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Abstract

In the modern digital era, an astonishing volume of data is being produced across a di-
verse range of fields, encompassing biomedical imaging, document processing, geosciences,
remote sensing, video surveillance, social media, machine learning, and artificial intelli-
gence. The efficient processing of such expansive data necessitates the development of
effective data structures and parallel algorithms with minimal complexity. Improvements
in hardware and the increase in massively available processing elements have rendered
parallel processing a compelling solution to accelerate algorithm execution.

Irregular pyramids represent a powerful hierarchical structure that progressively reduces
data size across levels, enabling rapid extraction of global information. Owing to their
logarithmic height relative to the input size and parallel architecture, these structures
offer considerable efficiency. In irregular pyramids, the fundamental data structure is a
general graph embedded in image space, unconfined to array structures. However, graphs
as versatile representative tools may harbor many redundant edges, thus accumulating
memory.

Conventional approaches to constructing irregular pyramids involve selecting a set of
edges for contraction to produce a smaller graph at a higher level, which is then simplified
by removing unnecessary edges. Contrarily, this thesis introduces a method dubbed
Remove then Contract (RtC), that predicts and eliminates redundant edges prior to
pyramid construction under certain conditions. This approach not only reduces memory
requirements for data storage but also simplifies the pyramid construction process. It
has been demonstrated that the upper bound of redundant edges is half of all edges in
the input graph. Moreover, by defining a set of independent edges in irregular pyramids,
operations can be performed in a fully parallel manner. Given a sufficient number of
available processing elements, the algorithms proposed herein exhibit parallel complexity,
where the only limiting factors are memory requirements or the number of available
independent processing elements. However, as the number of available processing elements
increases, the efficiency of these algorithms becomes increasingly pronounced. The thesis
applies the constructed irregular pyramid to perform fundamental binary image operations
with reduced computational complexity. Two pivotal methods, Connected Component
Labeling (CCL) and Distance Transform (DT), which necessitate both local and global
information, are examined. A new pyramidal parallel connected component labeling is
proposed that reduces the computational complexity of CCL from sequential linear to
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parallel logarithmic complexity, O(log n), where n is the diameter of the largest connected
component (CC) in the 2D binary image. This method not only performs the CCL task
but also provides topological information between CCs containing inclusions and multi-
boundaries. The DT is also computed with parallel logarithmic complexity, O(log n),
where n is the maximum diameter of the largest foreground region in the 2D binary image.
Furthermore, by defining DT over other data structures, such as combinatorial maps
and n-dimensional generalized maps, novel DTs with higher resolution and n different
distances are introduced. The efficiency of the proposed methods is demonstrated through
simulation and comparison with state-of-the-art methods.



Kurzfassung

Im modernen digitalen Zeitalter wird ein erstaunliches Datenvolumen in einer Viel-
zahl von Bereichen produziert, einschließlich biomedizinischer Bildgebung, Dokumenten-
verarbeitung, Geowissenschaften, Fernerkundung, Videoüberwachung, sozialen Medien,
maschinellem Lernen und künstlicher Intelligenz. Die effiziente Verarbeitung solch umfang-
reicher Daten erfordert die Entwicklung von effektiven Datenstrukturen und parallelen
Algorithmen mit minimaler Komplexität. Verbesserungen der Hardware und die Erhö-
hung der verfügbaren Verarbeitungselemente haben die Parallelverarbeitung zu einer
überzeugenden Lösung gemacht, um die Ausführung von Algorithmen zu beschleunigen.

Unregelmäßige Pyramiden stellen eine leistungsfähige hierarchische Struktur dar, die die
Datengröße über Ebenen hinweg progressiv reduziert und so eine schnelle Extraktion
globaler Informationen ermöglicht. Dank ihrer logarithmischen Höhe im Verhältnis zur
Eingangsgröße und ihrer parallelen Architektur bieten diese Strukturen erhebliche Effizi-
enz. Bei unregelmäßigen Pyramiden ist die grundlegende Datenstruktur ein allgemeiner
Graph, der im Bildraum eingebettet ist und nicht auf Array-Strukturen beschränkt ist.
Graphen als vielseitige Repräsentationswerkzeuge können jedoch viele redundante Kanten
beherbergen und so Speicher ansammeln.

Konventionelle Ansätze zum Bau unregelmäßiger Pyramiden beinhalten die Auswahl einer
Kantenmenge zur Kontraktion, um einen kleineren Graphen auf einer höheren Ebene zu
erzeugen, der dann durch Entfernen unnötiger Kanten vereinfacht wird. Im Gegensatz
dazu führt diese Dissertation eine Methode namens Remove then Contract (RtC) ein, die
redundante Kanten vor dem Bau der Pyramide vorhersagt und eliminiert unter gewissen
bedingungen. Dieser Ansatz reduziert nicht nur den Speicherbedarf für die Datenspei-
cherung, sondern vereinfacht auch den Pyramidenaufbauprozess. Es wurde gezeigt, dass
die obere Grenze der redundanten Kanten die Hälfte aller Kanten im Eingabegraphen
ist. Darüber hinaus können durch die Definition einer Reihe unabhängiger Kanten in
unregelmäßigen Pyramiden Operationen in vollständig paralleler Weise durchgeführt
werden. Bei ausreichender Anzahl verfügbarer Verarbeitungselemente weisen die hier
vorgeschlagenen Algorithmen eine parallele Komplexität auf, wobei die einzigen begren-
zenden Faktoren den Speicherbedarf oder die Anzahl der verfügbaren unabhängigen
Verarbeitungselemente sind. Mit zunehmender Anzahl verfügbarer Verarbeitungselemente
wird die Effizienz dieser Algorithmen jedoch immer deutlicher.
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Die Dissertation wendet die gebaute unregelmäßige Pyramide an, um grundlegende
Binärbildoperationen mit reduzierter Rechenkomplexität durchzuführen. Zwei zentrale
Methoden, das Connected Component Labeling (CCL) und die Distanztransformation
(DT), die sowohl lokale als auch globale Informationen benötigen, werden untersucht. Ein
neues pyramidenparalleles Verbundkomponenten-Labeling wird vorgeschlagen, das die
Rechenkomplexität des CCL von sequentiell-linear auf parallele logarithmische Komplexi-
tät, O(log n), reduziert, wobei n der Durchmesser der größten Verbundkomponente (CC)
im 2D-Binärbild ist. Diese Methode führt nicht nur die CCL-Aufgabe durch, sondern
liefert auch topologische Informationen zwischen CCs, die Einschlüsse und Mehrfach-
grenzen enthalten. Die DT wird ebenfalls mit paralleler logarithmischer Komplexität
berechnet, O(log n), wobei n der maximale Durchmesser der größten Vordergrundregion
im 2D-Binärbild ist. Darüber hinaus werden durch die Definition der DT über anderen
Datenstrukturen, wie kombinatorischen Karten und n-dimensionalen generalisierten Kar-
ten, neuartige DTs mit höherer Auflösung und n verschiedenen Abständen eingeführt.
Die Effizienz der vorgeschlagenen Methoden wird durch Simulation und Vergleich mit
modernsten Methoden demonstriert.
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CHAPTER 1
Motivations and outline of the

thesis

Treasure the love you receive above all. It will survive long after your
good health has vanished.

Omar Khayyam

1.1 Motivations
In the subsequent section, four distinct motivations for utilizing the irregular pyramid in
this thesis will be elaborated.

1.1.1 Exponential Growth of Data
The digital age has ushered in an era of exponential data growth. Back in 1992, approxi-
mately 100 gigabytes of data were being produced by human beings every day [DK18].
This rate rapidly escalated, with the same volume being generated each hour by 1997,
and each second by 2002. By 2018, an astonishing 50,000 gigabytes of data were being
produced every single second [DK18], a figure that may be increased exponentially to an
estimated 382,000 gigabytes per second in 20231.

Such a colossal amount of data brings with it significant challenges in terms of efficient
management and information extraction [BR14]. These challenges necessitate the use
of optimized data structures and parallel processing algorithms. These tools not only
facilitate the handling of vast volumes of data [Hil16], allowing for efficient search
and retrieval operations but also enable the transformation of this sea of information

1https://www.statista.com/statistics/871513/worldwide-data-created/
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1. Motivations and outline of the thesis

into actionable knowledge. As the growth of data continues, the importance of these
technological assets becomes increasingly crucial, extending to sectors as diverse as
healthcare, finance, and environmental science [MSC13]. Moreover, these vast quantities
of data serve as a cornerstone for artificial intelligence and machine learning, further
underlining the necessity of effective management and efficient extraction techniques in
the digital era.

Figure 1.1: Growing Data volume and velocity [DK18].

1.1.2 Water’s gateway to heaven
The Pattern Recognition and Image Processing Group (PRIP) initiated a collaborative
project with two biology groups in 2020, entitled the Water’s Gateway to Heaven project2.
The objective of this project is to model the behavior of stomatal responses, specifically,
to understand the opening and closing mechanisms of stomata in plant leaves. The
modulation of stomatal aperture controls the influx of gases (e.g., CO2) into leaves, a
crucial aspect of the photosynthesis process.

The project involves the use of high-resolution 3D X-ray micro-tomography (µCT ) and
fluorescence microscopy. The dimensions of the 3D images exceed 2000 elements in each
direction, leading to approximately 2000 × 2000 × 2000 ≈ 233 voxels per image. The vast
volume of data, combined with the complexity of the models describing these processes,
necessitates highly efficient data processing techniques. Additionally, since leaves are not
entirely rigid but exhibit a degree of deformability, a non-rigid structure (like graphs)
may be a suitable choice for modeling this problem.

2https://waters-gateway.boku.ac.at/

2



1.1. Motivations

Figure 1.2: A small section of a 3D labeled image from the Water’s Gateway to Heaven
project [PVT+22].

1.1.3 Biological Perception

The task of perceptual recognition and description of complex real-world objects poses
an immense challenge [FB82]. It is estimated that around half of the billions of neurons
in the brains of higher mammals are dedicated to perception, a process that transpires
at an astonishing speed [Uhr87].

Impressively, the perceptual system [Gra99] can recognize and describe complex scenes
composed of intricate objects in a timeframe ranging from 30 to 800 milliseconds [Uhr87].
Considering that a single neuron’s basic cycle time – the duration required to bridge the
synapses over which neurons trigger other neurons – is approximately 1 to 2 milliseconds
[Uhr86], the perceptual system operates with a serial depth of merely a few hundred
steps at most, and potentially as few as a couple dozen. This signifies that our perceptual
system operates predominantly as a massively parallel and shallowly serial system.
This massive parallelism converges in logarithmic complexity towards the decision-making
locus. To address the vision problem, Uhr [Uhr86] proposed the use of a pyramidal
data structure. More recently, Pizlo has asserted that the pyramid serves as a general
model for human problem-solving [Piz22], suggesting that massive parallel processing is
necessary for the recognition of a complex scene in an instant [PWHM14].

1.1.4 Human’s Vision Sensors are Irregular

Each human eye has approximately 10 million cones and 100 million rods, key types of
photoreceptor cells integral to the human visual system [WBT+19]. Concentrated in the
central area of the retina, known as the fovea, cones are equipped to discern color and
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1. Motivations and outline of the thesis

Figure 1.3: Human problem-solving. Image is generated by AI, https://firefly.adobe.com

shape [CSKH90]. The three types of cones each respond to different light wavelengths,
enabling a vast color perception range. Conversely, rods are situated predominantly
in the peripheral regions of the eye and are sensitive to intensity shifts spatially or
temporally, making them more effective in low-light or nighttime conditions [CSKH90].
This distribution allows rods to serve as an initial alert system for changes in the visual
field [Uhr14]. Both cones and rods play an essential role in transmitting visual stimuli
from the retina, the light-responsive layer at the back of the eye, to the brain [Zek93].

While many neural network architectures assert biological plausibility, this claim generally
only holds true in terms of basic signal processing functionality, such as weighted averages
and activation functions [KB24]. However, this notion falls short when scrutinizing
the underlying architecture of these networks. In particular, the sensors that provide
visual input and the multitude of other sensors that deliver invaluable data to the
human brain are NOT a regular grid structure. This observation starkly contrasts
the prevalent artificial neural networks in current use, which typically employ regular
grid-based architectures.

The arrangement of cones and rods, as shown in Fig. 1.4, is not array-like but rather
characterized by non-uniform spatial sampling [Piz22]. The irregular distribution of
these sensors is essential for human vision, as it optimally captures visual information
across different regions of the retina [CSKH90]. This adaptive configuration allows the
fovea, with its high cone density, to provide sharp and detailed central vision, while the
abundance of rods in the peripheral retina enhances low-light sensitivity and peripheral
awareness [WBT+19].

This naturally irregular arrangement of sensors in the human eye necessitates the utiliza-

4



1.2. Outline

tion of data structures such as graphs. These structures are aptly suited to accurately
represent the irregular embeddings inherent in biological vision systems. Moreover,
they provide a platform to further investigate the potential advantages offered by these
irregular sensor arrangements and how to emulate these complex structures in artificial
systems to improve their performance and adaptability.

Figure 1.4: A segment of rods and cones in the human retina. Cones are represented
by red dots, and Rods are depicted as blue dots. The green color illustrates bipolar
cells that receive nerve signals from cones. Image courtesy of the National Eye Institute,
National Institutes of Health (NEI/NIH).

1.2 Outline
This CUMULATIVE thesis, encompassing five selected research publications, focuses
on the removal of redundancy and parallel algorithms in irregular pyramids. It is organized
into three primary sections.

1.2.1 Part 1: Redundant Edges in Irregular Pyramids and Parallel
Algorithms

In Chapter 1, the rationale for employing the irregular pyramid in this thesis is
delineated through four main motivators. The following chapter, Chapter 2, provides an
introductory exposition on hierarchical structures, particularly focusing on both regular

5



1. Motivations and outline of the thesis

and irregular pyramids. This chapter elucidates the construction procedures of the
irregular pyramids, detailing both the bottom-up and top-down movements.

Subsequently, Chapter 3 presents the concept of redundant edges within the context of
irregular pyramids, achieved through the introduction of total order over vertices. A new
methodology for constructing the irregular pyramid is also briefly over-viewed in this
section. Chapter 4 transitions into parallel algorithms, focusing on their independent
elements and expounding on the role of these parallel operations within the irregular
pyramid framework.

Chapter 5 applies the principles of the irregular pyramid to present innovative approaches
to compute fundamental operations in binary images, specifically in relation to connected
component labeling (CCL) and distance transform (DT). Following this, Chapter 6
provides a concise presentation of the conducted experiments and their subsequent results.
The thesis concludes with Chapter 7, which encapsulates the final thoughts and potential
avenues for future research.

1.2.2 Part 2: Selected Publications
Part 2 comprises five papers selected from my published works. These papers represent
pivotal research contributions that introduce the concept of redundant structures in
irregular pyramids and propose diverse parallel algorithms for implementing connected
component labeling and distance transform operations using irregular pyramids. All five
papers underwent peer review and have been accepted and published in the proceedings
of international conferences (Papers A, B, and E), an international workshop (Paper C),
or as an article in an international journal (Paper D).

1.2.2.1 Contributions

Over the course of my doctoral study, I authored 12 papers and contributed to one
book chapter, serving as the primary author for the papers and the secondary author
for the book chapter. My major contribution was the development of a novel formalism
that enables the prediction of Redundant Edges in Binary Irregular Pyramids.The
summary of contributions for each paper is listed as follows:

Paper A:

• Introduces the concept of redundant edges in 2D binary irregular graph pyramids.

• Reduces the complexity of the edge removal operation in irregular pyramids from
linear to parallel O(1).

• Provides an upper bound for the number of redundant edges, proving that the
number can be at most half of the total number of edges.

• Reduces the memory requirements for constructing 2D binary irregular pyramids.

6
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Paper B:

• Introduces a novel method for constructing irregular graph pyramids, termed
Remove then Contract (RtC).

• Proposes a new strategy for selecting contraction kernels in a connected plane graph
by establishing a total order over its vertices.

• Introduces a parallel pyramidal connected component (//ACC) method, reducing
parallel complexity to logarithmic in relation to the diameter of the largest connected
component in the input binary image.

Paper C:

• Proposes a new methodology for computing the distance transform (DT) in con-
nected plane graphs.

• Establishes a spanning forest of the foreground, allowing for distance propagation.

• Computes the geodesic distance transform (GDT) leveraging the hierarchical struc-
ture of irregular pyramids, reducing its complexity to parallel logarithmic complex-
ity.

• Introduces the DT in n-dimensional generalized maps (n − Gmaps), defining n
different distances within n − Gmaps and elucidating their interrelations.

Paper D:

• Introduces the Fast Labeling Spanning Tree (FLST) method for computing the
equivalent contraction kernels (ECK) of the input binary connected plane graph.

• Streamlines the selection of contraction kernels (CK) to only two steps and contracts
them with parallel logarithmic complexity.

Paper E:

• Defines the DT within the combinatorial map structure.

• Computes the DT in 1D and 2D grid structures with parallel logarithmic complexity.

This achievement would not have been possible without the guidance and mentorship of
Prof. Walter G. Kropatsch, my supervisor, and the head of the Pattern Recognition
and Image Processing Group (PRIP). His assistance was instrumental in both the
conception and the proper articulation of my idea. The valuable insights shared in our
numerous discussions, which spanned hundreds of hours, substantially influenced the

7



1. Motivations and outline of the thesis

contributions of my published works. Prof. Kropatsch’s critical scientific perspective and
precise feedback have significantly shaped my academic trajectory.

In the PRIP lab, I also had the privilege of engaging in enriching discussions with Dr.
Darsha Batavia and Dr. Jiří Hladůvka. These discussions culminated in our collaborative
work on Papers A and C. Lastly, I am deeply indebted to my wife, Mrs. Faezeh Moteabbed.
As a professional graphic designer, her assistance in creating the illustrations for my
papers was invaluable.

1.2.3 Part 3: Appendix
The appendix includes the pseudo-code for the algorithms introduced in Papers A, B,
C, and D. Additionally, it features my curriculum vitae and a comprehensive list of my
publications pertinent to the field of irregular pyramids and their applications.
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CHAPTER 2
Introduction to Irregular Graph

Pyramids

In nature, we find patterns, designs and structures from the most
minuscule particles, to expressions of life discernible by human eyes, to
the greater cosmos.

Belsebuub

The following section provides the fundamental definitions and concepts needed to compre-
hend the papers in Part 2. It discusses hierarchical structures in Section 2.1, followed by
regular pyramids in Section 2.2. Section 2.3 offers more in-depth information about irreg-
ular pyramids, including details on bottom-up construction and top-down reconstruction,
the extended region adjacency graph, and contraction kernel selection. Finally, Section
2.4 delves into the concept of combinatorial pyramids.

2.1 Hierarchical Structures
Visual data, distinguished by its vast quantity and high redundancy, necessitates the
implementation of effective organizational and aggregation strategies [Hax07]. Such data
typically exhibit spatial and temporal clustering of relevant information, emphasizing the
need for systems that can manage both computational complexity and the conversion of
raw data into symbolic descriptions. A hierarchical architecture [JR12], embodying a
pyramid-like structure, caters to these demands, with the image forming the base and
each successive layer representing increased abstraction levels.

Crucially, this architecture accommodates the dynamic flow and transformation of
information across and between various layers. Two key mechanisms—bottom-up and

11



2. Introduction to Irregular Graph Pyramids

top-down processing—facilitate this [Ros86]. Bottom-up or fine to coarse processing
primarily involves the recursive transformation of localized data into a more encompassing,
global format [Hax07]. This process aids in extracting salient features from an image
and in data compression as the information ascends the hierarchy.

Contrastingly, top-down or coarse to fine processing involves a model-guided, non-uniform
search of image data, aiming to validate or disprove the existence of specific structures.
This procedure enhances the feature extraction conducted by bottom-up processes by
disseminating abstract, high-level information to the lower levels of the hierarchy. In effect,
the pyramid-like hierarchical architecture elegantly balances the requisites of parallel
data processing and multi-resolution image representation [Duf86]. By integrating these
distinct processes, the architecture can manage and interpret complex visual data in a
more efficient manner.

2.2 Regular Pyramids

Introduced in the 1980s [BHR81, Ros83], regular image pyramids serve as a sequence of
decreasing resolution images, beneficial for image processing and analysis due to their
computational efficiency and their capacity for simultaneously processing both local and
global features [Kro87]. Their systematic construction facilitates fast top-down access to
every pixel of the original image and enables the entire pyramid to be built efficiently
[BCR90]. However, their regular structure induces drawbacks [Kro02], such as the limited
encoding of regions at a given level and significant alterations due to minor initial image
shifts [BK12].

In this structure, each level exhibits exponentially decreasing resolution, from the base
representing the original image to the top, usually a single pixel averaging base pixels.
The term reduction window refers to the relationship connecting any pyramid pixel
to a set of pixels at the level below [Mee89a]. Conversely, the receptive field refers to
the set of base-level pixels associated with a given pyramid pixel [MMR91]. A constant
reduction factor is maintained between any two successive pyramid levels, defining the
size ratio between these images.

