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TThheessiiss  AAbbssttrraacctt  
Although its origins lie in military applications, satellite remote sensing was established over the 
last decades as an essential method for observing our environment through the spatially 
continuous and global measurement of relevant parameters like land-cover, land-surface 
temperature, vegetation biomass, ocean salinity, or surface soil moisture. Furthermore, it plays 
an essential role in observing the atmosphere, mapping land-cover and land-use changes, 
generating digital elevation models, and many other applications. 

This thesis focuses on estimating the surface soil moisture content, which was recognised as an 
essential climate variable by the Global Climate Observing System of the World Meteorological 
Organization. It is essential for the understanding of many meteorological and hydrological 
processes. Spatial and temporal changes of the soil moisture content can help understand and 
anticipate natural hazards like landslides, floods, or drought. The remote sensing of the soil 
moisture content, using optical and microwave sensors, has a long history dating back to the 
1970s. Different approaches have emerged and established themselves since then. With this 
thesis, we concentrated on the latest group of approaches, machine learning. 

Even though most of the underlying methodologies were already developed during the 1980s 
and 1990s, machine learning experienced a surge of popularity during the last decade, also for 
remote sensing and earth observation applications. This increase in popularity was further 
pushed by the paradigm shift in earth observation, which allows users today to easily access and 
exploit large quantities of data from different sensors. 

The overall goal of this thesis is to use earth observation data combined with machine learning 
methods to estimate the soil moisture content. To capture the aims of this thesis, we formulated 
three main questions: How can we go from site-specific, data-driven machine-learning models to 
general applicability in large scale applications?; How can we harness the potential of available 
data and merge data from different sensors and data sources with different spatial and temporal 
resolutions?; How can we link soil moisture measurements across scales (spatial and temporal)? 

The analysis presented by the thesis in its first part focused on a better understanding of the 
interactions between microwaves, soil moisture, topography, land-cover, and vegetation, 
between each other and across spatial scales. By developing a spatial upscaling method for in-
situ measurements, we were able to study these interactions and confirm the solid temporal 
correlation of soil moisture across spatial scales. An essential ambition of this work was also to 
study the applicability of data-driven methods on a global scale. For this purpose, we performed 
tests based on different spatial resolutions and used different reference data types. The results 
demonstrate that accurate estimation is possible, with coarse as well as with high spatial 
resolutions. The studies also revealed certain limitations related to the potential of retrieval 
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models relying only on satellite data, the uncertainties of heterogenous reference data, or the 
validation of high-resolution spatial patterns.  

One of the thesis’ main outputs is an approach and a model for the high-resolution mapping of 
surface soil moisture, which we published as part of a software called PYSMM. The practical use 
of the approach we demonstrated as part of the thesis for mapping soil moisture anomalies. Its 
relevance was further underlined as it was picked up by scientists at FAO and the USGS to 
incorporate soil moisture information for wetland detection and assimilation in a hydrological 
model, respectively.  
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KKuurrzzffaassssuunngg  
Obwohl ihre Ursprünge im militärischen Bereich liegen, hat sich die Satellitenfernerkundung in 
den letzten Jahrzehnten als wesentliche Methode zur Beobachtung unserer Umwelt erwiesen, 
da sie relevante Parameter wie Landbedeckung, Oberflächentemperatur, Biomasse der 
Vegetation, Salzgehalt der Ozeane oder Bodenfeuchtigkeit räumlich kontinuierlich und global 
misst. Darüber hinaus spielt sie eine wesentliche Rolle bei der Beobachtung der Atmosphäre, der 
Kartierung von Landbedeckung und Landnutzungsänderungen, der Erstellung digitaler 
Höhenmodelle und vielen anderen Anwendungen. 

In dieser Arbeit geht es um die Schätzung der Bodenfeuchte, die vom Globalen 
Klimabeobachtungssystem der Weltorganisation für Meteorologie als eine wesentliche 
Klimavariable anerkannt wurde. Sie ist für das Verständnis vieler meteorologischer und 
hydrologischer Prozesse unerlässlich. Räumliche und zeitliche Veränderungen des 
Bodenfeuchtegehalts können helfen, Naturgefahren wie Erdrutsche, Überschwemmungen oder 
Dürren zu verstehen und vorherzusehen. Die Fernerkundung des Bodenfeuchtigkeitsgehalts mit 
optischen und Mikrowellensensoren hat eine lange Geschichte, die bis in die 1970er Jahre 
zurückreicht. Seitdem haben sich verschiedene Ansätze herausgebildet und etabliert. In dieser 
Arbeit haben wir uns auf die jüngste Gruppe von Ansätzen, das maschinelle Lernen, konzentriert. 

Obwohl die meisten der zugrundeliegenden Methoden bereits in den 1980er und 1990er Jahren 
entwickelt wurden, erlebte das maschinelle Lernen im letzten Jahrzehnt einen Popularitätsschub, 
auch für Fernerkundungs- und Erdbeobachtungsanwendungen. Dieser Popularitätsanstieg 
wurde durch den Paradigmenwechsel in der Erdbeobachtung weiter vorangetrieben, der es den 
Nutzern heute ermöglicht, problemlos auf große Datenmengen von verschiedenen Sensoren 
zuzugreifen und diese zu nutzen. 

Das übergeordnete Ziel dieser Arbeit ist die Nutzung von Erdbeobachtungsdaten in Kombination 
mit Methoden des maschinellen Lernens zur Schätzung des Bodenfeuchtegehalts. Um die 
Absichten dieser Arbeit zu erfassen, haben wir drei Hauptfragen formuliert: Wie können wir von 
standortspezifischen, datengesteuerten Machine-Learning-Modellen zu einer allgemeinen 
Anwendbarkeit in großflächigen Anwendungen übergehen?; Wie können wir das Potenzial der 
verfügbaren Daten nutzen und Daten von verschiedenen Sensoren und Datenquellen mit 
unterschiedlichen räumlichen und zeitlichen Auflösungen zusammenführen?; Wie können wir 
Bodenfeuchtemessungen über Skalen hinweg (räumlich und zeitlich) miteinander verknüpfen? 

