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Kurzfassung

Im Jahr 1994 entwickelte Peter Shor (FOCS 1994) einen Polynomialzeit-
Quantenalgorithmus, mit dem die Sicherheit von kryptographischen Protokollen gebrochen
werden kann, die auf der Härte des Faktorisierungsproblems oder der Berechnung von
diskreten Logarithmen beruhen. Dies initierte die Untersuchung von Problemen, für
die derzeit keine effizienten Quantenalgorithmen bekannt sind. Es entstand ein neuer
Zweig der Kryptographie, die so genannte Post-Quanten-Kryptographie. Sie versucht,
kryptographische Primitiven aus der vermuteten Schwierigkeit solcher Probleme zu kon-
struieren. Die Einführung von Post-Quanten-Kryptosystemen wird jedoch derzeit durch
mindestens zwei Faktoren erschwert: 1) die derzeit eingesetzten Kryptosysteme sind
schneller und/oder kompakter als Post-Quanten-Kryptosysteme, 2) in vielen modernen
Szenarien werden kryptografische Protokolle umfangreichere Funktionen benötigen, als sie
die derzeitigen Post-Quanten-Konstruktionen unterstützen. Beispielsweise existiert kein
Post-Quanten-Kandidat für ein succinct non-interactive argument of knowledge (SNARK)
mit Eigenschaften von (Prä-Quanten-)Konstruktionen, die auf bilinearen Paarungen
basieren.

In dieser Arbeit machen wir Fortschritte auf beiden Seiten. Konkreter, können die
Ergebnisse wie folgt zusammengefasst werden.

• Wir untersuchen, wie man asymmetrische Verschlüsselungsverfahren (PKEs) mit
potenziell großen Korrektheitsfehlern in solche mit vernachlässigbaren Korrektheits-
fehlern transformieren kann. Insbesondere zeigen wir, dass der direkte Produkt-
Compiler von Dwork, Naor und Reingold (EUROCRYPT 2004) in Kombination
mit einer Transformation von Hofheinz, Hövelmanns und Kiltz (TCC 2017) verwen-
det werden kann, um schwach sichere deterministische oder randomisierte PKEs
generisch in CCA-sichere KEMs im sogenannten (Quanten-)Random Oracle Model
(ROM) zu transformieren. Eine solche Transformation ist auf alle Kandidaten des
NIST-Post-Quantem-Wettbewerbs, die auf Gittern und Codes mit nicht vernach-
lässigbarem Fehler basieren, anwendbar. Wir liefern eine umfassende Analyse und
zeigen, dass sie die konkrete Effizienz einiger der codebasierten Kandidaten verbes-
sert. Darüber hinaus zeigen wir, wie dieselben Ideen angewandt werden können,
um einen ersten Ansatz für sichere Post-Quantem Bloom-Filter KEMs zu erhal-
ten, ein Primitiv, das von Derler et al. (EUROCRYPT 2018) in Verbindung mit
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punktierbaren KEMs eingeführt wurde. Dies liefert uns erstmals solche Verfahren
basierend auf Gittern und Codes.

• Wir schlagen den ersten gitterbasierten SNARK vor, der gleichzeitig viele wün-
schenswerte Eigenschaften erfüllt: (i) er ist vorläufig post-quantum sicher, (ii) er ist
öffentlich verifizierbar, (iii) Verifizieren benötigt logarithmische Zeit und (iv) er ist
rein algebraisch und somit für eine effiziente rekursive Komposition geeignet. Das
Herzstück dieser Konstruktion ist ein neues gitterbasiertes Vector Commitment
Schema das das Öffnen zu multivariaten polyomialen Abbildungen konstanten
Grades unterstützt. Die Sicherheit unserer Konstruktionen basiert auf einer neuen
Familie von gitterbasierten Härteannahmen, die die Standardannahme der Short
Integer Solution (SIS) auf natürliche Weise verallgemeinert.

• Aufbauend auf der obigen Konstruktion stellen wir einige weitere Ansätze zur
Konstruktion effizienter gitterbasierter SNARKs vor. Insbesondere schlagen wir ein
neues Commitment Schema vor, das auf verschwindenden Polynomen “vanishing
Polynomials” basiert, einem Konzept das aus der algebraischen Geometrie stammt.
Wir analysieren die Sicherheit eines solchen Commitment Schemas und zeigen,
wie man die zusätzliche algebraische Struktur ausnutzen kann, um (i) das erste
rekursiv faltende (d.h. Bulletproof-ähnliche) Protokoll für lineare Relationen mit
poly-logarithmischer Verifier-Laufzeit und (ii) das erste gitterbasierte Linearzeit-
Prover-Succinct-Argument für die Klasse NP im sogenannten Preprocessing-Modell
zu erstellen.



Abstract

In 1994, Peter Shor (FOCS 1994) discovered a polynomial time quantum algorithm that
can be used to break the security of protocols based on the hardness of factoring or
computing discrete logarithms. This ignited the study of problems for which no quantum
speed-ups are currently known, and a branch of cryptography, called post-quantum
cryptography, started, trying to construct cryptographic primitives from the presumed
hardness of such problems. However, the deployment of post-quantum cryptosystem is
momentarily held back by at least two factors: 1) currently deployed cryptosystems are
faster and/or smaller than post-quantum ones, 2) in many modern computing settings,
richer functionalities are required from cryptographic protocols, than those that current
post-quantum constructions support.

In this thesis we make progress on both sides. More concretely

1. We study the setting of generically transforming PKE schemes with potentially large
correctness error to ones having negligible correctness error. In particular, we show
that the direct product compiler by Dwork, Naor, and Reingold (EUROCRYPT
2004) can be used in combination with a transformation from Hofheinz, Hövelmanns,
and Kiltz (TCC 2017) to generically transform weakly secure deterministic or
randomized PKEs into CCA-secure KEMs in the (quantum) random oracle model.
Such transformation applies to essentially all candidates to the NIST post-quantum
competition based on lattices and codes with non-negligible error for which we
provide an extensive analysis, showing that it improves the concrete efficiency of
some of the code-based candidates. Moreover, we demonstrate how the same ideas
can be applied to obtain a first approach towards post-quantum secure Bloom-Filter
KEMs, a primitive introduced by Derler et al. (EUROCRYPT 2018) in connection
with puncturable KEMs, generically from lattices and codes.

2. We propose the first lattice-based SNARK that simultaneously satisfies many
desirable properties: (i) is tentatively post-quantum secure, (ii) is publicly-verifiable,
(iii) has a logarithmic-time verifier and (iv) has a purely algebraic structure making
it amenable to efficient recursive composition. At the heart of this construction is
a new lattice-based vector commitment scheme supporting openings to constant-
degree multivariate polynomial maps. The security of our constructions is based on
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a new family of lattice-based computational assumptions which naturally generalises
the standard Short Integer Solution (SIS) assumption.

3. Building on the above construction, we present some further approaches to con-
structing efficient lattice-based succinct arguments. In particular, we propose
a new commitment scheme based on vanishing polynomials, a notion borrowed
from algebraic geometry. We analyse the security of such a commitment scheme,
and show how to take advantage of the additional algebraic structure to build (i)
the first recursive folding (i.e. Bulletproofs-like) protocol for linear relations with
poly-logarithmic verifier runtime, and (ii) the first lattice-based linear-time prover
succinct argument for NP, in the preprocessing model.
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CHAPTER 1
Introduction

Most cryptographic primitives that play a crucial role in ensuring the confidentiality
and authenticity of communications on the Internet and other networks rely on the
mathematical hardness of problems related to factoring and discrete logarithms. In
1994, Peter Shor [Sho94] discovered polynomial time quantum algorithms that solve the
hidden subgroup problem (HSP) for finite Abelian groups. Since both factoring and
discrete logarithm are instance of HSPs in algebraic structures relevant to public-key
cryptography, Shor’s algorithm can be used to break the security of such protocols.
Therefore, public-key cryptosystems that are currently used in practice will become
insecure once sufficiently powerful quantum computers can be built. This changes will
mainly interest public-key cryptography. Indeed, the only quantum speed-up known in the
symmetric setting is the Grover’s algorithm [Gro96] for search in unstructured databases.
Such algorithm allows only a quadratic speed-up with respect to the brute-force search,
and thus one can compensate it by increasing the key sizes. Moreover, since the run-time
is also asymptotically optimal [BBBV97], (black-box) symmetric-key cryptography is
post-quantum secure.

Not only currently used cryptography, like RSA, (EC)DH, (EC)DSA and related systems,
would not stand the advent of quantum computers but, in general, it is preferable to
have a wider set of assumptions on which one can build cryptographic primitives, so that
even in case a major algorithmic breakthrough, primitives can be rapidly substituted
by ones whose security has not been compromised. For this reasons, in the last decades
numerous different assumptions have been extensively studied. The most well-established
assumptions, that allow to instantiate different classes of cryptographic systems and that
are considered post-quantum secure, are:

• Hash-based cryptography: Merkle’s hash-tree signature scheme [Mer79],

• Code-based cryptography: McEliece public-key encryption scheme [McE78],
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1. Introduction

• Multivariate-quadratic-equations cryptography [Pat96],

• Isogeny-based cryptography: first efficient key exchange SIDH [JD11],

• Lattice-based cryptography: with the Ajtai-Dwork [AD97] being the first of various
public-key constructions.

Lattice-based cryptography. Of the above listed class of assumption, lattice-based
cryptography seems to provide the most promising general-purpose algorithms for public-
key encryption/KEM and digital signature schemes [AASA+20]. Indeed, it provides quite
efficient and parallelizable constructions, using mainly matrix and vector arithmetic as
the basic operations, and allows us to replace essentially all of the currently endangered
schemes. Moreover, lattice problems even allowed for the first time the construction of
entire new classes of extremely powerful cryptographic tools. For example, Fully Homo-
morphic Encryption (FHE), a cryptographic primitive that allows arbitrary computation
on encrypted data, was concived in 1978 by Rivest et al. [RAD+78] but remained an
open problem for more than thirty years. In 2009 Craig Gentry [Gen09] provided a
first instantiation based on ideal lattices, to which a number of constructions such as
[vGHV10], [BV11], and [GSW13] followed. Similarly, the signature analogue of FHE,
Fully Homomorphic Signature (FHS), has had somewhat practical instantiations via
lattices only [GVW15b].

Furthermore, lattice-cryptography also provides strong security guarantees: in cryp-
tography one is usually concerned with random instances of a given problem, whose
(assumed) hardness implies the security of the system. However, in most cases, complexity
theory only provides worst-case lower bounds, i.e., one is only able to prove that no
algorithm is faster than the given bound for all instances of the problem. This does
not imply that a random instance is hard: there might be problems where one single
instance is out of reach with current algorithms, but where random ones are particularly
simple. What one would require to prove the security of the scheme is therefore an
average-case hardness result for some explicit (efficiently samplable) distribution. In
cryptographic constructions based on worst-case hardness, such questions do not even
arise. In lattice-based cryptography it has been shown, starting with the seminal work
of Ajtai [Ajt96] and Micciancio and Regev [MR04] that there are reductions between
worst-case lattice problems like approximate Shortest Vector Problem (approx-SVP),
and average-case ones, like Short Integer Solution (SIS). This implies that cryptographic
constructions which are secure based on the average-case hardness of SIS, actually reduce
their security to the worst-case hardness of approx-SVP.

Towards practical deployment. If all the above considerations are true, a natural
question that arises is why we haven’t yet migrated to post quantum-secure schemes.
The answer to this question is at least two-fold.
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On the one hand efficiency: currently deployed cryptosystems are faster and/or smaller
than post-quantum ones [NDR+19]. Therefore, before being able to utilize them in
real-world scenarios, these new algorithms need further improvements and optimizations.

On the other hand confidence: to build trust in these assumptions, the community needs
to make sure that cryptanalysts have taken time to search for attacks on such systems.
Those cryptanalysts, in turn, need to gain familiarity with post-quantum cryptography
and experience with post-quantum cryptanalysis [BBD09]: lattice-based cryptography
uses a multitude of different computational hardness assumptions such as Learning with
Errors (LWE), ring LWE [Reg05], SIS, ring SIS, their module variants, etc. Therefore,
further research is required to establish the hardness of the most relevant of these problems
in detail [BBGP16]. Further analysis has been triggered by the National Institute of
Standards and Technology (NIST) due to their post-quantum competition (NIST PQC)1

to standardize replacements for our current public-key cryptosystems in order to prepare
for the eventuality that large-scale quantum computers become a reality. Started in 2017,
the NIST PQC is now going through a 4th round of submission, with some candidates to
be standardized already announced: three out of four of these candidates are lattice-based
(Kyber, Dilithium, and FALCON).

Interest for a possible real-world deployment of such cryptosystems has been also recently
shown by Cloudflare and Google who ran post-quantum TLS2 experiments, to gain
insights into the performance of these new constructions in real-world scenarios. Also
the AWS Key Management Service now supports three new hybrid post-quantum key
exchange algorithms for the Transport Layer Security protocol.3

Increasing demand for more flexible cryptography. Efficiency, however, is not
the only criteria for real-world deployment. In many modern computing settings, richer
functionality is required from cryptographic protocols: think, for example, of an applica-
tion where data is collected by some organizations (e.g., hospitals), stored and processed
on remote servers (e.g., the Cloud) and finally consumed by other users (e.g., medical
researchers) on different devices. In these kind of scenarios, not only each party might
need functionalities beyond those provided by standard primitives, but also, given the
complexity of interactions and the different, concurrent needs of each party, stronger
security guarantees are required (coming back to the previous example: is the Cloud
trusted? If so to which level and by which parties?). Similar situations also often occur in
the setting of the Internet of Things (IoT) and Edge computing. Another domain that is
on the forefront of deploying advanced cryptography and has been a strong catalyst for it
in the last few years is the field of cryptocurrencies and more generally distributed ledger
technologies. Here, for instance, privacy-enhancing technologies and zero-knowledge proof
systems used to achieve stronger anonymity guarantees have been extensively studied,

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization/Call-for-Proposals

2https://blog.cloudflare.com/the-tls-post-quantum-experiment/
3https://aws.amazon.com/blogs/security/round-2-post-quantum-tls-is-now-supported-in-aws-kms/

3

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
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1. Introduction

implemented, optimized and deployed. However, despite such efforts, currently various
post-quantum primitives (e.g., succinct non-interactive arguments of knowledge) do not
match the desirable features of (pre-quantum) constructions based on bilinear pairings.

Aim of this thesis. Given the discussion above, the aim of this thesis is to investigate
post-quantum cryptography - and in particular lattice-based cryptography - with regard
to the following two aspects:

• the design of novel cryptographic construction that improve efficiency aspects of
previous instantiations, and

• the investigation whether the expressiveness offered by lattice assumptions can be
exploited to add useful and novel features to (conventional) cryptographic primitives
such that they provide the desired flexibility to be useful to modern communication
scenarios.

1.1 Summary of Contributions
The main body of this thesis is composed of three chapters, each of them corresponding
to one of the following publications:

• CCA-Secure (Puncturable) KEMs from Encryption with Non-Negligible Decryption
Errors [CRSS20],

• Lattice-based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Com-
posable [ACL+22],

• Lattice-based Succinct Arguments from Vanishing Polynomials [CLM23].

Now, we provide a detailed overview of the contributions made by each of these works,
illustrating their relevance within the context presented earlier.

1.1.1 CCA-Secure (Puncturable) KEMs from Encryption with
Non-Negligible Decryption Errors [CRSS20]

The standard security notion of encryption is security against chosen-ciphertext attacks
(IND-CCA security), necessary in order to avoid malleability of ciphertexts and attacks in
practical deployments of such schemes [Ble98]. There are various compilers to obtain
such a strong security guarantees from schemes with weaker security. Among them
the most widely used, especially for its use of the random oracle methodology, and
thus better performance, is the Fujisaki-Okamoto (FO) transform [FO99]. Recently,
Hofheinz, Hövelmanns, and Kiltz (HHK) [HHK17a] investigated different variants of the
FO transform also in a setting where the underlying encryption scheme has non-perfect
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1.1. Summary of Contributions

correctness, but where decryption errors may occur with at most a negligible probability
in the security parameter. This is interesting since many PKE schemes or KEMs based
on conjectured quantum-safe assumptions and in particular assumptions on lattices and
codes do not provide perfect correctness. Even worse, some of the candidates submitted
to the NIST post-quantum competition (PQC) suffer from a non-negligible correctness
error and so the FO transforms of HHK cannot be applied.
A natural question is therefore whether it is possible to construct a compiler that fits in
the HHK framework but that can operate on schemes with non-negligible correctness
error.
To this end, we started by revisiting the work of Dwork et al. [DNR04]. In this work,
Dwork, Naor, and Reingold present a direct product compiler (which we dubbed Cp,r
and Cp,d for randomized and deterministic PKEs, respectively). This compiler takes
as input a PKE scheme Π = (KGen, Enc, Dec) with non-negligible correctness error δ
and outputs a PKE scheme Π′ = (KGen′, Enc′, Dec′) with negligible correctness error δ′.
The two compilers are quite easy to explain: the encryption algorithm Enc′ works by
encrypting the same message multiple times in parallel via Enc, under different public
keys of the underlying PKE Π, which are generated at the key-generation phase, in case
of a deterministic PKE, or using freshly sampled independent randomness, in case of
a randomized PKE. The decryption algorithm Dec′ works by decrypting each of the
component of the ciphertext using the decryption algorithm Dec of the underlying PKE
Π, and returning the message returned most often. In case two or more messages are
tied, one of them is returned arbitrarily. We denote this last operation by maj.
Note that, as far as the deterministic direct product compiler Cp,d is concerned, the
correctness error can be improved by modifying the decryption: instead of relying on
the maj operation, we can re-encrypt the plaintexts obtained during decryption with
the respective keys and compare them to the original ciphertexts. Only if this check
passes, the plaintext is returned. If this is done, then decryption fails with probability
ℓδℓ, where ℓ being the number of parallel repetitions, and thereby the number of parallel
repetition necessary to achieve negligible correctness-error is reduced at the cost of a
computational overhead during decryption. We denote this version of the deterministic
direct product compiler by C⋆

p,d. Clearly this strategy is not possible when the PKE is
randomized, and exactly the fact that one has to rely on a majority vote in case of a tie,
makes the concrete efficiency of the direct product compiler slightly worse than what
one could hope in the case of randomized PKE: even if the correct message has been
returned, one has no way of checking that in case of a tie.
Since we were interested in concrete efficiency of the resulting scheme, we therefore
explored an alternative route and investigated the possibility of starting from an IND-CPA
secure PKE Π with non-negligible correctness error δ and introduce a variant of the
transform T, introduced in the work of Hofheinz et. al. [HHK17a], to de-randomize a
PKE, denoted T⋆. The idea is that we compute ℓ independent encryptions of the same
message M under the same public key pk using randomness G(M, i), i ∈ [ℓ], where G is a
random oracle (RO). The resulting de-randomized PKE Π′ has then correctness error

5
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Π′.Enc(pk, M)
for i = 1, . . . , ℓ do

Ci := Π.Enc(pk, M ; G(M, i))
C := (C1, . . . , Cℓ)
return C

Π′.Dec(sk, ctxt)
res ← ⊥, check ← ⊥
for i = 1, . . . , ℓ do
res[i] := Π.Dec(sk, Ci)

for i ∈ [ℓ] s.t. res[i] ̸= ⊥ do
if ∀j ∈ [ℓ] : ctxtj = Π.Enc(pk,res[i]; G(res[i], j))
check ← i

if check ̸= ⊥
return res[check]

return ⊥
Figure 1.1: OW-PCA-secure scheme Π′ = T⋆[Π, G] with deterministic encryption and
correctness error δℓ from IND-CPA secure scheme Π with correctness error δ.

δ′ := ℓδℓ, where ℓ is chosen in a way that ℓδℓ is negligible. A formal description of the
transform T⋆ is give in Figure 1.1. To the resulting PKE Π′ we can then directly apply
the transformation U ̸⊥ from [HHK17a] to obtain an IND-CCA secure KEM KEM with
negligible correctness error in the (Q)ROM.

Note that as we directly integrated the product compiler into the T transform from [HHK17a],
the correctness of the message can be “checked” via the de-randomization. Hence, we
could get rid of the majority vote in the direct product compiler. With this change the
analysis of the concrete choice of ℓ became simpler and, more importantly, allowed us to
choose smaller ℓ than in the black-box use of the compiler.

Next, we analyzed the transform both in the ROM and QROM, giving a tight reduction in
the ROM, and compared it to a generic application of the direct product compiler. Since
our transform naturally fits into the modular framework of HHK [HHK17a], by applying
the U ̸⊥ transform, gives rise to an IND-CCA-secure KEM. For the analysis in the QROM,
we followed the work of Bindel et al. [BHH+19]. We showed that the T⋆ transform also fits
into their framework. Hence, given the additional injectivity assumption, we also obtained
a tight proof for U ̸⊥. But even if this assumption does not hold, the non-tight proofs of
Jiang et al. [JZM19] and Hövelmanns et al. [HKSU20] remain applicable. Compared to
the analysis of the T transform that is used in the modular frameworks, our reductions
lose a factor of ℓ, i.e., the number of parallel ciphertexts required to reach a negligible
correctness error, in the ROM and a factor of ℓ2 in the QROM. For concrete schemes,
this number is small (e.g., ≤ 5) and, thus, does not impose a significant loss. An overview
of the transformations and how our transform fits into the modular frameworks is given
in Figure 1.2 (ROM) and Figure 1.3 (QROM).

After analyzing how our new compiler fits in the HHK framework, we evaluated the
concrete efficiency of the T⋆ transform based on its application to code- and lattice-
based second-round candidates in the NIST PQC. To do so, we focused on schemes
that offered both an IND-CPA secure version with non-negligible correctness error and

6
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nn-rPKE
IND-CPA

dPKE
OW-PCA

KEM
IND-CCA

rPKE
IND-CPA

nn-dPKE
OW-CPA

dPKE
OW-CPA

T⋆

Theorem 2.3.9 U ̸⊥
[HHK17a] Thm. 3.4T

[HHK17a] Thm. 3.1
Cp,r

Corollary 2.3.1

Cp,d/C⋆
p,d

Corollary 2.3.1

U ̸⊥
m

[HHK17a] Thm. 3.6

Figure 1.2: Overview of the transformations in the ROM with the results related to T⋆

highlighted in blue. rPKE denotes a randomized PKE. dPKE denotes a deterministic
PKE. The prefix nn indicates encryption schemes with non-negligible correctness error.

nn-rPKE
IND-CPA

dPKE
OW-CPA KEM

IND-CCAnn-rPKE
ε-injective

dPKE
FFC

rPKE
IND-CPA

nn-rPKE
DS + IND-CPA

nn-dPKE
OW-CPA

T⋆Theorem 2.3.10

T⋆

Lemma 2.3.1

U ̸⊥
[JZM19] Thm. 6

U ̸⊥
[KSS+20] Thm. 4.6

T [BHH+19] Thm. 1

Cp,r

Corollary 2.3.1

Corollary 2.3.1

Cp,d/C⋆
p,d

U ̸⊥
m ◦ T⋆

[HKSU20] Thm. 3.2†

Figure 1.3: Overview of the transformations in the QROM using the notation from
Figure 2.1. A dashed arrow denotes a non-tight reduction. DS denotes disjoint simulata-
bility.
†: Obtained by applying the modifications from Theorems 2.3.9 and 2.3.10 to [HKSU20,
Thm 3.2].

IND-CCA variant with negligible correctness error. We compared how the application
of our transform to the IND-CPA variant performs against the IND-CCA version. For
code-based schemes (an overview can be found in Table 1.1) such as ROLLO we can
observe improvements in the combined size of public keys and ciphertexts, a metric
important when the primitive is used in protocols such as TLS, as well as its runtime
efficiency. We also argued the ease of implementing our so-obtained schemes which can
rely on simpler decoders. For lattice-based constructions, we found that the use of the
transform results in an increase in the sum of ciphertext and public-key size of 30% even
in the best case scenario, i.e., for an IND-CPA version of the KEM Round5 [GZB+19].

In addition to the context of conventional PKE schemes and KEMs, we explored
our approach further. Specifically, we focused on a class of KEMs known as punc-
turable KEMs, which have recently gained attention, particularly in the context of full
forward-secrecy for zero round-trip time (0-RTT) key-exchange (KE) protocols. These
puncturable KEMs [GM15, GHJL17, DJSS18, SSS+20] include Bloom Filter KEMs
(BFKEMs) [DJSS18, DGJ+21]. BFKEMs are CCA-secure KEMs that possess an inher-
ent non-negligible correctness error. However, the source of this non-negligible correctness
error can be traced back to the Bloom filter layer whereas the underlying IBE scheme,
specifically the Boneh-Franklin [BF01] in the instantiation of [DJSS18], is required to
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Table 1.1: Sizes (in bytes) and runtimes (in ms and millions of cycles for BIKE), where
O denotes the transformed scheme. The LEDAcrypt instances with postfix NN refer
to those with non-negligible DFR. Runtimes are taken from the respective submission
documents and are only intra-scheme comparable.

KEM δ pk ctxt ; KGen Encaps Decaps
O[ROLLO-I-L1,5] 2−147.7 465 2325 2790 0.10 0.02/0.10 0.26/1.30
ROLLO-II-L1 2−128 1546 1674 3220 0.69 0.08 0.53
O[ROLLO-I-L3,4] 2−126 590 2360 2950 0.13 0.02/0.08 0.42/1.68
ROLLO-II-L3 2−128 2020 2148 4168 0.83 0.09 0.69
O[ROLLO-I-L5,4] 2−166 947 7576 8523 0.20 0.03/0.12 0.78/3.12
ROLLO-II-L5 2−128 2493 2621 5114 0.79 0.10 0.84
O[BIKE-2-L1,3] 2−145.4 10163 30489 40652 4.79 0.14/0.42 3.29/9.88
BIKE-2-CCA-L1 2−128 11779 12035 23814 6.32 0.20 4.12
O[LEDAcrypt-L5-NN,2] 2−127 22272 22272 44544 5.04 0.14/0.29 1.55/3.11
LEDAcrypt-L5 2−128 19040 19040 38080 4.25 0.84 2.28

provide perfect correctness. As a consequence, since no current post-quantum IBEs exi-
hibits perfect correctness, there were no known instantiation of post-quantum BFKEMs.
In this work we made progress in this direction and showed that, using the ideas we
previously introduced, it is possible to construct BFKEMs generically from any IBE,
even from IBEs with (non-)negligible correctness error. Therefore, this allows BFKEMs
to be instantiated from lattice- and code-based IBE, and provided the first candidates
for post-quantum CCA-secure BFKEMs.

We note that our work has been done while the second round of the NIST PQC was
still ongoing. In the meantime, the third-round candidates4 and finalists5 have been
announced by NIST for standardization. From the schemes that are suitable for our
compilers, BIKE [ABB+19] and FrodoKEM [NAB+19] were advanced to the third round
as alternate candidates in the competition, and BIKE [ABB+19] also reached the fourth
round of the competition. Moreover, we concretely analyze the submissions to the
second round and want to note that meanwhile there are additional results on the
cryptanalysis of some relevant second round schemes, e.g., for ROLLO in [BBC+20]
as well as for LEDAcrypt in [APRS20]. These results might require a change in the
parameters compared to the versions that we used in this work.

4https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
5https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
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1.1.2 Lattice-based SNARKs: Publicly Verifiable, Preprocessing, and
Recursively Composable [ACL+22]

A succinct non-interactive argument of knowledge (SNARK) [Kil92, Mic94] allows a prover
to convince a verifier that they know a witness to an NP statement. The succinctness
property demands that the size of the proof and, after preprocessing, the work of the
verifier are sublinear in (and ideally independent of) the time needed to check the validity
of the witness. Over the last decade, SNARKs have witnessed a significant rise in their
efficiency and applicability [Lip12, PHGR13, BCG+13, GGPR13, BCTV14b, Gro16].
More recently, SNARKs have found their way into real-world systems in the context of
blockchain-based cryptocurrencies [BCG+14, KMS+16, BGH19, BMRS20, BDFG21a].

The most efficient and feature-rich SNARKs are constructed over bilinear groups (e.g.,
[Gro16]) with a trusted setup. Typically, a pairing-based SNARK proof consists of only a
small constant number of base group elements and is also publicly verifiable. Furthermore,
offline preprocessing can often be performed, such that the online verification time is
sublinear in the size of the statement being proved and the corresponding witness.
Moreover, pairing-based SNARKs are favourable because of their algebraic properties
that are known to enable proof batching [LMR19, BMM+21] and efficient recursive
composition [BCTV14a]. However, due to their reliance on the hardness of problems
related to discrete logarithms, pairing-based SNARKs are not sound against a cheating
quantum prover.

So far, known lattice-based schemes suffer from (at least) one of the following limitations:

• They require the verifier to hold a secret information that should not be made
available to the prover, i.e. they are in the designated-verifier setting [BISW17,
BISW18, GMNO18].

• They have a non-succinct verifier, whose runtime is at least linear in the size of the
relation [BLNS20, AL21, ACK21].

In this work, we make progress in this direction by providing the first SNARK construction
that satisfies the following properties at the same time: (plausibly) post-quantum (lattice-
based construction), publicly verifiable, pre-processing (fast verifier), and completely
algebraic (hence friendly to recursive composition)

Our construction qualitatively matches pairing-based SNARKs, and in addition, it is
tentatively post-quantum secure. The soundness of our scheme is based on new lattice-
based (knowledge) assumptions. The introduction of new knowledge assumptions is, to
some extent, necessary: The work of Gentry and Wichs [GW11] shows that the adaptive
soundness of any SNARK cannot be based on falsifiable assumptions in a black-box
manner.

In order to do so, we take a new route to construct a SNARKs for NP: recall that
satisfiability of a system of degree d equations is a NP complete language for any d ≥ 2.

9



1. Introduction

We show that there is a simple compiler to obtain a SNARK for NP from an extractable
and succinct vector commitment supporting opening to degree d ≥ 2 polynomial maps.

A vector commitment (VC) is a cryptographic primitive that allows a committer to
commit to a vector of w values x := (x1, . . . , xw) ∈ Zw and then reveal selected portions
of the input vector, or more generically a function f : Zw → Zt over the input vector,
along with a proof π that can be publicly verified.

The standard security requirement for such primitive is called evaluation binding.

Evaluation Binding. It is computationally infeasible to produce a commitment c and
two opening proofs, π and π′, for the same polynomial map f , but different image
values y ̸= y′.

A stronger security notion is extractability.

Extractability. To produce a commitment c and a proof that the image of a polynomial
map f at the committed vector is y, one must know a preimage x such that c is a
commitment of x and f(x) = y.

As far as efficiency of the construction is concerned, we will consider the following
property.

Succinctness. The size of the commitment c and opening proof π for a polynomial map
f : Zw → Zt is upper-bounded by a fix polynomial in poly(λ, log w, log t).6

In order to construct a SNARK for NP, it suffices to build an extractable and succinct
vector commitment supporting opening to degree-2 polynomial. Indeed, given such a
primitive, exploiting the fact that satisfiability of degree d equations is an NP-complete
language for any d ≥ 2, we can compile the VC into a SNARK as follows: The (SNARK)
prover simply commits to the root x of the system (f, y) and immediately produces an
opening proof for (f, y). The (SNARK) verifier simply runs the verification algorithm of
the VC scheme. Succinctness requirements and knowledge soundness of the SNARK are
derived respectively from the shortness of commitments and opening proofs of the VC,
and from extractability of the VC. In this way, we have reduced the task of constructing
a lattice-based SNARK to that of constructing a lattice-based VC with the above stated
properties.

We make progress in this direction and construct a lattice-based VC supporting opening
to constant-degree polynomial maps. In doing so, we develop a framework for translating
pairing-based constructions to the lattice world. In order to prove such translated
construction secure, we also map to the lattice-world the group assumptions under
which such pairing constructions are proven secure.

6In Chapter 3 we will use more fine-grained definitions to distinguish different efficiency requirements.
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1.1. Summary of Contributions

To explain the basic ideas behind such lattice constructions and the assumptions under
which we attempt to prove them secure, we describe now a vector commitment for
linear functions (in w variables) that stems from applying our translation technique to
pairing-based VC with openings to linear function adapted from [CF13, LRY16, LM19].

• Public Parameters: They consist of matrix and vectors A←Zn×m
q , v←(Z×

q )w, t←Zn
q

and short preimages ui,j ← A−1
(

t · vi

vj

/
7 for all i, j ∈ [w], i ̸= j.

• Commitment: The commitment to some input value x will be produced by com-
puting

c := ⟨v, x⟩ =
:

i∈[w]
vi · xi

• Opening: The proof π for a function f such that f(X) = ;
i∈[w] fi · Xi is a short

vector u given by
u :=

:
i,j∈[w],i ̸=j

fj · xi · ui,j .

• Offline Pre-Computation: During the offline phase, the verifier, on input f and the
public parameters, can compute the following value

f̂ :=
:

j∈[w]
fj · v−1

j .

• Online Verification: The verifier, on receiving π = u, checks that

– A · u = t · (f̂ · c − y) mod q, and
– u is short.

One can see that

f̂ · c =

 :
j∈[w]

fj · v−1
j

 ·
 :

i∈[w]
vi · xi


=

:
i,j∈[w]

fj · xi · vi

vj

=
:

i,j∈[w]
i=j

fj · xi · vi

vj
+

:
i,j∈[w]

i ̸=j

fj · xi · vi

vj

= f(x) +
:

i,j∈[w]
i ̸=j

fj · xi · vi

vj
.

7A−1
*

t · vi

vj

1
denotes a short preimage ui,j satisfying A · ui,j = t · vi

vj
mod q
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Each term in the summation over i, j ∈ [w] has a multiplicative factor of the form vi

vj
̸= 1,

as i ̸= j. We can interpret the result as follows: by multiplying f̂ and c, we get a Laurent
polynomial (in v1, . . . , vw) where the constant coefficient is exactly f(x).

Therefore, if the claimed image value y indeed equals f(x), then

f̂ · c − y =
:

i,j∈[w]
i ̸=j

fj · xi · vi

vj

is a Laurent polynomial with constant coefficient equal to 0.

It follows that during verification

A · u = A ·

,,, :
i,j∈[w]

i ̸=j

fj · xi · ui,j

333
=

:
i,j∈[w]

i ̸=j

fj · xi · A · ui,j

=
:

i,j∈[w]
i ̸=j

fj · xi · A · A−1
(

t · vi

vj

/

= t ·

,,, :
i,j∈[w]

i ̸=j

fj · xi · vi

vj

333
= t · (f̂ · c − y),

as required, and

u =
:

i,j∈[w]
i ̸=j

fj · xi · ui,j ,

is somewhat short as it is a linear combination of short preimages (ui,j ’s), with coefficients
which are itself small (fj ’s and xi’s) if we allow the prover to commit to only short vectors
x and open to functions f with short representation.

Our translation techniques (and consequently security of the resulting cryptographic
schemes) rely on a new family of assumptions that we refer to as the k-Ring-Inhomogenous
Short Integer Solution (or k-R-ISIS for short) assumptions.8 Roughly, the k-R-ISIS
assumption (parametrized by a set of monomial G and a target monomial g∗) says that it

8in this introduction we set R = Z
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is hard to find a (short multiple of a) short preimage ug∗ satisfying A·ug∗ = t·g∗(v) mod q,
where g∗ is a target Laurent monomial and v is a random point, given short preimages
under A of other Laurent monomials G evaluated on the same random point.

In the concrete case of the scheme described above, the set of Laurent monomials G for
which preimages are given is

{gi,j}i,j∈[w],i ̸=j ,

where gi,j(v) = vi/vj , and the target monomial g∗ is simply the constant monomial
1. Indeed, suppose one has two accepting openings u, u′ for the same function f but
different claimed output values y ̸= y′, i.e.

A · u = t · (f̂ · c − y) mod q

A · u′ = t · (f̂ · c − y′) mod q,

with both u and u′ short. Subtracting both equations, one obtains

A · (u − u′) = t · (y′ − y) mod q,

where y′ − y is a short multiple of the constant monomial 1.9 That is, u∗ := (u − u′) is a
short preimage of a short multiple of the target monomial g∗(v) = 1.

In this way we obtain a VC satisfying evaluation binding. There are still two properties
left to achieve: i) upgrade security to achieve extractability, and ii) achieve output-
succinct openings, i.e., to have opening scaling logarithmic with the output dimension
t (and not linearly as one would get by simply concatenating opening proofs for each
output entry).

To upgrade the security of such a scheme and obtain extractability, we propose a knowledge
variant of the k-R-ISIS assumption. Recall that the introduction of new knowledge
assumptions is, to some extent, necessary: the work of Gentry and Wichs [GW11] shows
that the soundness of any SNARK cannot be based on falsifiable assumptions in a
black-box manner.

For concreteness, we will use the following member of the knowledge k-R-ISIS assumption
family:

Let B←Zn×m, v←Zw
q , and t←Zn

q be random matrix and vectors. If there
exists an efficient algorithm A which, given short vectors u′

i satisfying B ·u′
i =

t · vi mod q for all i ∈ [w], produces (c, u′) such that u′ is a short vector
satisfying B · u′ = t · c mod q, then there exists an efficient extractor EA which
extracts a short vector x ∈ Zw such that ⟨v, x⟩ = c mod q.

9Recall that both x and the coefficients of f are required to be short, and therefore also the claimed
output values y’s are forced to be so.
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Equipped with this k-R-ISIS of knowledge assumption, we can upgrade our VC construc-
tion to achieve extractability as follows. First, we let the public parameters to additionally
include (B, (u′

i)i∈[w], t). Next, we let the committer also include u′ = ;
i∈[w] xi · u′

i in
an opening proof. Finally, we let the verifier additionally check that u′ is short and
B · u′ = t · c mod q.

To see why the modified scheme is extractable, suppose an adversary is able to produce
a commitment c and a valid opening proof for (f, y). By the k-R-ISIS of knowledge
assumption, we can extract a short vector x̂ ∈ Zw such that ⟨v, x̂⟩ = c mod q. Now, if
f(x̂) = y′ ̸= y, we can use the extracted x̂ to compute a valid opening proof for (f, y′).
However, being able to produce valid opening proofs for both (f, y) and (f, y′) with
y ̸= y′ violates the evaluation binding property. We therefore conclude that f(x̂) = y.

To achieve output-succinctness we use a SIS instance to aggregate the opening proofs of
each of the output entries. Specifically, the coefficients h = (hi)i∈[t] ∈ Z that we use to
aggregate opening proofs are given by an instance of the SIS problem over Zp (taking
smallest Z-representatives of Zp elements) sampled as part of the public parameters,
where p is chosen such that the SIS assumption is believed to hold over Zp while p is
small relative to q.

To see why extractability still holds, suppose an adversary is able to produce a commitment
c and a valid opening proof for (f, y) where f = ;

i∈[t] hi · fi and y = ;
i∈[t] hi · yi. By

our previous argument, we can extract x satisfying f(x) = y. Suppose it is not the case
that fi(x) = yi for all i ∈ [t], then (fi(x) − yi)i∈[t] is a short non-zero vector satisfying;

i∈[t] hi · (fi(x)−yi) = 0 over Z, which implies ;
i∈[t] hi · (fi(x)−yi) = 0 mod p, breaking

the SIS assumption over Zp.

We have so far shown how to construct a lattice-based extractable VC for linear functions
with succinct commitments and openings. It remains to show how to generalize this
construction to support bounded-degree polynomial maps. This can be done exploiting
the fact that we are now working over rings (and not groups anymore, as it was the
case for pairing-based constructions). Indeed, we notice that each degree-d monomial
xe = 6

i∈[w] xei
i is encoded in cd as (a factor of) the coefficient of ve = 6

i∈[w] vei
i . Each

such monomial has a natural complement v−e satisfying (ve) · (v−e) = 1. Using these
facts, one can modify the definition of f̂ appropriately, so that f̂ · cd is a Laurent
polynomial with constant coefficient f(x) as before. Plugging in such a modification in
the scheme described above yields a lattice-based extractable VC for bounded-degree
polynomial maps as claimed. Notice that this time the evaluation binding property will
be based on another appropriate member of the k-R-ISIS assumption family.

The SNARK obtained by compiling the lattice-based extractable VC supports proving
the satisfiability of polynomial maps over Z (and more generally over any appropriate
ring R) by bounded-norm solutions, a language which directly captures those statements
which naturally arise in lattice-based cryptographic constructions. We highlight two
native applications of our SNARK. The first application is the recursive composition
of our SNARK, which refers to the process of using the SNARK to prove knowledge
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of another SNARK proof and the satisfiability of a polynomial map. This is natively
supported because the verification algorithm of our SNARK construction is itself check-
ing the satisfiability of certain algebraic relations over R by a bounded-norm solution.
Recursive composition of SNARKs is a general purpose technique for aggregating proofs
or proving complex statements in a piece-by-piece fashion. The technique is also useful
for constructing incremental verifiable computation [Val08] and verifiable delay func-
tions [BBBF18, Gro21].

The second application is the aggregation of GPV signatures [GPV08]. While it is folklore
that any signatures can be aggregated by a SNARK for an NP-complete language, we
stress that the GPV verification algorithm, again, checks the satisfiability of certain
algebraic relations over Z by a bounded-norm solution which our SNARK natively
supports. Apart from obtaining short aggregated GPV signatures, in the setting where a
set of n signers are signing a common message at a time, the verification of the aggregated
signatures could be preprocessed, resulting in an online verification time sublinear in n.
As a bonus result on GPV signatures, we further show how to construct lattice-based
adaptor signatures [AEE+21] based on the GPV paradigm. Combining the two results,
we obtain the first aggregatable adaptor signature.

Moreover, as a contribution of independent interest, we show that our VC satisfies a
strong notion of binding known as collapsing (as an ordinary commitment, not with
respect to functional openings), a recently introduced security notion in the quantum
setting [Unr16]. For this, we introduce a new technique of embedding NTRU ciphertexts
into the public parameters of our VC. To the best of our knowledge, this is the first VC
not based on Merkle trees that is shown to satisfy such a notion.

1.1.3 Lattice-based Succinct Arguments from Vanishing
Polynomials [CLM23]

As we have seen, a promising approach for constructing efficient SNARKs is to leverage
the algebraic structure offered by computational problems in lattice-based cryptogra-
phy [BISW17, BISW18, GMNO18, BLNS20, AL21, ACK21, ACL+22].

At the same time, inspite of the recent progress presented in the previous section,
lattice-based SNARKs are still somewhat limited compared to competing approaches. In
particular, known (publicly-verifiable) lattice-based schemes are constructed following
two different paradigms, each with some specific drawbacks:

• Bulletproofs-like arguments: They have a non-succinct verifier, whose runtime is at
least linear in the size of the relation [BLNS20, AL21, ACK21].

• Knowledge-based arguments: They have a slow prover runtime, i.e., quartic [ACL+22]
in the size of the relation.

Let us briefly recall both approaches and analyze the source of their drawbacks.
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1. Introduction

Approach I: Folding Protocols. (Lattice-based) Bulletproofs [BLNS20, AL21, ACK21]
are interactive arguments with quasi-linear time prover, and can be made non-interactive
using the Fiat-Shamir transform in the random oracle model. They are based on the
technique of iteratively “folding” the relation into a smaller one until a trivial relation is
derived. Recall that in Bulletproofs the prover wants to convince the verifier that they
know a short vector x satisfying

M · x = y mod q and ∥x∥ ≈ 0.

Let (M, x, y) = (M(0), x(0), y(0)). The protocol consists of ℓ + 1 rounds, where in the
i-th round the two parties “fold” the relation represented by (M(i), y(i)) into another
represented by (M(i+1), y(i+1)) where the dimension of M(i+1) is half that of M(i).
Correspondingly, the prover folds its witness x(i) into x(i+1). After ℓ such folding steps,
a constant-size relation (M(ℓ), y(ℓ)) is reached and the prover simply sends the satisfying
witness x(ℓ) over to the verifier.

In more detail, for 0 ≤ i < ℓ, the i-th of the first ℓ rounds of the protocol proceeds as
follows. The parties split M(i) into two halves as M(i) = (M(i)

L , M(i)
R ) and the prover

splits x(i) = (x(i)
L , x(i)

R ). The prover sends the cross terms

y(i)
LR =

�
M(i)

L , x(i)
R

�
mod q and y(i)

RL =
�
M(i)

R , x(i)
L

�
mod q.

The verifier sends a random challenge ri←S sampled from some challenge set S. Both
parties fold (M(i), y(i)) into

(M(i+1), y(i+1)) := (M(i)
L + M(i)

R · r−1
i , y(i)

RL · r−1
i + y(i) + y(i)

LR · ri) mod q, (1.1)

and the prover folds x into x(i+1) = x(i)
L + x(i)

R · ri. At the ℓ-th (i.e. last) round,
the prover simply sends x(ℓ) and the verifier checks that x(ℓ) is short and satisfies�
M(ℓ), x(ℓ)

�
= y(ℓ) mod q.

It can been shown [BLNS20, AL21, ACK21, AF22] that the protocol satisfies knowledge
soundness, and furthermore it is easy to see that the prover runs in time quasi-linear
in the length of the witness. However, a major drawback of this approach is that the
verifier computation is also quasi-linear for general linear relations M, and it cannot be
preprocessed due to the interactive nature of the scheme.

Approach II: Pre-Processing (Knowledge-Based) Protocols. This is the ap-
proach that we have introduced in the previous subsection and initiated in [ACL+22],
and consists in compiling an extractable VC for degree d ≥ 2 polynomial maps with
short commitment and openings into a SNARK. The fact that this approach, as far as it
has been presented in the previous section, leads to slow prover runtime, can be already
seen in the construction of the VC for linear functions: the public parameters include
preimages ui,j ← A−1(t · vi

vj
) for i, j ∈ [w], i ≠ j, where w is the length of the vectors

that one commits to. That is, the number of preimages is O(w2), so already reading the
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1.1. Summary of Contributions

public parameters takes quadratic time. More generally, when generalizing this approach
to support degree-d polynomial maps, the public parameters will have to include all
ratios of (different) degree-d monomials. Since the number of such ratios is O(w2d), i.e.,
exponential in the degree d, this forced us to only be able to support constant-degree
polynomial maps.

Key Observation. Starting from [ACL+22], while trying to improve the prover run-
time of our VC scheme, and consequently that of the SNARK, we made the following
observation: if we allow the vector v, over which the Laurent monomials g from the
k-R-ISIS assumption are evaluated, to be structured and not uniformly random over
(Z×

q )w as before, then it is possible to reduce the size of the public parameters. For
example, if we have

v = (v, v2, . . . , vw)T ∈ (Z×
q )w,

for some uniform random v ∈ Z×
q , then vi

vj
= vi

vj
= vi−j only depends on i − j. In

particular, using such v, the number of preimages in the VC construction for linear
functions will decrease from O(w2) to O(w). More generally, adopting this approach
would allow us to construct a VC scheme for degree-d polynomial maps with public
parameters size O(d · w) instead of O(w2d).
Starting from this key observation, we generalized it to overcome the drawbacks of
both approaches to construct lattice-based SNARKs that we have mentioned before. In
particular, among the result of this work are:

1. The first recursive folding (i.e., Bulletproofs-like) protocol for linear relations with
polylogarithmic verifier runtime. Traditionally, the verifier runtime has been the
efficiency bottleneck for such protocols (regardless of the underlying assumptions).

2. The first verifiable delay function (VDF) based on lattices, building on a recently
introduced sequential relation.

3. The first lattice-based linear-time prover succinct argument for NP, in the pre-
processing model. The soundness of the scheme is based on (knowledge)-k-R-ISIS
assumption.

To achieve these results, we started by developing a new family of commitment schemes
for committing to short vectors x ∈ Zd and a companion argument systems for proving
that the committed vector is in fact a bit string, i.e., x ∈ {0, 1}d, which is the main
technical ingredient behind all of our results. In their simplest form, the commitment
key is a single random element v←Z×

q . To commit to a short x ∈ Zd, we interpret x as
the coefficients of a degree-d polynomial px(V ) without constant term, and compute the
commitment as the evaluation of px at the point v modulo q, i.e.

px(V ) =
d:

i=1
xi · V i and c = px(v) mod q.
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1. Introduction

We refer to this family of commitment schemes as vanishing short integer solution (vSIS)
commitments. The binding property of the vSIS commitment above is based on the
following vSIS assumption which we introduce in this work. Informally, the assumption
says:

Given a random point v←Z×
q , it is hard to find a degree-d polynomial p =;d

i=0 pi · V i ∈ Z[V ] with short coefficients such that p(v) = 0 mod q.

In other words, if we let v = (v, v2, . . . , vd)T, the assumption says that it is hard to find
a short non-zero vector p such that ⟨p, v⟩ = 0 mod q. That is, the assumption can be
seen as a structured version of the SIS assumption: instead of having v←Zd

q , one has
v = (v, v2, . . . , vd)T for v ← Z×

q .

In general, the vSIS assumption could be parametrised by a set G of (multivariate)
monomials10 over Z, where the task is to find a short linear combination (pg)g∈G such
that ;

g∈G pg · g(v) = 0 mod q. In the work, we study the plausibility of this new
assumption. In particular, we show that vSIS is no easier than the k-R-ISIS problem.
We also show that vSIS can be explained as a natural generalisation of the search NTRU
problem. We propose a worst-case to average-case reduction and a reduction from search
NTRU, both conditioning on the hardness of decision NTRU.

The vSIS commitment schemes have nice properties.

• Succinct: The size of the commitment key and the commitment are logarithmic
in the size of the input. In particular, this implies that the commitment is also a
collision-resistant hash function with very short key.

• Homomorphic: The commitment is (bounded) linearly homomorphic and multi-
plicatively homomorphic for a constant number of multiplications.

• Foldable: We show that the commitment can be “folded” (in the sense of folding
arguments, e.g., Bulletproofs [BLNS20]) in such a way that the folded commitment
key retains a succinct representation.

Proof of Binary-Satisfiability of Linear Relations. An important relation in
lattice-based cryptography is

M · x = y mod q0 and x ∈ {0, 1}d.

We now show how to construct a succinct argument system for a prover to convince a
verifier that a vector x ∈ Zd satisfies the above equation. As building block, we will use
succinct argument systems for SIS relations with soundness gap, i.e., they are complete
and sound for relations of the form

M · x = y mod q0 and ∥x∥ ≈ 0,

10Or rational functions in general.
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1.1. Summary of Contributions

but the constraints on the shortness of x differ. That is, we will turn succinct arguments
for showing that x satisfying a linear relation is short, into an argument for showing that
x is exactly binary. While this may seem like a technicality, this proof of binariness will
be crucial for our later applications, and can be generalised to prove arbitrary quadratic
relations. Next, we will show how to instantiate the required building blocks using two
different approaches.

The public parameters of our argument system contains a random vector h ∈ Zd
q1 and a

vSIS commitment key v ∈ Z×
q2 , where q0 ≪ q1 ≪ q2 and the purpose of h will become

clear later. For the sake of exposition, let

v := (v, v2, . . . , vd)T, and v̄ := (v−1, v−2, . . . , v−d)T,

For x ∈ Zd and some w = (w−, w+) ∈ Z2d, consider the (Laurent) polynomials

px(V ) =
d:

i=1
xi · V i,

ph◦x(V −1) =
d:

i=1
hi · xi · V −i, and

pw−(V −1) + pw+(V ) =
−1:

i=−d+1
w−,i · V i +

d:
i=1

w+,i · V i

where h ◦ x denotes the Hadamard (component-wise) product of the two vectors. The
argument proceeds as follows:

1. The prover reveals the following “complementary” vSIS commitments to x:

cx := px(v) = ⟨x, v⟩ mod q2, and
c̄x := ph◦x(v−1) = ⟨h ◦ x, v̄⟩ mod q2.

2. The prover then proves the following relations:

∃ x ∈ Zd,

M · x = y mod q0,

px(v) = cx mod q2,

ph◦x(v−1) = c̄x mod q2,

and ∥x∥ ≈ 0. (1.2)

∃ w ∈ Z2d, pw−(v−1) + pw+(v) = cx · (c̄x − ph◦1(v−1)) mod q2 and ∥w∥ ≈ 0.
(1.3)

Since px(v), ph◦x(v), and pw−(v−1)+pw+(v) can be computed as linear functions evaluated
at the monomial expansion of v, eqs. (1.2) and (1.3) can be proven by using argument
systems for SIS relations, as required above.
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The interesting bit of our protocols is that, even though the underlying arguments for
the SIS relation have soundness gaps, the verifier of our protocol will be convinced that
x is exactly binary.

First, from the knowledge soundness of the argument for eq. (1.2), and eq. (1.3), the
verifier is convinced that there exists candidate short vectors x̂ and ŵ satisfying eq. (1.2)
and eq. (1.3) respectively. In particular, from eq. (1.2), one has that the extracted witness
x̂ satisfies

px̂(v) =
d:

i=1
x̂i · vi = cx mod q2, and

ph◦x̂(v−1) =
d:

i=1
hi · x̂i · v−1 = c̄x mod q2.

It follows that

cx · (c̄x − ph◦1(v)) =
(

d:
i=1

x̂i · vi

/
·
 d:

j=1
hj · x̂j · v−j −

d:
j=1

hj · v−j


=

(
d:

i=1
x̂i · vi

/
·
 d:

j=1
hj · (x̂j − 1) · v−j


=

:
i,j∈[d]

hj · x̂i · (x̂j − 1) · vi−j

=
d−1:

h=−d+1

,,, :
i,j∈[d]
i−j=h

hj · x̂i · (x̂j − 1)

333

 	� �

=:ûh

·vh.

In particular, from x̂, one could derive a somewhat short vector û = (û−, û0, û+) ∈ Z2d−1

such that
d−1:

h=−d+1
ûh · vh = cx · (c̄x − ph◦1(v−1)) mod q2.

At the same time, from eq. (1.3), we know that ŵ = (ŵ−, ŵ+) ∈ Z2d−2 is a short vector
such that

−1:
i=−d+1

ŵ−,i · vi +
d−1:
i=1

ŵ+,i · vi = cx · (c̄x − ph◦1(v−1)) mod q2.

20



1.1. Summary of Contributions

This means that
d−1:

h=−d+1
ûh · vh −

−1:
i=−d+1

ŵ−,i · vi −
d−1:
i=1

ŵ+,i · vi

=
−1:

i=−d+1
(ûi − ŵ−,i) · vi + û0 · v0 +

d−1:
i=1

(ûi − ŵ+,i) · vi

= 0 mod q2.

In particular, the vector (û− − ŵ−, û0, û+ − ŵ+) defines a Laurent polynomial with short
coefficients which vanishes at v. If such a vector is non-zero, then it yields a non-zero
short solution to a vSIS problem (in this case it corresponds to the SIS problem for the
structured vector (v−d+1, . . . , v−1, v0, v, . . . , vd−1)), which we assume to be hard. We
deduce that such vector must be zero. In particular, the middle term û0 is equal to zero.
By definition of ûh, we have

û0 = ⟨x̂, h ◦ (x̂ − 1)⟩ =
d:

i=1
hi · x̂i · (x̂i − 1)
 	� �

=0 iff x̂i∈{0,1}
.

The fact that û0 = 0 does not directly imply that all of its summands are also zero
(which is what we need to ensure that x̂ is binary). This is where the vector h comes
into play, using a technique first introduced in [ACL+22]: Since û0 = 0, then we also
have û0 = ;d

i=1 hi · x̂i · (x̂i − 1) = 0 mod q1. If x̂ is not binary, the vector x̂ ◦ (x̂ − 1)
would be a short non-zero solution to the SIS instance given by h over Zq1 . Therefore,
x̂i · (x̂i − 1) = 0 for all i ∈ [d]. Thus, the extracted witness x̂ must be binary as required.

1.1.4 Efficient Proofs for SIS Relations
In the above proof of binary-satisfiability of linear relations, the prover and verifier
computation costs are dominated by the costs of the succinct arguments for SIS relations
with soundness gaps. Here we discuss how we can use the two approaches in the literature,
and improve on both fronts using the algebraic properties of our vSIS-based commitment
scheme.

Approach I: Polylogarithmic Verifier for Structured Relations. While we cannot
hope to reduce the verifier complexity for general matrices M, for suitably structured M
the verification can be sped up to run in time polylogarithmic in the witness length. As
an example, the simplest M with the required structure is a vector consisting of powers
of an element v ∈ Z×

q , i.e.,

M =
'
v v2 . . . vd

.
mod q.

To see why this is the case, it suffices to observe that the verifier complexity is dominated
by the computation of the matrix M(ℓ), defined recursively in eq. (1.1), and obtained by
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successive foldings of the starting matrix M(0) = M. Plugging in the structured relation,
we can see that at each iteration the matrix evolves into

M(i+1) = M(i)
L + M(i)

R · r−1
i =

'
v v2 . . . vdi/2

.
+

'
vdi/2+1 vdi/2+2 . . . vdi

.
· r−1

i

=
'
v v2 . . . vdi/2

.
+

'
v v2 . . . vdi/2

.
· vdi/2 · r−1

i

=
'
v v2 . . . vdi/2

.
· (1 + vdi/2 · r−1

i ) mod q,

where di is the input length at the i-th iteration. Recursing over all iterations, we obtain
that the final matrix M(ℓ) is defined as

M(ℓ) =
ℓ−15
i=0

'
1 + v2ℓ−i−1 · r−1

i

.
mod q,

which can be computed in time polynomial in ℓ, i.e., polylogarithmic in d. In our work
we extend the above structured folding technique in three ways:

1. We identify a general class of “foldable” (block-)matrices for which the verifier
computation can be made polylogarithmic in the number of columns.

2. By modifying the Bulletproofs protocol with techniques borrowed from another
folding protocol of Pietrzak [Pie19], we are able to support foldable matrices with an
arbitrary (i.e., non-power-of-2) number of columns, without breaking the foldable
structure.11

3. Borrowing techniques from [Pie19] again, we can make the verifier computation also
polylogarithmic in the number of rows of M, for M with repeating block-bidiagonals,
if y is also foldable.

Approach II: Achieving Quasi-Linear Time Prover. The second approach for
lattice-based arguments for SIS relations is the recent work of [ACL+22], which is
based on the newly introduced (knowledge-)k-R-ISIS assumption. As we have already
mentioned, a major drawback of this approach is that the public parameters size and the
prover complexity are at least quadratic in the relation size. A natural idea is to choose
G = { V1, V2, . . . , Vd } with v = (v, v2, . . . , vd).12 This makes

| { (g · (g′)−1)(v) : g, g′ ∈ G, g ̸= g′ } | = | { v−i, vi }d−1
i=1 | = 2d − 2 = O(d).

Further exploiting fast multiplication algorithms for Toeplitz matrices allows us to achieve
quasi-linear prover time. In Chapter 4, we also show how to support natively modular
arithmetic, by borrowing techniques from chainable functional commitments [GR19,
BCFL22].

11The usual technique of padding zero columns breaks the foldable structure.
12The same result could be obtained setting G = { V 1, V 2, . . . , V d } and v = v.

22



1.2. On Lattice-Based Knowledge Assumptions

Putting everything together, we obtain SNARKs for quadratic relations with quasi-linear-
time prover and polylogarithmic-time verifier (after preprocessing for the unstructured
case). We highlight two particular instances.

First, we obtain SNARKs for proving “M · x = y mod q and x is exactly binary”. In
particular, applying the structured instantiation on the recently introduced SIS-based
sequential relations [LM23], we obtain the first lattice-based verifiable delay functions
(VDF). Prior lattice-based schemes [YAZ+19, BLS19, ENS20, LNP22] for exact SIS
relations13 are not succinct.

Second, we obtain SNARKs for rank-1 constraint satisfiability (R1CS). Prior lattice-based
schemes [ACL+22, BCFL22] have at least quadratic-time provers.

1.2 On Lattice-Based Knowledge Assumptions
In both [ACL+22] and [CLM23] part of the results are based on the newly introduced
knowledge k-R-ISIS assumption [ACL+22]. A recent result of Wee and Wu [WW23a]
shows a counterexample that morally/plausibly invalidates this knowledge assumption.

Before describing the result of Wee and Wu [WW23a], let us briefly recall definition of
falsifiable and non-falsifiable assumptions.

For almost any interesting cryptographic task we need to make some computational
hardness assumptions. Such computational hardness assumptions can be partitioned
into two classes: falsifiable assumptions and non-falsifiable ones. Informally, we say
that an assumption is falsifiable if it can be modeled as an interactive game between
an adversary and an efficient challenger that can efficiently decide if the adversary won
the game [GW11]. Such definition captures the fact that we can efficiently check if an
adversarial strategy breaks the assumption. On the contrary, non-falsifiable assumptions
are assumptions that do not lend themselves easily to “efficient falsification” [Nao03].

However, even non-falsifiable assumption can in fact be (conditionally) falsified. For
example Bellare and Palacio [BP04] showed that, assuming the hardness of the discrete
logarithm problem, the knowledge of exponent assumption introduced by Hada and
Tanaka [HT98] is false.

In the lattice setting, before [ACL+22], the only other knowledge assumption was that
(adaptations of) Regev’s encryption scheme [Reg05] are linear-only [BCI+13, BISW17],
i.e, that given a public key pk and ciphertexts (c1, . . . , cm) of any such encryption scheme,
it is infeasible to compute a new ciphertext c′ in the image of Enc(pk, ·), except by
evaluating an affine combination of the ciphertexts (c1, . . . , cm). This assumption was
used to construct designated-verifier lattice-based SNARKs [GMNO18, ISW21]. Notice
that this knowledge assumption is not “efficiently falsifiable”: to falsify it, one should
exhibit an adversary for which there does not exists an extractor; but the non-existence
of such an algorithm cannot be checked efficiently.

13not counting those for more general relations

23



1. Introduction

Let us now discuss the recent findings of Wee and Wu [WW23a] regarding the cryptanalysis
of the knowledge-k-R-ISIS assumption. At the end of this section, we will explore the
implications of their results on the contributions that have presented previously.

We start by recalling what the knowledge k-R-ISIS assumptions says. Somewhat infor-
mally, the assumption says that for any PPT algorithm A that on input

B ∈ Zn×m
q , T ∈ Zn×t

q , {vi}i∈[k] ∈ (Zt
q)k, {ui}i∈[k] ∈ (Zm)k, 14

where ui ∈ B−1(T · vi) and ∥ui∥ ≈ 015, i.e., for each i ∈ [k] one has

B · ui = T · vi mod q and ∥ui∥ ≈ 0,

outputs (u, v) ∈ Zm × Zt
q such that

B · u = T · v mod q and ∥u∥ ≈ 0,

then, there exists a PPT extractor EA that on input A’s input, output x ∈ Zk such that

v =
:

i

vi · xi and ∥x∥ ≈ 0.

The underlying idea was that the only way a PPT algorithm could produce a preimage
under B of a vector in the column span of T was by taking a short linear combination16

of the given preimage ui’s.

The matrix T is used to “sparsify” the allowed image output. Indeed, the same assumption
without the matrix T is clearly false, as the adversary A could sample a random short
vector u and output (u, B · u). And all this without using the given hints. For the
same reason, we need T to be a tall matrix, i.e., n > t, so that the column space of T
is a proper subspace of Zn

q , and the image, B · u, of a random short vector u is with
overwhelming probability not in the column span of T.

To show that knowledge k-R-ISIS is false, one should show there is an adversary for which
there exists no extractor. Wee and Wu identify an adversary for which there does not
appear to exist an extractor.

The key observation in their analysis is the following: the equation

B · ui = T · vi mod q,

can be rewritten as �
B T

�
·
�

ui

−vi

 
= 0 mod q.

14In the previous formulation of the assumption, we had t = 1.
15To avoid introducing too many parameters already in the introduction, by ∥u∥ ≈ 0 we will mean

that u is short.
16linear combinations where the coefficients used have small norm
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1.2. On Lattice-Based Knowledge Assumptions

Using the so-called gadget matrix G =: g ⊗ In, where g = [1, 2, . . . , 2⌈log q⌉−1], and G−1(·)
indicating the binary decomposition operator, the above equation can be rewritten as

�
B T · G

�
·
�

ui

−G−1(vi)

 
= 0 mod q.

Since ui is short by assumption, and G−1(vi) is short, as it is the binary decomposition
of vi, we have that ?????

�
ui

−G−1(vi)

 ????? ≈ 0,

for each i ∈ [k]. Since the (ui, vi)’s are independently generated, if k ≥ m + t⌈log q⌉, one
could heuristically assume that the vectors�

u1 . . . um+t⌈log q⌉
−G−1(v1) . . . −G−1(vm+t⌈log q⌉)

 

 	� �

=:Z

∈ Z(m+t⌈log q⌉)×(m+t⌈log q⌉)

are linearly independent over the reals, i.e., Z−1 ∈ R(m+t⌈log q⌉)×(m+t⌈log q⌉) exists. If that
is the case, then Z is an Ajtai trapdoor [Ajt96] for the matrix

�
B T · G

�
. Given any such

trapdoor, it is possible to sample short vectors
�
u
y

 
, such that

�
B T · G

�
·
�
u
y

 
= 0 mod q.

For example, one possible way is by using Babai’s rounding algorithm [Bab86]:

• by Gaussian elimination, obtain an arbitrary (non-zero) vector x ∈ Zm+t⌈log q⌉ such
that

�
B T · G

�
· x = 0 mod q,

• output x − Z · ⌊Z−1 · x⌋ ∈ Zm+t⌈log q⌉.

By construction, we have�
B T · G

�
· (x − Z · ⌊Z−1 · x⌋) =

�
B T · G

�
· x
 	� �

=0 mod q

−
�
B T · G

�
· Z
 	� �

=0 mod q

·⌊Z−1 · x⌋

= 0 mod q.

Moreover ???x − Z · ⌊Z−1 · x⌋
??? =

???Z · Z−1 · x − Z · ⌊Z−1 · x⌋
???

=
???Z · (Z−1 · x − ⌊Z−1 · x⌋)

???
=

???Z · {Z−1 · x}
???

≈ 0,
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where {·} denotes the fractional part operator and in the last line we have used that
both Z and {Z−1 · x} have small norm. Using this procedure, an algorithm can produce
a tuple (u, v) that satisfies the required constrains without apparently performing short
(integer) linear combination of the given preimages. However, one should also note
that in all application of this knowledge assumption in [ACL+22] and [CLM23], one has
k ≫ m + t⌈log q⌉. This means that more short vectors in the kernel of

�
B T · G

�
are

provided, than those required to construct an Ajtai trapdoor. If this is the case, then the
extractor has more flexibility in coming up with a short linear combination that would
explain the adversary’s output, as more short linear combinations are possible. In other
words, for this regime of parameters, the existence of an extractor is more conceivable.

Implications on [ACL+22] and [CLM23]. As already mentioned before, the result
of Wee and Wu [WW23a] plausibly invalidates the knowledge k-R-ISIS assumption. In
particular, we could not come up with an extractor for such an adversary, and it is even
possible that such an extractor does not in fact exist.

At the same time, even though [WW23a] show that this translates to a direct attack
against (variant of) the linear functional commitment scheme, [WW23a] also argue
that this does not seem to extend to higher-degree polynomials or to the SNARK
construction itself. As far as we are aware, these later constructions could still be
considered “heuristically” extractable, even though this property cannot not be reduced
to a clear assumption anymore.

In fact, with regards to the construction of a lattice-based SNARK for NP, assuming
that the VC construction for degree-2 polynomial maps from [ACL+22] is extractable
would suffice. Since this assumption is independent of the specific language for which the
SNARK would then be used, it could be seen as a plausible knowledge assumption from
which one can construct a publicly-verifiable lattice-based SNARK.

Nevertheless, this assumption is not completely satisfying. We hope that our attempt to
define a (publicly verifiable) knowledge assumption in the lattice world, and the follow-up
negative result of Wee and Wu, will urge more research effort into coming up with the
right formulation for this kind of assumptions.
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CHAPTER 2
CCA-Secure (Puncturable) KEMs

from Encryption with
Non-Negligible Decryption Errors

Abstract
Public-key encryption (PKE) schemes or key-encapsulation mechanisms (KEMs) are
fundamental cryptographic building blocks to realize secure communication protocols.
There are several known transformations that generically turn weakly secure schemes
into strongly (i.e., IND-CCA) secure ones. While most of these transformations require
the weakly secure scheme to provide perfect correctness, Hofheinz, Hövelmanns, and
Kiltz (HHK) (TCC 2017) have recently shown that variants of the Fujisaki-Okamoto
(FO) transform can work with schemes that have negligible correctness error in the
(quantum) random oracle model (QROM). Many recent schemes in the NIST post-
quantum competition (PQC) use variants of these transformations. Some of their
CPA-secure versions even have a non-negligible correctness error and so the techniques
of HHK cannot be applied.

In this work, we study the setting of generically transforming PKE schemes with poten-
tially large, i.e., non-negligible, correctness error to ones having negligible correctness
error. While there have been previous treatments in an asymptotic setting by Dwork,
Naor, and Reingold (EUROCRYPT 2004), our goal is to come up with practically efficient
compilers in a concrete setting and apply them in two different contexts: firstly, we
show how to generically transform weakly secure deterministic or randomized PKEs into
CCA-secure KEMs in the (Q)ROM using variants of HHK. This applies to essentially all
candidates to the NIST PQC based on lattices and codes with non-negligible error, for
which we provide an extensive analysis. We thereby show that it improves some of the
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code-based candidates. Secondly, we study puncturable KEMs in terms of the Bloom
Filter KEM (BFKEM) proposed by Derler et al. (EUROCRYPT 2018) which inherently
have a non-negligible correctness error. BFKEMs are a building block to construct fully
forward-secret zero round-trip time (0-RTT) key-exchange protocols. In particular, we
show the first approach towards post-quantum secure BFKEMs generically from lattices
and codes by applying our techniques to identity-based encryption (IBE) schemes with
(non-)negligible correctness error.

This chapter presents the first result of the collaboration with Sebastian Ramacher, Daniel
Slamanig, and Christoph Striecks and was published at the 26th International Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT’20)
under the title “CCA-Secure (Puncturable) KEMs from Encryption with Non-Negligible
Decryption Errors” [CRSS20]. I am mainly responsible for the analysis of the different
compilers and the linked security proofs. I am also responsible for writing the corresponding
sections of the chapter. The accompanying appendix contains omitted proofs and efficiency
evaluations.

2.1 Introduction
Public-key encryption (PKE) schemes or key-encapsulation mechanisms (KEMs) are
fundamental cryptographic building blocks to realize secure communication protocols.
The security property considered standard nowadays is security against chosen-ciphertext
attacks (IND-CCA security). This is important to avoid pitfalls and attacks in the
practical deployments of such schemes, e.g., padding-oracle attacks as demonstrated by
Bleichenbacher [Ble98] and still showing up very frequently [JSS12, ASS+16, BSY18,
RGG+19]. Also, for key exchange protocols that achieve the desirable forward-secrecy
property, formal analysis shows that security against active attacks is required (cf.
[JKSS12, KPW13, DFGS15, PST20]). This equally holds for recent proposals for fully
forward-secret zero round-trip time (0-RTT) key-exchange protocols from puncturable
KEMs [GHJL17, DJSS18, DGJ+21] and even for ephemeral KEM keys for a post-quantum
secure TLS handshake without signatures [SSW20a].

