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Kurzfassung

Die genaue Ermittlung der Position und Orientierung eines Objektes im Raum, besser
bekannt als die Berechnung von Posen, ist eine fundamentale Problemstellung in vielen
Bereichen wie Computer Vision, Robotik oder industrielle Automatisierung. Während sich
viele der kürzlich entwickelten Methoden als sehr effektiv herausgestellt haben, werden
symmetrische Objekte - trotz derer zahlreichen Präsenz im täglichen Leben - von den
Autoren vielfach ignoriert. Aufgrund der Ambiguität der repräsentierenden Orientierungen
stellen diese jedoch eine besondere Herausforderung dar und können bei vielen der aktuellen
Methoden zu teils schwerwiegenden Problematiken führen. Um diese Lücke zu beheben,
präsentieren wir einen Ansatz zur robusten Berechnung von Posen, der alle Arten von
Objekten berücksichtigt, also auch symmetrische.
Typischerweise werden Posen in der Praxis mit rigiden Transformationen assoziiert. Diese

Herangehensweise ist allerdings suboptimal bei symmetrischen Objekten. Wir wollen dieses
Problem von Grund auf lösen, indem wir den Begriff der Pose neu definieren. Danach
führen wir eine Metrik auf diesem Raum der Posen ein, welche die Symmetrie des Objektes
berücksichtigt. Mit dieser Metrik weiten wir eine bestehende Methode zur Bestimmung von
Posen auf alle Objekttypen aus.
Dazu demonstrieren wir zuerst die mangelhafte Funktionsweise des klassischen Zugangs

mittels Experimenten mit synthetischen Daten. Danach zeigen wir die Effektivität unseres
Algorithmus mit realen Daten. Zusätzlich vergleichen wir unseren Ansatz mit bestehenden
Methoden und zeigen verbesserte Genauigkeit und Robustheit.



Abstract

The precise determination of an object’s position and orientation in space, known as pose
estimation, is fundamental in fields such as computer vision, robotics, and industrial au-
tomation. Despite the effectiveness of recent methods, authors frequently overlook the
presence of symmetrical objects, which are ubiquitous in daily life. Due to the ambiguity
of the representing orientation, such objects impose a special challenge when estimating
their pose. To address this issue, we present a robust pose estimation approach applicable
to all types of objects.
Typically, poses are associated with rigid transformations. However, this approach fails

when dealing with symmetrical objects. We aim to tackle this problem at the core, by
redefining the notion of pose. Subsequently, we introduce a metric on this space of poses,
which accounts for the object’s symmetries. Using this distance, we enhance a conventional
method of robust pose estimation to accommodate symmetrical objects.
We demonstrate the insufficiency of a classical approach through experiments conducted

with synthetic data. Furthermore, we validate the effectiveness of our proposed method
through an experiment utilizing real-world data. This involves a comparative analysis with
other state-of-the-art algorithms, showing improved robustness and accuracy.
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AIT, who guided me very carefully throughout this thesis. She gave me excellent mathe-
matical support and many insights into the world of research, which were very valuable.
Furthermore, I would also like to thank my supervisor, Christian Müller, for assisting me
with all types of geometrical questions and for igniting my passion for geometry.
I also wish to thank Markus Murschitz, who gave me many new insights into program-

ming, Michael Schwingshackl, who was a big help in providing the data, and Florian Wim-
mer, who was a mathematical support. Moreover, my deepest gratitude is to my family,
who always encouraged me throughout this journey, and to everyone else that was part of
my academic path.



Eidesstattliche Erklärung
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1 Introduction

Estimating the pose of a 3D rigid object is a fundamental task appearing in numerous
fields, including computer vision, robotics, augmented reality, and industrial automation.
The pose of an object is widely regarded as its static state in space and is usually described
in terms of position and orientation with respect to a fixed coordinate frame. Pose esti-
mation typically refers to accurately detecting a specified object within a complex scene
and correctly determining its pose. These scenes often originate from laser scans or depth
images and contain significant clutter and noise, thus such processes are required to be
robust. While traditional pose estimation techniques perform well for most objects, they
tend to struggle when dealing with symmetrical objects because of the unique challenges
posed by their special shape.

To grasp the problem better, it is essential to understand the notion of a pose. Even
though a strict definition does not exist, poses are commonly agreed to be identified with
rigid transformations. Those transformations leave the shape of the object unchanged, and
are special forms of isometries of R3, known as the Special Euclidean group SE(3). This
approach works well for a non-symmetrical object, but entails some challenges if the object
admits symmetries. In that case, multiple rigid transformations describe the same static
state of the object. A sphere for example can be rotated arbitrarily but will never change
its shape. In other words, the assignment of a rigid transformation to the shape of an
object is not one-on-one anymore.
While this ambiguity does not present a challenge when describing poses, it does when

a notion of distance is required. The space SE(3) has been widely studied and is equipped
with several common metrics [BK02], [Par95], which are commonly used as a form of
distance on the pose space. However, for symmetrical objects this is of limited usage, as
there is no unique element of SE(3) to describe the object’s state. This could lead to cases
where two poses admit the same physical appearance but have a distance greater than
0 since the underlying rigid transformations are different. Therefore, a metric would be
ill-defined.
Numerous popular robust pose estimation methods rely on such a concept of distance be-

tween poses. Local approaches based on local invariant features, such as [DUNI10], [CJ97],
[TTKK14], and [RBB09], have proven to be highly efficient and have garnered significant
interest in recent years. They consist of generating a large set of poses which approximately
describes the ground truth. Processing this set of candidates usually requires a notion of
distance or at least of similarity to perform operations like neighborhood queries. Global
approaches circumventing this problem, like [PGBP10], [SWK07] or [RVDH05], are known
for being rather inefficient or specified for very particular objects and have not attracted
much attention. In the current deep learning era, many machine learning attempts like
[HLI+13], [KMT+17], [DCPR18], or [TSF18] were made. While these methods also enjoy
great success, they usually do not discuss the handling of symmetrical objects. According
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1 Introduction

to [PRIL19] or [RL18], symmetries can be challenging due to the ambiguity of the poses and
their respective representations, possibly leading to convergence problems of the algorithm.
Here a notion of distance is of utterly importance as a form of loss function.
As we have stated above, many authors overlook the presence of symmetrical objects, al-

though they occur frequently in real-world scenarios. Their methods often employ metrics
that are ill-suited for symmetrical objects, potentially resulting in subpar outcomes. How-
ever, some attempts were made to circumvent this challenge. The approach of [PRIL19] is
to normalize the pose rotation and [DI15] extend their method developed in [DUNI10] to ge-
ometric primitives, such as cylinders or spheres. Some authors like [HKLM22] or [dFMB15]
focus on rotationally symmetric objects. That is, most approaches either specify one type
of symmetry or only work for geometric primitives for which they are designed.
Our goal is to develop a method for robust pose estimation that is applicable to all types

of objects. We believe that defining a symmetry-aware metric within the pose space is cru-
cial to achieving this goal. Our work resembles the methods of [BDLC18] and [BDLC17]
which precisely address this challenge. They adapt the widely adopted method for robust
pose estimation proposed by [DUNI10] by employing their symmetry-aware distance to ac-
commodate symmetrical objects. Our contributions involve employing a different clustering
approach combined with using the voting scores as weights.
Defining a metric on the pose space requires a whole new definition of the pose itself,

which will be thematized in Chapter 2. There we will explore the symmetries of 3D objects
as well. Subsequently, in Chapter 3, we will introduce a metric on the pose space that
comprehensively accounts for all symmetries. We will not only offer a theoretical framework
but also present an easy and efficient method for practical computation. Moving forward,
Chapter 4 will be devoted to the theory of robust pose estimation, where we aim to use
our proposed distance to extend a given method to be valid for all types of symmetry.
Finally, in the concluding chapter, we will validate our developed theory through practical
testing, demonstrating the significant impact of considering symmetries on pose estimation
in terms of robustness and accuracy.
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2 The pose of any rigid object

Generally, throughout this thesis, we will speak about rigid objects, which we treat as any
non-empty, bounded subset of Rn, where n equals 3 most of the time. The term rigid
should emphasize that we do not want the shape or geometry of the object to be changed.
Mathematically speaking, we want the distance between any two points of the object to be
preserved by any transformation, avoiding distortions.
The pose of an object refers to the position in space where the object is located. This
chapter is devoted to finding a formal mathematical description of the pose of any rigid
object, including those with symmetries.

2.1 The pose space

Especially in computer vision and robotics, the notion of pose is widely used. Even though
it is somehow intuitively clear what is meant, it is not straightforward to find a proper
description, and we are not aware of a general definition in the literature. Therefore, we
will refer to the definition given by [BDLC18].

Definition 2.1.1 (Pose). The pose of a rigid object is a distinguishable static state of this
object. The set of all possible poses is called the pose space of the object and is denoted
with C.
Remark. In robotics literature, the pose space is often referred to as the configuration space,
which is why we use the letter C.
We will see that the pose space of an object is heavily dependent on the object itself.

In the case of the object being a sphere, the pose space can be stated immediately by
straightforward arguments.

Example 2.1.2. Let O be a sphere in Rn, i.e. O = {x ∈ Rn | ∥x∥ = r} for any r > 0.
Then the pose of O is uniquely determined by the center of O. Any point c ∈ Rn defines a
unique distinguishable static state of O by being its center, therefore C ∼= Rn.

In general, it will not be that easy to describe the pose space, since not only the position
of an object plays a role, but also the orientation. In the case of a sphere, the orientation
is omitted by its special shape. There are various classes of shapes that lead to different
descriptions of the pose space.

Regardless of the shape of an object, the main tool to describe the pose space is the set
of transformations that leave the object’s shape fixed.
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2 The pose of any rigid object

2.2 Rigid transformations

With the term transformation we refer to a map from Rn to itself. If we have a transfor-
mation T and an object O ⊂ Rn, then the image T (O) := {T (x) | x ∈ O} ⊂ Rn describes
another object. For a general transformation, this image could be anything, but as we have
stated before, we want the shape of our object to be preserved. Formally speaking, for any
two points x, y ∈ O the distance of T (x) and T (y) should be the same as of x and y. This
leads to the following important definition, which is for example due to [GS07] where it is
stated only for two dimensions, but the same definition can be easily extended to Rn.

Definition 2.2.1 (Rigid transformation). A rigid transformation T is a surjective map
from Rn to Rn which is isometric, i.e.

∀x, y ∈ Rn : ∥T (x)− T (y)∥ = ∥x− y∥.

First, we want to study the structure of rigid transformations.

Lemma 2.2.2. Every rigid transformation is injective and therefore bijective.

Proof. Let x, y ∈ Rn and T (x) = T (y). Then we have

0 = ∥T (x)− T (y)∥ = ∥x− y∥

and therefore x = y.

Theorem 2.2.3. The set of rigid transformations forms a group with the operation being
the composition of maps.

Proof. One can easily check that the identity E : x �→ x serves as the neutral element. The
composition of bijective maps is again bijective and if S, T are rigid transformations, then
for any x, y ∈ Rn, we have

∥S(T (x))− S(T (y))∥ = ∥T (x)− T (y)∥ = ∥x− y∥,

which shows that S ◦ T is again an isometry. Since any rigid transformation T is bijective
it admits an inverse T−1, satisfying T ◦ T−1 = E = T−1 ◦ T .

A simple, yet very important example of a rigid transformation can be given by trans-
lating a point by a fixed vector.

Definition 2.2.4. The map Ta : Rn → Rn, x �→ x+a is called a translation by the vector a.

Remark. One can easily verify for x, y ∈ Rn, that

∥Ta(x)− Ta(y)∥ = ∥x+ a− (y + a)∥ = ∥x− y∥

which shows that Ta is an isometry. The preimage of x is x− a, therefore Ta is surjective
and a rigid transformation.
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2 The pose of any rigid object

To give other examples of rigid transformations, we need a quick review of notation. If a
transformation T is linear, then it can be represented by a matrix A ∈ Rn×n via T (x) = Ax.
Translations for example are not linear, therefore they cannot be represented by a matrix
(at least not in the same dimension).

Definition 2.2.5. A matrix A ∈ Rn×n is said to be orthogonal, if ATA = E = AAT .

Since for any matrix A it holds that detA = detAT , the multiplication theorem of
determinants shows detA = ±1 in the case of A being orthogonal. It can be easily seen,
that the product of orthogonal matrices is again orthogonal, therefore they form a group,
the Orthogonal group O(n).

Orthogonal matrices form another important class of rigid transformations. One quick
way to see this is to recall that orthogonal matrices have norm 1, which immediately implies
isometry. A different argumentation via the study of basis can be found in [Gal11]. The
following well-known classification is due to [GS07].

Definition 2.2.6. An orthogonal matrix A ∈ Rn×n is called a rotation if det(A) = 1 and
a reflection if det(A) = −1.

For two rotation matrices R and S, we have that det(RS) = det(R) = det(S) = 1,
implying that the rotation matrices form a subgroup of O(n). This is often referred to as
the Special Orthogonal group SO(n).
Together with translations, orthogonal matrices allow us to describe the set of rigid

transformations more explicitly.

Theorem 2.2.7. Every rigid transformation is the composition of a translation and an
orthogonal transformation.

