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Abstract. The creation of hairpin or lambda vortices, typical for the early stages of the laminar-
turbulent transition process in various boundary layer flows, in some sense may be associated with
blow-up solutions of the Fisher–KPP equation. In contrary to the usual applications of this nonlinear
evolution equation of reaction-diffusion type, the solution quantity in the present context neither
needs to stay bounded nor positive. We focus on the solution behavior beyond a finite-time point
blow-up event, which constitutes two moving singularities (representing the cores of the vortex legs)
propagating in opposite directions, and their initial motion is determined with the method of matched
asymptotic expansions. After resolving subtleties concerning the transition between logarithmic and
algebraic expansion terms in the regarding asymptotic layers, we find that the internal singularity
structure resembles a combination of second and first order poles in form of a singular traveling wave
with a time-dependent speed imprinted through the characteristics of the preceding blow-up event.
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1. Introduction and problem formulation. The present study deals with
real-valued, singular solutions of the forced Fisher–Kolmogorov–Petrowsky–Piscounov
(Fisher–KPP) equation [10, 18],

(1.1)
∂u

∂t
− ∂2u

∂z2
= u− u2 + g ,

that occur immediately beyond a finite-time blow-up event |u| → ∞ as t → ts, z → zs,
where (zs, ts) denotes the blow-up point. It is important to note that in the present
case u(z, t) ∈ R is assumed to cover the full range, and z ∈ R is the spatial coordinate
and t ∈ R+

0 the time. The only function of the forcing term g(z, t) ∼ O(1) is to
provoke the formation of a localized finite-time singularity when starting e.g. from
the initial condition u(z, 0) = 1, i.e. the stable/attracting stationary state us = 1
(us = 0 is unstable/repelling). Once a point blow-up event is triggered, independent
of how, the linear term u and the forcing g play a subordinate role in the immediate
vicinity of the blow-up point (the focus of our study), where a subtle balance between
the time-derivative, the diffusion and the quadratic nonlinearity terms of (1.1) holds,
[16, 13]. For a physical motivation of equation (1.1) in the present, rather unusual,
setting the interested reader is referred to appendix B and references cited therein.

As is well-known, nonlinear reaction-diffusion equations of the (unforced) Fisher–
KPP type commonly occur in two contexts. The first area is population dynamics and
genetics, where the solution pictures the evolution of some concentration, i.e. a strictly
bounded quantity, u ∈ [0, 1]. In that case travelling wave solutions u(z, t) = v(ξ),
ξ = z − ct − ξ0 are of particular significance, e.g. [19]. Here ξ, c denote the wave
coordinate, wave speed and the arbitrary constant ξ0 accounts for the translation
invariance of the wave profile. Due to the domain restrictions allowed solutions join
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the stationary states us = 0, 1 (heteroclinic orbit in Poincaré’s phase portrait) and
have a wave speed of |c| ≥ 2. The second typical application concerns the subject
of semilinear heat equations, here the restriction u ∈ (0,∞) holds for the dependent
variable (temperature), which requires a sign change u → −u (of the nonlinearity at
the rhs) in (1.1), see e.g. the recent study [9] and references therein.

For some overview of the important aspects of finite-time blow-up we suggest the
survey [13]. In particular relevant is the work by Fujita [11], where it is shown that
the semilinear heat equation ut−uzz = u2 always blows up for arbitrary small positive
initial data. In contrast, blow-up criteria for generalized Fisher-KPP equations are
formulated in [14] based on stationary solutions.

As in the present case, blow-up is denoted incomplete, if there exists an extended
solution u(z, t > ts) which remains finite at most locations z ∈ R. A characterization
of complete or incomplete blow-up scenarios is given in [12], especially therein the
semilinear heat equation with u2-nonlinearity (mentioned above) is claimed to undergo
complete blow-up. This appears incorrect in our present setting, since we neither have
the restriction u ≥ 0 nor is our solution continuous in time at (zs, ts), figure 1.

Possibly due to these reasons, there exist almost no relevant studies which deal
with the solution behavior beyond blow-up. Only recently, Fasondini et al. [9] tried to
numerically calculate post blow-up solutions of a semilinear heat equation with peri-
odic boundary conditions, claiming that beyond ts the solution is inherently complex-
valued. We believe our results are more tangible and physically feasible, because the
sought solution is solely real-valued. If, however, one considers an analytic contin-
uation into the complex plane, complex-valued singularities indeed exist before the
blow-up time ts. They propagate from both sides of the imaginary axis towards the
real axis where they eventually meet at ts. There, due to the time-reflection rela-
tion between solutions immediately before and beyond blow-up (a special case of a
scale-invariance property)

(1.2) u(z − zs, t− ts) ∼ −u(±i(z − zs), ts − t) , as t− ts → 0±, z − zs → 0±,

a continuation to later times is possible where now a pair of real-valued singularities
move away from the symmetry axis in opposite directions, [3]. The tracking of complex
singularities before blow-up by means of sophisticated numerical techniques has been
carried out by Weideman, [25]. Therein the application example of a semilinear heat
equation is of particular interest in our context.

The aim of the present paper is to analytically compute the initial motion of the
real-valued singularity pair beyond blow-up governed by (1.1) through the method
of matched asymptotic expansions. It can be viewed as a continuation of the first
attempts towards a solution by [3]. Apart from the remarkable physical interpretation
of the generation of moving singularities beyond blow-up as the formation of vortex
structures (kernels) close to the wall as depicted in figure 6, the study independently
represents an interesting and challenging mathematical task. The paper is organized
as follows. In section 2 we revisit the well-known asymptotic structure of blow-up
solutions to (1.1) alongside with some basic considerations for studying asymptotic
sublayers with the objective to obtain uniformly valid expansions. The technically
complicated first sublayer, valid in the immediate proximity of the initial singularity,
and the description of the required numerical computations regarding the second
sublayer, are discussed in sections 3 and 4, respectively. The final results as well as an
outlook are given in section 5, and the conclusions are drawn in section 6. Calculation
details of our asymptotic approach as well as references to the physical background
of the present study can be found in appendices A and B, respectively.



SINGULAR TRAJECTORIES OF THE FISHER EQUATION 3

2. Blow-up solutions of the Fisher–KPP equation.

2.1. Finite time blow-up and pair generation. Let say the solution of the
Fisher equation (1.1) blows up at some arbitrary position zs and time ts, then its
asymptotically correct representation near the blow-up point (zs, ts) can be written
down as a pseudo-similarity law [16, 8, 15, 3, 4],

(2.1) u(z, t) ∼ 1

t− ts
f(ẑ, τ) +O

(
(t− ts)

0
)
, t− ts → 0± .

This local solution consists out of a temporal pole of first order and a pseudo blow-up
profile f , which depends on the blow-up variable ẑ and an exponentially short time
scale τ , defined as

(2.2) ẑ =
z − zs√
τ |t− ts|

, τ = − ln |t− ts| → ∞ .

While the blow-up variable ẑ pictures the current spatial scaling, i.e. the relevant
spatial distance z − zs in dependence of time t, the logarithmic time scale τ is the
relevant temporal quantity for all of the upcoming asymptotic expansions.

u(z,t)

t -ts

z  -zs

blow-up

Fig. 1. Schematic of the real-valued, asymptotic solution (2.1), (2.4), (magenta) of the Fisher
equation (1.1) in the vicinity of a point blow-up event, [4]. Beyond blow-up, the (even) solution is
depicted for z > zs only; the trajectories of the singularity pair are marked in blue.

