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Kurzfassung

Im quantitativen Risikomanagement von Lebensversicherungsunternehmen kommt dem Be-
griff des Asset-Liability Managements durch das von langen Vertragslaufzeiten geprägte
Versicherungsgeschäft und der damit stark in Wechselwirkung stehenden langfristigen Ka-
pitalveranlagung besondere Bedeutung zu. Die Komplexität des Geschäfts, das breite Kon-
kurrenzumfeld und weitreichende regulatorische Anforderungen erfordern dafür von Versi-
cherungsunternehmen die Implementierung komplexer stochastischer Modelle zur Gewin-
nung wichtiger Informationen für strategische Entscheidungen und zur Absicherung von Ri-
siken. Im Rahmen dieser Arbeit beleuchten wir die Rolle und Notwendigkeit stochastischer
Szenarienmodellierung im Asset-Liability Management von Lebensversicherern und stellen
ein stochastisches Mehrperiodenmodell zur Absicherung des Zinsrisikos von klassischen Le-
bensversicherungsportfolios unter Berücksichtigung der damit zusammenhängenden natio-
nalen rechtlichen Anforderungen vor. Wir betrachten dafür zwei miteinander interagierende
Modellansätze für die zeitliche Entwicklung von Vermögenswerten (Assets) und Versiche-
rungsverbindlichkeiten (Liabilities) und leiten daraus die zeitabhängigen Zinssensitivitäten
des Kapitalanlageportfolios und des Versicherungsvertragsportfolios ab. Darauf basierend
formulieren wir eine dynamische Duration-Matching-Optimierungsstrategie zur Immunisie-
rung eines Lebensversicherungsbestandes gegen adverse Entwicklungen im ökonomischen
Zinsumfeld und damit zur Steigerung der finanziellen Stabilität und Profitabilität eines
Lebensversicherungsunternehmens.



Abstract

In the quantitative risk management of life insurance companies, the concept of asset-
liability management is of particular importance due to the long contract terms of the
life insurance business and the strongly interrelated long-term investment of capital. The
complexity of the business, the broad competitive environment and far-reaching regula-
tory requirements demand that insurance companies implement complex stochastic models
to hedge risks and obtain important information for strategic decisions. In this thesis,
we highlight the role and necessity of stochastic scenario modelling in the asset-liability
management of life insurers and present a stochastic multi-period model for interest rate
risk management of traditional life insurance portfolios, taking into account the associated
national legal requirements. We consider two interacting modelling approaches for the de-
velopment of assets and liabilities over time and derive the time-dependent interest rate
sensitivities of the investment portfolio and the insurance contract portfolio. Based on
this, we formulate a dynamic duration matching optimisation strategy to immunise a life
insurance portfolio against adverse developments in the economic interest rate environment
and thus to increase the financial stability and profitability of a life insurance company.
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1. Introduction

The traditional life insurance business is characterized by long contract terms and a strong
dependence on developments in the interest rate environment on the capital markets. Com-
pared to non-life insurance, life insurance companies are exposed to a higher liquidity and
interest rate risk, particularly due to the long-term liabilities to policyholders typical of
life insurance and the generally high sums insured. Even with the in Austria legally reg-
ulated maximum guaranteed interest rate for new contracts in traditional life insurance
being set to 0.00%, insurers are often required to earn high guaranteed interest obligations
from existing contracts by investing the premiums collected in suitable financial assets. At
the same time, the investment strategy must be designed in such a way that, despite the
inhomogeneous distribution of cash flows from the insurance business over time (premiums,
benefits, etc.), appropriate liquidity is always available to meet the contractual obligations.
In addition, changes in the interest rate environment can have a significant impact on the
profitability and solvency of a life insurance company due to the high interest rate sensi-
tivity of its liabilities, provided that this change does not affect investments to a similar
extent. With inadequate risk measures, this can lead to a mismatch of assets and liabilities,
and scenarios can arise in which the fair value of the investments is no longer sufficient to
cover the liabilities. These risks have increased in importance in recent years due to the
challenging conditions on the capital markets, such as the long-lasting phase of low interest
rates and the negative developments on the stock markets during the 2009 financial crisis
or the COVID 19 pandemic.

To analyse and manage such risks appropriately, life insurance companies must adopt suit-
able strategies and measures as part of their asset-liability management (ALM). Within the
ALM framework and the quantitative risk management of life insurance companies, stochas-
tic scenario and optimisation models in particular are indispensable tools for analysing
sources of risk and obtaining information for strategic corporate planning. Consequently,
the topic of stochastic simulation of both assets and liabilities has been widely treated in
insurance literature, we refer to Di Francesco/Simonella [5], Führer [7], Gerstner at al. [10],
Jaquemod at al. [12], Koller [17] and the references therein. In this thesis, we aim to define
and derive a multi-period stochastic ALM model to analyse and manage the interest rate
risk in traditional life insurance business that is consistent with the corresponding Austrian
legal regulations for life insurance. We first define a model for the simulation of capital
market scenarios and the capital investment of a life insurance company, whereby we cover
a stochastic short rate model for the underlying yield curve as well as market models for
equity investments, fixed rate bonds and a money market investment possibility. Particu-
lar emphasis is placed on taking the payout structure into account when modelling fixed
rate bonds in order to analyse and derive the interest rate sensitivity of such fixed income
securities on this basis. Second, we present a Markov chain-based modelling approach to
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1. Introduction

simulate endowment insurance contract portfolios, taking into account the policyholders’
contractual options guaranteed by national law. This modelling approach provides the
flexibility to be adapted to other types of life insurance contracts without great difficulty.
We derive a fair value for both the assets and the liabilities of the insurance company and
analyse the interest rate sensitivity of both values using the Fisher-Weil duration as a sen-
sitivity measure. Last, we introduce a dynamic two-stage duration matching optimisation
strategy in order to immunise the insurance company against the risk of a shortfall in the
assets covering the liabilities due to a change in the yield curve. As part of a periodic
restructuring of the asset portfolio, the two-stage approach takes into account not only
the minimisation of interest rate risk but also the insurance company’s responsibility to
maximise the expected investment return of its capital investments, subject to restrictions.
For the individual model components, we address their relevant mathematical properties
and place particular emphasis on a flexible definition of the model in order to capture the
stochastic dynamics of both the capital market and the insurance contract portfolio and
enable the simulation of a large number of different scenarios within this framework.

This thesis is structured as follows: In Chapter 2, we present the necessary mathemat-
ical foundations, primarily the important concepts of financial and actuarial mathematics,
which are required for the main model. In Chapter 3, we discuss the concept of asset-
liability management in the field of life insurance, focusing in particular on the role of
stochastic modelling. In addition, the legal framework in connection with asset-liability
management covered by Austrian insurance law and the extent to which these regulations
must be taken into account in stochastic models are discussed. Chapter 4 forms the cen-
trepiece of this thesis and covers the derivation of the models for both assets and liabilities
as well as the interest rate risk management optimisation approach. Chapter 5 shortly
covers the model implementation aspect of Euler discretization for numerical simulation of
stochastic differential equation and presents the numerical results for a selected scenario.
Finally, in chapter 6, we review the model and discuss possible extensions of the modelling
approach. The implementation of the model in Python can be found in Appendix B.
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2. Mathematical foundations and notation

This chapter aims to provide the essential definitions and tools related to stochastic pro-
cesses, stochastic analysis and financial mathematics relevant for this thesis. We will con-
centrate primarily on results and mathematical properties that are directly relevant to
the model in Chapter 4 and thus quietly assume certain mathematical principles, such
as the existence of stochastic integrals, for example. The sections on stochastic processes
and stochastic calculus are based on Brzezniak/Zastawniak [2], Karatzas/Shreve [15] and
Shreve [26]. With regard to interest rate models, we follow the results in Brigo/Mercurio [1]
and Desmettre/Korn [4].

2.1. Stochastic calculus and stochastic processes

For this chapter and this thesis in general, we will operate on a given filtered probability
space (Ω,F ,F,P). For that, let (Ω,F ,P) be a probability space, where P reflects the
real-world probability measure. Let further F := {Ft, t ∈ [0,∞)} be a filtration, that is an
increasing sequence of σ-algebras with Ft ⊆ F and

Fs ⊆ Ft, s ≤ t.

For any given point in time t, the corresponding σ-algebra Ft represents the information
that is available and can be observed up to and including time t.

An important probability distribution that is later used to determine distribution prop-
erties in the model is the log-normal distribution:

Definition 2.1.1 (Log-normal distribution). Let Z be a standard normally distributed
random variable and consider µ ∈ R, σ > 0. Then the random variable

X = eµ+σZ

is log-normally distributed with parameters µ and σ2, denoted by

X ∼ LogN (µ, σ2).

Without proof, we present expressions for the expected value and the variance of log-
normally distributed random variables:

Lemma 2.1.2. Let X ∼ LogN (µ, σ2). Then the following expressions hold:

E[X] = exp

�
µ+

σ2

2

&
, (2.1)

Var(X) = exp
�
2µ+ σ2

%�
exp

�
σ2

%− 1
#

(2.2)
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2. Mathematical foundations and notation

One of the most important stochastic processes in financial mathematics and a central
component in the modelling of many other stochastic processes is Brownian motion:

Definition 2.1.3 (Standard Brownian motion). An R-valued stochastic processW =
�
W (t)

%
t≥0

on a filtered probability space (Ω,F ,F,P) is called a standard Brownian motion or standard
Wiener process, if the following conditions hold:

(a) W (0) = 0 a.s.,

(b) W (t)−W (s) is Fs-measurable for all s < t (Measurability of past increments),

(c) W (t)−W (s) is independent of Fs for all s < t (Independence of future increments),

(d) W (t)−W (s) has the same distribution as W (t− s) for all s < t (Stationarity of the
distribution of increments),

(e) W (t)−W (s) ∼ N (0, t− s) (Normal distribution of increments),

(f) W has continuous paths, that is [0,∞) ∋ t �→ W (t)(ω) is continuous for every ω ∈ Ω.

Lemma 2.1.4 (Properties of stochastic integrals). Consider T ∈ R+. Let W =
�
W (t)

%
t≥0

be a standard Brownian motion and let X =
�
X(t)

%
t≥0

, Y =
�
Y (t)

%
t≥0

be two stochastic

processes adapted to the natural filtration
�FW

t

%
t≥0

of the Brownian motion such that

E

� � T

0
X(t)2 dt

�
< ∞, (2.3)

E

� � T

0
Y (t)2 dt

�
< ∞ (2.4)

hold. Then, the following properties of the stochastic integral with respect to the Brownian
motion W hold for 0 ≤ a < b ≤ T :

1. Linearity of the stochastic integral:� b

a
αX(t) + β Y (t) dW (t) = α

� b

a
X(t) dW (t) + β

� b

a
Y (t) dW (t), (2.5)

2. Itô isometry:

E

��� T

0
X(t) dW (t)

&2�
= E

� � T

0
X(t)2 dt

�
, (2.6)

3. Normal distribution for deterministic integrands:
If X =

�
X(t)

%
t≥0

is deterministic, then
� T
0 X(t) dW (t) is normally distributed with� T

0
X(t) dW (t) ∼ N

�
0,

� T

0
X(t)2 dt

&
. (2.7)

Proof. See Shreve [26].
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2. Mathematical foundations and notation

For the definition of stochastic differential equations and their solutions, we follow Karat-
zas/Shreve [15]:

Definition 2.1.5 (Stochastic differential equation). A one-dimensional stochastic differ-
ential equation (SDE) is an equation of the form

dX(t) = α
�
t,X(t)

%
dt+ σ

�
t,X(t)

%
dW (t), (2.8)

with initial value X(0) = X0 ∈ L2(Ω,F ,P), where
�
W (s)

%
s≥0

is a standard Brownian

motion and α(t, x) and σ(t, x) are real-valued Borel-measurable functions, called drift and
diffusion, respectively. By definition of the stochastic differential, equation (2.8) is equiva-
lent to the stochastic integral equation

X(t) = X(0) +

� t

0
α
�
s,X(s)

%
ds+

� t

0
σ
�
s,X(s)

%
dW (s), 0 ≤ t < ∞. (2.9)

An R-valued stochastic process X =
�
X(t)

%
t≥0

on the given probability space (Ω,F ,F,P)

is called a strong solution of equation (2.8) if it has the following properties:

(i) X is adapted to the filtration F;

(ii) P[X(0) = X0] = 1;

(iii) P
� � t

0

//α�s,X(s)
%//+ σ

�
s,X(s)

%2
ds < ∞

�
= 1;

(iv) the integral equation (2.9) holds almost surely for all t ≥ 0.

A strong solution X of (2.8) is called unique if any other strong solution X̃ =
�
X̃(t)

%
t≥0

is
indistinguishable from X, that is

P
�
X(t) = X̃(t) for all 0 ≤ t < ∞�

= 1.

If the drift and diffusion functions fulfil certain conditions, the uniqueness of a solution of
the SDE can be guaranteed:

Theorem 2.1.6. Consider an SDE with drift α(t, x) and diffusion σ(t, x) and assume that
a strong solution X =

�
X(t)

%
t≥0

exists for the SDE. Suppose that the coefficient functions

α(t, x) and σ(t, x) are Lipschitz-continuous in x, i.e. there exists a positive constant K
such that for all x, y ∈ R and t ≥ 0 it holds that//α(t, x)− α(t, y)

//+ //σ(t, x)− σ(t, y)
// ≤ K|x− y|. (2.10)

Then the solution X of the SDE is unique.

Proof. See Karatzas/Shreve [15].

A fundamental result in stochastic calculus and a useful tool for solving stochastic differ-
ential equations is Itô’s Lemma. We will here present the one-dimensional version of the
Itô formula for Itô processes based on Shreve [26]:
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2. Mathematical foundations and notation

Definition 2.1.7 (Itô process). Let
�
W (t)

%
t≥0

be a Brownian motion and let
�Ft

%
t≥0

be
an associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

� t

0
∆(u) dW (u) +

� t

0
Θ(u) du,

where X(0) is non-random and
�
∆(u)

%
u≥0

and
�
Θ(u)

%
u≥0

are stochastic processes adapted

to
�Ft

%
t≥0

.

Theorem 2.1.8 (Itô formula for Itô processes). Let X =
�
X(t)

%
t≥0

be an Itô process and

let f(t, x) be a function such that the partial derivatives ft(t, x), fx(t, x) and fxx(t, x) are
defined and continuous. Then it holds for every T ≥ 0 that

f
�
T,X(T )

%
= f

�
0, X(0)

%
+

� T

0
ft
�
t,X(t)

%
dt+

� T

0
fx
�
t,X(t)

%
dX(t)

+
1

2

� T

0
fxx

�
t,X(t)

%
d[X,X](t).

where the quadratic variation [X,X](t) of the Itô process X is given as

[X,X](t) =

� t

0
∆2(u) du.

Proof. See Shreve [26].

Remark. The Itô formula is often rewritten in differential notation as

df
�
t,X(t)

%
= ft

�
t,X(t)

%
dt+ fx

�
t,X(t)

%
dX(t) +

1

2
fxx

�
t,X(t)

%
dX(t) dX(t).

2.1.1. Markov chains

The modelling approach for the insurance contract portfolio in this model is based on a
specific type of stochastic process called Markov chain. We will here define this stochastic
process and introduce the model-relevant properties based on the results in Brzezniak/Za-
stawniak [2] and Koller [17].

Definition 2.1.9. Consider a finite or countable set S and an index set I ⊆ N0. A
stochastic process X = (Xk)k∈I on a probability space (Ω,F ,P) is called a discrete-time
Markov chain, if for all n ≥ 1, k1 < · · · < kn+1 ∈ I and arbitrary i1, . . . , in+1 ∈ S with
P[Xk1 = i1, . . . , Xkn = in] > 0 the following holds true:

P[Xkn+1 = in+1 | Xk1 = i1, . . . , Xkn = in] = P[Xkn+1 = in+1 | Xkn = in]. (2.11)

The set S is called the state space of the Markov chain.

From the definition one can see that the defining property of a Markov chain is that if the
Markov chain is in state i ∈ S after n steps, the conditional distribution of the next state
only depends on the current state i and not on the positions of the Markov chain before the
n-th step. This property also refers to the ‘memoryless property’ of a stochastic process.

6



2. Mathematical foundations and notation

Definition 2.1.10 (Transition probability, transition matrix). Let X = (Xk)k∈I be a
discrete-time Markov chain with state space S. Then, for i, j ∈ S, k, ℓ ∈ I with k ≤ ℓ and
P[Xk = i] > 0,

pij(k, ℓ) := P
�
Xℓ = j

// Xk = i
�

(2.12)

is called the transition probability from state i at time step k to state j at time step ℓ. If
P[Xk = i] = 0, then pij(k, ℓ) := 0.
The matrix

PX(k, ℓ) :=
�
pij(k, ℓ)

%
(i,j)∈S×S

(2.13)

is called the transition matrix from k to ℓ of the Markov chain X.

As the total sum of transition probabilities from a state i to all other states must equal 1,
an arbitrary transition matrix P fulfils -

j∈S
Pi,j = 1 (2.14)

for all i ∈ S, that is, the sum of all rows of the transition matrix is 1. A square matrix
with non-negative entries fulfilling (2.14) is called stochastic matrix, i.e. every transition
matrix of a Markov chain is also a stochastic matrix.

A fundamental theorem in the theory of Markov chains is the following theorem of Chapman
and Kolmogorov, which enables an efficient calculation of the transition probabilities:

Theorem 2.1.11 (Chapman-Kolmogorov equation). Let X = (Xk)k∈I be a discrete-time
Markov chain with state space S. For k ≤ ℓ ≤ m ∈ I and i, j ∈ S with P[Xk = i] > 0, the
following holds:

pij(k,m) =
-
h∈S

pih(k, ℓ) phj(ℓ,m), (2.15)

PX(k,m) = PX(k, ℓ)PX(ℓ,m). (2.16)

Proof. See Brzezniak/Zastawniak [2].

2.2. Financial mathematics

Definition 2.2.1. A zero-coupon bond with maturity T (T -bond) is a financial contract that
guarantees its holder a payment of one monetary unit at maturity T with no intermediate
payments. We denote with P (t, T ) the value or price of a zero-coupon bond with maturity
T at time t ≤ T .

Definition 2.2.2 (Forward rate, Short rate). Let P (t, T ) be the price of a zero-coupon
bond with maturity T ≥ t and assume that T �→ lnP (t, T ) is differentiable with respect to
T for all 0 ≤ t ≤ T . Then

f(t, T ) := − ∂

∂T
ln
�
P (t, T )

%
(2.17)

7



2. Mathematical foundations and notation

is called the forward rate in T at time t and

r(t) := f(t, t) (2.18)

is called the short rate at time t.

The approach to modelling the risk-free yield curve in this thesis is to stochastically model
the evolution of the short rate over time and then derive the yield curve accordingly. Given
a stochastic short rate process r =

�
r(s)

%
s≥0

, the price of a T -bond at time t < T is given
as

P (t, T ) = E

�
e−

� T
t r(s) ds

//// Ft

�
. (2.19)

To derive the yield curve from the zero-coupon bond prices, we first consider the following
types of spot interest rates (cf. Brigo/Mercurio [1]):

Definition 2.2.3 (Spot interest rates). The simply-compounded spot interest rate at time
t for maturity T is the constant rate L(t, T ) at which P (t, T ) units of currency at time
t need to be invested to produce one unit of currency at time T , when accruing occurs
proportionally to the investment time:

L(t, T ) :=
1− P (t, T )

P (t, T )(T − t)
.

The periodically-compounded spot interest rate at time t for maturity T is the constant rate
Y (t, T ) at which P (t, T ) units of currency at time t need to be invested to produce one
unit of currency at time T , when reinvesting the obtained amounts once every time period
(e.g. month or year):

Y (t, T ) :=
1

P (t, T )1/(T−t)
− 1.

Definition 2.2.4 (Term structure of interest rates). The term structure of interest rates
or yield curve at time t is the graph of the function

T �→
�
L(t, T ) t < T ≤ t+ 1

Y (t, T ) T > t+ 1.

In terms of stochastic modelling approaches for short rate processes, we restrict ourselves
to the following type of affine short rate models:

Definition 2.2.5 (Affine short rate model). A short rate model, in which the short rate
r(t) evolves according to

dr(t) =
�
ν(t) r(t) + η(t)

%
dt+

,
γ(t) r(t) + δ(t) dW (t), (2.20)

where ν(t), η(t), γ(t) and δ(t) are deterministic functions such that the stochastic differen-
tial equation has a unique solution, is called an affine short rate model.

