction remains a tree.

For a more detailed description, a full construction and the proof of the semi-rigid
placement we refer to the original paper of Bowen et al. [25].
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Approximating the Auxilliary Structure

In order to prove the NP-hardness for recognition of unit disk contact graphs, Bowen
et al. [25] created λ-stable approximations of the basic building blocks of the auxiliary
structure (hexagons of varying sizes and long thin rhombi).

Definition 6.1. A graph G is a λ-stable approximation of a region P in the plane if, for
every UDR D of G, there exists a congruence transformation f : R2 → R2 such that the
union U of all unit disks in the UDR has a Hausdorff distance dH(f(P ), U) ≤ λ.

Bowen et al. described the construction procedures for two graphs Tk, T ′
k, which are

2-stable approximations of a long thin rhombus and a regular hexagon. These two
graphs are shown in Figure 6.14. For the details of these constructions, we again refer to
Bowen et al. [25]. The construction of our building blocks using outerplanar graphs in
Section 6.4.3 and embedded trees Section 6.4.2 is based on these graphs.

It remains to discuss how the hinges are modeled. Two λ-stable approximations G, G′ of
two polygons P, P ′ are connected with a path of vertices of constant length, if there exists
a hinge h ∈ H , with one point on the boundary of P and the other on the boundary of P ′.
The exact length of the path is dependent on the location of the hinge. If the hinge is not
placed on a corner of either polygon, they are simply connected via a single cut vertex,
and with a path of length three otherwise, in order to facilitate more movement, which
mimics the possibility of polygons to rotate around hinges. The union of the UDC of two
thus connected graphs G, G′, remains a constant factor approximation of a congruent
copy of the realization of P ∪ P ′.

6.4.2 Recognizing UDRs is NP-hard for Embedded Trees
We prove that recognition of unit disk graphs is hard for embedded trees by providing
embedded trees T R

k and T H
k , which are X- and Y -stable approximations of a rhombus of

width k and a hexagon of side length k, respectively. Recall that embedded trees have a
fixed rotational order of neighbors around every vertex and any UDR of an embedded
tree has to induce the same rotational order. Then, the NP-hardness follows immediately
from the construction of Bowen et al. [25] sketched above.

We start with the construction of T R
k (shown in Figure 6.15a). It consists of two

augmented paths v1, . . . , vk/2+1 and u1, . . . , uk/2+1 of length k/2 + 1 placed opposite of
each other, such that, the leaf neighbors point away from the other chain. Note that
the largest possible distance between the center of the disks of v1 and vk/2+1 is upper
bounded by k in any UDR of T H

k . The two chains are connected by identifying v1 and u1.
Then we additionally add three leaf neighbors v′

1, v′′
1 and v′′′

1 to v1 = u1 (in that clockwise
order). We now show that the two augmented paths “point towards each other” in every
UDR of T R

k .

Lemma 6.8. In every UDR of T R
k the rays r (starting at v2 through v3) and r′ (starting

at u2 through u3) intersect.
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v1=u1

vk/2+1
v2

uk/2+1u2

v3

u3

v′′1

v′′′1

v′1

(a) Graph T R
k

π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3

π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/3π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/3

5π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/35π/3

r

r′

(b) Angle restrictions at the connection

Figure 6.15: Construction of the graph T R
k (a) out of two augmented paths of length

k. At the point of connection the angle restrictions (b) force the two rays r and r′ to
intersect. Note that the Figure displays an unreachable boundary case, where the sum of
inner angles is exactly 2π.

Proof. Using both Lemma 6.1 and Lemma 6.2 as shown in Figure 6.15b we can show
that the sum of outer angles at v2, v1 = u1 and u2 is at least 4π. Since there are three
vertices, the sum of inner angles is 6π minus the sum of outer angles, i.e., at most 2π. If
this sum would be exactly 2π the rays would be parallel. Therefore r and r′ intersect.

We use this to prove that T R
k is a O(1)-stable approximation of a long thin rhombus. We

will do so by proving that T R
k is in fact a O(1)-stable approximation of a straight line

segment of length k, which is contained as the long diagonal of a long thin rhombus of
width k. The fact that T R

k is a O(1)-stable approximation of a long thin rhombus, will
be a corollary of the following theorem.

Lemma 6.9. The graph T R
k is a X-stable approximation of a straight line segment ℓh of

length k.

Proof. We assume that v′′
1v1 is horizontal (i.e. the connection between the central leaf

neighbor of v1 and v1). We place a copy of ℓh horizontally with its left endpoint at v1.
We will prove that any point on ℓh has distance at most X to a point of the UDR of T R

k

and any point of the UDR has distance at most X a point on ℓh.

We do so by first showing that either the polyline through v2, . . . , vk/2+1 or the polyline
through u2, . . . , uk/2+1 has to be x- monotone in any UDR of T R

k . The width of the
bounding box of this x-monotone polyline will then force the other polyline to be also
mostly horizontal and will bound the possible vertical distance to ℓh.
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≤2
√
3 ℓh

ℓu

Figure 6.16: A UDR of T R
16. The rhombus of width 16 and the horizontal line segment ℓh

of length 16 are overlayed in green. The upper augmented path is displayed with small
inward bends, the lower chain is displayed in its most straight (unreachable) configuration.
The vertical distance between any point on the upper and lower chain is at most 2

√
3.

Note that the singular leaf neighbors attached to odd indexed vertices of the chains have
been omitted to make the figure more legible.

By Lemma 6.8 we know that in any UDR the two rays r and r′ intersect. We can use
Lemma 6.4 to see that in any UDR of T R

k the center of the disks of v2, . . . , vk/2+1 are all
contained within the halfplane below a horizontal line ℓu through v2 and u2, . . . , uk/2+1
are contained in the halfplane above a horizontal line through u2. In other words, the
upper augmented path can extend only a very limited amount to the top (without
wrapping around the lower path, which is analyzed below) and vice versa, the lower path
is very limited in its extension to the bottom.

We now have to investigate how far the upper path can extend downwards and vice
versa. Consider the subgraph induced by v3, . . . , vk/2+1 and their leafs, which is an
augmented path of length k/2 − 1. Let Z be the polyline through the centers of the disks
of v3, v4, v6, v8, . . . , vk/2, vk/2+1. Let Z ′ be the polyline that is similarly defined on the
vertices u3, u4, u6, u8, . . . , uk/2, vk/2+1. Both polylines have a maximal length of k − 4.
By Observation 6.2 both polylines are convex in any UDR of T R

k . In any UDR of T R
k

both polylines must not cross.

Assume Z is not x-monotone. This implies the existence of a vertical line ℓv, which
intersects Z twice. The line ℓv can either (a) also intersect Z ′ or (b) not intersect Z ′. If
ℓv (a) also intersects Z ′, we distinguish two cases. We label the intersections from top to
bottom along ℓv starting at the first intersection with Z as p1, the second as p2 and the
first intersection with Z ′ as q (we ignore any intersection of ℓv and Z ′ above p1).

If the top-down order of intersection points along ℓv is (a.1) p1, p2, q (see Figure 6.17a)
then Z is folded in on itself and placed between itself and Z ′. However since no additional
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p1
p2

q

Z

Z ′

ℓv

(a) Z folded in-between

p1

p2

q

ℓv
Z

Z ′

> k − 24

(b) Z folded under Z ′
> k − 24

ℓvZ

Z ′

(c) Z folds downwards

Z

Z ′

> k − 24

(d) Both x-monotone

Figure 6.17: The two chains Z and Z ′. If at least one chain is not x-monotone then (a)
neither can be folded between itself and the other chain, (b-d) if Z ′ is not x-monotone it
has a width of at least k − 24.

disk can be placed between the disks of the two augmented paths, this is impossible.

If the top-down order of intersection points along ℓv is (a.2) p1, q, p2 (see Figure 6.17b)
then Z ′ is compressed horizontally and Z bypasses it on the right, then doubles back.
With the same argument as in the first case, Z ′ can now not fold in on itself (it would
need to be placed between itself and Z). Therefore in this case Z ′ cannot cross Z and is
x-monotone which implies that the sum of inner angles is larger than (k/2 − 4)π.

If (b) there is no line that intersects Z twice and also Z ′ (Figure 6.17c), then Z ′ again
has to be x-monotone (it still cannot fold between itself and Z ′).

In cases (a.2) and (b) the height of the axis aligned rectangular bounding box of Z ′ to be
at most 2

√
3 in height. By Lemma 6.7 the width of its axis aligned rectangular bounding

box is at least 2(k/2 − 1) − 14 − 2
√

3 = k − 16 − 2
√

3 > k − 20.

Any UDR of the other augmented path has to traverse at least this length horizontally
and any extension downwards (and thereby away from the horizontal line ℓh) is at most
its maximum length minus this value. The longest path in an augmented path starting at
v1 ends at vk/2+1 and is of length k/2+1. Therefore the largest possible distance of such a
path in a UDR is 2(k/2+1−1) = k. Since the UDR of the other (possibly not x monotone)
path has to traverse at least the width of the axis-aligned rectangular bounding box of
the x-monotone path, its extension downwards (and thereby away from the horizontal
line ℓh) is at most its maximum length minus this value, i.e., k − (k − 20) = 20.

We conclude that every point has at most a vertical distance of 20 and a horizontal
distance of 20 to a point on ℓh and vice versa. Therefore T R

k is a 40-stable approximation
of ℓh.

The reduction of Bowen et al. [25] uses long thin rhombi of constant height instead of
line segments. Note that any long thin rhombus of width k and small constant height
contains a line segment of length k. We therefore state the following corollary.

Corollary 6.2. The graph T R
k is a 40-stable approximation of a rhombus of height ε < 1

and width k.
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Figure 6.18: The two graphs G1 and G2 (connected with a Type-1 connector). Exact
coordinates for relevant point are shown. Red coordinates are relevant points of H,
blue coordinates are relevant points for T H

k . Yellow coordinates are relevant for a
larger hexagon P , which will contain all disks of T H

k . The construction is not shown to
proportion. Both G1 are longer than shown (indicated with ellipses indicators in the
form of wiggle lines) and k in practice will be significantly larger than shown here.

It should be noted that the bound of Lemma 6.9, while being a generous overestimation
is still constant. The reader might see the similarity between our construction and the
corresponding graph of Bowen et al. [25]. We will now present the construction for T H

k ,
where the differences are more significant. The construction of a λ-stable approximation
T H

k of a hexagon of side length k builds on the previous construction of T R
k . Note that

this construction includes a series of large constant numbers. These are used to exceed
the possible but constant compaction that is possible within the construction. Many of
these numbers are chosen “sufficiently” large and do not aim to provide a tight bound,
i.e., there is no claim that the presented gadget is of the minimal possible size, but simply
that is a C-stable approximation for a possibly large, but constant C.

The construction of T H
k is symmetrical. We describe the construction of the upper half,

the lower half is then obtained by mirroring the upper construction at the x-axis. The
hexagon we are approximating is assumed to be placed with two edges parallel to the
x-axis, the left-most point at (0, 0) and the right-most point at (2k, 0).

The subgraph G1. We first place one G1 = T R
2k+392, such that, its first vertex (shared

by both augmented paths) is placed at (4, 0) and we assume that it points to the right.
It approximates a horizontal line of length 2k + 392 starting at (4, 0) and ending at
(2k + 396, 0). This is also illustrated in Figure 6.18. Note that by construction, any UDR
of G1 is contained entirely to the right of a line with positive slope π/3 through the point
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(b) Type-2 connector

Figure 6.19: The two different connector types used in the construction of T H
k .

(0, 0) and similarly entirely to the right of a line with negative slope −π/3 through the
same point. Further note that the longest path of vertices in G1 whose disks (or more
precisely their centers) form an x-monotone polyline is starting at a leaf of v1 and ending
at a leaf of the last vertex of one of the augmented paths. There is a maximal horizontal
distance of 2k + 396 between two points in disks of a UDR of G1. Therefore all disks of a
UDR of G1 are entirely to the left of a line with negative slope −π/3 through the point
(2k + 400, 0). They are also contained entirely to the left of a line with positive slope π/3
through the same point.

The subgraph G2 and the Type-1 connector. Next we place a G2 = T R
k+84, which

is connected to G1 at the second vertex of an augmented path of G1, using a Type-1
connector (Figure 6.19a). We now describe the Type-1 connector. Let v1 be the first
vertex of G1 and let v2 be the second vertex on one of the augmented paths (with its
two leaf vertices v′

2 and v′′
2). Let uL and uL−1 be the last and second to last vertex of

one augmented path of G2, respectively. We add a leaf vertex u′
L to uL. Let u′

L−1, u′′
L−1

be the two leafs of uL−1. We add a vertex p1, with two leaf vertices p′
1 and p′′

1, which is
connected to v′′

2 and uL. We also add a single additional leaf to v′′
2 and fix all rotational

orders of neighbors such that this leaf points to the left, i.e., the clockwise order of
vertices around v′′

2 is v2, then the new leaf and then p1. The following lemma implies
that u′′

1u1 points upwards at most at a π/3 angle and in fact the angle has to be slightly
smaller.

Lemma 6.10. Let q1 be a point on the same height as uL and to its right. Then
∡uL−1uLq1 < π/3.