We insert ansatz (2.1) into the Fisher equation (1.1) and obtain the partial dif-
ferential equation for f , omitting terms of O(e−τ ) — i.e. u and g in (1.1),

(2.3)
ẑ

2

∂f

∂ẑ
− f2 + f =

1

τ

[
ẑ

2

∂f

∂ẑ
∓ ∂2f

∂ẑ2

]
− ∂f

∂τ
,

which can be asymptotically solved for τ → ∞ in agreement with t−ts → 0± of (2.1).
The resulting expansion for f has the following form, [3]

(2.4) f ∼ 8

8∓ ẑ2
± 10ẑ2

(8∓ ẑ2)
2

ln(τ)

τ
+

16∓ C1ẑ
2 ± 8ẑ2 ln

∣∣8∓ ẑ2
∣∣

(8∓ ẑ2)
2

1

τ
+O

(
ln2 τ

τ2

)
.

The lower sign corresponds to the solution shortly before the blow-up occurs at ts
and the upper sign to the extended solution shortly beyond ts. Moreover, beginning
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with the second temporal order 1/τ , some integration constants Ci appear. They
correspond to the systems local degrees of freedom and may be fixed during a possible
embedding into a global solution of u.

For a better understanding of this complicated structure, we have visualised the
asymptotic solution of u in figure 1. Before blow-up the solution essentially consists
of a minimum of increasing magnitude which reaches infinity at the blow-up time ts.
Then, a sudden sign change occurs and two singularities get created, which immedi-
ately propagate away from their creation point with decreasing speed. The dark blue
line corresponds to the initial trajectory of this singularity pair, its spatio-temporal
evolution will be discussed in the following and examined in detail in the upcoming
sections.

2.2. Collapse and singular trajectory. We study the expansion (2.4) beyond
ts and see that it has a fixed spatial singularity location at ẑ = ±

√
8. The expansion

is not uniformly valid, it breaks down near this singularity position, since the spatial
pole order increases alongside with the temporal expansion order. That means, there
exists a spatial scaling around ẑ = ±

√
8, where some or actually all expansion orders

reach the same magnitude, such that the initial expansion ceases to be valid.
Because of the ln(τ)-contributions, the generation of the correct breakdown scal-

ing has been an open problem for some time, cf. [3]. We solved it via equating different
expansion orders to each other, here done for the first two orders,

(2.5)
8

8− ẑ2
!∼ 10ẑ2

(8− ẑ2)
2

ln(τ)

τ

!∼
8ẑ2 ln

∣∣8− ẑ2
∣∣

(8− ẑ2)
2

1

τ
.

This comparison of magnitudes, e.g. between the first and second term, immediately
yields the first inner variable (for the right and left running singularity respectively),

(2.6) γ =
(
ẑ ∓

√
8
) τ

ln(τ)
∼ O(1) .

In order to find out what happens inside the breakdown area of expansion (2.4), we
zoom in treating γ as the next relevant spatial quantity of O(1). We perform the
corresponding change of variables in (2.3) and obtain a new differential equation and
a new expansion, which holds valid information in the vicinity of the initial singularity
position ẑ = ±

√
8. In the next section we study this so-called first asymptotic sublayer

in detail, but for now we want to give some overview of our general approach.
In particular, the expansion of the first asymptotic sublayer has again a singularity

position and again undergoes breakdown near this singularity. That means we can
once more introduce a new spatial scaling and actually repeat this zooming process
infinitely long, and thereby we obtain the step-wise correction of the initial motion of
the singularity pair,

(2.7) ẑp =
zp − zs√
τ(t− ts)

∼ ±
√
8

[
1− 1

8

ln(τ)

τ
+

ζs
4

1

τ
+O

(
ln2 τ

τ2

)]
, τ → ∞.

This singular trajectory expansion for ẑp has the same form as the initial expansion
of f , (2.4). And most importantly, the coefficient of the respective temporal order
equates to the singularity position of the according asymptotic sublayer. That means,
the time-dependent singularity position of the Fisher equation zp is given in leading
order by the singularity position of the initial expansion±

√
8, the first order correction

will be the singularity position of the first sublayer, and so on.
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Starting at O(1/τ), i.e. at the second sublayer, the motion of the singularity will
depend on the introduced integration constants Ci of the initial expansion (2.4). To
find for example the connection between the singularity position ζs and the initial
constant C1, we need to write down the correct expansions for all layers up to the sec-
ond sublayer, and merge them together at respective overlap areas using the method
of matched asymptotic expansions.

3. The first asymptotic sublayer.

3.1. Temporal expansion. In accordance with the new spatial scaling (2.6) we
make the ansatz f(ẑ, τ) = v(γ, τ) and insert into the Fisher equation or rather the
initial equation (2.3), to obtain the partial differential equation for the first sublayer,

τ

ln(τ)

[√
2
∂v

∂γ
+

∂2v

∂γ2

1

ln(τ)

]
− v2 = −v − γ

2

∂v

∂γ
+

√
2
∂v

∂γ

1

ln(τ)
+

+
1

τ

[
−γ

2

∂v

∂γ
+ γ

∂v

∂γ

1

ln(τ)

]
− ∂v

∂τ
.

(3.1)

This equation requires a complicated expansion. To tackle the problem step by step,
we introduce β = ln(τ) and begin with an expansion in complete τ/β-orders only,

(3.2) v(γ, τ) ∼ τ

β
v1(γ, β) + v2(γ, β) +O

(
β

τ

)
, τ → ∞ .

Thereby, we acquire a system of differential equations which is still dependent on β,
but in a clear manner,

√
2
∂v1
∂γ

− v21 +
∂2v1
∂γ2

1

β
= 0 ,

√
2
∂v2
∂γ

− 2v1v2 +
∂2v2
∂γ2

1

β
= −v1 −

γ

2

∂v1
∂γ

+
√
2
∂v1
∂γ

1

β
, · · · .

(3.3)

We can eliminate this remaining temporal dependency through an additional expan-
sion in β → ∞, in agreement with τ → ∞ and t− ts → 0. This step is not trivial, we
actually need to introduce double-logarithmic contributions, i.e. ln(β)-terms, in order
to make the first sublayer matchable with the initial expansion,

(3.4) vi(γ, β) ∼ vi1(γ) + vi2(γ)
ln(β)

β
+ vi3(γ)

1

β
+O

(
ln2(β)

β2

)
, β → ∞ .

With that we obtain simplified equations of the form

(3.5)
√
2 v′11 − v211 = 0 ,

√
2 v′ij − 2v11vij = Gij .