8



2. Mathematical foundations and notation

In Desmettre/Korn [4] it is shown that affine short rate models have the favourable property
that the zero-coupon bond prices in (2.19) can be expressed in closed form:

Theorem 2.2.6. For an affine short rate model, zero-coupon bond prices are given by

P (t, T ) = e−B(t,T ) r(t)+A(t,T ), (2.21)

where A(t, T ) and B(t, T ) are the unique solutions of the system of ordinary differential
equations

∂

∂t
B(t, T ) + ν(t)B(t, T )− 1

2
γ(t)B(t, T )2 + 1 = 0, B(T, T ) = 0, (2.22)

∂

∂t
A(t, T )− η(t)B(t, T ) +

1

2
δ(t)B(t, T )2 = 0, A(T, T ) = 0. (2.23)

In this case, the price of a T -bond satisfies the stochastic differential equation

dP (t, T ) = P (t, T )

�
r(t) dt−B(t, T )

,
γ(t) r(t) + δ(t) dW (t)

&
.

Proof. See Desmettre/Korn [4].

2.2.1. Interest rate sensitivity and duration

A very important concept for this thesis is the concept of duration to measure the inter-
est rate sensitivity of the present value of a given cash flow pattern. First, we follow the
presentation in Koller [18] for the derivation of the Macaulay duration and then define the
concept in a more general matter based on Peterson [24] in order for it to be applicable to
the model in this thesis, leading to the Fisher-Weil duration.

Consider a cash flow pattern B = (CFk)k∈N0 of annual future cash flows. Such a pat-
tern could represent the future cash flows from holding a fixed rate bond or the future
expected cash flows from an insurance contract. The theoretical value or price πt(B) of the
future cash flows at a time t ≥ 0 corresponds to the present value of the future cash flows
calculated with an underlying risk-free yield curve and is given as

πt(B) =
∞-
k=0

CFk · P (t, k),

where P (t, k) is the price of a k-year zero-coupon bond at time t, see Definition 2.2.1. In
the case of a flat yield curve with an annual interest rate i, the price at t = 0 simplifies to

π0(B)(i) =
∞-
k=0

CFk

(1 + i)k
.

From this formula, it can be seen that the price of B is highly dependent on the value of the
interest rate i. The Macaulay duration d(B) aims to measure how sensitive πt(B) reacts to
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2. Mathematical foundations and notation

a parallel shift of the yield curve. Thus, deriving the price with respect to the interest rate
yields

∂

∂i
π0(B)(i) = − 1

1 + i

∞-
k=0

k · CFk

(1 + i)k
.

and dividing this derivative by the price of B, one obtains a relative measure for the interest
rate sensitivity,

∂
∂iπ0(B)(i)
π0(B) = − 1

1 + i

�.∞
k=0 k · CFk · (1 + i)−k.∞
k=0CFk · (1 + i)−k

&
� �� �

=:d(B)

,

see Koller [18]. The quantity d(B) is called the Macaulay duration of B.

The concept of duration for flat yield curves motivates a more general approach for sit-
uations in which the yield curve is not flat and in which the discount rates are given by
corresponding zero coupon bond prices as described above. This leads to the following
extended concept of duration as a measure for interest rate sensitivity, see Peterson [24]:

Definition 2.2.7 (Fisher-Weil duration). Consider t ≥ 0, a time sequence (tk)k∈N0 with
tk ≥ t and a sequence B =

�
CFtk

%
k∈N0

of future cash flows with CFtk occurring at time tk.
The Fisher-Weil duration of B at time t is defined as

dt(B) :=
.∞

k=0(tk − t) · CFtk · P (t, tk).∞
k=0CFtk · P (t, tk)

, (2.24)

where P (t, tk) is the price of a zero-coupon bond at time t with maturity tk.

The defining formula implicates that the Fisher-Weil duration, as well as the Macaulay
duration, is a measure in units of time. In particular, if the time grid (tk)k∈N0 corresponds
to time in years, the unit of the Fisher-Weil duration is also years.

Remark. Rewriting formula (2.24), the duration can also be represented as

dt(B) =
∞-
k=0

(tk − t) · CFtk · P (t, tk)

πt(B) .

This sum corresponds to the weighted average of the durations from t to the payment time
tk of the k-th cash flow, where the weights are the proportion of the discounted k-th cash
flow to the total present value πt(B) of the cash flow pattern.

For a set of cash flow patterns, for example a portfolio consisting of multiple bonds or a
portfolio of life insurance contracts, the common duration is given as the weighted average
of the durations of the single cash flow patterns. To see this, it follows for two cash flow
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patterns B1 =
�
CF 1

tk

%
k∈N0

and B2 =
�
CF 2

tk

%
k∈N0

that

dt(B1 + B2) =

.∞
k=0(tk − t) · �CF 1

tk
+ CF 2

tk

% · P (t, tk)

πt(B1 + B2)

=

.∞
k=0(tk − t) · CF 1

tk
· P (t, tk)

πt(B1 + B2)
+

.∞
k=0(tk − t) · CF 2

tk
· P (t, tk)

πt(B1 + B2)

=
πt(B1)

πt(B1 + B2)� �� �
=:w1

·dt(B1) +
πt(B2)

πt(B1 + B2)� �� �
=:w2

·dt(B2),

whereby the weights w1 and w2 correspond to the proportions of the respective cash flow
pattern values to the total value of the combined pattern. The general case for n cash flow
patterns B1, . . . ,Bn follows by induction, yielding

dt

� n-
i=1

Bi

#
=

n-
i=1

wi · dt(Bi) (2.25)

with weights

wi :=
πt(Bi)

πt

�.n
i=1 Bi

# .
2.3. Linear algebra

To model the stochastic dependency structure of the capital market model, we will need
the concept of Cholesky decomposition of Hermitian, positive semi-definite matrices.

Definition 2.3.1 (Hermitian matrix, Positive semi-definite matrix). Let n ∈ N. A matrix
C ∈ Cn×n is called a Hermitian matrix if it is equal to its own conjugate transpose, that is

cij = cji, i, j = 1, . . . , n.

A Hermitian matrix C ∈ Cn×n is called positive semi-definite, if

x∗Cx ≥ 0 for all x ∈ Cn\{0},
where x∗ is the conjugate transpose of x.

The following theorem states that Hermitian and positive semi-definite matrices can always
be decomposed in a specific way:

Theorem 2.3.2 (Cholesky decomposition). Let n ∈ N and C ∈ Cn×n be Hermitian. Then
C is positive semi-definite if and only if there exists a lower triangular matrix A ∈ Cn×n

with non-negative diagonal entries such that

C = AA∗.

If C is positive definite, the diagonal entries are positive and A is unique. If C is real, A
may be taken to be real.

Proof. See Horn/Johnson [11].
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3. Asset-liability management in life
insurance

In life insurance, the term ‘asset-liability management’ (ALM) generally refers to all pro-
cesses for the optimal matching of technical provisions (liabilities) and investments (assets)
and thus ranges from mathematical modelling approaches and far-reaching economic the-
ory to holistic approaches for corporate management. This chapter aims to illustrate the
economic necessity of asset-liability management in life insurance and to place the stochas-
tic modelling approach of this thesis within the broad scope of ALM. Furthermore, the
legal framework for life insurance companies with respect to ALM is discussed and the
regulatory requirements, which are taken into account in the stochastic model in Chapter
4, are summarized.

3.1. Motivation and introductory example

As discussed in Chapter 1, the nature of life insurance business exposes life insurers to an
increased interest rate and liquidity risk. To illustrate the importance of ALM processes
and scenario-based models to manage such risks, we consider the following introductory
illustrative example. It should be noted here that this is a simplified example that does
not take into account the many investment possibilities of modern financial markets, nor
insurance-typical features such as broadly diversified insurance policy portfolios. For the
example, we consider a portfolio of 1, 000 simultaneously issued whole life insurance policies,
10 years after policy inception, with all insured persons assumed to still be alive. We assume
a flat yield curve with an annual actuarial interest rate and risk-free bond valuation rate
of 2.50%. In addition, the following assumptions apply to the insurance contracts:

• Sum insured per contract: 100 EUR;

• Age of policyholders at contract inception: 40 years;

• Annual premium payments in advance within 30 years from contract inception;

• No cancellation during the contract period.

The assumptions for mortality in this example are derived from the smoothed unisex life
table for Austria for the years 2020–2022, see Table A.1. In order to cover the technical
provision with assets, the insurance company holds an asset portfolio consisting of the
following two types of fixed rate bonds in equal proportions:

• Fixed rate bond 1:

– Face value: 1 EUR
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3. Asset-liability management in life insurance

– Term to maturity: 25 years

– Annual coupon payments with coupon rate of 3.5% of the face value at the end
of each year

• Fixed rate bond 2:

– Face value: 1 EUR

– Term to maturity: 40 years

– Annual coupon payments with coupon rate of 4.0% of the face value at the end
of each year

The asset portfolio is assumed to consist of a sufficient number of such bonds to exceed
the present value of the insurance obligations (provision for future contractual cash flows)
by 5%. These assumptions result in the following present values for the asset portfolio and
the insurance portfolio:

Present value: Assets (A) Present value: Liabilities (L)
19, 667.37 EUR1 −18, 730.83 EUR

If we consider the expected future cash flows of the insurance portfolio and the investment
portfolio, we obtain the following profiles:

1The asset portfolio consists of 8,304 units of bond 1 with a unit price of 1.184 EUR and 7,144 units of
bond 2 with a unit price of 1.376 EUR.
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3. Asset-liability management in life insurance

Figure 3.1.: Introductory example: Cash flow profiles of assets and liabilities

Here, it can be seen immediately that the cash flow profiles differ significantly and that
the expected cash flows of the insurance portfolio are not replicated by the asset portfolio.
Such differences in cash flow profiles lead to a liquidity risk where the insurance company
may be forced to liquidate part of its asset portfolio off schedule — and at possibly disad-
vantageous market conditions — in order to meet the insurance benefits in case of higher
liquidity needs. This may result in financial losses, or the insurance company may not be
able to meet its obligations from the insurance contracts at all.

To assess and measure the arising interest rate risk in this example, we consider the dura-
tion of the present values of both assets and liabilities, see Definition 2.2.7, as a measure
of their interest rate sensitivity:

Asset duration (DA) Liability duration (DL)
20.59 61.55

The risk arising from the significantly higher interest rate sensitivity of liabilities becomes
clear when we consider the dependency of the present value on changes in the underlying
annual interest rate for assets and liabilities, respectively:

Figure 3.2.: Introductory example: Dependency of the present values of assets and liabilities
on interest rate changes

As can be seen from Figure 3.2, the present value of the insurance portfolio reacts signif-
icantly more strongly to shifts in the yield curve, and already a reduction of the interest
rate by 25 basis points (scenario 1) results in the present value of the liabilities exceeding
the present value of the assets by almost 5%. The insurance company is therefore forced
to add additional investments to the asset portfolio to cover the actuarial provisions. On
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3. Asset-liability management in life insurance

the one hand, this reduces equity and on the other hand, this may lead to the insurer’s
insolvency.

The mismatch between assets and liabilities in the example underlines that a lack of ALM
measures can lead to risks that threaten the existence of a life insurance company. It is
therefore necessary for life insurance companies to implement appropriate and effective
asset-liability management processes to measure, monitor and, most importantly, manage
these risks. Such ALM processes must be adapted to the characteristics of a company, such
as new business, the lapse behaviour of policyholders, any options inherent in the insurance
contracts, as well as individual company objectives. After successful implementation, they
promote the financial stability and crisis resistance of a life insurance company and also
contribute to remaining competitive on the market and gaining the trust of existing and
potential policyholders.

3.2. The role of stochastic modelling in asset-liability
management

Although the substantive scope of asset-liability management is not uniformly defined in
both legal literature and insurance economics literature, modern definitions often elevate
ALM to the level of a holistic management approach for the responsible governance of
life insurance companies. The Society of Actuaries (SOA), for example, defines ALM in
Luckner et al. [21] as follows:

“ALM is the practice of managing a business so that decisions and actions
taken with respect to assets and liabilities are coordinated. ALM can be defined
as the ongoing process of formulating, implementing, monitoring and revising
strategies related to assets and liabilities to achieve an organization’s finan-
cial objectives, given the organization’s risk tolerances and other constraints.
ALM is relevant to, and critical for, the sound management of the finances of
any organization that invests to meet its future cash flow needs and capital
requirements.”

Even though this definition does not address the characteristics of life insurance, it illus-
trates that ALM is a comprehensive process in which several key operating departments of
an insurance company (management, asset management, actuarial department, risk man-
agement, etc.) must be involved in close cooperation. Some authors, see Cottin/Kurz [3]
for example, even go one step further and see asset-liability management not only as an
element of risk management and a way to achieve business goals, but also as a central
component of the life insurance business. In any case, this makes it clear that mathemat-
ical methods such as stochastic modelling and optimisation are important components of
an overall ALM concept, however, these models alone do not constitute a comprehensive
concept themselves.

In the former understanding of asset-liability management, before it was further devel-
oped into the aforementioned modern concept, the focus lay on techniques for matching
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the capital investment strategy to the technical provisions. In these sequential approaches,
the insurance business with its liabilities was largely assumed to be fixed and the aim was
purely to match and optimise the investment of capital, see Führer [7]. This resulted in
the direction of action ‘Liabilities control Assets’. In Cottin/Kurz [3] this point of view is
extended to three different, complementary approaches for ALM in modern concepts:

1. Assets are managed on the basis of liabilities.

2. Assets and liabilities are managed simultaneously, taking into account possible inter-
actions and dependencies.

3. The insurance company is managed as a whole on the basis of ongoing analysis and
systematic restructuring of assets and liabilities.

The first approach corresponds to the original understanding of ALM described above. It
considers liabilities as a consequence of the business activity of a life insurance company on
the one hand and assets as a control and optimisation variable on the other. This approach,
even though it is now embedded in more comprehensive concepts, continues to be of great
importance for short- and medium-term ALM, both in practice and in the regulatory con-
text. The second and third approaches each provide for simultaneous management of assets
and liabilities, with approach 2 here reflecting more of an actuarial view, while approach
3 amounts to the modern holistic view of corporate management discussed above. The si-
multaneous management also includes the direction of action ‘Assets control Liabilities’ in
ALM, which a priori appears to be less relevant in practice than its reversal. Nevertheless,
this direction of action must not be neglected in an overall concept, as it plays a key role,
for example, in strategies for adjusting new business to the capital market situation and
developing new insurance products.

At first, stochastic scenario modelling and stochastic optimisation as specific quantitative
ALM methods can mainly be associated with the first two approaches, which then merge
into an overall concept within approach 3. For models with a short- and medium-term time
horizon, which includes the main model of this thesis, approach 1 is particularly relevant,
since obligations of existing contracts cannot be influenced by the insurer during this period,
or can only be influenced to a small extent. Therefore, it is practicably realistic to consider
these as largely fixed variables in the model. This leaves the capital investment strategy as
the control variable for interest rate and liquidity risk, which can be adjusted and optimised
accordingly. Moreover, within this time horizon, more detailed modelling approaches —
such as partial models for sub-portfolios or more comprehensive capital market models —
can be applied and specific optimisation methods that require detailed models (such as du-
ration matching, see Section 4.3) can be considered. For approach 2, in contrast, the focus
is on more general stochastic models with longer time horizons, within which matching of
actuarial liabilities to investments is also a practically realistic option. Less suitable for
this purpose are concrete optimisation models, but rather models for strategic long-term
planning and information gathering for strategy decisions. In addition, stochastic models
with time projection horizons often require significant computational resources, so that
such models usually have to resort to simpler modelling approaches and simplifications,
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which also limits predictability. Of course, since stochastic models that are in use within
approaches 1 and 2 serve not only to achieve their specific goals (capital investment opti-
misation, new business strategy planning, etc.) but also help to gain valuable information
for corporate management, they implicitly contribute to fulfilling the goals of approach 3
as well. Stochastic models that are developed solely for the scope of approach 3 can also be
useful, although the degree of simplification generally needs to be increased considerably
here in order to obtain meaningful forecasts with practical computational power.

With regard to the role of stochastic modelling as a tool for fulfilling the core tasks of
an ALM system, Cottin/Kurz [3] initially differentiate these tasks between matching, mod-
elling and management. AL matching comprises the specific matching of investments and
insurance liabilities (approaches 1 and 2) and therefore plays a role primarily for spe-
cific (partial) insurance contract portfolios. It thus primarily fulfils the task of securing
short-term liquidity and hedging against adverse changes in the interest rate environment.
AL modelling deals with deterministic or stochastic forecasts of future business or capital
market developments and offers possibilities for analysing correlations between assets and
liabilities and the quantification of risks. The central model of this thesis covers both a
matching and a modelling aspect and can thus be assigned to these two core tasks. The
management task focuses on KPI-based decision support (approach 3). The central goals
of this task are the long-term assurance of solvency and the value- and profit-oriented
alignment of the company in the sense of the shareholders, stakeholders and policyholders.
Stochastic models, also preceding models of AL-matching and AL-modelling, can be used
here in a supportive way for the acquisition of corresponding information and key figures.

3.3. Regulatory framework for ALM

In addition to the described economic necessity for life insurers to implement control and
steering measures within the framework of asset-liability management, Austrian insurance
law also contains regulatory requirements for the implementation of suitable ALM pro-
cesses. The main legal sources with regard to ALM are the Insurance Supervision Act 2016
(Versicherungsaufsichtsgesetz 2016 — VAG 2016), the Directive 2009/138/EC of the Euro-
pean Parliament and of the Council (Solvency II Directive) and the Insurance Undertakings
Investment Regulation (Versicherungsunternehmen Kapitalanlageverordnung — VU-KAV)
of the Austrian Financial Market Authority (FMA). These legal sources explicitly oblige
insurance companies to asset-liability management and their requirements must be taken
into account in corresponding deterministic or stochastic models. The explicit regulations
on ALM contained therein as well as directly related regulations are summarized in Section
3.3.1. As the Solvency II Directive was implemented in national law (VAG 2016), this
section only refers directly to the laws mentioned and not to the directive itself.

Additionally, legal requirements that are not directly connected to ALM, but implicitly re-
quire ALM measures or need to be taken into account in a stochastic model, are discussed in
Section 3.3.2. These mainly include legally regulated optional rights of policyholders under
the Insurance Contract Act (Versicherungsvertragsgesetz — VersVG), various regulations
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of the FMA and further requirements in the VAG 2016. Among the FMA regulations,
in addition to the VU-KAV, the Maximum Interest Rate Regulation for Insurance Under-
takings (Versicherungsunternehmen-Höchstzinssatzverordnung — VU-HZV) and the Life
Insurance Profit Sharing Regulation (Lebensversicherung-Gewinnbeteiligungsverordnung
— LV-GBV) are discussed in more detail due to their relevance for ALM modelling.

3.3.1. Explicit legal requirements for ALM

The key legal requirements for asset-liability management can be found in the section on the
risk management system in the VAG 2016. Pursuant to Art. 110 para. 1 VAG 2016, this
risk management system must compose all the required strategies, processes and reporting
procedures necessary to identify, measure, monitor, manage and report the risks:

1. at an individual and at an aggregated level, to which they are or could be exposed;
and

2. the interdependencies between those risks.

Article 110 para. 2 VAG 2016 further stipulates that the risk management system must be
integrated into the organizational structure and decision-making processes of an insurance
undertaking and must in any case cover the following areas:

1. underwriting and reserving;

2. asset-liability management;

3. investment, in particular derivatives and similar commitments;

4. liquidity and concentration risk management;

5. operational risk management;

6. reinsurance and other risk mitigation techniques.

Here, an implementation of ALM processes is explicitly required for the first time, but a
specification of specific mathematical or non-mathematical methods is not to be found in
the VAG 2016. The required scope of ALM concepts is explained in more detail in Art. 260
(1) lit b of Commission Delegated Regulation (EU) 2015/35 supplementing the Solvency
II Directive and includes:

1. the structural mismatch between assets and liabilities and in particular the duration
mismatch of those assets and liabilities;

2. any dependency between risks of different asset and liability classes;

3. any dependency between the risks of different insurance or reinsurance obligations;

4. any off-balance sheet exposures of the undertaking;

5. the effect of relevant risk-mitigating techniques on asset-liability management.
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Despite this specification, however, the implementation of an ALM concept and the selec-
tion of the methods used is — under the general restriction of being ‘effective’ — essentially
left to the companies themselves. Nevertheless, these regulations already indicate that the
implementation of stochastic models is a necessary part of asset-liability management and
the risk management system, as the purposes of such models described in Section 3.2 are
well compatible with the legal requirements. This applies both to micro-level models for
risk measurement and control (approaches 1 and 2, page 16) and to macro-level models to
support decision-making processes (approach 3, page 16).

