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Abstract

This thesis provides a comprehensive overview of the identification process for
nonlinear tyre and drivetrain models, serving as a roadmap for understanding
the selection of experiments, data preprocessing, parameters identification and
validation. Precise mathematical models of vehicle dynamics play a significant
role in the design, maintenance, and testing of key components, as well as in
monitoring and driving assistance systems. Several manoeuvres were analyzed to
determine the best approach to capture the longitudinal motion of the Research
Platform for Autonomous Driving (RPAD). The linear model for the description of
the longitudinal dynamics outperformed other candidates across all identification
manoeuvres. Two approaches were analyzed to estimate the lateral velocity used to
calculate the tyre slip angles. The simulation of the model states was proven to be
the best solution to approximate lateral velocity in the absence of a measurement
source. The identified vehicle model demonstrated high accuracy in predicting
longitudinal and lateral accelerations, yaw angle and yaw rate during the validation
stage on the reference track with velocity up to 3m/s and front tyre slip angle
values reaching up to 0.33 rad indicating a high slip region. Extended Kalman
filter and particle filter based on LiDAR measurements were designed to estimate
the model’s accuracy in predicting RPAD’s position. The steps described in various
chapters of this thesis were encapsulated in the automated identification toolbox,
consisting of a ROS 2 testing node and a Python identification package.
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Kurzfassung

Diese Arbeit konzentriert sich darauf, einen umfassenden Überblick über den Iden-
tifikationsprozess für nichtlineare Reifen- und Antriebsstrangmodelle zu bieten
und dient als Leitfaden für das Verständnis der Auswahl von Experimenten, der
Datenverarbeitung, der Identifikation von Parametern und der Validierung. Die
präzisen mathematischen Modelle der Fahrzeugdynamik spielen eine wichtige Rolle
bei der Gestaltung, Wartung und Prüfung von Schlüsselkomponenten sowie bei
Überwachungs- und Fahrassistenzsystemen. Mehrere Manöver wurden analysiert,
um den besten Ansatz zur Erfassung der Längsbewegung des Research Platform
for Autonomous Driving (RPAD) zu bestimmen. Das lineare Modell zur Beschrei-
bung der Längsdynamik übertraf andere Kandidaten bei allen Identifikationsman-
övern. Zwei Ansätze wurden analysiert, um die Quergeschwindigkeit zur Berech-
nung der Schräglaufwinkel zu schätzen. Die Simulation der Modellzustände er-
wies sich als die beste Lösung, um die Quergeschwindigkeit in Abwesenheit einer
Messquelle zu approximieren. Das identifizierte Fahrzeugmodell zeigte eine hohe
Genauigkeit bei der Vorhersage von Längs- und Querbeschleunigungen, Gierwinkel
und Giergeschwindigkeit während der Validierungsphase auf der Referenzstrecke
bei Geschwindigkeiten von bis zu 3m/s und einem maximalen Schräglaufwinkel
der Vorderreifen von bis zu 0.33 rad, was auf einen hohen Schlupfbereich hinweist.
Ein erweitertes Kalman Filter und Partikelfilter basierend auf LiDAR-Messungen
wurden entwickelt, um die Genauigkeit des Modells bei der Vorhersage der RPAD-
Position zu schätzen. Die in verschiedenen Kapiteln dieser Arbeit beschriebenen
Schritte wurden in einem automatisierten Identifikationstool zusammengefasst,
bestehend aus einem ROS 2 Testnode und einem Python Identifikationspackage.
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1. Introduction

1.1. Motivation

In the world of modern vehicles, precise mathematical models of vehicle dynamics
play an important role. These models find application in state monitoring and
vehicle dynamics control. Autonomous driving stands at the forefront of techno-
logical advancement, reshaping mobility concepts and enhancing safety, efficiency,
and convenience.

Experimental modelling and system identification form the basis of developing
these accurate and reliable mathematical representations for complex systems.
These modelling concepts establish a crucial link between abstract models and
real-world applications by combining theoretical insights with practical data.

The identification process developed in this thesis is tested on the 1:10 scale RC
car model. The same scaled vehicle model is used for the F1TENTH race [1]. The
development of control algorithms for autonomous vehicles under critical driving
conditions holds promise not only for the F1TENTH race but also for real-world
autonomous vehicles navigating urban streets. Implementing these control algo-
rithms requires an accurate mathematical representation of the vehicle dynamics.
The parameters of the employed models should be identified systematically and
reproducibly, ensuring minimal user involvement in preparation before the race.

The vehicle models developed and calibrated in this work may be used for the
small-scale validation and demonstration of Model Predictive Control (MPC) al-
gorithms developed for cooperative platooning [2] and autonomous driving [1,3–5].

1.2. Problem Statement

This thesis focuses on the methodology and identification of a model for the
Research Platform for Autonomous Driving (RPAD) and its parameters. A suit-
able vehicle model and appropriate modelling techniques are selected based on the
literature. The parameters of this model are determined through system identifica-
tion, which considers available real-time measurements and hardware and software
limitations. Specific test manoeuvres are defined and executed on the institute’s
model car, the RPAD, to gather the necessary data for parameter identification.
The design and implementation of control functionalities will facilitate automated
test processing. The identified vehicle dynamics model and its parameters are
validated on the real hardware (RPAD) to evaluate the accuracy of the estimates.
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1.3. Organisation of the thesis

A proper understanding of the investigated system is required before discussing
model selections or the identification process. The starting point for further anal-
ysis is an overview of RPAD in Chapter 2. This chapter lays the foundation for
the subsequent modelling and experiment selection by discussing the available sen-
sors and hardware limitations. Since communication in the RPAD is conducted
via Robot Operation System (ROS) 2, the architecture and main elements of the
operating system are introduced to better understand the structure of a test node
designed for automation purposes. With hardware and software limitations de-
fined, Chapter 3 discusses the modelling approaches. The modelling is divided into
two parts: the longitudinal dynamics, described primarily as a function of velocity
and the duty cycle of the electric motor, and the lateral dynamics, characterised
by nonlinear tyre models. Considering the limitations and the selected models,
Chapter 4 introduces the design and selection of experiments. The required steps
to preprocess the collected data establish a solid foundation for reliable and re-
producible identification results. Different approaches to address unmeasurable
system states are discussed and applied during identification. Chapter 5 serves as
a critical phase in assessing the assumptions made during the experiments and the
accuracy of the selected models and their identified parameters. The final chapter
summarises the key findings, insights, and results and suggests potential areas for
further research. The preprocessing and identification steps described in Chapter
4 were summarised in the identification toolbox consisting of the ROS 2 node and
the identification package, both explained in Appendix A.
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2. Hardware and Software Overview

This chapter describes the hardware and software used. First, RPAD is introduced
as a key platform for experiments and identification. The focus is laid mainly
on available controllers and sensors. Then, ROS 2 and its main communication
components are described for better comprehension of the designed automated
process presented in Appendix A.

2.1. Research Platform for Autonomous Driving

The RPAD is the institute’s enhanced implementation of the original F1TENTH
Autonomous Vehicle System. The RPAD main components can be categorized
into three distinct levels: lower chassis, upper chassis, and autonomy elements [6].
The upper chassis acts as a connecting element, bridging all electronics on the
autonomy elements level with the lower chassis.

Figure 1: Research Platform for Autonomous Driving RPAD.

The lower chassis serves as the foundation and is based on the Traxxas Slash
4x4 Ultimate 1:10 scaled race car. Equipped with a brushless Direct Current (DC)
electromotor that powers four driving wheels, its low placement of the battery,
electronics, and other components ensures a low centre of gravity [7].

The autonomy elements level relies on the NVIDIA Jetson Xavier NX, designed
explicitly for autonomous application, making it ideal for handling visual odome-
try, sensor fusion, localization, and obstacle avoidance [8].

Another crucial component is the Vedder Electronic Speed Controller (VESC)
6 MKVI Electronic Speed Controller [9], responsible for controlling motor speed,
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current, voltage, duty cycle, etc. Additionally, it features an Inertial Measure-
ment Unit (IMU) chip with a 9-axis gyroscope and accelerometer. Configurable
parameters for gears and wheel diameters aid in estimating speed and distance
travelled.

For obstacle detection, localization, and environmental awareness, the Hokuyo
10LX 2D LiDAR sensor is employed. It delivers precise measurements in a 270°
field of view up to 10 meters.

In addition to these components, RPAD uses a WiFi antenna for communica-
tion, an HDMI emulator for display, and is powered by Lithium Polymer (LiPo)
battery. However, to ensure the accuracy of IMU measurements, relying solely on
the VESC’s IMU is insufficient. Therefore, an LP-Research Motion Sensor LPMS
series IMU is installed [10].

The described configuration leads to the following measurable data considering
the available sensors:

• VESC: x,y-coordinates, yaw, pitch and roll angles, velocity in x-direction,
yaw, pitch and roll rates, accelerations in x-y-z-directions, duty cycle of the
motor, motor speed, servo position

• LP-Research IMU: yaw, pitch and roll angles and rates, accelerations in x-
y-z-directions

• Hokuyo LiDAR: beam ranges between RPAD and surrounding objects and
their corresponding angles

The longitudinal motion of RPAD can be manipulated by adjusting the duty cycle,
motor speed, or current commands. Lateral motion depends on the servo position.
To design, maintain, simulate, and control the RPAD, ROS 2 is employed. The
x,y-coordinates, orientation angles and velocity in the x-direction of the VESC are
only estimates based on motor speed and steering angle. The reliability of the
longitudinal velocity data is checked for the specific test manoeuvre of the lateral
identification.

2.2. ROS 2 Overview

An overview of ROS 2 is essential for monitoring and controlling the system states
of RPAD. ROS 2 is a software platform for developing robotics applications, also
known as a robotics Software Development Kit (SDK). Importantly, ROS 2 is an
open-source framework distributed under the Apache 2.0 License, providing users
with extensive rights to modify, apply, and redistribute the software without any
obligation to contribute back [11]. ROS 2 is used in various robotics applications
for simulation, control, autonomous navigation, visualization and more. Using its
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community-driven capabilities, it was designed to address security and reliability
challenges in nontraditional environments. Compared with ROS 1, it supports
Windows and macOS platforms besides Linux. Furthermore, ROS 2 introduces
the ability to process multiple nodes concurrently. The communication patterns
of ROS 2 are topics, actions, and services provided by nodes.

2.2.1. ROS 2 Node

A ROS 2 node is an essential unit for communicating data in the form of requests,
responses (both services), actions, etc., with other nodes. It is designed to fulfil
a specific modular purpose, such as publishing servo inputs or the current robot’s
position and orientation. ROS2 nodes can be implemented in either C++ or
Python programming languages.

Figure 2: Visualization of ROS 2 node communication. Adapted from ROS 2 doc-
umentation [11].

To list the active nodes within the system, one can execute the following line in
the bash or command line:✞
ros2 node list✝ ✆
If the desired node is not listed in the output, the following command should be
executed to launch the inactive node:✞
ros2 run package_name executable_name✝ ✆
Here, package_name is the name of the package (node) to be run, and executable_name
is the name of the executable function inside the package. Launching the node in a
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separate terminal is recommended, as the terminal becomes blocked and unusable
until the node is terminated (using the Ctrl-C combination).

For additional information about a node before usage or debugging purposes,
the following command returns information about subscribers, publishers, services,
actions, etc., for a custom node named lidar_node:✞
ros2 node info lidar_node✝ ✆✞
/lidar_node

Subscribers:
/ego_racecar/odom: nav_msgs/msg/Odometry
/scan: sensor_msgs/msg/LaserScan

Publishers:
/drive: ackermann_msgs/msg/AckermannDriveStamped
/parameter_events: rcl_interfaces/msg/ParameterEvent
/rosout: rcl_interfaces/msg/Log

Service Servers:
/lidar_node/describe_parameters: rcl_interfaces/srv/Descr
ibeParameters
/lidar_node/get_parameter_types: rcl_interfaces/srv/GetPa
rameterTypes
/lidar_node/get_parameters: rcl_interfaces/srv/GetParamet
ers
/lidar_node/list_parameters: rcl_interfaces/srv/ListParam
eters
/lidar_node/set_parameters: rcl_interfaces/srv/SetParamet
ers

Service Clients:

Action Servers:

Action Clients:✝ ✆
To create a node, one must navigate to the src folder and execute the following
command:✞
ros2 pkg create --build -type ament_python tester_node✝ ✆
Created package tester_node consists of following components:

tester_node ...............................................Package folder
resource

tester_node ............................Marker file for the package
test ............................................Folder for unit testing
tester_node ........................Used by ROS2 to find the package
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__init__.py
node_function.py .......................Executable of the package

package.xml ......................Meta information about the package
setup.cfg ...............Required in case the package has executable(s)
setup.py ....................Information about installation instructions

To build the new package, one should first move to the workspace folder and
execute:✞
colcon build --packages -select tester -node✝ ✆
2.2.2. ROS 2 Topic

The ROS 2 topic is an asynchronous message-passing framework [11]. It is one
of the main ways to transfer data between the nodes. Users can observe or send
messages on a topic by creating a Subscriber or Publisher in a node, enabling
one-to-one, one-to-many, many-to-one, and many-to-many communications. Each
node can subscribe or publish to an arbitrary number of topics.