Hence, the solution of the leading order v11 is simply a first order pole. The inhomo-
geneity of the linearized higher order equations Gij is zero at the second order and
else dependent on solutions vij of smaller orders. In total we find

v1 ∼ −
√
2

a
+

A12

a2
ln(β)

β
+

A13 + 2 ln |a|
a2

1

β
+ . . . ,

v2 ∼ A21 +A11γ + γ2/4

a2
+

[
A22 +

A12

2
√
2
γ

a2
+

A12

2
√
2

3A2
11 − 4A21

a3

]
ln(β)

β
+

+

[
ln |a|√
2a

+
A23 +

A13

2
√
2
γ

a2
+

(3A2
11 − 4A21)(A13 − 1 + 2 ln |a|)

2
√
2 a3

]
1

β
+ . . . ,

(3.6)
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where a = A11 + γ. As common, the pole position is defined through the degree of
freedom A11 of the leading order function v11.

3.2. Matching and breakdown. We adjust the first sublayer (3.2), i.e. the
values of all the introduced constants Aij , to the initial expansion (2.4) using Van
Dyke’s matching rule, [24]. Hereby, we claim that both expansions are valid in an
overlap region f(ẑ →

√
8) = v(|γ| → ∞), enabling a smooth transition between them

and resulting in

A11 = 1/
√
8 , A12 = 2 , A13 = (2− C1)/4 + 5 ln(2) ,

A21 = (1− 2C2)/8 , A22 = 1 , A23 = (1− C3)/4 .
(3.7)

The leading order O(τ0) matches automatically. For O(τ−1), O((ẑ −
√
8)−2) terms

proportional to ln(τ) match for fixed A11, constant terms for fixed A13, occurring
ln[ln(τ)] terms are removed with A12, and ln(ẑ−

√
8) terms match automatically. For

more details on the matching, please see appendix A.1.
We readily see, that the expansion of the first sublayer has a singularity at γ =

−1/
√
8. Thus, we constructed by now the singular trajectory ẑp (2.7) up to and

including O(τ/ ln(τ)). Without surprise, near this singularity position of γ the first
sublayer will collapse, giving rise to a new spatio-temporal area, which we call the
second asymptotic sublayer.

In order to find the corresponding breakdown scaling, we follow up the same
approach as in subsection 2.2. Since the leading structure of (3.6) is very similar to
the initial expansion (2.4), we would obtain (γ+1/

√
8)β/ ln(β) ∼ O(1) as a first result.

However, after some studies we actually find that this scaling establishes no correction
to the singularity position, i.e. seemingly no new dynamics are hidden within it.
Therefore, we consider instead the next possible breakdown of (3.6), associated with
the second smallest rescaling. We can define it rudimentarily by the balance between
v11 and the homogeneous part of v13,

(3.8) −
√
2

a

!∼ A13

a2
1

β
,

yielding the relevant spatial quantity of the second sublayer, the second inner variable

(3.9) ξ =
(
γ + 1/

√
8
)
ln(τ) ∼ O(1) .

4. The second sublayer - a numerical challenge.

4.1. Temporal expansion. The next crucial stop on our way to describe the
initial singularity motion governed by the Fisher equation is the second asymptotic
sublayer. In accordance with the new spatial scaling (3.9) we make the ansatz
v(γ, τ) = w(ξ, τ) and perform this change of variables in the first sublayer equation
(3.1), to obtain the partial differential equation of the second sublayer

τ

[√
2
∂w

∂ξ
+

∂2w

∂ξ2

]
− w2 = −w − ξ

2

∂w

∂ξ
+

β

4
√
2

∂w

∂ξ
+

√
2
∂w

∂ξ
+

+
1

τ

[
−ξ

2

∂w

∂ξ
+

β

4
√
2

∂w

∂ξ
− 1

2
√
2

∂w

∂ξ

]
− ∂w

∂τ
.

(4.1)
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In order to avoid unnecessary prefactors, we implement an additional linear trans-
formation w(ξ, τ) = 2g(ζ, τ) with ζ =

√
2 ξ. In accordance, the correct asymptotic

expansion of g is given by

g(ζ, τ) ∼ τg1(ζ) +
[
β2g2(ζ) + βg3(ζ) + g4(ζ)

]
+O(β4/τ), τ → ∞ .(4.2)

Similar as in section 3, we again had to introduce additional orders starting with
g2, such that the matching with the first sublayer is possible. In particular, the
second temporal order in each layer is pictured through a homogeneous equation.
This degeneration gets imprinted onto the sublayers from the initial expansion (2.4).
We insert expansion (4.2) into (4.1) and obtain the equations for gj(ζ),

(4.3) g′′1 + g′1 = g21 , g′′i + g′i − 2g1gi = Gi , i = 2, 3, . . . ,

where Gi corresponds to the inhomogeneity of the respective higher order. We see,
the leading order equation inherits finally a full balance between the second and first
derivative and the nonlinearity. Hence, g1 is seemingly no longer analytically deter-
minable and we focus on its numerical computation. For the sake of completeness, we
note that the equation for g1 describes a singular traveling wave of (1.1) in the limit
of infinite wave speeds c → ∞, as suggested by the representation u(z, t) = c2g1(ζ)
and the appropriate wave variable ζ = c(z − ct)− ζ0, [3].

4.2. Properties of the leading order. Let us consider the relevant asymptotic
behavior of g1, derived from equation (4.3),

g1 ∼


−1

ζ
+

ln(ζ2)

ζ2
+

F1

ζ2
+ o(ζ−2) , ζ → ±∞ ,

6

(ζ − ζs)2
− 6/5

ζ − ζs
− 1

50
+O(ζ − ζs) , ζ − ζs → 0± .

(4.4)

On the one hand, we have written down the expansion of the far field for ζ → ±∞,
where logarithmic contributions appear and the far field constant F1 gets introduced.
And on the other hand, we formulated the expansion around the expected but yet
unknown singularity position of the second sublayer, ζ − ζs → 0, which we call the
near field of g1. We see that the singularity is a combination of a pole of second and
first order.

The far field constant F1 gets its variable value imprinted from the matching with
the first sublayer v(γ → −1/

√
8) = 2g(|ζ| → ∞), yielding

(4.5) F1 = A13 − ln(2) = (2− C1)/4 + 4 ln(2) .

But most importantly, F1 takes the same value at both far field areas, which fixes one
degree of freedom of the equation. The other degree of freedom of the leading order
function is its invariance under position shifts. The choice of the singularity position
ζs breaks this translation invariance, i.e. ζs is the second degree of freedom.

Using this knowledge we can simply shift the singularity position ζs to the origin
ζ → ζ − ζs and track the corresponding changes in F1, in order to obtain the desired
relation between these two constants (see also appendix A.2),

(4.6) F1 + ζs = M = const .

A quite remarkable result, while the transition from the partially logarithmic far field
contributions towards the algebraic near field terms is fully nonlinear, the actual po-
sition of the singularity is linearly dependent on the far field constant. The remaining
constantM is the missing quantity, we need to calculate its value within the numerical
scheme.
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4.3. Computation with spectral collocation. In order to compute g1 we
need to separate some hindering terms. Due to the asymptotic structure (4.4) an
additive separation seems to be best suited,

(4.7) g1(ζ) = h(ζ) +
6

(ζ − ζs)2
− 6/5

ζ − ζs
+

(ζ − ζs)/5

(ζ − ζs)2 + 1
+

ln
[
(ζ − ζs)

2 + 1
]

(ζ − ζs)2 + 1
.

