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Zusammenfassung

In der Versicherungsmathematik und bei der Modellierung von Kreditrisiken wird
oft von Poisson-verteilten Schadensanzahlen mit gammaverteilten Intensitäten
ausgegangen, da derartige Modelle Überdispersion zulassen. Diese Diplomarbeit
befasst sich mit der Möglichkeit, diesen Vektor von Poissonintensitäten mithilfe
einer matrixwertigen Gammaverteilung zu modellieren.

Zunächst führen wir Wishart- und matrixwertige Gammaverteilungen, einschließ-
lich ihrer degenerierten Varianten, ein und beweisen, dass erstere eine Teilmenge
von letzteren sind. Anschließend definieren wir eine allgemeinere Version von
matrixwertigen Gammaverteilungen, die auch singuläre Wishart-Verteilungen
einschließt, und beweisen einige grundlegende Eigenschaften dieser Verteilungs-
familie. Dabei leiten wir auch matrixwertige Versionen von Exponentialverteilun-
gen her, von denen wir zeigen, dass sie gedächtnislos bezüglich einer geeigneten
Halbordnung sind.

Weiterführend führen wir zunächst Poisson-Mischmodelle im Allgemeinen ein,
um dann Matrix-Gamma Poisson-Mischmodelle vorzustellen. Diese haben den
Vorteil, dass damit komplexere Abhängigkeitsstrukturen modelliert werden
können, während die eindimensionalen Verteilungen noch immer negative Bi-
nomialverteilungen sind. Dieser Vorteil geht jedoch mit dem Nachteil einher,
dass im hier beschriebenen Stand der Matrix-Gamma Poisson-Mischmodelle
nur nicht-negative Korrelationen zwischen den Ausfallzahlen modelliert werden
können. Wir diskutieren einige Eigenschaften dieser neuen Modellklasse und
legen dabei einen besonderen Schwerpunkt auf wahrscheinlichkeitserzeugende
Funktionen und den Bereich der möglichen Abhängigkeitsstrukturen. Abschlie-
ßend leiten wir im Rahmen der Matrix-Gamma Poisson-Mischmodelle einige
bedingte Verteilungen her, die sich für Versicherungs- und Kreditrisikomodelle
als nützlich erweisen könnten.

Schlagworte: Matrixwertige Gammaverteilung, Wishart-Verteilung, Kredit-
risikomodellierung, Versicherungsmathematik, Poisson-Mischmodelle.
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Abstract

In the fields of actuarial science and credit risk modeling, the claim number is
often assumed to have a multivariate Poisson distribution, where the random
intensities follow gamma distributions, allowing for overdispersion. We propose
to model this vector of random Poisson intensities in terms of a matrix-valued
gamma distribution, leading to the formulation of matrix-gamma multivariate
Poisson mixture models.

This thesis starts with discussing Wishart and matrix-valued gamma distribu-
tions, including their degenerate variants. After proving that the former are a
subset of the latter via characteristic functions, we define general matrix-valued
gamma distributions, which include the subclass of singular Wishart distribu-
tions, and explore and derive properties of this distribution family. This also
includes deriving matrix-valued versions of exponential distributions, which we
prove to be memoryless w.r.t. an appropriate partial order.

Moreover, we introduce Poisson mixture models in general before defining and
discussing matrix-gamma multivariate Poisson mixture models. These models
possess the advantage of capturing more sophisticated dependency structures
among default numbers as compared to existing models, while preserving the
property that each individual default number follows a negative binomial distri-
bution. However, this advantage comes with the trade-off that only non-negative
correlations between the default numbers can be modelled in the current state of
the framework. We discuss and illustrate multiple properties of this new model,
with particular emphasis given to the probability-generating functions and the
range of dependency structures that can be effectively represented within this
framework. Finally, we derive conditional distributions within the context of
matrix-gamma multivariate Poisson mixture models, which could prove valuable
for the application of this model in insurance or credit claim modeling scenarios.

Keywords: Matrix-valued gamma distribution, Wishart distribution, Credit
risk modelling, Insurance mathematics, Poisson mixture distribution.

Mathematics Subject Classification (MSC2020): 60B20 (primary), 62H30,
91G05, 91G40 (secondary)
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1. Introduction

In the realm of insurance mathematics and credit risk modeling, it is popular to model claim
counts with Poisson mixture models due to their ability to flexibly capture heterogeneity in
claim frequencies. In particular, the mixture distribution is often chosen to be a gamma
distribution because it is well-suited for accounting for overdispersion, a common feature
in claim count data. Additionally, the unconditional distribution of N is then given by a
negative binomial distribution.

Extending this to a multivariate Poisson mixture model enables the simultaneous modeling
of multiple claim counts depending on distinct, possibly interconnected, Poisson intensities.
Previous works, such as [29, Theorem 7.39], have shown that this vector of Poisson intensities
can be modeled to have any given covariance structure by using linear combinations of
independent gamma distributed risk factors.

This thesis explores the possibility to use a matrix-valued gamma distribution, see
Definition 3.24, to derive the vector of Poisson intensities for a (multivariate) Poisson
mixture model. For a random matrix Y following a matrix-valued gamma distribution,
the random variable ⟨v, Y v⟩, where v ∈ Rp, follows a one-dimensional gamma distribution,
as will be proven in Corollary 3.39. We utilize this property to define a matrix-gamma
(multivariate) Poisson mixture model, where the Poisson intensities are derived from one
common matrix-gamma distributed Y , potentially with different vectors v1, v2, . . . , vn, to
extract one-dimensional gamma distributions. This approach provides us with the possibility
to model more sophisticated dependency structures among both the Poisson intensities and
the modeled default numbers.

Figure 1.1 illustrates the difference between a matrix-gamma Poisson mixture model
and a pair of negative binomial random variables, whose dependency is induced by adding
independent negative binomial random variables.

n1n2

(a) Matrix-gamma Poisson mixture model

n1n2

(b) Sum of independent NegBin r.v.

Figure 1.1. Joint probability mass function of dependent r.v. (N1, N2) in different models
with the same marginal distributions and correlation, elaborated in Remark 4.34.

1



2 CHAPTER 1. INTRODUCTION

In both graphs the joint probability mass function of a pair of default numbers (N1, N2)
with the same negative binomial marginal distributions and the same correlation 5/6 is
depicted; refer to Remark 4.34 for detailed information on the exact parameters.

We observe that a matrix-valued Poisson mixture model is able to model a high correlation
more smoothly than the other model, where the “artificially” induced correlation results in
a high probability mass concentration on the diagonal of the graph, where N1 = N2.
The difference of the graphs illustrates how matrix-gamma Poisson mixture models

could be useful to model correlated default numbers with a smooth dependency structure.
Another advantage is that within this model, all default numbers still follow a negative
binomial distribution with different scale parameters p, which cannot be achieved by adding
independent gamma random variables; see Remark 4.34 for further details. Furthermore,
independent claim counts in a matrix-gamma Poisson mixture model can be easily modelled
and detected, as their independence is equivalent to the corresponding Poisson intensities
having zero correlation, which again can be traced back to a simple condition on the
corresponding vectors and the parameters of the matrix-gamma distribution; refer to
Theorem 4.36 for an elaboration of this property. However, it must be noted that the main
limitation of matrix-gamma Poisson mixture models, as far as explored in this thesis, is
that it can only model default numbers with non-negative correlation; see Lemma 4.33.
Moreover, the resulting marginal negative binomial distributions must all have the identical
shape parameter α, as opposed to their flexibility in the second parameter p.

The thesis is organized as follows: Chapter 2 lays the groundwork by introducing several
essential tools for working with matrix-valued gamma distributions, including Definition 2.36
of the multi-dimensional gamma function and the essential Theorem 2.37. In Chapter 3,
we begin with the introduction of Wishart distributions, followed by an exploration of
matrix-valued gamma distributions as a generalization of the former, with both distribu-
tions extended to their degenerate cases; see Definitions 3.8, 3.24 and 3.34. Subsequent
sections analyze various properties of matrix-valued gamma distributions, in particular their
characteristic functions in Corollary 3.35, scaling properties in Corollary 3.39, and their
distributions under biased probability measures in Theorem 3.64. Additionally, we derive the
subclass of matrix-valued exponential distributions, which we prove to be memoryless w.r.t.
the Loewner partial order; see Definition 2.10, Lemma 3.49. In Section 4.1 of Chapter 4, we
discuss Poisson Mixture models generally before introducing matrix-gamma Poisson mixture
models in Section 4.2 and the multivariate version in Section 4.3. There, we also derive
several essential properties of these models, most importantly the probability-generating
function in Theorem 4.20 and its alternative form given by Lemma 4.22, expectations
and covariances in Lemma 4.33, and conditions on independence within the model in
Theorem 4.36. Finally, Section 4.4 presents results on conditioning on observations within
matrix-gamma (multivariate) Poisson mixture models.



2. Preliminaries

This chapter will introduce a variety of tools necessary to define and work with the matrix-
valued gamma distribution in the following chapters. This includes several basic properties
of matrices, in particular of positive definite matrices, as well as the definition of the
multi-dimensional gamma function.

For this thesis, let K denote either the field R of real or the field C of complex numbers.
Furthermore, for every p ∈ N the p× p-dimensional identity matrix is denoted by Ip. For
further conventions, abbreviations, symbols and notation, see Conventions.

2.1. Matrix Algebra and the Weinstein–Aronszajn Identity

This section demonstrates a few basic properties of matrices that will be needed for
subsequent statements and proofs. Some are stated more generally for commutative rings
(with one), which include fields and K in particular. We start with a property of the trace.

Lemma 2.1 (Cyclic permutation of matrices inside the trace). Let R denote a commutative
ring. For p, q ∈ N, let A ∈ Rp×q and B ∈ Rq×p be two matrices. Then

tr(AB) = tr(BA). (2.1)

Proof. For A,B of the given dimensions

tr(AB) =

p+
m=1

(AB)mm =

p+
m=1

q+
n=1

amnbnm =

q+
n=1

p+
m=1

bnmamn = tr(BA),

where we use the definition of the trace of a matrix.

Lemma 2.2 (Representation of a determinant as a product of determinants, see [17, Eq.
(0.8.5.1)]). Let R denote a commutative ring with one. For p ∈ N and A ∈ Rp×p let
α ⊊ {1, . . . , p} be a non-empty index set such that A[α], defined as the |α|× |α|-dimensional
submatrix of A containing all rows and columns with index in α, is invertible. Then, with
αc := {1, . . . , p} \ α,

detA = det(A[α]) det
�
A[αc]−A[αc, α]A[α]−1A[α, αc]

"
,

where A[β, γ] is defined as the |β| × |γ|-dimensional submatrix of A containing all rows with
index in β and columns with index in γ for all non-empty β, γ ⊊ {1, . . . , p}.
Proof. For every non-empty α ⊊ {1, . . . , p} there exists a permutation matrix Pα ∈ Rp×p

such that

PαAP
T
α =

�
A[α] A[α, αc]

A[αc, α] A[αc]

#
.

3



4 CHAPTER 2. PRELIMINARIES

As every permutation matrix is orthogonal, i.e. PT
α = P−1

α ,

detPα detP
T
α = detPα detP

−1
α = det(PαP

−1
α ) = det(Ip) = 1,

where we use the multiplicativity of the determinant. Therefore,

detA = det(PαAP
T
α ) = det

�
A[α] A[α, αc]

A[αc, α] A[αc]

#
.

Note that

det

�
A[α]−1 −A[α]−1A[α, αc]

0 Ip−|α|

#
= det(A[α]−1) = (detA[α])−1 (2.2)

as the first matrix is an upper triangular block matrix1 and as A[α] invertible is equivalent
to detA[α] having a multiplicative inverse element. Therefore,

det

�
A[α] A[α, αc]

A[αc, α] A[αc]

#
(2.2)
= detA([α]) det

�
A[α] A[α, αc]

A[αc, α] A[αc]

#
det

�
A[α]−1 −A[α]−1A[α, αc]

0 Ip−|α|

#
= det(A[α]) det

�
I|α| 0

A[αc, α]A[α]−1 A[αc]−A[αc, α]A[α]−1A[α, αc]

#
� �� �

=det(A[αc]−A[αc,α]A[α]−1A[α,αc])

,

where multiplicativity of the determinant as well as the fact, that the last matrix is a lower
triangular block matrix, is used.

Lemma 2.3 (Weinstein–Aronszajn identity, see [26, Appendix B.1]). Let R denote a
commutative ring with one. For p, q ∈ N and matrices A ∈ Rp×q and B ∈ Rq×p,

det(Ip +AB) = det(Iq +BA).

Proof. Since Ip and Iq are self-inverse,

det(Ip +AB) = det(Iq) det(Ip − (−A)I−1
q B) = det

�
Ip −A
B Iq

#
= det(Ip) det(Iq −BI−1

p (−A)) = det(Iq +BA),

where Lemma 2.2 is used for the second and third equality with α = {p+ 1, . . . , p+ q} and
α = {1, . . . , p}, respectively.

1 The fact the the determinant of a upper (lower) block diagonal matrix is given by the product of the
determinants of the blocks can e.g. be seen using the Leibniz formula.
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Lemma 2.4 (Cauchy–Binet formula, see [1, Theorem 2.34]). Let R denote a commutative
ring with one. For p, q ∈ N with p ≥ q let A ∈ Rq×p and B ∈ Rp×q be two matrices. Then
the determinant of their product is given by

det(AB) =
+

S⊆{1,...,p},
|S|=q

det(A{1,...,q},S) det(BS,{1,...,q}),

where A{1,...,q},S denotes the q × q matrix, whose columns are all columns of A with their
index in S. The matrix BS,{1,...,q} is defined analogously to be the q × q matrix, whose rows
are all rows of B with their index in S.

The following theorem as well as its proof can be found in [17, Theorem 2.5.3, Theorem
2.5.6].

Theorem 2.5 (Unitary decomposition of Hermitian matrices). For p ∈ N, let A ∈ Kp×p be
a Hermitian matrix. Then there exists a unitary matrix 2 S ∈ Kp×p, which is an invertible
matrix satisfying SH = S−1, and a diagonal matrix D = diag(λ1, . . . , λp) with λ1, . . . , λp ∈ R
such that

A = SDSH.

Furthermore, the diagonal entries of D are the eigenvalues of A (with their corresponding
multiplicities) and the columns of S are the corresponding normalized eigenvectors. Hence,
rk(D) = rk(A).

Remark 2.6 (Unitary decompositions of Hermitian matrices are not unique). Note that the
decomposition given in Theorem 2.5 is never unique for the Hermitian matrix A ∈ Kp×p.
Take a decomposition A = SDSH with D a diagonal matrix of eigenvalues and S unitary.
Even if all of the entries of D are pairwise different, every matrix S̃ which is equal to S
with only the sign changed for some of the columns also satisfies A = S̃DS̃H.

2.2. Positive Definite Matrices and their Cholesky Decomposition

In this section we recall the notion of positive (semi-)definite matrices along with several
basic properties before stating and proving the Cholesky decomposition, see Theorem 2.12
below, which will be used to parameterize the submanifold of positive definite matrices in
the subsequent sections. In particular this will enable us to be able to integrate over the set
of positive definite matrices, which, in turn, will be used to define the multi-dimensional
gamma function.

Definition 2.7 (Definite matrices). For p ∈ N a Hermitian matrix A ∈ Kp×p is called

(i) positive definite if xHAx > 0 for all x ∈ Kp \ {0},
(ii) positive semi-definite if xHAx ≥ 0 for all x ∈ Kp,

(iii) negative definite if xHAx < 0 for all x ∈ Kp \ {0},
(iv) negative semi-definite if xHAx ≤ 0 for all x ∈ Kp.

2 In the real case the matrix S here is called an orthogonal matrix, which is an invertible matrix satisfying
ST = S−1.
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Lemma 2.8 (Properties of positive (semi-)definite matrices). For every p ∈ N, the following
statements about positive (semi-)definite matrices in Kp×p hold.

(i) The set of all p× p-dimensional positive definite matrices is a convex cone, i.e. it is
closed under addition and multiplication with positive3 scalars.

(ii) The set of all p× p-dimensional positive semi-definite matrices is a convex cone, that
is also closed under multiplication with non-negative scalars.

(iii) The sum of a positive definite and a positive semi-definite matrix of the same size is
positive definite.

(iv) For a positive semi-definite matrix A ∈ Kp×p and x ∈ Kp, the product xHAx = 0 if
and only if Ax = 0.

(v) A positive semi-definite matrix is positive definite if and only if it has full rank.

(vi) The inverse of a positive definite matrix is positive definite.

(vii) A Hermitian matrix A ∈ Kp×p is positive definite if and only if there exists a real
δ > 0 such that

xHAx ≥ δ, x ∈ Kp with ∥x∥2 = 1, (2.3)

where ∥ · ∥2 refers to the Euclidian norm.

Proof. Item (i): Let α > 0 and β ≥ 0 be two scalars and let A,B ∈ Kp×p be two positive
definite matrices. Then

(αA+ βB)H = αAH + βBH = αA+ βB

and the calculation xH(αA+ βB)x = α(xHAx) + β(xHBx) > 0 holds for all x ∈ Kp \ {0}.
Hence, αA+ βB is a positive definite matrix as well.

Item (ii): The proof can be done in analogously to Item (i), where α and β only have to
be greater or equal than zero.
Item (iii): Let A ∈ Kp×p be a positive definite matrix and let B ∈ Kp×p be a positive

semi-definite matrix. Then A+B is Hermitian as well and for all x ∈ Kp \ {0}
xH(A+B)x = xHAx� �� �

> 0

+ xHBx� �� �
≥ 0

> 0.

Item (iv): For the non-trivial implication take x ∈ Kp with xHAx = 0. Then, as A is
positive semi-definite, for all λ ∈ R the equality

0 ≤ (λx+Ax)HA(λx+Ax) = λ2 xHAx� �� �
=0

+2λ(Ax)HAx+ (Ax)HAAx� �� �
=:C ≥ 0

= 2λ∥Ax∥22 + C

must hold, with ∥ · ∥2 referring to the Euclidean norm, which can only be fulfilled if
∥Ax∥2 = 0, implying Ax = 0.

3 In this thesis positive refers to x ∈ R satisfying x > 0, whereas non-negative is written for x ∈ R
fulfilling x ≥ 0. The set of all real positive numbers is denoted by R+, which means 0 /∈ R+.
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Item (v): This follows from combining Item (iv) with the fact that a matrix A ∈ Kp×p is
of full rank if and only if Ax ̸= 0 for all x ∈ Kp \ {0}.
Item (vi): Let A ∈ Kp×p be a positive definite matrix. Since A is of full rank due to

Item (v), its inverse A−1 exists and is Hermitian as

A−1 = IHp A
−1 = (AA−1)HA−1 = (A−1)HAHA−1 = (A−1)HAA−1 = (A−1)H,

where we use that A is Hermitian. For every x ∈ Kp \ {0},

xHA−1 x = (AA−1x)HA−1x = (A−1x)HAH(A−1x) > 0

as A = AH is positive definite, thus proving that A−1 is positive definite.

Item (vii): For the first implication, fix a positive definite A ∈ Kp×p. As the map
Kp ∋ x �→ xHAx ∈ R+ is continuous and the set of all x ∈ Kp with Euclidian norm equal
to one is compact, the extreme value theorem tells us that the infimum (supremum) of
this function over the compact domain is attained and equal to the minimum (maximum).
Hence, there exists a real δ satisfying

min
x∈Kp

∥x∥2=1

xHAx = δ.

Since A is positive definite, δ > 0 and Eq. (2.3) is satisfied for this δ.

Conversely, assume that for a Hermitian A ∈ Kp×p Eq. (2.3) holds. Every y ∈ Kp \ {0}
can be written as y := αx with α := ∥y∥2 ∈ R+ and x = y/∥y∥2 ∈ Kp. Hence,

yHAy = α2xHAx ≥ α2δ > 0.

The following lemma provides a characterization of positive definite matrices and can be
found in [17] along with its proof.

Lemma 2.9 (Sylvester’s criterion, see [17, Corollary 7.1.5, Theorem 7.2.5]). For p ∈ N, let
A ∈ Kp×p be a Hermitian matrix. Then A is positive definite if and only if all of its leading
(or trailing) principal minors are positive.

Using the definition of positive (semi-)definite matrices, we can define a partial order on
the set of quadratic p× p-dimensional matrices for every p ∈ N.

Definition 2.10 (Loewner order). For p ∈ N, let A,B ∈ Kp×p be two quadratic matrices.
Then A is defined to be smaller or equal then B in the Loewner order if B −A is a positive
semi-definite matrix. We use the notation A ≤L B. In an analogue way, A <L B if B −A
is positive definite.4

4 Note that this relation between ≤L and <L is not the usual relation between ≤ and < for a partial
order, i.e. x < y if and only if x ≤ y and x ̸= y.
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Lemma 2.11 (The Loewner order is a partial order). For every p ∈ N the Loewner order
given in Definition 2.10 is a partial order on Kp×p.

Proof. This lemma is proven by showing that the defined relation is reflexive, anti-symmetric
and transitive. Fix any matrices A,B,C ∈ Kp×p.

Since A−A = 0 and the zero matrix is positive semi-definite, A ≤L A is proved.

If A,B satisfy A ≤L B and B ≤L A, then both B−A and A−B = −(B−A) are positive
semi-definite matrices. Hence, for all x ∈ Kp,

xH(B −A)x ≥ 0 and − xH(B −A)x ≥ 0,

implying xH(B −A)x = 0. Using Item (iv) from Lemma 2.8, (B −A)x = 0 for all x ∈ Kp,
which can only be satisfied for B −A being the zero matrix. Hence, A = B.

For transitivity, assume A ≤L B and B ≤L C. Due to Item (ii) of Lemma 2.8, C −A =
(C −B) + (B −A) is positive semi-definite and therefore A ≤L C.

One very convenient property of positive definite matrices is that every one of them can
be represented by their Cholesky decomposition, characterized by a corresponding unique
triangular matrix.

Theorem 2.12 (Cholesky decomposition of positive definite matrices, see [24, Theorem
6.23]). A matrix A ∈ Kp×p is positive definite if and only if there exists a lower triangular
matrix T ∈ Kp×p, where the diagonal entries are real and positive, such that TTH = A. For
each positive definite A, this matrix T is unique.

Proof. First, we want to prove the implication, that for all lower triangular T ∈ Kp×p with
real and positive diagonal entries, A := TTH is positive definite. It can be seen that A must
be Hermitian as

AH = (TTH)H = (TH)H TH = TTH = A.

Considering that T has full rank,

xHAx = xHTTHx = ∥xHT∥22 > 0, x ∈ Kp \ {0},

where ∥ · ∥2 is the Euclidean norm.

For the other implication, the proof is done via induction over the dimension p ∈ N.
For p = 1, the matrix A must be equal to a positive real α. The matrix T must also be

equal to a positive real t that fulfills t2 = α. Hence, T = (
√
α) is the unique solution.

Now for p ∈ N, p ≥ 2, suppose there exists a Cholesky decomposition for all (p−1)×(p− 1)-
dimensional positive definite matrices and let A ∈ Kp×p be a positive definite matrix. Since
A is Hermitian, it can be written as

A =

�
Ap−1 a
aH α

#
,

where Ap−1 ∈ K(p−1)×(p−1) is Hermitian, a ∈ Kp−1 and α ∈ R. Due to Lemma 2.9, Ap−1

must be positive definite.
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Suppose there exists a p × p-dimensional lower triangular matrix T with real positive
entries on the diagonal that fulfills TTH = A. Then T can be written as

T =

�
Tp−1 0
tH θ

#
,

where Tp−1 ∈ K(p−1)×(p−1) is a lower triangular matrix with real positive entries on the
diagonal, t ∈ Kp−1 and θ ∈ R+. In order for TTH to be equal to A, the equality

TTH =

�
Tp−1 0
tH θ

#�
TH
p−1 t

0 θ

#
=

�
Tp−1T

H
p−1 Tp−1t

(Tp−1t)
H tHt+ θ2

#
!
=

�
Ap−1 a
aH α

#
= A

must hold. Since Ap−1 is positive definite, there exists a unique Cholesky decomposition of
Ap−1 = Tp−1T

H
p−1, where Tp−1 is a lower triangular matrix with real positive entries on the

diagonal. Now we are left to prove that the two equalities

Tp−1t = a, tHt+ θ2 = α

have unique solutions t ∈ Kp−1 and θ ∈ R+. Since Tp−1 is of full rank, the first equation
has the unique solution t := T−1

p−1a. We can rewrite the equation for θ as

θ2 = α− tHt = α− (T−1
p−1a)

H T−1
p−1a = α− aHA−1

p−1a

=

�−A−1
p−1a

1

#H�
Ap−1 a
aH α

#
� �� �

=A

�−A−1
p−1a

1

#
> 0,

since A is positive definite. Hence the unique solution is θ :=
√
α− tHt ∈ R+.

Remark 2.13 (Cholesky decomposition of positive semi-definite matrices, see [17, Corollary
7.2.9]). The positive semi-definite matrices can also be represented by a Cholesky decompo-
sition in a slightly altered form: A matrix A ∈ Kp×p is positive semi-definite if and only if
there exists a lower triangular matrix T ∈ Kp×p, where the diagonal entries are real and
non-negative, such that TTH = A. Such a Cholesky decomposition is not necessarily unique
for positive semi-definite matrices as for the example

A =

�
0 0
0 1

#
all of the matrices

T1 =

�
0 0
0 1

#
, T2 =

�
0 0
−1 0

#
, T3 =

�
0 0
1 0

#
,

can be used for a Cholesky decomposition of A.
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Let us point out that the argumentation used in the proof of Theorem 2.12 also leads to
the following lemma.

Lemma 2.14 (Mapping positive definite matrices to their Cholesky decompositions is
bicontinuous). For p ∈ N let TK

p denote the set of all lower triangular matrices in Kp×p

with positive diagonal entries. Then the function ϕ that maps every T ∈ TK
p to the positive

definite matrix TTH ∈ Kp×p is a homeomorphism5 between TK
p and the set of positive

definite matrices in Kp×p, where both sets are equipped with the topology induced by a matrix
norm on Kp×p.

Proof. The function ϕ is continuous as multiplying and transposing matrices are continuous
operations. It is bijective as a map from TK

p to the set of positive definite matrices in Kp×p

due to the uniqueness of the Cholesky decomposition of positive definite matrices shown in
Theorem 2.12.

For every positive definite A ∈ Kp×p the induction over the dimension p ∈ N used in
the proof of Theorem 2.12 can be used to find the unique lower triangular matrix T ∈ TK

p

satisfying TTH = A. We are going to prove by the same induction that ϕ−1 is continuous.

For p = 1, the now real T is given by
√
A where A ∈ R+ in this case. As the function�

R+ → R+

x �→ √
x

is continuous, this operation is continuous.

For p ∈ N with p ≥ 2, assume ϕ−1 is continuous for dimension p− 1. Due to the proof of
Theorem 2.12, we can represent A and T by

A =

�
Ap−1 a
aH α

#
, T =

�
Tp−1 0
tH θ

#
, Ap−1, Tp−1 ∈ K(p−1)×(p−1); a, t ∈ Kp−1; α, θ ∈ R+,

where Tp−1T
H
p−1 is the unique Cholesky decomposition of Ap−1 from the induction hypothesis,

t = T−1
p−1a and θ =

√
α− tHt. Due to the induction hypothesis, the function that maps

Ap−1 to Tp−1 is continuous. Inversions of matrices of full rank are continuous as well, since
the inequality

∥A−1 −B−1∥ = ∥A−1(B −A)B−1∥ ≤ ∥A−1∥∥B −A∥∥B−1∥

holds for all invertible A,B of the same dimensions, where ∥ · ∥ stands for a matrix
norm, which is a submultiplicative norm, on K(p−1)×(p−1). Together with the fact that
matrix multiplications are continuous, (Tp−1, a) �→ T−1

p−1a = t is continuous. Last, (α, t) �→√
α− tHt = θ is continuous as composition of continuous functions and as α − tHt ∈ R+,

as discussed in the end of the proof of Theorem 2.12. The extraction of submatrices is
continuous as well. Therefore, ϕ−1 is continuous for dimension p.

5 A homeomorphism is a function f : X → Y , where X,Y are topological spaces, that is bijective,
continuous and where the inverse function f−1 is continuous as well.



2.3. INTEGRATION OVER THE POSITIVE DEFINITE MATRICES 11

The next lemma, which can be found in [17] along with its proof, states another convenient
fact about positive (semi-)definite matrices.

Lemma 2.15 (The matrix square root of positive (semi-)definite matrices, see [17, Theorem
7.2.6]). For p ∈ N, let A ∈ Kp×p be a positive semi-definite matrix. Then there exists a
unique positive semi-definite

√
A ∈ Kp×p such that

√
A
√
A = A. In case that A is positive

definite, the matrix square root
√
A is positive definite as well.

2.3. Integration over the Submanifold
of Positive Definite Matrices

For simplifying the notation in the following, let Sp+ denote the set of all real positive definite
p× p matrices for p ∈ N. Using the Loewner partial order given in Definition 2.10, Sp+ can
be defined as

Sp+ = {A ∈ Rp×p | A >L 0}.
Note that S+1 = R+. The definition of the multi-dimensional gamma function denoted by
Γp(·), that will be introduced in Section 2.5 below, uses an integral over Sp+. This section
discusses the concept of this form of integration as used in this thesis.

As the first step we need to show that Sp+ is a submanifold of Rp·p ∼= Rp×p.

Definition 2.16 (Submanifold of Rn, see [10, Section 14, Satz 4]). For k ≤ n in N a set
M ⊆ Rn is called a k-dimensional submanifold of Rn if for every point a ∈ M there exists
an open neighbourhood V ⊆ M w.r.t. the relative topology6 on M , an open set T ⊆ Rk

and a C1-immersion7 ψ: T → Rn, that is a homeomorphism from T to V .

The following matrix inner product and corresponding norm will be useful for applying
this concept of a submanifold to matrices.

Remark 2.17 (The Frobenius inner product and the Frobenius norm, see [28, Definition
13.9]). For p, q ∈ N and matrices A,B ∈ Kp×q the Frobenius inner product is given by

⟨A,B⟩F := tr(ABH) =

p+
i=1

(ABH)ii =

p+
i=1

q+
j=1

AijBij .

The corresponding Frobenius matrix norm for A ∈ Kp×q is given by

∥A∥F =
*
⟨A,A⟩F =

� p+
i=1

q+
j=1

|Aij |2
#1/2

.

6 For M ⊆ Rn and V ⊆ Rn the set V ∩M is defined to be open w.r.t. the relative topology on M if V is
an open set in Rn.

7 For k, n ∈ N and an open set T ⊆ Rk a continuously differentiable function ψ: T → Rn is called
C1-immersion if the rank of the Jacobi matrix dψ is equal to k for all t ∈ T .



12 CHAPTER 2. PRELIMINARIES

Remark 2.18. (Vectorization of matrices, see [13, Definition 1.2.7]) Several concepts and
theorems in this thesis, like the submanifolds introduced in Definition 2.16, are defined
for subsets of Rn for n ∈ N. To formally use these concepts with matrices, we define
vectorization functions. Fix any p, q ∈ N. For every A ∈ Kp×q the vectorized version is
given by

vec(A) :=

��
A1

A2

...
Aq

%% ∈ Kp·q, (2.4)

where Aj ∈ Kp is the j-th column vector of A for all j ∈ {1, . . . , q}. This function is a
linear bijection between Kp×q and Kp·q. It is even an isomorphism of Hilbert spaces when
equipping Kp×q with the Frobenius inner product given in Remark 2.17 and Kp·q with the
standard inner product ⟨·,·⟩, i.e.

⟨A,B⟩F = tr(ABH) =

p+
i=1

q+
j=1

AijBij = ⟨vec(A), vec(B)⟩, (2.5)

where the first equality follows from the definition of the Frobenius inner product given
above in Remark 2.17.

Similarly, for every lower triangular (or symmetric) matrix A ∈ Kp×p we define the partial
vectorization

vecp(A) =

���
Ã1

Ã2

...

Ãp

%%% ∈ K
p(p+1)

2 , (2.6)

where Ãj = (ajj , . . . , apj)
T ∈ Kp−j+1 for j ∈ {1, . . . , p}, are the columns of the matrix

restricted to on and below the diagonal. The function vecp(·) is a bijection when seen as a
function from the set of lower triangular matrices in Kp×p to Kp(p+1)/2. When seen as a
function from the set of symmetric matrices in Kp×p to Kp(p+1)/2 it is also bijective.

Remark 2.19 (Introduction of S̃p+). For p ∈ N, let ψ be the map that translates the positive
definite, hence symmetric, matrices seen as their lower triangular version, denoted by S̃p+,
to the subset Sp+ of Rp·p ∼= Rp×p,

ψ :=

��������������������

S̃p+ ⊆ R
p(p+1)

2 → Sp+ ⊆ Rp·p ∼= Rp×p

������
a11
a21 a22
...

. . .
...

. . .

ap1 · · · app

%%%%%% �→

������
a11 a21 · · · · · · ap1
a21 a22 a23 · · · ap2
...

. . .
...

...
. . .

...
ap1 · · · app

%%%%%%
. (2.7)

The lower triangular matrix in the domain is understood as an element of S̃p+ via the
isomorphism vecp(·) discussed in Remark 2.18 and will be denoted by A△. So A△ ∈ S̃p+ if
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and only if ψ(A△) ∈ Sp+. This map ψ is a homeomorphism from S̃p+ to Sp+ as it is bijective
and the restriction of a linear map between the finite-dimensional vector spaces Rp(p+1)/2

and Rp·p ∼= Rp×p.

Lemma 2.20 (S̃p+ is an open set). For p ∈ N, let Tp denote the set of all lower triangular
matrices in Rp×p with positive diagonal entries,

Tp := {T ∈ Rp×p | t11, . . . , tpp ∈ R+ and tij = 0 for all i < j in {1, . . . , p}}.

and let T̃p be its vectorized version

T̃p = vecp(Tp). (2.8)

Then both T̃p and the set S̃p+ are open subsets of Rp(p+1)/2.

Proof. Using Eq. (2.6) and Eq. (2.8)

vecp(Tp) = R+ × Rp−1 × R+ × Rp−2 × · · · × R+,

which is an open subset of Rp(p+1)/2.

To see that S̃p+ is an open set, recall that ψ given in Eq. (2.7) is bijective, and by Item (vii)
of Lemma 2.8, A△ ∈ Rp(p+1)/2 is in S̃p+ if and only if there exists a δ > 0 such that

xTψ(A△)x ≥ δ, x ∈ Rp with ∥x∥2 = 1,

where ∥ · ∥2 is the Euclidian norm. Fix A△ ∈ S̃p+. The function ψ given in Eq. (2.7) can
be extended to a linear map from Rp(p+1)/2 to Rp·p with the same definition. Then every
vector B△ ∈ Rp(p+1)/2 with ∥A△ −B△∥2 < δ/2 satisfies

|xTψ(B△ −A△)x| ≤ ∥x∥2 ∥ψ∥����
≤ 2

∥B△ −A△∥2∥x∥2 < δ, x ∈ Rp with ∥x∥2 = 1,

for all x ∈ Rp with ∥x∥2 = 1, where ∥ψ∥ is the operator norm of ψ: Rp(p+1)/2 → Rp·p and
the domain and the range are equipped with the respective Euclidian norm. Hence,

xTψ(B△)x = xTψ(B△ −A△)x+ xTψ(A△)x > −δ + δ = 0.

As this inequality holds for all x ∈ Rp with ∥x∥2 = 1, it also holds for all x ∈ Rp \ {0}.

Remark 2.21 (Sp+ is a submanifold of Rp·p ∼= Rp×p). For p ∈ N, let ψ be the homeomorphism
between S̃p+ and Sp+ given in Eq. (2.7). As ψ maps lower triangular matrices seen as elements
of Rp(p+1)/2 to the same matrix with additional elements above the diagonal, the Jacobi
matrix of ψ has rank p(p+ 1)/2. Hence, using Definition 2.16 and the fact that S̃p+ is an
open set in Rp(p+1)/2 due to Lemma 2.20, Sp+ is a p(p+ 1)/2-dimensional submanifold of
Rp·p ∼= Rp×p.
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Remark 2.22 (Integration on submanifolds of Rn, see [10, Section 14]). For k, n ∈ N let M
be a k-dimensional submanifold of Rn. Then a C1-immersion and homeomorphism

ψ: T → V ⊆ M,

where T is an open subset of Rk and V is open w.r.t. the relative topology on M , is called
chart. The Gramian determinant g(t) corresponding to ψ = (ψ1, . . . , ψn) is defined as the
determinant of the matrix G(t) = (gi,j(t))

k
i,j=1, where each entry is given by

gi,j(t) =

�
∂ψ(t)

∂ti
,
∂ψ(t)

∂tj

�
=

n+
v=1

∂ψv(t)

∂ti
· ∂ψv(t)

∂tj
, t ∈ T and i, j ∈ {1, . . . , k}. (2.9)

A function f : M → R, that fulfills f↾M\V = 0 for a given chart ψ: T → V is called integrable
over the submanifold M if the function

T ∋ t �→ f
�
ψ(t)

"*
g(t)

is integrable over T w.r.t. the Lebesgue–Borel measure λk on Rk restricted to T . In this
case the integral is defined to be�

M
f(x) dx =

�
T
f
�
ψ(t)

"*
g(t)λk(dt).

This definition does not depend on the choice of the chart ψ as shown in [10, Secton 14, p.
168]. This form of integration can be generalized, relaxing the condition f↾M\V = 0 for a
single chart ψ: T → V , by using a partition of unity. As this will not be required for the
submanifold Sp+, it will not be discussed further in this thesis and the interested reader
might consult [10, Secton 14, p. 168].

