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Kurzfassung

Verschiedene Industrien, wie Telekommunikation, Gesundheitswesen, Verkauf, Bankwe-
sen, Marketing, Bildung, Agrikultur, Produktentwicklung, Energie, Versicherung u.a.
produzieren jede Sekunde große Datenmengen. Algorithmen und verschiedene Programme
sind notwendig, um diese Daten zu verarbeiten. Neue Entwicklungen in dem IoT Bereich
produzieren immer höher werdende Datenmengen. Zusätzlich dazu, erhöhen verschiedene
Neugeräte den Datenfluss ständig. Da nicht nur diese Geräte, sondern auch die Quellen
der generierten Daten sehr unterschiedlich sein können, sind auch die damit entstehenden
Daten sehr divers. Oft verschärft sich dieses Problem in Ausnahmesituationen, wenn nicht
saubere Daten Echtzeitanalysen verlangsamen oder gar verhindern. Datenharmonisierung
der unterschiedlichen Datensätze ist eine Methode, mit der diese Herausforderungen
bewältigt werden können, da diese die Vergleichbarkeit der Daten erhöht. Über die
Jahre sind viele Lösungen der Datenharmonizierung entstanden, jede mit den eigenen
Vorteilen, aber auch Einschränkungen und Herausforderungen. Die Schwierigkeiten der
Datenharmonisierung mit diesen Methoden existieren aber größtenteils weiterhin, da aus
der Literatur sehr viele Methoden eine monolitische Natur haben. Um diese Probleme
zu bewältigen, stellt diese Arbeit eine Microservices Architektur vor, die die Sammlung
von Daten und deren Preprocessing mithilfe von Datenharmonisierungsmethoden er-
möglicht. Die vorgestellte Microservices Architektur zur Datenharmonisierung erlaubt
es, Daten über APIs oder von Dateien zu importieren. Hiermit wird die Flexibilität
der Datensammlung erhöht. Weiters zeigen wir mithilfe von Speicher- und Rechenzeit-
analysen, dass unser Ansatz in verschiedenen Bereichen effizient und effektiv arbeitet.
Damit die Vorteile aufgezeigt werden können, haben wir verschiedene Szenarien erstellt.
Auf der einen Seite haben diese das Aufräumen von Datensätzen, wie z.B. das Löschen
von doppelten oder leeren Einträgen, beinhaltet, auf der anderen, haben diese sowohl
öffentliche als auch private Datensätze berücksichtigt. Wir zeigen, dass das Importieren
der Daten aus Datenbanken besser als der Import aus Dateien ist. Mit dem Ansatz der
automatisierten Datenharmonisierung wird nicht nur der manuelle Aufwand während der
Datenverarbeitung reduziert und die Qualität der Daten verbessert, sondern auch die
Kosten gesenkt und die Datenintegrität erhöht.
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Abstract

Real-world applications such as healthcare, telecommunications, retail, law enforcement,
banking, marketing, education, agriculture, new product development, energy and utilities,
insurance, and urban planning produce massive amounts of data every second, and tools
and algorithms are key to assessing this data. Recent advances in RFID such as IoT and
sensing devices are also contributing a vast amount of data, and the amount of devices are
also increasing the data generation continuously. Due to the diversity of devices and data
gathering sources, it is highly incongruent, heterogeneous, and fragmented. Often, these
issues are exacerbated in emergency situations when unclean data stalls real-time analyses.
Data harmonization of different datasets is an increasingly common method of overcoming
these data challenges by maximizing comparability. Over the years, multiple solutions
have been developed for data harmonization with their own limitations, challenges and
advantages. However, data harmonization complexity still exists in these methods and
it’s highly complex due to the monolithic nature of the majority of the methods in the
literature. To overcome these issues, this thesis introduces a microservices architecture
designed for automating data gathering and preprocessing using data harmonization
methods. Our proposed microservices-based data harmonization architecture supports
data importation from files or via APIs, facilitating flexibility in data sourcing. We
analyze and prove our approach is efficient and effective in various aspects such as
improving memory and computational time. To confirm the superiority we evaluated
our method using various scenarios that included the efficacy of removing duplicate
and empty entries in reducing memory consumption and preprocessing time over public
and private datasets. Moreover, comparative analysis reveals that importing data from
databases outperforms file-based imports. In addition to reducing manual overhead, our
approach benefits from enhanced data quality through automated preprocessing, which
can reduce costs and improve overall data integrity.
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CHAPTER 1
Introduction

Data analytics and big data play an important role in today’s digital world, spurred by
social media interactions, searches, data collected from electronic devices (for example,
wearable and IoT devices), data generated by artificial intelligence (AI) tools (for example,
ChatGPT), weather data, and content consumption that produce exponential amounts
of data [1]. In the age of big data, businesses are increasingly leveraging it to improve
operational efficiency, gain insights into customer behavior, and drive innovation [2]–[4].
Businesses generate 1.7 megabytes of data per second on average, which is growing
at a rate of 1.7 megabytes every second. The global big data market is expected to
continue its robust growth trajectory, reaching $90 billion by 2025 and $103 billion by
20271. Big data analytics is driving significant transformations in industries such as
manufacturing, healthcare, and entertainment, with applications ranging from supply
chain optimization to personalized content recommendations. In the future, the increase
of internet-connected devices and the adoption of emerging technologies such as AI and
machine learning (ML) will further increase the amount of data that can be analyzed
[5]. Big data presents both opportunities and challenges for businesses in order to gain
competitive advantage and make strategic decisions.

"Data is the new oil" was a speech given by Clive Humby in 2006, which emphasized on
data being invaluable in it’s raw state. After preprocessing and harmonizing, similarly as
to oil refinment, data gains it’s real value. By today’s interpretation of the citation, not
only the data needs to be refined to be valuable, but also the data itself is one of the
most valuable resources in the world [6]. Our global emissions data were meticulously
curated, with tonnes of carbon converted into tonnes of carbon dioxide (CO2) using 3.664
as the conversion factor [7]. Kuwait’s emission record for 1991 includes emissions from
Kuwaiti oil fires, ensuring accuracy and completeness. Moreover, each country’s share of
global population has been meticulously calculated using a comprehensive population

1https://whatsthebigdata.com/big-data-statistics/
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1. Introduction

dataset gathered from reputable sources. The Global Carbon Budget dataset has also
been utilized to determine each country’s share of global CO2 emissions from flaring.
This ensures a comprehensive and fair assessment of emissions [8].

For many years the amount of data has increased rapidly. Not only the amount of data,
but also the diversity of data and the variety of sources from which data can be received
have increased, e.g., sensor devices and IoT [9]. Thus the analysis of this data becomes
increasingly cumbersome and requires more and more resources to process it properly.
This data is highly incongruent, heterogeneous, and fragmented [10], [11]. Analyzing
such heterogeneous and incongruent data is incredibly complex without preprocessing.
Traditional preprocessing techniques are highly computational, requiring a lot of time
for preprocessing and analysis [12], [13]. The data harmonization and analysis has to
keep up with the rate at which this new data is generated [14]. This data needs to be
gathered, harmonized, analyzed and provided to stakeholders or customers, depending on
the industry. This is imperative, so that affluent learnings can be acquired from the data
[15]. Such things can bolster the company, the government, and industries into investing
in new technologies to advance their fields of interest. Harmonization is a crucial step in
this learning process. Without it, multiple issues can arise. Harmonization cleans up
data and prepares it for analysis. Data cleaning involves removing duplicate or empty
entries from the dataset, for example.

Without the removal of these entries, the dataset might fill up with more unusable data
rows. If this gets out of hand, the system might perform poorly. Even more alarming
is that, if these datasets with incorrect entries are used in further data analysis, false
outcomes might be produced. Moreover, different datasets might have different column
names for the same values, such as dates - in one dataset, the year attribute might
be called "year", while in another, it might be called "originatingFrom". During data
analysis, these inconsistencies might cause thorny problems if there are too many of them.
Having many different column names representing the same value can cause the overview
to be lost easily. It may be helpful for those who work with these datasets to analyze
the columns and rename them to the same column names [16]. In the event that more
and more data is imported into the system, the previously mentioned problems might
multiply rapidly. New data is generated continuously all over the world, so receiving
new data into a data cluster is easy [17]. It is essential to properly preprocess data in
order to avoid or at least mitigate problems that may arise. It is therefore necessary
to consider automatic procedures since manual adaptations are time-consuming and
ineffective. These harmonization systems can also pose a problem in terms of their setup
[18]. In order for these systems to deliver large amounts of data in a short period of time
in a reliable manner, their architectures must be carefully planned. It is necessary to
provide a new harmonization architecture that can support people who use the system
well, for example, reduce wait times, deliver data, which can be analyzed and integrated
with other datasets.

This thesis proposes an architecture capable of automatically harmonizing different
datasets. This involves gathering data from various public or private sources and
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importing data from file storage. After the data gathering phase is completed, the
proposed architecture must harmonize the data in multiple dimensions, such as removing
empty or duplicate entries, introducing new data columns for harmonization purposes, or
renaming existing ones. All of this preprocessing needs to occur automatically without
human interaction [19]. Once the harmonization process is finished, the architecture needs
to provide a solution for saving the data in an easily accessible manner for stakeholders,
customers, or other interested parties to access easily. After engineering the architecture,
a prototype of the proposed architecture will be implemented, fulfilling all the main
aspects including data gathering, data preprocessing, persisting data, and enabling data
access [20]. As the prototype is completed, the objective is to import raw data into the
system and execute the data preprocessing algorithms to ensure they work as intended.
Furthermore, the implemented system needs to be evaluated with appropriate testing,
including performance tests based on the elapsed time during a single data preprocessing
run, and comparing memory requirements through before and after memory comparisons.

This study focuses on enhancing data analysis techniques, particularly optimizing existing
data harmonization methods. In this context, we believe that dividing a monolithic
architecture into multiple microservices can have benefits on the scalability and main-
tainability of the system [21]–[23]. If large systems with many different functionalities
need to be put in place, microservices architecture, or more generally distributed systems,
can be the go-to solution[24]. Additionally, concentrating on data and preprocessing,
this thesis offers valuable insights that various industries and companies can leverage
to automate their data harmonization processes. Such automation has the potential to
yield significant economic benefits, especially if implemented in a manner that supports
data analysts in streamlining data harmonization tasks.

In this thesis, a variety of methods were employed to overcome existing limitations. The
proposed methodology is summarized in this thesis as follows.

• We propose a microservice-based harmonization system for data pre-processing.
Further, we explore each microservice implementation in detail.

• We designed a single system with multiple microservices to access public and private
databases separately without violating privacy constraints.

• We evaluated proposed microservices-based harmonization using publicly available
Eurostat and CO2 emission datasets, and industry provided private datasets.

• We analyse various performance metrics such as memory and computational time
under different scenarios.

The remaining chapters of this thesis are organized as follows. The chapter 2 of the thesis
references literature reviews. In chapter 3 the proposed microservice-based harmonization
architecture is discussed in detail. Chapter 4 discusses the detailed implementation of
the architecture, data models and evaluation metrics with a detailed results analysis.
Finally, we concluded our thesis with a future scope in Chapter 5.
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CHAPTER 2
Literature Review

This chapter provide various data gathering, analysis, accessing methods or architectures,
available in the literature.

Over the years, various systems for gathering, analyzing, and accessing data have been
developed in response to different needs within the software development community.
Among these are federated systems, data gathering agents, and Internet of Things (IoT)
systems, each serving distinct purposes that partially align with the objectives of the
current thesis. A federated system, also known as a federated database system, is a
collection of multiple separate databases. It is possible for these databases to have
heterogeneous data or data formats but that is not always the case. Whenever a client
or application requests data, the federated system can gather that information from
these different sources and combine it as if it were locally stored. This approach enables
the system to provide more accurate answers than if only one database was utilized
independently [25].

Data gathering agents [26] work in a bottom-up approach to provide data to the users.
Here the agents only access the information from agents beneath them in the hierarchy
and/or from the raw data sources. These agents each are specialized in a specific domain,
eg. geopolitical data, weather or transportation agents and are able to learn and improve
on the made requests. In this work, the researches discussed, that it is important for
such agents to fulfill the following attributes:

• Modularity - the agents should be responsible for one thing only and the combination
of different source agents or databases allow the construction of more advanced
agents with higher degree of information

• Extensibility - adding new agents should be simple. The process of exporting data
from one agent to the next one should be easily doable.

• Flexibility - in regard to accessing different sources to combine the information
or in case of outages the agents should be flexible enough to reroute to different
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2. Literature Review

sources or use cached information
• Efficiency - using parallelism, query optimization, caching and other tools to

improve the performance of the agents in the sense of how fast a response is
delivered after a request has been received

• Adaptability - possible changes in the data models should be easily doable

In the field of IoT devices there have been incentives into gathering and analyzing data.
For this purpose multiple challenges have to be managed, eg. the amount of data received,
the amount of devices sending data and the different protocols used [27]. Herefore,
specific architectures have been thought of and developed. For example, architectures
with multiple layers - the perception, the network and the application layer. Further
sources use five or more layers [28], [29]. All of them focus on the communication
in-between the IoT devices and between IoT devices and servers. Hardly any look into
how the server internal architecture should look like to be more effective.