Here, the first two separation terms eliminate the singularity, to generate a bounded
solution for the auxiliary function h(ζ). And with the last two terms we remove
the first two far field terms in (4.4), in order to get access to F1, or rather M .
The remaining function h is then indeed numerically determinable, the regarding
asymptotic representations simplify to

h(ζ) ∼


M − 6

ζ2
+ o(ζ−2) , ζ → ±∞ ,

−1/50 +O(ζ − ζs) , ζ − ζs → 0± .

(4.8)

For the numerical method we have chosen Chebyshev pseudo spectral collocation, the

according differentiation matrices D
(k)
ij of order k are defined on the Gauss–Lobatto

points (N + 1 collocation points si = − cos(πi/N), i, j ∈ [0, N ]), [23, 6, 1]. Hence,
we transform the infinite spatial domain ζ ∈ (−∞,∞) to the bounded Chebyshev
domain s ∈ [−1, 1] using the mapping

(4.9) ζ(s) = B tan (πs/2) + ζs ,

where we placed the singularity at s = 0 andB takes the role of a stretching parameter.
The smaller B, the denser is the grid around ζs. Then, the differentiation matrices in

the ζ-domain D(k)
ij are given by the product rule,

D(1)
ij =

ds

dζ
D

(1)
ij , D(2)

ij =
d2s

dζ2
D

(1)
ij +

(
ds

dζ

)2

D
(2)
ij .(4.10)

The domain mapping (4.9) is very practical for us, it enables a direct access to M =
F1 + ζs in (4.8) through the second s-derivative at the system boundaries,

(4.11)
d2h

ds2
(s = ±1) =

π2

2B2
(M − 6) .

Now we can finally formulate proper boundary/interior conditions for the leading
order equation, namely

(4.12) h(s = 0) = − 1

50
,

dh

ds
(s = ±1) = 0 ,

d2h

ds2

∣∣∣1
s=−1

= 0 .

The last condition equates the second derivative on the left and right boundary to
each other, i.e. it makes sure that the two far field areas ζ → ±∞ take the same (still
unknown) value of F1. The first condition yields the function value at the singularity
position (where the differential equation can not be evaluated numerically). The
remaining conditions are only imposed to enhance numerical convergence.

With this approach we managed to solve the boundary value problem (4.3) for
g1. The resulting functional behaviour of h(s), after the separation (4.7), is visualised
in figure 2A. Additionally, we plotted g1 in dependence of ζ without its poles in figure
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Fig. 2. Solution of the leading order equation of the second sublayer (4.3). A) Numerical
solution of h, (A.4), on the Chebyshev grid s (circles), according to the mapping (4.9) with B = 2
and N = 50 collocation points. B) Finite part of g1 (i.e. modulo its pole structure) in dependence
of the second inner variable ζ, (3.9).

2B. Besides in the far field, the first order function is almost solely given by the
singularity as a combination of second and first order poles.

After the computation we conveniently read out the missing constant M from the
second derivative (4.11) and find

(4.13) M = F1 + ζs ≈ −0.0566 .

Due to the remaining logarithmic contributions hidden in the higher orders of the
far field, which can not be resolved precisely by the interpolated Chebyshev polyno-
mials, the numerical solution is spurious to some extent. Hence, we performed the
computation with a rising number of grid points N until N = 900 and observed the
convergence of M towards the slightly negative estimate provided above (see table 1
in appendix A.2).

We track F1 back to the initial constant C1 with (4.5), yielding the relation to
the singularity position of the second sublayer,

(4.14) ζs = (C1 − 2)/4 +M − 4 ln(2) .

Based on the solution of the leading order equation, we can compute the higher orders
gj in (4.1) with similar approaches (up to a point, where the resolution of the leading
order is no longer sufficient) and estimate further relations between constants (to be
found in the appendix A.2).

5. Final results and outlook.

5.1. The singular trajectory expansion. We start with some final comments
regarding the expansions with respect to the exponentially short time scale τ . During
each zooming process the second derivative rises stronger then the first derivative.
The initial expansion and the first layer are dominated by the balance between the
first spatial derivative and the nonlinearity. At the level of the second sublayer occurs
the threefold balance, as the second derivative joins in. The leading order li = l(µi) of
each subsequent layer after the second will be determined through a balance between
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the second derivative and the nonlinearity solely,

(5.1) l′′ = l2 ⇒ li = 6/(µi −Di)
2 .

The general solution of this equation is known in literature as the Weierstrass elliptic
℘-function, l(µi) = 61/3℘

(
6−1/3(µi −Di); g2 = 0, g3

)
, [7, Eq. 23.3.12]. However, the

matching between layers requires a well defined far field and thus a non-periodic
solution (which requires the specific value of the lattice invariant g3 = 0), yielding
that li is always fixed to a pure pole of second order, positioned at some location Di.
For this reason, the essential dynamics of the singularity motion is inherited in the
first two sublayers.

Actually, we find that the asymptotic solution of each subsequent layer (starting
with the near field of the second sublayer) is simply given by a singular traveling wave
solution of the Fisher equation (1.1),

(5.2) u ∼ 6

[z − zp(t)]
2−

6/5

[z − zp(t)]

dzp
dt

+

[
1

2
− 1

50

(
dzp
dt

)2
]
+ . . . , z−zp(t) → 0± ,

where the singularity motion zp(t) is the sole characteristic quantity. The complicated
dynamics of the first two sublayers (relevant near the initial blow-up point) simplifies
smoothly to a singular traveling wave! The structure of any layer after the second can
easily be verified through performing the change of variables in (5.2) to the respective
spatial coordinate µi (see appendix A.3).

The initial motion of the Fisher singularity pair zp(t) is given by the singular
trajectory expansion for τ = − ln |t− ts| → ∞,

(5.3)
zp − zs

±
√

8τ(t− ts)
∼ 1− 1

8

ln(τ)

τ
+

ζs
4

1

τ
+ ηs

ln2 (τ)

τ2
+ δs

ln (τ)

τ2
+

µs

τ2
+ . . . .

Each temporal order τ−n (including the ln(τ)-contributions) splits up into n + 1
distinct terms and is determined by n degrees of freedom Ci of the initial expansion
(2.4). We tracked the first appearing constant ζs back to the initial constant C1,
resulting in the relation (4.14). The same can be done for the other entries. The
more complicated relations of the second temporal order get partially worked out in
appendix A.

Afterwards, one could theoretically fit the initial expansion (2.4), i.e. the constants
Ci, to a numerical solution of the Fisher equation (1.1) shortly before the point blow-
up occurs and determine the corresponding initial motion of the singularities after
the blow-up. Of course, due to the involvement of the exponentially short time scale
τ , this numerical matching process is rather difficult to achieve.

Instead we study the general form of (5.3) in order to search for a temporal limit
and to compare it with some numerical results known from literature. For this sake
we visualised in figure 3A the time dependency of the different orders in (5.3) (with
all coefficients set to 1). Then, we see that the ordering of some terms changes at
distinct times τ = e and τ = 1. While the first change is seemingly harmless, the
expansion will surely break down at τ = 1, where the ln(τ) contributions vanish and
the remaining complete orders τn are all of the same magnitude. Needless to say, in
general the coefficients will modulate the breakdown time to some τfin.