Remark 2.23 (Integration over Sp+, the set of real positive definite matrices). This remark
describes how for f : Sp+ → K, satisfying certain integrability conditions, an integral�

Sp+
f(A) dA

over the submanifold Sp+ can be transformed to a Lebesgue–Borel integral.
First, let f take values in the real numbers. As described in Remark 2.22, we integrate over

the p(p+ 1)/2-dimensional submanifold Sp+ of Rp·p using a chart. For further calculations
we use the chart ψ defined in Eq. (2.7). We refer to elements of the domain S̃p+ of ψ as A△

and to those in the range S+p as A. Note that the domain S̃p+ is an open subset of Rp(p+1)/2,
see Lemma 2.20. As the range of this chart is the entire submanifold Sp+, the basic criterion
f↾M\V = 0, discussed in Remark 2.22, for integrating a function f over a submanifold M ,
is always fulfilled. Therefore,�

Sp+
f(A) dA =

�
S̃p+

f
�
ψ(A△)

")
g(A△)λ

p(p+1)
2 (dA△), (2.10)

for all f : Sp+ → R, for which the integral on the right side is well-defined, with g(A△) referring
to the Gramian determinant of the chart ψ and λp(p+1)/2 being the p(p+ 1)/2-dimensional
Lebesgue–Borel measure.
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The next step is to determine the Gramian determinant of this chart ψ. According to
Remark 2.22, we start by taking the partial derivatives of the components of the chart. For
A△ ∈ S̃p+ and i, j ∈ {1, . . . , p},

ψij(A
△) = 1{i≥j}aij + 1{i<j}aji,

where amn refers to the entry of A△ for all m,n in {1, . . . , p} with m ≥ n. Hence, for all
i, j, k, l ∈ {1, . . . , p} with k ≥ l,

∂ψij(A
△)

∂akl
= 1{i≥j}1{i=k,j=l} + 1{i<j}1{i=l,j=k}.

For the entries in the matrix G(A△), given in Eq. (2.9), we calculate for k ≥ l in {1, . . . , p}
and m ≥ n in {1, . . . , p}

�
∂ψ(A△)

∂akl
,
∂ψ(A△)

∂amn

�
F

=

p+
i,j=1

∂ψij(A
△)

∂akl
· ∂ψij(A

△)

∂amn
=

��
1 if k = l = m = n,

2 if k = m > l = n,

0 otherwise,

(2.11)

where the Frobenius inner product is used instead of vectorizing ψ(A△) as described in
Eq. (2.5). To compute the determinant of the matrix G(A△), it is advantageous to vectorize
the entries of A△ as described in Eq. (2.6) of Remark 2.18. As the Frobenius inner product
in Eq. (2.11) is only non-zero if (k, l) = (m,n), the matrix G(A△) is a diagonal matrix with
p times entry 1 and p(p+ 1)/2− p times entry 2 on the diagonal. Hence, the determinant
is equal to the product of the diagonal entries, resulting in

g(A△) = det(G(A△)) = 2
p(p−1)

2 .

Inserting this into Eq. (2.10) results in�
Sp+

f(A) dA = 2
p(p−1)

4

�
S̃p+

f
�
ψ(A△)

"
λ

p(p+1)
2 (dA△), (2.12)

if f
�
ψ(A△)

"
is integrable over S̃p+ w.r.t. λp(p+1)/2.

Now for a f : Sp+ → C, we can split up the function into its real and imaginary part,

f = f1 + if2,

where f1, f2: Sp+ → R. Then the integral of f over Sp+ is given by�
Sp+

f(A) dA =

�
Sp+

f1(A) dA+ i

�
Sp+

f2(A) dA

= 2
p(p−1)

4

�
S̃p+

f1
�
ψ(A△)

"
λ

p(p+1)
2 (dA△) + i 2

p(p−1)
4

�
S̃p+

f2
�
ψ(A△)

"
λ

p(p+1)
2 (dA△).

Hence, using the linearity of the integral, Eq. (2.12) holds for complex valued f as well,
if both its real part f1

�
ψ(A△)

"
and its imaginary part f2

�
ψ(A△)

"
are integrable over S̃p+

w.r.t. λp(p+1)/2.
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2.4. One-Dimensional Gamma Distributions
and their Characteristic Function

In this section one-dimensional gamma distributions will be introduced as well as their
characteristic function, as a corollary to Lemma 2.33 below. We will also discuss the special
case of χ2-distributions, whose matrix-valued generalization, called Wishart distribution,
will be discussed in Section 3.1 of the next chapter.

First, we will show that the one-dimensional gamma function, which is needed for
the definition of the gamma distribution, is well defined, which is also a prerequisite to
demonstrate that the multi-dimensional gamma function is well-defined.

Remark 2.24 (One-dimensional gamma function). The one-dimensional gamma function is
given by

Γ(α) :=

� ∞

0
tα−1 e−t dt, z ∈ C, Re(α) > 0.8

As a first step to show that this integral is well-defined, we prove that it is finite for fixed
real α > 0. Let n := ⌈α⌉ + 1 ∈ N and using this let t0 := n

*
(2n)! ∈ R+. Then all t ≥ t0

satisfy the inequality tn/(2n)! ≥ 1 and therefore

tα+1 ≤ tn ≤ tn
tn

2n!
=

t2n

(2n)!
≤ et, t ≥ t0,

due to the power series definition of the exponential function. This can be rearranged to

tα−1 e−t ≤ 1

t2
, t ≥ t0. (2.13)

We split the integral into two parts at t0,

Γ(α) =

� t0

0
tα−1 e−t dt+

� ∞

t0

tα−1 e−t dt.

The first integral is finite as� t0

0
tα−1 e−t dt ≤

� t0

0
tα−1 dt =

(t0)
α

α
< ∞

as e−t ≤ 1 for all t ≥ 0. Due to Eq. (2.13) the second integral can be estimated by� ∞

t0

tα−1 e−t dt ≤
� ∞

t0

1

t2
dt =

1

t0
< ∞.

Hence, the gamma function is well-defined for real α > 0.
Now for α ∈ C with x := Re(α) > 0, it is also well-defined as

|tα−1| = |e(α−1)log(t)| = eRe((α−1)log(t)) = e(x−1)log(t) = tx−1, t > 0,

where log(·) denotes the natural logarithm on R+.

8 Note that the gamma function can be defined for all complex α except for zero and negative integers,
using the analytic continuation of the integral given here, see [18, p.219] for example.
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y

fY (y)

Figure 2.1. Continuous probability density functions of one-dimensional gamma distributions
with different shape and scale parameters and the same expectation, see Eq. (2.15).

Definition 2.25 (One-dimensional gamma distributions). For α ∈ R+ an R+-valued
random variable X with density

fX(x) =
1

Γ(α)
xα−1 e−x, x ∈ R+,

is said to follow the standard one-dimensional gamma distribution with shape parameter α.
For β ∈ R+

0 the R+
0 -valued random variable Y with stochastic representation

Y
d
= βX (equality in distribution)

is said to follow the one-dimensional gamma distribution with shape parameter α and scale
parameter β. This is denoted by Y ∼ Gamma(α, β). We will also include the cases α = 0
by letting Gamma(0, β) denote the degenerate distribution concentrated in zero.

There exists a more general version of one-dimensional gamma distributions, called
generalized gamma distribution, which additionally involves a power p ∈ R+, which is equal
to one for normal gamma distributions.

Definition 2.26 (Generalized gamma distribution, see [28, Exercise 2.37]). For parameters
α, p ∈ R+ we say that an R+-valued random variable X with density

fX(x) =
p

Γ(α)
xαp−1 e−xp

, x ∈ R+,

follows the standard generalized gamma distribution with shape parameter α and power p.
For β ∈ R+

0 the R+
0 -valued random variable Y with stochastic representation

Y
d
= βX (equality in distribution)

is said to follow the generalized gamma distribution with shape parameter α, scale parameter
β and power p, denoted by Y ∼ GenGamma(α, β, p). Again, we include the case α = 0 by
letting GenGamma(0, β) denote the degenerate distribution concentrated in zero.
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Remark 2.27 (Density function of (generalized) gamma distributions). If β ̸= 0, the
random variable Y given in Definition 3.34 via the stochastic representation Y d

= βX
with X ∼ GenGamma(α, 1, p) has a continuous density function. For every Borel set
B ∈ B(R+),

P[Y ∈ B] = P[βX ∈ B] = P[X ∈ {b/β |b ∈ B}] =
�
{b/β|b∈B}

fX(x) dx =

�
B
fX(y/β)β dy,

where the substitution R+ ∋ y := βx is used for the last equality. As this holds true for
every Borel set B ∈ B(R+),

fY (y) = fX(y/β)β =
p

Γ(α)

�
y

β

#αp−1

e−(y/β)p β,

where we use the density function of X given in Definition 2.26. Hence,

fY (y) =
p

βαpΓ(α)
yαp−1 e−(y/β)p , y ∈ R+, (2.14)

for Y ∼ GenGamma(α, β, p). By setting p = 1, we can derive the well-known continuous
density of the one-dimensional gamma distribution with shape parameter α and scale
parameter β to be

fY (y) =
1

βαΓ(α)
yα−1 e−y/β , y ∈ R+. (2.15)

Definition 2.28 (χ2-distribution). For n ∈ N0 let Z1, . . . , Zn be i.d.d. random variables
following a standard normal distribution. Then a random variable

X
d
= Z2

1 + · · ·+ Z2
n

is said to be χ2-distributed with n degrees of freedom, with the convention that the sum
over an empty set is equal to zero. This is denoted by X ∼ χ2

n.

Remark 2.29 (χ2-distributions are a subclass of gamma distributions). For n ∈ N a random
variable X ∼ χ2

n follows the gamma distribution with shape parameter α = n/2 and scale
parameter β = 2. This is proven by the fact that the characteristic function determines the
distribution uniquely, see Remark 3.4 for a further discussion, and Corollaries 2.34 and 2.35
below.

Remark 2.30 (One-dimensional exponential distributions). Another subclass of the one-
dimensional gamma distributions is the family of exponential distributions. An R+

0 -valued
random variable Z is said to follow the exponential distribution with parameter β ∈ R+

0 , if
Z ∼ Gamma(1, β). Therefore, in case β > 0, a density of Z is given by

fZ(z) =
1

β
e−z/β , z ∈ R+.

Exponential distributions have the powerful property of being memoryless, i.e. for all s, t ≥ 0,

P[Z > s+ t |Z > s] = P[Z > t].

In Lemma 3.49 below we will prove that matrix-valued exponential distributions, a subclass
of matrix-valued gamma distributions given in Definition 3.47, also possess a memorylessness
property using the Loewner order given in Definition 2.10.
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In order to look at the characteristic function of gamma distributions we need to define
complex logarithms.

Remark 2.31 (The complex logarithm and complex exponentiation, see [18, Section 4.3]).
The complex logarithms of a complex number z ∈ C \ {0} are given by all w ∈ C solving

ew = z.

This equation has infinitely many solutions as the functional equation of the exponential
function and

e2πik = 1, k ∈ Z, (2.16)

imply that for every complex logarithm w ∈ C of z ∈ C \ {0}, the complex number
w̃ = w + 2πik for k ∈ Z also satisfies ew̃ = z. With the help of a polar form of z ∈ C \ {0}
given by z = r eiθ with θ ∈ R and r := |z| > 0 all complex logarithms of z are given by

log(r) + i(θ + 2πk), k ∈ Z,

where log(·) refers to the natural logarithm on R+. The principal value logarithm, which
extends the natural logarithm for z ∈ R+, refers to the complex logarithm of z ∈ C \ {0}
with imaginary part in the interval (−π, π] and will be denoted by Log(·). Note that for
z1, z2 ∈ C\{0}, which can be written as zj = rj e

iθj with rj := |zj | and θj ∈ R for j ∈ {1, 2},
their product can be represented by

z1z2 = r1r2 e
i(θ1+θ2) .

The sum of the principal logarithms of z1 and z2 satisfies

Log(z1) + Log(z2) = log(r1) + i(θ1 + 2πk1) + log(r2) + i(θ2 + 2πk2)

= log(r1r2) + i(θ1 + θ2 + 2π(k1 + k2)) = Log(z1z2) + 2πik (2.17)

for certain k1, k2, k ∈ Z. As (θ1 + 2πk1) ∈ (−π, π] and (θ2 + 2πk2) ∈ (−π, π] does not
necessarily imply that their sum is in the interval (−π, π], the integer k in Eq. (2.17) can
be different from zero.

For this thesis we define complex exponentiation using the principal value logarithm, i.e.
for all α ∈ C,

zα := eαLog(z), z ∈ C \ {0}. (2.18)

Note that due to Eq. (2.17), the common power identities axbx = (ab)x and (ax)y = axy,
which hold for a, b ∈ R+ and x, y ∈ R, do not necessarily hold if some of the parameters
are complex due to Eq. (2.17) or already if a or b is negative. This can be seen by the
counterexample ((−1)2)1/2 = 1 ̸= −1 = (−1)1. The properties that do hold are given in the
following proposition.

Proposition 2.32 (Properties of complex exponentiation). Note that the following equalities
hold for all a, b ∈ C \{0} and x, y ∈ C satisfying the corresponding restrictions.

(i) (ax)y = axy if y ∈ N0.

(ii) (ax)y = axy if x ∈ (−1, 1],
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(iii) axay = ax+y,

(iv) axbx = (ab)x if a or b is real and positive,

(v) axbx = (ab)x if x ∈ Z,

(vi) axbx = ±(ab)x if 2x ∈ Z.

Proof. Item (i): If y = 0, then both sides of the equality are equal to one. If y ∈ N, then

(ax)y = ax · · · ax� �� �
y times

= exLog(a) · · · exLog(a) = e(x+···+x)Log(a) = exy Log(a) = axy.

Item (ii): Note that both z1 := xLog(a) and z2 := Log(ax) solve ezj = ax, j ∈ {1, 2},
hence they can only differ by 2πik with k ∈ Z as discussed in Remark 2.31. For a fixed
a ∈ C let θ ∈ R satisfy Log(a) = log(|a|) + iθ, which means that a = |a| eiθ and θ ∈ (−π, π].
Then xθ ∈ (−π, π] for x ∈ (−1, 1] and therefore

xLog(a) = log(|a|x) + ixθ = Log(ax).

Item (iii): This holds true as axay = exLog(a)+yLog(a) = e(x+y)Log(a) = ax+y due to the
functional equation of the exponential function. Item (iv): W.l.o.g. assume that a ∈ R+.
Then

axbx = exLog(a) exLog(b) = ex(log(a)+Log(b)) = exLog(ab) = (ab)x

as the imaginary part of the logarithm of a is equal to zero and hence log(a) + Log(b) =
Log(ab).

Item (v): Due to Eq. (2.17) there exists a k ∈ Z such that Log(a)+Log(b) = Log(ab)+2πik.
Hence,

axbx = exLog(a) exLog(b) = ex(Log(a)+Log(b)) = exLog(ab)+x2πik = (ab)x e2πikx = (ab)x,

where the last step follows from Eq. (2.16) as kx ∈ Z.
Item (vi): The same procedure as in the Item (v) with the difference that eπi2kx = ±1 for

2kx ∈ Z.

The following lemma is on the one hand used for deriving the characteristic function of
one-dimensional gamma distributions and χ2-distributions and, on the other hand, useful
for the proof of Theorem 2.37 below.

Lemma 2.33. For every t ∈ R and α ∈ C satisfying Re(α) > 0,

2

�
R+

x2α−1 e−x2(1+it) dx =

�
R+

zα−1 e−z(1+it) dz = (1 + it)−α Γ(α), (2.19)

where the complex exponentiation is defined in Eq. (2.18).

The proof of this lemma is given after the following two corollaries, which derive well-known
characteristic functions.
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Corollary 2.34 (Characteristic function of one-dimensional gamma distributions). For
α, β ∈ R+

0 let Y ∼ Gamma(α, β). Then the characteristic function is given by

E[eitY ] = (1− iβt)−α, t ∈ R,

where the complex exponentiation is defined in Eq. (2.18).

Proof. Using Eq. (2.15), the characteristic function of Y for α, β ∈ R+ is given by

E[eitY ] =

�
R+

eity fY (y) dy =
1

βαΓ(α)

�
R+

yα−1 e
− y

β
(1−iβt)

dy, t ∈ R.

By substituting R+ ∋ z := y/β,

E[eitY ] =
1

βαΓ(α)

�
R+

(βz)α−1 e−z(1−iβt) β dz = (1− iβt)−α, t ∈ R,

where we use Eq. (2.19) for the last equality. For the degenerate cases 0 ∈ {α, β}, the
random variable Y is equal to zero with probability one, hence the characteristic function is
constant and equal to one.

Corollary 2.35 (Characteristic function of χ2-distributions). For n ∈ N let X ∼ χ2
n. Then

the characteristic function is given by

E[eitX ] =
� 1√

2π

�
R
e−

z2(1−2it)
2 dz

 n
= (1− 2it)−n/2, t ∈ R, (2.20)

where the complex exponentiation is defined in Eq. (2.18).

Proof. Due to Definition 2.28 X can be written as X d
= Z2

1 + · · ·+ Z2
n, where Z1, . . . , Zn

are i.i.d. N (0, 1) random variables. Hence,

E[eitX ] = E[eit(Z
2
1+···+Z2

n) ] =
�
E[eitZ

2
1 ]
"n
, t ∈ R. (2.21)

By inserting the continuous density of the standard normal distribution each of the factors
is given by

E[eitZ
2
1 ] =

1√
2π

�
R
e−

1
2
z2(1−2it) dz,=

2√
π

�
R+

e−y2(1−2it) dy = (1−2it)−1/2, t ∈ R, (2.22)

where we substitute R ∋ y := z/
√
2 and use the symmetry of the integrand for the second

equation and the last equality holds due to Eq. (2.19) with α = 1/2 combined with the
fact that Γ(1/2) =

√
π. Now with Item (i) of Proposition 2.32, Eq. (2.20) follows from

Eqs. (2.21) and (2.22).
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Proof of Lemma 2.33. We start by using integration by substitution, to integrate over
R+ ∋ z := x2 for the left side of Eq. (2.19),

2

�
R+

x2α−1 e−x2(1+it) dx = 2

�
R+

zα−
1
2 e−z(1+it) 1

2
√
z
dz =

�
R+

zα−1 e−z(1+it) dz. (2.23)

The function

f :=

�
D := C \ (−∞, 0] → C

z �→ zα−1 e−z (2.24)

is holomorphic since zα−1 = e(α−1)Log(z), the principal value logarithm Log(·) is holomorphic
on D and the composition of holomorphic functions is holomorphic. Note that for every
complex number z ∈ D, satisfying Re(z) > 0, and r ∈ R+,

(rz)α−1 = rα−1zα−1

due to Item (iv) of Proposition 2.32 as r ∈ R+. Therefore,

lim
r→∞ |f(rz)| = lim

r→∞ |(rz)α−1 e−rz| = |zα−1| lim
r→∞ |rα−1| |e−rz|

= |zα−1| lim
r→∞ rRe(α)−1 e−r·Re(z) = 0, (2.25)

where we use |rα−1| = eRe((α−1)Log(r)) = e(Re(α)−1)log(r), since r ∈ R+. For w := (1 + it)/|1+
it| and r < R in R+, let γ1, γ2 denote the paths from [r,R] to C with

γ1(s) := s, γ2(s) := ws, s ∈ [r,R]. (2.26)

The paths γ3 and γ4 are defined to be the arcs with radii r and R from the x-axis to rw
and Rw, respectively. Formally, the two paths are given by

γ3(s) := Rws, γ4(s) := rws, s ∈ [0, 1].

Now by Cauchy’s integral theorem9��
γ1

−
�
γ2

+

�
γ3

−
�
γ4

#
f(z) dz = 0. (2.27)

For the integral over γ4, note that the length of this curve is bounded by the length of a
quarter of a circle with radius r. Hence we can write.... �

γ4

f(z) dz

.... = .... � 1

0
f(γ4(s))γ

′
4(s) ds

.... ≤ sup
ŝ∈[0,1]

|f(γ4(ŝ))|
� 1

0
|γ′4(s)| ds� �� �
≤πr/2

. (2.28)

As |w| = 1, the polar form of w is given by w = eiθ for a θ ∈ (−π, π] and therefore the
complex logarithm of w defined in Remark 2.31 is given by Log(w) = iθ. Due to

Log(γ4(s)) = Log(rws) = Log(r esLog(w)) = Log(r esiθ) = log(r) + isθ,

9 The theorem along with its proof can be found in [18] as Theorem 6.1.
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we can write for s ∈ [0, 1]

Re
�
(α− 1)Log(γ4(s))

"
= Re

�
(α− 1)(log(r) + isθ)

"
= (Re(α)− 1) log(r)− Im(α)sθ,

where sθ ∈ (−π, π], and use this, with Eq. (2.24), for

sup
s∈[0,1]

|f(γ4(s))| = sup
s∈[0,1]

|(γ4(s))α−1| |e−γ4(s)| = sup
s∈[0,1]

|e(α−1)Log(γ4(s))| e−Re(γ4(s))� �� �
≤ e−r ≤ 1

≤ e(Re(α)−1)log(r)+π|Im(α)| = C rRe(α)−1,

where C refers to a real number that is independent of r. Hence the integral over γ4 satisfies.... �
γ4

f(z) dz

.... ≤ Eq.(2.28) ≤ C rRe(α)−1πr

2
=

πC

2
rRe(α), r ∈ R+

and as Re(α) > 0 the integral vanishes for r ↘ 0. For R → ∞ the integral over the arc γ3
vanishes due to Eq. (2.25). Therefore, Eq. (2.27) leads to

lim
r↘0

lim
R→∞

�
γ1

f(z) dz� �� �
=

�
R+ zα−1 e−z dz=Γ(α)

= lim
r↘0

lim
R→∞

�
γ2

f(z) dz,

where the limits on the left side exist due to Remark 2.24 and hence the limits on the right
side exist. Using the definition of the line integral and of γ2, this is equivalent to

Γ(α) =

�
R+

f(wz)w dz.

Now substituting y = z/|1 + it| and inserting the definition of w, which then fulfills
wz = y(1 + it), and the definition of f from Eq. (2.24) leads to

Γ(α) =

�
R+

�
y(1 + it)

"α−1
e−y(1+it) (1 + it) dy

= (1 + it)α
�
R+

yα−1 e−y(1+it) dy,

which, combined with Eq. (2.23), proves the Lemma 2.33.

2.5. The Multi-Dimensional Gamma Function

In Definition 2.36 below the multi-dimensional gamma function will be introduced. The
centerpiece of this section is Theorem 2.37, which on the one hand proves that the multi-
dimensional gamma function is well-defined and on the other hand gives us a very useful
Laplace transform for handling matrix-valued gamma distributions in Chapter 3 below.

Definition 2.36 (Multi-dimensional gamma function, see [13, Definition 1.4.2]). For p ∈ N
the p-dimensional gamma function is defined as

Γp(α) =

�
Sp+

e−tr(A)(detA)α−
p+1
2 dA (2.29)

for all α ∈ C satisfying Re(α) > (p− 1)/2.



24 CHAPTER 2. PRELIMINARIES

Theorem 2.37 (Computation of the multi-dimensional gamma function and a Laplace
transform of a function with matrix argument, see [13, Theorem 1.4.1, Eq. (1.4.6)]). For
p ∈ N and α ∈ C satisfying Re(α) > (p − 1)/2, the value of the p-dimensional gamma
function at α is given by

Γp(α) = (2π)
p(p−1)

4

p'
j=1

Γ

�
α− j − 1

2

#
. (2.30)

Furthermore, for a matrix Z = X + iY ∈ Cp×p, where the real part X ∈ Sp+ and the
imaginary part Y ∈ Rp×p is symmetric, the determinant10 of Z satisfies detZ ̸= 0 and can
be used for the equality�

Sp+
e−tr(AZ)(detA)α−

p+1
2 dA = (detZ)−α Γp(α). (2.31)

Note that for p = 1, Eq. (2.30) reduces to Γ1(α) = Γ(α) and Eq. (2.31) with Z = (1 + it)
is the last equality in Eq. (2.19).

The proof of this theorem will be given below, subsequent an additional lemma that will
be used in its proof.

Remark 2.38 (Alternative formulation and interpretation of Eq. (2.30)). In the literature,
see [13, Theorem 1.4.1] or [21, Chapter 1.0, Example 1.24] for example, the integral over
the set of positive definite matrices is commonly only seen as integral over the positive
definite matrices seen as a subset of Rp(p+1)/2. This means instead of integrating over the
submanifold Sp+, the integral is defined over S̃p+, i.e. the entries on and below the diagonal
of the positive definite matrices. Under this interpretation

Γp(α) = π
p(p−1)

4

p'
j=1

Γ

�
α− j − 1

2

#
.

This equation follows from Eq. (2.12) combined with Definition 2.36 and Theorem 2.37.
The equation (2.31) is independent of the interpretation of integrals over positive definite

matrices as either both sides of the equation include the factor 2p(p−1)/2 = 4p(p−1)/4 or both
do not.

The proof of Theorem 2.37 also uses the following fundamental analysis theorem which
be found in [3, Theorem 4.3.1] along with its proof.

Theorem 2.39 (Transformation theorem). Let D be an open subset of Rn, ϕ an injective
C1-map from D to ϕ(D) ⊆ Rn and f a measurable function from ϕ(D) to Q. Let dϕ(x)
denote the Jacobi matrix of ϕ at x ∈ D. Then�

ϕ(D)
f(y)λn(dy) =

�
D
f
�
ϕ(x)

" |det dϕ(x)|λn(dx),

where the existence of one integral follows from the existence of the other.

Note that as integration of vector-valued functions works component-wise, the theorem
also holds for f taking values in Cp for p ∈ N.

10 For Z = X + iY with X ∈ Sp
+ and Y not symmetric, the determinant of Z can be equal to zero, as the

example X = I2 and Y =

�
0 1
−1 0

�
shows.
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The proof of the next lemma will use the higher dimensional chain rule.

Remark 2.40 (Chain rule, see [19, Proposition 10.1.18]). For l,m, n ∈ N let f : Df → Rl with
Df ⊆ Rm open, and g: Dg → Rm with Dg ⊆ Rn open, be two continuously differentiable
functions. If g(Dg) ⊆ Df , then the composition f ◦ g is continuously differentiable as well
and

d(f ◦ g)(x) = df
�
g(x)

"
dg(x), x ∈ Dg.

If additionally n = m = l, then we can use the multiplicativity of the determinant to write

det d(f ◦ g)(x) = det df
�
g(x)

" · det dg(x), x ∈ Dg. (2.32)

Dg Df Rlg

f◦g

f

Figure 2.2. Commutative diagram of the setting of the chain rule.

As the calculations of det dϕ needed for applications of Theorem 2.39 can be quite long,
the two relevant determinants for the proof of Theorem 2.37 are given by the following
lemma.

Lemma 2.41 (Determinants of relevant Jacobi matrices, see [21, Theorem 1.29, Theorem
1.20]). For p ∈ N let S̃p+ be the set of positive definite matrices seen as subset of Rp(p+1)/2

and ψ be the map that extends S̃p+ to Sp+ as defined in Eq. (2.7).

(i) Let T̃p be defined as in Eq. (2.8). Then

ϕ :=

�
T̃p → S̃p+
T̃ �→ A△ := (TTT)△

, (2.33)

where T ∈ Tp is understood as the matrix version of T̃ ∈ T̃p ⊆ Rp(p+1)/2 filled up with
zeros, is well-defined. The determinant of the Jacobi matrix of this map is given by

det dϕ(T̃ ) = 2p
p'

m=1

tp−m+1
mm , T̃ ∈ T̃p, (2.34)

where tij for i ≥ j in {1, . . . , p} refer to the entries of the matrix version T of T̃ .

(ii) Let B,C ∈ Rp×p be matrices let ϕB, ϕC : S̃p+ → S̃p+ be two continuously differentiable
maps satisfying det dϕB ≡ (detB)p+1 and det dϕC ≡ (detC)p+1. Then

det d(ϕB ◦ ϕC) ≡
�
det(BC)

"p+1
.

(iii) Let B ∈ Rp×p be a matrix with full rank. Then the map

ϕB :=

�
S̃p+ → S̃p+
A△ �→ (BABT)△

, (2.35)

where A := ψ(A△) is well-defined, fulfils

det dϕ(A△) = (detB)p+1, A△ ∈ S̃p+. (2.36)
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(iv) Let n ∈ N and let B ∈ Rp×p. For the map

ϕ :=

�
Rp×n → Rp×n

X �→ BX
, (2.37)

the determinant of the Jacobi matrix is given by

det dϕ(X) = (detB)n, X ∈ Rp×n. (2.38)

Proof of Item (i). In the following proof we access the entries of elements of T̃p and S̃p+ by
understanding them as the corresponding matrices in Tp and Sp+, respectively, using two
indices.

According to Theorem 2.12, A = TTT ∈ Sp+, where T is the matrix version of an element
of T̃p. Hence, the function ϕ given in Eq. (2.33) is well-defined.

For the rest of the proof let T̃ denote an element of T̃p. In order to determine det dϕ(T̃ ),
we start by looking at the partial derivatives of the entries of ϕ(T̃ ) ∈ S̃p+ w.r.t. the entries
of T̃ . For all i ≥ j in {1, . . . , p},

ϕij(T̃ ) =

p+
m=1

timtjm1{i≥m,j≥m} =
j+

m=1

timtjm,

where the second equality follows from i ≥ j. Hence, for all i, j, k, l ∈ {1, . . . , p} with i ≥ j
and k ≥ l,

∂ϕij(T̃ )

∂tkl
= tjl1{k=i,j≥l} + til1{k=j,j≥l} = tjl1{k=i,j≥l} + til1{k=j},

where 1I is equal to one if the conditions in I are satisfied and zero otherwise, see Conventions .
In order to determine the matrix dϕ(T̃ ) ∈ Rp(p+1)/2×p(p+1)/2, we use the vecp(·) function
given in Eq. (2.6): The matrix dϕ can be seen as block matrix of the Jacobi matrices of the
restricted columns of the matrix version of ϕ(T̃ ), defined in Remark 2.18, with respect to
the restricted columns of the matrix version of T̃ , that are denoted by ˜ϕ(T )m and T̃m for
m ∈ {1, . . . , p}, respectively,

dϕ(T̃ ) =

��
∂ ˜ϕ(T )1

∂T̃ 1
· · · ∂ ˜ϕ(T )1

∂T̃ p

...
...

∂ ˜ϕ(T )p

∂T̃ 1
· · · ∂ ˜ϕ(T )p

∂T̃ p

%% ,
∂ ˜ϕ(T )m

∂T̃n
=

��
∂ϕmm(T )

∂tnn
· · · ∂ϕmm(T )

∂tpn
...

...
∂ϕpm(T )
∂tnn

· · · ∂ϕpm(T )
∂tpn

%%
for every m,n ∈ {1, . . . , p} where ∂ ˜ϕ(T )m/∂T̃n ∈ R(p−m+1)×(p−n+1). Now for all indices
m,n ∈ {1, . . . , p} satisfying m < n the matrix ∂ ˜ϕ(T )m/∂T̃n is equal to the zero matrix, as
for all a ∈ {m, . . . , p} and all b ∈ {n, . . . , p},

∂ϕam(T )

∂tbn
= tmn1{a=b,m≥n} + tan1{b=m} = 0,
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because b ≥ n > m. Hence, the determinant of dϕ(T̃ ) is equal to the product of the deter-
minants of the diagonal blocks. For m ∈ {1, . . . , p}, the entries of the matrix ∂ ˜ϕ(T )m/∂T̃m

are given by

∂ϕam(T̃ )

∂tbm
= tmm1{a=b,m≥m} + tam1{b=m} =

��������
2tmm if a = b = m.

tmm if a = b ̸= m,

tam if a ̸= b = m,

0 otherwise,

for all a, b ∈ {m, . . . , p}. Hence, ∂ ˜ϕ(T )m/∂T̃m is a lower triangular matrix and therefore
the determinant is given by the product of the diagonal entries,

det

�
∂ ˜ϕ(T )m

∂T̃m

#
= 2tp−m+1

mm .

The determinant of dϕ(T̃ ) is then given as the product of the determinants of the block
diagonal matrices

det dϕ(T̃ ) =

p'
m=1

det

�
∂ ˜ϕ(T )m

∂T̃m

#
=

p'
m=1

2tp−m+1
mm = 2p

p'
m=1

tp−m+1
mm .

Proof of Item (ii). The implication of the chain rule stated in Eq. (2.32) tells us, for every
x△ ∈ S̃p+,

det d(ϕB ◦ ϕC)(x
△) = det dϕB

�
ϕC(x

△)
"
det dϕC(x

△)

≡ (detB)p+1(detC)p+1 =
�
det(BC)

"p+1
,

where the last equality follows from the multiplicativity of the determinant.

Proof of Item (iii). Now, to see that the map given in Eq. (2.35) is well-defined, we show
that BABT is positive definite again. For all x ∈ Rp \ {0}, the product xTBABTx =
(xTB)A(xTB)T > 0 since xTB ∈ Rp \ {0} for x ∈ Rp \ {0} as B has full rank.

In order to determine det dϕ, we are using the fact that B is invertible and can therefore
be written as the product of n ∈ N elementary matrices11 Ei for i ∈ {1, . . . , n}, hence

BABT = En · · ·E2E1AEn · · ·E2E1 = En · · ·E2E1AE
T
1 E

T
2 · · ·ET

n . (2.39)

For every i ∈ {1, . . . , n}, let

ϕi :=

�
S̃p+ → S̃p+
X△ �→ (EiXET

i )
△ , (2.40)

11 The fact that an invertible matrix B can be written as matrix product of elementary matrices in the form
discussed in Case 1 and Case 2 can be, for example, be found in [7, Section 5.6]. Often this decomposition is
given with a third type of elementary matrices – permutation matrices. As every permutation matrix can be
written as a product of elementary matrices of the other two types, considering Case 1 and Case 2 suffices.
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whereX = ψ(X△). This is well-defined for every i ∈ {1, . . . , n} as the functionX �→ EiXET
i

maps every positive definite matrix argument to a positive definite matrix. Thus, we can
write our function ϕ as a composition of the functions

ϕ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1. (2.41)

Hence, using Item (ii), it is sufficient to prove Eq. (2.36) for B equal to one of the two types
of elementary matrices.
In the rest of the proof we again access the entries of elements of S̃p+ by understanding

them as the corresponding matrices Sp+, respectively, using two indices; furthermore, let
X△ denote an element of S̃p+ and X = ψ(X△) the corresponding matrix from S+p .
Case 1: The matrix B is a identity matrix except for one diagonal entry at position

(α, α), α ∈ {1, . . . , p}, that is equal to a real λ ̸= 0. In this case, the entries of (BXBT)△

are given by

ϕB(X
△)kl =

��
λxkl if k = α or l = α, l ̸= k,

λ2xkl if k = l = α,

xkl otherwise,

(2.42)

for all k ≥ l in {1, . . . , p}. As in the proof of Item (i), the matrix dϕB(X
△) can be seen

as a block matrix, where the blocks correspond to the Jacobi matrices of the restricted
columns, see Eq. (2.6), ϕB(X̃

△)m,m ∈ {1, . . . , p}, with respect to the restricted columns
X̃n, n ∈ {1, . . . , p}, so

dϕB(X
△) =

��
∂ϕB(X̃△)1

∂X̃1
· · · ∂ϕB(X̃△)1

∂X̃p

...
...

∂ϕB(X̃△)p

∂X̃1
· · · ∂ϕB(X̃△)p

∂X̃p

%% , (2.43)

where the matrix ∂ϕB(X̃
△)m/∂X̃n ∈ R(p−m+1)×(p−n+1) for all m,n ∈ {1, . . . , p}. Now for

all m ̸= n in {1, . . . , p}, the matrix ∂ϕB(X̃
△)m/∂X̃n is equal to zero as

∂ϕB(X
△)am

∂xbn
= 0, a ∈ {m, . . . , p}, b ∈ {n, . . . , p},

due to Eq. (2.42) for m ≠ n. Hence, the determinant of dϕB(X
△) is equal to the product

of the determinants of the diagonal blocks. For every m ∈ {1, . . . , p}, the entries of matrix
∂ϕB(X̃

△)m/∂X̃m are given by

∂ϕB(X
△)am

∂xbm
=

��������
0 if a ̸= b,

λ if a = b, a = α or m = α, a ̸= m,

λ2 if a = b = m = α,

1 otherwise,

for a, b ∈ {m, . . . , p}. Hence ∂ϕB(X̃
△)m/∂X̃m is a (p−m+ 1)× (p−m+ 1)-dimensional

diagonal matrix and

det
∂ϕB(X̃

△)m

∂X̃m
=

��
λ2λp−m = λ2λp−α if m = α,

λ if m < α,

1 otherwise,
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which leads to

det dϕB(X
△) =

p'
m=1

det
∂ϕB(X̃

△)m

∂X̃m
= λ2λp−αλα−1 = λp+1 = (detB)p+1,

where the last equation follows from the definition of B in this case.
Case 2: The matrix B is a identity matrix except for one entry at position (α, β), where

α ̸= β in {1, . . . , p}, that is equal to λ ∈ R \ {0}. Then the entries of (BXBT)△ for all
k ≥ l in {1, . . . , p} are given by

ϕB(X
△)kl =

��������
xkl if k ̸= α, l ̸= α,

xkl + λxβl if k = α, l ̸= α,

xkl + λxkβ if k ̸= α, l = α,

xkl + λxβl + λxkβ + λ2xββ if k = l = α.