Proof. Through three applications of Lemma 6.2 we obtain a lower bound on the sum of
outer angles at v1, v2, v′′

2 , p1 and uL (see Figure 6.19a). Note that the angle ∡p′
1p1p′′

1 is
double counted and we can subtract its minimal value of π/3 to obtain a lower bound of
3 · 5π/3 − π/3 = 14π/3. The lemma follows.
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(a) Additional leaf neighbors (b) Augmented chains with new neighbors

(c) Independent set highlighted in graph (d) UDR of the independent set

Figure 6.20: The augmented chains of the λ-stable approximation T R
k are augmented

(a-b), such that, the core graphs contain a sufficiently large independent set (c) whose
UDR forms a tight packing of unit disks (d).

A direct consequence of the previous Lemma is that all disks of G2 are to the right of a
line with positive slope π/3 through the point (0, 0), which is the same line we used for
our observation about G1. By construction, the first vertex u1 of G2 has its center at
most at a height of (k/2 + 20)

√
3. Any point in a disk of a UDR of G2 is at most 3 units

higher than this. Therefore all disks of a UDR of G2 are entirely below a horizontal line
through (k/2 + 100, (k/2 + 100)

√
3) and (3k/2 + 300, (k/2 + 100)

√
3) (again illustrated

in Figure 6.18).

The core graphs H1, . . . , Hk/8+4 and the Type-2 connector. Lastly we place an
even number of k/8 + 4 graphs H1, . . . , Hk/8+4. All of these graphs are T R graphs with
different lengths. However they are extended with another set of vertices. The extension
is made by adding more leaf neighbors. Let v be a vertex of an augmented path of one
such graph, which has two leaf neighbors v′ and v′′. We add two more vertices v⋆ and
v⋆⋆ and connect v′ to v⋆ and v′′ to v⋆⋆, respectively (see also Figures 6.20a and 6.20b).
Now for any augmented path, the vertices vi, v⋆

i , v⋆⋆
i for all even i and the vertices v′

j

for all odd j form an independent set. We will call the total set of all of these disks the
independent set of the core graphs, which is highlighted for a set of three core graphs in
Figure 6.20c. All disks of the different independent sets of these core graphs have to be
pairwise interior disjoint (Figure 6.20d). This will be used to bound the compression of
these disks in a UDR. It is also important to note that any UDR of an augmented path
can be transformed into a UDR of an augmented path, which includes the newly added
vertices v⋆

i and v⋆⋆
i , since the disks of v⋆

i and v⋆⋆
i can be placed exactly on top of the

disks of v′
i and v′′

i , respectively and then moved a very small distance away from the disk
of vi.
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Now we describe the connection of the core graphs to G2. All core graphs are connected
to the augmented chain of G2, which was not connected to G1. The first core graph H1
is connected to the second leaf neighbor (the one pointing downwards in the figure) of
the second vertex fo the augmented path of G2 and is of length k − 12. Then every next
graph is connected four vertices later and with a length 8 units greater than the core
graph before. In particular the graph Hi is connected to the (4i − 2)-th vertex of the
augmented chain and is of length k + 8i − 20.

We now describe the Type-2 connector and how a core graph is connected using this
connector. Let uj be the vertex of the augmented path of G2, such that, the core graph
Hi is connected with a connector to u′′

i . Let w1 be the first vertex of G3 with its three leaf
neighbors w′

1, w′′
1 and w′′′

1 . We add one vertex p2 with one leaf vertex p′
2. The vertex p2 is

connected to u′′
i and w′′

1 . Further we add one leaf neighbor to u′′
i and w′′

1 . The embedding
is defined, such that, all leafs are on the same side (we refer again to Figure 6.19b).

Lemma 6.11. Let q2 be the crossing point of the two rays −−−−→ui−1ui and
−−−→
w1w′′

1 . Then
∡uj−1q2w1 > π/3.

Proof. We use Lemma 6.2 twice as shown in Figure 6.19b, to obtain a lower bound of
10π/3 on the sum of outer angles (which are now to the right) at ui, u′′

i , p2 and w′′
1 . The

lemma immediately follows.

By Lemma 6.11, the line segment approximated by any core graph is horizontal or has a
negative slope. Therefore any disk can extend at most 40 units to the top (by Lemma 6.9).
Since the horizontal line through (k/2+100, (k/2+100)

√
3) and (3k/2+300, (k/2+100)

√
3)

lies far more than 80 units vertically above the connection point of any core graph, no
point in a disk of such a core graph can be higher than this line (even when factoring in
a compression of 40 units of G2). Similarly, since the line segment approximated by G1
is far more than 80 units longer than the length of any line segment approximated by
any core graph, every disk of a core graph is entirely contained above G1 and to the left
of the two lines with slopes π/3 and −π/3 through (2k + 400, 0).

We mirror the entire construction at the x axis (except G1, which is already placed
centrally). Now consider the polygon P defined by the following six points:

• (0, 0)

• (k/2 + 100, (k/2 + 100)
√

3)

• (3k/2 + 300, (k/2 + 100)
√

3)

• (k/2 + 100, −(k/2 + 100)
√

3)

• (3k/2 + 300, −(k/2 + 100)
√

3)

• (2k + 400, 0)
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Figure 6.21: The graph G3 (connected with a Type-2 connector to G2) and the core
graphs (connected with a Type-2/3 connector). Exact coordinates for relevant point
are shown. The construction is not shown to scale. The graphs G1, G2, and G3 are far
longer than shown (indicated with ellipses indicators in the form of wiggle lines, note
that there are two such indicators on these graphs). The core graphs are longer than they
are shown (indicated with ellipses indicators in the form of wiggle lines) and k in practice
will be significantly larger than shown here. The hexagon P is again shown in yellow.

It is obvious that P has a constant, albeit quite large, Hausdorff distance of at most 400
(the actual Hausdorff distance is in fact smaller than that). to the hexagon H of side
length k.

As argued above, all disks are contained within the lines defining the boundaries of P
and we state the following observation as a result.

Observation 6.4. In any UDR of T H
k all disks of G1, G2, G3, all connectors and all

core graphs are completely contained within P .

We have now bounded the extension of disks towards the outside. It remains to prevent
a possible compaction to the inside. Here we observe that the core graphs as displayed
in Figure 6.21 form a complete packing except for one free row between G1 and the last
H graph. Note that for every disk in this complete packing, there is one disk in the
independent set of the core graphs. None of these disks can overlap. Next note that by
construction, there is one at least core graph whose connection point to G2 is higher than
k/2

√
3 in any UDR of T H

k and which is therefore entirely above the hexagon of side length
k. Thirdly note that even if the complete packing is shifted downwards to use the free
space of the entire row, and to the left to extend beyond the boundary of the hexagon
of side length k (red in the figures), it is still large enough to cover the entire hexagon.
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And finally note that the largest vertical distance between two the lines approximated by
two such core graphs is at most their distance in the densest packing, which is 4

√
3 plus

the distance between the line segment approximated by the last H graph and G1, which
is 5

√
3. In total the distance between two such approximated line segments is at most

9
√

3 < 16. If we factor in the maximum distance the nearest disk of one of these graphs
can have to the line segment approximated by its graph (40 units, Lemma 6.9), we arrive
at an overestimation of the distance between two approximated line segment of 96 units.

Therefore we state the following observation.

Observation 6.5. No point in the hexagon H is more than a constant distance of 96
away from a point contained in a disk of a UDR of a core graph.

With the construction completed, we now state the central lemma, which combines the
two observations and states the NP-hardness of the problem.

Lemma 6.12. The graph T H
k is a 400-stable approximation of a hexagon H of side

length k.

Proof. One direction of this lemma follows from the fact that by Observation 6.5, the
UDR of T H

k covers H with at most constant sized gaps, which means that the distance
from any point of H to a point contained in a disk of the UDR of T H

k is at most 91. The
other direction follows from Observation 6.4, which states that all disks are contained
within a shape, and that shape has at most a constant Hausdorff distance of 400 to H,
far exceeding the distance of the other direction, but still remaining constant.

Note that a UDR of T H
k extends quite far beyond the hexagon it is approximating.

However by simply using the larger hexagon P as the one that is being approximated,
one could easily obtain an O-stable approximation of a regular hexagon, whose UDR is
in fact entirely contained within the hexagon it is approximating.

In this section we have presented two graphs T R
k and T H

k , which are a 40-stable ap-
proximation of a rhombus of width k (Lemma 6.9) and a 400-stable approximation of a
hexagon of side length k (Lemma 6.12). Using the method described above to model the
hinges, NP-hardness follows from Bowen et al. [25].

Theorem 6.1. The recognition of unit disk graphs is NP-hard for embedded trees.

6.4.3 Recognizing UDRs is NP-hard for Outerplanar Graphs
In the previous section, we showed how we can build graphs, whose UDR approximate
a rhombus and a hexagon of different sizes within a constant error using trees with
a prescribed rotational order of neighbors around every vertex. The rotational order
restriction is crucial, since the augmented paths rely on all leafs being placed on the
same side of the construction so the the lemmata of Section 6.3 can be applied. In
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Figure 6.22: (a-c) Transformation into a convex pentagon in the proof of Lemma 6.14.
(d) All angles in P are strictly smaller than π. (e) Points in A have distance larger than
2 to v2 and v5. Angle ∡v2ov5 would need to be smaller than π, such that, q has distance
larger than 2 to v4 and v5.

this section, we start by providing initial lemmata, which show how we can force the
embedding in a bi-connected graph using small cycles. Using this we present a O(1)-stable
approximation of a line segment (and rhombus) of width k. This is a critical component
for the O(1)-stable approximation. The rest of the section will show how all other
required components (the connectors, the independent set in the core graphs and the
placement of the core graphs) can be achieved.

Forcing embedding with small cycles.

If we do not prescribe a rotational order, we will have to force the placement of all leafs on
the same side through the graph structure. We can do so for example by creating/adding
cycles to the graph. One example is the following observation, which follows easily from
the triangle inequality.

Observation 6.6. Any point q placed inside a triangle P , whose sides have length at
most 2 has a distance of at most 2 to two (or more) corners of P .

Now consider a graph that consists of a triangle between a, b and c and has a fourth
vertex d, which is connected only to a. Since the distance between centers of connected
disks in a UDR is at most two and between not connected disks it has to be larger than
two, Observation 6.6 implies that the center of the disks of vertex d cannot be placed
within the triangle between the centers of a, b and c. Therefore the rotational order of
disks around a is fixed in any UDR (up to mirroring the entire UDR).

However, while it is obvious that such a placement is impossible for a 3-cycle, it is also
impossible, for a 4- and 5-cycle, although this is less obvious. We state the following two
lemmata, which similarly imply the impossibility of placing leafs inside 4- or 5-cycles in
a UDR.

Lemma 6.13. Any point q placed inside a quadrilateral P , whose sides have length at
most 2 has a distance of at most 2 to two (or more) corners of P .
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6. Representing Network Topology with Intersecting Unit Disks

Proof. Let vi, i ∈ {1, 2, 3, 4} be the four corners of a quadrilateral P . Let Ai be a closed
disk of radius 2 around vi. Since the sides of P are of length at most two, we know that
the triangle △v1v2v4 is contained in A1. Similarly the triangle △v3v2v4 is contained in
A3. Since q is contained in △v1v2v4 or △v3v2v4, q has distance at most 2 to either v1 or
v3. With a similar argument q has a distance of at most 2 to either v2 or v4.

Lemma 6.14. Any point q placed inside a pentagon P , whose sides have length at most
2 has a distance of at most 2 to two (or more) corners of P .

Proof. Let vi, i ∈ {1, 2, 3, 4, 5} be the five corners of P . First we show that we can assume
that all inside angles ∡vi+1vivi−1 of the pentagon defined by the circle centers in the
UDR are smaller or equal than π, i.e., the pentagon is convex.

Assume there is only one angle γ = ∡vi+1vivi−1 > π and, without loss of generality,
let i = 2 (Figure 6.22a). Let p be the image of v2 mirrored along the line v1v3. Then
∡v3pv1 < π. Observe that P ⊆ �v1pv3v4v5. Additionally v1v3 is the bisector of v2p.
Since all points q ∈ P are on the same side of v1v3 as v2, we have |qv2| ≤ |qp|. Next
assume there are two non-consecutive angles larger than π and they are without loss
of generality at v2 and v4 (Figure 6.22b). We mirror v2 at v1v3, yielding p and v4 at
v3v5 yielding p′. Observe that P ⊆ �v1pv3p′v5. Again all points q ∈ P (as well as p′)
are on the same side of v1v3 as v2, we have |qv2| ≤ |qp|. Similarly all points q ∈ P (as
well as p) are on the same side of v3v5 as v4, we have |qv4| ≤ |qp′|. Now assume there
are two consecutive angles larger than π and they are without loss of generality at v2
and v3 (Figure 6.22c). In this case we mirror v2 and v3 along v1v4. Let p and p′ be the
mirror images of v2 and v3, respectively. Observe that P ⊆ �v1pp′v4v5. Again all points
q ∈ P are on the same side of v1v4 as v2 and v3, we have |qv2| ≤ |qp| and |qv3| ≤ |qp′|.
Therefore it is sufficient to consider convex pentagons.

We assume that the segment v3v4 is horizontal and that v1 lies above v3v4. Further
we assume that the distance between q and v1 is smaller than from q to any other
corner. Towards a contradiction we assume that q has a distance larger than 2 to all
vi, i ∈ {2, 3, 4, 5}.