Despite beneficial properties like noise robustness, the transformation of global base image
properties into local features at higher levels, and the facilitation of object detection,
regular pyramids have limitations [JM92]. These include sensitivity to minor image
shifts (the shift dependence problem), artificial bounding of region encoding due to
fixed reduction window sizes, and a failure to preserve the image’s topological structure
[SMK10]. To mitigate these issues, irregular pyramids were introduced as an alternative,
which will be detailed in the following section.

12



2.3. Irregular Pyramids

2.3 Irregular Pyramids
Irregular pyramids, as first proposed by Meer [Mee89a] and Montanvert et al. [MMR91],
sought to retain the significant advantages of regular pyramids while addressing their key
limitations. Regular pyramids possess two advantageous properties over non-hierarchical
image processing algorithms: their ability for bottom-up parallel computation, where
each pixel determines its value independently from its child, and the pyramid height’s
relationship with the logarithm of the image size due to a fixed decimation ratio. These
properties enable any pyramid to be computed in O(log |n|) parallel steps [HGS+02],
where |n| is the number of pixels in the image. Despite these merits, the rigidity of regular
pyramids, evident in the fixed shape of reduction windows and static neighborhood of
each pixel, impedes the pyramid’s adaptability to data and preservation of adjacency
relationships across the pyramid. To circumvent these issues, irregular pyramids are
formulated as progressively reduced graph stacks.

Irregular pyramids consist of a series of progressively smaller graphs [Kro95]. Each graph
in this series is termed a level of the pyramid, with the lowest level known as the base
graph, which aligns with the input image. In this base graph, pixels correspond to the
vertices of the graph, and two vertices are connected by an edge if the respective pixels
are 4-connected, meaning they are adjacent either horizontally or vertically. This concept
gives rise to what is referred to as the neighborhood graph, G(V, E), of the image. Opting
for a 4-neighborhood model, where each pixel is connected to its four immediate neighbors
(left, right, top, bottom), is preferred as it avoids intersecting edges between diagonally
placed pixels in a 2 × 2 matrix. This maintains the planarity of the graph, in contrast
to an 8-connected model, where pixels are also connected to their diagonal neighbors,
potentially leading to intersecting edges and disrupting graph planarity[Kle14].

Definition 1 (Plane Graph). A plane graph is a graph embedded in the plane such that
its edges intersect only at their endpoints [Tru93].

In the plane graph there are connected spaces between edges and vertices and every
such connected area of the plane is called a face. The degree of a face is quantified
by the number of edges that form its boundary. A face that is enclosed by a cycle is
designated an empty face. Conversely, a non-empty face implies that traversing the
boundary would require visiting vertices or edges twice [Kle14]. An empty face that
includes only one edge is termed an empty self-loop. Consider an empty face with a
degree of 2, which consists of two edges sharing the same endpoints. These parallel edges
are designated as multiple edges. Essentially, multiple edges are those that connect
the same endpoints, illustrated as edges eu1,v1 ≠ eu2,v2 ̸= eu3,v3 , where u1 = u2 = u3 and
v1 = v2 = v3.

A graph G that includes parallel edges and/or self-loops is defined as a multiple graph,
whereas a graph without parallel edges or self-loops is termed a simple graph. Vertices
at the ends of the same edge are considered neighbors, and edges sharing a common
vertex are adjacent. A non-empty graph is connected when there exists a path linking
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any two of its vertices. The spanning tree of a graph is a tree that encompasses all the
graph’s vertices.

The development of irregular pyramids relies on two critical graph operations: edge
contraction and edge removal. Edge contraction merges two adjacent vertices into
one, reassigning all related edges to the new vertex, thereby preserving connectivity
[Kro95, Kro98]. Conversely, edge removal simply eliminates an edge without affecting
the graph’s vertices or the remaining edges’ connections (refer to Fig. 2.2). Within this
framework, vertices or edges absent in subsequent pyramid levels are labeled as non-
surviving, whereas those that continue to the next level are surviving. The distinction
between surviving and non-surviving elements is made through the identification of a
contraction kernel.

Figure 2.1: Edge Operations [BK22b]

Definition 2 (Contraction Kernel [KB24]). Suppose we have an input graph G(V, E) to
be contracted. A contraction kernel K ⊂ E is a subset of edges forming a spanning forest
within G. Each constituent tree of this forest encompasses one surviving vertex, and in
certain extreme cases, the tree could manifest as a single (surviving) vertex.

2.3.1 Bottom-up Construction

The initiation of an irregular pyramid construction requires a 4-neighborhood connected
plane graph, represented as G = (V, E). Transitioning to a smaller graph at a higher level
involves selecting a set of contraction kernels—specific edges whose contraction reduces
the graph’s size by decreasing both vertices and edges. This process may introduce
multiple edges or self-loops, necessitating the removal of some edges to streamline the
resulting graph. The characteristics of the vertices and edges in the condensed graph
are determined through reduction functions. These procedural steps are iteratively
applied to build successive pyramid levels until a predetermined termination criterion is
achieved, marking the pyramid’s completion. With a reduction factor of at least 2, the
pyramid’s height is ultimately limited by the logarithm of the base graph’s diameter.
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2.3.2 Top-down Reconstruction

Top-down reconstruction process begins from the apex of the pyramid, where we have
an abstract encapsulation of the image’s visual features along with their spatial and
topological aspects containing inclusion relationship and multi-boundaries. To unlock
the insights derived from the input image, we cascade downwards through the pyramid’s
levels, reaching the base image. This downward journey helps illuminate the features and
entities unearthed at higher levels, facilitated by reversing the construction steps from
the bottom-up process. This is made possible through a canonical model proposed by
[TK14a], which meticulously records contraction kernels and simplification parameters in
chronological order. This model also includes mechanisms to undo edge contractions and
removals, while preserving input attributes for the reduction function.

2.3.3 Extended Region Adjacency Graph

Regions in an image are defined as maximally connected components, consisting of
adjacent pixels that either share the same group, determined by a defined similarity
metric, or in the case of labeled images, have identical labels. Image segmentation assigns
a label to each pixel, identifying sets of pixels sharing similar properties. The adjacency
of these regions is typically represented by the region adjacency graph (RAG). In RAG,
each vertex represents a connected set of pixels with identical labels, and two vertices
connect if their corresponding regions, with different labels, share a common boundary.

However, the standard RAG, typically viewed as a simple graph devoid of multiple edges
and self-loops, fails to accurately describe all possible topological configurations between
regions. To address this shortcoming, Kropatsch [KB24] introduced an extended version,
the E-RAG.

Definition 3 (Extended Region Adjacency Graph (E-RAG)). An E-RAG is a Region
Adjacency Graph that includes multiple edges and self-loops.

The E-RAG provides a refined depiction of topological relations, allowing for the repre-
sentation of regions contained within or enclosing others, or instances where multiple
disjoint boundaries exist between any two regions. Furthermore, it can explicitly model
the region outside the image, ensuring every region on the image border is adjacent to it.

2.3.4 Selecting the Contraction Kernels

Selecting the contraction kernels is crucial for the construction of the irregular pyramid.
For efficient parallel contraction, these kernels must be independent of one another. This
independence facilitates the use of massively parallel processing, significantly enhancing
the construction of the irregular pyramid. Ideally, contraction kernels should be small
trees with a depth of one for optimal efficiency. Various methods for selecting contraction
kernels include the Maximal Independent Vertex Set (MIS) proposed by Meer [Mee89b],
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the Maximal Independent Edge Sets (MIES), and the Maximal Independent Directed
Edge Sets (MIDES) introduced by Kropatsch [KHPL05].

In MIS, a collection of maximally independent vertices is formulated through an iterative
stochastic mechanism. This process entails assigning to each vertex a random variable,
uniformly distributed across a range from 1 to n, where n represents the total number of
vertices within the input-connected plane graph. Each vertex thereby receives a unique
number. Within this framework, vertices that attain a local maximum of this assigned
variable are designated as survivor vertices, distinguishing them from their neighboring
vertices, which are categorized as non-survivors [Mee89b]. Extending this concept, MIES
applies the principles of MIS to an edge-graph [Chr75] derived from the original graph G
[KHPL05]. This edge-graph is intricately constructed from G, with each vertex within
the edge graph mirroring an edge in G, and connectivity between two vertices in the
edge-graph is established based on the incidence of their corresponding edges in G to
the same vertex. In MIES, edges undergo contraction in both directions. Conversely,
the MIEDS method is tailored for cases necessitating directional constraints on edge
contraction. In MIEDS dealing with edges instead of vertices, the contraction kernels
may be selected in the same manner as in MIS [KHPL05].

2.4 Combinatorial Pyramid
The combinatorial pyramid [BK01] is a hierarchy of successively reduced combinatorial
maps (CMs). A combinatorial map, resembling a graph, stores explicitly the orientation
of edges around each vertex. It is defined by a triple G = (D, α, σ), where D is a finite
set of darts [BK12]. A dart considered a half edge, forms the foundational element in
the CM structure. The involution α on the set D forms a one-to-one mapping between
consecutive darts on the same edge, i.e., α(α(d)) = d. The permutation σ on the set D
encodes consecutive darts around a vertex, turning counterclockwise [TK14b]. Note that
the clockwise orientation is denoted by σ−1. Fig. 2.2a illustrates a set of adjacent darts
with their respective σ and α encodings. Here, the edge e between two vertices u and v
is represented as e = (d, α(d)), where u, v ∈ V and e ∈ E. V and E denote the sets of
vertices and edges of the graph G = (V, E), respectively.

The removal and contraction operations in a combinatorial pyramid are defined as follows:

Definition 4 (Removal Operation). The removal operation eliminates one edge, denoted
as G\e, and modifies the adjacent darts as:

σ(σ−1(d)) = σ(d), σ(σ−1(α(d))) = σ(α(d)) (2.1)

Definition 5 (Contraction Operation). The contraction operation eliminates one edge,
represented as G/e, collapses its two endpoints, and modifies the adjacent darts as:

σ(σ−1(d)) = σ(α(d)), σ(σ−1(α(d))) = σ(d) (2.2)
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(a) (b) (c)

Figure 2.2: Two main operations in irregular graph pyramids. (a) Before applying an
operation. (b), (c) after applying the operations [?]. (a) An edge e with its incident darts
in the CM. (b) Removal operation, G\{e}. (c) Contraction operation, G/{e}.

Fig.2.2b and Fig.2.2c depict the removal and contraction operations in the combinatorial
map. Importantly, the contraction operation maintains the graph’s connectivity [Kro95].
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CHAPTER 3
Redundant Edges in Binary

Irregular Pyramid

Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away.

Antoine de Saint-Exupery

This chapter delves into the concept of redundant edges in irregular pyramids (Paper A,
D). Section 3.1 outlines the definition of redundant edges. The idea of the total order of
vertices is explored comprehensively in Section 3.2. Section 3.3 characterizes redundant
edges within binary irregular pyramids. Section 3.4 provides a comparison of a novel
method for constructing irregular pyramids with prevalent prior methods. The specifics of
the new approach are elaborated upon in Paper B.

3.1 Redundant Edges in Irregular Pyramids
Redundant information within a structure presents two primary challenges. Firstly, it
can consume extra memory space, leading to inefficient use of storage. Secondly, it can
instigate unnecessary processing, thereby reducing the overall efficiency of associated
algorithms. In the case of irregular pyramids, these redundancies are embodied by
the multiple-edges and empty self-loops. These superfluous structures are generated
post-contraction at each level of the pyramid.

Imagine an empty face with a degree of n, containing n vertices and n edges (see Fig. 3.1a).
The contraction of one edge will result in a face with a degree of n − 1. By iteratively
contracting edges, the diminishing face ultimately becomes a triangle with a degree of
3. Contracting an edge from this triangle results in a face with a degree of 2, forming
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3. Redundant Edges in Binary Irregular Pyramid

a double edge. Contracting the double edge subsequently gives rise to a self-loop with
a degree of 1. Fig. 3.1b illustrates two adjacent triangles that share one edge, where
the contraction of one edge from each triangle generates multiple edges. Contraction of
multiple edges creates self-loops.

In construction of the irregular pyramids, multiple edges and self-loops are not topology
relevant unless they enclose additional vertices or edges. To determine this, one can
examine the dual graph G( V , E), where each face of the original graph is represented
as a vertex in G, and edges in G correspond to shared edges between adjacent faces
in the original graph. The degree of a face, represented as a vertex in the dual graph
V facilitates the decision of the topological relevance of multiple edges and self-loops

[KB24]:

Definition 6 (Topology-relevant). A face of the dual graph G is considered topology-
relevant for G if its degree exceeds 2: deg( v) > 2 for v ∈ V .

Definition 7 (Topology-irrelevant). A face that is not topology-relevant is topology-
irrelevant.

Definition 8 (Redundant edges). In a hierarchical structure, multiple edges and self-loops
surrounding topology-irrelevant faces are redundant edges.

Such redundant edges, being nonessential to topology, are not required to completely
reconstruct the irregular pyramid. Self-loops can be eliminated without disconnecting
any hole or substructure in the dual graph. Similarly, multiple edges can be removed as
long as the final remaining edge is kept intact to preserve connectivity.

(a) Step-by-step contraction of an empty face with a degree of 6 until it transforms into
an empty self-loop.

(b) Step-by-step contraction of two adjacent triangles.

Figure 3.1: Generation of multiple edges and self-loops.
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3.2. Total Order of the vertices

3.2 Total Order of the vertices
Traditional techniques for building irregular pyramids [Kro95, BK00, HIK06, CJGK16]
aim to eliminate redundant edges that form after contractions during the simplification
stage. These irregular pyramids use various methods such as MIS [Mee89b], MIES
[KHPL05], and MIEDS [HGK03] to choose the contraction kernels (CKs). However,
these edge selection techniques choose CKs in a random manner. This situation raises
an important question: How can we exert more control over the CK selection process?
Moreover, is it feasible to anticipate redundant edges before constructing the irregular
pyramid? The concept of establishing a total order for the vertices of the neighborhood
graph addresses these questions.

Definition 9 (Equivalent Contraction Kernel (ECK)). An Equivalent Contraction
Kernel (ECK) refers to a spanning tree that combines all contraction kernels into a single
contraction kernel which generates the same result in one single contraction.

The detailed definition of ECK can be found in [Kro98, HSGK01].

Definition 10 (Root of ECK). The root of ECK of the receptive field is its surviving
vertex at a higher level of the pyramid.

Definition 11 (Total Order Function). A Total Order (TO) function is a bijective
function that assigns a unique number from 1 to n to each vertex of a connected plane
graph composed of n vertices.

TO : {v1, v2, v3, ..., vn} → {1, 2, 3, ..., n}
TO(vi) = j i, j ∈ {1, 2, 3, ..., n}

TO(vi) = TO(vk) ⇐⇒ i = k

(3.1)

With a Total Order [Hal60] in hand, an equivalent contraction kernel function (ECKF)
is defined over the vertices of the receptive field. This function ensures that combining
all contraction kernels forms the spanning tree of the receptive field.

Definition 12 (Equivalent Contraction Kernel Function (ECKF)). An ECKF is a
surjective function applied over a Total Order. It associates every non-surviving vertex
with its respective surviving vertex within an incidence relationship such that combining
all the CKs forms the spanning tree of the receptive field.

ECKF : {v1, v2, v3, ..., vn} → {v1, v2, v3, ..., vn}
∀vi ∈ {v1, v2, v3, ..., vn}, ∃vj ∈ {v1, v2, v3, ..., vn}, ECKF (vi) = vj

(3.2)

A function that assigns the maximum value among its neighboring vertices to each
vertex could be considered a suitable candidate for the ECKF. However, this requires
defining a proper, valid total order in advance.
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3. Redundant Edges in Binary Irregular Pyramid

Definition 13 (Valid Total Order). A Valid Total Order is a total order that, upon
applying the Equivalent Contraction Kernel Function (ECKF), yields a spanning tree of
the receptive field.

For instance, applying the maximum function directly to the vertices in the image shown
in Fig. 3.2 does not qualify as an ECKF due to the lack of a valid total order. Conversely,
when valid total orders are assigned, the maximum function effectively serves as the
ECKF.

Figure 3.2: A non-invalid total order (left) fails to generate a spanning tree, while valid
total orders (right) successfully yield spanning trees.

With a given set of n vertices, there can be numerous total orders. However, when
selecting a function to serve as the ECKF, our interest primarily lies in identifying valid
total orders. This raises the question: how do we generate a valid total order? In this
thesis, the max function is considered to be the ECKF, applied to the neighborhood of a
vertex. The query now becomes: what are the valid total orders corresponding to this
max function?

Proposition 1. When the max function is chosen as a candidate for ECKF, a total
order qualifies as a valid total order if and only if it possesses only one global maximum,
contains no other local maxima, and assigns the maximum number, n, to the root.
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Proof. Consider a connected plane graph, G = (V, E), with n vertices. Given the
properties of total order, each vertex is assigned a unique number. This results in each
vertex identifying only one neighboring vertex with a higher number. With the presence
of only one global maximum and no other local maxima, all vertices, except for the root,
can locate a different vertex from themselves by applying the ECKF. This ensures that
after the ECKF application, no vertex remains isolated and the graph stays connected.
Moreover, the uniqueness of the numbers assigned to vertices implies that a vertex selects
only one neighbor, which eliminates the possibility of loops in the resulting connected
graph. Hence, the resulting connected graph forms a spanning tree of the original graph,
confirming the assigned total order as a valid total order.

3.3 Redundant Edges in Binary Images
Paper A categorizes the graph’s edges (E) into zero-edges (E0) and one-edges (E1)
based on their contrast value contrast(e) = |g(u) − g(v)|, where e = (u, v) and g(v)
represents the binary attribute (0 or 1) of each vertex v ∈ V in G. This classification
helps identify redundant edges as either redundant zero-edges (RE0) or redundant one-
edges (RE1), depending on their placement in a face. Paper D extends this concept in
connected component labeling, designating intra-CC edges within connected components
as zero-edges, and inter-CCs edges between components as one-edges.

Paper A provides theoretical proof that demonstrates the upper bound of the number
of redundant edges equal to up to half of the total number of edges of the grid at the base
level. In the worst case, a binary neighborhood graph may not have any redundant edges.
For instance, consider a binary image comprising a checkerboard pattern (Fig. 3.3a).
The corresponding neighborhood graph (Fig. 3.3b) only consists of inter-CCs edges.
Consequently, according to the definitions of redundant edges, there are no redundant
edges in this case.

Figure 3.3: An example of a binary image showcasing a checkerboard pattern, where its
corresponding neighborhood graph contains no redundant edges.

Alg. 1 details the process of removing redundant edges, as discussed in Papers A and B.
Step 3 of the algorithm partitions the edges of the graph (E) into zero-edges (E0) and
one-edges (E1). This step is crucial for identifying redundant edges in Steps 5 and 6,
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where each edge examines its corresponding face of degree 4 to determine redundancy.
Every step of the algorithm (Steps 3 to 8) operates with parallel constant complexity,
thus granting the entire algorithm parallel constant complexity.

Algorithm 1 Removing Redundant Edges
1: Input: A 4-connected neighborhood graph G = (V, E) of a binary input image
2: Initialization: Define the total vertex order (equations (1) and (2) in Paper A)
3: E = E0

·∪ E1
4: Select contraction kernels from E0 (equation (4) in Paper A)
5: Identify redundant zero-edges (RE0)
6: Identify redundant one-edges (RE1)
7: Determine independent redundant edges
8: Remove independent redundant edges to simplify the graph
9: Output: A simplified connected plane graph G′ = (V ′, E′)

3.4 Remove then Contract method
The development of the Remove then Contract (RtC) method marks a significant
advancement in constructing irregular pyramids by identifying and eliminating redundant
edges with parallel constant complexity, in contrast to traditional methods where edge
removal complexity follows the inverse of the Ackermann function [Wil95]. Unlike previous
methods where edge removal was more complex than contraction operations, RtC achieves
both tasks with improved efficiency: edge removal is executed with constant complexity,
and contraction operations maintain parallel logarithmic complexity, O(log n), where
n is the input graph’s diameter. This innovation streamlines the construction of binary
irregular pyramids, making the process more efficient.

Alg. 2 outlines the RtC method. In Step 4, a spanning forest of contraction kernels is
created, with each tree within the forest being independent of the others. Proposition 2
in Paper B proves that contracting these kernels (Steps 7 and 8 within the while loop)
exhibits parallel logarithmic complexity, denoted as logδ(CK), where δ(CK) represents
the diameter of the largest connected component’s contraction kernel in the image.

Fig. 3.4 presents an example of constructing the binary irregular pyramid using tradi-
tional methods [Kro95, BK00, CJGK16]. In these methods, the contraction kernels are
incrementally selected at each pyramid level. The edges of the contraction kernels are
oriented edges, and the surviving vertices are depicted with a green circle around each
of them. However, as a result of the edge contractions, the resulting smaller graph at
higher levels contains redundant edges, necessitating simplification. The left parts of
Fig. 3.4b,c,d,e depict the graphs before simplification, while the right parts show the
graphs after simplification. Through repetitive contractions and simplification steps, the
pyramid eventually reaches its apex, where E-RAG represents each connected component
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Algorithm 2 Remove then Contract (RtC)
1: Input: A 4-connected neighborhood graph G = (V, E) of a binary input image
2: Initialization: Define the total vertex order (equations (1) and (2) in Paper A)
3: E = E0

·∪ E1
4: Select contraction kernels from E0 (equation (4) in Paper A)
5: while a contraction kernel exists do
6: Remove redundant edges (using Algorithm 1, Steps 5 to 8)
7: Identify a set of independent contraction kernels selected in Step 4
8: Contract the identified independent contraction kernels.
9: end while

10: Output: A simplified connected plane graph G′ = (V ′, E′)

by a vertex and the relationship between the connected components by edges. In Fig. 3.4e,
the black edges encode the inclusion relationships between regions.