In the literature, various different ways of obtaining CCA security generically from weaker
encryption schemes providing only chosen-plaintext (IND-CPA) or one-way (OW-CPA)
security are known. These can be in the standard model using the double-encryption
paradigm due to Naor and Yung [NY90], the compiler from selectively secure identity-
based encryption (IBE) due to Canetti, Halevi and Katz [CHK04], or the more recent
works due to Koppula and Waters [KW19] based on so called hinting pseudo-random
generators and Hohenberger, Koppula, and Waters [HKW20] from injective trapdoor
functions. In the random oracle model (ROM), CCA security can be generically obtained
via the well-known and widely-used Fujisaki-Okamoto (FO) transform [FO99, FO13]
yielding particularly practical efficiency.
Perfect correctness and (non-)negligible correctness error. A property common
to many compilers is the requirement for the underlying encryption schemes to provide
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perfect correctness, i.e., there are no valid ciphertexts where the decryption algorithm
fails when used with honestly generated keys. Recently, Hofheinz, Hövelmanns, and
Kiltz (HHK) [HHK17a] investigated different variants of the FO transform also in a
setting where the underlying encryption scheme has non-perfect correctness and in
particular decryption errors may occur with a negligible probability in the security
parameter. This is interesting since many PKE schemes or KEMs based on conjectured
quantum-safe assumptions and in particular assumptions on lattices and codes do not
provide perfect correctness. Even worse, some of the candidates submitted to the NIST
post-quantum competition (PQC) suffer from a non-negligible correctness error and so
the FO transforms of HHK cannot be applied. Ad-hoc approaches to overcome this
problem that are usually chosen by existing constructions in practice — if the problem is
considered at all — is to increase the parameters to obtain a suitably small decryption
error, applying an error correcting code on top or implementing more complex decoders.
In practice, these ad-hoc methods come with drawbacks. Notably, LAC, which is a
Learning With Errors (LWE) based IND-CCA secure KEM in the 2nd round of the
NIST PQC that applies an error correcting code, is susceptible to a key-recovery attack
recently proposed by Guo et al. [GJY19]. Also, code-based schemes have a history
of attacks [GJS16, SSPB19, FHS+17] due to decoding errors. Recently, Bindel and
Schanck [BS20] proposed a failure boosting attack for lattice-based schemes with a
non-zero correctness error. For some code-based schemes, the analysis of the decoding
error is a non-trivial task as it specifically depends on the decoder. For instance, the
analysis of BIKE’s decoder, another 2nd round NIST PQC candidate, has recently been
updated [SV19].

Consequently, it would be interesting to have rigorous and simple approaches to remove
decryption errors (to a certain degree) from PKE schemes and KEMs.

Immunizing encryption schemes. The study of “immunizing” encryption schemes
from decryption errors is not new. Goldreich, Goldwasser, and Halevi [GGH97] studied
the reduction or removal of decryption errors in the Ajtai-Dwork encryption scheme as
well as Howgrave-Graham et al. [HNP+03] in context of NTRU. The first comprehensive
and formal treatment has been given by Dwork, Naor, and Reingold [DNR04] who study
different amplification techniques in the standard and random oracle model to achieve
non-malleable (IND-CCA secure) schemes. One very intuitive compiler is the direct
product compiler Enc⊗ℓ which encrypts a message M under a PKE Π = (KGen, Enc, Dec)
with a certain decryption error δ under ℓ independent public keys from KGen, i.e,.
pk′ := (pk1, . . . , pkℓ) as Enc′(pk′, M) := (Enc(pk1, M), . . . , Enc(pkℓ, M)). Dec′, given
C ′ = (C1, . . . , Cℓ) tries to decrypt Ci, 1 ≤ i ≤ ℓ, and returns the result of a majority vote
among all decrypted messages, yielding an encryption scheme with some error δ′ ≤ δ.
Their asymptotic analysis, however, and limitation to PKEs with a binary message space
does not make it immediate what this would mean in a concrete setting and in particular
how to choose ℓ for practically interesting values of δ and δ′. For turning a so-obtained
amplified scheme with negligible correctness error into a CCA-secure one in the ROM,
they provide a transform using similar ideas, but more involved than the FO transform.
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Bitansky and Vaikuntanathan [BV17] go a step further and turn encryption schemes
with a correctness error into perfectly correct ones, whereas they even consider getting
completely rid of bad keys (if they exist) and, thus, completely immunize encryption
schemes. They build upon the direct product compiler of Dwork et al. and then apply
reverse randomization [Nao90] and Nisan-Wigderson style derandomization [NW94].
Thereby, they partition the randomness space into good and bad randomness, and ensure
that only good randomness is used for encryption and key generation.

Our goals. In this work, we are specifically interested in transformations that lift weaker
schemes with non-negligible correctness error into CCA-secure ones with negligible
error. Thereby, our focus is on modular ways of achieving this and can be seen as a
concrete treatment of ideas that have also be discussed by Dwork et al. [DNR04], who,
however, treat their approaches in an asymptotic setting only. We show that the direct
product compiler can be used with variants of the standard FO transform considered by
HHK [HHK17a] (in the ROM) as well as Bindel et al. [BHH+19] and Jiang et al. [JZM19]
(in the quantum ROM (QROM) [BDF+11]). They are used by many candidates of the
NIST PQC, when starting from PKE schemes having non-negligible correctness error
generically. As we are particularly interested in practical compilers in a concrete setting to
obtain CCA security for KEMs in the (Q)ROM, we analyze the concrete overhead of this
compiler and its use with widely used variants of the transforms from HHK. Moreover,
we provide a rigorous treatment of non-black-box applications of these ideas and show
that they yield better concrete results than the direct application of the direct product
compiler. Importantly, it gives a generic way to deal with the error from weaker schemes
(e.g., IND-CPA secure ones with non-negligible error) which are easier to design. An
interesting question that we will study is how does increasing from one to ℓ ciphertexts
compare to increasing the parameters at comparable resulting decryption errors for
existing round-two submissions in the NIST PQC. As it turns out, our approach performs
well in context of code-based schemes but gives less advantage for lattice-based schemes.

We also study our approach beyond conventional PKE schemes and KEMs. In particular,
a class of KEMs that have recently found interest especially in context of full forward-
secrecy for zero round-trip time (0-RTT) key-exchange (KE) protocols are so-called
puncturable KEMs [GM15, GHJL17, DJSS18, SSS+20] and, in particular, Bloom Filter
KEMs (BFKEMs) [DJSS18, DGJ+21]. BFKEMs schemes are CCA-secure KEMs that
inherently have non-negligible correctness error. Interestingly, however, the non-negligible
correctness error comes from the Bloom filter layer and the underlying IBE scheme
(specifically, the Boneh-Franklin [BF01] instantiation in [DJSS18]) is required to provide
perfect correctness. Thus, as all post-quantum IBEs have at least negligible correctness
error, there are no known post-quantum BFKEMs.

2.1.1 Contribution

Our contributions on a more technical level can be summarized as follows:
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KEM
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T⋆

Theorem 2.3.9 U ̸⊥
[HHK17a] Thm. 3.4T

[HHK17a] Thm. 3.1
Cp,r

Corollary 2.3.1

Cp,d/C⋆
p,d

Corollary 2.3.1

U ̸⊥
m

[HHK17a] Thm. 3.6

Figure 2.1: Overview of the transformations in the ROM with the results related to T⋆

highlighted in blue. rPKE denotes a randomized PKE. dPKE denotes a deterministic
PKE. The prefix nn indicates encryption schemes with non-negligible correctness error.

Generic transform. We revisit the ideas of the direct product compiler of Dwork et
al. [DNR04] (dubbed Cp,r and Cp,d for randomized and deterministic PKEs, respectively)
in the context of the modular framework of HHK [HHK17a]. In particular, we present a
generic transform dubbed T⋆ that, given any randomized PKE scheme with non-negligible
correctness error, produces a derandomized PKE scheme with negligible correctness error.
We analyze the transform both in the ROM and QROM and give a tight reduction in
the ROM and compare it to a generic application of the direct product compiler. The
transform naturally fits into the modular framework of HHK [HHK17a], and, thus, by
applying the U ̸⊥ transform, gives rise to an IND-CCA-secure KEM. For the analysis in the
QROM, we follow the work of Bindel et al. [BHH+19]. We show that the T⋆ transform
also fits into their framework. Hence, given the additional injectivity assumption, we also
obtain a tight proof for U ̸⊥. But even if this assumption does not hold, the non-tight
proofs of Jiang et al. [JZM19] and Hövelmanns et al. [HKSU20] still apply. Compared to
the analysis of the T transform that is used in the modular frameworks, our reductions
lose a factor of ℓ, i.e., the number of parallel ciphertexts required to reach a negligible
correctness error, in the ROM and a factor of ℓ2 in the QROM. For concrete schemes,
this number is small (e.g., ≤ 5) and, thus, does not impose a significant loss. An overview
of the transformations and how our transform fits into the modular frameworks is given
in Figure 2.1 (ROM) and Figure 2.2 (QROM). Furthermore, using ideas similar to T⋆,
we discuss a modified version of the deterministic direct product compiler Cp,d which we
denote by C⋆

p,d, that compared to the original one allows to reduce the number of parallel
repetitions needed to achieve negligible correctness error.

Evaluation. We evaluate T⋆ based on its application to code- and lattice-based second-
round candidates in the NIST PQC. In particular, we focus on schemes that offer
IND-CPA secure versions with non-negligible correctness error such as ROLLO [ABD+19],
BIKE [ABB+19], and Round5 [GZB+19]. We compare their IND-CCA variants with our
transform applied to the IND-CPA schemes. In particular, for the code-based schemes
such as ROLLO we can observe improvements in the combined size of public keys and
ciphertexts, a metric important when used in protocols such as TLS, as well as its runtime
efficiency. We also argue the ease of implementing our so-obtained schemes which can
rely on simpler decoders. For lattice-based constructions, we find that the use of the
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Figure 2.2: Overview of the transformations in the QROM using the notation from
Figure 2.1. A dashed arrow denotes a non-tight reduction. DS denotes disjoint simulata-
bility.
†: Obtained by applying the modifications from Theorems 2.3.9 and 2.3.10 to [HKSU20,
Thm 3.2].

transform results in an increase in the sum of ciphertext and public-key size of 30%
even in the best case scenario, i.e., for an IND-CPA version of KEM Round5 [GZB+19].
Nevertheless, it offers easier constant-time implementations and the opportunity of
decreasing the correctness error without changing the underlying parameter set and,
thus, the possibility to focus on analyzing and implementing one parameter set for both,
IND-CPA and IND-CCA security.

Bloom Filter KEMs. Finally, we revisit puncturable KEMs from Bloom filter KEMs
(BFKEMs) [DJSS18, DGJ+21], a recent primitive to realize 0-RTT key exchange protocols
with full forward-secrecy [GHJL17]. Currently, it is unclear how to instantiate BFKEMs
generically from IBE and, in particular, from conjectured post-quantum assumptions due
to the correctness error of the respective IBE schemes. We show that one can construct
BFKEMs generically from any IBE and even base it upon IBEs with a (non-)negligible
correctness error. Consequently, our results allow BFKEMs to be instantiated from lattice-
and code-based IBEs and, thereby, we obtain candidates for post-quantum CCA-secure
BFKEMs.

On the progress in the NIST PQC. We note that our work has been done during
the second round of the NIST PQC. Meanwhile, NIST has announced the third-round
candidates1 and finalists2 to be standardized. From the schemes that are suitable for
our compilers, BIKE [ABB+19] and FrodoKEM [NAB+19] were advanced to the third
round as alternate candidates in the competition, and BIKE [ABB+19] also reached
the fourth round of the competition. Moreover, we concretely analyze the submissions
to the second round and want to note that meanwhile there are additional results on
the cryptanalysis of some relevant second round schemes, e.g., for ROLLO in [BBC+20]
as well as for LEDAcrypt in [APRS20]. These results might require a change in the
parameters compared to the versions that we use in this work.

1https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
2https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
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2.2. Preliminaries

2.2 Preliminaries
Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter.
For a finite set S, we denote by s←S the process of sampling s uniformly from S. For an
algorithm A, let y ← A(λ, x) be the process of running A on input (λ, x) with access to
uniformly random coins and assigning the result to y (we may assume that all algorithms
take λ as input). To make the random coins r explicit, we write A(x; r). We say an
algorithm A is probabilistic polynomial time (PPT) if the running time of A is polynomial
in λ. A function f is negligible if its absolute value is smaller than the inverse of any
polynomial, i.e., if ∀c ∃k0 s.t. ∀λ ≥ k0 : |f(λ)| < 1/λc.

2.2.1 Public-Key Encryption and Key-Encapsulation Mechanisms
Public-key encryption. A public-key encryption (PKE) scheme Π with message
space M consists of the three PPT algorithms (KGen, Enc, Dec): KGen(λ), on input
security parameter λ, outputs public and secret keys (pk, sk). Enc(pk, M), on input pk
and message M ∈ M, outputs a ciphertext ctxt. Dec(sk, ctxt), on input sk and ctxt,
outputs M ∈ M ∪ {⊥}. We may assume that pk is implicitly available in Dec.

Correctness. We recall the definition of δ-correctness of [HHK17a]. A PKE Π is
δ-correct if

E

�
max
M∈M

Pr[c ← Enc(pk, M) : Dec(sk, ctxt) ̸= M ]
"

≤ δ,

where the expected value is taken over all (pk, sk) ← KGen(λ).

PKE-IND-CPA, PKE-OW-CPA, and PKE-OW-PCA security. We say a PKE
Π is PKE-IND-CPA-secure if and only if any PPT adversary A has only negligible
advantage in the following security experiment. First, A gets an honestly generated
public key pk. A outputs equal-length messages (M0, M1) and, in return, gets ctxt∗

b ←
Enc(pk, Mb), for b←{0, 1}. Eventually, A outputs a guess b′. If b = b′, then the experiment
outputs 1. For PKE-OW-CPA security, A does not receive a ciphertext for A-chosen
messages, but only a ciphertext ctxt∗ ← Enc(pk, M) for M←M and outputs M ′; if
M = M ′, then the experiment outputs 1. For PKE-OW-PCA security, A additionally
has access to a plaintext checking oracle Pco(M, ctxt) returning 1 if M = Dec(sk, ctxt)
and 0 otherwise.

Definition 2.2.1. For any PPT adversary A the advantage function

Advpke-ind-cpa
Π,A (λ) :=

@@@@Pr[Exppke-ind-cpa
Π,A (λ) = 1] − 1

2

@@@@ ,

is negligible in λ, where the experiment Exppke-ind-cpa
Π,A (λ) is given in Figure 2.3 and Π is a

PKE as above.
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Exp. Exppke-ind-cpa
Π,A (λ)

(pk, sk) ← KGen(λ)
(M0, M1) ← A(pk)
b←{0, 1}
ctxt∗ ← Enc(pk, Mb)
b′ ← A(ctxt∗)
if b = b′ then return 1
else return 0

Exp. Exppke-ow-cpa
Π,A (λ)

(pk, sk) ← KGen(λ)
M←M
ctxt∗ ← Enc(pk, M)
M ′ ← A(pk, ctxt∗)
if M = M ′ then return 1
else return 0

Exp. Exppke-ow-pca
Π,A (λ)

(pk, sk) ← KGen(λ)
M←M
ctxt∗ ← Enc(pk, M)
M ′ ← APco(·,·)(pk, ctxt∗)
if M = M ′ then
return 1 else return 0

Figure 2.3: PKE-x-y security with x ∈ {OW, IND}, y ∈ {CPA, PCA} for Π.

Definition 2.2.2. For any PPT adversary A, and y ∈ {CPA, PCA} the advantage
function

Exppke-OW-y
Π,A (λ) := Pr[Exppke-OW-y

Π,A (λ) = 1],

is negligible in λ, where the experiments Exppke-ow-cpa
Π,A (λ) and Exppke-ow-pca

Π,A (λ) are given
in Figure 2.3 and Π is a PKE as above.

We recall a well known lemma below:

Lemma 2.2.1. For any adversary B there exists an adversary A with the same running
time as that of B such that

Advpke-ow-cpa
Π,B (λ) ≤ Advpke-ind-cpa

Π,A (λ) + 1
|M| .

We note that an analogous result to Lemma 2.2.1 holds for the ℓ-OW-CPA and ℓ-IND-CPA
notions below.

Multi-challenge setting. We recall some basic observations from [BBM00] regarding
the multi-challenge security of PKE schemes. In particular, for our construction we need
the relation between OW-CPA/IND-CPA security in the conventional single-challenge
and single-user setting and n-OW-CPA/n-IND-CPA respectively, which represents the
multi-challenge and multi-user setting. In particular, latter means that the adversary is
allowed to obtain multiple challenges under multiple different public keys.

Theorem 2.2.3 (Th. 4.1 [BBM00]). Let Π = (KGen, Enc, Dec) be a PKE scheme that
provides x-CPA security with x ∈ {OW, IND}. Then, it holds that:

Advpke-x-cpa
Π,A (λ) ≥ 1

q · n
· Advn-pke-x-cpa

Π,A (λ),

where n is the number of public keys and A makes at most q queries to any of its n
challenge oracles.
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Exp. Exppke-ffc
Π,A (λ)

(pk, sk) ← KGen(λ)
L ← A(pk)
if exists ctxt ∈ L with M ∈ M such that Enc(pk, M) = ctxt and Dec(sk, ctxt) ̸=
M then return 1 else return 0

Figure 2.4: Finding-failing-ciphertext experiment for Π.

Although the loss imposed by the reduction in Theorem 2.2.3 can be significant when
used in a general multi-challenge and multi-user setting, in our application we only have
cases where n = 1 and small q (q = 5 at most), or vice versa (i.e., q = 1 and n = 5 at
most) thus tightness in a concrete setting is preserved.

Finding failing ciphertexts and injectivity. For the QROM security proof we will
need the following two definitions from [BHH+19].

Definition 2.2.4 (ε-injectivity). A PKE Π is called ε-injective if

• Π is deterministic and

Pr[(pk, sk) ← KGen(λ) : M /→ Enc(pk, M) is not injective] ≤ ε.

• Π is non-deterministic with randomness space R and

Pr
�
(pk, sk) ← KGen(λ),
M, M ′←M, r, r′←R : Enc(pk, M ; r) = Enc(pk, M ′; r′)

 
≤ ε.

Definition 2.2.5 (Finding failing ciphertexts). For a deterministic PKE, the FFC-
advantage of an adversary A is defined as

Advpke-ffc
Π,A (λ) := Pr[Exppke-ffc

Π,A (λ) = 1],

where the experiment Exppke-ffc
Π,A is given in Figure 2.4.

Key-encapsulation mechanism. A key-encapsulation mechanism (KEM) scheme
KEM with key space K consists of the three PPT algorithms (KGen, Encaps, Decaps):
KGen(λ), on input security parameter λ, outputs public and secret keys (pk, sk). Encaps(pk),
on input pk, outputs a ciphertext ctxt and key k. Decaps(sk, ctxt), on input sk and ctxt,
outputs k or {⊥}.

Correctness of KEM. We call a KEM δ-correct if for all λ ∈ N, for all (pk, sk) ←
KGen(λ), for all (ctxt, k) ← Enc(pk), we have that

Pr[Dec(sk, ctxt) ̸= k] ≤ δ.
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Exp. Expkem-ind-cca
KEM,A (λ)

(pk, sk) ← KGen(λ)
(ctxt∗, k0) ← Encaps(pk), k1←K
b←{0, 1}
b′ ← ADecaps(sk,·)(pk, ctxt∗, kb)
if b = b′ then return 1 else return 0

Figure 2.5: KEM-IND-CCA security experiment for KEM.

KEM-IND-CCA security. We say a KEM KEM is KEM-IND-CCA-secure if and only if
any PPT adversary A has only negligible advantage in the following security experiment.
First, A gets an honestly generated public key pk as well as a ciphertext-key pair
(ctxt∗, kb), for (ctxt∗, k0) ← Encaps(pk), for k1←K, and for b←{0, 1}. A has access to
a decapsulation oracle Dec(sk, ·) and we require that A never queries Decaps(sk, ctxt∗).
Eventually, A outputs a guess b′. Finally, if b = b′, then the experiment outputs 1.

Definition 2.2.6. For any PPT adversary A, the advantage functions

Advkem-ind-cca
KEM,A (λ) :=

@@@@Pr[Expkem-ind-cca
KEM,A (λ) = 1] − 1

2

@@@@ ,

is negligible in λ, where the experiment Expkem-ind-cca
KEM,A (λ) is given in Figure 2.5 and KEM

is a KEM as above.

2.2.2 Identity-Based Encryption
An identity-based encryption (IBE) scheme IBE with identity space ID and message
space M consists of the PPT algorithms (KGen, Ext, Enc, Dec): KGen(λ) on input security
parameter λ, outputs main public and secret keys (mpk, msk). Ext(msk, id) on input
identity id ∈ ID, outputs an identity secret key skid . Enc(mpk, id, M) on input mpk,
id ∈ ID, and message M ∈ M, outputs a ciphertext ctxt. Dec(skid , ctxt) on input skid
and ctxt, outputs M ∈ M ∪ {⊥}.

Correctness of IBE. Analogous to section 2.3, we say that an IBE IBE is

• δ(·)-correct if for any id ∈ ID and all M ∈ M:

Pr [ctxt ← Enc(mpk, id, M) : Dec(skid , ctxt) ̸= M ] ≤ δ(λ),

where the probability is taken over the random coins of the encryption algorithm,
(mpk, msk) ← KGen(λ), and skid ← Ext(msk, id).

• ϵ(·)-key δ(·)-correct if for any id ∈ ID and M ∈ M: except with probability at
most ϵ(λ), key pairs (mpk, msk) ← KGen(λ) are such that

Pr [ctxt ← Enc(mpk, id, M) : Dec(skid , ctxt) ̸= M ] ≤ δ(λ),
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where the probability is taken over the random coins (possibly obtained from a
random oracle) of the encryption algorithm.

IBE-sIND-CPA security of IBE. We say an IBE scheme IBE is IBE-sIND-CPA-secure if
and only if any PPT adversary A has only negligible advantage in the following security
experiment. First, A outputs the target identity id∗ and, subsequently, gets an honestly
generated main public key mpk. During the experiment, but after providing id∗, A has
access to a secret-key extraction oracle Ext(msk, ·) where we require that A never queries
an identity secret key for id∗. At some point, A outputs equal-length messages (M0, M1)
and receives a challenge ciphertext ctxt∗ ← Enc(mpk, id∗, Mb), for b←{0, 1}. Eventually,
A outputs a guess b′; if b = b′, then the experiment outputs 1. The experiment is depicted
in Figure 2.6.

Definition 2.2.7. For any PPT adversary A, the advantage function

Advibe-sind-cpa
IBE,B (λ) :=

@@@@Pr[Expibe-sind-cpa
IBE,A (λ) = 1] − 1

2

@@@@ ,

is negligible in λ, where the experiment Expibe-sind-cpa
IBE,A (λ) is given in Figure 2.6 and IBE is

an IBE scheme.

Exp. Expibe-sind-cpa
IBE,A (λ)

id∗ ← A(λ)
(mpk, msk) ← KGen(λ)
(M0, M1) ← AExt(msk,·)(mpk)
b←{0, 1}
ctxt∗ ← Enc(mpk, id∗, Mb)
b′ ← AExt(msk,·)(ctxt∗)
if b = b′ then return 1 else return 0

Figure 2.6: IBE-sIND-CPA experiment for IBE scheme IBE.

γ-spreadness of IBE. In order to prove our Bloom filter KEM CCA-secure in Sec-
tion 2.5, we need an additionally property of the underlying IBE scheme which essentially
guarantees that honestly generated IBE ciphertexts have large-enough min-entropy.

Definition 2.2.8 (γ-Spreadness of IBE). For all λ ∈ N, an IBE scheme IBE is γ-spread,
if for any (mpk, ·) ← KGen(λ), any identity id ∈ ID, any message M ∈ M, any C ∈ C,
and r←R, where C and R are the ciphertext and randomness spaces of IBE, respectively,
we have that Pr[C = Enc(mpk, id, M ; r)] ≤ 2−γ holds, where the probability is taken over
the random coins of KGen.
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2.3 CCA Security from Non-Negligible Correctness Errors
In this section, we present our approaches to generically achieve CCA secure KEMs in the
(Q)ROM with negligible correctness error when starting from an OW-CPA or IND-CPA
secure PKE with non-negligible correctness error. We start by discussing the definitions of
correctness errors of PKE and KEMs. Then, we present a generic transform based on the
direct product compiler of Dwork et al. [DNR04] and revisit certain FO transformation
variants from [HHK17a] (in particular the T and U transformations), their considerations
in the QROM [BHH+19] and their application with the direct product compiler. As a
better alternative, we analyze the non-black-box use of the previous technique yielding
transformation T⋆, that combines the direct product compiler with the T transformation.
Finally, we provide a comprehensive comparison of the two approaches.

2.3.1 On the Correctness Error
In this work, we use δ-correctness definitions for PKEs slightly derived from that given by
HHK in [HHK17a]. These definitions are tailored, as done in [HHK17a] via maxing over
all possible messages, to the security proofs of the FO-transforms where an adversary
could actively search for the worst possible message, in order to trigger decryption failure.
Moreover, they are also tailored, via taking the probability over appropriately chosen
random coins, to be compatible with the C⋆

p,d and T⋆ transformation respectively. As
done by Dwork et al. [DNR04], we explicitly write the correctness error as a function in
the security parameter:

Definition 2.3.1. A PKE Π is

• δ(·)-correct if for all M ∈ M:

Pr[ctxt ← Enc(pk, M) : Dec(sk, ctxt) ̸= M ] ≤ δ(λ),

where the probability is taken over the random coins of the encryption algorithm
and that of (pk, sk) ← KGen(λ).

• ϵ(·)-key δ(·)-correct if for all M ∈ M: except that with probability at most ϵ(λ),
key pairs (pk, sk) ← KGen(λ) are such that

Pr[ctxt ← Enc(pk, M) : Dec(sk, ctxt) ̸= M ] ≤ δ(λ),

where the probability is taken over the random coins (possibly obtained from a
random oracle) of the encryption algorithm.

Remark 1. In the rest of the paper, we will use the first definition, δ(·)-correctness,
for (truly) deterministic PKEs (to which the C⋆

p,d compiler is applied), and the second
definition, ϵ(·)-key δ(·)-correctness, for randomized and derandomized PKEs (which are
dealt with via the T⋆ transformation). With this distinction in mind, in both cases, for
ease of exposition, we will sometime call it simply correctness error.
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Exp. Expcor
Π,A(λ)

(pk, sk) ← KGen(λ)
M ← A(pk, sk)
if M ̸= Dec(sk, Enc(pk, M)) then return 1 else return 0

Figure 2.7: Correctness experiment for PKE.

It will be important for our transform to make explicit that the correctness error depends
on the security level. We will often just write δ = δ(λ). If Π is defined relative to
a random oracle H, then the adversary is given access to the random oracle and δ is
additionally a function in the number of queries qH, i.e., the bound is given by ≤ δ(λ, qH).

We note that in [BS20] an alternative definition of correctness was proposed, where the
adversary does not get access to sk and the adversary’s runtime is bounded. With this
change, it can be run as part of the IND-CCA experiment which does not change the
power of the IND-CCA adversary and additionaly removes a factor qH from the correctness
error and advantage analysis. In particular, one can obtain an upper bound for IND-CCA
security of a scheme via the correctness error.

We recall, for completeness, the definitions of correctness error, here denoted as HHK-
δ-correctness (from Hofheinz-Hövelmanns-Kiltz) and DNR-δ-correctness (from Dwork-
Naor-Reingold), used by Hofheinz et al. and Dwork et al. respectively:

Definition 2.3.2 (Sect. 2.1 [HHK17a]). A PKE Π is HHK-δ(·)-correct if for all M ∈ M:

E

�
max
m∈M

Pr[ctxt ← Enc(pk, M) : Dec(sk, ctxt) ̸= M ]
"

≤ δ(λ),

where the expected value is taken over all (pk, sk) ← KGen(λ).

With this definition, particularly bad keys in terms of correctness error only contribute
a fraction to the overall correctness error as it averages the error probability over all
key pairs. An alternative but equivalent definition, as used in [HHK17a], can be given
in the following form: a PKE Π is called HHK-δ(·)-correct if we have for all (possibly
unbounded) adversaries A that

Advcor
Π,A(λ) = Pr[Expcor

Π,A(λ) = 1] ≤ δ(λ),

where the experiment is given in Figure 2.7.

Definition 2.3.3 (Def. 2, Def. 3 [DNR04]). A PKE Π is

• DNR-δ(·)-correct if we have that

Pr[Dec(sk, Enc(pk, M)) ̸= M ] ≤ δ(λ),

where the probability is taken over the choice of key pairs (pk, sk) ← KGen(λ),
M ∈ M and over the random coins of Enc and Dec.
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Π′.KGen′(λ, ℓ)
// if Cp,r

return Π.KGen(λ)
// if Cp,d

for i ∈ [ℓ]
(pki, ski) ← Π.KGen(λ)

pk := (pk1, . . . , pkℓ)
sk := (sk1, . . . , skℓ)
return (pk, sk)

Π′.Enc′(pk, M)
for i ∈ [ℓ]

// if Cp,r

ri←Π.R
ctxti ← Π.Enc(pk, M ; ri)
// if Cp,d

ctxti ← Π.Enc(pki, M)
ctxt := (ctxt1. . . . , ctxtℓ)
return ctxt

Π′.Dec′(sk, ctxt)
ctxt := (ctxt1. . . . , ctxtℓ)
for i ∈ [ℓ]

// if Cp,r

M ′
i := Π.Dec(sk, ctxti)

// if Cp,d

M ′
i := Π.Dec(ski, ctxti)

return maj(M ′
1, . . . , M ′

ℓ)

Figure 2.8: Compilers Cp,d and Cp,r.

• DNR-(almost-)all-keys δ(·)-correct if for all (but negligible many) keys (pk, sk) ←
KGen(λ), we have that

Pr[Dec(sk, Enc(pk, M)) ̸= M ] ≤ δ(λ),

where the probability is taken over the choice of M ∈ M and over the random coins
of Enc and Dec.

Correctness error in this sense still allows bad key pairs that potentially have an even
worse error but it is not suited for our security proofs as the probability is also taken over
M←M. Recently Drucker et al. [DGKP21] introduced the notion of message agnostic
PKE and showed that all the versions of BIKE, a 2nd round candidate in the NIST PQC,
are message-agnostic: in such a PKE, the probability that, given (sk, pk), the encryption
of a message M ∈ M correctly decrypts is independent of the message M ∈ M itself.
For such PKEs the definitions of δ-correctness and DNR-δ-correctness coincide (Cor. 1
[DGKP21]).

2.3.2 Compiler for Immunizing Decryption Errors
Now we present two variants of a compiler Cp denoted Cp,d (for deterministic schemes) and
Cp,r (for randomized schemes) which is based on the direct product compiler by Dwork
et al. [DNR04]. We recall that the idea is to take a PKE scheme Π = (KGen, Enc, Dec)
with non-negligible correctness error δ (and randomness space R in case of randomized
schemes) and output a PKE scheme Π′ = (KGen′, Enc′, Dec′) with negligible correctness
error δ′ (and randomness space R′ := Rℓ, for some ℓ ∈ N, in case of a randomized
schemes). We present a precise description of the compilers in Figure 2.8. Note that
in Dec′, the message that is returned most often by Dec is returned. If two or more
messages are tied, one of them is returned arbitrarily and we denote this operation as
maj(M ′).

Analyzing correctness. Dwork et al. in [DNR04] explicitly discuss the amplification
of the correctness for encryption schemes with a binary message space M = {0, 1} and
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obtain that to achieve DNR-δ′-correctness ℓ > c
(1−δ)2 · log 1

δ′ when starting from a scheme
with DNR-δ-correctness. As c is some constant that is never made explicit, the formula is
more of theoretical interest and for concrete instances it is hard to estimate the number
of required ciphertexts. We can however analyze the probabilities that the majority vote
in Dec′ returns the correct result. As far as the correctness notion used in this work is
concerned, in order to prove an acceptable good lower bound for the δ-correctness of the
direct product compiler, it suffices to find an event, in which the decryption procedure
fails, that happens with a large enough probability. The following reasoning applies to
both its deterministic and randomized versions, Cp,d and Cp,r respectively. One such
case is the following: only 1 ciphertext correctly decrypts and all other ℓ − 1 ciphertexts
decrypt to ℓ − 1 distinct wrong messages. During the maj operation, one of the “wrong”
messages is then returned. The probability of this event is

ℓ − 1
ℓ

·
(

ℓ

ℓ − 1

/
· δℓ−1 · (1 − δ) · M − 1

M − 1 · M − 2
M − 1 · · · M − (ℓ − 1)

M − 1 .

Looking ahead to our compiler T∗ presented in Section 2.3.4, if the message space is
sufficiently large, this probability is bigger than δℓ−1(1 − δ), which gives that at least
one more ciphertext is needed to achieve the same decryption error as with our compiler
T∗. The results are shown in Table 2.1. One can compute the exact probability of
decryption error by listing all cases in which the decryption fails and summing up all
these probabilities to obtain the overall decryption failure of the direct product compiler.
This computation is not going to give a significantly different result from the lower bound
that we have just computed.

We note that using 2 parallel ciphertexts does not improve the correctness error, so the
direct product compiler only becomes interesting for ℓ ≥ 3: indeed for ℓ = 2, we have
3 possible outcomes in which the decryption algorithm can fail: 1) the first ciphertext
decrypts and the second does not, 2) vice versa, 3) both fail to decrypt. In 1), 2), half
the time the wrong plaintext is returned. Summing these probabilities gives exactly δ.

Remark 2. As far as the deterministic direct product compiler Cp,d is concerned, the
correctness error can be improved by modifying the decryption: instead of relying on
the maj operation, we can re-encrypt the plaintexts obtained during decryption with the
respective keys and compare them to the original ciphertexts. Only if this check passes,
the plaintext is returned. If this is done, then decryption fails with probability ℓδℓ and
thereby the number of parallel repetition necessary to achieve negligible correctness-error is
reduced at the cost of a computational overhead in the decryption. We denote this version
of the deterministic direct product compiler by C⋆

p,d. The bound ℓδℓ on the correctness
error can be derived as follows: the wrong message is returned if

• no ciphertext component decrypts correctly, or

• at least one ciphertext component correctly decrypts but a wrong message is anyway
returned.
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Table 2.1: Estimation of the correctness error for the direct product compilers. δ′(ℓ)
denotes the correctness error for ℓ ciphertexts.

δ δ′(2) δ′(3) δ′(4)
2−32 ≈ 2−32 ≈ 2−63 ≈ 2−94

2−64 ≈ 2−64 ≈ 2−127 ≈ 2−190

2−96 ≈ 2−96 ≈ 2−191 ≈ 2−284

To analyze the probabilities of such events happening, we start by defining a define a tuple
((pk, sk), M) problematic, if it exhibits a correctness error in Π, i.e., Dec(sk, Enc(pk, M)) ̸=
M . By definition of δ-correctness, each tuple is problematic with probability at most δ,
as (pk, sk) ← KeyGen(λ) outputs independently random key pairs.

Let us consider the first event. The probability of the first event happening equals the
probability of each ((pkj , skj), M), j ∈ [ℓ], being problematic. Since KeyGen outputs are
independent, this can be bounded by δℓ.

Let us now consider the second event. Suppose message M was encrypted but message
M ′ ≠ M gets decrypted in some slot i ∈ [ℓ], such a message passes all checks and gets
returned. Since Ci = Enc(pki, M) but Π.Dec(ski, Ci) = M ′, we deduce that the tuple
((pki, ski), M) is problematic. Moreover, since M ′ passes all re-encryption checks, which
in particular means that for all j ∈ [ℓ] \ {i}

Enc(pkj , M) = Cj = Enc(pkj , M ′).

Since Π.Dec is deterministic, at most one between M and M ′ can be equal to Π.Dec(skj , Cj).
Therefore, either ((pkj , skj), M ′) is problematic or ((pkj , skj), M) is problematic. As we
have remarked before, each such tuple is problematic with probability at most δ. Thus, the
overall probability of M ′ getting returned is δℓ. Since there are ℓ − 1 such possible indices
i (recall that in the second event at least one ciphertext component correctly decrypts),
a union bound shows that the probability of this second event happening is bounded by
(ℓ − 1)δℓ.

Putting everything together, we obtain that Π′ has then correctness error δ′ := δℓ + (ℓ −
1)δℓ = ℓδℓ.

Their security follows by applying Theorem 2.2.3 with q = 1 and n = ℓ in the deterministic
case, for both Cp,d and Cp,d

⋆, or vice versa with q = ℓ and n = 1 in the randomized case:

Corollary 2.3.1. For any x-CPA adversary B against Π′ obtained via applying Cp,y to
Π, there exists an x-CPA adversary A such that:

Advpke-x-cpa
Π′,B (λ) ≤ ℓ · Advpke-x-cpa

Π,A (λ),

where y = d if x = OW and y = r if x = IND.
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Π′.Enc(pk, M)
C := Π.Enc(pk, M ; G(M))
return ctxt

Π′.Dec(sk, ctxt)
M ′ := Π.Dec(sk, ctxt)
if M ′ = ⊥ or ctxt ̸= Π.Enc(pk, M ′; G(M ′))

return ⊥
else return M ′

Figure 2.9: OW-PCA-secure scheme Π′ = T[Π, G] with deterministic encryption.

As the analysis above suggests, ℓ will be a small constant, so the loss in ℓ does not pose
a problem regarding tightness.

2.3.3 Transformations T and U ̸⊥

Subsequently, we discuss basic transformations from [HHK17a] to first transform an
IND-CPA secure PKE into an OW-CPA secure PKE (transformation T in [HHK17a]) and
then to convert an OW-PCA secure PKE into an IND-CCA secure KEM with implicit
rejection (transformation U ̸⊥ in [HHK17a]) and we discuss alternative transformations
later. We stress that these transformations either work for perfectly correct schemes or
schemes with a negligible correctness error.

T: IND-CPA =⇒ OW-PCA (ROM)/OW-CPA (QROM). The transform T is a sim-
ple de-randomization of a PKE by deriving the randomness r used by the algorithm Enc
via evaluating a random oracle (RO) on the message to be encrypted. More precisely, let
Π = (KGen, Enc, Dec) be a PKE with message space M and randomness space R and
G : M → R be a RO. We denote the PKE Π′ obtained by applying transformation T
depicted in Figure 2.9 as Π′ = T[Π, G], where Π′.KGen = Π.KGen and is thus omitted.

For the ROM, we recall the following theorem:

Theorem 2.3.4 (Thm. 3.2 [HHK17a] (Π IND-CPA =⇒ Π′ OW-PCA)). Assume Π to
be δ-correct. Then, Π′ is δ1(qG) = qG · δ correct and for any OW-PCA adversary B that
issues at most qG queries to the RO G and qP queries to a plaintext checking oracle Pco,
there exists an IND-CPA adversary A running in about the same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ (qG + qP ) · δ + 2qG + 1

|M| + 3 · Advpke-ind-cpa
Π,A (λ).

And for the QROM, we recall the following theorem:

Theorem 2.3.5 (Thm. 1 [BHH+19] (Π IND-CPA =⇒ Π′ OW-CPA)). If A is an
OW-CPA-adversary against Π′ = T[Π, G] issuing at most qG queries to the quantum-
accessible RO G of at most depth d, then there exists an IND-CPA adversary B against Π
running in about the same time as A such that

Advpke-ow-cpa
Π′,A (λ) ≤ (d + 1) ·

*
Advpke-ind-cpa

Π,B (λ) + 8 · (qG + 1)
|M|

1
.
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KEM.KGen(λ)

(pk′, sk′) ← Π′.KGen(λ)
s←M
sk := (sk′, s)
return (pk′, sk)

KEM.Encaps(pk)
M←M
C ← Π′.Enc(pk, M)
K := H(M, ctxt)
return (K, ctxt)

KEM.Decaps(sk, ctxt)
Parse sk = (sk′, s)
M ′ := Π′.Dec(sk′, ctxt)
if M ′ ̸= ⊥

return K := H(M ′, ctxt)
else return K := H(s, ctxt)

Figure 2.10: IND-CCA-secure KEM scheme KEM = U ̸⊥[Π′, H].

U ̸⊥: OW-PCA =⇒ IND-CCA. The transformation U ̸⊥ transforms any OW-PCA secure
PKE Π′ into an IND-CCA secure KEM in the (Q)ROM. The basic idea is that one
encrypts a random message M from the message space M of Π′ and the encapsulated key
is the RO evaluated on the message M and the corresponding ciphertext ctxt under Π′.
This transformation uses implicit rejection and on decryption failure does not return ⊥,
but an evaluation of the RO on the ciphertext and a random message s ∈ M, being part
of sk of the resulting KEM, as a “wrong” encapsulation key. It is depicted in Figure 2.10.

In the ROM, we have the following result:

Theorem 2.3.6 (Thm. 3.4 [HHK17a] (Π′ OW-PCA =⇒ KEM IND-CCA)). If Π′ is δ1-
correct, then KEM is δ1-correct in the random oracle model. For any IND-CCA adversary
B against KEM, issuing at most qH queries to the random oracle H, there exists an
OW-PCA adversary A against Π′ running in about the same time as B that makes at
most qH queries to the Pco oracle such that

Advkem-ind-cca
KEM,B (λ) ≤ qH

|M| + Advpke-ow-pca
Π′,A (λ).

For the QROM, we have the following non-tight result:

Theorem 2.3.7 (Thm. 6 [JZM19] (Π′ OW-PCA =⇒ KEM IND-CCA)). Let Π′ be a
deterministic PKE scheme which is independent of H. Let B be an IND-CCA adversary
against the KEM U ̸⊥[Π′, H], and suppose that A makes at most qd (classical) decryption
queries and qH queries to quantum-accessible random oracle H of depth at most d, then
there exists and adversary B against Π′ such that

Advkem-ind-cca
U ̸⊥[Π′,H],A(λ) ≤ 2 · qH9|M| + 2 ·

7
(qH + 1) · (2 · δ + Advpke-ow-cpa

Π′,B (λ)).

If we assume ε-injectivity and FFC, respectively, we have tighter bounds:

Theorem 2.3.8 (Thm. 4.6 [KSS+20] (Π′ OW-CPA + FFC =⇒ KEM IND-CCA)). Let Π′

be an ε-injective deterministic PKE scheme which is independent of H. Suppose that A
is an IND-CCA adversary against the KEM U ̸⊥[Π′, H], and suppose that A makes at most
qd (classical) decryption queries and qH queries to quantum-accessible random oracle H
of depth at most d, then there exist two adversaries running in about the same time as A:
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• an OW-CPA-adversary B1 against Π′ and

• a FFC-adversary B2 against Π′ returning a list of at most qd ciphertexts,

such that

Advkem-ind-cca
U ̸⊥[Π′,H],A(λ) ≤ 4d · Advpke-ow-cpa

Π′,B1
(λ) + 6 · Advpke-ffc

Π′,B2
(λ) + (4 · d + 6) · ε.

FO ̸⊥[Π, G, H]. By combining transformation T with U ̸⊥ one consequently obtains an
IND-CCA secure KEM KEM from an IND-CPA secure PKE Π. Note that the security
reduction of the FO ̸⊥ := U ̸⊥ ◦ T variant of the FO is tight in the random oracle model
and works even if Π has negligible correctness error instead of perfect correctness.

FO ̸⊥[Π, G, H] in the QROM. Hofheinz et al. in [HHK17a] also provide variants of the
FO transform that are secure in the QROM, but they are (highly) non-tight. Bindel
et al. [BHH+19] presented a tighter proof for U ̸⊥ under an additional assumption of
ε-injectivity. This result was recently improved by Kuchta et al. [KSS+20]. Additionally,
Jiang et al. [JZM19] provided tighter proofs for the general case.

U⊥, U⊥
m, U ̸⊥

m and other approaches. Besides the transform with implicit rejection,
U ̸⊥, one can also consider explicit rejection, U⊥ and versions of both where the derived
session key depends on the ciphertext, U ̸⊥

m and U⊥
m, respectively. Bindel et al. [BHH+19]

show that security of implicit rejection implies security with explicit rejection. The
opposite direction also holds if the scheme with explicit rejection also employs key
confirmation. Moreover, they show that the security is independent of including the
ciphertext in the session key derivation.

A different approach was proposed by Saito et al. [SXY18], where they start from a
deterministic disjoint simulatable PKE and apply U ̸⊥

m with an additional re-encryption
step in the decryption algorithm. While the original construction relied on a perfectly
correct PKE, Jiang et al. gave non-tight reductions for schemes with negligible correctness
error in [JZC+18]. Hövelmanns et al. [HKSU20] improve over this approach by giving a
different modularization of Saito et al.’s TPunc.
Black-box use of the compiler Cp,d/Cp,d

⋆/Cp,r. Using Cp,d, Cp,d
⋆ or Cp,r from Sec-

tion 2.3.2, we can transform any deterministic or randomized PKE with non-negligible
correctness error into one with negligible correctness error. Consequently, Theorem 2.3.1
as a result yields a scheme that is compatible with all the results on the T and variants
of the U transformations in this section. Note that in particular this gives us a general
way to apply these variants of the FO transform to PKE schemes with non-negligible
correctness error.
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2.3.4 Non Black-Box Use: the Transformation T⋆

Since the direct product compiler is rather complicated to analyze, we alternatively
investigate to start from an IND-CPA secure PKE Π which is ϵ-key δ-correct, for some
non-negligible δ and introduce a variant of the transform T to de-randomize a PKE,
denoted T⋆. The idea is that we compute ℓ independent encryptions of the same message
M under the same public key pk using randomness G(M, i), i ∈ [ℓ], where G is a RO (see
Figure 2.11 for a compact description).

The resulting de-randomized PKE Π′ is ϵ′-key δ′-correct, with ϵ′ := ϵ and δ′ := ℓδℓ. The
reasoning is as follows: let Bad be the event where (pk, sk) ← KeyGen(λ) is one of those
key pairs not satisfying the δ-correctness bound. Conditioned on ¬Bad, we will show that
the probability of obtaining a decryption failure is ℓδℓ. This will prove our claim. Indeed,
for any key pair (pk, sk) ← KeyGen(λ) satisfying the δ-correctness bound, a decryption
error occurs if one of the following two (disjoint) events happens

• no ciphertext component decrypts correctly, or

• at least one ciphertext component correctly decrypts but a wrong message is anyway
returned.

Similar to what was done before, to analyze the probabilities of such events happening,
we start by defining a query G(M, i) problematic iff it exhibits a correctness error in Π (in
the sense that Π.Dec(sk, Π.Enc(pk, M ; G(M, i))) ̸= M). By definition, each query G(M, i)
is problematic with probability at most δ, as G outputs independently random values.

Let us consider the first event. The probability of the first event happening equals the
probability of each G(M, j), j ∈ [ℓ], being problematic. Since G’s outputs are independent,
this can be bounded by δℓ.

Let us now consider the second event. Suppose message M was encrypted but message
M ′ ≠ M gets decrypted in some slot i ∈ [ℓ], such a message passes all re-encryption
checks and gets returned. Since Ci = Enc(pk, M ; G(M, i)) but Π.Dec(sk, Ci) = M ′, we
deduce that the query G(M, i) is problematic. Moreover, since M ′ is returned, it means,
that it passes all re-encryption checks, which in particular means that for all j ∈ [ℓ] \ {i}

Enc(pk, M ; G(M, j)) = Cj = Enc(pk, M ′; G(M ′, j)).

Since Π.Dec is deterministic, at most one between M and M ′ can be equal to Π.Dec(sk, Cj).
Therefore, either G(M, j) or G(M ′, j) is problematic. As we have remarked before, G’s
outputs are independent, and each of them is problematic with probability at most δ.
Thus, the overall probability of M ′ getting returned is bounded by δℓ. Since there are in
total ℓ − 1 such possible indices i (recall that in the second event at least one ciphertext
component correctly decrypts), a union bound shows that the probability of this second
event happening is bounded by (ℓ − 1)δℓ.
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Π′.Enc(pk, M)
for i = 1, . . . , ℓ do

Ci := Π.Enc(pk, M ; G(M, i))
C := (C1, . . . , Cℓ)
return C

Π′.Dec(sk, ctxt)
res ← ⊥, check ← ⊥
for i = 1, . . . , ℓ do
res[i] := Π.Dec(sk, Ci)

for i ∈ [ℓ] s.t. res[i] ̸= ⊥ do
if ∀j ∈ [ℓ] : ctxtj = Π.Enc(pk,res[i]; G(res[i], j))
check ← i

if check ̸= ⊥
return res[check]

return ⊥
Figure 2.11: OW-PCA-secure scheme Π′ = T⋆[Π, G] with deterministic encryption and
correctness error δℓ from IND-CPA secure scheme Π with correctness error δ.

Putting everything together, we obtain that Π′ has then correctness error δ′ := δℓ + (ℓ −
1)δℓ = ℓδℓ.

To the resulting PKE Π′ we can then directly apply the transformation U ̸⊥ to obtain an
IND-CCA secure KEM KEM with negligible correctness error in the (Q)ROM.

Note that as we directly integrate the product compiler into the T transform, the
correctness of the message can be checked via the de-randomization. Hence, we can get
rid of the majority vote in the direct product compiler. With this change the analysis
of the concrete choice of ℓ becomes simpler and, more importantly, allows us to choose
smaller ℓ than in the black-box use of the compiler.

Remark 3. Note that in Figure 2.11 we explicitly consider the case where Dec of the PKE
scheme Π may return something arbitrary on failed decryption. For the simpler case where
we have a PKE scheme Π which always returns ⊥ on failed decryption, we can easily adapt
the approach in Figure 2.11 and the correctness error analysis from above. Namely, we
would decrypt all ℓ ciphertexts ctxti, i ∈ [ℓ]. Let h ∈ [ℓ] be the minimum index such that
res[h] ̸= ⊥. Then for every element j ∈ [ℓ] run ctxt′

j := Π.Enc(pk,res[h]; G(res[h], j).
If for all j ∈ [ℓ] we have ctxt′

j = ctxtj we return res[h]. If this is not the case we return
⊥. Note that all ℓ ctxt′

j have to be computed and checked against ctxtj, as otherwise
IND-CCA-security is not achieved. The difference is, that only ℓ encryptions instead of ℓ2

are required. As far as correctness error is concerned, it this case the correctness error is
triggered if and only if no ciphertext correctly decrypts. This happens with probability δℓ.

We now show the following theorem.

Theorem 2.3.9 (Π IND-CPA =⇒ Π′ OW-PCA). Assume Π to be ϵ-key δ-correct. Then,
Π′ is ϵ1-key δ1(qG, ℓ)-correct in the random oracle model, for ϵ1 = ϵ and δ1(qG, ℓ) ≤
qG
ℓ

· ℓ · δℓ = qG · δℓ. For any OW-PCA adversary B that issues at most qG queries to
the random oracle G and qP queries to a plaintext checking oracle Pco, there exists an
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IND-CPA adversary A running in about the same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ ϵ +

*
qG
ℓ

+ qP

1
· ℓδℓ + 2qG + 1

|M| + 3ℓ · Advpke-ind-cpa
Π,A (λ).

We provide the proof which closely follows the proof of [HHK17b, Thm 3.2] in Ap-
pendix A.2.1. Note that we lose an additional factor of ℓ. Additionally, when using the
bounded δ-correctness notion from Bindel. et al. [BS20], the factor of qG disappears.

We now have an OW-PCA secure PKE Π′ with negligible correctness error and can
thus directly use U ̸⊥ and by invoking Theorem 2.3.6 obtain an IND-CCA secure KEM
KEM. Note that all steps in the reduction are tight. For the security in the QROM,
we can directly conclude from Corollary 2.3.1 that the generic framework of Bindel
et al. [BHH+19] can be applied to Cp,d and Cp,r with the additional constraint of ε-
injectivity and FFC, respectively. Without these additional constraints, the results of
Jiang et al. [JZM19] or Hövelmanns et al. [HKSU20]3 apply without the tighter reductions
that the Bindel et al.’s and Kuchta et al.’s results offer.

The security of the T⋆ transform in the QROM follows in a similar vein. To highlight
how ℓ influences the advantages, we follow the proof strategy of Bindel et al. [BHH+19].
Therefore, we first show that a randomized IND-CPA-secure PKE scheme with a non-
negligible correctness error is transformed to OW-CPA-secure deterministic PKE scheme
with negligible correctness error. Second, we prove that if the T⋆-transformed version
is also ε-injective, then it provides FFC. With these two results in place, we can apply
Theorem 2.3.8 to obtain an IND-CCA-secure KEM.

In the following theorem, we prove OW-CPA security of the T⋆ transform in the QROM
(see Appendix A.1.1). We follow the strategy of the proof of [BHH+19, Thm. 1] and
adapt it to our transform. Compared to the T transform, we lose a factor of ℓ2. Once
the loss is incurred by Theorem 2.2.3 and once by the semi-classical one-way to hiding
Theorem [AHU19].

Theorem 2.3.10 (Π IND-CPA =⇒ Π′ OW-CPA). Let Π be a non-deterministic PKE
with randomness space R and decryption error δ. Let ℓ ∈ N such that δℓ is negligible in
the security parameter λ. Let G : M× [ℓ] → R be a quantum-accessible random oracle and
let qG the number queries with depth at most d. If A is an OW-CPA-adversary against
T⋆[Π, G, ℓ], then there exists an IND-CPA adversary B against Π, running in about same
time as A, such that

Advpke-ow-cpa
T⋆[Π,G,ℓ],A(λ) ≤ (d + ℓ + 1) ·

*
ℓ · Advpke-ind-cpa

Π,B (λ) + 8 · (qG + 1)
|M|

1
.

We refer to Appendix A.2.2 for the proof. Next, we show that the transform provides
the FFC property (cf. [BHH+19, Lemma 6]).

3Without restating [HKSU20, Thm 3.2], note that we can adopt it the same way we highlight in
Theorems 2.3.9 and 2.3.10. So, we start with their Punc to obtain disjoint simutability and then apply
T⋆ and U ̸⊥

m.
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Table 2.2: Comparison of the runtime and bandwidth overheads of Cp,y, y ∈ {r, d}, with
ℓ ciphertexts and T⋆ and Cp,d

⋆ with ℓ′ ciphertexts such that ℓ ≥ ℓ′ + 1.

|pk| |ctxt| KGen Enc Dec
Cp,y 1 (r) / ℓ (d) ℓ 1 (r) / ℓ (d) ℓ ℓ
Cp,d

⋆ ℓ′ ℓ′ ℓ′ ℓ′ ℓ′

T⋆ 1 ℓ′ 1 ℓ′ ℓ′2 / ℓ′ (⊥)

Lemma 2.3.1. If Π is a δ-correct non-deterministic PKE with randomness space R,
ℓ ∈ N such that δℓ is negligible in the security parameter λ, G : M × [ℓ] → R is a random
oracle so that Π′ = T⋆[Π, G, ℓ] is ε-injective, then the advantage for any FFC-adversary A
against Π′ which makes at most qG queries at depth d to G and which returns a list of at
most qL ciphertexts is bounded by

Advpke-ffc
Π′,A (λ) ≤

'
(4 · d + 1) · δℓ +

√
3 · ε

.
· (qG + qL) + ε.

For the proof we refer to Appendix A.2.3.

2.3.5 Comparison of the Two Approaches
The major difference between the generic approach using the direct product compiler
Cp,y, y ∈ {r, d}, and T⋆ (or the modified deterministic direct product compiler Cp,d

⋆) is
the number of ciphertexts required to reach a negligible correctness error. As observed in
Section 2.3.2, the analysis of the overall decryption error is rather complicated and Cp,y
requires at least ℓ ≥ 3. With T⋆/Cp,d

⋆ however, the situation is simpler. As soon as one
ciphertext decrypts correctly and no encryption collision happen, the overall correctness
of the decryption can be guaranteed. Also, for the cases analysed in Table 2.1, Cp,y
requires at least one ciphertext more than T⋆ and Cp,d

⋆. For the correctness error, we
have a loss in the number of random oracle queries in both cases. For the comparison of
the runtime and bandwidth overheads, we refer to Table 2.2. Note that if the Dec of the
underlying PKE Π reports decryption failures with ⊥, then the overhead of T⋆ for Dec is
only a factor ℓ (cf. Remark 3).

2.4 Our Transform in Practice
The most obvious use-case for IND-CCA secure KEMs in practice is when considering
static long-term keys. Systems supporting such a setting are for example RSA-based key
exchange for SSH [Har06] or similarly in TLS up to version 1.2. But since the use of
long-term keys precludes forward-secrecy guarantees, using static keys is not desirable.
For ephemeral keys such as used in the ephemeral Diffie-Hellman key exchange, an
IND-CPA secure KEM might seem sufficient. Yet, in the post-quantum setting accidental
re-use of an ephemeral key leads to a wide range of attacks [BGRR19]. But also from
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a theoretical viewpoint it is unclear whether CPA security actually would be enough.
Security analysis of the TLS handshake protocol suggests that in the case of version
1.2 an only passively secure version is insufficient [JKSS12, KPW13] (cf. also [PST20]).
Also, security analysis of the version 1.3 handshake requires IND-CCA security [DFGS15].
Thus, even in the case of ephemeral key exchanges, using a IND-CCA secure KEM is
actually desirable and often even necessary as highlighted by Schwabe et al. [SSW20b].

For comparing KEMs in this context, the interesting metric is hence not the ciphertext
size alone, but the combined public key and ciphertext size. Both parts influence the
communication cost of the protocols. Additionally, the combined runtime of the key
generation, encapsulation and decapsulation is also an interesting metric. All three
operations are performed in a typical ephemeral key exchange and hence give a lower
bound for the overall runtime of the protocol.

In the following comparison, we assume that the underlying PKE never returns ⊥ on
failure, but an incorrect message instead. Thereby we obtain an upper bound for the
runtime of the Decaps algorithm. For specific cases where Decaps explicitly returns ⊥ on
failure, the runtime figures would get better since the overhead to check the ciphertexts
is reduced to a factor of ℓ (cf. Remark 3).

2.4.1 Code-Based KEMs
KEMs based on error correcting codes can be parametrized such that the decoding failure
rate (DFR) is non-negligible, negligible, or 0. Interestingly, the DFR rate is also influenced
by the actual decoder. Even for the same choice of code and the exact same instance of
the code, a decoder might have a non-negligible DFR, whereas another (usually more
complex) decoder obtains a negligible DFR. For the submissions in the NIST PQC we can
observe all three choices. The candidates providing IND-CPA-secure variants with non-
negligible DFR include: BIKE [ABB+19], ROLLO [ABD+19], and LEDAcrypt [BBC+19].
We discuss the application of our transform to those schemes below. For the comparison
in Table 2.3, we consider the DFR as upper bound for correctness error. In Table 2.3,
we present an overview of the comparison (see Appendix A.3 for the full comparison).
First we consider ROLLO, and in particular ROLLO-I, where we obtain the best results:
public key and ciphertext size combined is always smaller than for ROLLO-II and the
parallel implementation is faster even in case of a ℓ2 overhead. For both BIKE (using
T⋆) and LEDAcrypt (using C⋆

p,d since it starts from a deterministic PKE), we observe a
trade-off between bandwidth and runtime.

2.4.2 Lattice-Based KEMs
For lattice-based primitives the decryption error depends both on the modulus q and the
error distribution used.

As discussed in [SAB+19], an important decision that designers have to make is whether
to allow decryption failures or choose parameters that not only have a negligible, but
a zero chance of failure. Having a perfectly correct encryption makes transforms to
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Table 2.3: Sizes (in bytes) and runtimes (in ms and millions of cycles for BIKE), where
O denotes the transformed scheme. The LEDAcrypt instances with postfix NN refer
to those with non-negligible DFR. Runtimes are taken from the respective submission
documents and are only intra-scheme comparable.

KEM δ pk ctxt ; KGen Encaps Decaps
O[ROLLO-I-L1,5] 2−147.7 465 2325 2790 0.10 0.02/0.10 0.26/1.30
ROLLO-II-L1 2−128 1546 1674 3220 0.69 0.08 0.53
O[ROLLO-I-L3,4] 2−126 590 2360 2950 0.13 0.02/0.08 0.42/1.68
ROLLO-II-L3 2−128 2020 2148 4168 0.83 0.09 0.69
O[ROLLO-I-L5,4] 2−166 947 7576 8523 0.20 0.03/0.12 0.78/3.12
ROLLO-II-L5 2−128 2493 2621 5114 0.79 0.10 0.84
O[BIKE-2-L1,3] 2−145.4 10163 30489 40652 4.79 0.14/0.42 3.29/9.88
BIKE-2-CCA-L1 2−128 11779 12035 23814 6.32 0.20 4.12
O[LEDAcrypt-L5-NN,2] 2−127 22272 22272 44544 5.04 0.14/0.29 1.55/3.11
LEDAcrypt-L5 2−128 19040 19040 38080 4.25 0.84 2.28

obtain IND-CCA security and security proofs easier, but with the disadvantage that this
means either decreasing security against attacks targeting the underlying lattice problem
or decreasing performance. The only NIST PQC submissions based on lattices which
provide parameter sets achieving both negligible and non-negligible decryption failure are
ThreeBears [Ham19] and Round5 [GZB+19]. The IND-CCA-secure version of ThreeBears
is obtained by tweaking the error distribution, hence, our approach does not yield any
improvements. For Round5 we achieve a trade-off between bandwidth and runtime. We
also considered FrodoKEM [NAB+19], comparing its version [BCD+16] precedent to the
NIST PQC, which only achieved non-negligible failure probability, to the ones in the
second round of the above competition, but we do not observe any improvements for this
scheme. For the full comparison we refer to Appendix A.3. It would be interesting to
understand the reasons why the compiler does not perform well on lattice-based scheme
compared to the code-based ones and whether this is due to the particular schemes
analysed or due to some intrinsic difference between code- and lattice-based constructions.

2.4.3 Implementation Aspects
One of the strengths of T⋆ compared to the black-box use of Cp,y, y ∈ {r, d} (and Cp,d

⋆),
is that besides the initial generation of the encapsulated key, all the random oracle calls
can be evaluated independently. Therefore, the encryptions of the underlying PKE do
not depend on each other. Thus, the encapsulation algorithms are easily parallelizable –
both in software and hardware. The same applies to the decapsulation algorithm. While
in this case only one successful run of the algorithm is required, doing all of them in
parallel helps to obtain a constant-time implementation. Then, after all ciphertexts have
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been processed, the first valid one can be used to re-compute the ciphertexts, which can
be done again in parallel. For software implementations on multi-core CPUs as seen on
today’s desktops, servers, and smartphones with 4 or more cores, the overhead compared
to the IND-CPA secure version is thus insignificant as long as the error is below 2−32.
If not implemented in a parallel fashion, providing a constant-time implementation of
the decapsulation algorithms is more costly. In that case, all of the ciphertexts have to
be dealt with to not leak the index of invalid ciphertexts. Note that a constant-time
implementation of the transform is important to avoid key-recovery attacks [GJN20].

The T⋆ transform also avoids new attack vectors such as [GJY19] that are introduced via
different techniques to decrease the correctness error, e.g., by applying an error-correcting
code on top. Furthermore, since the same parameter sets are used for the IND-CPA and
IND-CCA secure version when applying our transforms, the implementations of proposals
with different parameter sets can be simplified. Thus, more focus can be put on analysing
one of the parameter sets and also on optimizing the implementation of one of them.

2.5 Application to Bloom Filter KEMs
A Bloom Filter Key Encapsulation Mechanism (BFKEM) [DJSS18, DGJ+21] is a specific
type of a puncturable encryption scheme [GM15, GHJL17, DJSS18, SSS+20] where one
associates a Bloom Filter (BF) [Blo70] to its public-secret key pair depending on the
BF-parameters k, m ∈ N. The initial (i.e., non-punctured) secret key is associated to
an empty BF where all bits are set to 0. (In particular, the BF allows for a compact
binary representation T of [m].) Encapsulation, depending on a so-called tag u in the
universe of the BF, takes the public key, and returns a ciphertext and an encapsulation
key k corresponding to the BF-evaluation of u, i.e., k hash evaluations on u yielding
so-called indexes in the domain [m]. Puncturing, on input a ciphertext ctxt (associated
to tag u) and a secret key sk′, punctures sk′ on ctxt and returns the resulting secret key.
Decapsulation, on input a ciphertext ctxt (with an associated tag u) and secret key sk′

is able to decapsulate the ciphertext to k if sk′ was not punctured on ctxt. We want
to mention, as in [DGJ+21], we solely focus on KEMs since a Bloom Filter Encryption
(BFE) scheme (which encrypts a message from some message space) can be generically
derived from a BFKEM (cf. [FO99]).

The basic instantiation of a BFKEM in [DJSS18, DGJ+21] is non-black box and based on
the pairing-based Boneh-Franklin Identity-Based Encryption (IBE) scheme [BF01], where
sk contains an IBE secret key for every “identity” i ∈ [m] of the BF bits (according to T )
and puncturing amounts to inserting tag u in the BF and deleting the IBE secret keys for
the corresponding bits. Although the BFKEM is defined with respect to a non-negligible
correctness error, the underlying variant of the Boneh-Franklin IBE has perfect correctness.
So the non-negligible error in the BFKEM is only introduced on an abstraction (at the
level of the BF) above the Fujisaki-Okamoto (FO) transform [FO99, FO13] applied to
the k Boneh-Franklin IBE ciphertexts (so the application of the FO can be done as usual
for perfectly correct encryption schemes).
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However, if one targets instantiations of BFKEM where the underlying IBE does not
have perfect correctness (e.g., lattice- or code-based IBEs), it is not obvious whether
the security proof using the Boneh-Franklin IBE as presented in [DJSS18, DGJ+21] can
easily be adapted to this setting.4

We first recall necessary definitions for BFs, BFKEMS, and their properties from [DGJ+21]
and show a generic construction of BFKEM from any IBE scheme with (non-)negligible
correctness error in Section 2.5.1.

Definition 2.5.1 (Bloom Filter). A Bloom Filter (BF) [Blo70] BF consists of the PPT
algorithms (BF-Gen, BF-Update, BF-Check):

BF-Gen(m, k) : BF generation, on input BF parameters m, k ∈ N, samples k universal
hash functions H1, . . . , Hk, where Hj : U → [m], for all j ∈ [k], defines H :=
(Hj)j∈[k], sets T0 := 0m, i.e., an m-bit array of all 0, and outputs (H, T0).

BF-Update(H, T, u) : The BF-update algorithm, on input H = (Hj)j∈[k], T ∈ {0, 1}m,
and u ∈ U , sets T ′ := T and, afterwards, T ′[Hj(u)] := 1, where T ′[i] denotes the
i-th bit of T ′, for all j ∈ [k]. The algorithms outputs the updated state T ′.

BF-Check(H, T, u) : The BF-check algorithm, on input H = (Hj)j∈[k], T ∈ {0, 1}m, and
u ∈ U , returns a bit b := &

j∈[k] T [Hj(u)], where T [i] denotes the i-th bit of T .

For all m, k ∈ N, we require the following properties of BF:

Perfect completeness. For all (H, T0) ← BF-Gen(m, k), for all n ∈ N, for all (u1, . . . , un) ∈
Un, for all i ∈ [n], for all Ti ← BF-Update(H, Ti−1, ui), we require that BF-Check(H, Tn, ui)
= 1 holds.

Compact representation of any U ′ ⊂ U . The size of the any representation Ti, for
all Ti as output of BF-Update, is a constant number of m bits independent of the
size of any set U ′ ⊂ U and the representation of any element in U .

Bounded false-positive probability. For all (H, T0) ← BF-Gen(m, k), for all n ∈ N,
for all U ′ = (u1, . . . , un) ∈ Un, for all i ∈ [n], for all Ti ← BF-Update(H, Ti−1, ui),

for all u∗ ∈ U\U ′, we require that Pr [BF-Check(H, Tn, u∗) = 1] ≤
*

1 − e− (n+1/2)k
m−1

1k

holds, where the probability is taken over the random coins of BF-Gen.

In the following, we recap the BFKEM and its formal properties from [DGJ+21] which tol-
erates a non-negligible correctness error and the key generation takes parameters m and k

4For practical reasons, we want the size of the BFKEM public key to be independent of the BF
parameters (besides the descriptions of the hash functions). Right now, we only can guarantee this with
IBE schemes as such schemes allow for exponentially many identity-based secret keys (in the security
parameter) while maintaining a short public key.
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as input which specify the correctness error. Furthermore, we slightly adapt their BFKEM
properties extended correctness, separable randomness, and publicly-checkable puncturing
to allow a negligible decryption error for extended correctness and publicly-checkable
puncturing properties while extending the input space for the separable randomness
property.

Definition 2.5.2 (Bloom Filter Key Encapsulation Mechanism). A BFKEM BFKEM
with key space K consists of the PPT algorithms (KGen, Encaps, Punc, Decaps).

KGen(λ, m, k) : Key generation, on input security parameter λ and BF parameters m, k,
outputs public and secret keys (pk, sk0). (We assume that pk is available to Punc
and Decaps implicitly.)

Encaps(pk) : Encapsulation, on input pk, outputs a ciphertext ctxt and key k.

Punc(sk, ctxt) : Secret-key puncturing, on input sk and ctxt, outputs an updated secret
key sk′.

Decaps(sk, ctxt) : Decapsulation, on input sk and ctxt, outputs k or {⊥}.

Definition 2.5.3 (Correctness of BFKEM). For all λ, m, k, n ∈ N and any (pk, sk0) ←
KGen(λ, m, k), we require that for any (arbitrary interleaved) sequence of invocations of
ski ← Punc(ski−1, ctxti−1), for (ctxti−1, ki−1) ← Encaps(pk), for i ∈ [n], it holds that

Pr [Decaps(skn, ctxtn) ̸= kn] ≤
*

1 − e− (n+1/2)·k
m−1

1k

+ ε(λ),

where (ctxtn, kn) ← Encaps(pk) and ε is a negligible function in λ. The probability is
taken over the random coins of KGen, Encaps, and Punc.

Definition 2.5.4 (Extended Correctness of BFKEM). For all λ, m, k, n ∈ N and any
(pk, sk0) ← KGen(λ, m, k), we require that for any (arbitrary interleaved) sequence of
invocations of ski ← Punc(ski−1, Ci−1), where i ∈ [n] and (Ci−1, ki−1) ← Encaps(pk), it
holds that:

(a) Impossibility of false-negatives: Decaps(skn, Cj−1) = ⊥, for all j ∈ [n].

(b) Correctness of the initial secret key: Pr[Decaps(sk0, C) ̸= k] ≤ ε(λ), for all (C, k) ←
Encaps(pk) and ε is a negligible function in λ.

(c) Semi-correctness of punctured secret keys: if Decaps(skj , C) ̸= ⊥ then Pr[Decaps(skj , C)
̸= Decaps(sk0, C)] ≤ ε(λ), for all j ∈ [n], any C, and ε is a negligible function in λ.

All probabilities are taken over the random coins of KGen, Punc, and Encaps. The differ-
ence to [DGJ+21] is that we allow for a negligible error in (b) and (c).
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Definition 2.5.5 (Separable Randomness of BFKEM). For all λ, m, k ∈ N, for (pk, ·) ←
KGen(λ, m, k), a BFKEM BFKEM has the property separable randomness if the encapsu-
lation algorithm Encaps can be written as

(ctxt, k) ← Encaps(pk) = Encaps(pk; (r, k)),

for some (r, k) ∈ R × K, for randomness space R = {0, 1}ρ × · · · × {0, 1}ρ
 	� �
k times

and key space

K of BFKEM, for large-enough integer ρ. Hence, pk, r and k as input to deterministic
Encaps uniquely determine (ctxt, k). The difference to [DGJ+21] is that we extend the
randomness space as input to Encaps.

Definition 2.5.6 (Publicly-Checkable Puncturing of BFKEM). For all λ, m, k, ℓ ∈ N,
BFKEM has the publicly-checkable puncturing property if there exists a PPT algo-
rithm CheckPunct such that after running (pk, sk0) ← KGen(λ, m, k), (ctxti−1, ki−1) ←
Encaps(pk), and ski ← Punc(ski−1, ctxti−1), for i ∈ [ℓ], we have that

Pr [Decaps(skℓ, C) = ⊥ ⇍⇒ CheckPunct(pk, L, C) = ⊥] ≤ ε(λ),

holds, for L = (ctxt0, . . . , ctxtℓ−1), for any C, and ε is a negligible function in λ. The
probability is taken over the random coins of KGen, Punc, and Encaps.