We can now further restrict the possible position of q within P . In particular let A be
the closed area bounded by v3v4, a circular arc C around v5 with radius 2 and a circular
arc C ′ around v2 with radius 2. Let o be the meeting point of C and C ′ contained in P
(if both intersection points lie outside of P , no point in P has a distance larger than 2 to
both v2 and v5 and we are done). If there is a valid position for q in A, then The point
q cannot be contained within C or C ′. Therefore q ∈ A (Figure 6.22e) and q ∈ △v4v5o
since A is contained within this triangle. If |ov3| ≤ 2 (or |ov4| ≤ 2), then no point in
A has a distance to v3 (or v4) larger than 2, which would be a contradiction to our
assumption. Therefore we assume both distances to be larger than 2. Since |v2o| = 2,
|v2v3| ≤ 2 and |v3o| > 2, we know that ∡v2ov3 < π/3 and similarly ∡v4ov5 < π/3. Also
since |v3o| > 2, |v4o| > 2 and |v3v4| ≤ 2, we know that ∡v3ov4 < π/3. This implies o is in
the triangle △v2v2v5 and therefore |v5o| + |ov2| ≤ |v5v1| + |v1v5|. Since |v5o| + |ov2| = 4,
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(a) Graph GR
k
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(b) UDR of GR
k

Figure 6.23: The (a) graph structure of the 50-stable approximation GR
k and (b) a UDR

of the graph. The angle restrictions implied by the structure are highlighted in red.

we have |v5v1| + |v1v2| ≥ 4. By assumption |v5v1| + |v1v2| ≤ 4 and we finally obtain
|v5v1| + |v1v2| = 4. If this inequality is strict, this is a contradiction.

A consequence of Lemmata 6.13 and 6.14 is that in a UDR of a graph of a 4- or 5-cycle,
any disk of a vertex which is adjacent to at most one of the vertices of the cycle cannot
be placed “inside” the cycle, that is, it cannot be placed such that its center is contained
within the polygon defined by the centers of the cycle. This also applies also if the 4- or
5-cycle is an induced subgraph of a larger graph.

A O(1)-stable approximation of a rhombus.

With these results established, we again provide a λ-stable approximation GR
k of a long

thin rhombus of width k. We again want to place two augmented paths opposite of each
other so close, that, in any UDR of GR

k , neither of the two paths can be folded between
itself and the other augmented path. Here we will refer to the two augmented paths as
v1, . . . , vk/2−1 and u1, . . . , uk/2−1. Note that the indices are smaller than for T R

k , which
is due to a different labeling scheme. The construction is similar to T R

k , however it is
wider to accommodate for a set of 4- and 5-cycles, which will force the placement of leafs
to the outside.

The first vertices v1 and u1 are connected with five vertices p1, . . . , p5 in this order from
v1 to u1. The vertices p1, . . . , p5 are of degree 5, 3, 4, 4 and 4 respectively. Now we place
a second chain of vertices per path, a1, . . . , ak/2−1 and b1, . . . , bk/2−1. Every ai (bi) is
connected to vi (ui) as well as to ai−1 (bi−1) and ai+1 (bi+1). a1 is also connected to p2.
Further one additional vertex p′ is placed and connected to a1, b1 and p4. And lastly, we
add a degree-one leaf a′

i (b′
i) to any ai (bi). For an illustration we refer to Figures 6.23b

and 6.23a.

It is crucial to note that all faces of GR
k are 3-, 4- or 5-cycles. Moreover, any disk that is

not part of a cycle, is adjacent to at most one vertex of the cycle. By Observation 6.6
and Lemmata 6.13 and 6.14, we know that any disk placed inside a UDR of a 3-, 4- or
5-cycle has to overlap at least two disks of that cycle. Therefore all faces of the straight
line drawing induces by a UDR of a GR

k have to be empty and the outer face is fixed.
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The possible permutation of leaf neighbors is not a problem for our arguments, which
only rely on the fact that all leaf neighbors of the augmented paths are placed on the
same side (which will again be called the “outside”). We will use these leafs again to
apply Lemmata 6.1 and 6.2 and place angle restrictions on the realization.

Lemma 6.15. In every UDR of GR
k the rays r (starting at v1 through v2) and r′ (starting

at u1 through u2) intersect.

Proof. Using Lemma 6.1 once and Lemma 6.2 five times, as shown in Figure 6.15b, we
can show a lower bound for the sum of outer angles at angle sum v1, p1, p2, p3, p4, p5, and
u1, which is 5(5π/3) + π/3 − 2(π/3) = 8π (we have double counted the angles ∡p′′

4p4p′
4

and ∡p′′
5p5p′

5 and therefore subtract the minimum values these angles need to have due
to Lemma 6.1). The sum of inner angles at v1, p1, p2, p3, p4, p5, and u1 is therefore less
than 6π. If this sum would be exactly 6π the rays would be parallel. Therefore r and r′

intersect.

Since we know that all leafs are on the outer side of the augmented paths and the two
starting edges of the augmented paths point towards each other (due to Lemma 6.15). We
also observe that it is again impossible for any UDR of the augmented paths together with
all added vertices to be folded between itself and the UDR of the opposing augmented
path. Therefore we state the following Lemma analogue to Lemma 6.9.

Lemma 6.16. The graph GR
k is a 50-stable approximation of a line segment of length k.

Proof. Note that the two arms of GR
k both contain an augmented path as an induced

subgraph. We assume that v1v2 is horizontal at a height of 2
√

3. By Lemma 6.4 all centers
of disks of vertices of the upper arm are below a line at height 2

√
3. By Lemma 6.15, the

ray −−→u1u2 intersects the ray −−→v1v2 and therefore u2 is above u1. By construction, the angles
shown in Figure 6.23b are maximal and v1 is therefore at least at a height of −2

√
3. By

Lemma 6.4 all centers of disks of vertices of the upper arm are below a line at height
−2

√
3. Since neither UDR of the augmented paths can be folded in-between itself and the

other arm, we know that at least one augmented path has to be realized in an x-monotone
manner and, by Lemma 6.7, the width of the axis aligned rectangular bounding box of any
UDR of this augmented path is at least 2(k/2 − 1) − 14 − (4

√
3) = k − 16 − 4

√
3 > k − 23.

The longest path in an augmented path (which is an induced subgraph of GR
k ) starting

at p3 ends at vk/2−1 and is of length k/2 + 2. Therefore the largest distance between p3
and a point of the augmented path is at most k + 4. Any UDR of the other augmented
path has to travel at least the width of the axis aligned rectangular bounding box of the
UDR of the x-monotone augmented path. Only then can it bypass that other augmented
path and travel a remaining distance vertically. Therefore the maximal vertical distance
is at most k + 4 − (k − 23) = 27. We again add the maximum horizontal and maximum
vertical distance and arrive at a value of 27 + 23 = 50.

With the same argument as for T R
k , we can therefore state that GR

k is a 50-stable
approximation of a line segment of length k.
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Figure 6.24: The Type-1o connector connects the two subgraphs G1 and G2 (a) by adding
additional vertices and edges, i.e., the black vertices and edged in (a). This connector
still contains the necessary subgraph to enforce the same angle restrictions as the Type-1
connector (b). A tight packing of the corresponding disks in a UDR is shown in (c),
where disks, which represent two disks that are placed almost exactly at the same spot
are marked with a small 2. The distances between disks are very small and would not be
visible. A realization with exaggerated distances and correct overlap is shown in (d).

Similar to the tree construction we also again observe the following corollary.

Corollary 6.3. The graph GR
k is a 50-stable approximation of a long thin rhombus of

width k.

A O(1)-stable approximation of a regular hexagon.

Next we reuse the construction of T H
k to create GH

k . It is again symmetrical and made
up of one central G1 to which a G2 is attached at a maximal angle of π/3 and in turn
several graphs are attached at a maximal angle of 2π/3. The constant values added to
the lengths of these GH

k s are slightly different, however it is unsurprising that a very
similar construction can be achieved.

The crucial part that has to be replicated is the connectors. Therefore we start by
presenting the three different connectors, which force the same angle restrictions and at
the same time also force the correct rotational order for all relevant vertices, since we
cannot prescribe this order.

The connectors. We describe the construction of the two types of connectors analogue
to the construction of the Type-1 and Type-2 connector. Both constructions are based
around the idea of placing different graph GR and connecting them with additional
vertices. Some additional vertices are placed to connect vertices of different graphs, while
others form connections between vertices of the same graph.

We start by describing the construction of the Type-1o connector (the outerplanar
analogue of the Type-1 connector), which is shown in Figure 6.24. This is the connector
that will connect the central graph G1 to the first appended graph G2 (see Figure 6.24a).
While both are connected to a leaf of the second vertex of an augmented path, due to
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Figure 6.25: The Type-2o connector connects the two subgraphs G2 and G3 or an odd
indexed core graph (a) by adding additional vertices and edges, i.e., the black vertices
and edged in (a). This connector still contains the necessary subgraph to enforce the
same angle restrictions as the Type-2 connector (b). A tight packing of the corresponding
disks in a UDR is shown in (c), where disks, which represent two disks that are placed
almost exactly at the same spot are marked with a small 2. the distances between disks
are very small and would not be visible. A realization with exaggerated distances and
correct overlap is shown in (d).

the difference in labeling, the second vertex of a GR is “farther along” the graph. We
again connect v′′

2 and uL by introducing a vertex p with two leaf neighbors p′ and p′′

(which are only leaf neighbors for now and will be further connected). We also still add
the additional leaf neighbors v′′′

2 and u′
L to v′′

2 and uL, respectively. This is similar to the
construction of the Type-1 connector. Next we connect v′′′

2 and v′
2 with an edge.

Then we add four additional vertices p1
1, p2

1, p3
1 and p4

1, which act as bridges between
existing vertices. Specifically the vertices create the following connections:

• p1
1 is connected to v′

1 and v′
2,

• p2
1 is connected to v′′′

2 and p′
1,

• p3
1 is connected to p′

1 and p′′
1 and

• p4
1 is connected to p′′

1 and u′
L.

All newly added vertices and connections are shown in Figure 6.24a.

Note that this connects the sequence of 4-cycles of the augmented path of G1 to the
sequence of 4-cycles of the augmented path of G2 via a sequence of 3-, 4- and 5-cycles.
Observation 6.6 and Lemmata 6.13 and 6.14 force the newly added vertices p1

1, p2
1, p3

1 and
p4

1 as well as the two vertices p′
1 and p′′

1 and the vertex u′
L to be all locally on the same
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side of the polyline through the centers of v1, v2, v′′
2 , p1 and uL. It also forces the chain

of 4-cycles of the augmented path of G2 containing uL to be locally on the right side of
that polyline, and thereby forces the entire orientation of G2 (Note that technically leaf
vertices of nodes of an augmented path, which are connected to the same vertex and are
not further connected can placed in reverse order, but since they are indistinguishable,
this is irrelevant).

Now with the placement of the leafs forced, the angle restriction analogous to Lemma 6.10
simply follows again from two applications of Lemma 6.2 and one application of Lemma 6.1
(see Figure 6.24b).

In a tight packing, the resulting UDR leads exactly to the π/3 angle restriction, which
is required (Figure 6.24c). Any UDR would introduce very small distances to avoid
unwanted adjacencies. An exaggerated realization, which introduces visible non-overlap,
is shown in Figure 6.24d.

The adaptions for the connectors of Type-2o are created in a similar fashion. The same
steps:

(a) addition of new vertices, which connect the chain of 4-cycles of the two augmented
paths

(b) observation of present angle restrictions using Lemmata 6.13 and 6.14
(c) presentation of the angle restriction in a tight packing UDR and
(d) illustration of a correct representation using exaggerated distances

are illustrated in Figure 6.25.

Therefore we can also replicate Type-2 connectors with the properties stated in Lemma 6.11.

The independent set in the core graphs. To adaption made to the GR core graphs
is made in the same fashion as for the T R core graphs, i.e., any leaf neighbor of a vertex
with two leaf neighbors is augmented with another leaf neighbor. The independent set is
however larger since we also include all a′

i and b′
i vertices. This yields three rows of a

complete packing per augmented path or six rows for the entire graph GR. The adaption
is illustrated in Figure 6.19, which shows the graph structure and the resulting packing
of disks in similar coloring.

The placement of the core graphs. The core graphs are connected to G2 via Type-2o

connectors. However as described above, the tightest packing of the independent set of
the core graphs leads to 6 rows of disks, rather then 4 as was the case for the trees. Note
that this is again a set of vertices of the augmented path of G2, such that, every vertex
of the set has two leaf neighbors. We can therefore use the Type-2 connector for all core
graphs. As a result there are less core graphs and the connection between the core graphs
and G2 is made every sixth vertex, instead of every fourth. As a result the core graphs
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6. Representing Network Topology with Intersecting Unit Disks

(a) Graph structure (b) UDR of independent set

Figure 6.26: Adaption of an augmented path of the outerplanar λ-stable approximation
GR

k , such that it contains a sufficiently large independent set (a), which results in a tight
packing of six rows (b).

can again be connected such that the tight packing of disks of the independent set has at
most a constant distance to G1.

With the connectors established and the possibility to create an independent set of
sufficient size, which can be sufficiently tightly packed, the construction of GH

k is done in
the same manner as for T H

k , although the constant in the length of the different subgraphs
will differ. Nevertheless the construction retains the same properties, so we can state the
following lemma.

