
D I S S E R T A T I O N

Bridging Molecular Dynamics and Neuroscience:

Machine Learning for Efficient Simulations

and Biomedical Signal Processing

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Ing. Diego Milardovich

unter der Betreuung von

Univ.Prof. Dipl.-Ing. Dr.techn. Tibor Grasser

Wien, im Jänner 2024





Abstract

The pace of development in the microelectronics field is among the fastest across all
industries. In line with Moore’s Law, the number of transistors in a single integrated
circuit has approximately doubled every two years since the early 1970s and, over the
past two decades, the transistor count in commercially available central processing
units (CPUs) has increased by approximately 1,000 times. This exponential growth
has been allowed by a significant reduction in the size of individual components with
each new generation. Due to this reduction in size, the necessity of an atomistic de-
scription becomes crucial in microelectronics, as the regions of interest contain only a
few atoms. Consequently, accurate and efficient atomic-level simulations have become
increasingly essential in the design and development processes.

Molecular dynamics (MD) has emerged as a widely used tool to meet a wide range
of the atomistic simulation requirements of this industry. By evaluating the inter-
actions among atoms in a system over time, MD enables the prediction of certain
macroscopic properties of materials and sheds light on complex atom-level processes,
such as the formation of defects that can impact the reliability of microelectronic
devices. However, researchers employing MD face a long-standing challenge: the
trade-off between accuracy and efficiency. On one hand, ab initio methods, such
as density functional theory (DFT), provide high accuracy; nonetheless, their com-
putational costs are prohibitively high, limiting their application to relatively small
systems (<103 atoms) and short simulation times (∼101 ps). On the other hand,
empirical potentials, which are parameterized mathematical models of the potential
energy surface (PES), require fewer computational resources. However, their accu-
racy is not sufficient for many applications and they require expert parameterization
for every new system of interest.

This thesis aims to develop machine learning (ML)-based solutions that enhance
the trade-offs between accuracy and efficiency in MD simulations. As part of this
work, four novel ML interatomic potentials were developed: (I) to model amorphous
silicon-nitride, a material with applications ranging from dielectrics in microelectronic
devices to the Space Shuttle’s armor; (II) to simulate neutron irradiation effects in
silicon-germanium, relevant to the study of microelectronic components exposed to
radiative environments, like nuclear power plants and outer space; (III) to investigate
the oxidation process of silicon, critical to the semiconductor industry; and (IV) to
model amorphous silicon-dioxide, extensively used as an insulator in microelectronic
devices. Moreover, two alternative ML-based approaches were developed to predict
the formation energy and atomic structure of defects in amorphous materials.
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During the aforementioned developments, two main bottlenecks were identified:
The time required for building the training datasets, and the inadequate optimiza-
tion of the hardware in which the models are deployed. To address these issues,
the following solutions were investigated: (A) an active learning algorithm to ex-
pedite the training of ML interatomic potentials, and (B) the utilization of a novel
neuromorphic-based hardware accelerator for conducting MD simulations. The lat-
ter solution, based on the work of Mo et al., was successfully employed to simulate
germanium-based memristors composed of over 100,000 atoms.

In this thesis, a dual-component approach, consisting of a descriptor and an ML
model, has been successfully applied to the development of ML interatomic potentials
for MD simulations. Building upon these advancements, a similar approach has been
extended to address a distinct problem: the automatic annotation of motor evoked
potentials (MEPs). These are electromyography (EMG) recordings obtained from
muscles in response to transcranial magnetic stimulation (TMS), which play a crucial
role in the treatment of neurological disorders, such as multiple sclerosis. MEPs are
typically characterized by their latency, defined as the time interval between the TMS
stimulation and the onset of the MEP, and the treatment of a single patient might
require the analysis of thousands of MEPs. This is frequently done manually by a
clinician, since the high variability and low signal-to-noise ratio of these signals make
their automatic analysis a hard problem to solve. To mitigate these issues, an algo-
rithm inspired by the developments in ML interatomic potentials is presented in this
thesis. By automating and accelerating the MEPs annotation process, this algorithm
reduces the workload for clinicians and minimizes the potential for human errors.
Moreover, its low computational costs enable on-the-fly signal analysis, which opens
up possibilities for future applications, such as closed-loop ML-based brain stimula-
tion protocols.

Results show that the four ML interatomic potentials developed in this thesis
presented a mean absolute error (MAE) <10 meV/atom when compared to ab intio
methods in energy calculations, while being between three to four orders of mag-
nitude faster. The active learning algorithm presented in this work was sucessfully
employed in the development of the ML interatomic potential to study the oxidation
of silicon, while the neuromorphic based hardware accelerator allowed for MD sim-
ulations about two orders of magnitude faster than on traditional scientific clusters.
On the other hand, the transdiciplinary adaptation of these solutions resulted in an-
notations of MEPs with a MAE of 0.5 ms, making it virtually indistinguishible from
the annotations of a medical expert.



Kurzfassung

Die Mikroelektronikbranche entwickelt sich mit rasanter Geschwindigkeit. Gemäß
dem Mooreschen Gesetz hat sich die Anzahl der Transistoren in einem einzigen inte-
grierten Schaltkreis seit den frühen 1970er Jahren ungefähr alle zwei Jahre verdoppelt.
In den letzten zwei Jahrzehnten hat sich die Anzahl der Transistoren in kommerziell
erhältlichen Mikroprozessoren um etwa das 1,000-fache erhöht. Diese exponentielle
Wachstum wurde durch eine signifikante Reduktion der Größe einzelner Komponenten
in jeder neuen Generation ermöglicht. Aufgrund dieser signifikanten Größenreduk-
tion wird die Notwendigkeit einer atomistischen Beschreibung in der Mikroelektronik
entscheidend, da die relevanten Bereiche nur eine geringe Anzahl von Atomen en-
thalten. Infolgedessen sind genaue und effiziente Simulationen auf atomarer Ebene
zunehmend wichtiger geworden für den Entwurfs- und Entwicklungsprozess.

Molekulardynamik (MD) hat sich als ein weit verbreitetes Werkzeug etabliert,
um eine Vielzahl der atomistischen Simulationserfordernisse dieser Branche zu er-
füllen. Durch die Bewertung der Wechselwirkungen zwischen Atomen in einem Sys-
tem im Laufe der Zeit, ermöglicht MD die Vorhersage bestimmter makroskopischer
Eigenschaften von Materialien und gibt Einblicke in komplexe atomare Prozesse, wie
die Bildung von Defekten, die die Zuverlässigkeit von mikroelektronischen Geräten
beeinträchtigen können. Forscher, die MD verwenden, stehen jedoch vor einer Heraus-
forderung: dem Kompromiss zwischen Genauigkeit und Effizienz. Einerseits bieten
ab initio Methoden wie Dichtefunktionaltheorie (DFT) eine hohe Genauigkeit; ihre
Berechnungskosten sind jedoch prohibitiv hoch und beschränken ihre Anwendung auf
relativ kleine Systeme (<103 Atome) und kurze Simulationszeiten (∼101 ps). Ander-
erseits erfordern empirische Potentiale, die parametrisierte mathematische Modelle
der potentiellen Energieoberfläche sind, weniger Rechenressourcen. Ihre Genauigkeit
ist jedoch für viele Anwendungen nicht ausreichend und sie erfordern eine fachkundige
Parameterisierung für jedes neue interessierende System.

Diese Dissertation konzentriert sich darauf, Maschinelles Lernen (ML) basierte
Lösungen zur Verbesserung des Kompromisses zwischen Genauigkeit und Effizienz in
MD Simulationen zu entwickeln. Im Rahmen dieser Arbeit wurden vier neue ML
interatomare Potentiale entwickelt: (I) zur Modellierung von amorphem Silizium-
nitrid, einem Material mit Anwendungen von der Dielektrikschicht von mikroelek-
tronischen Geräten bis zur Panzerung des Space Shuttles; (II) zur Simulation von
Neutronenbestrahlungseffekten in Siliziumgermanium, relevant für die Untersuchung
mikroelektronischer Bauteile, die Strahlungsumgebungen wie in Kernkraftwerken und
dem Weltraum ausgesetzt sind; (III) zur Untersuchung des Oxidationsprozesses von
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Silizium, der für die Halbleiterindustrie von entscheidender Bedeutung ist; (IV) zur
Modellierung von amorphem Siliziumdioxid, das als Isolator in mikroelektronischen
Geräten weit verbreitet ist. Darüber hinaus wurden zwei alternative ML basierte
Ansätze entwickelt um die Bildungsenergie und atomare Struktur von Defekten in
amorphen Materialien vorherzusagen.

Während der genannten Entwicklungen wurden zwei thematische Hauptengpässe
identifiziert: die Zeit, die für den Aufbau der Trainingsdatensätze benötigt wird,
und die unzureichende Optimierung der Hardware, auf der die Modelle ausgeführt
werden. Um diese Probleme zu lösen, wurden folgende Lösungsansätze untersucht:
(A) ein aktiver Lernalgorithmus, um das Training von ML interatomaren Potentialen
zu beschleunigen, und (B) die Verwendung eines neuromorphen Hardware Beschleu-
nigers für MD Simulationen. Die letztere Lösung, basierend auf der Arbeit von Mo et
al., wurde erfolgreich eingesetzt, um einen Germanium-basierten Memristor mit über
100,000 Atomen zu simulieren.

In dieser Dissertation wurde ein zweikomponentiger Ansatz, bestehend aus einem
Deskriptor und einem ML Modell, erfolgreich auf die Entwicklung von ML inter-
atomaren Potentialen für MD Simulationen angewendet. Aufbauend auf diesen Er-
folgen wurde ein ähnlicher Ansatz erweitert, um ein anderes Problem zu lösen: die
automatische Annotation von motorisch evozierten Potenzialen (MEPs). Dabei han-
delt es sich um Elektromyographie Aufzeichnungen, die von Muskeln als Reaktion auf
transkranielle Magnetstimulation (TMS) erhalten werden und eine wichtige Rolle bei
der Behandlung neurologischer Erkrankungen wie Multipler Sklerose spielen. MEPs
werden in der Regel anhand ihrer Latenz charakterisiert, definiert als Zeitintervall
zwischen der TMS Stimulation und dem Beginn der MEPs, und die Behandlung
eines einzigen Patienten erfordert möglicherweise die Analyse Tausender MEPs. Dies
geschieht häufig manuell durch einen Mediziner, da die hohe Variabilität und das
geringe Signal-Rausch-Verhältnis dieser Signale ihre automatische Analyse zu einem
schwer zu lösenden Problem machen. Um diese Probleme zu mildern, wird in dieser
Arbeit ein Algorithmus vorgestellt, der von den Entwicklungen von ML interatomaren
Potentialen inspiriert ist. Durch Automatisierung und Beschleunigung des MEP An-
notationsprozesses reduziert dieser Algorithmus die Arbeitsbelastung für Mediziner
und minimiert das Potenzial menschlicher Fehler. Darüber hinaus ermöglichen seine
geringen Berechnungskosten eine Echtzeitanalyse der Signale, was Möglichkeiten für
zukünftige Anwendungen eröffnet.

Die Ergebnisse zeigen, dass die vier vorgestellten ML interatomaren Potentiale
einen mittleren absoluten Fehler (MAE) <10 meV/Atom aufweisen, wenn sie mit ab
initio Methoden in Energieberechnungen verglichen werden, während sie gleichzeitig
zwischen drei bis vier Größenordnungen schneller sind. Der in dieser Arbeit vorgestellte
aktive Lernalgorithmus wurde erfolgreich bei der Entwicklung des ML interatomaren
Potentials zur Untersuchung der Oxidation von Silizium eingesetzt, während der auf
neuromorpher Hardware basierende Beschleuniger für MD Simulationen etwa zwei
Größenordnungen schneller ist als auf herkömmlichen wissenschaftlichen Clustern.
Andererseits führte die transdisziplinäre Anpassung dieser Lösungen zu Annotatio-
nen von MEPs mit einer MAE von 0.5 ms, wodurch sie praktisch nicht von den
Annotationen eines medizinischen Experten zu unterscheiden sind.



Resumen

La velocidad del desarrollo en la industria de la microelectrónica se encuentra entre
las más rápidas en todos los sectores. Siguiendo la Ley de Moore, el número de transi-
stores en circuitos integrados se ha duplicado aproximadamente cada dos años desde
principios de la década de 1970 y, en las últimas dos décadas, la cantidad de transi-
stores en procesadores disponibles comercialmente ha aumentado aproximadamente
1,000 veces. Este crecimiento exponencial ha sido producto de una reducción significa-
tiva en el tamaño de los componentes microelectrónicos con cada nueva generación.
Debido a esta reducción significativa en tamaño, la necesidad de una descripción
atomística se vuelve crucial en microelectrónica, ya que las regiones de interés con-
tienen solo un pequeño número de átomos. En consecuencia, las simulaciones precisas
y eficientes a nivel atómico se han vuelto cada vez más esenciales en los procesos de
diseño y desarrollo.

La técnica de dinámica molecular (DM) ha surgido como una herramienta am-
pliamente utilizada para satisfacer muchos de los requisitos de simulación de esta
industria. Al evaluar las interacciones entre los átomos de un sistema a lo largo del
tiempo, la DM permite predecir algunas propiedades macroscópicas de los materiales
y esclarece procesos complejos a nivel atómico, como la formación de defectos que
pueden afectar la confiabilidad de los dispositivos microelectrónicos. Sin embargo,
los investigadores que emplean simulaciones de DM se enfrentan a un desafío de larga
data: el compromiso entre precisión y eficiencia. Por un lado, los métodos denomina-
dos ab initio, como la teoría del funcional de la densidad (TFD), proporcionan alta
precisión; sin embargo, sus costos computacionales son prohibitivamente altos, limi-
tando su aplicación a sistemas relativamente pequeños (<103 átomos) y tiempos de
simulación cortos (∼101 ps). Por otro lado, los potenciales empíricos, que son modelos
matemáticos parametrizados de la superficie de energía potencial, requieren menos
recursos computacionales. Sin embargo, su precisión no es suficiente para muchas
aplicaciones, y requieren de la parametrización de un experto para cada nuevo sis-
tema de interés.

Esta tesis se centra en el desarrollo de soluciones basadas en machine learning
(ML) para proporcionar mejores compromisos entre precisión y eficiencia en las sim-
ulaciones de DM. Como parte de este trabajo, se desarrollaron cuatro nuevos po-
tenciales interatómicos basados en ML: (I) para modelar nitruro de silicio amorfo,
un material con aplicaciones que van desde dieléctrico en dispositivos microelectróni-
cos hasta blindaje del Space Shuttle; (II) para simular los efectos de la radiación
de neutrones en silicio-germanio, relevante para el estudio de componentes micro-
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electrónicos expuestos a entornos radiactivos, como plantas de energía nuclear y el
espacio exterior; (III) para investigar el proceso de oxidación del silicio, fundamental
para la industria de semiconductores; (IV) para modelar dióxido de silicio amorfo,
utilizado extensivamente como aislante en dispositivos microelectrónicos. Además,
se desarrollaron dos técnicas alternativas basadas en ML para predecir la energía de
formación y la estructura atómica de defectos en materiales amorfos.

Durante los desarrollos mencionados anteriormente, se identificaron dos obstáculos
principales a nivel computacional: el tiempo requerido para construir los datasets de
entrenamiento, y la inadecuada optimización del hardware en el que se implementan
los modelos. Para abordar estos problemas, se investigaron las siguientes soluciones:
(I) un algoritmo de aprendizaje activo para acelerar el entrenamiento de potenciales
interatómicos basados en ML y (II) la utilización de un acelerador de hardware basado
en computación neuromórfica para realizar simulaciones de DM. Esta última solución,
basada en el trabajo de Mo et al., se empleó con éxito para simular memristores de
germanio, compuestos por más de 100,000 átomos.

En esta tesis, se ha aplicado con éxito un enfoque dual, que consta de un descriptor
y un modelo de ML, para el desarrollo de potenciales interatómicos para simulaciones
de DM. Sobre la base de estos avances, un enfoque similar se ha extendido para abor-
dar un problema distinto: la anotación automática de potenciales evocados motores
(PEMs). Estos son registros electromiográficos obtenidos de los músculos en respuesta
a la estimulación magnética transcraneal (EMT), que desempeñan un papel crucial en
el tratamiento de trastornos neurológicos, como la esclerosis múltiple. Los PEMs se
caracterizan típicamente por su latencia, definida como el intervalo de tiempo entre la
EMT y el inicio del movimiento del músculo. El tratamiento de un solo paciente puede
requerir el análisis de miles de PEMs. Esto se realiza frecuentemente de forma man-
ual por un médico, ya que la alta variabilidad y la baja relación señal-ruido de estas
señales dificultan su análisis automático. Para mitigar estos problemas, se presenta
en esta tesis un algoritmo inspirado en los desarrollos en potenciales interatómicos
basados en ML. Al automatizar y acelerar el proceso de anotación de PEMs, este
algoritmo reduce la carga de trabajo para los médicos y minimiza la posibilidad de
errores humanos. Además, el bajo costo computacional de este algoritmo permite el
análisis de señales en vivo, lo que abre posibilidades para futuras aplicaciones, como
protocolos automáticos de estimulación cerebral en lazo cerrado basados en ML.

Los resultados muestran que los cuatro potenciales interatómicos basados en ML
presentaron un error absoluto medio (EAM) inferior a 10 meV/átomo en comparación
con métodos de tipo ab initio en cálculos de energía, al mismo tiempo que son entre
tres y cuatro órdenes de magnitud más rápidos. El algoritmo de aprendizaje activo
presentado en esta tesis se utilizó con éxito en el desarrollo del potencial interatómico
para estudiar la oxidación del silicio, mientras que el acelerador de hardware basado
en computación neuromórfica permitió simulaciones de DM aproximadamente dos
órdenes de magnitud más rápidas que en servidores para cálculos científicos tradi-
cionales. Por otro lado, la adaptación transdisciplinaria de estas soluciones dio como
resultado anotaciones de PEMs con un EAM de 0.5 ms, lo que las hace prácticamente
indistinguibles de las anotaciones de un experto médico.
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Chapter 1

Introduction

Artificial intelligence (AI) is a relatively novel field. It is widely considered that it
was born as a scientific discipline in 1956, during the Dartmouth Summer Research
Project on Artificial Intelligence [1]. Therefore, compared to long-standing scien-
tific disciplines like physics or chemistry, the development of AI has occurred within
a minuscule timeframe, representing a fraction of the extensive history these fields
have witnessed. Nonetheless, progress and development of AI have unfolded at an
exponential pace. In 1996, the IBM supercomputer Deep Blue beat the world chess
champion, Garry Kasparov, in a six-game match held in Philadelphia [2]. This mile-
stone occurred only 40 years after the conceptualization of AI as a scientific field.

In the modern world, there is virtually no scientific discipline which has not been
transformed by AI in general, and by the subfield of machine learning (ML) in partic-
ular. ML finds applications in a wide range of different domains, such as biology [3],
physics [4], sociology [5] and neuroscience [6], where it focuses on the development
of algorithms and models that allow information processing machines to learn and
improve their performance without being explicitly programmed. The core concept
of ML is to enable information processing machines to discover relationships and
make accurate predictions or decisions based on the input data. The novelty of ML
algorithms is that they learn from examples or experiences, adjusting their internal
parameters to optimize their performance based on a provided dataset [7]. This is
in contrast to traditional software paradigms, in which programmers would write ex-
plicit instructions for information processing machines to follow, defining every step
and rule required to solve a problem.

Originally, ML was predominantly applied to simple tasks, with limited capabili-
ties and narrow domains of application. Early ML algorithms were primarily focused
on tasks such as pattern recognition [8] and classification [9], where the input data
and desired outputs were relatively straightforward. These algorithms were capable
of learning simple rules and making predictions based on the provided training data.
However, as the field of ML advanced, researchers and practitioners began exploring
its potential for more complex tasks.

At present time, ML algorithms can perform tasks as complex as processing natu-
ral language [10] and computer vision [11], with practical applications in medicine [12],
finances [13], environmental sciences [14], etc. Among the scientific disciplines trans-
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formed by novel ML algorithms, we find the field of molecular dynamics (MD). MD
is an umbrella term that encompasses a wide range of atomistic calculation tech-
niques. What all of them have in common is that they are used to simulate the time
evolution of the configuration of atomic systems, by considering their interatomic
interactions. Even though MD is a well-established technique, researchers employing
it face a long-standing dilemma: accuracy vs. efficiency [15][16]. On the one hand,
ab initio methods, such as the density functional theory (DFT) evaluation of the
potential energy surface (PES), offer high accuracy and require minimal information
about the system at hand, other than its elemental composition, but at the expense
of high computational costs which limit their use to only small atomic systems. On
the other hand, empirical potentials, which are hand-crafted approximations to the
PES, are computationally more efficient, but often not accurate enough for several
applications, and they require expert knowledge to properly parametrize the potential
for new materials.

In the last decade, ML interatomic potentials emerged as promising alternatives to
ab initio methods and empirical potentials, aiming at combining the high accuracy of
the former with the low computational cost of the latter. ML interatomic potentials
work by training an ML model, commonly, but not always, a neural network, to act
as a computationally affordable surrogate model of the PES [17][18].

The development of ML interatomic potentials has been nothing short of revo-
lutionary in the field of MD. The following example should be enough to illustrate
this. In 2018, Deringer et al. developed an ML interatomic potential for amorphous
silicon [19]. The atomic structures generated with this potential contained as little
as 2% defects, while reducing the computational times and costs by orders of magni-
tude when compared to ab initio methods. In fact, running the same melt-and-quench
MD simulation to model amorphous silicon structures, required 16,000,000 core-hours
with DFT, while only 40,000 with their ML interatomic potential. When considering
the core-hour costs of the UK national supercomputer at the time, this translated in
a cost reduction from USD 185,000 to USD 500.

The particularly good trade-off between accuracy and efficiency in ML algorithms
aids researchers and engineers in performing simulations and data processing tasks
which were previously out of range by orders of magnitude. This is particularly
valuable in tasks in which massive amount of data must be processed, such as when
simulating extensive atomic systems [20]; or when timing is crucial, as in the case of
systems required to process data on-the-fly [21].

In general terms, commonly used ML models are agnostic to the specific applica-
tion they were trained for. The same models, techniques and training algorithms can
be used for seemingly unrelated applications in highly dissimilar fields, by providing
the appropriate training data and making the necessary adjustments. This means
that ML solutions developed for one specific application can potentially be of use to
solve problems in a different scientific field. This concept is at the core of this thesis,
since the solutions developed for interatomic potentials used in MD simulations were
adapted to process biomedical data of neurological patients. The ML algorithms de-
veloped in this thesis serve to reduce computational times by orders of magnitude in
the first case, and to accelerate the work of neuroscientist and medical doctors in the
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second. In particular, in this work the challenge of automating the analysis of mo-
tor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS)
was addressed. These are biomedical signals measured with electrodes on the target
muscle of a patient. They are typically characterized by the time elapsed between
the stimulation and the beginning of the muscle movement. This characterization
provides medical doctors with information on the corticospinal excitability of the pa-
tient, which is needed, among a wide range of applications, to evaluate the progress
of patients suffering neuromotor diseases, such as amyotrophic lateral sclerosis [22].

A preliminary assessment might create the perception that such ML algorithms
must be unrelated and highly disparate. However, considering: (I) ML models as
mathematical functions, (II) their training as an optimization problem, and (III) the
data used to train them as abstract mathematical objects, the relationship between
these seemingly unrelated problems becomes less blurry and more intuitive.

1.1 Research Goals

In general terms, the research goals of this thesis involve the development of ML tools
and techniques aimed at reducing the computational times and costs required for run-
ning MD simulations with ab initio accuracy. Additionally, this thesis addresses the
transdisciplinary application of these techniques in processing biomedical data.