Similar to nodes, it is useful to gather information about available topics and
their types, which determine how nodes identify that they are communicating the
same data. Running the following command results in a list of topics and their
message types (use the appendix option -t) for the RPAD:✞
ros2 topic list -t✝ ✆✞
/ackermann_cmd [ackermann_msgs/msg/AckermannDriveStamped]
/commands/motor/brake [std_msgs/msg/Float64]
/commands/motor/current [std_msgs/msg/Float64]
/commands/motor/duty_cycle [std_msgs/msg/Float64]
/commands/motor/speed [std_msgs/msg/Float64]
/commands/servo/position [std_msgs/msg/Float64]
/odom [nav_msgs/msg/Odometry]
/openzen/data [sensors_msgs/msg/Imu]
/parameter_events [rcl_interfaces/msg/ParameterEvent]
/rosout [rcl_interfaces/msg/Log]
/scan [sensor_msgs/msg/LaserScan]
/sensors/core [vesc_msgs/msg/VescStateStamped]
/sensors/imu [vesc_msgs/msg/VescImuStamped]
/sensors/imu/raw [sensors_msgs/msg/Imu]
/sensors/servo_position_command [std_msgs/msg/Float64]
/tf [tf2_msgs/msg/TFMessage]
/tf_static [tf2_msgs/msg/TFMessage]✝ ✆
To observe data published to a specific topic, such as LiDAR, use:
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✞
ros2 topic echo /scan✝ ✆
For publishing data to a topic using the command line, specify the message’s data
in the syntax of a .yaml file. It is recommended first to examine the message type
using the following command:✞
ros2 show interface nav_msgs/msg/Odometry✝ ✆✞
# This represents an estimate of a position and velocity in
# free space.
# The pose in this message should be specified in the
# coordinate frame given by header.frame_id
# The twist in this message should be specified in the
# coordinate frame given by the child_frame_id

# Includes the frame id of the pose parent.
std_msgs/Header header

# Frame id the pose points to. The twist is in this
# coordinate frame.
string child_frame_id

# Estimated pose that is typically relative to a fixed world
# frame
geometry_msgs/PoseWithCovariance pose

# Estimated linear and angular velocity relative to
# child_frame_id
geometry_msgs/TwistWithCovariance twist✝ ✆
The following lines illustrate how to publish a message of type
nav_msgs/msg/Odometry:✞
ros2 topic pub --once /odom nav_msgs/msg/Odometry '{pose:
{pose:{ position :{x:0.0,y:0.0,z:0.0}}}} '✝ ✆
Here, --once indicates that the message will be published only once. To specify the
rate of publishing the message, replace --once with --rate Number, where Number
is the desired frequency in Hertz (Hz).

2.2.3. ROS 2 Publisher

The ROS 2 publisher is a part of the node responsible for creating and sending the
data or message to a specific topic, which acts as a channel for communication.
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For example, a publisher can set the motor speed or the servo position. Since
communication in ROS 2 is asynchronous, the publisher sends whenever it has
new data. A publisher does not know the existence of any subscriber, so it can
send data to multiple subscribers and, thus, multiple nodes.

Since the publisher is a part of the node, its initialization is located in the node
package, precisely, in the node executable. The custom node tester_node described
in Section 2.2.1 will be used for demonstration purposes. The executable function
of this node calls node_function. The central part of this file is a description of
class TesterNode, which will be called in a loop after the node has been launched.
To create a publisher for the motor controller, it is necessary to create a class
attribute as an object of the Publisher class of the Node superclass:✞
self.motor_publisher = self.create_publisher( Float64 ,
'/commands/motor/speed ', 10 )✝ ✆
The first input argument, Float64, is a message type to publish, which has to be
first imported:✞
from std_msgs.msg import Float64✝ ✆
The second argument, '/commands/motor/speed', is a topic to publish to. The third
argument, 10, is optional and describes a history depth to apply to the publisher
setting the limits of queued messages.

A publisher callback function should be created to publish the data more than
once. A node timer function will trigger this callback. Alternatively, the publish
method should be defined inside of a timer function. To create a timer function, it
is necessary to initialize its class object specifying rate (in seconds) and callback
function:✞
self.timer = self.create_timer (0.025 , self.publisher_callback)✝ ✆
The publishing of the message happens inside of the publisher_callback:✞
def publisher_callback( self ):

""" Publisher function - set velocity command. """
msg = Float64 ()
msg.data = 8000.0
self.motor_publisher.publish( msg )✝ ✆

2.2.4. ROS 2 Subscriber

The ROS2 subscriber is a component within a node responsible for listening to a
specific topic and receiving messages published by other nodes. The subscriber’s
callback function is triggered each time a message is published.
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The custom node tester_node described in Section 2.2.1 will be used for demon-
stration purposes. Similar to a publisher, a subscriber must be initialized in the
node constructor:✞
self.servo_subscription = self.create_subscription(

Float64 ,
'/sensors/servo_position_command ',
self.servo_callback ,
10)✝ ✆

Here, the first argument, Float64, specifies the message type to subscribe to. The
second argument, '/sensors/servo_position_command', indicates the topic to sub-
scribe to. The third argument, self.servo_callback, is a user-defined function
triggered when a message is published. The last argument, 10, is an optional
parameter indicating the history depth.
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3. Vehicle Dynamics

A solid mathematical foundation for vehicle dynamics is essential for designing con-
trollers, system tests and overall performance evaluation. This chapter provides
an overview of various modelling approaches, shedding light on the underlying mo-
tivations behind selected models for the complete vehicle system and its distinct
components. The discussion begins with examining single-track kinematic and dy-
namic bicycle models as the groundwork for understanding the vehicle dynamics of
the RPAD. The total longitudinal force described by motor and resistance forces
is introduced to describe the longitudinal dynamics of the vehicle. At the same
time, the tyre model plays a significant role in capturing lateral dynamics during
high slip manoeuvres. Finally, the chapter outlines the system states and their
corresponding state equations, primarily in the form of nonlinear differential equa-
tions. Additionally, supporting model variants for longitudinal force (physical and
data-driven) and lateral force in terms of tyre semi-empirical curves are presented.

3.1. Introduction

The application of mathematical models became a crucial part of different stages
of the design and development of real hardware components. These models serve
as the basis for controller design and can be utilized in critical conditions to avoid
risks during simulations. The mathematical description should be accurate enough
to capture vehicle dynamics and simple enough for implementation in controllers
and other components, all while considering the available computation resources.

The mathematical description can be derived based on physical laws, system
knowledge, or the choice of an appropriate model structure for measured input and
output signals. In the first case, the parameters and terms of the model equations
have physical interpretations [12]. However, due to a lack of system knowledge and
details, certain model parts may only be approximated or completely ignored. On
the other hand, experimental modelling does not require in-depth system knowl-
edge, as the model structure is chosen based on input and output signals. The
identified parameters are less interpretable without a clear relation between the
system and the derived model. It is possible to combine both approaches in the
so-called Grey-Box model, where the model structure is chosen based on theoret-
ical knowledge of the system, while some parts of the model and parameters are
identified via experimental modelling.

In general, a vehicle has six Degrees of Freedom (DoF), which can be distin-
guished into three translational (describing the motion in the direction of the main
axis of the coordinate system) and three rotational (describing rotation around the
same axis) DoF [12]. However, considering available input and output variables
that can be measured to identify the model and choosing the desired accuracy
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or complexity, the number of DoF may be significantly reduced. For example,
to describe the vehicle’s longitudinal and lateral dynamics, only three DoFs are
sufficient.

The choice of DoF correspondingly narrows down the selection of dynamic mod-
els. The most popular models are the single-track, dual-track, and multi-body
models [12]. Combining distinct parts of each model into a hybrid one is possi-
ble to mitigate their respective disadvantages. Once the model type is chosen,
subcomponents and tyre models should be determined. For a traditional vehicle,
typical subcomponents are the chassis, steering, powertrain, braking system, etc.
Consequently, the corresponding model inputs are, for example, acceleration or
braking commands, desired steering angle, etc. In the case of the RPAD, the cho-
sen input commands are the electric motor demand in terms of the duty cycle d
to control longitudinal dynamics and the steering angle δ to control the lateral
behaviour of the vehicle.

Based on the limitations introduced by the RPAD and the driving conditions
for which it is utilized, it is reasonable to focus on kinematic and dynamic bicycle
models. A simpler model, such as the point mass model [13], would be inadequate
for describing sports-like behaviour. In contrast, more complex ones, such as the
dual-track or multi-body models, cannot be provided with sufficient measurable
system states.

Before going into the details of each model, the used coordinate system is intro-
duced, see Figure 3. The Center of Gravity (CoG) of the vehicle coincides with the
origin Ov of the moving vehicle’s coordinate system. The position of the vehicle is
described by a pair of X and Y values in the global coordinate system denoted by
the sub-index O, while equations for acceleration and yaw rate will be described in
the local vehicle’s coordinate system denoted by sub-index v. The angle between
the global coordinate system and the vehicle’s coordinate system is yaw or heading
angle ψ.

Figure 3: Coordinate systems used to describe RPAD dynamics.
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3.2. Kinematic Bicycle Model

In the bicycle or single-track model, two wheels of the same axle are simplified to
one central wheel [14]. The vehicle is assumed to have planar motion, allowing its
motion to be described by three DoF: the position coordinates X, Y in the global
coordinate system and the heading (yaw) angle ψ for orientation while pitching
and rolling are neglected. Cornering is characterized by the vehicle’s longitudinal
axis rotation by a certain angle relative to the velocity vector v of the CoG [12].
This angle β between the velocity vector and the longitudinal axis is known as the
vehicle’s slip angle. The total course angle of the vehicle is then the sum of the
heading and slip angles:

γ = ψ + β (1)

The complete model system is summarized with the following equations [14]:

Ẋ = v cos (ψ + β) (2)

Ẏ = v sin (ψ + β) (3)

ψ̇ =
v cos β

lwb

tan δ (4)

β = arctan

�
(lf + lr) tan δ

lwb

�
(5)

where lf , lr and lwb are the distances between the front axle and the CoG, the
rear axle and the CoG, the front and the rear axles (wheelbase), respectively, see
Figure 4. The input to the system is the desired velocity v and the steering angle δ.
However, it is possible to include a longitudinal model to derive the velocity v from
a system state equation, allowing the use of the desired longitudinal acceleration
along [13] or the desired duty cycle d [15] as the system input.

At higher speeds, the assumption that the velocity of the wheels aligns with the
wheel’s longitudinal axis is not valid, and a more detailed description is needed.

3.3. Dynamic Bicycle Model

As the velocity vector of the wheel does not align with its longitudinal axis for
higher speeds, the same geometrical assumptions used to describe the vehicle’s
motion in Section 3.2 are no longer applicable [14]. Applying Newton’s second law
to the lateral direction of the vehicle yields the following equations:

m(v̇y + ψ̇ vx) = Fyf cos δ + Fyr (6)

ψ̈ Iz = lfFyf cos δ − lrFyr (7)
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Figure 4: Kinematic bicycle model.

Here, Fyf and Fyr represent lateral tyre forces aligned with the eyw-axis in the
corresponding local tyre coordinate system (Figure 5), which can be expressed as
a function of the tyre slip angle α. The tyre slip angle is an angle between the
velocity vector of the wheel vw and the longitudinal axis of the wheel, which is
aligned with exv -axis of the vehicle (Figure 5).

Figure 5: Dynamic bicycle model (left) and tyre lateral force as a function of the
tyre slip angle (right).

Considering the geometry of the single-track model, the front and rear tyre slip
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angles are derived as follows:

αf = − arctan

�
ψ̇lf + vy

vx

�
+ δ (8)

αr = arctan

�
ψ̇lr − vy

vx

�
(9)

The functions that describe the dependency between lateral force and tyre slip
angle are explained in Section 3.5 below. It’s important to note that this model is
not applicable at low-speed values due to the potential zero-division in the fraction
numerator. To address this, the kinematic bicycle model can be employed for low-
velocity values (as low as 0.1m/s) [13].

To sum up, the kinematic model provides equations of motion purely in terms
of geometric relationships governing the system. It is a useful model for very low-
speed applications such as automated parking. In contrast, the dynamic model is
useful for lane-keeping applications [14].

3.4. Longitudinal Dynamics

No wheel speed sensors are installed on the RPAD, and the vehicle speed is esti-
mated by the VESC using a linear model based on the DC motor speed. Without
a reliable velocity measurement as a key element of (13) and (14), it is not possible
to exploit the slip model for describing the longitudinal dynamics. Considering the
choice of the bicycle model as a basis for the description of the dynamics, both
wheels of one axle are simplified to one. This neglects the difference in the wheel
speed during cornering between the left and right tyres. Thus, the proper inte-
gration of the wheel speed sensor measurements into the model poses challenges.
As a result, an alternative way to describe the longitudinal dynamics is needed.
The description is based on the traction force while considering the loss functions,
such as rolling and air drag resistances. The longitudinal velocity is expressed as
a system state by

v̇x = Fx
1

m
+ ψ̇ vy , (10)

with
Fx = (Cm1 + Cm2vx) d− Cr sign(vx)− Cdv

2
x (11)

being the sum of all forces acting in the longitudinal direction of the vehicle (ne-
glecting part of the lateral force of the front tyre), which is derived using the DC
motor model and the rolling and air drag resistance described in [15]. The product
term ψ̇ vy in (10) considers the effects of lateral dynamics. The motor parameter
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Cm1 is positive and describes how traction force increases with an increase of the
duty cycle, while the motor parameter Cm2 is negative and has a damping effect
opposing the increase in force with respect to increasing velocity. The parameter
Cr describes the constant rolling resistance force, while being multiplied by sign
function to account for the direction of the vehicle’s movement and whether it is at
a standstill. Finally, parameter Cd sums up all constant terms of the air drag and,
like the rolling resistance coefficient, is also positive, as the minus sign is already
included before the term.

Alternatively, the rolling resistance may be expressed with respect to vx as a
fourth-order polynomial [12], whereby Fz resembles the vertical load force

Fr = (Cr0 + Cr1vx + Cr2v
4
x)Fz . (12)

3.5. Tyre Models

Forces between the tyre and the road surface are transmitted through tyre patches
[12]. The magnitude of the transmitted force depends on the corresponding tyre
slip. Various approaches exist for modelling the relationship between force and
tyre slip angle, with notable methods including the Burckhardt model [16], Pacejka
model [17], and others. These models describe the force-slip dependency through
semi-empirical curves, and their parameters are determined by applying regression
techniques to attain the optimal curve fit.