Definition 2.5.7 (γ-Spreadness of BFKEM). For all λ, m, k, ρ ∈ N, a BFKEM BFKEM
with separable randomness is γ-spread, if for any (pk, ·) ← KGen(λ, m, k), any keys k ∈ K,
r ← R, and any C ∈ C, where R and C are the randomness and ciphertext spaces of
BFKEM, respectively, we have that Pr[(C, ·) = Encaps(pk; (r, k))] ≤ 2−γ holds, where the
probability is taken over the random coins of KGen.

BFKEM-IND-CPA and BFKEM-IND-CCA security. We say a BFKEM BFKEM is
BFKEM-IND-CPA or BFKEM-IND-CCA secure if and only if any PPT adversary A
has only negligible advantage in the following security experiments. First, A gets
an honestly generated public key pk as well as a ciphertext-key pair (ctxt∗, k∗

b), for
(ctxt∗, k0) ← Encaps(pk), for k1←K, and for b←{0, 1}. Furthermore, A has access to
Punc′-, Cor-, and Decaps′-oracle (with initially empty set L with ℓ := 0 and the latter
oracle only in the BFKEM-IND-CCA-security experiment):

Punc′(ctxt) : on input ctxt, set L := L ∪ {ctxt} and ℓ := ℓ + 1, compute skℓ ←
Punc(skℓ−1, ctxt), store and return skℓ.

Cor : if ctxt∗ ∈ L, then return skℓ, else outputs ⊥.

Decaps′(ctxt) : on input ctxt, if ctxt ≠ ctxt∗, then return Decaps(sk0, ctxt), else return ⊥.

Eventually, A outputs a guess b′. Finally, if b = b′, then the experiment outputs 1. The
formal experiments are depicted in Figure 2.12.
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Exp. Expbfkem-ind-y
BFKEM,A (λ, m, k)

(pk, sk0) ← KGen(λ, m, k)
(ctxt∗, k∗

0) ← Encaps(pk), k∗
1←K

b←{0, 1}
b′ ← APunc′(·),Cor,Decaps′(·)(pk, ctxt∗, k∗

b)
if b = b′ then return 1 else return 0

Figure 2.12: BFKEM-IND-y security experiments for BFKEM, for y ∈ {CPA, CCA}. The
differences between BFKEM-IND-CPA and BFKEM-IND-CCA are given by underlining.

Enc′(mpk, id, M)
for i ∈ [ℓ]

ri←R
ctxti ← Enc(mpk, id, M ; ri)

return (ctxt1, . . . , ctxtℓ)

Dec′(usk[id], ctxt)
ctxt =: (ctxt1, . . . , ctxtℓ)
for i ∈ [ℓ]

M ′
i := Dec(usk[id], ctxti)

return maj(M ′
1, . . . , M ′

ℓ)

Figure 2.13: Compiler for Enc′ and Dec′ for constructing an IBE scheme IBE′ with
negligible correctness error from an IBE scheme IBE with non-negligible correctness error.

Definition 2.5.8. For any PPT adversary A and all λ, m, k ∈ N, the advantage functions

Advbfkem-ind-y
BFKEM,A (λ, m, k) :=

@@@@Pr[Expbfkem-ind-y
BFKEM,A (λ, m, k) = 1] − 1

2

@@@@ ,

for y ∈ {cpa, cca}, are negligible in λ, where the experiments Expbfkem-ind-y
BFKEM,A (λ, m, k) are

given in Figure 2.12 and BFKEM is a BFKEM.

2.5.1 IBE with Negligible from Non-Negligible Correctness Error
We follow the approach for randomized PKE schemes in Section 2.3.2 adapted for the
IBE case (cf. Figure 2.13).5 Let IBE = (KGen, Ext, Enc, Dec) be an IBE scheme with
identity, message spaces, and randomness spaces ID, M, and R, respectively, that
is ϵ-key δ-correct for some non-negligible correctness error δ(λ), we construct an IBE
scheme IBE′ = (KGen′, Ext′, Enc′, Dec′) with identity and message spaces ID′ := ID and
M′ := M, respectively, that is ϵ-key δ′-correct, with negligible correctness error δ′(λ).
The construction is as follows. Set KGen′ := KGen and Ext′ := Ext while Enc′ and Dec′

are given in Figure 2.13. See that ℓ = ℓ(λ) can be chosen appropriately to accommodate
a negligible correctness error δ′(λ).

5We explicitly mention that we are only concerned with randomized IBEs. Adopting Cp,d for
deterministic IBEs will work as well. Though in the latter case, one can further optimize the compiler
depending on whether the IBE has deterministic or randomized key extraction Ext.
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As for randomized PKE schemes, by an analogue of Theorem 2.2.3 for IBEs with q = ℓ
and n = 1, the security claim follows:

Corollary 2.5.1. For any IBE-sIND-CPA adversary B against IBE′ obtained via applying
the above transformation to IBE, there exists an IBE-sIND-CPA adversary A such that

Advibe-sind-cpa
IBE′,B (λ) ≤ ℓ · Advibe-sind-cpa

IBE,A (λ).

The correctness-error analysis is again equivalent to the one in the PKE scenario. We
refer to Section 2.3.2 for a more in-depth discussion.

2.5.2 BFKEM from IBE with Negligible Correctness Error
The intuition for our generic construction from any IBE scheme IBE with negligible
correctness error is as follows. We associate “user-secret keys” of IBE with the indexes
i ∈ [m] of the Bloom filter BF and annotate sk′

0 as a special key for “fixed identity” 0.
We consider the encapsulation key as k = (k0, k1) where the first share is encrypted under
“identity” 0 (yielding ctxt′

0) while the other share is encrypted under the “identities” (ij)j

of indexes of the BF that are determined by ctxt′
0. Put differently, ctxt′

0 acts as a tag
of the overall ciphertext while the other IBE-ciphertexts (ctxt′

ij
)j are utilized for correct

decryption, i.e., the secret key is punctured on “tag” ctxt′
0. Note that the secret key

sk′
0 is not affected by the puncturing mechanism and one can always at least decrypt

ctxt′
0. However, one additionally needs the encapsulation-key share from the other IBE-

ciphertexts (ctxt′
ij

)j ; those ciphertexts can only be decrypted if at least one secret key
sk′

i′ , for some index i′ ∈ [m], is available which can be checked with BF-Check.

More concretely, let BF = (BF-Gen, BF-Update, BF-Check) be a BF with universe U and
BF (integer) parameters m, k ∈ N. Furthermore, let IBE = (IBE.KGen, Ext, Enc, Dec)
be an IBE-sIND-CPA-secure IBE scheme with identity space [m] ∪ {0}, message space
M, and negligible key and correctness error ϵ = ϵ(λ) and δ = δ(λ). We construct a
BFKEM-IND-CPA-secure BFKEM scheme BFKEM = (KGen, Encaps, Punc, Decaps) with
key space K := M × M and non-negligible correctness error δ′ = δ′(λ, m, k, n) in
Figure 2.14. Later, we show how to use the BFKEM-IND-CPA-secure BFKEM with
additional BFKEM properties (i.e., extended correctness, separable randomness, publicly-
checkable puncturing, and γ-spreadness) as a stepping stone to build a BFKEM-IND-CCA-
secure BFKEM.

Correctness of BFKEM. According to Definition 2.5.3, we have to show

Pr[Decaps(skn, ctxtn) ̸= kn] ≤ (1 − e− (n+1/2)·k
m−1 )k + ε(λ). (2.1)

We argue that this holds due to the bounded false-positive probability of BF and due
to the negligible IBE key and correctness error terms ϵ = ϵ(λ) and δ = δ(λ), with
ϵ(λ) + δ(λ) ≤ ε(λ) for some negligible function ε(λ) and for any number of punctures
n. Concretely, see that Punc deletes IBE secret keys depending on the BF evaluated on
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KGen(λ, m, k):
(mpk, msk) ← IBE.KGen(λ)
(H, T0) ← BF-Gen(m, k)
sk′

id ← Ext(msk, id), id ∈ [m] ∪ {0}
pk := (mpk, H), sk := (T0, (sk′

id)id)
return (pk, sk0)

Punc(ski−1, ctxt):
(T, sk′

0, (sk′
id)id∈[m]) := ski−1

(ctxt0, . . .) := ctxt
T ′ := BF-Update(H, T, ctxt0)

sk′′
id :=



sk′

id if T ′[id] = 0,

⊥ if T ′[id] = 1,

return (T ′, sk′
0, (sk′′

id)id∈[m])

Encaps(pk):
(mpk, H) := pk with (Hj)j∈[k] := H

(k0, k1)←K
ctxt0 ← Enc(mpk, 0, k0)
idj := Hj(ctxt0), for all j ∈ [k]
ctxtidj ← Enc(mpk, idj , k1)
return ((ctxt0, (ctxtidj )j), (k0, k1))

Decaps(ski, ctxt):
(T, (sk′

id)id∈[m]∪{0}) := ski

(ctxt0, (ctxtidj )j∈[k]) := ctxt
if BF-Check(H, T, ctxt0) = 1 return ⊥
find smallest id ∈ [m] with sk′

id ̸= ⊥
k0 := Dec(sk′

0, ctxt0)
k1 := Dec(sk′

id , ctxtid)
if k0 = ⊥ or k1 = ⊥ return ⊥
return (k0, k1)

Figure 2.14: BFKEM-IND-CPA-secure BFKEM scheme BFKEM =
(KGen, Encaps, Punc, Decaps) from IBE and BF.

the first part of a ciphertext (i.e., inserting the first part of the ciphertext as “tag” into
the BF) which results in a secret key skn after n punctures. An (unpuctured) ciphertext
ctxtn, as freshly derived from (ctxtn, kn) ← Encaps(pk), yields Decaps(skn, ctxtn) ̸= kn if
no IBE secret key is available anymore or an IBE decryption error occurs. Due to the
bounded false-positive probability of BF, and the negligible key and correctness error ϵ(λ)
and δ(λ) of IBE, this will happen with probability at most (1 − e− (n+1/2)·k

m−1 )k + δ(λ) + ϵ(λ)
which yields Equation (2.1).

The following BFKEM-properties are mainly used in the security proof to achieve
BFKEM-IND-CCA-secure BFKEMs from BFKEM-IND-CPA-secure BFKEMs via the FO
transform [FO99] along the lines of the BFKEM-IND-CCA-proof given by Derler et al. [DJSS18,
DGJ+21].

Extended correctness of BFKEM. According to Definition 2.5.4, we have to show
(a) impossibility of false-negatives, (b) correctness of initial secret key, and (c) semi-
correctness of punctured secret keys. For any number of secret-key punctures n, (a) holds
due to the fact that skn (derived after puncturing on n ciphertexts) does not contain any
IBE secret keys anymore which are capable of decrypting those ciphertexts due to the
perfect completeness property of BF. (b) holds since sk0 has all (initial) IBE secret keys to
decrypt any honestly generated ciphertext correctly except with negligible probability due
to IBE correctness with negligible decryption error δ(λ). Concerning (c), if decapsulation
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does not fail with some (already punctured) secret key on some fixed ciphertext, i.e.,
there exists an IBE secret key to decrypt at least one ciphertext part, then Decaps outputs
a key that is the same as the output of Decaps under sk0 for that ciphertext except with
negligible probability due to IBE correctness with negligible decryption error δ(λ).

Separable randomness of BFKEM. According to Definition 2.5.5, we show that
Encaps(pk) can be written as Encaps(pk; (r, (k0, k1))), for (pk, ·) ← KGen(λ, m, k) and
(r, (k0, k1))←R × K with randomness space R = {0, 1}ρ × · · · × {0, 1}ρ
 	� �

k times

, for large-enough

integer ρ. We define Encaps(pk; (r, (k0, k1))) as follows (see that the input (pk; (r, (k0, k1)))
uniquely determines the output ((ctxt0, (ctxtidj )j), (k0, k1)):

Encaps(pk; (r, (k0, k1))):

(mpk, H) := pk with (Hj)j∈[k] := H

(r0, r1, . . . , rk) := r

ctxt0 ← Enc(mpk, 0, k0; r0)
idj := Hj(ctxt0), for all j ∈ [k]
ctxtidj ← Enc(mpk, idj , k1; rj), for all j ∈ [k]
return ((ctxt0, (ctxtidj )j), (k0, k1))

Publicly-checkable puncturing of BFKEM. According to Definition 2.5.6, we have
to show

Pr [Decaps(skℓ, C) = ⊥ ⇍⇒ CheckPunct(pk, L, C) = ⊥] ≤ ε(λ). (2.2)

For ℓ ∈ N, we construct CheckPunct(pk, L, C), for (pk, ·) ← KGen(λ, m, k) and any list of
honestly generated ciphertexts L = (ctxt0, . . . , ctxtℓ−1) where skℓ is punctured on, but
not given as input to CheckPunct:

CheckPunct(pk, L, C):

(mpk, H) := pk with (Hj)j∈[k] := H, (C ′
0, . . .) := C

(ctxt0, . . . , ctxtℓ−1) := L, for ctxti = (ctxti,0, . . .), for all i ∈ [ℓ]
Ti := BF-Update(H, Ti−1, ctxti,0), for all i ∈ [ℓ]
if BF-Check(H, Tℓ, C ′

0) = 1 return ⊥
return ̸⊥

See that CheckPunct runs in PPT since BF-Update and BF-Check are PPT algorithms.
Furthermore, Decaps outputs ⊥ if CheckPunct outputs ⊥ while CheckPunct outputs ⊥
if Decaps outputs ⊥ except with negligible probability which is due to the negligible
correctness error of IBE. Hence, Equation (2.2) follows.
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γ-spreadness of BFKEM. See that the γ-spreadness property of the underlying IBE
scheme directly carries over to the γ-spreadness property of BFKEM. Hence, if IBE is
γ-spread, then BFKEM is γ-spread.

BFKEM-IND-CPA security of BFKEM. We start by showing the BFKEM-IND-CPA
security of BFKEM.

Theorem 2.5.9. If IBE is IBE-sIND-CPA-secure, then BFKEM is BFKEM-IND-CPA-
secure. Concretely, for any PPT adversary A there is a PPT distinguisher D in the
IBE-sIND-CPA-security experiment such that

Advbfkem-ind-cpa
BFKEM,A (λ, m, k) ≤ k · m · Advibe-sind-cpa

IBE,D (λ). (2.3)

Proof. We show the BFKEM-IND-CPA-security of BFKEM for any valid PPT adversary
A in series of games where:

Hyb0: This is the BFKEM-IND-CPA-security experiment.

Hybi for i ∈ {1, . . . , k}: This is defined as Hybi−1 except that the challenge-ciphertext
element ctxtidi in ctxt∗ associated to idi is independent of the (challenge) bit b∗.

Hybk+1 This is defined as Hybk except that the encapsulation key in the challenge
ciphertext is independent of b∗.

We denote the event of the adversary winning hybrid Hybi as Si. In hybdrid Hybk+1, A has
no advantage (i.e., success probability of Pr[Sk+1] = 1/2) in the sense of BFKEM-IND-CPA.
We argue in hybrids that the Games i ∈ [k + 1] are computationally indistinguishable
from Game 0.

Hybrids between Hyb0 and Hybk+1. Each hybrid between Hybi−1 and Hybi, i ∈ [k],
is constructed as follows:

• On input m and k, D samples (H, T0) ← BF-Gen(m, k), for H =: (Hj)j∈[k] and
sets T0 = 0m. Next, D samples (target identity) id∗←[m] and sends id∗ to its
IBE-sIND-CPA-challenger. D retrieves mpk in return and sets pk := (mpk, H).

• For all id ∈ ([m] ∪ {0}) \ {id∗}, D retrieves sk0 := (skid)id from its Ext-oracle.
(Note that D does not have a secret key for id∗.) Looking ahead, with significant
probability, D will prepare a challenge ciphertext for A that will include the IBE
challenge ciphertext retrieved from the IBE-sIND-CPA-challenger for id∗. In that
sense, A has to query the overall challenge ciphertext to the Punc′-oracle if A wants
to receive a secret key via the Cor-oracle, which results in “deleting” the secret key
for id∗ and not providing it to A. Since D does not possess the secret key for id∗,
it does not need to prepare a query answer for A that includes a secret key for id∗.
Given that, all Cor-queries can be answered correctly.
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• D sends k(0)
1 , k(1)

1 ←M to its IBE-sIND-CPA-challenger and retrieves ctxt∗
id∗ ←

Enc(mpk, id∗, k(b)
1 ), for some (unknown) b←{0, 1}.

• D samples b∗←{0, 1}, computes ctxt0 ← Enc(mpk, 0, k0), for k0←M, and sets
(idj)j := (Hj(ctxt0))j∈[k]. If idi ≠ id∗, D “aborts” and sends b∗ to its IBE-sIND-CPA-
challenger. (See that D aborts with probability (m−1)/m.) Otherwise, D prepares:

Part ciphertexts 1, . . . , i−1: ctxtidj ← Enc(mpk, idj , k(1)
1 ), for all (idj)j∈[i−1].

Part ciphertext i : ctxtidi := ctxt∗
id∗ .

Part ciphertexts i+1, . . . , k : ctxtidj ← Enc(mpk, idj , k(0)
1 ), for all (idj)j∈[k]\[i].

• D sends (pk, ctxt∗ := (ctxt0, (ctxtidj )j), k) to A, for k := (k0, k(0)
1 ) if b∗ = 0 and

k := (k0, k(1)
1 ) if b∗ = 1.

• A has access to a Punc′(ctxt)-oracle which runs ski+1 ← Punc(ski, ctxt) for each
invocation i = 0, 1, . . . , q and sets L := L ∪ {ctxt} for initially empty set L and
number of queries q to Punc. The Cor-oracle returns ski iff ctxt∗ ∈ L, for some
query i ∈ [q].

• Eventually, A outputs a guess b′ which D forwards as b′ ⊕ b∗ to its IBE-sIND-CPA-
challenger.

In the hybrid between Hybk and Hybk+1: proceed as in Hybk, but send (pk, ctxt∗ :=
(ctxt0, (ctxtidj )j), (k0, k′

1)), for uniform k′
1←M to A.

Analysis. In the hybrids between Hybi−1 and Hybi, for each i ∈ [k], we have that if
the IBE challenge ciphertext is associated to b = 0, then we are in Hybi−1; otherwise, if
b = 1, then we are in Hybi.

In the hybrid between Hybk and Hybk+1, the change is information-theoretic, i.e., the
challenge ciphertext encapsulates a uniformly random key-element k(1)

1 and the second part
of the encapsulation key k′

1 is sampled uniformly at random which yields Pr[Sk+1] = 1/2.
(See that any adversary can always retrieve k0 as it can always decrypt ctxt0 if it queries
the Cor-oracle to receive any secret key after querying ctxt∗ to Punc′.)

Moreover, in each hybrid between Hybi−1 and Hybi, for each i ∈ [k], we have that
Pr[idi = id∗] = 1/m and D is a PPT algorithm. Putting things together, for k game
hops, we conclude that Equation (2.3) holds.

BFKEM-IND-CCA security of BFKEM′. We construct a slight variant of our BFKEM
scheme, dubbed BFKEM′, via the FO transform [FO99] along the lines of Derler et
al. [DJSS18, DGJ+21]. We want to mention that the FO transform does not work
generically for any BFKEM-IND-CPA-secure BFKEM and no generic framework as in the
case of KEMs exists. Hence, we consider the direct product compiler in Section 2.5.1 and
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KGen′(λ, m, k) : return (pk, sk0) ← KGen(λ, m, k).
Encaps′(pk) : on input pk, sample k←K, compute (r, k′) := G(k) ∈ {0, 1}k·ρ+λ

and (ctxt, k) ← Encaps(pk; (r, k)), and return (ctxt, k′).
Punc′(ski−1, ctxt): return ski ← Punc(ski−1, ctxt).
Decaps′(ski, ctxt): on input secret key ski and ciphertext ctxt, compute k ←

Decaps(ski, ctxt) and return ⊥ if k = ⊥. Otherwise, compute
(r, k′) := G(k) and return k′ if (ctxt, k) = Encaps(pk; (r, k)), else
output ⊥.

Figure 2.15: BFKEM-IND-CCA-secure BFKEM′ from BFKEM-IND-CPA-secure BFKEM
and hash function G (modeled as random oracle (RO) in the security proof).

the general proof methodology as given in [DJSS18, DGJ+21] to achieve BFKEM-IND-CCA
security for BFKEM′. Furthermore, [DJSS18, DGJ+21] requires perfect correctness for
unpunctured keys which our BFKEM definition cannot guarantee. Hence, we have to
reprove the BFKEM-IND-CCA security for BFKEM′, although the proof techniques are
almost the same as presented in [DJSS18, DGJ+21].

We construct a BFKEM-IND-CCA-secure BFKEM as follows. Let BFKEM = (KGen, Encaps,
Punc, Decaps) be a BFKEM-IND-CPA-secure BFKEM scheme with key space K and non-
negligible correctness error δ = δ(λ, m, k, n). Furthermore, let BFKEM have the extended
correctness, separable randomness, publicly-checkable puncturing, and γ-spreadness prop-
erties. We construct a BFKEM-IND-CCA-secure BFKEM scheme BFKEM′ = (KGen′, Encaps′,
Punc′, Decaps′) with key space K′ = {0, 1}λ using a variant of the FO transform in Fig-
ure 2.15 (let G : K → {0, 1}k·ρ+λ, for BFKEM parameter k and large-enough integer ρ,
be a hash function modeled as random oracle (RO) in the security proof).

See that correctness (Definition 2.5.3) directly carries over from BFKEM to BFKEM′, i.e.,
it is straightforward to verify that if BFKEM is correct then BFKEM′ is correct. (We only
argue to achieve the correctness property together with BFKEM-IND-CCA-security for
BFKEM′ here since the other BFKEM properties are essentially only needed for the FO
transform starting with a BFKEM-IND-CPA-secure BFKEM having those other properties
as well.)

Theorem 2.5.10. If a BFKEM BFKEM is BFKEM-IND-CPA-secure with the (extended)
correctness, separable randomness, publicly-checkable puncturing, and γ-spreadness prop-
erties, then BFKEM′ is BFKEM-IND-CCA-secure. Concretely, for any PPT adversary A
making at most qG = qG(λ) queries to the random oracle G and negligible δ = δ(λ), there
is a distinguisher D in the BFKEM-IND-CPA-security experiment such that

Advbfkem-ind-cca
BFKEM′,A (λ, m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ, m, k) + 3 · δ + qG
2γ

.

Since the proof methodology is almost the same as presented in [DJSS18, DGJ+21], we
refer the reader to Appendix A.2.4 for the proof. Essentially, we deviate from [DJSS18,
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DGJ+21] such that the adapted BFKEM-properties extended correctness, separable
randomness, and publicly-checkable puncturing have to be carefully integrated into the
game hops which — instead of a perfectly indistinguishable game hops in [DJSS18,
DGJ+21] — we rely on negligibly indistinguishable game hops by using slightly adapted
properties for BFKEM.

On the instantiation of BFKEM′ from lattice- and code-based IBE schemes. For
a BFKEM-IND-CCA-secure BFKEM′, we require the underlying BFKEM to be BFKEM-
IND-CPA-secure and have the properties extended correctness, separable-randomness,
publicly-checkable puncturing, and γ-spreadness. Since we build CPA-secure BFKEMs
from selectively CPA-secure IBEs, we require by any potential lattice- or code-based IBE
to have a (non-)negligible correctness error (in the sense of HHK [HHK17a]) and the
property of γ-spreadness. (See that the properties separable-randomness and publicly-
checkable puncturing for a BFKEM-IND-CPA-secure BFKEM can be shown without any
requirements on the underlying IBE. Furthermore, extended correctness holds with respect
to a negligible correctness error of the underlying IBE.) Natural candidates for lattice-
and code-based selectively CPA-secure IBEs are the schemes of Agrawal, Boneh, and
Boyen (ABB) [ABB10] or Ducas, Lyubashevsky, and Prest [DLP14] (i.e., lattice-based
IBEs) and the approach due to Gaborit et al. (GHPT) (i.e, a code-based IBE) [GHPT17]
(considering the changes from [DT18]). We note though that correctness in the sense
of HHK [HHK17a] has not been studied for those IBE schemes and a rigorous study of
correctness for code- and lattice-based IBEs is an interesting direction for future research.
For GHPT in particular, we expect that correctness and γ-spreadness can be lifted
from the underlying PKE, RankPKE, as ciphertexts of the IBE are RankPKE-ciphertexts
whereas a part of the public key is identity-dependent.

Table 2.4: Sizes of BFKEM when instantiated with GVP or GHPT.

IBE assumption sk pk ctxt
GVP-80 lattice-based 19.21 GB 1.62 KB 17.46 KB
GVP-192 lattice-based 47.15 GB 3.78 KB 40.28 KB

GHPT-128 code-based 643.73 GB 252 KB 215.79 MB
Boneh-Franklin [DJSS18] pairing-based 717.18 MB 95.5 B 255.5 B

2.5.3 Comparison of BFKEM Instantiations
To instantiate a BFKEM from post-quantum IBE schemes, we investigate instantiations
based on a selectively IND-CPA-secure lattice-based or code-based IBEs. As far as
lattices are concerned, the first such construction was [GPV08] after which numerous
others followed [ABB10, CHKP10, DLP14, ZCZ16]. To compute the dimension of a
lattice-based BFKEM, we start from the GVP-IBE instantiation of [DLP14], for which an
implementation and concrete dimensions were given for 80 and 192-bit quantum security.
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2. CCA-Secure (Puncturable) KEMs from Encryption with Non-Negligible
Decryption Errors

We set the parameter of the BFKEM as in [DJSS18], i.e., targeting the maximum number
of allowed punctures to n = 220, which amounts to adding 212 elements per day to the BF
for a year, and allowing for a false-positive probability of 10−3, we obtain m = 1.5 · 107

and k = 10. A similar procedure can be applied to the code-based IBE of Gaborit et
al. (GHPT) [GHPT17] achieving 128-bit quantum security. We note though that with
recent advances in the cryptanalysis, these instances may provide less security.6 Also, we
note that for obtaining a BFKEM-IND-CCA-secure BFKEM, the respective IBE needs
to satisfy correctness in the sense of HKK (which, as mentioned before, one would have
to assume as it has not been studied before). Table 2.4 provides an overview including
the pairing-based BFKEM from [DJSS18]. For the latter, we assume the use of the
pairing-friendly BLS12-381 curve with 120-bit classical security.

6In particular, due to an attack by Debris-Alazard and Tillich in [DT18] on GHPT a concrete choice
of secure parameters is unclear.
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CHAPTER 3
Lattice-Based SNARKs: Publicly

Verifiable, Preprocessing, and
Recursively Composable

Abstract
A succinct non-interactive argument of knowledge (SNARK) allows a prover to produce
a short proof that certifies the veracity of a certain NP-statement. In the last decade, a
large body of work has studied candidate constructions that are secure against quantum
attackers. Unfortunately, no known candidate matches the efficiency and desirable
features of (pre-quantum) constructions based on bilinear pairings.

In this work, we make progress on this question. We propose the first lattice-based
SNARK that simultaneously satisfies many desirable properties: It (i) is tentatively
post-quantum secure, (ii) is publicly-verifiable, (iii) has a logarithmic-time verifier and
(iv) has a purely algebraic structure making it amenable to efficient recursive composition.
Our construction stems from a general technical toolkit that we develop to translate
pairing-based schemes to lattice-based ones. At the heart of our SNARK is a new
lattice-based vector commitment (VC) scheme supporting openings to constant-degree
multivariate polynomial maps, which is a candidate solution for the open problem of
constructing VC schemes with openings to beyond linear functions. However, the security
of our constructions is based on a new family of lattice-based computational assumptions
which naturally generalises the standard Short Integer Solution (SIS) assumption.

This chapter presents the first result of the collaboration with Martin R. Albrecht, Russell
W. F. Lai, Giulio Malavolta and Sri AravindaKrishnan Thyagarajan and was published
at the 42nd Annual International Cryptology Conference (CRYPTO’22) under the title
“Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable
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- (Extended Abstract)” [ACL+22]. I am manly responsible for the security proof and
efficiency analysis of the functional commitment scheme. Further, I contributed to the
design and security analysis of the adaptor signature construction. I am also responsible
for writing the corresponding sections of the chapter. The accompanying appendix contains
omitted constructions and proofs.

3.1 Introduction
A succinct non-interactive argument of knowledge (SNARK) [Kil92, Mic94] allows a prover
to convince a verifier that they know a witness to an NP statement. The succinctness
property demands that the size of the proof and, after preprocessing, the work of the
verifier are sublinear in (ideally independent of) the time needed to check the validity
of the witness. Over the last decade, SNARKs have witnessed a meteoric rise in their
efficiency and applicability [BCG+13, BCTV14b, PHGR13, BCC+09, CG08, GGM14].
More recently, SNARKs have found their way into real-world systems in the context of
blockchain-based cryptocurrencies [BCG+14, KMS+16, BGH19, BDFG21a, BMRS20].

The looming threat of quantum computers has given rise to a movement in the crypto-
graphic community to investigate cryptographic constructions from assumptions that
would plausibly withstand the presence of a quantum attacker. Unfortunately, present
SNARKs based on post-quantum assumptions are in many ways inferior to pre-quantum
constructions based on bilinear pairings. The goal of this work is to make progress in
this area.

3.1.1 The Seascape of SNARKs
To put our work into context, we give a brief outline of the current seascape of SNARK con-
structions. We split the schemes depending on the underlying cryptographic assumptions
used as the source of hardness.

Bilinear Pairings. To date, the most efficient and feature-rich SNARKs are constructed
over bilinear pairing groups (e.g. [Gro16]) with a trusted setup. Typically, a pairing-based
SNARK proof consists of only a small constant number of base group elements and is
also publicly verifiable. Furthermore, offline preprocessing can often be performed, such
that the online verification time is sublinear in the size of the statement being proved
and the corresponding witness. Moreover, pairing-based SNARKs are favourable because
of their algebraic structures that is known to enable proof batching [LMR19, BMM+21]
and efficient recursive composition [BCTV14a]. However, due to their reliance on the
hardness of problems related to discrete logarithms, pairing-based SNARKs are not sound
against a cheating quantum prover.

Random Oracles. Promising post-quantum candidate for SNARKs are constructions
based on Micali’s CS proofs paradigm: They are obtained by first building an interactive
argument using (generalisations of) probabilistically checkable proofs (PCP) [Kil92], then
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compiling it into a non-interactive one using the Fiat-Shamir transformation [FS87] in
the random oracle (RO) model.

A major difference between pairing-based and RO-based SNARKs, from both theoretical
and practical perspectives, is the algebraic structure of the verification algorithm. In
RO-based SNARKs, the verification algorithms query the RO, which is a combinatorial
object. This is especially important when recursively composing the SNARK: On the
theoretical side, proving the knowledge of a valid RO-based SNARK proof requires
specifying the circuit computing the RO. This makes it challenging to formally argue
about soundness, even in the RO model. From a practical perspective, the RO is
instantiated with cryptographic hash functions, which typically have high multiplicative
degree.1 Since the multiplicative degree of the relation being proven often dominates the
prover computation complexity in SNARKs, proving the satisfiability of a cryptographic
hash function becomes computationally expensive.

Lattices. A prominent source of hardness for post-quantum security are computational
problems over lattices. Not only do lattice-based assumptions allow us to build most
standard cryptographic primitives, e.g. [Reg05, GPV08], but also enable new powerful
primitives [Gen09, GVW15a, WZ17, GKW17], which are currently out of the reach of
group-based assumptions. Unfortunately, in the context of SNARKs, lattices have yet to
be established as competitive alternatives to group-based constructions. So far, lattice-
based SNARKs either require designated verifiers [GMNO18, ISW21] or linear-time
verification [ACK21, BCS21].

Beyond their theoretical appeal, one additional motivation for constructing lattice-based
SNARKs is that they are potentially more compatible with other basic lattice-based
primitives when composing them to construct more advanced systems. More concretely,
consider the task of proving the satisfiability of certain algebraic relations over a ring
R by a solution vector of norm bounded by some δ, a language which arises naturally
when composing lattice-based building blocks. Using an argument system for proving
algebraic relations over a finite field without norm constraints, arithmetisation would be
needed to express certain witness component in, say, binary representation and translate
the bounded-norm condition to the satisfiability of a potentially-high-degree polynomial,
depending on the choice of the norm and the norm bound δ. In contrast, the bounded-
norm constraint could be proven natively if we have an argument system which supports
proving the satisfiability of algebraic relations over R by solutions of norm bounded by
some α ≤ δ. This is done by expressing the solution vector in a likely more compact
O(α)-ary representation such that, if the representation has norm bounded by α, then
the original solution has norm bounded by δ.

1Though we mention that there is recent progress [ARS+15, GKK+19] in crafting hash functions
that are friendlier to multiparty computation and argument systems.
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3.1.2 Our Contributions
In this work, we construct the first lattice-based SNARK for an NP-complete language
defined over a ring R. Specifically, the language being supported is the satisfiability of
polynomial maps over R by bounded-norm solutions. Our construction qualitatively
matches pairing-based SNARKs, i.e. it is publicly verifiable and can achieve sublinear
verification time given preprocessing, while requiring a trusted setup. In addition, it
is tentatively post-quantum secure. Furthermore, our construction uses only algebraic
operations over a ring R, and is therefore friendly to recursive composition. The soundness
of our scheme is based on new lattice-based (knowledge) assumptions. The introduction
of new knowledge assumptions is, to some extent, necessary: The work of Gentry and
Wichs [GW11] shows that the soundness of any SNARK cannot be based on falsifiable
assumptions in a black-box manner. We summarise the main steps of our work in the
following.

(1) Translation Technique. We put forward a new paradigm for translating pairing-
based constructions to the lattice world. Our constructions stem from techniques from
the literature on pairing-based cryptography [LY10], while simultaneously exploiting the
ring structure offered by the lattice setting. We develop the necessary technical toolkit
that helps us mimic operations of pairing-based VC constructions in the lattice setting.
We view this translation strategy as a major conceptual contribution of our work and we
expect it to be instrumental in enabling new applications of lattice-based cryptography.

(2) Vector Commitments for Constant-Degree Polynomials. A vector commit-
ment (VC) allows a committer to commit to a vector of w values x := (x0, . . . , xw−1) ∈ Rw

and then reveal selected portions of the input vector, or more generically a function
f : Rw → Rt over the input vector, along with a proof π that can be publicly verified.
We require both the commitment and the opening proof to be compact. In terms of
security, we want to ensure an adversary cannot output a valid opening proof for an
incorrect function evaluation of the input vector. VCs have been established as a central
primitive in cryptography [CF13, LRY16, Fis19, LM19, GRWZ20, CFG+20]. As a central
technical contribution, we present the first (lattice-based) VC that supports openings
beyond linear functions. Specifically, our VC commits to short vectors of ring elements
x ∈ Rw and supports openings to constant-degree d multivariate polynomial maps. We
then show how this VC is sufficient to construct SNARKs for the satisfiability of degree-d
polynomial maps (which is NP-complete for d ≥ 2) by bounded-norm solutions.

(3) New Assumptions and Analysis. Our translation techniques (and consequently
the resulting cryptographic schemes) rely on a new family of assumptions that we refer to
as the k-Ring-Inhomogenous Short Integer Solution (or k-R-ISIS for short) assumptions.
Roughly, a k-R-ISIS assumption says that it is hard to find a short preimage ug∗ satisfying
⟨a, ug∗⟩ = g∗(v) mod q, where g∗ is a Laurent monomial2 and v is a random point,

2A Laurent monomial is a monomial where negative powers are allowed. Generally, one could consider
k-R-ISIS problems for rational functions.
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given short preimages of other Laurent monomials G evaluated on the same random
point. Our new assumptions can be viewed as inhomogenous ring variants of the k-SIS
assumption [BF11, LPSS14] (where the rational functions are zeros). The key difference
to k-SIS is that we allow to hand out more preimages than the dimension of a but these
preimages are all of different images.

In fact, the assumptions we introduce, k-M -ISIS, are slightly more general in being
defined over modules rather than rings. Our generalisation to modules is motivated by
the knowledge assumptions that we also introduce. In the knowledge assumptions images
live in a moderately sized submodule.

We consider the introduction and study of the k-R-ISIS assumptions as a contribution to
the programme of charting the territory between LWE and multilinear maps assumptions
called for in [Agr20].

To gain confidence in our newly introduced assumptions, we initiate their study. We
show that certain subclasses of the k-R-ISIS problems (parameterised by the algebraic
structure on the k-R-ISIS images) are as hard as the R-SIS problem. We show that, as
expected, the k-M -ISIS problems are as hard as their k-R-ISIS counterparts, although the
former have slightly skewed parameters. We also show that certain k-M -ISIS problems
are as hard as the k-M -SIS problem, the natural module variant of the k-SIS problem,
where the former have higher module ranks. Furthermore, we show that the k-M -ISIS
problems for (G, g∗) is as hard as those for (G, 0), and that the hardness is preserved
when scaling both G and g∗ multiplicatively by any non-zero Laurent monomial.

However, since none of the reductions from well-established problems cover the case we
rely upon in our constructions, we perform cryptanalysis to assess the hardness of general
k-M -ISIS problems. While we did not identify any structural weaknesses, we encourage
independent analysis to gain confidence in or invalidate our assumptions.

(4) Post-Quantum Security. As a contribution of independent interest, we show
that our VC satisfies a strong notion of binding known as collapsing (as an ordinary
commitment, not with respect to functional openings), a recently introduced security
notion in the quantum setting [Unr16]. For this, we introduce a new technique of
embedding NTRU ciphertexts into the public parameters of our VC. To the best of our
knowledge, this is the first VC not based on Merkle trees that is shown to satisfy such a
notion.

(5) New Applications. Our SNARK supports proving the satisfiability of polynomial
maps over R by bounded-norm solutions, a language which directly captures those
statements which naturally arise in lattice-based cryptographic constructions. We high-
light two native applications of our SNARK which do not rely on expensive conversions
between different NP-complete languages.

The first application is the recursive composition of our SNARK, which refers to the
process of using the SNARK to prove knowledge of another SNARK proof and the
satisfiability of a polynomial map; for details see 3.6.2. This is natively supported because
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the verification algorithm of our SNARK construction is itself checking the satisfiability of
certain algebraic relations over R by a bounded-norm solution. Recursive composition of
SNARKs is a general purpose technique for aggregating proofs or proving complex state-
ments in a piece-by-piece fashion. The technique is also useful for constructing incremental
verifiable computation [Val08] and verifiable delay functions [BBBF18, Gro21].

The second application is the aggregation of GPV signatures [GPV08]. While it is folklore
that any signatures can be aggregated by a SNARK for an NP-complete language, we
stress that the GPV verification algorithm, again, checks the satisfiability of certain
algebraic relations over R by a bounded-norm solution which our SNARK natively
supports. We discuss how to handle relations in Rq in Section 3.6.1. Apart from
obtaining short aggregated GPV signatures, in the setting where a set of n signers
are signing a common message at a time, the verification of the aggregated signatures
could be preprocessed, resulting in an online verification time sublinear in n. As a
bonus result on GPV signatures, we further show how to construct lattice-based adaptor
signatures [AEE+21] based on the GPV paradigm. Combining the two results, we obtain
the first aggregatable adaptor signatures.

Open Problems. Our work paves the way for what we believe to be an exciting line of
research. As we initiate the study of inhomogenous variants of the k-SIS assumptions, we
ask whether better (possibly quantum) algorithms can be found for solving this problem
that exploit the additional algebraic structure. We also presume that for further families
of rational functions the k-R-ISIS assumption can be shown to be as hard as standard hard
lattice problems. Another compelling question is to study new cryptographic applications
of the k-R-ISIS family. We expect that such an abstraction will be useful in transferring
techniques from pairing-based cryptography into the lattice world.

3.1.3 Technical Overview
We give a concise overview of the process of obtaining our lattice-based SNARK.

From Vector Commitments to SNARKs. In this work, we are interested in VCs
supporting openings to constant-degree-d w-variate t-output polynomial maps with
bounded coefficients. The standard properties of interest for VCs are:

Compactness. Commitments and opening proofs are of size poly(λ, log w, log t).

Binding. It is infeasible to produce a commitment c and proofs for polynomials maps,
such that the system of equations induced by them is not satisfiable.3

In addition, we require the following stronger notion of binding.
3This generalises position binding.
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Extractability. To produce a commitment c and a proof that the image of a polynomial
map f at the committed vector is y, one must know a preimage x such that c is a
commitment of x and f(x) = y.

It is well known that one can construct SNARKs from VCs supporting linear openings
in the RO model [LM19]. However, in this work we take a different route and adopt a
more structured approach to construct SNARKs. Specifically, recall that the satisfiability
of systems of degree-d polynomials is NP-complete for any constant d ≥ 2. As such, a
SNARK can be trivially constructed from a compact and extractable VC for degree-d
polynomials: The prover simply commits to the root of the system (f, y) and immediately
produces an opening proof for (f, y). As a concrete example, a popular NP-complete
language supported by existing SNARKs is rank-1 constraint satisfiability (R1CS).
An R1CS instance consists of three matrices (A, B, C) over a field or in general a
ring. The instance is satisfied by a vector x if (A · (1, x)) ◦ (B · (1, x)) = (C · (1, x)),
where ◦ denotes the Hardamard product. It is easy to see that an R1CS instance is
a special case of an instance (f, y) of degree-2 polynomial satisfiability where f(X) :=
(A · (1, X)) ◦ (B · (1, X)) − (C · (1, X)) and y = 0. For a full description of our SNARK
we refer the reader to Section 3.6.

Throughout the rest of this overview, we therefore focus on constructing lattice-based
VCs supporting degree-d openings. Since known constructions are restricted to positional
openings, we turn our attention to pairing-based schemes (which support linear openings)
and develop a new strategy to translate them into lattice-based VCs and simultaneously
to extend the degree to d > 1.

General Translation Strategy. Our strategy for constructing a lattice-based VC
is a novel translation technique that lets us port techniques from the pairing-land to
the lattice-land. We describe a general translation strategy for translating not only VC
but also potentially other pairing-based constructions to the lattice setting. For the
group setting, we adopt the implicit notation for bilinear groups G1, G2, and Gt of prime
order q, i.e. the vector of elements in Gi with (entry-wise) discrete logarithm x ∈ Zq

base an arbitrary fixed generator of Gi is denoted by [x]i, with group operations written
additively, and the pairing product between [x]1 and [y]2 is written as ⟨[x]1, [y]2⟩. For
the lattice setting, we let R be a cyclotomic ring, q ∈ N be a large enough rational prime
such that random elements in Rq := R/qR are invertible with non-negligible probability.

Consider a pairing-based construction where the elements { [1]1, [g(v)]t }g∈G are publicly
available to all parties, where G is a set of linearly-independent rational functions and v is
a vector of secret exponents. An authority, knowing the secret exponents v, is responsible
for giving out secret elements { [g(v)]2 }g∈G to user A. In turn, user A can compute
[u]2 := ;

g∈G cg · [g(v)]2 and present it to user B, who can then check the correctness of
[u]2 by checking

⟨[1]1, [u]2⟩ ?=
:
g∈G

cg · [g(v)]t.
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Note that in this check one side of the pairing (i.e. [1]1) is public, while the other side
(i.e. [u]2) is computed from secrets delegated by the authority to user A. This property
will be crucial for our translation technique to apply.

The above structure can be seen in many pairing-based constructions. For example, the
secret vector v could be a trapdoor, a master secret key of an identity-based encryption
scheme, or a signing key; the delegated secrets { [g(v)]2 }g∈G could be hints given alongside
the public parameters of a VC, an identity-based secret key, or a signature; and the
pairing-product check could be for opening proof verification, decryption, or signature
verification.

Our strategy of translating the above to a lattice-based construction is as follows. First, the
public elements { [1]1, [g(v)]t }g∈G over G1 and Gt are translated to the public vector and
elements { a, g(v) }g∈G , where a and v are random vectors over Rq and R×

q respectively.
Since { g(v) }g∈G does not necessarily hide v in the lattice setting (e.g. when G consists
of many linear functions), the authority might as well publicly hand out the vectors
{ a, v } directly. Next, the secret elements { [g(v)]2 }g∈G are translated to the short secret
vectors { ug }g∈G satisfying ⟨a, ug⟩ = g(v) mod q. These short preimages can be sampled
given a trapdoor of a, which the authority should have generated alongside a. Given
{ ug }g∈G , user A can similarly compute u := ;

g∈G cg · ug, although the coefficients cg

are now required to be short. The pairing-product check is then translated to checking

⟨a, u⟩ ?≡
:
g∈G

cg · g(v) mod q and u is short.

The same strategy can also be used to translate (conjectured-)hard computational
problems over bilinear groups to the lattice setting to obtain also seemingly-hard problems.
For example, consider a variant of the ℓ-Diffie-Hellman Exponent problem, which asks to
find [vℓ]2 given ([1]1, [1]2, [v]2, . . . , [vℓ−1]2). A natural lattice-counterpart of the problem
is to find a short preimage uℓ satisfying ⟨a, uℓ⟩ ≡ vℓ mod q given short preimages (ui)i∈Zℓ

each satisfying ⟨a, ui⟩ = vi mod q.

We remark that a direct translation of pairing-based constructions does not necessarily
yield the most efficient lattice-based scheme. For this reason, it will be useful to generalise
pairing-based constructions into a family parameterised by the function class G. We will
then have the freedom to pick G to optimise the efficiency of translated lattice-based
scheme.

Translating Vector Commitments. We next demonstrate how the above translation
strategy can be applied to translate pairing-based VCs, using the following pairing-based
VC with openings to linear forms f : Zw

q → Zq adapted from [CF13, LRY16, LM19] as
an example.

• Public parameters:
'
[1]1, [1]2, ([vi]1)i∈Zw

, ([v̄j ]2)j∈Zw
, ([vi · v̄j ]2)i,j∈Zw:i ̸=j , [v̄]t

.
where

v̄ = 6
k∈Zw

vk and v̄j = v̄/vj .
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• Committing x ∈ Zq: [c]1 := ;
i∈Zw

xi · [vi]1 = ⟨[v]1, x⟩
• Opening f : [u]2 := ;

i,j∈Zw:i ̸=j fj · xi · [vi · v̄j ]2

• Verifying (f, y): ⟨[1]1, [u]2⟩ ?=
�
[c]1,

;
j∈Zw

fj · [v̄j ]2
�

− y · [v̄]t

The weak binding property of the scheme, i.e. the infeasibility of opening a commitment
c to both (f, y) and (f, y′) with y ̸= y′, relies on the hardness of computing [v̄]2, whose
exponent corresponds to evaluating the “target monomial” 6

k∈Zw
Xk at v. Notice that

the target monomial is set up in such a way that [v̄]t = [vi]1 · [v̄i]2 holds for all i ∈ Zw,
where [v̄i]2 can be viewed as a “complement” of [vi]1. Consequently, the value y = ⟨f , x⟩
appears as the coefficient of [v̄]t in the inner product

�;
i∈Zw

xi · [vi]1,
;

j∈Zw
fj · [v̄j ]2

�
.

While the above pairing-based scheme is ready to be translated to the lattice setting
using our translation strategy, to prepare for our generalised scheme for higher-degree
polynomials, we divide the target and complement monomials by 6

k∈Zw
Xk. The

complement of Xi becomes X−1
i and the target monomial becomes the constant 1.

Concretely, we divide the opening and the verification equation by v̄ to obtain

[u′]2 :=
:

i,j∈Zw:i ̸=j

fj · xi · [vi/vj ]2

�
[1]1, [u′]2

� ?=
�

[c]1,
:

j∈Zw

fj · [v−1
j ]2

�
− y · [1]t.

Recall that in the VC construction above we relied on the hardness of computing [v̄]2.
What we have done here might seem absurd, since the element [1]2 now is given in the
group setting, but finding a short pre-image of a fixed image, say 1, is seemingly hard
in the lattice setting. Indeed, translating the modified scheme, we derive the following
lattice-based scheme.

• Public Parameters:
'
a, v, (ui,j)i ̸=j∈Zw

.
where ⟨a, ui,j⟩ ≡ vi/vj mod q, ui,j are short

• Committing x ∈ Rw: c := ⟨v, x⟩ mod q

• Opening f : u := ;
i,j∈Zw:i ̸=j fj · xi · ui,j

• Verifying (f, y): ⟨a, u⟩ ?≡
';

j∈Zw
fj · v−1

j

.
· c − y mod q and u is short

For correctness, we require that the committed vector x and the function f both have
short coefficients.

The weak binding property of the translated lattice-based scheme relies on the hardness
of finding a short preimage of (a small multiple of) 1 given short preimages of vi/vj for
all i, j ∈ Zw with i ̸= j – a new computational assumption obtained by translating its
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pairing-counterpart, which belongs to a new family of assumptions called the k-R-ISIS
assumption family.

Furthermore, the computation of ;
j∈Zw

fj · v−1
j in the verification equation can be

preprocessed before knowing the commitment c and the opening proof u, such that the
online verification can be performed in time sublinear in w.

Supporting Higher-Degree Polynomials. Notice that in the group setting the
(modified) verification algorithm can be seen as evaluating the linear form f at ([v−1

0 ]2 ·
[c]1, . . . , [v−1

w−1]2 · [c]1) where [c]1 supposedly encodes x. In the group setting, f has to
be linear since we cannot multiply two G1 elements together to get an encoding of the
Kronecker product x ⊗ x.

In the lattice setting, however, the commitment c is a ring element and thus we can
evaluate a non-linear polynomial f at (v−1

0 · c, . . . , v−1
w−1 · c). Moreover, we notice that

each degree-d monomial xe is encoded in cd as (a factor of) the coefficient of ve, which
has a natural complement v−e satisfying (ve) · (v−e) = 1, our modified target monomial.
This suggests the possibility of generalising the translated lattice-based scheme above
to support openings to higher-degree polynomials. Indeed, this technique allows us to
generalise the scheme to support bounded-coefficient polynomials of degrees up to a
constant, whose weak binding property is now based on another member of the k-R-ISIS
assumption family.

Achieving Compactness and Extractability. The VC scheme obtained above
achieves succinctness, i.e. commitments and opening proofs are of size sublinear in w
(not t), and weak binding, which fall short of the compactness and extractability required
to construct a SNARK. Indeed, a black-box construction of SNARK using this VC is
unlikely since, so far, we are only relying on falsifiable assumptions. To resolve this
problem, we propose a knowledge version of the k-R-ISIS assumptions. For concreteness,
we will use the following member of the knowledge k-R-ISIS assumption family:

Let a′←Rℓ
q and v←Rw

q be random vectors and t←Rq be a random element
such that |t · Rq| is super-polynomial in λ and |t · Rq|/|Rq| is negligible in λ.
If there exists an efficient algorithm A which, given short vectors u′

i satisfying
⟨a′, u′

i⟩ = vi · t mod q for all i ∈ Zw, produces (c, u′) such that u′ is a short
vector satisfying ⟨a′, u′⟩ = c · t mod q, then there exists an efficient extractor
EA which extracts a short vector x ∈ Rw such that ⟨v, x⟩ = c mod q.

Equipped with this k-R-ISIS of knowledge assumption, we can upgrade our VC con-
struction to achieve extractability as follows. First, we let the public parameters to
additionally include (a′, (u′

i)i∈Zw , t). Here t generates an ideal that is small enough for
random elements in Rq not to be contained within it, but big enough to provide sufficient
entropy. Next, we let the committer also include u′ = ;

i∈Zw
xi · u′

i in an opening proof.
Finally, we let the verifier additionally check that u′ is short and ⟨a′, u′⟩ = c · t mod q.
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To see why the modified scheme is extractable, suppose an adversary is able to produce
a commitment c and a valid opening proof for (f, y). By the k-R-ISIS of knowledge
assumption, we can extract a short vector x ∈ Rw such that ⟨v, x⟩ = c mod q. Now, if
f(x) = y′ ̸= y, we can use the extracted x to compute a valid opening proof for (f, y′).
However, being able to produce valid opening proofs for both (f, y) and (f, y′) with
y ̸= y′ violates the weak binding property. We therefore conclude that f(x) = y.

It remains to show how we can achieve compactness. Since our lattice-based VC schemes
preserve the property of the original pairing-based schemes that the verification algorithm
is linearly-homomorphic in the opening proofs, a natural strategy towards compactness
is to aggregate multiple opening proofs into one using a random linear combination, with
coefficients generated using a random oracle. The binding property of an aggregated
opening proof can be proven using a classic rewinding argument which involves inverting
a Vandermode matrix defined by the randomness used for aggregation. This strategy
works particularly well in the prime-order group setting since scalars are field elements
and Vandermonde matrices defined by distinct field elements are always invertible. In
the lattice setting, however, the coefficients used for aggregation have to be chosen from
a set where the difference between any pair of elements is (almost) invertible (over R)
for an analogous argument to go through. This is a severe limitation since sets satisfying
this property cannot be too large [AL21].

To achieve compactness in the lattice setting, we are forced to use a different strategy.
Specifically, the coefficients h = (hi)i∈Zt ∈ R that we use to aggregate opening proofs are
given by an instance of the R-SIS problem over Rp (taking smallest R-representatives of
Rp elements) sampled as part of the public parameters, where p is chosen such that the
R-SIS assumption is believed to hold over Rp while p is small relative to q.

To see why extractability still holds, suppose an adversary is able to produce a commitment
c and a valid opening proof for (f, y) where f = ;

i∈Zt
hi · fi and y = ;

i∈Zt
hi · yi. By

our previous argument, we can extract x satisfying f(x) = y. Suppose it is not the
case that fi(x) = yi for all i ∈ Zt, then (fi(x) − yi)i∈Zt is a short vector satisfying;

i∈Zt
hi · (fi(x) − yi) = 0 over R, which implies ;

i∈Zt
hi · (fi(x) − yi) = 0 mod p,

breaking the R-SIS assumption over Rp.

Discussion and Generalisations. We discuss the resulting VC scheme obtained
through the aforementioned series of transformations. Our VC scheme supports openings
to w-variate t-output constant-degree polynomial maps with bounded coefficients. The
scheme achieves compactness and extractability, where the latter is based on the standard
R-SIS assumption over Rp and our two new assumptions: k-R-ISIS and the k-R-ISIS of
knowledge assumption over Rq, where p is short relative to q. The construction uses
only algebraic operations over R and Rq. Furthermore, a major part of the verification
equation can be precomputed, so that the online verification time is sublinear in w and t.

Our construction and the k-R-ISIS (of knowledge) assumption families admit natural
generalisations to the module setting, where the vector a is replaced by a matrix A
and other components are modified accordingly. Expectedly, we show that the module
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versions of the k-R-ISIS assumptions are at least as hard as the ring versions for certain
parameter choices.

In many applications (e.g. aggregating signatures), often only a main part (e.g. a set
of signature verification keys) of the function-image tuple (f, y) is known in advance,
while the remaining small part (e.g. a message signed by all parties) is known when it
comes the time to perform verification. It is desirable to preprocess the main part of
(f, y) offline, so that the online verification cost is only dependent on the size of the small
part. In our formal construction, we capture this flexibility by considering y itself to be a
polynomial map, and allowing f and y to take an (additional, for f) public input z. This
allows the maps (f, y) to be preprocessed, such that the online cost depends mostly on z.

3.1.4 Application
We highlight an application of interest of our VC, and in particular of the resulting
SNARK, in aggregating GPV signatures [GPV08]. As a bonus result, we also show
how to build adaptor signatures [AEE+21] based on GPV signatures while preserving
aggregatability. For more comprehensive details we refer the reader to Section 3.6.2
and Appendix B.2.

Aggregate GPV Signatures. GPV signatures [GPV08] are a lattice-based signature
scheme paradigm of which an instantiation is a finalist in the NIST Post-Quantum
Process (Falcon [PFH+20]). On a high level, a GPV signature on a message m is a short
vector u such that A · u ≡ v mod q, where A is the public key, v = H(m) with the hash
function H modelled as a random oracle in the security analysis. The verification is
simply the check of the linear relation A · u ≡ v mod q and that u is short.

Our SNARK can be used to prove knowledge of GPV signatures natively given the
signature verification involves algebraic operations only. For instance, to aggregate n
signatures (ui)i∈Zn on the same message m (a scenario that arises in a PoS consensus
protocol [DGNW20]), the aggregator can compute a SNARK proof of knowledge of short
(ui)i∈Zn satisfying Ai · ui = v mod q, where Ai is the public key of the i-th signer. The
aggregated signature i.e. the SNARK proof, can be verified in time sublinear in the
number of signers and signatures n by first preprocessing the part of the verification
equation depending on (Ai)i∈Zn . In fact, this preprocessing step is one-time for the given
set of signers, and the online verification after knowing m is only logarithmic in n. If the
signers sign different messages, a similar SNARK but now over the different messages
results in a compact proof, but with verification time linear in n (similar to the case of
BLS signatures [BDN18]). Such aggregation can result in compact blocks in a blockchain
as shown for the case of BLS signatures [BDN18], but now with post-quantum security.

Aggregate Adaptor Signatures. Adaptor signatures [AEE+21, EEE20, AME+21]
let a user generate an encryption σ̂ of a signature σ on a message m with respect to an
instance Y of a hard language L. Here σ̂ is also referred to as a pre-signature. Given the
public key, it is efficient to verify if a given pre-signature σ̂ is indeed valid with respect to
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the instance and the message. One can adapt the pre-signature σ̂ into a valid signature
σ given the witness y for the instance Y , and given σ̂ and σ one can efficiently extract
the witness y. The primitive has found itself useful in enhancing efficiency and privacy
of conditional payments in cryptocurrencies [AEE+21, AME+21], and aggregation of
signatures adds clear benefits to this primitive. In the following we discuss how GPV
signatures can be turned into adaptor signatures, which consequently implies that they
can be aggregated via our newly constructed SNARK.

We consider the lattice trapdoor from [MP12] for our GPV signatures, and view the GPV
signatures as follows. The public parameters are given by a uniformly random matrix
A, the signing key is sk := X, where X is a short norm matrix such that the public key,
Y := A · X mod q, is distributed statistically close to random. The signature is simply
(z, c) such that during verification we have [A|G + Y] · [z|c]T = H(m) mod q and ∥(c, z)∥
is small as stipulated by GPV signatures. Here G is the gadget matrix. We choose the
hard language

L := {(A, v′) : ∃ u′ s.t. A · u′ = v′ ∧ ??u′?? ≤ β∗},

where A ∈ Rη×ℓ
q , v′ ∈ Rη

q . A pre-signature σ̂ is simply (c, ẑ) with v′ as the hard
instance, such that during pre-signature verification, it holds that [A|G + Y] · [ẑ|c]T =
H(m) − v′ mod q and ∥(c, ẑ)∥ is small. It is easy to adapt σ̂ given the witness u′ by
setting z := ẑ + u′ and σ := (c, z). To extract a witness one can simply compute
u′ := z − z′. Similar to [EEE20] we have that the extracted u′ has a slightly higher norm
than that was used to adapt the pre-signature. The security of our scheme only relies on
the M -SIS problem and the RO model.

3.1.5 Related Work
Apart from applications to succinct arguments [LM19], VCs have found numerous applica-
tions, such as verifiable databases [CF13], verifiable decentralized storage [CFG+20], up-
datable zero-knowledge sets [MRK03, Lis05], keyless Proofs of Retrievability (PoR) [Fis18,
Fis19], pseudonymous credentials [KZG10], and cryptocurrencies with stateless trans-
action validation [CPZ18]. Several works have studied various extensions to VC, with
updatable commitments and proofs [CF13], aggregatable opening proofs for different
commitments [GRWZ20], and incremental aggregatable proofs [CFG+20].

Libert, Ramanna, and Yung [LRY16] showed that a VC for linear functions over Zq

implies a polynomial commitment for polynomials over Zq. The result was obtained by
VC-committing to the coefficient vector of the polynomial and opening it to a linear
function whose coefficients are evaluations of monomials at the evaluation point. Since
our VC only allows committing to a short vector x ∈ Rw and opening to a polynomial
map f with short coefficients, we need to suitably tune the norm bound α of f and x to
obtain similar applications. Concretely, by setting α ≈ δd+1 · γd

R where γR is the ring
expansion factor of R, we obtain a polynomial commitment for degree-d multivariate
polynomials with coefficients bounded by δ which supports evaluations at vectors of norm
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also bounded by δ. Note that only constant-degree polynomials are supported by our
polynomial commitment since α depends exponentially on d.

In the same work [LRY16], Libert, Ramanna, and Yung also showed that the polynomial
commitment constructed from a VC for linear functions over Zq implies an accumulator for
Zq elements, the construction requires committing to the polynomial p(X) = 6

a∈A(X −a)
encoding the set A of elements to be accumulated. The polynomial commitment obtained
via our VC unfortunately does not support committing to p(X) since its degree is as
large as |A|.
In a recent work [PPS21], Peikert, Pepin, and Sharp proposed a VC for positional
openings based on the standard SIS assumption. Relative to our construction outlined
in Section 3.1.3, their construction can be interpreted as follows. Instead of handing out
preimages ui,j with ⟨a, ui,j⟩ = vj/vi mod q, they sample multiple ai for i ∈ Zw and let
ui,j satisfy ⟨ai, ui,j⟩ = vj mod q. To verify an opening to position i, the vector ai is used.
The removal of the non-linear term vj/vi allows proving security from the SIS assumption.
On the flip side, using a different vector ai to verify openings to different positions i
forbids the standard technique of aggregating openings using a random linear combination.
Furthermore, there seems to be no natural way of generalising their construction to
support functional openings without significantly changing the VC model, e.g. introducing
an authority responsible for issuing functional opening keys [PPS21]. Even if we consider
the model with an authority, the resulting VC only satisfies weak binding (using the
terminology of our work) making it unsuitable to be transformed into a SNARG: There
is in fact an explicit attack when compiling their VC (with authority) into a SNARG.4

In another recent work [AKSY21] Agrawal, Kirshanova, Stehlé, and Yadav constructed
a blind signature scheme from a novel SIS-like assumption of the “one-more” flavour.
Here the adversary can query ℓ arbitrary preimages for an ISIS instance and must then
output ℓ + 1 preimages of random images returned by an oracle. While this assumption
is in the same “spirit” as those introduced in this work, they seem incomparable: being
adaptive makes one-more-SIS potentially easier, requiring preimages of random images
(hence without structure) seems to make it harder.

Prior to our work, all lattice-based SNARKs were in the designated-verifier setting.
These constructions [GMNO18, ISW21] are based on “linear-only” assumptions which are
similar in spirit to the knowledge k-M -ISIS assumptions introduced in this work but with
a key difference: While linear-only assumptions are with respect to specific encryption
schemes, our assumptions are with respect to general rings. In terms of applications,
linear-only encryption has always been used to construct designated-verifier primitives.
In contrast, knowledge k-M -ISIS naturally leads to constructions of publicly verifiable
primitives.

4We stress that this does not contradict any of the claims made in [PPS21], but rather exemplifies
the difference between their approach and ours.
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3.2 Preliminaries
Let λ ∈ N denote the security parameter. Define N0 := N ∪ { 0 }. Let R be a ring.
We write R[X] for the (multivariate) polynomial ring over R and R(X) for the ring of
(multivariate) rational functions over R with intermediates X = (Xi : i ∈ Zw). We write
⟨G⟩ for the ideal resp. module spanned by the elements of the set G ⊂ Rη for η ∈ N.
When G is a singleton set we may suppress the { · } notation. We write |⟨G⟩| for size of
the ideal ⟨G⟩ as a set.

For m ∈ N, let ζm ∈ C be any fixed primitive m-th root of unity. Denote by K = Q(ζm)
the cyclotomic field of order m ≥ 2 and degree n = φ(m), and by R = Z[ζm] its ring of
integers, called a cyclotomic ring for short. We have R ∼= Z[x]/ ⟨Φm(x)⟩, where Φm(x) is
the m-th cyclotomic polynomial. If m is a power of 2, we call R a power-of-2 cyclotomic
ring. If m is a prime-power, we call R a prime-power cyclotomic ring. Let q ∈ N be
prime, we write Rq := R/qR and R×

q for all invertible elements in Rq. We have that Rq

splits into f fields of degree ϕ(m)/f . We write vec(r) ∈ Zn for the coefficient vector of r
(with the powerful basis). For any r ∈ R there exists a matrix rot(r) ∈ Zn×n s.t. ∀s ∈ R
we have vec(r · s) = rot(r) · vec(s). For elements x ∈ R we denote the infinity norm of
its coefficient vector as ∥x∥ := ∥ vec(x)∥. If x ∈ Rℓ we write ∥x∥ for the infinity norm of
x. We write ∥ · ∥p for the ℓp-norm, e.g. ∥ · ∥2 for the Euclidean norm. We write MG(·)
for a function that takes vectors indexed by G and returns a matrix where each column
corresponds to one such vector. We write In for the identity matrix of dimension n over
whatever ring is clear from context.

For w ∈ N, x = (xi : i ∈ Zw) ∈ Rw, and e = (ei : i ∈ Zw) ∈ Zw, we write xe := 6
i∈Zw

xei
i

whenever it is defined. For v = (vi : i ∈ Zw) ∈ (R×
q )w, we write v̄ := (v−1

i : i ∈ Zw)
for the entry-wise inverse of v. A Laurent monomial g(X) ∈ R(X) is an expression
g(X) = Xe := 6

i∈Zw
Xei

i with exponent vector e = (ei : i ∈ Zw) ∈ Zw.

We may suppress arbitrary subscripts and superscripts from problem and advantage
notations when those are clear from context. We write x ← D for sampling from the
distribution D and x←S to sample an element from the finite space S uniformly at
random. We write U(S) for the uniform distribution over S and { uG } := { ug }g∈G .

Definition 3.2.1 (Ring Expansion Factor). Let R be a ring. The expansion factor of R,
denoted by γR, is γR := maxa,b∈R

∥a·b∥
∥a∥·∥b∥ .

Proposition 1 ([AL21]). If R = Z[ζm] is a prime-power cyclotomic ring, then γR ≤ 2 n.
If R = Z[ζm] is a power-of-2 cyclotomic ring, then γR ≤ n.

Proposition 2. Let q = ω((w · f)f/ϕ(m)) be a rational prime such that Rq splits into f
fields each of size qφ(m)/f . For v←Rw

q , we have v ∈ (R×
q )w with non-negligible probability.

Proof. The probability that v ∈ (R×
q )w is (1 − 1/qφ(m)/f )w·f ≥ 1 − (w · f)/qφ(m)/f which

is non-negligible.
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For the rest of this work, we implicitly assume q is large enough so that a uniformly
random v←Rw

q satisfies v ∈ (R×
q )w with non-negligible probability.

3.2.1 Lattices
We write Λ(B) for the Euclidean lattice generated by the columns of B ∈ Zn×d =
[b0 . . . bd−1], i.e. { zi · bi | zi ∈ Z }. When B has full rank we call it a basis and when
n = d we say that Λ(B) has full rank. The determinant of a full rank lattice is the
absolute value of the determinant of any of its bases. Minkowski’s theorem implies that
there is a vector x ∈ Λ ⊂ Rd of (infinity) norm ∥x∥ ≤ det(Λ)1/d when Λ has full rank.
The Gaussian heuristic predicts that a random full-rank lattice Λ contains a shortest
vector of (Euclidean) norm ≈

7
d

2π e · det(Λ)1/d.

For any c ∈ Rn and any real σ > 0, the (spherical) Gaussian function with standard
deviation parameter σ and centre c is:

∀x ∈ Rn, ρσ,c(x) = exp
(

−π · ∥x − c∥2
2

σ2

/
.

The Gaussian distribution is Dσ,c(x) = ρσ,c(x)/σn. The (spherical) discrete Gaussian
distribution over a lattice Λ ∈ Rn, with standard deviation parameter σ > 0 and centre
c is:

∀x ∈ Λ, DΛ,σ,c = ρσ,c(x)
ρσ,c(Λ) ,

where ρσ,c(Λ) := ;
x∈Λ ρσ,c(x). When c = 0 we omit the subscript c. We may write

DR,σ where we interpret R to be the lattice spanned by R.

The dual of a lattice Λ is defined by Λ∗ =
�
y ∈ Rn : yT · Λ ⊆ Z

�
. The smoothing

parameter of an n-dimensional lattice Λ with respect to ϵ > 0, denoted ηϵ(Λ), is the
smallest σ > 0, such that ρ1/σ(Λ∗ \ { 0 }) ≤ ϵ.

Lattice reduction with parameter κ returns a vector of Euclidean norm ≈ δd−1 · det(Λ)1/d

where δ is the root Hermite factor δ and a function of κ.5 A root Hermite factor δ ≈)
κ

2 π e

01/(2κ) can be achieved in time 20.292 κ+o(κ) classically using the BKZ algorithm [SE94]
with block size κ and sieving as the SVP oracle [BDGL16] (quantum algorithms do not
promise a sufficiently substantial speed-up [Laa15, AGPS20]). Concretely, for λ = 128
we require κ ≥ 484 and thus δ ≤ 1.0034.

3.2.2 Sampling Algorithms
The following relies on analogues of the Leftover Hash Lemma over rings attesting that
given ai←U(Rη

q) and ri←D where D is a small uniform [Mic07, SSTX09] or discrete
Gaussian distribution [SS11, LPR13], we have that

'
a0, . . . , aℓ−1,

;
0≤i<ℓ ai · ri

.
is close

5The literature routinely simplifies the first expression to ≈ δd · det(Λ)1/d
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to uniform. In what follows, we will write lhl(R, η, q, D) for an algorithm that outputs
a minimal ℓ ∈ N ensuring that the resulting distribution is within negl to uniform.
We may also write lhl(R, η, q, β) for some D outputting elements bounded by β (with
overwhelming probability). In many cases the reader may think ℓ ∈ O(η logβ(q)). Let
(TrapGen, SampD, SampPre) be PPT algorithms with the following syntax and proper-
ties [GPV08, MP12, GM18]:

• (A, td) ← TrapGen(1η, 1ℓ, q, R, β) takes dimensions η, ℓ ∈ N, a modulus q ∈ N, a ring
R, and a norm bound β ∈ R. It generates a matrix A ∈ Rη×ℓ

q and a trapdoor td. For
any n ∈ poly(λ) and ℓ ≥ lhl(R, η, q, β), the distribution of A is within negl statistical
distance of U(Rη×ℓ

q ).

• u ← SampD(1η, 1ℓ, R, β′) with ℓ ≥ lhl(R, η, q, β) outputs an element in u ∈ Rℓ with
norm bound β′ ≥ β. We have that v := A · u mod q is within negl statistical distance
to U(Rη

q).

• u ← SampPre(td, v, β′) with ℓ ≥ lhl(R, η, q, β) takes a trapdoor td, a vector v ∈ Rη
q ,

and a norm bound β′ ≥ β. It samples u ∈ Rℓ satisfying A · u ≡ v mod q and ∥u∥ ≤
β′. Furthermore, u is within negl statistical distance to u ← SampD(1η, 1ℓ, R, β′)
conditioned on v ≡ A · u mod q. The syntax can be extended in the natural way for
SampPre to take a matrix V as input, in which case SampPre is run on each column
of V and the output vectors are concatenated column-wise to form a matrix.

For all algorithms we may replace β by D where it is understood that D outputs samples
bounded by β (with overwhelming probability).

Proposition 3 (adapted from Lemma 5 of [AKSY21]). For any k > 1/
√

2 π,

Pr ∥z∥2 > k · σ · √
2π n; z ← DZn,σ < (k · √

2π)n exp
*

n

2 ·
'
1 − 2π k2

.1
,

Pr ∥z∥∞ > k · σ; z ← DZn,σ < 2 n · exp(−πk2).