In concrete terms, the research presented in this thesis has been conducted at
the Institute for Microelectronics, TU Wien [23], in the context of the Modeling Un-
conventional Nanoscaled Device FABrication (MUNDFAB) research project [24]. It
consists of the following research goals: (I) an ML interatomic potential for silicon-
nitride, with special focus on modelling amorphous structures, and an active learning
technique, in cooperation with Argonne National Laboratory in Lemont, USA [25];
(II) an ML interatomic potential for silicon-germanium, with application to studying
the effects of neutron irradiation in this material in radiative environments, such as
nuclear power plants and airspace, developed during my research stay at LAAS-CNRS
in Toulouse, France [26]; (III) ML interatomic potentials to study the oxidation pro-
cess of silicon (together with an active learning technique) and to model amorphous
silicon-dioxide, with application to simulating this process which is crucial for the
semiconductor industry; (IV) ML models to predict the formation energy and struc-
ture of hydrogen-based defects in amorphous silicon-dioxide; (V) an ML interatomic
potential for germanium which runs on a neuromorphic hardware accelerated plat-
form, with application to studying germanium-based memristors and the possibility
of simulating systems composed of more than 100,000 atoms, developed during my
research stay in the Computational Nanoelectronics Group at ETH Zurich in Switzer-
land [27]; and (VI) an ML-based technique to automate the analysis of MEPs signals
generated by TMS, in cooperation with the Department of Neuroscience and Biomed-
ical Engineering at Aalto University in Helsinki, Finland [28].
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1.2 Thesis Outline
The structure of the thesis aims at first introducing the theoretical framework in
Chapter 2, then presenting and discussing the results in the following chapters. Chap-
ter 3 presents the results of developing ML interatomic potentials for silicon-nitride,
silicon-germanium, the oxidation of silicon, and silicon-dioxide. These results are
grouped into a single chapter as they are all based on using the Gaussian approx-
imation potential (GAP) method. Chapter 4 discusses ML-based alternatives to
interatomic potentials and presents the results of such developments to study the for-
mation energy and structure of hydrogen-based defects in amorphous silicon-dioxide.
In Chapter 5, the results of using a neuromorphic hardware accelerator for MD simu-
lations to model amorphous germanium are presented. In Chapter 6, the transdisci-
plinary application of the previously considered ML developments to biomedical data
processing is discussed. Finally, Chapter 7 presents the conclusions of the thesis.



Chapter 2

State-of-the-Art and Methods

The following chapter provides an overview of the current state-of-the-art in MD
simulations in general, and ML-based interatomic potentials in particular. The main
aim is to offer the essential theoretical groundwork for comprehending the results pre-
sented in the subsequent chapters. The Born-Oppenheimer approximation and the
concept of PES are first discussed in Section 2.1, followed by an overview of MD simu-
lation methods in Section 2.2. A discussion of relevant classical ineratomic potentials
can be found in Section 2.3, while an introduction to ML interatomic potentials and
chemical environment descriptors is presented in Section 2.4.

2.1 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation was first proposed by M. Born and R. Op-
penheimer in 1927 [29]. The approximation assumes that the motion of the electrons
is much faster than that of the nuclei, allowing the electronic motion to be treated as
instantaneous with respect to the motion of the nuclei. This is because each proton
or neutron in the nuclei has a mass several orders of magnitude larger than that of
an electron [30].

This approximation allows the separation of the motion of atomic nuclei and elec-
trons in a molecule or solid. In mathematical terms, this allows to approximate the
total wavefunction of the atomic system as the product of an electronic wavefunction
and a nuclear wavefunction:

Ψtotal = ψelectrons × ψnuclei, (2.1)

this enables the separation of the Hamiltonian operator into electronic and nuclear
terms, since electrons and nuclei are considered as decoupled systems under this ap-
proximation. Disentangling the motion of the electrons from that of the nuclei greatly
reduces the mathematical complexity of the equations of motion, thereby also reduc-
ing the computational efforts needed to solve them.

In the Born-Oppenheimer approximation, the Schrödinger equation for the elec-
trons is solved with the nuclear coordinates fixed. This implies considering the coor-
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dinates of the electrons as functions of the coordinates of the nuclei. Therefore, given
a system with N atoms, where the position of atom i is the 3-dimensional vector Ri,
the potential energy of the system, E, can be written as:

E = E(R1, R2, . . . , RN). (2.2)

This function is known as the PES, which relates the potential energy of the sys-
tem, E, a scalar, with the positions of the atoms in it, a 3-N scalar field. Therefore,
for every configuration of the system (i.e., for every set of atomic positions), the PES
relates it to the potential energy of the system, E. An illustration of the PES for a
hypothetical reaction system is shown in Figure 2.1. The x and y axis represent co-
ordinates, while the z axis represents the potential energy of the system. The highest
potential energy is indicated with red and the lowest with violet. The color scheme
of the PES is also used in the 2-D contour map. In this example, 1 and 2 are saddle
points. The reaction takes the system from the energy minimum to a local minima,
passing through the saddle point number 2.

In essence, the objective of ML interatomic potentials is to act as computation-
ally more efficient surrogate models of the PES of interest [17]. By learning from
a relevant dataset of points on the PES of interest, ML interatomic potentials are
thereafter able to interpolate and compute the potential energy and forces (e.i., the
height and curvature of the PES) for new atomic configurations.

Figure 2.1: PES for a hypothetical reaction system with two coordinates. (CC BY-
NC; Ümit Kaya via LibreTexts)
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2.2 Molecular Dynamics Simulations

The technique of MD allows to simulate the behavior and evolution of atomic systems
over time. MD is an essential atomic-scale research method, finding use in a wide
range of fields, such as physics [31], biology [32] and nanotechnology [33]. In MD, the
vast majority of simulation techniques assume the Born-Oppenheimer approximation,
therefore treating the atomic nuclei independently of the electrons. This means that,
in the classical limit, the nuclei obey Newton’s equations of motion:

dpi
dt

= mi
d2qi
dt2

= −δU(q)

δqi
, (2.3)

where q are the system coordinates, qi the coordinates of the atom i, U the total
potential energy of the system, t the time, pi the momentum of atom i, and mi is the
mass of atom i.

Since the Born-Oppenheimer approximation is assumed, the nuclei evolve on the
PES. Therefore, the forces that govern their movements and interactions are com-
puted as the negative of the derivative with respect to the atomic coordinates of
the total potential energy of the system. Computing the exact PES of a complex
atomic system is most frequently not possible in practical terms, and different levels
of approximation are used. The theory level of approximation used in a specific MD
simulation is referred to as the potential. The potential is the physical model of the
PES. It can range from highly accurate ab initio methods, such as DFT, to simpler
empirical equations in the form of classical potentials. Classical potentials will be
discussed in Section 2.3, while modern ML-based potentials will be presented in Sec-
tion 2.4.

Once the interatomic interactions are defined by the potential employed, the equa-
tions are discretized to enable a computational solution. This is done by defining
a time-step, which is an empirically set parameter. The time-step must be short
enough to allow access to the relevant physical mechanisms of interest. However, the
shorter the time-step, the higher the total number of steps. Therefore, a reasonable
trade-off is needed. A typical time-step, both for ab initio and classical methods, is
1 fs. The discretized equations are typically solved using a symplectic (i.e., approxi-
mately energy-conserving) integrator. An example of one such algorithm is the Verlet
method [34],

ri(t+ δt) = ri(t) + vi(t)δt+
fi(t)

2mi

δt2

vi(t+ δt/2) = vi(t) +
δt

2

fi(t)

mi

fi(t+ δt) = fi(ri(t+ δt))

vi(t+ δt) = vi(t+ δt/2) +
δt

2

fi(t+ δt)

mi

,

(2.4)

where t is the time, ri is the coordinates vector, vi is the velocity vector and i is the
atom index. Given a potential, a reasonable time-step and a method to solve the
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discretized equations, Newton’s equations of movement can be solved for the isolated
atomic system of interest. Often, however, it is desirable to study the interaction
between the atomic system of interest and its environment, in the form of energy ex-
changes and changes in its volume. This can be done by modifying the equations of
motion to simulate constant temperature or constant pressure conditions, by means
of a thermostat or barostat, respectively. These elements will be explained next.

2.2.1 Thermostats

Thermostats are used to regulate the atomic system’s temperature. They are mod-
ifications to the equations of motion that emulate the energy exchange between the
atomic system and a theoretical heat reservoir, such as the environment. Given an
atomic system, the instantaneous value of its temperature is related to the kinetic
energy, via the equipartition theorem [35],

⟨K⟩ = 3

2
NkBT

K =
1

2

�
i

miv
2
i ,

(2.5)

where K is the kinetic energy, mi is the mass of atom i, vi is the velocity of atom
i, kB is the Boltzmann constant, T is the temperature of the system, and N is the
number of atoms in the system. The operation of a thermostat on an atomic system
can be viewed as a closed-loop control problem, where, using control theory jargon,
the atomic system is the plant and the thermostat is the controller. In every step, the
temperature of the atomic system is measured and compared to the target tempera-
ture. Based on this difference, the thermostat will modify the equations of motion to
reach the target temperature. This modification must be done gradually, in order to
avoid unphysical behaviors. The rate at which the modification is done is determined
by either a single or multiple parameters, depending on the thermostat being used.

There is a wide range of thermostats used in MD simulations. An obvious and
simple way to implement a thermostat is through velocity scaling. In this implemen-
tation, the velocities of all particles are scaled to reach the target temperature,

vnewi = voldi λ

λ =
�
T0/T (t),

(2.6)

where T0 is the target temperature, T (t) is the current temperature, λ is the scaling
factor, and voldi /vnewi is the previous/new velocity of atom i. However, one problem
with this simple approach is that it does not allow for temperature fluctuations, which
are present in the canonical ensemble, therefore making it a non-ideal candidate to
model real-world energy exchanges.

An improvement from the velocity scaling method is the Berendsen thermo-
stat [36], which works by simulating a weaker coupling between the atomic system of
interest and a thermal bath,
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dT (t)

dt
=

1

τ
(T0 − T (t)), (2.7)

where τ is the coupling parameter, which determines the strength of the heat exchange
between the atomic system and the thermal bath. τ is given in units of time and
plays an important role in the dynamics of the atomic system. The smaller the value
of τ , the faster the dynamics will be, thereby taking less time to reach the target
temperature, but producing larger temperature changes. On the contrary, larger
values of τ result in a longer time to reach the target temperature, but smoother
changes in the temperature values of the atomic system over time.

An alternative method, and probably the most common one, is the Nosé-Hoover
thermostat, which adds an extra degree of freedom to the Hamiltonian of the atomic
system,

H(P,R, ps, s) =
�
i

p2i
2ms2

+
1

2

�
ij,i ̸=j

U(ri − rj) +
p2s
2Q

+ gkBT ln(s), (2.8)

where g is the number of independent momentum degrees of freedom of the system,
R and P represent all coordinates ri and pi, s is the additional degree of freedom,
and Q represents a mass which should be chosen along with the system. The extra
degree of freedom emulates the coupling between the atomic system and a heat bath,
with which it can exchange energy [37][38]. In the Nosé-Hoover thermostat, the entire
atomic system is coupled to a heat bath.

Another approach is the Langevin thermostat [39], in which each atom is coupled
to a heat bath, emulated by a fluctuating force and a friction term,

dpi
dt

= −δU(q)

δqi
− γimivi + ηiξi, (2.9)

where γi is a positive real number, representing a friction term that dissipates energy
from the atomic system; ξi is a noise term that imposes a stochastic force on atom i
and ηi is a positive real number that determines the magnitude of this stochastic force
on atom i. It is important to note that the Langevin thermostat is truly stochastic
in comparison with the other methods, which are deterministic after initialization.
Regardless of the selected method and its parametrization, the function of the ther-
mostat is to regulate the atomic system temperature, in order to simulate the energy
exchange with the environment.

2.2.2 Barostats

A barostat is analoguous to a thermostat but controls the pressure of the atomic
system being simulated. In the same way in which the system temperature is related
to the velocity of the particles in the atomic system, the pressure is related to the
volume of the atomic system. As with thermostats, the time evolution of the free
variable, i.e., the system volume, can be controlled by a parameter or set of parame-
ters, depending on the selected barostat.
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In an analog way to the velocity scaling, the coordinates of the atoms in the system
can be scaled to reach the target pressure,

V new = V oldλ

rnewi = roldi λ1/3,
(2.10)

where V new is the volume of the atomic system in the new step, V old is the volume of
the atomic system in the previous step, rnewi /roldi are the atomic coordinates of atom
i in the new/previous step, and λ is the scaling factor. As with the thermostat, the
problem with this simple approach is that it does not allow the system pressure to
oscillate, therefore making it not ideal to model real systems.

Analog to the Berendsen thermostat, the Berendsen barostat is an improvement
over the direct scaling barostat, in which a weaker coupling with the pressure reservoir
is implemented,

dP (t)

dt
=

1

τ
(P0 − P (t)), (2.11)

where P (t) is the atomic system pressure over time, P0 is the target pressure and τ
is the coupling parameter. As with the thermostat, τ determines the dynamics of the
pressure control.

In this same manner, a Nosé-Hoover barostat can be implemented, as an analog
to the Nosé-Hoover thermostat. Moreover, a pure barostat can be used on an en-
semble, or it can be combined with a thermostat to generate the isothermal-isobaric
statistical ensemble.

2.3 Classical Potentials
When running MD simulations, the total energy of the atomic system and the forces
acting on each of the atoms which compose the system must be computed for every
time-step. Performing these calculations with an ab initio method is computationally
challenging, even for simple or trivial atomic system, therefore severely limiting the
system sizes that can be studied, and shortening the simulation times that can be
accessed. The computational limits of ab initio methods are rapidly reached, since
their computational costs typically scale cubically with the number of atoms in the
system.

It is in this context that classical potentials, also known as empirical potentials, are
developed. Classical potentials are computationally efficient approximations to the
Born-Oppenheimer PES. Their analytical form is typically derived from fundamental
physical arguments, while their parametrization is based on experimental data or
more expensive ab initio calculations. The different physical interactions are typically
tackled independently, in the form of separate terms. Moreover, intermolecular and
intramolecular interactions are commonly modeled separately.

In the following sections, the Lennard-Jones [40], Tersoff [41] and ReaxFF [42]
classical potentials will be discussed. Lennard-Jones is one of the earliest examples of



Chapter 2. State-of-the-Art and Methods 11

a classical potential and its simplicity allows for it to serve as an illustrative example.
Tersoff and ReaxFF are more complex and accurate classical potentials, which were
used in several of the production MD simulations in this doctoral thesis.

2.3.1 Lennard-Jones

The Lennard-Jones classical potential was developed by John Lennard-Jones in an
attempt to produce a physical model to explain the temperature-dependent variation
of the viscosity in gases [40]. The analytical form of the Lennard-Jones classical
potential considers only pairwise interactions of atoms, and it is composed of an
attraction term and a repulsion term, both of which are functions of an inverse power
of the interatomic distance,

U(r) = Ar−n − Brm, (2.12)

where U is the potential energy, r is the interatomic distance, A and B define the
magnitude of the attractive and repulsive terms, respectively, and n and m define the
rate of change of these terms with respect to the interatomic distance. Therefore, the
model is based on four parameters, all of which are positive numbers, that can be
empirically set, based on experimental data.

In its most commonly used form, the Lennard-Jones potential adopts m and n
to be equal to 12 and 6, respectively. Because of this reason, this classical potential
typically receives the name 12-6 potential. Since m and n are set, there are only
two parameters left to be determined by the user, A and B. These parameters are
typically re-arranged, to allow a simpler physical interpretation,

U(r) = 4ϵ(− r

σ

−6

+
r

σ

−12

), (2.13)

where ϵ is the potential energy well depth, r is the interatomic distance and σ is the
length scale. Many force-fields take this form as their basis, such as AMBER [43],
OPLS [44] and AIREBO [45]. The simple form of these classical potentials makes
them highly computationally efficient. However, it also limits their accuracy, as
they can only account for 2-body interactions. When more accurate calculations
are needed, it is necessary to account for multi-body interatomic interactions.

2.3.2 Tersoff

The previously discussed Lennard-Jones classical potential considers only two-atom
interactions. This makes it computationally efficient but not accurate enough for
several applications, as more complex interatomic interactions are missing. In a trade-
off between computational efficiency and accuracy, the Tersoff potential considers
not only two-atom interactions, but three-atoms interactions as well. This allows
it to account for the role that bond-angles play in defining the potential energy of
the atomic system. The Tersoff classical potential offers great flexibility and at a
relatively low computational cost. It has the following analytical form [41],
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E =
�
i=1

Ei =
1

2

�
i ̸=j

Vij, (2.14)

Vij = fc(rij)[fR(rij) + bijfA(rij)]

fR(rij) = Aije
(−λijrij)

fA(rij) = Bije
(−µijrij)

fc(rij) = 1, if rij < R

fc(rij) =
1

2
+

1

2
cos(π

rij −Rij

Sij −Rij

), if Rij < rij < Sij

fc(rij) = 0, if rij > R,

bij = χij(1 + βηi
i ζηiij )

−1/2ηi

ζij =
�
k ̸=i,j

fc(rik)ωikg(θijk)

g(θijk) = 1 + c2i /d
2
i − c2i /[d

2
i + (hi − cos(ϕijk))

2]

λij = (λi + λj)/2

µij = (µi + µj)/2

Aij = (Ai + Aj)
1/2

Bij = (Bi +Bj)
1/2

Rij = (RiR
1/2
j )

Sij = (SiS
1/2
j ),

(2.15)

where i, j, and k are the labels of the atoms, rij is the bond-length between the
atoms i and j, and θijk is the bond-angle between the i − j and i − k bonds. The
parameter χij regulates the strength of the heteropolar bonds. λij, µij, Aij, Bij, Rij,
and Sij are empirically defined parameters that depend on the atomic species being
considered. The Tersoff potential has been succesfully parametrized for a wide variety
of materials, such as silicon [46], silicon-dioxide [41], and carbon [47].

2.3.3 ReaxFF

The previously described Tersoff potential provides a higher degree of accuracy than
the simpler Lennard-Jones potential. However, it is still insufficient for several appli-
cations. ReaxFF is a more complex potential, able to produce more accurate results,
at the expense of a lower computational efficiency when compared to the simpler
Tersoff and Lennard-Jones potentials. In the ReaxFF potential, the potential energy
of the atomic system is divided in the following components,

Esystem = Ebond + Eover + Eangle + Etors + EvdWaals + ECoulomb + Especific. (2.16)
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A detailed explanation of each of these components can be found in [42]. In
essence, Ebond is an empirical function of the bond formation energy. Eover is a penalty
preventing over-coordination. The many-body effects are given in Eangle (three-body
valence angle strain) and Etors (four-body torsional angle strain). EvdWaals represents
the van der Waals interaction and ECoulomb the non-bonding electrostatic energy. Fi-
nally, Especific are system-specific inclusions.

In ReaxFF, the energy components can be either bond-order-dependent or bond-
order-independent. The bond-order is defined as the number of chemical bonds be-
tween a pair of atoms and indicates the stability of a bond, and it is calculated from
the interatomic distance,

BOij = BOσ
ij +BOπ

ij +BOππ
ij

BOij = e
[pbo1(

rij
rσ0

)pbo2 ]
+ e

[pbo3(
rij
rπ0

)pbo4 ]
+ e

[pbo5(
rij
rππ
0

)pbo6 ]
,

(2.17)

where BOij is the bond order between atoms i and j, rij is the interatomic distance,
the r0 terms are equilibrium bond lengths, and pbo terms are empirical parameters,
determined by experimental data for the material of interest. The main improvement
of ReaxFF over Tersoff is that it explicitly acounts for the formation and breaking
of bonds, which makes it well-suited for studying reactive materials. The ReaxFF
potential has been succesfully used to study a wide variety of materials, systems and
processes, such as hydrocarbon oxidation [48], hydrogen combustion [49] and model-
ing hafnia [50].

2.4 Machine Learning Interatomic Potentials

In the context of studying semiconductor devices and technologies, the main moti-
vation to develop ML interatomic potentials is to overcome the limitations posed by
the high computational costs of ab initio methods, such as DFT. These methods are
typically limited to only relatively small systems (< 103 atoms) and short simulation
times (∼ 101 ps). The final objective of ML interatomic potentials is to serve as a
computationally efficient substitute to ab initio methods in the calculation of atomic
configuration energies and forces, needed to run MD simulations. In general terms, an
ML interatomic potential takes the atomic coordinate space as the input and trans-
forms them into an output space of the system energy. Ideally, these calculations will
be both accurate and computationally efficient, allowing to simulate system sizes and
process times out of range for other solutions.

The energy of a given atomic configuration is a property of the configuration it-
self, and it is thereby independent of the coordinate system employed to represent
it. Therefore, traditional cartesian coordinate systems are ill-suited as inputs to ML
models, since they are dependent on an origin which is arbitrarily selected [36]. As a
consequence of this, a descriptor must be used, to act as a buffer between the atomic
structure coordinates and the ML model used to assess its energy and forces. A de-
scriptor computes a mathematical representation (i.e., a vector or matrix) of a given
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atomic structure and serves as an intermediate between the atomic structure and the
ML model. However, not any possible mathematical representation is efficient as a
descriptor, as they must be invariant under translation and rotation of the atomic
structures, as well as under permutation of identical atoms [51][52]. Such properties
aid in training an ML model to compute a property from atomic structures, since,
if atomic coordinates were used instead of a descriptor, the ML model would have
to learn that any possible translation, rotation or atomic permutation in an atomic
structure corresponds to the same atomic property. Namely, the ML model would
have to learn that an infinite number of different inputs correspond to the same sin-
gle output, therefore rendering the training process unfeasible. Descriptors can be
either global (they represent the entire atomic system) or local (they represent the
local or near environment of a given atom in the system), with the latter being the
most commonly used for ML interatomic potentials. The ML model is trained to find
a functional relationship between a descriptor (highly-dimensional) and the corre-
sponding potential energy (scalar-value) of the atomic structure which it represents.
Therefore, except for some novel methods, such as message-passing networks [53],
traditional ML based interatomic potentials are composed of two main components:
(A) descriptor and (B) ML model. A schematic of this framework is presented in
Figure 2.2. Ideally, for any given material and application of interest, a combination
of descriptor(s) and ML model(s) could be found to develop an interatomic potential
that fulfills the accuracy and computational cost requirements.

Figure 2.2: Workflow to compute the energy of an atomic configuration with an ML
model. The input atomic configuration is first represented by means of a descriptor.
This descriptor is subsequently used as input to the ML model, which produces the
energy as its output.

2.4.1 Chemical Environment Descriptors

As previously mentioned, ML interatomic potentials generally need a descriptor to
represent the atomic structures in a way which is compatible with ML algorithms.
These descriptors can be as simple as a collection of geometrical values (e.g., bond-
lengths, bond-angles, etc.) or take more complex mathematical forms that allow
to represent the chemical environments with a higher degree of accuracy. This
section will present the trivial geometrical descriptors, the more complex Behler-
Parrinello [17] and the commonly used smooth overlap of atomic positions (SOAP) [54].
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2.4.1.1 Geometrical Descriptors

Geometrical descriptors serve as fundamental tools for characterizing atomic struc-
tures within the context of ML interatomic potentials. These descriptors are es-
sentially sets of meticulously ordered geometric parameters derived from the atomic
structure under consideration, such as bond-lengths and bond-angles. The distinct
advantage of employing geometrical descriptors lies in their computational efficiency;
they are typically straightforward to calculate. Furthermore, these descriptors offer a
high degree of interpretability, with each numerical value corresponding to a specific
geometrical property of the atomic system.

Despite their merits, geometrical descriptors present certain limitations. Chief
among them is their potential inadequacy in furnishing sufficient information for
training highly accurate ML interatomic potentials. This shortfall arises due to the
inherent simplicity of geometrical descriptors, which may not capture the intrica-
cies of atomic interactions with the requisite depth. Additionally, when utilized as
standalone descriptors on a global scale, they lack invariance concerning atom permu-
tations. This lack of invariance is illustrated in Figure 2.3, where two distinct atomic
structures can be generated using identical sets of six interatomic distances [54].