Proof. Let T be a rigid transformation. We have T (0) = a for some a ∈ Rn. The rigid
transformation U := T−a ◦ T satisfies U(0) = 0. We need to show that U is orthogonal.
First, note that U respects norms, since

∥U(x)∥ = ∥U(x)− U(0)∥ = ∥x− 0∥ = ∥x∥. (2.1)

It also respects the scalar product. This can be seen in the following way. Let x, y ∈ Rn.
Since U is rigid, we have

∥x− y∥2 = ∥U(x)− U(y)∥2.
Now we compute

∥x− y∥2 = ⟨x− y, x− y⟩ = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2
∥U(x)− U(y)∥2 = ⟨U(x)− U(y), U(x)− U(y)⟩ = ∥U(x)∥2 − 2⟨U(x), U(y)⟩+ ∥U(y)∥2

and with the help of (2.1) we obtain

⟨x, y⟩ = ⟨U(x), U(y)⟩. (2.2)

5



2 The pose of any rigid object

In the last step, we want to show the linearity of U . Let λ ∈ R, then we obtain with (2.2)

∥U(λx)− λU(x)∥2 = ∥U(λx)∥2 − 2λ⟨U(λx), U(x)⟩+ λ2∥U(x)∥2
= ∥U(λx)∥2 − 2λ⟨λx, x⟩+ λ2∥x∥2
= ∥U(λx)∥2 − λ2∥x∥2
= ∥U(λx)∥2 − ∥λx∥2 = 0.

In the same manner one can show that

∥U(x+ y)− U(x)− U(y)∥2 = 0.

In total, we obtain U(λx + y) = λU(x) + U(y) and therefore the linearity of U . The
representing matrix of U in an orthonormal basis is orthogonal. Subsequently, T can be
written as T = Ta ◦ U .

This theorem shows that any rigid transformation can be written as a tuple (R, Ta),
where R is a reflection or a rotation. The set of all rigid transformations in dimension n
is also called the Euclidean group of order n, written as E(n). If we restrict R to being a
rotation, we obtain the Special Euclidean group of order n, SE(n). This set is also referred
to as the set of proper rigid transformations.
In robotics, the Special Euclidean group is of wide interest since they preserve the hand-
edness of an object. In this work, we will only focus on SE(n), often omitting the term
proper for rigid transformations. In the sense of Theorem 2.2.7 we will write T = (R, t) for
a proper rigid transformation T , where R ∈ Rn×n is a rotation and t ∈ Rn is a translation
vector.

2.3 Linking the pose space with SE(n)

The Special Euclidean group is highly related to the pose space, as proper rigid transfor-
mations will be the main tool to describe the state of an object. Connecting both terms
is due to [BDLC18]. Let us consider an object O and an arbitrary pose P0 ∈ C. Applying
any rigid transformation to the object at its reference pose will define a static state of the
object. Therefore, every rigid transformation describes a pose. Conversely, suppose P ∈ C
is an arbitrary pose. Then, P can be reached via a rigid transformation T = (R, t) applied
to the reference pose P0. To be more precise, this works the following way. If x ∈ Rn is a
point linked to the object at P0, then the rigid transformation

T (x) = Rx+ t

sends x to a point T (x) assigned to the object at pose P . Therefore, we can use SE(n) to
fully describe the pose space.
However, this approach admits a certain problem in some cases. It would be desirable to

assign to each pose exactly one rigid transformation to have a proper representation. But
in general, two different rigid transformations do not automatically lead to two different
distinguishable static states. For example, consider the simple case of the object being a
sphere. Any two transformations T1 = (R1, t1), T2 = (R2, t2) will lead to the same pose, as
long as t1 = t2. The problem lies in the shape of the sphere: it admits symmetries.

6



2 The pose of any rigid object

2.4 The symmetry group

Formally speaking, symmetries are invariants of rigid transformations. The following defi-
nition can be found for example in [Ced04].

Definition 2.4.1. A symmetry of a given object O is a proper rigid transformation T , such
that T (O) = O. The set of all symmetries of O is denoted as GO and is called the proper
symmetry group of O. The word proper shall emphasize the fact that we are excluding
reflection symmetries. For simplicity, we will often refer to it as the symmetry group.

Remark. Since the identity is trivially a symmetry, the proper symmetry group is never
empty. Indeed, it also forms a group with composition. If S, T ∈ GO, then

S ◦ T (O) = S(O) = O

and the inverse of a symmetry T is given by T−1. Therefore, the proper symmetry group
is a subgroup of SE(n).

Example 2.4.2. The symmetry group of the sphere with a fixed radius is given by SO(n).

Example 2.4.3. If O = Rn, then GO = SE(n), that is why SE(n) can be seen as the
symmetry group of the space itself.

If the object is bounded, we can make an additional assumption about the proper sym-
metry group.

Theorem 2.4.4. If the given object O is bounded, GO is a subgroup of SO(n).

Proof. For any rigid transformation T = (R, t) the condition T (O) = O can only be fulfilled
if t = 0, otherwise this would contradict the boundedness of O. Therefore T must be a
rotation.

Remark. This does not have to be the case if O is unbounded. Consider an infinite line,
with direction vector x ∈ R3, x ̸= 0. Then the symmetry group of the line is the set of all
translations along that line and all rotations around the line.

2.5 Poses as equivalence classes of SE(n)

Now we want to formalize the connection of the pose as we defined it and the symmetry
group, which is due to [BDLC18]. Heuristically speaking, the pose space is the special
Euclidean group factorized by the symmetry group. It turns out to be fruitful to see the
pose space as a set of equivalence classes of SE(n). Rigid transformations are considered
to be equivalent if they transform the object into the same pose.

Remark. There is an algebraic construction to factorize a groupG by a subgroupH, notated
by G/H which is defined by G/H := {gH | g ∈ G}. However, it turns out that such a
construction is only possible if H is a normal subgroup, meaning that for every g ∈ G
the condition gHg−1 = H is fulfilled. In general, GO does not need to be normal. For
example, SO(3) does not contain any normal subgroup which is not trivial. Such groups
are called simple. A proof of this can be found in [Sti08]. This is the reason we have to
rely on equivalence classes rather than using this powerful algebraic tool.
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2 The pose of any rigid object

Lemma 2.5.1. Let O be an object in Rn, then

T1 ∼ T2 :⇔ T1(O) = T2(O) (2.3)

defines an equivalence relation on SE(n). The equivalence classes are precisely given by

[T ]∼ = {T ◦ S | S ∈ GO}. (2.4)

Proof. The fact that ∼ is an equivalence relation follows directly from the properties of the
equivalence relation ” = ” in Rn. The statement of the equivalence classes follows since for
a given S ∈ GO it holds by definition that S(O) = O.

This fact allows us to establish a deeper connection between the pose space and SE(n).

Theorem 2.5.2. The pose space can be identified with SE(n)/ ∼, meaning that every pose
corresponds to exactly one equivalence class of rigid transformations.

Proof. Let O be an object with proper symmetry group GO. At the beginning of Section 2.3
we have already seen that any distinguishable static state can be described with a rigid
transformation T . By definition, every transformation S ∈ [T ]∼ describes the same static
state, therefore every pose corresponds to at least one equivalence class. If S ≁ T , then
S(O) ̸= T (O) so they cannot describe the same pose, meaning that every pose can be
identified with exactly one equivalence class of rigid transformations.

Example 2.5.3. If GO is trivial, i.e. the object admits no symmetries, then the pose space
can be identified with the whole SE(n).

2.6 Symmetry classes of bounded 3D objects

This chapter is devoted to obtaining a classification of possible symmetry groups. In
general, the proper symmetry group can be very complicated, especially if the object is
unbounded. Throughout this section, we will study a special case, namely the one of
bounded objects in three dimensions. As we will see in Theorem 2.6.13, we can classify
all possible finite symmetry groups. This result relies heavily on group theory, therefore
we need a few preliminaries. Generally, we will use the multiplicative notion of a group,
i.e. for a group (G, ·) and g, h ∈ G we will simply write gh for g · h and gn for g · g · . . . · g� �� �

n-times

omitting the notation for the operation. This chapter is due to [Arm97].

Definition 2.6.1. Let G be a group. A subgroup H of G is a subset of G which again
forms a group with multiplication.

If we consider a group G and take one element x from it, we can consider the set
H := {xn | n ∈ Z}. Then H forms a subgroup, since the neutral element is given by x0

and it is closed under multiplication, because xmxn = xm+n for m,n ∈ Z. This leads to
the following definition.

8



2 The pose of any rigid object

Definition 2.6.2. Let G be a group, x ∈ G. The subgroup {xn | n ∈ Z} is called generated
by the element x and denoted by ⟨x⟩. If ⟨x⟩ = G then G is called cyclic. The cyclic group
of order n (see Definition 2.6.4) is denoted by Cn.

Example 2.6.3. Let g ∈ SO(3) be a rotation of 10 degrees around a given axis a. The
group generated by g are all the rotations around a where the angle is a multiple of 10.
This group contains exactly 36 elements and is cyclic by definition.

Definition 2.6.4. Let G be a group. The number of its elements is called the order of G,
which could be possibly infinite. The order of an element g ∈ G is the order of its generated
group ⟨g⟩.
Example 2.6.5 (Dihedral group). The group Dn of symmetries of a regular polygon with
n sides is often referred to as the dihedral group of order n. Let r be a rotation of the
polygon of 2π/n around its center and s a rotation of π around one of the axis of symmetry
that lies in the plane of the polygon. The rotation s can also be seen as a reflection in the
symmetry axis. Then the elements of Dn are

e, r, r2, ..., rn−1, s, rs, r2s, ..., rn−1s.

Clearly we have ord(r) = n and ord(s) = 2. One can check geometrically that sr = rn−1s
and since rn−1 = r−1 we have sr = r−1s. It can be shown that r and s generate Dn, which
leads to the definition

Dn := ⟨r, s | ord(r) = n, ord(s) = 2, sr = r−1s⟩. (2.5)

Definition 2.6.6. Let G,H be two groups and ϕ : G → H a map. We call ϕ a group
homomorphism if

for all g, h ∈ G : ϕ(gh) = ϕ(g)ϕ(h). (2.6)

Definition 2.6.7. Let G be a group, X a set and SX the group of all permutations of X,
i.e. SX = {π : X → X | π bijective}. A group homomorphism ϕ : G → SX is called an
action of the group G on the set X.

Remark. The requirement of ϕ being a homomorphism allows a slight abuse of notation.
Instead of writing ϕ(g)(x) for the image of the point x ∈ X under the permutation ϕ(g)
one often simply writes g(x). Since ϕ is a homomorphism we get

for all g, h ∈ G, x ∈ X : g(h(x)) = ϕ(g)(ϕ(h)(x)) = ϕ(gh)(x) = gh(x),

which justifies the notation. We therefore say G is acting on X.

Definition 2.6.8. Let G be a group acting on X and x ∈ X. The set of all images of x
is called the orbit of x and will be denoted with G(x) = {g(x) | g ∈ G}. The subgroup
Gx of all elements of G that leave the element x fixed is called the stabilizer of x, i.e.
Gx = {g ∈ G | g(x) = x}.
Definition 2.6.9. Let G be a group with a subgroup H. The (left) cosets of H in G
are given by gH := {gh | h ∈ H} for every g ∈ G. The set of all cosets is denoted by
G/H = {gH | g ∈ G}. The cardinality of G/H is called the index of the subgroup H.

9



2 The pose of any rigid object

Remark. The fact that Gx indeed forms a subgroup of G can be seen directly. If two
elements g, h ∈ G leave x ∈ X fixed, then

gh(x) = g(h(x)) = g(x) = x.

For any element x ∈ X, there is an important connection between the size of its orbit
and the size of its stabilizer. We do not want to dive too much into detail here, but the
results rely on basic group theory.

Theorem 2.6.10. Let G be a group acting on X and x ∈ X. If G is finite, then

|G(x)| · |Gx| = |G|. (2.7)

Proof. A proof of this is given in [?, Chapter 17]armstrong1997groups

Theorem 2.6.11 (Counting theorem / Lemma of Burnside). Let G be a finite group
operating on a set X. Denote with Xg := {x ∈ X | g(x) = x} the set of all fixpoints
concerning the element g. Then the number N of distinct orbits is given by

N =
1

|G|
�
g∈G

|Xg| = 1

|G|
�
x∈X

|Gx|. (2.8)

Proof. A detailed proof of this well-known result can be found in [Arm97, Chapter 18].

Before we tackle the more general 3D case, we want to take a look at symmetries in two
dimensions.

Theorem 2.6.12. Let G be a finite subgroup of O(2). Then G is either cyclic or dihedral.

Proof. First, suppose that G lies in SO(2), meaning that all the elements of G are rotations
of the plane. Denote with Aθ the matrix representing the anticlockwise rotation of θ about
the origin, where 0 ≤ θ < 2π. Choose ϕ > 0 as small as possible such that Aϕ ∈ G. We
want to show that Aϕ generates G. Let Aα ∈ G be any rotation in G. Divide α by ϕ to
get α = kϕ+ ψ, where k ∈ Z and 0 ≤ ψ < π. The equation

Aα = Akϕ+ψ = Ak
ϕAψ

implies that
Aψ = A−k

ϕ Aα

which shows that Aψ ∈ G. But ψ > 0 would contradict the minimality of ϕ which means
ψ = 0. Therefore every element of G is a power of Aϕ and G is cyclic.
Suppose G is not fully contained in SO(2) and set H = G ∩ SO(2). Then H is a

subgroup of G with index 2. The statement above implies that H is cyclic, so we can
choose a generator A. Since the index of H is 2, for an element B ∈ G \H it holds that
B2 = I and B /∈ SO(2), i.e. B represents a reflection. Now there are two cases. If A = I,

10



2 The pose of any rigid object

then G is the cyclic group ⟨B⟩ containing two elements. If the order of A is n ≥ 2, then
ord(A) = n, ord(B) = 2. The elements of G are given by

I, A, ..., An−1, B,AB, ..., An−1B,

and satisfy BAB−1 = A−1, so A and B are the generators of the dihedral group of order n,
as the correspondence A �→ r, B �→ s determines an isomorphism to a dihedral group as in
Example 2.6.5.