Lemma 6.17. The graph GH
k is a O(1)-stable approximation of a hexagon of side length k.

Using again the method described in Section 6.4.2 to model the hinges, NP-hardness
follows from Bowen et al. [25].

Theorem 6.2. The recognition of unit disk graphs is NP-hard for outerplanar graphs.

6.5 Recognition Algorithm for Caterpillars
In this section, we propose a linear-time algorithm that recognizes if an input caterpillar
graph G = (V, E) admits a UDR or not; it uses ideas similar to an algorithm in a conference
version of a publication by Klemz et al. [73], which aimed to recognize caterpillar graphs
that admit a UDC in linear time; this result, however, was reduced to a conjecture in
the journal version [72], due to a flaw in their original proof. This flaw does not pose
an obstacle for our approach, which is constructive and provides a representation if one
exists. However, we need to address several new issues as we show that a larger class
of graphs admits a UDR compared to a UDC. Clearly, if G contains a vertex of degree
at least 6, then due to the unit disk packing property, it does not admit a UDR. Hence,
every realizable caterpillar must have maximum degree ∆ ≤ 5. Moreover, it is easy to
observe that all caterpillars with ∆ ≤ 4 admit a UDC (and thus a UDR), as also noted
by Klemz et al. [73]. Not every caterpillar with ∆ = 5, however, is realizable as UDR.
We show that two consecutive degree-5 vertices on the spine path BG cannot be realized.
Surprisingly, the absence of two consecutive vertices of degree 5 in a caterpillar with
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L.1: > π
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Figure 6.27: Illustration of the impossibility of two consecutive degree-5 vertices in
a unit disk caterpillar. The applications of lemmata, which provide angle bounds are
indicated in green and blue.

∆ = 5 is necessary and sufficient, leading to a characterization of caterpillars, which
admit a UDR.

First we prove an auxiliary Lemma, which allows us to assume certain distances in a
UDR.

Lemma 6.18. If BG contains two adjacent degree-5 vertices u, v, then it does not admit
a UDR.

Proof. We obtain the Lemma statement immediately from two applications of Lemma 6.1
and two applications of Lemma 6.2. This is illustrated in Figure 6.27.

Now we will present an algorithm, which realizes a caterpillar as a UDR, decides that no
such realization exists.

6.5.1 The Algorithm
As a preprocessing step we augment all spine vertices of degree 3 or lower with additional
degree-1 neighbors such that they have degree 4. Consider a chain v1, . . . , vn of spine
vertices. Now assume all vertices are exactly of degree 4. We place them on a horizontal
line. For each 1 ≤ i ≤ n at disk d(vi), we place its leaf neighbor disks d(vt

i), d(vb
i ) first at

the top and then at the bottom of d(vi), see Figure 6.28a such that the clockwise angle
∡vt

iviv
b
i = 4π

3 − 2iε. The rotational ε offset avoids adjacencies between subsequent leaf
disks on the same side of the spine. While these offsets can add up, we can choose ε small
enough for every finite caterpillar (a polynomial function of the size of the caterpillar,
which can simply be computed based on this size) such that this is negligible.

Now we assume that at least one vertex is of degree 5. To keep the entire construction of
the spine x-monotone, whenever we encounter a degree-5 vertex u = vk+1 after a degree-4
vertex vk, we place d(ut′) of its additional leaf ut′ alternatingly on the top or the bottom
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Figure 6.28: Chains of degree-4 vertices are placed in a dense packing formation with
small offsets (a). A degree-5 vertex places an additional leaf on one side (b). The
next vertex vk+3 can again be placed with the desired angle of just over 2π

3 between
two neighbors (c). Placement of vk+3 is possible if its degree is 5 (d). Note that, the
rotational offset angles are exaggerated, for better readability.

side with a π
3 + ε rotational offset to d(ut) (or d(ub)). We will assume that we placed the

disk at the top. Therefore ∡ut′
uub ≤ π − (2k + 1)ε, i.e., they form an almost horizontal

connection, see Figure 6.28b.

If the next vertex x = vk+2 has also degree five, then due to Lemma 6.18 we know that
the sequence is not realizable. Otherwise, we place d(x) such that it is touching d(u)
with a π

3 + ε rotational offset to d(x), see Figure 6.28b. We place d(xb) at the planned
position relative to d(x) at the bottom, i.e., with a π

3 + (k + 2)ε counterclockwise offset
relative to the x-axis, however, we place d(xt) almost exactly on top of d(x) with a very
small shift of ε

Cn orthogonal to ux, for some large constant C. This prevents touching of
d(u) and d(xt), without creating an adjacency between d(ut′) and d(xt).

From this point onwards, we consider the direction of ux to be the direction in which we
extend the spine of the caterpillar. Any following disk d(vk+3) can be placed again in the
new extension direction touching d(x). Its leaf disks d(vt

k+3) and d(vb
k+3) can be placed

in their planned positions, i.e., with a clockwise or counterclockwise offset of π
3 + (k + 3)ε

relative to the new extension direction, respectively, which results in a clockwise angle
∡utuub ≤ 4π

3 − (2k + 6)ε. Note that vk+3 can have a degree of four (Figure 6.28c) or
five (Figure 6.28d) and that at this point, if vk+3 has degree five, we can immediately
repeat this procedure. As a postprocessing step, we remove all degree-1 vertices that
were added in the preprocessing step.
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Correctness If a caterpillar contains consecutive degree-5 vertices we reject it as it
has no UDR by Lemma 6.18. In any other case, the algorithm above can represent it
in a way such that at any point the angle between a spine vertex and its left-most top
and left-most bottom leaf is less than π. As long as this property holds, we can always
add a new spine vertex. Moreover, if the sequence is extended by a spine vertex of at
most degree 4, this property immediately holds again. If the sequence is extended by a
spine vertex of degree 5, a spine vertex of degree at most 4 must follow. Once we place
this degree 4 vertex appropriately, cf. Figure 6.28b, then the property immediately holds
again.

Then from the above description of the algorithm and the correctness analysis we obtain
the following theorem.

Theorem 6.3. Let G = (V, E) be a caterpillar graph. G admits a UDR if and only if
G does not contain any two adjacent degree-5 vertices in the spine path BG of G. This
property can be tested in linear time and if a UDR exists then it can be constructed in
linear time.

6.6 Weak UDCs of Lobsters on the Triangular Grid
We have shown that recognition of UDRs is NP-hard for outerplanar graphs and linear-
time solvable for caterpillars, which mirrors the results for UDCs and weak UDCs; it
leaves the recognition complexity for (non-embedded) trees as an open question for both
UDRs and UDCs. For weak UDCs, however, recognition has been proven NP-hard for
trees [38]. In order to investigate the complexity of weak UDCs further, we zoom in on
the gap between trees and caterpillars and investigate the graph class of lobsters.

The spine of a weak UDC of a lobster G is the polyline defined by connecting the centers
of all disks belonging to the vertices of BG in order. A weak UDC is straight, if its spine
is a straight line segment. Similarly, a weak UDC is x- or y-monotone, if its spine is x- or
y-monotone. Since we consider weak UDCs with contacts between non-adjacent disks
permitted, we focus our attention on weak UDCs placed on a triangular grid that admits
tightly packed unit disks (similar to previous work on weak UDCs [38]). Finally we call
the set of grid positions, which are occupied by a disk in a weak UDC A on the grid, the
occupation pattern induced by A.

6.6.1 Straight Spine Lobsters
Since any caterpillar G admits a weak UDC if and only if it admits a straight weak UDC
[38] we investigate lobster graphs, which admit a straight weak UDC. These are not all
lobsters, since any simple lobster graph containing a non-spine vertex of degree 6 only
admits a non-straight weak UDC. We observe that already for this restricted subclass, a
greedy placement scheme similar to Cleve’s approach [38] for caterpillars is not possible;
shown by the following example.
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v3v2v1

(a) G has 18 possible weak UDCs

v3v2v1

(b) G′ has 12 possible weak UDCs

Figure 6.29: The subgraphs of G and G′ induced by their first three spine vertices are
equal, however, depending on the following vertices a different realization of the neighbors
of v3 is necessary.

We specify two lobster graphs G and G′, see Figure 6.29. It can be checked via exhaustive
enumeration that G admits 18 different weak UDCs, while G′ admits only 12. The sub-
graphs induced by their first three spine vertices and all of their (non-spine) descendants
are identical, however the realization of the descendants of v3 (highlighted in red) is
unique for both graphs (up to symmetry) and dependent on the structure of the graphs
beyond this point. We can therefore not simply scan over the spine in a greedy manner
and fix all positions for the disks of descendants of a spine vertex and then continue on to
the next. It is, however, still possible to do this in linear time with dynamic programming.
The requirements for this are actually less strict, as it is already sufficient to have an
x-monotone rather than a straight spine, which we show in the next section.

6.6.2 Monotone Weak UDCs
If a lobster can be realized as an x-monotone weak UDC, we can compute such a weak
UDC with a linear-time dynamic programming algorithm. The dynamic program uses
the following three observations.

Lemma 6.19. The number of possible placements of a spine vertex vi and its descendants
is constant for a fixed position of vi−1, i.e., the previous spine vertex.

Proof. For a grid position p, let S(p) be the set of all grid positions with a grid distance
to p of at most 2. Due to the monotonicity, the vertex vi can only be placed at one of
three possible grid positions, which are adjacent to vi−1. For each such position p every
placement of vi and its descendants corresponds to a subset of the constant size set S(p),
which yields again a constant number of placements, as shown in Figure 6.30a.

In the following Lemma, we refer to the subgraph of a lobster graph G induced by the
last k spine vertices and their descendants as the k-appendix of G.

Lemma 6.20. Let G, G′ be two lobster graphs such that they have the same k-appendix
A. Further let G admit a weak UDC U and let G′ \A admit a weak UDC W ′ such that the
occupation pattern induced by U over the last 8 spine vertices of G \ A and the occupation
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Figure 6.30: Examples for the proofs of (a) Lemma 6.19, which shows the constant sized
sets S(p) for three possible placements of the next spine vertex, (b) Lemma 6.20, which
displays two different weak UDCs (I and II) of the same graph placing their last spine
vertex at the same spot (red disk), but inducing the same occupation pattern (III) and
(c) Lemma 6.21, highlighting the at most constant distance between q and q′, which are
(in terms of x-coordinate) the minimum and maximum grid position able to occupy p
with a descendant.

pattern induced by W ′ over the last 8 spine vertices of G′ \ A are equal. Then G′ admits
a weak UDC.

Proof. Assume without loss of generality, that in U the disk of the first spine vertex of
A was placed one grid position to the right of the disk of the last spine vertex of G \ A.
We now translate the weak UDC of A, i.e., the subpart of U induced by the spine vertices
of A and their descendants such that the disk of the first spine vertex of A is placed one
grid position to the right of the last spine vertex of W ′, and as such constructing a new
weak UDC U ′. Since occupation pattern induced by U over the last 8 spine vertices of
G \ A and the occupation pattern induced by W ′ over the last 8 spine vertices of G′ \ A
are equal, as illustrated in Figure 6.30b, U ′ is a valid weak UDC of G′.

Lemma 6.21. For a fixed grid position p, which could be occupied by a spine vertex vi

or one of its descendants, the number of spine vertices of a strictly x–monotone weak
UDC, which could also occupy this position by themselves or by a descendant is constant.
Moreover, the graph distance between the first and the last such vertex is constant.

Proof. Clearly the number of grid positions inside a circle of radius 2 are constant. Now
let q be the grid position with the smallest and q′ the grid position with the largest x
position such that a spine vertex placed at these positions could still occupy p with a
descendant (see Figure 6.30c). Since the weak UDC is strictly x–monotone, every next
spine vertex on the path from q to q′ must be placed to the right of the previous one. In
particular this means that only a constant number of spine vertices can have a distance
less or equal to 2 in x-direction to p. Therefore only a constant number of previously
placed spine vertices could have possibly been placed a this grid position or placed one
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of their descendants on it and clearly q and q′ have constant distance, namely at most
8.

With these three lemmata we obtain the following theorem.

Theorem 6.4. Using dynamic programming it can be checked in linear time if a (non-
embedded) lobster graph admits an x-monotone weak UDC on the triangular grid.

Proof. The dynamic program starts at the first spine vertex v1, which is placed at an
arbitrary fixed position, and enumerates all possible placements of the descendants of
v1. Due to Lemma 6.19, this can be done in O(1) time. Every single placement yields a
pattern of occupied positions on the grid. Note that two placements, which yield the
same occupation pattern and place v1 at the same position relative to that pattern (up
to translation and rotation) are indistinguishable, when considering the obstruction they
pose for the rest of the weak UDC, due to Lemma 6.20. We save all possible occupation
patterns together with the position of the previously placed spine vertex as a record.
After processing the first spine vertex, we therefore clearly have a constant number of
records.

When the dynamic program moves on from the (i − 1)-th to the i-th spine vertex vi it
needs to place the new spine vertex at one of only three possible grid positions, due to
the x-monotonicity. Every such position p has a constant set of grid positions, which are
at most at a grid distance of 2 to p. Note that these grid positions can be occupied by
descendants of previous spine vertices, however, due to Lemma 6.21 these spine vertices
have at most a constant distance in the graph to vi. Therefore the dynamic program
needs to only remember the exact occupation pattern for a constant number of previously
placed spine vertices.