3.6. Burckhardt Model

According to [16], longitudinal and lateral slip can be described for braking and
acceleration, respectively, as follows:

sx =
v−rdyn ω cosα

v

sy =
rdyn ω sinα

v

�
Braking (13)

sx =
rdyn ω cosα−v

rdyn ω

sy = sinα

�
Acceleration (14)

In these equations, v represents the velocity of the wheel centre, ω is the wheel
angular speed, rdyn is the dynamic radius of the wheel, and α is the slip angle of
the tyre, defined as:

α = arctan

�
vy,w
vx,w

�
(15)

The subscript w in (15) denotes the wheel coordinate system.
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The resulting combination of longitudinal and lateral slips can be expressed as
the geometrical sum using (16):

sres =
�
s2x + s2y (16)

The tyre force can be determined from the resulting tyre slip using a friction-
slip curve, where the friction coefficient µ is expressed as a function of slip, i.e.,
µ = f(sres). This function is dependent on surface conditions and tyre properties.
According to [16], the following equation can be used to model the friction-slip
curve:

µ = C1(1− e−C2 sres)− C3sres (17)

Finally, the resulting tyre force can be expressed using the determined friction
coefficient µ and the vertical load force Fz:

Fres = µFz (18)

The total force can be split into longitudinal and lateral components using the
respective slip values:

Fx =
sx
sres

µFz (19)

and
Fy =

sy
sres

µFz (20)

3.6.1. Pacejka Model

A widely used semi-empirical tyre model to calculate steady-state tyre force char-
acteristics is based on the so-called Magic Formula [17] (referred to as the Pacejka
Model hereafter). The general form of the model can be described as [17]:

y = D sin[C arctan(Bx− E(Bx− arctan(Bx)))] (21)

with

Y (X) = y(x) + Sv (22)
x = X + Sh (23)

Here, the output variable Y can describe longitudinal or lateral tyre force, and the
input variable X corresponds to longitudinal slip or lateral slip angle. The model
introduces several parameters:

• Parameter B is the stiffness factor and determines the slope at the origin
where x = y = 0.
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• The shape factor C controls the ranges of the sine function.

• D determines the peak value.

• The curvature factor E defines the curvature at the peak.

Typically, the function goes through the origin, but horizontal shift Sh and vertical
shift Sv are introduced to allow an offset [17]. For example, the offset may occur
due to high wheel camber values. The curve has an anti-symmetric shape with
respect to the origin x = y = 0 or, in the absence of shift parameters, to the origin
X = Y = 0.

Equations to estimate initial values of the parameters are discussed in Subsec-
tion 4.6.2 of Chapter 4. The initial parameter values serve as starting values for
further regression and identification of actual parameter values based on made
measurements.

3.6.2. Linear Model

According to [18], the slip angle can be assumed to be small when small deviations
are applied to straight-ahead motion. As a result, cornering characteristics can
be linearized around the current system state. This means that the lateral force
expression for both front and rear tyres (21) can be simplified to a linear model:

Fy = Cαα (24)

where Cα represents the cornering stiffness.

3.7. Model Selection

For further analysis and identification of vehicle dynamics, the bicycle model
serves as the basis for the model description. Seven system states denoted as
x = [X, Y, ψ, vx, vy, ψ̇, β]

T and two inputs denoted as u = [d, δ]T for the electric
motor duty cycle and the steering angle respectively, are chosen to represent lon-
gitudinal and lateral vehicle dynamics comprehensively. These states and inputs
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form the following system of equations:

ẋ = f(x,u) (25)

Ẋ = v cos (ψ + β) (26)

Ẏ = v sin (ψ + β) (27)

ψ̇ = ψ̇ (28)

v̇x = Fx
1

m
+ ψ̇ vy (29)

v̇y = (Fy,f cos δ + Fy,r)
1

m
− ψ̇ vx (30)

ψ̈ = (lf Fy,f cos δ − lr Fy,r)
1

Iz
(31)

β̇ = (Fy,r cos β + Fy,f cos β)
1

mv
− ψ̇ (32)

Here, X and Y represent the vehicle’s position of the CoG in the global coordinate
system, ψ is the heading (yaw) angle, vx and vy are the longitudinal and lateral
velocities, respectively, in the local vehicle’s coordinate system, ψ̇ is the yaw rate
and β is the slip angle of the vehicle. In addition to this, Fx represents the total
longitudinal force, and Fy,f/r represents the lateral forces at the front or rear tyres.

Figure 6: RPAD vehicle dynamics model.

The total longitudinal force is described with (33), as mentioned in Section 3.4.
This physically motivated model captures all longitudinal forces acting on the
vehicle. However, an analysis of the correlation matrix involving longitudinal ac-
celeration ax, longitudinal velocity vx, duty cycle d and their products and squared
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terms led to the comparison of this model with a simplified version presented by
Equation (34) and an extended version presented by (35). The extended model is
referred to as the polynomial model, aiming to capture more features and poten-
tially improve accuracy under certain conditions. The simplified version is referred
to as the linear model, and its purpose is to avoid nonlinear terms and over-fitting.
The signum function in the linear model serves as a hint for the user to consider
the sign before the corresponding coefficient in case of forward or reverse driving.
All three models utilize duty cycle d and vehicle velocity vx as input arguments.

Fx1 = (Cm1 + Cm2vx) d− Cr sign(vx)− Cdv
2
x (33)

Fx2 = Cm1d+ Cm2vx − Cr sign(vx) (34)
Fx3 = C1v

2
x + C2vx + C3vxd+ C4d+ C5d

2 + C6 (35)

Meanwhile, three models are chosen to describe lateral tyre forces. The linear
tyre model (24) is suitable for low tyre slip angle values, allowing for the lineariza-
tion of tyre force characteristics. Nonlinear and more realistic tyre behaviour is
then captured with the Pacejka model expressed with (36). At the same time,
the reduced Pacejka model (37) offers a potential balance between accuracy and
simplicity, while capturing essential non-linearities. The tyre slip angle is an input
argument for all three models.

Fy = D sin[C arctan(Bα− E(Bα− arctan(Bα)))] (36)
Fy = D sin[C arctan(Bα)] (37)

After identifying the model parameters, the validation process aims to determine
the most suitable model choice.
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4. Experiments and Identification

Understanding the dynamic parameters of a vehicle is critical to optimize its per-
formance, ensure safety, and refine control. Longitudinal dynamics, encompassing
acceleration and deceleration, play an important role in optimizing propulsion sys-
tems and designing effective braking strategies. Simultaneously, lateral dynamics,
which involve the interaction between tyres and the road during steering manoeu-
vres, are fundamental for achieving stability and control during cornering. This
chapter describes the selected experiments and the motivation underlying this
choice. Furthermore, it addresses the challenges associated with non-measurable
variables in the model.

4.1. Experiments Selection

The selection of appropriate experiments plays a significant role in successfully
identifying the parameters of the selected models. The significance of proper se-
lection lies in its ability to unveil valuable insights from the data. Choosing suitable
experiments allows for the simplification of model equations. By tailoring experi-
ments to specific aspects of the vehicle dynamics, certain forces, interactions and
non-measurable variables can be isolated, leading to more interpretable mathe-
matical representations. Moreover, the selected experiments must align with the
available sensor set. The chosen setup must mimic the typical operation conditions
of the vehicle and ensure that captured data serves for better generalizability of
the identified model.

The physical space in which experiments are conducted is a limiting factor that
affects the range and nature of experiments. The available space dictates the ma-
noeuvrability of the vehicle, impacting the diversity of data that can be collected.
The chosen experiments must balance obtaining comprehensive data and mitigat-
ing risks. Safety protocols and measures should be integrated into the experimental
design to avoid potential vehicle collision with observers and surroundings, leading
to mechanics and sensory equipment malfunction.

The number of measured variables related to the selected models in Chapter
3 is limited to yaw angle ψ, yaw rate ψ̇, longitudinal acceleration ax and lateral
acceleration ay. The onboard sensory system provides a longitudinal velocity es-
timate vx based on motor ERPM, duty cycle d and steering angle δ. The values
for longitudinal velocity may be reliable only for driving straight. In the case of
lateral dynamics measurement, the workaround in terms of experiment selection
should be found either to eliminate it from the model or to approximate it using
simplified equations.

There is no proper source to measure lateral velocity used to calculate tyre slip
angles. This limiting factor is considered for the identification of the lateral vehicle
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dynamics.

4.2. Preprocessing of Measurement Data

Measurement data preprocessing is a crucial step in the analysis of experimental
data. This process involves cleaning, filtering, and organizing raw measurement
data before it undergoes further analysis. Preprocessing enhances the quality of
measurement data by addressing issues such as noise, outliers, and errors. Clean-
ing the data ensures that subsequent analyses are based on reliable and accurate
information. Preprocessing techniques, such as filtering and smoothing, help re-
duce noise, provide a clearer representation of the observed dynamics, and help
check or make potential model assumptions.

Identifying and removing outliers during preprocessing contributes to the robust-
ness of subsequent analyses and the reliability of repeated identification processes.
Outliers, which may result from sensor malfunctions or unexpected events, can
significantly impact the accuracy of the identified model if not properly addressed
- see Section 5.2.1.

Dealing with missing or incomplete data is a crucial aspect of preprocessing.
Techniques such as interpolation or imputation help fill gaps in the data, ensuring
that analyses are conducted on a complete dataset.

Preprocessing often involves extracting relevant features from raw data. This
step helps in reducing dimensionality, which is particularly important for the iden-
tification of accurate and, at the same time, simple models.

Before going further to identification, some essential steps of preprocessing men-
tioned above and related to applied processes are discussed next.

4.2.1. Missing Data

Using measurement data in its raw form can lead to inaccurate results and wrong
conclusions. Thorough cleaning procedures are necessary before incorporating the
data into the identification process. A critical aspect of this is examining the data
for missing values. When missing values are detected, two common approaches can
be employed to handle them. The first approach involves discarding entire rows
of data at the time step where the missing value occurs. However, this method
may not be suitable if the performance evaluation of a model or a function is
time-dependent. In scenarios where time is crucial, an alternative approach is to
fill missing data with a default value. Possible default values include zero, the
previous value, an interpolated value, or any other physically meaningful value.

In the context of RPAD, the LiDAR measurements often contained invalid data.
These measurements were employed in constructing a model for the position es-
timation. In models where knowledge about the previous step is vital, discarding
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data points containing missing values is not viable. Consequently, missing values
are filled with a default value. For the specified LiDAR, this default value is set
to 10.0meters, representing the maximum recognition range.

4.2.2. Plausibility Check

Ensuring the plausibility of measurement results is a crucial step in data prepro-
cessing. It involves validating that the observed directions align with the expected
behaviour in both the model and reality. For instance, in the case of steering
angles, it is assumed that a positive steering angle will force the vehicle to turn
in a counter-clockwise direction. Therefore, an increase in the servo position is
expected to result in the wheels turning counter-clockwise. However, discrepan-
cies may arise, as observed in RPAD. In this context, such inconsistencies can be
solved in the VESC settings by adjusting the sign of the corresponding coefficient.
It is essential to note that the current settings were initially configured for another
project, leaving no option but to address this during data preprocessing.

In addition to this, due to space availability on the upper chassis level, the LP-
Research IMU sensor was mounted upside down. Neglecting this fact during data
analysis could potentially lead to a misinterpretation of the true motion direction
of the RPAD. Therefore, accounting for sensor orientations and calibrations is
essential to ensure the accuracy and reliability of the data.

4.2.3. Low-Pass Filter

Applying a low-pass filter to measurement data is advantageous to reduce noise
or achieve a smoother representation of the underlying signal. The filtered data
provides an initial insight into the dataset and assists in forming first assumptions
about the system. A good low-pass filter aims to remove high-frequency compo-
nents while preserving low-frequency components without distortion, effectively
detecting signal changes. The Butterworth low-pass filter is suitable for such pur-
poses [19]. The Butterworth low-pass filter is flat in the passband. It is defined in
terms of the square of its transfer function. To calculate the filter numerator and
denominator coefficients, one should specify the order and the cutoff frequency [19].
This may be done by analyzing the data or simply by tuning the filter coefficients.
Figure 7 shows a comparison between the raw IMU measurements and the filtered
values of the lateral acceleration.
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Figure 7: Comparison of the raw IMU lateral acceleration measurements and the
filtered values.

The data filtered with the low-pass filter is not used for the identification process
directly to avoid the loss of the information. It serves to give the user the first
insight into the data.

4.2.4. Outlier Detection

Outlier detection involves identifying data points that significantly deviate from
the overall pattern of the dataset. These anomalous values can arise during the
measurement process or from data entry mistakes. Detecting and handling out-
liers is crucial to avoid the results skewing and inaccurate conclusions. Common
techniques for outlier detection include statistical methods, such as z-scores and
the interquartile range, or machine learning algorithms, like isolation forests and
clustering-based approaches. An effective identification of the outliers ensures the
reliability of the data analysis process. In this work, outlier detection is applied
for the filtering of the tyre slip angle values in a constant region. A data point
is identified as an outlier if its value deviates more than 1.5 standard deviations
from the expected mean.
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The preprocessing steps described above are considered in the automated iden-
tification tool described in Appendix A.2.

4.3. Length, Mass and Inertia Measurements

Table 1 provides the directly measured values of certain parameters, except for the
moment of inertia, which required a dedicated experiment.

Parameter Symbol Value Error Unit
Length l 0.555 0.010 m
Width w 0.286 0.005 m
Height h 0.160 0.020 m
Front distance to CoG lf 0.162 0.031 m
Rear distance to CoG lr 0.158 0.027 m
Wheelbase lwb 0.320 0.029 m
Wheel diameter dwheel 0.11 0.005 m
Wheel width wwheel 0.043 0.005 m
Front mass mf 1.75 0.130 kg
Rear mass mr 1.71 0.15 kg
Mass m 3.46 0.020 kg
Moment of inertia Iz 0.04696 0.0092 kgm2

Table 1: Invariant vehicle parameters.

The moment of inertia experiment is detailed in [20]. It employs the pendulum
method without considering air resistance. The vehicle is suspended on two ropes
attached to its front and rear, ensuring that the centre of gravity divides the dis-
tance between the two ropes equally. Small oscillations are induced along the yaw
angle axis, and the resulting period of oscillation T is measured. The experiment
is repeated 20 times to enhance accuracy.

Equation (38) estimates the parameter value using the relationship between the
period of oscillation and the moment of inertia of the suspended mass, resulting in

Iz =
mgD2T 2

16π2L
= 0.04696 kgm2 (38)

4.4. VESC Parameters

The VESC can accurately estimate the current vehicle’s longitudinal velocity, es-
pecially during straight-line driving. Given the absence of an available sensor for
measuring velocity, this estimate becomes essential for control and modelling pur-
poses. To attain this estimate, it is necessary to calibrate the odometry of the
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RPAD, as outlined in [6]. The calibration process is divided into two parts, fo-
cusing on the servo and the motor. These calibrations are essential to ensure the
reliability and precision of the velocity estimates obtained through the VESC.