The governance system under Solvency II, and subordinately also the risk management
system, must be set up in such a way that it is proportionate to the nature, scale and
complexity of the business operations (Art. 107 para. 2 VAG 2016). Art. 107 para. 4
VAG 2016 further requires insurance undertakings to use appropriate and proportionate
systems, procedures and resources in order to ensure the continuity and regularity in the
performance of their activities. It can therefore be concluded that a high degree of individ-
uality is expected from stochastic ALM models. Consequently, this means that such models
must take into account the characteristic, individual features of a life insurance company
and its portfolio and capital structure, and that models that are too general would tend to
be judged inadequate by the Financial Market Authority. This conclusion is legally backed
up in Art. 2 VU-KAV by the fact that insurance companies are explicitly required to use
appropriate assumptions and factors when modelling ALM.

The additional provisions on ALM in Art. 110 VAG 2016 primarily relate to the cal-
culation of technical provisions, sensitivity assessments of provisions and eligible own funds
downstream of ALM, and the adjustment options (matching adjustment, volatility adjust-
ment) of the relevant risk-free interest rate term structure under Solvency II, which will
not be discussed in more detail here. It is noted, however, that the application of the
aforementioned matching adjustment requires the insurance company to define a portfolio
of assets (bonds and other assets) with similar cash flow characteristics in order to cover
the best estimate of the associated portfolio of insurance obligations (Art. 166 para. 1 no
1 VAG 2016). In addition, the expected cash flows of the allocated asset portfolio must
replicate all future cash flows of the portfolio of insurance obligations (Art. 166 para 1
no 3 VAG 2016). The fulfilment of these requirements is thus in any case preceded by
the application of cash flow matching methods within the framework of a deterministic or
stochastic ALM model.
Complementary to the risk management system, the requirements for capital investment
in the VAG 2016 and the VU-KAV contain further explicit requirements for ALM: Pur-
suant to Art. 124 para. 1 no 3 VAG 2016, assets held to cover technical provisions under
Solvency II must be invested in a manner that is appropriate to the nature and duration
of the insurance liabilities. These assets must also be invested in in the best interests of all
policyholders and beneficiaries, taking into account any disclosed policy objectives. This
specifically calls for an alignment of investments with insurance liabilities, which also gives
legal significance to the impact direction ‘Liabilities control Assets’ as described in the pre-
ceding section above. What is to be understood by the ‘nature’ of insurance liabilities is not
described in more detail, but it is only reasonable to assume that the liquidity requirements
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and interest rate sensitivity of the liabilities are also targeted here. This is emphasised by
the fact that Art. 7 VU-KAV requires a comparison of the interest rate sensitivities of
assets and liabilities as part of the development of the company’s own risk indicators, and
Art. 9 VU-KAV requires insurance companies to ensure that adequate liquid funds must
always be available at the time of maturity for all obligations assumed (including those
from the investment of capital) in order to fully meet them. Thus, stochastic optimisation
methods such as cash flow matching or duration matching — the latter corresponds to the
core optimisation problem in the model of this thesis — are of particular importance here.

For completeness of explicit legal regulations on ALM, it should be noted that Art. 3
VU-KAV sets out the requirements of the FMA for the creation and implementation of in-
ternal company policies on ALM processes and investment objectives, taking into account
obligations arising from insurance contracts and other liabilities, risk, return, time horizon
and liquidity requirements. However, as these provisions do not have a direct impact on
the implementation of the stochastic model, they will not be discussed in more detail.

In view of these legal requirements for coordinated management of assets and liabilities,
however, it should be noted that this does not necessarily mean that the underlying risk fac-
tors, such as interest rate sensitivity, have to be perfectly balanced. Kruse/Schaumlöffel [20]
argue in this matter that insurance companies can rather also consciously allow mismatches
between investments and insurance liabilities, provided that these are compatible with the
company’s risk strategy and are also sufficiently documented and justified in the risk man-
agement guidelines and policies mentioned above.

3.3.2. Additional legal provisions relevant to the model

In addition to the legal provisions that explicitly require the implementation of ALM mea-
sures, there are a number of legal requirements that implicitly affect asset-liability manage-
ment. This section takes a closer look in particular at the regulations that have a significant
impact on the stochastic modelling approach in Chapter 4.

Regulatory profit participation in life insurance

The Austrian Life Insurance Profit-sharing Regulation (Lebensversicherung-Gewinnbetei-
ligungsverordnung — LV-GBV) stipulates that, for life insurance contracts that are eligible
for profit participation, life insurance companies must allocate at least 85% of a defined min-
imum assessment basis, including any direct bonuses, to the provision for profit-dependent
premium reimbursement per financial year (Art. 3 LV-GBV). The minimum assessment
basis is defined in Art. 4 LV-GBV. In general, policyholders only participate in profits of an
insurance company and not in losses, as the provision for profit-dependent premium reim-
bursement is not reduced in case of a negative minimum assessment basis. Nonetheless, an
amendment to the LV-GBV in 2021 now allows insurance companies to take into account
overfunding or negative minimum assessment basis from previous years when determining
the current minimum assessment basis.
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Statutory maximum interest rate for life insurance contracts

The maximum interest rate for the calculation of technical provisions (pursuant to Chapter
7 of the Insurance Supervision Act 2016) set out in Art. 2 para. 1 of the Maximum Interest
Rate Regulation for Insurance Undertakings (VU-HZV) of the FMA is currently fixed with
0.00%, which is the result of a gradual reduction from 4% in 1994 to 0% since 2022. This
is thus also the maximum possible interest rate guaranteed to the policyholder at the time
the contract is concluded for new life insurance contracts.

Legal requirements for capital investment

The VAG 2016 and the VU-KAV contain numerous requirements regarding the structure
and management of investments: Under the prudent person principle, insurance under-
takings may only invest in assets and instruments whose risks they can properly identify,
measure, monitor, manage, control and report (Art. 124 para. 1 no 1 VAG 2016). These
must be invested in such a way that the security, quality, liquidity and profitability of the
entire portfolio is guaranteed (Art. 124 para. 1 no 2 VAG 2016). With regard to the
permissible financial instruments, the following is specified in Art. 124 para. 1 nos 5 to 6
VAG 2016:

• Derivative financial instruments are permitted if they contribute to reducing risks or
facilitating efficient portfolio management;

• Short selling is not permitted;

• Investment and assets which are not admitted to trading on a regulated financial
market shall be kept to prudent levels.

Supplementing this provision, with regard to the use of derivative financial instruments to
reduce risks, insurance companies must at all times be able to provide quantitative evi-
dence of their risk-reducing effect for the entire period of usage and prove that no additional
substantial risks arise from the use of derivatives (Art. 11 para. 1 no 1 VU-KAV). In ad-
dition, speculative investments with high leverage, short holding periods, high transaction
frequency or within the context of arbitrage strategies as well as the use of short put options
shall only be kept at a prudent level (Art. 11 para. 2 VU-KAV).

With regard to the composition of the investment portfolio, Art. 124 para. 1 no 7 VAG
2016 requires that assets are appropriately mixed and diversified in order to avoid excessive
dependencies on a particular asset, issuer, group of companies or geographical region. To
this end, insurance undertakings must define and implement a suitable limit system with
quantitative investment limits for all relevant concentration risks in accordance with Art.
6 para. 1 VU-KAV.

Cancellation rights of policyholders and fully paid-up insurance

In life insurance, policyholders have the right to terminate an insurance contract with
continuous premium payments at any time for the end of the current insurance period
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3. Asset-liability management in life insurance

(Art. 165 para. 1 VersVG). For covered risks for which the insurer is certain to be liable,
this right of termination may also be exercised in case of a single premium payment (Art.
165 para 2 VersVG). For the latter type of contracts, where the payment of the agreed
sum by the insurer is certain, the surrender value attributable to the insurance must be
refunded to the policyholder in the event of termination (Art. 176 para. 1 VersVG).
Pursuant to Art. 176 para. 3 VersVG, this surrender value is to be calculated as the current
value of the insurance at the end of the current insurance period, in accordance with the
accepted rules of actuarial mathematics on the basis of the calculation principles of the
premium calculation, taking into account possible outstanding premiums. The insurance
company is entitled to a deduction from the refund (‘cancellation deduction’) if this is
agreed and appropriate (Art. 176 para. 4 VersVG). Further regulations on deductions
from the surrender value (such as for acquisition costs), which are set out in Art. 176 para.
4 to 5 VersVG, are not taken into account in the model and are therefore not discussed
here in more detail.
In addition to the right of termination, the policyholder is entitled at any time to demand
the conversion of the insurance into a fully paid-up insurance for the end of the current
insurance period (Art. 173 para. 1 VersVG). As a result, the agreed lump sum or annuity
amount is replaced by the amount calculated according to the accepted rules of actuarial
mathematics on the basis of the calculation principles of the premium calculation, whereby
outstanding premiums are also taken into account here (Art. 173 para. 2 VersVG).

22



4. The model

In this chapter, we present the underlying stochastic model for the development of assets
and liabilities over time and the ALM approach for the management of interest rate risk.
The stochastic model consists of two main sub-models: An asset model and a liability
model, which are defined and described separately, although dependencies between the
sub-models are taken into account at the appropriate point. With regard to the mathe-
matical properties of each model component, we will focus in particular on those that are
essential for understanding the model’s dynamics and the calibration of the model, as well
as on properties that are crucial for the objective of interest rate risk optimisation.

First, we will introduce the modelling concepts for the financial market and the possi-
ble investment instruments in which the insurance company can invest. For the asset
processes, we choose stochastic modelling approaches in continuous time based on estab-
lished financial mathematical models because, although their numerical treatment requires
more computational resources, central results of stochastic analysis can be applied to de-
rive probabilistic properties and closed-form representations of the corresponding stochastic
processes.

Second, we will present the modelling approach for the insurance portfolio, which is based
on a discrete-time Markov chain model. For this purpose, as well as for the optimisation
within the interest rate risk management approach, we consider a time discretization T
that is given by a grid of equidistant points in time 0 = t0 < t1 < · · · < tN = T , where
T corresponds to the maturity of the insurance contracts of the portfolio. For the further
course of this thesis, we assume annual time steps for the projection of the insurance port-
folio and the rebalancing of the investment portfolio and define the model accordingly.

Third, we describe the dynamic multi-period ALM optimisation approach of this model
to manage the interest rate risk to which the insurer is exposed. This approach comprises
a periodic adjustment of the asset portfolio as a result of a two-stage non-linear optimisation
problem.

4.1. Asset model

For this model, we consider a simplified capital market with a stochastically modelled risk-
free yield curve, market models for equities and fixed rate bonds, and a risk-free money-
market account. We start with the modelling approach of the risk-free yield curve, then
present the models for the stochastic processes for the evolution of the money-market ac-
count, the bond prices and the stock price development. Following a risk-based approach
such as described in Brigo/Mercurio [1] or Gerstner et al. [10], all sub-models are defined

23



4. The model

under the real-world probability measure P. The consideration of stochastic dependencies
between the respective processes and model-relevant mathematical properties of the model
components are discussed as well. In addition, restrictions on the insurance company’s
investment portfolio resulting from practical considerations and the legal requirements dis-
cussed in Chapter 3 are covered in this section.

4.1.1. Interest rate term structure model

The risk-free interest rate term structure in this thesis is modelled using the Vasicek short
rate model. The Vasicek model is a one-factor affine short rate model (see Definition 2.2.5)
that describes interest rate movements driven by a single source of market risk, where the
short rate evolves as an Ornstein-Uhlenbeck process with constant coefficients. The model
was first presented in Vasicek [28] and has been widely treated in mathematical theory, see
Brigo/Mercurio [1] or Desmettre/Korn [4], for example. The dynamics of the short rate in
the Vasicek model are given by the stochastic differential equation

dr(t) = κ
�
θ − r(t)

%
dt+ σ dW r(t), r(0) = r0 (4.1)

with κ > 0 and θ, σ ≥ 0 and a one-dimensional standard Brownian motion W r and is
therefore of the affine form (2.20) with the constant parameter functions

ν(t) = −κ,

η(t) = κ θ,

γ(t) = 0,

δ(t) = σ2.

Rather than defining the short rate dynamics under a risk-neutral probability measure Q,
we define the dynamics under the real-world measure P and assume a corresponding risk
premium to be zero, such that the short rate dynamics under Q and P coincide. This im-
plies that the corresponding Brownian motion for the short rate and the Brownian motions
underlying the stock price dynamics, see Section 4.1.4, can be simulated under the same
probability measure, with the short rate model still following risk-neutral dynamics and
thus being suitable for the pricing of fixed rate bonds and the calculation of present values
of future cash flows.

The Vasicek model has the mean-reverting property, which means that the process tends
to drift towards its long-term mean θ. This can easily be seen from equation (4.1) above
as, for κ > 0, the drift coefficient κ(θ − r(t)) is negative as long as the short rate is above
θ and positive as long as the short rate is below θ, resulting in r being pushed to the level
θ on average at every point in time. The parameter κ in this case specifies the speed of
the mean reversion effect, as increasing values of κ result in a higher tendency of r towards
the level of θ. However, the speed of mean reversion κ must be considered in relation to
the volatility σ, which indicates the degree of random noise in the model. A high volatility
σ can even overcompensate the mean reverting effect, as shown in Desmettre/Korn [4].
Generally, this mean reverting property is favourable for modelling interest rate structures
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and can be economically justified by the fact that in phases of high interest rates, economy
is slowed down and interest rates fall as a result, and in phases of low interest rates, the
demand for funds increases, forcing interest rates to rise.

Figure 4.1.: Sample paths of the short rate in the Vasicek model

Using Itô’s lemma, we can obtain the solution of the defining stochastic differential equation
(4.1), to then derive the essential distributional properties of r(t):

Theorem 4.1.1. The unique solution of equation (4.1) is given as

r(t) = r(s) e−κ(t−s) + θ
�
1− e−κ(t−s)

#
+ σ

� t

s
e−κ(t−u) dW r(u), 0 ≤ s ≤ t. (4.2)

Proof. To solve equation (4.1) we will use variation of constants, see Brigo/Mercurio [1].
We assume θ = 0 and σ = 0 and consider the ordinary differential equation

dr

dt
= −κ r(t).

The solution of this ordinary differential equation is Ce−κt with some arbitrary constant
C ∈ R. To find the solution of the original equation we set

r(t) = Y (t) e−κt (4.3)

for some unknown stochastic process Y . Rearranging (4.3) and applying Itô’s Lemma
(Theorem 2.1.8) with f(t, r) = r eκt, α

�
t, r(t)

%
= κ

�
θ − r(t)

%
and σ

�
t, r(t)

%
= σ yields

dY (t) = df(t, r(t)) =

�
κ r(t) eκt + κ

�
θ − r(t)

%
eκt

&
dt+ σeκt dW r(t)

= κ θ eκt dt+ σeκt dW r(t).
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Integrating this equation, we obtain, for each 0 ≤ s ≤ t,

Y (t) = Y (s) + κ θ

� t

s
eκu du+ σ

� t

s
eκu dW r(u)

and changing Y (t) back to r(t) eκt yields

r(t) = r(s) e−κ(t−s) + θ
�
1− e−κ(t−s)

#
+ σ

� t

s
e−κ(t−u) dW r(u).

The uniqueness of the solution immediately follows from Theorem 2.1.6 as the coefficient
functions α(t, x) and σ(t, x) are Lipschitz-continuous in x.

From the explicit representation of r in (4.2), the following distributional properties of the
short rate can be derived:

Corollary 4.1.2. For t ≥ 0, the short rate r(t) in the Vasicek model is normally distributed
with

r(t) ∼ N
�
r0 e

−κt + θ
�
1− e−κt

%
,
σ2

2κ

�
1− e−2κt

%&
. (4.4)

Conditional on Fs, it holds for s ≤ t:

E
�
r(t)|Fs

�
= r(s) e−κ(t−s) + θ

�
1− e−κ(t−s)

%
,

Var
�
r(t)

//Fs

%
=

σ2

2κ

�
1− e−2κ(t−s)

%
.

Proof. The closed-form representation (4.2) with s = 0 yields

r(t) = r(0) e−κt + θ
�
1− e−κt

#
+ σ

� t

0
e−κ(t−u) dW r(u), t ≥ 0.

Thus, since X(u) := e−κ(t−u) is deterministic and fulfils (2.3), it follows from the properties
of the stochastic integral with respect to Brownian motion, see Lemma 2.1.4, and the
invariance under linear transformation of the normal distribution that

σ

� t

0
e−κ(t−u) dW r(u) ∼ N

�
0,

σ2

2κ

�
1− e−2κt

%&
and consequently

r(t) ∼ N
�
r0 e

−κt + θ
�
1− e−κt

%
,
σ2

2κ

�
1− e−2κt

%&
.

For the conditional expectation, it follows

E
�
r(t)

//Fs

�
= E

�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%
+ σ

� t

s
e−κ(t−u)dW r(u)

//// Fs

�
= E

�
r(s)e−κ(t−s)

/// Fs

�
+ θ

�
1− e−κ(t−s)

%
+ σE

� � t

s
e−κ(t−u)dW r(u)

//// Fs

�
(∗)
= r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%
+ σ E

� � t

s
e−κ(t−u)dW r(u)

�
� �� �

=0

= r(s)e−κ(t−s) + θ
�
1− e−κ(t−s)

%
.

26



4. The model

Equality (∗) holds because r(s) is Fs measurable and the stochastic integral
� t
s e

−κ(t−u)dW r(u)
is independent of Fs with expected value equal to zero, see Definition 2.1.3 and Lemma
2.1.4.

Further, using the identityVar(r(t)|Fs) = E[r(t)2|Fs]−E[r(t)|Fs]
2 for conditional variance,

it holds that

Var
�
r(t)

//Fs

%
= E

��
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%
+ σ

� t

s
e−κ(t−u)dW r(u)

&2 //// Fs

�
− E

�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%
+ σ

� t

s
e−κ(t−u)dW r(u)

//// Fs

�2
= E

��
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%#2
//// Fs

�
+ E

�
2
�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%# · σ
� t

s
e−κ(t−u)dW r(u)

//// Fs

�
+ E

�
σ2

�� t

s
e−κ(t−u)dW r(u)

&2 //// Fs

�
−
�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%&2

(∗∗)
=

�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%#2

+ 2
�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%# · σ E

� � t

s
e−κ(t−u)dW r(u)

�
� �� �

=0

+ σ2E

��� t

s
e−κ(t−u)dW r(u)

&2�
−
�
r(s)e−κ(t−s) + θ

�
1− e−κ(t−s)

%#2

= σ2E

��� t

s
e−κ(t−u)dW r(u)

&2�
Equation (∗∗) above again follows from the Fs-measurability of r(s) and from the indepen-
dence of

� t
s e

−κ(t−u)dW r(u) of Fs. Using Itô isometry, see Lemma 2.1.4, yields

σ2E

��� t

s
e−κ(t−u)dW r(u)

&2�
= σ2E

� � t

s
e−2κ(t−u)du

�
= σ2

� t

s
e−2κ(t−u)du

=
σ2

2κ

�
1− e−2κ(t−s)

#
.

We will now derive a closed form representation of the integrated short rate
� t
s r(u) du,

which will be relevant for the calculation of zero-coupon bond prices and the distributional
properties of the bank account evolution in Section 4.1.2:
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Lemma 4.1.3. Let
�
(r(u)

%
u≥0

be the Vasicek short rate process. Then, for 0 ≤ s < t, the
integrated short rate can be written as� t

s
r(u) du = r(s)

1− e−κ(t−s)

k
+ θ

�
(t− s)− 1− e−κ(t−s)

κ

#
+ σ

� t

s

1− e−κ(t−v)

κ
dW r(v).