Since we expect a distinct change after this exponentially short time scale regime,
such an above-described complete breakdown seems reasonable. In accordance the



SINGULAR TRAJECTORIES OF THE FISHER EQUATION 11

magnitudes of the complete orders get fixed to (τfin/τ)
n, but actually no restrictions

on the ln(τ)-terms get imposed. In addition, we obviously want to consider that the
expansion converges at all times τ ∈ (∞, τfin), making an alternating series a very
appealing candidate.
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A) B)

Fig. 3. Temporal behaviour of the singular trajectory expansion (5.3). A) Plot of the different
temporal orders up to τ−2. The ln(τ)-contributions (dashed lines) vanish at τ = 1, i.e. t− ts = e−1.
B) Comparison of our estimate (5.7) (solid line) with the numerical values from Weideman [25]
(empty circles) and the temporal limit (5.6) (cross). In addition, we pictured some partial sums
(dashed lines).

5.2. Comparison to complex valued singularities. We keep the last para-
graph in mind, while we start to compare the singular trajectory expansion (5.3) to
some literature values of the singularity motion. Before the blow-up occurs at ts the
singularity pair exist already in the complex plane, here the propagation of the singu-
larities towards the real axis can actually be tracked numerically with the methods of
complex analysis. The thereby determined trajectory shortly before ts is of relevance
for us, since it is related to the initial motion beyond ts through a simple symme-
try consideration. As already mentioned in the introduction, near the point blow-up
t− ts → 0± the Fisher equation (1.1) satisfies asymptotically

(5.4)
∂u

∂t
− ∂2u

∂z2
∼ −u2 ⇒ u(z − zs, t− ts) ∼ −u

(
i(z − zs), ts − t

)
.

The initial expansion (2.4) is an example of this invariance. Therefore, we can com-
pare our results with the numerical findings obtained by Weideman [25] in figure 3B,
who computed the motion of complex singularities before blow-up. Since everything
happens on a very short time scale, there are too few data points near τ → ∞ to
fit the constants in the singular trajectory expansion (5.3) appropriately. Thus, we
make some additional guesses to obtain a convergent expansion. We set τfin = 1 and
assume a geometric series in the complete τ -orders,

(5.5)
zp − zs

±
√
8τ(t− ts)

∼ 2−
∞∑

n=0

(
−1

τ

)n

− 1

8

ln(τ)

τ
+ . . . =

1

1 + τ
+ 1− 1

8

ln(τ)

τ
+ . . . .

In agreement with the anticipated complete breakdown at tfin−ts = e−1, there are no
restrictions on the ln(τ)-contributions. Nevertheless, the series limit at tfin is anyway
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independent from them and takes the value

(5.6) zp(tfin)− zs = 3
√
2/e ,

which fits very well to the data points in figure 3B. For the sake of comparison, we tried
also to fix the ln(τ)-contributions using a similar approach, resulting in an imperfect
analytical estimate

(5.7)
zp − zs

±
√

8τ(t− ts)
≈ 1 +

1

1 + τ

(
1− 1

8

τ ln(τ)

τ − ln(τ)

)
.

Overall, our estimate is in good agreement for τ → ∞ as well as near τfin = 1.
We believe, the minor discrepancies in interim times might be removable through
appropriate modulation of the ln(τ)-terms solely.

The general breakdown of the singular trajectory expansion at some τfin naturally
rises the question of what to expect after this initial temporal phase. So far we don’t
know how to extend our solution appropriately to later times. One possibility might be
a local Taylor expansion of the initial equation for f , (2.3), around τfin and ẑp(τfin),
without a scaling change, and to get rid of the explicit τ -dependencies afterwards. In
such a way, that the solution is still given locally by a singular traveling wave with a
time-dependent wave speed (5.2).

The final long-term goal would be a time-dependent separation of the singularity
structure, in order to compute the remaining finite part of the solution numerically.
And as a further step, the regularization of the mentioned breakdown of interaction
boundary layer theory (see appendix B), through additional spatio-temporal stages,
such that we can resolve more details of the vortex generation process and the asso-
ciated, incipient laminar-turbulent transition in general.

6. Conclusions. In summary, we introduced the forced Fisher–KPP equation
(1.1) as the most simplified evolution equation for lambda and hairpin type vortex
generation processes in its essence. Here, the vicinity of singular points of the solution
u depicts the areas of large vorticity (wall shear stress). We were able to describe the
singularity motion and the occurring complicated changes in the singularity structure
beyond the initial blow-up of u with the method of matched asymptotic expansions.

The singularities change smoothly from a pole of first order at the blow-up time
towards a pole of second order. We encrypted this transition process through the
first two asymptotic sublayers. The resulting singular trajectory expansion describes
the initial motion of the Fisher singularity pair beyond finite-time blow-up and our
investigations even indicate that the pure singularity can be described as a singular
traveling wave with a time-dependent propagation speed. Thus, the creation (2.4),
motion (5.3), and structure (5.2) of the singularities is bound to some form of sym-
metry of the underlying equation (1.1).

We believe that our results give an much-anticipated, alternative insight into the
nonlinear motion of singularities of reaction-diffusion type equations (aka semilinear
heat equations), as well as in the general handling of logarithmic terms in singular
perturbation problems. Such logarithmic contributions appear temporally through
the time scales τ and β = ln τ , but also spatially, e.g. in the far field of the second
sublayer. Here, the computation of the leading order equation for g1, (4.3), is of
special relevance. The threefold balance between the second and first derivative and
the quadratic nonlinearity enables a transition from logarithmic far field contributions
towards an algebraic near field.
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Appendix A. Blow-up expansions. We derive additional orders of the singu-
lar trajectory expansion up to O

(
τ−2

)
, accompanied with some comments to match-

ing and numerics.

A.1. Matching with the initial expansion. The next higher order terms for
f in the initial expansion (2.4) are

f ∼ . . .∓ ẑ2
[
C2

a2
− 100

a3

]
ln2 τ

τ2
+

[
20∓ C3ẑ

2

a2
∓ 20ẑ2

2 + C1 − 8 ln |a|
a3

]
ln τ

τ2
+

+

[
−9 + C1/4− 2 ln |a|

a
− 24± C3ẑ

2 − b

a2
+ 8

84− b± 8ẑ2 ln2 |a|
a3

]
1

τ2
+ . . . ,

(A.1)

where we have used the abbreviations a = 8∓ ẑ2 and b = 16(2+C1) ln |a|−C1(4+C1)
and the constants C2 and C3 appear. Their main contributions to the first sublayer
are already written down in (3.7), some further matching relations are

A14 = A15 = A16 = 0 , A24 = −1 , A25 = (C1 − 6)/4− 4 ln(2) ,

A26 = (47 + 3C1)/16− C2
1/64− C3/2 + (C1 − 6) ln(2)/2− 4 ln2(2) .

(A.2)

We obtain them from the matching rule f(ẑ →
√
8) = v(|γ| → ∞). Where we first

expand the two functions around the respective spatial coordinate value (the near
field of f corresponds to the far field of v) and afterwards we express v with respect
to ẑ, using (2.6), in order to compare the different spatio-temporal orders.