Die im ersten Teil der Arbeit vorgestellte Analyse konzentrierte sich auf ein besseres Verständnis 
der Wechselwirkungen zwischen Mikrowellen, Bodenfeuchte, Topographie, Landbedeckung und 
Vegetation, untereinander und über räumliche Skalen hinweg. Durch die Entwicklung einer 
räumlichen Skalierungsmethode für In-situ-Messungen waren wir in der Lage, diese 
Wechselwirkungen zu untersuchen und die starke zeitliche Korrelation der Bodenfeuchte über 
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räumliche Skalen hinweg zu bestätigen. Ein wesentliches Ziel dieser Arbeit war auch die 
Untersuchung der Anwendbarkeit datengesteuerter Methoden auf globaler Ebene. Zu diesem 
Zweck haben wir Tests mit unterschiedlichen räumlichen Auflösungen durchgeführt und 
verschiedene Referenzdatentypen verwendet. Die Ergebnisse zeigen, dass eine genaue 
Schätzung sowohl bei grober als auch bei hoher räumlicher Auflösung möglich ist. Die Studien 
zeigten auch bestimmte Einschränkungen in Bezug auf das Potenzial von Modellen, die sich nur 
auf Satellitendaten stützen, die Unsicherheiten heterogener Referenzdaten oder die Validierung 
hochaufgelöster räumlicher Muster.  

Eines der wichtigsten Ergebnisse dieser Arbeit ist ein Ansatz und ein Modell für die 
hochauflösende Kartierung der Bodenfeuchte, welches wir als Teil einer Software namens 
PYSMM veröffentlicht haben. Die praktische Anwendung des Ansatzes haben wir im Rahmen der 
Arbeit zur Kartierung von Bodenfeuchteanomalien demonstriert. Seine Relevanz wurde weiter 
unterstrichen, da er von Wissenschaftlern der FAO und des USGS aufgegriffen wurde, um 
Informationen über die Bodenfeuchte zur Erkennung von Feuchtgebieten bzw. zur Assimilation 
in ein hydrologisches Modell einzubeziehen.  
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Per definition, remote sensing is the acquisition of information about an object or phenomenon 
without making physical contact with the object, in contrast to in-situ observations. Today, the 
term usually refers to observations made from space- or airborne platforms like satellites or 
aeroplanes. During the Cold War era, military and espionage applications triggered the 
development of the first remote sensing satellites and cameras, by the Soviet Union and the 
United States of America, during the late 1950s and the beginning of the 1960s. Military 
applications in the following years mainly drove satellite remote sensing and new sensors and 
technologies. However, soon the potential of satellite observations for civilian purposes was 
recognised and created a new scientific discipline and a commercial sector to map, monitor, and 
explore our planet. Scientific and commercial earth observation (EO) applications became a 
technology driver. Today, a large and growing number of EO systems provide data for countless 
applications. Two for the scientific community essential programs should be highlighted: the 
Landsat1 program by the United Stated Geological Survey (USGS) and the National Aeronautics 
and Space Administration (NASA) and the Copernicus2 program by the European Union. The 
former is noteworthy because it was one of the first dedicated EO missions, and it is still running 
now with its eighth generation of satellites since the early 1970s. The Copernicus program 
bundles various environmental datasets – from satellite missions to climate models and in-situ 
measurements. It not only pushed the boundaries technologically (for example, with its Sentinel 
satellite missions) but also in terms of data policies and the concept of open data. These two EO 
programs are essential also for this thesis. 

The work presented here focuses on the measurement and mapping the soil moisture content 
(SMC) based on satellite remote sensing. SMC is a crucial state variable in the complex global 
water and energy exchange between the land surface and the atmosphere through evaporation 
and plant transpiration (Bras, 2015). It plays an essential role in understanding critical 
hydrological and meteorological processes. 

II..11 RReemmoottee  sseennssiinngg  ooff  tthhee  ssooiill  mmooiissttuurree  ccoonntteenntt  
While advanced hydrological models allow deriving detailed information about the spatial 
(horizontally and vertically) and temporal soil moisture patterns (Silva Ursulino et al., 2019; 
Andini, Kim and Chun, 2020), they are very complex to set up and require detailed information 
about the composition of the land surface and meteorological forcings. EO and remote sensing 
(be it satellite- or aeroplane-borne) provide the only existing technology for the continuous 
measurement of the SMC over larger areas. The SMC affects the amount of energy emitted or 
reflected for the Earth's surface and, therefore, directly influences the images captured by 
different EO sensors. However, because water is not the only contributing parameter, some 

 
1 https://landsat.gsfc.nasa.gov/ 
2 https://www.copernicus.eu/en 
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modelling is usually required to derive SMC maps from satellite images. We can differentiate the 
approaches based on the sensor technology into microwave-based and optical-based methods.  

The main advantage of the microwave spectrum is that radiation can pass through the 
atmosphere with little distortion; it can pass through clouds and is independent of the sun as a 
source of illumination. All active and passive microwave-based retrieval algorithms rely on the 
dependency between the dielectric properties (e.g. of soil) and their effect on the emitted or 
reflected energy. The dielectric properties are related to the relative permittivity, which 
determines the amount of energy lost when microwave radiation travels through a medium—an 
effect, also known as attenuation. The real part of the dielectric constant (ε') quantifies these 
properties. For air, ε' equals 1, approximately 4 for dry soil and 80 for water (these values vary 
depending on the microwave frequency). Besides the SMC, many other factors like vegetation 
water content, vegetation structure, surface roughness or surface temperature finally determine 
the total emitted or reflected energy (Ulaby and Batlivala 1978). The difference between active 
and passive microwave systems is that an active system sends and receives a microwave pulse, 
whereas passive systems rely on measuring the natural thermal emissions of the Earth's surface. 
Because they are more relevant for this thesis, we will look at active microwave-based SMC 
retrieval approaches. We can distinguish three main types: 

1. Based on the inversion of a backscattering model, which describes the microwave 
scattering mechanisms in vegetation and soil. This includes physical models like the Water 
Cloud Model (Attema and Ulaby 1978) or the Integral Equation Model (Fung, Li, and Chen 
1992), and a group of semi-empirical models like the so-called Oh model (Oh, Sarabandi, 
and Ula 1992) or the Dubois model (Dubois, Zyl, and Engman 1995), usually exploiting 
ground-based active microwave measurements to characterise some of the scattering 
mechanisms. 

2. Empirical change detection approaches are usually based on temporal normalisation of 
the backscatter intensities and rely on the fact that the parameters contributing to the 
measured signal have different temporal change signatures. The approach by Wagner, 
Lemoine and Rott (1999) or the Normalized Backscatter Moisture Index (Shoshany et al., 
2000) are examples in this category. 

3. Many machine learning applications for SMC estimation have been presented in recent 
years (Ali et al., 2015). Section I.3 introduces this group of approaches in detail. 