3.2.3 Rényi Divergence
Definition 3.2.2. Let P and Q be any two discrete probability distributions such that
Supp(P ) ⊆ Supp(Q). Then for a ∈ (1, ∞), the Rényi Divergence (RD) of order a is
defined by

Ra(P∥Q) =

 :
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

Lemma 3.2.1 (in Lemma 2.9 of [BLR+18]). Let P and Q be any two discrete probability
distributions such that Supp(P ) ⊆ Supp(Q) and let a ∈ (1, ∞).

• Let E ⊆ Supp(Q) be an arbitrary event, then Q(E) ≥ P (E)
a

a−1 /Ra(P∥Q).
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• Assume P and Q are two distributions of a pair of random variable (Y0, Y1). For
i ∈ {0, 1} let Pi (resp. Qi) denote the marginal distribution of Yi under P (resp.
Q), and let P1|0(·|y0) (resp. Q1|0(·|y0)) denote the conditional distribution of Y1
given that Y0 = y. Then we have

Ra(P ||Q) = Ra(P0||Q0) · Ra(P1||Q1) if Y0 and Y1 are independent.

Lemma 3.2.2 ([BLR+18]). For any n-dimensional lattice, Λ ∈ Rn and σ > 0, let P be
the distribution DΛ,σ,c, and Q be the distribution DΛ,σ,c′ for some fixed c, c′ ∈ Rn. If
c, c′ ∈ Λ, let ϵ = 0. Otherwise fix ϵ ∈ (0, 1) and assume that σ > ηϵ(Λ). Then for any
a ∈ (1, ∞)

Ra(P∥Q) ∈
�*1 − ϵ

1 + ϵ

1 2
a−1

,

*1 + ϵ

1 − ϵ

1 2
a−1

 
· exp

(
a · π

∥c − c′∥2
2

σ2

/
.

3.2.4 Hard Problems
The Short Integer Solution problem was introduced in the seminal work of Ajtai [Ajt96].
It asks to find a short element (of Euclidean norm β2) in the kernel of a random matrix
mod q. An inhomogeneous version, asking to find a short solution to a linear algebra
problem mod q was formalised later [Mic07].

For both problems, it was shown [GPV08] that solving the problem for q ≥ β2 ·
ω(

√
n · log n) implies solving certain presumed hard lattice problems (finding a short

basis) to within approximation factor β2 · Õ(
√

n). Thus, since β2 ≥ β∞, an appropriate
choice of parameters is n = poly(λ), q ≥ β∞ · n · log n and ℓ ≥ 2 n logβ∞ q. An algorithm
solving ISIS can be used to solve SIS (by making one of the columns of A the target)
and solving ISIS twice allows to solve SIS by considering the difference of these solutions.
Ring variants were introduced in [Mic07, PR06, LM06]; module variants in [LS15].

Definition 3.2.3 (M -SIS, adapted from [LS15]). Let R, η, q, ℓ, β depend on λ. The
Module-SIS (or M-SIS) problem, denoted M -SISRq ,η,ℓ,β∗ , is: Given a uniform A←Rη×ℓ

q ,
t ≡ 0 mod q find some u ̸= 0 ∈ Rℓ such that ∥u∥ ≤ β∗ and A · u ≡ t mod q. We write
Advm-sis

Rq ,η,ℓ,β∗,A for the advantage of any algorithm A in solving M -SISRq ,η,ℓ,β∗ . We assume
Advm-sis

Rq ,η,ℓ,β∗,A ≤ negl(λ) for appropriately chosen Rq, η, ℓ, β∗ and PPT A. When t ̸= 0
we speak of the Module-ISIS or M-ISIS problem, denoted M -ISISRq ,η,ℓ,β∗. When η = 1
we speak of Ring-(I)SIS or R-(I)SIS, denoted R-SISRq ,ℓ,β∗ or R-ISISRq ,ℓ,β∗.

In [LS15] it was shown that solving Module-SIS is as hard as finding a short basis in
modules. In [LM06, PR06] it was shown that solving Ring-SIS is as hard as find a short
vector in any ideal in R. A similar result was established for Ring-ISIS [Mic07]. From a
cryptanalytic perspective, no known algorithm solves Ring/Module-(I)SIS significantly
faster than those solving (I)SIS. Our assumption is a generalisation and adaptation to
more general rings of the k-SIS assumption.
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Definition 3.2.4 (k-M -SIS, generalised from [BF11, LPSS14]). For any integer k ≥ 0,
an instance of the k-M -SISRq ,η,ℓ,β,β∗ problem is a matrix A ∈ Rη×ℓ

q and a set of k vectors
u0, . . . uk−1 s.t. A · ui ≡ 0 mod q with ∥ui∥ ≤ β. A solution to the problem is a nonzero
vector u ∈ Rℓ such that

∥u∥ ≤ β∗, A · u ≡ 0 mod q, and u /∈ K- span({ ui }0≤i<k).

If B is an algorithms that takes as input a matrix A ∈ Rη×ℓ
q and vectors ui ∈ Rℓ for

0 ≤ i < k, we define Advk-m-sis
Rq ,η,ℓ,β,β∗,B to be the probability that B outputs a solution to the

k-M -SISRq ,η,ℓ,β,β∗ problem instance A, u0, . . . , uk−1 over uniformly random A ∈ Rη×ℓ
q

and ui drawn from SampD(1η, 1ℓ, R, β) conditioned on A · ui ≡ 0 mod q.

In [BF11, LPSS14] it is shown that if SIS is hard for Zn×(ℓ−k)
q and norm bound β then

k-M -SISZq ,n,ℓ,β′,β′′ is hard for any k < ℓ, and certain β′, β′′ ∈ poly(β). Looking ahead,
here we are interested in k-R-SISRq ,ℓ,β,β∗ := k-M -SISRq ,1,ℓ,β,β∗ .

3.2.5 Vector Commitments
We define a non-interactive variant of vector commitments with preprocessing.

Definition 3.2.5 (Vector Commitments (VC)). A (preprocessing non-interactive) vector
commitment (VC) scheme is parameterised by the families

F = { Fs,w,t ⊆ { f : Rs × Rw → Rt } }s,w,t∈N and
Y = { Ys,t ⊆ { y : Rs → Rt } }s,t∈N

of functions over R and an input alphabet X ⊆ R. The parameters s, w, and t are the
dimensions of public inputs, secret inputs, and outputs of f respectively. The VC scheme
consists of the PPT algorithms (Setup, Com, Open, PreVerify, Verify) defined as follows:

• pp ← Setup(1λ, 1s, 1w, 1t): The setup algorithm generates the public parameters on
input the security parameter λ ∈ N and the size parameters s, w, t ∈ N.

• (c, aux) ← Com(pp, x): The commitment algorithm generates a commitment c of a
given vector x ∈ X w with some auxiliary opening information aux.

• π ← Open(pp, f, z, aux): The opening algorithm generates a proof π for f(z, ·) for the
public input z ∈ X s and function f ∈ Fs,w,t.

• ppf,y ← PreVerify(pp, (f, y)): Given functions f ∈ Fs,w,t and y ∈ Ys,t, the verification
preprocessing algorithm generates the preprocessed public parameters ppf,y for verifying
proofs for (f, y).
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• b ← Verify(ppf,y, z, c, π): The verification algorithm inputs a preprocessed public
parameters ppf,y, a public input z ∈ X s, a commitment c, and an opening proof π. It
outputs a bit b deciding whether to accept or reject that the vector x committed in c
satisfies f(z, x) = y(z).

Definition 3.2.6 (Correctness). A VC scheme for (F , X , Y) is said to be correct if for
any λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z, x, y) ∈ Fs,w,t × X s × X w × Ys,t

satisfying f(z, x) = y(z), any (c, aux) ∈ Com(pp, x), any π ∈ Open(pp, f, z, aux), and any
ppf,y ∈ PreVerify(pp, (f, y)), it holds that Verify(ppf,y, z, c, π) = 1.

Informally, a VC scheme is extractable if, whenever an adversary A is able to produce
a commitment c and a valid opening proof π for some (f(z, ·), y(z)), then it must
“know” a preimage x which is committed in c and satisfies f(z, x) = y(z). Clearly, an
extractable VC must also be binding, i.e. it is infeasible to open a commitment c to a set
{ (fi(zi, ·), yi(zi)) }i of inconsistant function-image tuples.

Definition 3.2.7 (Extractability). Let κ : N4 → [0, 1]. A VC scheme for (F , X , Y) is
said to be (κ, X ∗)-extractable if for any PPT adversary A there exists a PPT extractor
EA such that the following probability is at most κ(λ, s, w, t):

Pr


)
Verify(ppf,y, z, c, π) = 1

0
∧ ((f, z, x, y) /∈ Fs,w,t × X s × (X ∗)w × Ys,t

∨ c′ ̸= c ∨ f(z, x) ̸= y(z))

@@@@@@@@@@@@

pp ← Setup(1λ, 1s, 1w, 1t)
(f, y, z, c, π) ← A(pp; rA)
(x, r) ← EA(pp; rA)
(c′, aux′) ← Com(pp, x; r)
ppf,y ← PreVerify(pp, (f, y))

 .

In case Com is deterministic, we suppress the output r of EA. We say that the scheme
is X ∗-extractable if it is (κ, X ∗)-extractable and κ(λ, s, w, t) is negligible in λ for any
s, w, t ∈ poly(λ).

Definition 3.2.8 (Compactness). A VC scheme for (F , X , Y) is said to be compact
if there exists p(λ, s, w, t) ∈ poly(λ, log s, log w, log t) such that for any λ, s, w, t ∈ N,
any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z, x, y) ∈ Fs,w,t × X s × X w × Ys,t, any (c, aux) ∈
Com(pp, x), and any π ∈ Open(pp, f, z, aux), it holds that max{|c|, |π|} ≤ p(λ, s, w, t),
where | · | denotes the description size.

3.2.6 SNARKs for Polynomial Map Satisfiability
We define the NP language of the satisfiability of systems of multivariate polynomials
over R with bounded coefficients. It is straightforward to check that the language is
NP-complete. In particular, it contains the NP-complete language of rank-1 constraint
satisfiability (R1CS) over R [BCS21] as a subset.

Definition 3.2.9. Let d, α ∈ N with d ≥ 2. The satisfiability of systems of degree-d
polynomials over R with norm bound α is the language PolySATR,d,α = >

s,w,t∈N Ls,w,t
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where

Ls,w,t := { (f, y, z) ∈ Fs,w,t × Ys,t × X s : ∃ x ∈ X w, f(z, x) = y(z) } .

where Fs,w,t, Ys,t, and X are defined as in Table 3.1.

We recall the definition of succinct non-interactive arguments of knowledge (SNARKs).
For concreteness, we state the definition with respect to the language PolySATR,d,α.

Definition 3.2.10 (Preprocessing Non-Interactive Arguments). A preprocessing non-
interactive argument system Π for PolySATR,d,α is a tuple of PPT algorithms (Setup, Prove,
PreVerify, Verify) defined as follows:

• pp ← Setup(1λ, 1s, 1w, 1t): The setup algorithm generates the public parameters on
input the security and size parameters λ, s, w, t ∈ N.

• π ← Prove(pp, (f, y, z), x): The proving algorithm generates a proof π on input the
public parameters pp, a statement (f, y, z), and a witness x.

• ppf,y ← PreVerify(pp, (f, y)): The preverification algorithm inputs the public param-
eters pp and a partial statement (f, y). It outputs the preprocessed public parameters
ppf,y.

• b ← Verify(ppf,y, z, π): The verification algorithm returns a bit b (denoting accep-
tance or rejection) on input the preprocessed public parameters ppf,y and a proof
π.

In the following definitions, we use “a system” to refer to a preprocessing non-interactive
argument system for PolySATR,d,α.

Definition 3.2.11 (Completeness). A system Π is said to be complete if for any
λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, y, z) ∈ Fs,w,t × Ys,t × X s and
x ∈ X w satisfying f(z, x) = y(z), any π ∈ Prove(pp, (f, y, z), x), and any ppf,y ∈
PreVerify(pp, (f, y)), it holds that Verify(ppf,y, z, π) = 1.

Definition 3.2.12 (Succinctness). A system Π is said to be succinct if for any λ, s, w, t ∈
N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, y, z) ∈ Fs,w,t × Ys,t × X s and x ∈ X w satisfying
f(z, x) = y(z), any π ∈ Prove(pp, (f, y, z), x), and any ppf,y ∈ PreVerify(pp, (f, y)), the
runtime of Verify(ppf,y, z, π) is upper-bounded by a fixed polynomial in poly(λ, s, log w, log t).

Definition 3.2.13 (Knowledge Soundness). Let κ : N4 → [0, 1]. A system Π is said to
be (κ, X ∗)-knowledge-sound if for any PPT adversary A there exists a PPT extractor EA
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such that the following probability is at most κ(λ):

Pr



'
Verify(ppf,y, z, π) = 1

.
∧'

(f, y, z) /∈ Fs,w,t × Ys,t × X s)

∨ (x /∈ (X ∗)w)

∨ f(z, x) ̸= y(z)
.

@@@@@@@@@@@@@@

pp ← Setup(1λ, 1s, 1w, 1t)
((f, y, z), π) ← A(pp; rA)
x ← EA(pp, rA)
ppf,y ← PreVerify(pp, (f, y))


We say that the SNARK is X ∗-knowledge-sound if it is (κ, X ∗)-knowledge-sound and
κ(λ, s, w, t) is a negligible in λ for any s, w, t ∈ poly(λ).

Definition 3.2.14 (Preprocessing SNARKs). A preprocessing non-interactive argument
system Π is said to be a preprocessing SNARK if it is complete, succinct, and X ∗-
knowledge-sound for some X ∗ ⊇ X .

Sometimes SNARKs are required to be zero-knowledge (zk-SNARKs), in which case we
also require the existence of a simulator that is able to generate valid proofs without
knowing the witness. Contrary to standard zero-knowledge proofs, SNARKs are already
non-trivial to construct without zero-knowledge, so we treat this aspect as tangential to
our main result. We refer the reader to Definition B.1.7 for a formal definition of this
property.

3.3 The k-M-ISIS Assumption
We first introduce a family of assumptions over modules – k-M -ISIS – which we then
specialise to rings to obtain k-R-ISIS mentioned above.

We note that the most immediate candidate notion for k-ISIS, i.e. generalising k-SIS, is to
simply hand out short preimages of random images and then ask the adversary to solve
ISIS. This notion is trivially equivalent to ISIS since short preimages of random images
can be efficiently sampled by sampling short u ∈ Zℓ and computing t := A · u mod q.
The same reasoning can be lifted to R. On the other hand, k-SIS is trivially insecure
when k ≥ ℓ in the intuitive sense since then { ui } constitutes a trapdoor for A when the
ui are linearly independent [GPV08]. Formally, the problem as stated is impossible to
solve since all vectors will be in Q- span({ ui }0≤i<k), i.e. there are no valid solutions.

Our variants are neither trivially equivalent to M -ISIS nor immediately broken when
k > ℓ by imposing on the images an algebraic structure which is independent of the
challenge matrix A. Before stating our family of assumptions, we define a notion of
admissibility to formally rule out trivial wins.

Definition 3.3.1 (k-M -ISIS-Admissible). Let g(X) ∈ R(X) be a Laurent monomial,
i.e. g(X) = Xe := 6

i∈Zw
Xei

i for some exponent vector e = (ei : i ∈ Zw) ∈ Zw. Let
G ⊂ R(X) be a set of Laurent monomials with k := |G| and let G be a vector of those
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monomials. Let g∗ ∈ R(X) be a target Laurent monomial. We call a family G k-M -ISIS-
admissible if 1. all g ∈ G have constant degree, i.e. ∥e∥1 ∈ O(1); 2. all g ∈ G are distinct,
i.e. G is not a multiset; and 3. 0 ̸∈ G. We call a family (G, g∗) k-M -ISIS-admissible if G
is k-M -ISIS-admissible, g∗ has constant degree, and g∗ /∈ G.

Remark 4. Condition (i) rules out monomials that depend on the ring R, such as Xϕ(m).
Condition (ii) rules out that trivial linear combinations of known preimages produce a
preimage for the target. Condition (iii) rules out trivially producing multiple preimages
of the same image. On the other hand, we do not target full generality here but restrict
ourselves to a slight generalisation of what we require in this work. It is plausible that we
can replace Laurent monomials by Laurent “terms”, i.e. with coefficients ̸= 1 in Rq, or
rational functions.

Definition 3.3.2 (k-M -ISIS Assumptions). Let ℓ, η ∈ N. Let q be a rational prime,
R the m-th cyclotomic ring, and Rq := R/qR. Let T ⊂ Rη

q be such that, for any
t = (ti)i∈Zη ∈ T , ⟨{ ti }⟩ = Rq. Let G ⊂ R(X) be a set of w-variate Laurent monomial.
Let g∗ ∈ R(X) be a target Laurent monomial. Let (G, g∗) be k-M -ISIS-admissible. Let
Ḡ := G ∪ { g∗ }. Let β ≥ 1 and β∗ ≥ 1 be reals. For η, ℓ ∈ N, g ∈ Ḡ, ℓ ≥ lhl(R, η, q, β),
A ∈ Rη×ℓ

q , t ∈ T , and v ∈ (R×
q )w, let Dg,A,t,v be a distribution over

{ ug ∈ Rℓ : A · ug ≡ g(v) · t mod q, ∥ug∥ ≤ β } .

Let D := { Dg,A,t,v : η, ℓ ∈ N, g ∈ Ḡ, A ∈ Rη×ℓ
q , v ∈ (R×

q )w } be the family of these distri-
butions. Write pp := (Rq, η, ℓ, w, G, g∗, D, T , β, β∗). The k-M -ISISpp assumption states
that for any PPT adversary A we have Advk-m-isis

pp,A ≤ negl(λ), where

Advk-m-isis
pp,A := Pr


A · ug∗ ≡ s∗ · g∗(v) · t mod q

∧ 0 < ∥s∗∥ ≤ β∗

∧ ∥ug∗∥ ≤ β∗

∧ (g∗, ug∗) ̸= (0, 0)

@@@@@@@@@@@

A←Rη×ℓ
q mod q

t←T ; v←(R×
q )w

ug←Dg,A,t,v, ∀ g ∈ G
(s∗, ug∗) ← A (A, t, { uG } , v)

 .

Remark 5. Since for any t′ ∈ T there exist matrices X, Y s.t. X · Y ≡ I, X ·
t′ ≡ (1, 0, . . . , 0)T mod q and Y · (1, 0, . . . , 0)T ≡ t′ mod q, we can assume that T =
{ (1, 0, . . . , 0)T } without loss of generality.

Definition 3.3.3 (k-R-ISIS). When η = 1 we may write

k-R-ISISRq ,ℓ,w,G,g∗,D,T ,β,β∗ := k-M -ISISRq ,1,ℓ,w,G,g∗,D,T ,β,β∗ .

Remark 6. Analogous to the ℓ-Diffie-Hellman exponent assumption, an example of
(w, G, g∗) is w = 1, G = { 1, X, . . . , Xℓ, Xℓ+2, . . . , X2ℓ }, and g∗(X) = Xℓ+1 for some
ℓ ∈ N.

As written above we have a separate assumption for each family of (G, g∗) which are
application dependent. As we will show below, there are (G, g∗) that are as hard as
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M -ISIS and our discussion of admissibility indicates that some (G, g∗) are trivially insecure.
However, to encourage analysis and to avoid “bodacious assumptions” [KM10] we make
the following, strong, meta assumption.

Definition 3.3.4 (k-M -ISIS Meta Assumption). For any k-M -ISIS-admissible (G, g∗),
k-M -ISISpp with pp := (Rq, η, ℓ, w, G, g∗, D, T , β, β∗) is hard if M -ISISRq ,η,ℓ,β∗ is hard.

3.3.1 Knowledge Variants
We next propose a “knowledge” version of the k-M -ISIS assumption. It captures the
intuition that if the images are restricted to scalar multiples of t then the only way to
produce preimages of them under A is to perform a linear combination of the given
preimages under A with small coefficients.

Definition 3.3.5 (Knowledge k-M -ISIS Assumption). Adopt the notation from Defini-
tion 3.3.2, but let pp := (Rq, η, ℓ, w, G, D, T , α∗, β, β∗) where α∗ ≥ 1 is real and η > 1.
The knowledge k-M -ISISpp assumption states that for any PPT adversary A there exists
a PPT extractor EA such that Advknow-k-m-isis

pp,A ≤ negl(λ), where

Advknow-k-m-isis
pp,A := Pr



A · u ≡ c · t mod q

∧ ∥u∥ ≤ β∗

∧ ¬

,,
c ≡

:
g∈G

xg · g(v) mod q

∧
???(xg)g∈G

??? ≤ α∗

33

@@@@@@@@@@@@@@@

A←Rη×ℓ
q

t←T ; v←(R×
q )w

ug←Dg,A,t,v, ∀ g ∈ G'
(c, u), (xg)g∈G

.
← (A∥EA) (A, t, { uG } , v)


where the notation (A∥EA) means that A and EA are run on the same input including
the randomness, and (c, u) and (xg)g∈G are the outputs of A and EA respectively.

The knowledge k-M -ISIS assumption, as stated, only makes sense for η ≥ 2, i.e. not for
k-R-ISIS. To see this, consider an adversary A which does the following: First, it samples
random short u and checks whether A · u mod q is in the submodule of Rη

q generated by
t. If not, A aborts. If so, it finds c such that A ·u = c · t mod q and outputs (c, u). When
η = 1 and assuming without loss of generality that T = { (1, 0, . . . , 0)T }, we observe that
t = 1 generates Rq, which means A never aborts. Clearly, when A does not abort, it has
no “knowledge” of how c can be expressed as a linear combination of { g(v) }g∈G . Note
that when η ≥ 2 the adversary A aborts with overwhelming probability since A · u mod q
is close to uniform over Rη

q but the submodule generated by t is only a negligible faction
of Rη

q . However, in order to be able to pun about “crises of knowledge”, we also define a
ring version of the knowledge assumption. In the ring setting, we consider proper ideals
rather than submodules.

Definition 3.3.6 (Knowledge k-R-ISIS Assumption). Let the parameters pp be as in Def-
inition 3.3.2 except that η = 1 and T contains elements t ∈ Rq s.t. 1/| ⟨t⟩ | = negl
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and | ⟨t⟩ |/|Rq| = negl. Furthermore, let St := {s ∈ Rq | s · t ≡ 0 mod q} and let T be
such that finding s′ ∈ St with ∥s′∥ ≤ α∗ is hard for t←T .6 The knowledge k-R-ISISpp
assumption states that for any PPT adversary A there exists a PPT extractor EA such
that Advk-r-isis

pp,A ≤ negl(λ), where

Advk-r-isis
pp,A := Pr



⟨a, u⟩ ≡ c · t mod q

∧ ∥u∥ ≤ β∗

∧ ¬

,,
c ≡

:
g∈G

xg · g(v) mod q

∧
???(xg)g∈G

??? ≤ α∗

33

@@@@@@@@@@@@@@@

a←Rℓ
q

t←T ; v←(R×
q )w

ug←Dg,a,t,v, ∀ g ∈ G'
(c, u), (xg)g∈G

.
← (A∥EA) (a, t, { uG } , v)


.

Definition 3.3.7 (Knowledge k-M -ISIS Meta Assumption). Let (G, g∗) be k-M -ISIS-
admissible, α∗, β∗ be reals with α∗ ≥ β∗ ≥ 1, and η > 1. The knowledge k-M -ISISRq ,η,ℓ,w,G,D,T ,α∗,β,β∗

assumption holds if the k-M -ISISRq ,η,ℓ,w,G,g∗,D,T ,β,β∗ assumption holds.

Remark 7. We note that our meta assumption does not cover knowledge k-R-ISIS since
it is not a true special case of k-M -ISIS as discussed above. See also discussion in
Section 3.4.2.

3.4 Analysing the k-M-ISIS Assumption
We give reductions studying the properties of our new assumptions. We first show
that there exist hard instances of the k-R-ISIS problem. In particular, in Lemmas 3.4.1
and 3.4.2 we show that k-R-ISIS (with g∗ ≡ 1) is as hard as R-SIS when w ≥ k and
when the system generated by G is efficiently invertible. In both lemmas, we use that
g(v) ∼ U((R×

q )w) ≈ U(Rw
q ) and these reductions do not apply to k-M -ISIS, i.e. η > 1.

In Theorem 3.4.1 we show that k-M -ISIS is at least as hard as k-R-ISIS. This, on the
one hand, formalises the intuition that increasing the module rank does not make the
problem easier but, on the other hand, also shows that the additional structure (restricting
to multiples of t := (1, 0, . . . , 0)T) preserves hardness. Using the same techniques, in
Theorem 3.4.2 we also show that k-M -ISIS is a true generalisation of k-R-SIS. We
stress, however, that none of the above reductions cover the case we use for our example
application in Section 3.5.

We next study the relations between k-M -ISIS (but not just k-R-ISIS) problems for
different choices of (G, g∗). In Lemma 3.4.4 we show that (G, g∗) is as hard as (G, 0) for
any G, formalising the intuition that the non-homogeneous variant is no easier than the
homogeneous variant. Then, in Lemma 3.4.5 we show that scaling (G, g∗) multiplicatively

6Concretely, let T be the set of all Rq elements t where half of the components of t in the Chinese
remainder theorem (CRT) representation are zero and the other half are non-zero. Note that this is
well-defined only when ⟨q⟩ is not a prime ideal in R. See Section 3.4.2 for more discussion on the choices
for (Rq, T ).
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by any non-zero Laurent monomial does not change the hardness, e.g. we may choose to
normalise instances to g∗ ≡ 1.

Finally, in Section 3.4.1, we investigate attacks on the k-M -ISIS problem. These attacks
do not outperform standard attacks on SIS and we will use them to set parameters
in Section 3.5.1.

Some k-R-ISIS ≥ R-SIS.

First, we show that giving out up to w constraints and when g∗ ≡ 1 then k-R-ISIS is no
easier than R-SIS. Under this condition, we can simply sample random preimages and
solve for the right v to satisfy the G constraints.

Lemma 3.4.1. Let the parameters pp be as in Definition 3.3.2. Furthermore, let g∗ ≡ 1,
G = {gi(X)}i∈Zk

⊂ R(X) be of size k ≤ w, the number of variables, and D be such that
the distribution�

(a, t, { ui } , v)
@@@a←Rℓ

q; t←T ; v←(R×
q )w; ui←Dgi,a,t,v, ∀i ∈ Zk

�
is statistically close to the distribution


(a, t, { ui } , v)
@@@@@a←Rℓ

q; t←T ; v←(R×
q )w

ui←SampD(11, 1ℓ, R, β) : ⟨a, ui⟩ ≡ gi(v) · t mod q, ∀i ∈ Zk

�
.

Write gi(X) = Xei, E = (ei)i∈Zk
∈ Zk×k, and (gi(v))i∈Zk

= vE. If Rq is a field, let
gcd (det (E) , qn − 1) = 1. Otherwise let det (E) = ±1. Then for any PPT adversary A
against k-R-ISISpp there exists a PPT adversary A′ against R-SIS with

Advr-sis
Rq ,ℓ+1,β∗,A′ ≥ 1

poly(λ) · Advk-r-isis
pp,A .

Proof. Wlog we consider k = w by simply only submitting a subset of our preimages to
the adversary. Also wlog we assume T = { 1 } as discussed in Remark 5. We construct
an R-SIS solver as follows: On input of an R-SIS instance a′, write a′ = (ā, a′) and set
a = 1

a′ · ā. If no a′ is invertible in Rq the reduction aborts. By our choice of q, with
non-negligible probability over the randomness of a′ the reduction does not abort, and in
which case a is uniformly distributed over Rℓ

q. For i ∈ Zk sample ui←SampD(11, 1ℓ, R, β)
and compute ti = ⟨a, ui⟩. Since ℓ ≥ lhl(R, 1, q, β), t ∈ Rk

q is distributed within negligible
statistical distance to uniform. By our choice of q, we have t ∈ (R×

q )k with non-negligible
probability. Compute v = (t)E−1

. We can write E−1 because E−1 = F/r where F is
over Z and r := | det(E)| ∈ Z. If det(E) = ±1 compute v directly. Otherwise, note
that every element in a finite field of order qn has an r-th root if gcd (r, qn − 1) = 1 and
computing r-th roots can be accomplished by computing r−1 mod (qn − 1). Note that
this implies r-th roots are unique under these conditions and the map is a bijection.
Thus, the map defined by gi(X) is a bijection, implying our sampling procedure produces
well distributed inputs.
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Run the k-R-ISIS solver on (a, {ui}i∈Zk
, v) to obtain (u∗, s∗) satisfying ⟨a, u∗⟩ ≡ s∗ mod q.

Output u′ = (u∗, −s∗). We observe that

⟨a, u∗⟩ ≡ s∗ mod q

⟨(a, 1), (u∗, −s∗)⟩ ≡ 0 mod q�
a′ · (a, 1), (u∗, −s∗)

� ≡ 0 mod q�
a′, u′� ≡ 0 mod q

Our R-SIS solver runs in time proportional to our k-R-ISIS solver. Finally, observe that
∥u′∥ ≤ β∗ if the k-M -ISIS adversary succeeded.

Next, we show that for some additional forms of G, too, k-R-ISIS is equivalent to R-SIS.
Here we use the freedom to sample vi to fix up images.

Lemma 3.4.2. Let the parameters pp be as in Definition 3.3.2. Furthermore, let
w = w′ + k for some w′ ∈ N, G be of the form

G = { gi(X) }i∈Zk
= {Xw′+i ·

5
j∈Zw′

X
ej

j }i∈Zk
,

and D be such that the distribution�
(a, t, { ui } , v)

@@@a←Rℓ
q; t←T ; v←(R×

q )w; ui←Dgi,a,t,v, ∀i ∈ Zk

�
is statistically close to the distribution


(a, t, { ui } , v)
@@@@@a←Rℓ

q; t←T ; v←(R×
q )w

ui←SampD(11, 1ℓ, R, β) : ⟨a, ui⟩ ≡ gi(v) · t mod q, ∀i ∈ Zk

�
.

For any PPT adversary A against k-R-ISISpp there exists a PPT adversary A′ against
R-SIS with

Advr-sis
Rq ,ℓ,β∗,A′ ≥ 1

poly(λ) · Advk-r-isis
pp,A .

Proof. Let a be a R-SISRq ,ℓ,β∗ instance. By assumption, a is uniformly distributed
over Rℓ

q. Sample v←(R×
q )w′ and ui←SampD(11, 1ℓ, R, β) for all i ∈ Zk. Compute

yi ≡ ⟨a, ui⟩ mod q and vw′+i ≡ yi · 6
j∈Zw′ v

−ej

j mod q for all i ∈ Zk.

If yi is not invertible for any i ∈ Zk the reduction aborts. If the reduction does not
abort, which happens with non-negligible probability, since ℓ ≥ lhl(R, 1, q, β), for each
i ∈ Zk, yi is uniformly distributed over R×

q , and so is vw′+i. We therefore conclude
that v is uniformly distributed over (R×

q )w. Run the k-R-ISIS adversary on the input'
a, { ui }i∈Zk

, v
.

to obtain (s∗, ug∗). By construction ug∗ satisfies ⟨a, ug∗⟩ ≡ 0 mod q if
the k-R-ISIS adversary succeeded.
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k-M-ISIS ≥ k-R-(I)SIS.

We show that k-M -ISIS is no easier than k-R-ISIS. The analogous reduction for M -ISIS
and R-ISIS is trivial. Here we face the complication that we have to map the known
preimages to k-M -ISIS while preserving a mapping back to make use of the returned
k-M -ISIS solution in k-R-ISIS. We do this by constructing a lower-triangular matrix
that satisfies our constraints and hide its structure by multiplying with a short upper
triangular matrix (with a short inverse). We then use Rényi divergence arguments to
break thus introduced dependencies. Our reduction has several limitations: 1. It requires
ℓ ≥ lhl(R, η, q, β) rather than ℓ > lhl(R, 1, q, β) for the input k-R-ISIS instance and
2. it produces an output distribution D for k-M -ISIS that is non-spherical. For ease of
exposition and because we do not require the more general case in this work, we give our
reduction for η = 2.

Theorem 3.4.1. Let the parameters ppM and ppR for k-M -ISIS and k-R-ISIS respectively
be as in Definition 3.3.2, such that they share the same ring Rq, number of variables w, and
monomials (G, g∗). Differing parameters are distinguished by subscripts, e.g. ℓM and ℓR.
Furthermore, let ηM = 2, β∗

∆ ∈ R, σ, σ∆ > ηϵ(R) ∈ R, βx ≥ σx be s.t. u ∼ DRℓ,σx
satisfy

∥u∥∞ ≤ βx for x ∈ { R, M, ∆ }, ℓ∆ := ℓM − ℓR ≥ lhl(R, 1, q, β∆), σR > γR · (ℓ∆ · n)3/2 ·
γR · σ∆ · σ, β∗

R ≥ 2 ℓ∆ · γR · √
n · σ · β∗

∆, ℓR ≥ lhl(R, 1, q, σ) and ≥ lhl(R, 2, q, βR). Let DR

be such that the distribution�
(a, t, { ui } , v)

@@@a←RℓR
q ; t←T ; v←(R×

q )w; ui←Dgi,a,v, ∀i ∈ Zk

�
is statistically close to the distribution


(a, t, { ui } , v)
@@@@@a←RℓR

q ; t←T ; v←(R×
q )w

ui←DRℓR ,σR
: ⟨a, ui⟩ ≡ gi(v) · t mod q, ∀i ∈ Zk

�
.

Let DM be such that the distribution�
(A, t, { ui } , v)

@@@A←RηM ×ℓM
q ; t←T ; v←(R×

q )w; ui←Dgi,A,t,v, ∀i ∈ Zk

�
is statistically close to the distribution


(A, t, { ui } , v)
@@@@@A←RηM ×ℓM

q ; t←T ; v←(R×
q )w

ui←DRℓR ,σR
× DRℓ∆ ,σ∆

: A · ui ≡ gi(v) · t mod q, ∀i ∈ Zk

�
.

Let SampD and SampPre output samples following a Discrete Gaussian distribution of
appropriate width σx given βx. For any PPT adversary A against k-M -ISISppM

there
exists a PPT adversary A′ against k-R-ISISppR

with

Advk-r-isis
ppR,A′ ≥ 1

poly(λ) · Advk-m-isis
ppM ,A .
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Using the same proof strategy, we show that some k-M -ISIS adversaries can break
k-M -SIS. To ease readability, the formal statement below is for k-R-SIS, i.e. k-M -SIS
with η = 1. The only non-trivial step is to argue that the output solution satisfies the
additional constraint imposed by k-M -SIS. Here we use an unrelated R-SIS instances
to argue that the adversary either broke R-SIS or the solution satisfies the required
constraint that it is not in K- span({ ui }0≤i<k).

Theorem 3.4.2. Let the parameters ppM for k-M -ISIS be as in Definition 3.3.2. Fur-
thermore, let ηM = 2, g∗

M = 0, β∗
∆ ∈ R, σ, σ∆ > ηϵ(R) > 1 ∈ R, βx ≥ σx be

s.t. u ∼ DR,σx satisfy ∥u∥∞ ≤ βx for x ∈ { R, M, ∆ }, ℓ∆ := ℓM − ℓR ≥ lhl(R, 1, q, β∆),
σR > (4 γR · σ∆ · σ · ℓ∆ · n), β∗

R ≥ 2 ℓ∆ · γR · √
2 πn · σ · β∗

∆, ℓR ≥ lhl(R, 1, q, σ) and
≥ lhl(R, 2, q, βR). Let DM be such that the distribution�

(A, t, { ui } , v)
@@@A←RηM ×ℓM

q ; t←T ; v←(R×
q )w; ui←Dgi,A,t,v, ∀i ∈ Zk

�
is statistically close to the distribution


(A, t, { ui } , v)
@@@@@A←RηM ×ℓM

q ; t←T ; v←(R×
q )w

ui←DRℓR ,σR
× DRℓ∆ ,σ∆

: A · ui ≡ gi(v) · t mod q, ∀i ∈ Zk

�
.

Let SampD and SampPre output samples following a Discrete Gaussian distribution
of appropriate width σx given βx. For any PPT adversary A against k-M -ISISppM

there exists a PPT adversary A′ or A′′ against k-M -SISRq ,1,ℓR,βR,β∗
R

or R-SISRq ,1,ℓR,β∗
R

respectively with

Advk-r-sis
Rq ,ℓR,β,β∗

R,A′ + Advr-sis
Rq ,ℓR,β∗

R,A′′ ≥ 1
poly(λ) · Advk-m-isis

ppM
.

We first state and prove a technical lemma that we will rely on in both proofs. It allows
us to argue, using Rényi and statistical distance arguments, that the structured inputs
we provide to the k-M -ISIS adversary are sufficiently close to what this adversary expects
for it to succeed.

Lemma 3.4.3. Consider

A :=
(

a 0
r b

/
·
(

I R
0 I

/
=

(
a a · R
r b

/
,

U :=
(

I −R
0 I

/
·
(

UR

W∆

/
=

(
UR − R · W∆

W∆

/
,

where a, r←RℓR
q , b←Rℓ∆

q , R ∈ RℓR×ℓ∆ with each entry sampled independently from
DR,σ, UR ∈ RℓR×k with each entry sampled independently from DR,σR

, W∆ ∈ Rℓ∆×k

with entry is sampled independently from DR,σ∆.

Let σ, σ∆ > ηϵ(R) ∈ R, βx ≥ σx be s.t. u ∼ DRℓ,σx
satisfy ∥u∥∞ ≤ βx for x ∈ { R, M, ∆ },

ℓ∆ := ℓM − ℓR ≥ lhl(R, 1, q, β∆), σR > γR · (ℓ∆ · n)3/2 · γR · σ∆ · σ, ℓR ≥ lhl(R, 1, q, σ)
and ≥ lhl(R, 2, q, βR).
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Let ppM ′ be as in Definition 3.3.2 except that A is sampled as above and ui are sampled
as the columns of U subject to A · U ≡ G · t mod q where G := MG(g). Let SampD
and SampPre output samples following a Discrete Gaussian distribution of appropriate
width σx given βx. Let A be a k-M -ISIS adversary solving instances sampled as in
Definition 3.3.2 with non-negligible probability, then A also solves instances with ppM ′

with non-negligible probability.

Proof. We argue this by defining a series of hybrid experiments for sampling (A, t, U, v):

Hyb0: The input (A0, t, U0, v) is sampled as above.

Hyb1: In this experiment (A1, t, U1, v) is sampled such that U1 is sampled independent
of R, i.e. ug := (u(R)

g , u(∆)
g ) where u(R)

g ∼ DRℓR ,σR
and u(∆)

g ∼ DRℓ∆ ,σ∆
.

Hyb2: In this experiment (A2, t, U2, v) is sampled as in the k-M -ISIS definition.

We first establish the closeness between the distributions Hyb0 and Hyb1.

Claim 3.4.1. The Rényi divergence between Hyb0 and Hyb1 is at most a constant.

Proof. We first show how we can sample from Hyb1. Let R1←RℓR×ℓ∆ be sampled as in
Hyb0. Sample (X, td) ← TrapGen(2, ℓR, q, R, βR), y←RℓM

q , write xi for the i-th row of
X, and set

A1 :=
(

x0 0
x1 y

/
·
(

I R1
0 I

/
=

(
x0 x0 · R1
x1 y

/
.

Note that x0, x1, and y play the roles of a, r, and b in Hyb0 respectively. Then, sample

W∆,1←DRℓ∆×k,σ∆
and UR,1←SampPre

(
td, G · t −

(
x0 · R1

y

/
W∆,1, βR

/
so that they

satisfy

A1 ·
(

UR,1
W∆,1

/
≡ G · t mod q.

We next argue about the closeness of Hyb0 and Hyb1. Write

U0 = ((UR,0 + R0 · W∆,0)T∥WT
∆,0)T

.

Since ℓR ≥ lhl(R, 2, q, βR) and by the properties of TrapGen we have that A0 and A1 are
statistically close. We also note that W∆,0 and W∆,1 are identically distributed. Next,
we consider the distribution DHyb1 := DRℓR×k,σR

of UR,1 and the distribution DHyb0 of
UR,0 + R0 · W∆,0, where we recall that UR,0 ∼ DRℓR×k,σR

, W∆,0 ∼ DRℓ∆×k,σ∆
and

R0 ∼ DRℓR×ℓ∆ ,σ. By Proposition 3
??W∆,0

?? ≤ √
ℓ∆ · n · σ∆, each column r of R0 satisfies
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∥r∥ ≤ √
ℓ∆ · n · σ and thus

??R0 · W∆,0
??

2 ≤ (ℓ∆ · n)3/2 · γR · σ∆ · σ. By Lemma 3.2.2, the
Rényi divergence of order a ∈ (1, ∞) is thus

Ra
)DHyb1∥DHyb0

0 ≤ exp
*

a π · ((ℓ∆ · n)3/2 · γR · σ∆ · σ)
2
/(σR)2

1
.

By assumption σR > γR · (ℓ∆ · n)3/2 · γR · σ∆ · σ and thus the Rényi divergence
Ra

)DHyb1∥DHyb0

0
, and hence Ra (Hyb1∥Hyb0), is bounded by a constant.

Next, let E be the event that the k-M -ISIS adversary is successful when given (A, t, U, v),
and denote the probability of this event happening when (A, t, U, v) is sampled from Hyb1
by Hyb1(E). By Lemma 3.2.1 we have that Hyb0(E) ≥ Hyb1(E)a/(a−1)/Ra(Hyb0∥Hyb1).
Taking any constant a > 1 establishes that (A0, t, U0, v) sampled from Hyb0 is sufficiently
well distributed for the adversary to succeed if it does for (A1, t, U1, v) sampled from
Hyb1.

It remains to show that Hyb1(E) and Hyb2(E) are (statistically) indistinguishable. For
this, we use that ℓR ≥ lhl(R, 1, q, σ) and the distributions of a, b, r to conclude that
A1 and A2 are statistically close, which implies that the distributions Hyb1 and Hyb2
are statistically close. The statistical indistinguishability between Hyb1(E) and Hyb2(E)
follows.

Proof of Theorem 3.4.1. Let (a, t, { uG } , v) ∈ RℓR
q × Rq × Rw

q × RℓR×k be a k-R-ISIS
instance. Without loss of generality (Remark 5), suppose t = 1. Our reduction samples:
(b, td) ← TrapGen(1, ℓ∆, q, R, β∆), r←RℓR

q and a short matrix R ∈ RℓR×ℓ∆ where each
entry is sampled independently from DR,σ.

Let U ∈ RℓR×k := MG({ uG }). For each g ∈ G, sample short preimages wg←SampPre(td,
− ⟨r, ug⟩ , β∆). Note that 0 ≡ ⟨r, ug⟩ + ⟨b, wg⟩ mod q. Let W ∈ Rℓ∆×k := MG({ wG })
and G ∈ R1×k

q := MG({ g(v) }). We construct

A′ :=
(

a 0
r b

/
·
(

I R
0 I

/
=

(
a a · R
r b

/
,

U′ :=
(

I −R
0 I

/
·
(

U
W

/
=

(
U − R · W

W

/
.

Without loss of generality (Remark 5), suppose that t = (1, 0)T. By construction we have

A′ · U′ ≡ G · t mod q
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as required. Our reduction runs the k-M -ISIS adversary on (A′, t, U′, v). When the
adversary returns a short preimage u∗ of s∗ · g∗(v) · t we have

s∗ · g∗(v) · t ≡ A′ · u∗ mod q

≡
(

a 0
r b

/
·
(

I R
0 I

/
·
(

u∗
0

u∗
1

/
mod q

≡
(

a 0
r b

/
·
(

u∗
0 + R · u∗

1
u∗

1

/
mod q

s∗ · g∗(v) ≡ ⟨a, u∗
0 + R · u∗

1⟩ mod q,

i.e. u∗
0 + R · u∗

1 is a solution for k-R-ISIS. By Proposition 3 the entries of R are bounded by√
n·σ with overwhelming probability. Thus, ∥u∗

0 + R · u∗
1∥ ≤ 2 ℓ∆ ·γR ·√2 πn·σ ·β∗

M ≤ β∗
R.

Finally, to show that the input (A′, t, U′, v) to the k-M -ISIS adversary is (sufficiently)
well distributed, we apply Lemma 3.4.3.

of Theorem 3.4.2. Let (a, { ui }) ∈ RℓR
q × RℓR×k be a k-R-SIS instance. Our reduction

samples: v ∈ (R×
q )w, (b, td) ← TrapGen(1, ℓ∆, q, R, β∆), r←RℓR

q and a short matrix
R ∈ RℓR×ℓ∆ where each entry is sampled independently from DR,σ. Let U ∈ RℓR×k

be the matrix where ui are the columns. For each 0 ≤ i < k, sample short preimages
wgi←SampPre(td, − ⟨r, ui⟩ + gi(v), β∆). Note that gi(v) ≡ ⟨r, ugi⟩ + ⟨b, wgi⟩ mod q. Let
W ∈ Rℓ∆×k := MG({ wG }) and G ∈ R1×k

q := MG({ g(v) }). We construct

A′ :=
(

a 0
r b

/
·
(

I R
0 I

/
=

(
a a · R
r b

/
,

U′ :=
(

I −R
0 I

/
·
(

U
W

/
=

(
U − R · W

W

/
.

Without loss of generality (Remark 5), suppose that t = (0, 1)T. By construction we have

A′ · U′ ≡ G · t mod q

as required. Our reduction runs the k-M -ISIS adversary on (A′, t, U′, v). When the
adversary returns a short preimage u∗ of s∗ · g∗(v) · t we have

s∗ · g∗(v) · t ≡ A′ · u∗ mod q

≡
(

a 0
r b

/
·
(

I R
0 I

/
·
(

u∗
0

u∗
1

/
mod q

≡
(

a 0
r b

/
·
(

u∗
0 + R · u∗

1
u∗

1

/
mod q

0 ≡ ⟨a, u∗
0 + R · u∗

1⟩ mod q,
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i.e. u∗
0 + R · u∗

1 is a candidate solution for k-R-SIS. First, we bound its norm. By
Proposition 3 the entries of R are bounded by

√
n · σ with overwhelming probability.

Thus, ∥u∗
0 + R · u∗

1∥ ≤ 2 ℓ∆ · γR · √
2 πn · σ · β∗

M ≤ β∗
R.

Second, we establish that the solution is a valid k-R-SIS solution, i.e. not in the span of
the ui. We distinguish two cases.

u∗
1 = 0. In this case we also have ⟨r, u∗

0⟩ ≡ g∗
M (v) ≡ 0 mod q, i.e. u∗

0 is solution to the
R-SISRq ,ℓR,β∗

R
instance r. In other words, if this case happens with non-negligible

probability, we could construct a PPT algorithm for R-SISRq ,ℓR,β∗
R

.

u∗
1 ̸= 0. It remains to be argued that u∗ /∈ K- span({ ui }0≤i<k) with non-negligible

probability. First, note that R is information-theoretically hidden from the k-M -ISIS
adversary. Now, suppose the contrary is true, i.e. that we have u∗

0 + R · u∗
1 =;

i∈Zk
ai · ui for some ai ∈ K. If this relation holds over K it must also hold mod

2. By [GPV08, Corollary 2.8], the distribution of R mod 2 is statistically close to
U(RℓR×ℓ∆

2 ) and thus R · u∗
1 is uniform mod 2. Moreover in the worst case R2 splits

into n copies of Z2. It suffices to consider only one copy. We thus may ask when;
i∈Zk

ai · ui ≡ R · u∗
i mod 2 for any ui ∈ ZℓR

2 has a solution ai ∈ {0, 1}k. Consider
the matrix spanned by ui and consider its echelon form. It has at most k pivot
positions and thus at least ℓR − k non-pivot positions. Thus, the probability (over
the randomness in R) of satisfying the constraint is ≤ 1/2ℓR−k ≤ 1/2 since k < ℓR.
Thus with probability > 1/2 we have u∗ /∈ K- span({ ui }0≤i<k).

Finally, to show that the input (A′, t, U′, v) to the k-M -ISIS adversary is (sufficiently)
well distributed, we apply Lemma 3.4.3.

(G, g∗) ≥ (G, 0).

The next lemma shows that solving for any (G, g∗) is as hard as solving for (G, 0).

Lemma 3.4.4. Let the parameters pp = (Rq, η, ℓ, w, G, g∗, D, T , β, β∗) be as in Defini-
tion 3.3.2. Furthermore, let β ≤ β∗, g∗ ̸= 0, and D be such that H∞ (Dg∗,A,t,v) ≥ λ for all
(A, t, v). Define p̂p = (Rq, η, ℓ, w, G∪{g∗}, 0, D̂, T , β, β̂∗) where D̂ = D∪{ Dg∗,A,t,v }A,t,v
and β̂∗ = 2 γR · (β∗)2. For any PPT adversary A against k-M -ISISpp there exists a PPT
adversary A′ against k-M -ISISp̂p with

Advk-m-isis
p̂p,A′ ≥ 1

poly(λ) · Advk-m-isis
pp,A .

Proof. Upon receiving a k-M -ISISp̂p instance
'
A, v, { ug }g∈G∪{g∗}

.
, A′ runs A on the

k-M -ISISpp instance
'
A, v, { ug }g∈G

.
and receives from it a vector (s∗, u′

g∗).
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Our algorithm A′ then outputs (1, u′
g∗ − s∗ · ug∗). We argue that if (s∗, u′

g∗) is a valid
solution to the k-M -ISISpp instance then (1, u′

g∗ − s∗ · ug∗) is a valid solution to the
k-M -ISISp̂p instance with non-negligible probability.

Clearly, the k-M -ISISpp instance given to A is well-distributed. By our assumption on A,
with non-negligible probability, it holds that A · u′

g∗ ≡ s∗ · g∗(v) · t mod q, 0 < ∥s∗∥ ≤ β∗,
and

???u′
g∗

??? ≤ β∗. Since A · ug∗ ≡ g∗(v) · t mod q, we have A · (u′
g∗ − s∗ · ug∗) ≡ 0 mod q.

Furthermore, by our assumption on Dg∗,A,t,v, we have ∥ug∗∥ ≤ β ≤ β∗. We therefore
have

???u′
g∗ − s∗ · ug∗

??? ≤ 2 · γR · (β∗)2 = β̂∗. It remains to argue that u′
g∗ − s∗ · ug∗ ̸= 0

with non-negligible probability, which is immediate from H∞ (Dg∗,A,v) ≥ λ.

(G, g∗) ≥ (r · G, r · g∗).

We show that the k-M -ISIS assumption is invariant under multiplication by any non-zero
Laurent monomial r(X).

Lemma 3.4.5. Let the parameters pp = (Rq, η, ℓ, w, G, g∗, D, T , β, β∗) be as in Defi-
nition 3.3.2. Let r(X) ∈ R(X) be a non-zero Laurent monomial and denote r · G :=
{ r · g : g ∈ G }. Define p̂p = (Rq, η, ℓ, w, r · G, r · g∗, D, T , β, β∗). For any PPT adversary
A against k-M -ISISpp there exists a PPT adversary A′ against k-M -ISISp̂p with

Advk-m-isis
p̂p,A′ ≥ 1

poly(λ) · Advk-m-isis
pp,A .

Proof. Upon receiving a k-M -ISISp̂p instance
'
A, t, v, { ug }g∈G

.
, A′ sets B := r(v) · A,

which is well-defined since v ∈ (R×
q )w. It then runs A on the k-M -ISISpp instance'

B, t, v, { ug }g∈G
.

and receives from it a tuple (s∗, ug∗). Our algorithm A′ then out-
puts (s∗, ug∗). We argue that if (s∗, ug∗) is a valid solution to the k-M -ISISpp in-
stance

'
B, t, v, { ug }g∈G

.
, then it is also a valid solution to the k-M -ISISp̂p instance'

A, t, v, { ug }g∈G
.
.

Note that r(v) ∈ R×
q and A is uniformly random over Rη×ℓ

q . Therefore A is also
uniformly random over Rη×ℓ

q . Next, note that B · ug = r(v) · A · ug ≡ (r · g)(v) · t mod q.
The k-M -ISISpp instance given to A is therefore well-distributed.

By our assumption on A, with non-negligible probability, it holds that B · ug∗ ≡
s∗ · g∗(v) · t mod q, 0 < ∥s∗∥ ≤ β∗, ∥ug∗∥ ≤ β∗, and (g∗, ug∗) ̸= (0, 0). The first equation
implies

s∗ · (r · g∗)(v) · t ≡ r(v) · A · ug∗ mod q

≡ B · ug∗ mod q.
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3.4.1 Attacks
Our first attack simply solves M -ISIS (more precisely ISIS). It thus simply ignores the
algebraic dependencies among the { g(·) }g∈G . Our further attacks attempt to find short
linear combinations among the { g(v) }g∈G .

Direct SIS Attack.

First, we can reduce the problem of finding ug∗ s.t. A ·ug∗ ≡ s∗ ·g∗(v) ·t mod q to finding
a A′ · u′

g∗ ≡ 0 mod q with A′ := (A, −g∗(v) · t). Then the last entry of u′
g∗ becomes s∗.

The analysis here is completely standard.

We will write this as A · u ≡ 0 mod q with A ∈ Zn·η×(n·η·(ℓ+1)). This task is equivalent
to finding a short vector in Λ(L) with A · L ≡ 0 mod q and L ∈ Z(n·η·(ℓ+1))×(n·η·ℓ)

q . Thus,
we are trying to find a short vector in a d ≤ n · η · (ℓ + 1) dimensional lattice with volume
Vol(Λ) = qn·η. Our problem formulation is for the infinity norm but lattice reduction
naturally considers the ℓ2 norm. We thus consider it a win if lattice reduction finds a
vector of norm

√
d · β∗, which is generous to the attacker. That is, we are trying to

establish the root-Hermite factor δ s.t.
√

d · β∗ ≈ δd−1 · Vol(Λ)1/d.

The minimum of the right hand side attained at d ≈ 9
n · η · log q/ log δ.7 Overall, we

obtain a vector of norm 22·
√

n·η·log(δ)·log(q)−log(δ).

A Solution in SpanR({ ug }g∈G).

We note that v←Rw
q is critical for security. If all vi are small then e.g. v0/v1·t ≡ A·uX0/X1

and v2/v1 · t ≡ A · uX2/X1 (which corresponds to the form of G which we will consider
below) allows to compute A ·

'
v2 · uX0/X1 − v0 · uX2/X1

.
≡ 0 mod q. If k > ℓ linearly

independent such preimages of zero can be constructed then this constitutes a trapdoor
for A and solves k-M -ISIS.

More generally and for v←Rw
q , we may attempt to find a short z = (zg0 , . . . , zgk−1) s.t.

⟨(g0(v), . . . , gk−1(v)) , z⟩ ≡ s∗ · g∗(v) mod q,

for gi ∈ G. We then compute ug∗ = ;
g∈G zg · ug which gives

A · ug∗ = A ·
:

g∈G
zg · ug

 =
:
g∈G

zg · A · ui =
:
g∈G

zg · g(v) · t = s∗ · g∗(v) · t mod q.

7The minimum is d =
9

n log q/ log δ for βℓ = δd · Vol(Λ)1/d which is what the literature typically
considers. However, normalising δ by d−1 instead of d makes sense from the analysis of lattice algorithms.
Note that d ≥ 1000 and δ < 1.02 so that discrepancy is tiny.
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Write G = [rot(g0(v))| . . . | rot(gk−1(v))| rot(g∗(v))] ∈ Zn×(n·(k+1))
q . As above, we cost

finding a short vector in Λ(W) where G · W ≡ 0 mod q. The analysis proceeds exactly
as above.

One the one hand, the final solution will have a larger expected norm ≤ √
k · γR ·

maxg∈G(βg) · βz when ∥z∥ ≤ βz: we are adding up k terms, each being the product of
two elements, and consider the expected norm. On the other hand, note that this attack
is independent of η. This implies that while k-M -ISIS is at least as hard as k-R-ISIS it
cannot, in general, be strictly harder.

A Solution in SpanRq
({ ug }g∈G).

We can generalise the previous approach to finding any, i.e. not necessarily short, z ∈ Rk
q

s.t. :
zi · gi(v) ≡ s∗ · g∗(v) mod q and

:
zi · ugi = uz with ∥uz∥ ≤ β∗.

Write G =
'
rot(g0(v)) · · · rot(gk−1(v))

.
∈ Zn×(n·k)

q

U =

,,,
rot

)
(ug0)0

0 · · · rot
'
(ugk−1)0

.
. . .

rot
'
(ug0)ℓ−1

.
· · · rot

'
(ugk−1)

ℓ−1

.
333 ∈ Z(n·ℓ)×(n·k)

and consider the lattice spanned by the columns of

S :=

, τ 0 0 0
g∗ q · In 0 G
0 0 q · In·ℓ U

3
where τ is some “embedding factor” optimised by the solving algorithm (the reader may
simply assume τ = 1.) Then Λ(S) contains a short vector (−τ · s∗, 0T, uT

z)T. Computing
the column Hermite normal form of S produces a basis in Zd×d with d := ℓ · (n + 1).
Assuming full row rank of [GT, UT] mod q, the determinant of Λ(S) is qT with t :=
(ℓ − min(k, ℓ) + 1) · n.

Thus, by the Gaussian heuristic, i.e. assume the lattice generated behaves like a random
lattice, we expect a shortest vector to have norm ≈ 9

d/2 π e · qt/d and lattice reduction
with root Hermite factor δ to find a vector of norm δd−1 · qt/d. This is minimised when
t = φ(m), i.e. when k = ℓ.

3.4.2 Knowledge Assumptions.
Finally, we consider the knowledge assumptions.

On the one hand, we evaluate these attack strategies with respect to the knowledge
assumption. An adversary that succeeds with the direct SIS strategy breaks our knowledge
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assumption while also breaking the M -ISIS assumption. The second approach – finding
a solution in SpanR({ ug }g∈G) immediately implies the extractor in Definition 3.3.5 by
computing xg directly. The third attack approach – finding a solution in SpanRq

({ ug }g∈G)
– initially seems most promising to invalidate our knowledge assumption by generalising
the attack to find large xg such that u∗ := ;

g∈G xg · ug is small. While finding such xg

given u∗ and ug is easy, finding a suitable target u∗, i.e. one satisfying c ·t ≡ A ·u∗ mod q,
seems hard, as outlined above.

On the other hand, we highlight a gap between the knowledge and “plain” k-R-ISIS
assumption pair and the knowledge k-M -ISIS and plain k-M -ISIS pair. For k-R-ISIS,
we can wlog pick t = 1 for the plain version but must pick t ̸= 1 such that 1/| ⟨t⟩ | =
negl(λ) and | ⟨t⟩ |/|Rq| = negl(λ) for the knowledge version. For k-M -ISIS, we may pick
t = (1, 0, . . . , 0)T in both cases.

This distinction is not just aesthetic. For plain k-R-ISIS, the attack strategies we are aware
of rely on finding short vectors in some modules of rank > 1. In contrast, in what follows,
we sketch an attack on knowledge k-R-ISIS which relies on finding short vectors in ideals
rather than in modules. Consider g∗ ≡ 0 and consider I := {s ∈ R | s · t ≡ 0 mod q}.
Note that I is an ideal in R and that finding a sufficiently short element s′ ̸= 0 in I
is a solution for k-R-ISIS with target g∗ ≡ 0. Pick any of the provided ui and return
s′ · ui. Since it holds that gi(v) · t ≡ ⟨a, ui⟩ mod q and s′ · t ≡ 0 mod q we have that
0 ≡ ⟨a, s′ · ui⟩ mod q. Finding such an s′ efficiently breaks the knowledge assumption
since w.h.p. s′ · gi(v) ̸= 0 mod q. This motivates our restriction in Definition 4.3.3.

To understand what choices of (Rq, T ) may provide secure instantiations, we first note that
a series of works [Ber14, CGS14, CDPR16, CDW17, PHS19, DPW19] reports quantum
algorithms for finding short vectors in ideal latices that beat known algorithms for general
lattices. In particular, finding vectors of norm 2Õ(

√
m) in an ideal lattice of dimension

m can be done in quantum polynomial time. Thus, when α∗ ≈ 2Õ(
√

m) then knowledge
k-R-ISIS is easy for a quantum adversary.8

Moreover, for some choices of ideals in a power-of-two cyclotomic ring R it has been
shown in [PXWC21] that finding short vectors is easy. In our case, by construction,
the ideals S ⊆ R have algebraic norm N(S) = qi for some integer i. The headline
result of [PXWC21] thus implies that knowledge k-R-ISIS is easy when m is a power
of two, q ≡ ±3 mod 8 and α∗ ≥ 9

q/(m/2).9 On the other hand, note that the attack
does not apply, for example, when Rq splits completely into ϕ(m) fields, e.g. when
q ≡ 1 mod m where m is a power of two. Then, sampling t as mentioned in the footnote
to Definition 4.3.3, i.e. picking half the CRT components zero and the other half non-zero,
produces ideals where, to the best of our knowledge, (approximate) ideal-SVP is not
easier than the general case discussed above.

Yet, given that the status of ideal-SVP in Rq is still in flux, the above highlights that
knowledge k-R-ISIS is a more risky assumption than (knowledge) k-M -ISIS or plain

8These quantum improvements may only matter, though, in practice for large values of m [DPW19].
9We consider the infinity norm but [PXWC21] considers the Euclidean norm.
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k-R-ISIS. In particular, we note that I := {s ∈ R | s · t ≡ 0 mod q} = {0} for plain
k-R-ISIS when t = 1, and I := {s ∈ R | s · t ≡ 0 mod q} = {0} for both plain and
knowledge k-M -ISIS when t := (1, 0, . . . , 0)T , i.e. this line of attack is ruled out.

3.5 Compact Extractable Vector Commitments
We construct compact extractable vector commitments with openings to constant-degree
multivariate polynomial maps from the knowledge k-M -ISIS assumption.

3.5.1 Construction
A formal description of our VC construction is in Figure 3.1 where important parameters
and shorthands are listed and explained in Table 3.1.

The public parameters consists of a k-M -ISIS instance (A0, t0, v, (u0,g)g∈G0
) over Rq,

a correlated k-M -ISIS of knowledge instance (A1, t1, v, (u1,g)g∈G1
) over Rq sharing the

same v as the k-M -ISIS instance, and a R-SIS instance h over Rp, where p is short relative
to q. Intuitively, the k-M -ISIS instance is for weak binding, the knowledge k-M -ISIS
instance is for upgrading weak binding to extractability, and the R-SIS instance is for
compactness. The commitment c to a vector x is simply c := ⟨v, x⟩ mod q.

We next explain the opening and verification mechanism. Suppose for the moment that
f(z, ·) is a single-output polynomial, i.e. t = 1. Consider the commitment c of x and
the evaluation of f(z, ·) at (v−1

0 · c, . . . , v−1
w · c) as polynomials in v. The value f(z, x) is

encoded as the constant term in the evaluation polynomial. To open the commitment
c of x to a function f(z, ·), the committer computes the coefficient of each non-zero
Laurent monomial g ∈ G0 in the evaluation polynomial, and use these coefficients to
compute a linear combination of (u0,g)g∈G0 to produce u0. In general, for t ≥ 1, the
committer further compresses the multiple instances of u0 into a single one using a linear
combination with coefficients given by h. To enable extraction (in the security proof),
the committer also provides u1 which is a linear combination of (u1,g)g∈G1 using x as
coefficients. Given the above, the meaning behind the verification algorithm is immediate.

Finally, we explain the choice of p and q in Table 3.1. First, p is chosen such that the
element f(z, x) − y(z) is considered short (in the context of R-SIS problems) relative to
p for all f ∈ Fs,w,t, y ∈ Ys,t, z ∈ X s, and x ∈ X w. By some routine calculations, we can
see that for such choice of (f, z, x, y), we have ∥f(z, x) − y(z)∥ ≤ (s + w + d)d · αd+1 · γd

R.
More generally, for arbitrary x ∈ Rw, we get ∥f(z, x) − y(z)∥ ≤ (s + w + d)d ·α ·∥x∥d ·γd

R.
As mentioned in Section 3.2.4, a standard choice for R-SIS problems over Rp is for p to
be at least n log n times the norm bound; we thus simply pick this. Similarly, q is chosen
such that δ0 and δ1 are both considered short relative to q, concretely by setting q to be
n log n times the maximum among them.10

10In practice the gap may be smaller or larger and when picking parameters we optimise over these
gaps.
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Table 3.1: Parameters and shorthands with λ as security parameter.
s ∈ N Dimension of public input z

w ∈ N Dimension of v and secret input x

t ∈ N Number of outputs

d ∈ N O(1) Degree of polynomial maps

n ∈ N poly(λ) Degree of R
α ∈ R poly(λ) Norm bound for f and x

β ∈ R poly(λ) Norm bound for public preimages

δi ∈ R poly(λ, s, w, t) (Theorem 3.5.1) Norm bound for honestly generated opening proof ui

δ′
0 ∈ R poly(λ, s, w, t) (Theorem 3.5.3) Norm bound for opening proof u′

0 generated by knowledge
extractor

δp ∈ R (s + w + d)d · αd+1 · γd
R Norm bound of evaluation of a degree-d (s + w)-variate poly-

nomial with coefficients of norm bounded by α at a point of
norm bounded by α

δ′
p ∈ R (s + w + d)d · αd+1 · (w · β · γ2

R)d Norm bound of evaluation of a degree-d (s + w)-variate poly-
nomial with coefficients of norm bounded by α at a point of
norm bounded by w · α · β · γR

p ∈ N ≥ δp · n · log n Moduli for Rp

q ∈ N ≥ max { δ′
0, δ1 } · n log n Moduli for Rq

ηi ∈ N O(1) Number of rows of Ai

ℓi ∈ N ≥ lhl(R, ηi, q, β) Number of columns of Ai

X ⊆ R { x ∈ R : ∥x∥ ≤ α } R elements with norm bound α

Fs,w,t Degree-d (s + w)-variate t-output homogeneous polynomial
maps over X

Ys,t s-variate t-output polynomial maps over X
Ek ⊆ Nw

0 { e ∈ Nw
0 : ∥e∥1 = k } Non-negative integer vectors of 1-norm k, for k ∈ [d]

G0 ⊆ R(X)
>d

k=1 { Xe′−e : e′ ̸= e ∈ Ek } Laurent monomials expressible as ratios of distinct degree-k
monomials, for k ∈ [d]

G1 ⊆ R(X) { Xi : i ∈ Zw } Degree-1 monomials)
k
e
0 )

k
e0,...,ew−1

0
Multinomial coefficient, for e ∈ Ek and k ∈ [d]

Ti Subset of Rηi
q (Definition 3.3.2)

fi,e For f(Z, X) ∈ Fs,w,t, fi,e(Z) is the coefficient of the mono-
mial Xe of the i-th output

Remark 8 (Updating Commitments and Opening Proofs). We discuss the cost of
updating a commitment of x to that of x′, and an opening proof for f(z, x) to that of
f ′(z′, x′), omitting fixed poly(λ) factors. Due to the linearity of the commitment c =
⟨v, x⟩ mod q and opening proof component u1 = ;

i∈Zw
xi · u1,Xi in the committed vector

x, they can be updated for a new committed vector x′ easily by adding ⟨v, x′ − x⟩ mod q
and ;

i∈Zw
(x′

i − xi) · u1,Xi respectively. The computation complexity of the update is
O(∆), where ∆ is the Hamming distance between x and x′. Updating the u0,e terms is
more computationally expensive due to its non-linearity in x. The cost of computing the
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Setup(1λ, 1s, 1w, 1t)

v←(R×
q )w

h←Rt
p

for i ∈ {0, 1} do
(Ai, tdi) ← TrapGen(1ηi , 1ℓi , q, R, β)
ti←Ti

ui,g ← SampPre(tdi, g(v) · ti, β), ∀g ∈ Gi

return pp :=

A0, t0, (u0,g)g∈G0
,

A1, t1, (u1,g)g∈G1
,

v, h



Open(pp, f, z, aux)

u0 :=
:
i∈Zt

d:
k=1

:
e∈Ek

hi · fi,e(z) · u0,e

return π := (u0, u1)

Verify(ppf,y, z, c, π)

b0 :=
'

A0 · u0
?≡ f̂y(z, c) · t0 mod q

.
b1 :=

'
A1 · u1

?≡ c · t1 mod q
.

b2 :=
*

∥u0∥ ?≤ δ0

1
; b3 :=

*
∥u1∥ ?≤ δ1

1
return b0 ∧ b1 ∧ b2 ∧ b3

Com(pp, x)

c := ⟨v, x⟩ mod q; u1 :=
:

Xi∈G1

xi · u1,Xi

for e ∈
=

k∈[d]

Ek do u0,e := d! ·
:

e′∈Ek\{ e }

)
k
e′

0)
k
e
0 · xe′ · u0,Xe′−e

aux :=
*

(u0,e)e∈
>

k∈[d]
Ek

, u1

1
return (c, aux)

PreVerify(pp, (f, y))

if (f, y) /∈ Fs,w,t × Ys,t then return ⊥

f̂y(Z, C) := d! ·
(:

i∈Zt

hi ·
(

d:
k=1

:
e∈Ek

*
k

e

1−1
· fi,e(Z) · v−e · Ck − yi(Z)

//
ppf,y :=

'
A0, t0, A1, t1, f̂y

.
return ppf,y

Figure 3.1: Our VC Construction.

difference term for u0,e is linear in
)w

k

0−)w−∆
k

0
= O(∆k) for each e ∈ Ek and each k ∈ [d].

The total work needed for updating { u0,e }e∈Ek,k∈[d] is thus O(wd · ∆d). For fixed x and
hence fixed { u0,e }e∈Ek,k∈[d], updating u0 by the same method costs computation linear in
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the Hamming distance between the coefficient vector of f(z, ·) and that of f ′(z′, ·).

We show that our VC construction is correct, extractable under a knowledge k-M -ISIS
assumption, and compact.

Theorem 3.5.1. For d = O(1), ℓ0 := ℓ1 := lhl(R, η, q, β),

δ0 ≥ 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R and δ1 ≥ w · α · β · γR, (3.1)

our VC construction in Figure 3.1 is correct.

Proof. The multinomial theorem states that (z0 + · · · + zw−1)k = ;
e∈Ek

)k
e
0 · ze. Let

(c, aux) = Com(pp, x) so that c = ⟨v, x⟩ = v0 · x0 + · · · + vw−1 · xw−1. Substituting
z = (v0 · x0, . . . , vw−1 · xw−1) we have ck = ;

e∈Ek

)k
e
0 · ve · xe.

Fix any f ∈ Fs,w,t and any y ∈ Ys,t. Write f(Z, X) = (;d
k=1

;
e∈Ek

fi,e(Z) · Xe)i∈Zt and
y(Z) = (yi(Z))i∈Zt . For i ∈ Zt, let

f̄i,k(Z, C) :=
:

e∈Ek

(
k

e

/−1

· fi,e(Z) · v−e · Ck

so that f̂y(Z, C) = ;
i∈Zt

hi · d! · (;d
k=1 f̂i,k(Z, C) − yi(Z)).

For any (z, x) ∈ X s × X w and any (c, aux) ∈ Com(pp, x), we observe that

f̄i,k(z, c) =
:

e∈Ek

(
k

e

/−1

· fi,e(z) · v−e · ck

=

 :
e∈Ek

(
k

e

/−1

· fi,e(z) · v−e

 ·
 :

e∈Ek

(
k

e

/
· xe · ve


=

:
e,e′∈Ek

) k
e′

0)k
e
0 · fi,e(z) · xe′ · ve′−e

=
:

e∈Ek

fi,e(z) · xe +
:

e,e′∈Ek:e ̸=e′

) k
e′

0)k
e
0 · fi,e(z) · xe′ · ve′−e.