To enhance the effectiveness of geometrical descriptors in the context of ML in-
teratomic potentials, complementary approaches that capture more nuanced aspects
of interatomic interactions must be explored. This may involve incorporating addi-
tional descriptors that account for electronic structure, charge distribution, or other
quantum mechanical properties. Striking a balance between the simplicity and in-
terpretability of geometrical descriptors and the nuanced information provided by
more complex descriptors is a key challenge in developing robust and accurate ML
interatomic potentials for diverse atomic systems.

Figure 2.3: Two distinct atomic structures, constructed with the same set of six
interatomic distances.
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2.4.1.2 Behler-Parrinello Descriptor

The Behler-Parrinello descriptor was initially introduced in 2007 in a foundational
paper by Behler and Parrinello [17]. In this seminal work, the authors proposed a
novel approach to fitting a neural network to DFT calculations of energies and forces
for atomic systems of arbitrary size. The method was tested for bulk silicon and
validated against experimental data. The Behler-Parrinello descriptor considers only
interatomic interactions within a certain radial cutoff, defined as

fc(Rij) = 0.5[cos(
πRij

Rc

) + 1], (2.18)

for Rij ≤ Rc, and zero for Rij > Rc. Radial symmetry functions are thereafter
constructed as sums of Gaussians with the parameters η and Rs,

G1
i =

all�
j ̸=i

e−η(Rij−Rs)2fc(Rij). (2.19)

On the other hand, angular terms are constructed for all triplets of atoms by
summing the cosine values of the angles θijk =

Rij .Rik

RijRik
, centered at atom i, with

Rij = Ri −Rj,

G2
i = 21−ζ

all�
j,k ̸=i

(1 + λ cos(θijk))
ζe−η(R2

ijR
2
ikR

2
jk)fc(Rij)fc(Rik)fc(Rjk), (2.20)

where the parameter λ can take the value 1 or -1 and different values of the pa-
rameters η, Rs and ζ can be used to generate an arbitrary number of invariants.
This framework allows for the capture of intricate interatomic relationships, making
the Behler-Parrinello descriptor a potent tool in the development of ML interatomic
potentials.

2.4.1.3 Smooth Overlap of Atomic Positions (SOAP)

The SOAP descriptor was originally introduced in 2013 by Bartók et al. where it was
tested by fitting models to the PES of small silicon cluster and the bulk crystal [54].
In the realm of ML interatomic potentials, the SOAP descriptor stands as a crucial
tool for capturing the structural information of materials at the atomic level. SOAP is
a representation scheme designed to encode the local environment around each atom
in a material system. This descriptor plays a pivotal role in developing accurate and
transferable interatomic potentials, facilitating the exploration of material properties
and behaviors.
The SOAP descriptor achieves its effectiveness by quantifying the spatial distribution
of atoms within a given cutoff distance, employing a local expansion of a Gaussian
smeared atomic density with orthonormal functions based on spherical harmonics and
radial basis functions. This descriptor starts from defining the neighborhood density
of a given atom, a, as
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ρa(r) =
�
b

e
− (r−rab)

2

2σ2
at fcut(rab), (2.21)

where the sum is over all atoms within the fcut cutoff, which goes smoothly to zero
at rcut. An example of a cutoff function can be seen in Figure 2.4. r is the coordinate
vector of atom a, rab is the coordinate vector from atom a to atom b, and σat is the
parameter that controls the smoothness of the potential. This local neighborhood
density is thereafter expanded on a basis set of spherical harmonics Ylm and orthogonal
radial basis functions gn,

ρa(r) =
�
nlm

c
(a)
nlmgn(a)Ylm(r̂), (2.22)

where n is the index for the radial basis functions up to nmax, l is the angular degree of
the spherical harmonics up to lmax, and m goes from −lmax to lmax. These expansion
coefficients are then used to form the spherical power spectrum,

P
(a)
nn′l =

�
8π2

2l + 1

�
m

(c
(a)
nlm) ∗ c(a)n′lm. (2.23)

A graphical representation of the process of building the SOAP descriptor for an
atomic system can be seen in Figure 2.4, while the mathematical derivations are avail-
able in Ref. [54]. The SOAP descriptor emerged as a cornerstone in the development

Figure 2.4: Left: Illustration of the process of extracting a SOAP matrix P for a single
grain boundary (GB). Given a single atom in the GB, a Gaussian particle density
function is placed at the location of each atom within a local environment sphere
around the atom. Next, the total density function produced by neighbors is projected
into a spherical basis consisting of radial basis functions and the spherical harmonics,
as shown in the boxed region. Each basis function produces a single coefficient pi in
the SOAP vector p⃗ for the atom, the magnitude of which is represented in the figure
by the colors of the arrays. Once a SOAP vector is available for all Q atoms in the GB,
they are collected into a single matrix P that represents the GB. Figure reproduced
from npj Computational Materials (2017) 3, 29, with permission from the authors.
Right: Example of a trigonometric fcut function for different cutoff parameters.
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of ML interatomic potentials, providing a robust framework for representing atomic
structures and fostering a deeper understanding of material behaviors. Moreover, it is
an integral part of the GAP method [55], which will be presented in the next section.

2.4.2 The Gaussian Approximation Potential Method

The purpose of this section is to serve as an introduction the GAP method, on which
most of the results on interatomic potential developments of this thesis are based.
Detailed explanation on GAP theory can be found in [55][54][56].

The GAP method was originally introduced by Bartók et al. in 2010 [55]. The
objective of GAP is to model the Born-Oppenheimer PES of an atomic system by
running a Gaussian process regression (GPR). As with other commonly used ML
interatomic potentials, the GAP method consists of a set of descriptors and an ML
model. An overview of the GAP method can be seen in Figure 2.5.

The most commonly used descriptors in the GAP method are 2-body (interatomic
distances) and SOAP, which are sometimes combined with 3-body (distances between
atoms and angles in triplets). The combination of simple geometrical descriptors and
more complex mathematical representations of the atomic environments allow for high
levels of accuracy, while reducing overfitting. A representation of the aforementioned
descriptors can be found in Figure 2.6. Similarly to most ML interatomic potentials,
GAP employs local atomic descriptors. Therefore, it is based on the hypothesis that,
when computing the total potential energy, Etotal, the long-range interatomic interac-
tions, Elong, are negligible when compared to the short-range interatomic interactions,
Eshort, since Eshort ≫ Elong. In other words,

Etotal = Eshort + Elong ≈ Eshort. (2.24)

The threshold distance that divides interatomic interactions between short and
long is known as the cutoff range, rcut. This is a system-dependent parameter which
is empirically set. Therefore, the local atomic environment of a given atom i is defined

Figure 2.5: The three basic steps in GAP modeling: Representing the atomic struc-
tures by means of atomic descriptors, GPR and application. Original figure published
under the CC BY 4.0 license. Credit: Deringer et al., Chem. Rev. 121, 10073 (2021).
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Figure 2.6: Descriptors for atomic structures commonly used in the GAP method: (a)
conventional N -body terms (e.g., 2-body: interatomic distance), (b) General 3-body
descriptor, and (c) SOAP. Modified from original figure published under the CC BY
4.0 license. Credit: Deringer et al., Chem. Rev. 121, 10073 (2021).

as the sphere of radius rcut around the atom i. Only the interaction with atoms inside
this sphere are considered, while those outside are neglected.

Neglecting the long-range interatomic interactions means that only the local en-
vironment of each atom is relevant to compute the total potential energy [57],

Etotal =
N�
i=1

Ei(di), (2.25)

where Ei is the local energy contribution to the total potential energy of atom i, and
di is the local atomic environment descriptor of atom i. This hypothesis has been
used since the first developments of ML interatomic potentials [17], and it is the base
of most of the current methods found in the literature [58][59][60]. However, unlike
other commonly used ML interatomic potentials, such as neural networks, GAPs do
not have a fixed functional form. Instead, they estimate the local contribution of a
given atom i, ϵi, as:
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ϵi = δ2
Ns�
s=1

αik(di, ds), (2.26)

where di is the descriptor of the local environment of atom i, ds (for s = 1, 2, . . .,
Ns) are the descriptors of the local atomic environments of the atoms in the training
dataset, δ is a parameter defining the energy scale, k() is a kernel function that mea-
sures the similarity between the atomic environments di and ds, and αi is the fitting
coefficient. This means that GAPs are capable of modeling complex PESs without
any previous knowledge or assumption about its functional form [55], since they are
based on GPR. A schematic of a GAP is shown in Figure 2.7.

As presented in Figure 2.8, a GPR is composed of a set of observations on an
unknown function. In the case of the GAP method, these observations are points on
the PES of interest. Basis functions, characterized by their length, σlength, are placed
on each point, and an estimation to the unknown function is produced by fitting a set
of coefficients to the observations. The benefit of this approach is that the potential
energy, a non-linear function of the atomic positions, is re-written as a linear function
in the kernels. This allows one to use linear algebra to obtain the fitting coefficients
during the training stage [61]. However, the GAP method is particularly sensible to
the selected kernel length, σlength, as shown in Figure 2.9. If the kernel length is too
small, the training will result in overfitting; therefore, σlength must be properly set for
the PES of interest. Training a GAP means finding the α values which minimize the
error for the energies and forces of the atomic configurations in the training dataset,
when compared against the theory level used to compute them (e.g., DFT).

Figure 2.7: Schematic of a GAP used as a surrogate model to a PES. The input
atomic configuration (red) is compared to every atomic configuration available in
the training data-set (blue) by means of a similarity measure or kernel function (K).
The energy of the input atomic configuration is then computed as the sum of these
similarity measures, weighed by the vector α. The values of this vector are learned
in the training process.
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Figure 2.8: Basic elements of the GPR: (1) Observations, in the form of a training
dataset composed of multiple data points, (2) Basis functions, centered at each data
point, and (3) Estimation, produced by fitting a set of coefficients cm to the obser-
vations. Original figure published under the CC BY 4.0 license. Credit: Deringer et
al., Chem. Rev. 121, 10073 (2021).

The training process can be seen as an optimization problem, where the set of
variables to optimize are the α-values. Since there is only one α-value for each atomic
configuration in the training dataset, training a GAP is relatively inexpensive and
requires substantially less training data that other methods, such as neural networks.
The combination of these two advantages allows for relatively rapid development
times. However, since the kernel function must be computed for every atomic con-
figuration in the training dataset, the computational cost of a GAP grows with the
size of the training dataset. This is a disadvantage which is particularly challenging
when active-learning schemes are used, since the number of atomic configurations in
the training dataset can grow significantly.

At the present time, the GAP method has been successfully used to develop
ML interatomic potentials for a wide range of atomic systems, such as amorphous
carbon [62], gold [63], silicon [64], hafnium-dioxide [65], silicon:hydrogen [66], plat-
inum [67] and iron [68]. A comprehensive list of the currently open-access available
GAPs can be found in [69]. The versatility of this method allows building highly
accurate yet computationally efficient ML interatomic potentials for any PES of in-
terest. Moreover, it can be combined with active-learning algorithms to allow for
iterative improvement, as schematized in Figure 2.10.

The results of this thesis show that a GAP can be combined with an efficient
algorithm, resulting in a more efficient use of computational resources. In Chapter 3,
the results of employing this approach to develop GAP interatomic potentials for
materials for which this method has not yet been used are presented: silicon-nitride,
silicon-germanium and silicon-dioxide.
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Figure 2.9: Effects of the kernel length scale, σlength on the GPR for different types
of data. The effects of using a small (left) and large (right) σlength are illustrated for
learning from function values (a) and from derivatives of the function values (b). The
lengths of the basis functions are represented by a solid green line in each case. The
overfitting produced by the small σlength are clear by the poor fitting results obtained
on the left traces. Original figure published under the CC BY 4.0 license. Credit:
Deringer et al., Chem. Rev. 121, 10073 (2021).

This section introduced and discussed the GAP method. This ML algorithm has
interesting advantages, such as reduced training dataset size requirements and rel-
atively short training times, which made it a good candidate for the developments
presented in Chapter 3. However, GAP is not the only method available to develop
accurate and efficient ML interatomic potentials, and an alternative algorithm might
be better suited for other materials or applications. Moreover, this is a relatively
young and highly dynamic field, in which new methods are constantly being devel-
oped. This section will discuss other alternative methods to GAP: artificial neural
networks and message-passing networks, with the objective of briefly analyzing other
options which were also considered before selecting GAP. More detailed reviews of
established and emerging methods can be found in the literature [70][36].



Chapter 2. State-of-the-Art and Methods 23

Figure 2.10: Three main components for GAP: (1) training dataset, (2) a suitable
mathematical representation of the atomic environments, and (3) the Gaussian pro-
cess regression itself. By sampling the trajectories produced by running MD with the
GAP and adding them to the training dataset together with their energies and forces,
an iterative improvement on the accuracy of the potential is allowed. Original figure
published under the CC BY 4.0 license. Credit: Deringer et al., Chem. Rev. 121,
10073 (2021).

2.4.3 Artificial Neural Networks

An artificial neural network is an ML model, inspired in the way in which the human
brain processes information. This method consists of two main components: neurons
and synapses. Neurons can be seen as independent nodes in which the actual in-
formation processing takes places, while synapses are the connections between these
nodes. The group of all neurons at the same level is known as a layer. Layers are
classified, depending on their position in the neural network, into: input, hidden and
output layers, as depicted in Figure 2.11.

Figure 2.11: Schematic of a typical neural network used as a surrogate model of
a PES. Red: input layer, green: hidden layer(s) (in this case, one), blue: output
layer. The input to the neural network is a local atomic environment descriptor and
the output is its local energy contribution. The information is processed in a feed-
forward manner, as every neuron takes as inputs the outputs of the previous neurons
and its output is a non-linear function of them. The connections between neurons
are named synapses and their values are set during the training process.
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Neurons can present a single or multiple inputs. However, they always present a
single output, which is a non-linear function of its input(s), known as the activation
function. There is a wide range of activation functions (e.g., linear, rectifier, sigmoid,
etc.) and a single neural network can combine different types of them in different
layers. On the other hand, synapses connect the output of the neurons in a layer to
the inputs of the neurons in the following layer, and they are defined by a single value,
known as weight. The higher the weight, the stronger is the connection between the
neurons.

The classification of neural networks is done based on the amount of layers they
present, the number of neurons in each layer and the way in which these layers are
interconnected by synapses. The most common artificial neural network topology
used in interatomic potentials is the multi-layer fully-connected perceptron. In this
model, there is at least one hidden layer and the output of every neuron feeds the
input of every neuron in the following layer. In these, and most commonly used arti-
ficial neural networks, the information is propagated from the inputs to the output,
as every neuron receives its inputs from some or all neurons in the previous layer, and
provides its output to some or all neurons in the following layer, in what is known as
feed-forward information propagation.

Training a neural network is done by optimizing the weights of its synapses, so
that the function which associates the inputs and outputs (in this case, atomic config-
urations and their energies/forces) can be better approximated. This is done by using
a training algorithm (e.g., Adam [71]) to find the optimal values for the synapses.

Neural network based interatomic potentials (and ML interatomic potentials in
general) can be classified into four different generations [72]. The first generation
started in 1995, with the work of Blank et al. [73]. These neural network interatomic
potentials were only applicable to low-dimensional PESs, that means, for systems
containing only a few atoms. An example of these first neural networks can be seen
in Figure 2.12. In these neural networks, the input is given by the coordinates of a
3-dimensional PES, G = {Gi}. The outputs of the neurons in the first layer are given
by applying the nonlinear activation function to the sum of each input, multiplied by
its corresponding weight,

y1i = f 1
i (b

1
i +

3�
j=1

a01jiGj), (2.27)

were y1i is the output of the ith neuron in the first layer, f 1
i is the activation function

of that neuron and b1i is its bias, Gj is the jth input to the neural network and
a01ji is the weight of the synapse that connects Gj to the ith neuron. Similarly, the
outputs of the neurons in the second hidden layer are given by applying the nonlinear
activation function to the sum of the outputs of the first hidden layers, multiplied
by its corresponding weight. Combining these equations, the resulting energy as a
function of the input PES coordinates is given by
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This first generation of neural networks has been successfully used to model low-
dimensional PESs of simple atomic systems, particularly molecules, as several exam-
ples in the literature show [74][75][76][77][78][79][80]. However, these initial neural
networks suffered from a series of issues when applied to more complex atomic sys-
tems. In first place, once a neural network has been build, the number of atoms in
the system cannot be changed, since adding or removing an atom would change the
dimensions of the PES, which would change the dimension of the input vector, ren-
dering it incompatible with the number of synapses connecting it to the input layer
of the neural network. This drastically reduces the versatility of the neural network,
as it could only be used to compute the energies and forces on atomic systems with
the same number of atoms as those used to train it. In second place, increasing
the dimensions of the PES would inevitably increase the size of the neural network,
therefore making it computationally less efficient. Finally, these neural networks re-
quire that the order in which the coordinates of the PES presented at its input are
always respected, since it is not invariant with respect to the permutation of identical
atoms. These disadvantages rendered the first generation of neural network inter-
atomic potentials impractical to model mode complex PESs, therefore fostering the
development of the second generation of neural network interatomic potentials.

The second generation was introduced in 2007 by Behler and Parrinello [17], in
which the concept of nearsightedness was introduced, i.e., considering the total po-
tential energy of the system as a sum of local contributions from each atom, each
of which depends only on a local atomic environment. These were the first neural
network interatomic potentials that could be used to model highly-dimensional PESs.
The second generation is contemporary with the previously discussed GAP method.

Figure 2.12: Illustration of a three-dimensional feed-forward neural network featuring
dual hidden layers, each comprising four neurons. The connections between neurons
are depicted by arrows, symbolizing the adjustable parameters (weights) crucial for
the network’s functioning. To enhance clarity, bias weights have been omitted from
the visualization.
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Figure 2.13: Architecture of the second generation neural network interatomic po-
tential, applied to a system with N atoms. The output corresponds to the total
energy (E), which is the aggregate of local atomic energy contributions (Ei). Each
local atomic energy contribution is determined by the output of a dedicated neural
network. The input for each atomic neural network consists of a vector describing the
local chemical environment of atom i, computed from the coordinates of the atoms
in the system (R1, R2, ..., RN).

A schematic of a second generation neural network can be seen in Figure 2.13. The
novelty of the second generation neural networks is that the total potential energy of
the system, E, is computed as a sum of local energy contributions, Ei, one from each
atom,

E =
N�
i=1

Ei. (2.29)

The local atomic energy contributions are computed by a neural network, from
the local descriptor of each atom in the system, Gi,

E =
N�
i=1

Ei(Gi). (2.30)

These descriptors are built in turn based on the coordinates of the atoms in the
system, R,

E =
N�
i=1

Ei(Gi(R)). (2.31)

The advantage of this approach is that the neural network interatomic potential
can be used for any number of atoms in the system. In the first generation of neural
networks, if an atom is removed from the system, or added to it, the neural network
cannot be used anymore. In the second generation, adding or removing an atom from
the system simply translates in computing one more or less descriptor and evalu-
ating its local energy contribution with the neural network. The second generation
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of neural networks have been successfully used to develop interatomic potentials for
sodium [81], carbon [82] and silicon [83][84], among other materials.

The main limitation of the second generation of neural network interatomic poten-
tials is that they neglect long-range interactions, e.i., beyond the cutoff radius. This
issue was addressed in the third generation, by constructing environment-dependent
atomic charges. The third generation of neural network interatomic potentials started
in 2011, with the work of Artrith et al. [85] and Morawietz et al. [86]. At the present
time, only few examples can be found of third generation neural network interatomic
potentials in which the Coulomb interactions are computed without truncation. In-
stead, the most common way to account for the long-term interactions is to train a
second neural network which computes the atomic charges based on the same local
atomic environment descriptors used to compute the local energy contributions [87],

Etotal = Eshort + Eelec,

Etotal =
N�
i=1

Ei(Gi) +
N�
i j

qi(Gi)qj(Gj)

Rij

,
(2.32)

where Etotal is the total potential energy, Eshort is the sum of all local energy con-
tributions, Eelec is the long-range energy contribution, Gi/Gj is the descriptor of the
local atomic environment of atom i/j, qi/qj is the atomic charge of atom i/j, and Rij

is the interatomic distance between atoms i and j.
The main limitation of the third generation of neural network interatomic po-

tentials is their inability to describe long-range charge transfer and different charge
states of a system. This is because the atomic partial charges are expressed as a
function of the local chemical environment only. The inclusion of non-local charge
transfer in the models has given rise to the fourth generation, which has been suc-
cessfully used to develop interatomic potentials for several system types, from organic
molecules to ionic solids [72]. Based on the third generation, the fourth generation
computes the total potential energy of the system as the sum of a short-range and a
long-range component. They operate by deriving a descriptor from the coordinates of
the atoms in the system, which is then utilized by a neural network to assess atomic
electronegativities. Employing a charge equilibration method, the atomic charges are
subsequently calculated based on these electronegativities. The long-range energy
component is then determined from the atomic charges, typically through the ap-
plication of Coulomb’s equation. The short-range energy component is computed as
the sum of local atomic energies, with one computed for each atom in the system.
Similar to previous generations, individual local atomic energies are computed by
neural networks, utilizing descriptors of the local atomic environment. However, in
the fourth generation, these neural networks also incorporate atomic charges as part
of their inputs. A schematic of these neural networks is depicted in Figure 2.14.

All neural networks discussed up to this point have the use of descriptors with
a static functional form in common. These descriptors typically contain a set of
hyperparameters which allow the user to optimize them for the intended applica-
tion. However, these hyperparameters are normally tuned before training the neural
network interatomic potential and remain fixed during this process. In contrast to
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this, beyond the fourth generation, the field has seen the development of learnable
descriptors. This idea was first introduced by Duvenaud et al. [88] in 2015. Taking in-
spiration from extended-connectivity fingerprintss (ECFPs) [89], they approached the
representation of molecules by conceptualizing them as graph networks. To process
these graphical representations and predict their final feature vectors (descriptors), a
convolutional layer was employed. While they did not utilize these methods explicitly

Figure 2.14: Schematic of a fourth generation neural network interatomic potential
for an atomic system containing Na and Nb atoms of two different elements. The
total potential energy, Etotal is the sum of the local atomic contributions, Eshort and
the long-range contributions, Eelec. Each local atomic contribution is computed by
a neural network from a descriptor of the local atomic environments, G. A second
neural network is used to compute the atomic electronegativities from the same de-
scriptors, from which the atomic charges are computed using a charge equilibration
method. The long-range contributions are calculated based on the resulting atomic
charges. Original figure reproduced from Nature Communications vol. 12 no. 398
under Creative Commons Attribution 4.0 International License. Credits: Tsz Wai Ko
et al.
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for modelling PESs, their efforts laid the foundation for a novel category of neural
network interatomic potentials. In 2017, Gilmer et al. introduced the term message
passing neural networkss (MPNNs) [90] to characterize this class. MPNN methods
share a common trait wherein predefined descriptors are substituted with automati-
cally derived descriptors learned from the geometric structure.

In contrast to previous generations, the input to a MPNN is not an atomic envi-
ronment descriptor but a graph, in which its nodes represent the atoms and its edges
the bonds in the atomic structure [53]. A typical MPNN applied to compute the
potential energy of an atomic system works by following these steps:

(I) A graph network is built based on the input atomic structure, in which nodes
represent atoms and edges represent bonds.

(II) The graph network is initialized with information extracted from the input
atomic structure. Nodes are commonly initialized with their corresponding
atomic number, covalent radius, number of valence electrons, etc. Edges are
commonly initialized with their corresponding bond length.

(III) Information is propagated along the graph in messages. Each node receives
messages from neighboring nodes with information on their internal feature
vectors. In the first iteration, nodes receive information only from the neighbor
nodes. In the second iteration, information of their neighbors and the neighbor
of their neighbors, etc. This process is iterated N times.

After N iterations, the feature vector for each atom has been updated based on
information from its N th-nearest neighbors [70]. This type of neural network inter-
atomic potential is represented in Figure 2.15. One of the main advantages of MPNNs
is their natural ability to account for long-distance interatomic interactions. This is
in contrast with traditional methods to develop ML interatomic potentials, in which
the only way to account for long-distance interatomic interactions is to increase the
cutoff radius of the local atomic environment when computing the descriptor of every
atom, therefore increasing the computational power requirements.