In the optical domain, many different methods to derive the SMC exist. They rely on the 
relationship between SMC and surface reflectance, vegetation indices or surface temperature 
(Zhang and Zhou, 2016). The advantage of optical systems, as opposed to microwave systems, is 
the superior data availability with many existing satellites with optical sensors aboard, covering 
an extensive range of spatial and spectral resolutions and with long-standing open archives from 
missions like Landsat, ASTER, or MODIS. Optical retrieval approaches can be coarsely classified 
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based on the used frequency. Some methods rely on visible or near-infrared data. The negative 
correlation between bare soil's surface reflectance (in some water absorption bands) and the 
SMC was already described by Ångström (1925). Due to this phenomenon, simple indices like the 
(Normalized Difference Vegetation Index) NDVI or the normalised-difference-water-index can 
serve as proxies for the SMC. Land-surface temperature (LST), derived from thermal remote 
sensing images, is a good proxy for SMC and vegetation water stress (Schmugge, 1978; Chang et 
al., 2012; Qin et al., 2013). To disentangle contributions by SMC and vegetation, the most 
commonly used approaches today rely on a combination of LST and vegetation indices. A popular 
method, which relies on this combination, is the so-called triangle model (Price, 1990). Its name 
relates to the triangular representation of the LST-vegetation index feature space. 

Currently available operational SMC products rely on data from coarse- to medium resolution 
passive or active microwave sensors like Soil Moisture and Ocean Salinity (SMOS) (Berger et al., 
2002) (passive),  Soil Moisture Active-Passive (SMAP) (Entekhabi et al., 2010) (passive), or 
Advance Scatterometer (ASCAT) (Naeimi et al., 2009) (active). As a component of the Copernicus 
Land Monitoring Service, the Soil Water Index (Bauer-Marschallinger et al., 2018), based on a 
fusion of Sentinel-1 (S1) and ASCAT data, offers medium resolution (1 km) SMC observations. The 
advantage of these coarse- to medium-resolution sensors is their high temporal resolution, 
offering daily observations. With S1, Sentinel-2, and Landsat-8 high resolution (<50 m) remote-
sensing data, in the microwave as well as the shortwave and thermal domains are available 
operationally and on an open-access basis, providing the most crucial foundation for high-
resolution SMC mapping (Hornacek et al., 2012; Bauer-Marschallinger et al., 2019). 

Due to the long history of the remote-sensing of SMC, many advanced applications emerged over 
time. For example, in a case study located in Italy, Brocca et al. (2016) integrated ASCAT SMC 
maps with precipitation and temperature measurements into a proposed operational landslide 
early warning system. Chaparro, Piles, and Vall-llossera (2016) used data from SMOS and SMAP 
in a wildfire prevention service. Remotely sensed SMC plays an essential role in improving model 
estimations through data assimilation (Reichle et al., 2016), and they can even act as a virtual 
rain gauge to estimate precipitation (Brocca et al., 2014).  

II..22 EEOO  PPaarraaddiiggmm  sshhiifftt  
The past decade has brought considerable changes to the world of satellite remote sensing and 
EO. It saw the launch of several new satellites and the start of crucial new EO missions. The list 
below only names a few of the most important ones. 

• Landsat-83 (USGS), launched in 2013. 
 

3  https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-
science_support_page_related_con 
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• The Sentinel4 program (European Commission) with Sentinel-1 A/B launched in 2014 and 
2016, Sentinel-2 A/B in 2015 and 2017, Sentinel-3 A/B in 2016 and 2018, and Sentinel-5P 
in 2017. 

• NASA launched the Soil Moisture Active Passive5 satellite in 2015. 
• The Japan Aerospace Exploration Agency (JAXA) launched the ALOS-26 (JAXA) in 2014. 
• SAOCOM 1 A/B7 (CONAE) launched in 2018 and 2020. 

Beyond the publicly funded missions above, carried out by the national and international space 
agencies, several commercial companies have launched their satellites and provide imagery and 
services for several sectors like agriculture or insurances. One example is Planet (founded in 
2009), which offers high spatial and temporal resolution global monitoring. Among their fleet of 
satellites are more than 180 micro-satellites. 

Many publicly funded programs now follow an open data policy, meaning that the data are 
usually free to use for research purposes or grant access to scientists upon request. Even 
commercial data providers offer some data access opportunities. 

These new EO missions that emerged during the last decade illustrate the explosion of data 
volume, and new missions are being planned and launched in the years to come. Besides the 
number of new satellites, other reasons for the growing amount of available data are that more 
and more missions today are operating on a fixed operational schedule, as opposed to more 
experimental satellites of the past, providing shorter revisit times and higher temporal 
resolution, and sensors are recording larger areas at once, have higher spatial resolutions, and 
better sensitivity. The term Big Earth Data emerged to describe this new reality. For example, let 
us compare the volume of data produced by the European Space Agencies (ESA) Advanced 
Synthetic Aperture Radar (ASAR) with the Copernicus satellite Sentinel-1. The entire archive of 
data captured by ASAR in Global-Monitoring-Mode (1 km) has a volume of 1.74 Terra-Byte (TB) 
and 23.49 TB in Wide-Swath-Mode (150 m). One of the two Sentinel-1 satellites, in one of its 
acquisition modes (Ground-Range-Detected-High with approximately 20 m spatial resolution), 
produces 156 TB of data per year. Therefore, in about ten years of operation (2002-2012), ASAR 
produced less data than one Sentinel-1 satellite in a single year. According to Esch et al. (2018), 
the amount of data produced in a single day by Sentinel-1, 2, and 3 combined is approximately 
20 TB. 

Some years ago, the typical EO data workflow looked like this:  

 
4 https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites 
5 https://smap.jpl.nasa.gov/ 
6 https://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.htm 
7 https://saocom.veng.com.ar/en/ 
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1. Identify area and date of interest. 
2. Investigate available data. 
3. Download data for the required dates and area of interest. 
4. Process data locally. 
5. Retrieve information. 

Due to the reasons discussed above, this approach may often be unfeasible, especially for global 
analysis. To fully exploit the potential of available data, a paradigm shift in the way they are 
processed and analysed was inevitable (Sudmanns et al., 2020). Platforms like the Google Earth 
Engine (GEE) (Gorelick et al., 2017), the Copernicus DIAS8, the Sentinel-Hub9, or the currently 
under development openEO platform10 provide access to cloud-based processing resources and 
analysis-ready EO data. These allow a new workflow where the data storage and processing are 
centralised on a computer cluster. Combined with the availability of pre-processed, "analysis-
ready" data on these platforms, this workflow offers another key advantage, besides the reduced 
requirements for the local processing infrastructure: the pre-processing of large quantities in the 
past required a high level of specific expertise, with cloud-based platforms like GEE, the barrier 
for a data analyst to access these data was substantially lowered. 