Fig. 3.5 demonstrates the construction of the binary irregular pyramid using the RtC
method, wherein most of the contraction kernels are selected at the base level. In Fig. 3.5b,
the left part showcases the detection of redundant edges before the contraction of the
contraction kernels. These redundant edges are indicated by dotted lines. Upon removal
of these redundant edges, the graph is simplified, as shown in the right part of Fig. 3.5b
at the middle level. At this stage, the only remaining contraction kernel, denoted as c, is
selected, and its contraction leads the pyramid to its apex. In Fig. 3.5c at the top level,
edges a and b represent the inclusion relationships. It is worth noting that the topology
of E-RAG in Fig. 3.4 and Fig. 3.5 remains the same, with only the surviving vertices at
the top level differing.
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Figure 3.4: An example of the usual construction [BK00] of the irregular pyramid.
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Figure 3.5: Construction of the irregular pyramid using the RtC method. The input
graph at the base level is identical to Fig. 3.4.
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CHAPTER 4
Parallel Algorithms

Alone we can do so little; together we can do so much.
Helen Keller

This chapter highlights the advantages of designing parallel algorithms proposed in All
Papers of the cumulative thesis, presented in Section 4.1. Section 4.2 defines independent
edges and independent darts. The discussion then briefly covers the two main operations
in the irregular pyramid, namely parallel edge removal and parallel edge contraction
(Sections 4.3 and 4.4).

4.1 Parallel Algorithms
In the era of big data [Kit14], characterized by an explosion of data from various sources
such as social media [MBD+12], machine learning [WZWD13], artificial intelligence
[OE16], and healthcare [MSC13], the importance of parallel algorithms has become
increasingly critical. This surge in data, further amplified by fields like bioinformatics,
astronomy, and climate science, has made the data processing tasks exponentially more
complex [NJDM+22].

Parallel algorithms address this challenge by offering enhanced efficiency and scalability.
They leverage multiple processors to expedite computation and accommodate growing
data volumes, an approach that traditional serial algorithms cannot match due to the
vast scale of modern data sets.

The goal of parallel algorithms particularly in this thesis is to design algorithms that can
perform multiple computations simultaneously. Parallel algorithms take a problem and
divide it into discrete, independent parts so that each part can be executed concurrently,
typically on separate processing cores or computers [CLRS22]. This concurrent execution
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is a key aspect that differentiates parallel algorithms from traditional serial algorithms,
which solve one part of the problem at a time.

Hierarchical structures are particularly useful for parallel algorithms. By defining in-
dependent elements within irregular pyramids, local computations at each level of the
hierarchy can be executed independently. This characteristic is especially beneficial in a
parallel computing context where independent tasks can be allocated to various processors
for concurrent execution. Furthermore, each level of the pyramid can be processed in
parallel, significantly enhancing computational efficiency. Additionally, different levels
could be processed on distinct hardware platforms, each optimized for the scale of data
it handles.

4.2 Independent Elements
In the realm of parallel algorithms, independent elements refer to portions of data
or problem segments that can be processed in parallel, without interdependence on
the outcomes of other segments [RR23]. This independence allows for simultaneous
processing, eliminating the need for data exchange between elements. In the specific case
of constructing irregular pyramids, the process involves edge removal and edge contraction
operations. The key to efficient parallel processing in this context is the identification of
independent edges, which can be processed concurrently for each operation.

4.2.1 Independent Edges

Definition 14 (Independent Edges). In a connected plane graph two edges not sharing
an endpoint are independent edges.

In case the irregular pyramid uses the combinatorial map structure instead of a neighbor-
hood graph, the fundamental elements are darts where each dart d is a half-edge. In this
manner, an edge is denoted by e = (d, α(d)). The edge removal and edge contraction in
the combinatorial pyramid modifies incident darts to the edge e.

Definition 15 (Dependent Darts). In a combinatorial map a set of four darts defines
dependent darts (DD) of an edge e = (d, α(d)) such that:

DD(d, α(d)) = {σ(d), σ−1(d), σ(α(d)), σ−1(α(d))} (4.1)

Therefore, the independent darts are defined as follows:

Definition 16 (Independent Darts). Two darts d1 and d2 are independent iff

DD(d1, α(d1)) ∩ DD(d2, α(d2)) = ∅ (4.2)
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Independent edges in the neighborhood graph, or independent darts in the combinatorial
map, set the stage for the pyramid’s parallel operations. Fig. 4.1 illustrates both
independent edges and independent darts. While two edges that share a vertex are
always dependent, two darts that share a vertex may become independent, as shown in
Fig. 4.1-right.

Figure 4.1: Left: a set of independent edges and Right: a set of dependent darts (black
color). Two red darts are independent.

4.3 Parallel Edge Removal
Paper B introduces a method for parallel edge removal in a 2D grid structure of an
image’s neighborhood graph. By identifying sets of non-sharing endpoints in grid rows
and columns, independent edges are recognized in four systematic steps, enabling the
removal of all redundant edges with parallel constant complexity. This process ensures
efficient edge elimination across the connected component in just four steps. Fig. 4.2
demonstrates the encoding of independent edges in a grid structure example.

Figure 4.2: Four distinct sets of independent edges.
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4.4 Parallel Edge Contraction
Contrary to traditional methods that randomly select contraction kernels (CKs) at each
level of the irregular pyramid [Mee89a, KHPL05], the proposed method employs a total
order-based approach to determine all CKs in just two steps. Algorithm 3 details the Fast
Labeled Spanning Tree (FLST) method introduced in Paper D, highlighting that Steps
4 and 12 are crucial for selecting all CKs. The outcome is a binary irregular pyramid,
where each top-level surviving vertex corresponds to a spanning tree that represents its
connected component within the receptive field.

Algorithm 3 Fast Labeled Spanning Tree (FLST)
1: Input: A 4-connected neighborhood graph G = (V, E) of a binary input image
2: Initialization: Establish the total vertex order according to equations (1) and (2)

in Paper A and set K = 0, where K denotes the level of the irregular pyramid.
3: E = E0

·∪ E1
{First step of contraction kernels selection}

4: Select contraction kernels, S1, from E0 (equation (4) in Paper A)
5: Remove redundant edges (using Algorithm 1, Steps 5 to 8)
6: while there is an edge in S1 do
7: Identify the independent set of edges, S′, from S1
8: Contract the edges of S′

9: S1 ← S1 \ S′

10: K = K + 1
11: end while

{Second step of contraction kernels selection}
12: Select the contraction kernels, S2, from the remaining zero edges
13: Remove redundant edges (using Algorithm 1, Steps 5 to 8)
14: while there is an edge in S2 do
15: Identify the independent set of edges, S′

2, from S2
16: Contract the edges of S′

2
17: S2 ← S2 \ S′

2
18: K = K + 1
19: end while
20: Output: An irregular pyramid
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CHAPTER 5
Fundamental Operations in Binary

Images

Making the simple complicated is commonplace; making the complicated
simple, awesomely simple, that’s creativity.

Charles Mingus

This chapter begins by elucidating local and global operations in binary images in Section
5.1. In Section 5.2, Paper B is referenced, and a brief overview is provided on how
connected component labeling is performed using irregular pyramids. Section 5.3 refers
to Papers C and E, delving into the investigation of computing the distance transform
with parallel logarithmic complexity. Furthermore, computing the DT in connected plane
graphs, n-Gmaps, and combinatorial maps is also briefly explained.

5.1 Operations in Binary Images
Binary image processing is crucial for analyzing and interpreting image content, involving
operations like thresholding, dilation, erosion, opening, closing, connected component
labeling (CCL), and distance transform (DT), which enable a variety of applications
[Sb85, AB94].

Operations in image analysis are categorized into local and global processes. Local
processes, such as dilation and erosion, affect a pixel based on its immediate neighbors
[BCR90], while global processes like CCL and DT depend on a broader set of pixels,
potentially the entire image, to determine a pixel’s value [Ros83]. Global operations,
computed through multiple passes or algorithms, leverage wide spatial relationships to
extract further insights from the image, despite their reliance on local information.
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Utilizing irregular graph pyramids to encode both local and global information of binary
images, Paper B presents a new method for computing CCL, while Paper C and D
introduce novel algorithms for computing the DT.

5.2 Connected Component Labeling

Connected Component Labeling (CCL) is a fundamental process in binary image analysis
that labels connected groups of pixels, enabling the distinction of separate objects or
features [SHS03]. In binary images, this involves identifying and labeling pixel groups
based on their foreground or background status, facilitating the separate analysis of each
object [HRG+17].

CCL algorithms are divided into sequential and parallel categories. Sequential methods,
like the two-pass or one-pass algorithms, process pixels in a specific sequence, suitable
for serial computation [HCS11]. Parallel algorithms, in contrast, handle multiple pixels
at once, benefiting from parallel processing hardware like GPUs for enhanced efficiency
[HRG+17].

Both sequential and parallel CCL algorithms generally exhibit linear computational com-
plexity, O(n), where n is the number of pixels in the image, although parallel approaches
can leverage modern hardware to improve processing time [WCC+03, HCSW09].

Paper B proposes a parallel method named //ACC1 that not only offers a parallel
algorithm for CCL, even in the worst-case scenario but also establishes topological
relations between connected components. Alg. 4 outlines the //ACC method.

Algorithm 4 Parallel Pyramidal Connected Component (//ACC)
1: Input: A 4-connected neighborhood graph G = (V, E) of a binary input image,

GK = (VK , EK): a simplified, smaller graph at level K, where VK and EK are the
vertices and edges at this level, respectively.

2: Construct the irregular pyramid (using Algorithm 3)
3: Assign a unique label to each surviving vertex at the top level of the irregular pyramid

{Begin top-down propagation of labels}
4: while K > 1 do
5: Each vertex at level K propagates its label to its corresponding children at level

K − 1
6: K = K − 1
7: end while
8: Output: Connected component labeling (CCL) of the input graph

1It is pronounced pac where the // and A stand for parallel and pyramidal.
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5.3 Distance Transform
The distance transform determines the minimum distance of each pixel in an image from
the nearest obstacle, using distance measures like Euclidean, Manhattan, or chessboard
[Bor84]. In binary images, it calculates the distance from background pixels to the
nearest foreground pixel, producing a grayscale image where pixel intensities reflect these
distances.

The computational complexity of computing distance transforms in common methods
[FCTB08], which only involve local processing, is linear. This includes parallel algorithms
[CTMT10, ELRTBZ+20] that, despite employing concurrent operations, still exhibit
linear propagation between processing elements. However, Paper C and Paper E introduce
methods that achieve faster distance propagation.

5.3.1 Computation of Distance Transform Utilizing Irregular Pyramids

The goal in computing the Distance Transform (DT) is to measure the distance of
each foreground pixel from the background, starting from boundary pixels (seeds) and
extending through the foreground’s connected components. Paper C leverages the //ACC
method from Paper B for efficient distance computation by identifying seeds at vertices
incident to inter-CCs edges. The construction of the irregular pyramid and selection
of independent contraction kernels enable distance propagation with power-of-two
numbers, shifting the complexity from linear to parallel logarithmic.

5.3.2 Geodesic Distance Transform

The Geodesic Distance Transform (GDT), unlike the standard Distance Transform,
computes distances from each pixel to specific constraint points or regions within a
defined area or based on certain constraints. Paper C presents a method for GDT
computation that primarily differs from DT in the initialization of seeds, which are
selected points of interest in the foreground. The aim is to calculate the minimum
distance from each foreground point to these seeds, focusing on the shortest path within
permissible routes of a given structure or shape. Algorithm 5 details the procedure for
the computation of the GDT.

5.3.3 DT in Connected Plane Graphs

The Distance Transform (DT) is adaptable to connected planar graphs beyond grid
structures by establishing a total order over vertices to form a spanning tree through
selected edges. Paper C proposes using the breadth-first search (BFS) for distance
propagation across this tree, achieving parallel complexity of O(δ(T )), with δ(T ) being
the longest path in the foreground’s spanning forest. Banaeyan and Kropatsch [BK24] have
further refined this to reduce worst-case linear complexity, O(n), to parallel logarithmic
complexity.
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Algorithm 5 Computing the Geodesic Distance Transform (GDT) via the Irregular
Pyramid

1: Input: A 4-connected neighborhood graph G = (V, E) of a binary input image, the
foreground object: F , a set of seeds: S, S ⊂ F

2: Initialization: Establish the total vertex order according to equations (1) and (2)
in Paper A and set K = 0, where K denotes the level of the irregular pyramid. Set
DT (s) = 0 for all s ∈ S, and DT (v) = ∞ for all v ∈ F \ S

3: E = E0
·∪ E1

4: while there exists a vertex at level K such that DT (v) = ∞ do
5: Identify independent contraction kernels from zero-edges that have ∞ distance at

both endpoints
6: Contract the identified independent contraction kernels
7: Record the number of contractions ( i ) for each surviving edge

8: Propagate distances (2 i ) from vertices with calculated distance to their neighbor-
ing vertices

9: K = K + 1
10: end while{Top of the pyramid is reached}
11: while K > 0 do
12: K = K − 1
13: Inherit computed distances from the level above
14: Propagate distances (2 i ) from vertices with calculated distance to their neighbor-

ing vertices
15: end while{Base of the pyramid is reached}
16: Output: Geodesic DT for each vertex in the connected component of interest

5.3.4 DT in n-Gmaps and Combinatorial Maps
Paper C presents a novel method for computing the Distance Transform (DT) within
n-dimensional generalized maps (n-Gmap) [Lie91, DL14, BKH22], using darts (or half
edges) as foundational elements. Initialization can involve single darts, a single i-cell
(0 < i ≤ n), or combinations thereof. This approach generalizes the graph-based
propagation method, utilizing involutions and darts for smoother, more precise DT
computation across n-Gmaps or combinatorial maps, as discussed in Papers C and E. It
allows distance propagation around i-cell boundaries, defining n distinct distances that
provide insights into various dimensions.
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CHAPTER 6
Experiments and Results

An experiment is a question which science poses to Nature, and a
measurement is the recording of Nature’s answer.

Max Planck

This chapter presents the experiments and results of the papers included in the cumulative
thesis. The details of the results, including resulting tables and comparison diagrams, are
discussed in Papers A, B, and E.

6.1 Initialization and Pre-processing in Proposed
Algorithms

Algorithms 1-5 presented in prior sections presuppose knowledge of the binary input
image’s size. These algorithms utilize the combinatorial map structure for pyramid
construction, with darts—each representing a half-edge—as the primary elements. The
implementation of the combinatorial map [BK12] employs canonical encoding [TK14b]
to maintain the σ-permutation of each dart within a 1D array. Given the input image
size, the arrangement of darts in this encoding, and consequently the independent darts
at the pyramid’s base level, are predefined. Thus, the priority for their contraction (as
outlined in the logarithmic encoding proposed in Paper B) is calculated in advance of
initiating the algorithms.

6.2 Redundant Edge Elimination
The RtC method, as applied in Paper B across a diverse set of binary images, has
shown that up to 50% of edges can be redundant, with empirical evidence suggesting
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an average redundancy of over 45%. This efficiency enables a significant reduction in
memory usage—up to 45% less—when constructing the irregular pyramid using the
combinatorial map structure and the canonical ordering.

6.3 Connected Component Labeling
Paper B’s //ACC method, when applied to various image types, shows varied performance:
it is slightly slower for small images but exhibits improved results for larger ones. Unique
to //ACC is the provision of topological information between connected components,
a feature not commonly available in standard CCL methods, which adds value beyond
mere labeling efficiency.

6.4 Distance Transform
Paper E’s comparison of DT computation using irregular pyramids against traditional
methods highlights significant speed improvements, especially for Random images with
smaller objects. Additionally, Papers E and C enhance the DT computation in combinato-
rial maps and n-Gmaps, offering smoother results and introducing n distinct distances for
multidimensional analysis. This approach has practical applications, such as simulating
gas exchange in leaves, illustrating the method’s utility in real-world scenarios.
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CHAPTER 7
Concluding Remarks

In this concluding chapter, the original contributions of the thesis are summarized, and
potential avenues for future research are suggested.

7.1 Conclusion
This cumulative thesis introduces the concept of redundant edges and their structures
within a 2D binary irregular graph pyramid. In Papers A and C, the pyramid’s edges
are categorized into intra-CC and inter-CCs edges. Through a parallel approach, all
redundant intra-CC edges at the base level are effectively eliminated. Moreover, a notable
proportion of inter-CCs edges also undergo elimination at the base level.

Paper B introduces the Remove then Contract (RtC) method to remove redundant edges,
offering several advantages. Firstly, the RtC method reduces the complexity of removing
redundant edges from sequential linear to parallel constant complexity. Secondly, it has
the potential to decrease the memory requirements for pyramid construction. Theoretical
findings presented in Paper A show that the upper bound of this reduction can reach
50%. However, specific cases, such as checkerboard patterns containing no redundant
edges, may be exempt from this reduction. Empirical evidence demonstrates that the
average proportion of redundant edges across various classes of binary images falls within
the range of 45% to 49%.

The thesis leverages the parallel complexity of constructing the irregular pyramid to
significantly reduce the computational complexity of fundamental operations in binary
images. The transition is from sequential linear complexity O(n) to parallel logarithmic
complexity O(log n), where n denotes the number of pixels/vertices in the input binary
image/graph. Of particular focus are the connected component labeling (CCL) and
distance transform (DT) operations, which require both global and local processes. The
parallel pyramidal connected component labeling (//ACC) algorithm proposed in Paper B

39



7. Concluding Remarks

not only achieves efficient CCL but also preserves crucial topological information, including
inclusion relationships between objects and multi-boundaries, which conventional CCL
methods tend to overlook. While the proposed method may execute slower for small-sized
images (Paper B), it demonstrates accelerated performance as the image size increases
(Paper B, D and E).

Paper C and E present innovative algorithms designed to compute the distance transform
(DT). These algorithms utilize a set of power-of-two numbers to propagate distances
within a connected component, departing from the traditional one-step propagation
method. With parallel logarithmic complexity, these algorithms significantly enhance
execution time. Moreover, Paper C introduces a new DT on the generalized map, resulting
in a more precise and smoother DT representation of the input image. Notably, the
n − Gmap incorporates n different distances, a feature particularly useful for biologists
seeking to simulate CO2 infusions within the 2D air space of a leaf or along the 1D
boundary of the leaf’s cells.

Last but not least, the algorithms proposed in all papers (Papers A, B, C, D, and E)
demonstrate parallel complexity and benefit from a sufficient number of independent
processing elements for optimal performance. As the number of processing elements
increases, the efficiency of these parallel algorithms becomes even more pronounced.

7.2 Future Work

This thesis introduces a method for extracting redundant edges in binary images, a
concept that holds potential for extension to gray-scale and color images. For gray-scale
images, connected components can possess any gray value, yet the concept of intra-CC
(Connected Component) edges remains applicable. Redundant intra-CC edges can be
identified using a similar approach as with binary images. By adjusting the definition
of inter-CCs edges to include all edges with a contrast value greater than zero, and
subsequently removing redundant intra-CC edges, the resulting graph’s inter-CCs edges
with the minimum contrast value can be reclassified as intra-CC edges. This process
allows for the detection of redundant edges in gray-scale images through iterative selection
and reclassification of edges, potentially completing in a maximum of m steps, where m
represents the number of distinct contrast values in the image’s neighborhood graph.

For RGB color images, an approach could involve constructing three separate gray-scale
pyramids from the red, green, and blue channels. Each pyramid could then be processed
similarly to the gray-scale image method, enabling the extraction of redundant edges in
color images by treating each color channel independently.

By utilizing combinatorial maps or n-generalized maps for constructing the irregular
pyramid, the algorithm can be extended to higher dimensions, transitioning from 2D
to 3D or even nD scenarios. This extension could significantly broaden the range of
potential applications.
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7.2. Future Work

This thesis introduced a total ordering of vertices to create the spanning tree or Equivalent
Contraction Kernel (ECK). An intriguing inverse problem emerges from this: Given
a pre-determined spanning tree for a connected component, what would constitute an
optimal valid total order? The spanning tree could be provided based on the specific
properties of objects in the input image. For instance, if one aims to preserve the mass
center of connected components, what would be the appropriate total order?

The algorithms proposed in this thesis for Connected Component Labeling (CCL) and
Distance Transform (DT) could be extended to generally connected plane graphs (non-
grid structures) [BK24]. This extension could benefit larger communities that are not
limited to working with array data, broadening the applicability of these methods.

The idea of computing the distance transform can be further expanded to calculate the
distance map in a given cellular complex. Depending on the properties one wishes to
preserve, the suitable distance transform can be defined.