Parameter name in the RPAD configuration Value
steering_angle_to_servo_offset 0.515
steering_angle_to_servo_gain -0.769
speed_to_erpm_gain 4265.77

Table 2: The VESC parameters achieved after the calibration of the RPAD odom-
etry.

4.5. Longitudinal Model Parameters

Building upon the selection of the longitudinal model in the preceding chapter,
the focus now shifts to the practical aspects of understanding and modelling the
vehicle’s forward motion. This section’s primary goal is to choose appropriate
experiments, define an objective function, and identify the parameters that define
how the vehicle accelerates and decelerates. Capturing these nuances is necessary
to construct reliable models. The achieved accuracy and reliability are crucial in
developing effective control algorithms, enhancing safety, and improving overall
performance in real-world scenarios.

Each driving scenario should serve a specific purpose, aiming to extract valuable
information about the vehicle’s behaviour under different longitudinal conditions.

4.5.1. Design of Experiment

The longitudinal identification process aims to characterize the vehicle’s behaviour
during acceleration, braking, and constant velocity. Due to the spatially limited
test ground, the focus was on pairs of driving stages rather than incorporating all
stages simultaneously. The following test manoeuvres were chosen:

• Coasting: the vehicle is allowed to coast with zero duty cycle until it comes
to a complete stop. This manoeuvre aims to identify the initial values of the
parameters unrelated to the duty cycle.

• Acceleration and constant velocity profile: acceleration to the desired motor
speed and maintaining a constant velocity for several seconds. This profile
is repeated for motor speeds ranging from 4000 RPM to 13000 RPM in
increments of 500 RPM.
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• Acceleration and braking stages: acceleration to higher motor speeds (e.g.,
13000 or 15000 RPM) and subsequent deceleration to the braking motor
speed of 2000 RPM aiming to capture more dynamics features.

No steering is applied during each test manoeuvre.
Moreover, combining the identification process for the lateral and longitudinal

dynamics in one experiment may be advantageous. If such a solution exists, it
may reduce the time needed for the identification process. The initial seconds of
the quasi-steady-state manoeuvre (See Subsection 4.6.1) for the lateral dynamics
parameter identification may serve as an alternative for the second manoeuvre in
the list. During this part of the experiment, the constant speed is maintained after
the acceleration stage.

Each driving profile will result in different parameter sets, reflecting the unique
characteristics of the vehicle’s response to different inputs. Comparing the perfor-
mance of the model across the test manoeuvres during the validation can help to
determine which experiment captures the vehicle dynamics better.

4.5.2. Identification

Before initiating the identification of model parameters, it’s crucial to select an
appropriate optimization goal. Similar to the approach used for finding the pa-
rameters of the Pacejka model (Subsection 4.6.1), a curve-fitting method can be
applied. In this case, the output variable is a longitudinal acceleration, and the
input variables are the velocity and duty cycle of the electric motor. However, con-
sidering the integration of (29), where velocity and duty cycle at the current time
step are used to calculate the velocity for the next step, fitting velocity and duty
cycle alone for acceleration might lead to inaccurate results during integration.
Instead, an identification based on the velocity error optimization is employed.
The objective function to be minimized for the model parameters is the sum of
the squared velocity errors

vest(k) = vest(k − 1) + dt f(vest(k − 1), u(k − 1)), (39)

min
p

n

i=1

(vmeas,i − vest,i)
2. (40)

Here, vest(k) is an estimate of the velocity for the time step k, and vmeas(k) is an
actual velocity measurement. The Ridge regularization technique is applied to the
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objective function to penalize the large parameter values:

min
p
(

n

i=1

(vmeas,i − vest,i)
2 + α

k

j=1

(p2j)) (41)

with α as a hyperparameter, and pj as a one of the model parameters. The
longitudinal acceleration is used to evaluate the prediction accuracy, considering
the higher accuracy of the IMU sensor for acceleration measurement compared to
the velocity estimation using the VESC.

Specific parameters, such as drag coefficient or rolling resistance for the physi-
cal and linear models, are constrained due to their physical meanings. Therefore,
the Trust Region Reflective algorithm is applied to solve the minimization prob-
lem of the objective function, providing an efficient solution to large constrained
minimization problems [21].

First, the initial values of the parameters unrelated to the duty cycle variable
are identified using a coasting driving profile for physical and linear models. The
polynomial model, lacking physical significance, is ignored in this case. For this
profile, the vehicle is driven at a constant speed, and then the duty cycle is set to
zero, forcing the vehicle to move forward by inertia until it comes to a complete
stop. In this scenario, the physical model is simplified to

max = −Cr sign(vx)− Cd v
2
x (42)

and the linear model is simplified to

max = Cm2 vx − Cr sign(vx). (43)

Table 3 illustrates the negative correlation between the longitudinal acceleration
and velocity, including its squared value. The correlation of the acceleration with
velocity is greater than with squared velocity, implying that the term with squared
velocity does not significantly contribute to the accuracy in the presence of the
velocity term. However, it is not the case for (42), where the velocity term is
absent. Since the correlation is negative, Cd should be positive, and Cm2 should
be negative. This aligns with expectations, considering the negative sign for air
drag force in (42) and parameter Cm2 representing how motor force decreases with
increasing velocity. Table 4 shows the found parameters for both models.
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Variable ax vx v2x
ax 1.00000 -0.95531 -0.90586

Table 3: Part of the correlation matrix between the acceleration, velocity and
squared velocity.

Physical Linear
Parameter Value Parameter Value

Cd 9.72722 Cm2 -14.64054
Cr 4.85345 Cr 0.91902

Table 4: Specific parameter values of the physical (left) and linear (right) models
based on the coasting measurement.

Subsequently, these initial parameters are utilized for the identification of the
physical and linear model parameters during the acceleration profile measurement
as starting values for optimization problem. Table 5 presents the results of the
optimization, showing that the previously identified initial values of rolling resis-
tance, air drag coefficient and motor parameter for physical and linear models are
not close to the parameters identified with the minimization algorithm.

Physical Linear Polynomial
Parameter Value Parameter Value Parameter Value

Cm1 104.0 Cm1 160.0 C1 -2.98935
Cm2 0.0 Cm2 -8.76896 C2 -5.6959
Cr 1.46454 Cr 1.23296 C3 47.94791
Cd 2.38644 C4 80.0

C5 160.0
C6 0.44114

Table 5: Parameter values of the physical (left), linear (middle) and polynomial
(right) models based on the acceleration stage measurements (motor
speed 11000 RPM).

Figure 8 displays the IMU measurement of the longitudinal acceleration and the
model estimations for the training dataset. All three models exhibit similar results
throughout the measurement duration.
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Figure 8: Comparison of the measurement data and physical, polynomial and lin-
ear models for the acceleration stage.

Next, the model parameters are identified for the test manoeuvre, which is de-
scribed by the acceleration followed by the braking. Table 6 shows parameter
values for this test manoeuvre. As previously, the initial values identified dur-
ing the coasting manoeuvre do not correspond to the parameters found with the
minimization algorithm. This suggests that the coasting manoeuvre does not suf-
ficiently capture this part of the dynamics.

Physical Linear Polynomial
Parameter Value Parameter Value Parameter Value

Cm1 104.0 Cm1 159.93144 C1 -0.72341
Cm2 0.0 Cm2 -8.86718 C2 -7.94118
Cr 2.10426 Cr 1.00873 C3 16.79812
Cd 1.81916 C4 80.0

C5 160.0
C6 2.36464

Table 6: Parameter values of the physical (left), polynomial (middle) and linear
(right) models based on the acceleration-deceleration profile measure-
ments.

Compared to the parameters shown in Table 5, the new parameter set looks
similar for physical and linear models. This similarity is due to the corresponding
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upper bound of motor coefficient Cm1 . The same reason is behind the equality
of C4 and C5 coefficients of the polynomial model. The upper bound is identified
by tuning the parameters to avoid the oscillations during the integration step for
high-duty cycle and low-velocity values. These upper bounds were checked for the
same maneuvers, but on different surfaces and with different velocities.

Figure 9 illustrates again that the linear model captures the variations in accel-
eration better than the other two models. In contrast, the physical model struggles
to reconstruct the braking phase well enough.
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Figure 9: Comparison of the measurement data and physical, polynomial and lin-
ear for acceleration-deceleration profile.

Table 7 contains the identified parameters for each model, and Figure 10 demon-
strates the comparison of IMU measurements with the model predictions for the
acceleration stage of the test manoeuvre used for the lateral dynamics identifica-
tion process. The only significant difference in parameter values may be observed
for the rolling resistance coefficient Cr for linear and physical models. The linear
model shows visually better prediction results than the other two manoeuvres.
However, the final evaluation should be made during the validation.
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Physical Linear Polynomial
Parameter Value Parameter Value Parameter Value

Cm1 104.0 Cm1 160.0 C1 -3.09194
Cm2 0.0 Cm2 -8.86426 C2 -11.56648
Cr 0.69779 Cr 2.2332 C3 80.73125
Cd 2.05897 C4 70.34928

C5 157.54365
C6 1.09621

Table 7: Parameter values of the physical (left), polynomial (middle) and linear
(right) models based on the acceleration stage of lateral measurements.
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Figure 10: Comparison of the measurement data and three models for acceleration
stage of lateral measurement.

In conclusion, the linear model appears to be the most promising of the three
suggested models. If this assumption is proved during the validation, the polyno-
mial function loses its value due to the higher order and non-linearity. Additionally,
the coasting manoeuvre does not provide a good initial guess for the mentioned
parameters and does not correspond to the final values. The validation process will
provide answers regarding model choice and identification manoeuvre selection to
obtain the best parameter set.

The preprocessing and identification steps are implemented in the automated
identification toolbox described in Appendix A.2.
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4.6. Tyre Model Parameters

In this section, the main focus is on identifying the parameters crucial for under-
standing the tyre behaviour, while aiming to simplify this complex process through
well-designed experiments and manoeuvres. Preprocessing steps are vital to filter
out the outliers of estimated tyre slip angles, ensuring reliability in the identified
parameters.

4.6.1. Design of Experiment

The quasi-steady-state ramp steer manoeuvre [22] is selected for the identification
of the tyre parameters in consideration of the available sensors and the goal of sim-
plifying the model equations. In this manoeuvre, the vehicle maintains a constant
velocity while the steering angle of the front wheels is gradually increased at a rate
of 0.5 deg/s. This approach assumes that the vehicle is in a steady-state condition,
leading to the elimination of the lateral velocity and yaw rate derivatives:

v̇y = 0, (44)

ψ̈ = 0. (45)

As the steering angle is indirectly proportional to the curvature radius, a large
curvature radius should be considered at the beginning of the test manoeuvre, when
the velocity and the steering angle are small. Considering the spatially limited
test ground, the front wheels are steered to 3 or 4 degrees at the beginning of the
test manoeuvre. In addition, the steering velocity was also increased to 1 deg/s
compared to [22]. Despite these adjustments, as shown in Figure 18, the steady-
state assumption of this manoeuvre is maintained. To determine the velocity
at which identified parameters yield better estimation results, the experiment is
executed for motor speeds ranging from 4000 to 13000 RPM with a step size of
500 RPM.

4.6.2. Identification

Given (46) for the lateral acceleration and considering (44), the lateral acceleration
can be approximated solely by the longitudinal velocity and yaw rate, leading to

ay = v̇y + vx ψ̇ = 0 + vx ψ̇. (46)

This assumption allows the longitudinal velocity estimation, given the absence of
other reliable sources for measuring it other than VESC. The model equations
for lateral acceleration and yaw rate derivative can be simplified into a system of

33



linear equations with two unknowns, Fy,f and Fy,r:

ay =
1

m
(Fy,r + Fy,f cos δ) (47)

ψ̈ = 0 =
1

Iz
(−Fy,r lr + Fy,f lf cos δ) (48)

Solving the system of the algebraic equations for Fy,f and Fy,r results in the output
variables of the tyre models:

Fy,f =
lr

lwb cos δ
may (49)

Fy,r =
lf
lwb

may. (50)

The issue with the tyre slip angles is more complex due to the absence of available
sensors to measure the vehicle slip angle or lateral velocity needed for (8) and (9).
To solve this problem, two potential solutions were found:

• Neglect the lateral velocity, identify the tyre parameters and simulate the
measurements using the lateral dynamics part of the non-linear state space
system introduced in Subsection 3.7. Finally, use the simulated lateral veloc-
ity together with the IMU measurements to repeat the identification. How-
ever, this solution assumes that the vehicle model used in the simulator
produces accurate results.

• Utilize the longitudinal acceleration equation (51) under the assumption of a
constant longitudinal velocity to approximate lateral velocity. This approach
is applied starting from the specific yaw rate values (|ψ̇| > 0.1) and after
reaching the constant longitudinal velocity. Otherwise, the lateral velocity
is considered to be zero.

ax = v̇x − vyψ̇ (51)

vy = −ax

ψ̇
(52)

Regardless of the chosen solution, the calculated tyre slip angles still partly
contain false data or outliers - Figure 11. Before starting the parameter identi-
fication, the tyre slip angle and lateral force data must undergo filtering. The
following steps eliminate most of the false data:

• Set the lateral forces and slip angles to zero if the steering angle is zero.
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• Drop the data points where the slip angle is zero, but the corresponding
lateral force is not (allowed as the time variability is not important in this
case).

• Drop the data where the slip angles do not have the same sign as expected
for the current vehicle rotation (only one quadrant is considered).

• Drop the outliers in the last third of the slip angle data points (constant
region) that are further than 1.5 standard deviations from the expected mean.
Figure 11 shows the outliers detected with this approach for the front tyre
slip angle values.

Figure 11: Visualization of the outliers for the tyre slip angle data.