II..33 MMaacchhiinnee  lleeaarrnniinngg  
Machine learning is a subfield of artificial intelligence and is a summary term for various 
computer algorithms that can learn by example and make predictions. In contrast to other 
classical modelling approaches, it is entirely empirical, which means that no assumptions or a 
priori knowledge regarding the relationship between the dependent variable(s) and the 
predictors are needed. Therefore, machine learning is beneficial for problems where we lack a 
complete theoretical understanding of the problem or have insufficient data to support the 
theory. Machine learning can be used for classification (i.e. the classification of data into different 
categories), for regression (i.e. based on continuous data used to predict unknown data points), 
or for unsupervised classification or clustering (i.e. the automatic recognition of natural 
groupings or patterns in data) based on data in different formats, like images, text, sensor 
measurements, video, or EO data.  The history of machine learning goes back to the early 1950s 
where IBM scientists performed initial experiments, writing a computer program to play the 
game "Checkers". The term machine learning itself was coined by Arthur Samuel11, who was a 
computer scientist at IBM. One of the early key innovations was the introduction of the 
perceptron by Rosenblatt (1957), a simple algorithm that can be applied to binary classification 

 
8 https://www.copernicus.eu/sites/default/files/Copernicus_DIAS_Factsheet_June2018.pdf 
9 https://www.sentinel-hub.com/ 
10 https://openeo.org/platform/#about 
11 https://en.wikipedia.org/wiki/Arthur_Samuel 
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problems. It is one of the main concepts behind Artificial Neural Networks (ANN). After the initial 
excitement in the 1960s and 1970s, the interest began to fade. Other advances in computer-since 
and the improving performance and availability of PCs led to a resurgence of machine learning in 
the 1990s when several important algorithms were introduced: In 1995, Tin Kam Ho proposed 
the first Random Forest (RF) algorithm (Tin Kam Ho, 1995); the Support Vector Machine (SVM) 
was described first by Cortes and Vapnik (1995); since the early 2010s, Convolutional neural 
networks (Krizhevsky, Sutskever and Hinton, 2012) and the concept of deep learning caused 
another significant surge of interest in the topic and the development of new applications in 
many scientific fields and commercial sectors. These developments were made possible mainly 
due to the computing power of modern supercomputers and the availability of training datasets 
like the Imagenet database (Deng et al., 2009). 

Fuelled by the developments (see section I.2) of the last 10 to 15 years, machine learning has 
gained significant popularity also for EO applications. The strong positive trend in the number of 
publications (based on a Scopus12  search) containing the keywords "machine learning" and 
"remote sensing" confirms this growing popularity (Figure I-1). The applications range from land-
cover classification to glacier monitoring, from oil-spill mapping to sear surface salinity and soil 
moisture estimation. In Lary et al. (2018), the authors present a comprehensive overview of 
machine learning applications in EO. Here we will describe some of them, to give an impression 
of their large variety.  

A characteristic example of a problem with an incomplete theoretical understanding is bias 
correction (for example, the bias between measurements from different sensors or model bias), 
which belongs to the group of regression problems. As an EO-related case, Brown et al. (2008) 
used machine learning to correct MODIS and AVHRR NDVI time-series biases. The proposed 
approach relies on a neural network to "predict" the MODIS NDVI based on AVHRR data. In this 

 
12 https://www.scopus.com/ 
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way, the authors established a long-term data record to serve climatological studies. As an 
example for unsupervised classification, we can look at Lary et al. (2016), where a clustering 
algorithm helps to identify dust sources in hype-spectral imagery. One of the most common and 
mature applications for machine learning in EO is land-use/land-cover (LULC) classification 
(Talukdar et al., 2020). Numerous scientific studies cover this topic. Adam et al. (2014) 
demonstrated the potential of machine learning for high accuracy high spatial resolution 
mapping. They used SVM and RF classifiers to map LULC classes in RapidEye multispectral 
imagery. Even the operational land-cover monitoring service (Buchhorn, Smets, et al., 2020) of 
the Copernicus program relies on machine learning (Buchhorn, Lesiv, et al., 2020). This service 
provides annually updated global LULC maps with a spatial resolution of 100 m and relies on an 
RF algorithm. 

Relatively recently, related to the paradigm shift discussed in section I.2, some applications of 
deep learning algorithms have found their way into the world of EO (Zhu et al., 2017). Especially 
for the analysis of hyperspectral imagery (characterised by hundreds of narrow spectral bands), 
these approaches showed promising results. 

In a review of machine learning applications for estimating biomass and soil moisture, Ali et al. 
(2015) discuss the advantages of machine learning for retrieving biophysical parameters. The 
theoretical models for these variables are complex and require detailed auxiliary data or 
assumptions about the present land-cover structure, often challenging to collect, especially for 
mapping more extensive areas. Machine learning can help to overcome some of these problems; 
it has two main advantages: 1) it allows to build objective, data driven-models without the 
necessity of a priori assumptions about the variable dependencies, and it, therefore, is an 
objective method to test a hypothesis; 2) it is an easy solution for the combination or fusion of 
various datasets (e.g. optical-, thermal-, and microwave remote sensing, in-situ measurements, 
and model outputs). Machine learning can fulfil different purposes in the process of parameter 
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Figure I-1: Numbers of publications in scientific journals, including the terms "machine learning" and "remote sensing" in their 
keywords. 
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estimation. The most common applications are model inversion, empirical or data-driven model 
creation, and downscaling. Model inversion is necessary to retrieve parameters based on physics-
based forward models like the radiative transfer model PROSPECT (describing the optical 
properties of vegetation canopies) or Integral Equation Method (IEM) (a theoretical radar 
backscatter model) estimate vegetation properties or the SMC from remote sensing imagery. 
More traditional approaches like look-up tables are associated with a high computational cost 
for their generation and parameter retrieval (Hedley, Roelfsema and Phinn, 2009). Machine 
learning offers a more efficient solution to the problem. To give an example, Moosavi et al. (2016) 
and Stamenkovic et al. (2017) used Gaussian Process Regression, ANN, and Support-Vector-
Regression (SVR) to estimate high-resolution SMC based on ASAR and MODIS data, respectively. 
Another approach to generating parameter estimation models is empirical modelling, where a 
machine-learning algorithm uses in-situ measurements to "learn" to estimate the target (e.g. 
SMC) parameter based on several input features (e.g. satellite imagery combined with auxiliary 
data). This approach has been successfully applied many times, especially for the high-resolution 
mapping of SMC, and was subject to many studies (Paloscia et al., 2013; Santi et al., 2014; Pasolli 
et al., 2015; Li et al., 2020). Most of these studies, focusing on higher spatial resolution data, 
targeted specific study sites. Generally, these types of approaches are often thought to be site-
specific. Some existing studies demonstrated the general applicability of empirical modelling 
using coarser spatial resolution data. Kolassa et al. (2018) and Greifeneder et al. (2018) tested 
different machine learning algorithms to derive globally applicable SMC retrieval models.  