(4.5)

Furthermore, the integrated short rate is normally distributed,� t

s
r(u) du ∼ N �

µ̃(s, t), σ̃2(s, t)
%
, (4.6)

with

µ̃(s, t) := θ(t− s) +
�
r0 − θ

%e−κs − e−κt

κ
, (4.7)

σ̃2(s, t) :=
σ2

κ2
(t− s) +

σ2

2κ3

��
1− e−κ(t−s)

%2�
1− e−2κs

%
+ 4e−κ(t−s) − e−2κ(t−s) − 3

#
.

(4.8)

Proof. For 0 ≤ s < t, it follows from the representation (4.2) of the Vasicek short rate r(u)
that� t

s
r(u) du =

� t

s

�
r(s)e−κ(u−s) + θ

�
1− e−κ(u−s)

#
+ σ

� u

s
e−κ(u−v) dW r(v)

&
du

= r(s)

� t

s
e−κ(u−s) du+ θ

� t

s
1− e−κ(u−s) du+ σ

� t

s

� u

s
e−κ(u−v) dW r(v) du

(∗)
= r(s)

� t

s
e−κ(u−s) du+ θ

� t

s
1− e−κ(u−s) du+ σ

� t

s

� t

v
e−κ(u−v) du dW r(v)

= r(s)
1− e−κ(t−s)

κ
+ θ

�
(t− s)− 1− e−κ(t−s)

κ

#
+ σ

� t

s

1− e−κ(t−v)

κ
dW r(v).

In (∗), the order of integration can be changed by applying the Fubini-Tonelli theorem
due to the non-negativity of the integrand. Since r(s) and

� t
s

1
k (1 − e−κ(t−v)) dW r(v) are

stochastically independent normally distributed random variables, see Corollary 4.1.2 and
Lemma 2.1.4, where the independence follows immediately from property (c) in Definition
2.1.3 of Brownian motion, the integrated short rate

� t
s r(u) du itself is also normally dis-

tributed.
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Furthermore, it follows from the linearity of the expected value and Lemma 2.1.4 that

E

� � t

s
r(u) du

�
= E

�
r(s)

1− e−κ(t−s)

κ
+ θ

�
(t− s)− 1− e−κ(t−s)

κ

#
+ σ

� t

s

1− e−κ(t−v)

κ
dW r(v)

�
= E

�
r(s)

�1− e−κ(t−s)

κ
+ θ

�
(t− s)− 1− e−κ(t−s)

κ

#
+ σE

� � t

s

1− e−κ(t−v)

κ
dW r(v)

�
� �� �

=0

=

�
r0e

−κs + θ
�
1− e−κs

%&1− e−κ(t−s)

κ
+ θ

�
(t− s)− 1− e−κ(t−s)

κ

#
= θ(t− s) + (r0 − θ)

e−κs − e−κt

κ
.

For the variance, similar to the proof of Corollary 4.1.2, it holds

Var

�� t

s
r(u) du

&
= Var

�
r(s)

1− e−κ(t−s)

κ
+ θ

�
(t− s)− 1− e−κ(t−s)

κ

#
+ σ

� t

s

1− e−κ(t−v)

κ
dW r(v)

&
(∗∗)
=

�
1− e−κ(t−s)

κ

&2

Var
�
r(s)

%
+ σ2Var

�� t

s

1− e−κ(t−v)

κ
dW r(v)

&
=

�
1− e−κ(t−s)

κ

&2 σ2

2κ

�
1− e−2κs

#
+ σ2

� t

s

�
1− e−κ(t−v)

κ

&2

dv

=
σ3

2κ3
�
1− e−κ(t−s)

%2�
1− e−2κs

%
+

σ2

κ2

�
(t− s)− 2

κ

�
1− e−κ(t−s)

%
+

1

2κ

�
1− e−2κ(t−s)

%#
=

σ2

κ2
(t− s)

+
σ2

2κ3

��
1− e−κ(t−s)

%2�
1− e−2κs

%
+ 4e−κ(t−s) − e−2κ(t−s) − 3

#
.

Here, similar to the derivation of the normal distribution of the integrated short rate above,
equation (∗∗) holds because r(s) and

� t
s

1
κ(1− e−κ(t−v)) dW r(v) are independent.

Based on the previous lemma, we can now present a closed-form representation of zero-
coupon bond prices P (t, T ) in this model. Using the zero-coupon bond prices, the term
structure of interest rates can be derived directly using Definition 2.2.4. As the Vasicek
short rate model is an affine short rate model, this representation can be derived in the
following form according to Theorem 2.2.6:
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Theorem 4.1.4. Let
�
r(s)

%
s≥0

be the Vasicek short rate process. Then, the price of a
zero-coupon bond at time t with maturity T is given as

P (t, T ) = e−B(t,T ) r(t)+A(t,T ), (4.9)

with

B(t, T ) :=
1

κ

�
1− e−κ(T−t)

#
,

A(t, T ) :=

�
θ − σ2

2κ2

&�
B(t, T )− T + t

%− σ2

4κ
B(t, T )2.

Proof. Consider 0 ≤ t ≤ T . Given the Vasicek short rate process
�
r(s)

%
s≥0

, it holds

P (t, T ) = E

�
e−

� T
t r(s) ds

//// Ft

�
.

Using the representation (4.5) of the integrated short rate in Lemma 4.1.3, it follows from
the properties of conditional expectation that

E

�
e−

� T
t r(s) ds

//// Ft

�
= E

�
exp

�
− r(t)

1− e−κ(T−t)

κ
− θ

�
(T − t)− 1− e−κ(T−t)

κ

#
− σ

� T

t

1− e−κ(T−v)

κ
dW r(v)

& //// Ft

�
= exp

�
− r(t)

1− e−κ(T−t)

κ
− θ

�
(T − t)− 1− e−κ(T−t)

κ

#&
· E

�
exp

�
− σ

� T

t

1− e−κ(T−v)

κ
dW r(v)

&�
= exp

�
− r(t)

1− e−κ(T−t)

κ
− θ

�
(T − t)− 1− e−κ(T−t)

κ

#&
· exp

�
σ2

2κ2

�
(T − t)− 2

κ

�
1− e−κ(T−t)

%
+

1

2κ

�
1− e−2κ(T−t)

%#&
Here, we use that r(t) is Ft-measurable and that the stochastic integral with respect to W r

is independent of Ft and normally distributed, see Lemma 2.1.4.
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Defining A(t, T ) and B(t, T ) as in the theorem, we can simplify this expression as

exp

�
− r(t)

1− e−κ(T−t)

κ
− θ

�
(T − t)− 1− e−κ(T−t)

κ

#&
· exp

�
σ2

2κ2

�
(T − t)− 2

κ

�
1− e−κ(T−t)

%
+

1

2κ

�
1− e−2κ(T−t)

%#&
= exp

�
− r(t)B(t, T )− θ

�
(T − t)−B(t, T )

#
+

σ2

2κ2

�
(T − t)− 2B(t, T ) +

1

2κ

�
1− e−2κ(T−t)

%#&
= exp

�
− r(t)B(t, T ) +

�
θ − σ2

2κ2

#�
B(t, T )− T + t

#
− σ2

4κ

�2
κ
B(t, T )− 1

κ2
�
1− e−2κ(T−t)

%#
� �� �

=B(t,T )2

&

= e−B(t,T ) r(t)+A(t,T ).

Remark. By computing the partial derivatives, one can immediately verify that the given
functions A(t, T ) and B(t, T ) in Theorem 4.1.4 are the unique solutions of the system of
differential equations in (2.22) and (2.23) from Theorem 2.2.6.

By combining the results of this theorem and the distributional properties of r(t) from
Lemma 4.1.2, the distribution of future zero-coupon bond prices can be derived directly,
which will later be used in particular for the calculation of distributional properties of fixed
rate bond prices. Since r(t) is normally distributed according to (4.4) and A(t, T ), B(t, T )
are deterministic functions, it follows that P (t, T ) is log-normally distributed. More pre-
cisely, by denoting

µ̂(t) := r0 e
−κt + θ

�
1− e−κt

%
(4.10)

σ̂2(t) :=
σ2

2κ

�
1− e−2κt

%
, (4.11)

whereby r(t) ∼ N �
µ̂(t), σ̂2(t)

%
, it follows that

P (t, T ) ∼ LogN
�
A(t, T )−B(t, T ) µ̂(t), B(t, T )2 σ̂2(t)

#
. (4.12)

Based on the formulas for the expected value and variance of the log-normal distribution,
see Lemma 2.1.2, we obtain

E
�
P (t, T )

�
= eA(t,T )−B(t,T ) µ̂(t)+ 1

2
B(t,T )2σ̂2(t), (4.13)

Var
�
P (t, T )

%
= e2

�
A(t,T )−B(t,T ) µ̂(t)

%
+B(t,T )2 σ̂2(t)

�
eB(t,T )2σ̂2(t) − 1

#
. (4.14)
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For the conditional expectation of future zero-coupon bond prices, the following lemma
holds:

Lemma 4.1.5. Let
�
(r(u)

%
u≥0

be the Vasicek short rate process and consider 0 ≤ s ≤ t < T .

The conditional expectation of P (t, T ) given Fs is given as

E
�
P (t, T )

//Fs

�
= exp

�
A(t, T )−B(t, T )

�
r(s) e−κ(t−s) + θ

�
1− e−κ (t−s)

%#
(4.15)

+
B(t, T )2 σ2 (1− e−2κ(t−s))

4κ

&
.

Proof. With the representation of P (t, T ) in (4.9), the representation of r(t) in (4.2) and
Lemma 2.1.2, it follows that

E
�
P (t, T )

//Fs

�
=E

�
exp

�
−B(t, T ) r(t) +A(t, T )

# ///Fs

�
=exp

�
A(t, T )

% · E� exp�−B(t, T ) ·
�
r(s) e−κ(t−s) + θ

�
1− e−κ(t−s)

%
+ σ

� t

s
e−κ(t−u) dW r(u)

#& ////Fs

�
(∗)
= exp

�
A(t, T )−B(t, T )

�
r(s) e−κ(t−s) + θ

�
1− e−κ(t−s)

%#&
· E

�
exp

�
−B(t, T )σ

� t

s
e−κ(t−u) dW r(u)

#&
� �� �

∼LogN
�
0, B(t,T )2·σ2

2κ

�
1−e−2κ(t−s)

%%
�

=exp

�
A(t, T )−B(t, T )

�
r(s) e−κ(t−s) + θ

�
1− e−κ(t−s)

%#
+

B(t, T )2 σ2 (1− e−2κ(t−s))

4κ

&
.

Equation (∗) above holds due to the Fs-measurability of r(s) and the independence of the
stochastic integral of Fs as a result of the defining property (c) of Brownian motion, see
Definition 2.1.3.

Remark. From the normal distribution property of the short rate it follows that, for positive
κ and σ, the short rate r(t) in the Vasicek model can also take on negative values for each
time t with probability

P
�
r(t) < 0

%
= Φ

�
− r0e

−κt + θ
�
1− e−κt

%+
σ2

2κ

�
1− e−2κt

%
$

> 0. (4.16)

Here, Φ is the cumulative distribution function of the standard normal distribution. The
fact that the short rate can become negative is often cited as a drawback of the Vasicek
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model in the literature. This point of view can especially be traced back to a pre-financial
crisis perspective in which negative interest rates were considered unrealistic. But given
the fact that negative interest rates became reality in the recent past, this approach was
consciously chosen and has the advantage that, via a suitable choice of parameters, scenarios
with negative interest rates can also be modelled and investigated. If, however, negative
yield curves are not desired, the model parameters can be chosen such that the probabilities
of negative short rates given in (4.16) become negligibly small for all t.
For a very similar model that explicitly excludes negative short rates, we refer here to the
affine Cox-Ingersoll-Ross short rate model (CIR model). The short rate dynamics under
the CIR model are given by the stochastic differential equation

dr(t) = κ
�
θ − r(t)

%
dt+ σ

,
r(t) dW (t), r(0) = r0,

with positive constants κ, θ, σ and a one-dimensional standard Brownian motion W . By
satisfying the so-called Feller condition 2κθ > σ2, it can even be guaranteed that the short
rate in the CIR model is strictly positive, see Brigo/Mercurio [1].

To conclude this section, we will present one more result regarding the yield curve (see
Definition 2.2.4) resulting from the zero-coupon bond prices at a time t. Desmettre/Korn
[4] show that the yield curve derived from the Vasicek model can take four different shapes
depending on the model parameters:

Theorem 4.1.6 (Vasicek yield curve shape). Assume κ > 0. Then the following statements
about the shape of the yield curve in the Vasicek model hold:

(a) If σ > 0, then:

The yield curve is normal ⇔ r(t) ≤ θ − 3σ2

4κ2

The yield curve is inverted ⇔ r(t) ≥ θ

The yield curve is humped ⇔ θ − 3σ2

4κ2
< r(t) < θ.

Here, a normal yield curve is strictly monotonically increasing and bounded from
above, an inverted yield curve is strictly monotonically decreasing and bounded from
below, and a humped yield curve is a curve with exactly one maximum and no mini-
mum in the interval (0,∞).

(b) If σ = 0, then the yield curve is flat (constant) for r(t) = θ, normal for r(t) < θ and
inverted for r(t) > θ .

Proof. For a proof of this theorem and a detailed treatment of all cases, see Desmettre/Korn
[4].
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4.1.2. Cash model

To represent the riskless investment option in this asset model, we consider a bank account
whose value development is driven by the development of the modelled risk-free short rate:

Definition 4.1.7 (Bank account). Let C(t) be the value of a bank account with C(0) = 1.
The bank account evolves according to the ordinary differential equation

dC(t) = r(t)C(t) dt, C(0) = 1, (4.17)

where r(t) is the short rate modelled in (4.1) in the previous section.

Solving the defining ordinary differential equation for the evolution of the bank account, it
follows that

C(t) = e
� t
0 r(s) ds, C(0) = 1. (4.18)

Figure 4.2.: Sample paths of the bank account development given the Vasicek short rate
paths in Figure 4.1

From the distributional properties of the integrated short rate in Lemma 4.1.3, it follows
that � t

0
r(s) ds ∼ N �

µ̃(0, t), σ̃2(0, t)
%
,

with µ̃(0, t) and σ̃2(0, t) as defined in Lemma 4.1.3. Thus, for t ≥ 0, using Lemma 2.1.2,
C(t) is log-normally distributed with

E
�
C(t)

�
= exp

�
µ̃(0, t) +

σ̃2(0, t)

2

&
(4.19)

= exp

�
r0 − θ

κ
− 3σ2

4κ3
+

�
θ +

σ2

2κ2

#
t+

�σ2

κ3
− r0 − θ

κ

#
e−κt − σ2

4κ3
e−2κt

&
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and

Var
�
C(t)

%
= exp

�
2µ̃(0, t) + σ̃2(0, t)

#�
exp

�
σ̃2(0, t)

%− 1
#

(4.20)

= exp

�
2(r0 − θ)

κ
− 3σ2

2κ3
+
�
2θ +

σ2

κ2

#
t+

�2σ2

κ3
− 2(r0 − θ)

κ

#
e−κt − σ2

2κ3
e−2κt

&
·
�
exp

�
σ2

κ2
t+

σ2

2κ3

�
4e−κt − e−2κt − 3

#&
− 1

&
.

The return for an investment in the bank account for a given time period [tk−1, tk) of the
model time grid T is defined as

RC
k :=

C(tk)− C(tk−1)

C(tk−1)
= exp

�� tk

tk−1

r(s) ds

&
− 1, k = 1, . . . , N. (4.21)

From Lemma 4.1.3, the proof of Theorem 4.1.4 and the fact that the time increments of
the underlying time grid T equal one year, i.e. (tk − tk−1) = 1, it immediately follows for
the conditional expectation of the bank account return RC

k , given Ftk−1
, that

E
�
RC

k

///Ftk−1

�
= E

�
exp

�� tk

tk−1

r(s) ds

& ////Ftk−1

�
− 1 (4.22)

= exp

�
1− e−κ

κ
·
�
r(tk−1)− θ − σ2

κ2

#
+

σ2

4κ3

�
1− e−2κ

#
+

σ2

2κ2
+ θ

&
− 1.

(4.23)

4.1.3. Bond model

As investment instruments from fixed-income markets, we consider a total of nB ∈ N
different fixed rate bonds B1, . . . , BnB with different coupon rates and maturities. For the
i-th bond, we denote with TB

i ∈ N the maturity of the bond in years and with cBi ∈ [0, 1]
the constant coupon rate as the rate of interest paid on the bond’s face value NB

i at fixed
points in time. We also denote with

TB
max := max

�
TB
i

// 1 ≤ i ≤ nB



the maximum maturity of all bonds. We further assume the following simplifications for
the bond model:

1. The face value of all bonds is equal to 1, that is

NB
i = 1, i = 1, . . . , nB. (4.24)

Since the price Bi of an arbitrary bond with face value Ni and coupon rate ci is linear
in its face value, as can be seen from the bond’s pricing formula (4.27) below, Bi/Ni

equals the price of a bond with the same coupon rate and face value 1. Under the
assumption that all financial assets are arbitrarily divisible, see Section 4.1.6, this
assumption is not a restrictive simplification.
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2. All bonds have equal future coupon payment dates until their individual maturity
and the coupon payment dates are consistent with the model time grid T . Therefore,
formally, we consider the time grid 0 < tc1 < · · · < tckB ≤ TB

max of kB equidistant
coupon payment times with �

tcj | tcj ≤ T

 ⊆ T , (4.25)

and assume that at every coupon date tcj ∈ {tc1, . . . , tckB}, each bondBi ∈ {B1, . . . , BnB}
pays a coupon of

ci ·NB
i · 1{tcj≤TB

i } = ci · 1{tcj≤TB
i }.

Here,

1{tcj≤TB
i } =

�
1 if tcj ≤ TB

i

0 if tcj > TB
i

denotes the indicator function, which ensures that the i-th bond only pays coupons
until its maturity TB

i . As the price of a fixed rate bond drops at each of its coupon
payment dates by the amount of the coupon paid, as can be seen from the fixed rate
bond pricing formula (4.26) below, condition (4.25) guarantees that if a bond is held
for a time period [tk, tk+1), no coupons are paid within this period and thus no such
drops in the fixed rate bond’s value occur.

3. We assume that the probability of default is zero for all bond issuers. In particular, we
only consider high-rated bonds in this model for which default risk can be neglected
for simplification.

We assume that the fixed rate bonds in this model are only held for one period and that
the set of available bonds is ‘renewed’ after every time period. That is, for every point
in time tk of the model time grid T , the bonds available for investment have the same
properties (i.e. term to maturity, coupon rate and future coupon payment times). Thus,
at tk, the maturity of the i-th bond equals tk + TB

i and the future coupons after tk are
paid at the coupon payment times {tk + tc1, . . . , tk + tckB}, accordingly. This yields that
the bonds’ durations, see (4.61), do not significantly change between different times of the
time grid as their structures of future cash flows remain the same. As the main objective
of this model is to investigate optimal asset portfolio compositions to manage the interest
rate risk, see Section 4.3, we require that the investment opportunities for the insurance
company in terms of available assets and their characteristics are equal for each time period.

In this thesis, we model the price of each bond as the theoretical financial mathemat-
ical price corresponding to the present value of the bond’s future cash flows under the
risk-free yield curve modelled in Section 4.1.1. Very generally, following the notation in
Kellerhals [16], the price of a fixed rate bond at time t with maturity T is given as

B(t, T ) =
-

u∈(t,T ]

c(u) · P (t, u), (4.26)
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where c(u) denotes the cash flows received by the bond holder at time u. With the above
assumptions and notation, the price of the i-th bond at an arbitrary time t ≤ T is of the
form

Bi(t) =

kB-
j=1

ci P (t, t+ tcj) + P (t, t+ TB
i ). (4.27)

Figure 4.3.: Sample paths of a fixed rate bond price given the Vasicek short rate paths in
Figure 4.1

Note that, as P (t, T ) is continuous in both arguments t and T as a consequence of the
continuity of the short rate process r, it follows that Bi(t) is also continuous.

To analyse the distributional properties of a coupon bond price and, in particular, to derive
a closed formula for the variance of a coupon bond price, we consider the following lemma:

Lemma 4.1.8. Consider 0 ≤ t < s < u and consider two zero-coupon bond prices P (t, s)
and P (t, u) given by (4.9). Then, it holds for the covariance of P (t, s) and P (t, u) that

Cov
�
P (t, s), P (t, u)

#
= e

A(t,s)+A(t,u)−µ̂(t)
�
B(t,s)+B(t,u)

%
+

σ̂2(t)
2

�
B(t,s)2+B(t,u)2

#
(4.28)

·
�
eσ̂

2(t)B(t,s)B(t,u) − 1

&
,

where µ̂(t) and σ̂2(t) are given by (4.10) and (4.11), respectively.