In particular, this means that for all possible occupation patterns (a constant number per
spine vertex) of all relevant previous spine vertices (a constant number) we need to save
all possible placements (a constant number per spine vertex and occupation pattern).

This results in an overall constant time to process a single spine vertex.

6.7 Conclusion
We have investigated the existing complexity gap for the recognition problem of UDRs
and weak UDCs. In addition to the open problems for various graph classes in different
settings (recall Table 6.1 in Section 6.1) – which includes the hardness of the recognition
of unit disk graphs and unit disk contact graphs for non-embedded trees – there are
two main open questions. First, we have investigated weak UDCs of lobsters on the
triangular grid, however, it is not clear if every lobster, which admits a weak UDC, also
admits a monotone weak UDC and moreover if it does so on the grid. Second, it seems
reasonable to assume that our enumeration approach can be extended to graph classes
beyond lobsters, which admit a weak UDC at least on the triangular grid. And finally,
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the entire concept of UDRs and UDCs can be lifted and investigated in higher dimensions,
while weak UDCs on grids are interesting at least in the 3-dimensional case, as grid-like
unit sphere packings exist.
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CHAPTER 7
Computing Schematic Curve
Arrangements for Nonogram

Puzzles

This chapter is (partially) based on the following publications:
[22]: de Nooijer et al. – Removing Popular Faces in Curve Arrangements
(GD’23, to appear)
[88]: de Nooijer et al. – Removing Popular Faces in Curve Arrangements
(EuroCG’22)

Let A be a set of curves which lie inside the area bounded by a closed curve, called the
frame. All curves in A are either closed, or open with endpoints on the frame. We refer
to A as a curve arrangement, see Figure 7.1a. We consider only simple arrangements,
where no three curves meet in a point and there are only finitely many total intersections,
which are all crossings (no tangencies).

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Figure 7.1: (a) A curve arrangement in a rectangular frame. (b) The top right face
is incident to two disconnected segments of the red curve, making it popular. (c) All
popular faces are highlighted. (d) After inserting an additional curve, no more popular
faces remain.
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Figure 7.2: Two nonogram puzzles in solved state. (a) A classic nonogram. (b) A curved
nonogram.

The arrangement A can be seen as an embedded multigraph whose vertices are crossings
of curves and whose edges are curve segments. A subdivides the region bounded by
the frame into faces. A face is popular when it is incident to multiple curve segments
belonging to the same curve in A (see Figures 7.1b–c). We study the Nonogram
1-Resolution (N1R) problem: can one additional curve ℓ be inserted into A such that
no faces of A ∪ {ℓ} are popular (see Figure 7.1d)?

7.1 Related Work

Our question is motivated by the problem of generating curved nonograms. Nonograms,
also known as Japanese puzzles, paint-by-numbers, or griddlers, are a popular puzzle type
where one is given an empty grid and a set of clues on which grid cells need to be colored.
A clue consists of a sequence of numbers specifying the numbers of consecutive filled cells
in a row or column. A solved nonogram typically results in a picture (see Figure 7.2a).
There is quite some work in the literature on the difficulty of solving nonograms [13, 18,
35].

Van de Kerkhof et al. [70] introduced curved nonograms, in which the puzzle is no longer
played on a grid but on an arrangement of curves (see Figure 7.2b). In curved nonograms,
clues specify numbers of filled faces of the arrangement in the sequence of faces incident to
a common curve on one side. Van de Kerkhof et al. focus on heuristics to automatically
generate such puzzles from a desired solution picture by extending curve segments to
a complete curve arrangement.
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Figure 7.3: Three types of curved nonograms of increasing complexity [70], shown with
solutions. (a) Basic puzzles have no popular faces. (b) Advanced puzzles may have
popular faces, but no self-intersections. (c) Expert puzzles have self-intersecting curves.
We can observe closed curves (without clues) in (a) and (c).

Nonogram complexity.

Van de Kerkhof et al. observed that curved nonograms come in different levels of
complexity — not in terms of how hard it is to solve a puzzle, but how hard it is to
understand the rules (see Figure 7.3). They state that it would be of interest to generate
puzzles of a specific complexity level; their generators can currently do this only by trial
and error.

• Basic nonograms are puzzles in which each clue corresponds to a sequence of
distinct faces. The analogy with clues in classic nonograms is straightforward.

• Advanced nonograms may have clues that correspond to a sequence of faces in
which some faces may appear multiple times because the face is incident to the
same curve (on the same side) multiple times. When such a face is filled, it is
also counted multiple times; in particular, it is no longer true that the sum of the
numbers in a clue is equal to the total number of filled faces incident to the curve.
This makes the rules harder to understand.

• Expert nonograms may have clues in which a single face is incident to the same
curve on both sides. They are even more confusing than advanced nonograms.
Expert nonograms are only suitable for experienced puzzle freaks.

It is easy to see that arrangements with self-intersecting curves correspond exactly to
expert puzzles. The difference between basic and advanced puzzles is more subtle; it is
exactly the presence of popular faces in the arrangement.

One possibility to generate nonograms of a specific complexity would be to take an
existing generator and modify the output. Recently, Brunck et al. [29] have investigated
how popular faces in a nonogram might be removed by reconfiguring and/or reconnecting
parts of curves at small local areas, which they call switches (e.g. around curve crossings),
and they have proved that this problem is NP-hard. As an alternative, one may try to
get rid of the popular faces by adding extra curves that cut the popular faces into smaller
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Figure 7.4: Real puzzles (without clues) with all popular faces highlighted.

pieces. In this chapter, we explore what we can do by inserting a single new curve into
the arrangement. Clearly, inserting curves will not remove self-intersections, so we focus
on changing advanced puzzles into basic puzzles; i.e., removing all popular faces.

7.2 Results
After discussing in Section 7.3 how a singular face is resolved, we show in Section 7.4
that deciding whether we can remove all popular faces from a given curve arrangement
by inserting a single curve – which we call the N1R problem – is NP-complete. However,
often the number of popular faces is small, see Figure 7.4. Hence, we are also interested
in the problem parametrized by the number of popular faces k. we show in Section 7.5
that the problem can be solved by a randomized algorithm in FPT time.

7.3 Resolving one popular face by adding a single curve
As a preparation, we analyze how a single bad face F can be resolved. If F is visited
three or more times by some curve, it cannot be resolved with a single additional curve ℓ,
and we can immediately abort. Otherwise, there are popular edges among the edges of
F , which belong to a curve that visits F twice. As a visual aid, we indicate each such
pair of edges by connecting them with a red curve (a curtain), see Figure 7.5a or 7.8b.

Observation 7.1. To ensure that a popular face F becomes unpopular after insertion of
a single curve ℓ into the arrangement, it is necessary and sufficient that the curve ℓ has
the following properties.

1. It visits the face F exactly once;

2. It does not enter or exit through a popular edge;

3. It separates each pair of popular edges. In other words, ℓ cuts all curtains.
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Figure 7.5: Resolving a popular face F . (a) Curtains model duplicate edges. (b) Possible
ways how ℓ can pass through F . (c) A more compact representation

The ways how ℓ can traverse a popular face F can be modeled as a graph: We place a
vertex on every edge of F except the popular edges. We then connect two such vertices
u, v if for every curtain c, the endpoints of c alternate with the vertices u and v around F ,
as shown in Figure 7.5b. This representation can be condensed as shown in Figure 7.5c
and explained in Section 7.5.3.

In our arguments, we often use the dual graph Ad of a curve arrangement A, where every
face of A is represented by a vertex and edges represent faces which share a common bound-
ary segment (not just a common point). A curve ℓ traversing A and crossing a sequence
of faces F1, . . . , Fk in that order can be expressed as a path P = (F1, . . . , Fk) in Ad.

7.4 N1R is NP-complete
In order to prove NP-hardness, we reduce from Planar Non-intersecting Eulerian Cycle.
This reduction assumes ℓ to be a closed loop, but it can easily be adapted to work for an
open curve ℓ′ starting and ending at the frame.

7.4.1 Non-intersecting Eulerian cycles
An Eulerian cycle in a graph is a closed walk that contains every edge exactly once. An
Eulerian cycle in a graph embedded into the plane (a plane graph) is non-intersecting
if every pair of consecutive edges (a, b), (b, c) is adjacent in the radial order around b.
Intuitively, an Eulerian cycle is non-intersecting if it can be drawn without repeated
vertices after replacing each vertex by a small cycle linking the incident edges in circular
order (see Figures 7.6a and 7.6b). The Eulerian cycle has to visit all of the original edges,
but it does not have to cover the small vertex cycles (see Figure 7.6c). The following
problem was proved to be NP-complete by Bent and Manber [17, Theorem 1].

Problem 7.1 (Planar Non-Intersecting Eulerian Cycle PNEC). Given a planar graph
embedded into the plane graph G, decide whether G contains a non-intersecting Eulerian
cycle.
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(a) (b)

E
(c)

Figure 7.6: Vertices of the graph G (a) are replaced by cycles (b). A non-intersecting
cycle drawn on the modified graph visiting all original edges (c).

7.4.2 NP-completeness reduction
We will present a polynomial-time reduction from PNEC to N1R, i.e., we will create a
curve arrangement A containing popular faces based on a planar input graph G of PNEC,
such that there exists a curve ℓ for which A ∪ ℓ contains no popular faces if and only if
G contains a non-intersecting Eulerian cycle. We assume that G is 2-edge-connected and
all vertices have even degree, because otherwise, G clearly cannot contain an Eulerian
cycle. We also replace every self-loop with a path of length two, without affecting the
existence of a planar non-intersecting Eulerian cycle.

The reduction is gadget based. We will represent every vertex v ∈ V with a vertex gadget
N (v) and every edge e = (u, v) ∈ E with an edge gadget L(e) or L(u, v). Both gadgets
are sets of curves starting and ending at the frame, and A = �

v∈V N (v) ∪ �
e∈E L(e).

Vertex gadgets.

The vertex gadgets consist of curves in one of three basic shapes shown in Figure 7.7a,
which we call beakers. We place one beaker per incident edge of v, at the position of
v, all rotated, such that their bases (the lower ends in Figure 7.7a) overlap in a specific
pattern. The opening of each beaker (the upper ends in Figure 7.7a) will point outwards.
We use three variants of the vertex gadget, depending on the vertex degree.

The vertex gadget for a degree-two vertex is simply made up of two overlaying Type-I
beakers (see Figure 7.7b). Since ℓ must cross the two curtains c1 and c2, it must connect
the two points p1, p2 by crossing the overlap of the two beakers (a face of degree two,
marked in green in Figure 7.7b). Since by Observation 7.1, ℓ can enter any beaker only
once, the routing of ℓ as shown in Figure 7.7c is forced and corresponds exactly to the
traversal of a planar non-intersecting Eulerian cycle through a vertex of degree two.

The vertex gadget N (v) for a degree-four vertex v consists of four Type-I beakers, one
per incident edge, which form the intersection pattern of Figure 7.7d. Since ℓ must
cross the four curtains, it must enter or exit the gadget at least four times through the
thick blue edges in Figure 7.7e and the vertices p1, p2, p3, p4 of the dual graph Ad. Since
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Figure 7.7: (a) Basic beaker curve shapes. (b) Degree two gadget (2 Type-I beakers) and
(c) its forced resolution. (d) Degree four gadget (4 Type-I beakers). (e) Dual graph of
the degree 4 gadget. (f) A possible curve ℓ in light blue; some alternative routings, which
connect the same endpoints, in dashed light blue.

ℓ cannot cross itself, there are only two possibilities how ℓ can pass through N (v): It can
connect p1 with p2 and p3 with p4, as in Figure 7.7f, or p1 with p4 and p2 with p3. Both
possibilities can be realized by routings of ℓ, and they correspond precisely to the ways
how a non-intersecting Eulerian cycle can pass through the edges incident to v. Note that
the exact routing of ℓ can vary inside N (v) (indicated by the dashed lines in Figure 7.7).

The vertex gadget for a vertex v of degree d ≥ 6 is more complex. We place d − 1
Type-II beakers c1, . . . , cd−1 symmetrically around the location of v (Figure 7.8a). Each
beaker intersects four adjacent beakers (two on each side), with the exception that cd/2−1
and cd/2+1 (dark green curves in Figure 7.8a) do not intersect. We place an additional
Type-III beaker cd (the light green curve in Figure 7.8a) that surrounds all bases of the
Type-II beakers and protrudes between cd−1 and c1, such that the intersection pattern of
Figure 7.8a arises.

All popular faces and curtains in N (v) are shown in Figure 7.8b. The dual of the
construction is shown in Figure 7.8c. The curtains in the green faces force ℓ to pass
from these faces to the adjacent small faces with the blue boundaries. This constrains ℓ
to pass through a chain of faces as shown in Figure 7.8d. The passages from these faces
to other neighboring faces can now be excluded, and the corresponding edges have been
removed from the dual graph in Figure 7.8d.