Artificial neural networks remain one of the most commonly used methods to de-
velop ML interatomic potentials, due to their high accuracy and versatility. The size
of the artificial neural network (i.e., the number of layers and neurons in each layer)
can be easily modified to reach the best possible cost-to-accuracy ratio. The popu-
larity of this method in developing ML interatomic potentials is further aided by the
wide availability of different software packages which can be used to build a surrogate
model of the PES of interest. Some available software packages are DeepMD [58],
PANNA [59], AisNet [91], AMP [60] and SIMPLE-NN [92]. The topic of artificial
neural networks for MD simulations will be addressed again in Chapter 5, where this
method will be used in the development of an ML interatomic potential for amor-
phous germanium, due to its compatibility with neuromorphic hardware accelerators
for MD simulations.
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Figure 2.15: Basic MPNN applied to an anthracene molecule, showcasing (a) the
initial configuration with yellow hydrogen atoms and blue carbon atoms, (b) the
first iteration, and (c) the second iteration. In this model, a straightforward update
mechanism is employed, where the hue of each node is an average of its original hue, its
current hue, and the hues of its neighboring nodes. The feature vectors for the edges
(represented by straight black lines) are omitted for clarity. Red arrows highlight the
propagation of information regarding the initial state of node 18 through the network.
Nodes whose current state have been influenced by the initial state of node 18 are
denoted by red circles. Reprinted from Journal of Chemical Physics 152, 050902
(2020), with the permission of AIP Publishing. Credits: Tim Mueller et al.
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2.4.4 Moment Tensor Potentials

The starting hypothesis of most ML based interatomic potentials is that there is a
function that correlates local atomic environments with their local potential energies.
This function acts as a computationally more efficient approximation to the PES and
can be used to compute the total potential energy of a given atomic configuration,
by summing all the local potential energies, contributed by every atom in the config-
uration.

The key concept behind moment tensor potentials, introduced by Shapeev in
2016 [93], is that this aforementioned function can be built as a linear combination
of polynomial basis functions which represent one-, two- and three-body interactions
between atoms in the given configuration,

V (R,Z) =
N�
i=1

Vlocal(R− ri, Z, zi), (2.33)

where V is the total potential energy of the atomic configuration, Vlocal is the function
that computes local potential energy contributions from local atomic environments,
ri are the coordinates of the ith atom, R is the set of coordinates of all atoms in the
configuration, zi is the atomic number of the ith atom and Z is the set of all atomic
numbers in the configuration. This expression is expanded in Eq. (2.34),

Vlocal(R− ri, z, zi) =
N�
i=1

VαBα(R− ri, Z, zi), (2.34)

where Vα is the linear coefficient and Bα is the basis function. The training of a
moment tensor potential is an optimization process, in which the coefficients that
multiply every basis function in the weighed sum are learned. In a manner similar to
the learning process of kernel-based methods, these weights are optimized to reduce
the prediction errors. Although moment tensor potentials are a relevant part of the
state-of-the-art of ML interatomic potentials, they fall outside the scope of this thesis.
The mathematical derivations of this method can be found in the original paper by
Shapeev [93], and a discussion of their impact in the field can be found in the review
by Müller et al. [70].





Chapter 3

Gaussian Approximation Potential
Results

The previous chapter presented the theory of the GAP method. In the present chap-
ter, the results of employing this method to develop interatomic potentials for silicon
nitride (Si3N4), silicon-germanium (SiGe), the oxidation of Si and silicon dioxide
(SiO2) are presented. The high accuracy and low computational costs found for these
different atomic systems are a strong indication of the potential of this method.

3.1 GAP for Silicon-Nitride (Si3N4)

The results and figures presented in this section have been partially published in the
Journal of Chemical Physics [94] and Nanomaterials [95].

Silicon nitride (Si3N4) is a material with a high melting-point (1900 ◦C), which
finds applications as storage layer in non-volatile charge trap flash devices [96], in
the automotive industry, where it is used in engine fabrications [97], in the renewable
energy industry, as an anti-reflective coating for solar cells [98], in the engines of the
NASA Space Shuttle, as armorial-bearing [99], and in microelectronics, as a dielectric
in nanoscale metal oxide semiconductor field-effect transistors (MOSFETs) [100]. In
this last application, it is particularly valued for its use in the reduction of leakage
currents and the prevention of boron diffusion. Moreover, Si3N4 is more stable than
other Si-nitrogen compounds [101][102], and it can crystallize in different phases, such
as the trigonal α-Si3N4, the hexagonal β-Si3N4, and the cubic γ-Si3N4.

In order to study properties of this material at the atomistic scale, MD simula-
tions are frequently employed. Examples of previously designed empirical potentials
for Si3N4 include Tersoff [103], Billeter [104], Born-Mayer-Huggins (BMH) [105] and
ReaxFF [106]. These empirical potentials are orders of magnitude faster than DFT
and accurate enough for the specific applications for which they were developed,
such as studying diffusion [103], the interactions with H atoms [103] and interfaces
with other materials [104]. However, their accuracy is insufficient for several other
important applications, including modeling amorphous Si3N4, which is relevant in
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the semiconductor industry, since most thin films deposited for use in transistors
are amorphous. In addition, empirical potentials sometimes present systematic er-
rors in describing important structural features of amorphous Si3N4, such as the
coordination number. The modeling of amorphous Si3N4 is typically done using the
melt-and-quench technique, which is the direct motivation for the development of this
universally applicable ML-based potential.

In order to create realistic amorphous structures, ab initio accuracy combined
with comparatively slow quenching rates of 5 K/ps or below are required [107][65].
This directly translates to high numbers of time-steps (> 1,000,000), which are out of
range for DFT calculations due to its high computational costs. On the other hand,
empirical potentials are a very useful tool to run these extensive MD simulations due
to their low computational costs; however, their accuracy is not always near that of
ab initio methods.

Here, a general purpose ML interatomic potential for Si3N4 is presented, with a
special focus on modelling its amorphous phase. The employed approach combines an
established ML model with a simple active-learning algorithm in a bootstrap process.
This allowed to semi-automatically develop an accurate ML interatomic potential,
starting from an inexpensive empirical potential, poorly optimized for amorphous
Si3N4. The proposed ML interatomic potential is validated by comparing structural
properties of the resulting amorphous Si3N4 models to those of DFT calculations,
empirical potentials and experimental data found in the literature. This is the first
time an ML interatomic potential is developed for Si3N4.

In the development of this interatomic potential, the GAP method was paired
with a set of three descriptors: SOAP [54], two-body and three-body. The two-body
descriptor is the interatomic distance between atoms within the cutoff distance, while
the three-body descriptor is a triangle-like representation of the three sides of a tri-
angle of three atoms. The implementation of GAP and its descriptors was done using
the software package QUIP [108]; its most relevant parameters are summarized in Ta-
ble 3.1.

Table 3.1: Parameters used to implement the GAP and its SOAP, three-body and
two-body descriptors.

Parameter SOAP Three-body Two-body

δ (eV) 0.4 1 4
rcut (Å) 4 3 4
r∆ (Å) 1 - -
nmax 8 - -
lmax 4 - -
ζ 4 - -
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Among the most relevant parameters in the training process, δ is the scaling of
the kernel, rcut is the cutoff of the descriptor, r∆ is the region in which the cutoff
function goes smoothly to zero, nmax and lmax are the number of angular and radial
basis functions of the SOAP descriptor, and ζ is the power the kernel is raised to.

To make use of the proposed GAP, the reader is referred to the open-access repos-
itory, where the ML interatomic potential and the training dataset are publicly avail-
able [109]. The proposed active-learning algorithm is based on an iterative re-training
approach, derived from the original algorithm of Deringer et al. [57]. The algorithm
allows starting with a simple and inexpensive empirical potential for an initial sample
of the PES of interest, to eventually build up an ML interatomic potential with near
ab initio accuracy. This approach aims at saving computational time, since it avoids
running an initial MD simulation with DFT. Moreover, due to its iterative nature,
this active-learning algorithm automatically runs and improves the ML interatomic
potential until the desired accuracy is reached.

For the generation of the first training dataset, an MD simulation was run with
the inexpensive empirical potential Billeter [104], in QuantumATK [110]. During this
initial run, an N -N repulsive term was included to suppress the formation of N -N
bonds, with the aim of reducing the number of under-coordinated atoms in the result-
ing amorphous structures. This initial MD started from a defect-free α-Si3N4 crystal
containing 224 atoms at 300K, which was thereafter heated up above its melting point
to 5,000 K and subsequently quenched back to 300K in 1,000,000 time-steps, using
a step-size of 0.5 fs, resulting in a quench rate of 4.7K/fs. The resulting trajectory
was subsequently sub-sampled, leading to 565 atomic configurations. Furthermore,
single-atom configurations for Si and N (needed for the GAP to learn the correct free
energies) were added to the training dataset, together with 267 dimers (Si-Si, Si-N
and N-N).

The energies and forces of these atomic structures were re-calculated with DFT
in the software package CP2K [111], using the Perdew-Burke-Ernzerhof (PBE) func-

Table 3.2: Atomic structures added to the training dataset in every iteration.

Iteration Nº Structure type: number of configurations

1 Single atoms: 2; dimers: 267; initial MD: 565
2 Non-homogeneous amorphous Si3N4: 39
3 Amorphous Si3N4 with N-chains: 82
4 Amorphous Si3N4 with N-clusters: 30
5 Crystal α-Si3N4: 99
6 Bulk Si: 87
7 Amorphous Si3N4: 101
8 Geometry optimized Si3N4: 18
9 Amorphous Si3N4 with under-coordinated Si: 60
10 Amorphous Si3N4 with over-coordinated Si: 49
11 Vibration of hexagonal β-Si3N4: 82
12 Amorphous Si3N4 with density 2.71 g cm−3: 141
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tional [112], in conjunction with the Goedecker-Teter-Hutter (GTH) pseudopoten-
tials [113]. Once the calculations for the initial training dataset were finished, a GAP
was trained on it. This GAP was used to run a series of sequential melt-and-quench
MD simulations. After each MD, the last snapshots from the trajectory were saved
and their energies, forces and/or stress tensors were re-calculated using DFT and
added to the training dataset. The GAP was re-trained on the extended training
dataset before running the next MD and the process was repeated until the desired
accuracy was reached. This technique was applied to α-Si3N4 and β-Si3N4 with dif-
ferent densities, as well as to bulk silicon, in order to provide a thorough sampling of
the PES of interest. Table 3.2 shows the structure types added in each iteration.

The selection of the atomic configurations from which to start running the MD
is manually done by the user, based on the application of interest. Thereafter, the
sampling of the PES is automatically done by the algorithm, therefore constituting a
semi-automatic active-learning method.

The results presented in the right panel of Figure 3.1 show how GAPs from ear-
lier iterations of the training process were prone to create non-homogeneous atomic
structures when used to model amorphous Si3N4. Furthermore, GAPs from interme-
diate iterations still yielded chains and clusters of Si and N. These unphysical features
were not present in the quenched structures after the final iteration of the retraining
cycle. Table 3.3 shows the energy, force and stress σ parameters, which determine the

Figure 3.1: Schematic of the iterative re-training algorithm used to develop the ML
interatomic potential for Si3N4 (left) and results obtained over time for subsequent
generations (right). The ML interatomic potential is used to run MD; thereby gen-
erating a trajectory of atomic configurations. The last snapshots of this trajectory
are collected, their energies, forces and/or stress tensors are recalculated with DFT
and then added to the training dataset. The ML interatomic potential is thereafter
re-trained and used to run a new MD, thereby repeating the process until the de-
sired accuracy is reached. The right panel presents the improvement in the results of
using the ML interatomic potential for successive re-training iterations. The earliest
iterations yield unphysical heterogeneous distributions of Si and N; intermediate it-
erations show unphysical N-chains and N − N bonds; the final potential overcomes
all aforementioned issues and generates realistic and defect-free structures of Si3N4.
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Table 3.3: Energy, force and stress convergence parameters for every structure type
used in the training process

Structure type σenergy σforce σstress

Dimers 0.01 0.1 -
Amorphous Si3N4 with N-clusters 0.01 0.1 -
Non-homogeneous amorphous Si3N4 0.01 0.1 -
Crystalline 0.002 0.02 -
Amorphous Si3N4 with N-chains 0.002 0.02 -
Bulk Si 0.002 0.02 -
Initial MD 0.002 0.02 -
Hexagonal β-Si3N4 0.002 0.02 0.02
Amorphous Si3N4 (2.71 g cm−3) 0.002 0.02 0.02
Amorphous Si3N4 with over-coordinated Si 0.0005 0.005 0.005
Amorphous Si3N4 with under-coordinated Si 0.0005 0.005 0.005
Final amorphous Si3N4 0.0005 0.005 0.005
Geometry optimized Si3N4 0.0005 0.005 -
Single atoms 0.0001 0.001 -

convergence criteria in the GAP training process used for each structure type. Note
that the DFT stress tensors were only calculated for the last five iterations.

The training process of the GAP consists in an optimization problem: finding
the set of α values which produce the lowest errors for the atomic configurations in
the training dataset. However, if not specified, the convergence parameters will be
the same for all atomic configurations, in which case the GAP would overfit to the
atomic configurations with the highest energies and/or forces, since the optimization
algorithm would be biased towards reducing the nominal error of these atomic config-
urations. Therefore, the data is divided into 4 blocks, each with distinct σ parameters,
as a measure to avoid overfitting to configurations with higher energies and/or forces.

The resulting GAP was validated against energies and forces from DFT calcula-
tions for the atomic structures in a testing dataset; the results are shown in Figure 3.2.
The testing dataset contains 1,000 liquid and amorphous atomic configurations, ran-
domly selected from the initial MD simulation, none of which were used in the training
process. The deviations are quantified by computing the mean absolute error (MAE)
between both calculation methods. The energies and forces calculations yielded a
MAE of 8meV/atom and 0.26 eV/Å, respectively. Moreover, the clear linear correla-
tion between GAP and DFT indicates no systematic error.

The GAP was used to run an MD simulation, starting from a crystalline Si3N4

system composed of 224 atoms. The initial velocities were drawn from a Maxwell-
Boltzmann distribution at 300K. Then, the system was heated to 5,000 K. An
equilibration phase continued at 5,000 K for 10,000 time-steps, followed by a quench-
ing phase over 1,000,000 time-steps, driving the system back to a temperature of
300K. A time-step of 0.5 fs was used, resulting in a quenching rate of 4.7K/fs.
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Figure 3.2: ML interatomic potential tested against DFT for forces (top) and energies
(bottom) calculation of the atomic configurations in the testing dataset, together
with their respective MAE. Atomic configurations were divided into liquid (blue) and
amorphous (green).

A DFT reference atomic structure was obtained by running a geometry optimiza-
tion of the final snapshot of the melt-and-quench MD performed with the modified
Billeter empirical potential [104]. The geometry optimization was done using the
PBE [112] functional, in CP2K [111]. This technique to build a reference DFT struc-
ture was preferred over running a DFT MD, due to the high computational costs of
the latter. As will be shown next, this reference structure correlates well with exper-
imental data.

Both the GAP and DFT atomic structures were first compared by computing
their total and partial radial distribution functions (RDFs); the results are presented
in Figure 3.3. The top panel compares the total RDF (i.e., all atomic species were con-
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sidered) for GAP, DFT and the empirical potentials Tersoff [103], ReaxFF [106] and
Billeter [104]. The amorphous Si3N4 structures for each of these empirical potentials
were obtained by running melt-and-quench MD simulations in QuantumATK [110],
with a NoseHoover NVT thermostat, starting from exactly the same initial Si3N4

atomic configuration used for the GAP MD simulation. The same recipe was used
as for the GAP MD simulation, with identical time-step and quench-rate. Moreover,
an amorphous Si3N4 structure generated with the BMH empirical potential obtained
from [105] was added to the comparison. This BMH structure contains 112 atoms, a
density of 2.9 g/cm3, and it was generated using a quench rate of 0.1K/fs. In addi-
tion, the results were validated by comparing them with experimental data found in
the literature, measured with a technique based on x-ray diffraction of the structure
of chemically vapor-deposited amorphous Si3N4 [114].

The amorphous Si3N4 structures created with the ReaxFF and Billeter empirical
potentials yield high peaks for short interatomic distances, which do not correlate
with experimental data. The Tersoff and BMH empirical potentials yield a good
agreement to the DFT reference, as well as the experimental data, over the entire
range of relevant interatomic distances. The GAP correlation to these references is
slightly better than that of the empirical potentials, particularly if the height of the
first and secondary peaks is considered.

Figure 3.4 compares the distributions of Si-N bond-lengths and N-Si-N bond-
angles of these atomic structures. The distributions in the structure generated with
the BMH empirical potential are added for reference purposes. The bond-lengths dis-
tribution is virtually identical for GAP and DFT, both share minimum and maximum
values at 1.6A and 2.4A, respectively, as well as a single peak at 1.79A for DFT and
1.78A for GAP. On the other hand, for the bond-angle distributions, the minimum
and maximum values for DFT/GAP are 72.0◦/75.2◦ and 176.3◦/176.8◦, respectively.
The mean angle for GAP is 109.0◦, while for DFT it is 109.2◦. Overall, the GAP
yields a better agreement to the DFT reference than the BMH empirical potential,
which slightly over-estimate the angles and under-estimate the bond-lengths.

A further validation test was performed by computing the neutron scattering
factor for the GAP and DFT amorphous Si3N4 structures. The results are shown
in Figure 3.5, where experimental data for an amorphous Si3N4 sample with a den-
sity of 2.60 gcm−3 [114] was added for reference purposes. Note that the density of
the GAP amorphous Si3N4 was 2.92 gcm−3. The similarity between the GAP results
and the experimental data is remarkable for low values of q. For higher values, the
discrepancy is more noticeable; however, the GAP and DFT results remain in good
agreement, therefore hinting at limitations at the theory level and not in the training
of the ML interatomic potential. If more accurate results were needed for this, or any
other specific application, the same framework could be used with a different theory
level [65].

The main application of the ML interatomic potential is to be employed in melt-
and-quench MD simulations to model amorphous Si3N4 with vanishing defect den-
sities, starting from different initial configurations, which vary in crystal type and
density. Therefore, to analyze the defects in the structure generated with the po-
tential, their coordination numbers were analyzed and compared to that of the DFT



40

Figure 3.3: Top: Total RDFs for structures generated with GAP (red), DFT (blue),
experimental data (black), Tersoff (cyan), ReaxFF (yellow), Billeter without added
terms (violet) and BHM (green). Bottom: Partial RDFs of Si-N (top), Si-Si (middle)
and N-N (bottom) bonds for GAP (color) and DFT (shadow). For the total RDF
(top), GAP presents the best agreement with the DFT reference and experimental
data, closely followed by BMH. For the partial RDFs (bottom), GAP presents a good
agreement with the DFT reference for the first and second peaks of the three relevant
bonds.

reference structure. Figure 3.6 shows the coordination number of silicon atoms (left)
and of nitrogen atoms (right). The qualitative similarity between both coordination
number distributions is striking.
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Figure 3.4: Si-N bond-length distributions (left) and N-Si-N bond-angle distribution
(right) for amorphous Si3N4 structures generated with GAP (red), DFT (blue) and
BMH (green).

Figure 3.5: Comparison of the structure factor obtained from neutron scattering
for the amorphous Si3N4 generated with GAP (red) and DFT (blue), together with
experimental data found in the literature.

In order to further test the proposed ML interatomic potential, the vibrational
density of states (VDOS) of the amorphous Si3N4 structure generated using the melt-
and-quench technique was computed. The finite difference calculations were carried
out by displacing a single atom by 0.01 Å along each coordinate axis. The resulting
dynamical matrix was then diagonalized in mass-weighted coordinates to obtain the
system’s normal modes and the corresponding phonon energies. The results of these
calculations are presented in Figure 3.7. The VDOS spectra obtained by DFT calcu-
lations and the ML interatomic potential match over the relevant energy range.

The good match is partially due to including forces in the training process, as this
provides the ML interatomic potential with the explicit value of the first derivative
of the PES with respect to the atomic coordinates and a much more accurate repre-
sentation of the PES curvature, reducing the error when computing the VDOS.
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Figure 3.6: Coordination number statistics for Si (left) and N (right) in the atomic
structures obtained with GAP (red) and DFT (blue).

Figure 3.7: Comparison of the VDOSs calculated with GAP and DFT. There is a
good match over the entire range of relevant energy values.

As mentioned above, the main advantage of ML interatomic potentials over ab
initio methods when running MD is their more attractive accuracy-to-cost ratio.
Maintaining a level of accuracy comparable to that of DFT, while being orders of
magnitude computationally cheaper, allows for ML interatomic potentials to be used
in MD, resulting in access to simulation times and system sizes previously out of
range. In order to analyze the computational costs of the proposed ML interatomic
potential, two different tests were conducted. In the first test, it was analyzed how
the time needed to run an MD simulation scales with the number of atoms in the
system. Therefore, a Si3N4 structure was considered and an MD simulation was re-
run with 112, 378, 896, 1,750 and 3,024 atoms. The MD simulation was performed
in LAMMPS using 20 cores, and it consisted of 10,000 time-steps at 1,000 K with a
time-step of 1 fs. The results can be seen in the right panel of Figure 3.8, where a
nearly linear scale of the simulation time and the number of atoms can be observed.
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The second test aimed at analyzing how parallelization can be used to reduce
the computational times needed to run MD simulations with the proposed ML in-
teratomic potential. Therefore, LAMMPS was used to re-run an MD simulation,
which consisted of a Si3N4 system with 3,024 atoms, evolving over 10,000 time-steps
at 1,000 K, with a time-step of 1 fs. The simulation was repeated with 2, 4, 8, 16 and
32 cores and the results are presented in the left panel of Figure 3.8, where a nearly
linear correlation between performance and number of cores can be seen. By running
an MD simulation with DFT for the same system using 4 cores, the performance was
estimated to be about 0.0011 [K steps/hour]. The GAP yields a performance of 1.28
[K steps/hour] under the same circumstances, therefore making it about 3-4 orders of
magnitude faster than DFT for this particular scenario. However, the computational
cost of DFT scales cubically with the number of atoms in the system, as shown in

Figure 3.8: Analysis of the computational cost of the proposed ML interatomic po-
tential. Left: Running time vs. number of atoms in the system, for a simulation of
10,000 time-steps. Right: Performance vs. number of cores for a system size of 3,024
atoms.

Figure 3.9: Scaling of DFT computational cost versus system size (number of atoms)
for a 10,000 time-steps MD at 300 K using 20 CPU cores. The fitting curve indicates
a cubic scaling of the DFT computational cost with the system size.
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Figure 3.9. Therefore, the performance gap between DFT and the ML interatomic
potential grows with the system size.

In summary, an ML potential for Si3N4 was presented, developed using the GAP
method. The training was done using an active-learning algorithm, consisting of
iterative re-trainings. Following this approach, a GAP was used to run melt-and-
quench MD simulations. The resulting atomic trajectory was sub-sampled and the
energies, forces and/or stress tensors of the final atomic configurations re-calculated
using DFT. These data were added to the training dataset, the GAP was re-trained
and the process was repeated until the desired accuracy was reached. By applying
this method to a variety of different atomic systems, the PES of interest was thor-
oughly sampled. Compared to energies from DFT calculations, the resulting ML
potential yields an MAE of approximately 8meV/atom. Moreover, when used to
model amorphous Si3N4, the GAP yields a remarkable agreement to DFT results and
experimental data, while being approximately 3-4 orders of magnitude faster than
DFT. This combination of highly accurate results and remarkably low computational
costs enable for much larger and more realistic structures, allowing MD simulations
over much larger atomic system sizes and time scales.

3.2 GAP for Silicon-Germanium (SiGe)

The results and figures presented in this section have been partially presented at the
TouCAM 2022 conference [115] and the EMRS 2023 conference [116]. This work is
the result of a collaboration between Technische Universität Wien (TUW) and Labora-
toire d’analyse et d’architecture des systèmes (LAAS)-Centre national de la recherche
scientifique (CNRS) [26], and a product of my research stay in Toulouse from Septem-
ber to November 2022. The main motivation for this work was to develop an accurate
and efficient interatomic potential to study the effects of neutron irradiation in SiGe
by running MD simulations.