(2.44)

To calculate det dϕB(X
△) we are again breaking down the matrix dϕB(X

△) into the block
matrices ∂ϕB(X̃

△)m/∂X̃n ∈ R(p−m+1)×(p−n+1), for m,n ∈ {1, . . . , p}, as given in Eq. (2.43).
Now we distinguish the cases β > α and α > β for the position of the λ in the elementary

matrix B. First, for β > α the entries of the matrix ∂ϕB(X̃
△)m/∂X̃n form > n ∈ {1, . . . , p},

a ∈ {m, . . . , p} and b ∈ {n, . . . , p} are given by

∂ϕB(X
△)am

∂xbn
= λ1{a=b,m=α, n=β, a̸=α} + λ21{a=m=α, b=n=β} = 0, (2.45)

where the first equation follows from Eq. (2.44), and the second one from β > α and m > n.
Hence dϕB is a block upper diagonal matrix and the determinant is given by the product of
the block diagonal matrices ∂ϕB(X̃

△)m/∂X̃m, m ∈ {1, . . . , p}.
Second, for α > β the entries of the matrix ∂ϕB(X̃

△)m/∂X̃n for n > m ∈ {1, . . . , p},
a ∈ {m, . . . , p} and b ∈ {n, . . . , p} are again given by Eq. (2.45), where the second equation
now follows from α > β and n > m. In this case, dϕB is a block lower diagonal matrix and
the determinant is again given by the product of the block diagonal matrices.
So for all α ̸= β, where α, β ∈ {1, . . . , p}, the determinant is given by the product of

the block diagonal matrices ∂ϕB(X̃
△)m/∂X̃m for m ∈ {1, . . . , p}. For a, b ∈ {m, . . . , p} the

entries of this matrix are given by

∂ϕB(X
△)am

∂xbm
=

��
1 if a = b,

λ if a = α, b = β,

0 otherwise.

Since this is a lower/ upper diagonal matrix with only ones on the diagonal,

det
∂ϕB(X̃

△)m

∂X̃m
= 1

for every m ∈ {1, . . . , p}, which leads to

det dϕB(X
△) =

p'
m=1

det
∂ϕB(X̃

△)m

∂X̃m
= 1 = 1p+1 = (detB)p+1,
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where the last equation follows from the fact that B in this case is an identity matrix except
for one entry at (α, β), where α ̸= β in {1, . . . , p}.

Proof of Item (iv). For the rest of the proof let X denote an element of Rp×n. In order to
determine the matrix dϕ(X) ∈ Rpn×pn, both ϕ(X) and X need to be vectorized using the
vec(·) function given in Eq. (2.4), as ϕ(X) and X are elements of Rp×n. Therefore, the
matrix dϕ can be seen as block matrix of the Jacobi matrices of the columns of ϕ(X) with
respect to the columns of X,

dϕ(X) =

�
∂ϕ(X)1

∂X1 · · · ∂ϕ(X)1

∂Xn

...
...

∂ϕ(X)n

∂X1 · · · ∂ϕ(X)n

∂Xn

% ,

where ∂ϕ(X)i/∂Xj ∈ Rp×p for every i, j ∈ {1, . . . , n}. Due to the definition of ϕ in
Eq. (2.37),

ϕ(X)i = BX i, i ∈ {1, . . . , n}.
Therefore, for all i, j ∈ {1, . . . , n}

∂ϕ(X)i

∂Xj
=

	
B if i = j,

0 if i ̸= j.

Hence, dϕ(X) is a block diagonal matrix with

det dϕ(X) =

n'
i=1

det
∂ϕ(X)i

∂Xi
=

n'
i=1

detB = (detB)n,

thus proving Eq. (2.38).

Proof of Theorem 2.37. The equality�
Sp+

e−tr(AZ)(detA)α−
p+1
2 dA = (detZ)−α (2π)

p(p−1)
4

p'
i=1

Γ

�
α− i− 1

2

#
(2.46)

holds true if and only if both equalities of the theorem, Eq. (2.30) and Eq. (2.31) hold true.
Hence, we will prove Eq. (2.46) in the following five steps.

Step 1. As described in Remark 2.23, we integrate over the p(p+1)
2 -dimensional submanifold

Sp+ of Rp·p using the chart ψ defined in Eq. (2.7). By inserting

f :=

	
Sp+ → C
A �→ e−tr(AZ)(detA)α−

p+1
2

into Eq. (2.12) and using the decomposition of Z into its real and imaginary part Z = X+iY ,�
Sp+

e−tr(AZ)(detA)α−
p+1
2 dA

= 2
p(p−1)

4

�
S̃p+

e−tr(ψ(A△)(X+iY ))
�
detψ(A△)

"α− p+1
2 λ

p(p+1)
2 (dA△). (2.47)
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From now on we will write dA△ for λ
p(p+1)

2 (dA△).

Step 2. In this step we transform the integral to simplify the real part X of the matrix Z.
Since the matrix X is positive definite, Lemma 2.15 tells us that there exists a unique positive
definite, hence symmetric, matrix B such that BB = BBT = X. Instead of integrating
over A△, we now want to integrate over Λ△ = ψ−1(BAB) using the transformation formula
from Theorem 2.39. Therefore, we define the map

ϕ =

�
S̃p+ → S̃p+
Λ△ �→ ψ−1(B−1ΛB−1)

. (2.48)

Since B−1 is symmetric and invertible, the results from Item (iii) of Lemma 2.41 tell us
that the map is well defined and

det dϕ = (detB−1)p+1.

This can be rearranged to

|det dϕ| = |detB−1|p+1 = ((detB)2)−
p+1
2 = (detX)−

p+1
2 .

As S̃p+ is open due to Lemma 2.20, inserting this into the transformation theorem applied
to Eq. (2.47) yields

(2.47) = 2
p(p−1)

4 (detX)−
p+1
2

�
S̃p+

e−tr(ψ(ϕ(Λ△))(X+iY ))(detψ(ϕ(Λ△)))α−
p+1
2 dΛ△

= 2
p(p−1)

4 (detX)−
p+1
2

�
S̃p+

e−tr(B−1ΛB−1(X+iY ))(det(B−1ΛB−1))α−
p+1
2 dΛ△, (2.49)

where the definition of ψ given in Eq. (2.48) is used for the second equality. Since BB = X,
the equation det(B−1ΛB−1) = detΛ(detBB)−1 = detΛ(detX)−1 holds for every Λ ∈ Sp+.
Hence, this integral can be rewritten as

(2.49) = 2
p(p−1)

4 (detX)−
p+1
2

�
S̃p+

e−tr(B−1ΛB−1(X+iY ))(det Λ)α−
p+1
2 (detX)−α+ p+1

2 dΛ△

= (detX)−α 2
p(p−1)

4

�
S̃p+

e−tr(B−1ΛB−1(X+iY ))(det Λ)α−
p+1
2 dΛ△. (2.50)

Using the linearity of the trace, Lemma 2.1 and X = BB,

tr(B−1ΛB−1(X + iY )) = tr(B−1ΛB−1X) + i · tr(B−1ΛB−1Y )

= tr(Λ) + i · tr(ΛB−1Y B−1) = tr(Λ(Ip + iB−1Y B−1)).

Combining this with the equations before leads to�
Sp+

e−tr(AZ(detA)α−
p+1
2 dA = (2.50)

= (detX)−α 2
p(p−1)

4

�
S̃p+

e−tr(Λ(Ip+iB−1Y B−1))(det Λ)α−
p+1
2 dΛ△. (2.51)
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Step 3. The next step is to transform the integral in Eq. (2.51) to simplify the complex
part Y of the matrix Z. For this and the next steps we introduce

I :=

�
S̃p+

e−tr(Λ(Ip+iB−1Y B−1))(det Λ)α−
p+1
2 dΛ△ (2.52)

and use this to rewrite Eq. (2.51) to�
Sp+

e−tr(AZ)(detA)α−
p+1
2 dA = (detX)−α 2

p(p−1)
4 · I. (2.53)

Since both the matrices B−1 and Y are symmetric, the product

B−1Y B−1 = (B−1)TY T(B−1)T = (B−1Y B−1)T

is symmetric as well. Due to Theorem 2.5, there exists an orthogonal matrix S ∈ Rp×p, and
a diagonal matrix D ∈ Rp×p, such that

B−1Y B−1 = SDST = SDS−1. (2.54)

Since ψ(Λ△) = Λ we can rewrite I from Eq. (2.52) to

I =

�
S̃p+

e−tr(ψ(Λ△)(Ip+iSDST))(detψ(Λ△))α−
p+1
2 dΛ△. (2.55)

Next, we want to transform I using the map

η :=

�
S̃p+ → S̃p+
M△ �→ ψ−1(SMST)

, (2.56)

where M = ψ(M△) for all M△ ∈ S̃p+. Since S is invertible, the determinant |det dη| is given
by Item (iii) of Lemma 2.41. Hence,

|det dη| = |detS|p+1 = 1p+1 = 1,

since the absolute value of the determinant of every orthogonal matrix is equal to one. As
S̃p+ is an open set, we can apply Theorem 2.39 to Eq. (2.55) with η given in Eq. (2.56),

I =

�
S̃p+

e−tr(SMST(Ip+iSDST))
�
det(SMST)

"α− p+1
2 dM△. (2.57)

Using Lemma 2.1 and the fact that S is orthogonal,

tr(SMST
�
Ip + iSDST)

"
= tr(MS−1

�
Ip + iSDS−1)S

"
= tr(MS−1S + iMS−1SDS−1S

"
= tr(M(Ip + iD)).

Hence, the integral in Eq. (2.57) can be rearranged to

I =

�
S̃p+

e−tr(M(Ip+iD))(detM)α−
p+1
2 dM△, (2.58)

where the fact that det(SMST) = detS · detM · detST = detM , as S is orthogonal, is
used.
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Step 4. The next step is to transform I using the Cholesky decomposition. Let T̃p be as in
Eq. (2.8) and let the map ϕ be defined by ϕ(T̃ ) = (TTT)△ ∈ S̃p+ for all T̃ ∈ T̃p, where T
refers to the matrix version of T̃ . Using Item (i) of Lemma 2.41, this map is well-defined
and the determinant of its Jacobi matrix is given by

|det dϕ(T̃ )| = 2p
p'

k=1

tp−k+1
kk , T̃ ∈ T̃p,

where tij for i ≥ j in {1, . . . , p} refer to the entries of the matrix version T of T̃ and will
be used in this format for the rest of the proof. As both S̃p+ and T̃p are open sets due
to Lemma 2.20, we may apply the transformation formula from Theorem 2.39 with ϕ to
Eq. (2.58). As M = ψ(M△) for a unique M△ ∈ S̃p+,

I =

�
T̃p

e−tr(ψ(ϕ(T̃ ))(Ip+iD))(detψ(ϕ(T̃ )))α−
p+1
2 2p

p'
k=1

tp−k+1
kk dT̃ . (2.59)

For the matrix version T of T̃ ∈ T̃p, the identity detψ(ϕ(T̃ )) = det(TTT) = (detT )2 =(p
k=1 t

2
kk holds and

tr(ψ(ϕ(T̃ ))(Ip + iD)) = tr(TTT(Ip + iD)) =

p+
k,l=1
l≤k

t2kl(1 + iλk),

where λk refers to the k-th entry of the diagonal matrix D. Therefore, Eq. (2.59) is equal to

I =

�
T̃p

exp

�
−

p+
k,l=1
l≤k

t2kl(1 + iλk)

#� p'
k=1

t2kk

#α− p+1
2

2p
p'

k=1

tp−k+1
kk dT̃ . (2.60)

As T̃p denotes the vectorized set of lower triangular matrices with positive diagonal entries,
we can use Fubini’s theorem for the Lebesgue–Borel measure to rearrange integrals. Hence,
Eq. (2.60) simplifies to

I = 2p
�
R

· · ·
�
R� �� �

p(p−1)
2

times

� �
R+

· · ·
�
R+� �� �

p times

exp

�
−

p+
k,l=1
l≤k

t2kl(1 + iλk)

#� p'
k=1

(t2kk)
α− k

2

# p'
k=1

dtkk

# p'
k,l=1
k>l

dtkl.

Further rearranging leads to

I =

� p'
k,l=1
k>l

�
R
exp

�−t2kl(1 + iλk)
"
dtkl

# p'
k=1

2

�
R+

exp
�−t2kk(1 + iλk)

"
(t2kk)

α− k
2 dtkk, (2.61)

so the integral can be broken down into the product of multiple one-dimensional complex
integrals which can be determined separately.
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Step 5. As the last step we put the results of the prior steps together to arrive at the claimed
equality.
By using Eq. (2.19) of Lemma 2.33 with α− k−1

2 for every k ∈ {1, . . . , p}�
R+

exp
�−t2kk(1 + iλk)

"
(t2kk)

α− k
2 dtkk = (1 + iλk)

k−1
2

−α Γ

�
a− k − 1

2

#
. (2.62)

As we assumed Re(α) > (p − 1)/2, the requirement Re(α) − k−1
2 > 0 is fulfilled for all

k ∈ {1, . . . , p}. With the help of Eq. (2.20) with n = 1 and 2t = λk for all k > l in {1, . . . , p}�
R
exp

�−t2kl(1 + iλk)
"
dtkl = 2

�
R+

exp
�−t2kl(1 + iλk)

"
dtkl =

√
π√

1 + iλk
, (2.63)

where the first equality follows from the symmetry of the integrand.
Inserting Eq. (2.62) and Eq. (2.63) into Eq. (2.61) results in

I =

� p'
k,l=1
k>l

√
π (1 + iλk)

− 1
2

# p'
k=1

(1 + iλk)
k−1
2

−a Γ

�
α− k − 1

2

#
.

Using the fact that the determinant of the diagonal matrix Ip + iD is given as product of
its diagonal entries (1 + iλk), k ∈ {1, . . . , p}, its determinant is different from zero and the
integral can be rearranged to

I =
�
det(Ip + iD)

"−α
π

p(p−1)
4

p'
k=1

Γ

�
α− k − 1

2

#
. (2.64)

Using the properties of the determinant and Eq. (2.54) where S ∈ Rp×p is orthogonal,

det(Ip + iD) = detS · det(Ip + iD) · detS−1 = det(SS−1 + iSDS−1)

= det(Ip + iB−1Y B−1) = det(Ip + iY B−1B−1) = det(Ip + iY X−1),

where Lemma 2.1, the Weinstein–Aronszajn identity given in Lemma 2.3 and the fact that
X = BB is used. Note that this implies that the determinant of Ip + iY X−1 is not equal to
zero. Combining this and Eq. (2.64) into Eq. (2.53), we arrive at�

Sp+
e−tr(ΛZ)(det Λ)α−

p+1
2 dΛ

= (detX)−α
�
det(Ip + iY X−1)

"−α
(2π)

p(p−1)
4

p'
k=1

Γ

�
α− k − 1

2

#
. (2.65)

Since
(Ip + iY X−1)X = X + iY = Z,

the determinant of Z is given as the product of the determinants of X and Ip + iY X−1, is
therefore different from zero and Eq. (2.65) can be simplified to�

Sp+
e−tr(ΛZ)(det Λ)α−

p+1
2 dΛ = (detZ)−α(2π)

p(p−1)
4

p'
k=1

Γ

�
α− k − 1

2

#
,

which completes the proof.



3. Matrix-Valued Gamma Distributions and
their Properties

3.1. Wishart Distributions and their Basic Properties

Matrix-valued gamma distributions can be seen as the generalized form of the family of
Wishart distributions, see Definition 3.8 below, which, in turn, is the matrix-valued version
of the class of χ2-distributions. In order to define these distributions, we start by introducing
a matrix-valued version of normal distributions, which uses the Kronecker product.

Definition 3.1 (Kronecker product, see [17, Definition 4.2.1]). For m,n, p, q ∈ N the
Kronecker product of A ∈ Rp×q and B ∈ Rm×n is defined to be the block matrix

A⊗B =

�a11B . . . a1qB
...

...
ap1B . . . apqB

% ∈ Rmp×nq. (3.1)

Definition 3.2 (Matrix-valued normal distributions, see [13, Definition 2.2.1, Theorem
2.3.10]). Let n, p ∈ N.

(i) An Rp×n-valued random matrix Z is said to follow the standard matrix-valued normal
distribution if vec(ZT) follows the (p · n)-dimensional normal distribution with mean
vector zero and covariance matrix Ip ⊗ In = Ipn, where vec(·) is defined in Eq. (2.4)
and ⊗ refers to the Kronecker product defined in Eq. (3.1).

(ii) For positive semi-definite matrices Σ ∈ Rp×p and Ψ ∈ Rn×n, let S and P denote the
positive semi-definite matrix square roots satisfying SS = Σ and PP = Ψ respectively,
see Lemma 2.15. Let Z be a random matrix as described in Item (i). For a constant
matrix M ∈ Rp×n, a random matrix X satisfying X d

= M + SZP is said to follow the
matrix-valued normal distribution with mean matrix M and covariance matrix1 Σ⊗Ψ.
In this case we write X ∼ MNormal(M,Σ⊗Ψ).

Remark 3.3 (Relationship between matrix-valued and multivariate normal distributions).
Note that due to Definition 3.2 and Eqs. (3.52) and (3.53), a random matrix X ∼
MNormal(M,Σ ⊗ Ψ) if and only if vec(XT) follows a multivariate normal distribution
with mean vec(MT) and covariance matrix Σ⊗Ψ – thus justifying the name of the parame-
ter. Hence, not every random matrix whose vectorized version follows a normal distribution
also follows a matrix-valued normal distribution.

1 The fact that this input parameter Σ⊗Ψ is actually describes the covariance matrix will be elaborated
in Remark 3.3.

35
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Remark 3.4 (Characteristic function of a matrix-valued distribution, see [13, Section 1.9]).
Let n, p ∈ N. For an Rn-valued random variable X the characteristic function is given as

φX(t) = E[ei⟨z,X⟩], z ∈ Rn,

where ⟨·,·⟩ denotes the standard inner product. This characteristic function determines the
distribution of x uniquely, as shown in [28, Theorem 2.30].
For an Rp×n-valued random matrix X we use the vectorization of matrices discussed in

Remark 2.18 for the characteristic function,

φX(z) = E[ei⟨vec(z),vec(X)⟩], z ∈ Rp×n.

This characteristic function then also uniquely determines the distribution of random matrix
X. Since, using the definition and property of the Frobenius inner product given in Eq. (2.5),

⟨vec(z), vec(X)⟩ = ⟨z,X⟩F = tr(zTX), z ∈ Rp×n,

the characteristic function of X can be written as

φX(z) = E[etr(iz
TX)], z ∈ Rp×n. (3.2)

Remark 3.5 (Density, characteristic function and affine transformations of matrix-valued
normal distributions, see [13, Theorem 2.3.1, Theorem 2.2.1, Theorem 2.3.10]). In the
setting of Definition 3.2, let X ∼ MNormal(M,Σ⊗Ψ).

(i) We claim that the characteristic function of X is given by

φX(z) = etr(iz
TM− 1

2
zTΣzΨ), z ∈ Rp×n.

The standard case Σ = Ip and Ψ = In follows from [13, Theorem 2.3.1]. For
the general case, note that X can be represented by X d

= M + SZP , where Z ∼
MNormal(M, Ip ⊗ In) and Σ = SS as well as Ψ = PP . Hence, for every z ∈ Rp×n,

φX(z) = E[etr(iz
TX) ] = E[etr(iz

T(M+SZP )) ] = etr(iz
TM) E[etr(iPzTSZ) ],

where Lemma 2.1 is used for the last equality. Using the characteristic function of the
standard case Z,

E[etr(iPzTSZ) ] = φZ((PzTS)T) = etr(−
1
2
PzTS(PzTS)T) = etr(−

1
2
zTSSTzPTP ),

where again Lemma 2.1 as well as the symmetry of S and P are used. Hence,

φX(z) = etr(iz
TM) etr(−

1
2
zTSSTzPTP ) = etr(iz

TM− 1
2
zTΣzΨ) .

(ii) If Σ and Ψ are of full rank, i.e. are positive definite, a density of X w.r.t. the
p · n-dimensional Lebesgue–Borel measure is given by

fX(x) = (2π)−
np
2 (detΣ)−

n
2 (detΨ)−

p
2 e−tr

�
1
2
Σ−1(x−M)Ψ−1(x−M)T

"
, x ∈ Rp×n, (3.3)

see [13, Theorem 2.2.1]

(iii) For q,m ∈ N let C ∈ Rq×p and D ∈ Rn×m. Then the random matrix CXD ∼
MNormal(CMD, (CΣCT)⊗ (DΨDT)), see [13, Theorem 2.3.10].
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Using matrix-valued normal distributions, the family of Wishart distributions can be
defined, where we distinguish between a standard and a general case.

Definition 3.6 (Standard Wishart distributions). For n, p ∈ N, let Z be an Rp×n-valued
random matrix following the standard matrix-valued normal distribution given in Definition
3.2, denoted by Z ∼ MNormal(0, Ip⊗In). Then an Rp×p-valued random matrix X satisfying

X
d
= ZZT (equality in distribution)

is said to follow the standard Wishart distribution with n degrees of freedom. This is
denoted by X ∼ Wishart(n, Ip). In case that n < p, the distribution of X is called standard
singular Wishart distribution.

Lemma 3.7 (Independent entries of standard Wishart distributions). For n, p ∈ N let
X ∼ Wishart(n, Ip). Then the elements of every collection Xi1,j1 , . . . , Xin,jn with n ∈ N of
entries of X, where {ik, jk} ∩ {il, jl} = ∅ for all k, l ∈ {1, . . . , n}, are independent. This
implies, in particular, that all diagonal elements of a standard Wishart are independent.

Proof. Using Definition 3.6, let Z ∼ MNormal(0, Ip ⊗ In) be the random matrix satisfying
ZZT d

= X. The entries of Z are independent per definition. Therefore,

Xik,jk =
n+

m=1

ZikmZjkm k ∈ {1, . . . , n},

hence, if the conditions of the lemma are satisfied, Xi1,j1 , . . . , Xin,jn are independent.

Definition 3.8 (Wishart distributions, see [13, Definition 3.2.1], [20, Section 2.3]). For
n, p ∈ N let Σ ∈ Rp×p be a positive semi-definite matrix. A random matrix Y is said
to follow the Wishart distribution with n degrees of freedom and covariance matrix Σ if
there exists a dimension q ∈ N, a matrix A ∈ Rp×q such that Σ = AAT, and a random
Rq×q-valued matrix X ∼ Wishart(n, Iq) as given in Definition 3.6, such that

Y
d
= AXAT (equality in distribution). (3.4)

This is denoted by Y ∼ Wishart(n,Σ). In case Σ ̸= 0 and n < rk(Σ), and in case Σ = 0,
the distribution of X is called singular Wishart distribution.

Lemma 3.9 (Existence of Wishart distributions). Let n, p ∈ N and Σ ∈ Rp×p. Then the
Wishart(n,Σ) distribution exists if and only if Σ is positive semi-definite. In this case there
exists an A ∈ Rp×q such that Σ = AAT, where q = max{1, rk(Σ)}.

The uniqueness of a Wishart distribution given Σ and n is demonstrated via the charac-
teristic function in Theorem 3.14 below.
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Proof of Lemma 3.9. For every matrix A ∈ Rp×q, the quadratic matrix Σ = AAT is
symmetric because

ΣT = (AAT)T = (AT)TAT = AAT = Σ

and positive semi-definite as

xTΣx = xTAATx = ∥xTA∥22 ≥ 0, x ∈ Rp.

Conversely, for every positive semi-definite matrix Σ we claim there exists an A ∈ Rp×q

such that Σ = AAT where q = max{1, rk(Σ)}. For Σ = 0 the matrix A can be chosen
to be the zero column vector in Rp. Now let Σ ̸= 0. Since Σ is symmetric, there exists
an orthogonal decomposition, see Theorem 2.5, given by Σ = UDUT, where U ∈ Rp×p is
orthogonal and D ∈ Rp×p is a diagonal matrix with the eigenvalues of Σ as diagonal entries
with the corresponding multiplicity. As Σ is positive semi-definite, these eigenvalues are
non-negative and therefore have a real square root. For D = diag(d1, . . . , dn), let

√
D := diag(

*
d1, . . . ,

*
dn).

In case that Σ does not have full rank, only rk(Σ) of the eigenvalues d1, . . . , dn are not
equal to zero. Let D̃ denote the p× rk(Σ)-dimensional matrix that is left when removing all
columns equal to the zero vector from

√
D. Finally, the matrix A := UD̃ ∈ Rp×rk(Σ) fulfills

AAT = Σ and is of rank rk(Σ).

Lemma 3.10 (Alternative definition of Wishart distributions). For n, p ∈ N, let Σ ∈
Rp×p be a positive semi-definite matrix and let X ∼ MNormal(0,Σ ⊗ In). Then XXT ∼
Wishart(n,Σ).

Proof. Due to Definition 3.2 (ii), the random matrix X given here can be written as X d
= SZ,

where positive semi-definite S ∈ Rp×p satisfies SS = Σ and Z ∼ MNormal(0, Ip⊗In). Hence,

XXT d
= SZ(SZ)T = SZZTST,

which, using Eq. (3.4) and Definition 3.8, follows a Wishart distribution with n degrees of
freedom and covariance matrix SST = SS = Σ.

Remark 3.11 (The family of Wishart distribution takes values in the positive semi-definite
matrices). For every n, p ∈ N, the random matrix X ∼ Wishart(n, Ip) takes values in the
positive semi-definite matrices a.s. since it has the stochastic representation X d

= ZZT with
Z ∼ MNormal(0, Ip ⊗ In), see Definition 3.6.
Now for a positive semi-definite Σ ̸= 0, let A denote the Rp×rk(Σ) dimensional matrix

satisfying AAT = Σ as discussed in Lemma 3.9. For X ∼ Wishart(n, Irk(Σ)) the values of

the random matrix Y d
= AXAT ∼ Wishart(n,Σ) are symmetric a.s. as well as (AXAT)T =

AXAT and positive semi-definite a.s. as

xTY x
d
= xTAXATx = xTAX(xTA)T ≥ 0, x ∈ Rp.

If Σ = 0 then Y is deterministic and equal to the zero matrix, which is positive semi-definite
as well.
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Remark 3.12 (Sampling from a Wishart distribution). Combining the definition of standard
Wishart distributions directly derived from i.i.d. standard normal variables2 in Definition 3.6
with the definition of general Wishart distributions via Eq. (3.4) above provides a method
to sample from Wishart(n,Σ) for all n ∈ N and positive semi-definite Σ.

Remark 3.13 (Characteristic function of a symmetric matrix-valued distribution [20, Remark
1]). We will demonstrate that for an Rp×p-valued random matrix X, that is a.s. symmetric,
the characteristic function φX(z) is already determined uniquely by its values for symmetric
z ∈ Rp×p. Since X is symmetric a.s., using Lemma 2.1 and the fact that the trace of a
matrix is equal to the trace of the transpose of that matrix,

tr(zTX)
a.s.
=

1

2

�
tr(zTX) + tr(zTXT)

"
=

1

2

�
tr(zTX) + tr(zX)

"
= tr

�zT + z

2
X
 
, z ∈ Rp×p.

Therefore it is sufficient to just look at the values for symmetric z ∈ Rp×p. This also leads
to

φX(z) = E[etr(iz
TX) ] = E[etr(izX) ] (3.5)

for every symmetric z ∈ Rp×p.

Theorem 3.14 (Characteristic function of Wishart distributions, see [20, Proposition 3.2]).
For p, q, n ∈ N and A ∈ Rp×q defining Σ = AAT ∈ Rp×p let Y ∼ Wishart(n,Σ).

(i) For w ∈ Cp×p, let w̃ := (w + wT)/2 with representation w̃ = u+ iv with u, v ∈ Rp×p

symmetric. If 3 Iq + 2ATuA ∈ S+q , then the determinant of Ip + 2w̃Σ is different from
zero and

E[e−tr(wY )] =
�
det(Ip + 2w̃Σ)

"−n/2
, (3.6)

where the complex square root here and in Eq. (3.7) below is understood as defined in
Eq. (2.18).

(ii) In particular, the characteristic function of Y is given by

φY (z) = E[etr(izY )] =
�
det(Ip − 2izΣ)

"−n/2
(3.7)

for all symmetric z ∈ Rp×p.

This theorem proves that a Wishart distribution is uniquely determined by the parameters
n and Σ.

2 The standard normal variables can, for example, be sampled using the Box–Muller method [4]:
Let U, V be two random variables following the uniform distribution on unit interval (0, 1). Then
Z1 =

�−2 log(U)cos(2π) and Z2 =
�−2 log(U)sin(2π) are independent and follow the standard normal

distribution.
3 The condition on w ∈ Cp×p is in particular satisfied if the real part of w or of w̃ is positive semi-definite,

especially if it is equal to the zero matrix.
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Proof. This proof of Item (i) is split into seven steps. Item (ii) follows from Item (i) by
inserting w = iz for a symmetric z ∈ Rp×p.

Step 1. First, this theorem will be proven for standard Wishart distributions, so let the
Rp×p-valued random matrix X follow the Wishart distribution with n degrees of freedom
and covariance matrix Ip. Fix w ∈ Cp×p satisfying the above-mentioned conditions. With
an analogue argument to Remark 3.13, tr(wY ) = tr(w̃Y ) a.s.
Using Eq. (3.4), there exists an Rp×n-valued random matrix Z ∼ MNormal(0, Ip ⊗ In)

satisfying ZZT d
= X. Therefore,

E[e−tr(wX)] = E[e−tr(w̃ZZT)] = (2π)−
np
2

�
Rp×n

e−tr(w̃zzT) e−
1
2
tr(zzT) dz

= (2π)−
np
2

�
Rp×n

e−
1
2
tr((Ip+2u+2iv)zzT) dz, (3.8)

where we use the density function of Z given in Eq. (3.3). As Ip + 2u ∈ Sp+ there exists a
matrix B ∈ Sp+ such that

BB = Ip + 2u (3.9)

due to Lemma 2.15. Due to Item (vi) of Lemma 2.8, the matrix B−1 is positive definite
and therefore the map

ϕ :=

�
Rp×n → Rp×n

z̃ �→ B−1z̃
,

satisfies det dϕ = (detB−1)n due to Item (iv) of Lemma 2.41. Inserting this map and
Eq. (3.8) into Theorem 2.39,

E[e−tr(wX)] = (detB−1)n� �� �
=(det(Ip+2u))−

n
2

(2π)−
np
2

�
Rp×n

e−
1
2
tr((Ip+2u+2iv)B−1z̃(B−1z̃)T) dz̃. (3.10)

Due to Lemma 2.1, Eq. (3.9) and the fact that B−1 is symmetric,

tr((Ip + 2u+ 2iv)B−1z̃(B−1z̃)T) = tr((Ip + 2iB−1vB−1)z̃z̃T).

Hence, Eq. (3.10) can be rewritten as

E[e−tr(wX)] = (det(Ip + 2u))−
n
2 (2π)−

np
2

�
Rp×n

e−
1
2
tr((Ip+2iB−1vB−1)z̃z̃T) dz̃

= (det(Ip + 2u))−
n
2 E[e−tr(iB−1vB−1Z̃Z̃T)], (3.11)

where Z̃ ∼ MNormal(0, Ip ⊗ In) due to Eq. (3.3).

Step 2. Now for every symmetric v ∈ Rp×p, the matrix B−1vB−1 must be symmetric as well
as B−1 is symmetric. Due to Theorem 2.5 there exists a diagonal matrixD = diag(λ1, . . . , λp)
with λ1, . . . , λp ∈ R and an orthogonal matrix S ∈ Rp×p such that B−1vB−1 = STDS, see
Theorem 2.5. Hence,

E[e−tr(iB−1vB−1Z̃Z̃T)] = E[e−tr(STDSZ̃Z̃T)] = E[e−tr(D(SZ̃)(SZ̃)T)], (3.12)
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where the last equality follows from Lemma 2.1. Since affine transformations of normal distri-
butions are normal distributions, see Item (iii) from Remark 3.5, SZ̃ ∼ MNormal(0, SIpS

T⊗
In). As S is orthogonal, Z̃ and SZ̃ follow the same distribution and therefore

(Z̃S)(Z̃S)T
d
= Z̃Z̃T. (3.13)

Step 3. Note that due to the definition of the matrix multiplication

Z̃Z̃T =

n+
j=1

Z̃c
j (Z̃

c
j )

T, (3.14)

where Z̃c
j ∈ Rp denotes the j-th column of Z̃ for every j ∈ {1, . . . , n}. Since all entries

of Z̃ are independent and identically distributed normal variables, the same holds true
for its columns and Z̃c

j ∼ Normal(0, Ip) for every j ∈ {1, . . . , n}. Hence, using Eq. (3.12),
Eq. (3.13) and Eq. (3.14),

E[e−tr(iB−1vB−1Z̃Z̃T)] = E[e−tr(iDZ̃Z̃T)] = E[e−tr(iD
�n

j=1 Z̃
c
j (Z̃

c
j )

T)]

=
n'

j=1

E[e−tr(iDZ̃c
j (Z̃

c
j )

T)] =
�
E[e−tr(iDZ̃c(Z̃c)T)]

"n
(3.15)

where Z̃c ∼ Normal(0, Ip).

Step 4. Each of the factors can now be computed as

E[e−tr(iDZ̃c(Z̃c)T)] = (2π)−
p
2

�
Rp

e−tr(iDxxT) e−
1
2
tr(xxT) dx

= (2π)−
p
2

�
Rp

e−
1
2
tr((Ip+2iD)xxT) dx, (3.16)

where the first equality follows from the definition of a multivariate standard normal
distribution, as it can also be seen in Eq. (3.3). Let

G := Ip + 2iD = diag(1 + 2iλ1, . . . , 1 + 2iλp) ∈ Cp×p.

Then, for x ∈ Rp

tr((Ip + 2iD)xxT) = tr(GxxT) =

p+
k=1

p+
l=1

Gklxlxk =

p+
k=1

Gkkx
2
k,

where the last equality follows from the fact that G is a diagonal matrix. Combining this
with Eq. (3.16),

E[etr(iDZ̃c(Z̃c)T)] = (2π)−
p
2

�
Rp

e−
1
2

�p
k=1 Gkkx

2
k dx =

p'
k=1

(2π)−
1
2

�
R
e−

1
2
Gkkx

2
k dxk, (3.17)

using Fubini’s theorem for the last equality. Considering Definition 2.28, each factor of this
product corresponds to the characteristic function of a χ2

1 distribution at t := 2λk. Hence,
using Corollary 2.35 with n = 1,

1√
2π

�
R
e−

1
2
Gkkx

2
k dxk =

1√
Gkk

.



42 CHAPTER 3. MATRIX-VALUED GAMMA DISTRIBUTIONS

Step 5. Combining this with Eq. (3.15) and Eq. (3.17),

E[e−tr(iDZ̃Z̃T)] =

� p'
k=1

1√
Gkk

#n

= ±
� p'

k=1

Gkk

#−n
2

= ±(detG)−
n
2 = ±�

det(Ip + 2iD)
"−n

2 ,

(3.18)
where the second equality follows from Items (i) and (vi) of Proposition 2.32, the third
equality holds as G is a diagonal matrix and the last equality follows from the definition of G.

Since E[e−tr(iDZ̃Z̃T)] is a continuous function of D and
�
det(Ip + 2iD)

"−n/2
is a continuous

function of D taking values in C \ {0},
E[e−tr(iDZ̃Z̃T)]�

det(Ip + 2iD)
"−n/2

is a continuous function of D taking values in {−1, 1}. As for D = 0 both the numerator
and the denominator of the function are equal to one

E[e−tr(iDZ̃Z̃T)]�
det(Ip + 2iD)

"−n/2
= 1

for all diagonal matrices D and therefore Eq. (3.18) holds without the ± sign.

Step 6. Due to Eq. (3.15) and as for every orthogonal matrix S the equality detS detST =
det(SST) = det(SS−1) = 1 holds,

E[e−tr(iB−1vB−1Z̃Z̃T)] = E[e−tr(iDZ̃Z̃T)] =
�
detST det(Ip + 2iD)detS

"−n
2

=
�
det(STS + 2iSTDS)

"−n
2 =

�
det(Ip + 2iB−1vB−1)

"−n
2 ,

where STS = Ip and STDS = B−1vB−1 were used for the last equality. Hence,

E[e−tr(iB−1vB−1Z̃Z̃T)] =
�
det(Ip + 2iB−1vB−1)

"−n
2 =

�
det(Ip + 2iv B−1B−1� �� �

=(Ip+2u)−1

)
"−n

2 ,

where the second equality holds due to Lemma 2.3. Combining this with Eq. (3.11)

E[e−tr(wX)] = (det(Ip + 2u))−
n
2
�
det(Ip + 2iv(Ip + 2u)−1)

"−n
2 = (det(Ip + 2w̃))−

n
2 , (3.19)

thus proving the standard case.

Step 7. For Y ∼ Wishart(n,Σ) with Σ = AAT, where A ∈ Rp×q, using Definition 3.8, we
know that Y has he stochastic representation Y d

= AXAT, where X follows the standard
Wishart distribution of dimension q ∈ N. Then, for every w ∈ Cp×p satisfying the conditions
of this theorem and the corresponding w̃ = u+ iv,

E[e−tr(wY )] = E[e−tr(w̃AXAT)] = E[e−tr((AT(u+iv)A)X)],

where we are using Lemma 2.1 for the second equation. As Ip+2ATuA is positive definite and
ATvA is symmetric for symmetric z, we can insert the standard case derived in Eq. (3.19),

E[e−tr(wY )] = (det(Iq + 2ATw̃A))−
n
2 = (det(Ip + 2w̃ AAT� �� �

=Σ

))−n/2,

where we use the Weinstein–Aronszajn identity (Lemma 2.3) for the second equality.
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Some more practical applications of Wishart distributions will be discussed in the following
two remarks.

Remark 3.15 (The sample covariance matrix of a multivariate normal sample is following
a Wishart distribution, see [13, Section 3.3.2]). One of the main applications of Wishart
distributions is the fact that the distribution of the sample covariance matrix of a sample
following the multivariate normal distribution has a Wishart distribution.

For n, p ∈ N let x1, . . . ,xn be i.i.d. random vectors following an Rp-valued multivariate
normal distribution with mean vector µ ∈ Rp and covariance matrix Σ. Then the sample
covariance matrix

n+
i=1

(xi − x̄)(xi − x̄)T,

where x̄ refers to the sample mean, takes values in Rp×p and follows the Wishart(n− 1,Σ)
distribution as proven in [13, Theorem 3.3.6].

Remark 3.16 (Further applications of Wishart distributions). Wishart distributions also
come up in the following settings:

• In continuation to Remark 3.15, the class of Wishart distributions is used for maximum-
likelihood estimation of the covariance matrix of the multivariate normal distribution,
see [5, Chapter 6.6].