After these steps, the identification process can be started.
Firstly, the initial parameter values of the Pacejka model must be found to make

a first guess for the curve-fitting algorithm. According to [17], the value of D in
(21) is the peak value of the lateral tyre force:

D = max(Fy). (53)

The initial value of the shape factor C can be calculated from the value of D and
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the horizontal asymptote of the tyre forces fy,a:

C = 1 + (1− 2

π
arcsin(

Fy,a

D
)). (54)

Since parameter B is responsible for the stiffness factor, the slope around the origin
is a suitable initial guess. The reduced model (37) is the basis for this derivation.
The slip angles under 0.025 radians and their corresponding lateral forces define
the area around the origin. It is important that no unexpected outlier falls into
that region. This ensures that the value inside of the arcsin function in (56) is not
equal to 1, which would force the value of B to jump to infinity. To find B, it has
to be first expressed as a slope of the linear function based on (37):

y = Bα = tan(
1

C
arcsin

Fy

D
) (55)

B =
1

α
tan(

1

C
arcsin

Fy

D
). (56)

Finally, the initial value of the curvature factor E can be calculated knowing B,
C and the slip angle value at the peak force αm with

E =
Bαm − tan π

2C

Bαm − arctanBαm

(57)

if C > 1 or
E =

Bαm

Bαm − arctanBαm

(58)

otherwise.
To ensure that the parameter identification using the curve-fitting is not in-

fluenced by the unexpected outliers, the upper and lower boundaries for the pa-
rameter values are set to be in the range of ±25% of initial guess, except for the
parameter D of the rear tyre, where the range is reduced to ±10% to avoid over-
fitting (More in Section 5.2.1). Table 8 shows the initial parameters of the front
and rear tyres calculated using Equations (53)-(58).

4.6.3. Linear Model

Figure 11 indicates that the linear model (24) is applicable only within the specific
ranges of the tyre slip angle. Extending the usage of this model beyond these
ranges results in inaccurate predictions. However, a potential solution is to employ
a saturation function, setting the maximum value of the limited region as the upper
bound and its opposite value as the lower bound.

As the experiment covered various motor speeds (4000 to 13000 RPM), there
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Approximated vy Simulated vy
Parameter Front tyre Rear tyre Front tyre Rear tyre

B 22.09339 13.91822 23.10926 9.44206
C 1.41709 1.42175 1.42799 1.42799
D 10.15078 9.67439 10.15078 9.67002
E 0.89143 -1.1 0.90373 -1.1

Table 8: Initial front and rear tyre parameters for Pacejka model.

is sufficient data to approximate the linear region based on the tyre slip angle
versus the lateral force figures. For the front tyre, the region is chosen between
-0.05 and 0.05 radians, while for the rear tyre, it is between -0.1 and 0.1 radians.
Applying these limits to the cleaned data and utilizing a linear regressor helps
estimate the slope of the function. Since the function should pass through the
origin (indicating no lateral force when there is no tyre slip angle), the y-intercept
is set to 0. The linear regressor employs the Least Squares Method to determine
the unknown slope coefficient for the specified input and output variables. As
mentioned before, two approaches are applied to get its approximation without a
source for lateral velocity measurement.

Table 9 compares slopes for front and rear tyres achieved using both methods.
In addition to this, Figure 12 visually compares the model estimations with the
filtered measurement data. Notably, the slope of both front and rear tyres is
slightly lower when lateral velocity is simulated. However, the approximation
using (52) cannot be applied during the acceleration stage, coinciding with the low
steering angle values. This impacts the region of the low values of tyre slip angles
for the front tyre (blue circles), seemingly contradicting the constraint of a zero
y-intercept. On the other hand, the results look different for the rear tyre, where

Approximated vy Simulated vy
Parameter Front tyre Rear tyre Front tyre Rear tyre

Cα 138.89766 94.83187 136.74672 92.56262

Table 9: Front and rear tyre parameters for linear model.

the correlation between the slip angle and lateral force as a linear dependency is
observed. This is further supported by comparing the accuracy metrics provided in
Table 10, especially when the lateral velocity is simulated. The Root Mean Square
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Figure 12: Comparison of the measurement data and linear model estimation for
the front(left) and rear(right) tyres.

Error (RMSE) in Table 10 describes an average magnitude of the estimated error

RMSE =

�		� n

i

(yi − yi,est)2

N
, (59)

while the R-squared value (lies between 0 and 1) describes how much variation in
the data is explained by the model

R2 = 1−
�n

i (yi − yi,est)
2�n

i (yi − y)2
, (60)

with y as a mean value and subindex est stands for the model estimate. Since the
R-squared values for both front tyre linear models are negative (not valid), the
metric cannot accurately depict how well the variance of the slip angle describes
the variance in lateral force, likely due to the nonlinear nature of the selected
region. However, for the rear tyre, this metric is positive. In the case of the
approximated lateral velocity, the R-squared value is low due to the dispersion of
the data points. In contrast, simulating the lateral velocity provides more compact
data points, resulting in a higher R-squared score.
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Approximated vy Simulated vy
Front tyre Rear tyre Front tyre Rear tyre

RMSE 1.24942 1.70536 1.12064 0.8615
R2 -0.7801 0.11205 -0.32133 0.75959

Table 10: Estimation accuracy metrics for training data of linear model.

Furthermore, both approaches for the estimation of the lateral velocity exhibit
the same trend: the slope of the rear tyre is lower than that of the front one,
leading to understeering behaviour, which may be observed during the vehicle’s
operation.

4.6.4. Reduced Pacejka Model

Compared to the linear model (Figure 12), the filtered measurement data for the
approximated lateral velocity with (52) and the simulated lateral velocity exhibit
similar trends in the nonlinear region, as shown in Figure 13. Consequently, the
resulting curves for the front tyre almost coincide. However, this is not the case
for the rear tyre, where the nonlinear region of the tyre slip angle is not sufficiently
represented. The asymptote is much higher for the parameters based on the sim-
ulated lateral velocity, mainly due to the absence of some outliers of the slip angle
values, as in the case of approximating lateral velocity. In addition, the identified
parameter B, responsible for the slope near the origin, differs significantly due to
the higher spread of data points in the linear region for the approximation ap-
proach. These observations are further supported by examining the estimation
accuracy metrics provided in Table 12.

Approximated vy Simulated vy
Parameter Front tyre Rear tyre Front tyre Rear tyre

B 20.70597 15.31005 19.92063 9.24421
C 1.06282 1.10076 1.07099 1.31299
D 7.46850 8.70696 7.38982 9.67002

Table 11: Front and rear tyre parameters of the reduced Pacejka model.
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Figure 13: Comparison of the measurement data and reduced Pacejka model esti-
mation for the front(left) and rear(right) tyres.

Approximated vy Simulated vy
Front tyre Rear tyre Front tyre Rear tyre

RMSE 0.96729 1.35215 1.06735 0.8782
R2 0.59949 0.44156 0.53383 0.75017

Table 12: Estimation accuracy metrics for the training data of the reduced Pacejka
model.

4.6.5. Complete Pacejka Model

The identified parameters for the complete Pacejka model are similar to the ones
achieved for the reduced model, as shown in Table 13 and Figure 14. A comparison
of the estimation accuracy metrics in Tables 12 and 14 indicates that the complete
Pacejka model can provide slightly more accurate results, with the lower average
error and better description of variance in the lateral force.
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Approximated vy Simulated vy
Parameter Front tyre Rear tyre Front tyre Rear tyre

B 23.08195 14.30502 21.04639 9.24421
C 1.06282 1.06631 1.07099 1.17231
D 8.03754 8.70696 7.9703 9.67002
E 0.84695 -0.825 0.83988 -1.37500

Table 13: Front and rear tyre parameters for the complete Pacejka model.

Approximated vy Simulated vy
Front tyre Rear tyre Front tyre Rear tyre

RMSE 0.89989 1.37563 1.01522 0.86309
R2 0.65335 0.422 0.57825 0.7587

Table 14: Estimation accuracy metrics for the training data of the complete Pace-
jka model.
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Figure 14: Comparison of the measurement data and complete Pacejka model es-
timation for the front(left) and rear(right) tyres.
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4.6.6. Conclusion

To sum up, the choice between two approaches for estimating lateral velocity in the
absence of a corresponding sensor affects the resulting slope in the low slip angle
region. The final decision on the preferred approach depends on the outcomes of
the validation process. Considering the conditions under which the measurements
were conducted, particularly the speed, it could be assumed that utilising a linear
model to characterize the behaviour of the rear tyre is more fitting. The validation
phase is crucial for addressing any model accuracy and selection uncertainties.

The preprocessing and identification steps described in this chapter are imple-
mented in the automated identification tool described in Appendix A.2.
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5. Validation

Validation is a crucial phase in the pursuit of accurate vehicle dynamics models. Its
significance lies in building the credibility of the derived models. It is essential to
emphasize that identified models must generalize sufficiently well in the intended
domain of application and avoid over-fitting the training data on which they were
identified. In this chapter, selected models and their parameters are validated by
comparing the estimations with data measured using available sensors. The goal is
to determine which model performs better and identify experiments that provide
more information about the system. Additionally, the LiDAR model is introduced
as a basis for the validation of the RPAD position estimation.

5.1. Longitudinal Model

The validation of the longitudinal model aims to address two key questions:

• which manoeuvre captures more information on the underlying vehicle dy-
namics and

• which model yields the most accurate results on all datasets.

Four unseen measurements are used to validate the selected models and their
parameters. These four validation measurements consist of

• two test manoeuvres for the acceleration followed by constant speed and

• two test manoeuvres for the acceleration followed by braking.

Considering the available hardware setup, the most reliable way to evaluate the
estimation accuracy is to compare longitudinal accelerations measured with the
IMU with the accelerations estimated by the model.

To assess estimation accuracy, the accuracy metrics, RMSE and R-squared value,
are calculated. As explained in Subsection 4.6.2, RMSE measures the average
magnitude of the prediction errors (a lower value is better) and is described by

RMSE =

�		� n

i

(yi − yi,est)2

N
. (61)

The R-squared value (lies between 0 and 1, with a higher value being better)
describes how much variation in the data is explained by the model and is expressed
by

R2 = 1−
�n

i (yi − yi,est)
2�n

i (yi − y)2
, (62)
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with y as a mean value and subindex est stands for the model estimate. The
comparison involves evaluating how well different identification manoeuvres (cor-
responding parameter sets) described the system behaviour and determining which
model type produced more accurate predictions. To assess which identification
manoeuvre describes the system behaviour better, the accuracy metrics of the
respective model types across the identification manoeuvres used for parameter
identification are compared. To evaluate which model type yields more accurate
predictions, accuracy metrics are compared across the same manoeuvre separately.

Each identification manoeuvre described in Chapter 4 is assigned a symbolic
type number to describe it more compactly:

• Acceleration stage with constant speed manoeuvre - Type 1

• Acceleration and braking manoeuvre - Type 2

• Acceleration stage of lateral dynamics identification measurement - Type 3

This means that three different parameter sets corresponding to the chosen iden-
tification manoeuvres have been found for each model type.

Tables 15-17 present accuracy metrics for the physical, linear and polynomial
models across different identified parameter sets. According to the average RMSE
and R-squared values across validation measurements for each identification ma-
noeuvre (parameter set) listed in the tables, the physical model achieved the most
accurate results with the parameter set found during the Type 2 manoeuvre. The
accuracy for this identification manoeuvre outperforms the other two only by ap-
proximately 1.4%. The accuracy metrics for Type 1 and Type 3 parameter sets
do not differ significantly. Considering the typical variance of the longitudinal
acceleration (IMU measurement) in the constant speed region being 0.1827m/s2,
the difference across the identification manoeuvres for this model is insignificant.

Physical Linear Polynomial
Recording RMSE R2 RMSE R2 RMSE R2

1 1.09479 0.78391 0.62105 0.93046 0.79959 0.88473
2 1.12455 0.75114 0.8527 0.85692 1.06499 0.77681
3 0.91965 0.82895 0.66463 0.91066 0.77186 0.87951
4 0.72026 0.85401 0.48545 0.93368 0.58106 0.90499

Table 15: Accuracy metrics of the models identified with Type 1 manoeuvre.

A similar situation holds for the linear model. However, the parameters found
with all three identification maneuvers produce almost identical results. In general,
the accuracy of the linear model is higher than that of a physical model, both for
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Physical Linear Polynomial
Recording RMSE R2 RMSE R2 RMSE R2

1 1.02262 0.81146 0.63372 0.92759 0.69087 0.91395
2 1.1066 0.75903 0.85623 0.85573 0.96155 0.81806
3 0.93655 0.8226 0.66134 0.91154 0.74437 0.88794
4 0.67021 0.87359 0.516 0.92507 0.48753 0.93311

Table 16: Accuracy metrics of the models identified with Type 2 manoeuvre.

Physical Linear Polynomial
Recording RMSE R2 RMSE R2 RMSE R2

1 1.05847 0.79801 0.63162 0.92807 0.88641 0.85834
2 1.13037 0.74856 0.8481 0.85846 1.22906 0.70274
3 0.89783 0.83697 0.66243 0.91125 0.94054 0.82109
4 0.72641 0.85151 0.46957 0.93795 0.66982 0.87374

Table 17: Accuracy metrics of the models identified with Type 3 manoeuvre.

RMSE and R-squared value independent of the identification manoeuvre. On
average R-squared value is about 10% higher, while RMSE is about 0.29m/s2

lower.
While the polynomial model exhibits poor generalization performance and its

results were inconsistent and generally less accurate, the simplicity and superior
accuracy of the linear model led to the elimination of the polynomial model from
further discussion.

Figures 15-17 provide visual comparisons of each model estimation using their re-
spective parameter sets for one of the four validation measurements. These figures
underscore the great performance of the linear model in capturing longitudinal dy-
namics across the investigated identification manoeuvres and in the generalization
with the unseen data.
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Figure 15: Comparison of IMU measurements and predictions of the model iden-
tified with Type 1 manoeuvre.
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Figure 16: Comparison of IMU measurements and predictions of the model iden-
tified with Type 2 manoeuvre.
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Figure 17: Comparison of IMU measurements and predictions of the model iden-
tified with Type 3 manoeuvre.

In summary, the linear model consistently outperforms the other two models
in reproducing longitudinal dynamics independent of the identification manoeuvre
(parameter set). The comparison of the identification manoeuvres reveals that
the linear model parameters can be obtained simultaneously with lateral dynamics
identification without sacrificing prediction accuracy. In contrast, the performance
of the polynomial model is highly dependent on the identification manoeuvre and
the model itself failed to reach its main purpose, which is the highest accuracy
among all three models.

5.2. Lateral Model

In the pursuit of precision in lateral dynamics modelling, the estimation of lateral
velocity plays a pivotal role. This section evaluates two distinct approaches for
approximating lateral velocity for quasi-steady-state manoeuvre and subsequently
compares the predictive capabilities of the resulting lateral dynamics models. Fur-
thermore, the fundamental question has to be answered: which model yields the
best results?