We can now finally present this chapter’s main result, which can be found in [Arm97] or
[Wey15].

Theorem 2.6.13. Let G be a finite subgroup of SO(3). Then G is isomorphic to one of
the following groups:

• the cyclic group Cn for n ∈ N

• the dihedral group Dn for n ∈ N

• the rotational group of the tetrahedron (containing 12 elements)

• the rotational group of the cube (containing 24 elements)

• the rotational group of the icosahedron (containing 60 elements)

Proof. Each element g ∈ G represents a rotation of R3 about an axis ag that passes through
the origin. The axis ag intersects the unit-sphere S2 = {x ∈ R3 | ∥x∥ = 1} in exactly two
points, which are called the poles of g. The poles are exactly those points of S2 which are
left fixed by g. Let X be the set of all poles of all elements of G \ {e}, where e denotes the
identity. We will first show, that G is an action on X.
Suppose g ∈ G. For any x ∈ X, there is according to the definition of X, an h ∈ G, such

that x is a pole of h. Since h leaves x fixed, the calculation

(ghg−1)(g(x)) = g(h(x)) = g(x)

shows that g(x) is a fixed point of the element ghg−1, i.e. a pole. But this means nothing
else than g(x) ∈ X, therefore G is indeed acting on X.
The core idea is to use the Lemma of Burnside, Theorem 2.6.11, with the group G acting

on X. Let N be the number of distinct orbits and choose one pole x1, ..., xN of each of
these. Every g ∈ G \ {e} has exactly two poles, which implies |Xg| = 2. Additionally, the
identity e fixes every point, therefore we obtain

N =
1

|G|
�
g∈G

|Xg| = 1

|G|
�
2(|G| − 1) + |X|�.

By our choice of x1, ..., xN we have |X| = �N
i=1 |G(xi)|. With Theorem 2.6.10 and some

rearrangements we obtain
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2 The pose of any rigid object

2

�
1− 1

|G|
�

= N − |X|
|G| = N −

N�
i=1

|G(xi)|
|G| = N −

N�
i=1

1

|Gxi |
=

N�
i=1

�
1− 1

|Gxi |
�
. (2.9)

If G is trivial there is nothing to prove, so let us assume G contains at least two elements.
Therefore we have

1 ≤ 2

�
1− 1

|G|
�

< 2.

According to Theorem 2.6.10, each stabilizer Gxi has at least order 2 if G is not trivial,
which implies

1

2
≤ 1− 1

|Gxi |
< 1, for i = 1, ..., N. (2.10)

Since the whole sum of the rightmost expression of (2.9) is smaller than 2, but every
summand is larger than 1/2, N is either 2 or 3.

If N = 2 we obtain from (2.9) that 2 = |G(x1)|+ |G(x2)| and there can only be two poles.
This means there are exactly two distinct poles that define one axis a. Every element of
G must be a rotation around this axis. Therefore, G is isomorphic to a finite subgroup of
not only O(2) but even SO(2). According to Theorem 2.6.12 G must be cyclic.

Things get more complex if N = 3. For simplicity, let us rename x1, x2, x3 with x, y, z.
Since (2.9) leads to

2

�
1− 1

|G|
�

= 3−
�

1

|Gx| +
1

|Gy| +
1

|Gz|
�

which can be simplified to

1 +
2

|G| =
1

|Gx| +
1

|Gy| +
1

|Gz| . (2.11)

The left-hand side of this equation implies that

1

|Gx| +
1

|Gy| +
1

|Gz| > 1. (2.12)

This condition leads to 4 possible options, up to permutation. W.l.o.g. we assume
|Gx| ≤ |Gy| ≤ |Gz|.

a) |Gx| = 2, |Gy| = 2 and |Gz| = n for n ≥ 2

b) |Gx| = 2, |Gy| = 3 and |Gz| = 3

c) |Gx| = 2, |Gy| = 3 and |Gz| = 4

d) |Gx| = 2, |Gy| = 3 and |Gz| = 5

Let us consider these cases in detail. It shall be noted, that (2.11) immediately gives us
the order of the group G.

12



2 The pose of any rigid object

a) If n = 2, then G is a group of order 4 and every element except the identity has order 2.
Then, G must be isomorphic to a group called Klein’s group, which is isomorphic to
the dihedral group D2.

If |Gx| = |Gy| = 2 and |Gz| = n ≥ 3 then G must be of order 2n. The axis through z
and −z is fixed by every element of the stabilizer Gz. We conclude that Gz must be a
cyclic group of order n. Suppose g is the minimal rotation that generates Gz. Because
of the minimality of g, all the points x, g(x), g2(x), ..., gn−1(x) must be distinct. Since
g ∈ SO(3), it is an isometry and we obtain

∥x− g(x)∥ = ∥g(x)− g2(x)∥ = · · · = ∥gn−1(x)− x∥.

Therefore, the elements x, g(x), . . . , gn−1(x) form a regular polygon P with n vertices
lying in a plane through the origin and perpendicular to the axis going through z and
−z. The group G consists exactly of those 2n rotations that send P to itself, hence G
must be the rotational symmetry group of P , which is the dihedral group of order n.

b) The group G has exactly 12 elements in this case while the orbit of z consists of 4
elements. Let us choose one point u of this orbit with 0 < ∥u − z∥ < 2 and one
generator g of Gz. Since g(z) = z and g is an isometry, we obtain

0 < ∥z − u∥ = ∥z − g(u)∥ = ∥z − g2(u)∥ < 2,

and therefore u, g(u) and g2(u) are all equidistant from z. These points must form an
equilateral triangle. If we switch our attention to u, we see that the points z, g(u) and
g2(u) are all equidistant from u and form an equilateral triangle as well. We conclude
that z, u, g(u) and g2(u) form a regular tetrahedron and G must be the rotational
symmetry group of the tetrahedron.

c) Here G has order 24 and therefore the orbit of z contains 6 elements. Choose again
u of this orbit, where u is neither z nor −z. Let g be a generator of Gz. With
similar arguments as in the case before, we obtain that u, g(u), g2(u) and g3(u) must
be the corners of a square. The only point left in the orbit of z has to be −z. Again,
switching the focus to u shows directly that the pole −u has to be in G(u) = G(z).
Since ∥g(u) − u∥ = ∥g3(u) − u∥ < 2 we get that g2(u) = −u. All in all, we obtain a
regular octahedron with vertices z,−z, u, g(u), g2(u) and g3(u) and G is its symmetry
group.

d) In the last case, G contains 60 elements and G(z) contains 12 points. Let g be a minimal
rotation generating Gz. We can choose a point u ∈ G(z) where u, g(u), g2(u), g3(u)
and g4(u) are distinct and equidistant from z and form therefore a regular pentagon.
We can do the same with a point v ∈ G(z) that is further away from z than u and
repeated action of g on v forms a pentagon again. Therefore we can choose u and v
satisfying

0 < ∥z − u∥ < ∥z − v∥ < 2.

The twelfth point which is left in the orbit of z can only be −z. Now, as G(u) = G(z)
and −u has to be in there as well, it has a distance of 2 to u and therefore can not be on
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2 The pose of any rigid object

Figure 2.1: Symmetry group of the icosahedron, from [Arm97]

the pentagon containing u. It can neither be z nor −z, so it must be in the pentagon
generated by v. W.l.o.g we assume −u = v, then −gr(u) = gr(v). Now we change our
attention to u. The five points which must be closest to u are z, g(u), g−1(u), g2(v)
and g3(v). Those must be equidistant as well and form another pentagon. All in all,
it is easy to check that the twelve points form a regular icosahedron and G is the
corresponding rotational symmetry group.

While we have successfully identified all finite subgroups of SO(3), the case is more com-
plicated for infinite subgroups. According to [BDLC18] there is a classification of potential
infinite proper symmetry groups that physically make sense. Namely, the spherical group
that corresponds to the whole SO(3), and rotational invariance along a given axis by any
angle. This is also called revolution symmetry, and can additionally include a reflection
symmetry across a plane that is orthogonal to the axis of revolution, which is also called
roto-reflection invariance. Other examples, like such that are not closed under the usual
topology, will be omitted in this work. This leaves us essentially with three classes of
symmetries that we will consider in this work:

• Spherical symmetry

• Revolution symmetry (with eventual roto-reflection invariance)

• Finite symmetry (containing the case of no given proper symmetry)

14



3 Defining a symmetry-aware distance on
the pose space

The goal of this chapter is to define a metric on the pose space C of a given rigid object.
A metric is a function d : C × C → R satisfying:

• ∀P ∈ C : d(P, P ) = 0

• ∀P1 ̸= P2 ∈ C : d(P1, P2) > 0

• ∀P1, P2, P3 ∈ C : d(P1, P3) ≤ d(P1, P2) + d(P2, P3)

• ∀P1, P2 ∈ C : d(P1, P2) = d(P2, P1)

As we will see, several classical approaches exist to define a metric on SE(3), but they
typically do not consider the object’s shape or symmetry. This whole chapter is due to
[BDLC18].

3.1 Prior works

In this section, we will shortly review an excerpt of the work done in this area and explain
the relevant advantages and disadvantages.

3.1.1 Decomposition in translational and rotational part

A natural approach to defining a distance on SE(3) is to decompose a rigid transformation
into its translational and rotational parts. In other words, it is making use of the fact
that SE(3) ≃ R3 × SO(3). By defining any metric dtrans on R3 and drot on SO(3), one
can fuse these to a metric on SE(3) by considering some form of weighted generalized
mean. For scaling factors a, b > 0, some exponent p ∈ [1,∞] and two rigid transformations
T1 = (R1, t1) and T2 = (R2, t2) the function

d(T1, T2) =
p
�

a · drot(R1, R2)p + b · dtrans(t1, t2)p (3.1)

defines a metric. The most natural selection for dtrans is the Euclidean norm, while the
selection for drot can be tricky. Various options are discussed and compared in [Huy09],
but the most common would be the Riemannian distance over SO(3). While this approach
is usually easy to compute, it admits a clear disadvantage: symmetries in objects are not
considered. While the translational part will not be affected by this, the rotational is.
Also, it does not take the shape of the object into account but only measures the rotational
angle. For example, the axis of rotation would make a big difference if an object is very
distorted.
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3 Defining a symmetry-aware distance on the pose space

3.1.2 Geometric approach

A different approach would be to focus purely on the geometric aspect. Rather than mea-
suring the distance between poses seen as transformations, it might be easier to calculate
the distance between corresponding points. Let µ be a density function assigned to the
object O and V =

�
µ(x) dv be the volume of the object. Then for two transformations

T1, T2 one can define for p ≥ 1

d(T1, T2) :=
1

V

��
µ(x)∥T1(x)− T2(x)∥p dv

�1/p

. (3.2)

This expression has a strong physical meaning and is used in several applications. For
example, [HLI+13] uses the case p = 1 for the evaluation of pose estimation to name
one. Nevertheless, while the interpretation of the metric is clear, the computation becomes
difficult as there is no closed form of the integral. A possible approach used by [HLI+13] is
to consider only some vertices of the model to be able to calculate the integral explicitly.
Moreover, this approach also disregards the existence of symmetries. Nevertheless, this
problem can be fixed and we will adapt this idea to propose a symmetry-aware distance on
the pose space.

3.2 Theoretical definition

This section proposes the formal definition of a symmetry-aware metric on the pose space P
of a given object O. With GO we will denote the proper symmetry group of O as in
Definition 2.4.1 and let µ be a positive density distribution. Formally, we assume µ◦G = µ
for all G ∈ GO. First, we will start by defining a concept for distance on SE(3).

Lemma 3.2.1. Let O be an object and T1, T2 ∈ SE(3). Then the surface integral

dno symm(T1, T2) :=

�
1

S

�
O
µ(x)∥T1(x)− T2(x)∥2 ds (3.3)

defines a metric on SE(3), where

S :=

�
O
µ(x)ds.

Proof. The fact that d(T1, T2) ≥ 0 is obvious, as well as d(T1, T2) > 0 for T1 ̸= T2 and the
symmetry. The triangle inequality is a direct application of Minkowski’s inequality.

The application of any other rigid transformation preserves this metric.

Lemma 3.2.2. For T1, T2, U ∈ SE(3) we have

dno symm(T1, T2) = dno symm(U ◦ T1, U ◦ T2). (3.4)
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3 Defining a symmetry-aware distance on the pose space

Proof. This follows straightforwardly from the fact that since U is a rigid transformation
we have

∥U ◦ T1(x)− U ◦ T2(x)∥2 − ∥T1(x)− T2(x)∥2

for any x ∈ R3.

As the pose space is defined as equivalence classes of SE(3) it is natural to define a
metric on these.

Definition 3.2.3. Let O be an object, and GO its proper symmetry group. Then the
function d : P × P → R+ defined by

d(P1, P2) := min
G1,G2∈GO

dno symm(T1 ◦G1, T2 ◦G2) (3.5)

forms a metric on the pose space, where T1, T2 ∈ SE(3) are representatives of the respective
equivalence classes of P1, P2 and dno symm is the function defined in Lemma 3.2.1.

Proof. To justify our definition, we need to show the independence of the respective repre-
sentatives of P1 and P2. Let T1, T̃1 be representatives of P1 and T2, T̃2 of P2. Then, since
the minimum is taken over all elements of the proper symmetry group, we obtain

d([T1], [T2]) = min
G1,G2∈GO

dno symm(T1 ◦G1, T2 ◦G2)

= min
G1,G2∈GO

dno symm(T̃1 ◦G1, T̃2 ◦G2) = d([T̃1], [T̃2]).