• In Bayesian statistics Wishart distributions are used for the prior probability distri-
bution of the precision matrix, which is the inverse of the covariance matrix, of a
multivariate normal distribution with known mean, see [16, Chapter 7.3].

3.2. Definition and Basic Properties
of Matrix-Valued Gamma Distributions

In this section we first introduce standard matrix-valued gamma distributions via density
functions before extending them to the commonly known matrix-valued gamma distributions
in an analogue way to Definition 3.8 of Wishart distributions. Then, after showing that the
family of matrix-valued gamma distributions is an extension to the class of non-singular
Wishart distributions, we define general matrix-valued gamma distributions by also taking
into account singular Wishart cases. For this distribution family we derive several basic
properties.

Remark 3.17 (The measure on Sp+ implicitly given by the p(p+1)/2-dimensional Lebesgue—
Borel measure). As discussed in Remark 2.22, for k, n ∈ N we define an integral over a
k-dimensional submanifold of Rn by transforming it to an integral of the k-dimensional
Lebesgue–Borel measure via one/multiple charts, where the value of the integral does not
depend on the choice of the chart. Hence, this the k-dimensional Lebesgue–Borel measure
implicitly defines a measure on the k-dimensional submanifold.

In the case of the submanifold Sp+ we will denote the measure implicitly given by the
p(p+ 1)/2-dimensional Lebesgue–Borel measure with µ.
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Using the relative topology on Sp+ as subset of Rp×p, we can define the Borel σ-algebra4

B(Sp+). For every Borel-set B ∈ B(Sp+) and every chart ψ, the set ψ(B) is measurable
w.r.t. the p(p+ 1)/2-dimensional Lebesgue–Borel measure, see [2, Chapter XII, Remark 1.1,
Theorem 1.2], hence B is measurable w.r.t. µ.

For any random variable X taking values in Sp+ with density function

fX : Sp+ → R+
0 ,

w.r.t. the measure µ, the function x△ := ψ−1(X) defines a random variable since ψ, defined
in Eq. (2.7), is a homeomorphism. Using Remark 2.23, a density function of X△ is given by

fX△ :=

	
S̃p+ → R+

0

x△ �→ 2
p(p−1)

4 fX(ψ(x△)) = 2
p(p−1)

4 fX(x)
(3.20)

w.r.t. the p(p+ 1)/2-dimensional Lebesgue–Borel measure.

Definition 3.18 (Standard matrix-valued gamma distributions). For p ∈ N a Sp+-valued
random variable X with density function

fX(x) =
1

Γp(α)
e−tr(x)(detx)α−

p+1
2 , x ∈ Sp+, (3.21)

w.r.t. the measure µ on Sp+, that is implicitly given by the p(p+1)/2-dimensional Lebesgue–
Borel measure, as discussed in Remark 3.17, is said to be standard matrix-valued gamma
distributed with shape parameter α > (p− 1)/2, denoted by X ∼ MGamma(α, Ip).

Example 3.19 (Density function of a S+2 -valued standard matrix-valued gamma distri-
bution). As the MGamma(α, Ip) distribution is matrix-valued, visualizing it via a density
function poses a challenge. For p = 2 it is possible to illustrate the different level lines of the
density function with an appropriate parameterization: Using Remark 2.19 and Eq. (2.7) in
particular,

fX(x) = fX(ψ(x△)) = fX(ψ(x11, x12, x22)), x =

�
x11 x12
x12 x22

#
∈ S+2 .

Note that due to Sylvester’s criterium, see [17, Corollary 7.1.5, Theorem 7.2.5], a matrix is
positive definite if and only if its principal minors are positive, hence ψ(x11, x12, x22) ∈ S+2
if and only if x11, x22 ∈ R+ and det(ψ(x11, x12, x22)) = x11x22 − x212 > 0.

For α = 7/2 some level lines are illustrated in Figure 3.1. The maximum point of the
density function with these parameters is at (x11, x12, x22) = (2, 0, 2) where f(ψ(2, 0, 2)) =
0.293.

Remark 3.20 (Standard Wishart distributions are well-defined). We can see that the function
fX from Eq. (3.21) is in fact a probability density as x ∈ Sp+ leads to detx ≥ 0 and, by

4 For a topological space the Borel σ-algebra is defined to be the smallest σ-algebra containing all open
subsets of the topological space.
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x11

x12

x22

x11

x12

x22

Figure 3.1. Illustration of a density function of X ∼ MGamma(7/2, I2) by its contour
lines, see Example 3.19. The shown levels are fX(ψ(x11, x12, x22)) = 0.012 in green,
fX(ψ(x11, x12, x22)) = 0.008 in blue and fX(ψ(x11, x12, x22)) = 0.004 in orange. The
maximum point of this function is shown by the red point. The grey area shows the border to
where fX(ψ(x11, x12, x22)) = 0 due to the conditions on permitted (x11, x12, x22) such that
ψ(x11, x12, x22) ∈ S+2 .

using Eq. (2.31) with Z = Ip,�
Sp+

fX(x) dx =
1

Γp(α)

�
Sp+

e−tr(x)(detx)α−
p+1
2 dx

=
1

Γp(α)
Γp(α)(det Ip)

−α = 1.

Example 3.21 (Joint distribution of (det(X), tr(X)) for X ∼ MGamma(α, I2)). For this
example, we consider a S+2 -valued X ∼ MGamma(α, I2), where α > 1/2. Then

det(X) = X11X22 −X2
12, tr(X) = X11 +X22.

Let X△ be the corresponding S̃+2 -valued random matrix, which then, due to Eqs. (3.20)
and (3.21), has a density

fX△(x△) =
√
2fX(x) =

√
2

Γ2(α)
e−tr(x)(detx)α−

3
2

=

√
2

Γ2(α)
e−(x11+x22)(x11x22 − x212)

α− 3
2 , x△ = (x11, x12, x22) ∈ S̃+2 , (3.22)

where x = ψ(x△) and Γ2(α) can be expressed with Eq. (2.30).
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Consider the continuous function

ϕ :=

�
S̃+2 → R ⊂ R+ × R+ × R

(a, b, c) �→ (ac− b2, a+ c, b) =: (d, t, z)
,

which satisfies ϕ(X△) = (det(X), tr(X), X12). As, in the setting of this function, the
inequality d+ z2 = ac ≤ (a+ c)2/4 = t2/4 holds, the range of ϕ can be restricted to

R := {(d, t, z) ∈ R+ × R+ × R | t ≥ 2
√
d, z2 ≤ t2/4− d}, (3.23)

making it surjective. Now, for (d, t, z) ∈ R, the equality ϕ(a, b, c) = (d, t, z) has two solutions
for (a, b, c) in R+ × R+ × R:

(a1, b1, c1) =
� 1

2

�
t+

*
t2 − 4(z2 + d)

"
,
1

2

�
t−

*
t2 − 4(z2 + d)

"
, z
 
,

(a2, b2, c2) =
� 1

2

�
t−

*
t2 − 4(z2 + d)

"
,
1

2

�
t+

*
t2 − 4(z2 + d)

"
, z

 
, (3.24)

which are only equal if t2 = 4(z2 + d), meaning a1 = c1 = a2 = c2. Hence, we split up the
domain of ϕ in order to make the function injective and let ϕi := ϕ↾Di

for i ∈ {1, 2}, where
D1 := {(a, b, c) ∈ S̃+2 |a > c}, D2 := {(a, b, c) ∈ S̃+2 |a < c},

hence ϕi is bijective when restricting R to the same set given in Eq. (3.23) with strict
inequalities, with ϕ−1

i (d, t, z) given by (ai, bi, ci) from Eq. (3.24) for i ∈ {1, 2}. The Jacobi
matrix of ϕ−1

1 is given by

dϕ−1
1 (d, t, z) =

�
∂a1
∂d

∂a1
∂t

∂a1
∂z

∂b1
∂d

∂b1
∂t

∂b1
∂z

∂c1
∂d

∂c1
∂t

∂c1
∂z

% =

�
−1
C

1
2 + t

2C ∗
1
C

1
2 − t

2C ∗
0 0 1

% with C :=
*
t2 − 4(z2 + d),

hence, using the Laplace expansion of the third row,

|det dϕ−1
1 (d, t, z)| =

....−1

C

� 1

2
− t

2C

 
− 1

C

� 1

2
+

2

2C

 .... = 1*
t2 − 4(z2 + d)

. (3.25)

The determinant of dϕ−1
2 can be computed analogously and its absolute value also given by

the right hand-side of Eq. (3.25).
Now for every open set B ∈ B(R),

P[(det(X), tr(X), X12) ∈ B] = P[ϕ(X△) ∈ B] = P[X△ ∈ ϕ−1(B)].

Note that ϕ−1(B) = ϕ−1(B) ∩D1 ∪̇ ϕ−1(B) ∩D2 ∪̇ ϕ−1(B) ∩ S̃+2 \(D1 ∪D2) and

P[ϕ(X△) ∈ S̃+2 \(D1 ∪D2)] = P[X11 = X22] = 0,

as X11 and X22 are independent and both follow absolutely continuous probability distri-
butions, see Corollaries 3.23 and 3.53 below. As additionally ϕ−1(B) ∩Di = ϕ−1

i (B) for
i ∈ {1, 2},

P[(det(X), tr(X), X12) ∈ B] = P[X△ ∈ ϕ−1
1 (B)] + P[X△ ∈ ϕ−1

2 (B)]. (3.26)
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For i ∈ {1, 2}, we now use the transformation formula of Theorem 2.39 with ϕ−1
i and the

set B, inserting the determinant given in Eq. (3.25),

P[X△ ∈ ϕ−1
i (B)] =

�
ϕ−1
i (B)

fX△(a, b, c) da db dc =

�
B

fX△(ϕ−1
i (d, t, z))*

t2 − 4(z2 + d)
dd dt dz

=

�
B

√
2 e−t d α− 3

2

Γ2(α)
*

t2 − 4(z2 + d)
dd dt dz,

where the last equation follows from Eq. (3.22). Combining this with Eq. (3.26) and the fact
that B was an arbitrary open set5 of B(R), a density of (det(X), tr(X), X12) is given by

fdet(X),tr(X),X21
(d, t, z) = 2

√
2 e−t d α− 3

2

Γ2(α)
*
t2 − 4(z2 + d)

for every (d, t, z) ∈ R. The joint density of the trace and the determinant is then, due to the
fact that z2 ≤ t2/4 − d if and only if z ∈ [

*
d− t2/4,

*
t2/4− d] for (d, t, z) ∈ R+ × R+ ×

R with t ≥ 2
√
d, given by

fdet(X),tr(X)(d, t) =

� √
t2/4−d

√
d−t2/4

2

√
2 e−t d α− 3

2

Γ2(α)
*
t2 − 4(z2 + d)

dz

= 2

√
2 e−t d α− 3

2

Γ2(α)
2

� √
t2/4−d

0

1*
t2 − 4(z2 + d)

dz� �� �
=: I

(3.27)

for all (d, t) ∈ R+×R+ with t ≥ 2
√
d, where the second equality follows from the symmetry of

the integrand. The integral I can now be computed using the substitution y := 2z/
√
t2 − 4d,

I =

� √
t2/4−d

0

1*
t2 − 4d− (2z)2)

dz =

� 1

0

1*
t2 − 4d− (t2 − 4d)y2

√
t2 − 4d

2
dy

=
1

2

� 1

0

1*
1− y2

dy =
arcsin (1)

2
=

π

4
,

which we can insert back into Eq. (3.27) to arrive at

fdet(X),tr(X)(d, t) =

√
2π

Γ2(α)
e−t d α− 3

2 1{t≥2
√
d}, (d, t) ∈ R+ × R+, (3.28)

which could have been expected when looking at the density of X given in Eq. (3.21).

In Remark 3.29 and Corollary 3.36 below the marginal distributions of detX and trX
are discussed in a more general setting and can be used together with Eq. (3.28) to derive
conditional densities for the determinant and trace.

The density function given in Eq. (3.28) is visualized in Figure 3.2 for α ∈ {7/2, 9/2, 11/2}.
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d

t

fdet(X),tr(X)(d, t)

Figure 3.2. Illustration of joint density functions of the determinant and the trace of
X ∼ MGamma(α, I2) for α = 7/2 in orange, α = 9/2 in blue and α = 11/2 in green. These
densities are greater than zero on the grey area {(d, t) ∈ R+ × R+ | t2 > 4d}. Elaborated in
Example 3.21.

The standard matrix-valued gamma distribution can also be characterized via the entries
of its Cholesky decomposition.

Theorem 3.22 (Characterization of standard matrix-valued gamma distributions, see [33,
Section 4.1(i), Property 1]). Let p ∈ N and α > (p− 1)/2. Let T̃p be as defined in Eq. (2.8).
Then X is a Sp+-valued standard matrix-valued gamma distributed random variable with
shape parameter α6 if and only if the vector version T̃ ∈ T̃p of the lower triangular matrix
T , that is uniquely defined by the Cholesky decomposition of X = TTT, is a random matrix,
where the non-trivial entries Tij of T with i ≥ j for i, j ∈ {1, . . . , p}, are independent and
their distributions are given by:

(i) Tij ∼ N (0, 12) for all i > j in {1, . . . , p},
(ii) Tii ∼ GenGamma(α− i−1

2 , 1, 2) for all i ∈ {1, . . . , p}, see Definition 2.26.

This leads to T 2
ii ∼ Gamma(α− i−1

2 , 1) for all i ∈ {1, . . . , p} .

Proof. The proof of this theorem is split into five steps. Throughout the proof we access the
entries of elements of T̃p and of T̃p-valued T̃ by understanding them as the corresponding
matrices in Tp using two indices.

Step 1. First we will derive a density function of T̃ that is equivalent to Items (i) and (ii)
holding true: As all of the entries of T̃ are independent and given by the lower triangular
entries of T , a probability density function of T̃ is given by

fT̃ (t̃) =

p'
i,j=1
i≤j

fTij (tij) =

� p'
i,j=1
i<j

1√
π
e−t2ij

#� p'
i=1

2

Γ(α− i−1
2 )

e−t2ii t2α−i
ii

#
, t̃ ∈ T̃p,

5 Note that the open sets of a Borel σ-algebra form an intersection stable collection generating the Borel
σ-algebra.

6 This theorem can be slightly generalized for X ∼ MGamma(α, βIp) with β ∈ R+, see Remark 3.28.
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where we are using that the continuous density of a N (0, 12)-distributed variable is given by

x �→ (1/
√
π) e−x2

for x ∈ R and Eq. (2.14) for the diagonal entries following a generalized
gamma distribution. Using Eq. (2.30), this density of T̃ can be rearranged to

fT̃ (t̃) =
2

p(p−1)
4

Γp(α)
exp

�
−

p+
i,j=1
i≤j

t2ij

# p'
i=1

2 (t2ii)
α− i

2

=
2

p(p−1)
4

Γp(α)
e−tr(ttT)(det(ttT))α−

p+1
2 2p

p'
i=1

tp−i+1
ii , t̃ ∈ T̃p, (3.29)

where t is the matrix version of t̃ and where the second equality follows from det(ttT) =(p
i=1 t

2
ii and tr(ttT) =

,
i≤j t

2
ij .

Step 2. Next, we will show that X is a random matrix if and only if T̃ is a random matrix:
Lemma 2.14 states that the function that maps T ∈ Tp to TTT is a homeomorphism.
As discussed in Remark 3.17, Sp+-valued X is a random matrix if and only if S̃p+-valued
X△ := ψ−1(X) is a random matrix, where ψ is defined in Eq. (2.7). Using the continuous
and bijective function ϕ, given in Eq. (2.33) of Lemma 2.41, that maps every lower triangular
matrix t̃ ∈ T̃p to the positive definite matrix ψ−1(ttT) ∈ S̃p+, we can see that

X△ = ψ−1(X) = ψ−1(TTT) = ϕ(T̃ )

is a S̃p+-valued random matrix and hence X is a Sp+-valued random matrix if T̃ is a random
matrix. Conversely, T̃ = ϕ−1(X△) is a random matrix if X△ is a random matrix.

Step 3. Assume T̃ is the random matrix described by Items (i) and (ii). For every open set
B of B(S̃p+),

P[X△ ∈ B] = P[ϕ(T̃ ) ∈ B] = P[T̃ ∈ ϕ−1(B)] =

�
ϕ−1(B)

fT̃ (t̃) dt̃, (3.30)

where we write dt̃ for λ
p(p+1)

2 (dt̃). Inserting the determinant of ϕ given in Eq. (2.34) into
Eq. (3.29),

fT̃ (t̃) =
2

p(p−1)
4

Γp(α)
e−tr(ttT)(det(ttT))α−

p+1
2� �� �

=: g(ψ(ϕ(t̃)))

|det dϕ(t̃)|, t̃ ∈ T̃p, (3.31)

as ψ(ϕ(t̃)) = ttT, where t is the matrix version of t̃. Inserting this into Eq. (3.30),

P[X△ ∈ B] =

�
ϕ−1(B)

g(ψ(ϕ(t̃)))|det dϕ(t̃)| dt̃ =
�
B
g(ψ(x△)) dx△, (3.32)

where we are using the transformation formula from Theorem 2.39 with the function ϕ and
the open set B for the second equality. As this is true for all open sets B a density of X△

is given by

fX△(x△) = g(ψ(x△)), x△ ∈ S̃p+.
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Therefore, using Eq. (3.20),

fX(x) = 2
−p(p−1)

4 fX△(x△) = 2
−p(p−1)

4 g(x) =
1

Γp(α)
e−tr(x)(det(x))α−

p+1
2 , x ∈ Sp+,

where we are using the definition of g(·) in Eq. (3.31). As this is a density of the
MGamma(α, Ip) distribution, as given in Definition 3.18, this proves one implication of the
theorem.

Step 4. Now assume X follows the standard matrix-valued gamma distribution and hence,
using Eq. (3.20),

fX△(x△) =
2

p(p−1)
4

Γp(α)
e−tr(x)(det(x))α−

p+1
2 = g(ψ(x△)), x△ ∈ S̃p+,

where x = ψ(x△) and g(·) as in Eq. (3.31). Now as in the step above but in the other
direction, we can see that for every open set B ∈ B(T̃p),

P[T̃ ∈ B] = P[ϕ−1(X△) ∈ B] = P[X△ ∈ ϕ(B)] =

�
ϕ(B)

g(ψ(x△)) dx△.

Furthermore, with the transformation of the second equality of Eq. (3.32) with the set ϕ(B)
instead of the B there and the definition of g(·) in Eq. (3.31)

P[T̃ ∈ B] =

�
B
g(ψ(ϕ(t̃)))|det dϕ(t̃)| dt̃ =

�
B

2
p(p−1)

4

Γp(α)
e−tr(ttT)(det(ttT))α−

p+1
2 2p

p'
i=1

tp−i+1
ii dt̃,

which, together with Eq. (3.29) and the first step of this proof proves that T̃ follows the
desired distribution.

Step 5. Finally, we will show that Item (ii) leads to the entries T 2
ii being gamma distributed

for every i ∈ {1, . . . , p}. For the function ξ(x) := x2 for x ∈ R+, and every Borel set B of
B(R+),

P[T 2
ii ∈ B] = P[Tii ∈ ξ(B)] =

�
ξ(B)

fTii(x) dx =
2

Γ(α− i−1
2 )

�
ξ(B)

e−x2
(x2)α−

i
2 dx,

where Eq. (2.14) is used for the last equality. By substituting y := ξ(x) this is equal to

P[T 2
ii ∈ B] =

2

Γ(α− i−1
2 )

�
B
e−y yα−

i
2

1

2
√
y
dy.

Since this is true for every Borel set B, a density of T 2
ii is given by

fT 2
ii
(y) =

1

Γ(α− i−1
2 )

e−y yα−
i+1
2 , y ∈ R+,

which is a density of the one-dimensional gamma distribution with shape parameter
α− i− 1/2 and scale parameter β = 1, see Eq. (2.15).



3.2. DEFINITION AND BASIC PROPERTIES 51

Corollary 3.23 (Independent entries of standard matrix-valued gamma distributions).
For p ∈ N and α > (p − 1)/2, let X ∼ MGamma(α, Ip). Then the elements of every
collection Xi1,j1 , . . . , Xin,jn with n ∈ N of entries of X, where {ik, jk} ∩ {il, jl} = ∅ for all
k, l ∈ {1, . . . , n}, are independent. This implies, in particular, that all diagonal elements of
a standard matrix-valued gamma distribution are independent.

Proof. Using the previous theorem, let T denote the Tp-valued matrix satisfying TTT = X,
where the non-trivial entries are independent. Then

Xik,jk =

j+
m=1

TikmTjkm, k ∈ {1, . . . , n},

hence, if the conditions of this corollary are satisfied, Xi1,j1 , . . . , Xin,jn are independent.

Definition 3.24 (Matrix-valued gamma distributions). For p ∈ N an Rp×p-valued random
matrix Y is said to be matrix-gamma distributed with shape parameter α ∈ R+ and scale
parameter matrix C ∈ Rp×p, if there exists a dimension q ∈ N, a matrix A ∈ Rp×q, such
that C = AAT, and a random S+q -valued matrix X following the standard matrix-valued
gamma distribution with parameter α > (q − 1)/2, as given in Definition 3.18, such that

Y
d
= AXAT (equality in distribution). (3.33)

We use the notation Y ∼ MGamma(α,C).

Remark 3.25 (One-dimensional gamma distributions are a subclass of matrix-valued gamma
distributions). Setting p = 1 and assuming C is positive, we can see that matrix-valued
gamma distributions are in fact a generalization of one-dimensional gamma distributions.
The density function given in Eq. (3.21) simplifies to the density of the Gamma(α, 1) distri-
bution, see Eq. (2.15). In the one-dimensional case Eq. (3.33) is equivalent to multiplying
the standard gamma distributed variable with the scale parameter C ∈ R+, leading to the
Gamma(α,C) distribution.

Remark 3.26 (Sampling from matrix-valued gamma distributions). Combining Theorem 3.22
with the definition of matrix-valued gamma distributions given in Eq. (3.33) provides a
method to sample from MGamma(α,C).

Remark 3.27 (Existence of MGamma(α,C)). The MGamma(α,C) distribution exists for
every positive semi-definite scale parameter matrix C and shape parameter α > (rk(C)−1)/2:
In an analogue argumentation to Lemma 3.9 we can see that for every positive semi-definite
C ̸= 0 there exists a matrix A ∈ Rp×rk(C) such that AAT = C. For C = 0, we can chose A
to be the p-dimensional zero vector. Hence, the MGamma(α,C) distribution can be defined
for every α > (rk(C)− 1)/2.

The uniqueness of the distribution given C and α follows from the characteristic function
in Theorem 3.32 below.
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Remark 3.28. The characterization of the standard matrix-valued gamma distribution given
in Theorem 3.22 via its Cholesky decomposition can be generalized for scale parameter
matrices of the form βIp for β ∈ R+:
For p ∈ N let α > (p − 1)/2 and β > 0. Let T̃p be as defined in Eq. (2.8). Then

Y ∼ MGamma(α, βIp) if and only if the vector version T̃ ∈ T̃p of the lower triangular
matrix T , that is uniquely defined by the Cholesky decomposition of Y = TTT, is a random
matrix, where the non-trivial entries Tij of T with i ≥ j for i, j ∈ {1, . . . , p}, are independent
and their distributions are given by:

(i) Tij ∼ N (0, β2 ) for all i > j in {1, . . . , p},
(ii) Tii ∼ GenGamma(α− i−1

2 , β, 2) for all i ∈ {1, . . . , p}.
This leads to T 2

ii ∼ Gamma(α− i−1
2 , β) for all i ∈ {1, . . . , p} .

Remark 3.29 (Distribution of the determinant of some matrix-valued gamma distributions,
see [13, Theorem 3.3.22(i)]). For p ∈ N let α > (p− 1)/2 and let positive semi-definite C be
of the form C = βIp for a β ≥ 0. Using the corresponding Tp-valued T from Remark 3.28,
we can see that

detY = det(TTT) =

p'
i=1

T 2
ii

where Tii ∼ Gamma(α− (i− 1)/2, β) for every i ∈ {1, . . . , p}.
Hence, the distribution of the determinant of Y is the product distribution of p independent

gamma distributions with the same scale parameter β. For p = 2 and β = 1, a joint density
of det(X) and tr(X) is given in Example 3.21.

Remark 3.30 (The family of matrix-valued gamma distribution takes values in the positive
semi-definite matrices). For p ∈ N, let C ∈ Rp×p be positive semi-definite and let α >
(rk(C) − 1)/2. Since X following a standard matrix-valued gamma distributions only
takes positive definite values, the values of the MGamma(α,C) distributed random matrix
Y d

= AXAT are positive semi-definite a.s., see Remark 3.11. In the case that A has rank p,
or equivalently C has full rank, which implies that C is positive definite due to Item (vi) of
Lemma 2.8, the values of Y are even positive definite a.s.

Remark 3.31. Matrix-valued gamma distributions and Wishart distributions in Definition 3.8
are commonly only defined for positive definite scale matrices/ covariance matrices, as for
example in [13, Definition 3.6.1] or [20, Eq. 2.1]. In this case the matrix-valued gamma
distributions are often defined via the densities given in Theorem 3.45 below.

Theorem 3.32 (Joint Laplace transform and characteristic function of matrix-valued gamma
distributions, see [13, Theorem 3.3.7]). Let p, q ∈ N, α > (q − 1)/2 , and let C ∈ Rp×p

be given as matrix product C = AAT, with A ∈ Rp×q. Let Y ∼ MGamma(α,C) as in
Definition 3.24 have the stochastic representation Y d

= AXAT with X ∼ MGamma(α, Iq).

(i) For w ∈ Cp×p, let w̃ := (w + wT)/2 with representation w̃ = u+ iv with u, v ∈ Rp×p

symmetric. If 7 Iq +ATuA ∈ S+q , then the determinant of Ip + 2w̃C is different from

7 The condition on w ∈ Cp×p is in particular satisfied if the real part of w, or even of w̃, is positive
semi-definite, in particular if it is equal to the zero matrix.
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zero and for every constant scalar β > (p − 1)/2 − α and every constant matrix
M ∈ Rp×p,

E [(detMY )β e−tr(wY )] =
Γp(α+ β)

Γp(α)
(detMC)β

�
det(Ip + w̃C)

"−(α+β)
. (3.34)

(ii) The characteristic function of Y , as defined in Eq. (3.5), is given by

φY (z) = E[etr(izY )] =
�
det(Ip − izC)

"−α
(3.35)

for all symmetric z ∈ Rp×p. It is sufficient to consider symmetric z due to Remark 3.13,
considering Y takes values in the symmetric matrices as discussed in Remark 3.30.

Proof. In the following we will prove Item (i). Item (ii) follows from Item (i) by setting
M = Ip, β = 0, w = iz for z ∈ Rp×p symmetric.
For Item (i), we first consider the case of a standard matrix-valued gamma distributed

random variable, denoted by X, a real β > (p−1)/2−α and a matrix w with corresponding
symmetric matrix w̃ = u+iv ∈ Cp×p with u satisfying Ip+u ∈ Sp+. With the same argument
as in Remark 3.13, tr(wY ) = tr(w̃Y ) a.s. Hence, using the density of the distribution given
in Eq. (3.21),

E [(detMX)β e−tr(wX)] =

�
Sp+

(detMx)β e−tr(w̃x) 1

Γp(α)
e−tr(x)(detx)α−

p+1
2 dx

=
(detM)β

Γp(α)

�
Sp+

e−tr(((Ip+u)+iv)x)(detx)α+β− p+1
2 dx.

As Ip + u is positive definite, v ∈ Rp×p is symmetric and α+ β > (p− 1)/2, we can apply
Eq. (2.31) from Theorem 2.37, telling us that det(Ip + w̃) ̸= 0 and leading to

E [(detMX)β e−tr(wX)] =
(detM)β

Γp(α)
Γp(α+ β)

�
det(Ip + w̃)

"−(α+β)

=
Γp(α+ β)

Γp(α)
(detM)β

�
det(Ip + w̃)

"−(α+β)
, (3.36)

which proves the lemma for the standard case.
For Y ∼ MGamma(α,C), using the stochastic representation Y d

= AXAT, where X
follows the standard matrix-valued gamma distribution of dimension q ∈ N,

E[(detMY )β e−tr(wY )] = E[(detMAXAT)β e−tr(w̃AXAT)]

= (detAAT� �� �
=C

)β E[(detMX)β e−tr((ATw̃A)X)],

where we are using Lemma 2.1 for the second equation. As ATw̃A is symmetric for symmetric
w̃ and as Iq +Re(ATw̃A) = Iq +ATuA is positive definite, we can insert the standard case
derived in Eq. (3.36),

E[(detMY )β e−tr(wY )] = (detC)β
Γp(α+ β)

Γp(α)
(detM)β

�
det(Iq +ATw̃A)

"−(α+β)

=
Γp(α+ β)

Γp(α)
(detMC)β

�
det(Ip + w̃ AAT� �� �

=C

)
"−(α+β)

,
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where we are using the Weinstein–Aronszajn identity given in Lemma 2.3 for the second
equality.

For p ∈ N the characteristic function of a Wishart distribution with parameters n ∈ N and
positive semi-definite Σ ∈ Rp×p satisfying n > rk(Σ), given in Eq. (3.7) of Theorem 3.14,
has the same form as the characteristic function of a MGamma(n/2, 2Σ) distribution given
via Eq. (3.35).

Corollary 3.33 (Matrix-valued gamma distributions are a generalization of non-singular
Wishart distributions). For n, p ∈ N let the positive semi-definite matrix Σ ∈ Rp×p satisfy
n > rk(Σ). Then

Wishart(n,Σ) = MGamma(n/2, 2Σ). (3.37)

This corollary and the similar form of the characteristic functions leads to the definition
of a more general version of matrix-valued gamma distributions incorporating the singular
Wishart distributions.

Definition 3.34 (General matrix-valued gamma distributions). For p ∈ N and positive
semi-definite C ∈ Rp×p, let

GC :=

�
0,

1

2
, 1,

3

2
, . . . ,

rk(C)− 2

2

�
∪

�
(rk(C)− 1)+

2
,∞

#
. (3.38)

The general matrix-valued gamma distribution family is now defined for every α ∈ GC ,
hence combining Definitions 3.8 and 3.24. An Rp×p-valued random matrix Y following this
distribution satisfies

(i) Y ∼ MGamma(α,C), if α > (rk(C)−1)+

2 ,

(ii) Y ∼ Wishart(2α, 12C), if α ∈
�

1
2 , 1,

3
2 , 2, . . . ,

rk(C)−1
2

�
, which is a singular Wishart

distribution,

(iii) Y follows the degenerate distribution concentrated in 0 ∈ Rp×p if α = 0.

This will also be denoted by Y ∼ MGamma(α,C).

Corollary 3.35 (Characteristic function of general matrix-valued gamma distributions).
For p ∈ N, let Y ∼ MGamma(α,C) with C ∈ Rp×p positive semi-definite and α ∈ GC .
Then the characteristic function is given by

φY (z) = E[etr(izY )] =
�
det(Ip − izC)

"−α
(3.39)

for all symmetric z ∈ Rp×p.

Corollary 3.36 (Distribution of the trace of matrix-valued gamma distributions, see [13,
Theorem 3.3.23]). For p ∈ N let C ∈ Rp×p be a positive semi-definite scale parameter matrix
and let α ∈ GC . Then the trace of Y ∼ MGamma(α,C) is a R+

0 -valued random variable
with characteristic function

φtr(Y )(t) = E[eittr(Y )] =
�
det(Ip − itC)

"−α
, t ∈ R.

If C = diag(β1, . . . , βp), then tr(Y ) follows the same distribution as the sum of p independent
random variables8 Y1, . . . , Yp with Yi ∼ Gamma(α, βi) for i ∈ {1, . . . , p}. Note that C

8 This distribution corresponds to a finite gamma convolution, see [27].
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x

ftr(X)(x)

Figure 3.3. Continuous probability density function of the trace of a standard matrix gamma
distribution, see Corollary 3.36, with p = 3 and different α.

positive semi-definite implies β1, . . . , βp ∈ R+
0 . If C is even a multiple of the identity matrix,

i.e. C = βIp, then tr(Y ) ∼ Gamma(αp, β).

This is illustrated in the standard case β = 1 in Figure 3.3. For p = 2 and C = I2, a joint
density of det(X) and tr(X) is given in Example 3.21.

Proof. In case α = 0, all of statements are true since Y = 0 in this case. For the rest of the
proof let α ̸= 0.
The characteristic function of tr(Y ) is given by

φtr(Y )(t) = E[eittr(Y )] = E[etr(i(tIp)Y )] = φY (tIp), t ∈ R.

Inserting the characteristic function of Y given in Corollary 3.35 proves the first statement
of the corollary.
If C is a diagonal matrix, then it can be represented by C = diag(β1, . . . , βp) with

β1, . . . , βp ∈ R+
0 as C is positive semi-definite. Then

φtr(Y )(t) =
�
det(Ip−itC)

"−α
=

� p'
j=1

(1−iβj)

#−α

= exp

�
−αLog

� p'
j=1

(1−itβj)

##
, t ∈ R,

where we use the definition of complex exponentiation given in Eq. (2.18). Now, due to
Eq. (2.17) there exists a k ∈ Z such that

Log

� p'
j=1

(1− itβj)

#
= 2πik +

p+
j=1

Log(1− itβj), t ∈ R.

Hence, for every t ∈ R,

φtr(Y )(t) = exp

�
−α

�
2πik +

p+
j=1

Log(1− itβj)

##
= e−2πikα

p'
j=1

(1− itβj)
−α.
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As φtr(Y )(t) = E[eittr(Y )] is continuous in t, this k ∈ Z must be the same for all t ∈ R as
α ̸= 0. Since φtr(Y )(0) = 1, we can conclude that k = 0 and therefore

φtr(Y )(t) =

p'
j=1

(1− itβj)
−α, t ∈ R.

Since R ∋ t �→ (1− itβj)
−α is the characteristic function of the Gamma(α, βj) distribution

due to Corollary 2.34, this proves the second statement of the corollary.
Finally, if C = βIp for some β ∈ R+, then

φtr(Y )(t) =

p'
j=1

(1− itβ)−α =
�
(1− itβ)−α

"p
= (1− itβ)−αp, t ∈ R,

which is the characteristic function of the Gamma(αp, β) distribution, where the last equality
holds due to Item (i).

Remark 3.37 (A further extension of the definition of matrix-valued gamma distributions
using the characteristic function is not possible). For p ∈ N and C ∈ Rp×p, the general
matrix-valued gamma distribution has been defined for every α ∈ GC . The characteristic
function given in Eq. (3.39) might lead to the question whether a function of this form also
describes a probability distribution for α not fulfilling this criterion. In fact it has been
proven in [25] that only for α ∈ GC the right side of Eq. (3.39) describes a characteristic
function of a probability distribution.

Remark 3.38 (Matrix-valued gamma distributions are not infinitely divisible). The charac-
teristic function of a matrix-valued gamma distribution exists if and only if α ∈ GC due
to Remark 3.37. So for a counterexample to infinite divisibility of matrix-valued gamma
distributions let C be positive semi-definite, let α ∈ GC and let n = 2 be the factor we want
to divide the distribution by. If the distribution were infinitely divisible, then there should
exist a characteristic function f such that the characteristic function of Y ∼ MGamma(α,C)
can be written as

φY (z) =
�
det(Ip − izC)

"−α
= (f(z))2.

The two possibilities for f(z) are

f1(z) =
�
det(Ip − izC)

"−α/2
and f2(z) = −�

det(Ip − izC)
"−α/2

,

where f1(z) is not a characteristic function for all α as α ∈ GC does not imply α/2 ∈ GC ,
which would be necessary due to Remark 3.37. The second option f2(z) is not a characteristic
function since f2(0) = −1 ̸= 1.

The family of general matrix-valued gamma distributions with the same shape parameter
α has the following property.

Corollary 3.39 (Scaling property of matrix-valued gamma distributions). For p, q ∈ N,
let Y ∼ MGamma(α,C) with C ∈ Rp×p positive semi-definite and α ∈ GC and let L
be a constant matrix in Rq×p. Then the Rq×q-valued random matrix LY LT follows the
MGamma(α,LCLT) distribution.
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Proof. This proof is done via the characteristic function of LY LT. For every symmetric
z ∈ Rq×q

φLY LT(z) = E[etr(izLY LT)] = E[etr(iL
TzLY )] = φY (L

TzL),

where Lemma 2.1 is used for the second equation. Inserting the characteristic function
given in Eq. (3.39),

φLY LT(z) = φY (L
TzL) =

�
det(Ip − iLTzLC)

"−α
=

�
det(Iq − izLCLT)

"−α

for all symmetric z ∈ Rq×q, where the last equation follows from the Weinstein–Aronszajn
identity given in Lemma 2.3. Since rk(LCLT) ≤ rk(C) and hence α ∈ GLCLT , this is
the characteristic function of MGamma(α,LCLT) at z. As discussed in Remark 3.4 and
Remark 3.13 the characteristic function of the symmetric random matrix LY LT at symmetric
z ∈ Rq×q determines its distribution uniquely, hence LY LT ∼ MGamma(α,LCLT).

Each permutation π of {1, . . . , p} can be identified with its permutation matrix Pπ :=
(δi,π(j))

p
i,j=1, where δi,j is the Kronecker delta. Hence, PπY PT

π = (Yπ−1(i),π−1(j))
p
i,j=1 for

every matrix Y ∈ Rp×p.

Corollary 3.40 (Permutation property of matrix-valued gamma distributions). For p ∈ N,
C ∈ Rp×p positive semi-definite and α ∈ GC , let Y ∼ MGamma(α,C) and let π be a
permutation of {1, . . . , p}. Then PπY PT

π follows the MGamma(α, PπCPT
π ) distribution,

where Pπ refers to the permutation matrix corresponding to π.

Remark 3.41 (Matrix-valued gamma distributions cannot be easily characterized by derived
one-dimensional distributions). Multidimensional normal distributions can be characterized
by derived one-dimensional distributions, see [28, Lemma 2.33]: an Rn-valued random vector
X follows an n-dimensional normal distribution if and only if ⟨t,X⟩ follows a one-dimensional
normal distribution for all t ∈ Rn.