Proof. Let 0 ≤ t < s < u be arbitrary. With the closed form (4.9) of a zero-coupon bond
price, the bilinearity of covariance and the identity Cov(X,Y ) = E[XY ] − E[X]E[Y ] for
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covariance, it follows that

Cov
�
P (t, s), P (t, u)

#
= Cov

�
e−r(t)B(t,s)+A(t,s), e−r(t)B(t,u)+A(t,u)

&
= eA(t,s)+A(t,u)Cov

�
e−r(t)B(t,s), e−r(t)B(t,u)

&
= eA(t,s)+A(t,u)

�
E

�
e−r(t)

�
B(t,s)+B(t,u)

%�
− E

�
e−r(t)B(t,s)

�
E

�
e−r(t)B(t,u)

�&

Since r(t) ∼ N �
µ̂(t), σ̂2(t)

%
, see Lemma 4.1.2, it follows that

e−r(t)
�
B(t,s)+B(t,u)

%
∼ LogN

�
− µ̂(t)

�
B(t, s) +B(t, u)

%
, σ̂2(t)

�
B(t, s) +B(t, u)

%2#
and further, using Lemma 2.1.2,

E

�
e−r(t)

�
B(t,s)+B(t,u)

%�
= exp

�
− µ̂(t)

�
B(t, s) +B(t, u)

%
+

σ̂2(t)
�
B(t, s) +B(t, u)

%2
2

&
.

Analogously, we obtain

E

�
e−r(t)B(t,s)

�
= exp

�
− µ̂(t)B(t, s) +

σ̂2(t)B(t, s)2

2

&
E

�
e−r(t)B(t,u)

�
= exp

�
− µ̂(t)B(t, u) +

σ̂2(t)B(t, u)2

2

&
and further

E

�
e−r(t)

�
B(t,s)+B(t,u)

%�
− E

�
e−r(t)B(t,s)

�
E

�
e−r(t)B(t,u)

�
= exp

�
− µ̂(t)

�
B(t, s) +B(t, u)

%
+

σ̂2(t)
�
B(t, s) +B(t, u)

%2
2

&
− exp

�
− µ̂(t)B(t, s) +

σ̂2(t)B(t, s)2

2
− µ̂(t)B(t, u) +

σ̂2(t)B(t, u)2

2

&
= exp

�
− µ̂(t)

�
B(t, s) +B(t, u)

%#
·
�
exp

� σ̂2(t)

2

�
B(t, s) +B(t, u)

%2#− exp
� σ̂2(t)

2

�
B(t, s)2 +B(t, u)2

%#&
= exp

�
− µ̂(t)

�
B(t, s) +B(t, u)

%
+

σ̂2(t)

2

�
B(t, s)2 +B(t, u)2

%&
·
�
exp

�
σ̂2(t)B(t, s)B(t, u)

#
− 1

&
which concludes the proof.
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Now we can present closed formulas for the expected value and the variance of the i-th
coupon bond price Bi(t). For the expected value, it follows immediately from the linearity
of the expected value and the form of the pricing formula (4.27) of a coupon bond price
that

E
�
Bi(t)

�
= E

� kB-
j=1

ci P (t, t+ tcj) + P (t, t+ TB
i )

�
(4.29)

=

kB-
j=1

ciE
�
P (t, t+ tcj)

�
+ E

�
P (t, t+ TB

i )
�
, (4.30)

where E
�
P (t, u)

�
can be computed by (4.13) for t < u.

For the variance of Bi(t), using the identity for the variance of a sum of random variables

Var(
n-

i=1

Xi) =
n-

i=1

Var(Xi) + 2
-
i<j

Cov(Xi, Xj),

it holds that

Var
�
Bi(t)

%
= Var

� kB-
j=1

ci P (t, t+ tcj) + P (t, t+ TB
i )

&
(4.31)

=

kB-
j=1

c2i Var
�
P (t, t+ tcj)

%
+Var

�
P (t, t+ TB

i )
%

(4.32)

+

kB-
j=1

kB-
k=j+1

2 c2i Cov
�
P (t, t+ tcj), P (t, t+ tck)

#

+

kB-
j=1

2 ciCov
�
P (t, t+ tcj), P (t, t+ TB

i )
#
,

where Var
�
P (t, u)

%
is given by (4.14) for t < u and Cov

�
P (t, s), P (t, u)

%
can be computed

using Lemma 4.1.8 for t < s < u.

Remark. According to the third assumption for the bond model, we do not consider bond
issuer default risk in this model. However, this model extension could be implemented by
scaling the expected future cash flows of the bonds with corresponding (time-dependent or
constant) default probabilities. For an approach to pricing defaultable coupon bonds using
a stochastic process that models the default of a bond issuer, we refer to Wüthrich/Merz
[29].

We conclude this section with a derivation of expected returns for investments in fixed rate
bonds. If a bond is held for a given time period [tk−1, tk) of length 1, we define the return
of the i-th bond as

RBi
k :=

B̂i(tk)−Bi(tk−1)

Bi(tk−1)
=

B̂i(tk)

Bi(tk−1)
− 1, k = 1, . . . , N, (4.33)
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where B̂i(tk) denotes the value of the i-th bond if bought at time tk−1 and held until tk.
From the bond pricing formula (4.27) and the assumption in (4.25) that within the period
[tk−1, tk) no coupons are paid, it follows that B̂i(tk) is given as

B̂i(tk) =

kB-
j=1

ci P (tk, tk + tcj − 1) + P (tk, tk + TB
i − 1). (4.34)

The conditional expected return of RBi
k given Ftk−1

, using the Ftk−1
-measurability of

Bi(tk−1), is given as

E
�
RBi

k

///Ftk−1

�
= E

�
B̂i(tk)

Bi(tk−1)
− 1

////Ftk−1

�
(4.35)

=
E
�
B̂i(tk)

//Ftk−1

�
Bi(tk−1)

− 1 (4.36)

=
1

Bi(tk−1)

� kB-
j=1

ciE
�
P (tk, tk + tcj − 1)

//Ftk−1

�
(4.37)

+ E
�
P (tk, tk + TB

i − 1)
//Ftk−1

�&− 1, (4.38)

where the conditional expectation of a zero-coupon bond price is given as in Lemma 4.1.5.

4.1.4. Stock price model

To model a stock market and provide the possibility to invest in equities, we consider a
total of nE ∈ N different equities, whose price processes Si, i = 1, . . . , nE , under the real-
world measure each follow a geometric Brownian motion, given by the stochastic differential
equations

dSi(t) = µi Si(t) dt+ σi Si(t) dW
S
i (t), 0 ≤ t, i = 1, . . . , nE , (4.39)

with drift parameters µi ∈ R, volatility parameters σi ≥ 0 and correlated standard Brow-
nian motions WS

i (t), i = 1, . . . , nE . This choice of a geometric Brownian motion for the
equity price dynamics is widely known from the famous Black-Scholes model (see Jeanblanc
et al. [13] for example). We assume that Si(0) = 1 for all i = 1, . . . , nE , meaning that
the price of each equity starts with initial value 1. Since we assume that all investment
instruments are arbitrarily divisible, this assumption is not restrictive to the overall model.
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Figure 4.4.: Sample paths of geometric Brownian motion

In a similar way to the Vasicek model, Itô’s Lemma can be applied to obtain the solution of
the defining stochastic differential equation. To increase readability, we omit the subscripts
in the solution:

Theorem 4.1.9. The unique solution of equation (4.39) is given as

S(t) = S(0)e

�
µ−σ2

2

#
t+σW (t)

, 0 ≤ t. (4.40)

Proof. Applying Itô’s Lemma (Theorem 2.1.8) with f(t, s) = lnS, α(t, S(t)) = µS(t) and
σ(t, S(t)) = σS(t) yields

d lnS(t) = df
�
t, S(t)

%
=

�
µ− σ2

2

&
dt+ σdW (t).

Integrating the obtained equation, we get

lnS(t) = lnS(0) +

� t

0
µ− σ2

2
ds+

� t

0
σ dW (s)

= lnS(0) +

�
µ− σ2

2

&
t+ σW (t),

and applying the exponential function yields the given solution in (4.40). Uniqueness of the
solution follows from Theorem 2.1.6 and the Lipschitz-continuity of α(t, x) and σ(t, x).

From the closed form (4.40) we can derive distributional properties of S(t):

Theorem 4.1.10. Let S = (S(t))t≥0 be a geometric Brownian motion given by (4.40).
Then, S(t) is log-normally distributed for every t ≥ 0 with expected value and variance
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given by

E
�
S(t)

�
= S(0) eµt,

Var
�
S(t)

%
= S(0)2 e2µt

�
eσ

2t − 1
#
.

Conditional on Fs, it holds for 0 ≤ s ≤ t that

E
�
S(t)|Fs

�
= S(0) eµt+σW (s) e−σ2s/2. (4.41)

Proof. Since W (t) ∼ N (0, t), see Definition 2.1.3, it holds that�
µ− σ2

2

#
t+ σW (t) ∼ N

��
µ− σ2

2

#
t, σ2t

&
and further

exp

��
µ− σ2

2

#
t+ σW (t)

&
∼ LogN

��
µ− σ2

2

#
t, σ2t

&
.

From the properties of the log-normal distribution, see Lemma 2.1.2, it follows that

E
�
S(t)

�
= E

�
S(0) exp

��
µ− σ2

2

#
t+ σW (t)

&�
= S(0) exp

��
µ− σ2

2

#
t+

σ2t

2

&
= S(0) eµt

and

Var
�
S(t)

%
= Var

�
S(0) exp

��
µ− σ2

2

#
t+ σW (t)

&&
= S(0)2 exp

�
2
�
µ− σ2

2

#
t+ σ2t

&�
exp(σ2t)− 1

#
= S(0)2 e2µt

�
eσ

2t − 1
#
.

For the conditional expectation, given s ≤ t, it holds that

E
�
S(t)|Fs

�
= E

�
S(0) exp

��
µ− σ2

2

#
t+ σW (t)

&////Fs

�
= S(0) e

�
µ−σ2

2

%
t
E
�
eσW (t)

///Fs

�
= S(0) e

�
µ−σ2

2

%
t
E
�
eσ
�
W (t)−W (s)

%
eσW (s)

///Fs

�
(∗)
= S(0) e

�
µ−σ2

2

%
t
E
�
eσ
�
W (t)−W (s)

%�
E
�
eσW (s)

///Fs

�
(∗∗)
= S(0) e

�
µ−σ2

2

%
t e

(t−s)σ2

2 eσW (s)

= S(0) eµt+σW (s) e−σ2s/2.
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In equality (∗) we used the independence of
�
W (t)−W (s)

%
and W (s), see Definition 2.1.3.

Equality (∗∗) follows from the properties of conditional expectation and the facts that
eσ(W (t)−W (s)) is independent of Fs and eσW (s) is Fs-measurable.

From the distribution properties of S(t) above it follows directly that, for any tj < tk
of the model’s time grid T ,

S(tk)

S(tj)
∼ LogN

��
µ− σ2

2

#
(tk − tj), σ2(tk − tj)

&
.

and further, for any time period [tk−1, tk) of length 1, i.e. (tk − tk−1) = 1, the expected
value and the variance for the return of the underlying asset simplify to

E

�
S(tk)− S(tk−1)

S(tk−1)

�
= E

�
S(tk)

S(tk−1)
− 1

�
= eµ − 1,

Var

�
S(tk)− S(tk−1)

S(tk−1)

&
= e2µ

�
eσ

2 − 1
#
.

These relations provide easy interpretability of the trend parameter µ and the volatility
parameter σ in the model, which not least helps to select suitable parameter values for
specific scenarios. By choosing σ = 0, even deterministic scenarios can be generated since
the random-driven component of the Brownian motion vanishes. Moreover, these relation-
ships are helpful for the statistical estimation of the parameters and the calibration to real
market values.
Also, from the independence of the increments of Brownian motion for non-overlapping time
intervals (see Definition 2.1.3), it follows that for all n ∈ N and 0 ≤ t0 < t1 < · · · < tn ≤ T ,
the random variables

S(t1)

S(t0)
,
S(t2)

S(t1)
, . . . ,

S(tn)

S(tn−1)

and thus the returns for non-overlapping intervals are independent.

Remark. From the explicit representation (4.40) of the price process and the continuity of
the paths of Brownian motion, it follows that the paths of S are also continuous. This prop-
erty of a stock price model is often criticized, Desmettre/Korn [4] refer here for example to
the possibility of strong price fluctuations and price jumps which are implausible under the
Black-Scholes assumption. Also, the Black-Scholes model does not take into account the
decrease of a share price by the amount of a dividend after the ex-dividend date. However,
since dividends are not included in this model, it is assumed for simplicity that any divi-
dends are reinvested immediately, which means that there is no cash payout and there are
no dividend price jumps in the process. Moreover, in the optimisation we do not consider
path-dependent properties, but only the stock prices at finitely many equidistant points in
time, making pathwise continuity of the price process a not too restrictive assumption.
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Remark (Extension of the model to real estate markets). Even though real estate invest-
ments are not explicitly included in this model, this stock market model is methodologically
not limited to equities or equity funds. To cover real estate, we could introduce an addi-
tional stochastic price process of a real estate investment funds via the stochastic differential
equation

dR(t) = µR R(t) dt+ σR R(t) dWR(t) (4.42)

with an suitable choice of parameters. Here, however, the corresponding extended stochas-
tic dependency structure arising from the consideration of real estate investments must be
taken into account, see Section 4.1.5.

To conclude this section, we derive the conditional expectation of the stock price returns.
Analogue to the returns of the bank account and the fixed rate bond prices, we define the
i-th stock return for a time period [tk−1, tk) as

RSi
k :=

Si(tk)− Si(tk−1)

Si(tk−1)
=

Si(tk)

Si(tk−1)
− 1. (4.43)

For the conditional expectation of the stock return, using the Ftk−1
-measurability of S(tk−1)

as well as (4.41) in Theorem 4.1.10 above, it follows that

E
�
RSi

k

///Ftk−1

�
= E

�
Si(tk)

Si(tk−1)
− 1

////Ftk−1

�
(4.44)

=
E
�
Si(tk)

//Ftk−1

�
Si(tk−1)

− 1 (4.45)

= exp
�
µ(tk − tk−1)

#
− 1. (4.46)

4.1.5. Stochastic dependency modelling within the asset model

By linking the stochastic processes for the short rate and the asset price processes together
within the asset model, we consider a situation with multiple sources of risk. This situation
requires the consideration of stochastic dependency structures and correlations between the
corresponding processes. To model this stochastic dependency structure, we can restrict
ourselves to the process for the short rate r and the processes for the stock prices Si, each
of whose volatility is driven by a Brownian motion. Since the processes of the bond prices
and the bank account are derived from the short rate process and therefore do not include
a separate source of risk, they need not be considered here.

For this purpose, the stochastic differential equations in (4.1) and (4.39) defining the corre-
sponding processes r and S1, . . . , SnE will not be considered separately, but will be modelled
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as the following system of correlated SDEs:
dS1

...

dSnE

dr

 =


µ1S1

...

µnESnE

κ(θ − r)

 dt+


σ1S1 0 · · · 0

0
. . .

...
... σnESnE 0

0 · · · 0 σ




dWS

1

...

dWS
nE

dW r

 . (4.47)

Here,

W :=


WS

1

...

WS
nE

W r


is a (nE + 1)-dimensional column vector of correlated Brownian motions with correlation
matrix

Ĉ :=

!!!!!!!!!

1 ρS1,2 · · · ρS1,nE
ρS,r1

ρS1,2 1 · · · ρS2,nE
ρS,r2

...
...

. . .
...

...

ρS1,nE
ρS2,nE

· · · 1 ρS,rnE

ρS,r1 ρS,r2 · · · ρS,rnE 1

(((((((((
.

The correlation coefficients in Ĉ are given by

ρSi,j := Corr
�
WS

i (t),W
S
j (t)

#
∈ [−1, 1],

ρS,ri := Corr
�
WS

i (t),W
r(t)

#
∈ [−1, 1],

with i, j = 1, . . . , nE and 0 < t ≤ T .

In order to construct and simulate such a multidimensional Brownian motion, it should
be noted first that, as a correlation matrix, Ĉ is symmetric with real entries (hence also
Hermitian) and positive semi-definite, see Horn/Johnson [11]. For this model, we demand
that Ĉ is even positive definite, otherwise this would imply that there is a linear depen-
dency among the columns of Ĉ and one of the Brownian motions could be represented as
a linear combination of the others and therefore be eliminated. Thus, we can consider the
Cholesky decomposition

Ĉ = AA⊤
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of Ĉ according to Theorem 2.3.2. Since we assume that Ĉ is positive definite with real
valued entries, A is unique and has positive diagonal entries. We can now use this decom-
position of Ĉ to transform the SDE system (4.47) into a SDE system containing a vector
of independent Brownian motions. As shown in Oosterlee/Grzelak [22] by a generalization
of a construction of a two-dimensional correlated Brownian motion, we can construct the
(nE + 1)-dimensional Brownian motion W as

W = AŴ

with a (nE + 1)-dimensional Brownian motion Ŵ =
�
Ŵ1, . . . , ŴnE+1

%⊤
, whose compo-

nents are independent, one-dimensional Brownian motions and can therefore be simulated
component-wise. Thus, we can write the system in (4.47) as

dS1

...

dSnE

dr

 =


µ1S1

...

µnESnE

κ(θ − r)

 dt+


σ1S1 0 · · · 0

0
. . .

...
... σnESnE 0

0 · · · 0 σ

 AdŴ . (4.48)

and obtain a system of SDEs with the required correlation structure given by Ĉ.

4.1.6. Asset allocation, diversification and portfolio composition constraints

In order to cover the actuarial reserves resulting from the insurance portfolio, the insurance
company is able to invest in the above modelled financial instruments of a risk-free cash
account, nE different kinds of equities and nB different kinds of fixed rate bonds, whereby
we suppose that financial markets are appropriately liquid, i.e. all assets can be bought
and sold at any time, and that all assets are arbitrarily divisible. We consider the model’s
time mesh T with 0 = t0 < t1 < · · · < tN = T and define for each k = 0, . . . , N − 1 the
vector

λk :=
�
λC
k , λ

S
k,1, . . . , λ

S
k,nE

, λB
k,1, . . . , λ

B
k,nB

%
(4.49)

of portfolio weights for each asset class, describing the composition of the asset portfolio
at time tk. Here, λC

k , λ
S
k,i and λB

k,j are the proportions of the portfolio’s total value that
is invested in cash, the i-th type of equity and the j-th type of fixed rate bond at tk,
respectively. We further assume that the investment portfolio is only rebalanced at the
time steps of the underlying time mesh, implying that the portfolio composition vectors λk

remain unchanged within the corresponding time period [tk, tk+1). We also define with

λS
k :=

nE-
i=1

λS
k,i,

λB
k :=

nB-
j=1

λB
k,j
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the total weights of equities and fixed rate bonds in the composition of the overall portfolio
at tk. Since we do not consider other investment possibilities in this capital market model,
the following budget constraint must hold for each k = 0, . . . , N − 1:

λC
k + λS

k + λB
k = λC

k +

nE-
i=1

λS
k,i +

nB-
j=1

λB
k,j = 1. (4.50)

Since portfolio diversification and concentration risk minimization are not within the scope
of this model, we assume that all modelled financial instruments are already sufficiently
diversified and that the legal requirements in terms of asset diversification, see page 21,
are fulfilled at any time. In terms of the modelled assets, we will thus assume entire eq-
uity funds or baskets of equities instead of individual equities and bond portfolios instead
of bonds issued by the same issuer. For the model itself, this assumption will be taken
into account accordingly in the choice of model parameters. For example, in terms of the
modelled equities, the model parameters can be chosen in such a way that the dynamics
of the price processes correspond to those of broadly diversified equity funds rather than
individual stocks, implying a choice of lower trend parameters µi, but also lower volatility
parameters σi.

We additionally place the following conditions on the composition of the portfolio and
the asset weights based on economic and legal requirements, which are later included as
constraints in the interest risk management optimisation problem:

• Since the Austrian Insurance Supervision Act 2016 (VAG 2016) explicitly prohibits
short selling with respect to capital investment in life insurance companies, see page
21, the condition of non-negativity of all weights at all times tk, k = 0, . . . , N − 1, is
required, implying

λC
k , λS

k,i, λB
k,j ≥ 0, i = 1, . . . , nE , j = 1, . . . , nB. (4.51)

• As investments in equities are by nature associated with higher returns but also
higher volatility than investments in high-rated bonds, we introduce lower and upper
limits 0 ≤ αmin

S < αmax
S < 1 for the proportion of equities in the portfolio in order to

keep the overall risk of the portfolio at a prudent and controllable level and to fulfil
the obligation to invest in the best interest of all policyholders and beneficiaries, as
described on page 19. Accordingly, we consider the condition

αmin
S ≤ λS

k ≤ αmax
S , k = 0, . . . , N − 1 (4.52)

for the total weight of equities in the asset portfolio. This condition also reflects
the implementation of a suitable quantitative limit system for relevant concentration
risks in the model, see page 21. Since we assume that all modelled assets are already
sufficiently diversified and can thus neglect concentration risk within asset classes, no
tighter restrictions are placed on the weights within asset classes.
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• Similar to the upper condition, we introduce a lower bound αC > 0 for the proportion
of the total assets that is held as cash in the bank account, yielding the condition

λC
k ≥ αC , k = 0, . . . , N − 1. (4.53)

This should not least provide the insurance company with a liquidity safety buffer in
the event of short-term or unforeseen payments. From (4.50) it follows that αmin

S and
αC have to fulfil

αmin
S + αC ≤ 1.