Besides parameter estimation, machine learning is often used for downscaling. One example was 
published by Moosavi et al. (2016), based on the downscaling of MODIS LST using Landsat 
imagery. 

As mentioned above, machine learning is the ideal tool for combining data from different sources 
or data fusion. There is an enormous potential to improve parameter estimations based on a 
combination of sensors and sensing techniques. Optical, thermal, or microwave remote-sensing 
all have strengths and weaknesses that can often complement each other. The existing 
theoretical models often cannot integrate these data types (i.e. we lack theoretical 
understanding), a prime example of a machine learning application. The point was proven, for 
example, by Liu, Qian, and Yue (2021), who combined Sentinel-1 (Synthetic Aperture Radar - SAR) 
and Sentinel-2 (optical) data for the estimation of SMC. They demonstrated that several different 
machine learning algorithms reliably outperform theoretical modelling approaches by combining 
these two sensors. SMAP and MODIS data were combined by Bhuiyan et al. (2020) to improve 
precipitation estimations. 

Some of these findings and advantages related to EO and machine learning apply to the machine-
learning-based parameter estimation in general. Hence, also for other hydro-meteorological 
applications, machine learning has gained considerable popularity. Bhuiyan, Anagnostou, and 
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Kirstetter (2017), Tyralis et al. (2019), Derin et al. (2020) used quantile regression algorithms 
(quantile regression forests and quantile regression neural networks) to quantify model errors in 
a hydrological context. Applying similar methods for a different aim, Ahn and Palmer (2016) 
estimated flood probabilities for ungauged catchments.  

II..44 PPrroobblleemm  ssttaatteemmeenntt  
In summary, and concerning the EO based estimation of SMC, we can capture the following 
issues: 

• Physical and semi-empirical backscatter models provide a well-established and reliable 
base for SMC estimations. They have the advantage that they are well documented and 
that, due to their physical foundation, their inner workings can be understood and 
comprehended. However, due to the difficulty to obtain measurements of critical 
parameters like the surface roughness or detailed information about the LULC type and 
vegetation structure, they must rely on simplification of the actual scattering 
mechanisms, especially to map more extensive areas. In many cases, indices have to 
approximate specific parameters like vegetation status or surface roughness (like the use 
of a vegetation index for the Triangle-method (Price, 1990) or the Water-Cloud-Model 
(Attema and Ulaby, 1978)), which means that existing data sources cannot be exploited 
to their full potential. The complexity of combining data from different sources also hold 
for change detection approaches. 

• Machine learning algorithms allow the establishment of entirely empirical, data-driven 
models. They are incredibly flexible, making it easy to combine data from different 
sources (e.g., satellite sensors, in-situ measurements, model outputs) and ordinal scales, 
which means that it is easier to exploit the available data and the information they contain 
fully. Together with the development in EO described in section I.2, these approaches 
constitute great potential. One downside is that machine learning is often considered a 
black box where it is impossible to understand how the input data contribute to the 
prediction and what the model learns. This problem is related to the limited 
generalisation capabilities – i.e. the ability of a model to make predictions outside the 
training domain, for example, for a different location. The model training requires a large 
dataset covering feature and target domains as completely as possible to overcome this 
problem. 

• Models with validity for a larger target area require spatially distributed reference 
datasets that match the scale of target spatial resolution. 

• The abundant availability of high-resolution satellite data holds great potential for the 
high-resolution mapping of SMC. However, it raises the bar for the quality of reference 
and auxiliary data even further.  
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• The available high-resolution satellite missions like Sentinel-1, Sentinel-2 or Landsat-8 
offer time-series that are too short for some applications like climatological studies or the 
reliable detection of anomalies for applications like drought mapping and monitoring.  

II..55 OObbjjeeccttiivveess  
The focus of this thesis is the exploitation of EO datasets, combined with machine learning 
methods for the estimation of SMC. Based on the problem statement summarised by section I.4, 
this section defines the three main objectives: 

1. How can we go from site-specific, data-driven machine-learning models to general 
applicability in large scale applications? 

As the introduction in section I.1 summarises, the estimation of SMC using different types of 
EO data has a long history (Attema and Ulaby, 1978; Schmugge, 1978; Price, 1990; Fung, Li 
and Chen, 1992) and is backed up by sound theoretical understanding. Also, machine learning 
algorithms to derive data-driven models have demonstrated their effectiveness in various 
studies (Paloscia et al., 2013; Santi et al., 2014; Pasolli et al., 2015, p. 201; Li et al., 2020). The 
work carried out in the scope of this thesis tries to push the applicability of these approaches 
further towards global-scale applications, tackling the problems stated in section 1.4. 
Ultimately, the thesis aims to address the gap that is a globally applicable model for the high-
resolution mapping of SMC. 

2. Exploiting the paradigm shift: 

This objective is related to the limitations of the "classic" data processing approach (section 
I.2) and constitutes a practical necessity and an opportunity. The EO paradigm shift created 
new means to access analysis-ready data through different online platforms or Application-
Programming-Interfaces (APIs), enabling a new level of data exploitation without direct 
access to ample processing resources. For us, this new potential is a prerequisite to reach 
objective one and tackle the issues related to generating a spatially distributed training 
dataset, especially when aiming at high spatial resolutions. The following question 
summarises these points: 

a. How can we harness the potential of available data? 

Harnessing this potential also means combining data from different sources (e.g. in-situ, EO, 
modelling). These data come at different spatial and temporal sampling rates, which means 
that another related question emerges: 

b. How can we merge data from different sensors and data sources with different 
spatial and temporal resolutions? 
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Since it renders the necessity for heavy local data processing and sizeable local storage 
obsolete, the EO paradigm shift also increases the potential for replicability. Therefore, one 
of the outputs of this work shall be tools to replicate its results and make them accessible for 
research and practical application.  