In this context, the two expansion match in the leading orders [O(1), O(1/τ)] ×[
O((ẑ ∓

√
8)−2), O((ẑ ∓

√
8)−1)

]
for the determined values of A1j . In particular, at

O(1/τ), O((ẑ∓
√
8)−1) terms from v2 (3.6) make first contributions, but no additional

constants appear. The values of A21 − A26 get determined through the spatial order
O((ẑ∓

√
8)−2) in O(1/τ2), we believe this pattern will be continued for the subsequent

temporal orders.
A little bit bothersome is the breakdown near the singularity of the first sublayer.

The supposed first breakdown scaling turned out irrelevant, since no shift in the
pole position gets introduced with it. We want to mention that this could change if
for some reason additional ln[ln(τ)]-contributions are present in the initial expansion
(2.4). Such terms would be only relevant shortly before and beyond the blow-up, and
might therefore not be resolvable/desirable. So far we see no indication for them,
hence we continue with the second smallest scaling change (3.9) and arrive at the
second sublayer.

A.2. Computation of the second sublayer. For a quick verification of the
linear connection between F1 and ζs, eq. (4.6), we perform the coordinate shift ζ →
ζ∗ = ζ − ζs, such that ζ∗s = 0. Then, the far field (4.4) changes to

g1 ∼ − 1

ζ∗
+

ln(ζ2∗)

ζ2∗
+

F1(ζs) + ζs
ζ2∗

+ o(ζ−2
∗ ) , ζ∗ → ∞ ,(A.3)

yielding F1(0) = F1(ζs) + ζs = M . The first order of g1(ζ → ∞) contributes to the
second order of g1(ζ∗ → ∞), this also explains why M appears naturally in (4.8).

The leading order equation of the second sublayer for g1 (4.3) takes after the
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separation ansatz (4.7) the following nonlinear form

h′′ + h′−
[
h+

12

ζ2
− 12

5ζ
+

2ζ/5 + 2 ln(a)

a

]
h =

=

[
12

5ζ
− 17

25
+

(
12

ζ2
− 12

5ζ

)
ln(a)

]
1

a
−

[
8

5
ζ − 12 + 8 ln(a)

]
ζ2

a3
+

+

[
11

25
ζ2 − 4

5
ζ − 2 +

(
12

5
ζ + 2

)
ln(a) + ln2(a)

]
1

a2
+

6/25

ζ2
,

(A.4)

with a = ζ2 + 1 and ζs = 0 (for the general form shift ζ → ζ − ζs). We achieved a
numerical solution of this equation using Chebyshev collocation (see subsection 4.3),
the corresponding behaviour of h on both, the Chebyshev and physical domains s and
ζ, is visualised in figures 4, 5A.

Since the far field gets not approximated precisely, we computed h with an in-
creasing number of grid points N . While the overall solution behaviour does not
change with N , the important constant M , (4.13), converges only slowly, listed in
table 1. A resolution much greater than N = 900 is not reasonable, as the large mode
coefficients are already of magnitude ∼ 10−15, i.e. near the machine precision.

Table 1
Values of M = F1 + ζs, (4.13), in dependence of the number of collocation points N for B = 4.

Extrapolation estimates for N → ∞ yield M ≈ −0.0567 or M ≈ −0.0569 based on the assumption
of exponential or algebraic convergence, respectively.

Ni 100 200 400 600 800 900

Mi -0.0382 -0.0511 -0.0553 -0.0562 -0.0565 -0.0566
Mi+1/Mi − 1 0.3382 0.0813 0.0158 0.0058 0.0016 —

In order to get more trust in our result we compare in figure 4 the numerical
solution of g1 after separation (4.7) with the far field expansion as ζ → ±∞,

h ∼ M − 6

ζ2
− ln2(ζ2)

ζ3
− 2(M − 1)

ln(ζ2)

ζ3
− (M − 1)2 + 24/5

ζ3
+ o(ζ−3) .(A.5)

We see that not only the leading order of the expansion, but also the subsequent loga-
rithmic and M -dependent terms, get resolved conveniently by our numerical solution.

The next three orders of the second sublayer expansion (4.2) satisfy

g′′2+g′2 − 2g1g2 = 0 , g′′3 + g′3 − 2g1g3 = g′1/8 ,

g′′4 + g′4 − 2g1g4 = (1− ζ/4) g′1 − g1/2 .
(A.6)

Their far field behaviour as ζ → ±∞ is again defined by far field constants Fi, which
get always introduced at order ζ−2 (in the upcoming expansions of gi). The singularity
position ζs gets imprinted from the leading order g1. Then, the matching with the
first sublayer yields

F2 = (1/8− C2)/4, F3 = (1− C3)/4 , F4 = F3 − (F1 + 1)2/8 + 3/2 ,(A.7)

where F4 inherits no additional degree of freedom.
To formulate the associated boundary value problems and to solve them numer-

ically we follow the approach of subsection 4.3. We start with g2 and its relevant
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Fig. 4. Comparison of our numerical solution |h| with the far field asymptotics (A.5) (upper
branch ζ → ∞, lower branch ζ → −∞). We used the outcomes of the highest resolution N = 900
with B = 4, and the estimated constant M ≈ −0.0566. A) h(s) (solid line) and asymptotics up to
O(ζ−2) (dotted line) as well as up to O(ζ−3) (dashed line). B) Log-Log plot of h(ζ → ±∞), the
solution (empty circles) is nearly indistinguishable from the asymptotic representation (solid line).

asymptotic expansions, near the far field and near ζs,

g2 ∼


F2

[
1

ζ2
− 2 ln2(ζ2) + 2(F1 − 1)

ζ3
+ o(ζ−3)

]
, ζ → ±∞ ,

D2

[
1

(ζ − ζs)3
− 1/10

(ζ − ζs)2
+

1

3000
+O(ζ − ζs)

]
, ζ − ζs → 0± .

(A.8)

The linear eq. (A.6) for the second order has two intrinsic degrees of freedom,
namely the scaling invariance denoted by D2 and the difference between the two far
field constants, which is in our case anyway set to zero through matching. In addition,
the translation invariance of the singularity ζs gets imprinted by g1 (and automatically
resolved through F1, the other constants F2 and D2 are invariant under ζs-shifts).

In order to eliminate the scaling invariance, we simply scale g2 → D2g2 (or equiv-
alently set D2 = 1). Again only an additive separation of the singular contributions
is thinkable, such that we define the bounded function f2(ζ) through

g2(ζ) = f2(ζ) +
1

(ζ − ζs)3
− 1/10

(ζ − ζs)2
,(A.9)

with asymptotic structure

f2 ∼


1

ζ2

(
F2

D2
+

1

10

)
+ o(ζ−2) , ζ → ±∞ ,

1/3000 +O(ζ − ζs) , ζ − ζs → 0± .

(A.10)

We apply the domain mapping (4.9) and obtain access to the scaling constant
F2/D2 via the second s-derivative of f2,

(A.11)
F2

D2
=

2B2

π2

d2f2
ds2

(s = ±1)− 1

10
.
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Hence, appropriate boundary conditions are given by

f2(s = 0) =
1

3000
,

df2
ds

(s = ±1) = 0 ,
d2f2
ds2

∣∣∣1
s=−1

= 0 .(A.12)

According results of the computation with Chebyshev collocation are visualised in
figure 5B, using (A.11) we find the surprisingly simple result

(A.13) F2/D2 ≈ −0.083336 ≈ −1/12 .