Corollary 3.39 shows that one implication of this characterization holds for matrix-valued
gamma distributions as well: For p ∈ N let C ∈ Rp×p be positive semi-definite and α ∈ GC .
For Y ∼ MGamma(α,C) the random variable ⟨t, Y t⟩ follows a one-dimensional gamma
distribution for all t ∈ Rp. The other implication, however, does not hold true. For
Y0 ∼ Gamma(α0, β0) with shape parameter α0 > 0 and scale parameter β0 > 0, the random
matrix

Y :=

�
Y0 0
0 Y0

#
satisfies the condition, that for every t ∈ R2

⟨t, Y t⟩ = ∥t∥22Y0
follows the one-dimensional gamma distribution with shape parameter α0 and scale param-
eter ∥t∥22β0. Using the expectations and variances of the entries of a matrix-valued gamma
distribution, that will be proven in Theorem 3.59, we can see that the random matrix Y

does not follow a two-dimensional gamma distribution: The expectation E[Y ]
!
= αC implies

that a possible scale parameter matrix C ∈ R2×2 must have entries c12 = c21 = 0 and

c11 ̸= 0, c22 ̸= 0, which contradicts Var[Y12] = 0
!
= α/2 (c11c22 + c212) for any α > (p− 1)/2.
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With the help of the characteristic function, we can prove that the summation property
of one-dimensional gamma distributions also holds for their matrix-valued version.

Lemma 3.42 (Summation property of matrix-valued gamma distributions). For n ∈ N,
let Yk ∼ MGamma(αk, C) for k ∈ {1, . . . , n} be independent random matrices of dimension
p× p, where C is a positive semi-definite scale matrix and α1, . . . , αn ∈ GC . Then

n+
k=1

Yk ∼ MGamma(α1 + · · ·+ αn, C).

Proof. For a proof by induction, it suffices to consider the essential case n = 2. As Y1 and
Y2 are independent and their characteristic function is given in Eq. (3.39),

φY1+Y2(z) = φY1(z)φY2(z) =
�
det(Ip − izC)

"−α1
�
det(Ip − izC)

"−α2

=
�
det(Ip − izC)

"−(α1+α2),

for every symmetric z ∈ Rp×p, where the last equality holds due to Item (iii) of Proposition
2.32. As discussed in Remark 3.4 and Remark 3.13, the characteristic function at symmetric
matrices determines the distribution of a symmetric random matrix uniquely, hence Y1+Y2 ∼
MGamma(α1 + α2, C).

Remark 3.43 (The matrix-valued gamma distributions with a given C form a convolution
semigroup). For a fixed positive semi-definite scale parameter matrix C, the matrix-valued
gamma distributions with any shape parameter α ∈ GC and scale parameter matrix C form
a convolution semigroup due to Lemma 3.42. With MGamma(0, C) as a neutral element
this set of distributions is even a monoid.

Corollary 3.44 (Combined scaling and summation property of matrix-valued gamma
distributions). For n, q ∈ N and pk ∈ N for k ∈ {1, . . . , n}, let Lk ∈ Rq×pk and let
Yk ∼ MGamma(αk, Ck) for k ∈ {1, . . . , n} be independent random matrices of dimension
pk×pk, where Ck is positive semi-definite and αk ∈ GCk

for all k ∈ {1, . . . , n}. If there exists
a positive semi-definite matrix C ∈ Rq×q such that LkCkL

T
k = C for all k ∈ {1, . . . , n}, then

n+
k=1

LkYkL
T
k ∼ MGamma(α1 + . . .+ αn, C).

Proof. Combine Lemma 3.42 with Corollary 3.39.

Theorem 3.45 (Density of matrix-valued gamma distributions). For p ∈ N, C ∈ Sp+ and
α > (p− 1)/2, let Y ∼ MGamma(α,C). Then a density of Y w.r.t. the measure µ on Sp+,
discussed in Remark 3.17, is given by

fY (y) =
1

(detC)αΓp(α)
e−tr(C−1y)(det y)α−

p+1
2 , y ∈ Sp+. (3.40)

Proof. We are going to prove this theorem by using the uniqueness of the characteristic
function. Let Ỹ be a random Sp+-valued matrix distributed according to the density function
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given in Eq. (3.40). Fix a symmetric z ∈ Rp×p. Then the characteristic function of Ỹ at z
is given by

φỸ (z) = E [etr(izỸ )] =
1

(detC)αΓp(α)

�
Sp+

e−tr((C−1−iz)y)(det y)α−
p+1
2 dy.

As C−1 is positive definite and z ∈ Rp×p is symmetric, we can apply Eq. (2.31) from
Theorem 2.37 in combination with Lemma 2.1 and arrive at

φỸ (z) =
1

(detC)αΓp(α)
Γp(α)

�
det(C−1 − iz)

"−α
=

�
det(C−1 − iz)

det(C−1)

#−α

.

As the determinant is multiplicative,

φỸ (z) = det
�
(C−1 − iz)C

"−α
=

�
det(C−1C − izC)

"−α
=

�
det(Ip − izC)

"−α
,

which is the characteristic function of a random matrix, that follows a matrix-valued gamma
distribution with parameters α and C, as proven in Theorem 3.32. As this is true for every
symmetric z ∈ Rp×p, the random matrix Ỹ must follow a matrix-valued gamma distribution
due to Remark 3.4 and Remark 3.13.

Remark 3.46 (Complex matrix-valued gamma distributions). In a similar manner to real
matrix-valued gamma distributions discussed in this thesis, their complex version can be de-
fined, taking values in the set of complex positive (semi-)definite matrices. This distribution
is discussed in [23, Section 5.2a], for the complex case of the Wishart distributions, see [31].

3.3. Matrix-Valued Exponential Distributions

As a generalization to the one-dimensional exponential distributions discussed in Remark
2.30, we will define matrix-valued exponential distributions as a subclass of the matrix-valued
gamma distributions and prove that they are memoryless w.r.t. the Loewner partial order
given in Definition 2.10.

Definition 3.47 (Matrix-valued exponential distributions, see [22, Section 2.1]). For p ∈ N
an Rp×p-valued random matrix Z is said to have a matrix-valued exponential distribution
with positive semi-definite scale parameter matrix C ∈ Rp×p, if Z ∼ MGamma((p+1)/2, C).
This is denoted by Z ∼ MExp(C).

Remark 3.48 (Characteristic function and density of matrix-valued exponential distributions).
For positive semi-definite C ∈ Rp×p let Z ∼ MExp(C).

For every symmetric z ∈ Rp×p, the characteristic function of the matrix-valued exponential
function is given by

φZ(z) = (det(Ip − izC))−
p+1
2 ,

using Eq. (3.39).
Due to Theorem 3.45, for C ∈ Sp+ a density of this matrix-valued exponential distribution

is given by

fZ(x) =
e−tr(C−1x)

(detC)
p+1
2 Γp

�p+1
2

" , x ∈ Sp+. (3.41)



60 CHAPTER 3. MATRIX-VALUED GAMMA DISTRIBUTIONS

One-dimensional exponential distributions have the powerful property of memorylessness.
This result can be generalized to its matrix-valued version using the Loewner partial order.

Lemma 3.49 (Matrix-valued exponential dsitributions are memoryless w.r.t. the Loewner
order). For p ∈ N and C ∈ Sp+, let Z ∼ MExp(C). Then

P[Z >L s+ t |Z >L s] = P[Z >L t]

for all positive semi-definite s, t ∈ Rp×p, where <L refers to the Loewner partial order given
in Definition 2.10.

Proof. For every positive semi-definite t ∈ Rp×p, we can write

P[Z >L t] = P[Z − t ∈ Sp+] =
�
{x∈ Sp+ :x−t∈ Sp+}

fZ(x) dx =

�
Sp+

1{x−t∈ Sp+}fZ(x) dx

where the second equality follows from Definition 2.10 and the fact that Z takes values in
the positive definite matrices. Using Remark 2.22 and Eq. (2.7) this integral is equal to

P[Z >L t] =

�
S̃p+

1{ψ(x△)−t∈ Sp+}fZ(ψ(x
△)) dx△ =

�
{x△ ∈ S̃p+ :x−t∈ Sp+}

fZ(x) dx
△,

where x = ψ(x△). The map

ϕ :=

�
D := {x△ ∈ S̃p+ : x− t ∈ Sp+} → S̃p+

x△ �→ (x− t)△

is well-defined as x = ψ(x△) ∈ Sp+ if and only if x△ ∈ S̃p+, see Remark 2.19. Furthermore,
ψ(D) = S̃p+ as for every y△ ∈ S̃p+ and corresponding y = ψ(y△) ∈ Sp+, the matrix y + t ∈ Sp+
due to Item (iii) of Lemma 2.8 and hence (y + t)△ ∈ D with ϕ((y + t)△) = y△. As (·)△
is the inverse function of the homeomorphism ψ given in Eq. (2.7), the map ϕ here is a
homeomorphism as well, hence D = ϕ−1(S̃p+) is an open set as S̃p+ is open due to Lemma 2.20.
Furthermore, due to the linearity of (·)△, the Jacobi matrix dϕ = Ip(p+1)/2, leading to
det dϕ = 1. Hence, we can use Theorem 2.39 to arrive at

P[Z >L t] =

�
D
fZ(x−t+t) dx△ =

�
D
fZ(ψ((x−t)△)+t) dx△ =

�
S̃p+

fZ(y+t) dy△, (3.42)

where y = ψ(y△). As the density of Z given in Eq. (3.41) satisfies

fZ(y + t) =
e−tr(C−1(y+t))

(detC)
p+1
2 Γp

�p+1
2

" = e−tr(C−1t) e−tr(C−1y)

(detC)
p+1
2 Γp

�p+1
2

" = e−tr(C−1t) fZ(y),

where we use the linearity of the trace and the matrix multiplication, Eq. (3.42) can be
rewritten as

P[Z >L t] = e−tr(C−1t)

�
S̃p+

fZ(y) dy
△ = e−tr(C−1t),

where the last equality holds due to the fact that we integrate a density of Z over all of
the values Z can take as y ∈ Sp+ if and only if y△ ∈ S̃p+. For any positive semi-definite
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s, t ∈ Rp×p, using the definition of conditional probabilities and the fact that Z >L t+ s
implies Z >L s,

P[Z >L s+ t |Z >L s] =
P[Z >L s+ t]

P[Z >L s]
=

e−tr(C−1(s+t))

e−tr(C−1s)
= e−tr(C−1t) = P[Z >L t]

holds, which proves the lemma.

3.4. Marginal Distributions

For a better understanding of the structure of a matrix-valued gamma distribution we
partition the values it can take into a block matrix and derive the distribution of these
blocks in Theorem 3.52. Since the proof of this theorem requires the density function for
most cases it is limited to distributions with positive definite scale parameter matrix C and
non-singular shape parameter α. It is, however, possible to derive a similar block notation
for singular Wishart distributions, see Theorem 3.54 below.

Lemma 3.50. Let K denote a field. For p ∈ N let A,B ∈ Kp×p be symmetric and consider
their partitions �

A11 A12

AT
12 A22

#
,

�
B11 B12

BT
12 B22

#
, (3.43)

with A11, B11 ∈ Kr×r, where r ∈ {1, . . . , p− 1}. If A11 and B22 are invertible, then

tr(AB) = tr(A11B11·2) + tr(A22·1B22)

+ tr
�
A11(B12 +A−1

11 A12B22)B
−1
22 (B12 +A−1

11 A12B22)
T
"
, (3.44)

where B11·2 := B11 −B12B
−1
22 B

T
12 and A22·1 := A22 −AT

12A
−1
11 A12.

Proof. Using the partitions,

tr(AB) = tr

��
A11 A12

AT
12 A22

#�
B11 B12

BT
12 B22

##
can be rewritten as

tr(AB) = tr(A11B11) + tr(A12B
T
12) + tr(AT

12B12) + tr(A22B22)

= tr(A11(B11 −B12B
−1
22 B

T
12 +B12B

−1
22 B

T
12)) + tr(A12B

T
12) + tr(AT

12B12)

+ tr
�
(A22 −AT

12A
−1
11 A12 +AT

12A
−1
11 A12)B22

"
.

Using the definition of the blocks B11·2 and A22·1

tr(AB) = tr(A11B11·2) + tr(A22·1B22) + tr
�
A11(B12B

−1
22 B

T
12)

"
+ tr(A12B

T
12) + tr(AT

12B12) + tr
�
(AT

12A
−1
11 A12)B22

"
.

As the last four terms of this sum satisfy

tr
�
A11(B12B

−1
22 B

T
12)

"
+ tr(A12B

T
12) + tr(AT

12B12) + tr
�
(AT

12A
−1
11 A12)B22

"
= tr

�
A11(B12 +A−1

11 A12B22)B
−1
22 (B12 +A−1

11 A12B22)
T
"
,

Eq. (3.44) follows.
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Lemma 3.51 (Characterization of positive definite matrices, see [17, Eq. (7.7.5)]). For
p ∈ N let A ∈ Kp×p be Hermitian and consider the same partition as in Eq. (3.43) with
A11 ∈ Kr×r for an r ∈ {1, . . . , p − 1}. Then A is positive definite if and only if A22 and
A11·2 := A11 −A12A

−1
22 A

H
12 are positive definite.

Proof. Due to Lemma 2.9, A22 is positive definite if A is positive definite. Hence, A22 is
invertible in both cases, see Item (v) of Lemma 2.8, and A11·2 is well-defined. The matrix

H :=

�
Ir −A12A

−1
22

0 Ip−r

#
∈ Kp×p

is invertible and satisfies

HAHH =

�
Ir −A12A

−1
22

0 Ip−r

#�
A11 A12

AH
12 A22

#�
Ir 0

−A−1
22 A

H
12 Ip−r

#
=

�
A11·2 0
0 A22

#
. (3.45)

For the first implication, let A be positive definite. Then A11 and A22 are positive definite
due to Lemma 2.9 and therefore A11·2 = A11 − A12A

−1
22 A

H
12 must be Hermitian as well

as A−1
22 is positive definite due to Item (vi) of Lemma 2.8. For x ∈ Kr \ {0}, let x̃ :=

(x1, . . . , xr, 0, . . . , 0) ∈ Kp \ {0}. Then

xHA11·2 x = x̃H
�
A11·2 0
0 A22

#
x̃ = (HHx̃)HAHHx̃ > 0,

as H is of full rank and hence HHx̃ ∈ Kp \ {0}, thus proving that A11·2 is positive definite.
For the other implication, let A11·2 and A22 be positive definite. For a fixed x ∈ Kp \ {0},

the vector y := (HH)−1x ∈ Kp \ {0} can be partitioned into y = (y1, y2)
T with y1 ∈ Kr \ {0}

and y2 ∈ Kp−r \ {0}. Then, using Eq. (3.45),

xHAx = yHHAHHy = yH1 A11·2 y1 + yH2 A22 y2 > 0.

As this holds true for an arbitrary x ∈ Kp \ {0}, it must be true for all x ∈ Kp \ {0}, hence
A is positive definite.

Theorem 3.52 (Marginal and conditional distributions of matrix-valued gamma distribu-
tions partitioned into blocks, see [20, Proposition 2.3]). For p ∈ N, positive semi-definite
C ∈ Rp×p and α ∈ GC consider the partition of Y ∼ MGamma(α,C) and the scale
parameter matrix C into the blocks

Y =

�
Y11 Y12
Y T
12 Y22

#
and C =

�
C11 C12

CT
12 C22

#
with Y11, C11 of size r × r, where r ∈ {1, . . . , p− 1}. Then

(i) Y11 ∼ MGamma(α,C11),

(ii) Y22 ∼ MGamma(α,C22).

If C ∈ Sp+ and α > (p− 1)/2, then the following statements hold true as well, where C11·2
denotes C11 − C12C

−1
22 CT

12 and C22·1 := C22 − CT
12C

−1
11 C12 with the same notation applying

to Y :
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x11

x12

(a) fX11,X12(x11, x12)

x11 x22

(b) fX11,X22(x11, x22)

Figure 3.4. Illustration of the joint density functions of (X11, X12) and (X11, X22) of
X ∼ MGamma(α, I2) for α = 7/2 in orange, α = 9/2 in blue and α = 11/2 in green. Note
that these can also be the density functions of two-dimensional marginal distributions of
singular Wishart distributions, see Example 3.56.

(iii) Y12|Y △
22 ∼ MNormal(C12C

−1
22 Y22,

1
2C11·2 ⊗ Y22) a.s.,

(iv) Y T
12|Y △

11 ∼ MNormal(CT
12C

−1
11 Y11,

1
2C22·1 ⊗ Y11) a.s.,

(v) Y11·2 ∼ MGamma(α− p−r
2 , C11·2),

(vi) Y22·1 ∼ MGamma(α− r
2 , C22·1),

(vii) (Y12, Y22) and Y11·2 are independent,

(viii) (Y12, Y11) and Y22·1 are independent.

Proof. For Item (i) we define the matrix

L =

����
1 0 · · · 0 0 · · · 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · 0 1 0 · · · 0

%%%% ∈ Rr×p.

Inserting this matrix into Corollary 3.39,

Y11 = LXLT ∼ MGamma(α,LCLT) = MGamma(α,C11).

Item (ii) follows by the permutation property given in Corollary 3.40.
Items (iii), (v) and (vii) will be proven simultaneously in three steps.

Step 1. As C is required to be positive definite in the case of Item (iii), Item (v) and
Item (vii), the matrices C11, C22, C11·2 and C22·1 are positive definite as well due to
Lemma 3.51. Hence, they are all invertible and the inverse of C is given by inverse is given
by

C−1 =

�
C−1
11·2 −C−1

11 C12C
−1
22·1

−C−1
22 CT

12C
−1
11·2 C−1

22·1

#
,
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which can be proven by verifying CC−1 = Ip. Combining this with Eq. (3.44) from
Lemma 3.50 above leads to

tr(C−1y) = tr(C−1
11·2y11·2) + tr(C−1

22 y22)

+ tr
�
C−1
11·2(y12 − C12C

−1

22 y22)y
−1
22 (y12 − C12C

−1
22 y22)

T
"
, y ∈ Sp+. (3.46)

Using Lemma 2.2 with index set {r + 1, . . . , p},

detC = det(C22) det(C11 − C12C
−1
22 CT

12) = det(C22) det(C11·2), (3.47)

where we use the fact that C22 is positive definite and invertible as a consequence of C ∈ Sp+.
For every value y ∈ Sp+, that Y might take, as discussed in Remark 3.27, we can also write
det y = det y22 det y11·2. Using the representation of Γp(α) given in Eq. (2.30),

Γp(α) = (2π)
r(p−r)

2 Γr

�
α− p− r

2

#
Γp−r(α), (3.48)

where we use the equality

r(r − 1) + (p− r)(p− r − 1) + 2r(p− r) = p(p− 1) (3.49)

for the exponent of 2π. Due to Eq. (3.20) and Eq. (3.40), a density function of Y △ is given
by

fY △(y△) = 2
p(p−1)

4 fY (y) =
2p(p−1)/4

(detC)αΓp(α)
e−tr(C−1y)(det y)α−

p+1
2 , y△ ∈ S̃p+,

where we recall the notation from Remark 2.19, where each y△ ∈ S̃p+ can be bijectively
mapped to y = ψ(y△) ∈ Sp+. Inserting Eqs. (3.46), (3.47) and (3.48) into this density
function together with some rearranging results in

fY △(y△) =
2r(r−1)/4

Γr(α− p−r
2 )(detC11·2)α−

p−r
2

e−tr(C−1
11·2y11·2)(det y11·2)α−

p+1
2 (detC11·2)−

p−r
2

× 2(p−r)(p−r−1)/4

Γp−r(α)(detC22)α
(det y22)

α− (p−r)+1
2 e−tr(C−1

22 y22)(det y22)
− r

2

× 2
2r(p−r)

4 (2π)−
r(p−r)

2� �� �
=π− r(p−r)

2

e−tr
�
C−1

11·2(y12−C12C
−1

22 y22)y
−1
22 (y12−C12C

−1
22 y22)T

"
, y△ ∈ S̃p+,

(3.50)

where y = ψ(y△), and where we use Eq. (3.49) for the exponent of 2 in Eq. (3.50).

Step 2. Consider the function

ϕ :=

��
S̃p+ → R ⊆ Rp(p+1)/2�

y△11
yT12 y△22

!
�→

�
y△11·2
yT12 y△22

!
,
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with
R := {vecp(x) |x ∈ Rp×p, x = xT, x11 ∈ S+r , x22 ∈ S+p−r},

which makes ϕ well-defined and bijective as a symmetric A ∈ Rp×p is positive definite
if and only if y11·2 and y22 are positive definite, see Lemma 3.51. Note that ϕ and ϕ−1

are continuous, as y11·2 = y11 − (y12y
−1
22 y

T
12) and (·)△ = ψ−1(·) is a homeomorphism as

elaborated in Remark 2.19.
Using ϕ we can transform the density given in Eq. (3.50) to a joint density of Ỹ △ :=

(Y △
11·2, Y

T
12, Y

△
22 ). In order to apply the transformation formula from Theorem 2.39, we need

to compute |det dϕ(·)|: At each point of S̃p+ the matrix dϕ can be seen as block matrix

dϕ(y△) =

�∂y△11·2/∂y
△
11 ∂y△11·2/∂y

T
12 ∂y△11·2/∂y

△
22

∂yT12/∂y
△
11 ∂yT12/∂y

T
12 ∂yT12/∂y

△
22

∂y△22/∂y
△
11 ∂y△22/∂y

T
12 ∂y△22/∂y

△
22

% , y△ ∈ S̃p+,

where each block refers to the matrix of partial derivatives of the vectorized versions of the
respective matrices. Since all of the partial derivatives matrices below the block diagonal are
equal to zero matrices, the determinant of dϕ is equal to the product of the determinants of
the diagonal block matrices. Since

∂y△11·2/∂y
△
11 = ∂(y△11 − (y12y

−1
22 y

T
12)

△)/∂y△11 = ∂y△11/∂y
△
11� �� �

≡ I r(r+1)
2

− ∂(y12y
−1
22 y

T
12)

△/∂y△11� �� �
≡ 0

,

we can write

det dϕ = det(∂y△11·2/∂y
△
11) det(∂y

T
12/∂y

T
12) det(∂y

△
22/∂y

△
22) ≡ 1 · 1 · 1 = 1,

as the determinant of the identity matrix of any dimension is equal to one. Now for every
open set B of B(R),

P[Ỹ △ ∈ B ] = P[ϕ(Y △) ∈ B] = P[Y △ ∈ ϕ−1(B)] =

�
ϕ−1(B)

fY △(y△) dy△,

where we write dy△ for λ
p(p+1)

2 (dy△). As ϕ is bijective and as det dϕ = 1,

P[Ỹ △ ∈ B] =

�
ϕ−1(B)

fY △(y△) dy△ =

�
ϕ−1(B)

fY △(ϕ−1(ϕ(y△)))|det dϕ(y△)| dy△

=

�
B
fY △(ϕ−1(ỹ△)) dỹ△,

where the transformation formula from Theorem 2.39 with the function ϕ is used for the
second equality. As this is true for every Borel set B a density of Ỹ △ is given by

fỸ △(ỹ
△) = fY △(ϕ−1(ỹ△)) = fY △

��
ỹ11 + ỹ12ỹ

−1
22 ỹ

T
12 ỹ12

ỹT12 ỹ22

#△#
, ỹ△ ∈ R,

where ỹ = ψ(ỹ△) by extending the definition of the domain of ψ in Eq. (2.7) to R.
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Step 3. Combining this with Eq. (3.50), we can see that the density can be written as

fỸ △(ỹ
△) = f

(Y △
11·2,Y

T
12,Y

△
22 )

(ỹ△) = f
Y △
11·2

(ỹ△11) · f(Y T
12,Y

△
22 )

(ỹT12, ỹ
△
22)

for all ỹ△ ∈ R, or, equivalently for all ỹ△11 ∈ S̃+r , ỹ12 ∈ Rr×(p−r) and ỹ△22 ∈ S̃+p−r with

f
Y △
11·2

(ỹ△11) =
2r(r−1)/2

Γr(α− p−r
2 )(detC11·2)α−

p−r
2

e−tr(C−1
11·2ỹ11)(det ỹ11)

(α− p−r
2

)− r+1
2 ,

where ỹ11 = ψ(ỹ△11) ∈ S+r and noting that (ỹ11 + ỹ12ỹ
−1
22 ỹ

T
12)− ỹ12ỹ

−1
22 ỹ

T
12 = ỹ11, and

f
(Y T

12,Y
△
22 )

(ỹT12, ỹ
△
22) =

2(p−r)(p−r−1)/4

Γp−r(α)(detC22)α
(det ỹ22)

α− (p−r)+1
2 e−tr(C−1

22 ỹ22)(det ỹ22)
− r

2

× (detC11·2)−
p−r
2 π− r(p−r)

2 e−tr
�
C−1

11·2(ỹ12−C12C
−1

22 ỹ22)ỹ
−1
22 (ỹ12−C12C

−1
22 ỹ22)T

"
,

thus proving the independence of Y △
11·2 and (Y T

12, Y
△
22 ) and, equivalently, the independence of

Y11·2 and (Y12, Y22). Furthermore, we can see that fY11·2(ỹ11) = 2−r(r−1)/2f△
Y11·2(ỹ

△
11), where

ỹ11 ∈ S+r , corresponds to the r-dimensional matrix-valued gamma distribution with shape
parameter α − (p − r)/2 and scale parameter matrix C11·2, hence proving Item (v). We

already know the distribution of Y22 from Item (ii), hence a density of Y △
22 , using Eqs. (3.20)

and (3.40), is given by

f
Y △
22
(ỹ△22) =

2(p−r)(p−r−1)/4

Γp−r(α)(detC22)α
(det ỹ22)

α− (p−r)+1
2 e−tr(C−1

22 ỹ22), ỹ△22 ∈ S̃+p−r,

where ỹ22 = ψ(ỹ△22). Therefore, we can calculate a conditional density of Y T
12 given Y △

22

f
Y T
12|Y △

22
(ỹT12|ỹ△22) =

f
(Y T

12,Y
△
22 )

(ỹT12, ỹ
△
22)

f
Y △
22
(ỹ△22)

= (detC11·2)−
p−r
2 (det ỹ22)

− r
2π− r(p−r)

2 e−tr
�
C−1

11·2(ỹ12−C12C
−1

22 ỹ22)ỹ
−1
22 (ỹ12−C12C

−1
22 ỹ22)T

"
= f

Y12|Y △
22
(ỹ12|ỹ△22)

for all ỹ12 ∈ Rr×(p−r) and ỹ△22 ∈ S̃+p−r, where the last equality follows from the the fact that

P[Y12 ∈ B] = P[Y T
12 ∈ {bT |b ∈ B}] for every Borel set B ∈ B(Rr×(p−r)). This function is,

using Eq. (3.3) and

�
det

1

2
C11·2

 − p−r
2

= (detC11·2)−
p−r
2

�1
2

 − r(p−r)
2

,

a density of the MNormal(C12C
−1
22 Y22,

1
2C11·2 ⊗ Y22) distribution, thus proving Item (iii).

Items (iv), (vi) and (viii) follow by the permutation property given in Corollary 3.40.
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Corollary 3.53 (The diagonal entries of a matrix-valued gamma distribution follow a
one-dimensional gamma distribution). Let Y ∼ MGamma(α,C). Then every diagonal entry
Yii, with i ∈ {1, . . . , p}, of the matrix Y follows the one-dimensional gamma distribution
with shape parameter α and scale parameter cii, where cii refers to the i-th diagonal entry
of the scale matrix C.

We can describe singular Wishart distributions using a similar block notation as given
in Theorem 3.52. This notation is also used in literature to introduce singular Wishart
distributions, e.g. see [20, Section 2.3].

Theorem 3.54 (Characterization of standard singular Wishart distributions). For n, p ∈ N
with n < p, let X ∼ Wishart(n, Ip). Then the partition of X into the blocks

X =

�
X11 X12

XT
12 X22

#
,

where X11 is of size r × r, satisfies

X11 ∼ MGamma(n2 , 2In), XT
12|X11 ∼ MNormal(0, Ip−n ⊗X11) a.s., X22

a.s.
= XT

12X
−1
11 X12.

Note that we can also write X11 ∼ Wishart(n, In) due to Corollary 3.33.

Remark 3.55. Note that this distribution of the blocks X11 and X12 is the same as the
distribution of the respective blocks of a standard matrix-valued gamma distribution, see
Theorem 3.52.

Example 3.56 (Two-dimensional marginal distributions of singular Wishart distribu-
tions). For n, p ∈ N with n < p, let X ∼ Wishart(n, Ip), which corresponds to the
MGamma(n/2, 2Ip) distribution.
Combining Theorem 3.54 with Corollary 3.40 implies that for every i ∈ {1, . . . , n − 1}

the R-valued entries of X satisfy

Xii ∼ Gamma(n/2, 2), Xi,i+1 |Xii ∼ N (0, 1) a.s.

Hence, for sufficiently large p ∈ N, Figure 3.4a shows a density function of the joint
distribution of (Xii/2, Xi,i+1/2).

Due to Lemma 3.7 and Corollary 3.53, the diagonal entries of X are i.i.d. Therefore, for
sufficiently large p ∈ N, Figure 3.4b shows a density function of the joint distribution of two
diagonal entries of X scaled by factor 1/2.

Proof of Theorem 3.54. For X ∼ Wishart(n, Ip), let Z be the Rp×n-valued random matrix
following the standard matrix-valued normal distribution, satisfying ZZT d

= X, see Definition
3.6. Let Z1 denote the first n rows of N , and Z2 the last p − n rows, hence X can be
partitioned into

X =

�
X11 X12

XT
12 X22

#
d
= ZZT =

�
Z1Z

T
1 Z1Z

T
2

Z2Z
T
1 Z2Z

T
2

#
.

Since the dimensions of X11 and Z1Z
T
1 are equal, the blocks of the two partitions correspond

to each other. Since Z1 ∼ MNormal(0, In ⊗ In), Definition 3.8 implies that Z1Z
T
1 = X11 ∼

Wishart(n, In) or, using Corollary 3.33, X11 ∼ MGamma(n2 , 2In).
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As Z2 ∼ MNormal(0, Ip−n ⊗ In) and affine transformations of normal distributions are
normal distributions, see Item (iii) form Remark 3.5,

Z2Z
T
1 | Z1 ∼ MNormal(0, Ip−n ⊗ (ZT

1 )
TInZ

T
1 ) = MNormal(0, Ip−n ⊗X11) a.s.

Since the distribution of Z2Z
T
1 | Z1 only depends on the Z1 measurable random matrix X11,

we can conclude that Z2Z
T
1 | X11 ∼ MNormal(0, Ip−n ⊗X11) a.s.

For the distribution of X22, note that

XT
12X

−1
11 X12

d
= Z2Z

T
1 (Z1Z

T
1 )

−1Z1Z
T
2 = Z2Z

T
1 (Z

T
1 )

−1(Z1)
−1Z1Z

T
2 = Z2Z

T
2

d
= X22,

where the second equality follows from the fact that Z1 as well as ZT
1 are quadratic and

have full rank a.s. since it is a non-degenerate normally distributed random matrix.

3.5. Expectations and Covariances

In this section the expectation and covariance matrix of general matrix-valued gamma
distributions are derived using the characteristic function.

Remark 3.57 (The commutation matrix Kp). For p ∈ N the commutation matrix Kp refers
to the p2 × p2 matrix that consists of the p× p block matrices Sij for i, j ∈ {1, . . . , p} that
are defined by

(Sij)kl =

	
1 if i = l and j = k

0 otherwise.
(3.51)

for all k, l ∈ {1, . . . , p}. The commutation matrix has the property that it transforms the
vectorized version of any matrix A ∈ Rp×p into the vectorized version of its transpose, i.e.

Kp vec(A) = vec(AT).

Remark 3.58 (Properties of the Kronecker product, see [11, Eq. (2.11), Eq.(2.13), Eq. (2.14),
Section 2.5]). Let p, q, n,m, k, l be natural numbers greater than zero.

(i) For matrices A ∈ Rp×q, B ∈ Rq×m and C ∈ Rm×n

vec(ABC) = (CT ⊗A)vec(B) (3.52)

holds.

(ii) For all matrices A ∈ Rp×q, B ∈ Rq×m, C ∈ Rn×k and D ∈ Rk×l

(A⊗ C)(B ⊗D) = AB ⊗ CD. (3.53)

(iii) For the the commutation matrices Kp and Kq given in Remark 3.57 and A,B ∈ Rp×q

(A⊗B)Kq = Kp(B ⊗A). (3.54)
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Theorem 3.59 (Expectation and covariance matrix of matrix-valued gamma distributions).
For p ∈ N, let Y ∼ MGamma(α,C) with positive semi-definite scale parameter matrix
C ∈ Rp×p and shape parameter α ∈ GC . Then the expectation and covariance of the entries
of the matrix Y are given by

E[Yij ] = α cij , (3.55)

Cov(Yij , Ykl) =
α

2
(cikcjl + cilcjk) (3.56)

for all i, j, k, l ∈ {1, . . . , p}. In matrix notation we can also write

E[Y ] = αC, (3.57)

Cov(vec(Y )) =
α

2
(C ⊗ C)(Kp + Ip2), (3.58)

where Kp refers to the commutation matrix defined in Remark 3.57.

Remark 3.60 (Identifiability of matrix-valued gamma distributions). The expectations and
covariances given in Theorem 3.59 above tell us that a matrix-valued gamma distribution is
identifiable if we assume α > 0 and C ≠ 0, i.e. it is possible to determine the parameters of
the distribution after obtaining an infinite number of observations from it.9

Remark 3.61 (Equivalence of the notations for the covariance). In order to prove that
Eq. (3.56) and Eq. (3.58) are equivalent, fix two entries Yij , Ykl of Y with i, j, k, l ∈ {1, . . . , p}.
Using the definition of the function vec(·), given in Eq. (2.4), we can see the covariance
matrix Cov(vec(Y )) as a block matrix out of the blocks Cb

jl ∈ Rp×p, that are the covariance
matrices between the j-th and the l-th column of Y for all j, l ∈ {1, . . . , p}. Considering
the right side of Eq. (3.58), the matrix Cb

jl is given by

Cb
jl =

α

2

� p+
m=1

(C ⊗ C)jm� �� �
= cjmC

((Kp)ml� �� �
=Sml

+Ip 1{m=l})
#

=
α

2

�
cjlC +

p+
m=1

cjmCSml)

#
,

where bold indices are used for accessing the blocks of the the block matrix and the
definition of the Kronecker product given in Eq. (3.1) and of the commutation matrix given
in Remark 3.57 are used for the small equalities.
For the covariance of Yij and Ykl we have to consider the entry at position (i, k) of Cb

jl.
Using the definition of Sij given in Eq. (3.51),

Cov(Yij , Ykl) = (Cb
jl)ik =

α

2

�
cjlcik +

p+
m=1

cjm(CSml)ik

#

=
α

2

�
cjlcik +

p+
m=1

cjm

p+
n=1

cin (Sml)nk)� �� �
=1{m=k,l=n}

#
=

α

2
(cjlcik + cjkcil),

which is equal to the covariance given in Eq. (3.56).

9 The term identifiability is commonly used in statistics, see e.g. [12].
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Proof of Theorem 3.59. Due to Definition 3.34 and therefore Definitions 3.8 and 3.24, a
random matrix Y following a general matrix-valued gamma distribution with C ≠ 0 and
α ̸= 0 has the stochastic representation Y d

= AXAT with A ∈ Rp×rk(C), such that AAT = C,
where X ∼ MGamma(α, Irk(C)). For C = 0 or α = 0 both expectations and covariances are
trivial.
The proof of Theorem 3.59 is now split into three steps: In the first step we derive the

expectation of this random matrix X following a q-dimensional general standard matrix-
valued gamma distribution for every q ∈ N and in the second step its covariance matrix.
In the third step we generalize both results for all positive semi-definite scale parameter
matrices C ∈ Rp×p using properties of vectorization and the Kronecker product.

Step 1. Due to Corollary 3.35, the characteristic function of X is given by

φX(z) =
�
det(Iq − iz

"
)−α

for every symmetric z ∈ Rq×q. Combined with Remark 3.13, the characteristic function of
X for a general, not necessarily symmetric, z ∈ Rq×q is given by

φX(z) = φX

�
z + zT

2

#
=

�
det

�
Iq − i

z + zT

2

##−α

. (3.59)

Throughout this proof we will denote

M(z) := Iq − i
z + zT

2
∈ Rq×q, (3.60)

and hence φX(z) = (detM(z))−α. We can derive the expectation of the entries of X by
differentiating the characteristic function

E[Xij ] = (−i)
∂φX

∂zij
(0), i, j ∈ {1, . . . , q}. (3.61)

As X takes values in the symmetric matrices it is sufficient to determine the expectations
for the indices i ≥ j in {1, . . . , q}.

Inserting Eq. (3.59) and Eq. (3.60),

∂φX

∂zij
(z) = −α(detM(z))−(α+1) ∂

∂zij
(detM(z)) (3.62)

For q = 1 and q = 2, the expectations can be easily computed using the simple representation
of the determinant in these cases. Hence, we can restrict to q ≥ 3 for the rest of this step.

In order to differentiate the determinant of the matrixM(z) we use the Laplace expansion10

along the i-th row for i ∈ {1, . . . , q}

detM(z) =

q+
m=1

(−1)i+m

�
1{m=i} − i

zim + zmi

2

#
det(M(z)im), (3.63)

where the notation M(z)im refers to the matrix M(z) without the i-th row and m-th column.