Microelectronic components can be subjected to displacement damage (DD) ef-
fects in radiative environments, such as nuclear plants or space [117]. DD can be
described as a disruption induced in an atomic structure by its interaction with an
incident high energy particle. When an energetic particle (e.g., a neutron) collides
with an atom, the former transfers part of its kinetic energy to the latter, causing a
displacement. The higher this energy transfer is, the further the atom will be dis-
placed. An atom displaced by an incident particle is known as a primary knock-on
atom (PKA). If the energy transfer is sufficiently high, the PKA will hit other atoms
in the structure, starting a collision cascade, which can cause permanent damage.

Empirical tests are performed to test the effects of radiative environments on
microelectronic components, consisting in exposing the component to a controlled
source of radiation. However, gaining insight into atomistic processes via this path
is difficult experimentally and MD simulations are often used as a complementary
tool [118], as shown in Figure 3.10.



Chapter 3. Gaussian Approximation Potential Results 45

Figure 3.10: Testing materials for exposition to neutron irradiation. (a) Empirical
test: exposing the selected material to neutron irradiation and studying its effects on
it. (b) Simulations: giving a high initial momentum to one of the atoms of the atomic
structure of interest, running an MD simulation and studying the resulting changes
in the atomic structure.

These MD simulations are performed starting from the atomic system being
studied, at room temperature. For neutron irradiation, the collision of an energetic
neutron is simulated by transferring momentum to one of the atoms, causing the
beginning of a collision-cascade. For the material of interest, SiGe, these simulations
can be performed using ab initio methods, such as DFT, or using empirical potentials,
such as the Stillinger-Weber force field [119]. However, the first option is computa-
tionally expensive, limiting its application to small atomic system sizes and simulation
times and, therefore, rendering it impracticable for most cases. The second option
is computationally more efficient, but its accuracy is in question, since important
physical processes are not properly captured, such as the electronic dissipation effects
during the collisions between the incident particles and the atoms in the structure.
It is in this context that an ML interatomic potential becomes a suitable alternative.

Since the motivation of this work was to simulate and study the effects of neu-
tron irradiation not only on crystal, but also in amorphous SiGe, the first step con-
sisted in training and testing the GAP for crystal, liquid and amorphous SiGe struc-
tures. In order to create an initial dataset of relevant atomic configurations, the
melt-and-quench technique was used [120] with an MD algorithm as implemented
in QuantumATK [110]. The computationally inexpensive Stillinger-Weber empirical
potential [119] was used to melt an initially defect-free crystal SiGe structure at a
temperature of 5,000 K, therefore forming a liquid, which was thereafter quenched
back to room temperature, creating an amorphous SiGe structure at the end of the
process. Since SiGe can contain different ratios of Si and Ge, this process was re-
peated for atomic systems with 0%, 10%, 25%, 50%, 75%, 90% and 100% Ge. The
results of these melt-and-quench MD simulations are shown in Figure 3.11.
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Figure 3.11: Creation of a dataset by running melt-and-quench MD simulations. The
process is repeated for different concentrations of Ge.

The resulting atomic trajectory from each MD simulation was sub-sampled to
1,000 atomic configurations, for which the energies and forces were re-calculated with
DFT, using the PBE functional [112] in the CP2K software package [111]. The atomic
configurations for which the DFT calculations did not converge (about 5%) were dis-
carded. The remaining atomic configurations, together with their DFT energies and
forces were collected into the initial dataset. A considerable amount of computational
time was saved, since there was no need to run ab initio MD simulations.

Figure 3.12: Validation of the GAP against DFT for energy/forces calculations and
structural properties of low Ge concentration structures. Color: GAP RDFs, grey:
DFT RDFs for Si-Si and Si-Ge bonds.
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Figure 3.13: Validating the GAP against DFT for energy/forces calculations and
structural properties of high Ge concentration structures. Color: GAP RDFs, gray:
DFT RDFs for Ge-Ge and Si-Ge bonds.

Once the initial dataset was built, 200 evenly-spaced atomic configurations from
each trajectory corresponding to different concentrations of Ge were used to build the
training dataset. In addition, Si-Si, Si-Ge and Ge-Ge dimers, as well as Si and Ge
single atom configurations were added to the training dataset. On the other hand,
1,000 of the remaining atomic configurations were randomly selected to build the test-
ing dataset. No atomic configuration in the training dataset was used in the testing
dataset.

After the training and testing datasets were built, a GAP was trained on the
training dataset and thereafter tested by comparing it to DFT for the energy and
forces calculations of the atomic configurations in the testing dataset. The top panels
of Figure 3.12 and Figure 3.13 show the results for the atomic configurations with
10% and 90% Ge, respectively.

The next test consisted in using the GAP to run melt-and-quench MD simula-
tions in LAMMPS for each of the different Ge concentrations. The partial RDF of
the resulting amorphous SiGe configurations were compared to DFT references. The
results for 10% and 90% Ge are shown in the bottom panel of Figure 3.12 and Fig-
ure 3.13, respectively.

The forces computed using the GAP yielded a consistent MAE of 0.1 eV/Å for all
Ge concentrations, for the energies a MAE between 2meV/atom and 2.5meV/atom.
On the other hand, the RDFs of the amorphous SiGe structures created with the GAP
correlate well with the RDFs of DFT-relaxed reference structures. The last step of
the testing process was to use the GAP to run neutron irradiation MD simulations



48

for different energy levels and system sizes. The higher the energy of the incident
particle, the larger the atomic system must be to accurately simulate the cascade
effect. Figure 3.14 shows examples of neutron irradiation simulations ran with GAP
for low and high incident particle energies. It can be seen from these results how, for
this given system size, the effects of low energy incident neutrons can be simulated.
In contrast, for high energy incident neutrons, some atoms leave the system, thereby
indicating that a larger cell is needed for this simulation.

The calculations carried out with the resulting GAP were between 3 and 4 orders
of magnitude faster than DFT and with a linear scaling in the computational costs,
as compared to the cubic scaling of DFT. This allowed simulating atomic systems out
of reach for DFT, as in the example shown in Figure 3.15.

The results of this work include a fully functional general-purpose ML interatomic
potential for SiGe, trained and tested for crystal, liquid and amorphous phases, as well
as for a wide variety of different Ge concentrations. The results showed a remarkably
high level of accuracy when compared against DFT for energy and forces calculations.
Moreover, the high correlation to the DFT calculations indicated no systematic er-
rors. When used to model amorphous SiGe by using the melt-and-quench technique,
the RDFs of the resulting atomic structures yielded a perfect correlation to those of
the DFT references. Finally, the preliminary results on using this ML interatomic
potential to run neutron irradiation MD simulations indicated a drastic reduction in
the computational costs when compared to DFT, which thereby allows to simulate
system sizes previously out of reach by orders of magnitude. As well as that, a high

Figure 3.14: Examples of the results of running an MD simulation for neutron irra-
diation on SiGe for a low (top) and a high (bottom) energy incident particle. The
stronger the color of an atom, the higher its velocity. The snaps are taken at 0 fs
(left), 25 fs (center) and 50 fs (right) from the moment the incident neutron collides
with the PKA.
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accuracy and no trace of clustering nor other unphysical phenomena was found. An
alternative quantitative validation of the resulting SiGe structures is currently a work
in progress. Their sheer size make them impossible to geometry-relax with DFT and
an alternative method of validation must be found.

Figure 3.15: Scaling of the system size in neutron irradiation MD simulations for
SiGe allowed by GAP.

3.3 GAP for the Oxidation of Silicon (Si)
The results and figures presented in this section have been partially presented at SiO2-
2023 conference [121].

Studying the oxidation of silicon is of utmost importance due to its significant
implications in various fields, ranging from semiconductor technology to nanoelec-
tronics and beyond. The understanding and exploration of silicon oxidation provides
valuable insights and pave the way for advancements in numerous areas.

Silicon is the backbone of the semiconductor industry, serving as the primary ma-
terial for fabricating electronic devices such as integrated circuits. The process of
silicon oxidation plays a vital role in the formation of a thin layer of silicon-dioxide,
commonly known as the oxide layer [122]. This layer acts as an insulator, protecting
the underlying silicon and enables the desired functionality of the electronic compo-
nents. By studying the oxidation of silicon, researchers can optimize the process,
enhancing device performance, and enabling the production of more advanced and
efficient semiconductor devices.

Furthermore, the oxidation of silicon significantly impacts the reliability and long-
term stability of semiconductor devices. The formation of the oxide layer is critical
for isolating different components, preventing leakage currents, and ensuring proper
functioning. However, defects and imperfections in the oxide layer can affect device
characteristics, leading to performance degradation and reduced reliability [123].
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The oxidation process of silicon can be studied by running MD simulations. How-
ever, developing an ML interatomic potential for this particular application is far
from trivial. The main challenge lies on the wide variety of interatomic interactions
for which the potential must be trained:

• Interactions in the molecular oxygen (O2) gas (O-O).

• Initial interactions between the O2 gas and the silicon surface (Si-O).

• Interactions between the oxidized silicon surface and the O2 gas (SiO2-O2).

• Interactions between the oxidized silicon layers on top and the non-oxidized
silicon layers at the bottom (SiO2-Si).

• Interactions between the bottom silicon layer of the slab and the H atoms used
to passivate it (Si-H).

To tackle these prolems, an active-learning solution was developed, schematized
in Figure 3.16. Active learning is a pivotal paradigm in the realm of developing ML
interatomic potentials, playing a crucial role in efficiently harnessing computational
resources to enhance model accuracy and generalization. In this context, active learn-
ing emerges as a strategic approach to intelligently select informative data points for
model training, thereby optimizing the predictive performance of the potential.

Traditional approaches in ML often involve training models on datasets build
by randomly selecting datapoints, leading to resource-intensive processes that may
demand substantial computational power and time. In contrast, active learning dy-
namically adapts the training set by iteratively selecting instances that are deemed

Figure 3.16: Schematic of the controlled dynamical sampling technique. The input of
the plant is ∆, the number of time-steps of the MD simulation, while the output is ϵ,
the errors between DFTB and GAP. An MD simulation is performed, starting from
the current state of the atomic system of interest and for ∆ time-steps, the DFTB
and GAP energy/forces calculations for this snapshot are compared and their error,
ϵ, is computed. By using a controller, the sampling frequency can be dynamically
adapted depending on this error. Possible controllers are shown in the bottom-right
panel, while a simplified schematic of this process is shown in the upper-right panel.
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most valuable for refining the model. This adaptability is particularly advantageous
when dealing with interatomic potentials, where the complexity of atomic interactions
demands precise calibration for accurate predictions.

In the pursuit of constructing robust interatomic potentials, active learning strate-
gically identifies data points that pose the greatest uncertainty or contribute the most
to model error. By iteratively selecting these influential instances, the model learns
to refine its predictions in regions of the input space where it initially struggled.

The particular active-learning technique developed in this work, which will be re-
ferred to as controlled dynamical sampling is based on the active learning technique
presented in Section 3.1 and the work done by Deringer et al. [57]. Controlled dy-
namical sampling relies on combining control theory [124] and MD simulations to
dynamically sample the PES. Its operation is based on the following concept: An
MD simulation starting from an initial atomic configuration Xi, and running for ∆
time-steps at a temperature T, ends in a final atomic configuration Xf . If T is suffi-
ciently high, the higher ∆ is, the more different Xf will be from Xi and, therefore, the
further away they will be in the PES. This relationship between ∆ and displacement
on the PES is the core of the controlled dynamical sampling technique.

A system or, using control theory jargon, a plant, can be defined with a single
input (∆) and a single output (ϵ). This system is defined by the following process:
running an MD simulation at a fixed temperature T for ∆ time-steps from the cur-
rent state of the atomic system, XA, and to produce a new atomic configuration, XB.
Thereafter, the energy/forces of XB are computed with the selected theory level, e.g.,
Density Functional based Tight Binding (DFTB), and with the ML interatomic po-
tential being developed. The output of the system, ϵ, is then defined as the difference
between both. Naturally, ϵ represents the accuracy of the ML interatomic potential
for that point on the PES.

Intuitively, a high ϵ means that the accuracy for that point in the PES is low and,
therefore, the ML interatomic potential is unreliable and needs more training data in
that area. On the contrary, a low value of ϵ indicates a successful training of the ML
interatomic potential for that particular area of the PES and that no extra data is
needed.

As shown schematically in Figure 3.16, the proposed technique works by using a
controller to determine ∆ for the next iteration, based on ϵ from the last iteration.
The higher ϵ, the less accurate the ML interatomic potential is and the more data
in that area of the PES is needed, therefore, the lower the next ∆ will be. If the
energy/forces ϵ is higher than an empirically defined threshold (e.g., an energy error
equal or higher than 10 meV/atom), the given atomic configuration is added to the
training dataset. The ML interatomic potential is re-trained after a certain number
of new atomic configurations is collected in the training dataset (e.g., 50).

Any controller available in the control theory literature can be used in this tech-
nique, such as the popular proportional-integral-derivative (PID) [124], or a simple
and intuitive proportional (P) controller. The results shown next are based on using
a P controller, which regulated the value of ∆ from 100 to 10,000 time-steps.

The final training dataset for the GAP developed in this work consisted of a to-
tal of 992 atomic configurations, including single atom configurations, dimers, bulk
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silicon, bulk amorphous silicon-dioxide and silicon surfaces with different levels of
oxidation. The descriptors used were two-body (cutoff = 4 Å) and SOAP (nmax = 8,
lmax = 8, cutoff = 4 Å). The validation of the GAP was done by running MD simu-
lating the oxidation of silicon slab surfaces exposed to O2 gas. The silicon slabs were
passivated and kept in place by a bottom layer of H atoms, for which the coordinates
were fixed throughout the simulation. The surface of the silicon slab was oxidized by
interaction with the O2 gas above it and the simulation was re-started periodically in
order to replace the O2 molecules which bonded with the silicon slab. A depiction of
the oxidation process produced by running an MD simulation with the proposed GAP
in LAMMPS can be seen in Figure 3.17 and Figure 3.18. The quantitative validation
of the resulting structures was done by comparing relevant geometrical properties
of the resulting atomic structure to an equivalent structure generated with DFTB.
The geometrical parameters used were: (1) mean Si-O bond-length, (2) mean O-Si-O
bond-angle and (3) mean Si-O-Si bond-angle. The results are presented in Table 3.4.

The extension of this potential to simulating the oxidation of silicon nanowires is
work-in-progress and out of the scope of the present thesis. Future work includes using
the previously described controlled dynamical sampling technique to actively re-train

Figure 3.17: Oxidation process of a silicon slab exposed to O2 in gas form. The MD
simulation runs with GAP in LAMMPS through an iterative algorithm, in which the
O2 molecules are replaced periodically.

Table 3.4: Validation of the GAP, by comparing relevant geometrical parameters of
the resulting silicon oxidized structures to equivalent DFTB simulations.

Parameter GAP DFTB
Si-O mean bond-length 1.66Å 1.66Å

mean O-Si-O bond-angle 108.9° 108.0°
mean Si-O-Si bond-angle 132.0° 132.5°
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the GAP. Preliminary results on using the current version of the GAP to simulate the
oxidation of silicon nanowires can be seen in Figure 3.19. The final objective would
be developing an accurate and effective interatomic potential to model this process,
motivated by the important role that these devices play in modern microelectronics.
Silicon nanowires have emerged as a fascinating area of research and development in
the field of nanotechnology. These structures, which consist of Si atoms arranged in
a nanoscale wire-like configuration, possess unique properties that make them highly
promising for a wide range of applications. Silicon nanowires would offer excellent
compatibility with existing technologies, making them an attractive candidate for in-
tegration into electronic devices and systems.

The fabrication of silicon nanowires have seen significant advancements in recent
years, allowing for precise control over their size, shape, and properties [125]. Their
high aspect ratio, large surface-to-volume ratio, and tunable electronic properties have
sparked interest in various scientific and technological domains. Silicon nanowires ex-
hibit exceptional electrical, thermal, and mechanical characteristics, paving the way
for potential breakthroughs in energy storage [126], sensing [127], and biomedical de-
vices [128]. Therefore, their accurate simulation could potentially be of use across
multiple industries.

Figure 3.18: Zoom in to the oxidation process of a silicon slab exposed to O2 gas.

Figure 3.19: Results of simulating the oxidation process of a silicon nanowire, using
the GAP developed to study the oxidation process of silicon surfaces exposed to O2

gas. Credits: Franz Fehringer and Lukas Cvitkovich.
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3.4 GAP for Silicon-Dioxide (SiO2)
The results and figures presented in this section have been partially published in Solid
State Electronics [129].

The development of general-purpose ML interatomic potentials would be useful
for a wide range of industries and scientific fields. However, the development of trans-
ferable ML interatomic potentials remains a topic of active research. In this context,
transferability refers to the ability of an ML potential to retain its accuracy when
employed in tasks it was not trained for (e.g., to accurately reproduce forces, despite
only trained on energies). One of the main obstacles which weakens the transferabil-
ity of ML potentials is overfitting, an undesired statistical phenomena in which ML
models present a high accuracy on training data, but perform poorly in previously
unseen testing data and, therefore, in real applications.

The interatomic potentials deployed in this work are implemented as instances of
the well-established GAP [55]. The proposed workflow and a comparison to a tradi-
tional ML interatomic potential are depicted in Figure 3.20.

Figure 3.20: (a) Schematic of a GAP. (b) Workflows for a traditional potential built
with this ML model (left) and the proposed composite interatomic potential (right).
(c) Schematic of the proposed composite potential, augmenting the main potential
with an auxiliary potential.

In this work, a systematic solution to mitigate the effects of overfitting was pro-
posed, by augmenting a GAP with a set of independent repulsive-only potentials, in
contrast to previous solutions found in the literature [65][130]. The proposed solu-
tion is demonstrated by building a potential for amorphous silicon dioxide (a-SiO2).
The potential was validated against DFT calculations and compared to the results
obtained with a traditional ML potential.
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In a traditional ML interatomic potential, the total potential energy of a given
atomic system is approximated by a sum of local energy contributions from every
atom, computed by a single ML model [17],

Etotal =
Atoms�

i

Ei(di), (3.1)

where di is a local descriptor for the environment of the ith atom and Ei is its local
contribution to the total potential energy, computed by the ML model from the local
descriptor. The proposal in this work was to build a potential which computes these
local energies as a composite set of multiple components, i.e.,

Ei =
Models�

j

Ej
i (d

j
i ), (3.2)

where j runs over all components of the final potential. Each component can either
be a non-parametric potential, or an ML model paired with different local descriptors,
allowing for varying degrees of complexity.

In this work, an interatomic potential for a-SiO2 was built composed of a complex
main model responsible for giving accurate results for the atomic systems of interest
and a simpler auxiliary potential, which represents the basic physics through pairwise
short-range interactions, as shown in Figure 3.20(c),

Ei = Emain
i (dmain

i ) + Eaux
i (daux

i ). (3.3)

The main ML potential is responsible for the intricate details of the PES of the
atomic systems of interest. On the other hand, the auxiliary potential is repulsive-
only, meaning that it only produces positive energies. The closer two atoms are to one
another, the higher the computed energy will be. This potential matches the positive
part of the pairwise dissociation curve, as obtained with DFT, by using a simple two-
body descriptor with a short and smooth cut-off, as implemented in QUIP [108][131].
The sum of both energies results in the energy computed by the proposed composite
ML interatomic potential.

The main potential employs the more sophisticated and highly-dimensional de-
scriptor SOAP [54]. The training dataset for the main GAP was created by run-
ning MD, according to the melt-and-quench technique [120] within the LAMMPS
engine [132]. A defect-free 216-atoms SiO2 system was melted at 5,000 K and subse-
quently quenched to 300 K, using the classical force-field ReaxFF [133] with a time-
step of 0.25 fs. The process is depicted in Figure 3.21. The resulting trajectory was
sequentially sub-sampled to a training dataset of only 1,500 atomic configurations,
for which the energies were calculated with DFT, using the PBE functional [112] in
the CP2K software package [111].

Ideally, the training dataset must be comprehensive, while containing only atomic
configurations relevant to the intended application for which the ML interatomic po-
tential will be used. In other words, the atomic environments contained in it must rep-
resent a faithful sampling of the PES subset relevant for a particular application. An
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Figure 3.21: Initial dataset for training and testing the main ML potential, created
using the melt-and-quench technique and the ReaxFF force field. The MD begins with
a crystalline SiO2 structure, which is melted up to 5,000 K and thereafter quenched
back to 300 K. Once the dataset is created, the energies are recalculated on a subset
using DFT. Blue: Crystalline phase (C). Red: Liquid phase (L). Green: Amorphous
phase (A). The objective of the initial dataset is to provide a sampling of the PES of
interest as comprehensive as possible.

under-sampling of the possible atomic environment space would undoubtedly result
in poor ML prediction accuracy, while over-sampling results in an excessive computa-
tional cost. Furthermore, the sampling should not be biased towards any particular
area of the PES, in order not to over-sample a sub-set of the possible atomic config-
urations space, while under-sampling the rest. It is for this reason that the training
dataset is composed of a sub-set of the atomic configurations obtained by perform-
ing an MD simulation. The testing dataset is composed of 1,000 randomly selected
atomic configurations from the same melt-and-quench MD trajectory. It is important
to notice that no atomic configuration belonging to the training dataset was used in
the testing dataset.

The main potential was trained on the residual between the DFT energies and
the predictions of the auxiliary potential for the atomic configurations in the training
dataset. The training was performed using the software package QUIP. The descrip-
tor for the auxiliary potential was defined using smooth cut-offs: rSiSicut = 1.60 Å,
rSiOcut = 1.10 Å and rOO

cut = 0.80 Å. The SOAP descriptor for the main GAP was con-
structed with nmax = 6, lmax = 6 and rSOAP

cut = 4.0 Å. Therefore, the main potential
acts on the entire atomic neighborhood, while the auxiliary potential acts only if two
atoms are close to one another.

Following the traditional approach, a single GAP was trained on the dataset used
to train the main ML model of the proposed composite potential. This potential
was thereafter used to evaluate the performance of the proposed composite ML in-
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teratomic potential. In the following tests, both potentials were used to perform a
number of tasks and their results were compared to one another, taking DFT calcu-
lations as reference.

The first test for the composite and traditional ML potentials was to compute
the potential energies of the 1,000 atomic configurations in the testing dataset. The
results of each ML potential were compared to DFT calculations and shown in Fig-
ure 3.22. The proposed composite ML potential yielded an MAE of 4.7 meV/atom,
therefore rendering it slightly more accurate than the traditional potential, which
yielded a MAE of 4.8 meV/atom. In practical terms, this negligible difference in
accuracy between both potentials means that they should produce near identical re-
sults when used in real applications. However, the following tests will demonstrate
that this first impression is wrong and that the simple auxiliary potential plays an
important role in the overall ML potential.

The second test employed both ML potentials to run the exact same melt-and-
quench MD simulation, begining with an initially defect-free crystalline structure,
which is melted at 5,000 K for a period of 30,000 time-steps (step-size = 1 fs). Once
melted, the atomic system remains at a temperature of 5,000 K for another 20,000
time-steps, and it is then quenched back to 300 K within a period of 100,000 time-
steps. The final result of this melt-and-quench MD simulation is an a-SiO2 structure,
as shown in Figure 3.23. The structures produced by the traditional model suffer
from unphysical atomic cluster formations, as is apparent from the RDFs. In con-
trast, the composite potential shows excellent agreement with the DFT reference
structure. The reason for this is that training datasets built by running MD rarely
contain short-range interactions, as they are high in energy and therefore unlikely to
be present in the MD trajectory. This prevents the traditional ML potential from

Figure 3.22: Testing the potential energy calculations accuracy for the traditional
(red) and the composite (blue) ML potentials against DFT. The dashed black line
represents the ideal results, in which all energy predictions would be equal to the
DFT calculations. The closer the dots are to this line, the better the results are.
This reference makes the X-axis immaterial. The results show a high accuracy for
both potentials and virtually no difference between them. An example of the atomic
structures used for testing is shown in the bottom-right sub-panel.
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learning that short interatomic distances correspond to high energies, resulting in the
unphysical clustering seen in the results. Since this information is explicitly included
in the auxiliary potential, the proposed approach is much more robust while also
retaining a high accuracy, with only little computational overhead (roughly 5%).