The curtains in the openings of the beakers force the outer blue endpoints of ℓ. The
endpoint in beaker ci will be called pi. Now we analyze which of these endpoints can be
connected with each other. We see that in most cases, pi can only be connected to pi−1
or pi+1 without going through another endpoint. The exception is pd/2−1 and pd/2+1,
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Figure 7.8: (a) Vertex gadget N (v) for a degree-8 vertex v, (b) its curtains and (c) dual
graph. (d) Highlighted light green faces in (b) force the dark blue connections in the
dual graph and restrict it. (e) One of two symmetric possibilities for the splitting curve ℓ.
The dashed lines show different possible routings of ℓ.

which can be connected via the inner loop from q1 to q2. However, this connection would
cut off pd/2 from the remaining points. We conclude that the visits of ℓ to N (u) must
match endpoints pi that are adjacent in the circular order. There are two matchings,
which correspond to the two possibilities how a non-intersecting Eulerian cycle can visit v.
Both possibilities can be realized by routings of ℓ; one is shown in Figure 7.8e, and the
other is symmetric.

We now have placed vertex gadgets for all vertices. They require ℓ to connect to an
endpoint in each opening of a beaker. With these openings, we will now construct the
edge gadgets.

Edge gadgets.

Let e = (u, v) ∈ E be an edge in G. Then there are two vertex gadgets N (u) and N (v)
already placed. In particular, we placed one beaker in the gadgets per incident edge at u
or v, i.e. two per edge.

We now elongate the open ends of these beakers and route them along the edge e according
to the embedding of G given in the input (recall that G is a plane graph) until they
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Figure 7.9: Edge gadget L(u, v) connecting two beakers from N (u) and N (v) with two
additional curves. Open ends of all curves are collected into two bundles of parallel curves
that lead into the incident faces. The inside of the two beakers are connected via a chain
of popular faces in L(u, v) (shaded in light green). Other bundles, like the two groups of
four light blue curves in the left half, can freely cross either beaker.

almost meet at the center point of e. We bend the ends of each beaker outward, routing
them into the two faces incident to e. Additionally, we place two more curves on top
(shown in green), forming the intersection pattern of Figure 7.9. This results in two
bundles A and B, each consisting of four parallel curves. (The light blue curves in the
left half are not part of the gadget; they are two bundles that come from other gadgets.)

This connects a popular face in N (u) to one in N (v), forming one big popular face in
L(u, v). An arbitrary number of curves may cross the opening of a beaker. The face
is then simply divided into a chain of consecutive popular faces. In each of these faces,
except the left- and right-most faces, which contain the blue endpoints, ℓ has to leave
through two specific edges in order to cut the curtains. This forces ℓ to pass straight
through L(u, v) from N (u) to N (v) along the thin dark-blue horizontal axis.

It remains to describe how the open ends of the curves in the bundles are routed to the
frame (since all curves other than ℓ have start and end at the frame). This is not difficult
because these bundles can cross quite freely without creating popular faces. Each bundle
consists of a unique set of curves, except for the two bundles from one edge gadget.
A bundle that originates from the edge gadget L(e) can thus cross any bundle from a
different edge gadget without creating popular faces. It can cross a different edge gadget
L(e′) by passing over one of its beakers, as shown with the light-blue curves.

Since G does not contain self-loops, we route each bundle along a path in the dual of
G to the outer face of G, and then connect it to the frame, see Figure 7.10. A popular
face might only be created when a bundle crosses the other bundle from the same edge
gadget. In this case, we reroute the bundle in parallel to the second bundle until it hits
the frame.

The curves in a bundle run in parallel. Two bundles originating from an edge gadget
L(e) have different curves as their outside curves. Hence, no popular faces are created
between two bundles, and we can make the following statement.
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N (v) N(w)

L(u, v) L(u,w)

L(v, w)
Frame

"

N (u)

Figure 7.10: Schematic representation of three vertex and edge gadgets. The bundles
are routed through beakers of other edges ending at the frame (partially shown at the
bottom of the figure). A possible routing of ℓ is shown with a black curve.

Observation 7.2. All popular faces in A are contained in vertex gadgets and edge
gadgets (the faces with dashed red curtains in Figures 7.7b, 7.7d, 7.8b, and 7.9).

The next theorem follows from the construction and the resulting correspondence between
resolving curves and non-crossing Eulerian cycles.

Theorem 7.1. N1R is NP-complete.

Proof. Assume we are given a non-intersecting Eulerian cycle E(G) of G as a permutation
of the edges. We now show how to construct the curve ℓ. We choose a random edge
e = (u, v) in the permutation and start drawing ℓ at the endpoint inside the beaker
of L(u, v) originating from N (v) along the thin blue axis crossing all popular faces as
described above.This will end at an open endpoint inside N (u). At this point we either
connect to the left or right endpoint according to the next edge in E(G) (which is possible,
since E(G) is non-intersecting). We make this connection either directly or via the forced
inner circular part of ℓ in N (u) if one of the two involved endpoints is in beaker cd(u)/2
(where d(u) is the degree of u). These connections are made as described above.Now
we are again at an endpoint in a beaker. We can repeat this procedure until we cycle
back to e, at which point we will have reconnected to our starting point. Since E(G) by
definition visits every edge exactly once, before cycling back to the first edge, we know
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that every popular face in the edge gadgets is split. Moreover, since E(G) visits every
vertex v exactly δ(v)/2 times and E(G) is non-intersecting, we know that one of the two
possible ways of connecting all endpoints in N (v) can be chosen to resolve all popular
faces in N (v) (and all other vertex gadgets). Since by Observation 7.2 there are no other
popular faces in A, A ∪ ℓ does not contain any popular faces.

Now assume we are given a curve ℓ, such that A∪ℓ does not contain any popular faces. The
order, in which ℓ traverses all edge gadgets gives us a permutation of all edges. Since both
variants of resolving all popular faces in a vertex gadget connect any endpoint only to an
endpoint in a neighboring beaker, consecutive edges in this permutation share an endpoint
and both belong to the same face and this permutation is a non-intersecting Eulerian cycle.
We have shown that there exists a curve ℓ, such that, A ∪ ℓ contains no popular faces,
if and only if G contains a non-intersecting Eulerian cycle and therefore N1R is NP-hard.

It is easy to see that N1R is in NP. The input arrangement can be represented as a plane
graph in which the edges are marked as belonging to the different curves or to the frame
boundary. The certificate is an extension of this arrangement by a resolving curve ℓ.
Since ℓ cannot visit a face more than once, the certificate is of polynomial size. It can be
easily verified in polynomial time whether it is valid, in particular, whether it contains
no popular faces.

7.4.3 Adaption to open curves.
The reduction assumes that ℓ is a closed loop. It can be adapted to work for open curves,
i.e., we can create the arrangement A, for which there exists an open curve ℓ′ starting
and ending at the frame, such that A ∪ ℓ′ does not contain any popular faces, if and only
if G contains a planar non-intersecting Eulerian cycle E(G).

u v

Frame

Figure 7.11: By routing both ends of an open beaker in parallel to the frame, we force ℓ
to start (or end) at the frame between the two connection points of the beaker.

The reduction creates A in the same fashion as above, except that we do not add the
edge gadget for exactly one edge eo = (vo, uo) on the outer face of G. Instead, the open
curves of the openings of the beakers in N (uo) and N (vo), which would normally form
the edge gadget L(uo, vo) are simply connected to the frame. This forces ℓ′ to start (and
end) at the frame between the points at which the beakers connect to the frame, in order
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to properly split the popular face in the opening of these beakers. It is now easy to see
that all other properties still hold and N1R remains NP-complete even when ℓ′ can be an
open curve.

7.5 Randomized FPT-algorithm for N1R
In this section, we show that N1R with k popular faces can be solved by a randomized
algorithm in O


2kpoly(n)


time, placing N1R in the class randomized FPT when pa-

rameterized by the number k of popular faces. We model N1R as a problem of finding a
simple cycle (i.e., a cycle without repeated vertices) in a modified dual graph G, subject
to a constraint that certain edges must be visited.

Problem 7.2 (Simple Cycle with Edge Set Constraints SNESC). Given an undirected
graph G = (V, E) and k subsets S1, S2, . . . , Sk ⊆ E of edges, find a simple cycle, if it
exists, that contains exactly one edge from each set Si.

We start with the dual graph of the given curve arrangement A. We replace the vertex
corresponding to the i-th popular face f with a set Si of edges modeling the ways how
an additional curve can cut all curtains of f , as described in Section 7.3 and shown in
Figure 7.5b. To be specific, we place a vertex on each curve segment s bounding f and
connect it to the vertex of the face that is adjacent to f across s. Further we connect two
such vertices on curve segments if a curve entering f through one segment and exiting
through the other would cut all curtains of f . The latter connecting edges, which run
through f , form the set Si. There is a one-to-one correspondence between the simple
cycles containing exactly one edge of every set Si and the resolving curves for A.

We will describe a randomized algorithm for Problem 7.2, extending an algorithm of
Björklund, Husfeld, and Taslaman [24]. We first state the original result.

Theorem 7.2 (Theorem 1 [24]). A shortest simple cycle through k given vertices or
edges in an undirected n-vertex graph can be found by a randomized algorithm in time
2knO(1) with one-sided error of exponentially small probability in n.

The adapted result following from our algorithm is as follows. The main distinction is
that we do not look for a cycle through a set of vertices or edges, but instead we have
multiple sets of edges, of which we have to visit exactly one edge each.

Theorem 7.3. The SNESC problem on a graph with n vertices and m ≥ n edges can be
solved in O


2kmn2 log 2m

n · |V (S1)| · W


time and O(2kn + m) space with a randomized

Monte-Carlo algorithm, with probability at least 1 − 1/nW , for any W ≥ 1. Here, V (S1)
denotes the set of vertices of the edges in S1 (note that S1 can be chosen to be the smallest

162



7.5. Randomized FPT-algorithm for N1R

set among S1, . . . , Sk). The model of computation is the Word-RAM1 with words of size
Θ(k + log n).

The algorithm finds the cycle with the smallest number of edges if it exists (with high
probability).

If A has n faces, the graph G has O(n) vertices and m = O(n2) edges. The quadratic
blow-up of m results from the construction as shown in Figure 7.5b. The number of
edges can be reduced to O(n), as shown in Figure 7.5c and discussed in Section 7.5.3.

The number k of popular faces is the same as the number k of edge sets Si. With the
alternative algorithm with polynomial space, since k ≤ n, we get:

Corollary 7.1. The N1R problem with k popular faces in a curve arrangement with n
faces can be solved in expected time O(2kpoly(n)) and O(kn) space.

We first give a high-level overview of the algorithm. We start by assigning random weights
to the edges from a sufficiently large finite field Fq of characteristic 2. Such a field exists
for every size q that is a power of 2. In a field of characteristic 2, the law x + x = 0 holds,
and therefore terms cancel when they occur an even number of times. The weight of a walk
(with vertex and edge repetitions allowed) is obtained by multiplying the edge weights of
all visited edges. Our goal is now to compute the sum of weights all closed walks, of given
length, that satisfy the edge set constraints. The characteristic-2 property will ensure
that the unwanted walks, those which are not simple, cancel, while a simple closed walk
makes a nonzero contribution and leads to a nonzero sum with high property. The crucial
idea is that, while these sets of closed walks can be very complicated, we can compute the
aggregated sum of their weights in polynomial time. We have to anchor these walks at
some starting vertex b, and we choose b to be one of the vertices incident to an edge of S1.

More precisely, for each such vertex b, and for increasing lengths l = 1, 2, . . . , n, the algo-
rithm computes the quantity T̂b(l), which is the sum of the weights of all closed walks that

• start and end at b,

• have their first edge in S1,

• use exactly one edge from each set Si (and use it only once),

• and consist of l edges.

We consider the edge weights as variables and regard T̂b(l) as a function of these variables.
The result is a polynomial where each term is a product of l variables (possibly with
repetition), and hence the polynomial has degree l, unless all terms cancel and it is the
zero polynomial. We apply the following lemma, which is a straightforward adaptation
of a lemma of Björklund et al. [24].

1A model of computation in which every memory cell contains a single word of bounded finite size w,
which can be accessed in constant time.
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Lemma 7.1. (a) Suppose there exists a simple cycle of length l that satisfies the
edge set constraints and that goes through an edge of S1 incident to b. Then the
polynomial T̂b(l) is homogeneous of degree l and is not identically zero.

(b) If there is no such cycle of length ≤ l, the polynomial T̂b(l) is identically zero.

Proof. (a) By assumption, there is a simple cycle among the walks whose weights are
collected in T̂b(l), and we easily see that the monomial corresponding to such a walk
occurs with coefficient 1. Hence T̂b(l) is not identically zero. By definition, T̂b(l) is a sum
of weights of walks of length l, and hence it is clear that it is homogeneous of degree l.

(b) For the second statement of the lemma, we have to show that T̂b(l) is zero if there is
no simple walk of length l or shorter. Since the field has characteristic 2, it suffices to
establish a matching among those closed walks that satisfy the edge set constraints but
don’t represent simple cycles. Let W be such a walk. We will map W to another walk
ϕ(W ) that uses the same multiset of edges, by reversing (flipping) the order of the edges
of a subpath between two visits to the same vertex v. Our procedure closely follows
Björklund et al. [24], but we correct an error in their description.

W = W0 = 123415651432345461786571 = 1[23415651432]345461786571
W ′

0 = W1 = 12345461786571 = 123[454]61786571
W ′

1 = W2 = 123461786571 = 1234[61786]571

W = 1234156514323454[61786]571
ϕ(W ) = 1234156514323454[68716]571

Figure 7.12: Mapping a nonsimple cycle W to another cycle ϕ(W ). The start vertex is
b = 1.