3. How can we link soil moisture measurements across scales (spatial and temporal)? 

The third question is relevant from multiple perspectives. It must be considered when linking 
in-situ data and coarse resolution EO data, such as when we assemble a training dataset to 
feed a machine learning algorithm or when validating coarse-resolution SMC estimations.  We 
have to consider multiple spatial soil moisture scales to combine SMC estimations from 
different sources, which may be one way to overcome one of the limitations of available high-
resolution EO data, their short time series.   

II..66 SSttuuddyy  oouuttlliinnee  
The thesis consists of four main parts. Sections 1, 2 and 3 aim to provide context to the individual 
articles and integrate them into the overall thesis. This section, section 1, gives an introduction 
and a general overview of the topics tackled in the thesis, including a discussion of research 
questions and objectives. The following section, number 2, contains an overview of the four 
articles and discusses their connections. At its core is section number 3, with four articles 
published in scientific peer-reviewed journals and presenting this work's scientific contribution. 
At last, section 4 summarises the results and formulates the conclusions. 

II..77 SSuummmmaarryy  ooff  PPuubblliiccaattiioonnss  
Section 2 provides a summary of the four articles, which constitute the main content of this 
thesis. The numbering, from one to four, is based on the logical flow of the presented work.  

II..77..11 AArrttiiccllee  11  ––  ""FFrroomm  PPooiinntt  ttoo  PPiixxeell  SSccaallee::  AAnn  UUppssccaalliinngg  AApppprrooaacchh  ffoorr  IInn  SSiittuu  SSooiill  
MMooiissttuurree  MMeeaassuurreemmeennttss1133""  

The first article (Greifeneder et al., 2016) was published in the Vadose Zone Journal in 2016. Its 
main aim was to introduce a method for upscaling in-situ SMC measurements, specifically, to 
provide reference data for the SMAP Cal/Val activities14 . In the context of this thesis, it is 
important because it contributed to a better understanding of the direct influence of terrain, 
land-cover, or soil type on SMC patterns and the ability of available data to characterise these 
features. These findings contributed to the model design in article 3 (considering descriptive data 
is also crucial for overcoming site-specificity – objective 1), and they confirm the temporal 

 
13 https://doi.org/10.2136/vzj2015.03.0048 
14 https://smap.jpl.nasa.gov/science/validation/  

https://doi.org/10.2136/vzj2015.03.0048
https://smap.jpl.nasa.gov/science/validation/


13 
 

correlation of SMC across different spatial scales. This phenomenon is known as temporal 
stability, introduced by Vachaud et al. (1985). It is one of the key concepts for anomaly detection 
in article 4. A more detailed summary of the work carried out in article 1 follows below. 

Dealing with medium- to coarse-resolution satellite imagery (like the SMAP data in this study) 
requires compensating for different measurement scales, especially in mountain areas. We have 
developed a spatial upscaling method for SMC that combines in situ measurements and remotely 
sensed data. As mentioned before, the approach relies on correlating spatial patterns of SMC 
with terrain topography, land-cover, and soil type. The study used data from a small research site 
in the northern Italian Alps, in Val Mazia. To evaluate the method, we used resampled Envisat 
ASAR data to reproduce the spatial scale of the SMAP data. Results showed that the 
representativeness of in situ data could be improved significantly for the 3- by 3-km SMAP pixel 
scale. Applying the proposed approach improved the correlation (in terms of the Pearson 
correlation coefficient) between SMC and satellite backscatter from R = 0.05 to 0.28. Another 
way to test the improvements is to use upscaled in situ measurements to train a machine learning 
retrieval model, using original versus upscaled ground data for model training. The error of the 
estimated SMC was improved from Root-Mean-Square-Error (RMSE) = 0.12 to 0.03 m3 m−3.  

II..77..22 AArrttiiccllee  22  ––  ""TThhee  AAddddeedd  VVaalluuee  ooff  tthhee  VVHH//VVVV  PPoollaarriizzaattiioonn--RRaattiioo  ffoorr  GGlloobbaall  SSooiill  
MMooiissttuurree  EEssttiimmaattiioonnss  FFrroomm  SSccaatttteerroommeetteerr  DDaattaa1155""  

This article (Greifeneder, Notarnicola, et al., 2018) appeared in IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing. At its core was assessing the radar cross-
polarisation channel's value for the compensation of vegetation effects in SMC retrieval models 
in anticipation of the upcoming second-generation Meteorological-Operation-Satellite (Metop) 
Scatterometer. The study compared three different machine learning approaches using 
reanalysis data as an SMC reference for training and testing. The relevance of the presented work 
concerning this thesis lies in the spatial scope. We demonstrated the applicability of data-driven 
models for global scale SMC retrievals and analysis (objective 1). Furthermore, the results show 
the value of the cross-polarisation channel for SMC estimations, and at the same time, they 
demonstrate the limits of estimations based only on radar data. The work carried out in article 2 
is summarised in more detail below. 

The successor to the current series of Metop ASCAT, the Metop-SG (second generation) SCA (the 
launch of Metop-SG-B, which will carry the SCA instrument, is currently scheduled for 2025), will 
record dual-polarisation, medium spatial resolution, high temporal resolution data at C-band. 
Taking the current algorithm for the Hydrology Satellite Application Facility (HSAF) medium 

 
15 https://doi.org/10.1109/JSTARS.2018.2865185 

https://doi.org/10.1109/JSTARS.2018.2865185
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resolution SMC product16, which is based on single-polarisation ASCAT data, as a starting point, 
we investigated whether the information contained in the cross-polarisation measurements 
could improve the vegetation parameterisation to estimate the SMC. The operational HSAF 
algorithm characterises vegetation dynamics by the relationship between radar backscattering 
intensity and the incidence angle, the so-called SLOPE parameter. Based on findings from 
previous studies, we assumed that the polarisation ratio, i.e., VH/VV, could improve this 
characterisation. Cross-polarisation data from the Scatterometer of NASA's Aquarius mission17 
served as a simulation of an additional ASCAT channel. Machine learning offered the means for 
an objective assessment of the hypothesis. We employed three different algorithms to avoid 
biased findings (SVR, ANN and the Bayesian-Regression) and compared four feature 
configurations: no vegetation compensation, compensation based on SLOPE, compensation 
based on the polarisation ratio, a combination of SLOPE and the polarisation ratio. The results 
showed that the information contained in the SLOPE parameter and the polarisation ratio is 
similar, which confirmed that the cross-polarisation channel is sensitive to changes in vegetation. 
Based on a global average, the different approaches achieved comparable accuracies. Despite 
that, analysis of the temporal dynamics of SLOPE and polarisation ratio revealed specific location-
specific differences, which affect the spatial distribution of SMC retrieval accuracies. As a result, 
improvements based on the combination of the two parameters are minor overall, but they can 
be significant locally. 