Lastly, utilizing the hierarchical structure could assist us in reducing the complexity
of the eccentricity transform [BK23b]. This is a special case of the distance transform
method, which is notably more robust against noise.

As we continue to expand these ideas, we can anticipate that they will make substantial
contributions to various fields of study, not just in image processing but also in data
analysis and computational geometry, among others. These extensions, therefore, hold
great promise for the future of pyramid-based methods in image and data analysis.
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Images

Reprinted from [BBK22] with kind permission from Springer Nature.
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Abstract. Every day a huge amount of digital data is generated. Pro-
cessing such big data encourages efficient data structure and parallelized
operations. In this regard, this paper proposes a graph-based method
reducing the memory requirement of the data storage. Graphs as a versa-
tile representative tool in intelligent systems and pattern recognition may
consist of many nonessential edges accumulating memory. This paper
defines the structure of such redundant edges in the neighborhood graph
of a 2D binary image. We introduce a novel approach for contracting the
edges that simultaneously assists in determining the structurally redun-
dant edges. In addition, finding a set of independent edges, the redundant
edges are removed in parallel with the complexity O(1). Theoretically, we
prove that the maximum number of redundant edges is bounded by half
of all edges. Practical results show the memory requirement decreases sig-
nificantly depending on the input data in different categories of binary
image data sets. Using the combinatorial map as the data structure, first
the topological structure of the graph is preserved. Second, the method
can be extended to higher dimensions (nD).

Keywords: Redundant edges · Connected component labeling ·
Binary image · Combinatorial map

1 Introduction

The amount of available data in intelligent systems has increased dramatically
in recent years [19,20], and this situation will continue to become more extreme
with the development of technologies [7,10]. Such circumstances necessitate the
development of sophisticated schemes promoting better structural representa-
tion. The structure of the data helps to preserve the topology of the image and
assists to achieve a compact representation of the data. This makes structure a
crucial part of data analysis. The structure of data gives the information about
the intrinsic relationships between the subset of the data. Helman et al. [9] stated
that extraction of relevant structure helps to reduce the data storage and assists
in better visualization. In their case the amount of storage required was approx-
imately one-tenth of the actual storage required for the data. Elimination of the
redundant data [18] plays a key role in achieving a compact representation of
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data and saving the storage memory. Besides, it largely depends upon the rep-
resentation technique, the data structure used for storage of representation, the
algorithm’s compliance with parallel processing, etc. This paper covers the points
related to a structure preserving algorithm for binary images. More specifically
we will look into the elimination of the structurally redundant data (see Sect. 3)
with a graph based representation (see Sect. 2.1) using the combinatorial maps
(see Sect. 2.3) as the data structure.

2 Motivations and Definitions

2.1 Graph-Based Representation

Graphs have the capabilities to represent both structured data (like images,
videos, grids) as well as unstructured data (like climate data, point cloud). Nar-
rowing down to images, graphs based representation are simple and effective. A
digital image can be easily represented using a 4-adjacent neighborhood graph.
Let G = (V,E) be the Region Adjacency Graph (RAG) of image P where V
corresponds to the vertex set and E corresponds to the edge set. The vertex
v ∈ V associates with the pixels in image P and the edge e ∈ E connects the
corresponding adjacent vertices. Let the gray-value of vertex g(v) = g(p) where
p ∈ P is a pixel in the image corresponding to vertex v. Let contrast(e) be an
attribute of an edge e(u, v) where u, v ∈ V and contrast(e) = |g(u)−g(v)|. Since
we are working with binary images only, the pixels (and corresponding vertices
can) have either of the two values 0 and 1. Similarly the edge contrast can have
only two possible values 0 and 1. The edges in the neighborhood graph can be
classified into the following two categories:

Definition 1 (Zero-edge). An edge e ∈ E is a zero-edge, e0, iff the contrast
between its two endpoints is zero.

Definition 2 (One-edge). An edge e ∈ E is a one-edge, e1, iff the contrast
between its two endpoints is one.

The set of edges classified as e0 is denoted as E0 and the set of edges classified
as e1 is denoted as E1. The edge set E = E0 ∪ E1.

2.2 Image Pyramid

Image Pyramids consist of a series of successively smaller images produced from a
base image. They are efficient hierarchical structures which are able to propagate
local information from the base level into a global one at the top of the pyramid.
Generally, two types of the pyramid, namely regular and irregular pyramid exist.

In regular pyramids [12] the resolution is decreased in regular steps and
therefore the size of the pyramid is fixed. On the contrary, in irregular pyramids
the size of the pyramid is not fixed and it is adapted to the image data. In
addition, unlike the regular ones, the irregular pyramids are shift- and rotation-
invariant [16] that make them useful to use in a variety of tasks, such as image
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segmentation [6] and object recognition. It should be noticed that the irregular
image pyramid is interpreted as the irregular graph pyramid when its pixels and
the neighborhood relations between adjacent pixels correspond to the vertices
and the edges of the graph, respectively.

Irregular Pyramids. [11,13–15] are a stack of successively reduced graphs
where each graph is constructed from the graph below by selecting a specific
subset of vertices and edges. For generation of irregular pyramids, we use the
two fundamental operations on graphs: edge contraction and edge removal
(Fig. 1). The edge contraction operation contracts an edge connecting two ver-
tices, and the two vertices are merged into one. All edges that were incident to
the merged vertices will be incident to the resulting vertex after the operation.
The edge removal operation removes an edge from the graph, without changing
the number of vertices or affecting the incidence relationships of other edges.
In each level of the pyramid, the vertices and edges that disappear in a level
above are called non-surviving and those that appear in the upper level surviv-
ing ones.

Definition 3 (Contraction Kernel (CK)). A spanning tree of a connected
component.

A contraction kernel contracts the non-surviving vertices to their correspond-
ing surviving vertex such that each connected component indicated by one sur-
viving vertex.

Fig. 1. Two different operations on an edge.

There are different structures to build the irregular pyramid such as simple
graphs [5], dual graphs [11] and combinatorial maps (CM) [4]. In the simple
graph the produced region adjacency graph (RAG) cannot distinguish between
different topological configurations [13], in particular between inclusion and mul-
tiple adjacency relationships of regions [5]. The problem with dual graphs is that
they cannot unambiguously represent a region enclosed in another one on a local
level [5]. Therefore, in this paper the CM, as a planar embedding of RAG, is
used which not only solves the mentioned problems but also provides an effi-
cient structure that preserves topological relations between regions and can be
extended to higher dimensions (nD).
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A plane graph is a graph embedded in the plane such that no two edges
intersect. In the plane graph there are connected spaces between edges and
vertices and every such connected area of the plane is called a face. The degree
of the face is the number of edges bounding the face. In addition a face bounded
by a cycle is called an empty face. In a non-empty face traversing the boundary
would require to visit vertices or edges twice.

2.3 Combinatorial Pyramid

A combinatorial pyramid is a hierarchy of successively reduced combinatorial
maps. A combinatorial map (CM) is similar to a graph but explicitly stores the
orientation of edges around each vertex. The combinatorial map (G) is defined
by a triple G = (D,α, σ) where the D is a finite set of darts. A dart is defined as
the half edge and it is the fundamental element in the CM’s structure. The α is
an involution on the setD, provides a one-to-one mapping between darts forming
the same edge such that α(α(d)) = d. The σ is a permutation on the set D and
encodes consecutive darts around the same vertex while turning counterclockwise
[17]. Note that the clockwise orientation is denoted by σ−1.

Figure 2 left, shows a set of adjacent darts with their σ relations in a face of
degree 4. Figure 2, right, shows the encoding of the darts. For instance, consider
e = (1, 2) where α(1) = 2, α(2) = 1, σ(1) = 5.

Fig. 2. Combinatorial map.

3 Structurally Redundant Edges

The definition of the term redundant edges differs depending on the application,
the representation and the data structure used for the implementation. In our
case, we are dealing with binary images. In order to obtain the structure of
the binary image, the relevant edges consist of a tree that spans the connected
components and the edges that interconnect the components. To detect the
redundant edges, it is needed to define an efficient method for selecting the CK.
Note that a connected component consists of edges with zero contrast (e0) only,
and the edges with contrast one (e1) connect two different connected components
together. Therefore, in a binary neighborhood graph, the contraction kernel is
selected among only e0s.
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3.1 Selecting the Contraction Kernel

Selecting the contraction kernel (CK) has a key role in detecting the redundant
edges in the neighborhood graph. To this aim, a totally ordered set is defined
over the indices of vertices. Consider the binary image has M rows and N columns
such that (1, 1) is the coordinate of the pixel (p ∈ P ) at the upper-left corner and
(M,N) at the lower-right corner. The corresponding 4-adjacent neighborhood
graph of the binary image has MN vertices. An index Idx(., .) of each vertex is
defined:

Idx : [1,M ]× [1, N ] → [1,M ·N ] ⊂ N (1)

Idx(r, c) = (c− 1) ·M + r (2)

where r and c are the row and column of the pixel, respectively. Figure 3 shows
the neighborhood graph of a 7 by 7 binary image where indices are from 1 to 49.
Since the set of integers is totally ordered each vertex has a unique index. The
important property of such totally ordered set is that every subset has exactly
one minimum and one maximum member (integer number). This property pro-
vides a unique orientation between non-surviving and surviving vertices.

Consider a non-surviving vertex v. In order to find the surviving vertex, vs,
an incident e0 must be found in its neighborhood. Such a neighborhood N (v) is
defined as follows:

N (v) = {v} ∪ {w ∈ V |e0 = (v, w) ∈ E0} (3)

if such neighborhood exists (|N (v)| > 1) the surviving vertex is:

vs = argmax{Idx(vs)| vs ∈ N (v), |N (v)| > 1} (4)

Definition 4 (Orientation of a e0). A e0 = (v, w) ∈ E0 is oriented from v
to w if w has the largest index among the neighbors, Idx(w) = max{Idx(u)|u ∈
N (v)}. All edges to the other neighbors remain non-oriented.

By such definition, a chain of oriented e0s connects each non-surviving vertex
to its corresponding survivor vertex. In Fig. 3 the oriented e0s are identified by
an arrow over each e0. The three vertices (25, 33 and 49) are surviving vertices
while the remaining vertices are non-surviving.

Proposition 1. Selecting the CK partitions vertices into non-surviving and sur-
viving vertices.

Proof. If the |N (v)| = 1, either there is no e0s around v or the index of v is
bigger than the indices of neighboring e0s. Therefore the v is a surviving vertex.
In case the |N (v)| > 1, since the indices are totally ordered, there is a maximum
in the neighborhood of v which is selected as survivor and the v becomes the
nun-surviving vertex.

Proposition 2. Every non-surviving vertex has a unique surviving vertex.



226 M. Banaeyan et al.

Proof. Each tree of oriented e0s has one unique maximum as the index of the
surviving vertex.

Property 1. With the choice of Idx(.) and the coordinate axes in (1) a non-
surviving vertex contracts either to its adjacent right vertex or to its down vertex
where the right vertex has the higher priority.

Fig. 3. Combinatorial map.

3.2 Redundant Edges

Connectivity is an essential property in the structure of a hierarchical graph
pyramid. Nevertheless, there may be some edges the removal of which does not
harm the connectivity. We define such edges as redundant edges.

Definition 5 (Redundant-Edge (RE)). In an empty face, the non-oriented
edge incident to the vertex with lowest Idx is redundant iff:

– The empty face is bounded by only non-oriented edges with the same contrast
value.

– The empty face is bounded by non-oriented edges with the same contrast value
and oriented edges.

Based on the RE definition, an empty self-loop is redundant. In addition, in
an empty face of degree 2 (double edge), one of the edges is redundant. Figure 4
illustrates an empty face of different degrees where in each empty face the redun-
dant edge is indicated by RE.

Proposition 3. The upper bound of the number of redundant edges (REs) is
equal to half of the edges of the grid at the base level.
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Fig. 4. Example of redundant edge (RE) in different empty faces.

Proof. In a grid M by N, the number of vertices is MN and the number of edges
is 2MN −M −N . To preserve the connectivity the smallest graph is a spanning
tree of vertices with MN − 1 edges. Therefore, the maximum number of REs is:

Max|REs| = (2MN −M −N − (MN − 1)) = MN −M −N + 1 (5)

lim
M→∞ N→∞

(Max|REs|/E) = (MN −M −N +1)/(2MN −M −N) = 1/2 (6)

As the result, by growing M and N , the maximum number of REs becomes
maximally half of all the edges (E) at the base level.

Proposition 4. In every face of degree n (n > 1) is bounded by only e0s, one
of the non-oriented e0s is redundant.

Proof. By contracting an edge, every face of degree n > 2 after n−2 consecutive
contractions becomes a face of degree 2 which has a RE (Definition 5).

Proposition 5. In every face of degree n (n > 1) is bounded by only e1s and
oriented e0s, there is a redundant one-edge (RE1) .

Proof. Contracting all oriented e0s results in a face of degree 2 containing two
e1s between the same endpoints. Hence, one of the e1s is redundant.

Since edges classify into E0 and E1, the REs are partitioned into Redundant
Zero-Edges (RE0) and Redundant One-Edges (RE1) as well:

REs = RE0s
·∪ RE1s (7)

In Fig. 3, the RE0s are shown by black dashed-lines and the RE1s are shown by
red dashed-lines. Furthermore, the RAG at the top of the pyramid shows the
connections between three different connected components. Using the combina-
torial map structure, the inclusion relation is preserved because it is represented
by the loop a aroundthe vertex 25.

It should be noted that a neighboring graph at the base level may not have
any redundant edge. Consider a 4-connected graph that its vertices form a
checkerboard pattern. In such the case, all edges have contrast one that it means
there is no zero-edge and thus no RE0. Furthermore, based on the Proposition
5, no two one-edges connect the same vertices and thus there is no RE1 as well.
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3.3 Removing Redundant Edges in Parallel

In order to remove the REs, a dependency between edges is considered. We
define such dependency relation to detect a set of REs where by simultaneously
removing, the combinatorial structure is not harmed. To this aim, first a set of
dependent darts is defined as follows:

Definition 6 (Dependent Darts). All darts of a σ-orbit sharing an endpoint
are dependent darts.

Next, by considering the corresponding edge of each dart, e = (d, α(d)), the
set of dependent darts results in the set of dependent edges. Consequently,
two edges not sharing an endpoint are independent. In this manner, the only
case of the dependency between REs occurs when the REs share an endpoint.
In the grid at the base level the REs may be connected horizontally or vertically
and thus are dependent. However, consider a horizontal edge in an odd row of
the grid. This edge is independent to all other horizontal edges of other odd rows.
Similarly, a vertical edge in an odd column is independent of all other vertical
edges of other odd columns. Such independency exists between edges in even
rows and even columns as well. Figure 5 shows the set of independent edges at
the base. Therefore, all the edges in grid are classified to four independent classes
of edges. Consequently, removing all edges belonging to each independence class
(1, 2, 3 or 4) occurs simultaneously. This means, all the REs are removed in
only four steps where each step has the complexity O(1). Therefore removing
the redundant edges is performed in parallel.

Fig. 5. The four independent classes of edges in the grid at the base.

4 Memory Consumption

The topological structure is well captured in the combinatorial map. A combi-
natorial pyramid is a hierarchy of successively reduced combinatorial maps [4].
The pyramid needs to store the combinatorial map of each level that results in
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high memory consumption. To avoid such expensive memory requirement, we
use a canonical encoding [17] where the memory consumption of the pyramid is
equal to the size of the base level.

In the canonical encoding of the combinatorial pyramid, all the darts are
stored in a single array that preserves the history of pyramid construction. The
number of darts at the base level is equal to 2 · (2MN − M − N) in a binary
image M by N. Since nearly half of the edges at the base level (Proposition 3)
are redundant (RE), their removal decreases the memory requirements.

In addition, in the canonical pyramid, removing the darts performs in a
sequential manner. In contrast, using the independent set of edges (Sect. 3.3)
we are able to remove the independent set of corresponding darts in parallel.
Therefore, in the canonical array such darts are removed in parallel. Fig. 6(a)
illustrates the combinatorial map (CM) of a graph and Fig. 6(d) shows its canon-
ical encoding. The REs are shown by dashed-lines. Four REs are corresponding
to darts 1 to 8. The darts at the first row (1, 2, 5, 6) are removed in one step
(Fig. 6(b, f)). Afterwards, darts at the second row (3, 4, 7, 8) are removed
simultaneously (Fig. 6(c, g)). This results in, the smaller array of the canonical
encoding shown in Fig. 6(h).

5 Comparisons and Results

To highlight the advantages of the proposed method, we compare the memory
storage required with and without removing the REs. The comparison is done
with the originally proposed canonical representation [17]. It was used by [1,3,
6] for the implementation of topology preserving irregular image pyramids of
gray scaled and RGB images. In addition, recently the canonical encoding was
used in connected component labeling [2]. Since for our current research, the
input images are restricted to binary images, it is easy to identify the connected
components unlike the gray scale images. Considering the structure of the image,
the number of REs that can be eliminated are significantly higher than that in
a gray scale or RGB image.

In a combinatorial map, the involution α between the darts remain the same
even after performing the contraction and/or removal operations. The α rela-
tions can be encoded into the even and odd numbering of darts for each edge.
Thus all the modifications related to the contraction and the removal operation
on the graphs are performed by modifying the σ-permutation. In the canoni-
cal representation, the minimum storage required to store and to modify the
σ-permutation is equal to the number of darts i.e. twice the number of edges. By
using the proposed method, we eliminate the edges that are structurally redun-
dant and consequently reduce the storage space of darts and its permutation.

The algorithm was tested on several classes of images from the YACCLAB [8]
dataset. Table 1 displays the outcome of the proposed method. The first column
shows the name of the image class in the data set and an example from it,
while the second column displays the ‘size’ of the image. The number of images
(‘#Images’) from each class, on which the implementation was performed is
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Fig. 6. Memory usage in the canonical encoding.

displayed in the third column. The forth column gives the percentage of vertices
that survive (‘|Vs|/|V |’). Since there is a significant variation in the size of the
image, the number of REs are expressed in terms of percentage of the actual
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Table 1. Results over images of different categories from (YACCLAB [8]).

Database Example Size #Images |Vs|/|V | |REmin| |REµ| std(|RE|)
M

it
oc

ho
nd

ri
a

768 × 1024 495 0.33% 49.01% 49.44% 0.0073

M
ed

ic
al

890 × 886 189 2.74% 41.18% 46.87% 0.0145

F
in

ge
r-

pr
in

t

300 × 300 962 3.50% 42.50% 46.05% 0.0108

M
R

I

256 × 256 1170 2.72% 44.42% 46.49% 0.0114

3d
pe

s

704 × 576 2400 0.07% 49.81% 49.84% 0.0019

H
ilb

er
t

127 × 127 512 2.43% 41.31% 45.25% 0.0108

R
an

do
m

64 × 64 89 18.90% 23.18% 27.66% 0.0407

number of edges. The last three columns display the lowest (‘|REmin|’), and the
average number of REs (‘|REµ|’) along with the standard deviation (‘std(|RE|)’)
over all images from each dataset.

The redundancy in the random images is notably lower than that in the
other class of images. This can be observed in the number of surviving vertices
as well. This happens due to the fact that the number of isolated vertices (vertices
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surrounded by e1s only) are higher, making the connected component smaller in
size. The worst case occurs in a checkerboard pattern where all the vertices are
isolated making each region containing a single pixel. In such a case, none of the
edges are redundant. In contrast, an image with only black (0) or only white (1)
color will have 50% of the REs.

6 Conclusion and Future Works

The paper presents a new formalism to define redundant edges in the neighbor-
hood graph of a 2D binary image. By proposing the new method for selecting the
contraction kernels these redundant edges are efficiently detected and removed
before the contraction operation. We prove that the amount of redundant edges
may reach up to half of the edges at the base level with a grid like structure.
The experiments show that most classes of images have 45%–49% of redundant
edges (except for artificially generated random binary images). As a result, the
memory consumption is reduced by 45%–49% while using combinatorial map
as the data structure. Furthermore, all the redundant edges can be removed in
parallel with a constant algorithmic complexity O(1). For the future work, we
are going to develop the method for gray-scale images. Secondly, by using the
combinatorial structure we will work on extending the redundant edges to higher
dimensions (nD).
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Abstract. Connected Component Labeling (CCL) is a fundamental task
in pattern recognition and image processing algorithms. It groups the pix-
els into regions, such that adjacent pixels have the same label while pixels
belonging to distinct regions have different labels. The common linear-
time raster scan CCL techniques have a complexity of O(image−size) in
a 2D binary image. To speed up the procedure of the CCL, the paper pro-
poses a new irregular graph pyramid. To construct this pyramid, we use
a new formalism [1] that introduces an order of the pixels in the base grid
to detect the redundant edges through the hierarchical structure. These
redundant edges, unlike the usual methods of constructing the irregular
pyramid, are removed before contracting the edges. This not only sim-
plifies the construction processes but may decrease memory consumption
by approximately half. To perform the CCL task efficiently the proposed
parallel algorithm reduces the complexity to O(log(n)) where the n is the
diameter of the largest connected component in the image. In addition,
using an efficient combinatorial structure the topological properties of the
connected components including adjacency of CCs, multi-boundaries and
inclusions are preserved. Finally, the mathematical proofs provide fully
parallel implementations and lead to efficient results in comparison with
the state-of-the-art.