Moreover, the minimum is reached because the proper symmetry group is compact as a
closed subgroup of the compact group SO(3). Therefore d is well-defined. Lemma 3.2.1
shows immediately that d is a pseudo-metric.
If d(P1, P2) = 0, we have

min
G1,G2∈GO

dno symm(T1 ◦G1, T2 ◦G2) = 0

and since dno symm is a metric there exist G1, G2 ∈ GO such that T1 ◦ G1 = T2 ◦ G2. In
other words, T1 ≈ T2 or [T1] = [T2], so d is a metric.

We have shown that the metric is independent of the underlying representative. Some-
times we omit the notation of equivalence classes, just writing P = T for some representa-
tive T of the pose P .

It is possible to simplify the expression in some sense.

Lemma 3.2.4. Let P1, P2 ∈ P with representatives T1, T2 ∈ SE(3). Then

d(P1, P2) = min
G∈GO

dno symm(T1, T2 ◦G) = min
G∈GO

dno symm(T1 ◦G, T2). (3.6)
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Proof. We will deduce the statement directly from (3.5). For two proper symmetries
G1, G2 ∈ GO one can simply use the substitutions x ← G1(x) and G ← G2 ◦ G−1

1 to
obtain

d2no symm(T1 ◦G1, T2 ◦G2) =
1

S

�
O
µ(x)∥T2 ◦G2(x)− T1 ◦G1(x)∥2 ds

=
1

S

�
G1(O)

µ(G−1
1 (x))∥T2 ◦G(x)− T1(x)∥2 ds

=
1

S

�
O
µ(x)∥T2 ◦G(x)− T1(x)∥2 ds

= d2no symm(T1, T2 ◦G).

Here we used that µ ◦G−1
1 = µ and G1(O) = O. The second equation can be proven in the

same manner.

3.3 Practical computation

The computation of d is in general rather complicated since it involves solving a surface
integral. This is very unhandy for any practical use. Moreover, the symmetry group can be
potentially infinitely large, therefore the minimization problem is not trivial either. This
section will show how to compute the proposed distance efficiently.

Definition 3.3.1. Let Pi be poses for i = 1, 2. We call a finite subset R(Pi) ⊂ RN

representatives of Pi, if

d(P1, P2) = min
p1∈R(P1),p2∈R(P2)

∥p2 − p1∥. (3.7)

Definition 3.3.2. Let x ∈ RN , then the set

proj(x) := argmin
P

min
p∈R(P )

∥p− x∥2 (3.8)

is called the projection of x.

Representatives and projections act as the connection of the pose space with RN . One
can see the benefit of having representatives of poses. The computation of the distance
breaks down into computing a minimum of finite points in some RN , which can be done
efficiently. The difficulty will be to find such representatives. We will see, that this is highly
dependent on the symmetry class of the object and that this also determines N .
First, we need to take a look at dno symm. Recall that for poses P1, P2 with representing

rigid transformations T1, T2 and proper symmetries G1, G2 ∈ GO

dno symm(T1 ◦G1, T2 ◦G2) =

�
1

S

�
O
µ(x)∥T1 ◦G1(x)− T2 ◦G2(x)∥2 ds.

If we write Ti = (Ri, ti) for i = 1, 2 we get

18
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∥T1 ◦G1(x)− T2 ◦G2(x)∥2 = ∥R1G1x+ t1 − (R2G2x+ t2)∥2
= ∥R1G1x−R2G2x∥2 + ∥t1 − t2∥2 + 2(t1 − t2)

T (R1G1 −R2G2)x.

Choosing the origin of the frame as the object’s center of mass implies
�
O µ(x)x ds = 0.

Therefore the last term of the previous equation vanishes after integrating and we are left
with

d2no symm(T1 ◦G1, T2 ◦G2) =
1

S

�
O
µ(x)∥R1G1x−R2G2x∥2 + ∥t1 − t2∥2 ds,

and

d2(P1, P2) = ∥t1 − t2∥2 + min
G1,G2∈GO

1

S

�
O
µ(x)∥R1G1x−R2G2x∥2 ds� �� �
:=d2rot(P1,P2)

(3.9)

respectively.
So the metric can be decomposed into a translational and a rotational part. The trans-

lation is independent of the object, the interesting part lies in drot. In the following, we
will investigate this more in detail.

3.3.1 The sphere

We start with the simplest example - the sphere. For a sphere with a fixed radius, the
proper symmetry group is the whole SO(3). To find representatives, let us examine the
expression of the rotational distance. We have for rotations R1, R2 that

min
G1,G2∈GO

1

S

�
O
µ(x)∥R1G1x−R2G2x∥2 ds = 0,

since the minimum is reached for G1 = R−1
1 and G2 = R−1

2 . If we define R(P ) := t, then
(3.9) becomes

d(P1, P2) = ∥t1 − t2∥ = ∥R(P1)−R(P2)∥
and we found a representative of the sphere. In this case, N = 3. The point of its center
represents the pose of the sphere. Conversely, every point in R3 represents exactly one
pose. Therefore, we have already answered the question of the projection of the sphere,
being the point itself. Summing these observations up, we conclude the following theorem.

Theorem 3.3.3. The pose space of the sphere is isomorphic to R3.

Remark. All the previous arguments for the sphere are not restricted to the dimension of 3.
In fact, it holds for any dimension n.
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3.3.2 Obejcts without proper symmetries

Now we want to examine the other extreme - objects without any symmetries. This means
that GO = {I}. In that case every element T = (R, t) ∈ SE(3) corresponds to exactly one
pose. In order to find a representative of this pose we take a closer look at (3.9). As GO is
trivial, the rotational part of the metric can be reduced to

d2rot(P1, P2) =
1

S

�
O
µ(x)∥R1x−R2x∥2 ds. (3.10)

In the following, we need a few facts from basic linear algebra.

Definition 3.3.4. The trace of a matrix A ∈ Rn×n is defined as

Tr(A) :=

n�
i=1

aii.

The Frobenius norm is defined via

∥A∥F :=

���� n�
i,j=1

|aij |2.

Remark. The trace defines a linear operator on the set of matrices in Rn×n. It allows us to
express the norm of a vector with its outer product. For x ∈ Rn, the relation

∥x∥2 =
n�

i=1

x2i = Tr(xxT ) (3.11)

can be immediately seen. Moreover, it is easy to see that the assignment

[A,B] := Tr(ATB)

defines a scalar product on Rn×n. In fact, this scalar product induces exactly the Frobenius
norm, since

[C,C] = Tr(CTC) =
n�

i,j=1

c2ij = ∥C∥2F . (3.12)

Consequently, we can rewrite the inner part of the integral in (3.10).

Lemma 3.3.5. Let A,B ∈ Rn×n and x ∈ Rn. We write X := (xxT )1/2 ∈ Rn×n for the
square root matrix of the outer product of x.

∥Ax−Bx∥2 = Tr
�
(A−B)X2(A−B)T

�
= ∥AX −BX∥2F . (3.13)

Proof. The first equality follows immediately from (3.11) for the vector Ax−Bx. For the
second equation, we use (3.12) for the matrix (A−B)X and the fact that X = XT . Then
we have

Tr
�
(A−B)X2(A−B)T

�
= Tr

�
(A−B)XXT (A−B)T

�
= ∥AX −BX∥2F .
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3 Defining a symmetry-aware distance on the pose space

With this characterization, we immediately get a closed form for a representative. Denote
with vec the vectorization of a matrix. For any matrix A ∈ Rn×n it holds that ∥A∥2F =
∥ vec(A)∥2.
Theorem 3.3.6. The unique representative of a pose P = (R, t) for an object without any
proper symmetries is given by

R(P ) =
�
vec(RΛ)T , tT

�T ∈ R12, (3.14)

where

Λ :=

�
1

S

�
O
µ(x)xxT ds

�1/2

. (3.15)

Proof. Using Lemma 3.3.5 we obtain for two poses Pi = (Ri, ti), i = 1, 2

d2rot(P1, P2) =
1

S

�
O
µ(x)∥R1x−R2x∥2 ds

=
1

S

�
O
µ(x) Tr

�
(R1 −R2)xx

T (R1 −R2)
T
�
ds

= Tr

�
1

S

�
O
µ(x)(R1 −R2)xx

T (R1 −R2)
T ds

�
= Tr

�
(R1 −R2)Λ

2(R1 −R2)
T
�

= ∥R1Λ−R2Λ∥2F . (3.16)

Altogether we calculate

d2(P1, P2) = ∥R1Λ−R2Λ∥2F + ∥t1 − t2∥2 = ∥R(P1)−R(P2)∥2.

We see that in this case the set of representatives only contains one element, so each
pose admits a unique representative. The map R is in this case an isometric embedding
from the pose space into R12. The image of R is given by

R(C) =
��

vec(RΛ)T , tT
�T | (R, t) ∈ SE(3)

�
⊂ R12.

This shows that the embedding is never surjective, as for example 0 /∈ R(C) if we assume
Λ ̸= 0. This observation shows the difficulty in trying to find a projection for any given point
x ∈ R12. The problem breaks down into finding the closest rotation to an arbitrary matrix.
Denote with Rx ∈ Rn×n and tx ∈ R3 those elements which satisfy x = (vec(Rx)

T , tTx )
T . In

other words, we split a 12-D vector into a rotational and a translational part. The first
9 dimensions account for the rotation and the last 3 for the translation. The projection of
x is given by

proj(x) = argmin
P

∥x−R(P )∥2 (3.17)

= argmin
(R,t)∈SE(3)

∥Rx −RΛ∥2F + ∥tx − t∥2. (3.18)
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3 Defining a symmetry-aware distance on the pose space

This shows that the rotational and translational parts are independent of each other
and the minimum is reached for t = tx. This leaves us with minimizing the expression
∥Rx − RΛ∥F . There is a closed form of this problem, which is due to [Ume91], where a
proof can be found.

Theorem 3.3.7. The solution of the rotational part to the minimization problem (3.18) is
given by

argmin
R∈SO(3)

∥Rx −RΛ∥2F = USV T

where UDV T is a singular value decomposition of RxΛ satisfying

d1 ≥ d2 ≥ d3 ≥ 0

for D = diag(d1, d2, d3) and

S =

�
I if det(UV ) > 0

diag(1, 1,−1) else.

Moreover, this solution is unique, if rank(RxΛ
T ) ≥ 2.

3.3.3 Objects with finite symmetry group

This section is a continuation of the previous one. Recall that the definition of d was

d(P1, P2) = min
G1,G2∈GO

dno symm(T1 ◦G1, T2 ◦G2)

and the representative of a pose of an object without any proper symmetry was given by

R(P ) =
�
vec(RΛ)T , tT

�T ∈ R12. (3.19)

Now GO is finite, so the minimum will be reached, which immediately yields the set of
representatives.

Theorem 3.3.8. For an object with a finite proper symmetry group and a pose P = (R, t)
the set of representatives is given by

R(P ) =
��

vec(RGΛ)T , tT
�T | G ∈ GO

�
⊂ R12. (3.20)

Proof. This is straightforward since

d(P1, P2) = min
G1,G2∈GO

dno symm(T1 ◦G1, T2 ◦G2)

= min
p1∈R(P1),p2∈R(P2)

∥p1 − p2∥.

We have already given the result for the projection of objects without proper symme-
tries in Theorem 3.3.7. Now this result obviously still holds for objects with finite proper
symmetry group.
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3 Defining a symmetry-aware distance on the pose space

3.3.4 Objects of revolution without roto-reflection invariance

First, we want to consider objects of revolution without roto-reflection invariance. As usual,
we consider the object’s center of mass to be the origin. Moreover, we assume that the axis
of revolution is the z-axis, i.e. the linear subspace generated by ez := [0, 0, 1]T . Let Rϕ

z be
the rotation around ez of ϕ degrees. Then we can describe the proper symmetry group as

GO = {Rϕ
z | ϕ ∈ R}.

In that case, the covariance matrix Λ defined in (3.15) admits a special form.

Lemma 3.3.9. Let O be a revolution object with the axis of revolution being the z-axis.
Then Λ is of the form

Λ =

λr 0 0
0 λr 0
0 0 λz

 (3.21)

where λr, λz > 0.

Proof. We will explicitly calculate the surface integral using standard techniques. Let
γ : [a, b] → R3 be a curve representing the object of revolution, i.e. we have the parameter
representation

p(θ, t) =

γ1(t) cos θ − γ2(t) sin θ
γ1(t) sin θ + γ2(t) cos θ

γ3(t)

 , θ ∈ [0, 2π), t ∈ [a, b] (3.22)

for γ(t) = (γ1(t), γ2(t), γ3(t)). The partial derivates are given by

∂p

∂θ
=

−γ1(t) sin θ − γ2(t) cos θ
γ1(t) cos θ − γ2(t) sin θ

0


and

∂p

∂t
=

γ′1(t) cos θ − γ′2(t) sin θ
γ′1(t) sin θ + γ′2(t) cos θ

γ′3(t)

 .