There are many different software architecture patterns thought of throughout the years.
Each of them have different applications, advantages and disadvantages. Some of them are
for example event-driven, microkernel, monolith and microservice software architectures.
From these only microservice and monolith solutions would have been suitable for the
system at hand. This is because the other two fulfill different objectives or the use case
is not given in this project. For the event-driven architecture, events need to be used.
But the project at hand does not have such event streams or events, which should be
received and processed asynchronously [30]. The microkernel architecture is used for
creating different packages of a product - having one core model and multiple possible
add-ons, which can be added on top of the core model as needed [30]. Since the project
at hand does not require different packaging, this pattern is not fitting for the system.

The choice for microservice and against monolith architecture was based on multiple
reasons. First and foremost microservices are fine grained and they can be deployed
separately[31]. This would allow future changes not to force a redeployment of the whole
environment, but only the updated service. Furthermore, in a cloud environment, the
services can be scaled separately. For example, as the amount of users of the system
grow, the number of services experiencing high loads can be increased without scaling the
other services[30]. For a monolith, only scaling of the whole system would be possible.

In this context also service-oriented architecture, short SOA, should be referred to. This
software architecture pattern can be seen as one of the predecessors of the microservice
architecture. SOA is complex, difficult to understand and implement, and in comparison
to other architectures more expensive. [30] So, SOA was ruled out of the possible
architecture types to implement. As the other architectural styles were ruled out due
to different reasons, microservice system architecture was chosen as the system type to
implement.

In general, microservices or microservice system architecture is a software system archi-
tecture, where multiple small services get implemented and deployed. These services
should have multiple characteristics:[32]
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• independently deployable
• loose coupling
• match business environment capabilities
• development is done by one small team

Since this is a small scale prototype, only the first two of these requirements can be
fully fulfilled. As the industry partner’s business around this project is in it’s beginning
phases, the business environment capabilities are known only to a limited extent. As
for the fourth and final point - the development of a single small team for each of the
services is not possible, since this is a master thesis project for a single person. In the
future, though, the prototype can fulfill this requirement, as the project shifts fully into
the industry partner’s development environment.
Analyzing the existing microservice architectures and solutions was an important part
of the literature research. In the literature reference [33] a data lake was setup for data
storage and data analysis was included in an already existing microservices environment.
Alongside using already existing technologies, like Apache Spark for data analytics, the
thesis [33] suggests to implement multiple layers for the different steps - data ingestion,
data storage, data analysis and access. This was also considered for the work at hand.
In comparison to the work [33], the thesis at hand proposed a complete microservices
architecture for the solution to be able to better influence the different parts of the
system. Furthermore, in this thesis the data preprocessing is the final part of the process
at hand. Further steps regarding data analysis are not a subject for this thesis. This way,
the data preprocessing can be researched more in depth to find improved solutions on
the one hand, and on the other - automatic preprocessing can be considered. Automatic
preprocessing improves the performance of the preprocessing and reduces the time needed
by a person preprocessing the data. Furthermore, also an architecture is proposed in the
current work. If an architecture is implemented, more freedom can be achieved as in
opposition to online environment with given tools.
The paper [34] proposed an integration of a microservices architecture into a medical
hospital environment. This architecture should cover all of data management steps -
gathering, storing, harmonizing and granting access to the data. The environment in
paper [34] was analyzed and a specific solution with multiple services was proposed and
implemented. Although a similar prototype was implemented, no in depth analysis of
the harmonization was conducted. Furthermore, the proposed solution in source [34] is
an environment specific solution with only medical data taken into consideration. Thus,
it is not applicable for general use, as opposed to the solution proposed in this thesis.
A systematic literature review [35] discussed, what data harmonization techniques exist
and how they are used. Data harmonization techniques with AI, natural language
processing (NLP) and deep learning (DL) were looked at. Limitations to this systematic
literature research [35] are, that here only theoretical work has been done, no implemen-
tations. Furthermore, only the analysis of data harmonization techniques has been made
and no architecture solutions were discussed. When talking about other possibilities
to harmonize data, this article [36] works with one of the newest technologies in the
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field, where multiple datasets are merged. The author of [36] uses integrative data
analysis to combine and analyze data from multiple source data sets. Integrative data
analysis merges data sets by their common attributes, eg. Demographic information. The
limitation to this work is on one hand, no microservices architecture was looked at and
no general architecture, how to integrate this system, was analyzed. Furthermore, the
datasets considered in this thesis are raw data sets without any existing links between
one another. For the work in [36], datasets with similar data were considered.

This paper [37] handles the quality of the harmonized data and stresses how important
it is, to have good quality data and proper harmonization, which doesn’t lose any
information during the harmonization. Furthermore, machine learning algorithms were
included into the study [37] to see their impact on the data quality reduction. The
limitations for the thesis [37] to this work are, that machine learning algorithm was
incorporated, data leakage for the harmonized data sets was measured and compared for
different harmonization methods. In this scientific paper [38] the authors conducted an
analysis of data harmonization techniques in combination with how good machine learning
algorithm perform after using data, that was harmonized with different methods. The
paper [38] considers data harmonization techniques in comparison with machine learning.
This is not done in the thesis at hand. Instead of looking for use cases between data
harmonization and machine learning, a system for data preprocessing is proposed. The
authors in paper [39] harmonized trade data with meta heuristic techniques. Although
harmonizing trade data is also a part of general data harmonization, the paper [39]
considers heuristic data harmonization, which is a different approach than proposed in
this work.

Adhikari et al. proposed variable harmonization as a strategy to facilitate data pooling
from heterogeneous datasets [40]. This paper illustrates how variables with differing
measurement methods can be standardized to enable meaningful comparisons and analyses
by describing specific harmonization strategies used in Canadian pregnancy cohort studies.
Kush et al. provide a solution in [41] to address the challenges surrounding data sharing
and interoperability in clinical research and healthcare, despite the recognized value
of such practices by various stakeholders. It addresses various limitations, including
common data elements (CDEs), such as lack of standardization, inconsistent terminology,
and fragmented development processes, preventing comprehensive interoperability and
data reuse. However, this method focus only on medical data and interoperability issues.
Torbati et al. compared different data analysis methods for neuroimaging studies that
included data from multiple scanners [42]. The study addresses technical variability
related to image intensity scale differences and scanner effects. In this study, Torbati
et al. examined methods that did not undergo any data transformation (RAW), that
normalized intensity using RAVEL, that harmonized regionally using ComBat, and that
combined these methods to reduce bias in neuroimaging data. Kalter et al. developed
and implemented a flexible Data Harmonization Platform (DHP) designed to harmonize
individual patient data (IPD) from multiple studies [43].

Firnkorn et al. a systematic and generic approach for harmonizing heterogeneous medical
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data within research networks, specifically focusing on lung cancer phenotype data in
the context of the German Center for Lung Research [44]. An eight-step process for
data harmonization is presented in the paper that integrates spreadsheets and Talend
Open Studio to unify disparate data formats and definitions. This approach results in
the creation of a common basic dataset consisting of 285 structured parameters for lung
cancer research, implemented within an I2B2 research data warehouse. It simplifies the
complex process of data harmonization, facilitating collaboration between researchers
in the field of lung cancer and advancing research. Papadimitroulas et al. in [45]
provides a comprehensive review and synthesis of key advancements and challenges in
the intersection of radiomics, deep neural networks (DNNs), and explainable AI (XAI)
within the context of modern radiation oncology. They also provide a framework for
understanding the role of DNNs in analyzing medical images and uncovering hidden
biomarkers by examining the evolution of artificial intelligence in radiation oncology and
the increasing use of computational methods for personalized diagnosis and treatment
precision. Additionally, the paper provides a comprehensive overview of the technical
landscape, covering radiomic feature extraction, DNNs in image analysis, and major
interpretability methods for explainable AI.

Fay et al. introduced SeaFlux in [46] which ensemble data product, which addresses the
challenge of estimating the net flux of CO2 across the air-sea interface in a consistent and
harmonized manner. With this data product, users can synthesize surface ocean CO2
observations from multiple sources into near-global coverage. SeaFlux ensembles address
differences in spatial coverage and methodological inconsistencies by integrating six global
observation-based mapping products and three wind products. In this work, surface
ocean CO2 observations are harmonized and air-sea carbon fluxes are calculated using
consistent inputs. This study emphasizes the importance of methodological consistency
in estimating carbon fluxes by resulting in significant improvements in CO2 uptake for
some products. Tarazona et al. proposed a comprehensive framework in [47] for multi-
omics data analysis, which includes harmonized Figures of Merit (FoM) to assess quality
and a MultiPower method to determine optimal sample sizes. Our work proposes a
comprehensive framework for multi-omic data analysis, which includes harmonized Figures
of Merit (FoM) to assess quality and a MultiPower method to determine optimal sample
sizes. Introducing harmonized FoM fills a significant gap in the field in this paper, which
provide standardized metrics for assessing the quality of multi-omic measurements across
different omic technologies. MultiPower enables researchers to customize experimental
designs based on specific data requirements, supporting different settings, data types,
and sample sizes. Additionally, MultiML complements MultiPower by estimating sample
sizes for machine learning classification problems using multi-omic data.
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CHAPTER 3
Microservice-based Harmonization

In this chapter, we discuss our proposed System Architecture for Harmonization (SAFH).
Initially, data collection from multiple publicly accessible data sources (from different
companies) has to be taken. All these imported data needs to be saved stored as (a) raw
data (before preprocessing) and (b) preprocessed data. The preprocessed data needs to
be available for the different customers and admins, and data analysis programs used
internally.

This chapter will introduce the different parts of the SAFH system and provide a detailed
discussions about them. An overview of the proposed SAFH system is provided using
Figure. 3.1. As a part of SAFH system, we explain data collection, communication, and
preprocessing stages in this chapter.

3.1 System Overview
As mentioned earlier, the system has to fulfill many different functionalities. Since the
proposed system uses microservices architecture, for each of the main functionalities
are consolidated into a separate microservice. For example, the general architecture
(Figure 3.1) use following microservices:

• Public Raw Data Extractor Microservice (number 2) is used to extract
the data from the different public data sources.

• Raw Data Request Parameter Microservice (number 3) has the function-
ality to save the request parameters necessary for requesting data from the public
raw data sources.

• Raw Data Microservice (number 5) is necessary for managing raw public data.
• Preprocessed Public Data Microservice (number 7) manages data from

publicly available sources after it has been preprocessed.
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3. Microservice-based Harmonization

Figure 3.1: Overview of System Architecture for Harmonization

• Data Preprocessing Microservice (number 9) is responsible for prepro-
cessing the gathered data.

• Preprocessed Private Data Microservice (number 11) is used to man-
age the private data after it has been preprocessed.

Subsequent sections of this chapter explain in detail about each microservice and their use.
Also, these microservices persist and manage data, databases and data stores frequently,
such as:

• Request Parameter Database (number 4) is required by the Raw Data Re-
quest Parameter Microservice.

• Raw Public Data Database (number 6) is used by the Raw Data Microservice.
• Preprocessed Public Data Microservice needs Preprocessed Public Data

Databsae (number 8).
• Raw Private Data Blob Storage is used to save the raw private data files.

These files are then imported by Data Preprocessing microservice.
• Preprocessed Private Data Database is required by Preprocessed Private
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Data Microservice.

Additionally to the data storage and the microservices, several other components are
needed to fulfill harmonization. For example, inside the cloud system, a communication
environment (to communicate with one another) between different microservices is
necessary as shown in Figure 3.1 i.e., Communication Layer (number 13). A proxy
(number 14) used by admins (number 15) and different clients (number 16) to interact with
the system. The proxy is explained in detail in subsection 3.3.5. Also, publicly available
data is considered as data source and it is acceded using Public Data APIs (number 1).
Rest of this chapter discuss more details about data collection and access, communications,
and processing in proposed Harmonization system and their microservices composition.

3.2 Data Collection and Access
Collecting data and enabling access to it is a core functionality of the proposed harmo-
nization system. To ensure quality of service through systems functionalities, the data
collection and access should be made easy, straight forward and repeatable as often as
necessary. This section provide a detailed microservices composition for raw public data
collection and storage followed by harmonized data. Further, we also provide details
related to accessing it from outside the cloud system.

3.2.1 Public Raw Data Collecting and Storing
In this section, we focus on the critical aspect of data collection and storage within the
proposed Harmonization architecture. We access various publicly available raw data
sources and store the necessary data from these sources in the raw data databases.

Figure 3.2 shows the process of collection (import/extract) and storage of Raw Pub-
lic data. The Admin (number 1) is the initiator of the raw data extraction. Admin
can send an extraction request through Proxy (number 2) to the Public Raw Data
Extractor Microservice (number 3). More details about the Proxy are discussed
further in section 3.3. The Open Data API (number 4) is a public raw data source. The
Raw Data Request Parameter Microservice (number 5) and the Raw Data
Microservice (number 7) with the corresponding databases - Request Parameter
Database (number 6) and Raw Data Database (number 8) - are both necessary microser-
vices for data extraction and storage processes, and will be discussed in the upcoming
subsections.