Suppose y(z) = f(z, x). We have

f̂y(z, c) =
:
i∈Zt

hi · d! ·
(

d:
k=1

f̂i,k(z, c) − yi(z)
/

=
:
i∈Zt

hi · d! ·
 d:

k=1

:
e∈Ek

fi,e(z) · xe +
d:

k=1

:
e,e′∈Ek:e ̸=e′

)
k
e′

0)
k
e
0 · fi,e(z) · xe′ · ve′−e − yi(z)


=

:
i∈Zt

d:
k=1

:
e,e′∈Ek:e ̸=e′

hi · d! ·
)

k
e′

0)
k
e
0 · fi,e(z) · xe′ · ve′−e.
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Let (u0, u1) ∈ Open(pp, f, z, aux). We have

u0 =
:
i∈Zt

d:
k=1

:
e ̸=e′∈Ek

hi · d! ·
) k

e′
0)k

e
0 · fi,e(z) · xe′ · uXe′−e and

u1 =
:

Xi∈G1

xi · u1,Xi .

We check that the following indeed hold:

A0 · u0 = A0 ·
 :

i∈Zt

d:
k=1

:
e ̸=e′∈Ek

hi · d! ·
) k

e′
0)k

e
0 · fi,e(z) · xe′ · uXe′−e


≡

:
i∈Zt

d:
k=1

:
e ̸=e′∈Ek

hi · d! ·
) k

e′
0)k

e
0 · fi,e(z) · xe′ · ve′−e · t0 mod q

≡ f̂(z, c) · t0 mod q,

A1 · u1 = A1 ·
 :

Xi∈G1

xi · u1,Xi

 ≡
:

Xi∈G1

xi · vi · t1 mod q ≡ c · t1 mod q.

We next analyse the norm of u0 and u1. Examining the form u0 and writing down an
upper bound of the norm of each term, we have

u0 =
:
i∈Zt
	��

t

d:
k=1
	��

d

:
e ̸=e′∈Ek
 	� �
(w+d

d )2

hi
	��
p/2

d! ·
) k

e′
0)k

e
0
 	� �

(d!)2

fi,e(z)
 	� �
(d+1)·(s+d

d )·γd
R·αd+1

xe′
	��
γd−1

R ·αd

uXe′−e
 	� �
β

.

Using
)w+d

d

02 ≤ (w+d)2d

(d!)2 ,
)s+d

d

0 ≤ (s+d)d

d! , and d+1
(d−1)! ≤ 3, and taking into account the

expansion factor γ3
R for multiplying 4 R elements, we have

∥u0∥ ≤ 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ≤ δ0.

Similarly, examining u1, we have
u1 =

:
Xi∈G1
 	� �

w

xi
	��
α

u1,Xi
 	� �
β

.

Accounting for the expansion factor γR for multiplying 2 R elements, we have ∥u1∥ ≤
w · α · β · γR ≤ δ1.

Theorem 3.5.2. Let X ∗ := { x ∈ R : ∥x∥ ≤ α∗ }. Our VC construction for (F , X , Y) is
X ∗-extractable if

ℓi ≥ lhl(R, ηi, q, β) for i ∈ {0, 1},

α∗ ≥ β∗
1 ≥ δ1,

β∗
0 ≥ 2 · max { δ0, 2 · p · t · (s + d)d · (w + d)2d · αd+1 · (α∗)d · β · γ2d+2

R } ,

β∗
p ≥ 2 · max { δp, (s + w + d)d · α · (α∗)d · γd

R } ,

106



3.5. Compact Extractable Vector Commitments

and the k-M -ISISRq ,η0,ℓ0,w,G0,1,D0,T0,β,β∗
0

assumption, the knowledge k-M -ISISRq ,η1,ℓ1,w,G1,D1,T1,α∗,β,β∗
1

assumption, and the R-SISRp,t,β∗
p

assumption hold, where Di is such that the distribution

(Ai, ti, { uGi } , v)

@@@@@Ai←Rηi×ℓi
q ; ti←Ti; v←(R×

q )w

ug←D0,g,Ai,ti,v, ∀g ∈ Gi

�

is statistically close to the distribution

(Ai, ti, { uGi } , v)

@@@@@Ai←Rηi×ℓi
q ; ti←Ti; v←(R×

q )w

ug←SampD(1ηi , 1ℓi , R, β) : Ai · ug ≡ g(v) · ti mod q, ∀g ∈ Gi

�
.

Proof. Suppose A is a PPT adversary which, on input honestly generated pp and some
randomness, outputs (f, y, z, c, π). We construct an extractor EA which, on input pp and
the same randomness given to A, outputs x.

For the sake of clarity of exposition, let us denote the public parameters pp of the vector
commitment scheme as

pp :=
(

pp0(v) := (A0, t0, (u0,g)g∈G0
, v),

pp1(v) := (A1, t1, (u1,g)g∈G1
, v), h

/
,

where pp0(v) and pp1(v) are correlated in that they share the same v.

We define an algorithm BA[pp] which has oracle access to A and is parameterised by an
instance of the VC public parameters pp = (pp0(v), pp1(v), h). Our algorithm BA[pp]
takes as input some pp′

1(v′) = (A′
1, t′

1,
'
u′

1,g

.
g∈G1

, v′) and some randomness rA. If
v′ ̸= v, BA[pp] outputs some arbitrary (c, u1). Otherwise, v′ = v, and BA[pp] runs A on
(pp0(v), pp′

1(v), h) and the given randomness rA, and obtains (f, y, z, c, π). It parses π
as (u0, u1) and outputs (c, u1).

Let Ek-M -ISIS
BA[pp] be a PPT extractor whose existence is guaranteed by the knowledge

k-M -ISISRq ,η1,ℓ1,w,G1,D1,T1,α∗,β,β∗
1

assumption. We construct our extractor EA as follows.

Our extractor EA takes as input some public parameters pp and some randomness
rA. Parse pp = (pp0(v), pp1(v), h). It runs Ek-M -ISIS

BA[pp] on input pp1(v) and the given
randomness rA, and obtains from them a vector x. Finally, EA outputs x.

We argue that for pp ← Setup(1λ, 1s, 1w, 1t), if (f, y, z, c, π) ← A(pp; rA) satisfies
Verify(ppf,y, z, c, π) = 1 with probability ρ, then the probability of EA(td; r) not out-
putting x with ∥x∥ ≤ α∗ such that c = Com(pp, x) (for some aux suppressed from the
output) and f(z, x) = y(z) is at most κ(λ, s, w, t) = negl, where the probabilities are
taken over the randomness of Setup and that of rA.

Consider the following hybrid experiments for generating (pp, (f, y, z, c, π), x) on input
(1λ, 1s, 1w, 1t; (r, rA)):
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Hyb0: This is the “real” experiment with procedures as described above. Specifically, it
runs pp ← Setup(1λ, 1s, 1w, 1t; r), (f, y, z, c, π) ← A(pp; rA), and x ← EA(pp; rA),
and outputs (pp, (f, y, z, c, π), x).

Hyb1: This experiment is the same as Hyb0 except that the pp = (pp0(v), pp1(v), h)
passed to A and EA is replaced by pp′ = (pp0(v), pp′

1(v), h) where pp′
1(v) is

sampled as in the definition of k-M -ISISRq ,η1,ℓ1,w,G1,D1,T1,α∗,β,β∗
1
.

Hyb2: This experiment is the same as Hyb1 except that the pp′ = (pp0(v), pp′
1(v), h)

passed to A and EA is replaced by pp′′ = (pp′
0(v), pp′

1(v), h) where pp′
0(v) is sampled

as in the definition of k-M -ISISRq ,η0,ℓ0,w,G0,1,D0,T0,β,β∗
0
.

By our assumption on D0, the distributions Hyb0 and Hyb1 are statistically close. Similarly,
by our assumption on D1, the distributions Hyb1 and Hyb2 are statistically close. Since
the distributions Hyb0, Hyb1, and Hyb2 are all statistically close to each other, for any
i, j ∈ Z3, if the output of Hybi satisfies certain properties with some probability, the
output of Hybj also satisfies the same properties with similar probability.

The following lemma about the outputs of Hyb1 is immediate by the knowledge
k-M -ISISRq ,η1,ℓ1,w,G1,D1,T1,α∗,β,β∗

1
assumption.

Lemma 3.5.1. Let (pp, (f, y, z, c, π), x) ← Hyb1(1λ, 1s, 1w, 1t; (r, rA)). Parse pp =
(pp0(v), pp1(v), h). If the knowledge k-M -ISISRq ,η1,ℓ1,w,G1,D1,T1,α∗,β,β∗

1
assumption holds,

then c = ⟨v, x⟩ mod q and ∥x∥ ≤ α∗ except with negligible probability.

The next lemma is about the outputs of Hyb2.

Lemma 3.5.2. Let (pp, (f, y, z, c, π), x) ← Hyb2(1λ, 1s, 1w, 1t; (r, rA)). Parse pp =
(pp0(v), pp1(v), h). If all of the following hold:

• the k-M -ISISRq ,η0,ℓ0,w,G0,1,D0,T0,β,β∗
0

assumption,

• the R-SISRp,t,β∗
p

assumption,

• c = ⟨v, x⟩ mod q, and

• ∥x∥ ≤ α∗,

then f(z, x) = y(z) except with negligible probability.

Proof. Parse pp to obtain (A0, t0, v, h) and parse π as (u0, u1). We notice that h is
distributed identically as R-SISRp,t,β∗

p
instances. By our assumption on A, with non-

negligible probability, it holds that

A0 · u0 ≡
f̂0(z, c) − d! ·

:
i∈Zt

hi · yi(z)

 · t0 mod q,
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and ∥u0∥ ≤ δ0 ≤ β∗
0/2.

Suppose towards a contradiction that the event f(z, x) = y′ ̸= y(z) for some y′ happens
with non-negligible probability. Let (c′, aux) = Com(pp, x). By assumption, c′ = c. Let
(u′

0, u′
1) = Open(pp, f, z, aux). By a similar calculation as in the proof of correctness

(Theorem 3.5.1), it holds that

A0 · u′
0 ≡

f̂0(z, c) − d! ·
:
i∈Zt

hi · y′
i

 · t0 mod q.

and ??u′
0
?? ≤ 2 · p · t · (s + d)d · (w + d)2d · αd+1 · (α∗)d · β · γ2d+2

R ≤ β∗
0/2.

Let ũ0 := u0 − u′
0. We have

A0 · ũ0 ≡ d! ·
:
i∈Zt

hi · (y′
i − yi(z)) · t0 mod q.

and ∥ũ0∥ ≤ β∗
0 . One (or both) of the following two cases must be true: (i) ;

i∈Zt
hi · (y′

i −
yi(z)) ≡ 0 mod q with non-negligible probability, or (ii) ;

i∈Zt
hi · (y′

i − yi(z)) ̸≡ 0 mod q
with non-negligible probability.

Note that ??y′?? ≤ (s + w + d)d · α · (α∗)d · γd
R ≤ β∗

p/2

and ∥y(z)∥ ≤ δp ≤ β∗
p/2 and hence ∥y′ − y(z)∥ ≤ β∗

p . If Case (i) is true, we can con-
struct a PPT algorithm for the R-SISRp,t,β∗

p
problem which succeeds with non-negligible

probability, which contradicts the R-SISRp,t,β∗
p

assumption.

If Case (ii) is true, we can construct a PPT algorithm for the k-M -ISISRq ,η0,ℓ0,w,G0,1,D0,T0,β,β∗
0

problem which succeeds with non-negligible probability, which contradicts the corre-
sponding assumption.

Since none of the two cases could be true, we must have f(z, x) = y′ = y(z).

Combining the two lemmas, we conclude that for (pp, (f, y, z, c, π), x) generated by Hyb0,
where pp = (pp0(v), pp1(v), h), it holds that c = ⟨v, x⟩ mod q, f(z, x) = y(z), and
∥x∥ ≤ δ1 except with negligible probability.

Theorem 3.5.3. For n ∈ poly(λ), q, δ0, δ1 ∈ poly(λ, s, w, t), and ℓ0, ℓ1 ∈ Θ(log q) =
polylog(λ, s, w, t), covering the choices of parameters in Theorems 3.5.1 and 3.5.2, the
VC construction in Figure 3.1 is compact.
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Concretely, let R be a power-of-2 cyclotomic ring so that γR = n. For s = w = t ≥ n
and for the following choices of parameters,

d, η0, η1 = O(1), β ≥ α

δ0 = 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

δ′
0 = 2 · p · t · (s + d)d · (w + d)2d · wd · α2d+1 · βd+1 · γ3d+2

R ,

δ1 = w · α · β · γR,

δ′
p = (s + w + d)d · αd+1 · (w · β · γ2

R)d

p ≈ δ′
p · n · log n, q ≈ δ′

0 · n · log n, and
ℓ0 = ℓ1 = lhl(R, 1, q, β) ≈ 2 logβ q,

a commitment and openings are of size O(n log s), and O(n · (log s + log β)2/ log β),
respectively. The minimum is attained at β = Θ(s), where an opening proof is of size
O(n log s).

Proof. For the general case, we observe that a commitment c ∈ Rq is of description size
n log q ∈ poly(λ, log s, log w, log t), and an opening proof (u0, u1) is of description size
n · (ℓ0 log δ0 + ℓ1 log δ1) ∈ poly(λ, log s, log w, log t).

For the concrete case, for honestly generated proofs, from Theorem 3.5.1, we have

p ≈ δ′
p · n · log n = (s + w + d)d · αd+1 · (w · β · γ2

R)d · n · log n

= O(s2d · αd+1 · βd · n2d+1 · log n),
δ0 = 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2

R
= O(sd · αd+1 · nd+1 · log n) · O(s3d+1 · α2d+1 · β · n2d+2)
= O(s4d+1 · α3d+2 · β · n3d+3 · log n),

δ′
0 = 2 · p · t · (s + d)d · (w + d)2d · wd · α2d+1 · βd+1 · γ3d+2

R
= O(s2d · αd+1 · βd · n2d+1 · log n) · O(s4d+1 · α2d+1 · βd+1 · n3d+2)
= O(s6d+1 · α3d+2 · β2d+1 · n5d+3 · log n),

δ1 = w · α · β · γR = O(s · α · β · n),
q ≈ δ′

0 · n · log n = O(s6d+1 · α3d+2 · β2d+1 · n5d+4 · log2 n),
log δ0, log δ1, log q = O(log s + log α + log β + log n) = O(log s + log β),

ℓ0 = ℓ1 = 2 log q/ log β = O((log s + log β)/ log β),
|c| = n · log q = O(n log s), and

|ui| = n · ℓi · log δi

= n · O((log s + log β)/ log β) · O(log s + log β)
= O(n · (log s + log β)2/ log β).
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Figure 3.2: Combined size (in KB) of a commitment and an opening proof for the concrete
parameters chosen in Theorem 3.5.3, setting λ = 128, optimising for ρ and comparing
with SNARK proof sizes in prior works [GLS+21, Fig. 5]. We picked α = s.

Table 3.2: Computation complexities (in number of R or Rq operations) of our VC.

Com O(w2d · (log s + log w + log t + log β)/ log β)
Open O(t · (s + w)d · (log s + log w + log t + log β)/ log β)
PreVerify O(t · (s + w)d)
Verify O(sd + (log s + log w + log t + log β)/ log β)

To translate these into concrete sizes we need to pick n such that solving k-R-ISIS and
R-SIS costs ≈ 2λ operations. Here it can be beneficial to set q = (δ′

0)ρ · n · log n for some
parameter ρ ∈ N. Specifically, we require that R-SISRq ,ℓ0,2·√n·δ′

0
, R-SISRq ,ℓ1,2·√n·δ1 and

R-SISRp,t,2·√n·δ′
p

are hard. The factor of two arises from our reduction and the factor√
n translates between ℓ∞ and ℓ2. In Figure 3.2 we report the concrete combined size

(in KB) of a commitment and an opening proof for the concrete parameters chosen
in Theorem 3.5.3, specifically setting d = 2, η0 = η1 = 1, and β = s = w = t ∈
{ 210, 211, . . . , 240 }.

To analyse computation complexity, we assume the concrete parameter choices in Theo-
rem 3.5.3 with the exception that s, w, t are treated as free variables for more fine-grained
complexity measures and to highlight the benefits of preprocessing. For simplicity,
we assume max { s, w, t } ≥ n. The computation complexities (in number of R or Rq

operations) of Com, Open, PreVerify, and Verify are reported in Table 3.2. Note that
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each R or Rq operation takes at most poly(λ, log s, log w, log t) time. In summary, the
combined time needed to commit to x and open to f(z, ·) is quasi-quadratic in the time
needed to compute f(z, x), and the time needed to pre-verify (f, y) is quasi-linear in the
time needed to compute f(z, x). We highlight that the online verification cost, i.e. the
computation complexity of Verify, is dominated additively by sd where s is the dimension
of the public input. In applications where sd = O(log w + log t) and setting β = Θ(w + t),
the online verification cost (in number of bit operations) is O(n log w + n log t).

3.6 SNARK for Polynomial Maps Satisfiability
We construct a SNARK Π for PolySATR,d,α in Figure 3.3, based on the vector commitment
Γ for (F , X , Y) that we developed in Section 3.5. The following theorem establishes the
properties of our construction.

Π.Setup(1λ, 1s, 1w, 1t)

return pp ← Γ.Setup(1λ, 1s, 1w, 1t)

Π.Prove(pp, (f, y, z), x)

(c, aux) ← Γ.Com(pp, x)
π′ ← Γ.Open(pp, f, z, aux)
return π := (c, π′)

Π.PreVerify(pp, (f, y))

return ppf,y ← Γ.PreVerify(pp, (f, y))

Π.Verify(ppf,y, z, π)

return Γ.Verify(ppf,y, z, c, π′)

Figure 3.3: Construction of SNARK Π for PolySATR,d,β from a VC Γ for (F , X , Y).

Theorem 3.6.1. If Γ is correct, then the SNARK Π presented in Figure 3.3 is complete.
If Γ is X ∗-extractable, then Π is X ∗-knowledge-sound. If the computation complexity of
Γ.Verify is in poly(λ, s, log w, log t) (implying that Γ is compact), then Π is succinct.

Proof. (Sketch) Completeness and succinctness are immediate. For knowledge soundness,
by the extractability of Γ, for any adversary A producing a commitment c and a valid
opening proof for (f, y, z), there exists an efficient procedure to extract from A a short
vector x such that f(z, x) = y(z), except with negligible probability.

3.6.1 Proving Relations over Rq

In Section 3.6, we constructed a SNARK for proving knowledge of a short vector x
with ∥x∥ ≤ α satisfying f(x) = y, where the polynomial map f and vector y both have
coefficients of norm also at most α.11 There are, however, natural applications where

11We dropped the public input z for the ease of exposition.

112



3.6. SNARK for Polynomial Maps Satisfiability

we want to prove algebraic relations which involve R elements of high norm (> α) and
where arithmetic is performed modulo q.

For example, the verification equation of a GPV signature [GPV08] is of the form
A · u = H(m) mod q, where A is a random public key matrix over Rq, H(m) is a random
vector over Rq encoding the public message m, and the signature u is a short vector over
R satisfying the relation. The verification equation of our VC and SNARK constructions
A0 · u0

?= f̂(c) · t0 mod q have a more complicated form involving the evaluation of a
polynomial f̂ with large coefficients at a large Rq element c. In general, consider the task
of proving

{ (f, y) : ∃ (x, c) ∈ Rw × Rℓ
q, f(x, c) = y mod q ∧ ∥x∥ ≤ δ }

for some δ ∈ R and q ∈ N, where the polynomial map f and the vector y have coefficients
of norm at most q. Here, c represent part of the witness which is not necessarily short,
e.g. a commitment in our VC construction. We outline a series of transformations on
(f, y) and (x, c) to obtain slightly relaxed12 statement and witness respectively satisfying
a relation natively supported by our SNARK.

We will assume that there exists an odd rational integer p ∈ N with p ≤ 2α + 1 and
either δ ≤ α or 2δ + 1 is a power of p. Since α for our VC and SNARK and (usually) δ
for the application can be chosen freely from a wide range of values, we view this as a
mild assumption. The resulting statement and witness will be larger than their original
counterparts by a multiplicative factor of poly(logα q).

Handling Modular Reduction. To remove the modular reduction step, let r ∈ R be
such that f(x, c) + q · r = y. Let q′ ∈ N be the smallest such that r ∈ Rq′ . By absorbing
r into c and renaming q′ to q, we obtain an equivalent language of the form

{ (f, y) : ∃ (x, c) ∈ Rw × Rℓ
q, f(x, c) = y ∧ ∥x∥ ≤ δ } .

Handling Long Witness Components. Next, we transform the witness (x, c) into
an equivalent witness of norm at most α. Write d = 2δ + 1. Let p ∈ N be an odd rational
integer satisfy the following conditions: (i) p ≤ 2α + 1, (ii) if δ ≤ α then p ≤ 2δ + 1, and
(iii) if δ > α then pk = 2δ + 1 = d for some k ∈ N.

For any x, h ∈ N, define the p-ary ‘Gadget” matrix Gx,h = (pi)T
i∈Z⌈logp x⌉ ⊗ Ih ∈

Rh×h·⌈logp x⌉
q . Let G−1(·) denote the component-wise balanced p-ary decomposition,

i.e. it outputs a vector with entries in { −(p − 1)/2, . . . , 0, . . . , (p − 1)/2 }. Note that
x = Gd,w′ · G−1(x) and c = Gq,ℓ · G−1(c). By construction, if

??G−1(x)
?? ≤ α, then we

must have ∥x∥ ≤ δ. Given a polynomial map f(X, C), define

f ′(X′, C′) := f(Gd,w · X, Gq,ℓ · C).
12In the sense that the norm of the transformed witness has a looser upper bound which is polynomial

in the original.
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By renaming f ′ to f and absorbing c into x, we obtain an equivalent language of the
form

{ (f, y) : ∃ x ∈ Rw, f(x) = y ∧ ∥x∥ ≤ α }
Note that unlike the previous and the original languages f likely contains large coefficients
not contained in Rq.

Handling Long Coefficients in Statements. It remains to transform (f, y) with
long coefficients to an equivalent statement containing only coefficients of norm at most
α. Let q′ ∈ N be the smallest such that all coefficients of f and y are contained in
Rq′ . We first replace f, y by (f ′, y′) := (G−1(f), G−1(y)) where G−1(f) denotes the
coefficient-wise balanced p-ary decomposition of f by viewing f as a linear map on
monomials with coefficient vectors in Rt

q′ . Note that if x were to satisfy f ′(x) = y′, then
it also satisfies f(x) = y because

f ′(x) = y′

G−1(f)(x) = G−1(y)
Gq′,t · G−1(f)(x) = Gq′,t · G−1(y)

f(x) = y.

However, this transformation is not complete as f(x) = y does not necessarily imply
f ′(x) = y′.

To address above the issue, we consider any parity-check matrix H of Gq′,t, i.e. Gq′,t ·H =
0 and H is full-rank. Suppose x satisfies f(x) = y. Consider w := f ′(x) − y′. We have
G · w = G · f ′(x) − G · y′ = f(x) − y = 0. Therefore there exists unique z such that
w = H · z.

With the above observation, we pick a specific H which has p on the main diagonal, −1
in the entries just below the diagonal and zero everywhere else, and define

f ′′(X, Z) := f ′(X) − H · Z.

By the previous argument, with the knowledge x satisfying f(x) = y, one could find a
unique z satisfying f ′′(x, z) = y′. Conversely, suppose (x, z) satisfies f ′′(x, z) = y′. We
have

f ′(x) − H · z = y′

Gq′,t · f ′(x) − Gq′,t · H
 	� �
0

·z = Gq′,t · y′

f(x) = y.

Note that the coefficients of f ′′ and the entries of y′ have norm upper-bounded by α
by construction. It remains to upper-bound ∥z∥ given that ∥x∥ ≤ α and f ′′(x, z) = y′.
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Let w := f ′(x) − y′ so that H · z = w and ∥w∥ ≤ α′ := (w + d)d · αd+1 · γd
R. By the

construction of H, we have w0 = p · z0 and wi = p · zi − zi−1 for i > 0. Consequently, we
have ∥z0∥ < ∥w0∥ ≤ α′ and ∥zi∥ ≤ (∥wi∥ + ∥zi−1∥)/2 ≤ α′ for i > 0.

By renaming f ′′ to f , y′ to y, and α′ to α, and absorbing z into x, we obtain a relaxed
language of the form

{ (f, y) : ∃ x ∈ Rw, f(x) = y ∧ ∥x∥ ≤ α }

which is natively supported by our SNARK. Note that the resulting language is relaxed
in the sense that it only requires ∥x∥ to be upper-bounded by α′ = γd

R · αd+1 instead of
by α required in the original language.

3.6.2 Application
Although a SNARK for an NP-complete language can in principle be used to prove
any NP relation, the computation and verification of the proof may not be concretely
efficient due to NP reductions. In the following, we highlight a language which is natively
supported by our SNARK construction.

Aggregating GPV Signatures.

GPV [GPV08] is a lattice-based signature scheme paradigm of which an instantiation is
in the process of being standardised [PFH+20]. GPV signatures are a prime candidate
for aggregation as it is unclear how to perform aggregation efficiently in other lattice-
signature paradigms based on Schnorr-like paradigms, due to how the random oracle is
used there and how it is typically instantiated with hash functions of high multiplicative
degree (when viewed as an arithmetic circuit) [DHSS20, BR21, BK20]. On a high level,
GPV signatures work as follows. A signature is a short vector u, with respect to a public
key A. To verify the signature, the verifier computes v = H(m), checks that the linear
relation A · u ≡ v mod q holds and that u is short, where H is modeled as a random
oracle.

As motivated in Section 3.6.1, our SNARK construction can be used to prove knowledge
of GPV signatures natively given the verification is a linear relation. The high level
idea is to use our SNARK construction to prove knowledge of n signatures where each
of them are short vectors satisfying a linear relation. Consider the scenario where the
same set of signers, identified with the public keys (Ai)i∈Zn

, periodically issue signatures
(ui,j)i∈Zn on a common message mj with vj = H(mj) at each time j.13 An aggregator
can aggregate the n signatures issued at each time j by computing a SNARK proof for the
knowledge of short (ui,j)i∈Zn

satisfying Ai · ui,j ≡ vj mod q. The aggregated signature,
i.e. the SNARK proof, can be verified in time sublinear in the number of signers and
signatures n by first preprocessing the part of the verification equation depending on

13Signing the same message twice produces a solution for M -SIS on Ai, so we may assume a deter-
ministic signature scheme here to avoid this issue.
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(Ai)i∈Zn
. This preprocessing step only needs to be done once for the same set of signers.

Then, when the message mj becomes known at or after time j, the online verification
time is only logarithmic in n.

The above idea can also be extended to the case where multiple signers sign different
messages. In this case, one can still preprocess the public keys (Ai)i∈Zn

of users if they
are known ahead of time. The verification time is linear in n since we have to check
relations with respect to different messages. However, we are still set to gain from the
compactness of the SNARK proof. Such aggregation can aid in the blockchain setting,
where an aggregator can aggregate signatures on different transactions included in a block;
resulting in smaller blocks to mitigate the effects on the ever-growing size of blockchains.

Recursive SNARK Composition

Since our SNARK construction is purely algebraic over R and Rq, it can be used to
natively prove knowledge of a committed witness and a SNARK proof that satisfy the
verification equation. Furthermore, since the verification time of our SNARK construction
is sublinear after preprocessing, our SNARK construction can be recursively composed
without blowing up the proof size. This makes our SNARK construction suitable for
the constructions of verifiable delay functions [BBBF18] and incrementally verifiable
computation [Val08] based on the recursive composition of SNARKs. Below, we outline a
naive recursive composition strategy which only achieves provable soundness for constant-
depth composition. We refer to the literature [Val08, BCCT13, BBBF18] for more
advanced composition strategies to support higher-depth composition.

Consider a long computation which involves iteratively applying a computation C on an
initial input x0 for t times to obtain xt = Ct(x0), where xi+1 = C(xi) for i ∈ Zt. Let
pp be the public parameters sampled by the SNARK construction of a sufficient for the
following language L = Lpp,C with relation R = Rpp,C : A statement in L consists of a
vector x′. A witness is of the form (π, x) where x. The relation R is satisfied if


π = x ∨ Verify(ppR, x, π) = 1
x′ = C(x)

where ppR = PreVerify(pp, R).

To prove that a statement (C, xt) and a witness x0 satisfy xt = Ct(x0), the prover
computes:

• Set wit0 := x0.

• For i ∈ Zt:

– Compute xi+1 = C(xi).
– Compute πi+1 ← Prove(pp, (R, xi+1), witi).
– Set witi+1 := (πi+1, xi+1)
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• Output πt.

The proof can then be verified by checking that Verify(ppR, xt, πt) = 1.

To show succinctness, we observe that the computation required for checking the relation
R given ppR is of size polylog(|R|, |C|, λ) · poly(λ) + |C|, and the computation required for
verifying a SNARK proof of the satisfiability of R given ppR is of size polylog(|R|, |C|, λ) ·
poly(λ). However, this composition strategy is not known to be provably sound for large t,
say t = Ω(λ), since the knowledge extractor may run in time exponential in t (unless the
underlying SNARK has a very efficient extractor EA which runs only an additive factor
longer than the the runtime of A). Fortunately, this issue is discussed and circumvented
in many prior works (e.g. [Val08, BCCT13, BBBF18]) where the techniques should also
be applicable to the recursive composition of our SNARK construction.
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CHAPTER 4
Lattice-Based Succinct Arguments

from Vanishing Polynomials

Abstract
Succinct arguments allow a prover to convince a verifier of the validity of any statement
in a language, with minimal communication and verifier’s work. Among other approaches,
lattice-based protocols offer solid theoretical foundations, post-quantum security, and a
rich algebraic structure. In this work, we present some new approaches to constructing
efficient lattice-based succinct arguments. Our main technical ingredient is a new
commitment scheme based on vanishing polynomials, a notion borrowed from algebraic
geometry. We analyse the security of such a commitment scheme, and show how to
take advantage of the additional algebraic structure to build new lattice-based succinct
arguments. A few highlights amongst our results are:

1. The first recursive folding (i.e. Bulletproofs-like) protocol for linear relations with
polylogarithmic verifier runtime. Traditionally, the verifier runtime has been the
efficiency bottleneck for such protocols (regardless of the underlying assumptions).

2. The first verifiable delay function (VDF) based on lattices, building on a recently
introduced sequential relation.

3. The first lattice-based linear-time prover succinct argument for NP, in the pre-
processing model. The soundness of the scheme is based on (knowledge)-k-R-ISIS
assumption [Albrecht et al., CRYPTO’22].

This chapter presents the result of a collaboration with Russell W. F. Lai and Giulio
Malavolta and will be published at the 43rd Annual International Cryptology Confer-
ence (CRYPTO’23) under the title “Lattice-Based Succinct Arguments from Vanishing
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Polynomials”. I am mainly responsible for the design, security proofs, and analysis of
the knowledge-based protocols. Further, I contributed to the analysis of the protocol for
r1cs. I am also responsible for writing the corresponding sections of the chapter. The
accompanying appendix contains extended versions of the constructions and proofs.

4.1 Introduction
A succinct non-interactive argument of knowledge (SNARK) [Kil92, Mic94] allows a
prover to convince a verifier that of the validity of an NP relation. The argument is said
to be succinct if the size of the proof and the runtime of the verifier are sublinear (or,
ideally, independent) of the time needed to check the validity of the witness. Due to these
strong efficiency requirements, SNARKs for NP have become a cornerstone of modern
cryptography: They count a large array of applications [BCG+14, GM17, KMS+16,
BGH19, BDFG21b, BMRS20] and have recently found their way into real-world systems
in the context of blockchain-based cryptocurrencies [BCG+14, GM17, KMS+16, BGH19,
BDFG21b, BMRS20].

A promising approach for constructing efficient SNARKs is to leverage the algebraic
structure offered by computational problems in lattice-based cryptography [BISW17,
BISW18, GMNO18, BLNS20, AL21, ACK21, ACL+22]. Compared to other approaches
(see Section 4.1.2 for a detailed discussion), lattice-based SNARKs offer many desirable
properties: (i) They are conjectured to be secure against quantum attacks, (ii) are
based on computational problems with solid theoretical foundations, and (iii) have a
rich algebraic structure, allowing to prove many interesting statements “natively”, i.e.
without needing to run the relation through an expensive Karp reduction.

In spite of these promising properties, lattice-based SNARKs are still somewhat limited
compared to competing approaches. In particular, known lattice-based schemes suffer
from (at least) one of the following limitations:

• They require the verifier to hold a secret information that should not be made
available to the prover, i.e. they are in the designated-verifier settings [BISW17,
BISW18, GMNO18].

• They have a non-succinct verifier, whose runtime is at least linear in the size of the
relation [BLNS20, AL21, ACK21].

• They have a slow prover runtime, i.e. quartic [ACL+22] in the size of the relation.

In this work, we propose new techniques for lattice-based SNARKs that allow us to
overcome these barriers, making lattice-based SNARKs qualitatively closer (and, in some
aspects, superior) to other approaches.
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4.1.1 Our Results
We present new algebraic techniques that allow us to overcome traditional limitations of
lattice-based SNARKs. Our central technical ingredient is a new lattice-based commitment
scheme based on vanishing polynomials, an object borrowed from algebraic geometry.
The security of our commitment is based on the vanishing Short Integer Solution (vSIS)
problem, a variant of the well-known SIS problem that we introduce in this work. We then
show how to exploit the additional algebraic structure of vSIS to obtain new results for
lattice-based succinct arguments. In more details, our contributions can be summarized
as follows.

(1) The Vanishing-SIS Problem. We introduce the vSIS problem, a variant of the
standard SIS over rings, which asks to find a polynomial with short coefficients which
vanishes at the given point(s). We show that vSIS is no easier than the k-R-ISIS problem,
a recently introduced family of problems [ACL+22]. We also show that vSIS can be
explained as a natural generalisation of the search NTRU problem. We propose a worst-
case to average-case reduction and a reduction from search NTRU, both conditioning on
the hardness of decision NTRU.

(2) New Commitments Based on vSIS. We how the vSIS problem immediately
implies the existence of a commitment scheme with useful algebraic properties which are
key to our new results in succinct arguments:

• Succinct: The size of the commitment key and the commitment are logarithmic
in the size of the input. In particular, this implies that the commitment is also a
collision-resistant hash function with very short key.

• Homomorphic: The commitment is (bounded) linearly homomorphic and multi-
plicatively homomorphic for a constant number of multiplications.

• Foldable: We show that the commitment can be “folded” (in the sense of folding
arguments, e.g. Bulletproofs [BLNS20]) in such a way that the folded commitment
key retains a succinct representation. Loosely speaking, this allows us to combine
the two halves of the committed value and simultaneously half the size of the input
and the size of the commitment key.

(3) Simple Method for Proving Quadratic Relations. Exploiting the multiplica-
tively homomorphic property of vSIS commitments, we show a simple method for reducing
the task of proving quadratic relations to that of proving linear relations, with only
additive quasi-linear overhead in prover time. As an example, to prove that ⟨x0, x1⟩ = y,
the prover commits to the polynomials p̄x0(V ) = ;

i x0,i · V −i and px1(V ) = ;
j x1,j · V j

as c̄x0 and cx1 respectively, and proves the linear relations that the commitments are
well-formed. Then, the prover proves that the product c̄x0 · cx1 , which the verifier can
compute themself, is a commitment to a polynomial whose constant term is y, which is
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again a linear relation. Instantiating with succinct arguments for linear relations with
quasi-linear-time prover, we obtain succinct arguments for quadratic relations also with
quasi-linear-time prover.

(4a) New Folding Protocols for Structured SIS. The first kind of linear relations
that we consider are structured SIS relations (roughly) of the form,,,,,,,,,

A
B A

B
A
B

C1 C2 Cn

333333333
· x = y mod q and ∥x∥ ≈ 0,

where C1, . . . , Cn conform to certain foldable structure. For such relations, we obtain
SNARKs with transparent setup, quasi-linear time prover, and polylogarithmic time
verifier (without preprocessing), in the random oracle model.1 The main technical
ingredient that enables this result is a new Bulletproof-like folding protocol for foldable
linear relations, where the verifier runtime is polylogarithmic in the length of the relation.
Prior folding protocols had a linear-time verifier [BLNS20, AL21, ACK21], including
those based on the discrete logarithm problem [BCC+16, BBB+18], with the exception
of [BMM+21] where the verifier computation is proportional to the square root of the
length of the relation.

(4b) Optimised Knowledge-based Protocols for SIS. Next, we consider unstruc-
tured SIS relations of the form “M · x = y mod q and ∥x∥ ≈ 0”. For these relations,
we obtain SNARKs with quasi-linear time prover and polylogarithmic time verifier
after preprocessing, based on the recently introduced (knowledge-)k-R-ISIS assump-
tion [ACL+22]. This improves upon previous schemes which do not natively support
proving modular arithmetic relations [ACL+22] and require at least a quadratic-time
prover [ACL+22, BCFL22].

(5) Applications. Putting everything together, we obtain SNARKs for quadratic rela-
tions with quasi-linear-time prover and polylogarithmic-time verifier (after preprocessing
for the unstructured case). We highlight two particular instances.

First, we obtain SNARKs for proving “M · x = y mod q and x is exactly binary”. In
particular, applying the structured instantiation on the recently introduced SIS-based
sequential relations [LM23], we obtain the first lattice-based verifiable delay functions
(VDF). Prior lattice-based schemes [YAZ+19, BLS19, ENS20, LNP22] for exact SIS
relations2 are not succinct.

1The interactive variant can be proven secure without random oracles.
2not counting those for more general relations
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Second, we obtain SNARKs for rank-1 constraint satisfiability (R1CS). Prior lattice-based
schemes [ACL+22, BCFL22] have at least quadratic-time prover.

4.1.2 Related Work
There is a vast amount of literature on SNARKs for different classes of relations. We do
not attempt to survey all existing works here, but rather provide a high-level overview of
various approaches and discuss in details those that are closely related to our work.

Pairing-based. To date, the most efficient and feature-rich SNARKs are constructed
over bilinear pairing groups (e.g. [Gro16]) with a trusted setup. Typically, they are
publicly verifiable and have simple verification algorithms consisting of a constant amount
of pairing-product equations. Moreover, pairing-based SNARKs offer a rich algebraic
structures that is known to enable proof batching [LMR19, BMM+21] and efficient
recursive composition [BCTV14a].

Hash-based. Another approach to build SNARKs is to compile an information-theoretic
proof system, e.g. a probabilistically checkable proof (PCP) [Kil92, Mic94] or an interac-
tive oracle proof (IOP), via a vector commitment scheme. Since the vector commitment
is usually instantiated with a Merkle-hash tree in the random oracle (RO) model, we call
this the hash-based approach. A major difference between pairing-based and hash-based
SNARKs, from both theoretical and practical perspectives, is the algebraic structure of
the verification algorithm. The reliance of hash-based SNARKs on an RO makes recursive
composition challenging, since an RO is typically instantiated with a hash function of
high multiplicative degree. On the flip side, hash-based SNARKs can be shown to be
post-quantum secure [CMS19].

Lattice-based. Finally, we discuss lattice-based approaches to build SNARKs. Until
recently, lattice-based SNARKs required the verifier to keep a secret state hidden from
the prover, i.e. they are in the designated verifier settings [GMNO18, ISW21]. Excitingly,
recent development sees two emerging paradigms for constructing publicly verifiable
SNARKs, both of which we improve upon in this work.

The first line of work [BLNS20, AL21, ACK21] studies lattice-based folding protocols
which, as discussed above, give quasi-linear-time prover SNARKs in the random oracle
model. However, due to lack of preprocessing support, the verifier complexity in folding
protocols has always been is linear in the size of the relation. In this work, we work around
this barrier by considering structured relations which retain their foldable structures
after folding, and obtain the first folding protocols with a polylogarithmic-time verifier.

Another line of work [ACL+22, BCFL22] constructs publicly verifiable SNARKs in the
preprocessing model. At the core of these constructions are functional commitment
schemes which allow to succinctly prove that a committed vector x satisfies f(x) = y for
low-degree polynomials [ACL+22] or even unbounded-depth circuits [BCFL22]. To this
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end, we propose a construction with quasi-linear-time prover using similar techniques,
while in [ACL+22, BCFL22] the prover has at least quadratic complexity. We remark
that while the recent work of Wee and Wu [WW23b] constructs functional commitments
for circuits, their scheme does not support preprocessing and therefore has inefficient
verifier.

4.2 Technical Overview
We provide a high-level overview of the techniques that we develop in this work. First, we
present our main new technical ingredient that is at the centre of our results, namely a
new commitment based on vanishing-SIS. Then we show how arguments for vanishing-SIS
commitments can be efficiently composed into an argument for binary-satisfiability of
both structured and unstructured linear relations. Finally, we describe our new succinct
arguments in both the structured and unstructured settings, and present some immediate
applications.

Throughout this overview, we will work with a cyclotomic field K = Q(ζ) where ζ is a
root of unity of some prime order ρ, its ring of integers R = Z[ζ], and the quotient rings
Rq := R/qR for different values of q ∈ N. Ring elements will be represented by their
coefficient embedding and the norm of a ring element is defined accordingly. Readers not
familiar with these objects can treat K = Q and R = Z, which suffices in most places.

4.2.1 Vanishing-SIS Commitments
The main technical ingredient behind of our results is a new family of commitment
schemes for committing to short vectors x ∈ Rd and companion argument systems for
proving that the committed vector is in fact a bit string, i.e. x ∈ {0, 1}d. In their
simplest form, the commitment key is a single random element v←R×

q , where R×
q is the

set of invertible elements in Rq. To commit to a short x ∈ Rd, we interpret x as the
coefficients of a degree-d homogeneous polynomial px(V ) and compute the commitment
as the evaluation of px at the point v modulo q, i.e.

px(V ) =
d:

i=1
xi · V i and c = px(v) mod q.

We refer to this family of commitment schemes as the vanishing short integer solution
(vSIS) commitments, for reasons that will become clear shortly. The binding property
of the vSIS commitment above is based on the following vSIS assumption which we
introduce in this work.

Definition 4.2.1 (vSIS, Informal). Given a random point v←R×
q , it is hard to find

a degree-d polynomial p = ;d
i=0 pi · V i ∈ R[V ] with short coefficients such that p(v) =

0 mod q. In other words, p is a short element in I(v), the ideal (lattice) of polynomials
vanishing at the given point v.
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In general, the vSIS assumption could be parametrised by a set G of (multivariate)
monomials3 over R, where the task is to find a short linear combination (pg)g∈G such
that ;

g∈G pg · g(v) = 0 mod q. To gain confidence in its validity, we show that the vSIS
assumptions are implied by the k-R-ISIS assumptions recently introduced in [ACL+22].
For certain parameter regimes (although not the ones that we consider in this work),
we show that the vSIS problem is as hard as the search NTRU problem, conditioned
on the hardness of the decision NTRU problem. For more details, we refer the reader
to Section 4.4 and Section 4.5.

The vSIS commitment schemes have nice homomorphic properties. For starters, they
are clearly linearly homomorphic, similarly to the standard SIS-based commitments.
More importantly for us, they are also bounded multiplicatively homomorphic: If cf

and cg commit to the polynomials f and g respectively, then cf · cg mod q commits to
the polynomial f · g. An elementary fact that will be particularly useful later, is that
if g(V ) = f(V −1), then the constant term of f · g is given by the inner-product of the
coefficients of f and g.

Proof of Binary-Satisfiability of Linear Relations. As a warm-up, we outline the
construction of a succinct argument system for a prover to convince a verifier that a
vector x ∈ Rd satisfies

M · x = y mod q0 and x ∈ {0, 1}[d].

As building blocks, we will use succinct argument systems for SIS relations with soundness
gaps, i.e., they are complete and sound for relations of the form

M · x = y mod q0 and ∥x∥ ≈ 0,

but the constraints on the shortness of x differ. That is, we will turn succinct arguments
for showing that x satisfying a linear relation is short, into an argument for showing the
x is exactly binary. While this may seem like a technicality, this proof of binariness will
be crucial for our later applications, and can be generalised to proof arbitrary quadratic
relations. Later in this overview, we will also show how to instantiate the required
building blocks.

The common reference string of our argument system contains a random vector h ∈ Rd
q1

and a vSIS commitment key v ∈ R×
q2 , where q0 ≪ q1 ≪ q2 and the purpose of h

will become clear later. For x ∈ Rd and w = (w−, w+) ∈ R2d, define the (Laurent)
polynomials

p̄x(V ) := ph◦x(V −1) and p̃w(V ) := pw−(V −1) + pw+(V ),

where h ◦ x denotes the Hadamard (component-wise) product of the two vectors. The
argument proceeds as follows:

3Or rational functions in general.
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1. The prover reveals the following “complementary” vSIS commitments to x:
cx := px(v) mod q2 and c̄x := p̄x(v) mod q2.

2. The prover then proves the following relations:

∃ x ∈ Rd,

M · x = y mod q0,

px(v) = cx mod q2,

p̄x(v) = c̄x mod q2,

and ∥x∥ ≈ 0. (4.1)

∃ w ∈ R2d, p̃w(v) = cx · (c̄x − p̄1(v)) mod q2 and ∥w∥ ≈ 0. (4.2)

Since px(v), p̄x(v), and p̃w(v) can be computed as linear functions evaluated at the
monomials expansion of v, Equations (4.2) and (4.6) can be proven by using argument
systems for SIS relations, as required above.
The interesting bit of our protocols is that, even though the the underlying arguments for
the SIS relation have soundness gaps, the verifier of our protocol will be convinced that x
is exactly binary. First, from the knowledge soundness of the argument for Equation (4.6),
the verifier is convinced that there exists a candidate short vectors x̂ and ŵ satisfying
Equation (4.6) and Equation (4.2) respectively. From x̂, one could derive a short vector
û = (û−, û0, û+) ∈ R2d+1 encoding

p̂û(V ) := px(V ) · p̄x−1(V ) = px(V ) · ph◦(x−1)(V −1).
Clearly, p̂û(v) = cx · (c̄x − p̄1(v)) mod q2. This means that p̃ŵ(V )− p̂û(V ) is a polynomial
with short coefficients which vanishes at v. Furthermore, notice that p̃ŵ does not have a
constant term, while the constant term û0 of p̂û is given by the inner-product

û0 = ⟨x, h ◦ (x − 1)⟩ =
d:

i=1
hi · xi · (xi − 1)
 	� �

=0 iff xi∈{0,1}
.

Let us first establish that û0 must indeed be 0. This is an easy reduction to the vSIS,
since it would otherwise yield a non-zero short solution to a vSIS problem, which we
assume to be hard to find. However, we are not yet done, since the fact that û0 = 0 does
not imply that all of its summands are also zero (which is what we need to ensure that x
is binary). This is where the vector h comes into play, using a technique first introduced
in [ACL+22]: Suppose û0 = 0, then we also have û0 = ;d

i=1 hi · xi · (xi − 1) = 0 mod q1.
If x is not binary, the vector x◦ (x−1) would be a short non-zero solution to the RingSIS
instance given by h over Rq1 .

4.2.2 Efficient Proofs for SIS Relations
In the above proof of binary-satisfiability of linear relations, the prover and verifier
computation costs are dominated by the costs of the succinct arguments for SIS relations
with soundness gaps. Here we discuss two approaches in the literature, and how we can
improve on both fronts using the algebraic properties of our vSIS-based commitment
scheme.
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Approach I: Folding Protocols. (Lattice-based) Bulletproofs [BLNS20, AL21, ACK21]
are interactive arguments with quasi-linear time prover, and can be made non-interactive
using the Fiat-Shamir transform in the random oracle model. It is based on the technique
of iteratively “folding” the relation into a smaller one until a trivial relation is derived.
Recall that in Bulletproofs the prover wants to convince the verifier that they know a
short vector x satisfying

M · x = y mod q and ∥x∥ ≈ 0.

Let (M, x, y) = (M(0), x(0), y(0)). The protocol consists of ℓ + 1 rounds, where in the
i-th round the two parties “fold” the relation represented by (M(i), y(i)) into another
represented by (M(i+1), y(i+1)) where the dimension of M(i+1) is half that of M(i).
Correspondingly, the prover folds its witness x(i) into x(i+1). After ℓ such folding steps,
a constant-size relation (M(ℓ), y(ℓ)) is reached and the prover simply sends the satisfying
witness x(ℓ) over to the verifier.

In more detail, each of the first ℓ rounds of the protocol goes as follows. For the i-th
round, i ∈ { 0, . . . , ℓ − 1 }, the parties split M(i) into two halves as M(i) = (M(i)

L , M(i)
R )

and the prover further splits x(i) = (x(i)
L , x(i)

R ). The prover sends the cross terms

y(i)
LR =

�
M(i)

L , x(i)
R

�
mod q and y(i)

RL =
�
M(i)

R , x(i)
L

�
mod q.

The verifier sends a random challenge ri←S sampled from some challenge set S ⊆ R×.
Both parties fold (M(i), y(i)) into

(M(i+1), y(i+1)) := (M(i)
L + M(i)

R · r−1
i , y(i)

RL · r−1
i + y(i) + y(i)

LR · ri) mod q,

and the prover folds x into x(i+1) = x(i)
L + x(i)

R · ri. At the ℓ-th (i.e. last) round,
the prover simply sends x(ℓ) and the verifier checks that x(ℓ) is short and satisfies�
M(ℓ), x(ℓ)

�
= y(ℓ) mod q.

It can been shown [BLNS20, AL21, ACK21, AF22] that the protocol satisfies knowledge
soundness, and furthermore it is easy to see that the prover runs in time quasi-linear
in the length of the witness. However, a major drawback of this approach is that the
verifier computation is also quasi-linear for general linear relations M, and it cannot be
preprocessed due to the interactive nature of the scheme.

Polylogarithmic Verifier for Structured Relations. In this work, we observe
that, while we cannot hope to reduce the verifier complexity for general matrices M, for
suitably structured M the verification can be sped up to run in time polylogarithmic
in the witness length. As an example, the simplest M with the required structure is a
vector consisting of powers of an element v ∈ R×

q , i.e.

M =
'
v v2 . . . vd

.
mod q.

127



4. Lattice-Based Succinct Arguments from Vanishing Polynomials

Importantly for us, ⟨M, x⟩ = px(v) mod q is exactly the vSIS commitment of x with
commitment key v. Thus, this observation allows us to prove the knowledge of a pre-image
of a vSIS commitment via the above protocol with polylogarithmic verifier complexity.

To see why this is the case, it suffices to observe that the verifier complexity is dominated
by the computation of the matrix M(ℓ), which is obtained by successive foldings of
the starting matrix M(0). Plugging in the structured relation, we can see that at each
iteration the matrix evolves into

M(i+1) = M(i)
L + M(i)

R · r−1
i

=
'
v v2 . . . vdi/2

.
+

'
vdi/2+1 vdi/2+2 . . . vdi

.
· r−1

i

=
'
v v2 . . . vdi/2

.
· (1 + vdi/2 · r−1

i ) mod q

where di is the input length at the i-th iteration. Recursing over all iterations, we obtain
that the final matrix M(ℓ) is defined as

M(ℓ) =
ℓ−15
i=0

'
1 + v2ℓ−i−1 · r−1

i

.
mod q,

which can be computed in time polynomial in ℓ, i.e. polylogarithmic in d. In Sections 4.6
and 4.7, we extend the above structured folding technique in three ways:

1. We identify a general class of “foldable” (block-)matrices for which the verifier
computation can be made polylogarithmic in the number of columns.

2. By modifying the Bulletproofs protocol with techniques borrowed from another
folding protocol of Pietrzak [Pie19], we are able to support foldable matrices with
an arbitrary (i.e non-power-of-2) number of columns, without breaking the foldable
structure.4

3. Borrowing techniques from [Pie19] again, we can make the verifier computation also
polylogarithmic in the number of rows of M, for M with repeating block-bidiagonals,
if y is also foldable.

Approach II: Pre-Processing (Knowledge-Based) Protocols. The second ap-
proach for lattice-based arguments for SIS relation is the recent work of [ACL+22],
which is based on a newly recently introduced (knowledge-)k-R-ISIS assumption. In this
protocol, the verifier computation can be preprocessed such that the online verification
time is polylogarithmic in the relation size. However, a major drawback of this approach
is that the public parameters size and the prover complexity are at least quadratic in
the relation size. Let us recall (a somewhat simplified version of) the commit-and-prove

4The usual technique of padding zero columns breaks the foldable structure.
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protocol of [ACL+22] specialised to the case of SIS (i.e. linear) relations. The public
parameters consists of

A, t, v, h,
'
A−1(t · (g · ḡ′)(v))

.
g,g′∈G,g ̸=g′

for some set of monomials G, where A, t, v are random over Rq2 , h is a random vector
over Rq1 , ḡ := 1/g denotes the complement of g, and A−1(t · g(v)) denotes a short
preimage ug satisfying A · ug = t · g(v) mod q2. To prove that

M · x = y (without mod) and ∥x∥ ≈ 0,

commit to x as cx := ;
g∈G xg · g(v) mod q2 and derive a short vector u satisfying

A · u = t · hT · (M · Ḡ(v) · cx − y) mod q2,

where Ḡ(v) = (ḡ(v))g∈G . To compute such a short vector u, the prover needs to perform
a linear combination of | { g · ḡ′ : g, g′ ∈ G, g ̸= g′ } | short vectors given in the public
parameters. For G = { V1, . . . , Vd } chosen in [ACL+22], we have | { g · ḡ′ : g ̸= g′ ∈ G } | =
O(d2), hence the quasi-quadratic prover complexity.

Achieving Quasi-Linear Time Prover. A natural idea is to choose G = { V, V 2, . . . , V d }
so v becomes a single element v. This makes

| { g · ḡ′ : g, g′ ∈ G, g ̸= g′ } | = | { V −i, V i }d−1
i=1 | = 2d − 2 = O(d).

Further exploiting fast multiplication algorithms for Toeplitz matrices allows us to achieve
quasi-linear prover time. Notably, with this choice of G we have

cx = px(v) mod q2 and hT · M · (ḡ(v))g∈G = p̄MT·h(v) mod q2,

and hT · M · (ḡ(V ))g∈G · cx − hT · y being a polynomial with constant term 0. In the
main body, we also show how to support natively modular arithmetic, by borrowing
techniques from chainable functional commitments [BCFL22]. We refer the interested
reader to Section 4.8 for more details.

4.2.3 Applications
To summarise, we have constructed succinct arguments for relations of the form

M · x = y mod q0 and x ∈ {0, 1}d

with quasi-linear time provers (in both the folding and the preprocessing settings). This
gives a efficient and powerful building block for constructing advanced lattice-based
cryptographic primitives which require proving relations of the above form. We provide
a few examples below.
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Lattice-based Verifiable Delay Functions. For the instantiation based on folding
protocols, the verifier computation is polylogarithmic if the relation (M, y) conforms to
a certain foldable structure. One example is the sequential-SIS relation proposed in a
recent work [LM23], which was used to construct proofs of sequential work (PoSW). In
more details, the sequential-SIS relation proposed in their work induces the following
linear relation,,,,,

G
A G

A
G
A

33333

 	� �

M

·x =

,,,,,,
z0
0

0
zT

333333

 	� �

y

mod q and x ∈ RmT
2 ,

for a uniformly sampled A and z0. The PoSW construction in [LM23] falls short of
giving verifiable delay functions (VDF) due to the soundness gap in lattice-based folding
protocols. By embedding the Z2 coefficients of x ∈ RmT

2 into x′ ∈ {0, 1}mT φ(ρ), and
plugging in the structured folding protocol constructed in this work, we immediately get
the first construction of lattice-based VDFs.

Efficient Lattice-based SNARKs for NP. Recall that our results ultimately rely on
the observation that the inner-product of x and y is encoded as the constant term of the
polynomial px · p̄y. In the above, we used this to encode the vectors x and y := h ◦ (x −1)
for proving binariness. The same idea can be used to prove general quadratic relations.

Consider the NP-complete rank-1 constraint satisfiability (R1CS) relation which is of the
form

∃ x, (A · x) ◦ (B · x) = C · x mod q

where some entries of x are publicly known. To prove knowledge of x, the prover
computation roughly goes as follows. First, they compute

a := A · x, b := B · x, and c := C · x.

They then commit to (x, h ◦ a, b, c) as (cx, c̄a, cb, cc), and prove that the commitments
are consistent. Finally, they prove that the constant term in (the polynomial underlying)
c̄a · cb is identical to ⟨h, c⟩ for c committed in cc.

4.3 Preliminaries
Let λ ∈ N denote the security parameter, and poly(λ) and negl the set of all polynomials
and negligible functions in λ respectively. Denote the empty string by ϵ. For a function
f which may depend on λ and other parameters, we write Oλ(f) := f · poly(λ) to hide
fixed polynomial factors in λ. For matrices A and B with the same dimensions, write
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�
A
B

 
↘3

:=

,,,
A
B A

B A
B

333. The notation
�
A
B

 
↘n

is defined analogously for any n ∈ N. If

S is a set and D is a distribution over S, we write D ∼ S.

4.3.1 Cyclotomic Rings
Let K = Q(ζ) be a cyclotomic field, where ζ is a root of unity of order ρ = poly(λ), and
R = Z[ζ] be its ring of integers. If ρ is a power of 2 (resp. prime power), R is called
a power-of-2 (resp. prime power) cyclotomic ring. For q ∈ N, define the quotient ring
Rq := R/qR. We denote by R× and R×

q the sets of units in R and Rq respectively. An
element a = ;ρ−1

i=0 ai · ζi ∈ R (or Rq) is represented by its coefficients (a0, . . . , aρ−1) ∈ Zρ

(or Zρ
q). The (infinity) norm of a ∈ R (or Rq) is taken as ∥a∥ := maxρ−1

i=0 (|ai|), where in the
case of ai ∈ Zq the balanced representation is taken, i.e. ai ∈ { −⌈q/2⌉ + 1, . . . , ⌊q/2⌋ }.
For a vector a = (a1, . . . , an) ∈ Rn, ∥a∥ := maxn

i=1 ∥ai∥. For a matrix A = (Ai,j)i,j ,
the max-norm is taken, i.e. ∥A∥ = maxi,j ∥Mi,j∥. The ring expansion factor of R is
defined as γR := maxa,b∈R ∥a · b∥ /(∥a∥ · ∥b∥). For power-of-2 and prime-power R, it is
known that γR ≤ 2φ(ρ), where φ is Euler’s totient function. A set S ⊆ R is said to be
subtractive if a − b ∈ R× for any distinct a, b ∈ S. For a prime-power R, it is known
that S := { (ζi − 1)/(ζ − 1) : i ∈ [rad(ρ) − 1] } ⊂ R× is subtractive, where rad(ρ) denotes
the radical. Note that ∥r∥ = 1 for all r ∈ S.

4.3.2 Lattice Trapdoors
In our constructions based on the (knowledge-)k-R-ISIS assumption, we will make use of
lattice trapdoor algorithms. Let η, m, q, β be functions of λ. Let (TrapGen, SampD, SampPre)
be PPT algorithms parametrised by (η, m, q, β) with the following syntax and proper-
ties [GPV08, MP12, GM18]:

• (D, td) ← TrapGen(1λ) generates a matrix D ∈ Rη×m
q and a trapdoor td. The

distribution of D is statistically close to the uniform distribution over Rη×m
q .

• u ← SampD(1λ) samples a vector u ∈ Rm. For any (D, v) ∈ Rη×m
q × Rη

q and
u ← SampD(1λ) subject to Du = v mod q, it is guaranteed that ∥u∥ ≤ β with
overwhelming probability. Furthermore, the following distributions are statistically
close:����������

(D, u, v) :
D←Rη×m

q

u ← SampD(1λ)
v = Du mod q

����������
and

����������

(D, u, v) :
D←Rη×m

q

v←Rη
q

u ← SampD(1λ) : Du = v mod q

����������

131



4. Lattice-Based Succinct Arguments from Vanishing Polynomials

• u ← SampPre(td, v) inputs a target vector v ∈ Rη
q and samples a vector u ∈ Rm.

For (D, td) ← TrapGen(1λ), it is guaranteed that D · u = v mod q and ∥u∥ ≤ β with
overwhelming probability. Furthermore, for any v ∈ Rη

q , the following distributions
are statistically close:����

(D, u) :
(D, td) ← TrapGen(1λ)
u ← SampPre(td, v)

���� and

����
(D, u) :

(D, td) ← TrapGen(1λ)
u ← SampD(1λ) : Du = v mod q

����
4.3.3 Presumed Hard Problems
The Short Integer Solution (SIS) problem was introduced in the seminal work of Aj-
tai [Ajt96]. It asks to find a short vector in the kernel of a given random matrix modulo
q. In this work, we consider the generalisation of SIS over R and the k-R-ISIS problem
introduced in [ACL+22].

Definition 4.3.1 (R-SIS Assumption). Let m, q, β∗ ∈ N depend on λ. The Ring-SIS
(or R-SIS) problem, denoted R-SISR,m,q,β∗, is: Given h←Rm

q , find u ∈ Rm such that
0 < ∥u∥ ≤ β∗ and h · u ≡ 0 mod q. We write Advr-sis

R,m,q,β∗,A for the advantage of any
algorithm A in solving R-SISR,η,m,q,β∗. The R-SISR,η,m,q,β∗ assumption states that, for
any PPT adversary A, Advr-sis

R,m,q,β∗,A ≤ negl(λ).

We state a streamlined version of the (knowledge) k-R-ISIS5 assumptions defined
in [ACL+22] with two main changes: 1. To improve readability, our definitions of the
assumptions do not impose admissibility constraints on parameters. Instead, we mention
these admissibility parameters separately outside of the definitions. 2. We assume that all
preimages ug given to the adversary are sampled from the same distribution conditioned
on different constraints. The original definitions [ACL+22] are more general in that they
allow a different distribution per constraint.

Definition 4.3.2 (k-R-ISIS Assumptions). Let η, m, q, β, β∗ ∈ N, G ∪ { g∗ } be a set
of w-variate Laurent monomials, T ∼ Rη

q , and D ∼ Rm, all dependent on λ. Write
pp := (R, η, m, w, q, β, β∗, G, g∗, D, T ). The k-R-ISISpp assumption states that, for any
PPT adversary A, Advk-r-isis

pp,A ≤ negl, where Advk-r-isis
pp,A :=

Pr

 D · ug∗ ≡ t · s∗ · g∗(v) mod q

∧ 0 < ∥(ug∗ , s∗)∥ ≤ β∗

@@@@@@@@@
D←Rη×m

q ; t←T ; v←(R×
q )w

ug←D : D · ug = t · g(v) mod q, ∀ g ∈ G
(s∗, ug∗) ← A

'
D, t, v, { ug }g∈G

.
 .

Individual parameters are omitted when they are clear from the context.
5In [ACL+22], the assumptions over modules were separately called (knowledge-)k-M-ISIS.
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Definition 4.3.3 (Knowledge k-R-ISIS Assumptions). Let η, m, q, α∗, β, β∗ ∈ N, G be a
set of w-variate Laurent monomials, T ∼ Rη

q , and D ∼ Rm, all dependent on λ. Let
Z be a PPT auxiliary input generator. Write pp := (R, η, m, w, q, α∗, β, β∗, G, D, T , Z).
The knowledge k-R-ISISpp assumption states that for any PPT adversary A there exists
a PPT extractor EA such that Advk-r-isis

pp,A ≤ negl(λ), where Advk-r-isis
pp,A :=

Pr



D · u ≡ t · c mod q

∧ 0 < ∥u∥ ≤ β∗

∧ ¬

,,
c ≡

:
g∈G

xg · g(v) mod q

∧
???(xg)g∈G

??? ≤ α∗

33

@@@@@@@@@@@@@

D←Rη×m
q ; t←T ; v←(R×

q )w

ug←D : D · ug = t · g(v) mod q, ∀ g ∈ G
pp := (D, t, v, { ug }g∈G); aux ← Z(pp)'

(c, u), (xg)g∈G
.

← (A∥EA) (pp, aux)


where (A∥EA) means that A and EA are run on the same input including the randomness,
and (c, u) and (xg)g∈G are the outputs of A and EA respectively. Individual parameters
are omitted when they are clear from the context.

For both assumptions to be meaningful, we always consider m > η.6 For non-triviality,
we want g∗ /∈ G and t ̸= 0 with overwhelming probability. To avoid complications of
giving the adversary short vectors in the kernel of D, we do not consider the case where
G is a multiset – all monomials in G are distinct.7 To avoid SIS attacks in the image
space, we want 1/|R×

q | = negl(λ).

For the knowledge assumption to be plausible, we would like that α∗ ≥ β∗, and for t←T ,
1/|⟨t⟩| = negl(λ) and |⟨t⟩|/|Rη

q | = negl(λ) with overwhelming probability. Furthermore,
to avoid easy instances of ideal-SVP (relevant when η = 1), we would like the problem of
finding short elements in { s ∈ R : t · s = 0 mod q } to be hard.

4.3.4 Argument Systems
We recall the definition of argument systems which allow a prover to convince a verifier
that a relation is satisfiable. Formally, we define a (family of) relation(s) Ψ(= (Ψλ)λ∈N)
to be polynomial-time-decidable triples of the form (pp, stmt, wit), corresponding to the
public parameters of the argument system, the statement, and the witness respectively.
We consider a statement stmt = (stmtoff, stmton) to consist an offline part stmtoff
which is potentially preprocessable and an online part stmton. For any fixed public
parameters pp, we define the (sub-)relation Ψpp := { (stmt, wit) : (pp, stmt, wit) ∈ Ψ }
and the corresponding language Lpp := { stmt : ∃ wit, (stmt, wit) ∈ Ψpp }. We focus on
relations where the public parameters pp can be efficiently generated, and denote such a
generator by GenΨ. We suppress pp when it is the empty string.

6In [ACL+22], m is considered to be large enough so that the leftover hash lemma holds. However,
smaller m only makes the problems harder.

7In [ACL+22, Definition 22], monomials in G and g∗ are further required to be independent of R.
We discuss in Section 4.4.2 why we believe that this restriction can be lifted.
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Definition 4.3.4 (Arguments). A (preprocessing) argument system consists of PPT
algorithms (Setup, PreVerify) and PPT interactive algorithms (Prove, Verify) with the
following syntax:

• crs ← Setup(1λ, pp): Input some public parameters pp and generate a common
reference string crs.

• crsstmtoff ← PreVerify(crs, stmtoff): Preprocess the statement stmtoff. Systems
not supporting preprocessing are captured by having a trivial preverification, i.e.
crsstmtoff = (crs, stmtoff).

• (tx, b) ← ⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩: An interactive protocol
where the prover tries to convince the verifier about the statement stmt. The protocol
produces a transcript tx and ends with the verifier outputting a bit b ∈ {0, 1}. The
transcript tx is suppressed from the output when it is not needed. In the case
where the protocol is non-interactive, i.e. the prover sends a single message,
then we split the protocol into two PPT algorithms π ← Prove(crs, stmt, wit) and
b ← Verify(crsstmtoff , stmton, π), where π is referred to as a proof.

Definition 4.3.5 (Completeness). An argument system Π is said to be complete for Ψ
if for all adversaries A

Pr

(stmt, wit) ∈ Ψpp

∧ b = 0

@@@@@@@@@@
pp ← GenΨ(1λ); crs ← Setup(1λ, pp)
(stmt, wit) ← A(pp, crs)
crsstmtoff ← PreVerify(crs, stmtoff)
b ← ⟨P(crs, stmt, wit), V(crsstmtoff , stmton)⟩

 ≤ negl(λ).

Definition 4.3.6 (Special Soundness). An argument system Π is said to be public-coin if
each message sent by V is sampled from a public distribution independent of the messages
sent by Prove. A transcript tx is said to be accepting for (pp, stmt) if (tx, 1) is in the
output space of ⟨P, V(crsstmtoff , stmton)⟩ where crsstmtoff ∈ PreVerify(Setup(1λ, pp), stmt).
Suppose V sends ℓ messages throughout the execution of ⟨P, V⟩. A tree T is said to be
a (k1, . . . , kℓ)-tree of accepting transcripts for (pp, stmt) if it is of (node-)depth (ℓ + 1),
each node is labelled by a prover message, each depth-i node has exactly ki children
each connected by an edge labelled by a distinct verifier message, and the labels on each
root-to-leaf path give an accepting transcript for (pp, stmt). The argument system Π is
said to be (k1, . . . , kℓ)-special-sound for Ψ if there exists a polynomial-time extractor E
which on input a (k1, . . . , kℓ)-tree of accepting transcripts for (pp, stmt) outputs wit∗ such
that (stmt, wit∗) ∈ Ψpp.

Definition 4.3.7 (Knowledge Soundness). Let κ = κ(λ) denote the knowledge error.
An argument system Π is said to be κ-knowledge-sound for Ψ if for all PPT P∗ there
exists an expected polynomial-time extractor EP∗ such that for all PPT adversaries A the
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following is at most κ:

Pr

(stmt, wit∗) ̸∈ Ψpp

∧ b = 1

@@@@@@@@@@
pp ← GenΨ(1λ); crs ← Setup(1λ, pp)
(stmt, wit) ← A(pp, crs)
crsstmtoff ← PreVerify(crs, stmtoff)
(wit∗, b) ← ⟨(P∗|EP∗)(crs, stmt, wit), V(crsstmtoff , stmton)⟩


The argument system Π is said to be knowledge-sound for Ψ if it is κ-knowledge-sound
for Ψ for some κ = negl(λ).

It is known that a parallel-repetition of a (k1, . . . , kℓ)-special-sound protocol yields a
knowledge-sound protocol [AF22].

Note that it is common for lattice-based argument systems to have a “soundness gap”:
They are complete for a relation Ψ, but special- or knowledge-sound for a relaxed relation
Ψ′ ⊇ Ψ, i.e. the extracted witness wit∗ for (pp, stmt) may not satisfy (stmt, wit∗) ∈ Ψpp
but only (stmt, wit∗) ∈ Ψ′

pp .

Definition 4.3.8 (Succinctness). An argument system Π is said to have succinct
proofs (resp. succinct verifier) for Ψ if for any pp ∈ GenΨ(1λ), crs ∈ Setup(1λ, pp),
(stmt, wit) ∈ Ψpp, crsstmtoff ∈ PreVerify(crs, stmtoff), the communication complexity of
⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩ (resp. computation complexity of Verify(crsstmtoff ,
stmton)) is polylog(|stmt|+ |wit|) ·poly(λ) where the poly(λ) factor is independent of |stmt|
and |wit|.

Argument systems which are succinct, non-interactive, and knowledge-sound are known as
succinct non-interactive arguments of knowledge (SNARK). Arguments whose soundness
holds even against adversaries given the randomness of Setup are said to have transparent
setups.

4.4 Vanishing Short Integer Solutions
In this section, we formalise the vanishing-SIS problems and assumptions, and discuss
their relations with existing problems and assumptions. We also discuss the properties
of the collision-resistant hash functions obtained immediately from the vanishing-SIS
assumptions.

4.4.1 Definition
Definition 4.4.1 (Vanishing-SIS). Let n, d, w, q, β ∈ N and G, a set of w-variate (Lau-
rent) monomials of individual degree at most d, be functions of λ. The vSISR,G,n,q,β

problem is the following: Given a set V = { vi }n
i=1 ∈ (R×

q )w of n uniformly random
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points in (R×
q )w, find a non-zero polynomial p ∈ R[X1, . . . , Xw] with monomial support8

over G such that

∀i ∈ [n], p(vi) = 0 mod q and ∥p∥ ≤ β

where ∥p∥ is the maximum of the norm of the coefficients of p. The vSISR,G,n,q,β as-
sumption states that, for any PPT adversary A, the probability of A solving a uniformly
random instance of vSISR,G,n,q,β is negligible in λ. Individual parameters are omitted
from the subscript when they are clear from the context. If G is the set of all w-
variate (Laurent) monomials of individual degree at most d, we denote the problem by
vSISR,d,w,n,q,β. To emphasise certain parameters, e.g. n = n∗ and w = w∗, we sometimes
write vSIS(n,w)=(n∗,w∗).