II..77..33 AArrttiiccllee  33  ––  ""AA  MMaacchhiinnee  LLeeaarrnniinngg--BBaasseedd  AApppprrooaacchh  ffoorr  SSuurrffaaccee  SSooiill  MMooiissttuurree  
EEssttiimmaattiioonnss  wwiitthh  GGooooggllee  EEaarrtthh  EEnnggiinnee1188""  

Publication number three (Greifeneder, Notarnicola and Wagner, 2021a) appeared in Remote 
Sensing in 2021. This article is the essential publication of the thesis as it builds directly upon the 
findings of the previous articles, and it touches on all of the objectives discussed in section I.5. 
The work's main aim was to introduce a system for estimating high spatial resolution SMC 
applicable independently of the geographic location (objective 1). To exploit a wide range of 
available satellite and model data, a move into an environment that offers analysis-ready data 
was a natural choice. In this case, the whole process is based entirely on the GEE (objective 2). 
Data from the International Soil Moisture Network (ISMN) served as a reference. To achieve 
these aims, we had to overcome the problem of combining data with different spatial and 
temporal sampling rates. (objective 3). With this article, we demonstrated the enormous 
potential that lies in the EO paradigm shift – making the data more accessible – and machine 
learning methods. However, while the developments of the last decades solved two big problems 
– access to data and processing infrastructure – the main remaining bottleneck of all machine

16 https://hsaf.meteoam.it/Products/ProductsList?type=soil_moisture  
17 https://www.nasa.gov/mission_pages/aquarius/overview/index.html 
18 https://doi.org/10.3390/rs13112099. 

https://hsaf.meteoam.it/Products/ProductsList?type=soil_moisture
https://www.nasa.gov/mission_pages/aquarius/overview/index.html
https://doi.org/10.3390/rs13112099
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learning applications is the availability of accurate reference and training data. The following 
paragraph summarises in more detail the work carried out in the scope of article 3. 

This study introduces a machine-learning-based approach for high spatial resolution (50 m) 
mapping of SMC, based on the integration of Landsat-8 optical and thermal images, Copernicus 
Sentinel-1 C-Band SAR images, and modelled data, executable in the GEE. The novelty of this 
approach lies in applying an entirely data-driven machine learning concept for global estimation 
of the surface soil moisture content. Globally distributed in situ data from the ISMN acted as an 
input for model training. Based on the independent validation dataset, the resulting overall 
estimation accuracy, in terms of RMSE and R2, was 0.04 m3m-3 and 0.81, respectively. Beyond 
the retrieval model itself, this article introduces a framework for collecting training data and a 
stand-alone Python package for soil moisture mapping. The GEE API facilitates data collection 
and retrieval, which is entirely cloud-based. For soil moisture retrieval, it eliminates the 
requirement to download or pre-process any input datasets. 

II..77..44 AArrttiiccllee  44  ––  ""DDeetteeccttiioonn  ooff  SSooiill  MMooiissttuurree  AAnnoommaalliieess  BBaasseedd  oonn  SSeennttiinneell--111199""  
The last and fourth article (Greifeneder, Khamala, et al., 2018) appeared in Physics and Chemistry 
of the Earth in 2018. It showcases a possible application of high-resolution SMC retrievals to map 
soil moisture anomalies. For the detection of, anomalies a time series long enough to determine 
the normal state must be available. High-resolution satellites like Sentinel-1 today cover less than 
ten years up to now. To extend the temporal coverage of the SMC time-series, we introduced a 
method to fuse high-resolution estimations with coarse-resolution Global Land Data Assimilation 
System (GLDAS) model data. In this way, the article contributes to objective number 3 of the 
thesis and closes the circle back to article one, as the fusion approach relies on the same concept 
of temporal stability. A more detailed summary of the work carried out follows in the paragraphs 
below. 

One of the applications for SMC measurements is connected to the relationship between SMC 
anomalies and natural hazards such as droughts, flooding, or landslides. A requirement for 
detecting and quantifying an anomaly is a long time series (often 10–30 years) to derive a 
reference value. Herein lies one of the issues of Sentinel-1 based SMC mapping. 

We introduced an approach to overcome this problem and enable the Sentinel-1 based SMC 
anomaly detection. The method built on a cross-calibration between Sentinel-1 SMC estimations 
and coarse resolution (∼30 km) modelled SMC from the GLDAS, covering 1948 to today. As a 
result, we derived the long-term averages for each Sentinel-1 pixel. 
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Results showed that the proposed method allows very accurate reproduction of the average SMC 
(for any given pixel) – if computed for the Sentinel-1, the RMSE between estimated (GLDAS 
based) and true average Sentinel-1 SMC is 0.7 %-Vol. Furthermore, the comparison with an in-
situ time series showed the correct detection of negative and positive anomalies, respectively. 
The method presented in article 4 may allow the integration of Sentinel-1 data into, e.g., drought 
monitoring or flood forecasting applications. 
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IIIIII..11 SSuummmmaarryy  aanndd  CCoonncclluussiioonn  
The thesis aimed to explore the potential of machine learning for the global scale analysis of SMC. 
The developments of the last decades – high spatial and temporal resolution satellite missions, 
the shift towards open data policies, better availability of analysis-ready data and processing 
infrastructure – have created immense new potential for many applications of EO data. While 
the four articles making up this thesis already include detailed discussions of the results and 
conclusions, this section focuses on their interrelationships and their contribution to the general 
aims and problems formulated in Part I. 

Article 1 presented a method for bridging the gap between the different scales of in situ SMC 
measurements and satellite pixels for both validation and retrieval approaches. The method was 
designed specifically for the Long-Term-Socio-Ecological-Research site in Val Mazia24 in northern 
Italy, which served as one of the candidate validation sites for the SMAP cal/val project 25 . 
However, the same approach may be helpful in other areas with highly complex terrain or land 
cover. The results and performance analysis of the proposed method show how it successfully 
reduces the effects of local SMC variability and helps strengthen the relationship between 
satellite and in situ measurements. Furthermore, the study produced valuable findings in the 
context of this thesis' general aims by analysing the correlation of SMC across scales and the 
impact of features like land-cover, soil-type, or topography. We were able to build on these 
insights for the model design in articles 3 and 4. In this way, article 1 made a valuable contribution 
towards the objectives formulated in Part I, especially objectives number one and three. 