Raw Data Extractor Microservice

The Raw Data Extractor Microservice is used to extract public data from many
different database sources. This service consists of multiple classes, which are depicted
in Figure 3.3. In this figure, we can notice an external communication layer (number
1) and four classes interconnected with each other, ensuring different services, such as
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Figure 3.2: Public Raw Data Import Process Diagram

Communiator (number 2), RawDataExtractor (number 3), Manager (number 4) and
RawDataParser (number 5) classes. Each class and their roles are described as follows:

Communicator Class (number 2) enable connection with other microservices in the
cluster. Specially, it is useful to receive requests from other microservices and
to get requests from the system users. The communicator class supports three
functionalities through following functions:

• The SetupCommunicator() method serves as the initial setup phase, re-
sponsible for creating and initializing essential components such as communi-
cation protocols and configurations. For instance, if the system employs the
HTTP protocol for communication, this method facilitates the creation and
initialization of the "RestService" module, including configuration settings such
as port properties. Additionally, it facilitates the setup of required endpoints
to facilitate seamless communication. In cases where a message broker is
utilized, this method also handles the establishment of subscriptions to various
topics as needed.

• Upon receiving a request for data extraction from a designated source, addi-
tional details regarding request setup, such as headers, authentication meth-
ods, and specific URL paths, may be essential, which is taken care of by
the GetRequestParameters(...) method. This essential information is
stored within the Raw Data Request Parameter Microservice. Re-
trieval of this data necessitates the utilization of the GetRequestParameters
(...) method. Through the use of a unique identifier (ID), the method
retrieves the list of request parameters, forwarding them to the Manager class
(number 4) for subsequent processing.
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Figure 3.3: Raw Data Extractor Class Diagram

• SaveRawData(...) method is invoked following the completion of raw data
extraction. This method orchestrates the storage process. Leveraging the
RawDataModel, as elaborated in upcoming subsections, the extracted raw
data is transmitted to the Public Raw Data Microservice for archival
and storage.

RawDataExtractor Class A separate class Raw Data Extractor was introduced
to retrieve data from a wide variety of public data sources (number 3). Comprised
primarily of the ExtractRawData(...) method, this class orchestrates the
formulation of requests to various external public data sources. There are numerous
variations in request structures, URL paths, headers, responses, and data structures
involved in data acquisition, which is due to the heterogeneity of these sources.
Consequently, a meticulous analysis of each connected data source is crucial. It is
essential that the components interfacing with raw public data within a microservice
system are highly adaptable in order to accommodate this diversity. Thus, the
recommended strategy involves creating a dedicated RawDataExtractor class,
possibly designed as an interface with multiple implementations in the future.
Raw Data Extractor’s limited scale results in a single method: ExtractRawData(...).
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In this method, URLs and specific request parameters are expertly crafted, re-
sponses are retrieved, and they are seamlessly transmitted to the Manager class for
processing.

Manager Class (number 4) is used as the central orchestrator within this microservice,
tasked with the reception, transmission, and parsing of requests and data. Its
functionality spans multiple key tasks, each meticulously executed to ensure an
uninterrupted operation. Initially, the Manager class receives a data extraction
request from the Communicator class (number 2). Subsequently, upon receipt of
the initial request, the Manager class solicits additional request parameters specific
to the data extraction process. The Manager class retrieves the required parameters
by calling the GetRequestParameter(...) method from the Communicator
class, as previously described.
In the subsequent phase, the Manager class interfaces with the RawData
Extractor class (3), using the acquired request parameters, to begin captur-
ing data from the specified source. Manager class executes initial adaptations with
assistance from RawDataParser class (number 5) after receiving the RawData
Extractor class’ response. Through the Communication Layer, the Man-
ager class facilitates the preparation and storage of raw data and returns the
execution result to the originating caller. Through the entire execution cycle, the
Manager class verifies the positivity of responses from various services and exter-
nal sources. CheckPositiveResponseStatus(...) executes this validation
process, which ensures that any encountered errors are promptly identified and
relayed to the initial caller. When an error occurs, execution halts at the point of
occurrence, and the relevant error message is relayed.
Within the Manager Class, the culmination of all previously outlined steps is
encapsulated within the ExecuteRawDataExtraction(...) method. This
method serves as the orchestrator for the entire raw data extraction process.
The pseudocode for this method is delineated in Algorithm 3.11. Commencing
with the display of the request parameter entry ID on line one, subsequent steps
involve the reception and validation of request information from the Request
Parameter Service on lines two to five, ensuring error-free processing. Lines
six and seven initiate raw data extraction, followed by lines eight to ten handling
errors meticulously. Upon successful extraction, the obtained raw data is dispatched
to the Raw Data Microservice for storage on line eleven. After a final error
check on lines 12 to 14, the raw data extraction process is completed by providing
the resultant response to the caller on line 15.

Raw Data Parser Class In the microservices ecosystem, data originating from diverse
sources often arrives in varying formats, requiring adaptations to ensure uniformity
and compatibility. In the Raw Data Parser class, structural adjustments
are made to align the received data with the standardized format used by other
microservices in the cloud system. The prototype proposed the JSON format
as a result of the variety of possible data types. The decision was influenced
by widespread adoption, ease of integration, and compatibility with a variety
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Algorithm 3.1: Execute Raw Data Extraction method
1 id
2 requestInformation ← getRequestParameters(id)
3 if requestInformation = error then
4 return error
5 end
6 rawData ← extractRawDataJSON(requestInformation.url,
7 requestInformation.requestParameters)
8 if rawData = error then
9 return error

10 end
11 savedData ← saveRawData(rawData, requestInformation.rawDataModel)
12 if savedData = error then
13 return error
14 end
15 return savedData

of programming languages. Microservice environments require simplicity and
versatility, and technology stacks may change over time. This class is composed
using ParseDataObjectTo(...) and PrepareData(...) methods.
In the first method, ParseDataObjectTo(...), raw data is converted into the
designated JSON format. The PrepareData(...) method then harmonizes the
JSON structure to conform to other microservices’ data structures. Integrating
the internal cloud system seamlessly requires correcting discrepancies such as
swapping data columns and rows. PrepareData(...) also performs basic data
cleansing to enhance data quality. The dataset is streamlined and optimized by
removing extraneous information such as timestamps and text descriptions. The
elimination of empty data rows also mitigates potential distortions and enhances
dataset integrity, which ultimately facilitates more accurate analysis. It is essential
to perform this initial preprocessing step in order to refine the data, improve
its quality, and simplify subsequent processing steps. Microservices are built on
seamless integration and meaningful analysis of data that is cleansed at a basic
level and standardized at this point.

Raw Data Request Parameter Microservice

The Raw Data Request Parameter Microservice serves as the central reposi-
tory for storing and managing request parameters pertinent to various public raw data
sources. To effectively handle this complexity, the Raw Data Request Parameter Mi-
croservice is proposed, facilitating streamlined management of diverse parameters. The
class diagram of this service is depicted in Figure 3.4, showcasing its integral role within
the architecture. Communication layer (number 1) is responsible for orchestrating

17



3. Microservice-based Harmonization

Figure 3.4: Raw Data Request Parameter Microservice Class Diagram

seamless communication between the internal cloud infrastructure and the users. A
variety of components, such as Communicator (number 2), Manager (number 3) and
Database Client (number 4), play a crucial role in managing and retrieving param-
eters. There will be further discussion of these components in subsequent subsections,
culminating in an examination of the Request Parameter Database (number 5).

Communicator Class (number 2) functions as the central interface facilitating com-
munication between the microservice and the internal cloud structure. Initially,
the microservice must be set up with endpoints and services. A Rest endpoint
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service is configured and the requisite endpoints are associated with it using the
SetupCommunicator() method. These diverse endpoints support requests that
involve creating, retrieving, updating, and deleting request data and parameter
entries within the database. The Communicator class delegated these requests
to the Manager class for further processing, maintaining a clear separation of
concerns. After processing by the Manager class, the outcomes are relayed back
to the Communicator class for delivery to the requester. In the event of errors,
the HandleResponse(...) method facilitates the exchange of error messages
and/or codes to enhance readability for the requester. At this stage, centralizing
error handling reduces maintenance costs and simplifies microservice complex-
ity. Additionally, ensuring a coherent communication workflow is facilitated by
meticulously assigning HTTP error codes.

Manager Class act as a mediator between Communicator, Request Parameter
Database (number 5) and DatabaseClient (number 4). This means, the
requests received by Communicator class are passed on to the Manager class.
After doing sanity checks, Manager class sends these requests to the Request
Parameter Database. Following is a list of all the proposed requests for the
database including their functionality descriptions:

• AddRequestParameter(...) – used to introduce a new request parameter
to the database.

• GetRequestParameter(id) – used to get a request parameter based on
an id.

• GetAllRequestParameters() – utilized for receiving all existing request
parameters from the database.

• UpdateRequestParameter(...) – used for updating a request parame-
ter.

• DeleteRequestParameter(id) – this method removes a request parame-
ter from the database based on the id specified.

After these requests have been processed by the Request Parameter Database,
the response is sent back to the Manager class. Subsequently, the Manager
class conducts an error check on the response. If no errors are detected, the
response is relayed back to the requester via the Communicator class. However,
in the event of an error, the response is adjusted accordingly. This service relies
heavily on the Manager class for incorporating essential business logic. This entails
tasks such as verifying if specific integer values fall within defined ranges (e.g.,
if they are positive) or confirming the completeness of required fields, among
other necessary checks. In contrast, the response received from the Request
Parameter Database may require error checking and handling, along with
possible data format adjustments. As the business logic components expand, the
database communication might be segregated into a separate class. In this way,
only business logic would be included in the Manager class. Nevertheless, given
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the current prototype’s scope, where extensive business logic implementation is
not present, consolidating business logic and database requests into one class was
sufficient.

Database Client Class (number 4) encapsulates this middleware functionality to inter-
face with the database, and it is responsible for instantiating the specific database
client and establishing all necessary connections to the database. Once the database
client is instantiated, it can be retrieved by invoking the GetDatabaseClient()
method. Typically, this method is called by the Manager class, which uses the
database client to execute the database requests described above. The external
Database Client class facilitates seamless interchangeability by allowing it to be
substituted for alternative implementations or used concurrently with multiple
implementations.

Request Parameter Database Raw Data Request Parameter Database (number 5)
is used to save the request parameters required to make the HTTP calls necessary
to request the raw data. To do so, the database has the following data structure:

• id: Int – unique identification number of the data source
• name: String? – an optional name for the raw data source
• description: String? – an optional description of the raw data source
• url: unique String – the full path to the external raw data source, from which

the data should be extracted. This URL element is unique, so that no multiple
copies of the same fully qualified path can be created. This was chosen this
way, because each data source should only be equivalent to a single raw data
model explained further down.

• requestParameters – all of the necessary additional request parameters. These
could be additional headers, request type or others.

• rawDataModel – this entry corresponds to the raw data model name inside the
Public Raw Data Database for this data source. It is used, so that the
raw data can be inserted into the correct database table inside the Public
Raw Data Database.

Public Raw Data Microservice

The Public Raw Data Microservice manages storage, updating, and access to
data extracted from public sources. Once the data is structured according to the database
schema managed by this microservice, it is transmitted to the service. Additionally,
if a customer requires access to specific persisted raw data, the Public Raw Data
Microservice is accessed to retrieve the requested data.

Similarly to the previously introduced Raw Data Request Parameter microservice,
the Public Raw Data Microservice consists of three class and a communication
layer. This structure can be seen in the following Figure 3.5. The communication layer
(number 1) is, similarly to the other microservices, the connection point to the internal
cloud environment. The classes - Communicator (number 2), Manager (number 3)
and Database Client (number 4) - are explained next.
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Figure 3.5: Public Raw Data Microservice Class Diagram

Communicator Class The Communicator class (number 2) works in the same manner
as the Communicator class explained for the Raw Data Request Parameter
Microservice. The only difference is, that there is an extra endpoint, AddAll
RawData(...), which allows to add a list of objects to the specified raw data
table.

Manager Class within the Public Raw Data Microservice performs a similar
function to the Raw Data Request Parameter Microservice. In general,
its functionality is similar, acting as an intermediary between microservices and
databases. However, closer examination reveals some notable differences.
Firstly, the method names differ. Methods include RawData instead of "Request-
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Parameter" given the focus on raw data. For instance, AddRawData(...) is
used to add a new raw data entry instead of AddRequestParameter(...). In
a similar manner, GetRawData(...) is employed to retrieve a single raw data
entry from the database, and other methods follow the same pattern. Secondly, an
additional method, AddAllRawData(...), is introduced. The method facilitates
the addition of new database entries based on raw data objects. The method inserts
raw data objects into the database, and returns the number of entries. Lastly, a new
method parameter, databaseModel, is necessitated for invoking these methods.
This parameter refers to two aspects of the database. Primarily, it denotes the
database model utilized for the received data, defining the fields, their quantity,
and their types. Additionally, the database model corresponds to the name of
the database table where the data is stored. By leveraging the databaseModel
parameter, callers can dynamically interact with various raw data tables.

Database Client Class has similar functionalities as the Database Client Class
inside the Request Parameter Microservice.

Public Raw Data Database The precise data models inside the Public Raw Data
Database (number 5) are depending on the raw data, which is saved inside the
database, because out of this data, the table columns can be created. A general
example, which defines only the most basic requirements, is the following:

• id: Int – unique identification number for the entry. Since there could be
many different types of data sources with different structures, it is difficult to
exctract a general identification for all the possible sources. Thus, this id is
an automatically incrementing number for each data row in an arbitrary raw
data source table.

• data: any – any number of data columns with an arbitrary data type matching
the data saved.