The tyre models use slip angle as an input, calculated using yaw rate as well
as longitudinal and lateral velocities. The estimation of the longitudinal velocity
made with the VESC may be unreliable for describing the lateral dynamics of
the vehicle. Thus, it should be checked first using the basic assumption of quasi-
steady-state manoeuvre for the lateral acceleration (46). The lateral acceleration
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measured with an IMU is compared to the product of the yaw rate measured with
the same IMU and longitudinal velocity estimated by VESC:

ay,imu = ψ̇imuvx,vesc. (63)

Figure 18 shows close agreement between the measured lateral acceleration and
the product of the measured yaw rate and the estimated longitudinal velocity.
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Figure 18: Comparison of the lateral acceleration IMU measurement and quasi-
steady state approximation.

This means that the longitudinal velocity estimation of VESC can be used for the
calculation of the tyre slip angles.

The lateral model identification process presented three front and rear tyre mod-
els and two approaches to estimate lateral velocity. Given the absence of a direct
measurement source of the lateral velocity, the models and the two lateral veloc-
ity estimation approaches were subjected to validation. Four quasi-steady-state
manoeuvre measurements, unseen during the model training, were employed for
this purpose. Since lateral forces and slip angles cannot be directly measured, the
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measurable states that are directly related to the lateral dynamics are used for the
validation process. RMSE and R-squared values are used as the accuracy metrics
of the model predictions.

The designed simulator (Appendix A.2) was employed for the predictions using
each model and parameter set. The simulator uses the duty cycle and steering angle
as inputs and returns seven vehicle states and their derivatives. In order to focus
only on lateral dynamics, the two states describing lateral velocity and yaw rate
were considered. The inputs of the decoupled simulator are a longitudinal velocity
estimated by VESC and a steering angle of the front wheels. The validation of the
mentioned system states requires the simultaneous use of the front and rear tyre
models.

At the first validation stage, front and rear tyres were configured with the same
model and corresponding parameter set found in Subsection 4.6.2. For example,
front and rear tyres are simulated with a linear model (Table 9). To simplify
naming conventions, the models with parameters identified using lateral velocity
estimated by (52) (after reaching constant longitudinal speed) are called Type A
models. Meanwhile, the models with parameters identified using simulated lateral
velocity are called Type B models.

Tables 18 and 19 show the prediction accuracy scores for yaw rate and lateral
acceleration, respectively, for Type A models. In addition, Figure 19 compares
one of four measurements and three model predictions. Both tables and the figure
revealed that exploiting the linear model for both tyres leads to unstable results
and fails to describe the system dynamics due to their parameter identification
for low values of tyre slip angle and corresponding lateral forces. The oscillations
occurring in the linear model predictions are a product of lateral force differences,
which will be described at the end of this section. For this reason, the linear model
will not be visualized to allow a better look at the reliable reduced and complete
Pacejka models of both Type A and B.

Linear Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2 RMSE R2

1 3.72562 -102.2148 0.1202 0.89256 0.1016 0.92323
2 3.72133 -92.56765 0.11945 0.90359 0.10429 0.92651
3 3.28089 -54.4534 0.12726 0.91656 0.1162 0.930444
4 3.44071 -75.10764 0.12082 0.90616 0.10443 0.92989

Table 18: Accuracy metrics of Type A models for the yaw rate, where both tyres
use an identical model. The linear model fails to describe the system
dynamics.
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Linear Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2 RMSE R2

1 2.35246 -2.8501 0.57936 0.76648 0.54678 0.792
2 2.32362 -2.61304 0.54697 0.7998 0.52476 0.81573
3 2.18279 -1.99833 0.50525 0.83936 0.48475 0.85213
4 2.27853 -2.4595 0.54039 0.80541 0.50669 0.82892

Table 19: Accuracy metrics of Type A models for the lateral acceleration, where
both tyres use an identical model. The linear model fails to describe the
system dynamics.
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Figure 19: Comparison for yaw rate and lateral acceleration with Type A models.
An occurring limit cycle in the case of the linear model can be seen.

Figure 20 demonstrates now clearly the comparison of model predictions with
IMU measurements. It is evident from the figure that both models follow the
dataset trends for yaw rate and acceleration. In the absence of obvious deviations
in the figure, it is more beneficial to analyze RMSE and R-squared values described
in Tables 18 and 19. One may notice that the RMSE values for yaw rate prediction
accuracy are almost five times lower than for lateral acceleration, while R-squared
values are slightly more than 10% higher. This can be explained by a larger
variance of lateral acceleration data points (Figure 20). However, the accuracy
scores are similar across all recordings for RMSE and R-squared values, indicating
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Figure 20: Comparison for yaw rate and lateral acceleration with Type A Pacejka
models.

a satisfactory degree of robustness of the models, at least for the same driving
profile on which the models were trained. In addition, one may notice that using
the complete Pacejka model for both tyres outperforms the reduced model for all
validation recordings. However, the difference does not exceed 4% on average.

On the other hand, Tables 20 and 21 describe the model prediction accuracy
scores for the Type B models (simulated lateral velocity). As for Type A models,
the scores do not spread wide and show stable and consistent results (Figure 21).
The trend of better performance of the complete Pacejka model compared to the
reduced model also holds. For every validation measurement, the complete Pacejka
model outperforms the reduced model. What is more important is that Type B
models achieve higher accuracy scores compared to the alternative models of Type
A. This leads to the conclusion that the second approach to estimating the lateral
velocity by simulating the vehicle dynamics should be used in the absence of a
lateral velocity measurement source.
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Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2

1 0.11664 0.89883 0.09851 0.92784
2 0.11542 0.90999 0.10037 0.93193
3 0.12554 0.9188 0.11477 0.93214
4 0.11662 0.91256 0.10127 0.93406

Table 20: Accuracy metrics of Type B models for yaw rate, where both tyres use
an identical model.

Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2

1 0.56786 0.77566 0.53732 0.79914
2 0.53445 0.80886 0.51423 0.82305
3 0.48972 0.84908 0.4695 0.86128
4 0.5219 0.8185 0.49116 0.83925

Table 21: Accuracy metrics of Type B models for lateral acceleration, where both
tyres use an identical model.
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Figure 21: Comparison for yaw rate and lateral acceleration with Type B Pacejka
models.
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Another critical question is whether both tyres should share the same model
or whether combining different models for front and rear tyres produces better
results. This question essentially occurs by observing lateral force vs. slip angle
figures for rear tyres (Figures 12-14). While the slip angle of the front tyre reaches
values up to 0.30 radians, the values of the rear tyre barely reach 0.10 radians. It
is assumed that the rear tyre does not reach saturation, so the linear model for
rear tyres may fit better. The validation is now extended to check if combining
Pacejka models for front tyres and linear models for rear tyres produces better
model prediction accuracy.

Tables 22 and 23 show that for Type A models, the combination of a Pacejka
model (reduced or complete) and a linear model produces better results than using
the same Pacejka model variant for both tyres simultaneously. In addition, such
a model combination produces results that are the same or sometimes even of
greater accuracy than if one uses the complete Pacejka model of Type B for both
tyres, which showed the best results previously.

Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2

1 0.10641 0.9158 0.09217 0.93683
2 0.10439 0.92638 0.0936 0.9408
3 0.11147 0.93599 0.10397 0.94431
4 0.10436 0.92999 0.0926 0.94488

Table 22: Accuracy metrics of yaw rate with Type A Pacejka models for the front
tyre and linear model for the rear tyre.

Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2

1 0.5532 0.78709 0.53054 0.80418
2 0.51881 0.81988 0.50773 0.82749
3 0.46808 0.86212 0.46001 0.86683
4 0.50345 0.83111 0.4817 0.84538

Table 23: Accuracy metrics of lateral acceleration with Type A Pacejka models for
the front tyre and linear model for the rear tyre.
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Figure 22: Comparison for yaw rate and lateral acceleration with Type A Pacejka
models for the front tyre and linear model for the rear tyre.

The improvement is also seen for Type B Pacejka models - Table 24 and 25.
However, this improvement is not as significant as for Type A models. Type A
models now produce slightly better results in comparison with Type B. Considering
the limited space during the measurement process and safety reasons, extending
the velocity to higher ranges to achieve larger rear tyre slip angle values was not
possible. However, the risks of using a linear model for high slip manoeuvres to
describe the rear tyre behaviour outside the investigated ranges should be consid-
ered. Considering the saturation of the front tyre, the further increase of velocity
may lead to an increase of the rear tyre slip angle and, as a result, to unstable and
unmeasurable states of the vehicle.

Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2

1 0.11007 0.90991 0.0956 0.93204
2 0.10922 0.9194 0.09775 0.93544
3 0.11853 0.92762 0.11161 0.93583
4 0.1088 0.9239 0.09771 0.93862

Table 24: Accuracy metrics of yaw rate with Type B Pacejka models for the front
tyre and linear model for the rear tyre.
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Reduced Pacejka Complete Pacejka
Recording RMSE R2 RMSE R2

1 0.55424 0.78629 0.53112 0.80375
2 0.51975 0.81922 0.50729 0.82779
3 0.47071 0.86057 0.46011 0.86678
4 0.50208 0.83202 0.48137 0.8456

Table 25: Accuracy metrics of lateral acceleration with Type B Pacejka models for
the front tyre and linear model for the rear tyre.
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Figure 23: Comparison for yaw rate and lateral acceleration with Type B Pacejka
models for the front tyre and linear model for the rear tyre.

To summarize, using a simulator to estimate lateral velocity (Type B models)
yields slightly better results overall. Based on the investigated data ranges for
tyre slip angles, it is reasonable to use the complete Pacejka model for the front
tyre and the linear model for the rear tyre. However, to mitigate risks for more
extreme operating conditions, it is strongly advised to use the Pacejka model for
both tyres.

55



5.2.1. Simulation Oscillations and Importance of Sufficient Preprocessing

As was mentioned in Section 4.6.2, preprocessing of the raw measurement data is a
crucial step prior to the parameter identification to achieve an accurate and reliable
model. On the one hand, the data for the identification should be prepared with-
out losing vital information or at least reducing information loss to a minimum.
On the other hand, the outliers and undesirable deviations should be filtered out
to avoid undesired over-fitting of the model to problematic or flawed data points.
The identification process described in the previous chapter results from contin-
uous improvements, data analysis, trials and errors. It shows the consistent and
reproducible identification results in the presence of noise and unexpected outliers.
Ignoring preprocessing or neglecting it to some degree can lead to issues such as
the oscillations illustrated in Figure 19, but not only for the linear models.

Subsection 4.6.2 describes how to find the initial values of parameters for the
Pacejka model. These initial values serve as a starting point for subsequent curve-
fitting algorithms. The algorithm minimizes the squared error between the model
predictions and the training data by adjusting the model parameters. In the case
of the rear tyre, slip angle outliers can result in over-fitting if not filtered out
beforehand. Figure 24 shows how several outliers of the rear tyre slip angles force
the identified function to curve in their direction, leading to model over-fitting.
Since it is evident from the figure that the rear tyre does not reach saturation in
lateral force, the identified model curvature is wrong.
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Figure 24: Comparison of training data and model prediction with complete Pace-
jka model.
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Figure 25 shows the rear tyre slip angle evolution and the identified outliers.
These outliers could not be dropped during filtering based on the physical plausi-
bility, so statistical filtering was applied. A data point is identified as an outlier
and is filtered out if its value deviates more than 1.5 standard deviations from the
expected mean. The impact of this filtering on the model’s curvature is demon-
strated in Figure 26. This approach ensures a more accurate representation of the
tyre behaviour, particularly for the rear tyre.
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Figure 25: Filtered rear tyre slip angle values and outliers.

The front tyre is also present in the figures to show how the lateral force spreads
by high slip angle values. Since the rear tyre does not reach saturation, it is im-
possible to identify or estimate the maximum lateral force it can achieve. The
highest estimated lateral force value (blue circles in Figure 26) is then taken as an
initial value, and the lower boundary is set to 90% of it. At the same time, such a
boundary is not acceptable for the front tyre because of the mentioned spread of
lateral forces and the reached saturation. The lower boundary is reduced to 75%
for the front tyre. This combination ensures the desired characteristic curve shape
of identified models for both tyres. In the case of the unreached saturation of the
rear tyre, the expected shape is a shape of the monotonously increasing function.
Neglecting these steps may lead to oscillation problems during simulation, espe-

cially for higher tyre slip values. Figure 27 illustrates such undesired behaviour.
The same oscillations occurred during the validation of linear models earlier in
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Figure 26: Comparison of filtered training data and model prediction with com-
plete Pacejka model.
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Figure 27: Comparison of the yaw rate predictions.
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this chapter. Oscillations arise due to differences in the lateral forces produced
by the front and the rear tyres. This phenomenon is more pronounced in linear
models due to their limited application range (tyre slip angle values). Figure 28
describes the difference in generated forces for the linear model, the Pacejka model
with the wrong curve shape by the rear tyre due to the influence of unfiltered out-
liers and the Pacejka model with the correct curve shape for the rear tyre. Due
to oscillations in Figure 28, it is hard to identify the source of such behaviour.
To avoid the oscillations, simulation results achieved with the filtered data were
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Figure 28: Comparison of lateral force and slip angle differences between the front
and rear tyres.

fed to the linear models and the Pacejka models with identified parameters based
on the unfiltered data to achieve the function values shown in Figure 29 and 30.
The first figure shows the evolution of the lateral forces for front and rear tyres
compared to each other for all three models over the slip angle values. At the
same time, Figure 30 shows how the difference in lateral forces evolves over slip
angle values. The difference in linear model function slopes of front and rear tyres
affects continuously increasing differences because the rear tyres reach lower slip
angle values. One may also observe a slightly more significant area between the
curves of the front and rear tyres in the linear region for Pacejka models identified
with unfiltered data in comparison to Pacejka models identified with filtered data
- Figure 29. This greater area can also be observed in Figure 30 for slip angle
values between 0.0 and 0.05 radians, as the green line has the same trend as the
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blue, but higher function values. In addition to this, there is a point where both
tyre forces are equal (ca. 0.10 radians) for both Pacejka models. However, after
reaching this point, the front tyre lateral force starts to dominate over the rear
one (in terms of having larger values) by the model based on unfiltered data - the
force difference is positive. The opposite happens for the Pacejka model based on
filtered data - the force difference is negative. Considering static parameters of the
vehicle shown in Table 1 and Equation 31, the positive force difference will lead to
even greater values of yaw rate derivative during the integration and, as a result,
a jump in yaw rate value. The jump in yaw rate triggers oscillations in tyre slip
angle values, which simultaneously triggers lateral force oscillations, as the tyre
force depends on slip angle as the only argument.