An elementary computation shows

∥∂p
∂θ

× ∂p

∂t
∥ = ∥γ′3(t)(γ21(t) + γ22(t))− γ1(t)γ

′
1(t)− γ2(t)γ

′
2(t)∥

and we see that this expression is independent of θ. Altogether we obtain�
O
ppT ds =

� b

a

� 2π

0
ppT ∥∂p

∂θ
× ∂p

∂t
∥ dθdt

=

� b

a
∥∂p
∂θ

× ∂p

∂t
∥
� 2π

0
ppT dθdt.
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Now this integral can be computed explicitly. Using the fact that

0 =

� 2π

0
cos t dt =

� 2π

0
sin t dt =

� 2π

0
cos t sin t dt

shows that Λ is 0 outside of the diagonal. For the inner integrals on the diagonal we obtain� 2π

0
(γ1(t) cos θ − γ2(t) sin θ)

2 dθ = π(γ1(t)
2 + γ2(t)

2),� 2π

0
(γ1(t) sin θ + γ2(t) cos θ)

2 dθ = π(γ1(t)
2 + γ2(t)

2),� 2π

0
γ3(t)

2 dθ = 2πγ3(t)
2

All in all, this yields for the expression of Λ that

Λ =

� b

a
∥∂p
∂θ

× ∂p

∂t
∥
π(γ1(t)

2 + γ2(t)
2) 0 0

0 π(γ1(t)
2 + γ2(t)

2) 0
0 0 2πγ3(t)

2

 dt (3.23)

which proves our claim.

With this knowledge, we can simplify the rotational part of the distance. It turns out to
simply be a scaled distance of the different revolution axes, seen as 3D vectors.

Theorem 3.3.10. Let O be a revolution object and Pi = (Ri, ti) for i = 1, 2 two poses with
respective representatives. Then

d2rot(P1, P2) = λ2∥R1ez −R2ez∥2 (3.24)

with λ :=
�

λ2
r + λ2

z where λr, λz are given by Lemma 3.3.9.

Proof. We have seen in (3.16) that we can express drot as

d2rot(P1, P2) = min
ϕ1,ϕ2

∥R1R
ϕ1
z Λ−R2R

ϕ2
z Λ∥2F . (3.25)

Since the Frobenius norm is invariant under rotations we can rewrite it with R := R−1
2 R1

to obtain
d2rot(P1, P2) = min

ϕ1,ϕ2

∥R−ϕ2
z RRϕ1

z Λ− Λ∥2F . (3.26)

Parametrizing R with Euler angles gives us R = Rψ1
z Rθ

xR
ψ2
z . Injecting this into (3.26) and

with a change of variables we obtain

d2rot(P1, P2) = min
ϕ1,ϕ2

∥R−ϕ2
z Rθ

xR
ϕ1
z Λ− Λ∥2F . (3.27)
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3 Defining a symmetry-aware distance on the pose space

Accoring to Lemma 3.3.9, Λ has a specific diagonal form. Therefore the Frobenius norm
can be decomposed into two parts:

∥R−ϕ2
z Rθ

xR
ϕ1
z Λ− Λ∥2F = λ2

z ∥R−ϕ2
z Rθ

xR
ϕ1
z ez − ez∥2� �� �

=:aϕ1,ϕ2

+λ2
r(∥R−ϕ2

z Rθ
xR

ϕ1
z ex − ex∥2 + ∥R−ϕ2

z Rθ
xR

ϕ1
z ey − ey∥2� �� �

=:bϕ1,ϕ2

).

With basic calculus, one can evaluate these terms to

aϕ1,ϕ2 = 2(1− cos θ)

bϕ1,ϕ2 = 4− 2 cos(ϕ1 + ϕ2)(1 + cos θ).

Minimizing both expressions leads to

min
ϕ1,ϕ2

aϕ1,ϕ2 = min
ϕ1,ϕ2

bϕ1,ϕ2 = 2(1− cos θ).

Using the fact that

2(1− cos θ) = ∥Rez − ez∥2 = ∥R−1
2 R1ez − ez∥2 = ∥R1ez −R2ez∥2

completes the proof, as

d2rot(P1, P2) = (λ2
z + λ2

r)2(1− cos θ) = (λ2
z + λ2

r)∥R1ez −R2ez∥2.

This expression allows us immediately to find an expression for the representative.

Corollary 3.3.11. The representative of a pose P = (R, t) of a revolution object without
roto-reflection invariance is given by

R(P ) =
�
λ(Rez)

T , tT
�T ∈ R6, (3.28)

where λ is given by Theorem 3.3.10.

Proof. We obtain for poses Pi = (Ri, ti) for i = 1, 2

d2(P1, P2) = λ2∥R1ez −R2ez∥2 + ∥t1 − t2∥2
= ∥R(P1)−R(P2)∥2

if R is defined as claimed.

Again, we want to examine the map R further. Since the norm of Rez for any rotation R
is one, we get that the image is given by

R(C) = λS2 × R3 (3.29)

with λS2 = {x ∈ R3 | ∥x∥ = λ} being the unit sphere scaled by λ. This leads immediately
to the following:
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3 Defining a symmetry-aware distance on the pose space

Corollary 3.3.12. The pose space of a revolution object without roto-reflection invariance
is isometrically isomorphic to λS2 × R3.

This provides a clue on determining the projection of any given point x ∈ R6. Once
more, we can decompose it into a form where x = (aTx , t

T
x )

T , with ax, tx ∈ R3. Here, ax
signifies the axis and tx denotes the object’s translation. Our objective is to project ax
onto the rotational part of the image of R, essentially scaling it to a length of λ. In other
words, we have

proj(x) = argmin
P

∥x−R(P )∥2

= argmin
t,a∈R3,∥a∥=1

∥ax − λa∥2 + ∥tx − t∥2

=

�
(
ax

∥ax∥)
T , tTx

�T

.

This solution to the minimization problem is unique, as long as ax ̸= 0. This leads to
the following result.

Theorem 3.3.13. The projection of a given point x = (aTx , t
T
x )

T ∈ R6, where ax ̸= 0 is
given by

proj(x) =

�
(
ax

∥ax∥)
T , tTx

�T

. (3.30)

3.3.5 Objects of revolution with roto-reflection invariance

The case of revolution objects with roto-reflection invariance, such as a cylinder for example,
can be treated very similarly to the one without roto-reflection invariance. We take the
same assumptions as in the previous chapter, i.e. the axis of revolution being the z-axis.
We denote with Rα

x the rotation by α around the x-axis. Then the proper symmetry group
is given by

GO =
�
Rα

xR
ϕ
z | α ∈ {0, π}, ϕ ∈ R

�
.

Theorem 3.3.14. The representatives of a pose P = (R, t) of a revolution object with
roto-reflection invariance are given by

R(P ) =
��±λ(Rez)

T , tT
�T� ⊂ R6. (3.31)

Proof. Knowing the proper symmetry group, the distance between two poses P1, P2 can be
written as

d(P1, P2) = min
αa,α2∈{0,π};ϕ1,ϕ2∈R

dno symm


(R1R

α1
x Rϕ1

z ez, t1), (R2R
α2
x Rϕ2

z ez, t2)
�
.

Using Corollary 3.3.11 the distance of two poses Pi = (Ri, ti) for a revolution object can
be expressed as

d(P1, P2) = min
α1,α2∈{0,π}

∥pα1
1 − pα2

2 ∥, (3.32)
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where pαi =
�
λ(RiR

α
xez)

T , tTi
�T

. Now we have R0
xez = ez and Rπ

xez = −ez which proves
the theorem.

The question for the projection can be immediately answered with the result for revolu-
tion objects without roto-reflection invariance. The given projection consisting of a scaled
axis and the translation of the center of mass also holds if the object admits roto-reflection
invariance. Therefore we can immediately deduce the result from Corollary 3.3.13.

3.3.6 Symmetries within representatives

We have already seen that objects with non-trivial finite proper symmetry group and revo-
lution objects with roto-reflection invariance have multiple representatives for a single pose.
This is because the information about the symmetry is not hidden in the representative
itself but in the number of them. It is not surprising that the representatives themselves
admit symmetries as well in the ambient space RN . Here we will especially focus on the
case of a finite proper symmetry group. The set of representatives was given by

R(P ) =
��

vec(RGΛ)T , tT
�T | G ∈ GO

�
⊂ R12. (3.33)

Now it is easy to define a symmetry group on R(P ) for a pose P .

Definition 3.3.15. Let O be an object with finite proper symmetry group GO. Then the
set

GR := {sG | G ∈ GO} (3.34)

where

sG : R12 → R12

(vec(M)T , tT )T �→ (vec(MG)T , tT )T

forms a group with the composition operation.

Remark. The property of GR being a group follows directly from the fact that GO is a
group.

It would be desirable that for a representative r the set {sG(r) | G ∈ GO} is the whole
set of representatives. Before we can prove that, we need a lemma.

Lemma 3.3.16. For any proper symmetry G we have

ΛG = GΛ. (3.35)

Proof. By the definition of Λ2 we get

GΛ2 =
1

S

�
O
µ(x)GxxT ds.
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Now we can transform the integral via x ← G−1x and since G(O) = O and the invariance
of µ this evaluates to

GΛ2 =
1

S

�
O
µ(x)x(G−1x)T ds.

=
1

S

�
O
µ(x)xxTG−T ds = Λ2G.

In this calculation we used that G is a rotation, i.e. G−T = G. Now Λ2 is positive semi-
definite and therefore admits an eigenvalue decomposition Λ2 = UDUT whereD is diagonal
and U ∈ SO(3). Injecting this decomposition into the previous equation leads to

Λ2 = (GTU)D(GTU)T

which shows that GTU is also an eigenbasis of Λ2. Since Λ is the principal square root of
Λ2 it shares the same eigenspace. Thus

Λ = (GTU)D1/2(GTU)T = GTUD1/2UTG = GTΛG (3.36)

and Λ commutes with G.

Theorem 3.3.17. The group GR contains exactly as many elements as R(P ) for any
pose P . For any representative r ∈ R(P ) it holds that

{s(r) | s ∈ GR} = R(P ). (3.37)

Proof. Let (vec(RΛ)T , tT ) where R ∈ R3×3 and t ∈ R3 be a representative of a pose P .
According to Lemma 3.3.16 we have

sG((vec(RΛ)T , tT )T ) = (vec(RΛG)T , tT )T = (vec(RGΛ)T , tT )T . (3.38)

Hence the left-hand side is a representative of the same pose.

The elements of GR themselves are special transformations of the ambient space RN .

Proposition 3.3.18. Every s ∈ GR is a bijective, isometric, linear transformation of RN .

Proof. The linearity is clear, bijectivity can be seen since (sG)
−1 = sG−1 for any proper

symmetry G ∈ GO. Moreover, any G ∈ GO preserves the norm of a vector which implies
the isometry of s.

Remark. For revolution objects with roto-reflection, which admit two representatives, the
same results can be deduced with

GR := {sδ | δ = ±1} (3.39)

where

sG : R6 → R6

(aT , tT )T �→ (δaT , tT )T .
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3.4 Pose averaging

The problem of averaging poses arises in various applications, such as denoising or inter-
polation. While it is straightforward to define an average for the translational part, it gets
rather complicated for the orientation, since SO(n) is not a vector space. One way to
generalize the average to non-vector spaces is to consider the Fréchet mean.

Definition 3.4.1. Let S = {Pi}ni=1 be a finite set of poses and wi > 0 strictly positive
weights for i = 1, ..., n. For any metric d̂ on the pose space the expression

Φ(P ) =

n�
i=1

wid̂
2(Pi, P ) (3.40)

is called the Fréchet variance at P with weights wi. The Fréchet mean is given by

µf (S) = argmin
P∈C

Φ(P ), (3.41)

i.e. minimizing the Fréchet variance over all poses.

This expression is not necessarily well-defined since the minimum does not have to be
unique. Such cases would occur in a few configurations like averaging two poses of opposite
axes for a revolution object that does not admit roto-reflection invariance. However, such
cases do typically not arise in real-world scenarios where a meaningful average is desired.
For objects that do not admit any symmetries, pose averaging has been extensively studied
by [SWR10]. They compare the differences for various metrics d̂ on the rotation part.
However, these attempts do not take the symmetry of objects into account. This is why
we want to use our symmetry-aware metric d for the pose space.
Moreover, in the previous section, we established a deep connection between the pose

space and some Euclidean space RN , namely via representatives and projections. Now,
while the pose space is not a vector space, RN is. Building an average there can be done
by the arithmetic mean and then we can project back to the pose space. The only thing
that has to be taken care of is that there can be multiple representatives of a pose in RN .

Theorem 3.4.2. Let S = {Pi}ni=1 be a finite set of poses and wi > 0 strictly positive
weights for i = 1, ..., n. For a tuple R = (ri)

n
i=1 ∈

�
iR(Pi) of representatives define

mR :=

�
iwiri�
iwi

(3.42)

as the weighted arithmetic mean of R. Then

µf (S) = argmin
P∈A

Φ(P ), (3.43)

where

A :=

�
proj(mR) | R ∈

�
i

R(Pi)

�
. (3.44)
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The case of objects admitting only a single representative simplifies to

µf (S) = proj

��
iwiR(Pi)�

iwi

�
. (3.45)

Proof. Plugging in the definition of the Fréchet variance leads to

Φ(P ) =
�
i

wi min
ri∈R(Pi),r∈R(P )

∥ri − r∥2. (3.46)

Thanks to the symmetry of the distance we have for all r ∈ R(P )

Φ(P ) =
�
i

wi min
ri∈R(Pi)

∥ri − r∥2 = min
(ri)ni=1∈

�
i R(Pi)

�
i

wi∥ri − r∥2. (3.47)

Now we can develop the sum further using the arithmetic mean:�
i

wi∥ri − r∥2 =
�
i

wi∥ri −mR +mR − r∥2

=
�
i

wi∥ri −mR∥2 +
�
i

wi∥mR − r∥2 + 2
�
i

wi⟨ri −mR,mR − r⟩� �� �
=0

.

Therefore, for a given tuple (ri)
n
i=1 the minimization problem (3.41) splits into two terms,

where the first sum is independent of r. Minimizing the second sum corresponds exactly
to the projection to the vector mR, which proves the claim. The statement for objects
admitting only one representative can be deduced immediately.