Figure 3.6 shows the public raw data processing and storing preprocessed Public data.
The data is moved from Raw Public Data database (number 1) over the Raw Public
Data microservice (number 2) to Data Preprocessing microservice (number 3). After the
preprocessing has been finished, it is sent on to the Preprocessed Public Data microservice

Figure 3.6: Public Raw Data Preprocessing working Process
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Figure 3.7: Private Raw Data Preprocessing

(number 4) and finally persisted inside the Preprocessed Public Data database (number
5).

3.2.2 Private Raw Data Storing
Data import into a cloud system can occur through API access or by transferring data via
files, particularly suitable for private data. Blob storage, designed for storing unstructured
data within cloud environments, facilitates this process. Raw Private Data Blob Storage
serves this purpose, housing data files for subsequent importation, preprocessing by
the Data Preprocessing Microservice, and onward transmission to the Preprocessed
Private Data Microservice. While Excel format was utilized in this prototype, future
implementations may incorporate CSV, JSON, or other formats.

Figure 3.7 shows Private raw data preprocessing, and it shows the data flow from the Raw
Private Data Blob Storage (number 1) to the Data Preprocessing Microservice (number
2). After the data preprocessing is finished, the data is sent to the Preprocessed Private
Data Microservice (number 3) and stored in the Preprocessed Private Data databse
(number 4).

3.2.3 Preprocessed Public Data Storing
Preprocessed Public Data Microservice is responsible for the data harmonized/preprocessed
by the Data Preprocessing Microservice. That means, this microservice saves
the data, capable to return, update and, if necessary, delete it.

In the figure 3.8 structure of class Preprocessed Public Data Microservice
is depicted. This microservice’s structure is almost identical to Public Raw Data
Microservice. One of the minor differences between these two microservices is
the labeling of the methods inside the Manager class. The labeling RawData is
used here as PreprocessedData. Another difference in this setup is the Public
Preprocessed Data Database data models. In addition to the columns introduced
in the raw data sets, additional columns can be introduced during the harmonization
process, thus altering the data model. The new data structure includes the old data in
addition to some new columns and might look as follows:

• id: Int – unique identification number for the entry. This should be the same as
for the raw data.

• data: any – any number of data columns with an arbitrary data type matching the
data saved.
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Figure 3.8: Preprocessed Public Data Microservice Class Diagram

• harmonizedDataColumns: any – table columns used for harmonizing data. They
can have an arbitrary data type, depending on the data saved. For the harmonized
data to be comparable, the harmonizedDataColumns need to apply to all the
harmonized data. Examples for these columns could be year, country, industry etc.

3.2.4 Preprocessed Private Data Storing

The Preprocessed Private Data Microservice is dedicated to overseeing the
private data preprocessed by the Data Preprocessing Microservice. Similarly to the
previously discussed microservices that manage data, this service is capable of adding,
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Figure 3.9: Preprocessed Private Data Microservice Class Diagram

retrieving, updating, and deleting preprocessed private data. The harmonization of the
data also allows for various analyses of the data, including comparisons between private
data and preprocessed public data, as well as comparisons between private data from
different sources.

The class structure of the Preprocessed Private Data Microservice is de-
picted in Figure 3.9. The main difference between this microservice and Public Raw
Data Microservice lies in their method names. In the Preprocessed Private Data
Microservice, methods are labeled with PrivateData instead of RawData. Moreover,
the shared objective of data harmonization persists - ensuring data comparability across
disparate databases, thereby facilitating new findings.
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Figure 3.10: Proposed Data Access Process

3.2.5 Data Access

Accessing data is essential for comparing different datasets and discovering knowledge
through data analysis. Figure 3.10 illustrates the environment for accessing system data.
Communication channels between the databases for various data sources (1, 3, and 5)
and their corresponding microservices (2, 4, and 6) have been delineated in the preceding
subsections. The proxy (7) serves as the public access point to the cloud system, as
elucidated in the communications section 3.3. Users, categorized as Admin (8) and clients
(9), interact with the system to extract data. Notably, this prototype lacks authentication
restrictions; however, future implementations will necessitate the implementation of
access restrictions. These restrictions must delineate permissions to access specific data
tables; for instance, data from one private source should not be accessible to another
public or private client.

3.3 Communication Layer

Microservices are distributed in a cloud system, so effective communication is necessary
to ensure seamless operation. It is essential for microservices to exchange information,
transmit requests, and receive responses together in order to function cohesively. There-
fore, the proposed harmonization system relies heavily on the communication layer.
There are several communication patterns in the literature [48], among which messaging
[49] and remote procedure invocation (RPI) [50] are noteworthy and suitable for the
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Figure 3.11: Sequence Diagram for data extraction

proposed harmonization system. In the proposed system, RPI was adopted, with the
REST protocol serving as the chosen RPI mechanism. In the context of the REST
protocol, microservice endpoints are imperative.

3.3.1 Extract Raw Public Data Communication Paths

Accessing raw data through public APIs is a complex process within the proposed cloud
system. We visualize the entire process and understand the required endpoints and
sequence of calls to the microservices by referring to the Sequence Diagram, shown in
Figure 3.11.

From Figure 3.11 we notice that the process begins with the administrator invoking the
"/extract-data" endpoint of the Raw Data Extractor MS, implemented through the
proxy. Serving as the primary orchestrator, the Raw Data Extractor MS ensures the
correct processing of this call. Initially, it requests the raw data source parameters from
the Raw Data Request Parameter Microservice. Then, it proceeds to extract
raw public data from the specified data source via the provided application interface.
Upon completion of the extraction process, the data is dispatched to the Raw Public
Data Microservice for storage. Upon successful completion of all of these steps,
the administrator (caller) is notified. The execution halts whenever a step encounters
a failure, and an error response is returned. For the execution of the previous calls,
multiple endpoints were necessary, detailed as follows. As previously explained, initiating
data extraction requires invoking the "/extract-data" endpoint. The caller must provide
a data source ID, which corresponds to the ID stored in the raw data request parameter
service. The pseudo code for this endpoint can be found in the Algorithm 3.2. Upon
invocation of Algorithm 3.2, the received ID is relayed to the manager when invoking
the executeRawDataExtraction method. The manager class returns a positive or
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negative response along with the appropriate response code upon receiving the result.
Currently, our prototype returns an error code 400 in the case of an exception. In the final
product implementation, distinct error codes for potential errors must be incorporated.

Algorithm 3.2: Extract Data endpoint
1 request, response
2 resp ← executeRawDataExtraction(request.body.id)
3 if resp = error then
4 response.status = 400
5 response.send = ”error”
6 end
7 else
8 response.status = 200
9 response.send = resp

10 end
11 return response

To ensure that Raw Data Extractor effectively retrieves the necessary request pa-
rameters for each specific request, it relies on the Raw Data Request Parameter
service. This crucial interaction is facilitated by the function outlined in Algorithm 3.3.
Within this method, a REST call is initiated to the Raw Data Request Parameter
Service, which contains essential elements such as the service URL, parameter identi-
fiers, call headers, and the request method. Responses are handled differently depending
on whether an asynchronous or synchronous implementation is chosen. For our project,
we have chosen an asynchronous approach to execute this method. Through this decision,
we ensure optimal system performance and a responsive system, which is confirmed by
our experiments.

Algorithm 3.3: Get Request Parameters method
1 id, serviceUrl
2 method ← GET
3 headers ← Content − Type : application/json
4 result ← fetch([serviceUrl]/get/[id], method, headers)
5 return result

As can be seen on line four in the 3.3 algorithm, the endpoint called is a /get/[id] endpoint.
This endpoint needs an id number of the database entry required. If an entry with the id
is found, the whole database entry is returned.

In Algorithm 3.4, we present the pseudo code illustrating the process of fetching raw
public data. Obtaining this data requires both the URL and the request parameters,
both of which are obtained from the Request Parameter Microservice.
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Algorithm 3.4: Extract raw data from source
1 url, requestParameters
2 result ← fetch(url, requestParameters)
3 return result

Once the raw data is successfully retrieved, it needs to be stored. This entails making
a call to the Raw Data microservice, facilitated by a function outlined in Algo-
rithm 3.5. The URL required for the call is created by this function. The raw data
service URL is stored in an environment variable, followed by the path "/add-all/" to
access the appropriate endpoint for adding all data, and supplemented with the raw
data model, which indicates the database model name and, therefore, the raw data table.
Database models are sourced from the request parameter database, along with other
parameters. Then, a call to the Raw Data Microservice is formulated. This call is
then returned to the invoked function, where it is processed accordingly. Depending on
the implementation, further actions such as awaiting a response may be necessary.

Algorithm 3.5: Save Raw data method
1 data, dataModel, serviceUrl
2 callUrl ← [serviceUrl]/add − all/[dataModel]
3 method ← POST
4 headers ← Content − Type : application/json
5 body ← json(data)
6 result ← fetch(callUrl, method, headers, body)
7 return result

Algorithm 3.6: REST endpoint example - ADD
1 dataModel, requestBody, response
2 resp ← addData(dataModel, requestBody)
3 if resp = error then
4 response.status = 400
5 response.send = ”error”
6 end
7 else
8 response.status = 200
9 response.send = resp

10 end
11 return response

The different rest endpoints mentioned in the REST endpoints chapter 3.3.4 are all
situated in the communications file. An example of an endpoint is displayed in 3.6. This
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Figure 3.12: Preprocess Raw Public Data Sequence Diagram

endpoint passes the call on to the responsible function inside manager file and handles
the response. Since this is a prototype of the final system, a very simple error handling
was implemented. This error handling returns status code 400, if an exception occurred
and 200 otherwise.

3.3.2 Preprocess Raw Public Data Communication
For raw public data preprocessing multiple steps have to occur. The steps are displayed
in Figure 3.12.

After the admin initiates execution by sending a request via the Proxy to the Data
Preprocessing Microservice, the bulk of execution takes place within this service.
As depicted in the figure, the "/preprocess-raw-data" endpoint needs to be invoked.
This endpoint expects a JSON body in the request, allowing it to process the data
appropriately. You can refer to the data model in code snippet below for the structure of
JSON body.

{
"rawDataModel": "ExampleRawTestData",
"columnsToAdd": [

{"Source": ""},
{"City": ""},
{"Industry": ""}

],
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Figure 3.13: Preprocess Raw Private Data Sequence Diagram

"columnsToRename": [
{"DateTime" : "Year"}

],
"preprocessedDataModel": "ExamplePreprocessedTestData"

}

In the above code snap model, the rawDataModel is the data model of the source
database, being the Raw Data Database. ColumnsToAdd and columnsToRename are
columns which need to be added and renamed respectively. PreprocessedDataModel
is the database model name in the Preprocessed Data Database. With the help of
the rawDataModel parameter, the raw public data is received from the Raw Public
Data Microservice. The endpoint to get the data is "/get-all-data". After the
data has arrived in Data Preprocessing microservice, it is preprocessed and
then sent to the Processed Data Microservice for storing it. "/add-all" end-
point from the Processed Data Microservice is called with the data to save and the
preprocessedDataModel as a parameter to execute the data saving. Finally, the
execution results are returned to the caller.

3.3.3 Preprocess Raw Private Data Communication

The execution sequence for preprocessing raw private data is similar to how the raw
public data is preprocessed.
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The figure 3.13 shows the sequence of preprocessing the private data. The harmonization
is started by an admin, who calls the "/import-private-data" endpoint from the Data
Preprocessing Microservice and passes the data mentioned in the following data model.

{
"privateDataFileName": "full_dataset.xlsx",
"columnsToAdd": [

{"Source": "Source Name"},
{"City": "Vienna"},
{"Industry": "Electricity, gas, steam..."},
{"Country": "Austria"}

],
"columnsToRename":[

{"DateTime" : "Year"}
],
"privateDataModel": "ExamplePrivateData"

}

The microservice needs the data to preprocess. This data is received from the Private
Data Blob Storage, which returns the requested file. The name of the file is inside the
data model and goes by the privateDataFileName parameter. Next step in the
sequence diagram shown in figure 3.13 is to preprocess the data. For preprocessing,
columnsToAdd and columnsToRename are used. After the preprocessing has been
finished, the data is sent to the Private Data Microservice by using the "/add-all" endpoint.
Also here, a parameter needs to be passed, so that the microservice knows, where to
save the data. For this privateDataModel is required. Finally, the execution result is
returned to the admin. If any errors occurred, an error status response is returned. If
not, a success response is returned.

3.3.4 REST endpoints for Microservices

For a microservices cloud environment, endpoints for the communication are vital. These
give the possibility to save, update and request the data, and to start execution processes.

Raw Data Extractor Microservice endpoints The "/extract-data" REST endpoint
is featured by Raw Data Extractor Microservice. This endpoint initiates
the workflow execution, requiring an ID to specify the raw data source to be accessed.
Once the entire workflow has been successfully completed with positive responses,
a status of 200 is returned along with the number of newly saved database entries.
Alternatively, if an error occurs during the workflow, a 400 error code is returned.
It is necessary to check the console for error messages as this is a prototype.

Raw Data Request Parameter Microservice endpoints This microservice has the
following endpoints:
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• "/add" - used to add new request parameters. This endpoint receives the url,
a name, a description, requestParameters and rawDataModel in a JSON
format to save them in the database

• "/get/[id]" - this endpoint is used to request parameters for source database
APIs with the help of an id. Instead of [id], the integer id of the target
database entry has to be entered when the request is made. The id is generated
automatically, when a new data record over "/add" endpoint is created.