Another way to phrase the problem, borrowing terminologies from algebraic geometry,
is that it asks to find an element of bounded norm and degree in the ideal I(V ) of
polynomials vanishing at the set of points V . Clearly, the subset of bounded-degree
polynomials in I(V ) forms a (module) lattice. Therefore a vanishing-SIS problem can
also be seen as an average-case approximate shortest vector problem (SVP) over such
lattices.9

The connection of the vanishing-SIS problem to the standard SIS problem stems from the
following simple observation: If we interpret the coefficients of a solution p as a vector p,
and write the relation in matrix form, we obtain,,,,

1 v1,1 . . . v1,w . . .
6w

j=1 v
ej

1,j . . .
6w

j=1 vd
1,j

1 v2,1 . . . v2,w . . .
6w

j=1 v
ej

2,j . . .
6w

j=1 vd
2,j

...
... . . . ... . . . ... . . . ...

1 vn,1 . . . vn,w . . .
6w

j=1 v
ej

n,j . . .
6w

j=1 vd
n,j

3333 · p = 0 mod q and ∥p∥ ≤ β,

a SIS relation with respect to a (Vandermonde-like) structured matrix.

Note that since vi,j ∈ R×
q for all i and j, it is not important for p to be a polynomial

with only non-negative powers. Laurent polynomials can be captured scaling the each
i-th row of the matrix by 6w

j=1 v
−ej

i,j for any desired powers (e1, . . . , ew) ∈ Zw. In fact,
using the matrix formulation, the scaling factors for each row could be different.

It is easy to observe that the vanishing-SIS assumption is implied by the k-R-ISIS
assumption with related parameters. In Section 4.5, we discuss this implication in
more detail, show that the converse holds conditioned on a related knowledge-k-R-ISIS
assumption, and explore the connections of vanishing-SIS to more established assumptions,
i.e. NTRU and RingLWE.

8e.g. the monomial support of 3X1X2 + 2X2
2 + 1 is { X1X2, X2

2 , 1 }
9Interestingly, after restricting to a bounded-degree subset, we no longer have an ideal. Therefore

this approximate SVP problem is not over ideal-lattices.
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4.4.2 On Choice of Parameters
On the modulus q. Note that, for some (preferable) parameters settings, it is important
for q > d for the vSIS assumption to be plausible. Indeed, for example, if q is prime and is
such that qR splits completely into φ(ρ) ideals, then we have vq−1 − 1 = 0 mod q for any
v ∈ R. This gives rise to trivial solutions, e.g. p(X) = Xq−1 − 1, to the vSIS problem.

On the space of V . It is also important for the set of points V to be chosen over R×
q

instead of Rq. For example, consider a power-of-2 R and q = 2ℓ. The ideal qR splits into
qR = Iℓ·φ(ρ) for some ideal I of (algebraic) norm N (I) = 2. Therefore, with probability
1/2, a random element v←Rq satisfies v = 0 mod I and hence vℓ·φ(ρ) = 0 mod q. This
means that p(X) = Xℓ·ϕ(ρ) is a solution to any vanishing-SIS over Rq if instances were
sampled from Rq.10

On the cardinality |R×
q |. It is crucial that the cardinality |R×

q | is large enough so that
1/|R×

q | = negl. Suppose not, then there might exist small e ∈ N such that { v, v2, . . . , ve }
contains a short element modulo q. Note that the set of elements in R of norm at most
β has cardinality (2β + 1)φ(ρ). If we heuristically model the multiplication-by-v map
a /→ a · v mod q as a random permutation for v←R×

q , and if R×
q is large enough, we have

some confidence to believe that small powers of v modulo q will not be short.

In general, it appears that |R×
q | is usually quite close to qφ(ρ). We calculate this cardinality

for some specific choices of q and R. For q = 2ℓ and ρ being a power of 2, we have
|R×

q | = qφ(ρ)/2. For arbitrary R and prime q = 1 mod φ(ρ), we have |R×
q | = (q − 1)φ(ρ).

In either case, if β ≤ q/4, we have Pr[∥x∥ ≤ β | x←R×
q ] < 2−φ(ρ) which is negligible in ρ.

4.4.3 A Family of Hash Functions with Short Keys
Similar to the standard SIS-based hash function, the vanishing-SIS assumption imme-
diately implies the existence of a collision-resistant hash function, except that in this
case the keys are very small, and could potentially be logarithmic in the message size.
Furthermore, the hash function satisfies many desirable properties, such as (approximate)
ring homomorphism.

In more detail, for any set of points V = { vi }n
i=1 ⊆ ((R×

q )w)n, define

HV : R(d+1)w
β → Rn

q , HV (p) = (p(v1), . . . , p(vn)) mod q

where an input p ∈ R(d+1)w
β is interpreted, for example, as a polynomial p ∈ Rβ [X1, . . . , Xw]

of individual degree at most d.
10We believe that this is the reason why G was restricted to be independent of R in the definition of

“k-R-ISIS-admissible” parameters in [ACL+22, Definition 22]. However, since [ACL+22, Definition 23]
also restricts v ∈ (R×

q )w, the restriction on G appears to be redundant.
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It is easy to show that this function is collision resistant by observing that HV (p) = HV (p′)
implies

∀i ∈ [n], (p − p′)(vi) = 0 mod q and
??p − p′?? ≤ β,

i.e. p − p′ is a solution to the vSIS instance V .

Observe that each hash function can be described by a key of size n · w log q bits, and can
hash messages of length (d + 1) · w · log β bits to n · log q bits, where n and w could be as
small as 1. As discussed in Section 4.4.1, for the vSIS assumption to be plausible for the
case where q fully splits, which is desirable for efficiency, it is necessary that q > d. For
q = O(d) and n, w, β = poly(λ), the key size and the message length are Oλ(log d) and
Oλ(d) respectively.

Similar to the standard SIS-based hash function, HV is almost linearly homomorphic in
the sense that

HV (p) + HV (p′) = HV (p + p′) mod q and
??p + p′?? ≤ ∥p∥ +

??p′?? .

Different from the standard SIS-based hash function, however, is that HV is also almost
multiplicatively homomorphic in the sense that

HV (p) · HV (p′) = HV (p · p′) mod q and
??p · p′?? ≤ (d + 1)w · ∥p∥ · ??p′?? · γR,

with multiplications taken over Rq and R[X] respectively.

For our purpose of construction linear-time succinct arguments, the univariate case (i.e.
w = 1) is the most interesting due to the exponential dependency of various parameters
on w. Moreover, we notice that if p0(X) and p1(X) encode the vectors p0 and p1
respectively as their coefficients, then the product polynomial p(X) · p(X−1) has norm at
most ∥p0∥ · ∥p1∥ · γR, and its constant term encodes the inner product ⟨p0, p1⟩.

4.5 Relating Vanishing-SIS and other Assumptions
In the following, we show that the vanishing-SIS assumption is implied by, and tightly
related to, the k-R-ISIS assumption. We also explore the connections between the
vanishing-SIS, NTRU, and RingLWE assumptions.

4.5.1 Relations with k-R-ISIS
We discuss how the vSIS assumption relates to the k-R-ISIS family of assumptions defined
in [ACL+22]. We show implications in both directions that hold in different parameter
regimes.
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k-R-ISIS =⇒ vSIS. We show that vSISG∪{ g∗ },α is no easier than k-R-ISISG,g∗,β,β∗

with β∗ = |G| · α · β · γR. Assuming that we have a solver for vSISG∪{ g∗ },α that outputs
a polynomial p with

p(v) =
:
g∈G

pg · g(v) + pg∗ · g∗(v) = 0 mod q,

we can construct an algorithm solving k-R-ISISG,g∗,β,β∗ as follows. The algorithm is given
as input

'
D, t, v, { ug }g∈G

.
. It runs the vSISG∪{ g∗ },α solver on v to obtain p, and returns

ug∗ =
:
g∈G

pg · ug and s∗ = −pg∗ .

Note that this is a valid solution for k-R-ISISG,g∗,β,β∗ since

D · ug∗ = D ·
:
g∈G

pg · ug =
:
g∈G

pg · g(v) = −pg∗ · g∗(v) mod q

and furthermore, by assumption, we have that ∥p∥ ≤ α and thus

∥ug∗∥ ≤ |G| · α · β · γR = β∗ and ∥pg∗∥ ≤ α < β∗.

Knowledge k-R-ISIS and vSIS =⇒ k-R-ISIS. We show that, conditioned on knowl-
edge k-R-ISISG,α∗,β,β∗ , the hardness of vSISG∪{ g∗ },α∗ implies that of k-R-ISISG,g∗,β,β∗ , for
α∗ ≥ β∗. At first glance, it may appear strange that we are using the knowledge version
of k-R-ISIS to prove k-R-ISIS itself. Nevertheless the statement is meaningful, since
knowledge k-R-ISIS is not a computational problem, but rather an assumption about
the attacker itself. In some sense, this statement shows that vSIS is the underlying
computational assumption that connects k-R-ISIS and knowledge k-R-ISIS. We sketch
the reduction in the following. Assume that we are given a k-R-ISISG,g∗,β,β∗ solver that,
on input

'
D, t, v, { ug }g∈G

.
, outputs (ug∗ , s∗) such that

D · ug∗ = t · s∗ · g∗(v) and ∥(ug∗ , s∗)∥ ≤ β∗ ≤ α∗.

By knowledge k-R-ISISG,α∗,β,β∗ , there exists an extractor that returns { xg }g∈G such that

s∗ · g∗(v) =
:
g∈G

xg · g(v) and ∥xg∥ ≤ α∗.

It follows that p = ;
g∈G xg · g − s∗ · g∗ is a valid solution for vSISG∪{ g∗ } since:

g∈G
xg · ug − s∗ · g∗(v) = p(v) = 0 mod q and ∥p∥ ≤ α∗.
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4.5.2 Relations with NTRU
In the following, we study the relation between vSIS and the search NTRU assump-
tion, conditioned on the decision NTRU assumption. Recall that the decision NTRU
assumption states that the “NTRU distribution”, i.e. that of h = f/g mod q ∈ R×

q where
f, g←R are random short elements, is indistinguishable from the uniform distribution over
R×

q . From the decision NTRU assumption, we immediately have that the distribution
of vSIS instances is indistinguishable from a modified version where each entry of each
point v ∈ V is sampled from the NTRU distribution instead of uniformly from R×

q . In
the following, we refer to this modified version of vSIS as NTRU-vSIS.

Univariate NTRU-vSIS =⇒ Search NTRU.

First, we make a simple observation that NTRU-vSIS generalises search NTRU. The
search NTRU problem is the following: Given h sampled from the NTRU distribution,
find short f ′, g′ such that that g′h + f ′ = 0 mod q, i.e. find a degree-1 polynomial p with
short coefficients which vanishes at h modulo q. Clearly, a search NTRU solver also
solves NTRU-vSISn=1,G if { 1, X } ⊆ G.

Solution Space.

The search NTRU problem can be viewed (see e.g. [PS21]) as the problem of finding a

short vector spanned by
(

q −h
1

/
. Similarly, the vSIS(n,w)=(1,1) problem can be viewed

as the problem of finding a short vector in the rank-(d + 1) module lattice spanned

by
(

q
�
−v
1

 
↘d

/
. In [PS21], Pellet-Mary and Stehlé showed that all solutions to a

search NTRU problem lie in a unique rank-1 submodule of the module-lattice spanned
by (−f, g)T.11 Similarly, we can show that, for large enough q (exponential in d), all
solutions to an NTRU-vSIS(n,w)=(1,1),d problem lie in a unique rank-d submodule. The
argument roughly goes as follows.

Consider v = f/g mod q where ∥f∥ , ∥g∥ ≤ α, and let p be a solution to the NTRU-
vSIS(n,w)=(1,1),d instance v. We have ;d

j=0 pj · vj = 0 mod q or equivalently ;d
j=0 pj · f j ·

gd−j = 0 mod q. Assuming that q > 2 · (d + 1) · αd · β · γd
R, we have ;d

j=0 pj · f j · gd−j =
0, with arithmetic done over K. In other words, the solution lies in the kernel of

(gd, f · gd−1, . . . , fd) for which a basis is given by
�
−f
g

 
↘d

.

11Recovering this submodule (represented by a possibly long vector) was formalised as the NTRUmod
problem in [PS21]. This variant of the search NTRU problem is trivially not harder than the standard
variant, and [PS21] gave a reduction from the decision NTRU problem.
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Decision NTRU + Worst-Case =⇒ Average-Case.

The vSISn=1 problem admits a worst-case to average-case reduction, conditioned on
the hardness of decision NTRU. Note that this reduction produces a solution of norm
exponential in d and w. In the following, we sketch the reduction.

Let v∗ be any fixed vSISn=1,β∗ instance for some β∗ to be specified later. For each j ∈ [w],
sample an NTRU element hj = fj/gj mod q where ∥fj∥ , ∥gj∥ ≤ α for all j. Define v
where vj := v∗

j · hj mod q. Note that v ◦ g = v∗ ◦ f where ◦ denotes the Hadamard
product. By the decision NTRU assumption, v is indistinguishable from a random
vSISn=1,β instance. Suppose p is a solution to the vSISβ instance v, i.e. p(v) = 0 mod q
and ∥p∥ ≤ β, then

w5
j=1

gd
j · p(v) =

w5
j=1

gd
j · p

*
v∗ ◦

*
f1
g1

, . . . ,
fw

gw

11
= 0 mod q.

Note that 6w
j=1 gd

j ·p
'
v∗ ◦

'
f1
g1

, . . . , fw

gw

..
can be seen as a polynomial with coefficients in R

evaluated at v∗ (since all denominators are cancelled out). Denote this polynomial by p∗.
We have p∗(v∗) = 0 mod q. Furthermore, notice that ∥p∗∥ ≤ ∥p∥·αd·w ·γd·w

R = αd·w ·β ·γd·w
R .

Therefore p∗ is a solution to the vSISn=1,β∗ instance v∗ with β∗ = αd·w · β · γd·w
R .

vSIS, NTRU, and RingLWE.

It is clear that the vSISn=1 problem can be reduced to the vSIS problem (with the same
parameters except that n is changed from 1 to an arbitrary polynomial). In the following,
we sketch a reduction from the search NTRU problem to the vSIS(n,w)=(1,1),d problem,
conditioned on the hardness of either decision NTRU or RingLWE. We note that this
reduction could only work for a certain extreme parameter regime which is not suitable
for our application of succinct arguments.

Using Decision NTRU. Given a NTRU-vSIS(n,w)=(1,1),d,β′ solver for some β′, we would like
to find a solution to a random NTRU instance v of norm bounded by some β∗. Interpreting
v as an NTRU-vSIS(n,w)=(1,1),d,β instance, using the decision-NTRU rerandomisation
technique in the above worst-case to average-case reduction, we can rerandomise v to d
vSIS(n,w)=(1,1),d,β′ instances vi for i ∈ [d], where β := αd · β′ · γd

R. Let p′
i be a solution of

norm β′ to the i-th instance vi. Using the transformation as in the above worst-case to
average-case reduction, we can obtain d solutions (pi)d

i=1 to the vSIS(n,w)=(1,1),d,β instance
v. Note that each pi is a degree-d polynomial of norm β. Recursively running the following
algorithm produces a degree-1 polynomial of norm (2γR)2d−1−1 ·β2d−1

< (2βγR)2d−1 =: β∗:

• Input: L = (p0, p1, . . . , pd−1), degree-d polynomials each of norm β.

• Output: L′ = (p′
1, . . . , p′

d−1), degree-(d − 1) polynomials each of norm 2β2γR.

• Procedure:
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– For 0 ≤ i < d, let ai be the coefficient of the degree-d term in pi.
– Output L′ = (p′

1, . . . , p′
i) where p′

i = a0 · pi − ai · p0.

If we could argue that (p1, . . . , pd) are linearly independent (as polynomials over K) and
set q ≫ β∗, then the above gives a solution of norm β∗ to the NTRU instance v. In
particular, if β∗ ≪ √

q, then a search NTRU solver would also solve decision NTRU,
contradicting the initial assumption that decision NTRU holds. We therefore obtain a
reduction from decision NTRU to NTRU-vSIS. Note that for this reduction to work it is
necessary to have q being doubly-exponential in the number of monomials d + 1, which
forces d to be constant.

Using RingLWE. Instead of using decision NTRU for rerandomisation, we could use
RingLWE by exploiting the fact that we start with a random search NTRU instance v.12

Specifically, we can rerandomise v to vi := v·si+ei mod q for ∥si∥ , ∥ei∥ ≤ α, provided that
we reject those vi which are not invertible. By the (normal-form) RingLWE assumption,
each vi is indistinguishable from a random vSIS(n,w)=(1,1),d,β instance. Suppose p′

i is a
solution to the vSIS(n,w)=(1,1),d,β′ instance vi, then

p′
i(vi) = p′

i(v · si + ei),

meaning that pi(X) = p′
i(X · si + ei) is a solution to the vSIS(n,w)=(1,1),d,β instance v,

where now β = d ·αd ·β′ ·γd
R. The rest then follows similar to the reduction using decision

NTRU.

4.6 Foldable Structures
We define a family of monomials, polynomials, vectors, and matrices that exhibit “foldable”
structures.

Definition 4.6.1 (Foldable Polynomials). Let ℓ ≥ 0, kℓ > 0, and kℓ−1, . . . , k0 ≥ 0
be integers. A sequence of (monic multivariate Laurent) monomials m13 of length
n = ;ℓ

i=0 2i · ki (where ki are not necessarily binary) is said to be (k0, k1, . . . , kℓ)-foldable
if the following properties are satisfied:

• m = m0 can be generated from a “seed” mℓ and a “generator” (ℓi, ci, ri)ℓ−1
i=0 , where

mℓ is a sequence of monomials of length kℓ, ci is a sequence of monomials of length
ki, and ℓi, ri are monomials, in a recursive fashion:14

∀i ∈ [ℓ], mT
i−1 :=

'
ℓi−1 · mT

i ∥ cT
i−1 ∥ ri−1 · mT

i

.
.

12We could not do this in the worst-case to average-case reduction where v was fixed.
13That is, each entry of m is a monic multivariate Laurent monomial.
14In the recursive expression, “·” denotes the symbolic multiplication of monomials. For example,

X · (X2, X3) = (X3, X4).
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• For all i ∈ { 0, . . . , ℓ }, mi consists of distinct monomials.

We say that m is foldable if it is (k0, k1, . . . , kℓ)-foldable for some (k0, k1, . . . , kℓ). A
foldable polynomial is a polynomial whose supporting monomials can be arranged into a
foldable sequence of monomials.

Note that any sequence of monomials m of length n is trivially (0, . . . , 0, n)-foldable.
However, we are most interested in sequences which are (k0, k1, . . . , kℓ)-foldable for small
constants ki, e.g. ki ∈ { 0, 1, 2 }, for all i ∈ { 0, . . . , ℓ }. Below, we state some elementary
properties satisfied by foldable monomials.

Lemma 4.6.1. Let m of length n be (k0, . . . , kℓ)-foldable. Let k∗ := maxℓ
i=0 ki. It holds

that ℓ ≤ log n < ℓ + log 2 · k∗.

The proof of Lemma 4.6.1 is deferred to Appendix C.1. The following properties follow
immediately from the definition and are stated without proof.

Lemma 4.6.2 (Chaining/Decomposition). If m is foldable with seed and generator
(m′, g′) and m′ is foldable with seed and generator (m′′, g′′), then m is foldable with seed
and generator (m′′, g′′∥g′).

Lemma 4.6.3 (Closure under Hadamard Product). If m and m′ are both (k0, k1, . . . , kℓ)-
foldable with, where m and m′ are supported by disjoint sets of variables and have seeds
and generators

(s, (ℓi, ci, ri)ℓ−1
i=0) and (s′, (ℓ′

i, c′
i, r′

i)ℓ−1
i=0)

respectively, then the Hadamard product m ◦ m′ is also (k0, k1, . . . , kℓ)-foldable with seed
and generator

(s ◦ s′, (ℓi · ℓ′
i, ci ◦ c′

i, ri · r′
i)ℓ−1

i=0).

Next, we extend the definition of foldable monomials and polynomials to that of (block-
)foldable vectors and matrices. We then give examples of such objects. The proofs are
elementary and are deferred to Appendix C.1.

Definition 4.6.2 (Foldable Vectors and Matrices). A (row or column) vector a =
(a1, . . . , an) is said to be (k0, k1, . . . , kℓ)-foldable if there exists a (k0, k1, . . . , kℓ)-foldable
sequence of monomials m = (m1, . . . , mn) and a point v ∈ (R×)k such that ai = mi(v)
for all i ∈ [n], i.e. the i-th entry of a is obtained by evaluating the i-th monomial in m
at the point v. The point v is said to be the evaluation point of a. A matrix is said to be
foldable if every row of it is foldable with a common evaluation point v. A block-matrix
A = (A1, . . . , An) where ncol(Ai) = w for all i ∈ [n] is said to be block-foldable with
block-size w if, for all (i, j), the vector formed by taking the (i, j)-th entry of each of
(A1, . . . , An) is foldable.
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Lemma 4.6.4 (Power Sequence). For any n ∈ N, express n uniquely15 as n = ;ℓ
i=0 2i ·ki

with ki ∈ { 1, 2 } for i ∈ { 0, . . . , ℓ }. Then for any v ∈ R, the vector vT = (v, v2, . . . , vn).
is (k0, k1, . . . , kℓ)-foldable. Generalising, for w ∈ N, the vector vT = (v, v2, . . . , vwn) is
(k0, k1, . . . , kℓ)-block-foldable with block-size w.

Lemma 4.6.5 (Balanced Power Sequence). For any n ∈ N, express n uniquely as
n = ;ℓ

i=0 2i · ki with kℓ = 1 and ki ∈ { 0, 1 } for all i ∈ { 0, . . . , ℓ − 1 }. Then for any
v ∈ R, the following vector is (0, k0, k1, . . . , kℓ)-foldable:

vT = (v−n, . . . , v−2, v−1, v, v2, . . . , vn).

Lemma 4.6.6 (Compression Vector). For any integers ℓ ≥ 0, kℓ > 0 and k0, . . . , kℓ−1 ≥ 0,
let Xi,ji be independent variables for i ∈ { 0, . . . , ℓ } and ji ∈ { 0, . . . , ki }. The seed and
generator

((Xℓ,1, . . . , Xℓ,kℓ
), (1, (Xi,1, . . . , Xi,ki

), Xi,0)ℓ−1
i=0)

generate a (k0, k1, . . . , kℓ)-foldable sequence of monomials m. Furthermore, let x =
(xi,j)ℓ,ki

i=0,j=1 be a vector over R with ∥x∥ ≤ α. Let h := m(x) be the foldable vector
obtained by evaluating m at x. It holds that ∥h∥ ≤ αℓ+1 · γℓ

R.

4.7 Folding Protocols
We state two folding protocols Πfold

0 and Πfold
1 for bounded-norm satisfiability of (struc-

tured) linear relations which respect the foldable structures (Section 4.6) of the ma-
trices and vectors defining the relations. Both protocols have trivial (hence transpar-
ent) setup and trivial pre-verification, i.e. crs = Πfold

b .Setup(1λ, pp) = (1λ, pp) and
crsstmtoff = Πfold

b .PreVerify(crs, stmtoff) = (crs, stmt). We detail below the prove-verify
protocols

Πfold
b .⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩.

4.7.1 Type-0 Linear Relations
Define the relation Ψfold

0 = Ψfold
0 [R, h0, h1, w, n, q0, q1, α]:

Ψfold
0 :=

����(pp, ((A, B, C, y), z), x) :

�
A
B

 
↘n

· x = y mod q0,

C · x = z mod q1,

and ∥x∥ ≤ α,

����
where R is a prime-power ring for a prime ≥ 5, A, B ∈ Rh0×w

q0 , C = (C1, . . . , Cn) ∈
Rh1×wn

q1 , y ∈ Rh0·(n+1)
q0 , z ∈ Rh1

q1 , and x ∈ Rwn. Note that the linear constraints consist
15Suppose the expression is not unique, let n =

;ℓ

i=0 2i · ki =
;ℓ

i=0 2i · k′
i with ki, k′

i ∈ { 1, 2 }. Let
di = ki − k′

i ∈ { −1, 0, 1 }. We have
;ℓ

i=0 2i · di = 0, which means that d0 = 0 or else the LHS is odd
while the RHS is even. Dividing both sides by 2, we get

;ℓ−1
i=0 2i · di+1 = 0. By the same argument, we

have d1 = 0. Repeating this for all i yields di = 0 for all i ∈ { 0, . . . , ℓ }, a contradiction.
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of a sparse structured part represented by a block-bidiagonal matrix and a dense part.
By default, we suppress all parameters of Ψfold

0 except those that we highlight. Note
that the above constraints are independent of pp, therefore Ψfold

0 is compatible with any
parameter generator Gen. We describe a protocol Πfold

0 which is complete for Ψfold
0 [α]

and knowledge sound for Ψfold
0 [α∗] for some α∗ > α.

Construction. The protocol Πfold
0 is essentially a merge between (the lattice ana-

logue of) Pietrzak’s folding protocol [Pie19] and the lattice-based Bulletproofs proto-
col [BLNS20]. Consider n > 2 and let n′ = ⌊(n − 1)/2⌋. Our protocol hinges on the
following observation: Depending on whether n is odd or even, we have

�
A
B

 
↘n

=

,,,,,,,
A
B

�
A
B

 
↘n′ �

A
B

 
↘n′

3333333
or

,,,,,,,,,,
A
B A

B

�
A
B

 
↘n′

�
A
B

 
↘n′

3333333333
.

The protocol Πfold
0 .⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩ consists of ℓ + 1 rounds

and makes use of the subtractive set S ⊂ R× mentioned in Section 4.3.1. Denote
(C(0), x(0), y(0), z(0), α(0)) := (C, x, y, z, α). Express n uniquely as n = ;ℓ

j=0 2j · kj where
kj ∈ { 1, 2 }. Note that y consists of n′ := n + 1 = ;ℓ−1

j=0 2j · (kj − 1) + 2ℓ · (kℓ + 1) blocks.
For i ∈ { 0, . . . , ℓ }, define ni := ;ℓ

j=i 2j−i ·kj and n′
i := ;ℓ−1

j=i 2j−i · (kj −1)+2ℓ−i · (kℓ +1).
Then, for i < ℓ, the i-th round of the protocol is as follows:

• Parse (C(i), x(i), y(i)) as

(C(i)
L , C(i)

c , C(i)
R ), (x(i)

L , x(i)
c , x(i)

R ), and (y(i)
L , y(i)

c , y(i)
R )

respectively where ncol(C(i)
L ) = ncol(C(i)

R ) = nrow(x(i)
L ) = nrow(x(i)

R ) = ni · w and
nrow(y(i)

L ) = nrow(y(i)
R ) = n′

i · h. Note that nrow(x(i)
c ) = ki and nrow(y(i)

c ) = ki − 1,
meaning that y(i)

c is empty when ki = 1.

• P sends

x(i)
c , z(i)

LR := C(i)
L · x(i)

R mod q1, and z(i)
RL := C(i)

R · x(i)
L mod q1.

• V checks that
???x(i)

c

??? ≤ α(i). If ki = 2, V further checks that
'
B A

.
· x(i)

c =
y(i)

c mod q0. If any of these checks fails, V aborts.

• V samples ri←S and sends ri to P.
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• P computes the compressed witness x(i+1) := x(i)
L + x(i)

R · ri.

• P and V compute the compressed statement

C(i+1) := C(i)
L + C(i)

R · r−1
i mod q1

y(i+1) := y(i)
L + y(i)

R · ri −
,B · ri

0
A

3 · x(i)
c mod q0

z(i+1) := z(i) − C(i)
c · x(i)

c + z(i)
RL · r−1

i + z(i)
LR · ri mod q1

α(i+1) := 2 · α(i) · γR

In the ℓ-th (i.e. final) round, P sends x(ℓ) and V checks that�
A
B

 
↘kℓ

· x(ℓ) = y(ℓ) mod q0,

C(ℓ) · x(ℓ) = z(ℓ) mod q1,

and
???x(ℓ)

??? ≤ α(ℓ) = (2γR)ℓ · α.

Analysis. We show that Πfold
0 is complete and (unconditionally) special-sound. We

further show that Πfold
0 has short proofs, quasi-linear-time prover, and polylogarithmic-

time verifier. The proofs of the above claims are deferred to Appendix C.3.

Theorem 4.7.1. Πfold
0 is complete for Ψfold

0 [α].

Theorem 4.7.2. For α∗ ≥ (8γ4
R)log n · α, Πfold

0 is (3, . . . , 3)-special sound for Ψfold
0 [α∗].

For the purpose of estimating the complexities of Πfold
0 , let h0, h1, w, γR = poly(λ) be fixed

polynomials in λ. Pick α∗ to be tight in Theorem 4.7.2 and set q0, q1 = Oλ(α∗) = λO(log n).
The following theorem states the complexities of Πfold

0 with the above parameter choices.

Theorem 4.7.3. Let h0, h1, w, γR = poly(λ) be fixed polynomials in λ, and q0, q1 =
λO(log n). Πfold

0 has 1. prover time Oλ(n · log2 n), and 2. proof size Oλ(log2 n). If C is
(k0, . . . , kℓ)-block-foldable with block-size w and y is (k0 − 1, . . . , kℓ−1 − 1, kℓ + 1)-block-
foldable with block-size h0, then the verifier time is Oλ(log3 n).

4.7.2 Type-1 Linear Relations
Define the relation Ψfold

1 = Ψfold
1 [R, h, w, n, q, α]:

Ψfold
1 :=

�
(pp, (A, y), x) : A · x = y mod q and ∥x∥ ≤ α

�
where R is a prime-power ring for a prime ≥ 5, A = (A1, . . . , An), Ai ∈ Rh×w

q , y ∈ Rh
q ,

and x ∈ Rwn. By default, we suppress all parameters of Ψfold
1 except those that we

highlight. Note that the above constraints are independent of pp, therefore Ψfold
1 is

compatible with any parameter generator Gen. We describe a protocol Πfold
1 which is

complete for Ψfold
1 [α] and knowledge sound for Ψfold

1 [α∗] for some α∗ > α.
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Construction. We construct in Appendix C.2 a protocol Πfold
1 which can be seen as a

simplification of Πfold
0 by removing components responsible for the structured part of

the relation.

Analysis. We state the formal claims about the completeness, special-soundness, and ef-
ficiency of Πfold

1 . The proofs of these claims are almost identical to those of Theorems 4.7.1
to 4.7.3 and are therefore omitted.

Theorem 4.7.4. Πfold
1 is complete for Ψfold

1 [α].

Theorem 4.7.5. For α∗ ≥ (8γ4
R)log n · α, Πfold

1 is (3, . . . , 3)-special sound for Ψfold
1 [α∗].

Theorem 4.7.6. Let h, w = poly(λ) and q = λO(log n). Πfold
1 has 1. prover time

Oλ(n · log2 n), and 2. proof size Oλ(log2 n). If A is (k0, . . . , kℓ)-block-foldable with block-
size w, then the verifier time is Oλ(log3 n).

4.8 Knowledge-based Protocols
Mirroring the folding protocols constructed in Section 4.7, we present below two argument
systems Πknow

0 and Πknow
1 for unstructured linear relations based the (knowledge-)k-R-ISIS

assumptions. Different from existing protocols based on the same family of assumptions
and construction template, the constructions below feature quasi-linear-time provers.

4.8.1 Linear Relations
Define the relation Ψ0 = Ψ0[R, s, t, q0, q1, q3, α]:

Ψ0 :=

����((v, h), ((M, y), (cx, c̄x)), x) :
M · x = y mod q0,

vT · x = cx mod q3,

(v̄ ◦ h)T · x = c̄x mod q3,

∥x∥ ≤ α

����
where M ∈ Rt×s

q3 , y ∈ Rt
q3 , cx, c̄x ∈ Rq3 , x ∈ Rs, v = (v, v2, . . . , vs), and v̄ =

(v−1, v−2, . . . , v−s). Accompanying the relation, we define a parameter generator Genunstr

which samples v←R×
q3 and h←Rs

q1 and outputs (v, h). Note that the compression vector
h is unstructured. By default, we suppress all parameters of Ψ0 except those that we
highlight. We describe a protocol Πknow

0 which is complete for Ψ0[α] and knowledge sound
for Ψ0[α∗] for some α∗ > α.

Construction. Let R, s, t, η, m, (qi)3
i=0, β, (δi)3

i=0, T depend on λ. Using the lattice
trapdoor algorithms (section 4.3.2) parametrised by (η, m, q3, β), in fig. 4.1 we give a
formal description of Πknow

0 , which is based on the construction template of functional
commitments in [ACL+22]. In particular, in Πknow

0 the prover proves to the verifier that
they know witnesses to the following relations(

vT

(v̄ ◦ h)T

/
· x =

(
cx
c̄x

/
mod q3, and ∥x∥ ≤ α, (4.3)
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vT
t · r = cr, with r ∈ Rt, (4.4)

and
M · x = y mod q0 ∥x∥ ≤ α. (4.5)

The prover will prove that cx, c̄x, and cr are well-formed by proving knowledge of a short
opening of the commitments cx, c̄x, and cr with respect to the commitment key (vi)i∈[s],
(v−i)i∈[s], and (vi)i∈[t] respectively. To prove consistency between cx and c̄x, the prover
proves knowledge of a short opening of the commitment c̄I · cx − c̄x · cI, where the values
c̄I and cI can be precomputed by the verifier. This is with respect to the commitment
key (vk)k∈±[max{s,t}]. Finally, to prove eq. (4.5), the prover proves knowledge of a short
opening of the commitment c̄M · cx + c̄q0 · cr − ĉy, where the values c̄M, c̄q0 , and ĉy
can be precomputed by the verifier. This is again with respect to the commitment key
(vk)k∈±[max{s,t}].

We highlight a few crucial differences with [ACL+22]:

1. The witness x is committed using a univariate vSIS commitment, i.e. the commit-
ment key is v = (v, v2, . . . , vs), while in [ACL+22] the commitment is an s-variate
vSIS commitment. The fact that | { vi−j : i, j ∈ [s] } | has cardinality O(s) and
that the prover computation consists of mainly Toeplitz-vector multiplications are
crucial for obtaining a quasi-linear-time prover.

2. We support proving relations modulo q0 natively16 by introducing the auxiliary
witness r satisfying M · x + q0 · r = y. In [ACL+22], modular arithmetic is handled
via generic and expensive bit-decomposition techniques.

3. To prove that values committed in multiple commitments, i.e. cx, c̄x, and cr,
satisfy some relation, we adapt techniques developed for the recent construction of
chainable functional commitments [BCFL22].

Analysis. We show that Πknow
0 is correct and knowledge-sound under (knowledge-

)k-R-ISIS and R-SIS assumptions. We further show that Πknow
0 has short CRS and

proofs, quasi-linear-time prover and preprocessing, and polylogarithmic-time verifier after
preprocessing. The proofs are deferred to Appendix C.5.

Theorem 4.8.1 (Completeness). Let (η, m, q3, β) be such that the properties of lattice
trapdoor algorithms described in Section 4.3.2 hold. For

δ0 ≥ (s + t)4 · q0 · q1 · q2 · α · β · γ3
R, δ1 ≥ s · α · β · γR,

δ2 ≥ s · q1 · α · β · γR, and δ3 ≥ s2 · α · β · γ2
R,

Πknow
0 in Figure 4.1 is complete for Ψ0[α].

16Relations without modular reduction are captured by setting q0 = 0.
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Setup(1λ, pp)

(v, h) ← pp
f0←Rt

q2 , f1←Rs
q2

I0 := ±[max { s, t }], I1 := [s], I2 := −[s], I3 := [t]
for i ∈ {0, 1, 2, 3} do

(Di, tdi) ← TrapGen(1λ)
ti←T
ui,j ← SampPre(tdi, ti · vj), ∀j ∈ Ii

crs :=
*

(Di, ti, (ui,j)j∈Ii
)3
i=0,

v h f0, f1

1
return crs

Prove(crs, ((M, y), (cx, c̄x)), x)

vt := (v, v2, . . . , vt)
cr := vT

t · r mod q3

û0,j =
:

k∈[n],j ̸=k

u0,k−j · xk, ∀j ∈ [n]

uM :=
:

i∈[t],j∈[s]

fi · Mi,j · û0,j

uM :=
:

i∈[t],j∈[s]

fi · Mi,j ·
:

k∈[s],k ̸=j

u0,k−j · xk

ū :=
:

i,j∈[s],i ̸=j

u0,i−j · hj · (lj · xi − li · xj)

u0,0 :=
:

i∈[s],k∈[t]

f0,k · Mk,i ·
:

j∈[s]:j ̸=i

u0,j−i · xj

+
:

i,k∈[t]

f0,k · q0 ·
:

j∈[t]:j ̸=i

u0,j−i · rj

u0,1 :=
:

i,j∈[s]:i ̸=j

u0,i−j · hj · (f1,j · xi − f1,i · xj)

u0,1 :=
:
j∈[s]

hj · f1,j ·
:

i∈[s]:i ̸=j

u0,i−j · xi

−
:
i∈[s]

f1,i ·
:

j∈[s]:j ̸=i

u0,i−j · hj · xj

u0,1 :=
:

i,j∈[s]:i ̸=j

li(hi · u0,j−i − vi−j · hj) · xj

u0 := u0,0 + u0,1

u1 :=
:
j∈[s]

u1,j · xj

u2 :=
:
j∈[s]

u2,−j · hj · xj

u3 :=
:
j∈[t]

u3,j · rj

return π := (cx, c̄x, cr, u0, u1, u2, u3)

PreVerify(crs, (M, y))

v := (v, v2, . . . , vs), v̄ := (v−1, v−2, . . . , v−s)
v̄t := (v−1, v−2, . . . , v−t)
c̄M := f T

0 · M · v̄ mod q3

c̄q0 := f T
0 · q0 · v̄t mod q3

c̄I := f T
1 · I · (v̄ ◦ h) = f T

1 · (v̄ ◦ h) mod q3

cI := vT · I · f1 = vT · f1 mod q3

ĉy := f T
0 · y mod q3

ppM,y,cx,c̄x :=
)
(Di, ti)3

i=0, c̄M, c̄q0 , c̄I, cI, ĉy
0

return ppM,y

Verify(crsM,y, (cx, c̄x), π)

c0,0 := c̄M · cx + c̄q0 · cr − ĉy mod q3

c0,1 := c̄I · cx − c̄x · cI mod q3

c0 := c0,0 + c0,1 mod q3

c1 := cx

c2 := c̄x

c3 := cr

for i ∈ {0, 1, 2, 3} do

bi := (Di · ui
?≡ ti · ci mod q3 ∧ ∥ui∥ ≤ δi)

return b0 ∧ b1 ∧ b2 ∧ b3

Figure 4.1: Our argument system Πknow
0 .
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Theorem 4.8.2 (Knowledge Soundness). Let (η, m, q3, β) be such that the proper-
ties of lattice trapdoor algorithms described in Section 4.3.2 hold. Let w = 1, G0 =
{ Xi : i ∈ ±[max { s, t }] }, G1 = { Xi : i ∈ [s] }, G2 = { Xi : i ∈ −[s] }, and G3 = { Xi : i ∈ [t] }
be sets of monomials in X. Let D denote the distribution SampD(1λ). For i ∈
{ 1, 2, 3 }, let Zi(1λ) be almost identical to Setup(1λ, Genunstr(1λ)), except that it inputs
(Di, ti, v, { ui,j }j∈Ii

) and generates the rest of crs. Let

α∗
i ≥ δi, ∀i ∈ [3], α∗ := max { α∗

1, α∗
2, α∗

3 } , q2 ≥ β∗
q2 ≥ s · q0 · q1 · α∗ · γR,

q3 ≥ β∗
q3 ≥ max { 2δ0, (s + t)3 · q0 · q1 · q2 · α∗ · β · γ3

R } .

Πknow
0 in Figure 4.1 is knowledge-sound for Ψ0[α∗

1] if the following assumptions hold:

Assumption 0. k-R-ISISR,η,m,w,q3,β,β∗
q3 ,G0,g∗=1,D,T ,

Assumption 1. knowledge-k-R-ISISR,η,m,w,q3,α∗
1,β,δ1,G1,D,T ,Z1,

Assumption 2. knowledge-k-R-ISISR,η,m,w,q3,α∗
2,β,δ2,G2,D,T ,Z2,

Assumption 3. knowledge-k-R-ISISR,η,m,w,q3,α∗
3,β,δ3,G3,D,T ,Z3, and

Assumption 4. R-SISR,s+t,q2,β∗
q2

.

For the purpose of estimating complexities of the scheme, we assume that the assumptions
in Theorem 4.8.2 hold for moduli which are a fixed polynomial factor larger than their
norm bounds, e.g. q2 ≥ β∗

q2 ·poly(λ) for the R-SISR,s+t,q2,β∗
q2

assumption. For the k-R-ISIS
assumptions, we assume that they hold for m = O(η · log q).

Let η, α, β, γR = poly(λ) be fixed polynomials in λ. For our application in Section 4.9,
we want q1 = O(s2 · α2) = Oλ(s2). Pick δ1, δ2, δ3, α∗

1, α∗
2, α∗

3 so that they match their
lower bounds given in Theorem 4.8.1 and Theorem 4.8.2 respectively. Substituting q1,
we have α∗

1 = δ1 = Oλ(s), α∗
2 = δ2 = Oλ(s3), and α∗

3 = δ3 = Oλ(s2). We therefore have
α∗ = Oλ(s3). Pick q0 = Oλ(α∗

1) = Oλ(s). Pick β∗
q2 so that it matches its lower bound

in Theorem 4.8.2, and set q2 = Oλ(β∗
q2). Substituting (q0, q1, α∗), we have q2 = Oλ(s7).

Pick δ0 so that it matches its lower bound given in Theorem 4.8.1. Substituting (q0, q1, q2),
we have δ0 = Oλ((s + t)14). Pick β∗

q3 so that it matches its lower bound in Theorem 4.8.2,
and set q3 = Oλ(β∗

q3). Substituting (q0, q1, q2, α∗), we have q3 = Oλ((s + t)16). Let
n = max{|M|, s + t}, where |M| denote the number of non-zero entries in M. Pick
m = O(η · log q) = Oλ(log n).

The following theorem states the complexities of the scheme with the above parameter
choices.

Theorem 4.8.3 (Efficiency). Let n = max{|M|, s + t}, where |M| denote the num-
ber of non-zero entries in M, η, α, β, γR = poly(λ) be fixed polynomials in λ, and
(m, q0, q1, q2, q3) = (log n, s, s2, s7, (s + t)16) · poly(λ). Then Πfold

0 has 1. common ref-
erence string size Oλ(n · log n), 2. proof size Oλ(log2 n), 3. prover time Oλ(n · log3 n),
4. preprocessing time Oλ(n · log2 n), and 5. verifier time Oλ(log3 n) after preprocessing.
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4.8.2 Well-formedness of vSIS Commitments
Define the relation Ψ1 = Ψ1[R, s, q1, q3, α] equipped with the same parameter generator
Genunstr as Ψ0:

Ψ1 :=
�

((v, h), (ϵ, cz), z) :
'
v̄T vT

.
· z = cz mod q3 ∧ ∥z∥ ≤ α

�
where cz ∈ Rq3 , z ∈ R2s, v = (v, v2, . . . , vs), and v̄ = (v−1, v−2, . . . , v−s). By default, we
suppress all parameters of Ψ1 except those that we highlight. We describe a protocol
Πknow

1 which is complete for Ψ1[α] and knowledge sound for Ψ1[α∗] for some α∗ > α.

Construction. We construct in Appendix C.4 a protocol Πknow
1 for the relation Ψ1.

The proof for z is simply D−1(t · cz) with (D, t) given in crs.

Analysis. Πknow
1 is correct and knowledge-sound under the knowledge-k-R-ISIS assump-

tion. It has short CRS and proofs, quasi-linear-time prover, and polylogarithmic-time
verifier. Below, we state these claims formally and omit the (trivial) proofs.

Theorem 4.8.4 (Completeness). Let (η, m, q3, β) be such that the properties of lattice
trapdoor algorithms described in Section 4.3.2 hold. For δ ≥ 2s · α · β · γR Πknow

1 in
Figure 4.1 is complete for Ψ1[α].

Theorem 4.8.5 (Knowledge Soundness). Let (η, m, q3, β) be such that the properties
of lattice trapdoor algorithms described in Section 4.3.2 hold, w = 1, α∗ ≥ δ, G =
{ Xi : i ∈ ±[s] } be a set of monomials in X, D denote the distribution SampD(1λ), and
Z be trivial (i.e. it outputs ⊥). Πknow

1 in Figure 4.1 is knowledge-sound for Ψ0[α∗] if the
knowledge-k-R-ISISR,η,m,w,q3,α∗,β,δ,G,D,T ,Z assumption holds.

Theorem 4.8.6 (Efficiency). Let parameters be as in Theorem 4.8.3. Πfold
1 has 1. com-

mon reference string size Oλ(n·log n), 2. proof size Oλ(log2 n), 3. prover time Oλ(n·log2 n),
4. trivial preprocessing, and 5. verifier time Oλ(log3 n).

4.9 Applications
We show how to compose arguments obtain in Sections 4.7 and 4.8 to build efficient
arguments for more complex relations. In particular, we show how to construct argu-
ments for the binary-satisfiability of (structured) linear equations and rank-1 constraint
satisfiability (R1CS).

4.9.1 Proving Binary-Satisfiability of (Structured) Linear Equations
Recall that in Section 4.7 we built succinct arguments Πfold

0 and Πfold
1 for the relations

Ψfold
0 and Ψfold

1 respectively, while in Section 4.8 we constructed Πknow
0 and Πknow

1 for
the relations Ψ0 and Ψ1 respectively. By inspection, we see that Ψ1 is a special case of
Ψfold

1 , and thus Πfold
1 can be specialised to give a succinct argument for Ψ1. Similarly,
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Setup(1λ)

pp ← Gen(1λ)
crs′ ← Π′.Setup(1λ, pp)
crs′′ ← Π′′.Setup(1λ, pp)
return crs := (crs′, crs′′)

PreVerify(crs, (M, y))

crs′
(M,y) ← Π′.PreVerify(crs′, (M, y))

crs′′
ϵ ← Π′′.PreVerify(crs′′, ϵ)

return crs(M,y) := (crs′
(M,y), crs′′

ϵ )

Figure 4.2: Setup and PreVerify algorithms of the argument system Πbin-sat.

Πfold
0 can be specialised as to give a succinct argument for the following special case of

Ψ0 which we denote by Ψstr
0 = Ψstr

0 [R, h, w, n, q0, q1, q3, α], where M is restricted to be

of the form M =
�
A
B

 
↘n

succinctly represented by some A, B ∈ Rh×w
q0 .

Accompanying Ψstr
0 , we define the parameter generator Genstr which samples (v, h)

which are (k0, . . . , kℓ)-block-foldable with block-size w where n = ;ℓ
i=0 ki for ki ∈ { 1, 2 }.

More concretely, Genstr does the following: 1. Sample v←R×
q and h̃←Rñ

q1 . 2. Set
v := (v, . . . , vs) mod q3. 3. Let ñ := ;ℓ−1

i=0(ki + 1) + kℓ. 4. Generate w copies of ñ-variate
monomial sequences m1, . . . , mw according to Lemma 4.6.6, and concatenate them in an
interleaved manner into a monomial sequence m = (m1,1, m2,1, . . . , mw,1, m1,2, . . . , mw,n).
5. Evaluate m at h̃ to produce h = m(h̃).

Equipped with succinct arguments for Ψ0 (or Ψstr
0 ) and Ψ1, we show how to construct a

succinct argument Πbin-sat for the binary-satisfiability of system of (structured) linear
equations mod p. Formally, define the relation Ψbin-sat = Ψbin-sat[R, s, t, p]:

Ψbin-sat :=
�

(((M, y), ϵ), x) : M · x = y mod q0 ∧ x ∈ {0, 1}s
�

,

where M ∈ Rt×s
q0 , y ∈ Rt

q0 , and x ∈ Rs, and the corresponding structured variant
Ψstr-bin-sat = Ψstr-bin-sat[R, h, w, n, p] where M is restricted to be of the form M =�

A
B

 
↘n

succinctly represented by some A, B ∈ Rh×w
q0 .

Let q1, q3 depend on λ. Let Π′ and Π′′ be argument systems for Ψ0 (or Ψstr
0 ) and

Ψ1 respectively, and let Gen = Genunstr (or Genstr) be the accompanying parameter
generator. The algorithms Πbin-sat.(Setup, PreVerify) are described in Figure 4.2. The
protocol Πbin-sat.

�
Prove(crs, stmt, wit), Verify(crs(M,y), ϵ)

�
is below:

• Prove computes

1. cx := ⟨v, x⟩ mod q3,
2. c̄x := ⟨v̄ ◦ h, x⟩ mod q3, and
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3. z :=
';

0≤i,j≤s:i−j=k hj · xj · (xi − 1)
.

−s≤k≤s
.

• Prove sends (cx, c̄x) to Verify.

• Prove and Verify compute:

– cz := c̄x · (cx − ⟨v, 1⟩) mod q3.
– stmt′ := ((M, y), (cx, c̄x)), stmt′′ := (ϵ, cz).
– (tx′, b′) ← Π′.

�
Prove(crs′, stmt′, x), Verify(crs′

(M,y), (cx, c̄x))
�
.

– (tx′′, b′′) ← Π′′. ⟨Prove(crs′′, stmt′′, z), Verify(crs′′
ϵ , cz)⟩.

• Output (tx, b), where tx = (tx′, tx′′) and b = b′ ∧ b′′.

We show that Πbin-sat is complete and knowledge-sound. We further show that Πbin-sat

has short proofs, quasi-linear-time prover, and polylogarithmic-time verifier (after pre-
processing in the unstructured case). All proofs are deferred to Appendix C.6.

Theorem 4.9.1. If Gen = Genstr (resp. Genunstr), Π′ is complete for Ψstr
0 [α = 1], and

Π′′ is complete for Ψ1[α = s · (q1/2)ℓ+1 · γℓ
R] (resp. Ψ1[α = s · q1/2]) then Πbin-sat is

complete for Ψstr-bin-sat (resp. Ψ-bin-sat).

Theorem 4.9.2. Let Gen = Genstr (resp. Genunstr). Let G := { Xj : −s ≤ j ≤ s }
and Gh be the set of monomials generated as in Genstr. Let q1, q3, α′, α′′, βq1 , βq3 be
such that 1. βq1 ≥ (α′ + 1)2 · γR, 2. βq3 ≥ α′′ + s · (q1/2)ℓ+1 · (α′ + 1)2 · γℓ+2

R (resp.
α′′ + s · q1/2 · (α′ + 1)2 · γ2

R), 3. Π′ is knowledge-sound for Ψstr
0 [α′] (resp. Ψunstr

0 [α′]),
and 4. Π′′ is knowledge-sound for Ψ1[α′′]. Πbin-sat is knowledge-sound for Ψstr-bin-sat

(resp. Ψbin-sat), if the following assumptions hold:

Assumption 0. vSISR,Gh,1,q1,βq1
(resp. R-SISR,s,q1,βq1

), and

Assumption 1. vSISR,G,1,q3,βq3
.

Below, we estimate the complexities of Πbin-sat for parameters chosen in such a way that
completeness and knowledge-soundness (are believed to) hold.

Theorem 4.9.3. In the structured setting, let Gen = Genstr, Π′ = Πfold
0 (specialised for

Ψstr
0 ), Π′′ = Πfold

1 (specialised for Ψ1), γR, α′, α′′, h, w = poly(λ) be fixed polynomials
in λ, and q0, q1, q3 = λO(log n). Πbin-sat has 1. common reference string size Oλ(log2 n),
2. prover time Oλ(n · log3 n), and 3. proof size Oλ(log2 n). If y is (k0 − 1, . . . , kℓ−1 −
1, kℓ + 1)-block-foldable with block-size h, then the verifier time is Oλ(log3 n).
In the unstructured setting, let Gen = Genunstr, Π′ = Πknow

0 , Π′′ = Πknow
1 , γR = poly(λ) be

a fixed polynomial in λ, n = max{|M|, s + t} where |M| denote the number of non-zero
entries in M, (q0, q1, q3) = (s, s2, (s + t)16) · poly(λ) and other internal parameters of
Πknow

0 and Πknow
1 be chosen as in Theorems 4.8.3 and 4.8.6. Πbin-sat has 1. common

reference string size Oλ(n · log n), 2. proof size Oλ(log2 n), 3. prover time Oλ(n · log3 n),
4. preprocessing time Oλ(n · log2 n), and 5. verifier time Oλ(log3 n) after preprocessing.
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4. Lattice-Based Succinct Arguments from Vanishing Polynomials

4.9.2 Rank-1 Constraint Systems
We show how to use the same ideas to construct an argument of knowledge, ΠR1CS, for
the satisfiability of Rank-1 Constraint Systems. Formally, define the relation ΨR1CS =
ΨR1CS[R, t, s1, s2, q0, α]:

ΨR1CS :=
�

((x1, E, F, G), x2) : (E · x) ◦ (F · x) = G · x mod q0 ∧ ∥x∥ ≤ α
�

,

where x := (x1, x2) ∈ Rs1 × Rs2 , E, F, G ∈ Rt×s
q0 , and s = s1 + s2. If we let e := E · x,

f := F · x, and g := G · x, the above equation can be rewritten as

e ◦ f + q0 · r = g,

for some r ∈ Rt. For readability, we informally describe here how the argument system
works. A formal description of ΠR1CS can be found in Figure C.2 in Appendix C.7.

In ΠR1CS, the prover proves to the verifier that they know witnesses to the following
relations

vT
2 · x2 = cx2 mod q3, and ∥x2∥ ≤ α, (4.6)

where v2 = (vs1+1, . . . , vs),,(v̄t ◦ h)T · E
vT

t · F
vT

t · G

3 ·
(

x1
x2

/
=

,c̄e
cf
cg

3 mod q3, and
???'

x2
.??? ≤ α, (4.7)

where h ∈ Rt
q1 , and '

v̄T||vT
.

· z = cz mod q3, and ∥z∥ ≤ α′, (4.8)

where z = (zk)k∈±[s], zk = ;
i,j,i−j=k hj ·ej ·fi+q0·hj ·ri−gi·hj , cz = c̄e·cf +q0·cr·c̄I−cg ·c̄I,

and cr = vT
t · r.

The prover will prove that cx2 is well-formed, i.e, relation in Equation (4.6), by proving
knowledge of a short opening of the commitment cx2 with respect to the commitment
key (vi)i∈[s1+1;s]. To prove consistency between cx2 and c̄e, the prover proves knowledge
of a short opening of the commitment

c̄E·cx − cI · c̄e

where cx := cx1 + cx2 , and the values cx1 := vT
1 · x1, c̄E, and cI can be precomputed

by the verifier. This with respect to the commitment key (vi−j)i−j=k,k∈±[s]. Proofs of
consistency between cx2 and cf , cx2 and cg are obtained similarly. This suffices to prove
the relation in Equation (4.7).

Finally, to prove that e ◦ f = g mod q0, i.e., relation in Equation (4.8), the prover will
prove knowledge of a short opening of the commitment

cz = c̄e · cf + q0 · c̄I · cr − cg · c̄I

again with respect to the commitment key (vi−j)i−j=k,k∈±[s].
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4.9. Applications

Analysis. In Appendix C.7 we show that ΠR1CS is complete and knowledge-sound under
(knowledge-)k-R-ISIS and R-SIS assumptions. We further show that ΠR1CS has short
CRS and proofs, quasi-linear-time prover and preprocessing, and polylogarithmic-time
verifier after preprocessing. For readability, we defer formal claims and relative proofs to
Appendix C.7.2, and Appendix C.7.3.
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APPENDIX A
Appendix to Chapter 2

A.1 Omitted Definitions
A.1.1 QROM Definitions and Lemmas
We recall various lemmas that we require for the QROM proofs. While in the ROM,
the simulator always learns x and H(x) if the adversary tries to learn any information
on H(x), the situation in the QROM is not as simple. Measuring or recording queries
might collapse the adversary’s quantum state and change its behavior. The simulator
can however learn queries under certain conditions using the “one-way to hiding” (O2H)
technique [Unr15].

In the following we consider two quantum-accessible oracles G, H : X → Y , but they do
not have to be random oracles. Let’s assume that G and H only differ in some small set
S ⊂ X, i.e. G|X\S = H|X\S . Now consider an algorithm A that makes at most q queries
to G or H. Since queries can be made in parallel, suppose that the maximum number of
sequential invocations of the oracles, the depth, is at most d ≤ q. Now, for some input z,
the O2H technique gives a way for the simulator to find some x ∈ S if AG(z) behaves
differently from AH(z).

The first lemma is the original one-way to hiding lemma which first appeared in [Unr15].
We use the formulation from [BHH+19], i.e. by conditioning the probabilities on a
classical event Ev.1

Lemma A.1.1 (Thm. 3 [AHU19]). Let G, H : X → Y be random functions, let z be a
random value, and let S ⊂ X be a random set such that G|X\S = H|X\S. Furthermore,
let AH be a quantum oracle algorithm which queries H with depth at most d. Let Ev be
an arbitrary classical event. Define an oracle algorithm BH(z) as follows: pick i←[d]

1Throughout this section (G, H, S, z) may have an arbitrary joint distribution.
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and run AH(z) until just before its i-th round of queries of H. Measure all query input
registers in the computational basis, and output the set T of measurement outcomes.
Define

Pleft = Pr[AH(z) : Ev],
Pright = Pr[AG(z) : Ev],
Pguess = Pr[T ← BH(z) : S ∩ T ̸= ∅].

Then

|Pleft − Pright| ≤ 2d
7

Pguess, and
@@@7Pleft −

7
Pright

@@@ ≤ 2d
7

Pguess.

The same results holds with BG(z) in the definition of Pguess.

Next up, we move on to the semi-classical O2H. For that we need punctured ora-
cles [AHU19] which measure whether the input is in a set S.

Definition A.1.1. Let H : X → Y be any function, and let S ⊂ X be a set. The oracle
H \ S takes as input a value x. It first computes whether x ∈ S into an auxiliary qubit p
and measures p. Then it runs H(x) and returns the result. Let Find be the event that
any of the measurements of p returns 1.

We recall the “puncturing is effective” lemma, the “semi-classical one-way to hiding”
lemma, as well as the “search in the semi-classical oracle” lemma.

Lemma A.1.2 (Lemma 1 [AHU19]). Let G, H : X → Y be random functions, let z be a
random value, and let S ⊂ X be a random set such that G|X\S = H|X\S. Furthermore,
let AH be a quantum oracle algorithm. Let Ev be an arbitrary classical event. Then

Pr[AH\S(z) : Ev ∧ ¬Find] = Pr[AG\S(z) : Ev ∧ ¬Find].

Lemma A.1.3 (Thm. 1 [AHU19]). Let G, H : X → Y be random functions, let z be a
random value, and let S ⊂ X be a random set such that G|X\S = H|X\S. Furthermore,
let AH be a quantum oracle algorithm which queries H with depth at most d. Let Ev be
an arbitrary classical event. Define

Pleft = Pr[AH(z) : Ev],
Pright = Pr[AG(z) : Ev],
Pfind = Pr[AH\S(z) : Find] = Pr[AG\S(z) : Find].

Then

|Pleft − Pright| ≤ 2
7

dPfind and
@@@7Pleft −

7
Pright

@@@ ≤ 2
7

dPfind.
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The theorem also holds with bound
7

(d + 1)Pfind for the following alternative definitions
of Pright:

Pright = Pr[AH\S(z) : Ev],
Pright = Pr[AH\S(z) : Ev ∧ ¬Find] = Pr[AG\S(z) : Ev ∧ ¬Find],
Pright = Pr[advAH\S(z) : Ev ∨ Find] = Pr[advAG\S(z) : Ev ∨ Find].

Lemma A.1.4 (Thm. 2, Cor. 1 [AHU19]). Let H : X → Y be a random function, let
z be a random value, and let S ⊂ X be a random set. Let AH be a quantum oracle
algorithm which queries H at most q times with depth at most d. Let BH(z) and Pguess
be defined as in Lemma A.1.1. Then

Pr[AH\S(z) : Find] ≤ 4dPguess.

In particular, if for each x ∈ X, Pr[x ∈ S] ≤ ε (conditioned on z, on other oracles A has
access to, and on other outputs of H), then

Pr[AH\S(z) : Find] ≤ 4qε.

A.2 Omitted Proofs
A.2.1 Proof of Theorem 2.3.9
Proof. The correctness claim follows directly from the analysis in Section 2.3.4: consider
an adversary A in the random oracle model. We can assume that it makes at most qG
(distinct) queries and that qG is a multiple of the number ℓ of Π ciphertexts that form a
Π′ one. Let q′

G = qG/ℓ, h ∈ [q′
G], and let

G(M1, 1), . . . , G(M1, ℓ), . . . , G(Mq′
G
, 1), . . . , G(Mq′

G
, ℓ),

be the queries to G. We call a tuple G(Mh, 1), . . . , G(Mh, ℓ) problematic iff it exhibits
a correctness error in Π′ (in the sense that Π′.Dec(sk, Π′.Enc(pk, Mh)) ̸= Mh). By
Section 2.3.4, we know that, for any key pair (pk, sk) ← KeyGen(λ) satisfying the δ-
correctness bound, each tuple G(Mh, 1), . . . , G(Mh, ℓ) is problematic with probability at
most ℓδℓ. Hence, a union bound shows that at least a tuple G(Mh, 1), . . . , G(Mh, ℓ) is
problematic is at most q′

G · ℓδℓ = qG
ℓ

· ℓδℓ = qG · δℓ.

Now, we argue the security and therefore let B be an adversary against the OW-PCA
security of Π′ issuing at most qG queries to G and at most qP queries to Pco. We proceed
with a sequence of games. Let AdvB,j be the advantage of B in Game j.
Game G0: This is the original OW-PCA game, where we simulate the random oracle
queries G(M, i) as follows: if there exits r s.t. (M, i, r) ∈ QG, then return G(M, i) :=
r. Otherwise choose r←Π.R, set QG := QG ∪ {(M, i, r)} and return G(M, i) := r.
Consequently, we have

AdvB,0 = Advpke-ow-pca
Π′,B (λ).
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Game G1: In game G1 we replace the plaintext checking oracle Pco(M, ctxt) by a
simulation that does not check whether M = M ′, where M ′ = Dec(sk, C), anymore but
simply computes ctxti := Π.Enc(pk, M ; G(M, i)) for all i ∈ [ℓ] (i.e., re-encrypts M) and
checks if (C1, . . . , Cℓ) = ctxt. We claim

|AdvB,1 − AdvB,0| ≤ ϵ +
*

qG
ℓ

+ qP

1
· ℓδℓ. (A.1)

To show eq. (A.1), observe that at most qG (distinct) queries to G are made in both G0
and G1. We can assume that qG is a multiple of the number ℓ of Π ciphertexts that form
a Π′ one. Let q′

G = qG/ℓ, h ∈ [q′
G], and let

G(M1, 1), . . . , G(M1, ℓ), . . . , G(Mq′
G
, 1), . . . , G(Mq′

G
, ℓ),

be the queries to G.

Let Bad be the event where (pk, sk) ← KGen(λ) is one of those key pairs not satisfying
the δ-correctness bound, and call a tuple G(Mh, 1), . . . , G(Mh, ℓ) problematic iff it exhibits
a correctness error in Π′ (in the sense that Π′.Dec(sk, Π′.Enc(pk, Mh)) ̸= Mh). Clearly,
if B makes a problematic tuple query, then there exists an adversary D that triggers a
correctness error for Π′. From what was discussed in the analysis of the correctness error
of the compiler T∗, we know that conditioned on ¬Bad, each tuple G(Mh, 1), . . . , G(Mh, ℓ)
is problematic with probability at most ℓδℓ. Hence, a union bound shows that the
probability that at least a tuple G(Mh, 1), . . . , G(Mh, ℓ), h ∈ [q′

G], is problematic is at
most q′

G · ℓδℓ = qG
ℓ

· ℓδℓ = qG · δℓ. However, conditioned on ¬Bad and on the event that no
tuple query is problematic, games G0 and G1 proceed identically. Indeed, the two games
only differ if B submits a Pco query (M, ctxt) together with G queries (M, 1), . . . , (M, ℓ)
such that G(M, 1), . . . , G(M, ℓ) is problematic and C = Π′.Enc(pk, M). Consequently, we
have

|AdvB,1 − AdvB,0| ≤ ϵ +
*

qG
ℓ

+ qP

1
· ℓδℓ,

as claimed.

Game G2: In Game G2, we consider event E , which we define to be a query (M, i) to G
for challenge message M and i ∈ [ℓ], or equivalently (M, ·, ·) ∈ QG. We abort if event E
happens and due to the difference lemma we have

|AdvB,2 − AdvB,1| ≤ Pr[E ].

Now, we can construct an adversary against the OW-CPA security of Π in that by
obtaining a challenge ciphertext C for a unknown random M we provide (pk, ctxt) to
the adversary B and we forward the output M ′ of B to the OW-CPA challenger. Using
Lemma 2.2.1, relating OW-CPA and IND-CPA, we thus obtain:

AdvB,2 = 1
|M| + Advn-pke-ind-cpa

Π,B (λ).
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Finally, we bound Pr[E ] and construct an ℓ-IND-CPA adversary against PKE Π that
wins if event E happens in Game G2. Therefore, we choose (M0, M1)←M2 and send it ℓ
times to the ℓ-IND-CPA challenger obtaining (ctxtb,1, . . . , ctxtb,ℓ) for Mb with unknown
bit b and forward (pk, (ctxtb,1, . . . , ctxtb,ℓ)) to B simulating its view in Game G2. Now we
consider event B being the event that B does query (Mb−1, j) for some arbitrary j ∈ [ℓ]
to G. Since Mb−1 is chosen uniformly random from M and independent of B’s view, we
have Pr[B] ≤ qG

|M| . For the remainder let us assume that event B did not happen. Note
that if E happens, then B queried the random oracle G on Mb for some i ∈ [ℓ] and thus
b = b′. If E does not happen, then B did neither query Mb on G nor Mb−1, we choose a
random bit b′ and thus Pr[b = b′] = 1

2 . Overall, we then have

Advn-pke-ind-cpa
Π,B (λ) + qG

|M| ≥
@@@@Pr[b = b′] − 1

2

@@@@
=

@@@@Pr[E ] + 1
2 · Pr[¬E ] − 1

2

@@@@
= 1

2 · Pr[E ].

Taking all together and using Theorem 2.2.3 yields the desired bound.

A.2.2 Proof of Theorem 2.3.10
Proof. Let A1 be the same as A but after choosing an output M , compute and discard
G(M, i) for all i ∈ [ℓ]. Hence, it makes at most qG +ℓ queries at depth at most d+ℓ. Thus,
returning the correct M will always count as a Find later in the proof (c.f. Definition A.1.1).
The two algorithms have the same OW-CPA-advantage of Π′ = T⋆[Π, G, ℓ].

As Bindel et al. we show a slightly stronger result by constructing an IND-KPA adversary
B with ℓ challenge ciphertexts, i.e. the adversary is given a tuple (pk, M0, M1, ctxt1, . . . , ctxtℓ)
with ctxti = Enc(pk, Mb; ri) and needs to determine b. The algorithm B creates a fresh
random oracle G and runs AG\F

1 with F = {(Mb, i)b∈{0,1},i∈[ℓ]}. Now assume that Find
occurs, B measures whether the query was (M0, i) or (M1, i) for some i and returns the
corresponding b. If the oracle is queried on both (M0, i) or (M1, i′) or Find does not
occur, B guesses b at random.

Let G′ be the oracle such that G′(Mb, i) = ri and G′(M, i) = G(M, i) for all other messages.
G′ is unknown to B, but we can still analyze A’s behavior when run with G′ instead of G.
By construction, AG′\F

1 cannot return mb without causing Find. Hence, by Lemma A.1.3,7
Advpke-ow-cpa

Π′,A (λ) =
7

Pr[mb ← AG′ ]

=
@@@@7Pr[mb ← AG′ ]

@@@@ −
7

Pr[mb ← AG′\F
1 ∧ ¬Find]
 	� �

=0

≤
7

(d + ℓ + 1) Pr[AG′\F
1 : Find].
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By Lemma A.1.2, we obtain

Advpke-ow-cpa
Π′,A (λ) ≤ (d + ℓ + 1) · Pr[AG′\F

1 : Find]

= (d + ℓ + 1) · Pr[AG\F
1 : Find] = (d + ℓ + 1) · Pr[B : Find].

We now split the event Find as Findb ∨ Find¬b. In both cases Find occurs and in the first
case Mb is measured whereas in the second M¬b is measured. Then Advn-pke-ind-kpa

Π,B (λ) =
|Pr[Findb] − Pr[Find¬b]|.
Since B measures M whenever Find occurs, we can view G \ F as G′′ \ {(M¬b, i)i∈[ℓ]} =
(G \ {(Mb, i)i∈[ℓ]}) \ {(M¬b, i)i∈[ℓ]}. Since A has no information about M¬b except from
puncturing, it holds that for any M that Pr[AG′′ : M ∈ {M¬b}] = 1

|M| . Thus, by
Lemma A.1.4, we have

Pr[B : Find¬b] ≤ 4 · (qG + 1)
|M| .

Consequently,

Advn-pke-ind-kpa
Π,B (λ) = |Pr[B : Findb] − Pr[B : Find¬b]|

≥ Pr[B : Find] − 2 Pr[B : Find¬b] ≥ Pr[B : Find] − 8 · (qG + 1)
|M| .

Since Advn-pke-ind-kpa
Π,B (λ) ≤ Advn-pke-ind-cpa

Π,B (λ) ≤ ℓ · Advpke-ind-cpa
Π,B (λ) (by Theorem 2.2.3), we

conclude with

Advpke-ow-cpa
T⋆[Π,G,ℓ],A(λ) ≤ (d + ℓ + 1) ·

*
ℓ · Advpke-ind-cpa

Π,B (λ) + 8 · (qG + 1)
|M|

1
.

A.2.3 Proof of Theorem 2.3.1
Proof. Let (sk, pk) ← KGen(λ). For M ∈ M, define the set of coins such that decryption
of M will succeed as

YM = {r ∈ R | Dec(sk, Enc(pk, M ; r)) = M}.

Define a new random oracle G′ as G′(M, i) = G(M, i) if G(M, i) ∈ YM , G′(M, i)←R if
YM = ∅, and G′(M, i)←YM otherwise. Thus G′ is uniformly random in the space of
oracles where decryption succeeds if possible and G′ is independent of the behavior of
messages and ciphertexts for T⋆[Π, G, ℓ] which do not decrypt correctly. Define the failure
probability for a fixed key pair and G′ as

δ′ = max
M∈M

Pr[Dec(sk, Enc(pk, M)) ̸= M ].

Additionally, define the event DblFail as the case that ctxt is the encryption of two
messages M1 and M2 such that decryption fails, i.e. Dec(sk, ctxt) ̸∈ {M1, M2}. Define
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ε′ = Pr[DblFail]. Both δ′ and ε′ are independent of G′. We denote the event that A wins
the FFC game as Fail and define Ev = Fail ∧ ¬DblFail. By Lemma A.1.1:@@@@7Pr[AG(pk) : Ev] −

7
Pr[AG′(pk) : Ev]

@@@@ ≤ 2 · d ·
7

Pguess.