10 See [14, Satz 7.4.7]
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In case i = j, we can now differentiate the determinant of this matrix w.r.t. zij ,

∂

∂zii
detM(z) = (−1)i+i(−i)

1 + 1

2
det(M(z)ii), (3.64)

which is equal to −i for z = 0 for every i ∈ {1, . . . , q}.
If i > j in {1, . . . , q}, then we apply the Laplace expansion a second time to Eq. (3.63),

now by the j-th row:

detM(z) =

q+
m=1

(−1)i+m

�
1{m=i} − i

zim + zmi

2

#

×
q+

n=1
n ̸=m

(−1)j+n−1{n>m}
�
1{n=j} − i

zjn + znj
2

#
det

�
M(z){i,j}{m,n}

"
� �� �

=det(M(z)im)

,

where M(z){i,j}{m,n} stands for the matrix without the i-th and j-th row and m-th and
n-th column. Now, using the product rule, we can differentiate this determinant w.r.t. zij
with i > j in {1, . . . , q},

∂

∂zij
detM(z) = (−1)i+j(−i)

1 + 0

2
det(M(z)ij)

+ (−1)j+i(−i)
0 + 1

2

q+
m=1
m ̸=i

(−1)i+m(−1)−1{i>m}
�
1{m=i} − i

zim + zmi

2

#
det

�
M(z){i,j}{m,i}

"
� �� �

=det(M(z)ji)

,

(3.65)

where the last small equality follows from a Laplace expansion along the i-th row of M(z)ji
using i > j. The terms in Eq. (3.65) are equal to zero for z = 0 since det(M(0)ij) =
det((Iq)ij) = 0 for i ̸= j in {1, . . . , q}. Combining this with Eq. (3.61), Eq. (3.62) and
Eq. (3.64),

E[Xij ] = (−i)(−α) · 1 · 1{i=j}(−i) = α1{i=j}, i, j ∈ {1, . . . , q},

where we are using det(M(0)) = 0. Hence, the claimed expected values have been proven
for the standard case.

Step 2. For the covariances take i, j, k, l ∈ {1, . . . , q} with i ≥ j and k ≥ l. Then the
covariance between Xij and Xkl is given by

Cov(Xij , Xkl) = E[XijXkl]− E[Xij ]E[Xkl] = (−i)2
∂2φX

∂zij∂zkl
(0)− α21{i=j}1{k=l}, (3.66)

using the expectations derived in the first step. Again, for q = 1 and q = 2, this can be
easily computed using the simple representation of the determinant in these cases. Hence,
we can restrict to q ≥ 3 for the rest of this step.
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For all other cases we can use the product rule to arrive at

∂2φX

∂zij∂zkl
(z) = −α

�
−(α+ 1)(detM(z))−(α+2) ∂

∂zkl
(detM(z))

∂

∂zij
(detM(z))

+ (detM(z))−(α+1) ∂2

∂zij∂zkl
(detM(z))

 
for all i, j, k, l ∈ {1, . . . , q} with i ≥ j, k ≥ l. Apart from the last second partial derivative
of detM(z), we know the values of the terms at z = 0 from the first step, see Eq. (3.64)
and Eq. (3.65), so

∂2φX

∂zij∂zkl
(0) = −α

�
−(α+ 1)(−i)2� �� �

=α+1

1{i=j}1{k=l} +
∂2(detM(·))

∂zij∂zkl
(0)

#
. (3.67)

Now for the missing partial derivative we again differentiate for i = j and i > j and also for
the different possibilities of k ≥ l in {1, . . . , q}:

Case 1: The indices i, j, k, l ∈ {1, . . . , q} satisfy i = j and k = l. If i ̸= k, then

∂2

∂zii∂zkk
(detM(z)) = (−i)

∂

∂zkk
det(M(z)ii)

= (−i)2 (−1)k−1{k>i}+k−1{k>i}� �� �
=1

det
�
M(z){i,k}{i,k}

"
,

where we are using Eq. (3.64) for the first equality and the Laplace expansion for the k-th
row of M(z) for the second equality. If i = k, then this second derivative has to be equal to
zero as the variable zkk = zii is not part of det(M(z)ii).

Case 2: The indices i, j, k, l ∈ {1, . . . , q} satisfy i = j and k > l. Then, due to Eq. (3.64),

∂2

∂zii∂zkl
(detM(z)) = (−i)

∂

∂zkl
det(M(z)ii) = 0

because, using the Laplace expansion of the k-th and l-th row, the determinants of
M(z){i,k}{i,l} and (M(z){i,l}{i,k}) for z = 0 must be equal to zero as M(0) = Iq and
k ̸= l.
Case 3: The indices i, j, k, l ∈ {1, . . . , q} satisfy i > j and k = l. As second derivatives

are symmetric, this is the same as Case 2.
Case 4: The indices i, j, k, l ∈ {1, . . . , q} satisfy i > j and k > l. Then, using Eq. (3.65),

∂2

∂zij∂zkl
(detM(z)) =

(−i)(−1)i+j

2

∂

∂zkl

�
det(M(z)ij) + det(M(z)ji)

 
. (3.68)

We will split this case into several subcases.
Case 4(i): The indices additionally satisfy i = k and j = l. Consider the Laplace

expansion of det(M(z)ij) along the l-th row,

det(M(z)ij) =

q+
m=1
m ̸=j

(−1)l+m−1{m>j}
�
1{l=m} − i

zlm + zml

2

#
det(M(z){i,l}{j,m}).
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Then, considering that k > j,

∂

∂zkl
det(M(z)ij) = (−1)l+k(−i)

1

2
det

�
M(z){i,l}{j,k}

"� �� �
=1 for z=0

, (3.69)

where the last small equality follows form the fact that M(z){i,l}{j,k} = Iq−2 in this case.
For det(M(z)ji) we look at the Laplace expansion along the k-th row and arrive, using the
analogue procedure at

∂

∂zkl
det(M(z)ji) = (−1)k+l(−i)

1

2
det

�
M(z){j,k}{i,l}

"� �� �
=1 for z=0

.

Combining this with Eq. (3.68),

∂2(detM(·))
∂zij∂zkl

(0) =
(−i)(−1)i+j

2

�−i

2
(−1)l+k +

−i

2
(−1)l+k

�
= −(−i)2(−1)i+j+k+l

2
=

1

2
.

Case 4(ii): The indices additionally satisfy i = k, implying j ̸= k, and j ̸= l. Considering
the Laplace expansion of det(M(z)ij) along the l-th row results in, using Eq. (3.69)

∂

∂zkl
det(M(z)ij) = (−1)l+k(−i)

1

2
det(M(z){i,l}{j,k})� �� �

=0 for z=0

.

Consider the Laplace expansion of det(M(z)ji) along the k-th row, which is also the i-th
row,

det(M(z)ji) =

q+
m=1
m ̸=i

(−1)k+m−1{m>i}
�
1{k=m} − i

zkm + zmk

2

#
det

�
M(z){j,k}{i,m}

"
.

In case q = 3, it can be easily seen that the determinant of M(z){j,k}{i,m} for z = 0 must
be equal to zero as i = k and j ̸= l. For q ≥ 4 additionally expanding along the l-th row
results in

det(M(z)ji) =

q+
m=1
m ̸=i

(−1)k+m−1{m>i}
�
1{k=m} − i

zkm + zmk

2

#

×
q+

n=1
n ̸=i,n ̸=m

(−1)l+n−1{n>i}−1{n>m}
�
1{l=n} − i

zln + znl
2

#
det

�
M(z){j,k,l}{i,m,n}

"
Now differentiating w.r.t. zkl gives us

∂

∂zkl
det(M(z)ji)

= (−1)k+l−1{l>i}(−i)
1

2
det(M(z){j,k}{i,l})� �� �

=0 for z=0

+(−1)l+k−1{k>i}(−i)
1

2
det(M(z){j,l}{i,k})� �� �

=0 for z=0

.

(3.70)
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Hence the derivative of both det(M(z)ij and det(M(z)ji w.r.t. zkl is equal to zero, resulting
in, using Eq. (3.68),

∂2(detM(·))
∂zij∂zkl

(0) = 0.

Case 4(iii): The indices additionally satisfy i = l, which implies both j ̸= l and j ̸= k.
This case works the same as Case 4(ii) above with k and l switched.

Case 4(iv): The indices satisfy i ̸= k and i ̸= l. If either j = l or j = k, then this case
works in the same way as Case 4(ii) above with j and i switched. If j ̸= k and j ̸= l, then
Eq. (3.70) holds and for i and j switched Eq. (3.70) holds as well, thus also implying

∂2(detM(·))
∂zij∂zkl

(0) = 0.

with Eq. (3.68).

Summarizing all of these cases for i, j, k, l ∈ {1, . . . , q} with i ≥ j and k ≥ l

∂2(detM(·))
∂zij∂zkl

(0) =

��
(−i)2 = −1 if i = j ̸= k = l,
1
2 if i = k > j = l,

0 otherwise.

Combining this with Eq. (3.66) and Eq. (3.67)

Cov(Xij , Xkl) =

��������
(−i)2(−α)(α+ 1)− α2 = α if i = j = k = l,

(−i)2(−α)
�
(α+ 1)− 1

"−α2 = 0 if i = j ̸= k = l,

(−i)2(−α)12 − 0 = α
2 if i = k > j = l,

0 otherwise,

for all i, j, k, l ∈ {1, . . . , q} with i ≥ j and k ≥ l, corresponding to Eq. (3.56) for C = Iq.
Using matrix notation and the symmetry of X this is equivalent to

Cov(vec(X)) =
α

2
(Kq + Iq2) (3.71)

for X following the standard q-dimensional matrix-valued gamma distribution with parame-
ter α as discussed in Remark 3.61.

Step 3. As discussed in the beginning, every matrix Y ∼ MGamma(α,C) has a stochastic
representation Y d

= AXAT, where X ∼ MGamma(α, Irk(C)) either follows a standard
matrix-valued gamma distribution or a singular Wishart distribution. As the expectation is
linear,

E[Y ] = E[AXAT] = AE[X]AT = AαIpA
T = αC,

which proves Eq. (3.55). For the covariance we can write

Cov(vec(Y )) = Cov(vec(AXAT)) = Cov((A⊗A)vec(X)),
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where the last equality follows from Eq. (3.52). Since the covariance is bilinear, we can
rewrite this equation to

Cov(vec(Y )) = (A⊗A)Cov(vec(X)) (A⊗A)T� �� �
=AT⊗AT

,

where the last small equality follows from the Definition 3.1 of the Kronecker product. Using
the result Eq. (3.71) from the second step,

Cov(vec(Y )) = (A⊗A)
α

2

�
Krk(C) + I(rk(C))2

"
(AT ⊗AT).

With the help of Eq. (3.54) and Eq. (3.53) we arrive at

Cov(vec(Y )) =
α

2
(Kp + Ip2)(A⊗A)(AT ⊗AT) =

α

2
(Kp + Ip2)(AA

T ⊗AAT)

=
α

2
(Kp + Ip2)(C ⊗ C),

which proves the theorem.

3.6. Identification of some Biased Distributions

This section explores how matrix-valued gamma distributions change under certain biased
measures. The one-dimensional version of the results given in Theorem 3.64 can also be
found in [29, Lemma 4.35].

Definition 3.62 (Biased probability measure, see [29, Definition 2.10]). Let (Ω,F ,P) be a
probability space, and let X be a non-negative random variable on this probability space,
satisfying 0 < E[X] < ∞. Then the X-biased probability measure PX on the measurable
space (Ω,F) is defined by

PX [A] :=
E[X1A]

E[X]
, A ∈ F . (3.72)

Remark 3.63. In the context of Definition 3.62 above, for c ∈ R+ the cX-biased probability
measure PcX is the same as PX as the expectation E[cX] = cE[X] satisfies 0 < E[cX] < ∞
and

PcX [A] =
E[cX1A]

E[cX]
=

E[X1A]

E[X]
= PX [A], A ∈ F .

Theorem 3.64 (Biased matrix-valued gamma distributions). Assume that the random
matrix Y ∼ MGamma(α,C) with shape parameter α ∈ GC and positive semi-definite scale
parameter matrix C = AAT, where A ∈ Rp×q for q = max{1, rk(C)} is as discussed in
Remark 3.27. Let D ∈ Rp×p be a symmetric matrix fulfilling11 Ip +ATDA ∈ Sp+. Let the
scalar β fulfill one of the two conditions

11 This is in particular fulfilled by all positive semi-definite matrices D.
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(i) β > p−1
2 − α and α > p−1

2 and C is positive definite or

(ii) β = 0.

Then, using the biased probability measure given in Definition 3.62, the distribution of Y
under the (detY )β exp (−tr(DY ))-biased measure P is the matrix-valued gamma distribution
with shape parameter α + β and the positive definite scale parameter matrix AT(Ip +
ATDA)−1A, formally

P(detY )β exp (−tr(DY )) Y
−1 = MGamma(α+ β,AT(Ip +ATDA)−1A). (3.73)

If C has full rank this scale parameter matrix can be rewritten as (C−1 +D)−1.

Proof. Note that

E[(detY )β e−tr(DY )] =
Γp(α+ β)

Γp(α)
(detC)β(det(Ip +DC))−(α+β),

where the equality follows from Theorem 3.32 or Theorem 3.14, in case α ≤ (p − 1)/2
implying β = 0 by the conditions of this theorem, and the fact that Ip +ATDA is positive
definite. Note that this expectation is greater than zero for either of the conditions β can
fulfill, using the convention 00 = 1.

Combining this expectation with the definition of the biased probability measure given in
Eq. (3.72) a density of the (detY )β exp (−tr(DY ))-biased probability measure w.r.t. P is
given by

dP(detY )β exp (−tr(DY ))

dP
=

Γp(α)

Γp(α+ β)

(det(Ip +DC))α+β

(detC)β
(detY )β e−tr(DY ) . (3.74)

To determine the distribution of Y w.r.t. P(detY )β exp (−tr(DY )) we calculate its characteristic
function

EP
(detY )β exp (−tr(DY ))

[etr(izY ) ] = EP

�
etr(izY )

dP(detY)β exp (−tr(DY))

dP

�
=

Γp(α)

Γp(α+ β)

(det(Ip +DC))α+β

(detC)β
EP[e

tr(izY )(detY )β e−tr(DY ) ]

for z ∈ Rp×p symmetric. Since Ip +ATDA is positive definite, we can apply Theorem 3.32
with w = D − iz and M = Ip for the integral and arrive at

EP
(detY )β exp (−tr(DY ))

[etr(izY ) ]

=
Γp(α)

Γp(α+ β)

(det(Ip +DC))α+β

(detC)β
Γp(α+ β)

Γp(α)
(detC)β(det(Ip + (D − iz)C))−(α+β)

=

�
det(Ip +DC)

det(Ip + (D − iz)C)

#α+β

=

�
det(Ip +ATDA)

det(Ip +ATDA− iATzA)

#α+β

, (3.75)
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where the fact that C = AAT and the Weinstein–Aronszajn identity, given in Lemma 2.3, is
applied to the numerator and denominator in the last step. Since Ip +ATDA is invertible,

(Ip +ATDA− iATzA)(Ip +ATDA)−1 = Ip − iATzA(Ip +ATDA)−1.

Hence, Eq. (3.75) can be rewritten as

EP
(detY )β exp (−tr(DY ))

[etr(izY ) ] =
�
det(Ip − iATzA(Ip +ATDA)−1)

"−(α+β)

=
�
det(Iq − izA(Ip +ATDA)−1AT)

"−(α+β)
,

where the Weinstein–Aronszajn identity is again used for the last step. As discussed in
Remark 3.4, the characteristic function determines the distribution uniquely, hence the
distribution of Y under P(detY )β exp (−tr(DY )) is MGamma(α+ β,AT(Ip +ATDA)−1A).
In the case that C is invertible, A ∈ Rp×p is invertible as well and the scale parameter

matrix can be rewritten as

AT(Ip +ATDA)−1A = (A−1(Ip +ATDA)(AT)−1)−1

= ((AAT)−1 +D)−1 = (C−1 +D)−1.





4. Matrix-Valued Gamma Distributions in
Poisson Mixture Models

4.1. Poisson Mixture Models

A mixture distribution is a probability distribution of one or multiple random variables,
whose parameters are determined by other random variables. One of the most prominent
examples is a gamma-mixed Poisson distribution, where the random variable Λ ∼ Γ(α, β)
and the conditional distribution of N given Λ is Poisson(Λ). Then N is said to follow a
gamma-mixed Poisson distribution. Subsequently, we will demonstrate the well-known fact
that such a random variable N follows a negative binomial distribution.

In order to achieve this, we start by defining the probability-generating function, a very
important tool for discrete (mixture) distributions.

Definition 4.1 (Probability-generating function). Fix d ∈ N. For an Nd
0-valued random

vector N = (N1, . . . , Nd) the probability-generating function is defined by

φN (s) = E
� d'
i=1

sNi
i

�
, s = (s1, . . . , sd) ∈ Cd,

where the expectation exists at least for all s with ∥s∥∞ ≤ 1. The probability-generating
function belongs to the distribution of N and not to the random vector N itself but for a
simpler notation we will still denote it with φN .

Remark 4.2 (The probability-generating function determines a distribution uniquely, see
[29, Eq. (4.1), Eq. (4.15)]). Note that for an Nd

0-valued random vector N = (N1, . . . , Nn)

φ
(n)
N (0, . . . , 0) = n1! · · ·nd!P[N = n], n = (n1, . . . , nd) ∈ Nd

0 (4.1)

holds, where φ
(n)
N refers to the function φN partially differentiated ni times in the i-th

component1 for all i ∈ {1, . . . , d}. Hence, the probability-generating function describes one
unique distribution. Conversely, the probability-generating function is uniquely defined by
Definition 4.1 for each Nd

0-valued random vector N .

Definition 4.3 (Poisson distributions, see [29, Definition 3.1]). For λ ≥ 0 an N0-valued
random variable N is said to follow the Poisson distribution with intensity λ if

P[N = n] =
λn

n!
e−λ, n ∈ N0,

using the convention 00 = 1. This is denoted by N ∼ Poisson(λ).

1 Note that the order in which the partial derivatives are taken does not matter, since the zero vector is
part of the interior of the set for which φN is well-defined and C∞.
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Definition 4.4 (Negative binomial distributions, see [29, Eq. (4.60)]). An N0-valued
random variable N follows the negative binomial distribution with parameters α > 0 and
p ∈ (0, 1) if

P[N = n] =

�
n+ α− 1

n

#
(1− p)αpn, n ∈ N0.

We will use the notation N ∼ NegBin(α, p). We will also include the cases α = 0 and p = 0
by letting NegBin(0, p) and NegBin(α, 0) denote the degenerate distribution concentrated
in zero.

The negative multinomial distribution, a generalization of the negative binomial distribu-
tion, is given in Definition 4.23 below.

Example 4.5 (Some probability-generating functions, see [29, Example 4.3, Eq. (4.63)]).
Some examples of probability-generating functions for N0-valued random variables include

(i) Poisson distribution: For N ∼ Poisson(λ) with parameter λ ≥ 0,

φN (s) = eλ(s−1), s ∈ C. (4.2)

(ii) Negative binomial distribution: For N ∼ NegBin(α, p) with parameters α ≥ 0 and
p ∈ [0, 1),

φN (s) =

�
1− p

1− ps

#α

, s ∈ C with p|s| < 1, (4.3)

where the complex exponentiation is understood as discussed in Remark 2.31.

Lemma 4.6 (Affine transformations of probability-generating functions, see [29, Lemma
4.6]). For c, d ∈ N, let N be an Nd

0-valued random vector and let A ∈ Nc×d
0 be a matrix.

Then the probability generating function of the Nc
0-valued random vector AN is given by

φAN (s1, . . . , sc) = φN (t1, . . . , td), where tj :=

c'
i=1

s
ai,j
i , j ∈ {1, . . . , d}

for all s ∈ Cc satisfying ∥s∥∞ ≤ 1.

Corollary 4.7 (Properties of the probability-generating functions, see [29, Example 4.7]).
For d ∈ N let N be an Nd

0-valued random vector. Then the followings properties hold

(i) For c ∈ {1, . . . , n} the probability-generating function of the first c components of N
is given by

φ(N1,...,Nc)(s1, . . . , sc) = φN ((s1, . . . , sc, 1, . . . , 1), s ∈ Cc with ∥s∥∞ ≤ 1. (4.4)

(ii) If the last d−c+1 of N are aggregated for c ∈ {2, . . . , d}, then the probability-generating
function is given by

φ(N1,...,Nc−1,Nc+···+Nd)(s1, . . . , sc) = φN (s1, . . . , sc−1, sc, . . . , sc) (4.5)

for all s ∈ Cc with ∥s∥∞ ≤ 1.

(iii) For every permutation σ of {1, . . . , d},
φ(Nσ(1),...,Nσ(d))(s1, . . . , sd) = φN (sσ−1(1), . . . , sσ−1(d)), s ∈ Cd with ∥s∥∞ ≤ 1. (4.6)
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Lemma 4.8 (Characterization of independence using probability-generating functions, see
[29, Lemma 4.14]). For d1, . . . , dn ∈ N let N1, . . . , Nn be random vectors, where N i takes
values in Ndi

0 for every i ∈ {1, . . . , n}. Then N1, . . . , Nn are pairwise independent if and
only if

φ(N1,...,Nn)(s
1, . . . , sn) =

n'
i=1

φN i(si), si ∈ Cdi with ∥si∥∞ ≤ 1 for all i ∈ {1, . . . , n}.

Lemma 4.9 (Summation property of probability-generating functions for independent
random variables, see [29, Theorem 4.15]). For d ∈ N let N1, . . . , Nn be independent
Nd
0-valued random vectors. Then

φN1+···+Nn(s) =

n'
i=1

φN i(s), s ∈ Cd with ∥s∥∞ ≤ 1.

Corollary 4.10 (Summation property of negative binomial distributions). For n ∈ N, let
Nk ∼ NegBin(αk, p) for k ∈ {1, . . . , n} be independent random variables, where p ∈ [0, 1)
and α1, . . . , αn ∈ R+

0 . Then

n+
k=1

Nk ∼ NegBin(α1 + . . .+ αn, p).

Proof. For a proof by induction, it is sufficient to consider the case n = 2. As N1 and N2 are
independent and their probability-generating functions are given in Eq. (4.3), Lemma 4.9
leads to

φN1+N2(s) = φN1(s)φN2(s) =

�
1− p

1− ps

#α1
�

1− p

1− ps

#α2

=

�
1− p

1− ps

#α1+α2

for every s ∈ C with p|s| < 1. As discussed in Remark 4.2, the probability-generating
function determines the distribution uniquely, hence N1 +N2 ∼ NegBin(α1 + α2, p).

Using the probability-generating function, we can prove the fact that gamma-mixed
Poisson distributions are part of the class of negative binomial distributions.

Lemma 4.11 (Gamma-mixed Poisson distributions). For α, β > 0, let the random variable
Λ follow the one-dimensional gamma distribution with shape parameter α and scale parameter
β. Let the random variable

N |Λ ∼ Poisson(Λ).

Then N follows a negative binomial distribution with parameter α and p = β
1+β .

Proof. For every s ∈ C satisfying |s| ≤ 1 the probability-generating function of N is given
by

φN (s) = E[sN ] = E[E[sN |Λ]] = E[eΛ(s−1) ] = (1 + (1− s)β)−α

where the third equality follows from Eq. (4.2) and the fourth one from the exponential
moments of gamma distributions. This can be, for example seen from Theorem 3.32 with
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p = 1, M = 1, w = (1 − s), the β from the lemma equal to zero and Y ∼ Gamma(α, β).
Since

(1 + (1− s)β)−α =

�
1

1 + β − sβ

#α

=

� 1
1+β

1+β−sβ
1+β

#α

=

�
1− p

1− sp

#α

,

Eq. (4.3) and the fact that the probability-generating function determines a distribution
uniquely as discussed in Remark 4.2, N ∼ NegBin(α, p).

Definition 4.12 (Multivariate Poisson distributions, see [29, Definition 3.40]). For m ∈ N,
let the set G ⊆ P({1, . . . ,m}) fulfil ∅ /∈ G. For every g ∈ G let Ng denote a random
variable following the Poisson distribution with parameter λg ∈ [0,∞). If the set (Ng)g∈G
is independent, then the Nm

0 -valued random variable

N :=
+
g∈G

cgNg,

where the entries of the vector cg = (cg,1, . . . , cg,m) are given by cg,i = 1g(i) for every
i ∈ {1, . . . ,m} and every g ∈ G, is said to follow the m-variate Poisson distribution
MPoisson(G, λ,m), where λ = (λg)g∈G.

Using this distribution family we can define general multivariate Poisson mixture models.

Definition 4.13 (General multivariate Poisson mixture models, see [29, Section 3.6]).
Let (Λg)g∈G denote a collection of [0,∞)-valued random variables. In the setting of
Definition 4.12, let N be distributed with a m-variate Poisson distribution where the
parameters (λg)g∈G = λ are given by Λ := (Λg)g∈G, i.e.

N |Λ ∼ MPoisson(G,Λ,m),

with the additional assumptions that for each g ∈ G

P[Ng = ng |(Λh)h∈G ]
a.s.
= P[Ng = ng |Λg ]

for every (ng)g∈G ∈ NG
0 and that the variables (Ng)g∈G are conditionally independent, i.e.

P[Ng = ng for all g ∈ G |(Λh)h∈G]
a.s.
=

'
g∈G

P[Ng = ng |(Λh)h∈G].

The rest of this section discusses some biased distributions of negative binomial distribu-
tions, where we first prove that the concept of the biased probability measure defined in
Definition 3.62 can be applied iteratively, which will be used subsequently.

Lemma 4.14 (Iterative biased probability measures). Let X and Y be non-negative
random variables on the probability space (Ω,F ,P), where X satisfies 0 < E[X] < ∞.
Furthermore suppose that 0 < E[XY ] < ∞, which in this setting is equivalent to assuming
0 < EPX

[Y ] < ∞. Then the XY -biased probability measure PXY on the measurable space
(Ω,F) is given by

PXY [A] =
EPX

[Y 1A]

EPX
[Y ]

, A ∈ F ,
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where PX refers to the X-biased probability measure. Equivalently, a density of PXY w.r.t.
P is given by

dPXY

dP
a.s.
=

d(PX)Y
dP

a.s.
=

d(PX)Y
dPX

dPX

dP
.

Proof. Using Eq. (3.72) a density of the X-biased probability measure PX w.r.t. P is given
by

dPX

dP
=

X

E[X ]
. (4.7)

Using the same definition a density of the biased probability measure (PX)Y w.r.t. PX is
given by

d(PX)Y
dPX

=
Y

EPX
[Y ]

. (4.8)

Using Eq. (4.7),

EPX
[Y ] = E

�
Y
dPX

dP

�
=

E[XY ]

E[X ]
, (4.9)

which also proves the equivalence of assuming 0 < E[XY ] < ∞ and assuming 0 < EPX
[Y ] <

∞. Furthermore, this leads to

d(PX)Y
dP

a.s.
=

d(PX)Y
dPX

dPX

dP
=

XY

E[XY ]
,

where the second equation follows from combining Eqs. (4.7), (4.8) and (4.9). As the
last term is equal to a density of the XY -biased probability measure PXY w.r.t. P per
Definition 3.62, this proves the lemma.

Lemma 4.15 (Biased negative binomial distributions). For α > 0 and p ∈ [0, 1) let
N ∼ NegBin(α, p). Then the following statements hold:

(i) For every k ∈ N0,

E[(N + α)(N + α+ 1) · · · (N + α+ k)] =
α(α+ 1) · · · (α+ k)

(1− p)k+1
(4.10)

and

P(N+α)(N+α+1)···(N+α+k)N
−1 = NegBin(α+ k + 1, p). (4.11)

(ii) Furthermore, if p > 0, then for every k ∈ N0,

E[N(N − 1) · · · (N − k) ] = pk+1α(α+ 1) · · · (α+ k), (4.12)

and

PN(N−1)···(N−k)N
−1 = L(Ñ + k + 1), where Ñ ∼ NegBin(α+ k + 1, p). (4.13)
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(iii) Finally, if p > 0, then for every p̃ ∈ (0, 1),

E
��

p̃

p

#N�
=

�
1− p

1− p̃

#α

, (4.14)

and
P(p̃/p)NN

−1 = NegBin(α, p̃). (4.15)

Proof. Item (i): For k ∈ N0 and N ∼ NegBin(α, p) we can compute the expectation

E[sN (N + α)(N + α+ 1) · · · (N + α+ k)]

=
∞+
n=0

sn(n+ α)(n+ α+ 1) · · · (n+ α+ k)

�
n+ α− 1

n

#
(1− p)αpn� �� �

=P[N=n]

,

where s ∈ C with |s| ≤ 1. Using the definition of the binomial coefficient this expectation
can be rewritten as

E[sN (N + α)(N + α+ 1) · · · (N + α+ k) ]

=
∞+
n=0

snα(α+ 1) · · · (α+ k)

�
n+ (α+ k + 1)− 1

n

#
(1− p)αpn

=
α(α+ 1) · · · (α+ k)

(1− p)k+1

∞+
n=0

sn
�
n+ (α+ k + 1)− 1

n

#
(1− p)α+k+1pn� �� �

=φNegBin(α+k+1,p)(s)

,

where the last small equality follows from Definition 4.4. Inserting s = 1 leads to Eq. (4.10)
as the value of a probability-generating function for s = 1 is always equal to one. Combining
this with Definition 4.1 and Definition 3.62, we can see that the probability-generating
function of N under P(N+α)···(N+α+k) is equal to the probability-generating function of the
NegBin(α+ k + 1, p) distribution, which proves Eq. (4.11) due to Remark 4.2.

Item (ii): Let k ∈ N0 and N ∼ NegBin(α, p). Then for s ∈ C with |s| ≤ 1

E[N(N − 1) · · · (N − k) sN ] =
∞+
n=0

n(n− 1) · · · (n− k) sn
�
n+ α− 1

n

#
(1− p)αpn.

Since the first k + 1 summands are equal to zero we can do an index shift of the sum,

E[N(N − 1) · · · (N − k) sN ]

=

∞+
n=0

(n+ k + 1)(n+ k) · · · (n+ 1) sn+k+1

�
n+ k + 1 + α− 1

n+ k + 1

#
(1− p)αpn+k+1

= pk+1α(α+ 1) · · · (α+ k)
∞+
n=0

sn+k+1

�
n+ (α+ k + 1)− 1

n

#
(1− p)αpn� �� �

=E[sÑ+k+1]

,



4.1. POISSON MIXTURE MODELS 85

where the second equality follows from the properties of the binomial coefficient and Ñ in the
last equality follows the NegBin(α+k+1, p) distribution. Inserting s = 1 leads to Eq. (4.12)

as E[1Ñ+k+1] = 1. Combining this with Theorem 4.20 and Definition 3.62, the probability-
generating function of N under PN(N−1)···(N−k) is equal to the the probability-generating

function of Ñ + k + 1, which proves Eq. (4.13) using Remark 4.2.

Item (iii): For every p̃ ∈ (0, 1) and every s ∈ C with |s| ≤ 1

E
��

sp̃

p

#N�
=

�
1− p

1− p(sp̃/p)

#α

=

�
1− p

1− sp̃

#α

,

where the first equation follows from Eq. (4.3). Inserting s = 1 leads to Eq. (4.14). Hence,
we can see that the probability-generating function of N under P(p̃/p)N for every s ∈ C with
|s| ≤ 1 as

EP
(p̃/p)N

[sN ] =
E
�
sN

� p̃
p

"N�
E
�� p̃

p

"N� =

� 1−p
1−sp̃

"α�1−p
1−p̃

"α =

�
1− p̃

1− sp̃

#α

,

which proves Eq. (4.15) due to Remark 4.2.

Corollary 4.16. For α > 0 and p ∈ (0, 1) let N ∼ NegBin(α, p). For k, l ∈ N0 ∪ {−1} and
p̃ ∈ (0, 1), let

Λ :=

� k'
i=0

(N − i)

#� l'
j=0

(N + α+ j)

#
(p̃/p)N .

Then

PΛN
−1 = L(Ñ + k + 1), where Ñ ∼ NegBin(α+ k + l + 2, p̃). (4.16)

Proof. This corollary follows from combining Lemma 4.15 with Lemma 4.14: First, note
that due to Eq. (4.15) N follows the NegBin(α, p̃) distribution under P(p̃/p)N . Hence, if
l ≥ 0, then

EP
(p̃/p)N

� l'
j=0

(N + α+ j)

�
∈ (0,∞)

due to Item (i). Hence, with Eq. (4.11) and Lemma 4.14

P��l
j=0(N+α+j)

"
(p̃/p)N

N−1 = NegBin(α+ l + 1, p̃),

which also holds true for l = −1. Thus, Eq. (4.16) is proven for k = −1. Using Item (ii), if
k ≥ 0,

EP
(
�l

j=0
(N+α+j))(p̃/p)N

� k'
i=0

(N − i)

�
∈ (0,∞)

and therefore with Eq. (4.13) and Lemma 4.14, Eq. (4.16) follows.
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4.2. Matrix-Gamma Poisson Mixture Models

The following definition introduces a gamma-mixed Poisson model, where the gamma
distributed components are derived from one common matrix-valued gamma distribution.
Throughout this section several properties of this distribution family will be discussed.

Definition 4.17 (Matrix-gamma Poisson mixture models). For n, p ∈ N, let the random
matrix Y ∼ MGamma(α,C) with positive semi-definite scale parameter matrix C ∈ Rp×p

and shape parameter α ∈ GC , see Definition 3.34. For vi ∈ Rp, let the random variable
Λi := ⟨vi, Y vi⟩ for every i ∈ {1, . . . , n}. Let N1, . . . , Nn, where Ni|Λi ∼ Poisson(Λi) for every
i ∈ {1, . . . , n}, be conditionally independent given Y . Then the distribution of (N1, . . . , Nn)
will be denoted by MGammaPoisson(α,C, v1, . . . , vn).

Remark 4.18 (Matrix-gamma Poisson mixture models are not identifiable). A given matrix-
gamma Poisson mixture model does not determine the parameters α,C, v1, . . . , vn uniquely
as will be discussed below in Lemma 4.21. Hence, matrix-gamma Poisson mixture models
are non-identifiable2 as multiple parameterizations can lead to identical observations.

Remark 4.19. In the context of Definition 4.17, Corollary 3.39 can be used to conclude
that the random variable Λi := ⟨vi, Y vi⟩ follows a one-dimensional gamma distribution with
shape parameter α and scale parameter ⟨vi, Cvi⟩ for every i ∈ {1, . . . , n}.

Theorem 4.20 (Probability-generating function of matrix-gamma Poisson mixture models).
Let (N1, . . . , Nn) ∼ MGammaPoisson(α,C, v1, . . . , vn) according to Definition 4.17. Then
the probability-generating function of (N1, . . . , Nn), see Definition 4.1, is given by

φ(N1,...,Nn)(s) = E
� n'
i=1

sNi
i

�
=

�
det

�
Ip +

n+
i=1

(1− si)viv
T
i C

##−α

(4.17)

for at least all s ∈ Cn satisfying ∥s∥∞ ≤ 1.

Proof. Fix any s ∈ Cn satisfying ∥s∥∞ ≤ 1. Using the conditional independence of the
random variables N1, . . . , Nn given Y , the probability-generating function can be rewritten
as

φ(N1,...,Nn)(s) = E
� n'
i=1

sNi
i

�
= E

�
E
� n'
i=1

sNi
i

.... Y ��
= E

� n'
i=1

E[sNi
i |Y ]

�
. (4.18)

Since Ni|Y ∼ Poisson(⟨vi, Y vi⟩) for every i ∈ {1, . . . , n}, its probability-generating function,
conditioned on Y , is given by

E[sNi
i |Y ]

a.s.
= e⟨vi,Y vi⟩(si−1)

due to Eq. (4.2). Using this and

⟨vi, Y vi⟩ = vTi Y vi = tr(viv
T
i Y ), i ∈ {1, . . . , n},

2 The term identifiability is commonly used in statistics, see e.g. [12].
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where the second equality follows from Lemma 2.1, the probability-generating function from
Eq. (4.18) can be rewritten as

φ(N1,...,Nn)(s) = E
� n'
i=1

etr(viv
T
i Y )(si−1)

�

= E
�
exp

� n+
i=1

tr(viv
T
i Y )(si − 1)

#�

= E
�
exp

�
−tr

� n+
i=1

(1− si)viv
T
i Y

##�
, (4.19)

where the last step follows from the linearity of the trace. Due to ∥s∥∞ ≤ 1, it follows that
every component |si| ≤ 1, hence Re(1 − si) ≥ 0 for all i ∈ {1, . . . , n}. Furthermore, the
matrix viv

T
i is positive semi-definite for all i ∈ {1, . . . , n}. Combining this with Lemma 2.8

Item (ii), the matrix

Re

� n+
i=1

(1− si)viv
T
i

#
=

n+
i=1

Re(1− si)viv
T
i

is positive semi-definite and

Im

� n+
i=1

(1− si)viv
T
i

#
=

n+
i=1

Im(1− si)viv
T
i

is symmetric as linear combination of symmetric matrices. Therefore, Eq. (3.34) of Theorem
3.32 or Eq. (3.6) of Theorem 3.14, depending on the α, can be applied to Eq. (4.19) with
w =

,n
i=1(1− si)viv

T
i , resulting in Eq. (4.17).

Lemma 4.21 (The MGammaPoisson(α,C, v1, . . . , vn) distribution does not uniquely de-
termine its parameters). Let the parameters α,C, v1, . . . , vn fulfil the conditions of Defini-
tion 4.17. Then for every orthogonal matrix S ∈ Rp×p,

MGammaPoisson(α,C, v1, . . . , vn) = MGammaPoisson(α, SCST, Sv1, . . . , Svn). (4.20)

Proof. As C is a positive semi-definite matrix, SCST is positive semi-definite as well and
as rk(SCST) = rk(C), shape parameter α ∈ GSCST , hence the distribution on the right side
of Eq. (4.20) is well-defined.
We will show Eq. (4.20) by showing the equality of the characteristic functions of N ∼

MGammaPoisson(α,C, Sv1, . . . , Svn) and M ∼ MGammaPoisson(α, SCST, Sv1, . . . , Svn).
As S orthogonal implies

Svi(Svi)
TSCST = Sviv

T
i CST, i ∈ {1, . . . , n},

Eq. (4.17) tells us, for every s ∈ Cn satisfying ∥s∥∞ ≤ 1,

φM (s) =

�
det

�
Ip +

n+
i=1

(1− si)Svi(Svi)
TSCST

##−α

=

�
det

�
Ip +

n+
i=1

(1− si)viv
T
i C STS����

= Ip

##−α

= φN (s),
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where Lemma 2.3 is used for the second equality. As the probability-generating function
determines the distribution uniquely, see Remark 4.2, Eq. (4.20) follows.