Keywords: Connected Component Labeling · Irregular graph
pyramid · Parallel processing · Combinatorial map · Pattern
recognition

1 Introduction

Connected Component Labeling (CCL) is used in analysing binary images as a
basic task [16]. Given as input a binary image, its values distinguish between
background (zero) or foreground (one) regions. After this, a region is connected
if all pairs of pixels are connected by a chain of neighbors. They may be multiple
regions with value zero and multiple regions with value one. CCL assigns a
unique label to each different region. In general, the CCL algorithms divide into
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two main categories [11] based on label-propagation [10] or label-equivalence-
resolving [12]. All of these approaches are linear and a pixel usually is visited
in the raster-scan search. In other words, such algorithms may differ from one-
scan or two-scan searching through the entire image, but all of them are in the
order of image size, O(MN) in a M × N -sized (2D) binary image. Recently,
the algorithm proposed in [3] uses a pyramid structure for the CCL. However,
because of the linear propagation of the labels, it is linear as well.

In contrast, In this study, the proposed Parallel Pyramidal Connected Com-
ponent (//ACC1) method reduces the complexity impressively to the logarithmic
order of the diameter of the largest connected component in the image. To this
aim, we employ a new formalism in [1] to recognize the redundant edges in
the pyramid. Removing these redundant edges before contracting the edges, not
only is performed in parallel but may decrease memory consumption by half in
comparison with efficient pyramids [17].

To construct the irregular pyramid, the Remove then Contract (RtC) algo-
rithm is proposed. The proposed algorithm speeds up the labeling task which
makes it more efficient to be used in various application areas of machine learning
and artificial intelligence such as document analysis and object recognition [15].

1.1 Motivations and Notations

Irregular pyramids are a stack of successively reduced graphs where each
graph is constructed from the graph below by selecting a specific subset of ver-
tices and edges. For generation of irregular pyramids, two basic operations on
graphs are needed: edge contraction and edge removal. The former contracts an
edge e = (v, w), identifies v and w and removes the edge. All edges that were
incident to the joined vertices will be incident to the resulting vertex after the
operation. The latter removes an edge from the graph, without changing the
number of vertices or affecting the incidence relationships of other edges. Note
that in this study for preserving topology the self-loops are not contractable. In
each level of the pyramid, the vertices and edges disappearing in level above are
called non-surviving and those appearing in the upper level surviving ones.

Definition 1 (Contraction Kernel (CK). A contraction kernel is a spanning
tree of the connected component with the surviving vertex as its root.

Each contraction kernel is a tree including one surviving vertex and the
remaining non-surviving vertices of the CC.

A plane graph is a graph embedded in the plane such that its edges intersect
only at their endpoints [18]. In plane graph there are connected spaces between
edges and vertices and every such connected area of the plane is called a face.
The degree of the face is the number of edges bounding the face. In addition a
face bounded by a cycle is called an empty face. In a non-empty face traversing
the boundary would require to visit vertices or edges twice.

1 It is pronounced pac where the // and A stand for parallel and pyramidal.
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There are different structures to build the irregular pyramid such as sim-
ple graphs [7], dual multi-graphs [13] and combinatorial maps (CM) [6]. The
simple graph cannot distinguish some topological configurations (inclusions and
multiple adjacency) [14]. The problem with dual graphs is that they cannot
unambiguously represent a region enclosed in another one on a local level [7].
Therefore, in this paper the CM is used which not only resolves the mentioned
problems but also can be extended to higher dimensions (nD).

A combinatorial pyramid is a hierarchy of successively reduced combina-
torial maps [6]. A combinatorial map (CM) is similar to a graph but explicitly
stores the orientation of edges around each vertex. To this aim, a permutation,
σ, is defined encoding consecutive edges around a same vertex while turning
counterclockwise. The clockwise orientation is denoted by σ−1. In the CM each
edge divides into two half-edges. Each half-edge is called a dart and the α is an
involution providing a one-to-one mapping between consecutive darts forming
the same edge such that α(α(d)) = d.

Figure 1 left, shows a set of 8 adjacent darts with their σ relations in a face of
degree 4. In the middle, it shows the encoding of the darts. For instance, consider
e = (1, 2) where α(1) = 2, α(2) = 1, σ(1) = 5. In this paper, we assign an odd
number to the left-side dart of a horizontal edge while assigning an even number
to its right-side dart. Similarly, we assign an odd number to the up-side dart of
a vertical edge while assigning an even number to its down-side dart. The dodd
indicates an odd dart and the deven indicates an even dart (Fig. 1 right).

Fig. 1. Combinatorial map [1]

2 The RtC Algorithm for Pyramid Construction

In the original irregular pyramids [7] selected edges are first contracted. Edge
contraction has the main advantage to preserve the connectivity. But it has a
side effect to produce multiple edges and self-loops. Some of these edges are
necessary to properly describe topological relations like inclusions and multiple
connections between the same vertices. However, many of them are not necessary
and hence called redundant. Redundant edges are removed through the simplifi-
cation procedure after the contractions. However, in the proposed Remove then
Contract (RtC) algorithm, the redundant edges are removed before the contrac-
tions and in a parallel way. To this aim, the RtC introduces a new formalism to
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define the redundant edges (Sect. 2.3). Since the RtC is used for the CCL task,
the input is a binary image where the 4-connectivity between pixels is assumed
because the 8-connectivity would not create a plane graph.

2.1 Edge Classification

Consider the neighborhood graph G(V,E) of a binary image P where the ver-
tices V correspond to the pixels P and the edges E connect two vertices if the
corresponding pixels are 4-neighbors. Let the gray-value of vertex g(v) = g(p)
where p ∈ P is a pixel in image corresponding to vertex v. Let contrast(e) be
an attribute of an edge e(u, v) where u, v ∈ V and contrast(e) = |g(u) − g(v)|.
Since we are working with binary images, the pixels (and corresponding vertices
can) have only two gray values 0 and 1. Similarly the edge contrast can have
only two possible values 0 and 1. The edges in the neighborhood graph can be
classified into the following two categories:

Definition 2 (Zero-edge) An edge is a zero-edge iff the contrast between its
two endpoints is zero. The zero-edge is denoted by e0.

Definition 3 (One-edge) An edge is a one-edge iff the contrast between its
two endpoints is one. The one-edge is denoted by e1.

The set of edges classified as zero-edge is denoted as E0 and the set of edges
classified as one-edge is denoted as E1. The edge set E = E0 ∪ E1.

A connected component consists of E0 and E1 connects different CCs
together. Thus, the proposed algorithm for doing the labeling task, only con-
siders E0 as the candidates of the selection of the CK. Figure 2 shows a binary
image with its corresponding neighborhood graph. Edges E0 are black while E1

are red.

2.2 Selecting the Contraction Kernel

The way a CK is selected has a main role in detecting the redundant edges in
the neighborhood graph. To this purpose, a total order defined over the indices
of vertices. Consider the binary image has M rows and N columns such that
(1, 1) is the coordinate of the pixel at the upper-left corner and (M,N) at the
lower-right corner. An index Idx(., .) of each vertex is defined:

Idx : [1,M ]× [1, N ] → [1,M ·N ] ⊂ N (1)

Idx(r, c) = (c− 1) ·M + r (2)

where r and c are the row and column of the pixel(v), respectively. Since the
set of integers is totally ordered each vertex has a unique index. The impor-
tant property of such totally ordered set is that every subset has exactly one
minimum and one maximum member (integer number). This property provides
a unique orientation between non-surviving and surviving vertices. Consider a
non-surviving vertex v. In order to find the surviving vertex, vs, an incident
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e0 must be found in its neighborhood. Such a neighborhood N (v) is defined as
follows [1]:

N (v) = {v} ∪ {w ∈ V |e0 = (v, w) ∈ E0} (3)

if such neighborhood exists (|N (v)| > 1) the surviving vertex is:

vs = argmax{Idx(vs)| vs ∈ N (v), |N (v)| > 1} (4)

Definition 4 (Orientation of a e0). A e0 = (v, w) ∈ E0 is oriented from v
to w if w has the largest index among the neighbors, Idx(w) = max{Idx(u)|u ∈
N (v)}. All edges to the other neighbors remain non-oriented.

Based on the definition above, a chain of oriented edges connects each non-
surviving vertex to its corresponding survivor vertex. In Fig. 2 the oriented edges
are represented by an arrow over each e0. The surviving vertices (4, 12, 15), are
presented by a green circle around each one.

In this paper, vertices surrounded by only e1 ∈ E1 are isolated vertices.
The isolated vertices will not be contracted through the construction process
and they survive until the top of the pyramid. In the Fig. 2 the isolated vertices
are 10 and 16 indicated by a blue circle.

Fig. 2. The neighborhood graph of a 4 by 4 binary image.

2.3 Redundant Edges

In [1], redundant edges are investigated in details. To construct the irregular
pyramid based on the RtC algorithm, first, the redundant edges are defined.

Definition 5 (Redundant-Edge (RE)). In an empty face, the non-oriented
edge incident to the vertex with lowest Idx is redundant iff:

– The empty face is bounded by only non-oriented edges with the same contrast
value.
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– The empty face is bounded by non-oriented edges with the same contrast value
and oriented edges.

Proposition 1. The upper bound of the maximum number of redundant edges
(REs) is equal to half of the edges of the grid at base level.

Proof. Can be found in [1].

Since edges classify into E0 and E1, the Redundant Edges (REs) are partitioned
into Redundant Zero-Edges (RE0) and Redundant One-Edges (RE1) as well:

RE = RE0

·∪ RE1 (5)

Removing RE and contracting the selected CKs at the base level, result in build-
ing the first level of the pyramid. To build the upper levels, the CKs are selected
and then are contracted until there is no edge remaining for contraction. At this
point, the pyramid reaches to its top level and the RtC algorithm is terminated.

In Fig. 3, different levels of the pyramid are shown. At the base level, the
RE0 is shown by a black dashed-line and the RE1 are shown by red dashed-lines.
Furthermore, the Region Adjacency Graph (RAG) of the middle and top level are
illustrated. The RAG at top of the pyramid represents the connections between
four different connected components. Using the combinatorial map structure,
the inclusion relation is preserved as it is represented by the loop a around the
vertex 10. Additionally, the structure preserves the multiple boundaries as it
is shown by two different edges between vertices 4 and 15 with different paths
of vertices (4-3-2-1-5-9-13-14-15 and 4-8-12-11-15) from the base level.

Fig. 3. Binary irregular pyramid. (Color figure online)
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2.4 Parallel Pyramidal Connected Component (//ACC)

The goal of connected component labeling is to assign a unique label to the ver-
tices of a CC at the base level. Given a binary image as an input, first the corre-
sponding pyramid is built by the RtC. At the top of the constructed pyramid, the
RAG presents connected components (CCs) and the connectivity relations. Each
CC is represented by one surviving vertex. The range of vertices between 1 to
M.N is kept. For each vertex a label as a new attribute is initialized. A surviving
vertex at the top uses its index Idx as its unique label. To propagate down, each
non-surviving vertex below the top level checks its parent and fills the label with
the label of the parent. By reaching to the base level all the vertices receive their
labels and the labeling task is finished. Since the CCL task is performed using
the pyramid structure and in parallel, we call it Parallel Pyramidal Connected
Component (//ACC).

3 Parallel Complexity

In this section the parallel complexity of the proposed //ACC algorithm is inves-
tigated. Whenever we talk about complexity, it is always assumed parallel com-
plexity. The size of the binary input image isM×N . Therefore, the indices of the
vertices and the neighborhood relations of the edges are known. Note that such
indexing is available before constructing the pyramid and in off-line processes.
The edge classification and selection of the CKs are both performed locally over
a vertex and its neighborhoods and therefore in parallel.

To remove the redundant edges (RE), a dependency between edges is con-
sidered. We define such dependency relation to detect a set of redundant edges
where by simultaneously removing, the combinatorial structure is not harmed.
Therefore, first a set of dependent darts is defined as follows:

Definition 6 (Dependent Darts). All darts of a σ-orbit sharing an endpoint
are dependent darts.

Afterwards, by using the corresponding edge of each dart, e = (d, α(d)), the set
of dependent darts leads to the set of dependent edges. As a consequence, two
edges not sharing an endpoint are independent. In this way, the only case of the
dependency between RE occurs when the RE share an endpoint.

In the grid at the base level the RE may be horizontally or vertically con-
nected and therefore are not independent. However, consider a horizontal edge
in an odd row of the grid. This edge is independent to all other horizontal edges
of other odd rows. Similarly, a vertical edge in an odd column is independent to
all other vertical edges of other odd columns. Such independency occurs between
edges in even rows and even columns as well. Figure 4.a , represents the set of
independent edges at the base. Thus, all the edges in grid are classified into four
independent set of edges.

As a result, removing all edge belong to each independent set (1, 2, 3 or 4),
occurs simultaneously. This means, all the RE are removed in only four steps
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where each step has the complexity O(1). Therefore removing the redundant
edges is performed in parallel.

The disjoint sub-trees of a CK do not share any edges and therefore their
contractions are performed in parallel. The challenging task is how to contract
edges inside a tree of a CK in parallel? To this aim, we introduce two methods,
one only for the base and the other for the remaining levels of the pyramid.

Contractions at the Base Level: Note that the diameter of a CK is the length
of the largest path in the CK.

Proposition 2. The complexity of contracting a CK has a logarithmic bound
as follow:

log2(δ(CK)) ≤ complexity of contracting a CK ≤ log3(δ(CK)) (6)

where the δ(CK) is the diameter of the CK of the largest connected component
in the image.

Proof. Based on (4), the maximum diameter of an oriented sub-tree graph corre-
sponding to a M ×N image is equal to M +N − 1. We consider a line sequence
of edges with its length equal to this diameter. Next, the numbers from 0 to
M + N − 2 are assigned to the vertices of the line sequence. By choosing the
survivor vertices at 3n+1 (n ∈ {0, 1, 2, [(M+N−2)/3]}), adjacent non-survivors
(3n and 3n + 2) are contracted to this survivor (Fig. 4.b). Since each survivor
belongs to a CK with the diameter at most 2, a line sequence consists of 3k
vertices where k ∈ {1, 2, 3, ...}, needs only log3(3k) steps to select the survivors.
The worst case occurs when the length of the line sequence is 4 and therefore,
two steps (log2(4)) are required for selecting the survivors.

Fig. 4. Independent edge sets [1], and contractions at the base

Contractions at Upper Levels: Based on (4), all remaining non-oriented E0

are vertical edges at the base level (Fig. 5.b). The E0 of two different CCs are
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disjointed and therefore they are independent. The E0 of a CC may have at the
worst case the N − 1 vertical non-oriented edges in the neighborhood graph of
the M by N binary image (CC1 in Fig. 5.b). These non-oriented edges receives
their orientations at the next level (L = 1) through the procedure of selecting
the CKs and create a line of oriented edges. Such the line sequence of oriented
E0 are contracted in O(log2(N − 1)) as visually is encoded in Fig. 5.c.

Fig. 5. Priorities of contractions at level 1

4 Comparisons and Results

Simulations use MATLAB software and execute over CPU with AMD Ryzen
7 2700X, 3.7GHz. The YACCLAB [9] benchmark was used for evaluating the
proposed algorithm. The algorithm is executed over 89 random, 128 MRI and
128 finger-print images from this benchmark. Table 1 shows the results.

Table 1. Results over images of different categories from (YACCLAB[9]).

Database type Random images MRI images Finger-print images

Size of the image 128 × 128 256 × 256 300 × 300

Redundant edges (average) 27.66% 46.49% 46.05%

Redundant edges (worst case) 23.18% 44.42% 42.50%

Number of connected components 2192 691 543

Execution time (ms) (in average) 0.098 1.643 2.317

Execution time (ms) (worst case) 0.127 2.973 3.518

The average percentage of the redundant edges (RE) over each category is
represented. For example in the finger-print images, about 45% of the edges
are redundant while they are all removed in parallel. Moreover, the number of
connected components and the average time in each category are shown. The
category of Random Images consist of only small objects. It means the diameter
of a CK of the largest connected component of these small objects is negligible
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in compare to the diameter of the image. Therefore the complexity is near to
the O(1). Essentially, the worst case occurs when the size of an object is as large
as the whole image. In such the case, the complexity is equal to the logarithmic
of the diameter of the image.

The inclusion relationship (hole) is one of the important topological infor-
mation between connected components. The implementation of the proposed
labeling //ACC, not only performs the labeling task, but also provides the num-
ber of inclusions between connected components. Furthermore, the simulations
represent the adjacency and multi-adjacency of CCs. Such valuable topological
information are missing in usual CCL algorithms. Figure 6 shows the CCL over
a binary mitochondria image. The corresponding graph of the base level and
categories of the edges are illustrated. The image consists of 9 connected com-
ponent where the inclusion number is 7. In addition, the number of different
edges for the mitochondria image are compared. The experimental results show
approximately half of the edges in this image are RE.

Fig. 6. A binary mitochondria image from [9]. Number of CCs is 9. The number of
inclusions (holes) is 7. The RE are almost half of the edges.

Figure 7 shows the execution time of the //ACC algorithm over different
image-sizes and compares it with the state-of-the-art methods from [5]. Although
for small images the efficient algorithms in [5] are executed in higher speeds the
//ACC with its logarithmic complexity reaches to the faster labeling results for
big data, i.e., images larger than one million pixels.

Removing the RE not only speeds up the execution, but also decreases the
memory consumption. The comparison is done with the originally proposed
canonical represented [17] that also is used in [2,4,8]. In canonical representa-
tion, the minimum storage required to store the structure is equal to the number
of darts i.e. twice the number of edges. By using the proposed RtC method, we
eliminate the edges that are structurally redundant and consequently reduce the
storage space of darts. Since the upper bound of the maximum number of RE is
equal to half of the edges, the memory consumption of the proposed algorithm
may decrease approximately by half.
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Fig. 7. Illustration of the execution time (ms) over different image-sizes

5 Conclusions

The paper presented a new approach to construct the irregular graph pyramids
such that the connected component labeling can be performed in parallel and
therefore faster. Unlike the usual construction of the irregular pyramids, in this
paper, the redundant edges were removed in parallel before the contractions
while they used to be removed after contractions and in a sequential order. The
experimental results show that nearly half of the edges are removed as redundant
edges that decreases the memory consumption to half of the combinatorial map
of the base level of the pyramid. The logarithmic complexity of the algorithm
speeds up the execution and suits it particularly for large images. In addition, the
proposed method provides additional topological information such as inclusion
and multi-boundaries. Moreover, what we proved it seems to be true for gen-
eral graphs. Finally, using the combinatorial structure the proposed connected
component labeling method can be extended to higher dimensions (nD) and to
multi-label segmented images.
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Abstract. Distance Transform (DT) as a fundamental operation in pat-
tern recognition computes how far inside a shape a point is located.
In this paper, at first a novel method is proposed to compute the DT
in a graph. By using the edge classification and a total order [1], the
spanning forest of the foreground is created where distances are prop-
agated through it. Second, in contrast to common linear DT methods,
by exploiting the hierarchical structure of the irregular pyramid, the
geodesic DT (GDT) is calculated with parallel logarithmic complexity.
Third, we introduce the DT in the nD generalized map (n-Gmap) lead-
ing to a more precise and smoother DT. Forth, in the n-Gmap we define
n different distances and the relation between these distances. Finally,
we sketch how the newly introduced concepts can be used to simulate
gas propagation in 2D sections of plant leaves.

Keywords: nD distance transform · Generalized maps · Irregular
pyramids · Parallel processing · Logarithmic complexity · Geodesic
distance transform (GDT)

1 Introduction

The distance transform [5] computes for every pixel/voxel of an image/object
how far it is from the closest obstacle, boundary, or background. While any valid
metric may be involved in the computation of distance transforms, in topological
data structures like graph, combinatorial maps [12], or generalized maps (n-
Gmap) [7] often the shortest path between the obstacle/boundary and a given
point is used. In this study, we first investigate the distance transform (DT) in
graphs and then extend it to generalized map. We define different distances for
every dimension (1D, 2D,..., nD) in the n-Gmap. This would be useful in many
applications. In particular, in study of gas exchange through airspace of a leaf,
computing the distances from stomata is very crucial to understand the different
diffusion processes needed for photosynthesis.
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Computing the DT and propagating the distances is an iterated local oper-
ation [8,15]. While local processes (e.g., convolution and mathematical mor-
phology) are important in early vision, they are not suitable for higher level
vision, such as symbolic manipulation and feature extraction where both local
and global information is needed [9]. Therefore we exploit the advantage of the
hierarchical structure of the pyramid [10] that encodes both local and global
information similar to the human visual system [14].

In the pyramid there are two directions of processes: bottom-up and top-
down. In the bottom-up (fine to coarse) process the information of the input
data (e.g. intensity, color, texture) is transformed into global information. In the
top-down (coarse to fine) process the global information such as the shape and
the size of objects are refined into the base level of the pyramid. Therefore, the
main idea of using hierarchical structure in computing the DT is to investigate
the connectivity of a connected component in the local and general view within
the pyramid. We will show that the connectivity can be checked in parallel
logarithmic complexity instead of the linear raster scan commonly utilized in
the state-of-the-art algorithms [8].