Conditioned on G′, for each m we have that G(m, i) ̸= G′(m, i) for all i ∈ [ℓ] with
probability at most (δ′)ℓ. Hence, with qG

d guesses (in expectation), we have that

2 · d ·
7

Pguess ≤
7

4 · d2 · Pguess ≤
7

4 · d · qG · (δ′)ℓ.

For a ciphertext ctxt define

p1(c) = Pr[∃!M ∈ M, ∀i ∈ [ℓ] : ctxti = Enc(pk, M ; G(m, i)) ∧ Dec(sk, ctxti) ̸= M ].

Note that if M exists but is not unique, then DblFail occurs. Let p1 = maxc p1(c). Since
p1 is independent of G′, we have

Pr[AG′(pk) : Ev] ≤ qL · p1.

From Lemma A.1.1, we obtain p1 ≤ (δ′)ℓ +
7

3(ε′)ℓ. From the Cauchy-Schwarz corollary
we obtain:

Pr[AG(pk) : Ev] ≤
7

4 · d · qG · (δ′)ℓ +
8

qL ·
*

(δ′)ℓ +
7

3 · (ε′)ℓ

1

≤
8*

(4 · d + 1) · (δ′)ℓ +
7

3 · (ε′)ℓ

1
· (qG + qL).

Finally, note that δ = E[δ′ : pk, G] and ε ≤ E[(ε′)ℓ : pk, G]. By Jensen’s inequality it
holds that

√
ε ≤ E[

7
(ε′)ℓ : pk, G], and thus

Advpke-ffc
T⋆[Π,G,ℓ],A(λ) ≤

'
(4 · d + 1) · δℓ +

√
3 · ε

.
· (qG + qL) + ε.

A.2.4 Proof of Theorem 2.5.10
Theorem A.2.1. If a BFKEM BFKEM is BFKEM-IND-CPA-secure with the (extended)
correctness, separable randomness, publicly-checkable puncturing, and γ-spreadness prop-
erties, then BFKEM′ is BFKEM-IND-CCA-secure. Concretely, for any PPT adversary A
making at most qG = qG(λ) queries to the random oracle G and negligible δ = δ(λ), there
is a distinguisher D in the BFKEM-IND-CPA-security experiment such that

Advbfkem-ind-cca
BFKEM′,A (λ, m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ, m, k) + 3 · δ + qG
2γ

. (A.2)
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Decapsulation-Oracle: Decaps′(ski, ctxt)

0 : if CheckPunct(pk, L, ctxt) = ⊥ return ⊥ // G3 - G7

1 : k ← Decaps(ski, ctxt) // G0 - G3

2 : k ← Decaps(sk0, ctxt) // G4 - G6

3 : if k = ⊥ return ⊥ // G0

4 : if (k, G(k)) /∈ L return ⊥ // G1 - G4

5 : (r, k′) := G(k) // G0 - G1

6 : read (unique) (k, (r, k′)) from L // G2 - G4

7 : if (ctxt, k) ̸= Encaps(pk; (r, k)) return ⊥ // G0 - G4

8 : return k // G0 - G4

9 : if (k, (r, k′)) /∈ L and (ctxt, k) = Encaps(pk; (r, k)) return ⊥ // G5

10 : return k′ such that (k, (r, k′)) ∈ L and (ctxt, k) = Encaps(pk, (r, k)) // G5

11 : if (k̂, (r̂, k̂′)) /∈ L and (ctxt, k̂) = Encaps(pk; (r̂, k̂)) return ⊥ // G6 - G7

12 : return k̂′ such that (k̂, (r̂, k̂′)) ∈ L and (ctxt, k̂) = Encaps(pk, (r̂, k̂)) // G6 - G7

Figure A.1: The changes in the decapsulation oracle throughout the sequence of games.

Proof. We prove the Theorem via a sequence of games where changes of the specific
games are shown to have at most only negligible advantage compared to the success
probability in the BFKEM-IND-CCA security experiment. Let AdvA,j be the advantage
of A in Game j. Let Decaps′ be the decryption oracle which we successively change (cf.
Figure A.1 for the definition and all changes made throughout the sequence of games).
The game steps are as follows:
Game G0 (BFKEM-IND-CCA-security): Game 0 is the BFKEM-IND-CCA security exper-
iment. Hence, we have that

AdvA,0 = Advbfkem-ind-cca
BFKEM′,A (λ, m, k).

Game G1 (γ-spreadness of ctxt): Game 1 is defined as Game 0 except that we substitute
line 3 with line 4. More concretely, instead of checking k = ⊥, the decapsulation oracle
checks if the adversary has queried G on (k) and maintains a list L with all adversarial
queries to G as (k, G(k)), . . . ). The change is perfectly indistinguishable except for the
case when the adversary inputs a ciphertext ctxt′ such that Decaps′(ski, ctxt′) behaves dif-
ferently in Game 0 (i.e., Decaps(ski, ctxt′) ̸= ⊥) and Game 1 (i.e., Decaps(ski, ctxt′) = ⊥).
By the properties of BFKEM′, we have that (ctxt, k) = Encaps(pk; (r, k)) is determined
by (r, k′) = G(k) for uniform r ∈ R and some k ∈ K. Hence, the different behavior can
only happen if G was not queried before. But the probability that the adversary finds
such ctxt′ with ctxt′ = ctxt without querying G(k) is bounded by the γ-spreadness of
BFKEM. Since the adversary queries the oracle at most qG = qG(λ) times, we conclude
AdvA,0 ≤ AdvA,1 + qG · 2−γ .
Game G2 (conceptional change): Game 2 is defined as Game 1 except that we substitute
line 5 with line 6. More concretely, we read the unique tuple (k, (r, k′)) from the list L
which guarantees that (k, (r, k′)) = (k, G(k′)) holds. Indeed, G(k) uniquely determines
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(k, (r, k′)). We conclude AdvA,1 = AdvA,2.
Game G3 (publicly-checkable puncturing of BFKEM): Game 3 is defined as Game 2 ex-
cept that we introduce line 0. More concretely, we now first check if CheckPunct(pk, L′, ctxt) =
⊥, for some list of ciphertexts L′. By the publicly-checkable puncturing property of
BFKEM, we have that Pr[Decaps(skℓ, ctxt) = ⊥ ⇍⇒ CheckPunct(pk, L′, ctxt) = ⊥] ≤ δ,
for negligible error term δ = δ(λ) and L′ = (ctxt0, . . . , ctxtℓ−1) is the list of ciphertexts
that were sent to Punc′. It follows that AdvA,2 ≤ AdvA,3 + δ.
Game G4 (extended-correctness of BFKEM): Game 4 is defined as Game 3 except that
we substitute line 1 with line 2. More concretely, we now use the non-punctured
(initial) secret key sk0 to perform decryption of ctxt (note that ski can be an al-
ready punctured secret key). By the extended-correctness property of BFKEM, we
have Pr[Decaps(ski, ctxt) ̸= Decaps(sk0, ctxt)] ≤ δ, for negligible error term δ = δ(λ).
Besides that, the oracle behaves the same as in Game 3. Hence, we conclude that
AdvA,3 ≤ AdvA,4 + δ.
Game G5 (conceptional change): Game 5 is defined as Game 4 except that we simplify
the checks in lines 4, 6, 7 and 8. More concretely, we simply replaced the checks in Game
4 with equivalent checks in Game 5 now in lines 9-10. Hence, we deduce AdvA,4 = AdvA,5.

Game G6 (correctness for non-punctured secret keys of BFKEM): Game 6 is defined as
Game 5 except that we check if there exist (k̂, (r̂, k̂′)) ∈ L such that (ctxt, k̂′) =
Encaps(pk; (r̂, k̂)) without comparing it to k̂ ← Decaps(sk0, ctxt), that is we substitute
lines 9-10 with lines 11-12. By the correctness for non-punctured secret keys of BFKEM,
we have that if (ctxt, k̂) = Encaps(pk; (r̂, k̂)) then Decaps(sk0, ctxt) = k̂ except with negli-
gible probability δ = δ(λ). Hence, we infer that AdvA,5 ≤ AdvA,6 + δ.
Game G7 (conceptional change): Game 7 is defined as Game 6 except that we remove
line 2 in Game 6. In Game 6, k′ computed via k ← Decaps(sk0, ctxt) was never used
within the consistency checks anymore. Hence, we can safely remove this computation.
We conclude AdvA,6 = AdvA,7.
We are now ready to continue with the reduction to the BFKEM-IND-CPA-security of
BFKEM. (In particular, note that in Game 7, sk0 is not used anymore within the Decaps-
oracle.) Let A be a PPT adversary on the BFKEM-IND-CCA-security of BFKEM′, we will
construct a PPT adversary D on the BFKEM-IND-CPA-security of BFKEM. D receives
(ctxt∗, k∗

b), for some (unknown) b←{0, 1}, that is forwarded to A. During the experiment,
oracle-calls by A to Punc′ and Cor are re-directed to the BFKEM-IND-CPA-challenger.
The decapsulation oracle Decaps′ is as defined in Game 7. Eventually, A outputs a guess
b′ which D forwards to its challenger.

Analysis. We conclude that the success probability of A in the BFKEM-IND-CCA-
security experiment is

Advbfkem-ind-cca
BFKEM′,A (λ, m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ, m, k) + 3 · δ + qG
2γ

.
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A.3 Evaluation
In this section, we present the evaluation of our compiler applied to all the NIST
candidates with non-negligible correctness error. Throughout this section, O[Π, ℓ] denotes
either T⋆ or Cp,d and the generic framework applied to Π with ℓ parallel ciphertexts. In
the columns with the runtime, we present both the expected runtime of a parallelized
implementation as well as a serial implementation of the Encaps and Decaps algorithms,
i.e. p/s where p denotes the runtime of the parallel implementation and s denotes the
runtime of the serial implementation. For the runtime of the Decaps algorithm, we assume
that none of the underlying schemes returns ⊥ on failure, i.e. we consider the worst case.
We want to note that the target correctness error is not consistent, but all of them target
≤ 2−128 for all levels. Hence, we will target the same error. In case δℓ−1 is only slightly
larger than 2−128, we also include it in the tables to give a more complete picture.

A.3.1 Code-based KEMs
Let’s start with ROLLO. The designers specify two IND-CPA secure variants, namely
ROLLO-I and ROLLO-III, with decoders having DFRs between 2−30 and 2−42. Ad-
ditionally, ROLLO-II is specified as IND-CCA secure variant with a negligible DFR of
2−128.2 While our transform does not render ROLLO-III more efficient than ROLLO-II,
for ROLLO-I the picture is quiet different: while the ciphertexts of ROLLO-I combined
with our transform are slightly larger than those of ROLLO-II, public key and ciphertext
size combined is always smaller even if we overshoot the goal for the correctness error.
Runtime-wise, a parallel implementation is faster, of course. For the L1 and L5 instances
of ROLLO-I, the table also includes instances where our transform produces a correctness
error that is only slightly larger than 2−128. If the analysis of the decoder is improved only
by a small amount, those instances would become the desired ones without overshooting
the correctness error by too much. The full comparison is depicted in Table A.1.3

Next, we discuss BIKE. All parameter sets targeting an IND-CPA security are specified
with a bit flipping decoder obtaining a DFR of < 10−7 ≈ 2−23.25. More in depth analysis
of the decoder of BIKE estimates the actual DFR between 2−49 and 2−57 [SV19]. Hence
we will base our comparison on a DFR of 2−49 and thus on the same δ-correctness
since DFR coincides with δ-correctness for BIKE [DGKP21]. Sendrier and Vasseur also
expect that by increasing the size of the underlying field by up to 15 %, the decoder
would achieve a negligible DFR. For the IND-CCA secure version of BIKE, the backflip
decoder [SV20] is used which achieves a negligible DFR. This decoder comes with
the drawback, however, that at the time of the round 2 submission no constant-time
implementation was available. A less efficient but constant-time version of the decoder

2In this section, we will base δ estimations on the DFR if not specified otherwise.
3Note that with the new parameters proposed in https://groups.google.com/a/list.nist.

gov/forum/#!topic/pqc-forum/p7o1N2-sXFw, we can observe similar trade-offs.
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was proposed recently [DGK20], though. For BIKE, our transform only improves the
runtime in case the parallel implementation is used, though. As expected, the public key
is smaller compared to the IND-CCA versions, yet the increase in the ciphertext outweighs
the saving in the public key size. Overall, our transform applied to BIKE leads to a
trade-off between runtime efficiency and size. The in-depth comparison is depicted in
Tables A.2 to A.4.

Finally, we consider LEDAcrypt which directly starts from a deterministic PKE. Hence,
we have to apply the direct product compiler with independent keys, but use our modified
version C⋆

p,d. Its parameter sets are specified with a non-negligible DFR of 2−64 for the
IND-CPA case and with negligible DFR for the IND-CCA case. With a DFR of 2−64, the
compiler ends up doubling the key and ciphertext sizes and end up with larger sum by
17% (for L5) to 38% (for L1). But in any case, the runtime figures for Encaps and Decaps
significantly improve using a parallel implementation, resulting in a trade-off between
bandwidth and runtime costs. See Table A.5 for the full comparison.
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Table A.1: Sizes (in bytes) and runtimes (in ms) of ROLLO. Runtimes are taken from the optimized implementations.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
ROLLO-I-L1 ✗ 2−30 40 465 465 930 0.10 0.02 0.18
O[ROLLO-I-L1,4] ✓ 2−116 40 465 1860 2325 0.10 0.02/0.08 0.24/0.96
O[ROLLO-I-L1,5] ✓ 2−147.7 40 465 2325 2790 0.10 0.02/0.10 0.26/1.30
ROLLO-II-L1 ✓ 2−128 40 1546 1674 3220 0.69 0.08 0.53
ROLLO-III-L1 ✗ 2−30 40 634 1180 1814 0.03 0.04 0.14
O[ROLLO-III-L1,4] ✓ 2−118 40 634 4720 5354 0.03 0.04/0.16 0.26/1.04
O[ROLLO-III-L1,5] ✓ 2−147.7 40 634 5900 6534 0.03 0.04/0.20 0.30/1.50
ROLLO-I-L3 ✗ 2−32 40 590 590 1180 0.13 0.02 0.36
O[ROLLO-I-L3,4] ✓ 2−126 40 590 2360 2950 0.13 0.02/0.08 0.42/1.68
ROLLO-II-L3 ✓ 2−128 40 2020 2148 4168 0.83 0.09 0.69
ROLLO-III-L3 ✗ 2−36 40 830 1580 2410 0.04 0.05 0.38
O[ROLLO-III-L3,4] ✓ 2−142 40 830 6320 7150 0.04 0.05/0.20 0.53/2.12
ROLLO-I-L5 ✗ 2−42 40 947 1894 2841 0.20 0.03 0.69
O[ROLLO-I-L5,3] ✓ 2−124.4 40 947 5682 6629 0.20 0.03/0.09 0.75/2.25
O[ROLLO-I-L5,4] ✓ 2−166 40 947 7576 8523 0.20 0.03/0.12 0.78/3.12
ROLLO-II-L5 ✓ 2−128 40 2493 2621 5114 0.79 0.10 0.84
ROLLO-III-L5 ✗ 2−42 40 1138 2196 3334 0.05 0.07 0.63
O[ROLLO-III-L5,3] ✓ 2−124.4 40 1138 6588 7726 0.05 0.07/0.21 0.77/2.31
O[ROLLO-III-L5,4] ✓ 2−166 40 1138 8784 9922 0.05 0.07/0.28 0.84/3.36
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Table A.2: Sizes and runtimes (millions of cycles) of BIKE L1. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
BIKE-1-L1 ✗ 2−49 1988 20326 20326 40652 0.21 0.24 3.13
O[BIKE-1-L1,3] ✓ 2−145.4 1988 20326 60978 81304 0.21 0.24/0.72 3.61/10.83
BIKE-1-CCA-L1 ✓ 2−128 25546 23558 23558 47116 0.36 0.34 4.15
BIKE-2-L1 ✗ 2−49 1988 10163 10163 20326 4.79 0.14 3.01
O[BIKE-2-L1,3] ✓ 2−145.4 1988 10163 30489 40652 4.79 0.14/0.42 3.29/9.88
BIKE-2-CCA-L1 ✓ 2−128 25546 11779 12035 23814 6.32 0.20 4.12
BIKE-3-L1 ✗ 2−49 1876 22054 22054 44108 0.17 0.24 3.95
O[BIKE-3-L1,3] ✓ 2−145.4 1876 22054 66162 88216 0.17 0.24/0.71 4.42/13.27
BIKE-3-CCA-L1 ✓ 2−128 26414 24538 24794 49332 0.23 0.29 5.65
BIKE-BO3-L1 ✗ 2−49 1876 11283 22054 33337 0.17 0.31 3.95
O[BIKE-BO3-L1,3] ✓ 2−145.4 1876 11283 66162 77445 0.17 0.31/0.92 4.56/13.68
BIKE-BO3-CCA-L1 ✓ 2−128 26414 12525 24794 37319 0.28 0.35 5.65
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Table A.3: Sizes and runtimes (millions of cycles) of BIKE L3. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
BIKE-1-L3 ✗ 2−49 3090 39706 39706 79412 0.40 0.44 8.33
O[BIKE-1-L3,3] ✓ 2−145.4 3090 39706 119118 158824 0.40 0.44/1.32 9.21/27.63
BIKE-1-CCA-L3 ✓ 2−128 52732 49642 49642 99284 0.77 0.71 8.86
BIKE-2-L3 ✗ 2−49 3090 19853 19853 39706 7.30 0.25 8.28
O[BIKE-2-L3,3] ✓ 2−145.4 3090 19853 59559 79412 7.30 0.25/0.75 8.79/26.36
BIKE-2-CCA-L3 ✓ 2−128 52732 24821 25077 49898 9.89 0.39 8.57
BIKE-3-L3 ✗ 2−49 2970 43366 43366 86732 0.34 0.46 9.01
O[BIKE-3-L3,3] ✓ 2−145.4 2970 43366 130098 173464 0.34 0.46/1.38 9.94/29.81
BIKE-3-CCA-L3 ✓ 2−128 57056 54086 54342 108428 0.60 0.62 9.59
BIKE-BO3-L3 ✗ 2−49 2970 21939 43366 65305 0.34 0.59 9.01
O[BIKE-BO3-L3,3] ✓ 2−145.4 2970 21939 130098 152037 0.34 0.59/1.76 10.18/30.55
BIKE-BO3-CCA-L3 ✓ 2−128 57056 27299 54342 81641 0.61 0.75 9.59
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Table A.4: Sizes and runtimes (millions of cycles) of BIKE L5. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
BIKE-1-L5 ✗ 2−49 4111 65498 65498 130996 0.72 0.79 20.05
O[BIKE-1-L5,3] ✓ 2−145.4 4111 65498 196494 261992 0.72 0.79/2.38 21.63/64.90
BIKE-1-CCA-L5 ✓ 2−128 85578 81194 81194 162388 1.15 1.02 17.96
BIKE-2-L5 ✗ 2−49 4110 32749 32749 65498 14.05 0.42 19.81
O[BIKE-2-L5,3] ✓ 2−145.4 4110 32749 98247 130996 14.05 0.42/1.25 20.64/61.91
BIKE-2-CCA-L5 ✓ 2−128 85578 40597 40853 81450 16.95 0.57 17.63
BIKE-3-L5 ✗ 2−49 4256 72262 72262 144524 0.55 0.75 21.00
O[BIKE-3-L5,3] ✓ 2−145.4 4256 72262 216786 289048 0.55 0.75/2.26 22.50/67.51
BIKE-3-CCA-L5 ✓ 2−128 93990 89734 89990 179724 1.03 1.15 20.21
BIKE-BO3-L5 ✗ 2−49 4256 36387 72262 108649 0.55 0.97 21.00
O[BIKE-BO3-L5,3] ✓ 2−145.4 4256 36387 216786 253173 0.55 0.97/2.92 22.94/68.82
BIKE-BO3-CCA-L5 ✓ 2−128 93990 45123 89990 135113 1.07 1.41 20.21

Table A.5: Sizes (in bytes) and runtimes (in ms) of LEDAcrypt. The instances with postfix NN refer to those with non-
negligible DFR. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
LEDAcrypt-L1-NN ✗ 2−64 25 4488 4488 8976 0.29 0.13 0.42
O[LEDAcrypt-L1-NN,2] ✓ 2−127 50 8976 8976 17952 0.59 0.13/0.26 0.55/1.10
LEDAcrypt-L1 ✓ 2−128 25 6520 6520 13040 0.55 0.16 0.55
LEDAcrypt-L3-NN ✗ 2−64 33 7240 7420 14660 0.91 0.26 0.91
O[LEDAcrypt-L3-NN,2] ✓ 2−127 66 14480 14840 29320 1.81 0.26/0.52 1.17/2.34
LEDAcrypt-L3 ✓ 2−128 33 12032 12032 24064 1.53 0.54 1.25
LEDAcrypt-L5-NN ✗ 2−64 41 11136 11136 22272 2.52 0.14 1.41
O[LEDAcrypt-L5-NN,2] ✓ 2−127 82 22272 22272 44544 5.04 0.14/0.29 1.55/3.11
LEDAcrypt-L5 ✓ 2−128 41 19040 19040 38080 4.25 0.84 2.28
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A.3.2 Lattice-Based KEMs
The designers of ThreeBears [Ham19] specify both a IND-CPA secure version and an
IND-CCA secure one for each security level they target: the parameters sets of the former
achieve around 2−62 decryption error whereas those of the latter guarantee a decryption
error < 2−140. Such improvement is obtained by reducing the variance of the error
distribution, while leaving all other parameters fixed, and therefore by incurring in a
security loss. Our complier will thus double the ciphertext size in order to achieve
negligible decryption error but keep the security level constant.

Next, we consider Round5 [GZB+19]. Its designers specify three different versions both
for a CPA-secure KEM and for a CCA-secure PKE. Moreover each of them has three
variants: two based on structured lattices (one using error-correcting codes and the other
one not) and one based on unstructured ones. The transform, as expected, provides a
smaller public keys this time too but the doubling ciphertext, as in the FrodoKEM case,
outweighs this advantage: public key and ciphertext size combined is always at least
thirty percent bigger when our transform is applied. The results are shown in Table A.6.

Finally, we also consider FrodoKEM [NAB+19]. While the NIST submission was specified
with negligible correctness error, an earlier version of the scheme [BCD+16] was specified
with non-negligible error. For the submission, the designers set parameters which achieve
negligible decryption error (which in their case corresponds to decryption error less than
2−128, 2−192 and 2−256 for target 1, 3 and 5 security level respectively). On the contrary,
the earlier version of this scheme [BCD+16], that we denote by FrodoCCS, achieves
only non-negligible failure probability. It is therefore possible to apply our transform
to this primitive and compare its performance, in terms of ciphertext/public-key size
and runtime, to its later versions. In this case, the only advantage of our transform
is the public key size, which remains slightly smaller compared to the CCA versions.
This comes the cost of a blow-up in the ciphertext size which exceeds significantly the
aforementioned gain. The full comparison is depicted in Table A.7.
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Table A.6: Sizes (in bytes) and runtimes (millions of cycles) of Round5. Runtimes of the PKEs are taken from the reference
implementations and KEMs’ ones are approximated starting from those of the CCA PKE used to construct them. A parameter
set is denoted as R5N{1,D}-{1,3,5}-{KEM,PKE}{0,5}, where {1,D} refers whether it is a non-ring (1) or ring (D) parameter
set, {1,3,5} refers to the NIST security level, and {0,5} identifies the number of correctable bits.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
R5ND-1-PKE0d-cpa ✗ 2−65 128 634 682 1316 0.06 0.09 0.04
O[R5ND-1-PKE0d-cpa,2] ✓ 2−129 128 634 1364 1998 0.06 0.09/0.19 0.14/0.28
R5ND-1-KEM0d-cca ✓ 2−155 256 676 756 1432 0.07 0.10 0.14
R5ND-3-PKE0d-cpa ✗ 2−71 192 909 981 1890 0.14 0.21 0.11
O[R5ND-3-PKE0d-cpa,2] ✓ 2−141 192 909 1962 2871 0.14 0.21/0.42 0.33/0.65
R5ND-3-KEM0d-cca ✓ 2−147 384 983 1119 2102 0.09 0.14 0.19
R5ND-5-PKE0d-cpa ✗ 2−64 256 1178 1274 2452 0.16 0.25 0.13
O[R5ND-5-PKE0d-cpa,2] ✓ 2−127 256 1178 2548 3726 0.16 0.25/0.50 0.38/0.76
R5ND-5-KEM0d-cca ✓ 2−143 512 1349 1525 2874 0.10 0.17 0.24
R5N1-1-PKE0d-cpa ✗ 2−66 128 5214 5236 10450 2.77 4.05 0.19
O[R5N1-1-PKE0d-cpa,2] ✓ 2−131 128 5214 10472 15686 2.77 4.05/8.10 4.24/8.48
R5N1-1-KEM0d-cca ✓ 2−146 256 5740 5804 11544 3.52 5.31 5.42
R5N1-3-PKE0d-cpa ✗ 2−65 192 8834 8866 17700 6.69 10.10 0.28
O[R5N1-3-PKE0d-cpa,2] ✓ 2−129 192 8834 17732 26566 6.69 10.10/20.20 10.38/20.75
R5N1-3-KEM0d-cca ✓ 2−144 384 9660 9732 19392 6.78 10.20 10.60
R5N1-5-PKE0d-cpa ✗ 2−77 256 14264 14288 28552 14.00 18.60 0.81
O[R5N1-5-PKE0d-cpa,2] ✓ 2−153 256 14264 28576 42840 14.00 18.60/37.20 19.41/38.83
R5N1-5-KEM0d-cca ✓ 2−144 512 14636 14724 29360 12.70 19.20 19.60
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Table A.7: Sizes (in bytes) and runtimes (millions of cycles) of FrodoKEM and FrodoCCS. Runtimes are taken from the
reference implementations.

KEM CCA δ sk pk ctxt ; KGen Encaps Decaps
FrodoKEM-640-AES ✓ 2−138.7 10272 9616 9720 19336 1.38 1.86 1.75
FrodoKEM-976-AES ✓ 2−199.6 15664 15632 15744 31376 2.82 3.56 3.40
FrodoKEM-1344-AES ✓ 2−255.5 21568 21520 21632 43152 4.76 5.98 5.75
FrodoCCS-Classical† ✗ 2−36.2 7120 7104 7112 14216 0.00 0.00 0.00
O[FrodoCCS-Classical,4] ✓ 2−142.8 7120 7104 28448 35552 0.00 0.00/0.00 0.00/0.00
FrodoCCS-Recommended ✗ 2−38.9 11296 11280 11288 22568 2.94 3.48 0.34
O[FrodoCCS-Recommended,4] ✓ 2−153.6 11296 11280 45152 56432 2.94 3.48/13.94 10.79/43.16
FrodoCCS-Paranoid ✗ 2−33.8 12976 12960 12968 25928 3.25 4.26 0.39
O[FrodoCCS-Paranoid,4] ✓ 2−133.2 12976 12960 51872 64832 3.25 4.26/17.06 13.18/52.73
† No runtime numbers are available for this parameter set.
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B.1 Additional Preliminaries
B.1.1 Adaptor Signatures
Next, we recall the formal definitions of adaptor signatures [AEE+21].

Definition B.1.1 (Adaptor Signatures). An adaptor signature scheme ΠAS w.r.t. a
couple of hard relations R, <R, with R ⊆ <R, and a signature scheme ΠDS = (KeyGen, Sign,
Verify) consists of algorithms (pSign, pAdapt, PreVerify, Ext) defined as:

σ̂ ← pSign(sk, m, Y ): The pre-sign algorithm takes as input a secret key sk, message
m ∈ {0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̂.

0/1 ← PreVerify(pk, m, Y, σ̂): The pre-verify algorithm takes as input a public key pk,
message m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̂, outputs a bit b.

σ ← pAdapt(σ̂, y): The adapt algorithm takes as input a pre-signature σ̂ and witness y,
outputs a signature σ.

y ← Ext(σ, σ̂, Y ): The extract algorithm takes as input a signature σ, pre-signature σ̂

and statement Y ∈ LR, outputs a witness y such that (Y, y) ∈ <R, or ⊥.

The correctness definition of adaptor signatures is described below.

Definition B.1.2 (Pre-signature Correctness). An adaptor signature scheme ΠAS satisfies
pre-signature correctness if for every λ ∈ N, every message m ∈ {0, 1}∗ and every
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aSigForgeA,ΠAS(λ)

Q := ∅(sk, pk) ← KeyGen(1λ)
m ← ASignO(·),pSignO(·,·)(pk)
(Y, y) ← GenR(1λ)
σ̂ ← pSign(sk, m, Y )
σ ← ASignO(·),pSignO(·,·)(σ̂, Y )
return (m ̸∈ Q ∧ Verify(pk, m, σ))

SignO(m)

if m ∈ Q
return ⊥

σ ← Sign(sk, m)
Q := Q ∪ {m}
return σ

pSignO(m, Y )

if m ∈ Q
return ⊥

σ̂ ← pSign(sk, m, Y )
Q := Q ∪ {m}
return σ̂

Figure B.1: (Weak) Unforgeabiltiy experiment of adaptor signatures

statement/witness pair (Y, y) ∈ R, the following holds:

Pr


PreVerify(pk, m, Y, σ̂) = 1

∧ Verify(pk, m, σ) = 1
∧ (Y, y′) ∈ <R

@@@@@@@@@
(sk, pk) ← KeyGen(1λ)
σ̂ ← pSign(sk, m, Y )
σ := pAdapt(σ̂, y)
y′ := Ext(σ, σ̂, Y )

 = 1.

Next, we formally define the security properties of an adaptor signature scheme. We relax
the definition of unforgeability, introduced in [AEE+21], by restricting the adversary to
query any given message m ∈ {0, 1}∗ only once to one of the two oracle, either SignO(·)
or pSignO(·, ·). Looking ahead, we require this relaxation in order to prove the security
of our adaptor signature scheme. Our instantiation is based on the GPV signature
scheme [GPV08], and it is proven secure in the random oracle model, by relying on the
programmability of the RO. The above restriction allows us to apply the same technique
to prove the security of the adaptor signature scheme, as the random oracle needs to be
programmed at most once for any given message m. However, this relaxation does not
seem to lead to any practical security consequence as in real-world application, typical
signed messages contain a time-stamp, and thus users never get to sign the same message
more than once. Moreover, one could rely on the probabilistic FDH version of the GVP
signature in order to overcome such drawback: every time the pSign or Sign algorithms
are executed on input a message m, a fresh salt t is sampled, the message m||t is signed,
and t is appended to the so produced signature. This modification is in fact equivalent
to the introduced restriction of the adversary as the introduced salt forces the adversary,
with high probability, to only get signatures of different messages (i.e., different (m||t)).
Definition B.1.3 (Weak Unforgeability). An adaptor signature scheme ΠAS is aEUF-CMA
secure if for every PPT adversary A there exists a negligible function negl[] such that:

Pr[aSigForgeA,ΠAS(λ) = 1] ≤ negl[λ]

where the experiment aSigForgeA,ΠAS is defined as follows:

Definition B.1.4 (Weak Pre-signature Adaptability). An adaptor signature scheme
ΠAS satisfies weak pre-signature adaptability if for any λ ∈ N, any message m ∈ {0, 1}∗,
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aWitExtA,ΠAS(λ)

Q := ∅
(sk, pk) ← KeyGen(1λ)
(m, Y ) ← ASignO(·),pSignO(·,·)(pk)
σ̂ ← pSign(sk, m, Y )
σ ← ASignO(·),pSignO(·,·)(σ̂)
y′ := Ext(pk, σ, σ̂, Y )
return (m ̸∈ Q ∧ (Y, y′) ̸∈ <R
∧ Verify(pk, m, σ))

SignO(m)

if m ∈ Q
return ⊥

σ ← Sign(sk, m)
Q := Q ∪ {m}
return σ

pSignO(m, Y )

if m ∈ Q
return ⊥

σ̂ ← pSign(sk, m, Y )
Q := Q ∪ {m}
return σ̂

Figure B.2: (Weak) Witness extractability experiment for adaptor signatures

any statement/witness pair (Y, y) ∈ R, any key pair (sk, pk) ← KeyGen(1λ) and any
pre-signature σ̂ ← {0, 1}∗ with PreVerify(pk, m, Y, σ̂) = 1 we have:

Pr[Verify(pk, m, pAdapt(σ̂, y)) = 1] = 1

Definition B.1.5 (Weak Witness Extractability). An adaptor signature scheme ΠAS is
witness extractable if for every PPT adversary A, there exists a negligible function negl[]
such that the following holds:

Pr[aWitExtA,ΠAS(λ) = 1] ≤ negl[λ]

where the experiment aWitExtA,ΠAS is defined as follows

B.1.2 Argument Systems
Definition B.1.6 (Hard Relation). For a relation R, with statement/witness (Y, y), let
LR be the associated language defined as {Y | ∃ y s.t. (Y, y) ∈ R}. We say that R is a
hard relation if the following holds:

i) There exists a PPT sampling algorithm GenR that on input 1λ outputs a state-
ment/witness pair (Y, y) ∈ R,

ii) The relation is poly-time decidable,

iii) For all PPT A the probability of A on input Y outputting a valid witness y is
negligible.

We recall the definition of a non-interactive zero-knowledge proof of knowledge (NIZK-
PoK) with online extractors as introduced in [Fis05].

Definition B.1.7 (NIZK-PoK). A tuple (Setup, Prove, Verify) of PPT algorithms is
called a NIZK with an online extractor for a relation R, and random oracle H, if the
following holds:
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i) Completeness: For all λ ∈ N and any (Y, y) ∈ R, it holds that

Verify(pp, Y, Prove(pp, Y, y)) = 1

except with negligible probability,

ii) Zero knowledge: If there exists a negligible function µ, a PPT simulator S = (S1, S2),
such that for all λ ∈ N, any (Y, y) ∈ R, and any PPT adversary A, such that the
following probability is bound by a negligible function µ.

Pr


b′ = A(pp, Y, π)

∧ b = b′

@@@@@@@@@@@@@@@@@@@

b ← {0, 1}
If b = 0
pp ← Setup(1λ)
π ← Prove(pp, Y, y)

else if b = 1
(pp, st0) ← S1(1λ)
π ← S2(pp, st0, Y )


iii) Online Extractor: There exist a PPT online extractor K with access to the sequence

of queries to the random oracle and its answers, such that given (Y, π), the algorithm
K can extract the witness y with (Y, y) ∈ R.

B.2 GPV Adaptor Signatures
We consider hard languages of the form

L := {(A, v′) ∈ Rη×ℓ
q × Rη

q | ∃ u′ ∈ Rℓ s.t. , A · u′ = v′ mod q ∧ ??u′?? ≤ β∗}.

We will consider the following hard relations R, <R, that capture witnesses used to adapt
and extracted witnesses respectively, are given by

RA := {(v′, u′) ∈ Rη
q × Rℓ | v′ = A · u′ mod q ∧ ??u′?? ≤ β},

and <RA := {(v′, u′) ∈ Rη
q × Rℓ | v′ = A · u′ mod q ∧ ??u′?? ≤ <β},

where β ≤ <β. As done in Aumayr et. al. in [AEE+21], we slightly modify the hard
relation for which the adaptor signature is defined in order to be able to extract the
corresponding witness in the security experiments. Let Π = (Π.Setup, Π.Prove, Π.Verify)
be a NIZK-PoK with online extractor for the relation RA, as defined in Definition B.1.7.
We will consider the relation R+

A, whose statements are pairs (v′, π), where (v′, u′) ∈ RA,
and π ← Π.Prove(pp, v′, u′), for pp ← Π.Setup(1λ). That is

R+
A := {((v′, π), u′) | v′ = A · u′ mod q ∧ ??u′?? ≤ β ∧ Π.Verify(pp, v′, π) = 1}.
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Setup(1λ)

A←Rη×ℓ
q

p̃p ← Π.Setup(1λ)
return pp := (A, p̃p)

KeyGen(pp)

XT ← (SampD(1η, 1ℓ, R, d))ℓ

sk := X
pk := Y := A · X mod q

return (pk, sk)

Sign(sk, m ∈ M)

u ← DRℓ,ρ

v := A · u mod q

c := G−1(v − H(m))
z := u + X · c
return σ := (c, z)

Verify(pk, m, σ)

return



A · z − (G + Y) · c ?= H(m) mod q

∥(c, z)∥ ≤ γ2

pSign(sk, m, Y = (v′, π))

if Π.Verify(p̃p, v′, π) = 0
return ⊥

u ← DRℓ,ρ

v := A · u mod q

c := G−1(v + v′ − H(m))
ẑ := u + X · c
return σ̂ := (c, ẑ)

PreVerify(pk, m, v′, σ̂)

return



A · ẑ − (G + Y) · c ?= H(m) − v′ mod q

∥(c, ẑ)∥ ≤ γ1

pAdapt(σ̂, u′)

z := ẑ + u′

return σ := (c, z)

Ext(σ, σ̂, v′)

return u′ := z − ẑ

Figure B.3: GPV based adaptor signatures using a NIZK-PoK Π.

Since RA is a hard relation, so is R+
A. In order to ease readability and avoid introducing

too many different notations, in our construction we replace RA with R+
A.

Parameters. The scheme parameters

- ρ ≥ (d · ℓ · √
ℓ + β) · √

Q, where Q is the maximum number of oracle queries allowed
in the experiment,

- β, witness norm bound,

- γ1 ≥ ρ · √
ℓ, norm bound for pre-signature,

- γ2 ≥ γ1 + β, norm bound for signature,
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- <β ≥ γ1 + γ2, norm bound of extracted witnesses,

have to be chosen so that M -SISRq ,η,ℓ,2γ2+2dℓ
√

ℓ and M -SISRq ,η,ℓ,γ1+γ2+β+2dℓ
√

ℓ are hard.

B.2.1 Security Analysis
Pre-signature correctness follows via a straightforward investigation, using the fact that
A · u′ = v′ mod q.

Lemma B.2.1 (Weak Pre-signature Adaptability). The adaptor signature scheme de-
scribed in Fig. B.3 satisfies weak pre-signature adaptability with respect to the relation
RA.

Proof. Let σ̂ = (c, ẑ) be a valid pre-signature with PreVerify(pk, m, v′, σ̂) = 1, and u′,
with ∥u′∥ ≤ β be a witness corresponding to v′. Since σ̂ is valid, we have ∥ẑ∥ ≤ γ1.
Then, pAdapt(σ̂, u′) = (c, ẑ + u′) = σ. Therefore, we have

∥z∥ =
??ẑ + u′?? ≤ ∥ẑ∥ +

??u′?? ≤ γ1 + β ≤ γ2.

We further have

A · z − (G + Y) · c = A · (ẑ + u′) − (G + Y) · c
= (A · ẑ − (G + Y) · c) + A · u′

= (H(m) − v′) + v′ = H(m) mod q.

From the above two equations, it follows that σ is a valid signature for message m, i.e.,
Verify(pk, m, σ) = 1.

Lemma B.2.2 (Weak Unforgeability). Let Π = (Π.Setup, Π.Prove, Π.Verify), used in
the construction on the adaptor signature from Fig. B.3, be a NIZK-PoK with online
extractor for the relation RA. Assuming M -SISRq ,η,ℓ,2γ2+2dℓ and that ρ ≥ (dℓ + β)

√
Q,

where Q is the maximum number of oracle queries an attacker can make, the adaptor
signature from Fig. B.3 is weakly unforgeable in the random oracle model.

Proof. We prove the unforgeability of the adaptor signature scheme by reduction to
the M-SIS problem. Let (A, v∗) be the given M-SIS instance. Consider the following
sequence of hybrids. In all of them let σ∗ = (c∗, z∗) be the forgery signature output by
A on message m∗. Without loss of generality, we can assume that the adversary always
queries the random oracle H on every message m before making a presigning/signing
query on m.

– Hybrid Hyb0: This is identical to the real experiment.
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– Hybrid Hyb1: This is identical to the real experiment except that the public
parameters p̃p of the NIZK-PoK are generated by the simulator S = (S1, S2),
whose existence is guaranteed by the zero-knowledge property of the NIZK-PoK
Π (Definition B.1.7), i.e., (p̃p, state0) ← S1(1λ). Moreover whenever the adversary
outputs a challenge message m∗, the challenger samples (v∗, u∗) ← GenR(1λ),
runs the simulator S on input (p̃p, state0, v∗), to obtain a simulated proof π∗, i.e.,
π∗ ← S(p̃p, state0, v∗), and returns (σ̂, (v∗, π∗)) to the adversary.

– Hybrid Hyb2: Here the simulator S works as follows:

– The simulator records a list Q of all H queries made by A with their responses.
Let Q = |Q| be the number of hash queries made by A.

– Whenever A queries the random oracle H on input m, the simulator samples
v ← Rℓ

q, z ← DRℓ,ρ, sets c := G−1(v), programs the random oracle H(m) :=
A · z − (G + Y) · c mod q, and returns σ = (c, z), stores (m, H(m), σ) in Q,
and returns H(m) to the adversary.

– Whenever the adversary queries the SignO(·) oracle on input m, the simula-
tor finds the corresponding entry (m, H(m), σ) in Q, and returns σ to the
adversary.

– Whenever the adversary queries the pSignO(·) oracle on input (m, (v′, π)), the
simulator checks the validity of (v′, π)), extracts the witness u′ of v′ from the
proof π, finds the corresponding entry (m, H(m), σ = (c, z)) in Q, and returns
σ̂ = (c, ẑ := (z − u′)) to the adversary.

– Whenever the adversary outputs a challenge message m∗, the simulator
finds the corresponding entry (m∗, H(m∗), σ = (c, z)) in Q, runs (v∗, u∗) ←
GenR(1λ), and returns (σ̂ := (c, ẑ := z − u∗), (v∗, π∗)) to the adversary, where
π∗ is the corresponding simulated NIZK-PoK proof.

• Hybrid Hyb3: This is identical to hybrid Hyb2, except that this time the simulator
samples XT ← (SampD(1η, 1ℓ, R, d))ℓ, and sets Y := A · X − G mod q.

Let δi denote the probability of an adversary winning in hybrid Hybi. Hybrids Hyb0 and
Hyb1 only differ in the way the proof π∗ is generated. By the zero-knowledge property
of the proof system NIZK-PoK Π, one has that the distribution of simulated proofs is
computationally indistinguishable to the distribution of real ones. Therefore, we obtain

δ0 ≤ δ1 + negl(λ).

Claim B.2.1. If there is an adversary that makes at most Q oracle queries and can
win the game in hybrid Hyb1 with probability δ1, then its probability of winning in hybrid
Hyb2 is polynomial in δ1, if ρ ≥ (d · ℓ + β) · √

Q.

Proof. The only difference between the two hybrids is in the value of z or ẑ. For i ∈ [Q],
in hybrid Hyb1 we have zi or ẑi equal to ui + X · ci with ui ← DRℓ,ρ, while in hybrid
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Hyb2, we have zi ← DRℓ,ρ and ẑi ← DRℓ,ρ,−u′ . Let us refer to the joint distribution of
all z and ẑ in Hyb1 as D1 and that in Hyb2 as D2. Let E denote the event that the
adversary wins the game. Then, by our assumptions, we have D1(E) = δ1. From the
probability preservation property (Lemma 3.2.1) of the Rényi divergence, we get

D2(E) ≥ δ
a

a−1
1

Ra(D1||D2) , for any a ∈ (1, ∞).

In order to compute Ra(D1||D2), notice that, for i ∈ [Q], the vectors zi or ẑ are drawn
from distribution D1i = DRℓ,ρ,X·ci

in hybrid Hyb1, and from distribution D2i = DRℓ,ρ

or D2i = DRℓ,ρ,−u′ in hybrid Hyb2. Notice that D1 = (D11, . . . , D1Q), and D2 =
(D21, . . . , D2Q). By Lemma 3.2.2, we have

Ra(D1i||D2i) ≤ exp
(

a · π · (∥X · ci∥ + ∥u′∥)2

ρ2

/
, for any a ∈ (1, ∞).

Since each row of X has norm bounded by d, and ∥ci∥ ≤ √
ℓ, we have ∥X · ci∥ ≤ dℓ.

Moreover, the extracted witness must have ∥u′∥ ≤ β as the NIZK-PoK proof π verifies
correctly. Using the multiplicativity property of the Rényi divergence (Lemma 3.2.1), we
get

Ra(D1||D2) ≤ exp
(

a · π · Q · (d · ℓ + β)2

ρ2

/
.

Using the assumption ρ ≥ (d ·ℓ+β) ·√Q, we get that Ra(D1||D2) ≤ exp(a ·π). Therefore,
we obtain that δ2 := D2(E) ≥ δ

a
a−1
1 / exp(a · π). Taking any value of a > 1 yields the

result.

Hybrids Hyb2 and Hyb3 only differ in the way the public key Y is generated. By the
properties of SampD, we have that A · X mod q is statistically close to uniform. Thus,
the same holds for A · X − G mod q, which implies that

δ2 ≤ δ3 + negl(λ).

Claim B.2.2. If there is an adversary A that makes at most Q oracle queries, and
succeeds in forging a valid signature with probability δ3 is hybrid Hyb3, then we can
define an algorithm B which given A ← Rη×ℓ

q , finds a non-zero short u ∈ Rℓ such that
∥u∥ ≤ 2γ2 + 2dℓ and A · u = 0 mod q.

Proof. Let σ∗ = (c∗, z∗) be the forgery signature output by A on message m∗, v∗ the
challenge statement provided to A, and σ = (c, z) the corresponding signature created
when the adversary queried the random oracle on message m∗. Let u := z∗ −z−X(c∗ −c).
We have

A · (z∗ − z + X · (c∗ − c)) = A · (z∗ − z) − (G + Y) · (c∗ − c)
= H(m) − H(m)
= 0 mod q.
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Moreover, since ∥z∗∥ ≤ γ2, ∥z∥ ≤ γ2, and ∥X · c∗∥ , ∥X · c∥ ≤ dℓ, we obtain ∥u∥ ≤
2γ2 + 2dℓ. It remain to argue that u ̸= 0. We distinguish 2 cases:

Case 1: c∗ = c. In this case we have A · (z∗ − z) = 0. Recall that presignature
given to A corresponding to statement v∗ was of the form σ̂ = (c, z − u∗). We obtain

A · (z∗ − z) = A · (z∗ − (ẑ + u∗))
= A · ((z∗ − ẑ) − u∗)
= 0 mod q,

which implies that A · (z∗ − ẑ) = v∗ = A · u∗ mod q. As argued by Gentry et. al in
[GPV08], the min-entropy of u∗ given v∗ (and also ẑ in our case) is ω(log k). Thus,
z∗ − ẑ ̸= u∗, except with negligible probability.

Case 2: c∗ ̸= c. In this case, we can apply the same arguments as in Lemma 5.4
of [Lyu12], to get that u ̸= 0 with high probability. This proves the claim.

Thus, by showing that δ3 ≤ negl(λ), this finishes the proof.

Lemma B.2.3 (Witness Extractability). Let Π = (Π.Setup, Π.Prove, Π.Verify), used in
the construction on the adaptor signature from Fig. B.3, be a NIZK-PoK with online
extractor for the relation RA. Assuming M -SISRq ,η,ℓ,γ1+γ2+β+2dℓ and that ρ ≥ (dℓ+β)

√
Q,

where Q is the maximum number of oracle queries an attacker can make, the adaptor
signature from Fig. B.3 is witness extractable in the random oracle model.

Proof. We prove the witness extractibility of the adaptor signature scheme by reduction
to the M-SIS problem. Let A be the given M-SIS instance. The proof is very similar
to that of Lemma B.2.2. Consider the following sequence of hybrids. In all of them let
σ∗ = (c∗, z∗) be the forgery signature output by A on message m∗, and let (v∗, π∗) be the
challenge statement. Without loss of generality, we can assume that the adversary always
queries the random oracle H on every message m before making a presigning/signing
query on m.

– Hybrid Hyb0: This is identical to the real experiment.

– Hybrid Hyb1: Here the challenger works as follows:

– The simulator records a list Q of all H queries made by A with their responses.
Let Q = |Q| be the number of hash queries made by A.

– Whenever A queries the random oracle H on input m, the simulator samples
v ← Rℓ

q, z ← DRℓ,ρ, sets c := G−1(v), programs the random oracle H(m) :=
A · z − (G + Y) · c mod q, and returns σ = (c, z), stores (m, H(m), σ) in Q,
and returns H(m) to the adversary.
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– Whenever the adversary queries the SignO(·) oracle on input m, the simula-
tor finds the corresponding entry (m, H(m), σ) in Q, and returns σ to the
adversary.

– Whenever the adversary queries the pSignO(·) oracle on input (m, (v′, π)), the
simulator checks the validity of (v′, π)), extracts the witness u′ of v′ from the
proof π, finds the corresponding entry (m, H(m), σ = (c, z)) in Q, and returns
σ̂ = (c, ẑ := (z − u′)) to the adversary.

– Whenever the adversary outputs a challenge message-statement tuple (m∗, (v∗, π∗)),
the simulator works as if it was responding to a presignature query: it makes
use of the extractor K, whose existence is guaranteed by the extractability
property of the NIZK-PoK Π (Definition B.1.7). In order to extract the
witness u∗ corresponding to the statement v∗, it runs extractor K, with access
to the random oracle and its answers, on input (v∗, π∗), i.e., u∗ ← K(v∗, π∗).
Then, it finds the entry (m∗, H(m∗), σ = (c, z)) in Q corresponding to m∗,
and returns σ̂ = (c, ẑ := (z − u∗)) to the adversary.

• Hybrid Hyb2: This is identical to hybrid Hyb1, except that this time the simulator
samples XT ← (SampD(1η, 1ℓ, R, d))ℓ, and sets Y := A · X − G mod q.

Let δi denote the probability of an adversary winning in hybrid Hybi.

Claim B.2.3. If there is an adversary that makes at most Q oracle queries and can win
the game in hybrid Hyb0 with probability δ0, then its probability of winning in hybrid Hyb1
is polynomial in δ0, if ρ ≥ (d · ℓ + β)

√
Q.

Proof. The proof is identical to that of the analogous claim used in the proof of
Lemma B.2.2.

Hybrids Hyb1 and Hyb2 only differ in the way the public key Y is generated. By the
properties of SampD, we have that A · X mod q is statistically close to uniform. Thus,
the same holds for A · X − G mod q, which implies that

δ1 ≤ δ2 + negl(λ).

Claim B.2.4. If there is an adversary A that makes at most Q oracle queries, and
succeeds winning with probability δ2 in hybrid Hyb2, then we can define an algorithm B
which given A ← Rη×ℓ

q , finds a non-zero short u∗ such that ∥u∗∥ ≤ γ1 + γ2 + β + 2 · d · ℓ
and A · u∗ = 0 mod q.

Proof. Let σ∗ = (c∗, z∗) be the forged signature output by A. We distinguish 2 cases:

Case 1: c∗ = c. Since both pre-signature and signature verify, we have that

A · z∗ − (G + Y) · c = H(m) mod q and A · ẑ − (G + Y) · c = H(m) − v∗ mod q,
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from which we obtain that
A · (z∗ − ẑ) = v∗ mod q.

As ∥z∗ − ẑ∥ ≤ γ1 +γ2 ≤ <β, the output of the Ext algorithm u∗ := z∗ − ẑ is a valid witness
for v∗.

Case 2: c∗ ̸= c. In this case, we make use of the extractability property of the
zero-knowledge proof π∗, in order to extract u∗ and obtain from the forged signature a
M-SIS solution. Let u∗ ← K(v, π, H), where H is the list of random oracle queries made
by A. With high probability, it holds that ((v∗, π∗), u∗) ∈ RA. Using that

A · z∗ − (G + Y) · c∗ = H(m) mod q and A · ẑ − (G + Y) · c = H(m) − v∗ mod q,

we obtain

[A|A · X] ·
�
z∗ − ẑ + u∗

c∗ − c

 
= 0 mod q,

which leads to the non-zero M-SIS solution r := z∗ − ẑ + u∗ + X · (c∗ − c), with
∥r∥ ≤ γ1 + γ2 + β + 2 · d · ℓ, by relying again on the analysis done in [Lyu12, Lemma
5.4].

Putting everything together, this concludes the proof.

B.3 On Achieving (Functional) Hiding
We discuss potential approaches to modify the VC construction in Section 3.5 to achieve
hiding and functional hiding.

Definition B.3.1 ((Functional) Hiding). A VC scheme for (F , X , Y) is said to be
statistically/computationally hiding if for any λ, w, t ∈ N, any pp ∈ Setup(1λ, 1w, 1t), and
any x, x′ ∈ X w, the distributions

{ c : (c, aux) ← Com(pp, x) } and { c : (c, aux) ← Com(pp, x′) }

are statistically/computationally indistinguishable.
A VC scheme for (F , X , Y) is said to be statistically/computationally functional hiding
if there exists a tuple of PPT simulators S = (S0, S1) such that, for any λ, w, t ∈ N and
any (f, x, y) ∈ Fw,t × X w × Yt satisfying f(x) = y, the distributions��(pp, c, π) :

pp ← Setup(1λ, 1w, 1t)
(c, aux) ← Com(pp, x)
π ← Open(pp, f, aux)

�� and



(pp, c, π) :
(pp, td) ← S0(1λ, 1w, 1t)
(c, π) ← S1(td, f, y)

�

are statistically/computationally indistinguishable.
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In the VC construction in Figure 3.1, a commitment of x is of the form ⟨v, x⟩ mod q
as in essentially every lattice-based commitment schemes. A well-known technique for
achieving hiding is to commit instead to the concatenation of x and a short random
vector r. If the randomness vector r has sufficiently many dimensions one could argue
that ⟨v, (x, r)⟩ mod q is statistically close to uniform. This can be done, relying on the
regularity lemmas discussed in Section 4.3.2. Achieving functional hiding requires more
work. In the following, we discuss three (potential) approaches on top of introducing r.

Notice that the verification algorithm in Figure 3.1 is simply checking that an opening
proof (u0, u1) satisfies two SIS relations. An approach of achieving functional hiding is
therefore to replace the opening proof (u0, u1) with a zero-knowledge proof of knowledge
of (u0, u1). This can be done efficiently using Schnorr-like proofs in the random oracle
model, without affecting compactness since the witness (u0, u1) and the relation that
it satisfies are of size independent of (f, y). Due to the use of a random oracle, the
resulting scheme may no longer be purely algebraic (depending on how the random oracle
is heuristically instantiated) and therefore might not be recursively composed natively.
However, in applications where a single party performs the entire recursive composition,
it is possible to first recursively compose the non-functional-hiding scheme in Figure 3.1,
and finish off with a zero-knowledge proof of the final opening proof.

Another approach, related to the first and inspired by [CLMQ21], is to (provably)
instantiate the random oracle in a Schnorr-like proof with a function that outputs short
preimages of the inputs with respect to a linear function. While this technique preserves
the algebraic structure of the scheme, it requires each of the witness components u0 and
u1 to be a short square matrix instead of a short vector. In other words, to achieve
functional hiding using this approach, we need to either introduce dummy relations or
prove ℓ openings in batch.

The third approach is to argue directly that (u0, u1) leaks no information about x.
This is intuitively plausible since both u0 and u1 consists of linear combinations of
Gaussian vectors with coefficients depending on r. Indeed, for d = 1, we could apply
a Gaussian-version of the Leftover Hash Lemma [AGHS13] and rejection sampling to
argue this formally. For d ≥ 2, unfortunately, the distributions of u0 and u1 become
much more complicated, making generalising the argument for d = 1 to d ≥ 2 difficult.
Furthermore, we remark that this approach relies on making the variance of u0 and u1
super-polynomially wide to “smudge” the contribution of x. This means the modulus q
would also need to be super-polynomially large.

B.4 Vector Commitments without Knowledge
Assumptions

We strip off components for compactness and extractability from our main VC construction
in Section 3.5. The resulting scheme supports the same class of openings. It achieves the
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weaker notions of succinctness and weak binding but does not rely on any non-falsifiable
assumption.

B.4.1 Definitions
Since our goal is to achieve succinctness, we fix t = 1 everywhere and omit it from the
syntax. The definition of correctness is modified accordingly. Next, we formalise (weak)
binding and succinctness.

Definition B.4.1 ((Weak) Binding). Let ρ : N3 → [0, 1]. A VC scheme for (F , X , Y) is
said to be weakly ρ-binding if for any pair of PPT adversary A and any s, w ∈ poly(λ) it
holds that the following expression is upper-bounded by ρ(λ, s, w):

Pr


∀ i ∈ {0, 1},

Verify(ppfi,yi
, zi, c, πi) = 1,

∧ f0(z0, ·) = f1(z1, ·)
∧ y0(z0) ̸= y1(z1)

@@@@@@@@@@@

pp ← Setup(1λ, 1s, 1w)'
c, (fi, zi, yi, πi)1

i=0

.
← A(pp)

∀ i ∈ {0, 1},

ppfi,yi
← PreVerify(pp, (fi, yi))

 .

We say that the scheme is weakly binding if it is weakly ρ-binding and ρ(λ, s, w) is
negligible in λ for any s, w ∈ poly(λ).
The scheme is said to be ρ-binding if for any PPT adversary A and w, t = poly(λ) it
holds that the following expression is upper-bounded by ρ(λ):

Pr


)∀ i ∈ I, Verify(ppfi,yi

, zi, c, πi) = 1
0

∧ ¬ (∃ x ∈ Kw, ∀ i ∈ I, fi(zi, x) = yi(zi))

@@@@@@@@@@
pp ← Setup(1λ, 1s, 1w))

c, I, (fi, zi, yi, πi)i∈Zt

0 ← A(pp)
∀ i ∈ I

ppfi,yi
← PreVerify(pp, (fi, yi))

 .

We say that the scheme is binding if it is ρ-binding and ρ(λ, s, w) is negligible in λ for
any s, w ∈ poly(λ).

Note that in the binding definition the existence of x is checked over the base field K
rather than the ring R. The reason for this choice will become clear when we discuss the
binding property of our construction.

For positional openings [CF13] weak binding and binding are trivially equivalent. Using
linear algebra, it is also not difficult to that the equivalence also holds for openings to
linear functions over finite fields [LRY16, LM19].1 The equivalence does not seem to
hold, however, for openings to linear functions over rings nor for high-degree openings
over rings or fields.

1In [LM19], the generic group model is used to prove the binding property of the compact linear map
commitment construction. If the compactness requirement is dropped, binding could be proven in the
plain model.
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Definition B.4.2 (Succinctness). A VC scheme for (F , X , Y) is said to be succinct
if there exists p(λ, s, w) ∈ poly(λ, log s, log w) such that for any λ, s, w ∈ N, any pp ∈
Setup(1λ, 1s, 1w), any (f, z, x, y) ∈ Fs,w × X s × X w × Ys, any (c, aux) ∈ Com(pp, x), and
any π ∈ Open(pp, f, z, aux), it holds that |c| ≤ p(λ, s, w) and |π| ≤ p(λ, s, w), where | · |
denotes the description size.

B.4.2 Construction

Setup(1λ, 1s, 1w)

v←(R×
q )w

(A, td) ← TrapGen(1η, 1ℓ, q, R, β)
t←Rη

q

ug ← SampPre(td, g(v) · t, β), ∀g ∈ G
return pp :=

'
A, t, (ug)g∈G , v

.

Com(pp, x)

c := ⟨v, x⟩ mod q

for e ∈
=

k∈[d]

Ek do

ue := d! ·
:

e′∈Ek\{ e }

)
k
e′

0)
k
e
0 · xe′ · uXe′−e

aux := (ue)e∈
>

k∈[d]
Ek

return (c, aux)

Open(pp, f, z, aux)

u :=
d:

k=1

:
e∈Ek

fe(z) · ue

return π := u

Verify(ppf,y, z, c, π)

b0 :=
'

Au ?= f̂(z, c) · t mod q
.

b1 :=
*

∥u∥ ?≤ δ

1
return b0 ∧ b1

PreVerify(pp, (f, y))

if (f, y) /∈ Fs,w × Ys then return ⊥

f̂(Z, C) := d! ·
(

d:
k=1

:
e∈Ek

*
k

e

1−1
· fe(Z) · v−e · Ck − y(Z)

/
ppf,y :=

'
A, t, f̂

.
return ppf,y

Figure B.4: Stripped-Down VC Construction.

A formal description of the stripped-down construction is in Figure B.4. The proof of
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correctness is completely analogous to that of Theorem 3.5.1 and is therefore omitted.

Theorem B.4.3. For d = O(1), ℓ ≥ lhl(R, η, q, β) and

δ = 3 · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

the VC construction in Figure B.4 is correct.

Theorem B.4.4. The construction of vector commitments for (F , X , Y) in Figure B.4 is
weakly-binding if ℓ ≥ lhl(R, η, q, β), β ≥ α, and the k-M -ISISRq ,η,ℓ,w,G,1,D,T ,β,2δ assump-
tion holds, where D is such that the distribution


(A, t, { uG } , v)
@@@@@A←Rη×ℓ

q ; t←T ; v←(R×
q )w

ug←Dg,A,t,v, ∀g ∈ G

�
is statistically close to the distribution


(A, t, { uG } , v)
@@@@@A←Rη×ℓ

q ; t←T ; v←(R×
q )w

ug←SampD(1ηi , 1ℓi , R, β) : A · ug ≡ g(v) · t mod q, ∀g ∈ G

�
.

Proof. Let A be an adversary against the weakly binding property of the construc-
tion in Figure B.4. We construct an algorithm B for the k-M -ISISRq ,η,ℓ,w,G,1,D,T ,β,2δ

problem. Our algorithm B inputs a problem instance
'
A, t, v, { ug }g∈G

.
, sets pp :='

A, t, v, { ug }g∈G
.
, and runs A on pp to obtain a tuple (c, (fi, zi, yi, ui)1

i=0). Our algo-
rithm B outputs (s∗, ug∗) = (d! · (y1(z1) − y0(z0)), u0 − u1).
Suppose A is a successful adversary against the weak-binding property of our VC
construction. By our assumption on D, the distribution of the public parameters pp
passed to A by B is statistically close to that generated by Setup. Therefore, with
non-negligible probability, the tuple that A returns to B satisfies


A · ui = f̂i(zi, c) · t mod q,
∥ui∥ ≤ δ.

for i ∈ {0, 1} with f0(z0, ·) = f1(z1, ·) but y1(z1) ̸= y0(z0), which implies A · ug∗ =
s∗ · t mod q, 0 < ∥s∗∥ ≤ 2 δ, and ∥ug∗∥ ≤ 2 δ.

Theorem B.4.5. For n ∈ poly(λ), q, δ ∈ poly(λ, s, w), and ℓ ∈ Θ(log q) = polylog(λ, s, w),
covering the choices of parameters in Theorems B.4.3 and B.4.4, the VC construction
in Figure B.4 is succinct.

Concretely, let R be a power-of-2 cyclotomic ring so that γ = n. For s = w ≥ n and for
the following choices of parameters,

d = O(1), β ≥ α,

δ = 3 · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

q ≈ δ · n · log n, and
ℓ = lhl(R, η, q, β) ≈ 2 logβ q,
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a commitment is of size O(n log s), and an opening proof is of size O(n · (log s +
log β)2/ log β). The minimum is attained at β = Θ(s), where an opening proof is
of size O(n log s).

Proof. For the general case, we observe that a commitment c ∈ Rq is of description size
n log q ∈ poly(λ, log s, log w), and an opening proof u is of description size n · ℓ · log δ ∈
poly(λ, log s, log w).

For the concrete case, we have

δ = 3 · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R = O(s3d · α2d+1 · β · n2d+2),

q = δ · n · log n = O(s3d · α2d+1 · β · n2d+3 · log n),
log δ, log q = O(log s + log β),

ℓ = 2 log q/ log β = O((log s + log β)/ log β),
|c| = n · log q = O(n log s), and
|u| = n · ℓ · log δ

= n · O((log s + log β)/ log β) · O(log s + log β)
= O(n · (log s + log β)2/ log β).

B.4.3 On Binding
We study to what extent binding can be achieved without relying on non-falsifiable
assumptions.

In the following informal discussion we omit the public input z for readability. As
mentioned previously, in the case where F consists of only position maps, then weak
binding is trivially equivalent to binding. This is because, if fi are position maps, i.e.
fi(x) = xi, for i ∈ I then the only way to force that no x ∈ Kw satisfies fi(x) = yi for all
i ∈ I is to set fi′ = fi′′ but yi′ ̸= yi′′ for some distinct i′, i′′ ∈ I.

In fact, even if F consists of only linear maps, i.e. d = 1, the equivalence between weak
binding and binding still holds without considering the norm bound constraint, e.g. when
the linear maps are defined over a finite field. Indeed, suppose that fi(x) = yi for all i ∈ I
is not satisfiable by any x ∈ Kw, then by Gaussian elimination one can find a coefficient
vector r′ ∈ KI such that ;

i∈I r′
ifi ≡ 0 and ;

i∈I r′
iyi = 1. Multiplying r′ by the least

common multiple ∆ of the denominators in r′ to obtain r ∈ RI , we have ;
i∈I rifi ≡ 0

and ;
i∈I riyi = ∆. Since the verification algorithm Verify is linear in (f, y), we obtain

openings for (fi, yi) and (fi, yi + ∆).

In the lattice setting, however, we need to argue that ∆ is not too large relative to (a
large enough) q, so that we can use the technique in the proof of Theorem B.4.4 to turn
an adversary against binding into an algorithm for solving certain k-M -ISIS problems.
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The following theorem states that binding can be achieved for d = 1 and an exponentially
large q.

Theorem B.4.6. In addition to the assumptions made in Theorem B.4.4, let d = 1,
δ∗ := |I| · γR · δ · νν · α2ν , and q ≥ ω

)|I| · γR · δ · νν · α2ν
0

where ν := (w + 1) · n. If the
VC construction in Figure B.4 is weakly-binding for δ∗ then it is also binding for δ.

Proof. Suppose there exists a PPT adversary A against binding, we construct a PPT
adversary B against weak binding as follows. Our adversary B receives the public
parameters

'
A, t, v, { ug }g∈G

.
and forwards it to A. By assumption, A outputs a tuple)

c, I, { fi, zi, yi, ui }i∈I

0
which satisfies the following with non-negligible probability:

1. For all i ∈ I, A · ui ≡ f̂i(zi, c) mod q.

2. For all i ∈ I, ∥ui∥ ≤ δ.

3. There does not exist x ∈ Kw such that, for all i ∈ I, fi(zi, x) = yi.

Since fi is a homogeneous linear polynomial, we have f̂i(zi, ·) = fi(zi, ·) − y(zi) and
fi(zi, ·) can be represented by a vector f i ∈ Rw such that fi(zi, x) = ⟨f i, x⟩ for any
x ∈ Kw. Let F be the matrix with the i-th column being f i, U be the matrix with the
i-th column being ui, and y = (yi(zi))i∈I . Consequently, we can rewrite the equations in
Item 1 above as

AT · U ≡ t ·
'
c · v̄T −1

. (
F
yT

/
mod q.

By assumption there exists an r′ ∈ K|I| s.t.
(

F
yT

/
· r′ = (0, . . . , 0, 1). Thus, we have

r := ∆ · r′ ∈ R|I| s.t.
(

F
yT

/
· r = (0, . . . , 0, ∆) where ∆ is the least common multiple

of the denominators in r′. Note that a solution in R maps to a solution over Z by the
map g /→ rot(g). To bound ∥r∥ and ∆, assume |I| = w + 1, which represents the worst
case, and apply known bounds for solutions over Z [MS04, Fact 25]: ∆ ≤ νν/2 · αν and
∥r∥ ≤ νν/2 · αν−1 · ∆.

Let u′
0 := U · r. We have

Verify(ppf0,y0 , z0, c, u0) = 1
Verify(ppf0,y0+∆, z0, c, u′

0) = 1
∥u0∥ < ∥u|I|∥ ≤ δ∗

but y0 ̸= y0 + ∆.
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We next discuss why proving binding in the case d > 1 from falsifiable assumptions seems
unlikely. Indeed, if we were given a compact and binding VC for degree-d openings for
d ≥ 2, we can construct a SNARG for the NP-complete language of degree-d polynomial
maps satisfiability (Section 3.6), where a SNARG is almost a SNARK but only satisfies
soundness instead of knowledge soundness. Due to the impossibility result of Gentry
and Wichs [GW11], who showed that certain flavour of SNARG requires non-falsifiable
assumption or non-black-box reduction, we obtain the same impossibility for compact
and binding VC with openings to non-linear polynomial maps.

B.4.4 On Compactness
We discuss the difficulty of achieving compactness without relying on the knowledge
k-M -ISIS assumption.

For VC constructions where the verification equation is linear in the opening proof, such
as the constructions presented in Section 3.5.1, and Appendix B.4.2, a natural strategy
to achieve compactness is to aggregate multiple opening proofs using a random linear
combination. Instantiating the strategy involves deciding how the random coefficients of
the linear combination are generated.

For schemes where the verification equation is defined over prime-order cyclic groups,
provably binding ways of instantiating the strategy includes (i) embedding the random
coefficients in the public parameters and prove soundness in the generic [LM19] or
algebraic [GRWZ20] group model, (ii) making the verification interactive and let the
verifier sample the coefficients, or (iii) generate the coefficients using a random oracle.
The proofs of binding in all three approaches rely crucially on the fact that Vandermonde
matrices defined by distinct elements in a finite field are always invertible.

In the lattice setting, the random coefficients need to be chosen from a subtractive set, i.e.
a set where the difference between any pairs of distinct elements is always invertible, for a
similar proof strategy to work (see, e.g. [AL21]). Unfortunately, it has been shown [AL21]
that over many cyclotomic rings R, the size of (even relaxed variants of) subtractive sets
is at most O(n), which is insufficient for aggregating an unbounded polynomial number t
of opening proofs into a single proof of size poly-logarithmic in t.

B.4.5 Post-Quantum Security
We analyse the security of our stripped-down construction against quantum attackers.
We show that our construction, viewed as an ordinary commitment scheme, satisfies
the notion of collapsing [Unr16]. This is done is two steps: First, we show that our
VC scheme satisfies the notion of somewhere statistically binding (SSB) [HW15]. Next,
we rely on a previous result, reproduced in Appendix B.4.5 that an SSB VC is also
collapsing.
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KeyGen(1λ)

f ′ ← SampD(11, 11, R, β); f := p · f ′ + 1
if f ̸∈ R×

q resample
g ← SampD(11, 11, R, β)
if g ̸∈ R×

q resample
return pk := h = p · g/f, sk := f

Enc(pk, m ∈ Rp)

(s, e) ← SampD(11, 12, R, β′)
return c := h · s + p · e + m

Dec(sk, c)

return m := (f · c mod q) mod p

Figure B.5: NTRU Encryption. n, q, p, β, β′ are parameters ∈ poly(λ).

Assumptions.

For showing post-quantum security, we will rely on the pseudorandomness and correctness
of the NTRU encryption scheme [HPS96, HPS98].

Definition B.4.7 (NTRU Encryption Assumption). Consider the NTRU encryption
scheme parameterised by n, q, p, β, β′ ∈ poly(λ) as given in Figure B.5.

1. We say that NTRU ciphertexts are w-pseudorandom if the following expression
is negligible in λ for any PPT A, arbitrary mi ∈ Rp for i ∈ Zw, and (pk, sk) ←
KeyGen(1λ).

Pr
�A(pk, { ci }i∈Zw

) = 1
@@ci ← Enc(pk, mi)

! − Pr
�A(pk, { ui }i∈Zw

) = 1
@@ui←Rq

!
.

2. Let w, α ∈ poly(λ) be additional parameters. We say that NTRU decryption is (w, α)-
correct if the following expression is negligible in λ for any PPT A, mi ∈ {0, 1} for
i ∈ Zw, and (pk, sk) ← KeyGen(1λ).