• We introduce restructuring limits for the rebalancing of the investment portfolio in
order to be able to cover specific investment strategies and to regulate how much the
portfolio composition may change at each rebalancing. The latter is insofar impor-
tant as, on real financial markets, any change in the portfolio composition involves
transaction costs, which such limits intend to keep below a conscience level. Actual
asset transaction costs are not included in the model, as Di Francesco/Simonella [5]
point out that a consideration of such costs significantly increases the computational
time of such stochastic scenario models, but does not affect the results to a substantial
extent. Therefore, we follow the approach in Di Francesco/Simonella [5] and consider
the turnover conditions //λC

k − λC
k−1

// ≤ δλ, (4.54)//λS
k,i − λS

k−1,i

// ≤ δλ, i = 1, . . . , nE , (4.55)//λB
k,j − λB

k−1,j

// ≤ δλ, j = 1, . . . , nB, (4.56)

with an upper bound δλ ∈ (0, 1) for the extent an asset weight may change when the
portfolio is rebalanced.

4.1.7. Asset portfolio value and interest rate sensitivity

With the given price processes of the assets the insurance company is able to invest in and
the constraints on the investment portfolio, we can now derive a recursive formula for the
value of the assets at a given time as well as an expression for the interest rate sensitivity
of the asset portfolio for the points in time of the underlying time grid T .
To first derive the return of the insurance company’s asset portfolio, consider the given
returns RC

k , RBi
k and RSi

k for the single asset types as defined in (4.21), (4.33) and (4.43),
respectively. The investment return of the entire asset portfolio for the k-th period [tk−1, tk),
depending on the portfolio composition λk−1 within the period, is given as the weighted
average of the single asset returns, see Korn [19], yielding

RA
k (λk−1) := λC

k−1 ·RC
k +

nE-
i=1

λS
k−1,i ·RSi

k +

nB-
j=1

λB
k−1,j ·RBj

k . (4.57)
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Consequently, the conditional expectation of the asset portfolio return RA
k (λk−1), given

Ftk−1
, equals

E
�
RA

k (λk−1)
///Ftk−1

�
= λC

k−1E
�
RC

k

///Ftk−1

�
+

nE-
i=1

λS
k−1,iE

�
RSi

k

///Ftk−1

�
(4.58)

+

nB-
j=1

λB
k−1,j E

�
R

Bj

k

///Ftk−1

�
,

with the conditional expectations of the single assets being given by (4.22), (4.35) and
(4.44), respectively.

Let now Ak denote the value of the asset portfolio at time tk. Note that, as all assets
are evaluated using market prices and not book values, Ak corresponds to the market value
of the asset portfolio. We start with an initial value of the asset portfolio at t0 = 0 given
by

A0 := (1 + ϵ0)L0 (4.59)

with L0 denoting the value of the liabilities at t0 = 0 defined by (4.116) and a coverage
factor ϵ0 ≥ 0 which determines the equity or surplus of the insurance company at the
beginning of the projection. Using the derived investment return above, the value of the
assets can be calculated recursively as

Ak = Ak−1

�
1 +RA

k (λk−1)
%− nL-

i=1

∆Ai
k, k = 1, . . . , N. (4.60)

Here, ∆Ai
k denotes the cash flows that occur for the i-th insurance contract at time tk as

defined in Section 4.2 below and thus
.nL

i=1∆Ai
k equals the total sum of cash flows from

the entire insurance contract portfolio occurring at time tk.

Duration of the asset portfolio

In order to measure the interest rate sensitivity of the asset portfolio’s market value, we
limit ourselves to the Fisher-Weil duration of that part of the portfolio that is made up of
bonds. The reason for this is that, on the one hand, investment portfolios in the traditional
life insurance sector are typically largely made up of bonds and, on the other hand, the
concept of duration is unsuitable for equities as equities are not dependent on interest rates
in the same way and to the same extent as bonds are. The value of the money market
account also does not change as a result of a shift in the yield curve, as this only influences
the future development of the money market account.

For the i-th bond with maturity TB
i , coupon rate ci and price Bi(t) given by (4.27), let

dt(Bi) denote the Fisher-Weil duration of the bond at time t < TB
i . Applying Definition

2.2.7 in Section 2.2.1 to the defined bond model, this duration is given as

dt(Bi) =
1

Bi(t)
·
�

kB-
j=1

tj · ci P (t, t+ tcj) + TB
i · P (t, t+ TB

i )

$
. (4.61)
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Applying (2.25), the duration DA
k (λk) of the entire bond portfolio given the portfolio com-

position λk, which will be called asset duration at time tk ∈ T , corresponds to the weighted
average of the durations of the single bonds described above, which yields

DA
k (λk) :=

nB-
i=1

λB
k,i

λB
k

· dtk(Bi), (4.62)

where the weight for the i-th bond λB
k,i/λ

B
k equals the proportion of the i-th bond on the

total bond portfolio at time tk.

4.2. Liability model

For the liability model in this thesis, we cover the life insurance contract type of endowment
insurance. Thus, we deal with insurance contracts with a benefit payment in the event of
a premature death of the insured person as well as if a contractually agreed age is reached.
With payments to the policyholders or beneficiaries in the event of both death and survival,
the expected benefit cash flows are distributed over the entire contract term in contrast to
other contract types such as pure endowment contracts, which naturally results in a more
complex interest rate risk.

The central modelling approach for the insurance portfolio is based on a discrete-time
Markov chain model with a finite state space and time-dependent transition probabilities.
This model approach has the advantage that important information necessary for asset-
liability management, such as the development of actuarial provisions over time or future
expected cash flows, can be efficiently calculated using the Chapman-Kolmogorov equa-
tions.

We start with a general description of the Markov model and the key underlying assump-
tions. Then, the sub-models for mortality, surrender and policyholder contractual options
are presented, from which the transition probabilities for the Markov model are derived.
We hereby take into account the relevant regulatory provisions for life insurance contracts
under Austrian law that were discussed in Chapter 3. Finally, based on the model, the
profiles of the expected future cash flows from the insurance portfolio are derived and the
interest rate sensitivity of the portfolio is determined.

4.2.1. Markov chain model and general assumptions

To model the insurance contract portfolio and analyse the interest rate risk of the contrac-
tual liabilities, we consider an insurance portfolio of nL homogeneous insurance contracts
whose evolution over time is modelled at individual contract level by pairwise indepen-
dent Markov chains (see Definition 2.1.9). Since the consideration of contract portfolios
consisting of identical contracts represents a simplification compared to real portfolios in
practice, it would be more precise at this point to speak of a model point instead of an
actual portfolio. However, since the central objective of the model is to analyse and manage
interest rate risk and as model point aggregation is a common practice in life insurance
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mathematics, this approach is followed accordingly.
As stated at the beginning of the chapter, we define the Markov chains over the N -period
time grid T = {t0, . . . , tN} with

0 = t0 < t1 < · · · < tN−1 < tN = T

and annual time increments. The time horizon tN = T denotes the time of the contracts’
maturity and is assumed to be integer-valued as a consequence of the annual time incre-
ments. After T , all insurance policies have ended and the insurance company is no longer
exposed to any insurance risk. Further, we denote with

I := {0, . . . , N}
the indices of the time grid, which will be the index set for the Markov chains.

Remark. The main reason for annual time increments in this model is the sub-model for
mortality, which is defined based on an underlying mortality table with annual time steps.
For remaining model components, we aim to define them in a more general way such
that the model can be adapted to arbitrary time grids by adapting the mortality model
accordingly.

As the state space for the Markov chain model, we consider the set

S :=
�∗, †,▼,♢1, . . . ,♢N



(4.63)

with the following states the policyholders can enter during the term of the contract:

• ∗: Active state: prior to contract maturity, the policyholder pays regular premiums;
upon maturity, a state-dependent survival benefit is paid out to the policyholder and
the contract ends,

• †: Decease of the insured person: the death benefit is paid out to the policyholder
or the beneficiaries at the end of the period in which the insured person dies and the
contract ends,

• ▼: Policy surrender: the surrender benefit is paid out to the policyholder at the end
of the period in which the policyholder surrenders from the contract and the contract
ends,

• ♢j : Waiver of premium: the policyholder exercises the option to convert the policy
into a fully paid-up insurance within the period [tj−1, tj); after exercising the option,
the payment of premiums is suspended until the end of contract; upon maturity, a
state-dependent survival benefit is paid out to the policyholder and the contract ends.

The defined state space covers in particular the legally guaranteed options of a policyholder
described in Section 3.3.
Given these preparatory measures, we can now define the insurance contract portfolio as a
set of nL Markov chains

Xj :=
�
Xj

k

%
k∈I , j = 1, . . . , nL, (4.64)
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where Xj
k, k = 0, . . . , N, describes the state of the j-th policyholder at time tk ∈ T . These

Markov chains will also be referred to as life insurance policies for this chapter. For the
beginning of the projection at t0 = 0, we assume that all policyholders are active, that is

P
�
Xj

0 = ∗� = 1, j = 1, . . . , nL. (4.65)

Furthermore, we make the following assumptions which remain valid for the entire model:

(A1) The Markov chain processes modelling the insurance policies are independent of the
random processes and random variables of the economic model discussed in Sec-
tion 4.1.

(A2) All insurance policies are independent and have identical structure, i.e. the Markov
chains Xj =

�
Xj

k

%
k∈I are identically distributed and pairwise independent.

We also define the following parameters which apply equally to all insurance policies of the
modelled portfolio:

• x0 ∈ N: Age of the policyholders at t0 = 0,

• imin ≥ 0: Contractually agreed annual actuarial interest rate,

• Ψ∗
0 ≥ 0: Actuarial reserve per insurance contract at t0 = 0, see (4.86),

• Γ∗
0 ≥ 0: Bonus account value for profit participation per insurance contract at t0 = 0,

see (4.89),

• β ∈ [0.85, 1]: Profit participation factor: Proportion of investment gains that the
insurance company passes on to policyholders,

• Λ† ≥ 0: Guaranteed benefit paid in the event of death,

• Λ∗ ≥ 0: Guaranteed endowment benefit paid if contract maturity is reached.

By including the value of the actuarial reserve and a bonus account at the beginning of
the projection t0, the model is defined in a way that does not require that t0 corresponds
to the actual starting date of the contracts. Also, note that the profit participation factor
is required to be bigger or equal to 85% in accordance with the Austrian legal provisions
described in Section 3.3.

We denote with pij(k, ℓ) the time-dependent transition probability from state i at time
tk to state j at time tℓ as defined in (2.12) and with PX(k, ℓ) the corresponding transition
matrix between tk and tℓ as defined in (2.13). The specific numerical values for the tran-
sition probabilities will be defined and described in more detail in the subsections below.
For brevity, we denote the one-period transition probabilities with

pij(k) := pij(k, k + 1), k = 0, . . . , N − 1,

and the one-period transition matrix with

PX(k) := PX(k, k + 1), k = 0, . . . , N − 1.
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Before deriving PX(k), we will shortly summarize the main dynamics of the state transition.
Firstly, the states for surrender ▼ and decease † are absorbing states, which means that
these states can not be left once they have been entered, implying

p▼▼(k) = 1, k = 0, . . . , N − 1,

p††(k) = 1, k = 0, . . . , N − 1.

Secondly, by definition, state ♢j can only be reached if the policyholder exercises the
premium waiver option within the period [tj−1, tj), thus implying

p∗♢j (k) = 0

for j ̸= k + 1. Additionally, we require

p♢j♢j (k) = 1, j > k,

to ensure that the transition matrix PX(k) is a stochastic matrix, see Section 2.1.1 . Note,
however, that state ♢j cannot be reached before time tk for j > k.
Thirdly, it is not possible to become active again after exercising the premium waiver
option, that is, for any j = 1, . . . , N ,

p♢j∗(k) = 0, k = 0, . . . , N − 1.

Remark. The third characteristic stated above does not necessarily have to apply to con-
tracts in practice, as contracts may well include a policyholder’s right to change back to
the active state once exercising the premium waiver option. But since such a right is not
guaranteed by Austrian life insurance law and is also not very common in practise, it is not
included in this model. In principle, however, an extension of the model by such a right
would be possible through a corresponding extension of the state space, for example by
considering the state space

S ∪ � ∗i,j
// i < j, i = 1, . . . , N − 1, j = 2, . . . , N



,

whereby ∗i,j denotes a state where the policyholder exercises the premium waiver option
in the i-th period and reactivates in the j-th period.

Based on these model characteristics and the given state space, the one-period transition
matrix of the Markov chain for the period [tk, tk+1) is given as

PX(k) = (4.66)

i,j ∗ ▼ † ♢1 . . . ♢k ♢k+1 ♢k+2 . . . ♢N

∗ p∗∗(k) p∗▼(k) p∗†(k) 0 . . . 0 p∗♢k+1
(k) 0 . . . 0

▼ 0 1 0 0 . . . 0 0 0 . . . 0
† 0 0 1 0 . . . 0 0 0 . . . 0
♢1 0 p♢1▼(k) p♢1†(k) p♢1♢1(k) 0 0 0 0 . . . 0
...

...
...

... 0
. . . 0

...
...

. . .
...

♢k 0 p♢k▼(k) p♢k†(k) 0 0 p♢k♢k
(k) 0 0 . . . 0

♢k+1 0 . . . . . . . . . . . . 0 1 0 . . . 0

♢k+2
...

... 0
. . .

...
...

...
...

...
. . .

...
♢N 0 . . . . . . . . . . . . 0 0 . . . . . . 1

.
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The described Markov chain model can be illustrated graphically as a time-dependent
weighted graph, where the vertices represent the states and the edges represent the corre-
sponding transition probabilities. For the model here, this so-called transition diagram for
period [tk, tk+1) with j ≤ k and i > k + 1 can be displayed as

♢k+1 ∗

†

▼

♢j

♢i

1

1

1

1

p♢j♢j (k)p∗∗(k)

p∗†(k)

p∗▼(k) p♢j▼(k)

p♢j†(k)

p∗♢k+1
(k)

Figure 4.5.: Transition diagram of the Markov chain model

4.2.2. Transition probabilities of the Markov chain model

Given the general structure of the Markov chain model, we will now derive the one-period
transition probabilities given in (4.66) based on the underlying models described below.
We will first focus on the mortality model and the models for the probabilities of surrender
and exercise of the premium waiver option separately and then combine the models for the
derivation of the conditional transition probabilities. In this section, we will only derive the
one-period transition probabilities, as the multi-period transition probabilities can then be
calculated using the Chapman-Kolmogorov equations, see Theorem 2.1.11.

Mortality model

For the consideration of mortality, a deterministic, biometric approach is applied in this
thesis, where the probabilities of survival and death of a policyholder of a fixed age are
derived from an underlying life table. For the numerical results in Chapter 5 in particular,
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we will use the smoothed unisex life table for Austria for the years 2020–2022, see Table
A.1. We will not go into the deduction of such probabilities here and refer to standard life
insurance literature such as Gerber [8] and Ortmann [23].

Using standard notation of life insurance mathematics, we denote with qx the probabil-
ity that a policyholder of age x dies within one year. This probability is directly provided
by the life table. The counter-probability px := 1− qx thus denotes the probability that a
policyholder of age x survives at least one year.
By applying this to the Markov model and assuming that the probability of death is inde-
pendent of whether the premium waiver option has been exercised or not, it yields for the
transition probabilities that

p∗†(k) = qx0+k, (4.67)

p♢j†(k) = qx0+k, j ≤ k, (4.68)

with x0 being a policyholder’s age at t0 = 0.

Surrender and premium waiver model

To model the probabilities that a policyholder surrenders or exercises the premium waiver
option, we follow the approaches in Di Francesco/Simonella [5] and Férnandez et al. [6]
and link the probabilities to the excess return that the insurance company offers to policy-
holders over an investment return of a benchmark investment opportunity. The benchmark
for this model, as proposed in Férnandez et al. [6], is the investment in the risk-free money
market account defined in Section 4.1.2. Following this approach, the benchmark return for
the k-th period [tk−1, tk) is given as RC

k as defined in (4.21) with its conditional expectation
given by (4.22).

A policyholder’s return from the life insurance contract for the k-th period is given by
imin+max

�
β · (RA

k − imin), 0
%
, see Section 4.2.3, with the insurance company’s asset return

RA
k for the k-th period as defined in (4.57) and imin and β as defined in Section 4.2.1. Thus,

the corresponding excess return compared to the benchmark is given as

∆Rk := max
�
imin +max

�
β · (RA

k − imin), 0
%−RC

k , 0
#
, k = 1, . . . , N. (4.69)

Following Di Francesco/Simonella [5], we introduce K threshold intervals for ∆Rk as

I1 := [0, ξ1),

I2 := [ξ1, ξ2),

...

IK := [ξK−1,∞)

with 0 < ξ1 < · · · < ξK−1 < ∞. The probabilities for surrender and the exercise of the
premium waiver option now depend on ∆Rk and the period k. If the excess return ∆Rk

falls into the threshold interval Ij , the conditional probabilities that a an active policyholder
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exercises the premium waiver option or surrenders within [tk, tk+1), given the survival of
the policyholder, are denoted by qPW

jk and qSjk, respectively. We do not differentiate in the
surrender probabilities as to whether the policyholder is active or in the premium waiver
state. The given probabilities are specified and pre-defined in the following table:

Period

[t0, t1) [t1, t2) [t2, t3) . . . [tN−1, tN )

Intervals

I1 qS10, q
PW
10 qS11, q

PW
11 qS12, q

PW
12 . . . qS1N−1, q

PW
1N−1

I2 qS20, q
PW
20 qS21, q

PW
21 qS22, q

PW
22 . . . qS2N−1, q

PW
2N−1

...
...

...
... . . .

...

IK qSK0, q
PW
K0 qSK1, q

PW
K1 qSK2, q

PW
K2 . . . qSKN−1, q

PW
KN−1

Table 4.1.: Surrender and premium waiver option probabilities

A necessary condition that has to be fulfilled for all i = 1, . . . ,K and k = 0, . . . , N − 1 is

qSik + qPW
ik ≤ 1.

Additionally, a reasonable but not necessary restriction on the choice of these probabilities
is that, for i > j, the probabilities fulfil

qSik ≤ qSjk,

qPW
ik ≤ qPW

jk ,

as this implies that the higher the return from the insurance contract, the lower the prob-
abilities that a policyholder exercises one of the given options.
Note that, as ∆R0 cannot be defined from (4.69), the model requires an initial choice for
the threshold interval for t0 = 0, which should reflect the policyholders’ initial expectation
of the excess return.

One-period transition probabilities

Combining the models for mortality and the policyholder options above, the time-dependent
one-period transition probabilities for the k-th period [tk−1, tk), provided that ∆Rk−1 ∈ Ii,
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are given as

p∗∗(k) = px0+k ·
�
1− qSik − qPW

ik

%
, (4.70)

p∗♢j (k) =

�
px0+k · qPW

ik if j = k + 1

0 else,
(4.71)

p∗▼(k) = px0+k · qSik, (4.72)

p∗†(k) = qx0+k = 1− px0+k, (4.73)

p▼▼(k) = 1, (4.74)

p††(k) = 1, (4.75)

p♢j♢j (k) =

�
px0+k ·

�
1− qSik

%
if j ≤ k

1 else,
(4.76)

p♢j▼(k) =

�
px0+k · qSik if j ≤ k

0 else,
(4.77)

p♢j†(k) =

�
qx0+k if j ≤ k

0 else.
(4.78)

All remaining one-period transition probabilities are zero.