We presented the first attempt at machine-learning-based SMC estimations at the global scale 
in article 2. For this purpose, the study had to tackle several problems related to objective one 
(Part I, section 1.4 and 1.5). To tackle the issues related to the properties of the reference SMC 
dataset, namely, good coverage of both target and feature domains requiring a good distribution, 
we used the ERA-Interim dataset for training and algorithm testing. The results further 
demonstrated that with the appropriate reference dataset, the problem of site-specificity was 
reduced. For the article's main aim, the analysis of the added value of the cross-polarisation 
channel, we exploited one quality of machine learning that sets it apart from process-driven 
models – the general flexibility of these methods makes an excellent tool for hypothesis testing. 

Confirming the results of previous studies (Gruber et al., 2014), different machine learning 
algorithms performed similarly in this study, which is in line with analysis performed in the scope 
of article 3 where other qualities, besides the estimation accuracy, like the flexibility to handle 
different ordinal scales of input data or the training efficiency led to the choice of algorithm.  

 
24 https://ltereurac.wimuu.com/it/  
25 https://smap.jpl.nasa.gov/science/validation/  

https://ltereurac.wimuu.com/it/
https://smap.jpl.nasa.gov/science/validation/
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The results of article 2 gave a practical example for the radar cross-polarisation channel's 
sensitivity towards vegetation dynamics, described in an experimental setting by (Ulaby, Moore 
and Fung, 1986). We demonstrated the potential improvements, but the study also 
demonstrates the limitations of an approach that relies only on radar backscatter information, 
which shows in the relatively high error values for some regions.  

The third article is the main work of this thesis. It picked up findings from articles 1 and 2 and 
other related work (Pasolli et al., 2015; Greifeneder, Notarnicola and Wagner, 2016; Greifeneder 
et al., 2017; Stamenkovic et al., 2017) to tackle all of the main objectives formulated in Part I and 
estimate SMC at a high spatial resolution on a quasi-global scale. The novelty of this approach is 
the application of a data-driven model in a large-scale context.  

With our work in the first two articles, we concentrated mainly on microwave remote sensing as 
a data source. In Article 3, data from various sources with different properties in terms of spatial- 
and temporal-resolution were integrated: point measurements from the ISMN (as training and 
validation dataset), high-resolution satellite data from Sentinel-1 and Landsat-8, medium 
resolution satellite data from MODIS, coarse resolution model data, static data like land-cover 
and soil properties. It turned out that machine learning, notably the GBRT algorithm, effectively 
merges these different data types. The validation performed very well. The overall accuracy was 
in line with requirements set by the Global Observing System26, which means that the method 
performs very well, also compared to existing operational products and previous studies. As 
discussed in the article (Part II) the main limitations of the approach can be related to the 
irregular coverage of the feature and target space by the SMC reference dataset. 

The combination of many datasets was enabled by consistently relying on GEE for the data 
collection. It offered the capabilities to perform the necessary interpolation operations on the 
fly, and we could avoid downloading large amounts of data. In the end, only the pre-processed 
and completely assembled training datasets were downloaded to perform the machine learning 
algorithm training offline. The use of GEE brought another critical advantage; We were able to 
implement the estimation of SMC to be executed directly online, which means that no base data 
has to be downloaded the perform estimations. The estimation software was published as a 
python package PYSMM (Greifeneder, Notarnicola and Wagner, 2021b). Besides the obvious 
advantages of the EO paradigm shift, related to the simplified access to data and processing 
resources, a significant advantage for science is that it significantly increases the reproducibility 
of results. 

Being the main work of the thesis, it also generated its biggest impact. Numerous scientific and 
general users picked up the results, especially in the shape of PYSMM. The software enables us 

 
26 https://climate.esa.int/sites/default/files/gcos-154.pdf 
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to deliver, in a semi-operational way, soil moisture maps for the GRAPEX27 project by USGS, which 
led to a joint publication (Lei et al., 2020). The publication of PYSMM helped to increase the reach 
of our work significantly. According to the PyPI download statistics 28 , the software was 
downloaded more than 13,000 times when writing this text. A group also picked it up at FAO who 
used PYSMM to map wetlands in Southeast Asia. 

The final article proposed a method for detecting SMC anomalies based on remotely sensed, high 
spatial resolution SMC estimations. The approach exploited the correlation of SMC across spatial 
scales for the downscaling of average SMC climatologies extracted from coarse resolution GLDAS 
simulations, and thus, it contributed to a better understanding of the questions raised through 
objective 3 (part I). We successfully demonstrated how high-resolution SMC estimations could 
be used for practical applications like drought monitoring or climate forecasting with the 
presented solution. 

Certain limitations apply to the methods introduced in this thesis (as discussed in the conclusions 
above and part II). These are the areas where future work could continue the development. The 
list below summarises the points with the most significant potential for improvement in a very 
condensed way: 

1. Training dataset: Article 3 analysed the limitations related to a sparse training dataset. 
The results suggest that estimation accuracies could be improved through a better 
representation of the feature-target space. A possible way to achieve this could be 
integrating in-situ data as a reference with alternative reference datasets like modelled 
SMC, following the idea explored in (Greifeneder, Notarnicola and Wagner, 2016) 

2. Validation: This refers primarily to the validation of high-resolution spatial SMC patterns. 
Articles 3 and 4 perform validation based on time-series of in-situ point measurements, 
which allows a good understanding of the sensitivity of temporal SMC variabilities. 
Continuous data with a similar sampling rate and soil depth would be necessary to 
validate spatial patterns. 

3. Deep learning: Throughout the last ten years, deep learning has been an incredible trend 
in the world of machine learning, initiated by the incredible successes in image 
classification (Krizhevsky, Sutskever and Hinton, 2012). Various recent studies suggest 
that the method holds significant potential for estimating SMC (Lee et al., 2019; Ahmed 
et al., 2021; Li et al., 2021). The advantages of deep learning compared to traditional 
machine learning approaches could be improved efficiency and the ability to extract 

 
27  https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/hydrology-
and-remote-sensing-laboratory/docs/grapex/grapex-overview/  
28 https://pepy.tech/project/pysmm  

https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/hydrology-and-remote-sensing-laboratory/docs/grapex/grapex-overview/
https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/hydrology-and-remote-sensing-laboratory/docs/grapex/grapex-overview/
https://pepy.tech/project/pysmm
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relevant information when working with a large number of features (i.e. exploiting a large 
number of data sources). 
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