Theorem 3.4.2 provides an important tool to calculate the average of finitely many poses.
Especially in the case of objects having only one representative, it breaks down to a cal-
culation of an arithmetic mean in RN and projecting back to the pose space. This can
be done quickly and efficiently and requires no optimization techniques. Now we want to
study the case of an object admitting multiple representatives.
One possible approach would be just to try all possible combinations and brute force it

but since the number of possible tuples grows exponentially this is very inefficient. One
method to circumvent such a problem is to consider only consistent tuples. While there are
various definitions of consistency amongst tuples, we rely on the one given by [BDLC18]
since it is not ill-defined as we will show.

Definition 3.4.3. A tuple (ri)
n
i=1 ∈

�
iR(Pi) is said to be consistent if

for all i, j = 1, ..., n and for all qj ∈ R(Pj) \ {rj} : ∥rj − ri∥ < ∥qj − ri∥. (3.48)

To summarize this definition, a consistent tuple is a set of representatives that are closer
to each other than to every other representative.
Consistent tuples are unique, up to symmetry.
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Proposition 3.4.4. Let (ri)
n
i=1 ∈ �

iR(Pi) be a consistent tuple. Then the set of all
consistent tuples is given by {(s(ri))i=1...n | s ∈ GR}.
Proof. Let (ri)

n
i=1, (qi)

n
i=1 ∈ �R(Pi) be two consistent tuples. If ri = qi for some i, then

(3.48) would lead to ∥ri − rj∥ < ∥ri − rj∥ for some j. Thus, (ri)
n
i=1 and (qi)

n
i=1 must

be pairwise disjoint. Now according to Theorem 3.3.17, we have exactly |R(.)| different
representative combinations symmetric to (ri)

n
i=1. Those are given by the set

{(s(ri))ni=1 | s ∈ GR}. (3.49)

Now every s ∈ GR is a linear transformation, implying that (s(ri))
n
i=1 is again consistent.

It is not surprising that the projection is invariant under the symmetry of representatives.

Theorem 3.4.5. Let x ∈ R12 and s ∈ GR. Then

proj(x) = proj(s(x)). (3.50)

Proof. As usual, we split x ∈ R12 in a way such that x = (vec(M)T , tT )T for M ∈ R3×3

and t ∈ R3. Let sG ∈ GR for a proper symmetry G ∈ GO, then we can write

sG(x) =
�
vec(MG)T , tT

�T
.

In Theorem 3.3.7, we have already seen the form of the solution of the projection problem
of objects with finite symmetry group. Namely, the projection of x is the pose (R, t), with
R = USV T , where UDV T = MΛ is an SVD decomposition. To obtain the projection of
sG(x), one needs the SVD of MGΛ. With the help of Lemma 3.3.16 we can simply plug
in the SVD of R and obtain

MGΛ = MΛG = UDV TG = UDV̄ T

with V̄ = GTV . Keep in mind that since G and V are orthogonal, also V̄ is orthogonal.
Therefore we have

proj(sG(x)) = (USV̄ T , t) = (RG, t) = (R, t) = proj(x).

It turns out to be useful to define the minimal distance between multiple representatives
of the same pose.

Definition 3.4.6. Let P be any pose and r ∈ R(P ). The minimum distance T between
representatives is defined as

T := min
q∈R(P ),q ̸=r

∥r − q∥. (3.51)

If an object admits only a single representative per pose we have the convention T := ∞.
Notice that this definition is independent of the choice of pose and representative due to
the underlying symmetry.
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3 Defining a symmetry-aware distance on the pose space

This definition allows us to find a simpler characterization for the consistency of a tuple.

Lemma 3.4.7. Let (ri)
n
i=1 ∈

�
iR(Pi) be a tuple of pose representatives. If

for all i, j = 1, ..., n : ∥ri − rj∥ < T/2 (3.52)

then the tuple is consistent.

Proof. Suppose that the tuple (ri)
n
i=1 satisfies (3.52). Then we have for any qj ∈ R(Pj)\{rj}

that with the definition of T

2∥ri − rj∥ < T ≤ ∥qj − rj∥ ≤ ∥qj − ri∥+ ∥ri − rj∥ (3.53)

and hence
∥ri − rj∥ < ∥qj − ri∥

for any i which is exactly the condition for being consistent.

Lemma 3.4.8. Let (ri)
n
i=1 ∈ �

iR(Pi) be a tuple of pose representatives. If there is a
c ∈ RN , such that

for all i = 1, ..., n : ∥ri − c∥ < T/4, (3.54)

then the tuple is consistent.

Proof. This is a simple consequence of the Lemma 3.4.7, since for any i, j = 1, ..., n

∥ri − rj∥ ≤ ∥ri − c∥+ ∥rj − c∥ < T/2.

We now have all the tools to give a meaningful definition of the mean of several poses
for objects with multiple representatives. This construction relies on consistent tuples. We
want to emphasize that consistent tuples do not always exist, hence that definition does
not work for every arbitrary set of poses. However, we believe such cases do not have a
strong physical meaning.

Theorem 3.4.9. Given a consistent tuple (ri)
n
i=1 ∈ �

iR(Pi) of representatives and posi-
tive weights wi, we can define the mean via

�mean(S) := proj

��
iwiri�
iwi

�
. (3.55)

Proof. We need to show that this is well-defined. According to Proposition 3.4.4 all con-
sistent tuples are given by (s(ri))

n
i=1 for s ∈ GR. The equation

proj

��
iwis(ri)�

iwi

�
= proj

�
s

��
iwiri�
iwi

��
= proj

��
iwiri�
iwi

�
(3.56)

shows that the mean is independent of the chosen consistent tuple, hence the expression is
well-defined.
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3 Defining a symmetry-aware distance on the pose space

Example 3.4.10. Consider as an object a cylinder. The two representatives of this object
correspond to the two directions of the axis. When averaging two poses, one simply averages
the vectors that define the axis of the poses. However, one has to be careful with the sign
of the vectors. As depicted in Figure 3.1, the average pose (given by the purple vector) can
be obtained by averaging the red and the blue representative. This leads to the meaningful
average of the two poses and is according to our consistency definition since these two
representatives are closer to each other than all the others. Violating this by averaging
the yellow and the blue representatives would lead to a meaningless interpretation of the
mean, shown with the green vector.

Figure 3.1: Averaging two poses of a cylinder

Remark. The fact that this definition of the mean corresponds to the Fréchet mean as
defined in the minimization problem (3.41) is very likely, but we were not able to find a
proof for it. We believe this relies on the fact that given a consistent tuple, one can extend
this tuple by any weighted mean (meaning any point in the convex hull of these points)
and get a consistent tuple again. It is not easy to find an exact description of consistent
tuples as the rotational part of the representatives lies on a sphere in R9.
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4 Robust Pose estimation

In this chapter, we aim to use our metric combined with our results of pose averaging to
tackle the problem of instance detection and robust pose estimation. This task is prevalent
in computer vision and robotics and has various applications, such as augmented reality,
object tracking, or gesture recognition. A broad survey can be found in [CF01].

4.1 Problem description

The task involves locating multiple instances of a given object within a 3D scene and
determining their respective poses. Such a 3D scene can come from various sources, such
as laser scans, or stereo systems, the data are typically presented as point clouds. To
illustrate this concept, consider the example depicted in Figure 4.1 where we have the scan
of a section of a trailer. Our objective is to identify the poses of the two wheels. In this
scenario, the wheel serves as the object, and the goal is to detect the two instances of it in
the point cloud and estimate their poses relative to a fixed coordinate frame.

Figure 4.1: Point cloud of a trailer, obtained
by LIDAR

Figure 4.2: Model of a wheel

However, this problem imposes several challenges, including occlusions, clutter, and light-
ing variations. Therefore, we require our method to be robust. Another difficulty is the
visibility of the wheels, they can only be seen from one side, so a careful choice of the model
is crucial. One possibility is depicted in Figure 4.2, which was modeled in Blender [Com18],
and 1000 points were randomly sampled from the surface. The wheel sets an additional
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4 Robust Pose estimation

difficulty, since it admits symmetries, making the pose described in the classical sense as a
rotation and translation not unique.
Global approaches to robust pose estimation, such as [PGBP10], [SWK07], and [RVDH05],

would typically not be affected by the symmetry of the object. However, these are typically
not very efficient or precise. Especially in big point clouds the execution time explodes.
On the other hand, local approaches, as [DUNI10], [HLI+13], [HLRK16], [CJ97], [RBB09],
seem to be more fruitful. Such methods are mostly based on local invariant features.
Roughly speaking, these methods look for local structures of the object in the scene and
try to estimate the pose from that. They follow an approach to generate votes for pose can-
didates, to obtain a distribution of poses that describes the ground truth. Then, the main
modes of this distribution are identified, which then hopefully correspond to the actual
poses of the instances. Detecting these modes is not an easy task, since the pose space has
a high dimensionality and does not admit a vector space structure. Mode detection usually
requires a notion of distance, or at least similarity, and this is where common approaches
with metrics on SE(3) fail.

Authors frequently overlook symmetric objects, despite their prevalence in real-world
scenarios. Bottles, glasses, tables, and boxes are a few examples of things in our daily
life that admit symmetries. However, a few attempts were made to deal with symmetric
objects. Some focus on geometric primitives [DI15] such as cylinders or spheres, while others
on rotationally symmetric objects [HKLM22], [dFMB15]. Nevertheless, most approaches
either specify one type of symmetry or only work for geometric primitives for which they
are specifically designed. We aim to develop a method that works for all types of objects,
regardless of their symmetry.

4.2 Generalized Hough Transfrom with PPF

To achieve this goal, we stick to a method developed by [DUNI10], which is known as a
popular approach for robust pose estimation that works well and is reliable. We aim to
extend this method to function effectively with symmetric objects which we believe it does
not.
They follow a Hough-like procedure to obtain a set of candidate poses. Each of these

candidate poses represents a pose where the algorithm is confident it is close to one instance
of the ground truth. In the final step, these candidate poses are clustered, where each cluster
represents one pose of an instance. Poses in each cluster are averaged to obtain the final
pose of each instance. Clustering as well as averaging accounts for the robustness of the
method.
Our goal is to use our notion of distance in the pose space to cluster and to use our

results of pose averaging. With that approach, we hope to be able to improve the existing
method of [DUNI10]. They cluster in a way such that translation and rotation do not differ
more than a given pre-defined threshold, but this does not take the symmetry of objects
into account. Multiple poses of the same instance could be obtained. Therefore, we aim
to use our proposed symmetry-aware distance to cluster the candidate-poses, to be able to
deal with symmetric objects. The next section will describe the process of obtaining these
candidate poses.
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4 Robust Pose estimation

4.3 Obtaining candidate poses

The model and the scene are assumed to be finite point clouds admitting normals. If the
data is given in the form of a mesh, such a representation can be easily computed. Having
point clouds only, normals can be estimated in various ways. While there exist more
sophisticated methods like [BM12], standard techniques like fitting a plane to k nearest
neighbors can be applied as well. Due to readability reasons, we denote points of the
model M with mi and similarly points of the scene S with si.

The whole process of obtaining candidate poses consists of two phases: the off-line and
the on-line phase. During the off-line phase, point pair features are used to obtain a global
description of the model. Those point pair features will be described in more detail in the
next section. One big advantage is that the off-line phase is independent of the scene and
therefore has to be computed only once, which saves a lot of time. In the on-line phase, a
set of reference points are chosen at random from the scene. The point pair feature of each
reference point with every other point in the scene is computed and searched in the global
model description. Each match votes for a specific pose to obtain a set of potential poses
in a Hough-like manner. With this voting process, one obtains the optimal object pose for
each reference point.

4.3.1 Point Pair Feature

Although multiple variations of point pair features exist, we use the one defined in [DUNI10].
A point pair feature (PPF) describes the relative position and orientation of two points.
For any two points p1, p2 ∈ R3 with normals n1, n2 we set d = p2−p1. With ∠(v, w) ∈ [0, π]
we denote the angle between two vectors v and w. We define a feature F with

F (p1, p2) = (∥d∥,∠(n1, d),∠(n2, d),∠(n1, n2)) . (4.1)

This feature will be used to make a global model description. As it will be essential to
compare features efficiently, we introduce a discretized version. For this, we simply bin the
distances and the angles. Fix ddist ∈ R and dangle ∈ R as the stepsize of the distance and
the angle respectively. A reasonable choice for dangle would be dangle = 2π/nangle where
nangle is the number of desired bins. Then we define the discretized feature Fd via

Fd(p1, p2) =

�	 ∥d∥
ddist



,

	
∠(n1, d)

dangle


	
∠(n2, d)

dangle


	
∠(n1, n2)

dangle


�
∈ N4. (4.2)

4.3.2 Global model description

This step is the off-line phase and has to be computed only once for a model M. The
main idea is to calculate the point pair feature between every possible pair of points in
the model M and group point pairs with similar features together. Formally speaking, the
global model description is a map G : N4 → 2M×M defined as

G(n1, n2, n3, n4) = {(mi,mj) | Fd(mi,mj) = (n1, n2, n3, n4)} . (4.3)

The purpose of this map is to have quick access to all point pairs with similar PPF. In
practice, this map can be seen as a hash table with the input (n1, n2, n3, n4) being the key.
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4 Robust Pose estimation

Now if we have a scene pair (si, sj) ∈ S2 we can simply calculate Fd(si, sj) and use this
as a key to find all point pairs of the model with the same feature in constant time. Note
that this set can possibly be empty.