4.2.3. Contract cash flows and profit participation mechanism

To model the cash flows arising from the insurance contracts, the Markov model is extended
by corresponding policy functions. First, we define these functions for the cash flows arising
solely from the insurance contract without profit participation and then we define the profit
participation mechanism and the policy functions extended by the cash flows arising from
this mechanism. In terms of the cash flows themselves, we focus on premium and benefit
cash flows, whereby premiums are paid at the beginning and benefits (endowment, death
and surrender benefits) are paid at the end of a corresponding time period. Acquisition or
administration expenses from the insurance contracts are not included in this model. Fol-
lowing the notation and results in Koller [17] and Koller [18], for i, j ∈ S and k = 0, . . . , N
we define the policy functions

• aPre
i (k): Cash flow at time tk if the insured is in state i at time tk,

and for k = 0, . . . , N − 1 we define the policy functions
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• aPost
ij (k): Cash flow at the end of the period [tk, tk+1) if the insured switches from

state i at time tk to state j at time tk+1.

We will only describe the policy functions that are non-trivial, i.e. all policy functions that
are not explicitly mentioned below are constant zero.

Premium cash flows and endowment benefit

If the insured person is active at the beginning of the k-th period, a possibly time-dependent
annual premium Pk ≥ 0 is paid at the beginning of the period. If a policyholder is in state
♢j , i.e. has exercised the premium waiver option, no premiums are paid. We assume that
Pk only reflects the savings premium and that the risk premium is paid at the beginning of
the contract in the form of a single premium. As the share of the risk premium in the total
premium is generally small and therefore does not have a major influence on the present
value or the duration of future cash flows, this approach is considered sufficient. However,
as the savings portion of a constant periodically paid premium decreases with the increas-
ing age of a policyholder as the risk of death increases, see Gerber [8], a time-dependent
premium pattern can be applied to reflect this aspect.

In case the insured person reaches maturity, i.e. the insured person is alive at time tN = T
and the contract has not terminated before, a guaranteed endowment benefit Λ∗ is paid at
time tN . If the policyholder has exercised the premium waiver option within the contract
term, this benefit is reduced accordingly so that the amount of the reduced benefit is consis-
tent with the non-payment of premiums after exercising the option. The legal requirements
in this case, see Section 3.3, require that the reduced benefit is calculated according to the
accepted rules of actuarial mathematics and is consistent with the premium calculation
principles used. As we do not cover such principles in this thesis, we take this fact into
account by introducing deduction factors

γPW
i ∈ [0, 1], i = 1, . . . , N,

that are dependent on the period in which the option is exercised and assume that these
factors reflect the reduction appropriately.

These considerations result in the policy functions

aPre
∗ (k) =

�
−Pk, k = 0, . . . , N − 1

Λ∗, k = N,
(4.79)

aPre
♢j

(k) =

�
0, k = 0, . . . , N − 1�
1− γPW

j

%
Λ∗ k = N.

(4.80)

Death and surrender benefit cash flows

If the insured is active or in the premium waiver state at time tk and dies within the period
[tk, tk+1), the guaranteed death benefit sum Λ† is paid at the end of the period, yielding
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for the policy functions

aPost
∗† (k) = Λ†, k = 0, . . . , N − 1, (4.81)

aPost
♢j† (k) = Λ†, k = 0, . . . , N − 1. (4.82)

Note that due to the assumption that the entire risk premium for the contract is paid
as a single premium at the inception of the policy, the death benefit is not reduced if a
policyholder exercises the premium waiver option.

In case of a policyholder’s surrender, the policyholder is paid a time- and state-dependent
surrender value, which is calculated in accordance with the legal requirements as the current
value of the insurance at the end of the respective insurance period, taking into account
an appropriate cancellation deduction γS ∈ [0, 1]. The current value at tk ∈ T for a given
state i ∈ S corresponds to the prospective reserve Vi(tk, A) as defined in (4.104) in Section
4.2.4 below and it follows for the policy functions that

aPost
∗▼ (k) = (1− γS) · V∗(tk+1, A), k = 0, . . . , N − 1, (4.83)

aPost
♢j▼ (k) = (1− γS) · V♢j (tk+1, A), k = 0, . . . , N − 1. (4.84)

As legal provisions require the deduction factor to be appropriate, a restriction to
γS ∈ [0, 0.05] is considered more adequate.

Remark. For consistency, the policy functions involving the premium waiver states, namely
(4.80), (4.82) and (4.84), are defined for all k including k < j. However, as state ♢j cannot
be reached before tj by definition, the assigned values of the corresponding policy function
values for k < j have no actual relevance.

Profit participation mechanism

As described in Section 3.3, in the case of profit participation contracts, life insurance
companies are obliged to allocate a minimum of 85% of the minimum assessment basis to the
provision for profit-dependent premium reimbursement. This mechanism is modelled here
in a simplified way by linking the profit participation to an excess interest rate compared to
the contractually guaranteed minimum interest rate imin. For a given period [tk−1, tk), the
interest rate of return offered to policyholders for their capital, including the participation
on the insurance company’s gains from capital investments, is given by

zk := imin +max
�
β · (RA

k − imin), 0
%
. (4.85)

Thus, policyholders partly participate in the excess return of the insurance company’s
investment return RA

k over the minimum rate imin in the extent of β ≥ 0.85, if this excess
return is positive. Otherwise, the policyholders receive the minimum interest rate imin.
In order to derive the resulting profit participation cash flows for an insurance policy, we
follow the approach in Gerstner et al. [9] and Gerstner et. al [10] and apply this to the
underlying Markov model. We first introduce the actuarial reserve

Ψi =
�
Ψi

k

%
k∈I , i ∈ {∗,♢1, . . . ,♢N}, (4.86)
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where Ψi
k denotes the value of the actuarial reserve at time tk ∈ T for a policy in state i

and corresponds to the accumulated premiums paid before tk, accrued with the actuarial
interest rate imin. If t0 = 0 corresponds to the contract start date of the insurance con-
tracts, which the model a priori does not demand, then Ψ∗

0 = 0. In the case the contract
start lies before t0 and premiums have been paid before, the initial value Ψ∗

0 as a model
parameter should reflect these accumulated and accrued premiums prior to t0.

Given the initial value Ψ∗
0, the state-dependent actuarial reserves develop deterministically

according to the following recursions:

Ψ∗
k =

�
Ψ∗

k−1 + Pk−1

% · (1 + imin), k = 1, . . . , N, (4.87)

Ψ
♢j

k =

��
0, k = 0, . . . , j − 1�
Ψ∗

k−1 + Pk−1

% · (1 + imin), k = j,

Ψ
♢j

k−1 · (1 + imin), k = j + 1, . . . , N.

(4.88)

Remark. As mentioned above, if t0 does not correspond to the time of the insurance con-
tracts’ start, then Ψ∗

0 depends on the contract term that has already elapsed between the
start of the contracts and t0 as well as the premiums that have already been paid before
t0. To keep the number of model parameters small, we do not make any assumptions or
introduce further parameters for the elapsed time and past premiums, but rather work with
the initial value Ψ∗

0 as a single parameter. Nevertheless, given the information on the num-
ber of years n between the contract start and t0 as well as the historically paid premiums
P−n, . . . , P−1 for these past years, the calculation of the initial value Ψ∗

0 is straightforward
as it is easy to see from the recursive definition of Ψ∗

k in (4.87) that

Ψ∗
0 =

n-
j=1

P−j (1 + imin)
j .

Next, we introduce state-dependent bonus accounts

Γi =
�
Γi
k

%
k∈I , i ∈ {∗,♢1, . . . ,♢N}, (4.89)

where Γi
k reflects the sum of all bonuses allocated to an insurance policy up to time tk ∈ T

if the insured is in state i at time tk. With the given initial value Γ∗
0 for the bonus accounts

at t0 = 0 as a model parameter, their values are recursively defined by

Γ∗
k = (1 + zk) · Γ∗

k−1 + (zk − imin) ·
�
Pk−1 +Ψ∗

k−1

%
k = 1, . . . , N, (4.90)

Γ
♢j

k =

��
0, k = 0, . . . , j − 1

(1 + zk) · Γ∗
k−1 + (zk − imin) ·

�
Pk−1 +Ψ∗

k−1

%
, k = j,

(1 + zk) · Γ♢j

k−1 + (zk − imin) ·Ψ♢j

k−1, k = j + 1, . . . , N.

(4.91)

For each time step, the preceding bonus account value is compounded with the policyholder
return zk and increased by the excess interest above the guaranteed interest rate on the
preceding actuarial reserve and the last premium, provided that the policyholder was active
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at tk−1 and paid the premium Pk−1. Note that state ♢j can only be reached if the insured
changes from the active state ∗ to state ♢j within the time period [tj−1, tj), hence the
policyholder’s bonus account value at tj−1 equals Γ∗

j−1 and also the premium Pj−1 was still
paid, leading to (4.91) above.

Remark. Similar to the initial value for the actuarial reserve Ψ∗
0, if the contracts started

before t0, the initial value for the bonus account Γ∗
0 depends on the past asset returns, for

which we do not make any assumptions and therefore include it as a given model parame-
ter. If t0 corresponds to the contracts’ starting date, then we require Γ∗

0 = 0.

If a benefit (death, endowment or surrender) is paid, the corresponding value of the bonus
account is also paid out in addition to the guaranteed benefits described above, which leads
to the following extended policy functions:

âPre
∗ (k) =

�
−Pk, k = 0, . . . , N − 1

Λ∗ + Γ∗
N , k = N,

(4.92)

âPre
♢j

(k) =

�
0, k = 0, . . . , N − 1�
1− γPW

j

%
Λ∗ + Γ

♢j

N k = N,
(4.93)

âPost
∗† (k) = Λ† + Γ∗

k, k = 0, . . . , N − 1, (4.94)

âPost
♢j† (k) = Λ† + Γ

♢j

k , k = 0, . . . , N − 1, (4.95)

âPost
∗▼ (k) = (1− γS) · �V∗(tk+1, A) + Γ∗

k

%
, k = 0, . . . , N − 1, (4.96)

âPost
♢j▼ (k) = (1− γS) · �V♢j (tk+1, A) + Γ

♢j

k

%
, k = 0, . . . , N − 1. (4.97)

Note that, unlike the initial policy functions above, these policy functions are random
variables as at a time tk, the future values of the bonus accounts Γi

ℓ, ℓ > k, are dependent
on future asset returns and are thus uncertain.

4.2.4. Prospective reserve, liability value and interest rate sensitivity

Given the liability model’s structure, we are now able to derive the prospective reserve, the
liability value and the duration of an insurance contract in the portfolio. The results on
single contracts will then be applied to derive the liability value and the duration of the
full contract portfolio at a given time tk ∈ T .

To formalise the derivation of future expected contractual cash flows from the life insurance
portfolio, following Koller [17], we define the following indicator functions:

Definition 4.2.1. Let (Xn)n≥0 be a discrete-time Markov chain talking values in a count-
able set S. For j ∈ S, the indicator function for the Markov chain at step k is defined
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as

Ij(k)(ω) :=

�
1 if Xk(ω) = j

0 if Xk(ω) ̸= j
(4.98)

For i, j ∈ S, let Nij(k) denote the number of jumps from state i to state j up to time step
k, that is

Nij(k)(ω) := #
�
ℓ ∈ {1, . . . , k} : Xℓ−1(ω) = i ∧Xℓ(ω) = j



. (4.99)

Now, we can define the stochastic cash flow profile of accumulated contractual cash flows
of a life insurance policy without profit participation:

Definition 4.2.2. For a life insurance policy X = (Xk)k∈I with state space S and policy
functions aPre

i and aPost
ij , let

�
A(k)

%
k∈I ∈ L2(Ω,F ,P)N+1 be the random process such that

A(k) represents the accumulated cash flows (premium and benefit payments) induced by
the life insurance policy up to and including time tk. We will call A the cash flow profile
of X. Further, let Aij(k) denote the accumulated cash flows up to time tk induced by
transitions from state i to j and let Aj(k) denote the accumulated cash flows up to time
tk by being in state j.

For a given cash flow profile, the cash flows occurring at time tk, k > 0, consequently
correspond to the increment ∆A(k) := A(k)−A(k − 1), which can be written as

∆A(k)(ω) =
-
j∈S

∆Aj(k)(ω) +
-
i,j∈S

∆Aij(k)(ω) (4.100)

with

∆Aj(k)(ω) = Ij(k)(ω) · aPre
j (k), (4.101)

∆Aij(k)(ω) = ∆Nij(k)(ω) · aPost
ij (k − 1), (4.102)

where ∆Nij(k) := Nij(k)−Nij(k − 1). For t0 = 0, as all policyholders are active, we have
A(0) = P0 and define ∆A(0) := −P0.

Prospective reserve of an insurance contract

With the given setting, we can now calculate the prospective reserve of the insurance
portfolio, defined as the present value of the future expected contractual cash flows induced
by the insurance contracts given the information at a certain point in time. The prospective
reserve does not fully reflect the present value of all cash flows induced by a contract as
future profit participation cash flows are not included, but it corresponds to the benefit
paid to a policyholder in the event of surrender, see (4.83) and (4.84).

Definition 4.2.3. With the notation and assumptions above, the prospective value of
future cash flows at a time tk ∈ T of an insurance policy X = (Xk)k∈I with cash flow
profile A =

�
A(k)

%
k∈I is defined as

V +(tk, A) :=
-
i∈S

∆Ai(k) +
N-

ℓ=k+1

P (tk, tℓ)∆A(ℓ). (4.103)
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The prospective reserve at time tk ∈ T for a given state j ∈ S is defined as

V +
j (tk, A) := E

�
V +(tk, A)

//Xk = j
�
. (4.104)

By definition, V +
j (tk, A) corresponds to the present value of expected future contractual

cash flows occurring after tk, including any cash flows that occur at time tk resulting from
the policyholder being in state j at that time. Deriving the prospective reserve by direct
calculation and discounting of the expected future cash flows yields the following formula
for V +

j (tk, A):

Lemma 4.2.4. Given an arbitrary state j ∈ S and time tk ∈ T , it holds for the prospective
reserve that

V +
j (tk, A) = aPre

j (k) +
N-

ℓ=k+1

E
�
P (tk, tℓ)

� · �-
g∈S

aPre
g (ℓ) · pjg(k, ℓ) (4.105)

+
-
g,h∈S

aPost
gh (ℓ− 1) · pjg(k, ℓ− 1) · pgh(ℓ− 1)

&
,

where E
�
P (tk, tℓ)

�
is given as in (4.13).

Proof. From the independence of the stochastic short rate process r and the Markov chain
X, see assumption (A1) on page 52, as well as linearity of expectation, it follows that

V +
j (tk, A) = E

�
V +(tk, A)

//Xk = j
�

= E

�-
i∈S

∆Ai(k) +
N-

ℓ=k+1

P (tk, tℓ)∆A(ℓ)

////Xk = j

�

=
-
i∈S

E
�
∆Ai(k)

//Xk = j
�
+

N-
ℓ=k+1

E
�
P (tk, tℓ)

� · E�∆A(ℓ)
//Xk = j

�
.

By the definition of ∆Ai(k), the first sum above simplifies to-
i∈S

E
�
∆Ai(k)

//Xk = j
�
=

-
i∈S

aPre
i (k) · E�Ii(k) //Xk = j

�
= aPre

j (k)

Further, it follows from (4.100) that

E
�
∆A(ℓ)

//Xk = j
�
= E

�-
g∈S

∆Ag(ℓ) +
-
g,h∈S

∆Agh(ℓ)

////Xk = j

�
=

-
g∈S

E
�
∆Ag(ℓ)

//Xk = j
�
+

-
g,h∈S

E
�
∆Agh(ℓ)

//Xk = j
�

=
-
g∈S

aPre
g (ℓ) · E�Ig(ℓ) //Xk = j

�
+

-
g,h∈S

aPost
gh (ℓ− 1) · E�∆Ngh(ℓ)

//Xk = j
�
.
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By the definitions of Ig(ℓ) and ∆Ngh(ℓ), it is easy to see that for ℓ > k it holds

E
�
Ig(ℓ)

//Xk = j
�
= pjg(k, ℓ),

E
�
∆Ngh(ℓ)

//Xk = j
�
= pjg(k, ℓ− 1) · pgh(ℓ− 1).

Thus, combining the results, it yields that

V +
j (tk, A) = aPre

j (k) +

N-
ℓ=k+1

E
�
P (tk, tℓ)

� · �-
g∈S

aPre
g (ℓ) · pjg(k, ℓ)

+
-
g,h∈S

aPost
gh (ℓ− 1) · pjg(k, ℓ− 1) · pgh(ℓ− 1)

&
.

The multi-period transition probabilities occurring in formula (4.105) for V +
j (tk, A) can be

efficiently calculated using the Chapman-Kolmogorov equation, since it follows inductively
from Theorem 2.1.11 that, for ℓ > k,

PX(k, ℓ) =

ℓ−1*
m=k

PX(m,m+ 1) =

ℓ−1*
m=k

PX(m), (4.106)

where the one-period transition probabilities in PX(m) are given as defined in Section 4.2.2
above.

Note that, since the prospective reserve reduced by a deduction is paid to the policyholder
in the event of surrender, it follows from (4.105) that for the calculation of V +

j (tk, A), the

prospective reserves for V +
i (tk+1, A), . . . , V

+
i (tN , A) need to be calculated in advance for

all i ∈ S. This makes it necessary to calculate the prospective reserves backward in time,
starting with the boundary conditions

V +
∗ (tN , A) = Λ∗ (4.107)

V +
♢j
(tN , A) =

�
1− γPW

j

%
Λ∗, j = 1, . . . , N (4.108)

V +
† (tN , A) = 0 (4.109)

V +
▼ (tN , A) = 0. (4.110)

Remark. A more efficient way to calculate the prospective reserves for a discrete Markov
chain model is the application of a system of coupled backward recursions called Thiele’s
difference equations. As shown in Koller [17], the prospective reserves for the given discrete
time Markov model satisfy the recursions

V +
i (tk, A) = aPre

i (k) +
-
j∈S

E
�
P (tk, tk+1)

�
pij(k)

�
aPost
ij (k) + V +

j (tk+1, A)

&
. (4.111)

The boundary conditions for the recursions are the same as in (4.107) – (4.110) above.
Nevertheless, the direct calculation approach of Lemma 4.2.4 is more suitable in the context
of this thesis as it includes the individual expected future cash flows and will therefore be
the basis for deriving the liability value and duration of an insurance contract.
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Single policy liability value and insurance contract portfolio liability value

The fair value of the liability that arises from holding an insurance contract corresponds to
the present value of all future cash flows that are induced by the contract. Having defined
the prospective reserve of a contract at a given time and state covering all contractual cash
flows, we will now extend this by the expected cash flows from the profit participation
mechanism described in Section 4.2.3. The liability value as well as the duration for the
entire portfolio has to be estimated at every time step of the model at which the asset
portfolio is rebalanced to minimize the interest rate risk.
By adapting the resulting formula for the prospective reserve in (4.105) and replacing the
initial policy functions aPre

i (k) and aPost
ij (k) with the expected extended policy functions

âPre
i (k) and âPost

ij (k) given the information at tk, we define the liability value Lj
k at time

tk ∈ T of an insurance policy, given the policyholder is in state j, as

Lj
k :=

N-
ℓ=k+1

P (tk, tℓ) ·
�-

g∈S
E
�
âPre
g (ℓ)

//Ftk

� · pjg(k, ℓ) (4.112)

+
-
g,h∈S

E
�
âPost
gh (ℓ− 1)

//Ftk

� · pjg(k, ℓ− 1) · pgh(ℓ− 1)

&
.

Note that, in contrast to the prospective reserve, we hereby only include cash flows that
occur strictly after tk, thus the first term aPre

j (k) from (4.105) is not included. Also,
P (tk, tℓ) is Ftk -measurable and, due to the properties of conditional expectation, it holds
almost surely that

E
�
P (tk, tℓ)

//Ftk

�
= P (tk, tℓ).

In particular, when Lj
k is evaluated at time tk, the zero coupon bond prices P (tk, tℓ), ℓ > k,

are not random any more as the short rate value r(tk) is known at that time.

To derive the liability value in this form, for each tk ∈ T , it is necessary to estimate
the future bonus account values

Γi
n, n > k, i ∈ {∗,♢1, . . . ,♢N},

which essentially reduces to estimating the expected future policyholder returns zn, n > k,
i.e.

E
�
imin +max

�
β · (RA

n − imin), 0
% //Ftk

�
, n > k, i ∈ {∗,♢1, . . . ,♢N}.