1.1 Notations and Definitions

An image P can be represented using a 4-adjacent neighborhood graph G =
(V,E) where V corresponds to pixels of P and E relates neighboring pixels.
8-Adjacency could be used only if the image is well-formed [11], which is not
satisfied in general cases. The gray-value of a pixel g(p) becomes an attribute
of the corresponding vertex v, g(v) = g(p) and the contrast(e) = |g(u) − g(v)|
becomes an attribute of an edge e(u, v) where u, v ∈ V . In the neighborhood
graph of the binary image, the edges have only two values: zero and one. We call
them accordingly: zero-edge and one-edge [1]. Furthermore we denote the set
of all zero-edges as E0 and the set of all one-edges as E1. In this way, the edges
of the graph are partitioned into E = E0 ∪ E1.

Irregular Pyramid. [10] is a stack of successively reduced smaller graphs
where each graph is built from the graph below by selecting a specific subset of
vertices and edges. In each level of the pyramid, the vertices and edges disap-
pearing in level above are called non-surviving and those appearing in the upper
level surviving ones.

Definition 1 (Contraction Kernel (CK)). A CK is a tree consisting of a
surviving vertex as its root and some non-surviving neighbors with the constraint
that every non-survivor can be part of only one CK.

Two basic operations are used to construct the pyramid: edge contraction and
edge removal. In the edge contraction, an edge e = (v, w) is contracted while
its two endpoints, v and w, are identified and the edge is removed. The edges that
were incident to the joined vertices will be incident to the resulting vertex after
the operation. An arrow over an edge is commonly used to indicate the direction
of contraction, i.e., from non-survivor to survivor (cf. Fig. 2). Contracting an
edge has the enormous advantage of preserving the connectivity of the graph.
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During the edge removal, an edge is removed without changing the number of
vertices or affecting the incidence relationships of other edges. Constraints are
needed to make sure that edge removal does not disconnect the graph [6].

2 Distance Transform in a Graph

In a graph G = (V,E) distances can be measured by the shortest length of paths.
In this case the elements are the vertices V and neighbors N (v) = {(v, w) ∈ E}
are related by edges. The distance between two vertices is the shortest path
connecting the two vertices.

To compute the DT in a graph G(V,E) with background B ⊂ V and fore-
ground F ⊂ V vertices, the shortest distances of foreground vertices from the
background should be computed. In this case the seed vertices b ∈ B are initial-
ized by DT (b) = 0. The foreground vertices f ∈ F are initialized by DT (f) = ∞.
Each one-edge e = (b, f) ∈ E1, b ∈ B, f ∈ F has two endpoints where b ∈ B
is a seed vertex with DT (b) = 0. The other vertex f ∈ F belongs to the fore-
ground and we initialize its distance by DT (f) = 1. The one-edges E1 are frozen
because they have no role in propagating the distances in the graph. Distances
are propagated only through the E0 edges of the foreground.

Using the total order on the foreground F proposed in [1,3], a spanning
forest contains only edges E0 spanning the foreground. The spanning forest is
created in a single step with parallel constant complexity. Moreover, to propagate
the distances we use the breath-first search (BFS) [4].

Proposition 1. The parallel complexity of propagating DT is O(δ(T )) where
δ(T ) is the longest path in the spanning forest of the foreground.

Proof. The complexity of propagating distances in a tree is O(|E|). Each con-
nected component of the foreground is covered by a spanning tree which is
processed independently [3]. Therefore, the longest path in the forest indicates
the parallel complexity.

The propagation of the distances to the remaining vertices v of the foreground
F follows:

D(v) = min{D(v), D(vj) + 1| vj ∈ N (v)} v ∈ F (1)

where the foreground neighbors N (v) are defined by:

N (v) = {v ∈ F} ∪ {w ∈ F |e0 = (v, w) ∈ E0} (2)

The distances are propagated until there is no vertex v ∈ F with DT (v) = ∞
(see Fig. 1). Algorithm 1 shows the steps of computing the DT in a graph.
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Fig. 1. Computing the DT in a graph

Algorithm 1. Computing the DT in the Neighborhood Graph
1: Input: Neighborhood Graph: G = (V,E) =(B ∪ F,E0 ∪ E1)
2: Initialization: DT (b) = 0 ∀b ∈ B, DT (f) = ∞, ∀f ∈ F
3: DT (f) = 1 ∀(f, b) ∈ E1, f ∈ F, b ∈ B
4: While ∃f ∈ F with DT (f) = ∞ do
5: Propagate the distances by (1)
6: end

2.1 Geodesic Distance Transform

Geodesic DT (GDT) computes distances within the connected component of
interest in a labeled image (or labeled neighborhood graph). The objects of
interest are considered as the foreground objects and the remaining objects with
different labels are considered as the background. A subset of points in the
foreground are the seeds, s ∈ S, S ⊂ F , initialized by zero, DT (s) = 0. The aim
is to compute the minimum distance of every point of the foreground to these
seeds. The disjoint foreground objects keep the infinite distance if there is no
seed in the connected component.

To compute the GDT we employ the irregular graph pyramid with loga-
rithmic complexity. Each vertex receives a unique index and a total order is
defined over the indices [1,3] that results in an efficient selection of contraction
kernels (CKs). The CKs are only selected from E0 edges which propagate the
distances. The propagating distances are a set of power-of-two numbers. In Fig. 2
edges of CKs are shown by an arrow pointing towards the surviving vertex. The
propagating distance i is shown by i over an edge. By default all edges prop-
agate distances by 1. Each surviving edge propagates the distance equal to 2i

into its adjacent unlabeled vertex. Next, to speed up the propagation of the
distances with a power of two, the independent edges of a CK are identified
by employing a logarithmic encoding. This logarithmic encoding indicates the
priority of contractions through the construction of the pyramid. In Fig. 2a the
numbers 1, 2, 3 and 1 , 2 , 3 indicate the primary priorities that are different for
each adjacent edge. The bottom-up construction of the pyramid (Fig. 2(a) to
(d)) terminates when there is no edge remaining for the contraction. In top of
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the pyramid all surviving vertices have their distance values. At this stage the
distances are propagated from top to down where the vertices with DT (v) = ∞
receive their distance from their adjacent vertices and adding the distance of an
edge (Fig. 2(d) to (g)).

In order to correctly compute the GDT, each surviving vertex counts the
number of contractions from its receptive field while this is not needed in com-
puting the DT.

Fig. 2. Logarithmic GDT by irregular pyramid

Proposition 2. Geodesic distance between two points in the higher dimension
is always shorter or equal than in the lower dimension.

Proof. Assume there is a distance between two points in the lower dimension
that is shorter than distance between the same points in higher dimension. Since,
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every point in lower dimension is included in higher dimension, the shorter dis-
tance in lower dimension exists in the higher dimension as well which is in
contradiction with the assumption.

3 Distance Transforms in n-Gmaps

An n-dimensional generalized map (n-Gmap) is a combinatorial data struc-
ture allowing to describe an n-dimensional orientable or non-orientable quasi-
manifold with or without boundaries [12]. An n-Gmap is defined by a finite set
of darts D on which act n+1 involutions1 αi, satisfying composition constraints
of the following definition [7]:

Definition 2 (n-Gmap). An n-dimensional generalized map, or n-Gmap, with
0 ≤ n is an (n+ 2)-tuple G = (D, α0, ..., αn) where:

1. D is a finite set of darts,
2. ∀i ∈ {0, ..., n}: αi is an involution on D
3. ∀i ∈ {0, ..., n− 2}, ∀j ∈ {i+ 2, ..., n}: αi◦αj is an involution.

Let (D, α0, ..., αn) be an n-Gmap and let us consider its darts d ∈ D to be of a
unit length. Similar to graphs, we first initialize the distance transform at any
nonempty subset of seed darts S ⊆ D as follows: δ(s) := 0 ∀s ∈ S and δ(s̄) := ∞
∀s̄ ∈ D \ S. Scenarios for the initialization (seeding) may include:

– single dart: S = {d0},
– single i-cell: S = {all darts of the i-cell} (e.g., an edge), or
– any multi-combinations of the above, e.g., all edges (1-cells) connecting ver-

tices of different labels resulting from segmentation or connected component
labeling.

Similar to graphs, the distances are propagated from the seeds in the breath-first
search. The difference to graphs, however, is that the propagation is more general
and is driven along (some or all) involutions αi rather than being restricted to
the edges of the graph.

Figure 3b shows an example of a 2-Gmap – a 6×6 matrix of vertices (0-cells) of
four labels A, B, C, and D where A and B have both two connected components.
Edges (d, α0(d), α2(d), α2(α0(d)) connecting different labels2 are initialized to 0
and distances are propagated following α0, α1, and α2 involutions. Figure 3a
illustrates the arrangement of darts around an implicit vertex (X).

The propagation of distances in Fig. 3b is performed equally in all dimen-
sions, i.e., involving all involutions αi. Excluding a fixed αj , the propagation is
constrained to manifolds of dimensions j. This makes the computation of the
geodesic distance transforms on n-Gmaps viable.

1 Self-inverse permutations.
2 red separators in Fig. 3(b).
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Fig. 3. DT in a Gmap (Color figure online)

We illustrate the effect by a simple 2D example (see Fig. 3c) where we ini-
tialize a single dart by zero and propagate distances only by pairs of involutions:

1. α0, α1 denotes the propagation3 of the orbit (α∗
0, α

∗
1)

∗(d0) and identifies the
(dual) 2-cell between A,B,C,D. α2 does not propagate the distance.

2. α0, α2 denotes the propagation of (α∗
0, α

∗
2)

∗(d0) and identifies the 1-cell con-
sisting of the four darts between A and D. In this case α1 does not propagate
the distance.

3. α1, α2 denotes the propagation of (α∗
1, α

∗
2)

∗(d0) and identifies the 0-cell (a
point), the eight darts surrounding A. In this case α0 does not propagate the
distance.

Depending on the initialization and the choice of involutions, distances can
thus be propagated along the boundaries of any i-cells, i > 0. For 3-Gmaps,
in addition to 3-cells (volume elements), propagation of distances along their
(2D) bounding surfaces or along (1D) curves bounding these surfaces becomes
possible. Based on Proposition.2 the GDT in the higher dimension is shorter or
equal than in lower dimension (Fig. 3d).

4 Results

As an example of the calculation of distance transforms on 2-Gmaps we refer
to Fig. 4. The three black, zero-labeled pixels of the 4 × 5 image (Fig. 4a) are
3 Blue distance values belong to the 2-cell, black distances to two types of cells

(Fig. 3c).



200 M. Banaeyan et al.

used to seed the distance transform. Figure 4b represents the result of a graph-
based distance transform where pixels correspond to vertices of the graph and its
edges model the 4-connectivity of the image. The result of the 2-Gmap distance
transform is displayed in Fig. 4c. Each pixel corresponds to eight darts which
we choose to display by triangles colored by the minimum distance from the
seeds. The axes-parallel and the diagonal lines between the triangles of one pixel
correspond to α0 and α1, respectively. The axes-parallel pixel-separating lines
correspond to α2. The 3 seeds of Fig. 4a are represented by total of 24 black,
zero-labeled triangles in Fig. 4c. It can be observed that in the 2-Gmaps the
distances are propagated in a smoother and a more detailed way.

(a) mask with 3 seeds (b) DT (c) DT in Gmap

Fig. 4. Comparison of a graph-based (b) and Gmap-based (c) distance transforms of
a binary image (a). Best viewed in color and magnified.

To exploit the advantage of the proposed method in a real application, several
geodesic distance transforms (GDTs) are computed through a labeled 2D cross
slice of a leaf scan (Fig. 5). The input image (Fig. 5a) has six different labels illus-
trating different regions inside the leaf. In this figure, the stomas act as gates
to control the amount of CO2 that is entering the leaf. The CO2 propagates
through the airspace to reach the cells and by combining with water and heat
the photosynthesis takes place. To model various aspects of the photosynthesis,
GDTs may aid in several ways. First, since we are interested in simulations of gas
exchange in the leaf [13], we compute the GDT from the stomata through the
airspace (Fig. 5b). This is intended to approximate how long it takes to reach
the necessary CO2 concentration. Second, bottlenecks of the airspace suppos-
edly slow down the diffusion processes. We therefore compute the widths of the
bottlenecks by the GDT inside the airspace seeded at ist boundary (Fig. 5c).
Finally, the GDT from the stomata along the boundary of airspace is calcu-
lated (Fig. 5d). This is motivated by the observation that a longer boundary
accommodates more cells to perform photosynthesis.
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(a) Labeled cross-section of a plant leaf. (b) GDT in air seeded at stomas.

(c) GDT in air seeded at its boundary. (d) GDT in air boundary seeded at stomas.

Fig. 5. Computing GDT in a leaf.

It should be noted that the parallel logarithmic complexity of computing the
GDT in the proposed method makes it useful for processing the big data. In our
data-set each dimension of the 3D input image (leaf) is more than 2000 pixels.
Therefore, fast computation of the DT with low complexity is required as shown
in [2,3].

5 Conclusions

The paper presents a new algorithm to propagate distances in a graph which is
based on a spanning forest of the foreground. The spanning forest is produced in
parallel constant complexity and it reduces the linear search space to the length
of the longest path in the spanning forest. By preserving the connectivity of
connected components (CCs) and the topological information between CCs the
proposed algorithm performs the connected component labeling (CCL) and the
distance transform (DT) simultaneously. Using the hierarchical structure of the
irregular pyramid the new method computes the geodesic distance transform
(GDT) with parallel logarithmic complexity that makes it useful for processing
of the big data.
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We additionally introduce distance transforms for the generalized combina-
torial maps (n-Gmaps). We show how they naturally result in a smoother and
a higher resolution distance fields. More importantly, however, we show how
geodesic distance transforms can efficiently be performed just by omitting rel-
evant involutions from the distance propagation. Finally, we demonstrate how
computing GDTs in n-Gmaps may support modelling of the gas exchange in
plant leaves.
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ABSTRACT: Irregular Pyramids are powerful hierarchical structures in pattern recognition and image
processing. They have high potential of parallel processing that makes them useful in processing of a
huge amount of digital data generated every day. This paper presents a fast method for constructing an
irregular pyramid over a binary image where the size of the images is more than 2000 in each of 2/3
dimensions. Selecting the contraction kernels (CKs) as the main task in constructing the pyramid is
investigated. It is shown that the proposed fast labeled spanning tree (FLST) computes the equivalent
contraction kernels (ECKs) in only two steps. To this purpose, first, edges of the corresponding
neighborhood graph of the binary input image are classified. Second, by using a total order an efficient
function is defined to select the CKs. By defining the redundant edges, further edge classification is
performed to partition all the edges in each level of the pyramid. Finally, two important applications
are presented : connected component labeling (CCL) and distance transform (DT) with lower parallel
complexity 𝒪(𝑙𝑜𝑔(𝛿)) where the 𝛿 is the diameter of the largest connected component in the image.

KEYWORDS Spanning Tree, Irregular Pyramid, Total Order, Parallel Processing

1. Introduction

Pyramids are important structures in pattern recognition
and image processing. They were invented [1] as ordered
collection of images at multiple resolutions that are able to
process high resolution data at lower resolution and prop-
agating the local information into global and abstracted
information at higher levels [2]. Pizlo [3] states that the pyra-
mid is a general model for human problem solving where
a massively parallel processing must be accomplished in
order to recognizing a complex scene (like a busy street) in
the blink of an eye [4, 5].

Motivated by a biological point of view, this paper intro-
duces a fast method to construct the pyramidal structure of
a given 2D binary image in a fully parallel scheme. Using
the built pyramid, fundamental operations in analysing
the binary images can be performed with lower complex-
ity: Connected Component Labeling (CCL) and Distance
Transform (DT). In particular, the current research is an
extension of the previous work [6] that computes connected
components (CCs) with the help of the pyramid. Propagat-
ing the labels in [6] is performed in linear time, hence the
parallel complexity at the worst case is 𝒪(𝛿) where 𝛿 is the
diameter of the largest CC in the image. In contrast, this
paper mathematically proves that the parallel complexity is
decreased to 𝒪(𝑙𝑜𝑔(𝛿)).

The paper is organized as follows. Sec. 1 gives a short
overview of the theoretical background of image pyramids,
graph pyramids and different graph representations. The
classification of edges is defined in Sec. 2. Selecting the

contraction kernels as the main step in constructing the
irregular pyramid is completely described in Sec. 3. To this
aim, the concept of redundant edges is covered by detail. The
proposed fast labeled spanning tree (FLST) is defined in
Sec. 4. Two main applications are presented in Sec. 5. The
last section, provides a conclusion and considerations for
future research.

1.1. Image Pyramids

Image Pyramids consist of a series of successively reduced
images produced from a high resolution base image [2].
Generally, two types of the pyramids, namely regular and
irregular pyramids exist. In regular pyramids [7] the resolu-
tion is decreased in regular steps and therefore the size of
the pyramid is fixed. On the contrary, in irregular pyramids
[8, 9] the size of the pyramid is not fixed and it is adapted
to the image data. In addition, unlike the regular ones, the
irregular pyramids are shift- and rotation-invariant which
make them useful to use in a variety of tasks, in particular
image segmentation [10, 11].

It should be noticed that the irregular image pyramid
is interpreted as the irregular graph pyramid when its
pixels and the neighborhood relations between adjacent
pixels correspond to the vertices and the edges of the graph,
respectively.

1.2. Irregular Graph Pyramids

Irregular pyramids are a stack of successively reduced
graphs where each graph is constructed from the graph
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below by selecting a specific subset of vertices and edges.
For generation of irregular pyramids, two basic operations
on graphs are needed: edge contraction and edge removal.
The former contracts an edge connecting two vertices, and
the two vertices are joined into one. All edges that were
incident to the joined vertices will be incident to the result-
ing vertex after the operation. The latter removes an edge
from the graph, without changing the number of vertices or
affecting the incidence relationships of other edges.

In each level of the pyramid, the vertices/edges which
disappear in a level above are called non-surviving ver-
tices/edges. Those vertices/edges which appear in the
upper level are called surviving vertices/edges. Consider
𝐺 = (𝑉, 𝐸) as the neighborhood graph of an image 𝑃 where
𝑉 corresponds to the vertex set and 𝐸 corresponds to the
edge set. The vertex 𝑣 ∈ 𝑉 associates with the pixels in
image 𝑃 and the edge 𝑒 ∈ 𝐸 connects the corresponding
adjacent vertices. Let the gray-value of vertex 𝑔(𝑣) = 𝑔(𝑝)
where 𝑝 ∈ 𝑃 is a pixel in the image corresponding to vertex
𝑣. Consider 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑒) as an attribute of an edge 𝑒(𝑢, 𝑣)
where 𝑢, 𝑣 ∈ 𝑉 and 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑒) = |𝑔(𝑢) − 𝑔(𝑣)| in the base
level. Since we are working with binary images only, the
vertices have either of the two values 0 and 1. Similarly the
contrast of an edge is either 0 or 1.

Definition 1 (Contraction Kernel (CK)). A CK is a tree con-
sisting of a surviving vertex as its root and some non-surviving
neighbors with the constraint that every non-survivor can be part
of only one CK.

An edge of a CK is denoted by the directed edge and
points towards the survivor.
In this paper, the 4-connectivity between pixels of the input
image is assumed. The reason is that the 8-connectivity
would not be a plane graph [12]. A plane graph is a graph
embedded in the plane such that its edges intersect only at
their endpoints [13]. In a plane graph there are connected
spaces between edges and vertices and every such connected
area of the plane is called a face. The degree of the face is
the number of edges bounding the face. In addition a face
bounded by a cycle is called an empty face. In a non-empty
face, traversing the boundary would require to visit vertices
or edges twice [12].
An empty face consisting only one edge is called an empty
self-loop. Consider an empty face of degree 2: it contains
two edges that have the same endpoints. These parallel
edges are called multiple edges. The multiple edges mean
edges between the same endpoints, i.e. for example edges
𝑒𝑢1 ,𝑣1 ≠ 𝑒𝑢2 ,𝑣2 ≠ 𝑒𝑢3 ,𝑣3 where 𝑢1 = 𝑢2 = 𝑢3 and 𝑣1 = 𝑣2 = 𝑣3.

1.3. Graph Representation

Graphs as a versatile representative tool are common in the
representation of the irregular pyramid. There are different
graph representations such as a simple graph, a dual graph
and a combinatorial map.

A simple graph [14] 𝐺 = (𝑉, 𝐸) consists of a set of ver-
tices 𝑉 and of edges 𝐸 without self-loops and multiple edges
between pairs of vertices. The relationships between dif-
ferent regions can be represented by the region adjacency
graph (RAG). Although plane simple graphs are a common

model for the RAG they cannot distinguish between different
topological configurations, namely inclusion and multiple
adjacency relationships (multi-boundaries) of regions [14].