The mentioned preprocessing (filtering) steps are also described in Subsection
4.6.2 to systematize the process and are implemented for the identification toolbox
described in A.2.
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achieved during simulation with filtered data.
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Figure 30: Comparison of lateral force difference between the front and rear tyres.

5.3. Complete Model

In the preceding sections, the longitudinal and lateral dynamics models underwent
separate (decoupled) validations, each drawing conclusions regarding efficient iden-
tification test manoeuvres and model accuracy. However, the true capability of
the complete vehicle model lies in its ability to couple longitudinal and lateral
dynamics correctly. Ground truth data from the IMU measurements, encompass-
ing acceleration, yaw angle and yaw rate, serve as benchmarks for this validation.
This expands the scope of the validation to four variables: longitudinal and lateral
accelerations, yaw angle and yaw rate.

The RPAD’s primary function is to follow a predefined driving profile, requiring
an accurate measurement of the vehicle’s displacement. While SLAM algorithms
are typically employed, specific environmental conditions during the conducted
measurement campaigns required an alternative solution. Operational challenges,
including overload and compromised sampling time, forced to find a workaround by
constructing a controlled environment. LiDAR data recorded in this environment
is used to estimate the vehicle’s position offline using an extended Kalman filter
and a particle filter. These filters leverage the dynamics model as a basis for
predictions, yielding position estimates assumed as pseudo-ground truth for the
vehicle’s location. This pseudo-ground truth serves as a basis for validating the
vehicle’s position prediction. The subsequent sections provide insights into the
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implementation of both filters and are followed by the validation process of the
complete model.

5.3.1. LiDAR Model

Due to the specific conditions of the measurement environment and the need for
computational time reduction, an alternative to using the SLAM algorithm was
found. Namely, a simplified model was designed for the position and orientation
estimation offline. While developed for a specific test environment, this model can
be adapted for similar use cases due to its straightforward setup. This approach
allows for the position and orientation estimation without overloading computa-
tional resources or causing data loss due to delays.

The basic concept of this model is illustrated in Figure 31. Initially, four obsta-
cles (cylinders with a diameter of approximately 95mm and a height of 40mm)
are positioned in predefined locations to form a rectangle of predefined shape, act-
ing as beacons. The vehicle starts at the known coordinates and with the known
orientation. As the vehicle moves, LiDAR measurements are taken, and the poten-
tial location of the vehicle is estimated using the vehicle dynamics model at each
sample time. The estimated position and orientation are then used to calculate
the potential coordinates of each predefined obstacle using the beam ranges and
their corresponding angles at each sample time, as defined by Equations (64) and
(65).

Oi,x = xp + rj cos(ψp + γj) (64)
Oi,y = yp + rj sin(ψp + γj) (65)

Here, Oi describes the i-th of four obstacles, xp, yp and ψp are the vehicle dynamics
model position and orientation predictions, rj is the j-th beam range (of a total
of 1081 beams) and γj its corresponding beam angle.

The calculated coordinates of potential obstacle locations are then compared
with the actual coordinates of the four predefined obstacles (or beacons). If the
difference is smaller than the reference value of 1.0meters, the current beam range
and its angle are used to calculate the position of the vehicle using

xL = Bi,x − ravg cos (ψp + γj) (66)
yL = Bi,y − ravg sin (ψp + γj) (67)

where B denotes the true obstacle coordinate.
The calculated position of the vehicle and the difference between the potential

and actual obstacle locations ηk are saved. The mentioned difference will be re-
ferred to as an accuracy score. If the accuracy score exceeds 1.0meters, the current
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Figure 31: LiDAR model.

beam is skipped. Since there are 1081 beams per time step, multiple beams (typi-
cally two to eight) can detect the same obstacle. The accuracy score for each beam
(which detected the obstacle) is used to calculate the weighted average of position
coordinates at the current time step using:

κk =
1

ηk
(68)

xavg =

�
κk xk�
κk

(69)

yavg =

�
κk yk�
κk

(70)

where k is an index of the beam which detected the obstacle.
This algorithm is repeated at every time step. The current position estimation

is skipped if none of the four predefined obstacles is recognized during the current
sample. For example, for the measurement of approximately 370 samples, only
two did not produce a valid position estimation.

5.3.2. Kalman Filter

The Kalman filter is an optimal filter for dynamic system state estimation under
the influence of white-noise random excitation and measurement noise. The filter is
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mighty in several aspects: it supports estimations of past, present, and even future
states, and it can do so even when the precise nature of the modelled system is
unknown [23]. Integrating the Kalman Filter with the dynamics model of the
vehicle offers a solution to smoothen noise in the output data of the LiDAR model
shown in Section 5.3.1.

The Kalman filter addresses the general problem of estimating the state of a
discrete-time controlled process governed by the linear stochastic difference equa-
tion (71) with measurement vector described with (72) [23], where the variables wk

and vk are process and measurement white noise (zero-mean, uncorrelated, known
covariances Q and R, respectively).

xk+1 = F xk +B uk + wk (71)
zk = Hk xk + vk (72)

Kalman filter algorithm consists of two steps: prediction and update [24]. Dur-
ing prediction, the state estimate and the estimated error covariance matrix are
calculated using (73) and (74):

x̂−
k+1 = F x̂+

k +B uk (73)
P−
k+1 = F P+

k F T +Q (74)

The hat operator signifies that the variable is estimated, while superscripts − and
+ describe predicted and updated estimates.

The update step begins with the calculation of the measurement residual repre-
senting the difference between the true measurement and the estimated measure-
ment:

ỹ = zk −H x̂−
k+1 (75)

Subsequently, the Kalman gain Kk+1 used to determine the optimal correction
of the predicted state estimate is calculated with

Kk+1 = P−
k+1 H

T (R +H P−
k+1H

T )−1. (76)

Finally, the state estimate and error covariance matrix can be updated:

x̂+
k+1 = x̂−

k+1 +Kk+1ỹ (77)
P+
k+1 = (I −Kk+1 Hk+1)P

−
k+1 (78)

In the case of the vehicle model described in this work, it is impossible to express
the process model with linear equations. The problem can be described with (79)
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and (80).

xk+1 = f(xk, uk) + wk (79)
zk+1 = h(xk+1) + vk+1 (80)

To apply the Kalman filter, it is necessary to linearize the functions f and h around
respective state estimates:

Fk =
∂ f

∂ x

���
x̂+
k ,uk

(81)

Hk+1 =
∂ h

∂ x

���
x̂−
k+1

(82)

This specific approach for nonlinear system estimation is known as the extended
Kalman filter.

5.3.3. Particle Filter

The particle filter is an alternative method for determining the vehicle’s position
based on LiDAR measurements. The particle filter method is a sequential Monte
Carlo technique for solving the state estimation problem, using the Sequential
Importance Sampling algorithm and including a resampling step at each instant
[25]. Particle filter represents the possible states of the system at the current time
step with a set of random samples, called particles. Each particle represents a
hypothesis about the state of the system. The particles which match the actual
measurements better receive higher weights. These particles are more likely to be
selected to form the set for the next time step.

Considering specific conditions outlined in Subsection 5.3.1, the algorithm can
be described with the following steps:

1. Draw of N particles with a uniform distribution, each with predefined po-
sition and orientation noise. Each particle comprises a particular tuple of
estimated quantities ((X, Y )-coordinates and yaw angle ψ). Each particle is
assigned the same initial weight 1

N
.

2. Prediction step based on the system dynamics model for given input variables
at the current sample time for every particle, obtaining a new estimate of
the position and orientation for each particle.

3. Based on position and orientation found in the previous step, a simulation
of LiDAR readings to detect four predefined obstacles (See Subsection 5.3.1)
is made for each particle.
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4. The measured distances to four predefined obstacles are found with the Li-
DAR model described in Subsection 5.3.1.

5. Simulated measurements and actual measurements of LiDAR data are com-
pared (distances to obstacles), and the corresponding weights for each par-
ticle are calculated based on this comparison. The weights represent the
likelihood of measuring the considered data point under the assumption that
the current particle estimates the state correctly.

6. Resampling of particles based on the calculated weights, while adding po-
sition and orientation noise to a new set of particles. The current position
of the vehicle is then calculated as the weighted average of the resampled
particle set.

7. Repeat the process, starting with the system dynamics model update (step
2).

The number of particles is chosen to be N = 1000, while position and orientation
noise are modelled as a normal distribution with zero mean and standard deviation
of 1meter and 0.1 radians, respectively.

5.3.4. Validation Process

A linear model was selected for longitudinal dynamics and a complete Pacejka
model for the front and rear tyres to validate the RPAD model. Parameters for
all models were determined during lateral identification with a quasi-steady-state
manoeuvre, specifically, Type 3 parameters for the longitudinal model and Type
B parameters for the tyre models.

The Look-Up Table (LUT) controller, as described in [26], was designed to guide
the RPAD to follow the predefined path in terms of X and Y coordinates for a
given longitudinal velocity. Due to safety considerations in the measurements
environment, the velocity was constrained to approximately 3.0m/s by controlling
motor speed commands. Under these conditions, the estimated tyre slip angle of
the front tyre reaches absolute values of 0.33 radians, indicating high slip values.

The states and their derivatives were compared to IMU measurements to assess
the accuracy of the model estimations. Table 26 presents the RMSE and R-squared
scores for longitudinal and lateral accelerations, yaw angle and yaw rate. Notably,
the R-squared values for yaw rate and lateral acceleration predictions surpass those
observed during the validation of tyre models. This could be attributed to the
vehicle spending less time in high-slip states and to the validation curve simulating
the potential environment in which the RPAD would operate. Furthermore, yaw
angle scores demonstrate exceptional accuracy, with a low average magnitude of
prediction errors and R-squared values close to 1.
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Yaw Angle Yaw Rate Long. Accel. Lat. Accel.
RMSE 0.06215 0.16641 0.36242 0.55810

R-squared 0.99799 0.97777 0.77373 0.94921

Table 26: Accuracy metrics for validation data - states measured with external
IMU.

However, the prediction accuracy of the longitudinal model reveals contrasting
results. The R-squared value is significantly lower compared to tyre model related
variables and to validation results for longitudinal dynamics only. This discrepancy
may be attributed to the coupling of lateral dynamics and greater noise during
the constant velocity stage, as illustrated in Figure 32. Yet, the extended constant
velocity stage results in lower RMSE values than any achieved during the validation
process before.
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Figure 32: Comparison of IMU measurements and corresponding model predic-
tions.

Upon further analysis of Figure 32, larger deviations in the yaw angle are no-
ticeable at seconds 3 and 8. To determine the source of such differences and their
potential impact on the model results, a comparison was made between the pre-
diction of position and the corresponding data estimated with the LiDAR model
using the described extended Kalman filter or particle filter. Figures 33 and 34 re-

67



veal that the prediction of vehicle displacement aligns closely with filter estimates.
However, deviations in yaw angle occur during turns or transitions between turns.

0 1 2 3 4 5 6 7 8

x in m

4

3

2

1

0

1

2

3

4

y
in

m

Predefined Obstacles

Model Prediction

LiDAR Model (incl.Kalman Filter)

Figure 33: Comparison of LiDAR model estimation and model prediction.
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Figure 34: Comparison of particle filter estimation and model prediction. Orange
circles show the distribution of particles during the whole measurement.
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Given that the yaw angle derivative is solely described by the yaw rate in the
system dynamics model (28), it was hypothesized that insufficient cornering in
turns or transitions between the turns is associated with the cosine term in the
equation of yaw rate (31). Since the same term is also employed in the differ-
ential equation of lateral velocity (30), the cosine term was eliminated from both
equations for consistency reasons, and the simulation was repeated. Table 27 sum-
marizes prediction accuracy scores for validating IMU signals. The RMSE value
for all variables, except for yaw angle, worsened, although insignificantly and can
be disregarded.

Yaw Angle Yaw Rate Long. Accel. Lat. Accel.
RMSE 0.05135 0.17526 0.364 0.56388
R2 0.99863 0.97535 0.77176 0.94815

Table 27: Accuracy metrics for the prediction of (X, Y ) coordinates - states mea-
sured with the IMU.

0 2 4 6 8 10

time in s

4

3

2

1

0

1

2

y
a
w
a
n
g
le

in
ra
d

Measurement

Model prediction

0 2 4 6 8 10

time in s

3

2

1

0

1

2

3

y
a
w
ra
te

in
ra
d
/s

Measurement

Model prediction

0 2 4 6 8 10

time in s

1

0

1

2

3

4

5

lo
n
g
.
a
c
c
e
le
ra
ti
o
n
in

m
/s

2

Measurement

Model prediction

0 2 4 6 8 10

time in s

6

4

2

0

2

4

6

la
t.
a
c
c
e
le
ra
ti
o
n
in

m
/s

2 Measurement

Model prediction

Figure 35: Comparison of IMU measurements and corresponding model predic-
tions.

The LiDAR model and particle filter estimations were compared to model pre-
dictions before and after the yaw rate equation update to assess the impact on
(X, Y ) estimations (Figure 36). The cornering became slightly sharper with the
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update. Table 28 validates this observation by comparing metrics of the original
and updated models. The RMSE value improved by around 7% for the (X, Y )
estimations (1 centimetre on average).

RMSE R2

Considering cosine term 0.12143 0.99810
Neglecting cosine term 0.11295 0.99836

Table 28: Accuracy metrics for the prediction of (X, Y ) coordinates - compared to
LiDAR Model estimation with integrated Kalman Filter.
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Figure 36: Comparison of LiDAR model estimation and model prediction.
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Figure 37: Comparison of particle filter estimation and prediction of updated
model. Orange circles show the distribution of particles during the
whole measurement.