Pr

 xi ← A(pk, { ci }i∈Zw
);

∀i ∈ Zw, ∥xi∥ ≤ α ∧ Dec(sk,
:

xi · ci) ̸=
:

i∈Zw

xi · mi

@@@@@@@ci ← Enc(pk, mi)

 .

The NTRU encryption assumption holds for the parameters n, q, w, α if there exist
p, β, β′ ∈ poly(λ) such that NTRU ciphertexts are w-pseudorandom and NTRU decryption
is (w, α)-correct for these parameters.

The pseudorandomness of NTRU ciphertexts can be reduced to the decision NTRU
assumption (asserting that NTRU public keys are pseudorandom) and the Ring-LWE
assumption [CDH+20]. The decisional NTRU assumption can be dropped when β ≈√

q [SS11]. For any α ∈ poly(λ), there exist parameters n, q, p, β, β′ ∈ poly(λ) such that
NTRU decryption is unconditionally correct [CDH+20].
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Quantum Information.

A (pure) quantum state is a unit vector |ψ⟩ in a complex Hilbert space H. Hilbert
spaces are commonly divided into registers, e.g., H = H0 ⊗ H1. A unitary operation is
represented by a complex matrix U such that UU † = I. The operation U transforms the
pure state |ψ⟩ to the pure state U |ψ⟩. In this work, a quantum adversary is a family of
quantum circuits {Aλ}λ∈N represented classically using some standard universal gate set.
A quantum adversary is polynomial-size if there exists a polynomial p and some λ0 ∈ N
such that for all λ > λ0 it holds that |Aλ| ≤ p(λ).

Collapsing.

It is well known that the classical (computational) notion of binding is not meaningful
against quantum attackers [Unr16, ARU14]. For compressing commitment schemes,
where statistical binding is simply impossible, a more useful notion is that of collapsing.
In the following, we adapt the definition of collapsing for hash functions [Unr16] to one
for VCs. Essentially, our definition requires the commitment algorithm of the VC to be
collapsing when viewed as a hash function. Note that our definition is weaker than that
of [CMSZ22], who requires the collapsing property to hold with respect to positional
openings.

Definition B.4.8 (Collapsing). A VC scheme Γ is said to be collapsing if for any QPT
adversary A and any w = poly(λ) it holds that@@@@@@@

Pr
�
CollapsExp0

Γ,A(1λ, 1s, 1w, 1t) = 1
�

− Pr
�
CollapsExp1

Γ,A(1λ, 1s, 1w, 1t) = 1
�
@@@@@@@ ≤ negl(λ).

where the experiment CollapsExpb
Γ,A(1λ, 1s, 1w, 1t) is defined as follows:

• The challenger samples pp ← Setup(1λ, 1s, 1w, 1t) and sends it to A.

• A replies with a classical message c (a commitment) and a quantum register V,
which contains strings x ∈ Zw.

• Let U be the unitary that acts on V and some ancilla register and computes the bit'
c

?= Com(pp, V)
.
, where the auxiliary output aux is suppressed. The challenger

applies U to V and measures the ancilla register containing the output bit in the
computational basis. If such bit is 0 abort the experiment, else apply U †.

• If b = 0 the challenger does nothing. If b = 1 the challenger measures the register
V in the computational basis.

• Return the (possibly measured) register V to A.

• A returns a bit which is also the output of the experiment.
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Somewhere Statistically Binding (SSB)

We introduce the notion of somewhere statistically binding (SSB) [HW15] for VCs.
Similar to the treatment for collapsing above, our definition of SSB essentially requires
that the commitment algorithm of the VC to be SSB as an ordinary commitment.

Definition B.4.9 (Somewhere Statistically Binding (SSB)). A VC scheme Γ is said
to be somewhere statistically binding (SSB) if there exists a binding setup algorithm
pp ← BSetup(1λ, 1s, 1w, 1t, i), which takes an additional input i ∈ Zw, such that the
following properties are satisfied:

• (Mode Indistinguishability) For all λ ∈ N, all s, w, t = poly(λ), and all i ∈ Zw the
following distributions are computationally indistinguishable

Setup(1λ, 1s, 1w, 1t) ≈ BSetup(1λ, 1w, 1t, i).

• (SSB) For all λ ∈ N, s, w, t = poly(λ), i ∈ Zw, and pp ∈ BSetup(1λ, 1s, 1w, 1t, i),

Pr

∃x0, x1 ∈ X w :

(c0, aux0) ← Com(pp, x0)
∧ (c1, aux1) ← Com(pp, x1)
∧ c0 = c1

∧ x0,i ̸= x1,i

 ≤ negl(λ).

Our central technique of achieving SSB is to replace entries of the public vector v with
ciphertexts of (the provable variant of) the NTRU encryption scheme. Concretely, we
construct BSetup(1λ, 1s, 1w, 1t, i) by setting vi to be an NTRU ciphertext encrypting 1,
while setting vj to be an NTRU ciphertext encrypting 0 for all j ̸= i. Since NTRU cipher-
texts are indistinguishable from uniformly random Rq elements, mode indistinguishability
follows. For the main SSB property, we notice that if two vectors x0, x1 ∈ X w generate
the same commitment, we have ⟨v, x0⟩ = ⟨v, x1⟩ . Since the NTRU encryption scheme
is linearly homomorphic, the left-hand-side is a ciphertext encrypting x0,i, while the
right-hand-side is encrypting x1,i. The correctness of NTRU then forces x0,i = x1,i.

Theorem B.4.10. If the NTRU encryption assumption (Definition B.4.7) holds for
n, q, w, α, the VC construction Γ in Figure B.4 is SSB.

Proof. Following the treatment in Appendix B.4, we assume without loss of generality
that t = 1 and omit the input 1t to the setup algorithms. We begin by constructing the
binding setup algorithm BSetup(1λ, 1s, 1w, i) as follows, where mi denotes the i-th unit
vector.

Mode Indistinguishability. Fix any i ∈ Zw. To show that Setup(1λ, 1s, 1w) ≈
BSetup(1λ, 1s, 1w, i) it suffices to show that the distributions of v induced by the two
algorithms are indistinguishable, which is immediately implied by the assumption that
NTRU ciphertexts are w-pseudorandom.
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BSetup(1λ, 1s, 1w, i)

(A, td) ← TrapGen(1η, 1ℓ, q, R, β)
t ← T
(pk, sk) ← KeyGen(1λ)
vi ← Enc(pk, 1)
vj ← Enc(pk, 0), ∀j ∈ Zw \ { i }
v := (vj : j ∈ Zw)
ug ← SampPre(td, g(v) · t, β), ∀g ∈ G
return pp :=

'
A, t, v, { ug }g∈G

.

SSB. Fix any i ∈ Zw and pp ∈ BSetup(1λ, 1s, 1w, i). We show that if x0, x1 ∈ X w

satisfy Com(pp, x0) = Com(pp, x1) (suppressing aux), then it holds that x0,i = x1,i. Let sk
be the NTRU secret key generated when generating the pp. Since x0, x1 ∈ X w, we have
that ∥x0∥ ≤ α and ∥x1∥ ≤ α. Let c := Com(pp, xb) = ⟨v, xb⟩ mod q. By the assumption
that NTRU decryption is (w, α)-correct, it holds that Dec(sk, c) = ⟨mi, xi⟩ = xb,i for
b ∈ {0, 1}. Consequently, x0,i = x1,i.

SSB Implies Collapsing.

We now show that an SSB VC is also collapsing. This implication was first shown in an
oral presentation of Ma [Ma20] but, to the best of our knowledge, it does not formally
appear in any prior work. For completeness, we present the proof below.

Theorem B.4.11. An SSB VC Γ is collapsing.

Proof. Let V = V0 ⊗ · · · ⊗ Vw−1 denote the registers sent by the attacker in the collapsing
experiment. The proof consists of a hybrid argument where we define the hybrids Hi for
i ∈ { 0, 1, . . . , w } to be the same experiment as CollapsExpb

Γ,A except that the challenger
measures the registers (V0, . . . , Vi−1). Note that the hybrid H0 corresponds to the original
experiment with the bit b = 0, whereas hybrid Hw is identical to the original experiment
with the bit set to b = 1. It therefore suffices to show that for all i = [w] the hybrids Hi−1
and Hi produce distributions that are computationally close. This is done by defining
the following intermediate distributions:

• Hybrid G0: This experiment is identical to Hi−1.

• Hybrid G1: In this hybrid we compute the public parameters as pp ← BSetup(1λ, 1s,
1w, 1t, i). By the mode indistinguishability of the setup algorithm, we can conclude
that the view of the adversary is computationally indistinguishable from that
induced by the previous hybrid.
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• Hybrid G2: This hybrid is identical to the previous one, except that the challenger
additionally measures the i-th register Vi. Let us analyse the content of the registers
after the third step of the experiment. If the challenger aborts, then the adversary
is not returned any register and therefore the views are trivially identical. On the
other hand, if the challenger does not abort, then the state in the V register consists
of

χ =
:

x s.t. c=Com(pp,x)
αx |x⟩

where the amplitudes are suitably normalized and c is the classical string returned
by A. By the SSB property of the VC, it holds that, except with negligible
probability, all pre-images of c have the same i-bit xi. Thus we can rewrite (up to
a rearrangement of the registers)

χ =
:

x s.t. c=Com(pp,x)
αx |x⟩ = |xi⟩ ⊗

:
x s.t. c=Com(pp,x)

αx |x−i⟩

where x−i denotes the vector x without the i-th bit xi. It follows that measuring
the register Vi returns xi with probability 1 and it does not disturb the state. Thus
the adversary’s view of this hybrid is statistically close to that of the previous one.

• Hybrid G3: This is identical to the previous experiment, except that we undo
the modification done in the G1 (i.e., we sample the public parameters as pp ←
Setup(1λ, 1s, 1w, 1t)). Computational indistinguishability follows by the same argu-
ment.

The proof is concluded by observing that the experiment G3 is identical to Hi.
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APPENDIX C
Appendix to Chapter 4

C.1 Proofs for Foldable Structures
C.1.1 Proof of Lemma 4.6.1

Proof. By the definition of a foldable sequence, n = ;ℓ
i=0 2i · ki. Since kℓ ≥ 1, ki ≤ k∗ for

all i ∈ { 0, . . . , ℓ }, and ;ℓ
i=0 2i = 2ℓ+1 − 1, we can derive 2ℓ ≤ n < k∗ · 2ℓ+1. The claim

then follows.

C.1.2 Power Sequence - Proof of Lemma 4.6.4

Proof. For the first claim, it suffices to show that the sequence of monomials m =
(X, X2, . . . , Xn) in variable X is (k0, k1, . . . , kℓ)-foldable, and realise that v can be
obtained by evaluating m at the point v. We construct a seed and a generator of m
recursively as follows. Define a procedure, which on input a seed m = (X, X2, . . . , Xk)
of length k and a generator g = ϵ, does the following:

• If k ≤ 2, output (m, g).

• If k > 2 is odd (hence k ≥ 3), write k = 2 · k′ + 1. Let m′ = (X, X2, . . . , Xk′),
ℓ′ = 1, c′ = (Xk′+1), and r′ = Xk′+1.

• If k is even (hence k ≥ 4), write k = 2 · k′ + 2. Let m′ = (X, X2, . . . , Xk′), ℓ′ = 1,
c′ = (Xk′+1, Xk′+2), and r′ = Xk′+2.

• Let g′ = (l′, c′, r′)∥g.

• Run the procedure on (m′, g′).
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It is easy to observe that running the above procedure on (m, ϵ) finds a seed and a
generator of m with the desired parameters.

For the generalised claim, we similarly define a procedure, which on input a seed
m = (X, X2, . . . , Xwk) of length wk and a generator g = ϵ, does the following:

• If k ≤ 2, output (m, g).

• If k > 2 is odd (hence k ≥ 3), write k = 2 · k′ + 1. Let m′ = (X, X2, . . . , Xwk′),
ℓ′ = 1, c′ = (Xwk′+1, . . . , Xwk′+w), and r′ = Xwk′+w.

• If k is even (hence k ≥ 4), write k = 2 · k′ + 2. Let m′ = (X, X2, . . . , Xwk′), ℓ′ = 1,
c′ = (Xwk′+1, . . . , Xwk′+2w), and r′ = Xwk′+2w.

• Let g′ = (l′, c′, r′)∥g.

• Run the procedure on (m′, g′).

It is easy to observe that running the above procedure on (m, ϵ) finds a seed and a
generator of m with the desired parameters.

C.1.3 Balanced Power Sequence - Proof of Lemma 4.6.5

Proof. It suffices to show that the sequence of monomials

m = (X−n, . . . , X−2, X−1, X, X2, . . . , Xn)

in variable X is (0, k0, k1, . . . , kℓ)-foldable, and realise that v can be obtained by evaluating
m at the point v.

Let m̂ = (X, X2, . . . , Xn), ℓ̂ = X−(n+1) ĉ = ϵ the empty vector, and r̂ = 1. Let
ĝ = (l̂, ĉ, r̂). Clearly, m̂ is foldable with seed m̂ and generator ĝ.

We next construct a generator of m̂ recursively as follows. Define a procedure, which on
input a sequence m of length k and possibly partial generator g, does the following:

• If k = 1, output (m, g).

• If k > 1 is odd (hence k ≥ 3), write k = 2 · k′ + 1. Let m′ = (X, X2, . . . , Xk′),
ℓ′ = 1, c′ = (Xk′+1), and r′ = Xk′+1.

• If k is even (hence k ≥ 2), write k = 2 · k′. Let m′ = (X, X2, . . . , Xk′), ℓ′ = 1,
c′ = ϵ the empty vector, and r′ = Xk′ .

• Let g′ = (l′, c′, r′)∥g.

• Run the procedure on (m′, g′).

It is easy to observe that running the above procedure on (m̂, ĝ) finds a seed and a
generator of m with the desired parameters.
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C.1.4 Compression Vector - Proof of Lemma 4.6.6

Proof. To show that mℓ := m is (k0, k1, . . . , kℓ)-foldable, it suffices to show that m0, . . . , mℓ

induced by the given seed and generator as described in the procedure of Definition 4.6.1
each consists of distinct monomials.

By construction, mℓ = (Xℓ,1, . . . , Xℓ,kℓ
) consists of distinct monomials. Suppose mi

consists of distinct monomials. Consider

mT
i−1 = (mT

i , Xi−1,1, . . . , Xi−1,ki−1 , Xi−1,0 · mT
i ).

By construction, none of the monomials in mT
i is a multiple of Xi−1,j for any j ∈

{ 0, . . . , ki−1 }. Therefore mi−1 consists of distinct monomials. The claim thus follows
from induction.

Finally, the norm bound of h follows from the observation that each entry of h is a
product of at most ℓ + 1 entries of x.

C.2 Folding Argument for Type-1 Linear Relations
The protocol Πfold

1 .⟨Prove(crs, stmt, wit), Verify(crsstmtoff , stmton)⟩ consists of ℓ + 1 rounds
and makes use of the subtractive set S ⊂ R× mentioned in Section 4.3.1. Denote

(A(0), x(0), y(0), α(0)) := (A, x, y, α).

Let n = ;ℓ
j=0 2j · kj be the binary representation of n, where kj ∈ {0, 1}. For i ∈

{ 0, . . . , ℓ }, define ni := ;ℓ
j=i 2j−i · kj . Then, for i < ℓ, the i-th round of the protocol is

as follows:

• Parse

– A(i) as (A(i)
L , A(i)

c , A(i)
R ), and

– x(i) as (x(i)
L , x(i)

c , x(i)
R )

where ncol(A(i)
L ) = ncol(A(i)

R ) = nrow(x(i)
L ) = nrow(x(i)

R ) = ni+1 · w. Note that
ncol(A(i)

c ) = ki · w, meaning that A(i)
c and x(i)

c are empty when ki = 0.

• P sends

– x(i)
c (if ki > 0),

– y(i)
LR := A(i)

L · x(i)
R mod q, and

– y(i)
RL := A(i)

R · x(i)
L mod q.

• V samples ri←S and sends ri to P.
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• P computes the compressed witness

x(i+1) := x(i)
L + x(i)

R · ri

• P and V compute the compressed statement

A(i+1) := A(i)
L + A(i)

R · r−1
i mod q,

y(i+1) := y(i) − A(i)
c · x(i)

c + y(i)
RL · r−1

i + y(i)
LR · ri mod q

α(i+1) := 2 · α(i) · γR.

In the ℓ-th (i.e. final) round, P sends x(ℓ) and V checks that

A(ℓ) · x(ℓ) = y(ℓ) mod q and
???x(ℓ)

??? ≤ α(ℓ).

C.3 Proofs for Folding Arguments
C.3.1 Completeness - Proof of Theorem 4.7.1

Proof. The case where n ≤ 2 is trivial. For n > 2, it is clear that for each i the checks???x(i)
c

??? ≤ α(i) and, if ki = 2,
'
B A

.
· x(i)

c = y(i)
c mod q0, pass. It remains to show that,

for each i, if�
A
B

 
↘ni

· x(i) = y(i) mod q0,

C(i) · x(i) = z(i) mod q1,

and
???x(i)

??? ≤ α(i),

then �
A
B

 
↘ni+1

· x(i+1) = y(i+1) mod q0,

C(i+1) · x(i+1) = z(i+1) mod q1,

and
???x(i+1)

??? ≤ α(i+1).

First, by
(�

A
B

 
↘ni

/
· x(i) = y(i) mod q0 we have

�
A
B

 
↘ni+1

· x(i)
L +

(
0
A

/
· x(i)

c = y(i)
L mod q0,

(
B
0

/
· x(i)

c +
�
A
B

 
↘ni+1

· x(i)
R = y(i)

R mod q0.
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It follows that�
A
B

 
↘ni+1

· x(i+1) =
�
A
B

 
↘ni+1

· (x(i)
L + x(i)

R · ri)

= y(i)
L −

(
0
A

/
· x(i)

c + y(i)
R · ri −

(
B
0

/
· x(i)

c · ri

= y(i+1) mod q0.

Next, by C(i) · x(i) = z(i) mod q1 we have

C(i)
L · x(i)

L + C(i)
c · x(i)

c + C(i)
R · x(i)

R = z(i) mod q1.

Therefore

C(i+1) · x(i+1) = (C(i)
L + C(i)

R · r−1
i ) · (x(i)

L + x(i)
R · ri)

= C(i)
L · x(i)

L + C(i)
R · x(i)

R + C(i)
R · x(i)

L · r−1
i + C(i)

L · x(i)
R · ri

= z(i) − C(i)
c · x(i)

c + z(i)
RL · r−1

i + z(i)
LR · ri

= z(i+1) mod q1.

Finally, since
???x(i)

??? ≤ α(i), it follows that
???x(i+1)

??? =
???x(i)

L + x(i)
R · ri

??? ≤ 2 · α(i) · γR =
α(i+1).

C.3.2 Special Soundness - Proof of Theorem 4.7.2

Proof. The case of n ≤ 2 is trivial. Recall that α(i) = (2γR)i · α. Let α̂(ℓ) = α(ℓ) =
(2γR)ℓ · α. For i ∈ { 0, . . . , ℓ − 1 }, define α̂(i) = 4γ3

R · α̂(i+1), so that α̂(0) = (4γ3
R)ℓ ·

α̂(ℓ) = (8γ4
R)ℓ · α. In the following, assume that n > 2. We need to show that if

(x(i)
c , z(i)

LR, z(i)
RL, x(i+1)

0 , x(i+1)
1 , x(i+1)

2 ) satisfies'
B A

.
· x(i)

c = y(i)
c mod q0 if ki = 2,

???x(i)
c

??? ≤ α(i),�
A
B

 
↘ni+1

· x(i+1)
j = y(i+1)

j mod q0,

C(i+1)
j · x(i+1)

j = z(i+1)
j mod q1,

and
???x(i+1)

j

??? ≤ α̂(i+1),

where

C(i+1)
j = C(i)

L + C(i)
R · r−1

i,j mod q1,

y(i+1)
j = y(i)

L + y(i)
R · ri,j −

,B · ri,j

0
A

3 · x(i)
c mod q0

z(i+1)
j = z(i) − C(i)

c · x(i)
c + z(i)

RL · r−1
i,j + z(i)

LR · ri,j mod q1
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for distinct challenges ri,0, ri,1, ri,2 ∈ S, then we can extract x(i) satisfying�
A
B

 
↘ni

· x(i) = y(i) mod q0,

C(i) · x(i) = z(i) mod q1,

and
???x(i)

??? ≤ α̂(i).

Let

X :=
(

x(i+1)
0 x(i+1)

1 x(i+1)
2

x(i+1)
0 · r−1

i,0 x(i+1)
1 · r−1

i,1 x(i+1)
2 · r−1

i,2

/
and V :=

,r−1
i,0 r−1

i,1 r−1
i,2

1 1 1
ri,0 ri,1 ri,2

3 .

From the hypothesis, we can derive the following relations:,,,,,,,

�
A
B

 
↘ni+1 �

A
B

 
↘ni+1

3333333
· X =

,,,,
0 y(i)

L −
(

0
A

/
· x(i)

c y(i)
R −

(
B
0

/
· x(i)

c

y(i)
L −

(
0
A

/
· x(i)

c y(i)
R −

(
B
0

/
· x(i)

c 0

3333 · V mod q0,

'
C(i)

L C(i)
R

.
· X =

'
z(i)

RL z(i) − C(i)
c · x(i)

c z(i)
LR

.
· V mod q1.

Since det(V) = r−1
i,0 · r−1

i,1 · r−1
i,2 · (ri,0 − ri,1) · (ri,1 − ri,2) · (ri,2 − ri,0) and S is subtractive,

V is invertible. Let (
x(i)

L

x(i)
R

/
:= X · V−1 ·

,0
1
0

3 .

We have ,,,,,,,

�
A
B

 
↘ni+1 �

A
B

 
↘ni+1

3333333
·
(

x(i)
L

x(i)
R

/
=

,,,,
y(i)

L −
(

0
A

/
· x(i)

c

y(i)
R −

(
B
0

/
· x(i)

c

3333 mod q0,

'
C(i)

L C(i)
R

.
·
(

x(i)
L

x(i)
R

/
=

'
z(i) − C(i)

c · x(i)
c

.
mod q1,

or equivalently �
A
B

 
↘ni

· x(i) = y(i) mod q0

C(i) · x(i) = z(i) mod q1
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where x(i) = (x(i)
L , x(i)

c , x(i)
R ).

It remains to show that
???x(i)

??? ≤ α̂(i). Note that

V−1 ·
,0

1
0

3

 	� �

wi

=

,,,
ri,0·(ri,1+ri,2)

(ri,0−ri,1)·(ri,2−ri,0)
ri,1·(ri,2+ri,0)

(ri,0−ri,1)·(ri,1−ri,2)
ri,2·(ri,0+ri,1)

(ri,1−ri,2)·(ri,2−ri,0)

333
where each entry can be simplified to be of the form

−(ζa − 1) · (ζb + ζc − 2)
(ζa − ζb) · (ζa − ζc) .

By a routine calculation (see e.g. [AL21, Proposition 11]), the norm of the above and
hence ∥wi∥ can be upper bounded by 4γR. Therefore

???x(i)
??? ≤ 4γ3

R · α̂(i+1) = α̂(i).

C.3.3 Efficiency - Proof of Theorem 4.7.3

Proof. Note that log |Rq0 | < log |Rq1 | = log q
φ(ρ)
1 = Oλ(log q1) = Oλ(log n), and an Rq1

operation takes at most Oλ(log2 n) bit operations. It is easy to verify that the prover
computes Oλ(n) operations over Rq0 or Rq1 , which takes Oλ(n · log2 n) time, and that
Oλ(ℓ) elements of Rq0 or Rq1 are being communicated, for which the overall description
size is at most Oλ(log2 n). To analyse the computation cost of the verifier, we break
down the computation steps, consisting of Oλ(ℓ + ;ℓ

i=0 ki) = Oλ(log n) operations over
Rq0 or Rq1 , which take time Oλ(log3 n), into three parts.

First, Oλ(;ℓ−i
i=0 ki) operations over Rq1 are contributed by the computation of

C(i)
c · x(i)

c mod q1, i ∈ { 0, . . . , ℓ − 1 } .

Second, Oλ(ℓ + kℓ) operations over Rq1 are contributed by the recursive computation of

C(i+1) = C(i)
L + C(i)

R · r−1
i mod q1, i ∈ { 0, . . . , ℓ − 1 } .

Since C is (k0, . . . , kℓ)-block-foldable with block-size w, there exists poly(λ)-size matrices
Mℓ over Rkℓ

q1 and (Li, Ri)ℓ−1
i=0 over Rq1 such that

C(ℓ) = (L0 + R0 · r−1
0 ) ◦ . . . ◦ (Lℓ−1 + Rℓ−1 · r−1

ℓ−1) ◦ Mℓ mod q1.

Computing C(ℓ) this way requires Oλ(ℓ + kℓ) operations over Rq1 .

Third, another Oλ(ℓ+kℓ) operations over Rq0 are contributed by the recursive computation
of

y(i+1) = y(i)
L + y(i)

R · ri −
,B · ri

0
A

3 · x(i)
c mod q0
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for i ∈ { 0, . . . , ℓ − 1 }. Since y is (k0 − 1, . . . , kℓ−1, kℓ + 1)-block-foldable with block-size
h0, there exists poly(λ)-size vectors mℓ over Rkℓ+1

q0 and (li, ri)ℓ−1
i=0 over Rq0 such that

y(ℓ) = (l0 + r0 · r−1
0 ) ◦ . . . ◦ (lℓ−1 + rℓ−1 · r−1

ℓ−1) ◦ mℓ −
ℓ−1:
i=0

(A + B · ri) · x(i)
c mod q0.

Computing y(ℓ) this way requires Oλ(ℓ + kℓ) operations over Rq0 .

Last, the remaining Oλ(ℓ + kℓ) operations over Rq1 are contributed by the recursive
computation of

z(i+1) = z(i) − C(i)
c · x(i)

c + z(i)
RL · r−1

i + z(i)
LR · ri mod q1, and

α(i+1) = 2 · α(i) · γR

for i ∈ { 0, . . . , ℓ − 1 } and well as the final check�
A
B

 
↘kℓ

· x(ℓ) = y(ℓ) mod q0,

C(ℓ) · x(ℓ) = z(ℓ) mod q1,

and
???x(ℓ)

??? ≤ α(ℓ).

C.4 Knowledge-based Argument for Well-formedness of
vSIS Commitments

Let R, s, η, m, q1, q3, α, β, δ, T depend on λ. Using the lattice trapdoor algorithms (Sec-
tion 4.3.2) parametrised by (η, m, q3, β), in Figure C.1 we give a formal description of
Πknow

1 .

C.5 Proofs for Knowledge-based Arguments
C.5.1 Completeness - Proof of Theorem 4.8.1
Proof. Condition b0. We first consider the condition b0 in the verification algorithm.
Recall that c0 = c0,0 + c0,1 mod q3 where

c0,0 = c̄M · cx + c̄q0 · cr − ĉy mod q3,

c0,1 = c̄I · cx − c̄x · cI mod q3.
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Setup(1λ, pp)

v ← pp; t←T
(D, td) ← TrapGen(1λ)
ui ← SampPre(td, t · vi), ∀i ∈ ±[s]
pp := v

crs :=
'

D, t, v, (ui)i∈±[s]

.
return crs

Prove(crs, (ϵ, cz), z)

u :=
:

i∈±[s]

ui · zi

return π := u

PreVerify(crs, ϵ)

return ppϵ := (D, t)

Verify(crsϵ, cz, π)

b0 :=
'

D · u ?≡ t · cz mod q3

.
b1 :=

*
∥u∥ ?≤ δ

1
return b0 ∧ b1

Figure C.1: Our argument system Πknow
1 .

Substituting the expressions of each component, we have

c0,0 = fT
0 · M · v̄ · vT · x + fT

0 · q0 · v̄t · vT
t · r − fT

0 · y mod q3

= fT
0 · (M · v̄ · vT · x + q0 · v̄t · vT

t · r − y) mod q3

= fT
0 · (M · (v̄ · vT − Is) · x + q0 · (v̄t · vT

t − It) · r) mod q3

=
:

i,j∈[s],k∈[t],i ̸=j

f0,k · Mk,i · vj−i · xj +
:

i,j,k∈[t],i ̸=j

f0,k · q0 · vj−i · rj mod q3

where the last equality is due to M · x + q0 · r = y, and

c0,1 = fT
1 · I · (v̄ ◦ h) · vT · x − xT · (v̄ ◦ h) · vT · I · f1 mod q3

= fT
1 · (v̄ ◦ h) · vT · x − fT

1 · v · (v̄ ◦ h)T · x mod q3

= fT
1 · ((v̄ ◦ h) · vT − v · (v̄ ◦ h)T) · x mod q3

=
:

i,j∈[s]
f1,i · (hi · vj−i − vi−j · hj) · xj mod q3

=
:

i,j∈[s]
f1,j · hj · vi−j · xi −

:
i,j∈[s]

f1,i · vi−j · hj · xj mod q3

=
:

i,j∈[s]
vi−j · hj · (f1,j · xi − f1,i · xj) mod q3.

Since
D0 · u0,i = t0 · vi mod q3
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for all i ∈ ±[max { s, t }], it follows that

D0 · u0 = t0 · c0 mod q3.

Furthermore, we observe the following norm bounds:

1. ∥u0,j∥ ≤ β for all j ∈ ±[max { s, t }],

2. ∥h∥ ≤ q1/2,

3. ∥f0∥ , ∥f1∥ ≤ q2/2,

4. ∥M∥ , ∥y∥ ≤ q0/2,

5. ∥x∥ ≤ α, and

6. ∥r∥ ≤ 1
q0

· (s · ∥M∥ · ∥x∥ · γR + ∥y∥) ≤ s · α · γR.

Therefore

∥u0∥ ≤ s2 · t · q2 · q0 · β · α · γ3
R + t3 · q2 · q0 · β · s · α · γ3

R + s2 · β · q1 · q2 · α · γ3
R

≤ (s + t)4 · q0 · q1 · q2 · α · β · γ3
R

≤ δ0.

Conditions b1, b2, and b3. We next consider the conditions b1, b2, and b3 in the verification
algorithm. Clearly, it holds that

D1 · u1 = D1 ·
 :

j∈[s]
u1,j · xj

 =
:
j∈[s]

t1 · vj · xj = t1 · cx mod q3,

D2 · u2 = D2 ·
 :

j∈[s]
u2,−j · hj · xj

 =
:
j∈[s]

t2 · v−j · hj · xj = t2 · c̄x mod q3,

D3 · u3 = D3 ·
 :

j∈[t]
u3,j · rj

 =
:
j∈[t]

t3 · vj · rj = t3 · cr mod q3.

Furthermore, since ∥u1,j∥ ≤ β for j ∈ [s], ∥u2,j∥ ≤ β for j ∈ −[s], ∥u3,j∥ ≤ β for j ∈ [t],
∥h∥ ≤ q1/2, ∥x∥ ≤ α, and ∥r∥ ≤ s · α · γR, we have

∥u1∥ ≤ s · α · β · γR ≤ δ1,

∥u2∥ ≤ s · q1 · α · β · γR ≤ δ2,

∥u3∥ ≤ s2 · α · β · γ2
R ≤ δ3.

Putting everything together yields the claim.
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C.5.2 Knowledge Soundness - Proof of Theorem 4.8.2
Proof. Fix a PPT prover P∗. Consider an algorithm B1 = BP∗ which, on input
(crs, stmt, wit), runs π ← P∗(crs, stmt, wit), parses cx from stmt and u1 from π, and
outputs (cx, u1). Similarly, consider the algorithms B2 = BP∗ and B3 = BP∗ which
do almost the same, except that B2 = BP∗ parses c̄x from stmt and u2 from π and
outputs (c̄x, u2), and B3 = BP∗ parses cr from stmt and u3 from π and outputs (cr, u3).
Let Ek-R-ISIS,1

B1
, Ek-R-ISIS,2

B2
, and Ek-R-ISIS,3

B3
be the knowledge extractors whose existence

are guaranteed by Assumptions 1, 2, and 3. Define an extractor EP∗ which, on input
(crs, stmt, wit), does the following:

• run x†
1 ← Ek-R-ISIS,1

B,1 (crs, stmt, wit),

• run x†
2 ← Ek-R-ISIS,2

B,2 (crs, stmt, wit),

• run r† ← Ek-R-ISIS,3
B,3 (crs, stmt, wit),

• checks that x†
1 ◦ h = x†

2,

• checks that M · x†
1 + q0 · r† = y, and

• outputs x† := x†
1 if both checks pass.

Fix any adversary A and consider the following experiment Exp:

Exp(1λ)

pp ← Genunstr(1λ)
crs ← Setup(1λ, pp)
(stmt, wit) ← A(pp, crs)
(π, wit†) ← (P∗|EP∗)(crs, stmt, wit)
crsstmtoff ← PreVerify(crs, stmtoff)
return Verify(crsstmtoff , stmton, π) = 1 ∧ (stmt, wit†) /∈ Ψpp

We claim that Pr[Exp(1λ) = 1] ≤ negl(negl), which proves the theorem.

To prove the claim, consider a modified experiment Exp′ where in the setup Setup(1λ, pp)
the matrices D0, D1, D2, D3 are sampled uniformly at random and the SampPre steps
are replaced with sampling from SampD subject to the appropriate constraints. By the
properties of (TrapGen, SampD, SampPre), Exp′ is statistically close to Exp. Therefore it
suffices to show that Pr[Exp′(1λ) = 1] ≤ negl(λ).

We now examine wit† generated during the execution of Exp′(1λ). Parse stmt =
(M, y, cx, c̄x) and wit† = x†. First, suppose that EP∗ returns something, i.e. x†

2 = x†
1 ◦ h
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and M · x†
1 + q0 · r† = y, then by Conditions b1, b2, and b3 of the verification algorithm

and Assumptions 1, 2, and 3 we have

cx = vT · x†
1 mod q3,

???x†
1

??? ≤ α∗
1

c̄x = v̄T · x†
2 mod q3,

???x†
2

??? ≤ α∗
2

cr = vT
t · r† mod q3, and

???r†
??? ≤ α∗

3.

It remains to show that x†
1 ◦h = x†

2 and M ·x†
1 +q0 ·r† = y, so that EP∗ returns something,

with overwhelming probability.

Examining the condition b0 in the verification algorithm, we observe

D0 · u0

= t0 · (c̄M · cx + c̄q0 · cr − ĉy + c̄I · cx − c̄x · cI) mod q3

= t0 · (fT
0 · M · v̄ · vT · x†

1 + fT
0 · q0 · v̄t · vT

t · r†

+ fT
1 · (v̄ ◦ h) · vT · x†

1 − fT
0 · y − v̄T · x†

2 · vT · f1) mod q3

= t0 · fT
0 · (M · v̄ · vT · x†

1 + q0 · v̄t · vT
t · r† − y)

+ t0 · fT
1 · (diag(h) · v̄ · vT · x†

1 − v · v̄T · x†
2) mod q3

= t0 · fT
0 · (M · (v̄ · vT − Is) · x†

1 + q0 · (v̄t · vT
t − It) · r† + (M · x†

1 + q0 · r† − y))
+ t0 · fT

1 · (diag(h) · (v̄ · vT − Is) · x†
1 − (v · v̄T − Is) · x†

2 + (h ◦ x†
1 − x†

2)) mod q3.

Let

u†
0 :=

:
i,j∈[s],k∈[t]:i ̸=j

f0,k · Mk,i · u0,j−i · x†
1,j +

:
i,j,k∈[t]:i ̸=j

f0,k · q0 · u0,j−i · r†
j

+
:

i,j∈[s]:i ̸=j

f1,i · hi · u0,j−i · x†
1,j +

:
i,j∈[s]:i ̸=j

f1,i · u0,i−j · x†
2,j ,

e†
0 := M · x†

1 + q0 · r† − y,

e†
1 := h ◦ x†

1 − x†
2.

We have

D0 · (u0 − u†
0) = t0 · (fT

0 · e†
0 + fT

1 · e†
1) mod q3.

Suppose, contrary to our claim, that (e†
0, e†

1) ̸= 0 with non-negligible probability. Then
one (or both) of the following must be true:

1. fT
0 · e†

0 + fT
1 · e†

1 = 0 with non-negligible probability.

2. fT
0 · e†

0 + fT
1 · e†

1 ̸= 0 with non-negligible probability.
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If Case (i) is true, then we also have with non-negligible probability

fT
0 · e†

0 + fT
1 · e†

1 = 0 mod q2.

Note that ???e†
0

??? ≤ s · q0/2 · α∗
1 · γR + q0 · α∗

3 + q0/2 ≤ s · q0 · α∗ · γR,???e†
1

??? ≤ q1/2 · α∗
1 · γR + α∗

2 ≤ q1 · α∗ · γR.

Therefore
???(e†

0, e†
1)

??? ≤ s · q0 · q1 · α∗ · γR ≤ β∗
q2 . This would, however, violate Assumption

4. We thus conclude that Case (i) is impossible.

If Case (ii) is true, we observe that???u†
0

??? ≤ s2 · t · q2 · q0 · β · α∗
1 · γ3

R + t3 · q2 · q0 · β · α∗
3 · γ2

R
+ s2 · q2 · q1 · β · α∗

1 · γ3
R + s2 · q2 · β · α∗

2 · γ2
R

≤ (s + t)3 · q0 · q1 · q2 · α∗ · β · γ3
R

≤ β∗
q3/2,???u0 − u†

0

??? ≤ β∗
q3 ,???fT

0 · e†
0 + fT

1 · e†
1

??? ≤ (s + t) · q2 · s · q0 · q1 · α∗ · γ2
R

≤ (s + t)2 · q0 · q1 · q2 · α∗ · γ2
R

≤ β∗
q3 .

This would, however, violate Assumption 0. We thus conclude that Case (ii) is impossible.

Since both cases are impossible, we conclude that (e†
0, e†

1) ̸= 0 with non-negligible
probability.

C.5.3 Efficiency - Proof of Theorem 4.8.3

Proof. Note that, log |Rq3 | = log q
φ(ρ)
3 = Oλ(log q3) = Oλ(log n), and an Rq3 operation

takes at most Oλ(log2 n) bit operations. The common reference string

crs =

,,,,,,
D0, t0, (u0,j)j∈I0

,

D1, t1, (u1,j)j∈I1
,

D2, t2, (u2,j)j∈I2
,

D3, t3, (u3,j)j∈I3
,

v, h, f0, f1

333333
has description size at most

(4 · η · (m + 1) + 6 · (s + t)) · |Rq3 | = Oλ(n · log n).
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A proof (cr, u0, u1, u2, u3) has description size at most

(4m + 1) · log |Rq3 | = Oλ(log2 n).

Preprocessing requires O(n) Rq3 operations, which cost Oλ(n · log2 n) bit operations.
After preprocessing, verification requires Oλ(m) Rq3 operations, which cost Oλ(log3 n)
bit operations.

It remains to show that prover time is Oλ(n · log3 n). It suffices to analyse the time
needed for computing u0,0 and u0,1 since they dominate the prover computation. Recall
that

u0,0 =
:

i∈[s],k∈[t]
f0,k · Mk,i ·

:
j∈[s]:j ̸=i

u0,j−i · xj +
:

i,k∈[t]
f0,k · p ·

:
j∈[t]:j ̸=i

u0,j−i · rj ,

u0,1 =
:
j∈[s]

hj · f1,j ·
:

i∈[s]:i ̸=j

u0,i−j · xi −
:
i∈[s]

f1,i ·
:

j∈[s]:j ̸=i

u0,i−j · hj · xj .

It is clear that once the terms:
j∈[s]:j ̸=i

u0,j−i · xj ,
:

j∈[t]:j ̸=i

u0,j−i · rj ,

:
i∈[s]:i ̸=j

u0,i−j · xi, and
:

j∈[s]:j ̸=i

u0,i−j · hj · xj

are computed, u0,0 and u0,1 can be computed with Oλ(n) Rq3 operations. We examine
the cost for computing the first term, i.e. ;

j∈[s]:j ̸=i u0,j−i · xj .

Observe that ;
j∈[s]:j ̸=i u0,j−i · xj can be written in the form,,,,,,,,,,,

0 u0,1 u0,2 . . . . . . u0,s−1

u0,−1 0 u0,1
. . . ...

u0,−2 u0,−1
. . . . . . . . . ...

... . . . . . . . . . u0,1 u0,2

... . . . u0,−1 0 u0,1
u0,−(s−1) . . . . . . u0,−2 u0,−1 0

33333333333
·

,,,,,,,,,

x1
x2
x3
...
...

xs

333333333
which can be expressed as a sum of m matrix-vector products where each of the m
matrices is an s-by-s Toeplitz matrix over Rq3 . It is well-known (see e.g. [GL96])
that multiplying an s-by-s Toeplitz matrix to a vector takes O(s · log s) operations
over the base ring, i.e. Rq3 . Therefore ;

j∈[s]:j ̸=i u0,j−i · xj can be computed using
Oλ(n · log n · m · log q) = Oλ(n · log3 n) bit operations.

By splitting the other terms as sums of Toeplitz-vector products, we conclude that the
computation of u0,0 and u0,1, and hence the the overall prover computation, takes time

Oλ(n · log3 n).
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C.6 Proofs for Applications
C.6.1 Completeness - Proof of Theorem 4.9.1

Proof. Since x ∈ {0, 1}s, observe that

∥z∥ ≤
??????

:
0≤i,j≤s:i−j=k

hj · xj · (xi − 1)

?????? ≤ s · ∥h∥ .

For h generated by Genstr, Lemma 4.6.6 implies that ∥h∥ ≤ (q1/2)ℓ+1 · γℓ
R. For h

generated by Genunstr, we have h ∈ Rs
q1 and thus ∥h∥ ≤ q1/2.

C.6.2 Knowledge-Soundness - Proof of Theorem 4.9.2

Proof. Fix a PPT prover P∗ and let P∗
0 and P∗

1 be wrappers of P∗ which interact with
Π′.Verify and Π′′.Verify respectively. By the knowledge-soundness of Π′ and Π′′, there
exist knowledge extractors EΠ′

P∗
0

and EΠ′′
P∗

1
respectively. Define an extractor EP∗ which, on

input (crs, stmt) = ((v, h), (M, y)), does the following:

• Obtain (cx, c̄x) from P∗.

• Compute cz := c̄x · (cx − ⟨v, 1⟩) mod q3.

• Obtain x† by running EΠ′
P∗

0
on (crs′, ((M, y), (cx, c̄x)).

• If x† ∈ {0, 1}[s], output x†, else continue.

• Compute ẑ0 := − ;
i hi · (x†

i − 1) · x†
i .

• If ẑ0 = 0, output ((x†
i − 1) · x†

i )i∈[s], else continue.

• Obtain ẑ−0 = (ẑ−s, . . . , ẑ−1, ẑ1, . . . , ẑs) by running EΠ′′
P∗

1
on (crs′′, (ϵ, cz)).

• Define ẑ := (ẑ−s, . . . , ẑ−1, ẑ0, ẑ1, . . . , ẑs).

• Compute z† :=
';

0≤i,j≤s:i−j=k hj · x†
j · (x†

i − 1)
.

−s≤k≤s
.

• Output ẑ − z†.

We claim that with overwhelming probability EP∗ outputs x† such that ((M, y), x†) ∈
Ψstr-bin-sat (resp. Ψbin-sat).

First, by the knowledge-soundness of Π′, we have with overwhelming probability that
M · x† = y mod q0 and that x† satisfies�

v, x†�
= cx mod q3,

�
v̄ ◦ h, x†�

= c̄x mod q3,
???x†

??? ≤ α′.
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It remains to argue that x† ∈ {0, 1}s with overwhelming probability.

Suppose towards a contradiction that x† ̸∈ {0, 1}s with non-negligible probability. By
the knowledge-soundness of Π′′, with overwhelming probability ẑ−0 satisfies

⟨(v̄||v), ẑ−0⟩ = cz mod q3

= c̄x · (cx − ⟨v, 1⟩) mod q3

=

:
j

v̄j · hj · x†
j

 ·
(:

i

vi · (x†
i − 1)

/
mod q3

=
:

i

hi · (x†
i − 1) · x†

i +
:

i,j,i ̸=j

vi−j · hj · (x†
i − 1) · x†

j mod q3,

⟨(v̄||1||v), ẑ⟩ =
:

i,j,i ̸=j

vi−j · hj · (x†
i − 1) · x†

j mod q3,

and ∥ẑ∥ ≤ α′′, where in the third equality we have used that the extracted vector x†

satisfies
�
v, x†

�
= cx mod q3, and

�
v̄ ◦ h, x†

�
= c̄x mod q3. On the other hand, z†

satisfies �
(v̄||1||v), z†�

=
:

i,j,i ̸=j

vi−j · hj · (x†
i − 1) · x†

j mod q3

with z†
0 = 0 and

???z†
??? ≤ s · ∥h∥ · (α′ + 1)2 · γ2

R ≤ s · (q1/2)ℓ+1 · (α′ + 1)2 · γℓ+2
R (resp.

s · q1/2 · (α′ + 1)2 · γ2
R). Therefore,�

(v̄||1||v), ẑ − z†�
= 0 mod q3 and

???ẑ − z†
??? ≤ βq3 .

One (or both) of the following two cases must be true

(i) ;
i hi · (x†

i − 1) · x†
i = 0 with non-negligible probability.

(ii) ;
i hi · (x†

i − 1) · x†
i ̸= 0 with non-negligible probability,

If Case (i) is true, we have:
i

hi · (x†
i − 1) · x†

i = 0 mod q1 and 0 <
???((x†

i − 1) · x†
i )i∈[s]

??? ≤ βq1

with non-negligible probability. This contradicts Assumption 0. If Case (ii) is true, we
have �

(v̄||1||v), ẑ − z†�
= 0 mod q and 0 <

???ẑ − z†
??? ≤ βq3

with non-negligible probability. This contradicts Assumption 1. Since none of the two
cases could be true, we must have x† ∈ {0, 1}s, as claimed.
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C.6.3 Efficiency - Proof of Theorem 4.9.3

Proof. Note that log |Rq3 | = log q
φ(ρ)
3 = Oλ(log q3) = Oλ(log n), and an Rq3 operation

takes at most Oλ(log2 n) bit operations.

Notice that z can be computed in time Oλ(n · log3 n), exploiting fast multiplication
algorithms for Toeplitz matrices (similarly to what described in Appendix C.5.3). All
claims about the unstructured case then follow from Theorems 4.8.3 and 4.8.6.

For the structured case, we need to argue that crs has a short description size. Note that
crs can be succinctly described by (v, h̃) ∈ R×

q3 × (R×
q3)ñ where ñ = ;ℓ−1

i=0(ki + 1) + kℓ

and n = ;ℓ
i=0 ki with ki ∈ { 1, 2 }. We thus conclude that crs has description size

Oλ(log2 n). The rest of the claims for the structured case then follow from Theorems 4.7.3
and 4.7.6.

C.7 Construction and Proofs for R1CS Argument
Let R, s1, s2, t, η, m, q0, q1, q2, q3, α, β, δ0, δ1, δ2, δ3, δ4, δ5, δ6, T depend on λ. Using the
lattice trapdoor algorithms (Section 4.3.2) parametrised by (η, m, q3, β), in Figure C.2,
we construct an argument system for ΨR1CS.

C.7.1 Completeness
Theorem C.7.1 (Completeness). Let (η, m, q3, β) be such that the properties of lattice
trapdoor algorithms described in Section 4.3.2 hold. For

δ0 ≥ 6 · t2 · s2 · q0 · q1 · q2 · α · β · γ4
R, δ1 ≥ s2 · α · β · γR,

δ2 ≥ s · t · q0 · ·q1 · α · β · γ3
R, δ3 ≥ s · t · q0 · α · β · γ2

R,

δ4 ≥ s · t · q0 · α · β · γ2
R, δ5 ≥ s2 · t · q0 · α2 · β · γ3

R,

δ6 ≥ 3 · s2 · t2 · q2
0 · q2

1 · α2 · β · γ3
R,

ΠR1CS in Figure C.2 is complete.

The proof of this claim is essentially identical to that of Theorem 4.8.1, and is therefore
omitted.

C.7.2 Knowledge Soundness
Theorem C.7.2 (Knowledge Soundness). Let (η, m, q3, β) be such that the proper-
ties of lattice trapdoor algorithms described in Section 4.3.2 hold. Let w = 1, G :=
{ Xj : −s ≤ j ≤ s }, G0 = { Xi : i ∈ ±[max { s, t }] }, G1 = { Xi : i ∈ [s1; s] }, G2 = { Xi : i ∈ −[t] },
G3 = { Xi : i ∈ [t] }, G4 = { Xi : i ∈ [t] }, G5 = { Xi : i ∈ [t] }, and G6 = { Xi : i ∈ ±[t] }
be sets of monomials in X. Let D denote the distribution SampD(1λ). For i ∈
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Setup(1λ, pp)

(v, h, ℓ1, ℓ2, ℓ3)←R×
q3 × Rt

q1 × Rt
q2 × Rt

q2 × Rt
q2

I0 := ±[max { s, t }], I1 := [s1 + 1; s],
I2 := −[t], I3 := [t], I4 := [t], I5 := [t]
I6 := ±[t]
for i ∈ {0, 1, 2, 3, 4, 5, 6} do

(Di, tdi) ← TrapGen(1λ), ti←T
ui,j ← SampPre(tdi, ti · vj), ∀j ∈ Ii

crs :=
*

(Di, ti, (ui,j)j∈Ii
)6
i=0,

v, h, ℓ1, ℓ2, ℓ3

1
return crs

PreVerify(crs, (x1, E, F, G))

cx1 := vT
1 · x1 mod q3

c̄E := (ℓ1 · h)T · E · v̄ mod q3

c̄F := ℓT
2 · F · v̄ mod q3

c̄G := ℓT
3 · G · v̄ mod q3

cI,1 := vT
t · ℓ1 mod q3

c̄I,2 := v̄T
t · ℓ2 mod q3

c̄I,3 := v̄T
t · ℓ3 mod q3

c̄I,6 := v̄T
t · h mod q3

crsE,F,G :=

 (Di, ti)6
i=0,

cx1 , c̄E, c̄F, c̄G,
cI,1, c̄I,2, c̄I,3, c̄I,6


return crsx1,E,F,G

Verify(crsx1,E,F,G, π)

cx := cx1 + cx2 mod q3

c0,E := c̄E · cx − cI,1 · c̄e mod q3

c0,F := c̄F · cx − c̄I,2 · cf mod q3

c0,G := c̄G · cx − c̄I,3 · cg mod q3

c0 := c0,E + c0,F + c0,G mod q3

(c1, c2, c3, c4, c5) := (cx2 , c̄e, cf , cg, cr)
c6 := c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg mod q3

for i ∈ {0, 1, 2, 3, 4, 5, 6} do

bi := (Di · ui
?≡ ti · ci mod q3 ∧ ∥ui∥

?≤ δi)
return b0 ∧ b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5 ∧ b6

Prove(crs, (E, F, G), x2)

cx2 := vT
2 · x2 mod q3

cr := vT
t · r mod q3

c̄e := (v̄t ◦ h)T · E · x mod q3

cf := vT
t · F · x mod q3

cg := vT
t · G · x mod q3

uE :=
:

i∈[t],j∈[s]

Ei,j · hi · ℓ1,i ·
:

k∈[s]:k ̸=j

u0,k−j · xk

+
:

i∈[t],j∈[s]

Ei,j · xj · hi ·
:

k∈[t]:k ̸=i

u0,k−i · ℓ1,k

uF :=
:

i∈[t],j∈[s]

Fi,j · ℓ2,i ·
:

k∈[s]:k ̸=j

u0,k−j · xk

+
:

i∈[t],j∈[s]

Fi,j · xj ·
:

k∈[t]:k ̸=i

u0,i−k · ℓ2,k

uG :=
:

i∈[t],j∈[s]

Gi,j · ℓ3,i ·
:

k∈[s]:k ̸=j

u0,k−j · xk

+
:

i∈[t],j∈[s]

Gi,j · xj ·
:

k∈[t]:k ̸=i

u0,i−k · ℓ3,k

u0 := uE + uF + uG

u1 :=
:

j∈[s1+1;s]

u1,j · xj

u2 :=
:
i∈[t]

:
j∈[s]

u2,−i · Ei,j · hi · xj

u3 :=
:
i∈[t]

:
j∈[s]

u3,i · Fi,j · xj

u4 :=
:
i∈[t]

:
j∈[s]

u4,i · Gi,j · xj

u5 :=
:
i∈[t]

u5,i · ri

u6 :=
:

i,j∈[t],i ̸=j

u6,i−j · (ej · fi + q0 · ri − gi) · hj

return π :=
*

cx2 , cr, c̄e, cf , cg,
u0, u1, u2, u3, u4, u5, u6

1

Figure C.2: Our argument system ΠR1CS.
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{ 1, 2, 3, 4, 5, 6 }, let Zi(1λ) be almost identical to Setup(1λ, Genunstr(1λ)), except that
it is given (Di, ti, v, { ui,j }j∈Ii

) as input and generates the rest of crs. Let

α∗
i ≥ δi, ∀i ∈ [6]

α∗ := max { α∗
1, α∗

2, α∗
3, α∗

4, α∗
5, α∗

6 } ,

q1 ≥ β∗
q1 ≥ s · q0 · (α∗)2 · γR

q2 ≥ β∗
q2 ≥ t · s · q · q1 · α∗ · γ2

R,

q3 ≥ βq3 ≥ t · s · q0 · q1 · (α∗)2 · γ3
R,

q3 ≥ β∗
q3 ≥ max { 2δ0, (s + t)2 · q0 · q1 · q2 · α∗ · β · γ4

R } .

ΠR1CS in Figure C.2 is knowledge-sound for ΨR1CS[α∗
1] if the following assumptions hold:

Assumption 0. k-R-ISISR,η,m,w,q3,β,β∗
q3 ,G0,g∗=1,D,T ,

Assumption 1. knowledge-k-R-ISISR,η,m,w,q3,α∗
1,β,δ1,G1,D,T ,Z1,

Assumption 2. knowledge-k-R-ISISR,η,m,w,q3,α∗
2,β,δ2,G2,D,T ,Z2,

Assumption 3. knowledge-k-R-ISISR,η,m,w,q3,α∗
3,β,δ3,G3,D,T ,Z3,

Assumption 4. knowledge-k-R-ISISR,η,m,w,q3,α∗
4,β,δ4,G4,D,T ,Z4,

Assumption 5. knowledge-k-R-ISISR,η,m,w,q3,α∗
5,β,δ5,G5,D,T ,Z5,

Assumption 6. knowledge-k-R-ISISR,η,m,w,q3,α∗
6,β,δ6,G6,D,T ,Z6,

Assumption 7. R-SISR,t,q1,β∗
q1

,

Assumption 8. R-SISR,3·t,q2,β∗
q2

, and

Assumption 9. vSISR,G,1,q3,βq3
.

Proof. Fix a PPT prover P∗. Consider an algorithm B1 = BP∗ which, on input
(crs, stmt, wit), runs π ← P∗(crs, stmt, wit), parses cx2 and u1 from π, and outputs
(cx2 , u1). Similarly, consider the algorithms B2 = BP∗ , B3 = BP∗ , B4 = BP∗ , B5 = BP∗ ,
and B6 = BP∗ which do almost the same, except that

• B2 = BP∗ extracts (c̄e, u2) from π ,

• B3 = BP∗ extracts (cf , u3) from π,

• B4 = BP∗ extracts (cg, u4) from π,

• B5 = BP∗ extracts (cr, u5) from π, and
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• B6 = BP∗ parses (c̄e, cf , cr, cg, u6) from π, computes c̄I,6 := v̄T
t · h and

cz := c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg,

and outputs (cz, u6).

Let Ek-R-ISIS,1
B1

, Ek-R-ISIS,2
B2

, Ek-R-ISIS,3
B3

, Ek-R-ISIS,4
B4

, Ek-R-ISIS,5
B5

, and Ek-R-ISIS,6
B6

be the knowledge
extractors whose existence are guaranteed by Assumptions 1, 2, 3, 4, 5, and 6. Define an
extractor EP∗ which, on input (crs, stmt, wit), does the following:

• run x†
2 ← Ek-R-ISIS,1

B,1 (crs, stmt, wit),

• run e† ← Ek-R-ISIS,2
B,2 (crs, stmt, wit),

• run f † ← Ek-R-ISIS,3
B,3 (crs, stmt, wit),

• run g† ← Ek-R-ISIS,4
B,4 (crs, stmt, wit),

• run r† ← Ek-R-ISIS,5
B,5 (crs, stmt, wit),

• run z†
−0 ← Ek-R-ISIS,6

B,6 (crs, stmt, wit),

• check that e† = diag(h) · E ·
(

x1
x†

2

/
,

• check that f † = F ·
(

x1
x†

2

/

• check that g† = G ·
(

x1
x†

2

/

• check that
(

E ·
(

x1
x†

2

//
◦

(
F ·

(
x1
x†

2

//
+ q0 · r† =

(
G ·

(
x1
x†

2

//
, and

• output x†
2 if all checks pass.

Fix any adversary A and consider the following experiment Exp:
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Exp(1λ)

pp ← Genunstr(1λ)
crs ← Setup(1λ, pp)
(stmt, wit) ← A(pp, crs)
(π, wit†) ← (P∗|EP∗)(crs, stmt, wit)
crsstmtoff ← PreVerify(crs, stmtoff)
return Verify(crsstmtoff , stmton, π) = 1 ∧ (stmt, wit†) /∈ Ψpp

We claim that Pr[Exp(1λ) = 1] ≤ negl(λ), which proves the theorem.

To prove the claim, consider a modified experiment Exp′ where in the setup Setup(1λ, pp)
the matrices (Di)6

i=0 are sampled uniformly at random and the SampPre steps are replaced
with sampling from SampD subject to the appropriate constraints. By the properties
of (TrapGen, SampD, SampPre), Exp′ is statistically close to Exp. Therefore it suffices to
show that Pr[Exp′(1λ) = 1] ≤ negl(λ).

We now examine wit† generated during the execution of Exp′(1λ). Parse stmt =
(x1, (E, F, G)) and wit† = x†

2. First, suppose that EP∗ returns something, i.e.

1. e† = diag(h) · E ·
(

x1
x†

2

/
,

2. f † = F ·
(

x1
x†

2

/
,

3. g† = G ·
(

x1
x†

2

/
, and

4.
(

E ·
(

x1
x†

2

//
◦

(
F ·

(
x1
x†

2

//
+ q0 · r† =

(
G ·

(
x1
x†

2

//
,

then by Conditions b1, b2, b3, b4, and b5 of the verification algorithm and Assumptions 1,
2, 3, 4, and 5, we have

cx2 = vT
2 · x†

2 mod q3,
???x†

2

??? ≤ α∗
1

c̄e = v̄T
t · e† mod q3,

???e†
??? ≤ α∗

2

cf = vT
t · f † mod q3,

???f †
??? ≤ α∗

3

cg = vT
t · g† mod q3,

???g†
??? ≤ α∗

4

cr = vT
t · r† mod q3, and

???r†
??? ≤ α∗

5,
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Let us first show that Item 1, Item 2, and Item 3 hold.

Let x† =
(

x1
x†

2

/
. Examining the condition b0 in the verification algorithm, we observe

D0 · u0,E = t0 · (c̄E · cx − cI,1 · c̄e)
= t0 · ((ℓ1 ◦ h)T · E · v̄ · vT · x† − vT

t · ℓ1 · v̄T
t · e†)

= t0 · ℓT
1 · (diag(h) · E · (v̄ · vT − Is) · x† − (vt · v̄†

t − It) · e† + diag(h) · E · x† − e†) mod q3

D0 · u0,F = t0 · (c̄F · cx − c̄I,2 · cf )
= t0 · (ℓT

2 · F · v̄ · vT · x† − v̄T
t · ℓ2 · vT

t · f †)
= t0 · ℓT

2 · (F · (v̄ · vT − Is) · x† − (v̄t · vT
t − It) · f † + F · x† − f †) mod q3,

D0 · u0,G = t0 · (c̄G · cx − c̄I,3 · cg)
= t0 · (ℓT

3 · G · v̄ · vT · x† − v̄T
t · ℓ3 · vT

t · g†)
= t0 · ℓT

3 · (G · (v̄ · vT − Is) · x† − (v̄t · vT
t − It) · g† + G · x† − g†) mod q3.

Let

u†
0,E :=

:
i∈[t],j,k∈[s]:k ̸=j

ℓ1,i · hi · Ei,j · u0,k−j · x†
k +

:
i,k∈[t]:k ̸=i

ℓ1,k · u0,k−i · e†
i

u†
0,F :=

:
i∈[t],j,k∈[s]:k ̸=j

ℓ2,i · Fi,j · u0,k−j · x†
k +

:
i,k∈[t]:k ̸=i

ℓ2,i · u0,i−k · f †
k

u†
0,G :=

:
i∈[t],j,k∈[s]:k ̸=j

ℓ3,i · Gi,j · u0,k−j · x†
k +

:
i,k∈[t],j∈[s]:i ̸=j

Gi,j · x†
j · ℓ3,i · u0,i−k · hk,

and

w†
1 := diag(h) · E · x† − e†

w†
2 := F · x† − f †

w†
3 := G · x† − g†

We have

D0 · (u0,E − u†
0,E) = t0 · (ℓT

1 · w†
1) mod q3

D0 · (u0,F − u†
0,F) = t0 · (ℓT

2 · w†
2) mod q3

D0 · (u0,G − u†
0,G) = t0 · (ℓT

3 · w†
3) mod q3.

Suppose, contrary to our claim, that w† := (w†
1, w†

2, w†
3) ̸= 0 with non-negligible proba-

bility. Then, one (or both) of the following must be true:
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(1) ℓT · w† = 0 with non-negligible probability

(2) ℓT · w† ̸= 0 with non-negligible probability,

where ℓ := (ℓ1, ℓ2, ℓ3). If Case (1) is true, then we also have with non-negligible probability

ℓT · w† = 0 mod q2.

Note that ???w†
1

??? ≤ t · s · q1/2 · q0/2 · α∗
1 · γ2

R + α∗
2 ≤ t · s · q0 · q1 · γ2

R · α∗???w†
2

??? ≤ s · q0/2 · α∗
1 · γR + α∗

3 ≤ s · q0 · γR · α∗???w†
3

??? ≤ s · q0/2 · α∗
1 · γR + α∗

3 ≤ s · q0 · γR · α∗,

Therefore
???w†

??? ≤ t · s · q0 · q1 · α∗ · γ2
R ≤ β∗

q2 . This would, however, violate Assumption 8.
We thus conclude that Case (1) is impossible.

If Case (2) is true, we observe that for each j ∈ {E, F, G}???u†
0,j

??? ≤ 2 · t2 · s · q0/2 · q1/2 · q2/2 · β · α∗ · γ4
R

≤ (s + t)2 · q0 · q1 · q2 · α∗ · β · γ4
R

≤ β∗
q3/6,???u0,j − u†

0,j

??? ≤ β∗
q3/3

Therefore ???u0,E − u†
0,E + u0,F − u†

0,F + u0,G − u†
0,G

??? ≤ β∗
q3 .

Moreover ???ℓT · w†
??? ≤ (t + s)2 · q2 · s · q0 · q1 · α∗ · γR ≤ β∗

q3 .

This would, however, violate Assumption 0. We thus conclude that Case (2) is impossible.

It remains to show that Item 4 also holds, so that EP∗ returns something with overwhelm-
ing probability. Suppose, for the sake of contradiction, that this is not the case. Let
ê := E · x†, i.e., e† = diag(h) · ê. Compute z†

0 := − ;
i∈[t](êi · f †

i + q0 · r†
i + g†

i ) · hi. Then???(êi · f †
i + q0 · r†

i + g†
i )i

??? ≤ s · q0/2 · α∗
1 · α∗

3 · γR + q0 · α∗
5 + α∗

4

≤ s · q0 · (α∗)2 · γR
≤ β∗

q1
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By Condition b6 of the verification algorithm and Assumption 6, we have

(v̄||v)T · z†
−0 = cz mod q3

= c̄e · cf + q0 · c̄I,6 · cr − c̄I,6 · cg mod q3

=

 :
j∈[t]

v−j · e†
j

 ·
:

i∈[t]
vi · f †

i

 + q0 ·
 :

j∈[t]
v−j · hj

 ·
:

i∈[t]
vi · r†

i


−

:
i∈[t]

g†
i · vi

 ·
 :

j∈[t]
hj · v−j


=

:
i,j∈[t]

êj · f †
i · hj · vi−j + q0 ·

:
i,j∈[t]

r†
i · hj · vi−j −

:
i,j∈[t]

g†
i · hj · vi−j

=
:

i,j∈[t]

'
êj · f †

i + q0 · r†
i − g†

i

.
· hj · vi−j .

If z†
−0 = (z†

−s, . . . , z†
−1, z†

1, . . . , z†
s), and we let z† := (z†

−s, . . . , z†
−1, z†

0, z†
1, . . . , z†

s), we obtain

(v̄||1||v)T · z† =
:

i,j∈[t],i ̸=j

(êj · f †
i + q0 · r†

i − g†
i ) · hj · vi−j mod q3

and ???z†
??? ≤ max{α∗

6, t · s · q0 · α∗ · γ2
R} ≤ βq3/2

On the other hand, if we define ẑ−0 = (ẑ−s, . . . , ẑ−1, ẑ0, ẑ1, . . . , ẑs) as

ẑ0 := 0

ẑk :=
:

i,j∈[t],i−j=k

'
êj · f †

i + q0 · r†
i − g†

i

.
· hj for k ∈ ±[s]

we have that

(v̄||1||v)T · ẑ =
:

i,j∈[t],i ̸=j

(ê†
j · f †

i + q0 · r†
i − g†

i ) · hj · vi−j mod q3,

and

∥ẑ∥ ≤ t · q0/2 · α∗
2 · α∗

3 · q1 · γ3
R + q0 · q1 · α5 · γ2

R + q0 · α4 · γR
≤ t · q0 · q1 · (α∗)2 · γ3

R
≤ βq3/2

Therefore �
(v̄||1||v), ẑ − z†�

= 0 mod q3 and
???ẑ − z†

??? ≤ βq3 .

One (or both) of the following two cases must be true
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(i) ;
i∈[t] hi · (êi · f †

i + q0 · r†
i + g†

i ) = 0 with non-negligible probability.

(ii) ;
i∈[t] hi · (êi · f †

i + q0 · r†
i + g†

i ) ̸= 0 with non-negligible probability,

If Case (i) is true, we have:
i∈[t]

hi · (êi · f †
i + q0 · r†

i + g†
i ) = 0 mod q1 and 0 <

???(êi · f †
i + q0 · r†

i + g†
i )i∈[s]

??? ≤ βq1

with non-negligible probability. This contradicts Assumption 7. If Case (ii) is true, we
have �

(v̄||1||v), ẑ − z†�
= 0 mod q3 and 0 <

???ẑ − z†
??? ≤ βq3

with non-negligible probability. This contradicts Assumption 9. Since none of the two
cases could be true, we must have (E · x†) ◦ (F · x†) = G · x† mod q0, as claimed.

C.7.3 Efficiency
Theorem C.7.3. Let n = max{|E|, |F|, |G|, s + t}, η, α, β, γR = poly(λ) be a fixed
polynomial in λ, (q0, q1, q2, q3) = (s, s2, t · s4, (s + t)14) · poly(λ), and m = log n · poly(λ).
Then Πbin-sat has 1. common reference string size Oλ(n · log n), 2. proof size Oλ(log2 n),
3. prover time Oλ(n · log3 n), 4. preprocessing time Oλ(n · log2 n), and 5. verifier time
Oλ(log3 n) after preprocessing.

Proof. Note that log |Rq3 | = log q
φ(ρ)
3 = Oλ(log q3) = Oλ(log n), and an Rq operation

takes at most Oλ(log2 n) bit operations. Notice that uE, uF, uG, uz can be computed
in time Oλ(n · log3 n), exploiting fast multiplication algorithms for Toeplitz matrices
(similarly to what described in Appendix C.5.3). All claims then follow by the same
calculations as in Theorem 4.8.3.

C.8 Argument for Succinct-R1CS
In this section, we describe a folding-based succinct argument for succinct-R1CS [BCG+19],
which captures computations involving iterative executions of small circuits, with quasi-
linear-time prover and polylogarithmic-time verifier without preprocessing. The high-level
idea of the construction is identical to that in Section 4.9, except that here we will consider
linear relations represented by not just a single, but multiple, foldable matrices. To avoid
distraction by having too many variables, we only provide a sketch of the construction.

Recall that a succinct-R1CS instance is given by (A, B, C, D, y) and a witness x satisfies

(A · x) ◦ (B · x) = (C · x) mod q0

D · x = y mod q0
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where A, B, C representing the “time constraints” are of the form

A =

,,,,
A0 A1

A0 A1

A0 A1

3333, B =

,,,,
B0 B1

B0 B1

B0 B1

3333,

C =

,,,,
C0 C1

C0 C1

C0 C1

3333,

and (D, y) represents the “boundary constraints”. In the following, we outline a folding
protocol for a variant of succinct-R1CS over R where x additionally satisfies a bounded-
norm constraint ∥x∥ ≤ α and D (after removing the first and last block-columns) is
foldable.

Let s = w(n + 2) denote the number of columns in A (and hence also in B, C, and
D). Similar to the strategy for proving R1CS, we let the prover commit to a = A · x,
b = B · x, and c = C · x as

• c̄h◦a = v̄T · (h ◦ a) mod q3,

• cb = vT · b mod q3, and

• cc = vT · c mod q3

respectively, where h is a foldable vector of norm q0 ≪ ∥h∥ ≪ q3, and prove that,,,
A −I
B −I
C −I
D

333 ·

,,,
x
a
b
c

333 =

,,,
0
0
0
y

333 mod q0, (C.1)

,0 (v̄ ◦ h)T

0 vT

0 vT

3 ·

,,,
x
a
b
c

333 =

,c̄h◦a
cb
cc

3 mod q3, (C.2)

and ∥(x, a, b, c)∥ ≈ 0. Observe that Equation (C.1) is equivalent to A · x = a, B · x = b,
C · x = c, and D · x = y all modulo q0, whereas Equation (C.2) ensures that the
commitments c̄h◦a, cb, and cc are well-formed. Then, we let the prover prove that
a ◦ b = c by proving the existence of

z =

 :
0≤i,j,≤s:j−i=k

hiaibj − hicj


−s≤k≤s
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which satisfies

(v̄ | v)T · z = c̄h◦a · cb − c̄h · cc mod q3 and ∥z∥ ≈ 0. (C.3)

Since Equations (C.2) and (C.3) are represented by foldable matrices, an adaption of
the folding protocol in Section 4.7 applies. For Equation (C.1), we need to handle one
technical issue: The matrices A, B, and C are not in the block-bidiagonal form which is
supported by the folding protocol in Section 4.7. Taking A as an example, we observe
that we have one A0 block extra at the top left, and one A1 block extra at the bottom
right. To deal with this issue, we let the prover reveal the first and last blocks of x, so that
the verifier can subtract the contributions of these blocks from a, b, and c. Letting A′,
B′, C′, and D′ be derived from their counterparts with the first and last block-columns
removed, we obtain a relation of the form,,,

A′ −I
B′ −I
C′ −I
D′

333 ·

,,,
x
a
b
c

333 =

,,,
ya

yb

yc

yd

333 mod q0,

where A′ =
�
A1
A0

 
↘n

, B′ =
�
B1
B0

 
↘n

, C′ =
�
C1
C0

 
↘n

, D′, ya, yb, yc, and yd are foldable.

We can therefore adapt the folding protocol in Section 4.7 to prove the statement.
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