A dual graph model encodes multiple boundaries be-
tween regions in a non-simple graph. The problem with
dual graphs [9] is that they cannot unambiguously repre-
sent a region enclosed in another one on a local level [14].
Therefore, in this paper the combinatorial map (CM), as a
planar embedding of a RAG, is used. It not only solves the
mentioned problems but also provides an efficient structure
to preserve topological relations between regions while it
can be extended to higher dimensions (nD).

1.4. Combinatorial Pyramid

A combinatorial pyramid [15] is a hierarchy of successively
reduced combinatorial maps. A combinatorial map (CM)
is similar to a graph but explicitly stores the orientation of
edges around each vertex. The 2D combinatorial map (𝐺)
is defined by a triple 𝐺 = (𝐷, 𝛼, 𝜎) where the D is a finite
set of darts [14]. A dart is defined as a half edge and it is
the fundamental element in the CM’s structure. The 𝛼 is an
involution on the set D and it provides a one-to-one mapping
between consecutive darts forming the same edge such that
𝛼(𝛼(𝑑)) = 𝑑. The 𝜎 is a permutation on the set D and encodes
consecutive darts around the same vertex while turning
counterclockwise [16]. Note that the clockwise orientation
is denoted by 𝜎−1.

Fig. 1a shows a set adjacent darts with their 𝜎 and 𝛼
encoding. Note that the edge 𝑒 between two vertices 𝑢 and
𝑣 is denoted by 𝑒 = (𝑑, 𝛼(𝑑)). The 𝑢, 𝑣 ∈ 𝑉 and the 𝑒 ∈ 𝐸
where the 𝑉 and 𝐸 are the set of vertices and edges of the
graph 𝐺 = (𝑉, 𝐸), respectively.
The removal and the contraction operations in the combina-
torial pyramid is defined as follows:

Definition 2 (Removal operation). The removal operation re-
moves one edge, 𝐺\{𝑒}, while it modifies the adjacent darts such
that:

𝜎(𝜎−1(𝑑)) = 𝜎(𝑑), 𝜎(𝜎−1(𝛼(𝑑))) = 𝜎(𝛼(𝑑)) (1)

Definition 3 (Contraction operation). The contraction oper-
ation removes one edge, 𝐺/{𝑒}, and collapses its two endpoints
and modifies the adjacent darts such that:

𝜎(𝜎−1(𝑑)) = 𝜎(𝛼(𝑑)), 𝜎(𝜎−1(𝛼(𝑑))) = 𝜎(𝑑) (2)

Fig. 1b and Fig. 1c illustrate the removal and contraction
operations in the combinatorial map. Note that the con-
traction operation does not disconnect the graph, and thus
preserves connectivity [8].

2. Edge Classification in a Binary Image Graph

Let neighborhood graph 𝐺 = (𝑉, 𝐸) be the undirected con-
nected plane graph consisting of a finite set of vertices 𝑉
and a finite set of edges 𝐸. In the neighborhood graph of
the binary input image, each connected component (CC)
consists of a set of vertices with the same gray value, 0 or 1.
In the paper, black pixels (vertices) are shown by 0 while
white pixels (vertices) are shown by 1. In this regard, we
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(a) An edge 𝑒 with its incident darts in the CM. (b) Removal operation, 𝐺\{𝑒}. (c) Contraction operation, 𝐺/{𝑒}.

Figure 1: Two main operations in irregular graph pyramids. (a) Before applying an operation. (b), (c) after applying the operations.

partition the edges of the neighborhood graph into two
categories: edges connecting two vertices of the same CC,
intra-CC and edges connecting vertices of different CCs,
inter-CCs as follows:

Definition 4. Intra-CC edge: an edge 𝑒 = (𝑢, 𝑣)∈ 𝐸 within a
CC is intra-CC iff 𝑔(𝑢) = 𝑔(𝑣).
Definition 5. Inter-CC edge: an edge 𝑒 = (𝑢, 𝑣)∈ 𝐸 between
two CCs is inter-CC iff 𝑔(𝑢) ≠ 𝑔(𝑣).

The contrast of an intra-CC edge is equal to zero,
𝑐(𝑖𝑛𝑡𝑟𝑎-𝐶𝐶) = 0. Therefore, we denote the intra-CC edge
by 𝑒0 ∈ 𝐸0. The contrast of an inter-CCs edge is one,
𝑐(𝑖𝑛𝑡𝑒𝑟-𝐶𝐶𝑠) = 1. Therefore, the inter-CCs edge is de-
noted by 𝑒1 ∈ 𝐸1. All edges in the neighborhood graph are
partitioned into 𝐸0 and 𝐸1 edges:

𝐸 = 𝐸0
·∪ 𝐸1 (3)

3. Selecting the CKs using a Total Order

Selecting the CKs plays the main role in constructing the
irregular pyramid. The height of the built pyramid and
the complexity of the construction depends on how the
CKs are selected. In order to achieve an efficient and a
unique selection of the CKs a total order is defined over the
vertices [17]. Consider 𝐺 as the neighborhood graph of an
binary input image with 𝑀 by 𝑁 vertices. Let (1, 1) be the
coordinate of the vertex at the upper-left corner and (𝑀, 𝑁)
at the lower-right corner. Let 𝑟 and 𝑐 denote the row and the
column in the grid structure of 𝐺, respectively. The vertices
of 𝐺 receive a unique index as follows:

𝐼𝑑𝑥 : [1, 𝑀] × [1, 𝑁] ↦→ [1, 𝑀 · 𝑁] ⊂ N (4)
𝐼𝑑𝑥(𝑟, 𝑐) = (𝑐 − 1) · 𝑀 + 𝑟 (5)

We use the properties of the total order [18] in selecting the
CKs. First, every two elements of a total ordered set (indices
of vertices) are comparable. Second, each subset of the total
ordered set (a set of vertices) has exactly one minimum and
one maximum.

In the binary neighborhood graph 𝐺 a CC consists of
only intra-CC (𝐸0) edges. In constructing the irregular pyra-
mid this CC is shown by only one single vertex at the top of
the pyramid. Therefore, all the CKs are selected only from

the intra-CC edges. From the vertex point of view, a vertex
that is not incident to an intra-CC edge is an isolated vertex.
This vertex is surrounded by only inter-CC edges.

Let 𝑣 be a non-isolated vertex, i.e, it is the endpoint of
at least one intra-CC edge. The upper neighborhood 𝒩 is
defined as follows :

𝒩(𝑣) = {𝑤 ∈ 𝑉 |(𝑣, 𝑤) ∈ 𝐸0 , 𝐼𝑑𝑥(𝑤) > 𝐼𝑑𝑥(𝑣)} (6)

The cardinality of the set |𝒩(𝑣)| indicates the number of
intra-CC edges incident to 𝑣 having greater vertex than 𝑣.
Therefore, the cardinality of the non-isloated vertex is
|𝒩(𝑣) ≥ 1|.

In order to determine the CKs in the graph 𝐺 = (𝑉, 𝐸),
the selecting contraction kernel SCK(.) function is defined as
follows:

𝑆𝐶𝐾 : [1, 𝑀 · 𝑁] ↦→ [1, 𝑀 · 𝑁] (7)
𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = max{𝐼𝑑𝑥(𝑤)| 𝑤 ∈ 𝒩(𝑣)} if |𝒩(𝑣)| ≥ 1 (8)

𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = 𝐼𝑑𝑥(𝑣) if |𝒩(𝑣)| = 0 (9)

The output of the SCK function partitions the vertices
into two categories: surviving vertices and non-surviving
vertices as follows:

Definition 6. [Surviving vertex] A vertex 𝑣 ∈ 𝑉 in a bi-
nary neighborhood graph 𝐺 = (𝑉, 𝐸), is a surviving vertex
iff 𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = 𝐼𝑑𝑥(𝑣).

Proposition 1. An isolated vertex survives always.

Proof. Assume 𝑣 is an isolated vertex. Since there is no
intra-CC edge incident to the isolated vertex, it leads to
|𝒩(𝑣)| = 0. Based on the (9), 𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = 𝐼𝑑𝑥(𝑣) and
therefore employing the Def. 6 𝑣 is the surviving ver-
tex. □

Definition 7 (Non-surviving vertex). A vertex 𝑣 ∈ 𝑉 in a
binary neighborhood graph 𝐺 = (𝑉, 𝐸), is a non-surviving vertex
iff 𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) ≠ 𝐼𝑑𝑥(𝑣).

Proposition 2. For a non-surviving vertex 𝑣 at the base level,
|𝒩(𝑣)| ∈ {1, 2}.
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(a) First step of selecting the CKs at the base level. (b) Second step of selecting the CKs. (c) Top of the pyramid.

Figure 2: Two steps of selecting the CKs. The edge 𝑎 shows the inclusion relationship between CCs.

Proof. Based on (5) a non-surviving vertex may be incident
to maximum two vertices with greater indices (right or down
vertices) at the base level. In addition, the non-surviving
vertex must be incident to at least one vertex, namely its
right or its down vertex. The former states |𝒩(𝑣)| = 2 while
the latter states |𝒩(𝑣)| = 1. □

In a CK there is one surviving vertex (the root of the
CK) while the remaining vertices are non-surviving vertices.
Each non-surviving vertex connects to the surviving root
by a unique monotonically 𝐼𝑑𝑥-increasing path of oriented
edges. In a graph with 𝑛 vertices there are 𝑛! different total
order1. Each selected total order has its own properties.
Selecting an efficient total order effects on selecting the CKs
where the number of CKs determines the height of the pyra-
mid. Pyramids with logarithmic height reduce the parallel
computational complexity of fundamental operations such
as connected component labeling [19, 17] and distance trans-
form [20]. Therefore, a proper selection of the total order
must result in constructing the pyramid with logarithmic
height. In Sec. 4.1 it is proved that the proposed total order
leads to this logarithmic height.
In contrast to the common methods of constructing the pyra-
mid [2, 8], using the proposed total order has the advantage
that the vertices are partitioned in every level of the pyramid.
In other words, the vertices are either the non-surviving
or the surviving vertices. Next sections show how this
partitioning reduces the number of steps in selecting the
CKs into only two steps.

3.1. First Step of Selecting the CKs

Selecting the CKs at the base level of the pyramid is the
first step of the selection. To this aim, the SCK function is
performed over each vertex of the neighborhood graph of
the base level. As the result, each CK has one surviving
vertex and all the other vertices of the CK do not survive. In
Fig. 2-a the surviving vertices at the base level are denoted
by a red circle around each vertex while all the other vertices
do not survive.

At the base level of the pyramid, all faces in the grid struc-
ture are bounded by four edges containing two horizontal
and two vertical edges.

Proposition 3. A horizontal intra-CC edge in a face of degree 4
at the base level of the pyramid always belongs to a CK.

Proof. Assume a horizontal intra-CC edge 𝑒 = (𝑢, 𝑣) at the
base level does not belong to a CK. Let 𝑢 and 𝑣 locate at
the left and the right side of the edge 𝑒, respectively. Since
𝑢 is the endpoint of 𝑒, thus 𝑢 is not an isolated vertex
(|𝒩(𝑢)| > 1) and based on (5), 𝐼𝑑𝑥(𝑢) < 𝐼𝑑𝑥(𝑣). Due to
Pro. 2 if |𝒩(𝑢)| = 1 then 𝑣 is the only vertex of 𝒩(𝑢) that
is incident to 𝑢 and thus 𝑣 is selected as the survivor. In
case |𝒩(𝑢)| = 2, there are two right and down vertices in
the 𝒩(𝑢) where based on (5) the right vertex is selected as
surviving vertex. □

3.2. Redundant Edges

Graphs as a versatile representative tool may have many
unnecessary (redundant) edges [17]. Through the construc-
tion of the pyramid, contracting edges results in a smaller
induced graph at the upper level. The resulting graph may
consist of empty self-loops or double-edges. At this point,
the edge removal simplifies the graph and removes these
redundant edges.

Definition 8 (Redundant Edges). In a hierarchical structure,
those edges that are not needed to fully reconstruct the hierarchy
are considered as redundant edges.

Generally, the definition of the redundant edges de-
pends on the applications and to what extend the recon-
struction needs to be performed. For example, Banaeyan et
al. [6, 17, 19] defined the concept of the redundant edges
in a binary graph pyramid in order to do the connected
component labeling task where the fully reconstruction is
performed. They showed that the redundant edges can be
detected (predicted) before performing the contraction of
edges. In this paper, we use the same concept for defining
the redundant intra-CC and redundant inter-CC edges.

1All total orders are permutations of each other.
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Definition 9 (Redundant Intra-CC edge (𝑅𝐸0)). In an empty
face consisting of only intra-CC edges, the non-oriented edge
incident to the vertex with lowest Idx is a redundant intra-CC
edge.

The definition above states that a redundant intra-CC
edge (𝑅𝐸0) exists only in a face bounded by intra-CC edges.
Fig. 3 illustrates the configuration of the redundant intra-CC
edges.

(a) 𝑅𝐸0, before contracting the CKs.

(b) Corresponding 𝑅𝐸0, after contracting the CKs.

Figure 3: Configurations of the redundant intra-CC edges.

Definition 10 (Redundant Inter-CCs Edge (𝑅𝐸1)). In an
empty face, an inter-CCs edge incident to the vertex with lowest
Idx is redundant iff:

• The empty face consists of only two inter-CCs edges.

• The empty face is bounded by inter-CCs edges and oriented
intra-CC edges.

Fig. 4 illustrates all different configurations of the 𝑅𝐸1
edges before and after contracting the CKs.

Figure 4: All different configurations of redundant inter-CCs edges

3.3. Second Step of Selecting the CKs

At the base level of the pyramid there are three types of the
intra-CC edges:

1. The oriented edges that belong to the CKs.

2. The non-oriented redundant edges, 𝑅𝐸0, were defined
in Def. 9.

3. The remaining non-oriented intra-CC edges are de-
fined as the bridges.

Definition 11 (Bridge). A bridge is a non-oriented intra-CC
edge that bridges the gap between two contraction kernels of a
connected component.

Note that the bridge is the edge of the equivalent con-
traction kernel (ECK) that is contracted after the two CKs
are contracted.

Proposition 4. A bridge in a face of degree 4 at the base level of
the pyramid is the vertical edge.

Proof. In the face of degree 4, there are two horizontal and
two vertical edges. Assume the non-oriented bridge is the
horizontal edge. However, due to Pro. 3 every horizon-
tal intra-CC edge is oriented and therefore it cannot be a
non-oriented intra-CC edge. □

Proposition 5. A face of degree 4 at the base level of the binary
pyramid does not have more than one bridge.

Proof. Assume a face of degree 4 contains two bridges.
Since the bridges are vertical intra-CC edges, the oriented
intra-CC edge must connect two different CCs which is in
contradiction with the definition of the oriented edge (see
Fig. 5-b). □

Proposition 6. Two bridges at the base level of the binary pyramid
are not incident to a same vertex.

Proof. Assume that two bridges are incident to the same
vertex. Therefore, the horizontal common edge between
their two corresponding faces must be the oriented intra-CC
edge and the inter-CCs edge at the same time (see Fig. 5-c) ,
contradiction. □

Figure 5: (a) The configurations of a bridge at the base level. (b) A face
does not have two bridges. (c) Bridges are not incident to the same vertex

In order to select the CKs at the second step, the SCK
function is performed over the bridges.

Definition 12 (inclusion edge). An inclusion edge is a non-
empty self-loop inter-CC edge that preserves the topological inclu-
sion relationship between two different CCs.
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(a) The configurations of a bridge before and after the edge contraction. (b) Contradiction to planarity of the graph G.

(c) Contradiction to planarity of the graph G. (d) Contradiction to (5).

Figure 6: All redundant intra-CC edges, 𝑅𝐸0, are at the base level of the pyramid.

Note that if the inclusion relationships exists between
two different CCs, the inclusion edge is one of the bridges
that will be detected after the contractions of oriented edges.
In Fig. 2 the inclusion edge is shown by a non-empty self-
loop that is denoted by the letter a with the red color.

Proposition 7. All the redundant intra-CC edges are detected at
the base level of the binary pyramid.

Proof. The redundant intra-CC edges occur in a face
bounded by only intra-CC edges. At an upper level, the
remaining intra-CC edges are the bridges at the base level.
However, since each bridge has the 𝜎-related to a inter-CCs
edge (Fig. 6a), therefore, there is no empty face containing
only intra-CC edges at upper levels of the pyramid. Note
that in the simple graph 𝐺, two bridges cannot be the 𝜎-
related of each other because this contradicts to planarity of
the graph (Fig. 6b and Fig. 6c) or it contradicts to (5) that is
shown in Fig. 6d. □

The Proposition .7 states that there is no redundant intra-
CC edge at an upper level of the pyramid. In fact, this is
because of the important property of the defined total order
over the indices of vertices where at the base level each
non-surviving vertex only can be contracted into its right or
down neighborhood vertex.

4. Fast Labeled Spanning Tree (FLST)

A CC in a binary graph pyramid is represented by a single
surviving vertex at the top level of the pyramid. This vertex
is the root of the tree spanning its receptive field at the base
level [21]. In [22] it was shown that the combination of two
(or more) successive reductions in an equivalent weighting
function allows to calculate any level of the pyramid directly
from the base. Kropatsch in [21] introduced the Equivalent
Contraction Kernels (ECK) in the irregular graph pyramid
and it was later used [23] in the minimum spanning tree
(MST) segmentation.

In the binary pyramid, every spanning tree of a CC is
the MST because the contrast (weight) of the intra-CC edges
is zero. To drive the spanning tree of a CC, the previous
common methods [14, 16, 11] need to select the CKs in 𝑛
iterations where 𝑛 is the height of the pyramid. In contrast,
in the proposed method we only need two steps of selecting
the CKs. Moreover, the SCK function is performed locally
over each vertex. This means that the CKs are selected with
parallel complexity of 𝒪(1). Note that, it is assumed there
are sufficient processing elements available in order to do
the parallel computations.

4.1. Independent Edges

To contract the CKs in a parallel manner, finding a set of
independent edges plays the key role. Dependency of the
edges differs based on what processing is going to be per-
formed between a set of edges. In [19] two edges not sharing
an endpoint are considered as independent edges. Using this
definition all the CKs at the first selection can be contracted
with parallel complexity bounded as follows:

𝒪(𝑙𝑜𝑔2(𝛿(𝐶𝐾))) ≤ 𝐶𝐾𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≤ 𝒪(𝑙𝑜𝑔3(𝛿(𝐶𝐾)))
(10)

To determine the parallel complexity of contracting the CKs
at the second step of selection, the dependencies between
darts [6] is considered. Since in this step, each edge of the
CK is a bridge at the base level, hence, there is an inter-CCs
edge with a 𝜎-relation incident to this edge. Therefore, all
the CKs at the second selections are independent of each
other and they will be contracted in parallel complexity
𝒪(1).

5. Applications

To highlight the usefulness of the proposed method, two
main applications are presented. In both application the par-
allel complexity is 𝒪(𝑙𝑜𝑔(𝑁)) in a 𝑁 × 𝑁-size input binary
image.
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5.1. Connected Component Labeling

Connected Component Labeling (CCL) is a fundamental
task in analyzing binary images [24] where background
and foreground are denoted by zero and one, respectively.
A connected region is a group of pixels where all pairs of
pixels are connected together. The role of the CCL is to
assign a unique label to each CC. Common methods of CCL
[24, 25, 26] are linear; i.e., they search the binary image
row by row in the raster-scan fashion. In contrast, using a
hierarchical structure, within the bottom-up construction
each pixel reaches its single surviving pixel (super-pixel) at
top of the pyramid in a logarithmic number of steps. At this
top-level of the pyramid, each of the super-pixels receives
its unique label 𝐼𝑑𝑥. Afterwards, through the top-down
propagation the vertices of the lower levels inherit the labels
from the higher levels until all the pixels at the receptive
field (base level of the pyramid) received their labels.

Figure 7: CCL by //ACC method.

The hierarchical method is called Parallel Pyramidal
Connected Component (//ACC2) where the details can be
found in [19]. The //ACC not only does the CCL task but
also preserves the topological relations between the CCs.
Fig. 7 shows how the //ACC encodes inclusion relation-
ships between three CCs. Table 1 [19] shows the execution
time of the //ACC method over three different categories
of binary images; Random, MRI and Finger-print images.
In addition, the execution time of the algorithm over differ-
ent image-size is compared to the state-of-the-art methods;
Spaghetti_RemSP, BBDT_RemSP, SAUF_UF, in [27]. The
results in Fig. 8 encourage the //ACC method should be
used in large images including more than one million pixels.

Table 1: Results for the different categories from (YACCLAB[28]).

Database Type Random MRI Finger-print
size of Images 128×128 256×256 300×300
Num. of Images 89 1170 962
mean time (ms) 0.098 1.643 2.317
worst time (ms) 0.127 2.973 3.518

5.2. Distance Transform

The distance transform (DT) is another important funda-
mental operation that is applied to the binary image [1].
It is employed in a broad range of applications containing
template matching [29, 30], image registration [31], map
matching robot self-Localization [32], skeletonization [33],

Line Detection in Manuscripts [34], Weather Analysis and
Forecasting [35], etc. After applying the DT to a binary
image, the result of the transform is a new gray-scale image
whose foreground 1 pixels have intensities representing the
minimum distance from the background 0 pixels.