In order for an ML interatomic potential to be useful in practical applications,
it must be scalable. This means that it must retain its accuracy for atomic systems
noticeably larger than those used to train it. Ideally, the ML interatomic potential
would also be able to yield accurate results when applied to tasks for which it was not
specifically trained on, thus indicating a successful and comprehensive training pro-
cess. As previously explained, accurate results for testing situations similar to those
found in the training, paired with inaccurate results for different and new situations,
would be a strong sign of overfitting.

To validate the transferability of the composite ML interatomic potential, the
VDOS for one of the resulting a-SiO2 structures was computed and compared against
DFT results, as shown in Figure 3.24(a). The VDOS was determined by employing a
finite-difference scheme in order to expand the system’s PES to second order around
the minimum configuration [134]. An a-SiO2 system was chosen resulting from an MD
run, and it was further relaxed using DFT, as well as the composite potential. The
finite difference calculations were carried out by displacing a single atom by 0.01 Å
along each coordinate axis. The resulting force constant was then diagonalized to
obtain the system’s normal modes and the corresponding phonon energies. As can
be seen, there is excellent agreement between DFT and the proposed ML potential
in predicting the VDOS for low-energy phonons. The fact that the proposed ML
potential is able to produce accurate results for a task for which it was not trained
is a strong indication of a successful training process. The VDOSs differ for higher
energies. However, if higher accuracy was needed in that energy range, this could be
improved by including forces in the training process. Including forces in the training
process would provide the ML potential with the explicit value of the first derivative
of the PES with respect to the atomic coordinates and a much more accurate repre-
sentation of the PES curvature, reducing the errors when computing the VDOSs.

The training and testing datasets for this application were composed of atomic
configurations extracted from the same MD run, meaning that they all share certain
distinctive properties, such as the number of atoms and the size of the cell in which
they are contained. Moreover, as all frames belong to the same trajectory, a certain
degree of correlation or similarity is therefore expected between the atomic environ-
ments of the structures in both datasets. It is for these reasons that, to validate the
scalability of the composite ML potential, a new test was needed. The proposed com-
posite ML potential was employed to perform MD simulations on an atomic system
10-times the size of the atomic structures found in the training dataset. The results
are shown in Figure 3.24(b), where no signs of unphysical clustering were found,
therefore hinting at a successful training process and indicating the scalability of the
proposed ML potential. These melt-and-quench MDs were performed using a rela-
tively high quench rate, which allowed them to quench in barely 100,000 time-steps, a
feat out of reach for several empirical potentials. This, paired with the small dataset
needed for training, makes the proposed ML potential highly efficient.
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Figure 3.23: Panel comparing results of the proposed framework with those of a
traditional ML interatomic potential, built as a single GAP. Both potentials were used
to run the same MD simulation, as specified in (a). Two of the resulting structures
obtained from the proposed approach are presented in (b). Resulting structures from
using the traditional approach are presented in (c) and (d), together with examples
for unphysical behavior found in them. The RDFs for one of the structures built
with the new approach and one built with the traditional ML potential are presented
in (e), together with the DFT reference. As can be seen, the composite potential
performs much better when compared against the DFT reference.

ML models are a powerful tool for developing highly accurate and computation-
ally efficient interatomic potentials. However, when the underlying physical mech-
anisms are not explicitly taken into account, their transferability is in question. In
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Figure 3.24: Transferability tests for the proposed composite ML potential. (a) Com-
puted VDOS in comparison to DFT results. The good match is remarkable, consider-
ing that the potential was not trained on forces. (b) Using the potential to create an
a-SiO2 structure 10 times the size of those used in the training dataset. No unphysical
clustering is present in the model.

the proposed approach, an ML potential is augmented by a set of simpler potentials.
Results show that this significantly reduces the unphysical behavior when facing un-
explored atomic environments, at a small increase in the computational costs. Future
improvements to this work would include the forces to the training process, as op-
posed to the use of only energies, and the use of a wider range and variety of ML
models combined with different descriptors.



Chapter 4

Machine Learning Alternatives to
Interatomic Potentials

One of the most fertile applications of ML techniques and algorithms in MD simu-
lations and atomic calculations is to build surrogate models of the PES of interest,
therefore constituting an ML interatomic potential. As shown in the previous sec-
tions, in general terms, this has the advantage of being computationally more efficient
than ab initio methods and more accurate than empirical potentials. Nonetheless, an
alternative solution to this framework is the employment of ML models to directly
compute the property of interest from a given atomic system. In this chapter, the
development of two of such alternative ML solutions will be presented. In Section 4.1,
the direct prediction of defect formation energies will be discussed, while Section 4.2
focuses on the direct prediction of defect atomic structures.

4.1 Prediction of Defect-Formation Energies

The results and figures presented in this section have been partially published at the
SISPAD 2020 conference [135].

In this work, the possibility of using ML models to calculate the formation ener-
gies of hydroxyl E ′ center defects in a-SiO2 structures [136] was studied. Studying
the behavior of these defects, especially their formation during device processing, is
of great importance for the development of modern microelectronics, as they are sus-
pected to be responsible for bias temperature instability (BTI) and random telegraph
noise (RTN) in MOS transistors [137][138][139]. Since the formation of hydroxyl E ′

centers depends on the availability of hydrogen, the concentration of these defects is
not directly accessible in DFT. However, it could be derived from a kinetic Monte
Carlo (KMC) process model [140], coupled with ML-based on-the-fly prediction of
formation energies as a function of the local environment. The conceptual workflow
proposed in this work, combining a descriptor and an ML algorithm, is shown in
Fig. 4.1.

61
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Figure 4.1: Workflow to predict a property from an atomic structure. The structure
must be represented by a set of descriptors. Then, an ML model can be trained and
subsequently used to predict the desired property in new atomic structures.

In this study, 16 different a-SiO2 structures were prepared, each with a total of 216
atoms. These structures were created with LAMMPS [132] by using the ReaxFF [133]
force field and the melt-and-quench technique, as described in [120]. Two examples
of these structures are shown in Fig. 4.2. Within these structures, 1271 hydroxyl E ′

centers were created, as shown in Fig. 4.3. Their formation energies were extracted
using DFT; the calculations were performed using the PBE functional [112] in the
CP2K software package [111]. The resulting distribution of formation energies can
be seen in Fig. 4.4.

Three popular ML models were used to predict the formation energy of the hy-
droxyl E ′ centers: A multi-layer perceptron, which is a type of neural network, kernel
ridge regression (KRR) and decision tree (DT), as implemented in the scikit-learn
package [141]. These models were combined with two sets of local descriptors common
in the literature: SOAP [54] and atom-centered symmetry functions (ACSF) [142],
implemented in the Python package DScribe [143].

The KRR is an ML technique that extends traditional linear regression to handle
non-linear relationships in data. It falls under the umbrella of kernel methods, which
utilize a mathematical construct known as a kernel function to implicitly map input
data into higher-dimensional feature spaces. The primary motivation behind KRR is
to capture complex patterns that may exist in the data.

Figure 4.2: Example of two a-SiO2 structures used in this work to train and test the
ML models. Each structure contains 216 atoms and a total of 16 such structures are
used in this work.
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Figure 4.3: Hydrogen interaction with the a-SiO2 matrix (left) can lead to the for-
mation of a hydroxyl group, via the breakage of a strained Si-O bond, resulting in a
hydroxyl E ′ center defect (right). The blue bubbles show the spin density associated
with interstitial hydrogen and the hydroxyl E ′ center defect, respectively.

Figure 4.4: Formation energies of hydroxyl E ′ center defects in a-SiO2, obtained from
DFT calculations, together with their mean (µ) and standard deviation (σ), in eV.
The broad distribution is due to the amorphous nature of the structures.

The KRR combines elements of ridge regression, which introduces a regularization
term to prevent overfitting, with the expressive capabilities of kernel functions. The
regularization term helps to stabilize the model and prevent it from fitting the noise
in the data excessively, promoting better generalization to unseen examples. The
kernel function, on the other hand, allows the KRR to handle non-linear relation-
ships by implicitly mapping the input data into a higher-dimensional space, where
linear relationships may become apparent. There are different types of kernels that
can be used in this method, with the polynomial kernel being one of the most common,

K(x1, x2) = (γ · xT
1 · x2 + c)d, (4.1)
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where γ is the kernel coefficient, c is the independent term and d is the degree of the
polynomial. Training a KRR model is equivalent to finding the set of γ values that
produce the best match between inputs and outputs in the given training dataset.

In contrast to KRR, a DT employs a tree-like structure. The nodes in the tree
represent decision points based on specific features, and the leaves correspond to the
predicted numerical values. During the training process, the algorithm recursively
splits the dataset based on the features that result in the most effective reduction of
the variance in the target variable. The decision at each node is typically determined
by minimizing the mean squared error (MSE). The goal is to create partitions that
result in homogenous subsets with similar target values. DTs in regression are bene-
ficial for capturing complex non-linear relationships in the data and are particularly
interpretable due to their tree structure. However, they are susceptible to overfitting,
especially when the tree becomes too deep and starts fitting the noise in the training
data.

The SOAP descriptor has been presented and discussed in Section 2.4.1.3. On
the other hand, the ACSF descriptor builds a fingerprint representation of the local
environment of a given atom composed of the output of multiple two- and three-body
functions [142][143]. Three different two-body symmetry functions are used, G1,Z1

i ,
G2,Z1

i and G3,Z1

i , which are defined as

G1,Z1
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j

fc(Rij)
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where the summation for j runs over all atoms with atomic number Z1, η, Rs and
κ are user-defined parameters, Rij = |Ri − Rj| and fc is a smooth cutoff function,
defined as
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where rcut is the cutoff radius. Additionally, the DScribe package implements the
following three-body functions,
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Figure 4.5: ACSF output vector: Initially, the output vector provides the values of the
two-body symmetry functions G1, G2, and G3 for each chemical species in the dataset.
Subsequently, the vector includes the values of the three-body symmetry functions G4

and G5, listed for each unique combination of two chemical species. Reprinted from
Computer Physics Communications 247, 106949 (2020). Original figure published
under Creative Commons CC-BY 4.0 license. Credits: Lauri Himanen et al.

where the summation of j and k runs over all atoms with atomic numbers Z1 or Z2,
respectively, η , λ and η are user-defined parameters, and θ is the angle between the
three atoms (with the ith atom in the center). A schematic of the ACSF output vector
can be seen in Figure 4.5.

It should be clear from Figure 4.6 that there is an inverse correlation between
the formation energy of a hydroxyl E ′ center defect and the length of the Si-O bond
which has to be broken in order to form the defect. In other words, the formation
energy is influenced by directly accessible geometric quantities (e.g., bond-lengths
and bond-angles). Based on this observation, a simple geometry-based descriptor is
proposed: bond-lengths and bond-angles (BLBA). This descriptor is built by using
the bond-lengths and bond-angles of the atoms in the immediate vicinity of the pos-
sible defect site and arranging them in a vector in decreasing magnitude; then, this
process is iterated for atoms further away from the possible defect site until a desired
number of iterations is reached (3 iterations are considered in this implementation).

Although the BLBA descriptor cannot describe the local environment in the same
level of detail of the SOAP and ACSF descriptors, it displays very valuable proper-
ties: since it contains only physical values which are relative to the possible defect
site, the descriptor is invariant to spatial translations and rotations of the coordinate
system. Moreover, since its components are ordered, it is also invariant with respect
to permutation of indexes. Finally, it is highly compact, i.e. it contains sufficient
information to be used for the prediction of the formation energies of hydroxyl E ′

center defects, while keeping its size and complexity to a minimum.
The performance of the BLBA descriptor will also be considered, as a demon-

stration of the potential of simple geometry-based descriptors. The 1271 hydroxyl
E ′ center defects were randomly divided into a training and a testing dataset, with
a ratio of 4:1. Every permutation of descriptor and ML model was trained with the
training dataset and used to predict the values for the testing dataset. In every case,
the MAE was calculated between the predictions and the targets.
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Figure 4.6: Correlation between formation energies and bond-lengths. The formation
energy decreases for larger bond-lengths, so defects preferably form at strained Si-O
bonds. The red line indicates the Si-O bond-length in alphaquartz.

The results of this study are summarized in Figure 4.7, where the prediction er-
rors for the formation energies in the testing dataset are presented, together with its
MAE, for every combination of descriptor (SOAP, ACSF and BLBA) and ML model
(neural network, KRR and DT) studied in this work. Ultimately, the worst results
were obtained with the ACSF descriptor in conjunction with a DT model, which
presented a MAE of 0.39 eV. On the other hand, the best results were obtained with
the SOAP descriptor in conjunction with a neural network model, which presented
a MAE of 0.26 eV. This was expected, since SOAP describes the local environment
in a higher level of detail. In this study, SOAP required 108 parameters to describe
the local environment of the atom of interest, while ACSF required 36 and BLBA 17.
However, it is important to stress that these numbers depend on the hyperparame-
ters chosen for the SOAP and ACSF descriptors. A logical explanation for the results
found is that the information contained in the extra parameters allows the SOAP
descriptor to achieve more accurate predictions of formation energies of defects in the
atomic structures.

Overall, BLBA performed similarly to SOAP and ACSF. However, it is important
to note the following differences:

(I) For the specific configurations chosen in this study, BLBA was more compact
than SOAP and ACSF, since it is able to properly describe the relevant local
environment with a significantly lower amount of information.

(II) SOAP and ACSF have several additional parameters particularly designed to
represent the chemical surroundings. This makes them more accurate, but it
also means that the user requires a deeper understanding of the underlying
atomic nature. Moreover, such necessity to adjust parameters which depend on
the specific atomic structure makes them less accurate when this information is
not available. On the contrary, BLBA does not require the adjustment of any
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parameter (except for N , the number of iterations, but this adjustment does
not require any previous knowledge of the atomic structure).

(III) Spherical harmonics decomposition is a familiar technique in all corners of atom-
istic calculations, producing relatively easy to interpret representations. How-
ever, every element of BLBA represents a physical property of the atomic struc-
ture (since each element of the descriptor represents a particular bond-length or
bond-angle). Arguably, this makes it simpler than SOAP and ACSF and gives
BLBA a higher interpretability.

(IV) The BLBA descriptor performed slightly better than the SOAP and ACSF de-
scriptors when combined with a KRR or DT model. This could be explained
given the fact that the BLBA descriptor is able to describe the local atomic
environments with a lower amount of parameters. Therefore, it performs bet-
ter with reduced datasets, by avoiding overfitting. However, more complex ML
models, such as the neural network model, might make use of the extra in-
formation provided by the SOAP descriptor to increase the formation energy
predictions accuracy.

The aim was to use a combination of a descriptor and an ML model to predict
the formation energies of defects in a-SiO2. Such predictions will be combined with
a KMC method in future work, in order to assess the likelihood of defect formation
under specific conditions. In other words, this work can be considered as a first step
towards a more sophisticated ultimate goal: to predict reaction barriers by using a
combination of a KMC method and an ML model.

It is also important to remember that the accuracy of the predictions is highly de-
pendent on the atomic structures one considers as well as the electronic property one
wants to extract or predict from them. Therefore, the results obtained in this work
do not necessarily imply that the prediction accuracy of these descriptors would be
unchanged if one applies them to different materials or different electronic properties
from the one considered here. In case of applying a descriptor-based ML solution to
predict a certain electronic property, it is crucial to consider different combinations
of descriptors and ML models and to analyze the results obtained from them before
choosing the best combination.

In order to allow a clear comparison between the BLBA descriptor and the well-
established SOAP and ACSF descriptors, a correlation between the DFT results and
the predictions made by using each of these descriptors is shown in Figure 4.8. In all
cases, the descriptors were combined with a neural network model, since it was the
ML model which showed the best results in the previous tests. The fact that all dis-
tributions are roughly centered around the identity line shows there is no considerable
systematic error in the predictions and no strong overfitting of the ML model. The
SOAP descriptor yields slightly better results than ACSF and BLBA, particularly for
negative formation energies.
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Figure 4.7: Error distributions and MAE in the prediction of formation energy of
hydroxyl E ′ center defects in a-SiO2 for the different combinations of descriptors
(SOAP, ACSF and BLBA) and ML models (neural network, KRR and DT).

The study of reliability in modern microelectronic devices requires the use of
simulation techniques in order to assess the effects of new materials and changes in the
fabrication processes. In this context, there are several practical applications in which
such DFT calculations could be aided or even replaced by computationally inexpensive
ML models combined with well-established descriptors, as shown in this work and
in other examples in the literature [51][144][145]. Moreover, novel descriptors can be
developed for specific applications, in the same way in which the BLBA descriptor was
developed to be used in the ML-based prediction of formation energies of hydroxyl E ′

center defects in a-SiO2. This approach could prove particularly useful in the study
of amorphous materials, where large statistics are needed. Moreover, this solution
could be applied to other defects, as well as to new materials, potentially aiding the
development of novel microelectronic devices.
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Finally, apart from providing computationally inexpensive solutions to practical
problems in the study of modern electronic device reliability, descriptor-based ML
solutions have the potential to provide a deeper understanding of the mechanisms by
which defects are formed and of the relationships between atomic structure properties
and the formation of such defects. The next section extends this work to predict the
defect structure of defects in a-SiO2.

Figure 4.8: Parity plots for the DFT calculation results and the ML-based predictions
using SOAP (top), ACSF (middle) and BLBA (bottom) descriptors (in all cases,
combined with a neural network). All descriptors perform similarly. However, SOAP
shows a slightly better correlation in general, particularly for negative values.
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4.2 Prediction of Defect Structures
The results and figures presented in this section have been partially published at the
ESSDERC 2021 conference [146].

This study can be considered as an extension of the work presented in Section 4.1,
where a solution to directly estimate the formation energy of hydroxyl E ′ center
defects in a-SiO2 was proposed. In this section, another solution was developed to
predict the structure of such defects. As previously mentioned, the study of these
defects is particularly important in the fields of modern micro- and nano-electronic
device reliability, since they are suspected to be responsible for BTI and RTN in MOS
transistors [137][138][139].

The proposed workflow is graphically summarized in Figure 4.9. The core con-
cept is to train an ML model to find the relationship between the defect-free and the
defect atomic structures in the descriptor space. Then, the defect atomic structure
is reconstructed from the predicted descriptor, by optimizing its atomic coordinates,
until its descriptor matches the predicted descriptor, within a convergence criterion.
The procedure is as follows:

1. Prediction: The environments of the surrounding atoms of interest in the defect-
free structure are represented with the SOAP descriptor. This matrix is used
as an input for the ML model, to predict the SOAP descriptor of the resulting
defect complex.

2. Optimization: An optimization method is used to adjust the coordinates of
the atoms in the defect-free structure until its descriptor matrix matches the
descriptor matrix predicted by the ML model for the defect structure. In this
particular application, the Nelder-Mead method, with convergence criteria of
5% of the initial loss function value was used.

3. Validation: The final step of the process is to validate the results. This is
done by comparing the ML predicted defect structure with the equivalent tar-
get structure produced by DFT relaxation. The geometrical distance between
the ML predicted and DFT relaxed defect site was used as a measure for the
prediction quality.

The first step towards an efficient ML-based prediction is a consistent training
dataset. For this work, the dataset described in the previous section was used. Cal-
culations were performed using the PBE functional [112] in the CP2K software pack-
age [111], which is a computationally expensive process. Typically, 4 nodes with 48
cores each require several hours to complete a single geometry relaxation. Once the
dataset was created, the next step was to represent these structures using SOAP [54],
since this descriptor showed the best performance in the previous section. However,
given the flexibility of the proposed approach, any other descriptor, even individually
designed ones, can be used within the proposed workflow.
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Figure 4.9: Proposed workflow to predict the structure of defects in atomic models.
First, the local environment around the atom of interest in the defect-free structure
is represented by a descriptor. This matrix contains a vector for every atom near the
site of interest, and is used as an input for an ML model, which then predicts the
descriptor of a defect formed at that site (1). An optimization method is used to
adjust the coordinates of the atoms in the defect-free structure until their description
matrix matches the predicted one (2). Finally, in order to validate the results, the ML
predicted structure is compared to its equivalent DFT-relaxed structure (if available),
by means of a comparison function (e.g., geometrical distance) (3).

Out of the 16 a-SiO2 structures, 15 are used to train the model and one is left
for testing purposes. This translates into 1188 hydroxyl E ′ center structures in the
training dataset and 83 in the testing dataset. The atoms within a 3 Å cutoff radius
at every defect site, which on average contains about 9 atoms, are used to construct
a local descriptor of the defect environment. To analyze the data, a KRR model was
employed, as implemented in the Scikit-learn package [141]. This is a cost-efficient
model, which was presented in the previous section.

The ML model is trained to find the relationship between the SOAP descriptions
of the hydroxyl E ′ centers and those of their host defect-free a-SiO2 structures. Once
the ML model is trained, it is capable of predicting the formation of defects and their
structural properties in new structures.

Given the modular approach of this technique, the same generic workflow could
be used in the prediction of other defects in new materials. Details of the particular
application in this work, namely the prediction of hydroxyl E ′ centers in an initially
defect-free a-SiO2 structure, and the individual steps are shown in Figure 4.10. As
an example, a bridging O atom in the top right of the structure is selected as the
precursor configuration for the hydroxyl E ′ center. Subsequently, the SOAP descrip-
tor matrix of the surroundings of the O atom is computed with the parameters:
rcut = 3.0 Å and nmax = lmax = 4, as shown in Figure 4.11.

The resulting matrix is used as an input for the ML model, which was previously
trained with the training dataset. The ML model predicts the expected SOAP de-
scription matrix of the defective structure at the site of interest. Once this prediction
is made, a loss function is defined as the MSE between the predicted SOAP and the
defect-free structure with one additional H atom placed in the direct vicinity, 1 Å,
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Figure 4.10: (a) Prediction of the formation of a hydroxyl E ′ center in an a-SiO2

structure. The local environments of the atoms around the oxygen atom of interest
are described with a matrix of SOAP descriptors (1). This matrix is used as input for
the ML model (2) to predict the SOAP description matrix of the defective site (3).
An optimization method is used to adjust the coordinates of the atoms in the input
structure in order to minimize the MSE between the optimized and predicted SOAP
matrices, and hence forms the defect in the a-SiO2 structure. The bottom right figure
shows how the difference between the initial and predicted defect structure descriptor
matrices reduces as the optimization progresses. The final result (5) is the predicted
defect structure. (b) Zoom to the predicted structure. (c) Superposition between
the ML predicted defect structure (color) and its DFT-relaxed equivalent (shadow)
around the defect site.

of the bridging atom, to form the defect. An optimization method is used to adjust
the coordinates of the respective atoms in the input structure until this loss function
reduces below a certain threshold value. The optimization method selected in this
case is the Nelder-Mead method, implemented in the Python package SciPy [147].
However, given the flexibility of this approach, other optimization methods, includ-
ing optional bounds or (non-) linear constraints can be used instead. The final result
is the predicted structure of the defect, as shown in the bottom-left of Figure 4.10.

The complete prediction and optimization process takes 0.5 seconds on a typical
desktop computer (Intel Core i7 2.2 GHz and 8 GB of RAM). Given the stochastic
nature of the amorphous network, the accuracy and efficiency of the proposed frame-
work must be analyzed on a statistical scale. It was therefore benchmarked against
the full testing dataset of a-SiO2. The respective DFT calculations are available and
were used as a reference by computing the distance vector of atoms within 6 Å around
the defect site. The results are scaled with respect to the number of atoms involved,
in order to obtain a normalized quantity.
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Figure 4.11: Defect-free structure descriptor matrix. Each row of this matrix is the
SOAP vector representation of the local environment of a specific atom. Only those
atoms within a certain cutoff distance from the central oxygen atom (C. O. A.) of
interest are considered.