The following lemma can be used for an alternative representation of the probability-
generating function of matrix-gamma Poisson mixture models given in Theorem 4.20.

Lemma 4.22. For n, p ∈ N, let vi ∈ Rp for every i ∈ {1, . . . , n} and let C ∈ Rp×p be
positive semi-definite. For all s1, . . . , sn ∈ C,

det

�
Ip +

n+
i=1

(1− si)viv
T
i C

#
= 1 +

+
I⊆{1,...,n}
0<|I|≤p

det(V T
I CVI)

'
i∈I

(1− si), (4.21)

where VI denotes a (p× |I|)-matrix consisting of the column vectors vi with i ∈ I, where the
order is not relevant.

Proof. This proof is split into five steps.

Step 1. We start by using the fact, that the positive semi-definite matrix C can be represented
as the product AA = C with its positive semi-definite matrix square root A, see Lemma 2.15,
to define

ui := Avi ∈ Rp, ũi := (1− si)Avi ∈ Cp.

Since
uiũ

T
i = (1− si)Aviv

T
i A,

where the last step follows from the fact that A is symmetric, the equation

det

�
Ip +

n+
i=1

uiũ
T
i

#
= det

�
Ip +

n+
i=1

(1− si)Aviv
T
i A

#

= det

�
Ip +

n+
i=1

(1− si)viv
T
i AA

#
= det

�
Ip +

n+
i=1

(1− si)viv
T
i C

#
(4.22)

must hold, where the Weinstein–Aronszajn identity given in Lemma 2.3 is used for the second
equality. For every non-empty I ⊆ {1, . . . , n}, let UI and ŨI denote the (p× |I|)-matrices
consisting of the column vectors ui or ũi, respectively, with i ∈ I and VI the corresponding
(p× |I|)-matrix consisting of the column vectors vi in the same order. Then

det(UT
I ŨI) = det

�
(AVI)

TAVI

"'
i∈I

(1− si) = det(V T
I CVI)

'
i∈I

(1− si), (4.23)

where the first equality follows from the fact that the determinant is linear in each column
and the second equality holds as ATA = AA = C.

Combining Eq. (4.22) and Eq. (4.23), it is sufficient to prove

det

�
Ip +

n+
i=1

uiũ
T
i

#
= 1 +

+
I⊆{1,...,n}
0<|I|≤p

det(UT
I ŨI) (4.24)

instead of Eq. (4.21).
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Step 2. The k-th column of the matrix Ip +
,n

i=1 uiũ
T
i is given by

ek +
n+

i=1

ui(ũi)k ∈ Cp

for every k ∈ {1, . . . , p}, where (ũi)k ∈ C refers to the k-th entry in the column vector
ũi for i ∈ {1, . . . , n}. Using the fact that the determinant is linear in each column, the
determinant can be written as the sum

det

�
Ip +

n+
i=1

uiũ
T
i

#
=

n+
i1=0

· · ·
n+

ip=0

det(ci1,1, . . . , cip,p), (4.25)

where cj,k ∈ Cp is given by

cj,k :=

	
ek for j = 0,

uj(ũj)k for j ∈ {1, . . . , n}, (4.26)

for every k ∈ {1, . . . , p}.
As the determinant is equal to zero for every matrix with linearly dependent columns, all

summands containing a multiple of a vector ui in more than one column vanish. Hence,
we can group the summands of Eq. (4.25) by which vectors ui, i ∈ {1, . . . , n}, they contain
scalar multiples of. For every I ⊆ {1, . . . , n} with |I| ≤ p, using the vectors defined in
Eq. (4.26), consider the set

MI :=


(cj1,1, . . . , cjp,p)

.. jk ∈ I ∪ {0} for all k ∈ {1, . . . , p},
for all i ∈ I there exists exactly one k ∈ {1, . . . , p} with jk = i

�
.

For I = ∅ this means M∅ = {(c0,1, . . . , c0,p)} = {(e1, . . . , ep)}. Then Eq. (4.25) can be
rewritten as

det

�
Ip +

n+
i=1

uiũ
T
i

#
=

+
I⊆{1,...,n}

|I|≤p

+
B∈MI

detB = 1 +
+

I⊆{1,...,n}
0<|I|≤p

+
B∈MI

detB. (4.27)

Step 3. Now for a fixed non-empty I ⊆ {1, . . . , n} with |I| ≤ p, we want to determine the
inner sum on the right side of Eq. (4.27). Note that every matrix in MI has exactly p− |I|
columns that are unit vectors. For every S ⊆ {1, . . . , p} with |S| = p− |I|, we can define

(MI)S := {B = (cj1,1, . . . , cjp,p) ∈ MI | js = 0 for every s ∈ S},

which denotes the set of matrices containing the unit vectors es in the respective columns
for all s ∈ S and multiples of the vectors ui for every i ∈ I in the other columns. Note that
in case |I| = p the only possible S is the empty set. Using this we can write+

B∈MI

detB =
+

S⊆{1,...,p}
|S|=p−|I|

+
B∈(MI)S

detB. (4.28)



90 CHAPTER 4. APPLICATION TO POISSON MIXTURE MODELS

Step 4. Fix S ⊆ {1, . . . , p} with |S| = p − |I|. Let Sc := {1, . . . , p}\S as well as the
set I be ordered (arbitrarily), so we can write Sc = {Sc

1, . . . , S
c
|I|} ⊆ {1, . . . , p} and I =

{I1, . . . , I|I|} ⊆ {1, . . . , p}. Then the columns of every matrix B = (cj1,1, . . . , cjp,p) ∈ (MI)S
can be written as

cjs,s =

	
es for s ∈ S,

uIσ(i)
(ũIσ(i)

)s for s = Sc
i for a i ∈ {1, . . . , |I|}, (4.29)

for a permutation σ ∈ Sym({1, . . . , |I|}). The other way around every σ ∈ Sym({1, . . . , |I|})
can be used to define a B ∈ (MI)S with Eq. (4.29), which we will denote by Bσ. Therefore,+

B∈(MI)S

detB =
+

σ∈Sym({1,...,|I|})
detBσ. (4.30)

For a fixed σ ∈ Sym({1, . . . , |I|}), using the Laplace expansion3 in every column with index
s ∈ S, which contains the unit vector es,

detBσ =
'
s∈S

(−1)s+s detBσ
Sc,Sc = detBσ

Sc,Sc ,

where Bσ
Sc,Sc refers to the |I| × |I| matrix that results from removing the s-th column and

the s-th row from Bσ for all s ∈ S.
Combining the original definition of B ∈ (MI)S given in Eq. (4.26) with the fact that the

determinant is linear in each column,

detBσ
Sc,Sc = det

�
(uIσ(1)

)Sc(ũIσ(1)
)Sc

1
, . . . , (uIσ(|I|))Sc(ũIσ(|I|))Sc

|I|

"
=

� |I|'
i=1

(ũIσ(i)
)Sc

i

#
det

�
(uIσ(1)

)Sc , . . . , (uIσ(|I|))Sc

"
,

where (ui)Sc ∈ C|I| refers to the vector ui with only the entries with index in Sc for all
i ∈ {1, . . . , n}.
Next we want to reorder the columns of Bσ

Sc,Sc for all σ ∈ Sym({1, . . . , |I|}), such that
column i ∈ {1, . . . , |I|} contains a multiple of the vector (uIi)Sc . Using the fact that for a
quadratic matrix any permutation of the columns multiplies the determinant by the sign of
the permutation,

detBσ
Sc,Sc =

� |I|'
i=1

(ũIσ(i)
)Sc

i

#
sgn(σ−1)� �� �
=sgn(σ)

det
�
(u1)Sc , . . . , (u|I|)Sc

"
.

Inserting this back into Eq. (4.30),+
B∈(MI)S

detB =
+

σ∈Sym({1,...,|I|})
detBσ

= det
�
(u1)Sc , . . . , (u|I|)Sc

" +
σ∈Sym({1,...,|I|})

sgn(σ)

|I|'
i=1

(ũIσ(i)
)Sc

i� �� �
=det((ũ1)Sc ,...,(ũ|I|)Sc )

,

3 See [14, Satz 7.4.7]
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where the last equation follows from Leibniz’ formula for determinants4. Using the notation
of Lemma 2.4, +

B∈(MI)S

detB = det
�
(u1)Sc , . . . , (u|I|)Sc

"
det

�
(ũ1)Sc , . . . , (ũ|I|)Sc

"
= det

�
(UT

I ){1,...,|I|},Sc

"
det

�
(ŨI)Sc,{1,...,|I|}

"
, (4.31)

where we also use the fact that the determinant of a quadratic matrix is equal to the
determinant of the same matrix transposed.

Step 5. In case |I| = p and therefore S = ∅ and Sc = {1, . . . , p}, Eqs. (4.28) and (4.31) tell
us +

B∈MI

detB =
+

B∈(MI)∅

detB = det(UT
I ŨI).

In all other cases where 0 < |I| < p, inserting Eq. (4.31) back into Eq. (4.28),+
B∈MI

detB =
+

S⊆{1,...,p}
|S|=p−|I|

det
�
(UT

I ){1,...,|I|},Sc

"
det

�
(ŨI)Sc,{1,...,|I|}

"
=

+
S⊆{1,...,p}
|S|=|I|

det
�
(UT

I ){1,...,|I|},S
"
det

�
(ŨI)S,{1,...,|I|}

"
= det(UT

I ŨI),

where we are using the Cauchy–Binet formula given in Lemma 2.4 for the last equality.
Combining these results with Eq. (4.27) proves Eq. (4.24) and hence the lemma.

Definition 4.23 (Negative multinomial distributions, see [29, Definition 4.51]). For n ∈ N
let p1, . . . , pn ∈ [0, 1) satisfy q := 1−,n

i=1 pi ∈ (0, 1] and let α > 0 denote a shape parameter.
Then the Nn

0 -valued random vector N = (N1, . . . , Nn) is said to follow a negative multinomial
distribution if

P[N = (k1, . . . , kn)] =
Γ(α+ k1 + · · ·+ kn)

Γ(α)
qα

d'
i=1

pkii
ki!

for all (k1, . . . , kn) ∈ Nn
0 . We denote this by (N1, . . . , Nn) ∼ NegMult(α, p1, . . . , pn).

Note that a negative multinomial distribution with n = 1 follows a negative binomial
distribution, see Definition 4.4.

Remark 4.24 (Probability-generating function of the negative multinomial distributions, see
[29, Eq. (4.89)]). For (N1, . . . , Nn) ∼ NegMult(α, p1, . . . , pn) according to Definition 4.23
the probability-generating function is given by

φ(N1,...,Nn)(s) =

�
1−,n

i=1 pi
1−,n

i=1 pisi

#α

(4.32)

for all s ∈ Cn with |,n
i=1 pisi| < 1.

4 See [14, Satz 7.2.5, Remark 7.2.9]
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Corollary 4.25 (Negative multinomial distributions are a subclass of matrix-gamma Pois-
son mixture distributions). Let (N1, . . . , Nn) follow the MGammaPoisson(α,C, v1, . . . , vn)
distribution in the context of Definition 4.17 with α ̸= 0. If the vectors v1, . . . , vn are
pairwise linearly dependent, then the vector (N1, . . . , Nn) follows a negative multinomial
distribution. If C is of full rank, i.e. C ∈ S+p , then the reverse direction holds true as well.
In both of these cases (N1, . . . , Nn) ∼ NegMult(α, p1, . . . , pn), where

pi =
⟨vi, Cvi⟩

c
, i ∈ {1, . . . , n} with c := 1 +

n+
j=1

⟨vj , Cvj⟩. (4.33)

Proof. Combining Theorem 4.20 with Lemma 4.22, the probability-generating function of
(N1, . . . , Nn) is given by

φ(N1,...,Nn)(s) =

�
1 +

+
I⊆{1,...,n}
0<|I|≤p

det(V T
I CVI)

'
i∈I

(1− si)

#−α

, s ∈ Cn, ∥s∥∞ ≤ 1, (4.34)

where VI denotes a (p× |I|)-matrix consisting of the column vectors vi with i ∈ I, where
the order is not relevant. If the vectors v1, . . . , vn are pairwise linearly dependent, then the
matrix V T

I CVI does not have full rank for every I ⊆ {1, . . . , n} satisfying |I| ≥ 2, hence the
determinant is zero and the summand vanishes. Hence, we can rewrite Eq. (4.34) to

φ(N1,...,Nn)(s) =

�
1

1 +
,n

i=1 det(v
T
i Cvi� �� �

= ⟨vi,Cvi⟩

)(1− si)

#α

=

�
1−,n

i=1
⟨vi,Cvi⟩

c

1−,n
i=1

⟨vi,Cvi⟩
c si

!α

,

which is the probability-generating function of the NegMult(α, p1, . . . , pn) distribution,
where p1, . . . , pn are given by Eq. (4.33), see Eq. (4.32). Together with the fact, that the
probability-generating function determines a distribution uniquely, this proves the first part
of the corollary.

For the other direction, note that Eq. (4.34) can only be equal to the probability-generating
function of a negative multinomial distribution if all summands with |I| ≥ 2 disappear.5

Since the probability-generating function is defined for every s ∈ Cn with ∥s∥∞ ≤ 1, this
is equivalent to V T

I CVI ∈ R|I|×|I| having determinant zero, i.e. not having full rank for all
I ⊆ {1, . . . , n} with |I| ≥ 2.

Under the condition that C has full rank,

rk(V T
I CVI) = rk(CVIV

T
I ) = rk(V T

I VI) = rk(VI),

for every non-empty I ⊆ {1, . . . , n}, where Lemma 2.1 is used for the first equality.6 Since
rk(VI) < |I| for all I ⊆ {1, . . . , n} with |I| ≥ 2 is only achieved by all vectors v1, . . . , vn
being linearly dependent, the corollary holds true.

5 This can be e.g. seen by taking both Eqs. (4.32) and (4.34) to the power of −1/α and comparing the
coefficients.

6 Note that for every A ∈ Km×n, the equality rk(AHA) = rk(A) holds, since for every x ∈ Km with
AHAx = 0 is equivalent to Ax = 0 because xHAHAx = |Ax|2.
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In order to derive the individual point probabilities of a matrix-gamma Poisson mixture
model, we need to differentiate the probability-generating function, see Eq. (4.1). We will
do this with the help of a multivariate version of the Faà di Bruno formula, which itself is a
generalization of the chain rule, that has been derived in [6]. For the formulation of this
generalization we need the following total order on vectors with entries in N0.

Remark 4.26 (The total order ≺ on Nn
0 ). For two vectors u = (u1, . . . , un),v = (v1, . . . , vn) ∈

Nn
0 , let |u| := u1 + · · ·+ un and |v| := v1 + · · ·+ vn. We say u ≺ v if one of the following

three conditions is satisfied:

(i) |u| < |v|,
(ii) |u| = |v| and u1 < v1,

(iii) |u| = |v|, u1 = v1, . . . um = vm and um+1 < vm+1 for some m ∈ {1, . . . , n− 1}.

Theorem 4.27 (Multivariate Faà di Bruno formula, see [6, Corollary 2.10]). For n ∈ N, let
k = (k1, . . . , kn)

T ∈ Nn
0 and let |k| := k1 + · · ·+ kn. Let f : Df ⊆ R → R with Df open be

|k|-times continuously differentiable and let g: Dg ⊆ Rn → R, where Dg is open, be partially
differentiable ki times in the i-th component for all i ∈ {1, . . . , n}. Then the k-th derivative
of h(s) := f(g(s1, . . . , sn)) for s = (s1, . . . , sn) ∈ Dg is given by

h(k)(s) =

|k|+
r=1

f (r)(g(s))
+
p(k,r)

k!

|k|'
j=1

�
g(lj)(s)

"mj

mj !(lj !)mj
,

where the factorial k! :=
(n

i=1 ki! and the set

p(k, r) :=
�
m1, . . . ,m|k| ∈ N0, l1, . . . , l|k| ∈ Nn

0

.. there exists a s ∈ {1, . . . , |k|} such that

mi = 0 and li = 0 for all i ∈ {1, . . . , |k| − s},
mi > 0 for all i ∈ {|k| − s+ 1, . . . , |k|} and 0 ≺ l|k|−s+1 ≺ . . . ≺ l|k|,

|k|+
i=|k|−s+1

mi = r and

|k|+
i=|k|−s+1

mili = k
�
, (4.35)

where the total order ≺ is defined in Remark 4.26.

Lemma 4.28 (Partial derivatives of the probability-generating function of a matrix-gamma
Poisson mixture model). Using the setting of Definition 4.17, let N = (N1, . . . , Nn) follow the
MGammaPoisson(α,C, v1, . . . , vn) distribution with probability-generating function φN (·).
Let

Pn,p := {I ⊆ {1, . . . , n} | 0 < |I| ≤ p}
and λI := det(V T

I CVI) for every I ∈ Pn,p, where VI denotes a (p× |I|)-matrix consisting of
the column vectors vi with i ∈ I, where the order is not relevant. With this notation the
probability-generating function can be written as φN (s) = (g(s))−α with

g(s) = 1 +
+

I∈Pn,p

λI

'
i∈I

(1− si) (4.36)
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for all s ∈ Cn with ∥s∥∞ ≤ 1.
For every k = (k1, . . . , kn)

T ∈ Nn
0 , the k-th derivative of the probability-generating function

φN (s) = (g(s))−α, now seen as a function from {s ∈ Rn | ∥s∥∞ < 1} → R, is given by

φ
(k)
N (s) =

|k|+
r=1

(−1)rαr(g(s))−(α+r)
+
p̂(k,r)

|k|'
j=1

k!

mj !

�
(−1)|lj |

+
I∈Pn,p

ζ(lj)⊊I

λI

'
i∈I\ζ(lj)

(1− si)

#mj

,

(4.37)
where αr denotes the rising factorial α · · · (α+ r − 1) and the index set

p̂(k, r) :=


(m1, . . . ,m|k|; l1, . . . , l|k|) ∈ p(k, r)

.. l1, . . . , l|k| ∈ {0, 1}n�, (4.38)

where p(k, r) is defined in Eq. (4.35) and

ζ :=

� {0, 1}n → P({1, . . . , n})
l �→ {i ∈ {1, . . . n} | li = 1} . (4.39)

Proof. Due to Lemma 4.22, the probability-generating function of N can be written φN (s) =
(g(s))−α, where g(·) is defined in Eq. (4.36). We will apply the multivariate Faà di Bruno
formula, stated in Theorem 4.27 above, to this function. For every r ∈ {1, . . . , n} the r-th
derivative of

f :=

�
R+ → R+

x �→ x−α

is given by
f (r)(x) = (−1)rαr(x)−(α+r), x ∈ R.

Now for l ∈ Nn
0 , the l-th derivative of g(·) as defined in Eq. (4.36) must be equal to zero if

any entry of l is greater than one as this would mean differentiating g(·) twice w.r.t. the
same component. Hence we can restrict the set p(k, r) in Theorem 4.27 to p̂(k, r) defined in
Eq. (4.38). As both 0! = 1 and 1! = 1, the factorial l! = 1 for every l ∈ {0, 1}n. Furthermore,
for a l ∈ {0, 1}n

g(l)(s) = (−1)|l|
+

I∈Pn,p

ζ(l)⊊I

λI

'
i∈I\ζ(l)

(1− si), s ∈ Rd with ∥s∥∞ ≤ 1,

using ζ defined in Eq. (4.39), thus proving Eq. (4.37).

Corollary 4.29 (Individual probabilities of matrix-gamma Poisson mixture models). Using
the notation of Lemma 4.28 the individual probability that N is equal to k = (k1, . . . , kn)

T ∈
Nn
0 is given by

P[N = k ] =

|k|+
r=1

(−1)rαr

�
1 +

+
I∈Pn,p

λI

#−(α+r) +
p̂(k,r)

|k|'
j=1

1

mj !

�
(−1)|lj |

+
I∈Pn,p

ζ(lj)⊊I

λI

#mj

, (4.40)

where αr denotes the rising factorial α · · · (α + r − 1) and p̂(k, r) and ζ are defined in
Eqs. (4.38) and (4.39), respectively.
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n1

n2

P[N1 = n1,
N2 = n2]

Figure 4.1. Joint probability mass function of (N1, N2) ∼ MGammaPoisson(α,C, v1, v2)
with α = 7/2, scale matrix C = I2 and vectors v1 = (

√
5, 0)T and v2 = (0,

√
5)T. The

random variables N1 and N2 are uncorrelated in this case, using Eq. (4.43) and both N1

and N2 follow the NegBin(7/2, 5/6) distribution. See Figure 4.2 below for an example with
correlated N1, N2.

Proof. For every k ∈ Nn
0 the probability that N is equal to k using the probability-generating

function can be derived from Eq. (4.1), resulting in

P[N = k] =
φ
(k)
N (0, . . . , 0)

k1! · · · kn! =
φ
(k)
N (0, . . . , 0)

k!
.

Combining this with Eq. (4.37) of Lemma 4.28 and the fact that g(0) = 1 +
,

I∈Pn,p
λI

proves the corollary.

Remark 4.30 (Numerically instable computation of the point probabilities). Note that the
computation of the point probabilities of a matrix-gamma Poisson mixture model is not
numerically stable, which is caused by a changing sign of the summands in Eq. (4.40).

Lemma 4.31 (Summation property of matrix-gamma Poisson mixture models). Fix k ∈ N.
Using the setting of Definition 4.17, let N j := (N j

1 , . . . , N
j
n) for every j ∈ {1, . . . , k} follow

the MGammaPoisson(αj , C
j , vj1, . . . , v

j
n) distribution. Assume there exist a positive definite

C ∈ Rp×p and vectors v1, . . . , vn ∈ Rp such that for every j ∈ {1, . . . , k} there exists an
orthogonal matrix Sj ∈ Rp×p with SjC(Sj)T = Cj and Sjvi = vji for every i ∈ {1, . . . , n}.7
If additionally N1, . . . , Nk are independent, then

k+
j=1

N j ∼ MGammaPoisson(α1 + · · ·+ αk, C, v1, . . . , vn).

7 This condition is in particular satisfied for an N j with j ∈ {1, . . . , k}, that follows a
MGammaPoisson(α,C, v1, . . . , vn) distribution.
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n1

n2

P[N1 = n1,
N2 = n2]

Figure 4.2. Joint probability mass function of (N1, N2) ∼ MGammaPoisson(α,C, v1, v2)
with α = 7/2, scale matrix C = I2 and vectors v1 = (1, 2)T and v2 = (1, 2)T. The random
variables N1 and N2 have correlation coefficient 5/6, see Eq. (4.43) and both N1 and N2 fol-
low the NegBin(7/2, 5/6) distribution. See Figure 4.1 above for an example with uncorrelated
N1, N2. See Figure 4.3 below for an example for N1, N2 with the same marginal distributions
and correlation, resulting from adding appropriate independent negative binomial random
variables.

Proof. Due to Lemma 4.21N j ∼ MGammaPoisson(αj , C, v1, . . . , vn). Because of Lemma 4.9
the probability-generating function of the sum of the independent random vectors N1, . . . Nn

is given as the product of the individual probability-generating functions. Hence, for all
s ∈ Cn, satisfying ∥s∥∞ ≤ 1,

φN1+ ···+Nk(s) =

k'
j=1

φNj (s) =

k'
j=1

�
det

�
Ip +

n+
i=1

(1− si)viv
T
i C

##−αj

=

�
det

�
Ip +

n+
i=1

(1− si)viv
T
i C

##−�k
j=1 αj

.

Since the probability-generating function determines the distribution uniquely, the claim
follows.

Remark 4.32. For N = (N1, . . . , Nn) ∼ MGammaPoisson(α,C, v1, . . . , vn) with α ̸= 0 and
Cvi ̸= 0 for at least one i ∈ {1, . . . n} and a natural number m ∈ N, the random vector
defined by m ·N does not follow a matrix-gamma Poisson distribution for m ̸= 1. This can
be seen by using Lemma 4.6, the probability-generating function is given by

φmN (s) = φ(mIp)N (s) =

�
det

�
Ip +

n+
i=1

(1− smi )viv
T
i C

##−α
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n1

n2

P[N1 = n1,
N2 = n2]

Figure 4.3. Joint probability mass function of (N1, N2) := (M1 + M2,M1 + M3), where
M1,M2,M3 are independent, M1 ∼ NegBin(35/12, 5/6) and M2,M3 ∼ NegBin(7/12, 5/6).
The random variables N1 and N2 have correlation coefficient 5/6 and both N1 and N2

follow the NegBin(7/2, 5/6) distribution. Compare with Figure 4.2, where N1, N2 follow a
MGammaPoisson distribution with the same marginal distributions and correlation as here.

s ∈ Cn, satisfying ∥s∥∞ ≤ 1, which can only be the probability-generating function of a
matrix-gamma Poisson distribution if m = 1.

Lemma 4.33 (Properties of the matrix-gamma Poisson mixture models). In the context of
Definition 4.17, let (N1, . . . , Nn) follow the MGammaPoisson(α,C, v1, . . . , vn) distribution.

(i) For every i, j ∈ {1, . . . , n} satisfying i ̸= j, the expectation, variance and covariance
are given by

E[Ni ] = E[Λi ] = α⟨vi, Cvi⟩, (4.41)

Var(Ni) = E[Λi ] + Var(Λi) = α
�⟨vi, Cvi⟩+ ⟨vi, Cvi⟩2

"
, (4.42)

Cov(Ni, Nj) = Cov(Λi,Λj) = α⟨vi, Cvj⟩2. (4.43)

(ii) Marginal distributions: For every i ∈ {1, . . . , n},
(N1, . . . , Ni) ∼ MGammaPoisson(α,C, v1, . . . , vi).

(iii) Permutation property: For every permutation σ of {1, . . . , n},
(Nσ(1), . . . , Nσ(n)) ∼ MGammaPoisson(α,C, vσ(1), . . . , vσ(n)).

(iv) One-dimensional marginal distribution: For every i ∈ {1, . . . , n},

Ni ∼ NegBin

�
α,

⟨vi, Cvi⟩
1 + ⟨vi, Cvi⟩

#
.
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Proof. Item (i): Recall that Λi ∼ Gamma(α, ⟨vi, Cvi⟩) for every i ∈ {1, . . . , n}, see Remark
4.19. The definition of Ni for an i ∈ {1, . . . , n} and the properties of the conditional
expectation are used to conclude that

E[Ni ] = E[E[Ni|Y ] ] = E[Λi ] = α⟨vi, Cvi⟩.

For every i ∈ {1, . . . , p} the law of total variance can be used to derive

Var(Ni) = E[Var(Ni|Y )] + Var
�
E[Ni|Y ]

"
= E[Λi ] + Var(Λi) = α⟨vi, Cvi⟩+ α⟨vi, Cvi⟩2.

For every i, j ∈ {1, . . . , n} with i ̸= j

Cov(Ni, Nj) = E[NiNj ]− E[Ni ]E[Nj ]

= E[E[NiNj |Y ] ]− E[E[Ni |Y ] ]E[E[Nj |Y ] ]

= E[E[Ni |Y ]E[Nj |Y ] ]− E[E[Ni |Y ] ]E[E[Nj |Y ] ]

= E[ΛiΛj ]− E[Λi ]E[Λj ]

= Cov(Λi,Λj),

where the third equality follows from the conditional independence of Ni and Nj given Y .
The covariance of Λi and Λj is given by

Cov(Λi,Λj) = Cov(⟨vi, Y vi⟩, ⟨vj , Y vj⟩)

= Cov

� p+
k,l=1

(vi)k(vi)lYkl,

p+
m,n=1

(vj)m(vj)nYmn

#

=

p+
k,l,m,n=1

(vi)k(vi)l(vj)m(vj)nCov(Ykl, Ymn),

where the last equation follows from the bilinearity of the covariance. Using the covariance
of the components of Y derived in Eq. (3.56), this can be rewritten as

Cov(Λi,Λj) =

p+
k,l,m,n=1

(vi)k(vi)l(vj)m(vj)n
α

2
(ckmcln + cknclm)

=
α

2

� p+
k,m=1

(vi)k(vj)mckm� �� �
= ⟨vi,Cvj⟩

p+
l,n=1

(vi)l(vj)ncln� �� �
= ⟨vi,Cvj⟩

+

p+
k,n=1

(vi)k(vj)nckn� �� �
= ⟨vi,Cvj⟩

p+
l,m=1

(vi)l(vj)mclm� �� �
= ⟨vi,Cvj⟩

#

= α ⟨vi, Cvj⟩2,

thus proving Item (i).

Item (ii): Eq. (4.4) is used to determine the probability-generating function of (N1, . . . , Ni):
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For every s ∈ Ci, satisfying ∥s∥∞ ≤ 1,

φ(N1,...,Ni)(s1, . . . , si) = φ(N1,...,Nn)(s1, . . . , si, 1, . . . , 1)

=

�
det

�
Ip +

i+
j=1

(1− sj)vjv
T
j C +

n+
j=i+1

(1− 1)vjv
T
j C

##−α

=

�
det

�
Ip +

i+
j=1

(1− sj)vjv
T
j C

##−α

,

where we are using Eq. (4.17) from Theorem 4.20 for the second equation. Hence, since
the probability-generating function determines the distribution uniquely, (N1, . . . , Ni) ∼
MGammaPoisson(α,C, v1, . . . , vi).

Item (iii): Due to Eq. (4.6), the probability-generating function is given by

φ(Nσ(1),...,Nσ(n))(s1, . . . , sn) = φ(N1,...,Nn)(sσ−1(1), . . . , sσ−1(n))

=

�
det

�
Ip +

n+
i=1

(1− sσ−1(i))viv
T
i C

##−α

=

�
det

�
Ip +

+
j∈σ−1({1,...,n})

(1− sj)vσ(j)v
T
σ(j)C

##−α

for every s ∈ Cn satisfying ∥s∥∞ ≤ 1, where we are again using Eq. (4.17) from Theorem
4.20 for the second equation. Since σ−1({1, . . . , n}) = {1, . . . , n}, this is the probability-
generating function of the MGammaPoisson(α,C, vσ(1), . . . , vσ(n)) distribution.

Item (iv): This follows from the fact that Ni |Λi ∼ Poisson(Λi), Λi ∼ Gamma(α, ⟨vi, Cvi⟩)
and Lemma 4.11.

Remark 4.34 (Modelling dependent negative binomial random variables). With the help
of Corollary 4.10, we can obtain correlated negative binomial random variables by adding
independent negative binomial random variables with the same parameter p ∈ [0, 1). For
example, for independent Mi ∼ NegBin(αi, p) with αi ∈ R+

0 for i = 1, 2, 3, the random
variables (N1, N2) := (M1 +M2,M1 +M3) have

Cov(N1, N2) = Cov(M1 +M2,M1 +M3) = Var(M1)
8 = α1

p

(1− p)2

and marginal distributions N1 ∼ NegBin(α1 + α2, p) and N2 ∼ NegBin(α1 + α3, p).

With matrix-gamma Poisson mixture models, on the other hand, it is possible to model
dependent negative binomial random variables with different parameter p but with the
same parameter α. As an example let (Ñ1, Ñ2) ∼ MGammaPoisson(α,C, v1, v2), where
C ∈ Rp×p is positive semi-definite, α ∈ GC and v1, v2 ∈ Rp. Then, due to Eq. (4.43),

Cov(Ñ1, Ñ2) = α⟨v1, Cv2⟩2
8 The variance of the negative binomial distribution is e.g. derived in [29, Eq.(4.63)].
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and the marginal distributions are given by Ñ1 ∼ NegBin(α, ⟨v1, Cv1⟩/(1 + ⟨v1, Cv1⟩)) as
well as Ñ2 ∼ NegBin(α, ⟨v2, Cv2⟩/(1 + ⟨v2, Cv2⟩)) due to Item (iv) of Lemma 4.33.

In Figures 4.2 and 4.3 the probability mass functions of these two versions of correlated
negative binomial random variables are illustrated in an example, where now both the
parameters α and p are the same for the two dependent random variables.

Remark 4.35 (Matrix-gamma Poisson mixture models do not have the aggregation property).
Note that for (N1, . . . , Nn) ∼ MGammaPoisson(α,C, v1, . . . , vn) in the context of Definition
4.17, the random vector

(N1, . . . , Ni + · · ·+Nn)

does not necessarily follow a matrix-gamma Poisson mixture distribution for every i ∈
{1, . . . , n− 1}.
This can be seen by the counterexample with parameters n = 2, v1 = (1, 0)T and

v1 = (0, 1)T. The probability-generating function of N1 +N2 would then be given by

φN1+N2(s) = φ(N1,N2)(s, s) =
�
det(I2 + (1− s)v1v

T
1 C + (1− s)v2v

T
2 C)

"−α

=
�
det(I2 + (1− s) (v1v

T
1 + v2v

T
2 )� �� �

= I2

C)
"−α

,

where the first equation follows from Eq. (4.5) and the second from Eq. (4.17) of Theorem 4.20.
This cannot be the probability-generating function of a one-dimensional matrix-gamma
Poisson mixture model, which would be a negative binomial distribution due to Item (iv)
from Lemma 4.33, as it can further be computed to

φN1+N2(s) =
�
(1 + (1− s)c11)(1 + (1− s)c22)− ((1− s)c12)

2
"−α

=
�
1 + (1− s)(c11 + c22) + (1− s)2(c11c22 − c212)

"−α
,

which can only be the probability-generating function of a negative binomial distribution as
given in Eq. (4.3) if c11c22 − c212 = 0, which, for example, does not hold true if C is of full
rank.

Theorem 4.36 (Independent variables in matrix-gamma Poisson mixture models). In
the context of Definition 4.17, let (N1, . . . , Nn) follow a MGammaPoisson(α,C, v1, . . . , vn)
distribution with α > 0. Then the following statements are equivalent:

(i) N1, . . . , Nn are independent.

(ii) The covariances Cov(Ni, Nj) = 0 for all i, j ∈ {1, . . . , n} with i ̸= j.

(iii) The covariances Cov(Λi,Λj) = 0 for all i, j ∈ {1, . . . , n} with i ̸= j.

(iv) The vectors vi, vj satisfy ⟨vi, Cvj⟩ = 0 for all i, j ∈ {1, . . . , n} with i ̸= j.

Every statement leads to the following representation of the probability-generating function:

φ(N1,...,Nn)(s) =
n'

i=1

�
det(Ip + (1− si)viv

T
i C)

"−α
=

n'
i=1

(1 + (1− si)⟨vi, Cvi⟩)−α

for all s ∈ Cn satisfying ∥s∥∞ ≤ 1, which is the joint probability-generating function of
n independent negative binomial random variables as stated in Lemma 4.33 Item (iii).
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Proof. The implication Item (i) ⇒ Item (ii) follows from the fact that independent random
variables have covariance zero.

Since for every i, j ∈ {1, . . . , n} with i ̸= j, due to Eq. (4.43) of Lemma 4.33, Cov(Ni, Nj) =
Cov(Λi,Λj) = α⟨vi, Cvj⟩2, Item (ii) and Item (iii) are equivalent. Since α > 0 is assumed,
Cov(Λi,Λj) = 0 if and only if ⟨vi, Cvj⟩ = 0, hence both Item (ii) and Item (iii) are equivalent
to Item (iv) as well.
The last step is to show the implication Item (iv) ⇒ Item (i): Due to Lemma 4.8 we

know that N1, . . . , Nn are independent if and only if their joint probability-generating
function is equal to the product of their individual probability-generating functions. Using
Theorem 4.20,

n'
i=1

φNi(si) =
n'

i=1

�
det(Ip + (1− si)viv

T
i C)

"−α

=

�
det

�
Ip +

+
∅ ̸=I⊆{1,...,n}

'
i∈I

(1− si)viv
T
i C

##−α

(4.44)

for all s ∈ Cn satisfying ∥s∥∞ ≤ 1, where multiplicativity of the determinant is used for the
second equality. Under the assumption that Item (iv) is satisfied,

(1− si)vi v
T
i C(1− sj)vj� �� �

=(1−sj)⟨vi,Cvj⟩=0

vTj C = 0, i ̸= j in {1, . . . , n},

hence Eq. (4.44) simplifies to

n'
i=1

φNi(si) =

�
det

�
Ip +

n+
i=1

(1− si)viv
T
i C

##−α

= φ(N1,...,Nn)(s),

where we again use Theorem 4.20, thus proving the independence of N1, . . . , Nn.

4.3. Matrix-Gamma Multivariate Poisson Mixture Models

Combining the findings from Section 4.2 with Definition 4.13 of general multivariate Poisson
mixture models, we can define a multivariate Poisson mixture model, with Poisson intensities
derived from a matrix-valued gamma distribution.

Definition 4.37 (Matrix-gamma multivariate Poisson mixture models). For m ∈ N let the
set G ⊆ P({1, . . . ,m}) fulfil ∅ /∈ G. For p ∈ N let Y ∼ MGamma(α,C) with positive semi-
definite scale parameter matrix C ∈ Rp×p and shape parameter α ∈ GC , see Definition 3.34,
and let vg ∈ Rp for every g ∈ G.

A matrix-gamma multivariate Poisson mixture model is now defined to be the special case
of a general multivariate Poisson mixture model given in Definition 4.13 with parameter
Λ := (Λg)g∈G. An Rm-valued random vector N following this distribution is denoted by
N ∼ MGammaMPoisson(α,C,G, (vg)g∈G,m).

A given matrix-gamma multivariate Poisson mixture model does not determine the
parameters uniquely, see Lemma 4.41 below.
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Remark 4.38 (Matrix-gamma multivariate Poisson mixture models are a generalization of
matrix-gamma Poisson mixture models). A matrix-gamma Poisson mixture model, as given
in Definition 4.17, is a special case of a matrix-gamma multivariate Poisson mixture model
with G = {{1}, {2}, . . . , {n}} for n ∈ N.