4.3.3 Voting scheme

In the next step, a pre-defined number of scene points is chosen. We call this subset R ⊂ S
the reference points. If we assume sr ∈ R is a point that lies on the object we want to
detect, then there must be a corresponding point mr ∈ M. After aligning those points
together with their normals, we are left with one degree of freedom to align the model with
the scene. This is a rotation around the normal of sr. We call a pair (mr, α) the local
coordinates of the model with respect to sr, where α is exactly this rotation angle.
In the method, we want to align a point pair (mr,mi) ∈ M2 to a scene pair (sr, si)

where both pairs have a similar feature vector, i.e. Fd(mr,mi) = Fd(sr, si). Let Tx→g

be the transformation that translates the point x to the origin and rotates the normal
associated to x onto the x-axis. Then the transformation from the local model coordinates
to the scene coordinates can be written as

si = T−1
s→gR

α
xTm→g(mi) (4.4)

where Rα
x is a rotation by α around the x-axis. Now the goal is to find optimal local

coordinates of a fixed reference point such that the number of scene points on the model is
maximized. For this procedure, a method that is similar to a Generalized Hough Transform
is used. For every reference point sr ∈ R a so-called accumulator array is generated and
filled with zeros. This array consists of |M| rows and nangle columns. Recall that nangle was
the number of bins we used to discretize the angle. The accumulator array can be seen as
the discretized space of local coordinates for a fixed reference point. For the actual voting
process, the point sr is paired with every other scene point si ∈ S. The feature Fd(sr, si)
is calculated and searched for in the model. This is done via the global model description,
i.e. G(Fd(sr, si)) is calculated. The set of points with similar features is obtained and thus
the question of where on the model the pair (sr, si) could be is answered. As we know from
the description of the local coordinates, this information is not enough, as we still need to
compute the rotation angle α. Subsequently, for every pair (mr,mi) ∈ G(Fd(sr, si)) the
rotation angle α is obtained via (4.4). In the final step, the vote is cast in the accumulator
array at the index (mr, α) by increasing the value there by one. Repeating this procedure
for all scene points si finishes the process of obtaining the accumulator matrix. Finally,
the accumulator can be searched for maxima. For stability reasons, it is advised to take all
peaks up to a certain threshold which is relative to the maximum peak. From each of these
few peaks, the global pose can be retrieved to obtain so-called candidate poses. Each of
those candidate poses comes with a score, namely the value of the peak in the accumulator
array, which is an indication of how sure the algorithm is that a pose might be a correct
one. This score can be used in the next step.
An illustration of such candidate poses can be seen in Figure 4.3. As a model, we used

a rocket, where we cut off the upper part for efficiency reasons. The scene contains two
copies of this rocket, lying somewhere in space. A total of 58 poses was retrieved by the
procedure described above.
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Figure 4.3: Candidate poses of a rocket

One can see that the candidate poses clearly form two clusters, each of them roughly
describing one instance of the ground truth.

4.4 Clustering candidate poses

In the step above we assumed that the chosen reference point lies on the model. However,
this does not need to be the case, as the scene may contain noise. To ensure that at least
some reference points are on the objects that are to be detected, the set R has to be chosen
reasonably large. Unfortunately, this leaves us with some incorrect poses. On the other
hand, we have several poses within the candidate poses that only approximate the ground
truth. For example, it would be a possibility to choose the candidate pose with the highest
score as a final result. However, this approach is only of limited usage, since there could be
multiple instances of the object in the scene, which would not be detected then. Another
downside is that even the pose with the highest score might not be that accurate, due to
rounding errors during the discretization.
An approach to increase the overall accuracy of the final result and to filter out incorrect

poses is to cluster the candidate poses. Formally speaking, a clustering is a set of subsets.
Let us denote with K = {Pi}i=1,...,n the set of candidate poses. Then a clustering is a set
of subsets C1, ..., Cn such that

K =

n 
i=1

Ci and Ci ∩ Cj = ∅ for i ̸= j.

Such a structure is also known in mathematics as partition and it is clear that each can-
didate pose is assigned to exactly one cluster. Every cluster Ci represents one instance of
the object in the scene, which can be more than one. Let us denote the score obtained by
the Hough voting of the pose Pi with ki. We define the score Ki of cluster Ci as
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Ki :=
�

Pj∈Ci

kj (4.5)

i.e. as the sum of all scores of the poses in that cluster. Incorrect poses likely form clusters
with rather low scores, and can be easily filtered out. One example is using a threshold
relative to the highest score of all clusters, accepting only clusters with a score higher than
or equal to c ·maxiKi for some constant c ∈ [0, 1]. While c = 0 corresponds to accepting
every cluster, c = 1 means only accepting the best (ones).

Since we use a slightly different approach than [DUNI10], we want to describe the clus-
tering procedure more in detail. While they cluster in a way such that poses in one cluster
do not differ in translation and rotation more than a predefined threshold, this could lead
to incorrect results in the case of symmetric objects. Multiple clusters would account for
the same instance, delivering a wrong result of the algorithm. To solve this issue, we aim
to use our symmetry-aware distance. However, many clustering algorithms rely on the fact
that the underlying space is a vector space, which the pose space is not. A possible idea
would be to use representatives, but as they are not unique in some cases this would cause
several problems and be rather inefficient.
Instead, we propose a simple hierarchical clustering algorithm based on our proposed

distance. This is due to several reasons. Clustering itself is an extensively studied topic,
a broad survey of clustering can be found in [XW05], and it is not trivial how to find the
best clustering. In fact, it always depends on the specific problem which form of clustering
is better than the other, and in our case, we are trying to find obvious clusters, which is
why we waive more sophisticated methods.
Our procedure reads as follows, and can be found in Algorithm 1. The candidate poses Pi

are sorted in descending order with respect to their score ki. Now we choose the first element
in the list, i.e. P1 and put all poses into one cluster whose distance to that initial pose is
smaller than a predefined threshold K. So we have

C1 = {Pi | d(P1, Pi) < K for i = 2, ..., n}.
Then we remove all those elements from the list and repeat this procedure. So the element
with the highest score which is not contained in the first cluster becomes the initial pose
for the second and so on. This is done until the list is empty and each element is assigned
to one cluster.

It should be noted that this algorithm requires a predetermined threshold, which can
vary a lot for different forms of problems. Nonetheless, even advanced techniques, such as
DBSCAN, (see [KRA+14]), necessitate an additional parameter, rendering it a challenge
that is difficult to circumvent. One approach to simplify this is to scale the model (and the
scene accordingly) to have a diameter of 1. That way, it is easier to compare results and
set them into relation.

4.5 Recovering poses

Having obtained clusters in the previous step, we subsequently need to recover the final
pose of each cluster. Given that every pose in the cluster is an approximation of the ground

39



4 Robust Pose estimation

Algorithm 1 Clustering of candidate poses

Require: [P1, ..., Pn] a list of candidate poses, sorted in descending order according to
their scores; symmetry-aware distance function d; threshold K > 0

Ensure: Clusters of poses, each cluster standing for one instance of an object
1: sortedPoses ← [P1, ..., Pn]
2: finalClusters ← empty list
3: while sortedPoses is not empty do
4: cluster ← empty list
5: bestPose ← sortedPoses[1]
6: for Pi in sortedPoses do
7: if d(Pi, bestPose) < K then
8: add Pi to cluster
9: remove Pi from sortedPoses

10: end if
11: end for
12: add cluster to finalClusters
13: end while
14: return finalClusters

truth, it is natural to calculate the average of all poses contained in one cluster. Again,
this problem is not trivial, since the pose space is in general not a vector space. While
averaging the translational part is straightforward, it remains complicated for the rotational
part. Several methods exist, for example, using SVD or rotation quaternions, see [Gra01].
We could not determine which method was used by [DUNI10]. However, to our knowledge,
these methods also do not take symmetries into account, which is why we aim to use the
theory obtained in Section 3.4. We keep the notation from the previous section, i.e. we
have clusters {Ci}i=1,...,m with Ci = {P1, ..., Pni}. With kj being the score of Pj and a
tuple (rj)j=1,...,ni ∈

�
Pj∈Ci

R(Pj), we can define the recovered pose Pi of cluster Ci as

Pi := proj(

�ni
j=1 kjrj�ni
j=1 kj

), (4.6)

the weighted average of the poses within that cluster. Now a consistent tuple does not
necessarily need to exist, but this problem can be circumvented by choosing a threshold K
for clustering that is small enough.

Proposition 4.5.1. If the threshold cluster K in Algorithm 1 is chosen to be smaller than
T/4, with T as defined in (3.51), then there exists a consistent tuple for each cluster.

Proof. Let C = (P1, ..., Pm) be a cluster, sorted by score, such that P1 has the highest
score. According to the algorithm we have for all i = 2, ...,m that

d(P1, Pi) = min
r1∈R(P1),ri∈R(Pi)

∥r1 − ri∥ ≤ K < T/4. (4.7)

Choose one representative r1 of P1. According to Lemma 3.2.4 and (4.7) we can choose
ri ∈ R(Pi) such that

∥r1 − ri∥ < T/4,
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since the set of representatives is always finite and the minimum will be reached. But now
r1 is a proper choice for the center of a ball with a radius smaller than T/4 such that
all representatives lie inside. This means the conditions for Lemma 3.4.8 with c = r1 are
fulfilled and therefore the tuple (ri)i=1,...,m is consistent.

This constraint to the clustering gives us a solid theoretical foundation since the average
is well-defined. One can waive the weighting of the average, but we believe it adds to
the accuracy if we weigh the stronger candidate poses more. This step ensures that the
algorithm is more accurate, and we believe the weighting of the average has not been done
before.
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This chapter is devoted to applying the algorithm developed in the previous chapter. We
aim to analyze the effect of the pose clustering, Section 4.4, which can be seen as a post-
processing procedure. Here we differ from the method of [DUNI10]. The main focus lies on
objects admitting symmetries, as the original paper ignores this case. However, symmetrical
objects often appear in daily life as well and are not specially made up by mathematicians
as an edge case. Things like glasses, bottles, boxes, pens, even the shape of the paper of
this work - they all admit symmetries.

5.1 Methodology

As we have mentioned above, the focus lies on where we differ from the algorithm of
[DUNI10]. Acquiring suitable candidate poses can present a significant challenge, entailing
several difficulties. For example, the quality of the normals directly influences the candi-
date’s quality, since they stand for the object’s orientation in space. In practice, normals
are often estimated, usually by fitting a plane through a neighborhood of the k nearest
points. This works well as long as the surface is smooth enough but can lead to terrible
results if there are fine details or corners. Consequently, if the normals are of bad quality,
the recovered pose of the object is as well.
Other problems arising in real-world applications are the emergence of noise and clutter.

As shown in Figure 4.1, such things appear naturally when scanning an object with a laser.
Approaches made by [HLRK16] and [WYL20] tackle this problem by introducing new
sampling and voting schemes. To sum it up, finding suitable candidates is an art in itself,
and many improvements and adaptations have been made in that area (see [BI15], [VLM18]
for example). However, studying all of this would exceed our scope by far, therefore we want
to shift our focus to our post-processing step, namely clustering and averaging candidate
poses based on our proposed distance. Hence, we employed a modified version of the
methodology proposed by [DUNI10] to obtain the candidate poses. We used the code of
[wha24] up to small adaptations. We performed our experiments based on those candidate
poses. As we have stated above, there are certain ways to improve the quality of the
candidates themselves, but this would exceed the scope of this thesis and we aimed to
choose a baseline for our clustering experiments.

We want to mention that a symmetry-aware approach to pose recovery was made by
[BDLC18], using the same distance. Instead of hierarchical clustering, they used an adap-
tation of Mean Shift, a popular technique to find the maxima of a density function, so-called
modes. The density function is given by the candidate poses, and the modes represent the
recovered poses. While the authors claim that by choosing a radius small enough they
can guarantee the unambiguous estimation of the average, Mean Shift is to our knowledge
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not known for guaranteed convergence. The hierarchical approach offers the same theoret-
ical guarantees but provides more explainability and directly uses the proposed distance.
Furthermore, we can use a weighted average, favoring stronger candidates, which should
account for robustness in noisy scenes. By using weights for pose averaging, we believe
that our approach also differs from [BDLC17], although they did not clearly specify how
they implemented the PPF method.
Our experiments are employed as follows. First, we contrast the algorithm’s outcomes

when taking the symmetries of the object into account versus when disregarding them. This
will be done in a setting with synthetic data, where the circumstances are almost perfect.
Three basic types of symmetries are tested. The recovered poses will be compared with the
ground truth, using our proposed distance to have a precise error measure. Furthermore,
we compare the outcome with the result when using the scores of the votes as weights
during averaging, favoring poses where the algorithm is sure that they are an accurate
description.
Second, we want to test our proposed clustering approach. At this point we consider the

symmetries of the object correctly, the focus lies solely on recovering the final poses. We aim
to compare our results with the adapted version of Mean Shift as proposed by [BDLC18].
Furthermore, we employ DBSCAN [EKS+96], a widely used clustering algorithm that is
density-based and robust to outliers. DBSCAN does not rely on a vector space structure
and can be used with any metric, so it can be executed with our proposed distance.
This can be effectively tested when the candidates are not that perfect anymore. To

achieve this in a setting with synthetic data, we add various forms of random noise to
the scene points. This allows us to test the different methods precisely since the ground
truth of the poses to recover is known. Then we shift to a real-world example, namely the
one with the trailer and the wheel, see Figures 4.1 and 4.2. This should not only test the
robustness of our method but also show that it applies to real-world applications.

5.2 Synthetic data without noise

This section should emphasize the effect of taking the symmetries of the object into account
versus disregarding them. We made basic experiments on toy data. We test three different
types of symmetry: revolution symmetry, finite symmetry, and no symmetry at all. Here
we do not aim to test different clustering approaches since they would likely lead to the
same result.