We continue with the discussion of the next order function g3 in (A.6). The
relevant asymptotic representations are

g3 ∼


1/8

ζ
+

F3

ζ2
+ o(ζ−2) , ζ → ±∞ ,

D3

(ζ − ζs)3
− D3/10

(ζ − ζs)2
+

3/20

(ζ − ζs)
+

D3

3000
+

1

200
, ζ − ζs → 0± .

(A.14)

Since the solution of the homogeneous part of all higher order equations is given
by g2, we only need to search for a special solution (with levelled far field constants).
Thus, we choose the special solution g3,s with D3,s = 0 and we accordingly split the
far field constant into a homogeneous and a particular part F3 = F3,h + F3,s. We
separate the remaining first order pole and the first far field term, to get access to the
invariant constant,

g3,s(ζ) = f3(ζ) +
3/20

(ζ − ζs)
− (ζ − ζs)/40

(ζ − ζs)2 + 1
.(A.15)

In correspondence the bounded function f3 has the following asymptotic structure

f3 ∼


F3,s − ζs/8

ζ2
+ o(ζ−2) , ζ → ±∞ ,

1/200 +O(ζ − ζs) , ζ − ζs → 0± .

(A.16)

As before, we use the spatial mapping (4.9) and appropriate boundary/interior
conditions are

f3(s = 0) =
1

200
,

df3
ds

(s = ±1) = 0 ,
d2f3
ds2

∣∣∣1
s=−1

= 0 .(A.17)

The constant F3,s−ζs/8 is again connected to the second s-derivative at the boundary,
such that the relation between far and near field is depicted through

(A.18) F3 = F3,h + F3,s = −D3

12
+

ζs
8

+
2B2

π2

d2f3
ds2

(s = ±1) .

To stay consistent in the calculation of g′1 in the differential equation for g3 (or rather
f3), we take the numerical derivative of h1 and add up the analytical terms according
to the separation ansatz (4.7). The numerical solution is visualised in figure 5C, where
f3 and its spatial derivatives are plotted. Thereby, we obtain the simple value

(A.19) F3,s −
ζs
8

=
2B2

π2

d2f3
ds2

(s = ±1) ≈ −0.24995 ≈ −1

4
.



SINGULAR TRAJECTORIES OF THE FISHER EQUATION 17

The last example we want to consider is the differential equation for the forth
order g4, stated in (A.6). In contrast to the before discussed orders, g4 is not invariant
under ζs-shifts. Hence, we can not immediately determine how the appearing far field
constant F4 depends on the singularity position ζs. In order to bypass this problem,
we try to work instead with an appropriate linear combination of g3 and g4,

gn(ζ) := 2(ζs − 4)g3(ζ) + g4(ζ) ,(A.20)

generating a ζs-translation invariant equation for gn(ζ),

(A.21) g′′n + g′n − 2g1gn = −(ζ − ζs)g
′
1/4− g1/2 .

Naturally, the far and the near field constant transforms correspondingly,

Fn = 2(ζs − 4)F3 + F4 , Dn = 2(ζs − 4)D3 +D4 .(A.22)

Here, the scenario ζs = 4 is seemingly special. It fits to the choice we made in our
analytical estimate (5.7) of the singular trajectory. Currently, we do not know if this
is pure coincidence or if ζs is actually always fixed to this certain value.

The relevant expansions of gn(ζ) are given by

gn ∼


1

8
+

ln(ζ2)

4ζ
+

F1 + ζs − 4

4ζ
− 1

8

ln2(ζ2)

ζ2
− F1 + 1

4

ln(ζ2)

ζ2
+

Fn

ζ2
, ζ → ±∞ ,

Dn

(
1

(ζ − ζs)3
− 1/10

(ζ − ζs)2
+

1

3000

)
− ζ − ζs

40
, ζ − ζs → 0± .

(A.23)

We again only need to find a special solution gn,s(ζ), where we set Dn,s = 0. Despite
the fact that gn,s is already regular, we still need to separate far field contributions
to get access to Fn,s. Thus, we try to additively eliminate all far field terms before
the constant,

gn,s(ζ) = fn(ζ) +
1

8
+ (ζ − ζs)

ln(b) +M − 4

4b
− 1

8

ln2(b)

b
− M + 1

4

ln(b)

b
,(A.24)

where b(ζ) = 1 + (ζ − ζs)
2. Then, the asymptotic expansions simplify to

fn ∼


Fn,s − ζs(M − 6)/4

ζ2
+ o(ζ−2) , ζ → ±∞ ,

−1/8 +O(ζ − ζs) , ζ − ζs → 0± .

(A.25)

Sadly, due to the lengthy and M -dependent separation, the according numerical so-
lution of fn, visualised in figure 5D, is too imprecise for a reliable determination of
the invariant constant

(A.26) Mn = Fn,s −
ζs
4
(F1 + ζs − 6) =

2B2

π2

d2fn,s
ds2

(s = ±1) .

A more sophisticated approach is needed. Nevertheless, we encrypted at least the
dependencies of the near field constant D4.
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Fig. 5. Numerical solutions of the second sublayer on the Chebyshev grid s (4.9) with N = 800
and B = 4, according to expansion (4.2) and equations (4.3), (A.6). Besides the solution function
(solid line), the first (dashed line) and second derivative (dash-dotted line) are visualised. A) Leading
order h, after separation (4.7). B) Second order f2, after separation (A.9). C) Third order special
solution, after (A.15). D) Fourth order special solution with imprecise far field, after (A.24).

A.3. Singularity structure and motion. Near the singularity ζs the second
sublayer has the following form,

g(ζ, τ) ∼ τ

[
6

(ζ − ζs)2
− 6/5

ζ − ζs
+ . . .

]
+ β2D2

[
1

(ζ − ζs)3
− 1/10

(ζ − ζs)2
+ . . .

]
+

+β

[
D3

(ζ − ζs)3
− D3/10

(ζ − ζs)2
+

3/20

(ζ − ζs)
+ . . .

]
+ . . . , τ → ∞ .

(A.27)

Actually, this behaviour reminds us on the structure of a singular traveling wave
(STW) solution (5.2) of the Fisher equation. To compare this two expansions, we
rewrite z in dependence of ζ with the help of the inner variables (2.6) and (3.9),
yielding

(A.28) z(ζ, t) = zs ±
√
8τ(t− ts)

[
1− 1

8

ln(τ)

τ
+

ζ

4

1

τ

]
.
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We consider the singular trajectory expansion (5.3) for granted, such that

(A.29) z(ζ, t)− zp(t) = ±
√
8τ(t− ts)

[
ζ − ζs

4

1

τ
− ηs

ln2 (τ)

τ2
− δs

ln (τ)

τ2
− µs

τ2
− . . .

]
.

In correspondence, we perform the change of variables in the singular traveling wave
(5.2) and obtain the expansion of the second sublayer (near ζs),

(A.30) u(z(ζ, t) → zp(t)) =
2

t− ts
g(ζ → ζs, τ) , τ → ∞ ,

if and only if D2 = 48ηs, D3 = 48δs, D4 = 48µs. In other words, we managed to
match (A.27) directly to a STW–solution. The same holds for the subsequent layers,
beginning with the third. Since we already know the generic structure of the singular
trajectory expansion (5.3), there is no need to study each subsequent layer in detail,
the main dynamics do not change.