• "/get-all" - receive all request parameter entries currently existing in the
request parameter database

• "/update" - used to update a specific data entry. Since the unique identifier is
generated automatically, it has to be included in the request body in addition
to the other partially optional parameters mentioned in the database model

• "/delete/[id]" - to delete a specific entry, the "/delete/[id]" endpoint is used.
Instead of [id] an integer of the database entry, which has to be deleted, needs
to be passed.

Data Preprocessing Microservice endpoints There exists a different set of end-
points for Data Preprocessing Microservice. These are used to prepro-
cess raw public data and import private data into the private data database. The
implemented endpoints are as follows:

• "/preprocess-raw-data" - this endpoint is used to import raw data from Raw
Data Database into the Processed Data Database while adding ad-
ditional columns and/or renaming them. Furthermore, empty entries and
double entries are considered.

• "/import-private-data" - for preprocessing and importing private data, this
endpoint is used. Similarly as for the preprocess raw data endpoint, also
this endpoint adds and/or renames columns and/or cleans up the empty and
double entries.

Public Raw Data Microservice endpoints Similar to the endpoints in the Raw
Data Request Parameter Microservice, there are several CRUD endpoints
for the Public Raw Data Microservice. The dataModel request parame-
ter is required for all of these endpoints in order to specify the data model, which
is used to identify the table, where the data is considered. The implemented REST
endpoints include:

• "/add/[dataModel]" - this endpoint is used to create one new database entry.
Since the dataModel is passed in the request parameter, the specific required
parameters (columns) for the data entry have to be included and may differ
from one data model to the next one.

• "/add-all/[dataModel]" - to create multiple data entries in the database, "/add-
all/[dataModel]" is used. This endpoint creates new data records from the
received request body, which need to include entries matching the dataModel.

• "/get/[dataModel]/[id]" - to request a single entry from the database from a
specific table, this endpoint has to be used. An integer id number is required
to get the specific entry. This id is automatically generated as the data record
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is created in the database.
• "/get-all/[dataModel]" - depending on the dataModel, all of the entries from

a specific table are returned.
• "/update/[dataModel]" - to update a single entry, the "/update/[dataModel]"

endpoint has to be used. The data is passed in the body. The body not only
requires the data matching the initial parameters, but also an integer id, which
is used to identify the entry to update.

• "/delete/[dataModel]/[id]" - this endpoint deletes a single entry from the
database. The identification of this data record occurs with the help of
dataModel and id URL parameters. Both of them are required for a
successful entry removal.

Processed Data Microservice endpoints The Processed Data Service has the
same endpoints as Raw Data Microservice has. The difference is, that it is
handling the preprocessed public data instead of the raw public data.

Private Data Microservice endpoints For Private Data Microservice the end-
points are the same as for the Raw Data Microservice. The difference is, that
Private Data Microservice works with preprocessed private data.

3.3.5 Proxy for Harmonization System

Reverse proxy servers are often used in cloud systems to manage access to microservices
and provide centralized access points for users. Using this proxy, incoming requests can
be intelligently routed to specific microservices according to their paths. Once a request
reaches the proxy, it forwards it to the designated microservice. Following receipt of a
request, microservices can interact either through the proxy or directly, depending on the
system’s implementation guidelines. Users, including clients and administrators, submit
their requests specifying the target microservice and its endpoint to the proxy, which
then facilitates the forwarding process. Subsequently, the proxy also handles sending the
response back to the client, ensuring seamless communication and operation within the
system.

3.4 Data Preprocessing
Data preprocessing, or harmonization, is an essential component of the proposed architec-
ture. It simplifies the process of extracting knowledge from a wide range of private and
public data sources. Data harmonization entails the amalgamation of data originating
from various sources[51]. The process of using these combined data is divided into two
steps. The first is the preprocessing of the data, followed by the generation of new
knowledge. Since the second step depends on the data at hand and a clear vision of what
data needs to be generated, human interaction is needed. It is therefore not possible
to reach a general level of automation in this step. As part of the preprocessing step,
general data harmonization steps may be used for data preprocessing. Since these steps
can be generalized over multiple different data sources and data sets, this preprocessing
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can be done automatically and thus implemented in a service. For the architecture at
hand, the actions done to the data during preprocessing are concentrated inside the Data
Preprocessing Microservice.

3.4.1 Raw Public Data Preprocessing

This microservice consists of multiple classes and methods, which are shown in Figure
3.14 and discussed below.

Figure 3.14 explains the class diagram for the raw public data preprocessing. The methods
and classes used for preprocessing the raw private data will be explained as follows:

Communication Layer (number 1) is the same as for the other microservices discussed
in previous sections.

Communicator Class (number 2) has a similar task to the communicators explained in
other microservices. This is - exchanging requests with other services and functioning
as a link between other microservices and the Raw Public Data Preprocessing
microservice.
The exact functionalities of the communicator class are:

• The endpoint "/preprocess-raw-data" is one of the endpoints this microservice
has. It is used to begin the preprocessing of raw data.

• To execute preprocessing, the raw data must be requested from Raw Public
Data microservice. This is done with the help of GetPublicRawDataJson(...)
method. The data is returned in JSON format.

• After the execution is finished, the raw raw data needs to be stored. This op-
eration is done using the SavePublicPreprocessedData(...) method.
It calls the Public Preprocessed Data microservice to persist the
data.

To start the preprocessing of raw public data, the "/preprocess-raw-data" endpoint
needs to be invoked.
The parameters for calling the "/preprocess-raw-data" endpoint are as follows:

• rawDataModel - this is the name of the data model and table name used in
the Public Raw Data microservice.

• emptyEntriesShouldBeRemoved - a boolean value for determining, whether
empty rows in the dataset should be removed

• doubleEntriesShouldBeRemoved - a boolean value for determining, whether
duplicate rows in the dataset should be removed

• columnsToAdd - are the columns, which need to be added to the dataset
during the preprocessing

• columnsToRename - this is a JSON array consisting of "key:value" pairs, where
the "key" is the old column name and "value" is the new column name

• processedDataModel - this parameter is the model and table name used in
the Processed Data microservice to identify, in which table the data needs to
be persisted
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Figure 3.14: Data Preprocessing Microservice Class Diagram

The actual preprocessing occurs inside the Manager class (number 3). It is es-
sential to have the relevant dataset available for preprocessing raw public data. This
data is acquired through the GetPublicRawDataJson(...) method, which
invokes the Raw Public Data microservice to retrieve the necessary data in JSON
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format. This method is invoked by the Manager class, which subsequently re-
ceives the data. After the execution of this phase, the preprocessed data needs to be
stored. This operation is done using the SavePublicPreprocessedData(...)
method. It calls the Public Preprocessed Data microservice to persist
the data.

Manager Class The Manager Class (number 3) is central hub for data harmonization.
For the harmonization of raw public data the following methods were implemented
- PreprocessRawData, RemoveEmptyEntries, RemoveDoubleEntries, Preprocess-
Columns, AddNewColumn and RenameColumn.

Algorithm 3.7: Preprocess raw public data
1 rawDataModel, columnsToAdd, columnsToRename,

emptyEntriesShouldBeRemoved, doubleEntriesShouldBeRemoved
2 rawDataJson ← getRawDataJson(rawDataModel)
3 rawDataJson ←

removeEmptyEntries(rawDataJson, emptyEntriesShouldBeRemoved)
4 rawDataJson ←

removeDoubleEntries(rawDataJson, doubleEntriesShouldBeRemoved)
5 rawDataJson ←

preprocessColumns(rawDataJson, columnsToAdd, columnsToRename)
6 response ← savePublicPreprocessedData(rawDataJson)
7 return response

PreprocessRawData method is shown in Algorithm 3.7. This method orchestrates
the prepocessing of the raw public data. It is called from the Communicator class and
receives the following parameters - rawDataModel, emptyEntriesShouldBeRemoved,
doubleEntriesShouldBeRemoved, columnsToAdd and columnsToRename.
These parameters are sent to the Data Preprocessing Microservice by the
user when calling "/preprocess-raw-data" endpoint. These parameters are explained
in detail as follows:

• The rawDataModel corresponds to the name of the table, where the raw
data is saved inside the Public Raw Data Microservcie. This data needs to be
requested from the Raw Public Data microservice. During the preprocessing
this is also the data, which is being preprocessed. The rawDataModel
parameter is a must-have requirement for the HTTP request to the Raw Data
Microservice and is used in line two of the algorithm 3.7.

• ColumnsToAdd parameter is a JSON array, which consists of the column
names and their initial values. These columns need to be added to the raw
data during the preprocessing.

• ColumnsToRename includes a JSON array. This JSON array includes the
columns, which need to be renamed. This occurs in a key: value fashion,
where key is the old column name and value is the new column name.

• If in dataset appearing empty entries should be found and removed, then
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the boolean value for emptyEntriesShouldBeRemoved needs to be set to
true. If it is set to true, then the algorithm for empty entry removal 3.8 is
executed.

• DoubleEntriesShouldBeRemoved is the parameter responsible for remov-
ing any duplicates, that might be in the data set. Set this boolean to true to
execute the algorithm 3.9.

Initially, the execution requests the raw public data from the Raw Data microservice.
This is described in line two of algorithm 3.7. After the data has been received,
harmonization can be started. The first step is to remove empty data rows (line three,
algorithm 3.7). Afterwards, the duplicate entry removal can be executed (line four,
algorithm 3.7). After the empty and double entries have been removed, the column
preprocessing can be started. This occurs during the PreprocessColumns
execution (line five in algorithm 3.7).
Finally, after the preprocessing has been completed, the harmonized data needs to
be saved. To do this, the data is sent to the Processed Data microservice. This is
done with the help of savePublicPreprocessedData(...) method on line
six, seen in algorithm 3.7. This methods calls the Communicator, which further
creates the HTTP request and sends it to Processed data microservice. After the
response from Processed Data microservice has been received, it is returned back to
the user of the system, who initiated the harmonization process. This is required,
so that the caller sees, whether the execution was successful or not. Furthermore
any errors, which might have occurred during the execution, can be viewed.

Algorithm 3.8: Remove Empty Entries
1 data, emptyEntriesShouldBeRemoved
2 result = []
3 if emptyEntriesShouldBeRemoved == True
4 foreach row in data
5 foreach cell in row
6 if cell != null
7 result.add(row)
8 break
9 return result

A simple implementation to remove empty rows is displayed in algorithm 3.8. The
parameters for this method are the following:

• The data variable represents the JSON data object, which needs to be adapted
• emptyEntriesShouldBeRemoved is the variable, which determines, whether

the dataset should be searched for empty entries and whether these empty
entries should be removed

After it has been determined, whether empty entries should be removed or not on
line three in algorithm 3.8, the received data object is being iterated over. During
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this iteration on lines four and five each of the entry cells are reviewed. If the
reviewed cell is not empty (line six, algorithm 3.8), then the row is added to the
resulting data array on line seven in algorithm 3.8, and the execution for this row is
stopped with a break statement (line eight, algorithm 3.8). After all of the entries
have been processed, the resulting data is returned on line nine. It is important
to remove empty entries, because failing to do so can result in multiple negative
effects. These empty rows carry no extra value, but increase the memory occupied.
Furthermore, during processing of the dataset, the empty entries use up CPU time,
since they also need to be considered. In this way, empty entries increase the cost
of all processes they are involved in. Thus the removal of empty entries is necessary,
so that the memory occupancy and CPU time requirements are reduced.

Algorithm 3.9: Remove Double Entries
1 data, doubleEntriesShouldBeRemoved
2 result = []
3 if doubleEntriesShouldBeRemoved == True
4 createdSet ← new Set(data)
5 result ← createdSet.ToJson()
6 return result

The removal of duplicate entries can have similar benefits as when removing empty
entries, mainly the reduction of processing time needed and the reduction of memory
occupancy. The algorithm 3.9 displays the RemoveDoubleEntries method. To
call this method, the following parameters are required:

• data represents the raw dataset at hand, which needs to be processed
• doubleEntriesShouldBeRemoved variable is needed, so that it can be

determined, whether double entries should be removed or not
The first step during the execution is to determine, whether double entries should
be removed. This occurs on line three in algorithm 3.9. If duplicate rows are to
be removed, then there are multiple options how to do it. One of them is to use a
Set object. A set is a container, which contains every element only once. Thus, if
there are two elements with all matching values, the result set would contain this
element only once. The creation of the set is displayed on line four in algorithm
3.9. The reversion of set to JSON happens on line five in algorithm 3.9. After the
conversion from set back to JSON has been finished, the results are returned on
line six in algorithm 3.9.
PreprocessColumns method as shown in Algorithm 3.10 is the next step during the
preprocessing. This method receives the following parameters:

• data - raw data, which is to be preprocessed
• columnsToAdd
• columnsToRename

This PreprocessColumns method orchestrates the preprocessing of the columns,
which perform following two operations.
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Algorithm 3.10: Preprocess Columns
1 data, columnsToAdd, columnsToRename
2 if columnsToAdd != null
3 foreach column in columnsToAdd
4 columnName ← column.key
5 data ← AddNewColumn(data, columnName, column[columnName])
6 if columnsToRename != null
7 foreach column in columnsToRename
8 columnName ← column.key
9 data ← RenameColumn(data, columnName, column[columnName])

10 return data

• adding columns - is the process of adding new, not yet existing columns to the
data set. These could be for example year, country or industry. As mentioned
before, the variable columnsToAdd is a JSON array, which also can be empty
or null. Inside the PreprocessColumns algorithm 3.10 this adding columns
process is displayed in lines two to five. On line two it is made sure, that the
columnsToAdd value is not null and thus new columns must be added. On
line three in algorithm 3.10, the for loop for adding all received columns is
initiated. After the for loop has been initiated, AddNewColumn 3.11 algorithm
is called on line five (see algorithm 3.10). For this algorithm the column the
columnName is extracted from the JSON array.