5.2.1 The torus

The torus stands for an object with revolution symmetry and roto-reflection invariance.
The proper symmetry group is infinitely large, therefore infinitely many rotation matrices
describe the same pose. Because of the roto-reflection invariance, we have two representa-
tives in R6 for each pose. We chose a model containing 576 points and scaled it to have
a diameter of 1. Normals were estimated, and we used an exact copy of the model for
the scene. A random rigid transformation was applied to the model, which served as the
ground truth. Figure 5.1 visualizes the model and the scene as point clouds.
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Figure 5.1: Model (red) and scene (blue) of the torus

To create the PPF model as described in Sections 4.3.1 and 4.3.2 we set nangle = 30, i.e.
we used 30 bins for the angle. The number of reference points was chosen to be 10% of
the model points, which led to 57. After calculating the candidate poses, we took the 50
best, according to their score obtained by the Hough voting. In Figure 5.2 the 10 best are
shown, each colored in a different shade of blue for visibility reasons. One can observe that
the candidate poses already form a pretty good approximation of the ground truth.

Figure 5.2: The 10 best candidate poses of the torus

We calculated T ≈ 0.42 and chose K = 0.1 for the clustering threshold, satisfying
K < T/4. In Table 5.1 the clustering result for when symmetries are not considered
is shown. The process generated several clusters, the biggest ones containing only five
elements. In each of these clusters pose averaging was performed using the theory developed
before (Theorem 3.4.2 and Theorem 3.4.9), once using the scores as weights and once
unweighted. The error of the retrieved poses was measured according to our proposed
distance, with the symmetry taken into account. In general, the overall error is very good
compared to the model size, and since the model diameter is 1 those can be interpreted
directly as percentages. It can be observed that weighting the average does not make much
of a difference, likely due to the good quality of all candidates. However, we obtained
a total of 22 clusters which translates to 22 instances of the object, when there is only
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one, which is a clear disadvantage. Performing the clustering symmetry-aware produces a
different result, as seen in Table 5.2. Here we got only one cluster, correctly accounting for
one instance of the object in the scene. Not only is the issue with the instances resolved,
but the overall error has also significantly improved. It is better than every single cluster
before, mostly because more poses were considered for the averaging, making the result
more robust and accurate.

Cluster Size Avg Score Error weighted Error unweighted

5 941.8 0.004225 0.005224

5 938.8 0.010028 0.009321

5 913.2 0.006441 0.006323

4 891.8 0.014271 0.014000

4 863.0 0.019834 0.019112

4 858.0 0.007087 0.006418

2 1084.0 0.028415 0.028415

2 1083.0 0.007686 0.007713

2 1012.5 0.022053 0.021455

2 865.0 0.017756 0.017209

2 853.0 0.019278 0.018716

2 772.0 0.020748 0.020817

2 769.0 0.026302 0.026302

1 1084.0 0.021719 0.021719

1 1072.0 0.037673 0.037673

1 945.0 0.026336 0.026336

1 783.0 0.024810 0.024810

1 763.0 0.023975 0.023975

1 763.0 0.017800 0.017800

1 761.0 0.024973 0.024973

1 761.0 0.024449 0.024449

1 759.0 0.030353 0.030353

Table 5.1: Clustering the torus without symmetries

Cluster Size Avg Score Error weighted Error unweighted

50 899.8 0.001844 0.001880

Table 5.2: Clustering the torus with symmetries

5.2.2 The 5-sided pyramid

The second experiment was conducted with a 5-sided pyramid. This should represent an
object with a finite symmetry class. In this case, the proper symmetry group contains
exactly five elements. To avoid problems with normals, we cut off the parts that are not
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smooth, i.e. the top and the vertices on the side. This left us with a model containing
315 vertices. Moreover, the model was scaled to have a diameter of 1. Again, an exact
copy of the model was used for the scene, including the same normals. A random rigid
transformation was applied to the model, which served as the ground truth. The model
and scene can be seen in Figure 5.3.

Figure 5.3: Model (red) and scene (blue) of the 5-sided pyramid

Figure 5.4: 10 best candidate poses of the pyramid
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To create the PPF model as described in Sections 4.3.1 and 4.3.2 we set nangle = 30,
i.e. we used 30 bins for the angle. The number of reference points was chosen to be 20%
of the model points, which was 63. After calculating the candidate poses, we took the
50 best, according to their score obtained by the Hough voting. Figure 5.4 shows the 10
best candidates. One can see, that they are not as accurate as for the torus. This is not
surprising since the object is very primitive and essentially consists of five planes. Such
voting algorithms usually do not perform well on primitives, since rounding errors and edge
cases can be problematic. Therefore, for the hierarchical clustering, a bigger threshold of 0.2
was used to offset this effect. Unfortunately, the unambiguous estimation of the mean is
not theoretically guaranteed anymore, since 0.2 > T/4 ≈ 0.06. This experiment is also
there to show that the result can still make a lot of sense, even though lacking theoretical
foundations. In practice, there is often a trade-off between theoretical soundness and
applicability, and in that case, a small threshold would not go well with the quality of the
candidates.
First, the clustering process was performed assuming the object does not admit any

symmetries, which can be seen in Table 5.3. Second, the clustering was done with the same
candidate poses, but accounting for the object’s symmetry this time, see Table 5.4. Again,
each cluster was averaged to retrieve the final poses.

Cluster Size Avg Score Error weighted Error unweighted

20 594.4 0.022869 0.023061

9 624.7 0.022653 0.023853

9 580.9 0.035680 0.035121

8 619.6 0.021147 0.020164

4 558.5 0.031559 0.031378

Table 5.3: Clustering the pyramid without symmetries

Cluster Size Avg Score Error weighted Error unweighted

50 598.6 0.020336 0.020416

Table 5.4: Clustering the pyramid with symmetries

In Table 5.3 we have five poses for the same instance, one for each of the five sides, where
the pyramid looks the same. Each of these clusters is again a worse approximation of the
ground truth than clustering everything at once with the symmetry-aware distance.

5.2.3 The bunny

The same experiment with identical conditions was performed with the Stanford Bunny
[TL94]. We downsampled the mesh to 689 vertices to save computation time. The bunny
does not admit any symmetries, therefore we have T = ∞. Figure 5.5 shows the candidates,
colored by score. We see that they are pretty well distributed. Since the estimation of the
mean is unique here, we used the same threshold of K = 0.2 as for the pyramid. Here we
only took the 20 best candidates, due to the uniqueness of the pose in terms of symmetry.
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As the bunny does not admit any symmetries, no comparison is necessary. Yet, Table
5.5 shows that the result is very good, with the total error only being 1% of the model
diameter. However, weighing the average according to the voting score did not make any
noticeable difference, with both results being very accurate.

Figure 5.5: Candidate poses of the bunny

Figure 5.6: Recovered pose (blue)
Ground truth (red)

Cluster Size Avg Score Error weighted Error unweighted

20 1087.8 0.010480 0.010490

Table 5.5: Clustering the bunny with symmetries

5.3 Synthetic data with noise

The previous example stands for a case where the set of candidates is almost perfect. In
reality, however, this happens very rarely. The set of candidates will be more distributed
and contain poses that do not describe any instance of the object at all. Obtaining the set
of candidates can be disturbed by many factors, such as noise, clutter, or the quality of
the normals. Sometimes objects are not fully visible. We want to simulate this by adding
random Gaussian noise to the objects. One could also delete random points or add some
artificial noise, which would lead to the same effect.
The torus from the previous example served again as the model. The scene was con-

structed by three copies of the torus where one of them was blurred by light noise, and one
by heavy noise. With light and heavy we mean Gaussian noise with standard deviation of
0.01 and 0.02 respectively. The scene can be seen in Figure 5.7. After adding the noise,
the normals were estimated again.

The Hough voting was performed in the same fashion as before, 5% of the 1728 scene
points were used as reference points. Figure 5.8 shows the obtained candidates. Poses were
colored according to the score, the darker the lower. The view of the scene is a bit rotated,
to be able to recognize more in the image. While the candidates of the torus with no noise
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Figure 5.7: Model (red) and scene (blue) of tori with noise

are accurate, there are a few bad ones at the one with heavy noise. There is even one in
between two poses which does not make any sense.

Figure 5.8: Candidate poses of the tori

For the hierarchical clustering process, we used the same threshold as above. Mean
Shift was performed with the same radius. For DBSCAN, the epsilon parameter was set
to 0.05. At the end of each clustering, small clusters representing outliers were removed.
This was implemented by disregarding clusters with sizes smaller than 5% of the maximum
cluster size. Table 5.6 shows the results of each process. While DBSCAN and our proposed
hierarchical clustering performed similarly, Mean Shift could not deal with too much noise
in the data. Several medium-sized clusters appeared as a result, all representing the same
instance. Figure 5.9 shows the recovered poses of the hierarchical clustering, which are very
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accurate. The results show that adding noise hardly affects the overall performance of the
pose recovery, underlining the robustness of the method. The total errors are all negligible
and on the same scale. Also, weighing does not impact the result noticeably. Additionally,
we see that all the approaches correctly filtered out the wrong pose.

Noise Std Dev Hierachical DBSCAN Mean Shift

0 0.009223 0.009223 0.008842

0.01 0.006334 0.006803 0.008701

0.02 0.015097 0.010702 multiple detections

Table 5.6: Clustering the noisy tori

Figure 5.9: Recovered poses (red) of the tori

5.4 Real-world data

Finally, we want to analyze our method on real data. While the robustness can be tested
on synthetic data by adding random noise or clutter, real-world data usually shows more
difficulties than that. The scene we used was the scan of a trailer, obtained by a LIDAR
scan, as seen in Figure 4.1. The task was to obtain the poses of the two wheels. This
imposed several difficulties. Firstly, the scan was too big, so we manually had to segment
the point cloud. In practice, a segmentation algorithm could be used as a preprocessing
step. Even after cropping, the point cloud was too dense. To improve the execution time,
points were sampled by voxel size, which resulted in a point cloud containing 5679 points.
Normals were estimated before the sampling, to have better quality, and then aligned to
point towards the same direction, in our case to the sensor.
The choice of the model was not so easy, as it is not advisable to take the whole wheel

since in the scan the wheel is only visible from one side. Our approach was to model the
front side of the wheel as accurately as possible in Blender, and then randomly sample
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points from the surface. The symmetry type of this object is a revolution object without
roto-reflection invariance. The more points are chosen for the model, the more likely it
is that the right point pair features are found in the scene. But this is in contrast to the
computation time, which increases drastically with the model size. Here we chose to sample
1000 points, the resulting model was already shown in Figure 4.2. Another problem that
arose was the lack of a ground truth. To circumvent this, we fitted the model by hand
in the scene and extracted the ground truth visually. While this is far from perfect, it
was sufficient for our purposes as we needed something to compare our results with. The
sampled scene with the fitted models of the wheels can be seen in Figure 5.10. One can
observe that there is still a lot of noise in the data, and also that the right wheel is a bit
better captured than the left one.

Figure 5.10: Scene (blue) plus fitted wheels (green)

To obtain the candidate poses, we chose the same parameters as in the previous ex-
periments. The number of reference points was 1% of the scene, leading to 56 candidate
poses. The retrieved poses, colored according to their score (the lighter, the better), are
depicted in Figure 5.11. While many poses are part of the noise, most of them are very
dark, meaning they have a low score. One can somehow guess that at the place where the
wheels should be there are a few poses where the algorithm is more confident.
For the pose recovery, we used a larger threshold of 0.4 for the hierarchical clustering and

as a Mean Shift radius. Since this type of symmetry only admits one representative, there
are no problems with any ambiguities while averaging. The results in Table 5.7 show that
our proposed hierarchical clustering performs better than DBSCAN and Mean Shift. Plots
of the retrieved poses can be seen in Figure 5.12 to give a better impression. While Mean
Shift correctly detected both wheels, the error was bigger than the one of our proposed
method. This is likely because Mean Shift does not consider the scores of the poses, which
is essential in this case to filter out the noise. DBSCAN, on the other hand, performed
well in terms of total error but also recovered an additional pose somewhere on the floor
in front of the trailer. Again, one disadvantage of DBSCAN is that the clustering process
is done independently of the scores, whereas the hierarchical approach centers its clusters
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Figure 5.11: Candidate poses of the trailer

around the strongest poses. This can also be seen in the respective cluster sizes.

Clustering Hierachical DBSCAN Mean Shift

Size Error Size Error Size Error

right 27 0.04189 20 0.06025 19 0.06108

left 22 0.06183 19 0.05374 25 0.08407

noise - - 17 0.38816 - -

Table 5.7: Clustering of the wheel

5.5 Discussion

Our experiments show that it is crucial to consider the object’s symmetry for robust pose
estimation. Based on a fixed set of candidate poses, we deduced that not only the correct
number of poses are retrieved and duplicates of the same instance are avoided, but also
that the overall accuracy and robustness increase drastically. The method works for objects
admitting symmetries but is not specifically designed for such, as we have proven with the
Stanford Bunny.
Moreover, our proposed hierarchical clustering appears to be more robust and accurate

than common methods such as Mean Shift or DBSCAN. This is likely due to poses with
a high score being favored in the clustering process, accounting for bigger clusters and
therefore for more robustness. While the results on synthetic data with artificial noise were

52



5 Experiments

(a)

(b)

Figure 5.12: Recovered poses of the proposed clustering (blue) and Mean Shift (green)
together with the ground truth (red); (a) front view; (b) top view

similar to standard methods, it outperformed given methods in the case of real-world data,
proving to be more robust to noise within the candidates. While the retrieved poses are
already a very good estimation of the ground truth, those could be further refined with
common methods like Iterative Closest Point (ICP) [CM92] that require a good estimation
as a starting point.
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