An example of the procedure is shown in Figure 7.12. We look for the first vertex v
that occurs several times on the walk. (During this whole procedure, the occurrence of
b at the start of the walk is never considered.) We look at the piece [v . . . v] between
the first and last occurrence of v and flip it. If the sequence of vertices in this piece is
not a palindrome, we are done. Otherwise, we cut out this piece from the walk. The
resulting walk will still visit an edge from each Si because such an edge cannot be part of
a palindrome, since it is visited only once. Since the resulting walk W ′ is shorter than l,
and thus shorter than L, by assumption, it cannot be a simple cycle, and it must contain
repeated vertices.

We proceed with W ′ instead of W . Eventually we must find a piece [v . . . v] that is not
a palindrome. We flip it in the original walk W , and the result is the walk ϕ(W ) to
which W is matched. (The flipped piece [v . . . v] does not necessarily start at the first
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occurrence of v in the original sequence W , because such an occurrence might have been
eliminated as part of a palindrome.2)

It is important to note that after cutting out a palindrome [v . . . v], all repeated vertices
must come after the vertex v. Hence, when the procedure is applied to ϕ(W ), it will
perform exactly the same sequence of operations until the last step, where it will flip
ϕ(W ) back to W .

Since the first edge of the walk is unchanged, the condition that this edge must belong
to S1 is left intact. This concludes the proof of Lemma 7.1.

The lemma is based on the fact that each term in the polynomial T̂b(l) represents some
closed walk. A term coming from a walk that visits a vertex twice can be matched with
another walk, which traverses a loop in the opposite direction and contributes the same
term. Since the field has characteristic 2, these terms cancel. A term coming from a
simple walk does not cancel.

In case (a) of Lemma 7.1, it follows from the Schwartz-Zippel Lemma [113, Corollary 1]
that, for randomly chosen weights in Fq, T̂b(l) is nonzero with probability at least
1 − degree/|Fq| = 1 − l/q ≥ 1 − n/q.

Thus, if we choose q > n2, we have a success probability of at least 1 − 1/n for finding the
shortest cycle when we evaluate the quantities T̂b(l) for increasing l until they become
nonzero. The success probability can be boosted by repeating the experiment with new
random weights.

In the unlikely case of a failure, the algorithm may err by not finding a solution although
a solution exists, or by finding a solution that is not shortest. The last possibility is not
an issue for our original problem, where we just ask about the existence of a cycle, of
arbitrary length.

In the following, we will discuss how we can compute the quantities T̂b(l), and the
runtime and space requirement for this calculation. We describe the method for actually
recovering the cycle after we have found a nonzero value in Section 7.5.5.

7.5.1 Computing sums of path weights by dynamic programming
We cannot compute the desired sums T̂b(l) directly, but have to do this incrementally via
a larger variety of quantities Tb(R, l, v) that are defined as follows:

For R ⊆ {1, 2, . . . , k} with 1 ∈ R, v ∈ V , and l ≥ 1, we define Tb(R, l, v) as the sum of
the weights of all walks that

• start at b,
2Here our procedure differs from the method described in [24], where the flipped subsequence extends

between the first and last occurrence of v in W . In this form, the mapping ϕ is not an involution. The
proof in [24], however, applies to the method as described here. This inconsistency was confirmed by the
authors (Nina Taslaman, private communication, February 2021).
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• have their first edge in S1,
• end at v,
• consist of l edges,
• use exactly one edge from each set Si with i ∈ R (and use it only once),
• contain no edge from the sets Si with i /∈ R.

The walks that we consider here differ from the walks in T̂b(l) in two respects: They end
at a specified vertex v, and the set R keeps track of the sets Si that were already visited.
The quantities T̂b(l) that we are interested in arise as a special case when we have visited
the full range R = {1, . . . , k} of sets Si and arrive at v = b:

T̂b(l) = Tb({1, . . . , k}, l, b).

We compute the values Tb(R, l, v) for increasing values l = 1, . . . , n. The starting values
for l = 1 are straightforward from the definition.

To compute Tb(R, l, v) for l ≥ 2, we collect all stored values of the form Tb(R′, l − 1, u)
where (u, v) is an edge of G and R′ is derived from R by taking into account the sets
Si to which (u, v) belongs. We multiply these values with the edge weight wuv and
sum them up. If (u, v) is in some Si but i /∈ R, we don’t use this edge. Formally, let
I(u, v) := { i | (u, v) ∈ Si } be the index set of the sets Si to which (u, v) belongs. Then

Tb(R, l, v) =
�

(u,v)∈E
I(u,v)⊆R

wuv · Tb(R \ I(u, v), l − 1, u) (7.1)

7.5.2 Finite Field Computations
Each evaluation of the recursion (7.1) involves additions and multiplications in the finite
field Fq, where q = 2s > n is a power of 2.

We will argue that it is justified to regard the time for these arithmetic operations as
constant, both in theory and in practice. The error probability can be controlled by
choosing the finite field sufficiently large, or by repeating the algorithm with new random
weights.

For implementing the algorithm in practice, arithmetic in F2s is supported by a variety
of powerful libraries. see for example [106]. The size that these libraries conveniently
offer (e.g., q = 232) will be mostly sufficient for a satisfactory success probability.

For the theoretical analysis, we propose to choose a finite field of size q ≥ n2, leading to
a failure property less than 1/n, and to achieve further reductions of the failure property
by repeating the algorithm W times.

We will describe some elementary approach for setting up the finite field Fq of size q ≥ n2,
considering that we can tolerate a runtime and space requirement that is linear or a small
polynomial in n. Various methods for arithmetic in finite fields F2s are surveyed in Luo,
Bowers, Oprea, and Xu [81] or Plank, Greenan, and Miller [105]. The natural way to
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represent elements of F2s is as a polynomial modulo some fixed irreducible polynomial
p(x) of degree s over F2. The coefficients of the polynomial form a bit string of s bits.
Addition is simply an XOR of these bit strings.

We propose to use the split table method, which is simple and implements multiplication
by a few look-ups in small precomputed tables, see [81, Section 3.3.1] or [105, Section 6.5].

Let C = ⌈(log2 n)/2⌉, and let q = 24C . Thus, q ≥ n2, as required.

According to [115, Theorem 20.2], an irreducible polynomial p(x) of degree d = 4C over
F2 can be found in O(d4) = O(log4 n) expected time, by testing random polynomials of
degree d for irreducibility. (Shoup [115] points out that this bound is not tight; there are
also faster methods.)

Multiplication of two polynomials modulo p(x) can be carried out in the straightforward
“high-school” way in O(d2) = O(log2 n) steps, by elementwise multiplication of the two
polynomials, and reducing the product by successive elimination of terms of degree larger
than d.

We now consider the bitstring of length d as composed of r = 4 chunks of size C. In
other words, we write the polynomial q(x) as

q(x) = q3(x)x3C + q2(x)x2C + q1(x)xC + q0(x),

where q3, q2, q1, q0 are polynomials of degree less than C. Addition takes O(r) time,
assuming an XOR on words of length C = O(log n) can be carried out in constant time.
Multiplication is carried out chunk-wise, using 2r − 1 = 7 multiplication tables. The j-th
table contains the products r(x)r′(x)xjC , for all pairs r(x), r′(x) of polynomials of degree
less than C, for j = 0, 1, . . . , 2r − 2. Multiplication in the straightforward way takes then
O(r3) time. Each multiplication table has 2C × 2C = O(n) entries of r = 4 words, and it
can be precomputed in O(nd2) = O(n log2 n) time by multiplying in the straightforward
way.

Thus, after some initial overhead of O(n log2 n) time, which is negligible in the context
of the overall algorithm, with O(n) space, arithmetic in Fq can be carried out in O(1)
time in the Word-RAM model, where arithmetic, logic, and addressing operations on
words with Θ(log n) bits are considered as constant-time operations.

7.5.3 Adapting the Edge Set Constraints
Here we give more details of this construction.Figure 7.5c. We cut off each run of
consecutive edges, like fghi, by an additional edge (shown dotted in Figure 7.5c) and
place a single terminal node there.

One has to take care that the cycle that is found does not use two such terminal edges in
succession, like the edges crossing f and h, because such a cycle would not correspond
to a valid curve. This constraint must be added to the problem definition, and the
recursion (7.1) must be modified accordingly.
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Figure 7.13: A set Si and its connecting edges

The sets Si have a special structure. Each set Si consists of a few vertex-disjoint edges
(the thick edges in Figure 7.13), which we call central edges. We call the edges connecting
the central edges to the remainder of the graph the peripheral edges. We don’t want to
consider cycles that use two such peripheral edges (of the same Si) in succession, without
going through the central edge. We impose this as an extra condition on the walks whose
weights we accumulate.

It is easy to incorporate this condition in the recursion of Section 7.5.1: Instead of the
quantities Tb(R, l, v), we work with quantities T̃b(R, l, v, p) that depend on an additional
parameter p. This is one bit that tells whether the last edge of the walk has traversed a
peripheral edge in the direction towards the central edge. If this is the case, we force the
walk to use the central edge in the next step.

In this way, the additional condition incurs a blow-up of at most a factor 2 in the size of
the dynamic programming tables and in the runtime.

We now argue that Lemma 7.1 still holds for these modified quantities. The proof of
Lemma 7.1 goes through for the following reason. The conditions on allowed walks ensure
that an endpoint of a central edge, like the vertex s in Figure 7.13), is always part of a
subpath consisting of a central edge surrounded by two peripheral edges, like (r, s, t, u)
or (u, t, s, r). Such a subpath cannot be part of a palindrome, since (s, t) belongs to a
special set Si, and for the same reason, s can never be a repeated vertex of a walk. If the
bijection constructed in the proof reverses a subpath that goes through the vertex s, this
is no problem because the reversed traversal does not violate the extra condition.

7.5.4 Runtime and space
The finite field additions and multiplications in (7.1) take constant time, as shown in the
previous section. Similarly, the set operation R \ I(u, v) on subsets of {1, . . . , k} and the
test I(u, v) ⊆ R can be carried out in constant time, using bit vectors. Thus, for a fixed
starting vertex b ∈ V (S1) and fixed R, going from l − 1 to l by the recursion (7.1) takes
O(m) time in total, because each edge (u, v) appears in at most one of the sums on the
right-hand side. The overall runtime is O(|V (S1)|2kmn).

As mentioned after Lemma 7.1, the probability that the algorithm misses the shortest
simple path is at most 1/n. To amplify the probability of correctness, we repeat the
computation W times, reducing the failure probability to 1/nW .
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We consider each starting vertex b separately, and do not need to store entries for lengths
l − 1 or shorter when proceeding from l to l + 1; thus the space requirement is O(2kn).

7.5.5 Recovering the solution
The algorithm, as described so far, works as an oracle that only gives a yes-no answer
(and a length l), but it does not produce the solution. To recover the solution, we will
call the oracle repeatedly with different inputs.

Suppose the algorithm was successful in the sense that some number T̂b(l) turned out to
be nonzero, after finding only zero values for all smaller values of l. By Lemma 7.1, we
conclude that there exists a simple cycle through b satisfying the edge set constraints,
possibly (with small probability) shorter than l.

We will find this cycle by selectively deleting parts of the edges and recomputing
T̂b(1), T̂b(2), . . . , T̂b(l) for the reduced graph to see whether this graph still contains
a solution. In this way, we will determine the successive edges of the cycle, and, as we
shall see, we will know the cycle after at most 4n log2

4m
n iterations.

The first edge out of b is an edge of S1, and thus we start by looking for the first edge
among these edges. (The other edge incident to b, by which we eventually return to b, is
not in S1, and thus there is no confusion between the two edges incident to b.) In the
general step, we have determined an initial part of the cycle up to some vertex u, and we
locate the outgoing edge among the edges (u, v) incident to u, excluding the edge leading
to u that we have already used.

In general, for a vertex u of degree du, we have a set of du − 1 potential edges. We locate
the correct edge by binary search: We split the potential edges into two equal parts, and
query whether a cycle still exists when one or the other part is removed. It may turn out
(with small probability) that none of the two subproblems yields a positive answer. In
this case, we repeat the oracle with new random weights. Since the success probability is
greater than 1/2, we are guaranteed to have a positive answer after at most two trials,
in expectation. (We mention that such repeated trials may be necessary only when the
length l for which we are looking is not the shortest length of a feasible cycle. Otherwise
one can show, using arguments from the proof of Lemma 7.1,that the polynomial for the
original problem is the sum of the polynomials for the two subproblems. Thus, at least
one of the two subproblems must give a positive answer.) After at most 2⌈log2(du − 1)⌉
successful queries, we have narrowed down the search to a single outgoing edge uv, and
we continue at the next vertex v.

For a walk W of length l, we use, in expectation, less than Q := �
u∈W 4(1 + log2 du)

queries, where �
u∈W du ≤ 2m. Q can be bounded by

Q ≤ 4l

1 + log2

2m
l


≤ 4n


1 + log2

2m
n


= 4n log2

4m
n ,

as claimed.
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(a) (b) (c) (d)

Figure 7.14: Input (a,c) and resulting output (b,d) generated by the implementation; the
green curve is the curve with the smallest number of crossings that resolves the popular
faces.

During this procedure, it may also turn out that a solution with fewer than l edges exists.
In this case, we know that we must have been in the unlikely case that the original
algorithm failed to produce a nonzero value for the shortest solution l. We simply adjust
l to the smaller value and continue.