Hence, we believe the ‘interaction’ between the two moving singularities shortly
beyond blow-up is inherited in the first two sublayers. Afterwards, the local singularity
profile simplifies to a combined pole of second and first order, in form of a singular
traveling wave solution. Likewise, all coefficients in the singular trajectory expansion
(5.3) after ζs can be read out directly from the near field of the second sublayer.

We combine the determined matching relations (A.7) and the numerically found
transition relations of the second sublayer (A.13, A.19, A.26), in order to obtain the
corrections to the singularity motion (5.3) up to O(τ−2),

ηs ≈
1

8

(
C2

2
− 1

16

)
, δs ≈

1

8

(
C3

2
+

C1

16
− 9

8
+

M

4
− ln(2)

)
,

µs =
C3

16
+

Mn

4
− 29

32
− 1

2

(
C1 − 2

16
− ln(2)

)(
C1 − 2

16
− ln(2) +

M + 1

2

)
.

(A.31)

Here, Ci are the local degrees of freedom of the initial expansion (2.4, A.1), M ≈
−0.0566 is the invariant (constant) of g1 (4.11) and Mn is the missing invariant of g4,
or rather gn, (A.26). To emphasize that only two of the three singularity positions
above are independent, in correspondence to (A.7), we may write

(A.32) µs = δs +
Mn

4
− 13

16
+

(M + 1)2 − ζs (ζs + 3)

32
.

In combination with the result for ζs (4.14), we managed to encrypt the relations be-
tween the initial constants Ci and the coefficients in the singular trajectory expansion
(5.3) up to O(τ−2). Theoretically, our approach enables us to find the relations up
to any order we want, which requires solely the tracking of upcoming higher order
constants, from the initial expansion through the first two asymptotic sublayers.

Appendix B. Physical background: incipient laminar-turbulent bypass
transition in wall bounded flows. Viewed historically, the present study arose
as a result of our efforts to investigate laminar boundary layer flows, in particular
their tendency to flow separation, instability and laminar-turbulent transition, using
perturbation techniques. Despite the ongoing rise in computation power and the cor-
responding boost in computational fluid dynamics as well as continuously improved
experimental techniques, the natural or forced transition process from a laminar to
a turbulent boundary layer flow is still not fully understood. Our approach to the
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investigation of the early stages of this transition process is based on the framework of
interaction boundary layer theory, i.e. high Reynolds number (Re → ∞) asymptotics.
Thereby the concerned spatial domain and the temporal evolution of the flow un-
der investigation is split in several distinct regimes with characteristic, Re-dependent
spatio-temporal scales. The associated, correspondingly simplified set of model equa-
tions result from the underlying Navier–Stokes equations in a systematic way.

To be more specific, we focus on a near-critical, so-called marginally separated
flow of a nominally planar, incompressible, steady laminar boundary layer which is of
particular significance, for example, in the leading edge area on the suction side of an
airfoil, [22, chapter 4]. Weak three-dimensional disturbances that change over time
are imposed on the basic flow such that the laminar-turbulent transition process is
triggered; for details see the related studies [3, 4, 2, 5]. As these investigations show,
the (local) boundary layer characteristics, namely the streamwise component of the
wall shear stress (or equivalently the spanwise vorticity component at the solid wall
y = 0) and the (negative) correction of the displacement thickness can be expressed
in terms of a single quantity, say A, which under near-critical conditions expands as

(B.1) A ∼ Ac(x) + ε2b(x)[2u(z, t)− 1] +O(ε4 ln ε) , ε = |Γc − Γ|1/4 → 0+ .

Here x, y, and z, t, and ε ∼ O(Re−1/40) denote the streamwise, wall-normal, and
spanwise coordinates, the time, and a small perturbation (bifurcation) parameter,
[20]. All involved quantities are non-dimensionalized and suitably scaled. Moreover,
Γ represents a parameter controlling the magnitude of the (adverse) pressure gradient
imposed on the boundary layer flow (the angle of attack in the above mentioned ex-
ample), and Γc its critical value, up to which steady (planar) solutions of the equation
for A exist. Comprehensive investigations reveal a saddle-node bifurcation at Γ = Γc

where A = Ac(x), and the associated dimension reduction in its neighborhood. There
the spatial structure with respect to the streamwise coordinate x is determined by
the active eigenmode b(x) (with zero eigenvalue) and the evolution of the system is
determined by a bifurcation equation for the shape function u(z, t) dependent on the
other, ‘inactive’ variables. This amplitude equation, which actually represents a solv-
ability condition, can be identified as a forced version of the well-known Fisher–KPP
equation [10, 18, 17],

(B.2)
∂u

∂t
− ∂2u

∂z2
= u− u2 − θ(Γ− Γc)

2
+ g .

Here the forcing term g(z, t) originates from the unsteady, three-dimensional pertur-
bations imposed on the flow, and the Heaviside function θ(·) is used to distinguish
between the distinct cases of sub-critical, Γ < Γc, and super-critical, Γ > Γc, flows.
Whereas a certain magnitude of g is required to provoke a finite-time blow-up event
of (B.2) in the case of sub-critical flows when starting from the stable (planar) branch
u(z, 0) = us = 1, super-critical conditions lead to (repeated, self-sustained) blow-
up(s) even in the absence of any forcing. Furthermore, it is found that the internal
structure of a (point) blow-up singularity of (B.2) is independent of how it is caused,
i.e. the specific form of g and the presence of sub- or super-critical conditions, [3].

As already mentioned in §1, here we do not face the constraint of limited ranges
of u, which enables us to explore the rich and interesting dynamics of (B.2) with
respect to the formation of finite-time singularities, [13], and the continuation of
the solution beyond blow-up. Although the growth of u beyond all limits causes a
(local) breakdown of the underlying expansions, such as (B.1), singularities are of
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x

y

z

Fig. 6. Direct numerical simulation (DNS) of a transitional boundary layer flow close to a
solid wall y = 0: formation of hairpin vortices (ochre- and orange-colored structures), associated
with the appearance of moving singularities beyond point blow-up(s) in the asymptotic description
by (B.2), cf. figure 1 (main flow in x-direction). Source U. Rist, Institute of Aerodynamics and Gas
Dynamics, University of Stuttgart, see also [21].

particular interest and physical significance, because their appearance is the only way
that scale changes in the asymptotic description are possible, thereby reflecting the
characteristic features of vortex formation and disintegration in the incipient laminar-
turbulent transition process, figure 6.

The creation of hairpin or lambda vortices is associated with the appearance of
the moving singularity pair immediately beyond a point blow-up event of the Fisher–
KPP equation (B.2). Compare to figure 1, where the trajectories of this singularity
pair represent the temporal evolution of the vortex kernels near the surface. These
singularities are commonly regularized by analyzing their internal structure, the cor-
responding re-scaling of the dependent and independent variables, and the ensuing
derivation of adapted model equations based on the original (Navier–Stokes) equa-
tions. Nevertheless, the position of these vortical structures is fixed to the location of
the moving singularities.
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