Apart from the initial loss function tested, loss function A: MSE between the
SOAP descriptor of the input and predicted structures, a second loss function was
defined, loss function B: loss function A plus a penalty term if the H-O bond-length
deviates from 1 Å. The process of predicting the hydroxyl E ′ center defect structures
in the testing dataset was repeated under identical conditions for both loss functions.
The results can be seen in Figure 4.12, which shows the distribution of the deviations
of the ML based approach compared to the DFT results across the testing dataset.
For the 83 structures in the testing dataset, the average distance between the ML
and DFT structures is 0.461 Å/atom for loss function A and 0.285 Å/atom for loss
function B. This shows that the framework works without any user knowledge about
the system. However, with some detailed information and knowledge, the individual
modules can be fine-tuned to provide even more accurate predictions.

There is a wide range of applications in which ML based techniques can provide
computationally inexpensive but accurate solutions, as shown by several examples
in the literature [51][144][145]. In this work, a solution was developed to study the
formation of hydroxyl E ′ center defects in a-SiO2. The results clearly demonstrate a
competitive level of accuracy, while being inexpensive when compared to DFT.

Figure 4.12: Distribution of the deviations of the ML predicted defect structures
compared to its equivalent DFT-relaxed structures, together with its mean value.
Atoms within a 6.0 Å cutoff distance from the central oxygen atom are considered.
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The presented approach benefits from being highly modular, meaning that its
components are interchangeable with other descriptors, ML models and optimization
algorithms, depending on the individual problem. Hence, it can be easily extended
and adapted to other defect species in a-SiO2, or even different materials, such as
hafnium dioxide (HfO2).

This approach is of particular importance for defect studies in situations where
the application of DFT and other ab initio methods is too expensive, such as defect
studies in large simulation cells and investigations on a large statistical scale. Fur-
thermore, applications with a demand for on-the-fly calculations of certain data, such
as KMC simulations [140], benefit from the presented framework. Currently, reaction
rates in such simulations have to be predefined. However, with this approach, struc-
tural and energetic information can be calculated almost instantaneously.



Chapter 5

Neuromorphic Hardware Accelerator
for Machine Learning-Based
Molecular Dynamics

This chapter will present the results of using neuromorphic hardware to accelerate
ML-based MD simulations. An overview of the framework used in this work is pre-
sented in Section 5.1. In Section 5.2, the use case on which this framework was applied
is presented. Finally, in Section 5.3, the obtained results are discussed. The results
and figures presented in this chapter are a product of my research stay in the Com-
putational Nanoelectronics Group at Eidgenössische Technische Hochschule Zürich
(ETHZ) [27] from March to May 2023. The scanning electron microscope (SEM)
images of the memristors and the plots depicting their RV-curves were provided by
Till Zellweger (ETHZ).

5.1 Framework

One of the main limitations that commonly used ML interatomic potentials face
when employed in running MD simulations is that their performance is severely lim-
ited by the hardware currently used to implement them. Presently, ML-based MDs
are universally deployed in general-purpose computers, based on the von Neumann
architecture. In this architecture, the central processing unit (CPU) is separated from
the main memory and is connected to it by a slow buffer, therefore suffering from
the so-called von Neumann bottleneck [148]. Running ML-based MD simulations is
a demanding task, as it requires to process data of thousands of atoms over millions
of time-steps. When performing these simulations in a von Neumann computer, 90%
of the computing time (and energy) is consumed for the repeated movement of data
between the CPU and memory [149].

As an alternative to von Neumann computers, neuromorphic architectures stand
out for their co-location of CPU and main memory [150]. This characteristic makes
neuromorphic computing an ideal candidate as a hardware-accelerator of ML-based
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MD simulations. Neuromorphic computing architectures are inspired and based on
the human brain, which consumes only approximately 20 W [151], while processing
vast amounts of information in a highly parallelized manner, therefore making it an
ideal role model for highly energy efficient computing architectures. Recent tests on
prototypes of neuromorphic-based hardware accelerators yielded highly promising re-
sults when running ML-based MD simulation for Au [152]. For the simulation of more
complex systems, such as GeTe, and Li10GeP2S12, the computational times could be
reduced by 2 orders of magnitude [149].

Running an ML-based MD simulation requires to repeat a set of specific tasks for
every time-step [17]. First, a descriptor of the atomic structure of interest is com-
puted. It relies on a mathematical representation of the local atomic environments
and depends on a set of material-specific parameters. Second, a suitable ML model
is set up to compute the potential energies and forces of the atomic system from the
descriptor. Third, the forces are used to solve the Newton equation. Finally, the
coordinates and velocities of every atom are updated, and the process is repeated for
the next time-step, thereby creating a trajectory. The framework used in this work
is the one proposed by Mo et al. [149], which consists of implementing a neural net-
work in a field programmable gate array (FPGA)-based neuromorphic architecture,
while performing the remaining computational kernels in a von Neumann computer,
as schematized in Fig. 5.1.

Figure 5.1: Alternative computing architecture schematic, where the MD simulations
run on a hybrid platform. The typical steps of an ML-based MD simulation are
followed: The descriptors of the local atomic environment of the system are computed
(I) and passed to the ML model (II) to compute the energy and forces (III) which are
then used to update the atomic coordinates for the following time-step (IV). However,
while the PES is evaluated within a neuromorphic accelerator (II-III), the remaining
computation requirements are fulfilled by a standard computer (I-IV).
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The field of neuromorphic computing has also witnessed remarkable progress in
the last few decades beyond the development of ML-based MD simulation accelera-
tors. Coined by Carver Mead in the late 1980s [153][154], the term originally referred
to mixed analogue-digital implementations of brain-inspired computing and has since
extended to encompass a wide variety of approaches. Currently, the development of
neuromorphic computing technologies is being spearheaded by both academia and
industry. Examples of these projects include Neurogrid [155], BrainScales [156], DY-
NAPs [157], IFAT [158], Intel’s Loihi [159] and IBM’s TrueNorth [160].

These pioneering projects have not only advanced the theoretical foundations of
neuromorphic computing but have also catalyzed its practical application in various
domains. Neuromorphic computing solutions have experienced increased adoption in
applications such as pattern recognition [161], where the brain-inspired architecture
excels at processing complex visual data. Moreover, in sensing applications [162] and
brain-computer-interfaces [163], neuromorphic approaches have demonstrated their
potential in enhancing data acquisition and processing capabilities. For a comprehen-
sive understanding of the evolving landscape of neuromorphic computing, numerous
reviews in the literature provide in-depth analyses [164][165][166][167].

5.2 Use Case

The previously described framework was employed to develop an ML interatomic
potential for amorphous germanium, with the objective of simulating a memristor
device fabricated at ETHZ. The ultimate goal is to shed light on the physical mech-
anism behind this device, which is currently poorly understood. Memristors are a
promising class of microelectronic devices that have the potential to revolutionize
the field of non-volatile memory and in-memory computing. These devices were first
conceptualized by Leon Chua in 1971 [168], and first demostrated by HP Laborato-
ries in 2008 [169]. They exhibit a unique property, where resistance can be tuned in
a multi-bit or even analog manner by the application of electrical stimuli, and this
change can be retained even after the stimulus is removed. This makes them ideal
candidates to implement artificial synapses in neuromorphic computing and brain-
inspired information processing technologies.

In a basic model of a current-controlled memristor, the resistance of the device is
a function of its state variable, which, in turn, depends on the current that has flowed
through the memristor,

v = R(w)i

dw

dt
= i,

(5.1)

where v is the Voltage across the terminals of the memristor, R the resistance, i the
current and w the state variable. Therefore, a memristor can be seen as the fourth
fundamental two-terminal circuit element (with the other three being resistor, capac-
itor and inductor) [169]. These fundamental elements are shown in Fig. 5.2.
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Figure 5.2: The four fundamental two-terminal circuit elements: resistor, capacitor,
inductor and memristor. Reprinted from Nature 453, 80-83 (2008), with permission
from the journal. Credits: Dmitri B. Strukov et al.

The memristor devices fabricated at ETHZ can be seen in Fig. 5.3 and Fig. 5.4.
There are many mechanisms that are exploited for memristors, some of the most typ-
ical ones are: (I) Oxygen exchange with a metal electrode to create oxygen vacancies
that form the connection between electrodes, used in resistive random-access mem-
ory (ReRAM) [170]; (II) Phase change, in which the dramatically different electrical
resistivity values of the crystalline and amorphous phase of certain materials is ex-
ploited as a means to store information, used in phase-change memory (PCM) [171];
(III) Redox reactions and drift or diffusion of ions, also known as electrochemical

Figure 5.3: SEM image of a novel germanium-based memristor fabricated at ETHZ
(left), and zoom to the device (right). The device is composed of a vertical and a
horizontal metallic electrode, and amorphous germanium in between them. In both
figures, the triangle-like shapes are tapered to connect the small device to larger
wires that then connect to electrical pads such that the devices can be contacted with
probes, which can be measured. The dark lines that extend from the device area to
the right are artifacts of the visualization technique.
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Figure 5.4: SEM image of an array of 16 memristors fabricated at ETHZ. These
arrays allow performing matrix multiplication in an analog manner.

metallization mechanism, in which a redox reactions form and dissolve a conductive
filament, used in conductive-bridging random-access memory (CBRAM) [172]; and
(IV) Ferroelectric polarization switching, used in ferroelectric random-access memory
(FeRAM) [173].

In recent years, memristor devices have gained attention due to their attractive
properties, including high endurance, which means that the devices can withstand
a large number of write-erase cycles without degradation, low power consumption,
and compatibility with existing technologies. By applying different electric fields,
the device can be switched between different resistance states, making it a promising
candidate for non-volatile memory applications.

In this context, the Computational Nanoelectronics Group at ETHZ [27] fabri-
cated a novel memristor based on germanium, a material widely used in electronics
due to its CMOS-compatibility and high carrier mobility that allows faster transis-
tor operations. More specifically, this new memristor consists of a thin germanium
layer sandwiched between two metal electrodes. These devices show electrical char-
acteristics promising for neuromorphic computing applications, as shown in Fig. 5.5.
However, the physical mechanism behind these memristors is poorly understood, and
the MD simulations needed to provide a deeper understanding of their operation are
computationally expensive. Generating amorphous germanium models of this scale
requires running melt-and-quench MD simulations for particularly large system sizes
(> 100,000 atoms), as shown in Fig. 5.6, and extended simulation times (> 1,000,000
time-steps); a feat out of reach for ab initio methods, and a task particularly well
suited for hardware-accelerated ML-based MD simulations. In Section 5.3, the results
of this development are presented and validated against DFT.
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Figure 5.5: RV-curves of two novel germanium-based memristors fabricated at ETHZ.
Note that for both devices the transition from the higher resistance to the lower
resistance is gradual, meaning that the switching is not digital but analog. The device
on the left presents a wider gap between the high- and low-resistant states, while the
device on the right presents more cycles with less variance. These are highly desired
and useful properties in memristors used in neuromorphic computing applications.

Figure 5.6: Zoom to the SEM image of a novel germanium-based memristor fabri-
cated at ETHZ, together with the representative simulation cell used to perform MD
simulations of the device. This is a cubic cell with a lattice parameter of 13.67 nm,
which contains 110,592 atoms. The physical device is approximately 10 times larger
than this cell.
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5.3 Results

This section presents the results of using non-von Neumann molecular dynamics
(NVNMD) to model solid-, liquid- and amorphous germanium. First, a dataset of
crystal, liquid and amorphous configurations was created using the melt-and-quench
technique [120]. An MD simulation was performed in QuantumATK [110] using the
Stillinger-Weber empirical potential [119], starting from a bulk system of 216 germa-
nium atoms. The system was initially heated well above its melting temperature,
to 5,000 K, and thereafter quenched back to room temperature with a quench rate
of 4.7 K/ps. The resulting trajectory was thereafter sub-sampled to 1,500 atomic
configurations, an isolated germanium atom and 50 Ge-Ge dimmers with equally-
spaced interatomic distances ranging from 0.5 Å to 5 Å were added to this batch
of data. Thereafter, their DFT energies and forces were recalculated using the PBE
functional [112] in the CP2K software package [111]. The 1,379 atomic configurations
for which the DFT calculations converged were collected, together with their DFT
energies and forces into a training dataset.

Once the training dataset was build, the code provided by Mo et al. [174], which
is a modified version of the commonly used DeepMD package [58], was used to train a
continuous neural network (CNN) and thereafter a quantized neural network (QNN).
The most relevant parameters used to train these neural networks are presented in
Table 5.1, together with a brief definition of each parameter. Once the QNN was
trained, it was used to run a melt-and-quench MD simulation on the FPGA-based
hardware accelerator framework proposed by Mo et al. [175]. This framework allows
running MD simulations on a modified version of LAMMPS [132], which provides
compatibility with the FPGA hardware accelerator. The test MD simulation started
from an initial crystal composed of 216 germanium atoms, which was first melted
at 5,000 K and thereafter quenched back to room temperature using over 1,000,000
time-steps. The time-step used was 0.5 fs, therefore resulting in a quench rate of
9.4 K/ps. The final snapshot of this trajectory was saved, geometry-relaxed with the
CNN, and validated by comparing it against a DFT reference.

The DFT reference was build by geometry-relaxing the last snap of the initial
melt-and-quench MD using DFT in the CP2K software package. This was done in
order to avoid running an ab initio MD simulation, therefore saving a substantial
amount of computational resources and time.

Table 5.1: Most relevant parameters used to train the QNN, which performed the
MD simulations on the neuromorphic-based hardware accelerator.

Parameter Definition Value
rcut Descriptor radial cutoff 4.5Å
r∆ Smooth cutoff parameter 0.5Å
Net size Size of neural network 128
sel Maximum number of neighbors 80
Learning type Learning rate variant type Exponential
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The first validation test consisted in comparing the RDFs of these atomic struc-
tures, and the results can be seen in Fig. 5.7, where both functions are in agreement,
presenting a large first peak around 2.5 Å and a secondary peak at about 4 Å.
The second validation test consisted in computing the structure factor obtained from
neutron scattering for both atomic structures. This calculation was performed using
the QuantumATK software package [110]. The results are presented in Fig. 5.8. As
can be seen, the scattering factors are virtually identical for both atomic structures,
therefore indicating a successful training process. The third and final validation test
consisted in comparing the bond-length distributions for both atomic structures. The

Figure 5.7: Comparison of the RDF for the amorphous germanium generated with
NVNMD (red) and DFT (black).

Figure 5.8: Comparison of the structure factor obtained from neutron scattering for
the amorphous germanium generated with NVNMD (red) and DFT (black).
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results are presented in Fig. 5.9. As can be seen, the NVNMD amorphous germanium
model resulted in slightly elongated bond-lengths, but an overall good agreement with
the DFT reference.

The previously discussed results validated the accuracy of the ML interatomic
potential against DFT in MD simulations. However, as previously mentioned, the
main motivation to make use of a hardware accelerator is to increase the performance
of the MD simulations. Therefore, to evaluate the performance of this framework,
a GAP was trained on the same training dataset and both interatomic potentials
were used to run the same MD simulation, consisting of running 10,000 time-steps at
1,000 K for a system of 216 germanium atoms. The results are presented in Table 5.2,
where it can be seen that using the neuromorphic-based hardware accelerator is over
two orders of magnitude faster.

Once the proposed ML interatomic potential was validated for atomic structures
composed of 216 germanium atoms, it was used to run a melt-and-quench MD simu-
lation on an atomic system composed of 110,592 atoms, considered to be large enough
to simulate the memristor device. The resulting amorphous germanium structure was
then validated against the DFT reference and the results are presented in Fig. 5.10.
The results are in good agreement with DFT, with both atomic structures presenting
a first peak at around 2.5 Å and a secondary peak at about 4 Å.

Figure 5.9: Comparison of the bond-length distributions in the amorphous germanium
structures generated with NVNMD (red) and DFT (black).

Table 5.2: Comparison of the performance of NVNMD to a traditional GAP inter-
atomic potential, by using both methods to run the same MD simulation in LAMMPS.

Interatomic potential Performance
NVNMD 407 [time-steps/s/core]
GAP 2 [time-steps/s/core]
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The high accuracy and remarkable efficiency of this ML interatomic potential will
be exploited in future work, by running extensive MD simulations that will provide
the basis for a better understanding of the physical mechanisms behind these novel
germanium-based memristors. Future work will include re-training the ML inter-
atomic potential to include the metallic electrodes, in order to ensure more realistic
simulations of the entire device.

Figure 5.10: Results of running a melt-and-quench MD simulation on a cell containing
110,592 atoms (left), and RDF validation against a DFT reference (right). Note that
the main peak of the NVNMD structure is shorter than that of the DFT reference,
this is because the latter is markedly smaller, with only 216 atoms.



Chapter 6

Transdisciplinary Application to
Biomedical Signals Processing

The results and figures presented in this chapter have been partially published in Na-
ture Scientific Reports [176] and are the product of a collaboration between TUW and
Aalto University (Helsinki, Finland) [28].

The object of this study was motor evoked potentials (MEPs), which are biomed-
ical electrical signals measured with electrodes on the target muscle of a patient.
MEPs are typically characterized by their latency (i.e., the time elapsed between the
stimulation of the target neurons and the beginning of the muscle movement which
these neurons control). The characterization of MEPs is used in research and clinical
applications to evaluate the corticospinal excitability of a patient. However, the pro-
cessing of these signals is a laborous manual task, since in a single session thousands
of MEPs are recorded, which must be then manually annotated, one at a time.

Automating the analysis of MEPs would save clinicians and researchers time, as
well as reduce human errors. However, the amplitudes of MEPs are low, which means
that their recordings are highly sensible to noise. Moreover, completely uncorrelated
MEPs might yield virtually the same latency. In other words, an algorithm to au-
tomate the annotation of MEPs would face the problem that highly different inputs
might produce highly similar outputs, therefore making it a complex task.

In this work, the hypothesis was that MEPs belonged to a highly-dimensional
space in which relevant symmetries were missing. This space was considered to be
analog to the XYZ-coordinates of atomic configurations, in which translation, rota-
tion and permutation symmetries are missing [177]. The thesis was that, in the same
way in which a descriptor is used to transform atomic configurations into mathemat-
ical representations suitable for ML regression, the same approach could be used in
the processing of MEPs. Therefore, MEPs could be transformed into a new space,
more suitable for ML regression, thereafter, a neural network could be trained to
find the relationship between the MEPs in this new space and their latencies. The
result of this work was the first ML-based algorithm to automate the annotation of
MEPs. An introduction to this work can be found in Section 6.1, the methodology is
described in Section 6.2, and the results are presented in Section 6.3.

85
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6.1 Introduction and Motivation

The MEP generated by transcranial magnetic stimulation (TMS) is a crucial neu-
rophysiological signal in research and clinical practice. MEP amplitude and latency
allow one to quantitatively assess the corticospinal excitability. This is necessary to
evaluate patients undergoing surgery and to monitor neuromotor diseases, such as the
progression of multiple sclerosis [178], idiopathic generalized epilepsy [179] and the
recovery of stroke patients [180]. MEPs are commonly characterized by their latency,
which is defined as the time elapsed between the stimulation and the onset of the MEP
(Figure 6.1). The MEP latency is usually annotated manually after visual inspec-
tion of the electromyography (EMG) recording, making the process time-consuming,
operator-dependent, and prone to errors [179][181]. An algorithm to automate the
characterization of MEPs would not only save time and reduce human errors, but
would also boost the development of brain-state-dependent and closed-loop brain
stimulation protocols, by allowing accurate real-time MEP assessment [182].

Several attempts have been made to develop algorithms to automate the MEP
latency annotation. These algorithms are based either on absolute hard threshold
estimation (AHTE) [183] or on statistical measures [184][185]. A review and com-
parison of previous methods is presented by Šoda et al. [186], together with their
own algorithm named Squared Hard Threshold Estimator (SHTE). In general, the
previously presented algorithms require the user to specify a set of so-called magic
numbers. These are hyperparameters with a large impact on the algorithm perfor-
mance, which are empirically derived and depend on the user’s knowledge and expe-
rience [186]. Contrary to these traditional algorithms, Bigoni’s method [187], which
is a derivative-based algorithm, does not require the user to specify magic numbers.

Figure 6.1: Two different MEP waveforms (red and blue curves) with virtually identi-
cal latencies (black vertical line), defined as the time elapsed between the TMS pulse
and the beginning of the MEP trace. The epoch starts at the time the TMS pulse is
delivered.
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Developing an algorithm to automate the annotation of MEPs is not trivial. Even
in ideal conditions of high signal-to-noise ratio (SNR), MEPs are highly variable,
presenting significant inter- and within-subject amplitude variability [188][189][190].
Similarly, the MEP latency variability is well known and has been previously docu-
mented for neurosurgical patients [188][191]. Under similar circumstances, the am-
plitude of two MEPs can differ up to an order of magnitude and present totally dif-
ferent shapes, as shown in Figure 6.1. Furthermore, low-amplitude MEPs, commonly
recorded in inhibitory stimulation paradigms with paired-pulse TMS have inherently
lower SNR than high-amplitude MEPs, thus adding a new layer of complexity. These
factors make it demanding to assess the MEP latency automatically and reliably.

In this context, ML-based algorithms, particularly those employing deep learning
techniques, offer a promising approach to provide an accurate and reliable solution.
The MEP latency annotation is a pattern recognition problem, where deep learning
methods have already demonstrated their potential [192]. In this work, the DELMEP
algorithm was developed, which relies on deep learning for automated MEP latency
annotation. It can be argued that DELMEP has the potential to expedite data analy-
sis procedures and streamline the creation of closed-loop brain stimulation protocols,
along with the generation of personalized solutions. This is the first ML-based solu-
tion to the problem of automating the MEP latency estimation.

6.2 Methodology

A dataset was collected from 9 healthy volunteers (3 women and 6 men, mean age:
30 years, range 24-41) for two previous studies [193][194], which describe the detailed
experimental protocol and stimulation paradigms. Experiments were performed in ac-
cordance with the Declaration of Helsinki and approved by the Coordinating Ethics
Committee of the Hospital District of Helsinki and Uusimaa. All participants gave
written informed consent before their participation.

The application of TMS was done with a monophasic trapezoidal waveform by a
custom-made multi-channel TMS (mTMS) power electronics [195] connected to a 2-
coil transducer capable of electronically rotating the peak induced electric field [193].
EMG signals were digitized using an eXimia EMG 3.2 system (Nexstim Plc, Fin-
land; sampling frequency 3 kHz; 10-500 Hz band-pass filter). MEPs were collected
with single-pulse and paired-pulse paradigms. The paired-pulse stimuli were delivered
with interstimulus intervals of 0.5 and 1.5 ms (short-interval intracortical inhibition,
low-amplitude MEPs) and 6.0 and 8.0 ms (intracortical facilitation, high-amplitude
MEPs). The conditioning stimulus intensity was 80% of the resting motor thresh-
old and the test stimulus and single pulse intensity were both 110% of the resting
motor threshold. MEPs were recorded from the abductor pollicis brevis, abductor
digiti minimi and first dorsal interosseous muscles. EMG recordings showing muscle
pre-activation or movement artifacts greater than ±15 µV within 1 s before the TMS
pulse were removed from the analysis. The raw MEPs were visually inspected, and
the latency was manually annotated by a single expert (doctoral candidate; 7 years of
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experience) and quality-checked by a second expert (postdoctoral researcher; 10 years
of experience) who confirmed the latency annotations. The aforementioned experts
were part of this study. However, the dataset was collected and the latencies were
annotated for two prior studies [193][194] conducted before the conceptualization and
development of DELMEP. Therefore, the annotations were performed independently
of the development of the DELMEP algorithm. An additional validation was per-
formed on an external MEP dataset annotated by three experts. Data preprocessing
and annotation was performed with custom-made scripts written in MATLAB R2017a
(MathWorks Inc, USA). A total of 33,060 MEPs were recorded, i.e., 11,020 from each
muscle group. From all MEPs, 232 (0.7%) were discarded because of pre-activation
and 11,548 (34.9%) were discarded because of noise or no-response. Out of the re-
maining 21,244 MEPs, the validator discarded 4,569 (21.5%) and approved 16,675
(78.5%). Therefore, in total, the dataset is composed of 16,675 MEPs together with
their peak-to-peak amplitudes and latencies.