• renaming columns - is a very similar process to the process of adding new
columns. First, it is checked, whether columnsToRename JSON array is null
on line six in algorithm 3.10. Afterwards, each of the columns is renamed in a
similar fashion as for column renaming on lines seven to nine (algorithm 3.10).

After the data has been adapted, it is returned on line ten in algorithm 3.10.

Algorithm 3.11: Add New Column
1 data, columnName, value
2 foreach dataRow in data
3 dataRow[columnName] ← value
4 return data

Algorithm 3.11 displays the AddNewColumn method, which is called during the
harmonization process by the PreprocessColumns method explained before.
This method requires three parameters - data, columnName and value. columnName
is the name of the column, which needs to be added. data holds the data, to
which the column needs to be added. Depending on the data structure in data
different procedures for adding the new column can be used. One of them is to
iterate over every entry and add the new key:value pair. Key being the name of
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the column and value the value to be inserted. Adding new columns during the
harmonization process is important, so that the data can be analyzed based on
these added columns at a later point in time. For example, adding country, city,
year or industry to different data sets can help with the analyses of these data sets.

Algorithm 3.12: Rename Column
1 data, newColumnName, oldColumnName
2 foreach dataRow in data
3 dataRow[newColumnName] ← dataRow[oldColumnName]
4 dataRow[oldColumnName] ← null
5 return data

The algorithm 3.12 shows the RenameColumn method, which is used to give an
already existing column a new name. This can be useful to make sure, that for all of
the data sets, columns containing the same types of values, have the same column
name. This is important, so that the further data analysis can be conducted in an
easier manner.
So that the renaming process can be done, three variables are necesssary:

• data - consisting of the data, where the column is to be renamed
• oldColumnName - the name of the column, which has to be renamed
• newColumnName - the name of the column after it has been renamed

In the algorithm 3.12, a loop iterates over every row in the received data (line
two) and assigns the value from the old column to the new column (line three
in algorithm 3.12). After this has been done, on line four (algorithm 3.12) the
data from the old column is removed. As a last step the result is returned on line five.

To further improve the readability and structure of the code, AddColumn and Re-
nameColumn methods can be moved to another class, which is solely used for hosting
preprocessing methods. For the simplicity of the thesis it was chosen to include them
inside the Manager class.

3.4.2 Raw Private Data Preprocessing
For the preprocessing of Raw Private Data the same figure 3.14 as in the previous
subsection is used. Raw Private Data Preprocessing concerns the harmonization of
private data. This data can originate eg. from companies or universities and it is not
publicly available and should not be made publicly available. Thus, here importing data
from data files, which are persisted inside a blob storage, was concerned.

Following are the explanations for the classes and methods used for preprocessing of
private data:

Communication Layer This is the same as for the other previously mentioned mi-
croservices.
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Communicator Class To begin the private data harmonization execution, "/import-
company-data" must be called. For this endpoint similar parameters are required
as for the previously explained "/preprocess-raw-data" endpoint. These are:

• dataFileName - this is the name of the file, where the raw data is saved
• emptyEntriesShouldBeRemoved - a boolean value for determining, whether

empty rows in the dataset should be removed
• doubleEntriesShouldBeRemoved - a boolean value for determining, whether

duplicate rows in the dataset should be removed
• columnsToAdd - are the columns, which need to be added to the dataset

during the preprocessing
• columnsToRename - this is a JSON array consisting of key:value pairs,

where the key is the old column name and value is the new column name
• processedDataModel - this parameter is the model/table name used in the

Private Processed Data microservice to identify, in which table the data needs
to be persisted

After the preprocessing of private data has been finalized, it needs to be persisted.
To do so, the data has to be sent to Private Processed Data Microservice. This
occurs in the SavePrivateDataPreprocessedData(...) method, after the
Manager class has finished the preprocessing.

Manager Class To harmonize private data, the following methods are utilized:
ImportPrivateData, PreprocessColumns, RemoveEmptyEntries,
RemoveDoubleEntries, AddDataToEveryRow and RenameColumns. Since
PreprocessColumns, AddDataToEveryRow, RemoveEmptyEntries,
RemoveDoubleEntries and RenameColumns methods have already been in-
troduced earlier, they won’t be talked about here one more time.

Algorithm 3.13: Import private data
1 dataF ileName, columnsToAdd, columnsToRename,

emptyEntriesShouldBeRemoved, doubleEntriesShouldBeRemoved
2 privateDataJson ← downloadAndOpenFile(dataF ileName)
3 privateDataJson ←

removeEmptyEntries(privateDataJson, emptyEntriesShouldBeRemoved)
4 privateDataJson ←

removeDoubleEntries(privateDataJson, doubleEntriesShouldBeRemoved)
5 privateDataJson ←

preprocessColumns(privateDataJson, columnsToAdd, columnsToRename)
6 response ← savePrivatePreprocessedData(privateDataJson)
7 return response

ImportPrivateData’s method, displayed in algorithm 3.13, is used only during the
harmonization of private data. This method has the following parameters:
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• dataFileName - is the name of the file, from where the data needs to be
imported

• emptyEntriesShouldBeRemoved - a boolean value for determining, whether
empty rows in the dataset should be removed

• doubleEntriesShouldBeRemoved - a boolean value for determining, whether
duplicate rows in the dataset should be removed

• columnsToAdd - is a JSON array consisting of columns, which need to be
added

• columnsToRename - is a JSON array, which includes the columns to rename
On line two of the algorithm 3.13, the downloading and opening of the data file oc-
curs. For this, the Blob Container Client, explained further down, is utilized. After
the file has been downloaded, it is opened and loaded into the privateDataJson
variable.

The subsequential data preprocessing steps, data saving and returning the results
are the same as for previously explained PreprocessRawPublicData and thus
won’t be discussed in more detail here.

BlobContainerClient is utilized to establish communication with blob storage, where
private data files are stored. This involves configuring communication strings,
authentication, and any other requisite elements to enable the Manager class
to access the data files.
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CHAPTER 4
Results

This chapter provides an analysis of our proposed harmonization system. Initially, we
provide setup including technology stack used and system deployment. Afterwards
data analysis process and effect on memory and computational times are analyzed and
compared. We also discuss various datasets used to analyze the system and their data
models.

4.1 Experimental setup
In this section, we provide a detailed discussion regarding the technology used, data
models (including both raw and processed data)and deployment strategies.

4.1.1 Technology Stack
This section highlights the essential role of tools and technologies in ensuring smooth
microservices functioning. In addition, it provides succinct descriptions of the specific
tools used in this study. The technology stack used in this work is as follows.

NodeJS was used for programming each of the microservices in the system.
Makefiles were written to be able to easily start the services locally using Make.
PostgreSQL was the SQL database used as the main database technology.
Azure Storage Account was used as a place to upload the company data raw files.

Blob storage was the type of storage account utilized.
Azure is the general cloud service environment, where the whole cloud environment was

setup. On Azure the following services were used:
• Azure DevOps
• Container Registry
• Kubernetes service
• Azure Database for PostgreSQL
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• Storage Account
• Key Vault

Azure DevOps is a version control tool from Microsoft. It was not only used for
managing code, but also to create a pipeline for generating the docker images and
deploying them on Azure Kubernetes.

Azure Container Registry is the storage, where docker images were uploaded after
creation and later down the line downloaded for deployment.

Docker was used to package and deploy the different microservices.
Kubernetes on Azure is the technology used to host the docker containers for the

different microservices.
Nginx is a reverse proxy technology, which was applied to access the different services

in the kubernetes environment.
Power BI is the tool used for analyzing the different collected and harmonized data.

4.1.2 System deployment
This system had to be deployed to a cluster in order to analyze its current implementation.
In this experiment, we used Azure Cloud Services. The following tools were used in this
environment:

• Azure Blob Storage - for storing data files containing private data, which is imported
into the system

• PostgreSQL - instances of PostgreSQL were used for the different databases required
by the microservices

• Azure DevOps and Azure DevOps Pipelines - Azure Devops used as a version control
system (VCS) and the pipelines used to deploy the implemented architecture with
the help of docker containers

• Azure Container Registry (ACR) is necessary for storing and providing the docker
images for the implemented microservices. These images are pushed to the registry
by azure pipelines.

• Azure Kubernetes Service (AKS) - used to host the microservices, as they are
deployed

The deployment of the system is started by starting the specific Azure Devops Pipeline,
which creates the docker images, starts the kubernetes environmentand orders the
deployment of the saved docker images.

Azure DevOps Pipeline

A comprehensive description of the entire process of building, publishingand deploying is
presented in this section. It is imperative to initiate the build process for each service
before deploying a new version of it or the entire system. The following code listing
illustrates the pivotal steps involved in the build process:

- stage: BuildRawDataService
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displayName: Build stage Raw Data Service
dependsOn:
jobs:
- job: Build

steps:
- task: Docker@2
inputs:

command: buildAndPush
repository: $(imageRepositoryRawDataService)
dockerfile: $(dockerfilePathRawDataService)
containerRegistry: $(dockerRegistryServiceConnection)

The above listing illustrates the procedural steps involved in building and pushing a
Docker image of the raw data service. Of the utmost importance within this listing are
the Docker@2 task, the buildAndPush commandand its associated inputs including
the repository, Dockerfileand container registry.
After every microservice is built, the publish stage generates Kubernetes manifest files to
facilitate further deployment stages. The following listing illustrates the Kubernetes files
publishing:

- stage: Publish
displayName: Publish stage
dependsOn:

- BuildProcessedDataService
- BuildRawDataExtractorService
- BuildRawDataRequestParameterService
- BuildRawDataService
- BuildRawDataPreprocessService
- BuildPrivateDataService

jobs:
- job: Publish

steps:
- publish: manifests
artifact: manifests

The lines in the listing below initiate the deployment of services, focusing on the Raw
Data Service deployment within the listing. It is essential that the Azure Kubernetes
Service has access to the Docker images before the service is executed, which is achieved
by creating the image pull secret as the first step. A second task involves retrieving a
docker image and creating a cluster instance using the docker container created from a
pulled image. In these there are several parameters, which are summarized below.

• Manifests parameter is where the in the publish stage pushed Kubernetes manifest
file is selected.

47



4. Results

• This parameterizes the previously created docker image pull secret as imagePullSecret,
which is helpful for accessing the docker image repository.

• Finally, the containers parameter corresponds to the location of the referenced
docker image. From this location, the Raw Data Service image with the ’latest’ tag
is pulled.

- stage: DeployRawDataService
displayName: Deploy stage Raw Data Service
dependsOn:

- Publish
jobs:
- deployment: Deploy

strategy:
runOnce:

deploy:
steps:
- task: KubernetesManifest@0

inputs:
action: createSecret
secretName: $(imagePullSecret)
dockerRegistryEndpoint: $(dockerRegistry-
ServiceConnection)

- task: KubernetesManifest@0
inputs:

action: deploy
manifests: |

$(Pipeline.Workspace)/manifests/
rawDataServiceDeployment.yaml

imagePullSecrets: |
$(imagePullSecret)

containers: |
$(containerRegistry)/
$(imageRepositoryRawDataService):latest

Kubernetes files

There are several Kubernetes configuration files required in the Kubernetes cluster for
each and individual services. For example, the configuration setup for the Kubernetes
manifest file is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
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name: raw-data-service-deployment
spec:

selector:
matchLabels:
app: raw-data-service-deployment

template:
spec:
containers:
- name: raw-data-service

image: raw-data-service:latest
imagePullPolicy: Always
ports:
- containerPort: 8001

imagePullSecrets:
- name: sustainista-acr-secret

The above manifest file orchestrates the deployment of the Raw Data Service within
the Kubernetes cluster. The manifest file type specification, selectors, metadataand,
most importantly, the container configuration are notable. This Kubernetes deployment
file references a container from the Azure Container Registry (ACR). Specifically, the
image pull policy is set to "Always" in order to ensure continuous deployment of the
latest version. Kubernetes must also identify the port on which the system within the
container operates by specifying the container port parameter (8001 in this case). Further,
the image pull secret is specified. It facilitates authentication to the Azure Container
Registry, enabling retrieval of the most recent docker image for the running system [52].

The Service deployment type enables communication between the microservice running
in the Kubernetes cluster and other services. An example of its configuration is shown in
the following code listing, specifying its kind, metadataand deployment specifications.
Additionally, these specifications include the port and selector used to determine the
deployment target of the service [53].

apiVersion: v1
kind: Service
metadata:

name: raw-data-service-deployment
spec:

ports:
- port: 8001
selector:

app: raw-data-service-deployment

In addition to microservice deployments, an ingress controller is essential for facilitat-
ing external access to the various services within the network. The following code
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excerpt shows a partial implementation of an ingress controller, including rerouting rules
specifically for raw data.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: nginx-ingress
annotations:

nginx.ingress.kubernetes.io/rewrite-target: /$2
spec:

ingressClassName: nginx
rules:
- http:

paths:
- path: /raw-data-service(/|$)(.*)

pathType: Prefix
backend:

service:
name: raw-data-service-deployment
port:

number: 8001

The ingress configuration file contains annotations, the name of the ingress classand
HTTP paths for incoming requests. Notably, annotations specify a rewrite target pattern,
which is specified as "$2". In this pattern, the first parameter is removed from the URL,
ensuring that subsequent requests are directed appropriately. The first URL parameter
determines which service the request is sent to, because it specifies which resource to
use. The URL path element must begin with "/raw-data-service", as indicated within
the path parameter, to route a request to the Raw Data Service. The application will
direct the request to the port indicated in the paths section of the manifest file if a
matching path is found. Moreover, to specify the ingress controller to be utilized, the
ingressClassName parameter must be defined in the configuration [54].