Conversely, the random variables (Ng)g∈G from the definition of the general multivariate
Poisson mixture model, see Definition 4.13, used for the definition of our MGammaMPoisson
model, follow a matrix-gamma Poisson mixture distribution, if G is ordered (arbitrarily).

For every component i ∈ {1, . . . ,m}, let the set

Gi := {g ∈ G|i ∈ g}. (4.45)

Lemma 4.39 (Expectations and covariances of matrix-gamma multivariate Poisson mixture
models). Let N = (N1, . . . , Nm)T be distributed according to a matrix-gamma multivariate
Poisson mixture model in the setting of Definition 4.37. For every i, j ∈ {1, . . . ,m}
the following equations hold, where Gi is defined in Eq. (4.45) for every component i ∈
{1, . . . ,m}:

E[Ni ] = α
+
g∈Gi

⟨vg, Cvg⟩, (4.46)

Cov(Ni, Nj) = α

� +
g∈Gi∩Gj

⟨vg, Cvg⟩+
+

g∈Gi,h∈Gj

⟨vg, Cvh⟩2
#
, (4.47)

Var(Ni) = α
+
g∈Gi

�
⟨vg, Cvg⟩+

+
h∈Gi

⟨vg, Cvh⟩2
#
. (4.48)

Proof. Eq. (4.46) holds due to

E[Ni ] =

� +
g∈Gi

Ng

�
=

+
g∈Gi

E[Ng ] = α
+
g∈Gi

⟨vg, Cvg⟩,

where the first equality follows from Definition 4.12 of N , the second equality from the
linearity of the expectation and the last equality from Eq. (4.41).
Since the covariance is linear,

Cov(Ni, Nj) =
+

g∈Gi,h∈Gj

Cov(Ng, Nh) =
+

g∈Gi∩Gj

Var(Ng) +
+

g∈Gi,h∈Gj ,
g ̸=h

Cov(Ng, Nh).

Inserting Eq. (4.42) and Eq. (4.43) leads to

Cov(Ni, Nj) = α
+

g∈Gi∩Gj

⟨vg, Cvg⟩+ ⟨vg, Cvg⟩2 + α
+

g∈Gi,h∈Gj ,
g ̸=h

⟨vg, Cvh⟩2

= α

� +
g∈Gi∩Gj

⟨vg, Cvg⟩+
+

g∈Gi,h∈Gj

⟨vg, Cvh⟩2
#
.

As this argument holds true for i = j as well, Eq. (4.48) follows from Var(Ni) = Cov(Ni, Ni).
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Lemma 4.40 (Probability-generating function of matrix-gamma multivariate Poisson
mixture models). Let the random vector N be distributed according to a matrix-gamma
multivariate Poisson mixture model given in Definition 4.37. Then for at least every s ∈ Cm

satisfying ∥s∥∞ ≤ 1 its probability-generating function is given by

φN (s) =

�
det

�
Ip +

+
g∈G

(1− scg)vgv
T
g C

##−α

, (4.49)

where
scg :=

'
i∈g

si. (4.50)

Proof. Fix s ∈ Cm satisfying ∥s∥∞ ≤ 1. Due to the definition of N

φN (s) = E[sN ] = E
� n'
g∈G

(scg)Ng

�
,

where scg is given in Eq. (4.50).
Using the conditional independence of the random variables Ng for g ∈ G, the probability-

generating function can be rewritten as

φN (s) = E
�
E
� n'
g∈G

(scg)Ng

.... Y �
= E

� '
g∈G

E[ (scg)Ng |Y ]

�
.

Since Ng ∼ Poisson(⟨vg, Y vg⟩) for every g ∈ G,

E[(scg)Ng |Y ] = e⟨vg ,Y vg⟩(scg−1)

due to Eq. (4.2).
Since ∥s∥∞ ≤ 1 particularly implies |scg | ≤ 1, an analogue procedure to the proof of

Theorem 4.20 can be used to derive the probability-generating function of N to be

φN (s) =

�
det

�
Ip +

+
g∈G

(1− scg)vgv
T
g C

##−α

.

Lemma 4.41 (A matrix-gamma multivariate Poisson mixture model does not uniquely deter-
mine its parameters). Let N be distributed according to a matrix-gamma multivariate Poisson
mixture model given in Definition 4.37 with corresponding parameters α,C,G, v1, . . . , vg,m
and let S ∈ Rp×p be any orthogonal matrix. Then

MGammaMPoisson(α,C,G, (vg)g∈G,m)

= MGammaMPoisson(α, SCST, G, (Svg)g∈G,m). (4.51)

The proof of this lemma can be done in the analogue way to the proof of Lemma 4.21 via
the probability-generating function.
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Lemma 4.42 (Alternative representation of the probability-generating function of ma-
trix-gamma multivariate Poisson mixture models). In the setting of Definition 4.37, let
N follow a matrix-gamma multivariate Poisson mixture distribution. For all s ∈ Cm with
∥s∥∞ ≤ 1 the probability-generating function given in Eq. (4.49) can be written as

φN (s) =

�
det

�
Ip +

+
g∈G

(1− scg)vgv
T
g C

##−α

=

�
1 +

+
I⊆G
|I|≤p

det(V T
I CVI)

'
g∈I

(1− scg)

#−α

,

where VI denotes a (p× |I|)-matrix consisting of the column vectors vg with g ∈ I, where
the order is not relevant.

Proof. Follows from Lemma 4.22 with G instead of {1, . . . , n} and scg instead of si.

Lemma 4.43 (Summation property of matrix-gamma multivariate Poisson mixture mod-
els). Fix k ∈ N. Using the setting of Definition 4.37, let N j := (N j

1 , . . . , N
j
n) follow the

MGammaMPoisson(αj , C
j , G, (vjg)g∈G,m) for every j ∈ {1, . . . , k} distribution. Assume

there exist a positive definite C ∈ Rp×p and vectors vg ∈ Rp for every g ∈ G such that for
every j ∈ {1, . . . , k} there exists an orthogonal matrix Sj ∈ Rp×p with SjC(Sj)T = Cj and
Sjvg = vjg for every g ∈ G.9 If additionally N1, . . . , Nk are independent, then

k+
j=1

N j

follows the matrix-gamma multivariate Poisson mixture model with the same parameters
G,C, (vg)g∈G and α =

,k
j=1 αj.

Proof. Because of Lemma 4.41, N j ∼ MGammaMPoisson(αj , C,G, (vg)g∈G,m). Due to
the independence requirement and Lemma 4.9, the probability-generating function of the
sum of N1, . . . Nk is given as the product of the individual probability-generating functions.
Hence, using Lemma 4.40, for all s ∈ Cm with ∥s∥∞ ≤ 1,

φN1+ ···+Nk(s) =

k'
j=1

φNj (s) =

k'
j=1

�
det

�
Ip +

+
g∈G

(1− scg)vgv
T
g C

##−αj

=

�
det

�
Ip +

+
g∈G

(1− scg)vgv
T
g C

##−�k
j=1 αj

.

Since the probability-generating function determines the distribution uniquely, this proves
the lemma.

9 This condition is in particular satisfied for for a N j with j ∈ {1, . . . , k}, that follows a
MGammaMPoisson(αj , C,G, (vg)g∈G,m) distribution.
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Lemma 4.44 (Properties of matrix-gamma multivariate Poisson mixture models). In
the setting of Definition 4.37, let N follow a matrix-gamma multivariate Poisson mixture
distribution. Then N has the following properties.

(i) Marginal distributions: For every i ∈ {1, . . . ,m} the random vector (N1, . . . , Ni)
follows a matrix-gamma multivariate Poisson mixture model with

G̃ := {g ∩ {1, . . . , i}|g ∈ G, g ∩ {1, . . . , i} ≠ ∅}

and

c̃g̃ := (cg){1,...,i} ∈ {0, 1}i

for every g̃ ∈ G̃,where g denotes the corresponding subset in G. For every g̃ ∈ G̃ the
vector vg̃ is given by vg with the corresponding subset g ∈ G. The parameters α, C
and m stay the same.

(ii) Permutation property: For every permutation σ of {1, . . . , n} the random vector
(Nσ(1), . . . , Nσ(n)) follows the matrix-gamma multivariate Poisson mixture model with

the same α, C and m but with ĝ := {σ(i) |i ∈ g} for every g ∈ G and Ĝ = ∪g∈Gĝ and
vĝ = vg.

(iii) One-dimensional marginal distribution: For every i ∈ {1, . . . ,m} with |Gi| = 1

Ni ∼ NegBin
�
α,

⟨vg, Cvg⟩
1 + ⟨vg, Cvg⟩

 
,

where Gi = {g}.
Proof. Item (i): With Eq. (4.4) we can determine the probability-generating function of
(N1, . . . , Ni): For every s ∈ Ci, satisfying ∥s∥∞ ≤ 1,

φ(N1,...,Ni)(s1, . . . , si) = φ(N1,...,Nn)(s1, . . . , si, 1, . . . , 1)

=

�
det

�
Ip +

+
g∈G

�
1− (s1, . . . , si, 1, . . . , 1)

cg

#
vgv

T
g C

##−α

=

�
det

�
Ip +

+
g∈G

(1−
'

k∈g,k≤i

sk)vgv
T
g C

##−α

,

where Eq. (4.50) is used for the last equality. Hence, using the notation of Item (i) and the
fact that the g-th summand vanishes if ∅ = g ∩ {1, . . . , i} /∈ G̃,

φ(N1,...,Ni)(s1, . . . , si) =

�
det

�
Ip +

+
g̃∈G̃

(1−
'
k∈g̃

sk)vg̃v
T
g̃ C

##−α

=

�
det

�
Ip +

+
g̃∈G̃

(1− sc̃g)vg̃v
T
g̃ C

##−α

.
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Hence, since the probability-generating function determines the distribution uniquely, Item (i)
holds.
Item (ii): Due to Eq. (4.6), the probability-generating function is given by

φ(Nσ(1),...,Nσ(n))(s1, . . . , sn) = φ(N1,...,Nn)(sσ−1(1), . . . , sσ−1(n))

=

�
det

�
Ip +

+
g∈G

(1− (sσ−1(1), . . . , sσ−1(n))
cg)vgv

T
g C

##−α

=

�
det

�
Ip +

+
g∈G

(1− scĝ)vgv
T
g C

##−α

=

�
det

�
Ip +

+
ĝ∈Ĝ

(1− scĝ)vĝv
T
ĝ C

##−α

for every s ∈ Cm satisfying ∥s∥∞ ≤ 1, where we use the fact that vg = vĝ for the
corresponding ĝ for every g ∈ G.
Item (iii): This follows from Item (iv) of Lemma 4.33.

4.4. Conditioning in the Derived Poisson Mixture Models

Multivariate Poisson mixture models arising from matrix-valued gamma distributions,
discussed in the previous section, might be used to describe joint default numbers of a
portfolio of creditors in a credit risk model or claim counts of a collective model in actuarial
mathematics. In this section we explore how this model is able to incorporate information
on observed default or claim numbers.
For example, assume the claim counts (N1, . . . , Nn) follow a matrix-gamma Poisson

mixture distribution, as in Definition 4.17. Let N1 represent the claim count of the first
quarter of the year. If we already know the value N1 takes, then we can model how this
alters the distribution of the claim count N2 of the second quarter. So we aim to find

L(N2|N1 = k), k ∈ N0.

or, extending this to a general i ∈ {1, . . . , n− 1},
L(Ni+1|N1 = k1, . . . , Ni = ki), k ∈ Ni

0.

We first explore this topic for simple gamma-mixed Poisson models before moving onto
matrix-gamma Poisson mixture models models and ultimately to matrix-gamma multivariate
Poisson mixture models.

4.4.1. Simple Gamma-Mixed Poisson Models

Similarly to Lemma 4.11, a simple gamma Poisson mixture model is described by

N |Λ ∼ Poisson(λΛ), Λ ∼ Gamma(α, β) (4.52)

with parameters α, β ∈ R+ and a real non-negative λ. Let us look how the distribution of
Λ changes if we have additional knowledge on the number of events – let it be claims or
defaults, depending on the application.
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Lemma 4.45 (Conditioning in simple gamma-mixed Poisson models, see [9, Theorem 3.16]).
For N,Λ given in Eq. (4.52) and k ∈ N0 such that P[N = k] > 0,

L(Λ|N = k) = PΛk e−λΛ Λ−1 = Gamma(α+ k, (β−1 + λ)−1), (4.53)

where PΛk e−λΛ refers to the (Λk e−λΛ)-biased measure as defined in Definition 3.62. Fur-
thermore, if P[N ≥ 1] > 0,

L(Λ|N ≥ 1) = P(1−e−λΛ)Λ
−1 =

1

P[N ≥ 1]
L(Λ)− P[N = 0]

P[N ≥ 1]
L(Λ |N = 0) (4.54)

Proof. For k ∈ N0,

P[N = k] = E[P[N = k |Λ]] = E
�
(λΛ)k

k!
e−λΛ

�
.

Using Remark 3.63,

P (λΛ)k

k!
e−λΛ

= PΛk e−λΛ ,

hence the argumentation of [9, Theorem 3.16] can be used for the first equality of Eq. (4.53).
The second equality follows from Eq. (3.73) for p = 1.

The proof of Eq. (4.54) can also be found in [9, Theorem 3.16].

Corollary 4.46 (Conditioning in simple gamma-mixed Poisson models with multiple known
events). For α, β ∈ R+ let Λ ∼ Gamma(α, β). For n ∈ N let λ1, . . . , λn ∈ R be non-negative
and let

Ni|Λ ∼ Poisson(λiΛ), i ∈ {1, . . . , n},
be independent when conditioned on Λ. Then for i ∈ {1, . . . , n − 1} and k ∈ Ni

0 with
P[Nj = kj ] > 0 for every j ∈ {1, . . . , i},

L(Λ|N1 = k1, . . . , Ni = ki) = Gamma
�
α+ k1 + · · ·+ ki, (β

−1 + λ1 + · · ·+ λi)
−1

"
(4.55)

and therefore, using the conditional independence of N1, . . . , Nn and Lemma 4.11,

L(Ni+1|N1 = k1, . . . , Ni = ki) = NegBin
�
α+ k1 + · · ·+ ki,

λi+1

β−1 + λ1 + · · ·+ λi + λi+1

 
.

Proof. Due to the conditional independence of N1, . . . , Ni given Λ,

P[N1 = k1, . . . , Ni = ki] = E[P[N1 = k1, . . . , Ni = ki|Λ]]

= E[P[N1 = k1|Λ] · · ·P[Ni = ki|Λ]] = E
�
λk1
1 · · ·λki

i

k1! . . . ki!
Λk1+···+ki e−(λ1+···+λi)Λ

�
for every k ∈ Ni

0. For Nj with P[Nj = kj ] > 0 for every j ∈ {1, . . . , i} this expectation is
greater then zero and hence, with Remark 3.63 and analogous arguments to the proof of
Lemma 4.45, this corollary holds true.
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Remark 4.47 (The conditional distributions in a simple gamma-mixed Poisson model only
depend on the sum of the events and the intensities, see e.g. [8, Property 3.1]). Note that
the conditional distribution in Eq. (4.55) only depends on the total number of events and
the sum of the intensities of the random variables N1, . . . , Nn. If we assume that each Ni

represents the claim count of a certain time period, e.g. quarter or month, then this implies
that the arrangement of past claim counts across time periods is not significant, only the
overall sum and the total time period matter.

4.4.2. Matrix-Gamma Poisson Mixture Models

Moving on to matrix-gamma Poisson mixture models, we can see that Lemma 4.45 and
Corollary 4.46 can be generalized to these models with the restriction that we can only
condition on whether the number of events is equal to or strictly greater than zero. Per
Definition 4.17, the number of events N only depends on the mixing matrix-valued gamma
distribution Y via the one-dimensional distribution ⟨v, Y v⟩, hence it is a very interesting
finding that Y still follows a matrix-valued gamma distribution under the condition N = 0.

Lemma 4.48 (Conditioning in matrix-gamma Poisson mixture models). Let N follow the
MGammaPoisson(α,C, v) distribution according to Definition 4.17 with n = 1 based on
Y ∼ MGamma(α,C) and C = AAT with A ∈ Rp×q where q = max{1, rk(C)} as discussed
in Remark 3.27. Then

L(Y |N = 0) = P
e−tr(vvTY ) Y

−1 = MGamma(α,AT(Ip +ATvvTA)−1A)

= MGamma(α, (C−1 + vvT)−1), (4.56)

where the second equality only holds if C is invertible or, equivalently, positive definite.
Furthermore, if P[N ≥ 1] > 0, then

L(Y |N ≥ 1) = P
1−e−tr(vvTY ) Y

−1 =
1

P[N ≥ 1]
L(Y )− P[N = 0]

P[N ≥ 1]
L(Y |N = 0). (4.57)

Proof. As N |Y ∼ Poisson(⟨v, Y, v⟩)
P[N = 0] = E[P[N = 0|Y ] ] = E[e−⟨v,Y,v⟩] = E[e−tr(vvTY )].

With an analogue argument to Lemma 4.45, the first equality of Eq. (4.56) follows. Due to
Eq. (3.73) of Theorem 3.64 the second and third equality hold. The existence of the inverse
of Ip +ATvvTA is also justified in Theorem 3.64.
The argument for Eq. (4.57) is the same as for Eq. (4.54) and follows from [9, Theorem

3.16].

Corollary 4.49 (Conditioning in matrix-gamma Poisson mixture models with multiple
known events). Let N = (N1, . . . , Nn) ∼ MGammaPoisson(α,C, v1, . . . , vn) according to
Definition 4.17 based on Y ∼ MGamma(α,C), where C = AAT with A ∈ Rp×q where
q = max{1, rk(C)} as discussed in Remark 3.27. Then for every i ∈ {1, . . . , n}

L(Y |N1 = 0, . . . , Ni = 0) = P
e−tr((v1v

T
1 +···+viv

T
i
)Y ) Y

−1

= MGamma(α,AT(Ip +AT(v1v
T
1 + · · ·+ viv

T
i )A)−1A)

= MGamma(α, (C−1 + v1v
T
1 + · · ·+ viv

T
i )

−1),
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n1n2

(a) P[Ñ1 = n1, Ñ2 = n2]

n1n2

(b) P[Ñ1 = n1, Ñ2 = n2 |N1 = 0, N2 = 0]

Figure 4.4. Illustration of the probability mass functions of Example 4.50 of conditioning in
a simple matrix-gamma mixture model.

where the last equality only holds if C ∈ Sp+.

Proof. Due to the conditional independence of N1, . . . , Ni,

P[N1 = 0, . . . , Ni = 0] = E[P[N1 = 0 |Y ] · · ·P[Ni = 0|Y ] ] = E[e−tr((v1vT1+···+viv
T
i )Y )].

Hence, with the same argument as in the lemma above this corollary must hold.

Example 4.50 (Conditional distributions of claim numbers in a matrix-gamma Poisson
mixture model). In the setting of Definition 4.37, consider two R2 valued random vectors
(N1, N2) and (Ñ1, Ñ2) that follow a MGammaPoisson(α,C, v1, v2) distribution based on
Y ∼ MGamma(α,C). We assume that (N1, N2) and (Ñ1, Ñ2) are conditionally independent
given Y . We want to explore how the distribution of (Ñ1, Ñ2) changes conditioned on the
event {N1 = 0, N2 = 0}. For simplicity assume C is positive definite.

Due to Item (iv) of Lemma 4.33, the marginal distributions of N1 and Ñ1 are given
by NegbBin(α, ⟨vi, Cvi⟩/(1 + ⟨v1, Cv1⟩) and N2, Ñ2 ∼ NegbBin(α, ⟨v2, Cv2⟩/(1 + ⟨v2, Cv2⟩).
Using Eq. (4.42) and Eq. (4.43), the correlation coefficient

ρN1,N2 =
Cov(N1, N2)*

Var(N1)
*
Var(N2)

=
⟨v1, Cv2⟩2*

(⟨v1, Cv1⟩+ ⟨v1, Cv1⟩2)(⟨v2, Cv2⟩+ ⟨v2, Cv2⟩2)
.

The correlation between Ñ1 and Ñ2 is given by the same formula.

Now, conditioned on N1 = 0, N2 = 0, the distribution of Y is the MGamma(α, (C−1 +
vT1 v1 + vT2 v2)

−1) distribution. Hence,

L(Ñ1, Ñ2 |N1 = 0, N2 = 0) ∼ MGammaPoisson(α, (C−1 + vT1 v1 + vT2 v2)
−1, v1, v2).

The marginal distributions and the correlation of Ñ1 and Ñ2 under this condition change
accordingly.

If we assume α = 7/2, scale matrix C = 9I2 and vectors v1 = (1/3, 2/3)T and v2 =
(1/3, 1)T, then L(N1) = L(Ñ1) = NegBin(7/2, 5) and L(N2) = L(Ñ2) = NegBin(7/2, 10).
The correlation coefficient of Ñ1 and Ñ2 is equal to 0.853. Conditional on N1 = 0, N2 = 0,
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the marginal distributions change to (Ñ1|N1 = 0, N2 = 0) ∼ NegBin(7/2, 20/31) and
(Ñ2|N1 = 0, N2 = 0) ∼ NegBin(7/2, 70/31). The correlation coefficient between Ñ1 and Ñ2

given N1 = 0, N2 = 0 is equal to 0.510.
This example is illustrated in Figure 4.4.

4.4.3. Matrix-Gamma Multivariate Poisson Mixture Models

Finally, the results from the section before can also be applied to the more general matrix-
gamma multivariate Poisson mixture models, leading to Lemma 4.51 below. Again, we
condition on whether or not events have occurred and not on the number of events.

Lemma 4.51 (Conditioning in matrix-gamma multivariate Poisson mixture models). Let
N = (N1, . . . , Nm)T follow a matrix-gamma multivariate Poisson mixture distribution in
the setting of Definition 4.37 based on Y ∼ MGamma(α,C). For i ∈ {1, . . . ,m} let Gi as
in Eq. (4.45). Then

L(Y |Ni = 0) = P
e
−tr(

�
g∈Gi

vg(vg)TY ) Y
−1

= MGamma(α,AT(Ip +AT
+
g∈Gi

vg(vg)
TA)−1A)

= MGamma(α, (C−1 +
+
g∈Gi

vg(vg)
T)−1),

where the last equality only holds if C ∈ Sp+. Furthermore, if P[Ni ≥ 1] > 0, then

L(Y |Ni ≥ 1) = P
1−e

−tr(
�

g∈Gi
vg(vg)TY ) Y

−1 =
1

P[Ni ≥ 1]
L(Y )− P[Ni = 0]

P[Ni ≥ 1]
L(Y |Ni = 0).

Proof. Due to Definition 4.37 of matrix-gamma Poisson mixture models and Definition 4.13
of the general multivariate Poisson mixture models

Ni =
+
g∈Gi

Ng

and hence, as Ni = 0 if and only if Ng = 0 for all g ∈ Gi,

P[Ni = 0] = P[Ng = 0 for all g ∈ Gi] = E
� '
g∈Gi

P[Ng = 0 |Y ]

�
,

where we use the conditional independence of the Ng for g ∈ G given Y for the second
equality. As Ng|Y ∼ Poisson(⟨vg, Y vg⟩),

P[Ni = 0] = E
� '
g∈Gi

e−tr(vg(vg)TY )

�
= E[e−tr(

�
g∈Gi

vg(vg)TY )
].

Thus, with the analogue argumentation of Corollary 4.49, the first statement holds true.
As

P[Ni ≥ 1] = 1− P[Ni = 0] = E[1− e
−tr(

�
g∈Gi

vg(vg)TY )
]

the argument for the second statement is the same as for Eq. (4.54) and follows from [9,
Theorem 3.16].



A. Open Questions and Ideas

Several of the mentioned concepts have potential for further exploration. Some incomplete
tasks and future ideas are collected in the list below.

• This thesis only looks at the matrix-valued generalization of one-dimensional gamma
distributions given in Definition 2.25. It would be interesting to investigate whether
there is also a reasonable matrix-valued extension of generalized gamma distributions
given in Definition 2.26.

• Complex matrix-valued gamma distributions could be explored further, see Remark
3.46. While some work has been done on this topic, see e.g. [23, Section 5.2a], it would
be interesting to find out which of the properties discussed here can be adjusted to
also hold true for the complex version.

• Example 3.21 explores the joint distribution of the trace and the determinant of
standard matrix-valued gamma distributions taking values in S+2 . The function

fdet(X),tr(X)(d, t) =

√
2π

Γ2(α)
e−t d α− 3

2 1{t≥2
√
d}, (d, t) ∈ R+ × R+.

is a density of (det(X), tr(X)) for X ∼ MGamma(α, I2). Due to the form of a density
of X given in Eq. (3.21), it is likely that this result can be generalized to all p ∈ N
and possibly in a similar form for scale matrices C ∈ Sp+.

• In the context of singular Wishart distributions, singular matrix-valued beta distribu-
tions are often mentioned, see [30, 32]. It could be explored further, which properties
of the non-singular matrix-valued beta distributions, as for example listed in [13,
Chapter 5], also hold true for the singular versions. This could possibly be done via
characteristic functions as done for singular Wishart distributions in this thesis.

• The distribution of N ∼ NegBin(α, p) under biased probability measures was explored
in Lemma 4.15 and Corollary 4.16. It would be interesting to find out if there
are similar biased distributions of negative multinomial distributions, as given in
Definition 4.23, which are also a subset of matrix-gamma Poisson mixture models as
proven in Corollary 4.25.

• Under which conditions is the MGammaPoisson(α,C, v1, . . . , vn) distribution, using
the notation of Definition 4.17, fully determined by the parameter α and the values
of ⟨vi, Cvj⟩ for i, j ∈ {1, . . . , n}? Item (i) of Lemma 4.33 motivates this question, an
answer using the probability-generating function, see Theorem 4.20, might be possible.

111
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• With the matrix-gamma multivariate Poisson mixture model, as discussed in this
thesis, only non-negative correlations between claim counts can be modelled, see
Eq. (4.43). In [29, Theorem 7.39] it has been shown that a multivariate Poisson
mixture model can be modeled to have every given covariance structure by using linear
combinations of independent gamma distributed risk factors for the vector of Poisson
intensities. It would be interesting to see if these ideas could be combined to arrive at
an extended matrix-gamma multivariate Poisson mixture model, possibly driven by
multiple matrix-valued gamma distributions, that allows negative correlations between
the modelled claim counts.



B. Main Points of the Thesis

This appendix lists the main points and contributions of the thesis, categorized into
literature-based insights and novel findings introduced within this work.

Literature-Based Main Points:

(i) The content of Sections 2.1, 2.2, 2.3 and 2.4 is based mainly on cited literature.

(ii) The Laplace transform of f(A) := (detA)a−
p+1
2 for positive definite matrices A ∈ Rp×p

given in Eq. (2.31) of Theorem 2.37. Was found in [13, Eq. (1.4.6)] or [15, Eq. (1.1)]
with partially incomplete proof.

(iii) Definition and properties of (singular) Wishart distributions, see Definition 3.8,
Corollary 3.33, Theorem 3.54 and Theorem 3.14, found in [20, Section 2.3] and
[13, Chapter 3] with partially incomplete proof of Theorem 3.14.

(iv) Definition and several basic properties of matrix-valued gamma distributions, such
as its characteristic function given in Theorem 3.32, resulting in Corollary 3.39 and
Corollary 3.40, the summation property given in Lemma 3.42, moments given in
Theorem 3.59. Was mainly found in [20, Chapter 2] and [13, Chapter 3.6].

(v) Equivalence of the distribution of a standard matrix-valued gamma distribution and
its Cholesky decomposition given in Theorem 3.22. Was partially found in [33, Section
4.1(i), Property 1].

(vi) Marginal distributions of matrix-valued gamma distributions given in Theorem 3.52,
found in [20, Proposition 2.3] and [13, Theorem 3.3.9].

(vii) An introduction to (Poisson) mixture models as well as their usage in credit risk
modelling is given in Section 4.1, mainly taken from [29]. In particular the one-
dimensional gamma-mixed Poisson model, which is (unconditionally) equal to a
negative binomial distribution is discussed, see Lemma 4.11.

(viii) Section 4.4.1 on conditioning in a simple gamma-mixed Poisson model has been taken
mainly from [9].

Main Points Introduced in this Thesis:

(i) Seeing the set of positive matrices as an integral domain as a p(p− 1)/2-dimensional
submanifold of Rp·p instead of a subset of Rp(p−1)/2 in the context of matrix-valued
distributions, see Remark 2.23 and Remark 2.38.
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(ii) The joint distribution of the determinant and the trace of a standard matrix-valued
gamma distribution for p = 2, see Example 3.21.

(iii) The equivalence of introducing Wishart distributions via ZZT with Z following a
matrix-valued normal distribution and via its density or the block notation given in
Theorem 3.54 has been proven using the characteristic function here in Theorem 3.14,
which has not been done this way before (as far as we know).

(iv) Extending and reformulating the definition of matrix-valued gamma distributions
found in the literature such as [13] or [23] as well as Wishart distributions to include
degenerated cases both in terms of the scale parameter matrix and the shape parameter,
see Definition 3.34, and proving several properties given in Theorem 3.32, Corollary
3.39, Corollary 3.40, Lemma 3.42, Theorem 3.52 Items (i) and (ii) and Theorem 3.59
for this extended definition.

(v) Extending the Laplace transform of the matrix valued gamma function given in
Theorem 3.32 for M ̸= 0 and β ̸= 0 and not necessarily symmetric w.

(vi) The fact that a matrix-valued gamma distribution cannot be easily characterized by
one-dimensional distributions, see Remark 3.41.

(vii) The fact that a matrix-valued exponential distribution, as defined in [22, Section 1.2]
as well as Definition 3.47 in this thesis, is memoryless w.r.t. the Loewner partial order
is given in Lemma 3.49.

(viii) The distribution of a matrix-valued gamma distribution under a biased probability-
biased measure given in Theorem 3.64.

(ix) The distribution of a negative binomial distribution under a biased probability-biased
measure given in Lemma 4.15.

(x) The application of matrix-valued gamma distributions to Poisson mixture models,
leading to the introduction of matrix-gamma Poisson mixture models given in Section
4.2, see Definition 4.17.

(xi) Several basic properties of matrix-gamma Poisson mixture models are given in Lem-
mas 4.31 and 4.33. The probability-generating function of these models is derived in
Theorem 4.20 as well as an alternative representation, see Lemma 4.22. Conditions on
when a matrix-gamma Poisson mixture model is equal to a negative multinomial distri-
bution are given in Corollary 4.25 based on Lemma 4.22. Conditions for independent
components of a matrix-gamma Poisson mixture model are given in Theorem 4.36.

(xii) The introduction and the properties of matrix-gamma multivariate Poisson mixture
models described in Section 4.3, see Definition 4.37, Lemmas 4.39, 4.40, 4.42, 4.43
and 4.44.

(xiii) Section 4.4 on conditioning in matrix-gamma (multivariate) Poisson mixture models;
here the most interesting finding is given and described in Lemma 4.48 and the text
before.



Conventions, Abbreviations, Symbols and
Notation

Conventions

• In this thesis positive and negative are meant in the strict sense, i.e. they do not
include zero.

• When writing displayed formulas, we follow in most cases the custom to omit the
words for all or the symbol ∀ when quantifying variables.

• The union over an empty index set is the empty set:
-

i∈∅Ai := ∅.

• The intersection over an empty index set is the full set (which depends on the context).

• The sum over an empty index set equals 0.

• The product over an empty index set equals 1.

Abbreviations

• a.s., almost surely (with respect to a probability measure)

• e.g., Latin ‘exempli gratia’ (translation: for example)

• i.e., Latin ‘id est’ (translations: that means, in other words, in this case)

• i.i.d., independent and identically distributed

• w.r.t., with respect to

Symbols

• ⊊, strict subset

• ⊆, subset (equality is possible)

• ⊋, strict superset (i.e. contains as a strict subset)

• ⊇, superset (i.e. contains as a subset, equality is possible)

• ≺, in this thesis only used for the total order defined in Remark 4.26

• ≤L, Loewner partial order, see Definition 2.10

• ∪, -, union of sets

• ∩, �, intersection of sets

• ×,×, Cartesian product of sets

115
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• | · |, absolute value on R and C, cardinality of a set, occasionally used as 1-norm, also
called Manhattan norm, over Nd

0 with d ∈ N
• ∥ · ∥, norm on a vector space, specified further when used

• ∥ · ∥2, Euclidian norm on Rd and Cd with d ∈ N
• ∥ · ∥F, Frobenius norm, see Remark 2.17

• (·)c, complement of a set

• ⟨·, ·⟩, standard inner product on Rd × Rd and Cd × Cd with d ∈ N
• ⟨·, ·⟩F, Frobenius inner product, see Remark 2.17

• ∼, distributed according to

• ◦, composition of functions

• ⊗, Kronecker product, see Definition 3.1

• 1A, indicator function which is 1 on A and 0 on the complement

• 1I , function which is equal to 1 when all conditions of the set I are fulfilled and equal
to 0 otherwise

• (·)H, Hermitian transpose of a vector or matrix

• (·)T, transpose of a vector or matrix

• (·)△, lower triangular version of a positive semi-definite matrix, see Remark 2.19

• , end of a proof

Notation

Greek letters are ordered alphabetically according to their spelling in the Latin alphabet.

• a.s.
= , almost surely equal

• BS , Borel σ-algebra of the topological space S

• C, the field of complex numbers

• χ2
n, χ

2-distribution with n ∈ N degrees of freedom, see Definition 2.28

• Cov(X,Y ), covariance matrix of the random vectors X and Y viewed as column
vectors

• Cov(X), covariance matrix Cov(X,X)

• d
=, equality in distribution

• det, determinant (of a square matrix)

• diag(v), diagonal matrix with the entries of the vector v ∈ Kd on the diagonal.

• e, Euler’s number 2.71828 . . ., also used for the exponential function

• E[X1A] =
�
AX dP =

�
AX(ω) dP(ω), expectation, Lebesgue integral

• E[X |G ], conditional expectation of X given the sub-σ-algebra G

https://en.wikipedia.org/wiki/Almost_surely
https://en.wikipedia.org/wiki/Equal_in_distribution
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Euler's_number
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•
�
f dµ, integral for the function f w.r.t. the measure µ

• exp, exponential function

• f ′, derivative of the function f

• f (n), n-th derivative of the function f for n ∈ N
• GC , where C is a positive semi-definite matrix, see Eq. (3.38)

• Γ(·), one-dimensional gamma function, see Remark 2.24

• Γp(·), p-dimensional gamma function for p ∈ N, see Eq. (2.29)

• Gamma(α, β), one-dimensional gamma distribution, see Definition 2.25

• GenGamma(α, β, p), generalized gamma distribution, see Definition 3.34

• i, imaginary unit in the field C of complex numbers

• 1A, indicator function of the set A

• Id, the (d× d)-identity matrix

• K, either the field R of real or the field C of complex numbers

• λk(·), k-dimensional Lebesgue–Borel measure on Rk for k ∈ N
• L(X), the law (or probability distribution) of the random variable X: Ω → S, i.e. the
pushforward measure PX−1 of P on the measurable space (S,S)

• log(·), natural logarithm on R+

• Log(·), principal value logarithm on C\{0}, see Remark 2.31

• MExp(C), matrix-valued exponential distribution, see Definition 3.47

• MGamma(α,C), matrix-valued gamma distribution, see Definition 3.24

• MGammaMPoisson(α,C,G, (vg)g∈G,m), matrix-gamma Poisson mixture model, see
Definition 4.37

• MGammaPoisson(α,C, v1, . . . , vn), matrix-gamma Poisson mixture model, see Defini-
tion 4.17

• MNormal(M,Σ⊗Ψ), matrix-valued normal distribution, see Definition 3.2

• MPoisson(G, λ,m), multivariate Poisson distribution, see Definition 4.12

• N = {1, 2, 3, . . . }, natural numbers (without zero)

• N0 = N ∪ {0}, the additive semi-group of natural numbers including zero

• NegBin(α, p), negative binomial distribution, see Definition 4.4

• NegMult(α, p1, . . . , pn), negative multinomial distribution, see Definition 4.23

• N (µ, σ2), normal distribution with expectation µ ∈ R and variance σ2 ≥ 0

• N (µ,C), multivariate normal distribution with expectation vector µ ∈ Rd and covari-
ance matrix C ∈ Rd×d

• Ω, sample space

• P, probability measure on the measurable space (Ω,F)

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Identity_matrix
https://en.wikipedia.org/wiki/Law_(stochastic_processes)
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Pushforward_measure
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Sample_space
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Measurable_space
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• PX , X-biased probability measure, see Definition 3.62

• P(Ω), power set, i.e. the set of all subsets of Ω

• π, length of the perimeter of a circle with diameter 1

• Poisson(λ), Poisson distribution, see Definition 4.3

• ψ(·), if not specified otherwise it refers to Eq. (2.7)

• Q, the field of rational numbers or a probability measure, depending on the context

• R, the field of real numbers

• R+ = (0,∞), set of positive real numbers

• R+
0 = [0,∞), set of non-negative real numbers

• Sp+, the set of positive definite matrices in Rp×p

• S̃p+, the set of positive definite matrices in Rp×p transformed to their lower triangular
version and vectorized, see Remark 2.19

• Sym(Ω), symmetric group on the set Ω

• TK
p , the set of all Kp×p-valued lower triangular matrices with positive entries on the

diagonal

• T̃p, the set TR
p seen as a subset of Rp(p+1)/2, only considering entries on and below

the diagonal

• tr(A), trace of a square matrix A

• Var(X), variance of a real-valued random variable X

• vec(·), vectorization function, see Eq. (2.4)

• vecp(·), partial vectorization function, see Eq. (2.6)

• Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the commutative ring of integers

https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/Rational_number_field
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Commutative_ring
https://en.wikipedia.org/wiki/Integer
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