To automate the MEP latency assessment, the DELMEP algorithm was developed
in Python 3.8 and its pipeline is composed of the following steps (Figure 6.2): (I)
pre-processing and (II) latency estimation with a neural network:

Pre-processing (step I): The pre-processing simplifies the training and use of the
neural network. Without the pre-processing, the high variability of the MEPs would

Figure 6.2: Workflow for automated assessment of MEP latencies in a possible closed-
loop TMS set-up. MEPs are measured with electrodes placed on the target muscle
and stored in a 120-dimensional vector. The pre-processing is done by trimming,
smoothing, centering, and normalizing the MEP. The resulting vector is used as an
input to the neural network for the latency estimation. The dashed arrows show
how the DELMEP algorithm could be applied to a closed-loop protocol (dashed
box), in which the brain stimulation parameters are modified depending on the MEP
responses.
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require that the neural network “learns” different inputs (MEP traces) corresponding
to similar outputs (latencies). Here, the MEPs are represented by a mathematical
vector of the raw voltage measurements, significantly reducing the complexity and in-
creasing the speed of deep learning algorithms necessary to process the data. Hence,
in this step, the data are (1) trimmed, (2) smoothed, (3) centered, and (4) amplitude
normalized. The MEPs are trimmed from 10 to 50 ms after the TMS (120 samples).
This is done to reduce and standardize their length, because in the resting condition,
the measurements shortly after the TMS and much later than the end of the MEP
do not carry relevant information. On the contrary, their inherent noise could pose a
problem to the training and use of the neural network, since it would unnecessarily
increase the dimensions of the input vectors. After trimming, the MEPs are smoothed
with a moving average filter with a window length of 3 samples, to reduce the high-
frequency noise of the recordings [196]. Next, the MEPs are centered by computing
their mean value in the first 15 samples (5 ms) and then subtracting it from every
sample. This step reduces the impact of low-frequency noise in the measurements, by
counteracting the shifting it produces in the mean MEP value. The window length in
the smoothing step and the time window in the centering step were tuned employing
a grid search algorithm. Lastly, the MEPs are normalized so that their minimum
and maximum values correspond to 0 and 1, respectively, to mitigate the effects of
the large variations in amplitude. A detailed representation of this preprocessing is
illustrated in Figure 6.3, where the changes on the two MEPs presented in Figure 6.1
are shown.

Deep learning algorithm (step II): The pre-processed MEPs are used as inputs to
the neural network, which produces a latency prediction as its output. This neural
network is built as a multi-layer fully connected perceptron layout with two hidden
layers of 30 artificial neurons each, and an output layer. A rectified linear unit acti-
vation function was used, and the network was trained with the Adam optimizer [71]
(early stopping criteria: 200 epochs; batch size: 32), as implemented in the software
package Keras 2.4.3 [197].

From all the MEPs available, 2,113 (13%) are low amplitude (peak-to-peak am-
plitude (VPP) <100 µV, 2,995 (18%) are medium amplitude 100 µV < VPP <200 µV
while 11,565 (69%) are high amplitude (VPP > 200 µV. The MEPs were first divided
randomly into a training (13,340 MEPs) and testing (3,335 MEPs) dataset, with a
training/testing ratio of 80/20. The accuracy and repeatability of the method was
verified by using it to evaluate the latency of the 13,340 and 3,335 MEPs in the train-
ing and testing datasets, respectively, and comparing these results with the manual
assessment of the expert. The comparison was made by computing the MAE between
the latencies provided by the method and those provided by the expert. The latency
prediction error was analyzed by computing the correlation of the automated latency
estimate with the two main MEP features: VPP and the manually annotated latency.
The computational times were also estimated for the DELMEP algorithm using a
standard computer (CPU Intel Core i7-5650U 2.2 GHz and 8 GB of RAM).

For comparison, the following algorithms were used to estimate the latency of
the MEPs in the testing dataset: Signal Hunter [185], AHTE [186], SHTE [186] and
Bigoni’s method [187]. These estimations were then compared to the manual anno-
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Figure 6.3: (a) Pre-processing of the two MEPs shown in Figure 6.1, divided into:
trimming (1), smoothing (2), centering (3) and normalizing (4). Panels (b) and (c)
show the MEPs before and after the pre-processing, respectively. When comparing
(b) and (c), note that the different MEPs look similar after the pre-processing, thus
facilitating the training and later use of the neural network.

tations of the expert and the MAE was computed for every method. Signal Hunter
is an open source software for MEP analysis having a latency estimation algorithm
based on statistical measures, it performs a moving average filtering on the MEP, dif-
ferentiates the smoothed signal, calculates the standard deviation (SD), and finds the
index value for which the difference between the absolute differentiated MEP value
and the SD is the largest; thereafter, it estimates the MEP latency by subtracting
a user-selected magic number from that index value. For these tests, Signal Hunter
was employed with a magic number equal to 5, following the author’s original im-
plementation [185]. The AHTE algorithm performs an absolute value operation on
the MEP, finds its maximum amplitude and determines the threshold value (Vthr),
marks ± 10% around the mean value of the MEP, and finds the index value where
the marked line is crossed by the MEP for the first time. The latency estimation is
obtained by subtracting a user-selected magic number from that index value. The
SHTE algorithm is based on the same principle as the AHTE algorithm, but it works
by squaring the MEP coefficients, instead of performing an absolute value operation.
The AHTE and SHTE algorithms (Vthr = 10% and magic number = 5) were imple-
mented as done in [186]. Bigoni’s method is a derivative-based method, it reduces
the MEP to a window of 10-50 ms after the stimulation, finds the peak and trough
of the MEP, performs an absolute value operation, computes the approximate first
derivative of the MEP until the peak, finds the longest vector of consecutive samples
having a positive derivative, and estimates the latency as the first sample of this vec-
tor. All algorithms were implemented in Python 3.8.

To evaluate the generalizability of the DELMEP algorithm, a cross-validation
(CV) was performed both within and across subjects. In a within-subject test, the
data of each subject was split in 5 folds; 80% of the MEPs were used as training
dataset and the remaining 20% as the validation set, interchangeably. Final results
were obtained by computing the average MAE and SD of MAE across folds for each
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subject separately. The inter-subject variability of the DELMEP algorithm was tested
using a leave-one-subject-out approach. In this test, the data from all but one subject
was used to train the model and the MAE was estimated using the data from the
left-out subject. This was repeated for all subjects and the MAE was computed in
every iteration.

An additional validation was performed in which the DELMEP algorithm and
Bigoni’s method were used to estimate the latency of the MEPs in an independent
dataset, which is composed of 1,561 MEPs and described in detail in the study by
Bigoni et al. [187]. This dataset was collected from 16 healthy volunteers (eight women
and eight men; age: 26.7 ± 2.6 years). The latencies were manually annotated by
three different experts (with 0.5, 5 and 14 years of experience) who did not take part
in the development of DELMEP. For validating DELMEP, the ground truth (GT)
latency was computed as the mean value from the three annotations. About 99% of
the MEPs in this dataset have a high amplitude (VPP > 100 µV), as these MEPs
were collected using a single-pulse paradigm, with a test-intensity chosen to produce
an MEP amplitude of 0.50 mV.

6.3 Results and Discussion

Training the neural network on a dataset of 13,340 MEPs required about 2 minutes
and pre-processing an MEP trace required 1.2 ms. On average, annotating a pre-
processed MEP required 65 µs. The estimated MEP latencies by the DELMEP algo-
rithm and corresponding MAE, for the testing and training datasets are illustrated
in Figure 6.4. The similarity between the automated DELMEP and the manual ex-
pert annotation suggests a successful training process, since the MEPs in the testing
dataset were not used to train the neural network.

To provide a practical example of the DELMEP performance, Figure 6.5 shows
eight MEPs and their corresponding automated and manually annotated latencies.

Figure 6.4: Automated MEP latency annotations with the proposed DELMEP algo-
rithm in the training dataset (green) and testing dataset (orange). The results are
compared to the manually assessed values. The MAE is presented for both datasets.
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Although such a small sample can only be considered as an illustrative example, it
provides a notion of how the proposed algorithm performs when used to replace a
human expert in MEP annotations.

Figure 6.6 illustrates the error associated with the DELMEP algorithm for the
corresponding MEP VPP and manually annotated latency. The sub-panel shows the
correlation between the DELMEP latency estimation error and the MEP VPP, for
MEPs with an estimation error equal or higher than 1 ms. From the 3,335 MEPs
assessed by DELMEP in the testing dataset, 1,895 (57%) had an error lower than
0.5 ms and 2,924 (88%) had an error lower than 1 ms.

Figure 6.5: Illustrative MEPs from the testing dataset and their corresponding au-
tomated (dashed violet vertical line) and manually assessed (purple vertical line)
latencies. These MEPs were not used to train the neural network. The similarity
between both latencies indicates a good performance of the DELMEP algorithm.
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Figure 6.6: Map of the DELMEP algorithm errors in estimating MEP latencies, as
a function of the MEP VPP and manually annotated latency. The upper-right panel
shows the DELMEP estimation error versus the MEP VPP, for MEPs with latency
estimation error higher than 1 ms.

The results from the comparison between DELMEP and Signal Hunter, AHTE,
SHTE, and Bigoni’s method are shown in Table 6.1, where the MAE is reported for
the entire testing dataset and also divided between high- and low-amplitude MEPs.
It is important to notice that Bigoni’s method discards MEPs when it is not able to
find a long enough vector of samples with positive derivatives. The minimum number
of samples with positive derivatives in this implementation was set to five, following
the original author’s implementation [187]. This resulted in 483 out of 3,335 MEPs in
the testing dataset (15%), most of which corresponded to low-amplitude MEPs, be-
ing discarded by Bigoni’s method. To make a direct comparison, only the remaining
MEPs were considered to compute the MAE of every method. However, for the CV,
in Table 6.2, the entire dataset was used. The resulting MAE from the five-fold CV
when using each batch for testing is reported in Table 6.2, together with the average
MAE for all tests and its SD.

The intra-subject variability was analyzed by computing a 5-fold CV using data
from one subject at a time, and repeating the process for all subjects. The MAE for
each data batch of each subject is reported in Table 6.3, together with the average
and SD for all tests. Furthermore, the correlation between error and dataset size for
every subject is shown in Figure 6.7, together with a fitted curve.

The inter-subject variability was analyzed by using the data of one of the subjects
for testing and the data from the remaining eight subjects for training; this process
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Table 6.1: Comparison of MAE obtained with DELMEP, Signal Hunter, AHTE,
SHTE, and Bigoni’s method for the MEPs in the testing dataset. The MAE is
reported for the entire dataset and for low (VPP < 100 µV) and high (VPP > 100 µV)
amplitude MEPs. MEPs discarded by Bigoni’s method were also discarded on the
other methods for a direct comparison.

Method MAE
low amp. [ms]

MAE
high amp. [ms]

MAE
all MEPs [ms]

Signal Hunter 22.9 6.3 7.7
AHTE 16.5 2.8 4.0
SHTE 7.3 1.3 1.8

Bigoni’s method 1.0 0.8 0.8
DELMEP 0.6 0.5 0.5

Table 6.2: CV of DELMEP across the entire dataset. The available data was divided
into five different batches. In each test, one of the batches was used to test the
algorithm and the remaining batches to train it. The MAE is reported for every
batch (CV 1-5), as well as its average and SD for all batches.

CV 1 CV 2 CV 3 CV 4 CV 5 Avg MAE [ms] SD [ms]
0.5 0.5 0.5 0.5 0.6 0.5 0.03

was repeated for each subject. The MAE for each subject together with the average
and SD for all tests are reported in Table 6.4.

The DELMEP algorithm performed better than traditional hard-threshold based
algorithms across different MEP amplitude ranges. This improved performance is
especially noticeable for low-amplitude MEPs, commonly recorded at low stimulation
intensities, when computing the motor threshold, as well as in inhibitory paired-pulse
paradigms [198][199][194]. For example, with the same low-amplitude MEPs (VPP

< 100 µV) in the testing dataset, DELMEP, Bigoni’s method, SHTE, AHTE and
Signal Hunter yielded an MAE of 0.6, 1.0, 7.3, 16.5 and 22.9 ms, respectively; with
DELMEP being about one order of magnitude more accurate than these algorithms.
On the other hand, with the same high-amplitude MEP (VPP > 100 µV) in the
testing dataset, DELMEP, Bigoni’s method, SHTE, AHTE and Signal Hunter yielded
an MAE of 0.5, 0.8, 1.3, 2.8 and 6.3 ms, respectively. This is possibly due to the
consistent accuracy of the DELMEP algorithm regardless of the MEP amplitude.
Such higher prediction errors correlated with lower MEP amplitudes can be explained
by the inherently lower SNR, which has a stronger effect on methods relying on hard-
threshold estimators [186].

From the user point of view, both DELMEP and Bigoni’s algorithms work by
providing the MEP trace as an input and obtaining the estimated latency as an
output. The ML nature of DELMEP makes it a more complex algorithm than Bigoni’s
method. However, this does not translate into a disadvantage for the user, since the
open-access code is ready-to-use and no experience in ML is required for using it in
research and/or clinical applications. Re-training DELMEP on a new training dataset



Chapter 6. Transdisciplinary Application to Biomedical Signals Processing 95

Table 6.3: Intra-subject variability of DELMEP. A 5-fold CV was performed using
data from one subject at a time, the process was repeated for all subjects. The table
contains the MAE for every data batch of each subject, together with the average
and SD for every subject.

Nº CV 1 CV 2 CV 3 CV 4 CV 5 Avg MAE SD
1 0.6 0.7 0.6 0.8 0.6 0.7 0.08
2 0.5 0.5 0.5 0.5 0.5 0.5 0.01
3 0.6 0.6 0.6 0.6 0.6 0.6 0.02
4 0.7 0.7 1.0 0.9 1.0 0.9 0.14
5 0.5 0.6 0.6 0.6 0.5 0.5 0.03
6 0.5 0.6 0.5 0.6 0.6 0.6 0.03
7 0.5 0.5 0.5 0.5 0.6 0.5 0.03
8 0.6 0.6 0.6 0.6 0.7 0.6 0.05
9 0.4 0.5 0.5 0.4 0.5 0.5 0.04

Table 6.4: Inter-subject variability of DELMEP. The data from one subject was used
for testing and the data from the remaining subjects for training. This process was
repeated for every subject. The MAE for every subject, together with its average and
SD are reported.

CV 1 CV 2 CV 3 CV 4 CV 5 CV 6 CV 7 CV 8 CV 9 Avg MAE SD
0.7 0.6 0.7 0.5 0.6 0.6 0.5 0.7 0.5 0.6 0.1

requires just minor changes to the source code and a few seconds of running time in a
regular desktop computer. Both algorithms require minimal human labor time and,
unless modifications to the code are intended, minimal interventions and technical
knowledge as well.

From a technical point of view, the main difference between DELMEP and Bigoni’s
method is that the former is an ML algorithm, which “learns” how to annotate MEPs
through a dataset of examples; while the latter is a rule-based algorithm, which finds
the latency of MEPs by following a static set of steps. This makes Bigoni’s method
simpler and a more explicable algorithm than DELMEP. However, an important
advantage of the deep learning approach is the possibility to pre-train and apply the
neural networks on application-specific datasets. For instance, separate models can
be created for MEPs from the leg, forearm, and hand muscles, which naturally have
distinct latencies [200][201]. Therefore, this approach may provide more accurate
automated annotations for a wider set of applications. Deep learning algorithms can
also be used in active-learning processes to constantly and automatically improve the
accuracy of their annotations [202][203][204][94], by periodically retraining them on
data generated during their utilization. This is of special importance for applications
on personalized medicine. As depicted in Figure 6.7, when training and testing on
data from a single subject, the latency estimation errors were noticeably reduced
as the size of the available dataset was increased. Thus, the proposed DELMEP
algorithm could be trained on already-available annotated MEPs of one particular
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Figure 6.7: Relation between the average MAE obtained during the intra-subject
CV tests and the dataset size of every subject (number of MEPs). Each data point
represents a different subject in the dataset.

subject, and thereafter used to automate the annotation of MEPs of this subject, in
order to ensure the best possible accuracy. This is a feature that non-ML algorithms
do not have, due to their static set of rules.

A deep learning-based algorithm requires a large dataset for training. However,
for a research lab already performing experiments using MEPs, there might be a
suitable dataset available, since just a few sessions can produce thousands of MEPs.
Data from previous studies are useful even if they were recorded on different muscles
and using a different setup (e.g., with a different sampling frequency or stimulation
paradigm). Moreover, if more MEPs are required, there is no need for the same
expert to annotate them. However, DELMEP would benefit from different experts
annotating different sections of the dataset, as that would reduce the chance of the
algorithm overfitting to biases that could be present in a single expert (e.g., a tendency
to under- or over-estimate MEPs latencies). In this regard, it should be noted that
DELMEP was trained on MEPs annotated by a single expert. There was a 0.20
ms increase in the MAE (0.50 to 0.70 ms) when comparing the results from testing
against the same expert used for the training, and a committee of three independent
experts on a different dataset. This increase could be partially caused by having
used a single expert to annotate the MEPs in the training dataset. However, this is
still accurate enough for the intended application. Moreover, using a single expert to
annotate the latencies facilitates and drastically speeds up the process, since only one
person has to visually inspect the EMGs recordings. On the other hand, the MAE of
Bigoni’s method when tested on their own dataset versus on the dataset used in this
work increased 0.40 ms (from 0.40 to 0.80 ms), indicating that a variation in accuracy
of this magnitude is possible even if the algorithm is not based on ML. As a reference,
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Bigoni et al. found a difference of about 0.40 ms when comparing the estimation of
two experts [187]. A comparison of DELMEP and Bignoni’s mehtod for the Bigoni
et al. dataset can be found in Figure 6.8. In addition, the low computational cost
associated with the DELMEP algorithm allows it to be efficiently used in real-time
closed-loop brain stimulation protocols [205][206] and combined with multi-coil TMS
electronic targeting for fast and automated cortical mappings [207][208][209], as it
requires roughly 1 ms to process an MEP.

In conclusion, a deep learning-based algorithm was developed to annotate MEP
latencies automatically without the need for a human expert intervention. The main
difference between this algorithm and previously reported solutions is that the deep
learning nature of DELMEP allows it to learn and improve based on the available
data, making it a candidate for personalized clinical applications. The accuracy of
the DELMEP algorithm was practically independent of the amplitude of the MEP, a
feature only found in Bigoni’s method, as all threshold-based algorithms considered in
this study failed this test. It was demonstrated that DELMEP had a high accuracy
on two independent datasets. The millisecond-level automated annotation in the
proposed DELMEP algorithm opens the possibility for real-time assessment of MEP
latencies in closed-loop brain stimulation protocols. The Python implementation of
the DELMEP algorithm is currently hosted as a public repository at [210].

Figure 6.8: Latencies annotated with DELMEP and Bignoni’s method vs. manually
annotated latencies for the MEPs in Bigoni’s dataset. The manually annotated la-
tencies are the mean value of the annotations of three independent experts.





Chapter 7

Summary and Outlook

This thesis addresses the computational costs associated with molecular dynamics
(MD) calculations at ab initio level accuracy. These calculations are essential in
various fields, including drug discovery [211], quantum chemistry [212], and bio-
physics [213]. The computational costs of traditional methods, such as density func-
tional theory (DFT), are so high that their use is limited to small systems and short
simulation times [15]. Consequently, the range of atomic systems and processes that
can be studied is severely limited, which motivates the development of alternative
solutions. The first attempts to address this issue led to the development of empir-
ical potentials, which are approximate mathematical models of the potential energy
surface (PES) tailored to specific applications [40][41][42]. While empirical potentials
have reduced computational times, their accuracy is often questionable.

In the past decade, machine learning (ML) interatomic potentials have attracted
interest due to their favorable cost-to-accuracy ratio. Since then, they have been
rapidly popularized. In this work, four ML interatomic potentials were developed: (I)
to model amorphous silicon-nitride [94][95], a material with applications ranging from
dielectrics in microelectronic devices to armorial-bearing in NASA’s Space Shuttle;
(II) to simulate the effects of neutron irradiation in silicon-germanium [115][116], rele-
vant for studying microelectronic components exposed to radiative environments, such
as outer space; (III) to investigate the oxidation process of silicon [121][214], crucial
for the semiconductor industry; and (IV) to model amorphous silicon-dioxide [129],
extensively used as an insulator in microelectronic devices.

These developments were based on the Gaussian approximation potential (GAP)
method [55], which reduces the amount of training data required for ML interatomic
potentials. As a result, development times were shortened, and computational re-
sources were used more efficiently. The accuracy of these ML interatomic potentials
was generally comparable to that of ab initio methods, with mean absolute errors
(MAEs) in the range of 5-10 meV/atom compared to DFT, while being three to four
orders of magnitude faster than this method. This allowed for the study of atomic
system sizes and simulation times previously unattainable by orders of magnitude.

During the development of these ML interatomic potentials, the creation of the
required datasets emerged as the main bottleneck. This is a common challenge in
the development of ML interatomic potentials, arising from the complex and high-
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dimensional nature of the target PESs. In order to mitigate this issue, the controlled
dynamical sampling technique was developed. This simple yet effective active learn-
ing technique reduces the number of calculations needed to train ML interatomic
potentials. Additionally, a second active learning technique was developed based on
selecting atomic configurations using a distance matrix to compare their local atomic
environments. However, the testing and publication of this technique fall outside the
scope of this thesis and are considered as future work.

The biggest drawback to the ML interatomic potentials’ performance was found
to be the hardware architecture of the scientific clusters in which they run. These
systems are based on the von Neumann architecture, where the memory is separated
from the central processing unit (CPU) and connected to it by a slow buffer. This
gives rise to the well-known von Neumann bottleneck [148], which is particularly no-
torious in MD simulations, since the positions and forces on thousands of atoms must
be shuffled back-and-forth millions of times. In order to mitigate this problem, the
use of a neuromorphic hardware accelerator was studied. Following the novel work
of Mo et al. [149], a neural network based ML interatomic potential for germanium
was developed. The application for this interatomic potential was the simulation of
germanium-based memristors, with cells composed of over 100,000 atoms. The results
indicate that this technique allows for MD simulations about two orders of magnitude
faster than the previously employed GAP method, with virtually identical accuracy.

The most common use of ML in the field of MD is in the development of in-
teratomic potentials. However, in this thesis, two alternative uses for this versatile
tool were proposed: (I) An ML model to estimate the formation energy of hydrogen-
based defects in amorphous silicon-dioxide [135], and (II) an ML model to predict
the atomic structure of these defects [146]. The advantage of using these ML mod-
els is that neither MD simulations nor geometry optimizations are needed, therefore
greatly reducing the computational costs and times associated with these tasks. The
design of these algorithms was modular, and they can be used for other defects and/or
materials.

Finally, the techniques developed to reduce the computational costs of MD calcu-
lations were adapted and employed to the automation of the analysis of biomedical
data [176]. This transdisciplinary application consisted in the development of an ML
algorithm to automate the evaluation of motor evoked potentials (MEPs) produced by
transcranial magnetic stimulation (TMS). MEPs are electromyography (EMG) traces
measured with electrodes on the target muscle of a patient, while TMS is a technique
that allows to non-invasively stimulate specific areas of the motor cortex in the brain.
The combination of these two techniques is widely used in the treatment of neurolog-
ical disorders, such as multiple sclerosis, and the treatment of a single patient might
require thousands of stimulations. Traditionally, a clinician must manually evaluate
each of these recordings, making this a slow and error-prone process. The ML algo-
rithm developed in this thesis automates this task, therefore accelerating the work of
medical doctors. Moreover, by analyzing the MEPs on-the-fly, this algorithm paves
the way to future closed-loop brain stimulation protocols [205][206].
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