In summary, the model exhibits accurate results even under the high slip con-
ditions for the front tyre. Despite the simplicity of the linear model, it proves
sufficient to capture the longitudinal dynamics of the vehicle. Moreover, the vali-
dation showed that performance during turns can be enhanced by eliminating the
cosine term from the yaw rate and lateral velocity equations. In this case, the
predicted location of the vehicle deviates by around 11 centimetres on average.
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6. Conclusion

This thesis provides a comprehensive overview of the identification process for the
vehicle dynamics based on the RPAD platform. The detailed description of the
RPAD’s hardware setup, including sensors, actuators, and computational units,
established the constraints and the range of measurable system states. The dy-
namic bicycle model was chosen for the description of the vehicle. To address
non-linearity in lateral dynamics, the Pacejka model, in its complete and simpli-
fied versions, was selected to explain tyre behaviour. The DC-motor model and the
resistance forces, along with their extended and simplified versions, were employed
to describe the longitudinal motion of the RPAD.

The identification experiments were designed to meet constraints, simplify model
equations, and accurately capture vehicle dynamics. The subsequent identification
process revealed both the advantages and disadvantages of experiments and mod-
els. The validation process compared model predictions with the IMU measure-
ments and introduced LiDAR models with an extended Kalman filter and a par-
ticle filter for position estimation validation in the absence of an objective ground
truth, leveraging the available LiDAR sensor. The validation stage demonstrated
that the same identification manoeuvre (quasi-steady-state) could be applied to
combine the identification of longitudinal and lateral dynamics parameters with-
out sacrificing model accuracy. For the conducted driving profile and conditions
chosen for the identification and validation processes (speed up to 3m/s with front
tyre slip angle up to 0.33 radians), the identified model exhibited highly accurate
results for predicting lateral states (yaw angle, yaw rate, lateral acceleration) and
adequately captured longitudinal dynamics described by the linear model despite
the presence of significant noise in measurable variables. The step-by-step proce-
dure was automated and encapsulated in a ROS 2 node for data measurement and
an identification Python package for parameter estimation.

Future works could explore the validity of the identification process and resulting
model for more challenging conditions. The influence of pitch and roll on vehicle
dynamics could be analyzed for the load transfer consideration in the double-track
model. Additionally, an analysis of the potential improvement of model accu-
racy through data-driven models using subspace system identification or neural
networks could be considered.
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A. Toolbox

To automate the parameter identification process described in Chapter 4, a ROS 2
node and an offline Python package were created. The following sections describe
how both node and package can be used to create motor and servo input com-
mands, start the measurement, record topics in *.csv-file and identify longitudinal
and lateral tyre parameters. For a quick review of ROS 2 basics, one may address
the corresponding subsection in Chapter 2.

A.1. ROS 2 Node

As was mentioned in Chapter 2, the RPAD may be controlled using duty cycle
or motor speed for motion in the longitudinal direction and via servo position for
motion in the lateral direction. To execute the quasi-steady-state manoeuvre de-
scribed in Chapter 4 (constant RPAD speed with specific steering velocity), it is
better to prepare the input commands in terms of duty cycle or motor speed and
servo position first. Then, they are being fed into the predefined node while sub-
scribing to topics of interest and saving them at the end of manoeuvre execution.
Exactly this role is played by the ROS 2 Node, called tester_node. However, this
node can also be used only for topic recording.
tester_node consists of the following folders and files:

tester_node ...............................................Package folder
input_commands ............................Folder for input commands

model_inputs.csv .............................Input commands file
recordings ............................Folder for saved recordings files

rec_file_11_29_T18_35_35.csv ..........Example of recordings file
resource

tester_node ............................Marker file for the package
test ............................................Folder for unit testing
tester_node .......................Used by ROS 2 to find the package

__init__.py
node_function.py .......................Executable of the package

package.xml ......................Meta information about the package
setup.cfg ...............Required in case the package has executable(s)
setup.py ....................Information about installation instructions

The input commands file is a *.csv-file, which describes the motor speed and
servo position for each sample time. The column names may be arbitrary, but
keeping the correct order of time, motor speed, and servo position is important.
This file can be created by the user or generated using the corresponding function
of the offline package (See Section A.2.1). The file must be saved with ";" as a
delimiter. Motor speed is specified in Revolutions Per Minute (RPM) and servo
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input in radians. Servo input should consider the offset specified in the vesc.yaml
file. For example, to set the steering angle to x degree, one must add or subtract
(depending on VESC configuration) the servo offset (ca. 0.515 radians).
The node is used only as a recorder if no values other than column names are
given in the table. In this case, it makes it possible for the user to execute custom
manoeuvres using a joystick while recording topic messages in *.csv-file.
Before running the node, a user has to make sure that the node is located in src
source folder of ROS 2 workspace and installed using:✞
colcon build --packages -select tester_node✝ ✆
In addition, it is highly recommended that the wheels do not touch the ground
first before making a test run and checking if the steering direction satisfies the
expectations. When precautions are made, one may start the node using:✞
ros2 run tester_node tester_node✝ ✆
As the last command of the inputs file is executed, the node saves the record-
ing in recordings folder inside of the node with the following name schema:
rec_file_MM_DD_THH_mm_ss.csv. For example, rec_file_11_29_T18_35_35.csv.

A.2. Offline Identification Package

To automate the estimation of RPAD model parameters based on recordings made
with tester_node, identification_toolbox Python package was created. It pre-
processes the recording data, identifies wrong data and outliers, calculates param-
eters of multiple longitudinal and lateral models, saves them in a *.json file and
visualizes tyre models. In addition to this, it has its offline simulator, which can
be used separately in other scripts to simulate RPAD behaviour.
identification_toolbox consists of the following folders and files:
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identification_toolbox ..................................Package folder
identification_toolbox .......................Folder of Sub-packages

commands .........Sub-package for generation of input commands file
config ......Basis configuration files for estimation and their Python
handlers
controller ..............Sub-package for PID and VESC controllers
estimation . Sub-package for parameters estimation and optimization
lateral .......Sub-package for tyre parameters identification routine
longitudinal . Sub-package for longitudinal parameters identification
routine
postprocessing .......................Sub-package for visualization
preprocessing ............Sub-package for recordings pre-processing
simulator ................................Sub-package for simulator
validation_filters .... Sub-package for Kalman Filter and Particle
Filter for special cases
vehicle ............Sub-package for vehicle and tyre model equations
__init__.py ..................................Package identifier file
logger_setup.csv ..............................Handler for logging

tests ....................... Information about installation instructions
model_inputs.csv .............................Input commands file

README.txt .......................General information and instructions
run_identification.py .....Runner for identification and optimization
routines
run_tests.py .....................................File for unit testing
setup.py ....................Information about installation instructions

User can install this package as any other Python package by typing in the
command line or bash inside of the package folder:✞
pip install -e .✝ ✆
In this way, the user can import identification_toolbox Sub-packages in their
code. However, this step is optional and does not impact the usage of common
functionality, such as parameter identification.

A.2.1. Input Commands File Generation

As was mentioned in the previous section A.1, node tester_node needs *.csv-file
with defined motor speed and servo position commands. This file can be created
by the user or generated using one of the sub-packages of identification_toolbox,
commands. The sub-package has only this specific purpose.
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identification_toolbox ..................................Package folder
identification_toolbox .......................Folder of sub-packages

commands .........Sub-package for generation of input commands file
__init__.py ..............................Sub-package identifier
create_test_commands.py .......Function for generation of input
commands file

commands sub-package is capable of generating files for three kinds of manoeuvres:

• spiral maneuver for quasi-steady-state measurement (Sub-section 4.6.1) -
constant speed and non-zero constant steering velocity

• straight line for longitudinal identification - constant speed

• acceleration-braking for longitudinal identification - acceleration for 3 sec-
onds and braking to desired motor speed

The general execution call will look the following way:✞
python <path\to\toolbox >\ identification_toolbox\commands\crea
te_test_commands.py✝ ✆

However, multiple options are available for the user to generate input com-
mand files for each manoeuvre. All of them are optional and have predefined
default values. Generally, the main focus is on spiral manoeuvre for tyre param-
eter identification, leading to the smallest set of options needed to generate a file
for convenience reasons. This is done by choosing appropriately the default value
for specific options. The following list will give a complete overview of possible
function calls:

• sample time, --sample <value> (in seconds) - needed to set sample time of
tester_node and determine correct servo position for spiral manoeuvre. By
default, 0.025 seconds or 40 Hertz.

• motor speed, --rpm <value> (in RPM) - target motor speed for acceleration
or constant velocity region. By default, 11000.0 RPM.

• motor speed for braking, --brakerpm <value> (in RPM) - end motor speed
for acceleration - braking manoeuvre. By default, None.

• starting steering angle, --offset <value> (in degree) - in case of small space
for spiral manoeuvre, it may be useful to start with already slightly steered
front wheels. By default, 0 degrees.
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• steering velocity step, --step <value> (in degree/second) - the rate of the
change steering angle of front wheels during the spiral manoeuvre. Set to 0
to drive a straight line. By default, 1 degree/second.

• steering direction, --spin <value> - direction of front wheels steering for
spiral manoeuvre, which defines whether the vehicle will turn clockwise or
counter-clockwise. The value depends on the VESC specifications of the
vehicle. 1 is for counter-clockwise and -1 for clockwise. By default, 1.

Here are some examples of common function calls made for the identifications
during this research:✞
python .\ identification_toolbox\commands\create_test_commands
.py --offset 4 --spin -1
python .\ identification_toolbox\commands\create_test_commands
.py --step 0 --rpm 13000.0 --brakerpm 0.0✝ ✆
As a result of one of those calls, the input commands file model_inputs.csv is
generated in the same folder where the call was made. This file can be moved then
to input_commands folder of tester_node for further test manoeuvre executions.

A.2.2. Parameters Identification

A recordings file made with tester_node A.1 is required for further process. If the
user has alternative ways to make measurements and save them in separate *.csv-
file, the column names should at least match those generated with tester_node.
The recording file should be in the same folder from which the function call will
be made.
Another key component is VESC.yaml file of the vehicle. This file should be copied
to path-to-toolbox/identification_toolbox/config. This step ensures that the
current vehicle configuration will be considered when setting motor and servo
limitations and specific variable ratios.
The main file for automated parameters identification is run_identification.py,
located in the root folder of identification_toolbox. As done by generating input
commands file, the user has multiple options through the function call. Basic
function call✞
python <path -to -toolbox >\ run_identification.py✝ ✆
results in the identification of tyre parameters for linear, reduced (3 parameters)
Pacejka model and complete (4 parameters) Pacejka model and of linear (3 pa-
rameters), physical (4 parameters) and polynomial (6 parameters) longitudinal
models. However, the user can also start identifying only for tyre or longitudinal
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parameters and optimize already identified ones. In the latter case, one should en-
sure that parameters are saved in *.json-file with the same format as in the already
available file ./identification_toolbox/config/estimated_parameters.json. Full
description of possible options:

• type of identification -t <type name> - available choices are lateral, longitu-
dinal, optimize and all. By default, all.

• path to recording file -p <path-to-file> - if not specified, *.csv-file from
current folder will be assumed as one.

• visualize results -v <boolean> - True to save figures of comparison between
model and measurements. By default, False.

• name of the file to save -f <file-name> - by default,
estimated_parameters.json.

• configuration of simulator -s <path-to-config> - path to configuration file
of simulator. An example can be found in
path-to-toolbox/identification_toolbox/config. simulator_config.json
file in this folder is a default option.

• file with estimated parameters -b <path-to-file> - file is used as basis for
parameter optimization. By default, estimated_parameters.json in ./config
is used as basis.

Here are some examples of calls made for identification during this research:✞
python <path -to -toolbox >\ run_identification.py -t lateral -v
True
python <path -to -toolbox >\ run_identification.py -t optimize -b
g/h/i.json✝ ✆
If -f option were not specified, the parameters would be saved in
estimated_parameters.json file in the folder the call was made from, as well as a
logging file of identification process and figures, if -v True option was entered.

A.2.3. Simulator

To use the simulator, it is recommended to install the package first A.2. Then, it
can be imported as a Python class:✞
from identification_toolbox.simulator import Simulator✝ ✆
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Simulator object can be initialized without any parameters. However, there are
four different optional arguments which can personalize the simulation. Those
arguments are:

• dt - sample time of the simulation. By default, 0.025s.

• x0 - initial states values. By default, a dimensional zero array of 7 elements
(Description of 7 states is later in this subsection).

• param_file - path to *.json-file of identified parameters. By default, a file
from config sub-package of the toolbox will be used.

• config_file - path to *.json-file of simulator configuration. By default, a file
from config sub-package of the toolbox will be used.

In general, there are two possibilities for running the simulator - open loop and
closed loop simulation. For the open loop simulation, the inputs are the Nx2 array
of duty cycle and steering angle values (not servo position) and, optionally, the
Nx1 time array, in case sample time varies during the measurement. Here is an
example of how it can be called:✞
sim_obj = Simulator(dt=sample_time , x0=initial_state ,

param_file=some_path1 , config_file=some_path2)
x, xdot = sim_obj.open_loop_simulation(nx2_inputs ,

t_array=nx1_time)✝ ✆
The closed loop simulation is designed to test the speed controller or simulate the
VESC controller. The reference output is then the desired velocity vector. To call
closed-loop simulation, one has to specify the Nx1 array of steering angle values
and the Nx1 array of desired velocity array. Considering initialization of Simulator
object sim_obj from previous example, function call can made with:✞
x, x_dot = sim_obj.closed_loop_simulation(nx1_steering ,

nx1_v_reference)✝ ✆
The results are the Nx7 state array and its Nx7 derivative array. Seven states are
x,y-position, yaw angle, x,y-velocity, yaw rate and vehicle slip angle. The results
can be visualized against IMU measurements using static method
visualize_simulation of Simulator class. Two input arguments of this function
are:

• tuple of states array and its derivative array estimated during the simulation

• tuple of time, longitudinal and lateral accelerations and yaw rate arrays of
IMU (consider the order of variables).
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List of Abbreviations

RPAD Research Platform for Autonomous Driving

ROS Robot Operation System

DC Direct Current

IMU Inertial Measurement Unit

LiPo Lithium Polymer

SDK Software Development Kit

RPM Revolutions Per Minute

RMSE Root Mean Square Error

DoF Degrees of Freedom

MPC Model Predictive Control

CoG Center of Gravity

LUT Look-Up Table

VESC Vedder Electronic Speed Controller
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