Figure 8: Illustration of the execution time (ms) over different image-sizes

In order to compute the DT, the common methods [1, 36],
propagate the distances in linear sequential time. By con-
trast, using the hierarchical structure the distances can be
propagated by a set of power-of-two numbers [20] where
the parallel complexity is reduced into the logarithmic-time.
The computation of DT with lower complexity makes the
pyramid as a useful tool in analysing large binary images. In
particular, currently we are working on the Water’s gateway
to heaven project3 dealing with high-resolution X-ray micro-
tomography (𝜇𝐶𝑇) and fluorescence microscopy. The size
of the images is more than 2000 in each of 3 dimensions
where we use the saddle points of the DT to separate cells,
which are visually difficult to be separated.

In the mentioned project above the input image is a
labeled 2D cross slice of a leaf scan where it has six different
labels illustrating different regions inside the leaf (Fig. 9a).
The task of stomata is to control the amount of CO2 that
is entering the leaf. In order to do the photosynthesis, the
CO2 propagates through the airspace inside the leaf to reach
the cells where it combines with water and sunlight. To
model the procedure of the gas exchange in the leaf [37], we
compute the geodesic distance transform (GDT) from the
stomata through the airspace (Fig. 9b) to find out how long it
takes to reach the necessary CO2 concentration [20]. The use
of pyramids would enormously speed up the computations
of the DT in the large images of the project.

2It is pronounced pac where the // and A stand for parallel and pyramidal.
3https://waters-gateway.boku.ac.at/
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(a) The labeled cross slice of a leaf (b) Computing the Geodesic Distance Transform (GDT)

Figure 9: Computing the Geodesic Distance Transform in a multi-labeled image [20].

6. Conclusion

The paper presents a fast parallel method to select the
equivalent contraction kernels in the irregular pyramid of
a binary input image. It was shown that the first step of
selecting the contraction kernels (CKs) at the base level is
done with parallel complexity 𝒪(1). These CKs are con-
tracted with parallel 𝒪(𝑙𝑜𝑔(𝛿)) complexity where the 𝛿 is
the diameter of the maximum connected component (CC)
in the neighborhood graph of the image. By detecting the
redundant edges (RE) the selection of CKs is performed in
one parallel step. By defining the independent set of edges,
we proved that all the selected CKs at the second step of se-
lection are contracted in parallel complexity 𝒪(1). The Fast
labeled spanning tree (FLST) of the CCs is produced with
parallel complexity 𝒪(𝑙𝑜𝑔(𝛿)). Using the total order there is
no random processing in construction of the pyramid and
the resulting FLST is unique.

In addition, it was shown by employing the proposed
FLST, that the fundamental operations in analyzing the
binary image can be performed in lower parallel complexity.
In particular, two main operations, connected component
labeling (CCL) and distance transform (DT), were presented
in detail. Finally, we presented how the proposed method
can be useful in processing of the large images in practical
real applications. For future works we plan to compute 3D
distance transform in order to study the diffusion in the air
space within a leaf.
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Abstract: Nowadays a huge amount of digital data are generated every moment in a broad spectrum of application
domains such as biomedical imaging, document processing, geosciences, remote sensing, video surveillance,
etc. Processing such big data requires an efficient data structure, encouraging the algorithms with lower
complexity and parallel operations. In this paper, first, a new method for computing the distance transform
(DT) as the fundamental operation in binary images is presented. The method computes the DT with the
parallel logarithmic complexity O(log(n)) where n is the maximum diameter of the largest foreground region
in the 2D binary image. Second, we define the DT in the combinatorial map (CM) structure. In the CM,
by replacing each edge with two darts a smoother DT with the double resolution is derived. Moreover, we
compute n different distances for the nD-map. Both methods use the hierarchical irregular pyramid structure
and have the advantage of preserving topological information between regions. The operations of the proposed
algorithms are totally local and lead to parallel implementations. The GPU implementation of the algorithm
has high performance while the bottleneck is the bandwidth of the memory or equivalently the number of
available independent processing elements. Finally, the logarithmic complexity of the algorithm speeds up the
execution and suits it, particularly for large images.

1 INTRODUCTION AND
MOTIVATION

The distance transform (DT) (Rosenfeld and Pfaltz,
1966) is a fundamental operation of many methods in
pattern recognition and geometry. It is used in a wide
range of applications such as skeletonization (Niblack
et al., 1992), map matching robot self-Localization
(Sobreira et al., 2019), image registration (Hill and
Baldock, 2015), template matching (Prakash et al.,
2008; Lindblad and Sladoje, 2014), Line Detection
in Manuscripts (Kassis and El-Sana, 2019), Weather
Analysis and Forecasting (Brunet and Sills, 2017),
etc. The DT is applied to a binary image contain-
ing background and foreground regions. The result of
the transform is a new gray-scale image whose fore-
ground pixels have intensities representing the mini-
mum distance from the background.

To compute the DT, the common algorithms
(Rosenfeld and Pfaltz, 1966; Nilsson and Söderström,
2007; Fabbri et al., 2008) propagate the distances in
linear-time O(N), where N is the number of grid cells
or pixels in a 2D binary image. In contrast, in this
paper we propose a novel method that propagates the

a https://orcid.org/0000-0001-8621-6424
b https://orcid.org/0000-0003-4915-4118

distances in an exponential way and computes the DT
with O(log(n)) where n is the diameter of the largest
connected component in the binary image. To this
aim, we employ the hierarchical structure of the ir-
regular graph pyramid (Kropatsch, 1995; Brun and
Kropatsch, 2012; Banaeyan and Kropatsch, 2021).
In addition, we define the DT over the combinatorial
map (CM) that not only results in a finer resolution of
the distance map but also provides different distances
for different dimensions employing map-edit-distance
(Combier et al., 2013) in analogy to the graph edit dis-
tance (Gao et al., 2010).

Currently we are working on the Water’s gate-
way to heaven project1 dealing with high-resolution
X-ray micro-tomography (µCT ) and fluorescence mi-
croscopy. The size of the images is more than 2000
in each dimension where we need the DT to sepa-
rate cells, which are visually difficult to be separated.
Therefore, fast computation of the DT with low com-
plexity is required.

In this study, the proposed algorithm has loga-
rithmic complexity and efficiently computes the city
block (L1 norm) distance metric. The next Section
recalls the irregular graph pyramid and the combina-
torial map. In Section 2, the new algorithm to com-

1https://waters-gateway.boku.ac.at/
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pute the DT is presented. Section 3 introduces the
DT over the combinatorial map and proposes a novel
algorithm to compute the DT. Finally, Section 4 com-
pares the execution of the proposed algorithm with the
state-of-the-art.

1.1 Definitions

A digital image can be represented using a 4-adjacent
neighborhood graph. Let G = (V,E) be the neigh-
borhood graph of image P where V corresponds to
P and E relates neighboring pixels. Let the gray-
value g(v) of a vertex v be g(p). The contrast(e)
is an attribute of an edge e(u,v) where u,v ∈ V and
contrast(e) = |g(u)−g(v)|. In the binary images, the
pixels (and corresponding vertices) have either of the
two values 0 and 1. Similarly, the edge contrast has
only two possible values 0 and 1.

In the neighborhood graph of the binary image,
the edges with zero and one contrast are defined as
zero-edge, e0, and one-edge, e1, respectively. There-
fore, the edges of the graph are partitioned into E =
E0 ∪E1 where e0 ∈ E0 and e1 ∈ E1.

1.1.1 Irregular Pyramids

Irregular pyramids (Kropatsch, 1995) are a stack
of successively reduced smaller graphs where each
graph is built from the graph below by selecting a
specific subset of vertices and edges. Two basic op-
erations are used to construct the pyramid: edge con-
traction and edge removal. In the edge contraction, an
edge e = (v,w) is contracted while its two endpoints,
v and w, are identified and the edge is removed. The
edges that were incident to the joined vertices will be
incident to the resulting vertex after the operation. In
edge removal, an edge is removed without changing
the number of vertices or affecting the incidence rela-
tionships of other edges. In each level of the pyramid,
the vertices and edges disappearing in the level above
are called non-surviving and those appearing in the
upper-level surviving ones.

Definition 1 (Contraction Kernel (CK)). A CK is a
tree consisting of a surviving vertex as its root and
some non-surviving neighbors with the constraint that
every non-survivor can be part of only one CK (Ba-
naeyan and Kropatsch, 2022a).

An edge of a CK is denoted by the directed edge
and points towards the survivor.

1.1.2 Combinatorial Pyramids

A combinatorial pyramid is a hierarchy of suc-
cessively reduced combinatorial maps (Brun and

Kropatsch, 2003; Brun and Kropatsch, 2012). In the
CM each edge is encoded by two half-edges where
each half-edge is called a dart, d ∈ D where D is a
finite set of darts. The CM encodes the edges around
each vertex by using the α and the σ as an involution
and a permutation on the set of D , respectively. The
σ encodes consecutive edges around the same vertex
while turning counterclockwise. The clockwise ori-
entation is denoted by σ−1. The α provides a one-to-
one mapping between consecutive darts forming the
same edge such that α(α(d)) = d.

2 LOGARITHMIC DT USING
THE IRREGULAR PYRAMID

In the linear algorithms (Nilsson and Söderström,
2007) the DT is propagated between one vertex
(pixel) and its adjacent vertex (pixel) in each step of
the propagation. Consider a 1D grid of N pixels align-
ing in a horizontal line. In order to propagate the DT
from the most-left pixel to the most-right pixel, N −1
steps are needed. However, thanks to the hierarchical
structure of the pyramid with logarithmic height, such
propagation can be performed only in log(N) steps as
we will see in Section 2.3. In the pyramid, two ver-
tices of a connected component that are not adjacent
(and may be far from each other) at the base level,
may become adjacent at the upper levels of the pyra-
mid.

2.1 Initialization

To compute the DT, the first step is an initializa-
tion procedure where the endpoints of the E1 re-
ceive DT = 1 and the remaining vertices receive the
DT = ∞. Note that, the proposed algorithm computes
the DT for both background and foreground regions
simultaneously. This is the reason why in the initial-
ization step we assign the DT = 1. The common algo-
rithms for computation of the DT consider the back-
ground as a region with DT = 0. However, to convert
the DT of the proposed algorithm to the common al-
gorithms, it needs only to substitute the DT = 0 of the
background pixels.

2.2 Selecting the CKs

Selecting the CKs is the main procedure in construct-
ing the pyramid. To this aim, we use the proposed
method in (Banaeyan et al., 2022). First, an index
is assigned to each vertex. Using the total order set
defined over the indices, each vertex has a unique in-
teger index, Idx(.). Each non-surviving vertex selects
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one surviving vertex with maximum Idx of its neigh-
borhood (Banaeyan et al., 2022):

vs = argmax{Idx(vs)| vs ∈ N0(v), |N0(v)|> 1} (1)

where

N0(v) = {v}∪{w ∈V |e0 = (v,w) ∈ E0} (2)

The E1 are the edges between two different CCs and
the E0 are the edges inside a CC. Since the E1 have
their DT = 1, we do not contract the E1, and therefore,
the CKs are selected only from the E0. In addition,
each edge e0 = (v,w) of the CKs has an orientation
from v to w where the w has the largest index among
the neighbors, Idx(w) = max{Idx(u)|u ∈ N0(v)}.

2.3 Contracting the Selected CKs

In a CK, the adjacent edges are dependent and cannot
be contracted at the same time. Two dependent edges
by definition are adjacent edges sharing one endpoint.
Those edges not sharing an endpoint are defined as
independent edges.

Proposition 1. A path of length N, can be contracted
at maximum in [log2(N)]+1 steps.

Proof. In the path of length N, every other edges have
no endpoints in common and hence they are indepen-
dent. As a result, such independent edges are con-
tracted in one step. In the resulting induced graph,
again, every other edges are independent and they can
be contracted in one step. By iterating such proce-
dure, the path of length N is contracted at maximum
in [log2(N)]+ 1 steps. The number of required steps
is equal to log2(N) when N = 2n.

Fig. 1 shows a 1D grid containing 16 vertices. The
1D grid is considered as the path with a length of
15 and it can be contracted in 4 steps. In each step
the oriented edges are independent and they are con-
tracted simultaneously. The priorities of the contrac-
tions are encoded by numbers 1 to 4 and the oriented
edges are independent.

2.4 Logarithmic DT in 1D Grid

To compute the DT in 1D, the irregular pyramid is
constructed in the bottom-up fashion. To this aim,
the independent edges are identified based on the pri-
orities of contractions. During the construction pro-
cedure, only the independent edges having two un-
known DT at their endpoints are contracted. After the
contractions, the vertices with known DT propagate
their DT to their adjacent vertices at each level of the
pyramid. Such propagation iterates until we reach to

the top of the pyramid where there is no edge remain-
ing for the contraction and all the vertices at this level
have their own DT.

The next step is to traverse the irregular pyramid
in the top-down procedure. In the top-down process-
ing, each vertex inherits its DT to the same vertex at a
level below. Afterward, the distances are propagated
into their adjacent vertices. Such procedures iterate
in each level until we reach to the base where all the
vertices receive their own DT.
Note that the DT in each level of the irregular pyramid
is propagated as follows:

D(vi) = min{D(vi),D(v j)+ |Idx(vi)− Idx(v j)|
| v j ∈ N (vi)} (3)

Algorithm 1: Computing DT in a grid structure.

Input: Neighborhood Graph: G = (V,E)
2: Initialization: DT = ∞, ∀v ∈V

DT = 1, ∀v ∈ E1
4: Propagating the distances to adjacent neighbors

Selecting the CKs (Bottom-up
traversing)

6: While (DT = ∞ in the current level)
Contracting the edges

8: Propagating the distances to adjacent neighbors
end (Top of the Pyramid)

10: For ( j = L downto 1) (Top-down
traversing)
Imitate the DT from L → L−1

12: Propagating the distances to adjacent neighbors
end

Fig. 2 shows the computing of the DT in 1D grid
by using the irregular pyramid. The Alg. 1 summa-
rizes the steps of computing the DT in the grid struc-
ture by using the irregular pyramid.

2.5 Logarithmic DT in 2D Grid

Consider the binary image has M rows and N columns
such that (1,1) is the coordinate of the pixel (p ∈ P)
at the upper-left corner and (M,N) at the lower-right
corner. The corresponding 4-adjacent neighborhood
graph of the binary image has MN vertices. An in-
dex Idx(., .) of each vertex is defined (Banaeyan and
Kropatsch, 2022b):

Idx : [1,M]× [1,N]→ [1,M ·N]⊂ N (4)
Idx(r,c) = (c−1) ·M+ r (5)

where r and c are the row and column of the pixel,
respectively. The Alg. 1 is used for computing the DT
in the 2D grid as well. Here, The DT is propagated as
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Figure 1: Edge contractions in the logarithmic way.

Figure 2: Computing of the DT in 1D grid.

follows:

D(vi) = min{D(vi),D(v j) +
1 i f T = 1
T
M i f T ̸= 1

}
(6)

where

v j ∈ N (vi), T = |Idx(vi)− Idx(v j)| (7)

An example of computing the DT in a 2D binary im-
age is shown in Fig. 3.

3 DEFINING THE DT IN A
COMBINATORIAL MAP

The distance transform [1] computes for every
pixel/voxel of an image/object how far it is from the
closest obstacle, or boundary, or background. Differ-
ent metrics can be used. In a topological data struc-
ture like a graph, a combinatorial map (Lienhardt,

1991), or a generalized map (Sansone et al., 2016)
often the shortest path between the obstacle/boundary
and a given point is used.

Let (D,α,σ) denote a two-dimensional combina-
torial map (2map). There are two versions of distance
transform on a 2map. One considers the edges α∗(d)
as a unit and counts the number of edges to follow
as the distance. This corresponds to the distance in
graphs. The alternative considers the darts d ∈ D as a
unit and the following neighbors for propagating dis-
tances:

Γ2map(d) = {α(d),σ(d),σ−1(d)} (8)

In the combinatorial map, each edge is replaced by
two darts. Therefore, computing the DT for darts pro-
vides double resolution for the resulting distance map.
Moreover, for every dimension 1, ...,n we receive one
distance, the distance through the highest dimension
n, and the (larger) geodesic distance along the bound-
ing i− cell, 0 < i < n. This characterizes more of a
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Figure 3: Computing of the DT in 2D grid.
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(a) Computing of the DT in 1D combinatorial map.

(b) DT in the 2D grid and in the CM of Fig. 3.

Figure 4: Computing the DT in combinatorial map.

shape than just the highest dimension. In addition, it
is a sort of map-edit-distance (Combier et al., 2013) in
analogy to the graph edit distance (Gao et al., 2010).

3.1 Logarithmic DT in a 1D
Combinatorial Map

To compute the DT in the CM, a similar algorithm to
Alg. 1 can be used but with two modifications. First,
the unique indices are defined for darts instead of ver-
tices. Second, in each step, we propagate distances by
α- and σ-propagation. The α-propagation of the DT
is performed as follows:

D(di) = min{D(di),D(α(di))+ |Idx(di)− Idx(α(di))| }
(9)

Note that, during the contraction of the e = (d,α(d)),
the Idx(σ(d)) of the contracted dart is updated after
each contraction as follows:

Idx(σ(d)) = Idx(α(d)) (10)

The σ-propagation is performed as follows:

D(di) = min{D(di),D(σ(di))+1,D(σ−1(di))+1}
(11)

Fig. 4a shows an example of computing the DT in
1D CM. In constructing the pyramid in the bottom-
up procedure, first, the α-propagation and then the σ-
propagation are performed. In contrast, in the top-
down procedure, they are performed the other way
around. The steps of the algorithm are shown in
Alg. 2 and Fig. 4b displays the finer resolution of the
DT in comparison with the DT over 2D grid.
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Table 1: Execution (ms) of proposed Logarithmic DT, MeijsterGPU and FastGPU.

Image-size Mit. Log DT MRI Log DT Ran. Log DT Ran. MeijsterGPU Ran. FastGPU
256×256 0.0953 0.1209 0.0645 3.8524 1.7844
512×512 0.410 0.7310 0.3152 14.2005 4.2309

1024×1024 2.6308 5.1501 0.9364 25.8475 12.4668
2048×2048 4.1088 8.9506 1.8577 110.7817 44.9560

Figure 5: The proposed logarithmic DT over different images.

Algorithm 2: Computing DT in the 1D Combinatorial Map.

Input: CM = (D,α,σ)
Initialization: DT = ∞, ∀d ∈ D

3: DT (σ∗(d)) = 0, ∀d ∈ E1
α- and σ-propagation to adjacent neighbors
Selecting the CKs (Bottom-up traversing)

6: While (DT = ∞ in the current level)
Contracting the edges with two unknown DT
α- and σ-propagation to adjacent neighbors

9: end (Top of the Pyramid)
For ( j = L downto 1) (Top-down traversing)
Imitate the DT from L → L−1

12: σ- and α-propagation to adjacent neighbors
end

4 COMPARISONS AND RESULTS

To highlight the advantages of the proposed logarith-
mic algorithm, we compare the execution times with
two CUDA-based Implementations: MeijsterGPU
and FastGPU in (de Assis Zampirolli and Filipe,
2017). Simulations use MATLAB software employ-

ing CPU with AMD Ryzen 7 2700X, 3.7GHz, and
NVIDIA GeForce GTX 2080 TI that run over three
different categories of images: Random, Mitochon-
dria, and MRI. Table. 1 displays the outcome of the
implementations. The first column shows the im-
age size. The next three columns show the execu-
tion times (ms) of the proposed logarithmic DT (Log
DT) in the three different classes of images. The last
two columns show the execution time by the other two
methods. Fig. 5 compares the results of the logarith-
mic algorithm between the different classes. Since
the Random images contain smaller foreground ob-
jects than the other classes, they are executed faster.
In Fig. 6 the logarithmic method is compared to Mei-
jsterGPU and FastGPU methods. The logarithmic DT
is not only significantly faster than the other ones
but also has much higher performance dealing with
larger images. Note that all operations and processes
in the proposed algorithms are local and independent.
Therefore, each available thread of the GPU in the
shared memory is dedicated to each local process.
The bottleneck of the algorithms is the capacity of
the shared memory. Therefore, having sufficient inde-
pendent processing elements the algorithms are fully
parallel with logarithmic complexity.
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Figure 6: Comparison of the proposed algorithm with MeijsterGPU and FastGPU (de Assis Zampirolli and Filipe, 2017).

5 CONCLUSION

Distance transform (DT) computes how far inside a
shape a point is located. In this paper, we study how
the distances can be calculated in a discrete domain
like a pixel grid and in combinatorial maps. Using the
irregular pyramid we proposed a new algorithm that
computes the DT in the logarithmic parallel complex-
ity. Moreover, by defining the DT over the combina-
torial maps, the smoother DT is calculated with dou-
ble precision. Using the dart ordering, we proposed
the logarithmic algorithm for computing the 1D com-
binatorial maps. However, the algorithm can be ex-
tended to higher n-dimensions. Finally, the practical
results show that the algorithm with parallel logarith-
mic complexity notably decreases the execution time
and makes it beneficial in particular for large images.
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