4.1.3 Data models

This section explains the different data models utilized in the proof of concept imple-
mentation. The datasets used in these experiments are collected from industry partner
and they belong to different types of sustainability data or fields, which industry partner
uses to analyze sustainability data. This subsection provides Raw Public Data data
models, Preprocessed Public Data data models and Preprocessed Private
Data data models.
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Table 4.1: Trading Economics data model

AAAABBB AAAABBBB
id Int @id @default(autoincrement())
Country String
Category String
DateTime String
Value Decimal
Frequency String
HistoricalDataSymbol String
LastUpdate String

@@unique([Country, Category, DateTime])

Table 4.2: Eurostat data model

AAAABBB AAAABBBB
id Int @id @default(autoincrement())
Value Decimal
Category String
Country String
DateTime String
Indicator String
Unit String

@@unique([Country, Category, DateTime])

Raw Public Data Data Models

The raw data received from the various public data sources is stored in the Raw Public
Data Database. Each source has its own data table, or multiple tables, based on the
structure of the data. The catalog for the Trading Economics data model (Table 4.1)
and Eurostat data model (Table 4.2).

Preprocessed Public Data Data Models

The Preprocessed Public Data Database serves as a repository for data pre-
processed by the Data Preprocessing Microservice. The raw data is derived
from the Raw Data Database, so the tables within the preprocessed data database
are directly related to those in the public raw data database. There are also additional
columns in the preprocessed data tables which may remain empty, including attributes
such as company, industry, city, countryand date. Columns that already exist are not
duplicated. Additionally, existing columns may be renamed to align with standardized
database models, ensuring that datasets are harmonized. There is a renaming process
to match attributes such as the company, industry, city, countryand date of issue. We
then present the extended data models sourced from Trading Economics and Eurostat to
provide supplementary information.
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Table 4.3: Trading Economics preprocessed data model

AAAABBB AAAABBBB
id Int @id @default(autoincrement())
Country String
Category String
Year String
Value Decimal
Frequency String
HistoricalDataSymbol String
LastUpdate String
Company String
Industry String
City String

@@unique([Country, Category, DateTime])

Table 4.4: Eurostat preprocessed data model

AAAABBB AAAABBBB
id Int @id @default(autoincrement())
Value Decimal
Country String
Indicator String
Company String
City String
Industry String
Year String
Unit String

@@unique([Country, Category, DateTime])

Preprocessed Private Data Data Model

The Preprocessed Private Data Database functions as a repository for data
acquired from companies and processed by the Data Preprocessing Service. In
this database, each private data source is represented in a table that mirrors the structure
of the preprocessed public data. It also includes the same columns as preprocessed public
data, such as company, industry, city, countryand date (of issue), if not already present.
Typically, the added columns are populated with relevant data given the well-defined
nature of this data source. Table 4.5 illustrates the imported data model for private data
received from the industry partner.
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Table 4.5: Industry partner private data model

AAAABBB AAAABBBB
id Int @id @default(autoincrement())
Company String
Country String
Year Int
Industry String
City String
Description String?
Bill String
Material String?
Product group String
Order amount Decimal
Order unit String
Order net value Decimal

4.2 Effect on Memory and Computations
In this section, we perform data analysis and evaluate the effect on memory and processors.
We evaluate the effects of harmonization, duplicate eliminationand partial entry on
memory and computation for the following three datasets.

• Eurostat data set
• Trading Economics CO2 data set
• Private data data set

Harmonized data is analyzed using PowerBI to estimate CO2 emissions from the private
dataset.

During the design, implementationand deployment phases of the proposed harmonization
architecture, there were numerous insights and advantages gained, demonstrating that the
approach is effective in terms of computational time and memory usage. The following
plots (from Figure 4.1 to Figure 4.11) illustrate elapsed time (a proxy for performance)
and memory consumption for various datasets comprising different entry counts (50, 100,
120 or 150). Additionally, a comparison is presented between scenarios with duplicate
and empty entry removal enabled (ON) versus disabled (OFF).

4.2.1 Effect on Memory

The analysis of the memory consumption was conducted in the following fashion:

• First, the data was prepared for inserting into the raw database. For this, the
amount of entries in the dataset were reduced to 50, 100 and 120 or 150. Each of
these amounts of entries were saved in a separate CSV file.

53



4. Results

• Second, the prepared CSV file with the right amount of entries for the required
test run was inserted into the Raw Data Database. Since the process of inserting
data into the raw data database was not the subject under investigation, the data
could be imported with the help of SQL statements.

• Third, the data harmonization was started, for which a data preprocessing HTTP
request was sent to the Data Preprocessing Microservice. The parameters for
this request were set according to the test case at hand - these are the variables
mentioned before.

• Fourth, after the data harmonization was finished, the memory consumption inside
the data table was reviewed and saved.

• Finally, the whole process was repeated for all the other variable combinations and
the results recorded.

Figures 4.1 to 4.3 shows memory occupation for the different data sets, with multiple
parameters. Some of the parameters are summarized below.

• On the x-axis: number of data entries. Tests with three different amount of entries
were conducted - with 50, 100 and 120 or 150.

• On the y-axis: memory occupation. For the runs differing memory consumption
was measured. The given values are displayed in bytes.

• Each plot in Figure 4.1 to Figure 4.3 contains three metrics such as - the blue
line (Memory) shows the initial memory consumption before applied the proposed
harmonization. The red line (ON) displays the memory occupied after the harmo-
nization while enabling duplicate and empty entries removed. The brown line (OFF)
shows the memory consumption with the duplicate and empty entries removed in
parallel to harmonization.

• We also estimate the variations, as we rename columns of the existing data base
during harmonization process. We considered these variations between 1, 3and 5.
In each plot in Figure 4.1 to Figure 4.3, the sub figures (a), (d)and (g) considered
renaming a single column, the sub figures (b), (e)and (h) considered renaming three
columns, whereas the sub figures (c), (f)and (i) considered renaming five columns.

• Along with the renaming, we also considered adding new columns during harmo-
nization. We considered adding new column variations between 1, 3 and 5, similar
to renaming. In each plot in Figure 4.1 to Figure 4.3, the sub figures (a), (b)and (c)
considered adding a single column, the sub figures (d), (e)and (f) considered adding
three new columns, whereas the sub figures (g), (h)and (i) considered adding five
new columns.

• In summary, Figure 4.1(a) is the results of adding one new column and renaming
a column. Similarly, Figure 4.1(b) shows the addition one new column with the
renaming of three columns. Figure 4.1(c) shows the addition one new column while
the renaming of five existing columnsand so on.

Figure 4.1 shows the resultant memory occupancy for Eurostat data set. The plots reveal
distinct observations. Notably, both the OFF and ON plots consistently appear above the
Memory plot, due to the addition of a fixed number of columns to the Eurostat dataset.
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Figure 4.1: Memory occupied for Eurostat data set

Specifically, one, three, or five columns to the dataset. These plots clearly demonstrate
the correlation between increased memory usage and the inclusion of additional columns.
Nevertheless, due to harmonization and sufficient preprocessing, these minor increases
do not affect computation. Further details regarding the percentage increase in memory
consumption for the ON plot are provided below:
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• Increasing the amount of columns by one increased the memory consumption by 10
to 12 %. The higher the amount of entries were, the lower the amount of increased
memory consumption was.

• Increasing the amount of columns by three increased the memory occupation by
22 to 24 %. Similarly, as for adding one column, the higher the number of entries
were, the lower the increase in percent, vice versa.

• Finally, increasing the amount of columns by five had a similar result as for the
other two - the increase in memory was between 42 and 44 %.

The OFF plots exhibited similar trends, with memory consumption ranging from 12 to
14% for 50 entries, 24 to 27% for 100 entriesand 45 to 50% for 120 entries. One to three
percent of the difference in memory usage between ON and OFF plots can be attributed
to the difference in plots. With the addition of more columns, this discrepancy increases,
since the memory requirement for double and empty entries rises at the same rate.
Interestingly, the renaming of columns had no discernible effect on the resulting file size.
Even as the number of renamed columns increased within a given set of diagrams (e.g.,
(a), (b)and (c)), memory consumption remained constant. Moreover, the analysis revealed
a near-linear relationship between processed entries and memory usage. Doubling the
entries processed led to an approximate 2.1-fold increase in required memory, indicating
a nearly proportional relationship.

For the CO2 emissions dataset, the memory occupation analysis in different amount of
entries with varying the number of columns add and/or rename are plotted in Figure 4.2.
Here, we also considered removing empty and duplicate entries (ON and OFF plots).

From Figure 4.2, our observations while considering duplicate and empty entries removal
effect in terms of percentages of memory consumption increase/decreased is dissed below:

• Increasing the amount of columns by one increased the memory consumption by 7
to 11 %. The higher the amount of entries were, the higher the amount of increased
memory consumption was. Opposed to the previous data set.

• Increasing the amount of columns by three increased the memory occupation by
21 to 26 %. Similarly, as for adding one column, the higher the number of entries
were, the higher the increase in percent.

• Finally, increasing the amount of columns by five had a similar result as for the
other two - the increase in memory was between 56 and 57 %.

Similar observations were noticed when we did not consider removing duplicates or empty
entries from the CO2 emissions dataset. The range of memory consumption increase for
50 entries was around 16 %, for 100 entries around 31 % and for 150 entries between 58
and 59 %. However, these values are higher when compared with removing duplicates
and empty entries from the datasets, which leads to a dramatic reduction in memory
usage.

Memory usage varied from three to eight percent between ON and OFF plots, increasing
slightly as more columns were added. There was a noticeable reduction in this discrepancy
with more entries. For instance, the difference was eight percent for 50 entries but reduced
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Figure 4.2: Memory occupied - CO2 emissions

to three to four percent for 150 entries. This can be attributed to the fact that while
memory consumption increased with more entries, the absolute difference between ON
and OFF plots remained relatively stable or changed at a slower rate. Furthermore,
renaming columns had no significant impact on the resulting file size, with memory
consumption remaining constant despite an increase in the number of renamed columns.
Finally, there was a near-linear relationship between processed entries and memory usage.
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Figure 4.3: Memory occupied - private data dataset

Doubling the entries processed led to an approximate 1.94-fold increase in required
memory, indicating a nearly proportional relationship.

Figure 4.3 shows the memory occupation analysis for the private datasets, while varying
the number of entries, columns, along with removing and not-eliminating duplicates and
empty entries. The observations were made on percentages of memory consumption vari-
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ations while eliminating (ON) duplicates and empty entries are plotted in Figure 4.3and
a summary of discussions are below.

• Increasing the amount of columns by one increased the memory consumption by
two to four percent. The higher the amount of entries were, the lower the amount
of increased memory consumption was. This was the same for the first dataset
analyzed.

• Increasing the amount of columns by three increased the memory occupation by
seven to nine percent. Similarly, as for adding one column, the higher the number
of entries were, the lower the increase in percent.

• Finally, increasing the amount of columns by five had a similar result as for the
other two - the increase in memory was between 17 and 18 %.

Memory consumption for (OFF) plots slightly increased by approximately four percent
for 50 entries, between nine and eleven percent for 100 entriesand between 18 and 21% for
150 entries, as shown in figure 4.3. Memory usage differed between ON and OFF plots
by almost zero to three percent, increasing slightly with the addition of more columns.
Notably, for this dataset, the difference between ON and OFF increased as the number
of entries grew. Similar to the Eurostat and CO2 emission datasets, renaming columns
had no discernible impact on the resulting file size. Memory consumption remained
constant despite an increase in the number of renamed columns within a given set of
diagrams. Finally, there was a less-than-linear relationship between processed entries and
memory usage. There was an approximate 1.83-fold increase in memory requirements
when processing double the entries, indicating a sublinear relationship between entries
and memory requirements.

4.2.2 Effect on Computational Time

This section provides a detailed analysis of the time taken to process the original datasets
under different scenarios. We conduct these experiments by changing the number of
entries of each dataset and calculating mean and standard deviation within the plots.
The computational mean times of Eurostat, CO2 emission and private datasets are shown
in figures 4.4, 4.6and 4.8, respectively. Similarly, the computational time variations in
terms of standard deviation for Eurostat, CO2 emission and private datasets are shown
in Figures 4.5, 4.7 and 4.9, respectively. The variables used for this analysis are the
same as for the memory occupation analysis, such as varying number of entries, number
of columns renamed and/or added. Running performance tests was similar to running
memory occupation tests and conducted as shown below:

• First, the data was prepared for inserting into the raw database. For this, the
amount of entries in the dataset were reduced to 50, 100 and 120 or 150. Each of
these amounts of entries were saved in a separate CSV file.