Note that this procedure is guaranteed to produce a simple cycle, although not necessarily
the shortest one. The algorithm selects a branch only when the corresponding polynomial
is nonzero, which implies that a simple cycle exists in that branch.

Some simplifications are possible. For edges that are known to belong to every solution
(for example if some set Si contains only one edge), we can assign unit weight, thus
saving random bits, reducing the degree of the polynomial, and increasing the success
probability. Edges that would close a loop can be discarded. When the graph is sparse
and m = O(n), we can simply try the du − 1 edges one at a time instead of performing
binary search, at no cost in terms of the asymptotic runtime.

Figure 7.14 shows initial results of an implementation of our algorithm on two small test
instances; see also [99].

7.6 Conclusion
In light of our NP-hardness and randomized FPT-algorithm, a natural next step is a
deterministic parameterized algorithm. There are O(n) local possibilities of resolving
a single popular face, however, this does not immediately lead to an O(nk) algorithm
(which would place N1R in XP), since we might need to branch additionally over all
possible connections between these solutions through the dual of A, which can have an
unbounded size.

Additionally there are multiple interesting question which are natural extensions of our
result. First, it would be interesting to investigate an optimization version of N1R, where
one tries to resolve as many popular faces as possible. Second, we would be interested
in proving an upper bound on the number of resolution curves which are needed at
most (relative to the number of curves in the input). And third, we hope to extend the
algorithm to a setting in which more than one resolution curve is used.
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CHAPTER 8
Conclusion

In this thesis, we have investigated five different problems involving schematization. Since
these problems were quite diverse, some open problems specific to the topic of each
chapter have already been given at the end of the respective chapter. Here we aim to
give a short summary of the topics discussed in this thesis and some overarching themes.
Two chapters in the first half of this thesis have tackled the topic of schematization of
transit networks, which emphasize connectivity within the network and graph-theoretical
distance between stations over geographical accuracy and relative distances. Our work
aims to broaden the possible uses of such maps, by providing an automated method of
including user defined shapes into these maps, a task that is often used for advertisement
or design-purposes. We have also provided an automated method for a generalization
of the traditional design of such maps, by allowing (ir)-regular k-linear designs. These
chapters exists within the context of a rich literature, which provides similar extensions to
the classical metromap design problem. The clear direction within this field of reserach is
the unification of existing approaches and results into working and usable implementations,
that can be used by designers. While recent work [28] has provided the combination of
various tasks into one toolchain, the simultaneous consideration of station placement,
edge routing, station labeling and inclusion of tariff zones should be one of the next steps.
In the second half of this thesis we have focused on more general problems involving
schematic representations. This included the computation of schematic separators between
polygonal elements, the schematic representations of graphs using geometric primitives,
specifically unit disks and the more combinatorial problem of preventing undesirable
properties in puzzles played on a schematic representation of an image in the form of a
curve arrangement. While all three of the presented chapters have interesting further
questions, there is an aspect of schematization, which can be of interest on a general
level to such geometric problems. Consider the set of restricted directions, which are
available for the schematic transit maps. This restriction of possible directions can often
be imposed on geometric problems involving polygonal domains. One example from

171



8. Conclusion

literature is the result of Hershberger and Snoeyink [63], which we used in Chapter 5 as a
subroutine. The authors here consider their problem of computing minimum length paths
of a given homotopy class also under the restriction, that every piecewise linear part of
such a path has to be parallel to one of just a small number of directions. They extend
their algorithmic result to this case, however it is not entirely clear if other problems
in general will be similarly solvable or if they in- or decrease in complexity when such
restrictions are applied.

While most of the problems that were tackled in this thesis turned out to be NP-hard
we still provided, one way or the other, a method of tackling the problem, be it on a
subclass of inputs, or through heuristics and parameterized algorithms. We thereby
hope to contribute our small part to illustrate a commonly emphasized sentiment in the
theoretical computer science community: “Just because it’s NP-hard, doesn’t mean you
can’t do anything about it!”
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APPENDIX A
Supplementary Material for

Chapter 3

A.1 Supplementary Material
This appendix includes a table for each of the six networks with the metric values as well
as a table of final solutions (after one hour) for reference. The different parameters are
the number of available directions (k) and the orientation system (Aligned, Regular,
Irregular). Metrics are the number of bends, sector deviation (total and per edge),
distortion per edge, the runtime in seconds and the optimality gap in percent (listed
as number between 0 and 1). For one set of objective function weights and linearity k
combination the best value across all orientation systems of every metric is marked in
bold. Instances that reached the time limit are marked with a clock. Finally we show
a comparison of the quality metrics between the three variants of fixing the drawing
directions C for all instances and linearities and the weight vector (f1, f2, f3) = (10, 5, 1).
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A. Supplementary Material for Chapter 3

Table A.1: Metric results for the Vienna network.

instance Vienna
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends 11.0 13.0 11.0 19.0 20.0 23.0 26.0 22.0 29.0
sector deviation 23.0 14.0 35.0 6.0 8.0 4.0 8.0 14.0 6.0↰per edge 0.43 0.26 0.65 0.11 0.15 0.07 0.15 0.26 0.11
distortion per edge 0.69 0.84 0.7 0.32 0.39 0.42 0.57 0.58 0.57
time in seconds 687.0 262.0 2661.0 116.0 1403.0 209.0 804.0 3181.0 2739.0(3

,2
,1

)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bends 9.0 10.0 10.0 19.0 19.0 19.0 25.0 24.0 26.0
sector deviation 22.0 20.0 36.0 6.0 9.0 8.0 7.0 11.0 7.0↰per edge 0.41 0.37 0.67 0.11 0.17 0.15 0.13 0.2 0.13
distortion per edge 0.7 0.79 0.74 0.32 0.41 0.41 0.59 0.6 0.54
time in seconds 84.0 74.0 319.0 45.0 60.0 47.0 109.0 382.0 168.0(1

0,
5,

1)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table A.2: Metric results for the Montreal network.

instance Montreal
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends 10.0 9.0 10.0 14.0 12.0 13.0 13.0 15.0 15.0
sector deviation 8.0 6.0 14.0 5.0 6.0 1.0 7.0 7.0 2.0↰per edge 0.3 0.22 0.52 0.19 0.22 0.04 0.26 0.26 0.07
distortion per edge 0.68 0.78 0.87 0.5 0.42 0.46 0.69 0.55 0.53
time in seconds 21.0 6.0 11.0 12.0 10.0 13.0 13.0 43.0 7.0(3

,2
,1

)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bends 9.0 9.0 10.0 11.0 12.0 13.0 13.0 15.0 15.0
sector deviation 9.0 7.0 15.0 8.0 6.0 1.0 7.0 7.0 2.0↰per edge 0.33 0.26 0.56 0.3 0.22 0.04 0.26 0.26 0.07
distortion per edge 0.64 0.78 0.88 0.5 0.42 0.46 0.69 0.55 0.53
time in seconds 6.0 6.0 8.0 5.0 8.0 9.0 15.0 56.0 5.0(1

0,
5,

1)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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A.1. Supplementary Material

Table A.3: Metric results for the Washington network.

instance Washington
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends 21.0 24.0 17.0 40.0 33.0 37.0 46.0 49.0 49.0
sector deviation 27.0 25.0 31.0 10.0 16.0 8.0 6.0 6.0 0.0↰per edge 0.51 0.47 0.58 0.19 0.3 0.15 0.11 0.11 0.0
distortion per edge 1.18 1.12 1.24 0.35 0.42 0.43 0.79 0.81 0.44
time in seconds 599.0 2212.0 3617.0 104.0 290.0 161.0 11.0 44.0 10.0(3

,2
,1

)

optimality gap 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0
bends 18.0 19.0 15.0 29.0 29.0 30.0 42.0 37.0 45.0
sector deviation 30.0 35.0 34.0 18.0 18.0 15.0 8.0 12.0 3.0↰per edge 0.57 0.66 0.64 0.34 0.34 0.28 0.15 0.23 0.06
distortion per edge 1.13 1.13 1.24 0.42 0.42 0.46 0.81 0.8 0.46
time in seconds 13.0 65.0 80.0 36.0 68.0 45.0 12.0 8.0 10.0(1

0,
5,

1)

optimality gap 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table A.4: Metric results for the Sydney network.

instance Sydney
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends 42.0 43.0 35.0 49.0 49.0 49.0 63.0 64.0 72.0
sector deviation 41.0 32.0 29.0 11.0 8.0 18.0 12.0 10.0 14.0↰per edge 0.42 0.33 0.3 0.11 0.08 0.19 0.12 0.1 0.14
distortion per edge 1.0 0.78 1.03 0.31 0.38 0.62 0.63 0.71 0.43
time in seconds(3

,2
,1

)

optimality gap 0.2 0.2 0.16 0.13 0.12 0.1 0.11 0.08 0.07
bends 31.0 32.0 35.0 48.0 47.0 47.0 59.0 59.0 59.0
sector deviation 36.0 32.0 24.0 8.0 10.0 17.0 12.0 12.0 18.0↰per edge 0.37 0.33 0.25 0.08 0.1 0.18 0.12 0.12 0.19
distortion per edge 0.88 0.84 1.02 0.29 0.33 0.59 0.65 0.68 0.49
time in seconds 2216.0(1

0,
5,

1)

optimality gap 0.09 0.07 0.05 0.01 0.02 0.01 0.01 0.01 0.0
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Table A.5: Metric results for the Berlin network.

instance Berlin
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends – – – 141.0 116.0 149.0 147.0 145.0 160.0
sector deviation – – – 64.0 54.0 141.0 52.0 35.0 46.0↰per edge – – – 0.22 0.18 0.48 0.18 0.12 0.16
distortion per edge – – – 0.4 0.37 0.68 0.78 0.81 0.52
time in seconds – – –(3

,2
,1

)

optimality gap – – – 0.28 0.23 0.4 0.25 0.2 0.28
bends – – – 107.0 107.0 123.0 125.0 128.0 139.0
sector deviation – – – 69.0 62.0 98.0 52.0 60.0 59.0↰per edge – – – 0.24 0.21 0.33 0.18 0.2 0.2
distortion per edge – – – 0.36 0.4 0.64 0.8 0.82 0.54
time in seconds – – –(1

0,
5,

1)

optimality gap – – – 0.21 0.15 0.3 0.16 0.21 0.26

Table A.6: Metric results for the London network.

instance London
linearity k = 3 k = 4 k = 5

we
ig

ht
s

orientation system A R I A R I A R I
bends – – – 144.0 143.0 151.0 174.0 177.0 304.0
sector deviation – – – 68.0 71.0 63.0 54.0 66.0 409.0↰per edge – – – 0.21 0.22 0.2 0.17 0.21 1.28
distortion per edge – – – 0.38 0.4 0.45 0.68 0.66 0.48
time in seconds – – –(3

,2
,1

)

optimality gap – – – 0.19 0.26 0.27 0.25 0.25 0.68
bends – – – 132.0 121.0 149.0 156.0 165.0 262.0
sector deviation – – – 74.0 81.0 72.0 52.0 56.0 410.0↰per edge – – – 0.23 0.25 0.23 0.16 0.17 1.28
distortion per edge – – – 0.4 0.39 0.41 0.7 0.67 0.5
time in seconds – – –(1

0,
5,

1)

optimality gap – – – 0.16 0.17 0.27 0.17 0.22 0.7
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A.1. Supplementary Material

(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.1: Examples of Vienna generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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A. Supplementary Material for Chapter 3

(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.2: Examples of Montreal generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.3: Examples of Washington generated with objective function weights
(f1, f2, f3) = (10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and
irregular (k-I) orientation systems.
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(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.4: Examples of Sydney generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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A.1. Supplementary Material

Input

(a) 4-A (b) 4-R

(c) 4-I (d) 5-A

(e) 5-R (f) 5-I

Figure A.5: Examples of Berlin generated with objective function weights (f1, f2, f3) =
(3, 2, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems. 181



A. Supplementary Material for Chapter 3

Input

(a) 4-A (b) 4-R

(c) 4-I (d) 5-A

(e) 5-R (f) 5-I

Figure A.6: Examples of London generated with objective function weights (f1, f2, f3) =
(3, 2, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.7: Examples of Vienna generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.8: Examples of Montreal generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.9: Examples of Washington generated with objective function weights
(f1, f2, f3) = (10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and
irregular (k-I) orientation systems. 185



A. Supplementary Material for Chapter 3

(a) 3-A (b) 3-R (c) 3-I

(d) 4-A (e) 4-R (f) 4-I

(g) 5-A (h) 5-R (i) 5-I

Figure A.10: Examples of Sydney generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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Input

(a) 4-A (b) 4-R

(c) 4-I (d) 5-A

(e) 5-R (f) 5-I

Figure A.11: Examples of Berlin generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems. 187



A. Supplementary Material for Chapter 3

Input

(a) 4-A (b) 4-R

(c) 4-I (d) 5-A

(e) 5-R (f) 5-I

Figure A.12: Examples of London generated with objective function weights (f1, f2, f3) =
(10, 5, 1) for different k ∈ {3, 4, 5} and aligned (k-A), regular (k-R) and irregular (k-I)
orientation systems.
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Figure A.13: Plots of the results of the experiments for the objective function weights
(f1, f2, f3) = (10, 5, 1).
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