• Second, the prepared CSV file with the right amount of entries for the required
test run was inserted into the Raw Data Database. Since the process of inserting
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data into the raw data database was not the subject under investigation, the data
could be imported with the help of SQL statements.

• Third, before sending the HTTP request, which starts the harmonization of the
data, a timestamp was taken

• Fourth, the data harmonization was started, for which a data harmonization
HTTP request was sent to the Data Preprocessing Microservice. The
parameters for this request were set according to the test case at hand - these are
the variables mentioned before.

• Fifth, after the data harmonization had finished, another timestamp was taken and
the elapsed time for the execution calculated.

• Sixth, the steps to send the HTTP request and calculate elapsed time was repeated
for a hundred times for each variable combination.

• Finally, the whole process was repeated for all the other variable combinations and
the results recorded.

Figures 4.4 to 4.9 shows variations on computational time for the different data sets in
both mean and standard deviations, with multiple parameters as summarized below.

• On the x-axis: number of data entries. Tests with three different amount of entries
were conducted - with 50, 100 and 120 or 150.

• On the y-axis: mean computational time (for the figures 4.4, 4.6 and 4.8) and
Standard deviation of computational time (for the figures 4.5, 4.7 and 4.9). The
given values are displayed in seconds (s).

• In each plot in Figure 4.4 to 4.9 contains two metrics (lines) such as - the blue
line (ON) shows the computational time for the proposed harmonization while
eliminating duplicates and empty entries. The red line (OFF) indicates the proposed
harmonization while not-enabling duplicate and empty entry removal.

• We also estimate the variations, as we rename columns to the existing data base
during harmonization process. We considered these variations between 1, 3 and
5. In each plot in Figure 4.4 to 4.9, the sub figures (a), (d) and (g) considered
renaming a single column, the sub figures (b), (e) and (h) considered renaming
three columns, whereas the sub figures (c), (f) and (i) considered renaming five
columns.

• Along with the renaming, we also considered adding new columns during harmo-
nization. We considered adding new column variations between 1, 3 and 5, similar
to the renaming. In each plot in Figure 4.4 to 4.9, the sub figures (a), (b) and (c)
considered adding a single column, the sub figures (d), (e) and (f) considered adding
three new columns, whereas the sub figures (g), (h) and (i) considered adding five
new columns.

• In summary, figure 4.4(a) is the result of adding one new column and renaming
one column. Similarly, figure 4.4(b) shows adding one new column while renaming
three columns. Figure 4.4(c) shows adding one new column while renaming five
existing columns and so on.

The results for mean values and their corresponding standard deviations of varying com-
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Figure 4.4: Time required mean values - Eurostat data set

putational time in Eurostat data set were shown in figure 4.4 and figure 4.5, respectively.
In figure 4.4 and figure 4.5, there are two plots displayed - ON and OFF. These plots,
the same as before, correspond to the empty and double entry removal turned on (ON)
or off (OFF).

Figure 4.4 shows that, depending on the amount of data entries, the mean execution
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Figure 4.5: Time required standard deviation - Eurostat data set

time in almost all cases increases. The execution time increases by a factor of around ten
percent by increasing the amount of entries from 50 to 100. Furthermore, by analyzing
the execution curves in detail and comparing them, it can be seen that executions with
double and empty entry removal turned on (ON) will take less time to run than the same
runs with double and empty entry removal turned off (OFF). The difference here lies
at around 1.12 %, thus on average the ON execution requires 1.12 % less time than its
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Figure 4.6: Time required mean values - CO2 data set

counterpart OFF execution. When analyzing the performance differences for adding new
columns, adding new columns increased the runtime by around two to three percent. For
renaming columns, the increase in runtime was conducted only around 0,1 %. Similarly,
standard deviation plots can be viewed in figure 4.5 and it shows that for the runs
differing standard deviations can be observed, mostly in the range of 0,01 to 0,04 seconds.

63



4. Results

50 100 100 150 150

1.6

1.8

2

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(a)

50 100 100 150 150

1.4

1.6

1.8

2

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(b)

50 100 100 150 150

2

3

4

·10−2

Number of data entriesTi
m

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(c)

50 100 100 150 150

1.4

1.6

1.8

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(d)

50 100 100 150 150
1.5

1.6

1.7

1.8

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(e)

50 100 100 150 150

1.6

1.8

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(f)

50 100 100 150 150

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Number of data entriesT
im

e
re

qu
ir

ed
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(g)

50 100 100 150 150

1.6

1.7

1.8

1.9

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(h)

50 100 100 150 150

2

2.5

·10−2

Number of data entriesT
im

e
re

qu
ire

d
st

an
da

rd
de

vi
at

io
n

(s
)

ON
OFF

(i)

Figure 4.7: Time required standard deviation - CO2 data set

Figure 4.6 shows the mean values for the CO2 emission data set. First and foremost it can
be seen that, by enhancing the amount of data entries, the mean execution time improved
in almost all cases. The execution time increases by around ten percent by increasing
the amount of entries from 50 to 100. Furthermore, by analyzing the execution curves in
detail and comparing them, it can be seen that executions with double and empty entry
removal turned on (ON) will take less time to run than the same runs with double and
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empty entry removal turned off (OFF). The difference here lies at around 0.8 %, thus on
average the ON execution requires 0.8 % less time than its counterpart OFF execution.
When analyzing the performance differences for adding new columns, adding new columns
increased the runtime by around two to three percent. For renaming columns, there was
no significant difference in runtime. Similarly, standard deviation plots can be viewed in
figure 4.7 and it shows that for the runs differing standard deviations can be observed,
mostly being in the range of 0,01 to 0,04 seconds, similarly to the Eurostats datasets
standard deviation.

Figure 4.8 shows the mean computational time variations for the private data set. The
mean execution time increases in all cases when the number of data entries is increased.
The execution time is extended by a factor of around 20 % for expanding the amount
of entries from 50 to 100. Furthermore, by analyzing the execution curves in detail and
comparing them, it can be seen that executions with double and empty entry removal
turned on (ON) spend less time running than the same runs with double and empty entry
removal turned off (OFF). The difference here lies around 1.1 %, thus on average the ON
execution consumes 1.1 % less time than its counterpart OFF execution. When analyzing
the performance differences for adding new columns, adding new columns prolonged the
runtime by around two to three percent. For renaming columns, the time required for
changing more columns took less time than renaming only a few columns. The increase
ranged from 0.6 % to 1.1 %. Similarly, the standard deviation for computational time
variations in private datasets is shown in figure 4.9. Here it can be seen that for the runs
differing standard deviations can be observed. For this data set the standard deviations
were between 0.02 and 0.1 seconds, indicating that they were significantly higher than for
the previously explained data sets. Furthermore, for most plots, the standard deviation
increases rapidly, as the number of entries increases.

In addition to running performance tests for datasets, where the raw data is situated in
the Raw Data database, additional performance tests were run with the raw data files
placed in blob storage. Thus, instead of requesting raw data from a database, files with
different amounts of data were used. The variables and the steps remained the same as
explained in the previously described time-required performance tests. The data sets
used were private data files. The figure 4.10 displays the mean values for the private
data set. It is clearly evident that, when the number of data entries is increased, the
mean execution time increases. The execution time increases by a factor of around 12
to 15 % for raising the amount of entries from 50 to 100. Furthermore, by analyzing
the execution curves in detail and comparing them, it can be seen that executions with
double and empty entry removal turned on (ON) required more time to run than the
same runs with double and empty entry removal turned off (OFF). In contrast to the
previous results, where ON data runs were faster, the OFF data runs were on average
about 0.3 percent faster than their ON counterparts. When analyzing the performance
differences for adding new columns, adding new columns increased the runtime by around
0.6 %. For renaming columns, the time required for renaming more columns took in
average 1 to almost 3 % more than renaming less columns.
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Figure 4.8: Time required mean values - private data set

Finally, standard deviation plots can be viewed in the following figure 4.11. As can be seen
here, there are differences between the standard deviations for the runs. The standard
deviations for this data set ranged from 0.06 to 0.12 seconds, a significantly higher
standard deviation than those for the previously explained data sets. It is important to
note that the highest standard deviation was observed for fewer entries. This opposes
the previously observed results, that with an increasing amount of entries, the standard
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Figure 4.9: Time required standard deviation - private data set

deviation also increases.

4.2.3 Data Analysis along with Harmonization

In preparation for the analysis, both publicly available and private data were imported
into the system. The publicly available data was sourced from Eurostat and Trading
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Figure 4.10: Time required mean values - private data set blob storage

Economics, which are summarized below.

• Eurostat data where national accounts aggregates by industry are displayed [55].
• Trading Economics [56] datasets were extracted below:

– CO2 Emissions [57]
– Precipitation [58]
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Figure 4.11: Time required standard deviation - private data set blob storage

– Temperature [59]

In addition to public data, we also acquired industry data to verify the effectiveness of the
proposed harmonization system. This dataset includes data from 2022 with the different
suppliers, product groups, delivered products and services together with the prices for
these efforts. Due to an agreement with the industry partner, we cannot provide more
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details about these datasets explicitly.

After this data was imported into the system and harmonized, the process of generating
new knowledge with PowerBI data analysis from this data could be started. A summary
of these findings can be found in table 4.6. The private customer data product group was
linked to different industries in Eurostat’s data. As can be seen, both product groups
"22100000" and "25139998" belong to the "Construction" data industry, while the product
group "25160000" can be linked to "Financial and insurance activities" etc.

Table 4.6: Link between private data product group and Eurostat data industry

Customer product group nr Eurostat data industry
22100000 Construction
25139998 Construction
25160000 Financial and insurance activities
26040100 Electricity, gas, steam and air conditioning supply
33049091 Electricity, gas, steam and air conditioning supply
33100000 Electricity, gas, steam and air conditioning supply
37070000 Manufacture of other non-metallic mineral products

The industry partner provided data on CO2 emissions in tons per Euro for industries not
covered by Eurostat. These emissions were correlated with Eurostat’s industries, enabling
total emissions per industry annually. The corresponding calculations are detailed in
Table 4.8. The CO2 emissions of various products were calculated based on the results of
the aforementioned tables (see Table 4.7). The first column denotes unique product group
identifiers, while the second column presents the net value of each purchased product
or service. Subsequently, the estimated tonnes of CO2 emissions for different industries
from Table 4.8 were incorporated. The final column illustrates the total CO2 emissions
attributed to each product or service. For example, the initial product with the identifier
33100000 has a cost per order value of 2,070,814.36 EUR. Since the estimated CO2
emissions per Euro for the industry "Electricity, gas, steam and air conditioning supply"
is 0.001006, the resulting CO2 emissions estimate amounts to nearly 2072 tonnes for
this particular order. The successful implementation of the architecture, facilitating the
consolidation of diverse data sources, data importation, harmonization and subsequent
analysis, validates the versatility of this approach for large-scale data analysis.
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Table 4.7: Results CO2 emissions per product

Product group Order net value CO2 emissions/e CO2 emissions calc.
33100000 2 070 814,36 0,0010005664 2071,987327
33100000 2 058 920,44 0,0010005664 2060,08667
25139998 2 000 000,00 0,0000431778 86,35562291
37070000 1 962 612,26 0,0020716748 4065,894437
33049091 1 960 997,00 0,0010005664 1962,107763
25160000 1 944 823,91 0,0000034574 6,724017774
25160000 1 836 882,96 0,0000034574 6,350823644
22100000 1822382 0,0000431778 78,68646639
33049091 1787280 0,0010005664 1788,292365
25139998 1775050 0,0000431778 76,64277422
26040100 1696543,72 0,0010005664 1697,50469
22100000 1600000 0,0000431778 69,08449833
22100000 1600000 0,0000431778 69,08449833
33049091 1562394,44 0,0010005664 1563,279424
33100000 1550500 0,0010005664 1551,378246

27229201,09 17153,45962

Table 4.8: Emissions per Euro per Industry

Industry Volume in in-
dustry (e)

CO2 Emis-
sions/Yr

CO2 emis-
sions/e

Electricity, gas, steam and
air conditioning supply 6 098 200 000 6 101 654,19 0,001000566

Construction 26 329 800 000 1 136 863,14 0,000043178
Manufacture of other
non-metallic mineral products 2 679 500 000 5 551 052,73 0,002071675

Financial and insurance activ-
ities

15 589 400 000 53 898,66 0,000003457
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CHAPTER 5
Conclusion

This thesis presents, implements, and evaluates a microservices-based data harmonization
architecture. The proposed architecture supports multiple aspects of data analysis -
data gathering, data ingestion, data preprocessing and enabling access to data inside
the system. This thesis aimed to automate the data harmonization part of this process
and evaluate some possible preprocessing strategies. As the proposed architecture was
implemented, performance assessment and memory analyses were conducted using three
different data sets - such as two publicly available (i.e., Eurostats, and CO2 emissions),
one closed and private data set. It is generally true that importing data from a database
is significantly faster than importing data from a file. Furthermore, it can be seen that
removing empty and double data entries reduces memory consumption and in most
cases also the processing time. Therefore, removing empty and double entries during
data preprocessing will have a significant impact on resource consumption. It is proved
through our experiments that the proposed architecture automates data preprocessing
in an extremely reliable and fast way by utilizing this and similar systems. Our work
can be extended to advance preprocessing techniques, enhance scalability, integrate with
advanced analytics, address privacy concerns, and optimize microservice-based data
harmonization architectures in real-world deployments in the future.
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