For this estimation, we employ a Monte Carlo integration approach. Given the information
at tk, especially the information on r(tk), S1(tk), . . . , SnE (tk), the portfolio composition
λk−1 and the bonus account values Γi

k, i ∈ {∗,♢1, . . . ,♢N}, we simulate NΓ observations
of the future asset returns

RA
k+1(λk−1), . . . , R

A
N (λk−1)
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under the assumption that the portfolio composition is held constant as λk−1 as this reflects
the insurance company’s investment strategy before the new portfolio restructuring at tk
takes place. Given the simulated returns, the expected future values of zn, n > k, are
estimated as

z̄n :=
1

NΓ

NΓ-
ℓ=1

�
imin +max

�
β · (RA

n,ℓ − imin), 0
%&

,

where RA
n,ℓ denotes the ℓ-th realization of RA

n from the Monte Carlo simulation. The

estimations for the future bonus account values Γi
n, n > k, are then derived using the esti-

mations of zn, n > k, and the recursive definition of the bonus accounts in (4.90) and (4.91).

Having the single contract liability values, in order to compute the liability value of the
entire contract portfolio, information about the structure of the insurance portfolio over
time is required, i.e. the number of policyholders in each state of S at each point in time
of the underlying time grid T . For that, we introduce the random variables

ℓjk :=

nL-
i=1

1�
Xi

k=j

, j ∈ S, k ∈ I, (4.113)

counting the number of policyholders in state j ∈ S at time tk ∈ T , and the vectors

ℓk :=
�
ℓ∗k, ℓ

▼
k , ℓ

†
k, ℓ

♢1
k , . . . , ℓ♢N

k

%
, k ∈ I, (4.114)

describing the structure of the insurance portfolio at time tk ∈ T . For these portfolio
structure vectors, it obviously holds for every k ∈ I that-

j∈S
ℓjk = nL.

Given the structure of the insurance contract portfolio at a time tk ∈ T , the liability value
Lk of the full contract portfolio at tk corresponds to the sum of the liability values of the
single contracts and thus is defined as

Lk =
-
j∈S

ℓjk · Lj
k. (4.115)

Remark. As we assume that all nL insurance policies are in the active state at the beginning
of the projection, we have the initial portfolio structure given as

ℓ0 = (nL, 0, . . . , 0)

and the liability value of the contract portfolio at t0 = 0 given as

L0 = nL · L∗
0. (4.116)
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Single policy duration and insurance contract portfolio duration

To investigate the interest rate sensitivity of an insurance contract liability at a given time,
we derive the Fisher-Weil duration of the expected future cash flows at a given time using
Definition 2.2.7 and the given formula for Lj

k above. Analogous to the derivation of the
duration of a fixed rate bond in Section 4.1.7, weighting the expected future cash flows with
the remaining term until their payment times, the Fisher-Weil duration DL

k,j of a single
insurance policy at time tk ∈ T , provided the insured is in state j, is given as

DL
k,j :=

1

Lj
k

·
�

N-
ℓ=k+1

�
tℓ − tk

%·P (tk, tℓ) ·
�-

g∈S
E
�
âPre
g (ℓ)

//Ftk

� · pjg(k, ℓ) (4.117)

+
-
g,h∈S

E
�
âPost
gh (ℓ− 1)

//Ftk

� · pjg(k, ℓ− 1) · pgh(ℓ− 1)

&$
.

Using (2.25), the duration of the full contract portfolio DL
k at time tk ∈ T , which we will

call the liability duration at tk, is given as the weighed sum of the state-dependent durations
defined above. The weights at a given time equal the contributions of the liability values
of all contracts in state j to the liability value of the full contract portfolio, which yields

DL
k :=

-
j∈S

ℓjk · Lj
k

Lk
DL

k,j . (4.118)

4.3. Two-stage stochastic duration matching for interest rate
risk management

Applying the models for the assets and liabilities defined in the sections above, the simplified
market value balance sheet of the insurance company at a time tk ∈ T is given accordingly:

Assets Liabilities and Equity

– Market value of the asset portfolio Ak – Present value of the insurance liabilities Lk

– Equity capital

The shareholders’ equity capital at time tk equals

Ak − Lk

as the company’s total assets minus its total liabilities. Both the market values of assets
and liabilities are highly dependent on the interest rate environment and may react very
differently to yield curve movements, with the asset duration DA

k and the liability duration
DL

k as the quantifying risk measures for these sensitivities. In a typical cash flow profile of
an endowment insurance contract, the timing of the benefit cash outflows to policyholders
tends to have a higher weighting towards the end of the contract term due to the endowment
benefit payments at maturity. Thus, they are discounted more heavily in the calculation
of the liability value than premium cash inflows at earlier stages of the contract term. In
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the event of an upward shift of the underlying yield curve, the present value of future cash
outflows increases more steeply than than the present value of future cash inflows decreases,
leading to an overall increase in the liability value. At the same time, the prices of fixed
rate bonds given by (4.27) fall due to the shift in yield curve as future coupon and maturity
cash flows are discounted more strongly. In case of a downward shift of the yield curve, the
effects move in the respective opposite direction. If there is a material mismatch between
the sensitivities of asset and liability values to changes in the yield curve, a shortfall in the
coverage of liabilities by the assets and further an increased risk of insolvency can be the
result.
The main objective in this model to manage the risk discussed is therefore to minimise the
mismatch between the interest rate sensitivities of assets and liabilities using a duration
matching approach. In Führer [7], this approach is described as an immunisation strategy
to immunise the technical provisions against the interest rate risk and to structure the
asset portfolio in such a way that the changes in the value of assets and liabilities due to
interest rate shifts are as parallel as possible. Referring to the discussion in Chapter 3, we
therefore deal with a situation in which the liabilities are given as a constant factor and op-
timise the capital investment, resulting in the direction of impact ‘Liabilities control Assets’.

The general idea of a duration matching approach is to construct a portfolio of assets
whose duration matches that of the liabilities, as described in Führer [7] or Koller [17].
In Di Francesco/Simonella [5], this concept is extended by additionally requiring the asset
return to match the return of a separately modelled benchmark return. The ALM ap-
proach in this thesis comprises a dynamic investment portfolio rebalancing at every time
step tk ∈ T as the result of a two-stage optimisation procedure. In the first stage, the
optimisation objective is to obtain an asset portfolio composition that minimises the dif-
ference between the asset and liability duration under the constraints described in Section
4.1.6. Given the minimal possible gap between the duration of assets and liabilities, the
objective of the second stage is to derive a portfolio composition with maximized expected
return, such that the asset-liability duration gap lies within a specified accepted deviation
from the minimum gap of stage one. This approach thus covers two key aspects of a life
insurance company with regard to capital investment: Firstly, the interest rate risk min-
imisation of the first stage reflects the obligation of a life insurance company to invest the
assets covering the technical provisions in a manner that is appropriate to the nature and
duration of the insurance liabilities, see Section 3.3.1. Secondly, the objective of the second
stage serves the interests of policyholders and shareholders to obtain a competitive return
on their capital.

Remark. As duration matching is primarily a short- to medium-term ALM method, it may
not be reasonable to solve the optimisation problem up to the maturity of the insurance
contracts as the stochastic projection and optimisation require high computational capaci-
ties and the results for longer time horizons are less meaningful due to the underlying model
uncertainty. Therefore, it may be appropriate to introduce an optimisation horizon N̂ ≤ N
and to consider the dynamic multi-periodic ALM problem only for the time steps t0, . . . , tN̂ .

At this point it is necessary to emphasise that, as discussed in Chapter 3, duration matching
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is by no means a comprehensive solution to ALM. The approach described here primarily
aims to investigate portfolio structures that minimise the difference between the asset and
liability duration and the development of such optimal portfolios over time.

4.3.1. First stage ALM optimisation

At a time step tk, k > 0, the first objective is to minimise the interest rate risk. Given
the liability duration DL

k and the durations of the individual types of fixed rate bonds at
tk, the first stage problem consists of finding an asset portfolio composition vector λk such
that the duration gap between assets and liabilities is minimised. Thus, we consider the
following non-linear optimisation problem with constraints:
Optimisation problem 1

min
λk

///DA
k (λk)−DL

k

/// (4.119)

subject to

����������������������������������

λC
k , λS

k,i, λB
k,j ≥ 0, i = 1, . . . , nE , j = 1, . . . , nB,

λC
k + λS

k + λB
k = 1,

αmin
S ≤ λS

k ≤ αmax
S ,

λC
k ≥ αC ,//λC
k − λC

k−1

// ≤ δλ,//λS
k,i − λS

k−1,i

// ≤ δλ, i = 1, . . . , nE ,//λB
k,j − λB

k−1,j

// ≤ δλ, j = 1, . . . , nB,

(4.120)

Given a solution λ̃k of the optimisation problem above, the minimal attainable duration
gap between assets and liabilities, given the constraints, is denoted by

∆Dk :=
///DA

k (λ̃k)−DL
k

///. (4.121)

Remark. The solution of Optimisation problem 1 is not necessarily unique, but there always
exists a solution that minimises the objective (4.119) and fulfils the given constraints. To see
this, consider the set Θ ⊆ RnE+nB+1 of all portfolio composition vectors that fulfil (4.120).
The set Θ is non-empty, as λk−1 ∈ Θ, as well as a compact subset of the euclidean space
RnE+nB+1. Further, it is easy to see that the minimisation objective depends continuously
on λk, implying that the set �//DA

k (λk)−DL
k

// : λk ∈ Θ
�

as the image of a compact set under the continuous function�
Θ → R
λk �→ //DA

k (λk)−DL
k

//
is itself compact in R, see Kaltenbäck [14]. This allows the application of the Extreme
value theorem, which guarantees the existence of a corresponding minimum.
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4.3.2. Second stage ALM optimisation

Let the minimal duration gap ∆Dk at a time tk be given from the first optimisation stage.
In the second stage we take into account that, in addition to managing the interest rate
risk, it is also the responsibility of an insurance company to design its investment strategy
in such a way that a competitive investment return can be achieved. Thus, we do not only
accept portfolio compositions that minimise the duration gap, but also compositions with
an asset-liability duration gap within a specified range from the minimal gap ∆Dk. Hence,
we introduce a maximum accepted absolute deviation ϵ ≥ 0 from the minimal gap and
accept portfolio composition vectors with a duration gap within the interval

∆Dϵ
k :=

�
∆Dk − ϵ, ∆Dk + ϵ

�
.

Here, we choose this boundary to be constant for all time periods. However, as the liability
duration of the contract portfolio decreases over the term of the contracts, a time-dependent
definition of this maximum deviation could be a useful extension to the model.

Within this restriction, we search for a portfolio vector that provides the maximised ex-
pected return of the asset portfolio for the subsequent time period. Formally, this leads to
the following problem for the second stage:

Optimisation problem 2

max
λk

E
�
RA

k+1(λk)
///Ftk

�
(4.122)

subject to


//DA

k (λk)−DL
k

// ∈ ∆Dϵ
k,

constraints in (4.120).
(4.123)

Both optimisation problems are solved numerically in the implementation. The obtained
solution of this optimisation problem is then chosen as the asset portfolio composition for
the period [tk, tk+1).
Note that, as the duration is measured in units of years, see Section 2.2.1, the duration
gap is also measured in years. Therefore, the choice of an absolute maximum deviation
rather than a relative deviation is considered appropriate for this optimisation approach.
The approach of choosing a maximum relative deviation ϵ̃ from the minimal duration gap
∆Dk has the disadvantage that if the liability duration at a given time tk can be perfectly
or almost perfectly replicated by an appropriate asset portfolio, i.e. ∆Dk ≈ 0, the relative
interval around the minimal duration gap�

∆Dk (1− ϵ̃), ∆Dk (1 + ϵ̃)
�

gets very small or even reduces to the single element ∆Dk itself, making the second stage
of optimisation redundant as the first constraint in (4.123) forces the solution to identical
or almost identical to the solution obtained in the first optimisation stage.
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Analogous to the remark for stage one, it is easy to see that a solution of the optimisation
problem exists. Also, note that the parameter ϵ significantly influences the individual
importance of the two respective optimisation stages in the overall optimisation process,
as with ϵ = 0, the focus lies on an optimal duration matching, whereas with ϵ → ∞, the
focus is solely on a maximisation of the expected investment return.
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5. Implementation and numerical results

In this concluding chapter, we briefly discuss the mathematical background for numerical
path simulation of continuous-time asset processes that is applied for the implementation
of this model and present some numerical results of the model for a chosen scenario. The
model is implemented in Python and the code can be found in Appendix B.

5.1. Path simulation of stochastic differential equations

In order to model the stochastic differential equations from the asset model in Chapter 4
numerically, the method of Euler (or Euler-Maruyama) discretization is applied in this
thesis to simulate the corresponding paths of the SDEs. We will start with the Euler
discretization of a Brownian motion and then proceed to the simulation of general stochastic
differential equations, based on Seydel [25].

5.1.1. Euler discretization for Brownian motion

Let ∆t > 0 be a constant time increment, N ∈ N and W = (W (t))t≥0 be a standard
Brownian motion. For a discrete time grid {tj = j ·∆t | j = 0, . . . , N} and a given time tk
of this time grid, the value of W (tk) can be written as the sum of its past increments:

W (tk) =
k-

j=1

�
W (tj)−W (tj−1)

%� �� �
=:∆Wj

,

with ∆Wj ∼ N (0,∆t) by the property of a Brownian motion that its increments over
disjoint increments are independent and normally distributed (see Definition 2.1.3). Thus,
by simulating N independent normally distributed random variables

Zj ∼ N (0,∆t), j = 1, . . . , N,

a standard Brownian motion can be simulated via the recursive formula

W (t0) = 0

W (tj) = W (tj−1) + Zj , j = 1, . . . , N.

Based on simulated one-dimensional standard Brownian motions, n-dimensional Brownian
motions with independent components can then easily be simulated by simulating each
of the n components separately as a one-dimensional Brownian motions using the upper
recursion. This n-dimensional Brownian motion can then be transformed according to
Section 4.1.5 to obtain a simulation of a correlated n-dimensional Brownian.
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5.1.2. Euler discretization for stochastic differential equations

Given the time grid {tj = j ·∆t | j = 0, . . . , N} with constant time increment ∆t, a general
stochastic differential equation

dX(t) = α
�
t,X(t)

%
dt+ σ

�
t,X(t)

%
dW (t), X(t0) = X0, (5.1)

can be simulated by combining the discretization

∆X(tk) = α
�
tk, X(tk)

%
∆t+ σ

�
tk, X(tk)

%
∆W (tk)

and the approximated standard Brownian motion, more precisely, its increments, from
the section before. Thus, an SDE of the form (5.1) can be simulated using the Euler
discretization by an implementation of the recursion

X(t0) = X0

X(tj) = X(tj−1) + α
�
tj , X(tj)

%
∆t+ σ

�
tj , X(tj)

%
∆W (tj), j = 1, . . . , N.

5.2. Numerical results

For the numerical results, we consider an insurance portfolio of nL = 1000 homogenous
endowment insurance contracts at their inception time with a contract maturity of T = 20
years. The asset portfolio is dynamically rebalanced at every time step with regard to the
optimisation problem in Section 4.3 in order to offset the corresponding interest rate risk.
For the presented scenario, the model was parametrised as follows:

Asset model parameters

• Short rate model parameters:

– r0 = 0.03

– κ = 1.2

– θ = 0.02535

– σ = 0.004

• Bond model parameters:

– nB = 5 fixed rate bonds:

Fixed rate bond Coupon rate Bond maturity

Bi ci TB
i

B1 0.027 5 years

B2 0.027 10 years

B3 0.028 15 years

B4 0.028 20 years

B5 0.026 25 years
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– Annual coupon payments with kB = 25 coupon payment times�
tcj | j = 1, . . . , kB



= {1, . . . , 25}.

• Stock price model parameters:

– nE = 1

– µ1 = 0.09060

– σ1 = 0.15140

• Correlation matrix:

Ĉ =

 1 ρS,r1

ρS,r1 1

 =

 1 −0.1

−0.1 1


• Initial portfolio composition λ0 at t0 = 0:

λ0 =
�
λC
0 , λS

0,1, λB
0,1, λB

0,2, λB
0,3, λB

0,4, λB
0,5

#
=

�
0.03, 0.08, 0.02, 0.05, 0.16, 0.17, 0.49

#
• Initial surplus of assets over liabilities:

– ϵ0 = 0.05

• Asset portfolio composition constraints:

– Equity weight boundaries:
�
αmin
S , αmax

S

�
=

�
0.02, 0.12

�
– Cash weight boundary: αC = 0.02

– Single weight turnover boundary: δλ = 0.06

Liability model parameters

• Initial policyholder age: x0 = 45

• Contractually guaranteed interest rate: imin = 0.00

• Initial actuarial reserve: Ψ0 = 0

• Initial bonus account value: Γ∗
0 = 0

• Profit participation factor: β = 0.90

• Guaranteed benefits: Λ∗ = Λ† = 30, 000 EUR

• Premiums: Combination of single premium at t0 = 0 and recurring annual premium
payments until contract maturity:

– P0 = 12, 595 EUR
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– Pk = 595 EUR, k = 1, . . . , N − 1

• Surrender deduction factor: γS = 0.05

• Premium waiver deduction factors:

i γPW
i i γPW

i i γPW
i i γPW

i

1 0.44 6 0.31 11 0.20 16 0.08
2 0.42 7 0.29 12 0.17 17 0.06
3 0.39 8 0.27 13 0.15 18 0.04
4 0.36 9 0.24 14 0.13 19 0.02
5 0.34 10 0.22 15 0.10 20 0.00

• Surrender and premium waiver probabilities:

– Threshold intervals:

I1 =
�
0, 0.01

%
I2 =

�
0.01, 0.02

%
I3 =

�
0.02, ∞%

– Premium waiver probabilities:

Periods 0− 4 5− 9 10− 15 15− 18 19

Intervals

I1 0.013 0.016 0.019 0.022 0.000

I2 0.007 0.010 0.013 0.016 0.000

I3 0.005 0.008 0.011 0.014 0.000

– Surrender probabilities:

Periods 0− 4 5− 9 10− 15 15− 18 19

Intervals

I1 0.0065 0.0080 0.0095 0.0110 0.0000

I2 0.0035 0.0050 0.0065 0.0080 0.0000

I3 0.0025 0.0040 0.0055 0.0070 0.0000

• Accepted deviation from optimal duration gap: ϵ = 0.3
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In total, 1000 independent simulations of the multi-period scenario were generated, of which
we will now present the average results. Here, we focus on investigating the development of
the asset portfolio structure, the value of assets and liabilities and their durations over time.

In terms of the optimised asset portfolio composition, the expectation is that in the ear-
lier stages of the insurance contract term, bonds with a higher duration are more heavily
weighted in order to match the high liability duration at contract inception, and with in-
creasing time, bonds with a lower duration increase in their weights as the liability duration
is increasing the closer the contracts come to the contract maturity T .

Figure 5.1.: Average optimal asset portfolio composition over time

In Figure 5.1, which shows the average development of the optimised portfolio composition
over time, it can be clearly seen that this is the case in the sense that the bond with the
highest duration, namely bond B5, makes the largest contribution to the portfolio within
the first time periods, with a maximum average weighting of 64,7% at time t3. With
increasing time and consequently an ongoing decrease in the liability duration, bonds with
a lower duration, in particular the bonds B1 and B2, increase in their weights significantly to
compensate for the decreasing but still high duration share of the asset portfolio through
bond B5. This development can be seen even more clearly in the following Figure 5.2,
showing the optimised single asset weights over time for all available assets.
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Figure 5.2.: Average optimal asset weights over time

It is observable that the fulfilment of the optimisation problem in this scenario is mainly
covered by a time-dependent combination of bonds B1, B2 and B5, as already described
above. Bonds B3 and B4 with medium duration play a very subordinate role with almost
continuously falling weights, which are approximately zero for both bonds from time t10
onwards. The weight of the equity investment S1 remains relatively stable around 10%.

Figure 5.3.: Average asset and liability duration over time
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Due to the initial choice λ0 of the asset composition, the liability duration is not matched
at the beginning of the projection, see Figure 5.3, leading to a gap between the asset and li-
ability duration. Thus, within the first periods, a gradual development of the asset weights
towards a portfolio whose duration replicates that of the liabilities can be observed. The
speed of this convergence of the initial portfolio towards a duration replicating portfolio
is here determined by the turnover constraint, only allowing the weights to change up to
the specified extent δλ from one time step to the next. Within the first three time periods
[t0, t3], see Figure 5.2, the weights of the bonds B1, . . . , B4 decrease while the weight of
bond B5 rises, leading to an increase in the asset duration. From t3 onwards, the liability
duration can be matched by the corresponding asset portfolio within the accepted deviation
ϵ from the perfect duration match. For this scenario, the initial portfolio composition was
consciously chosen not to be optimal in order to be able to see the convergence towards an
optimal portfolio.

In terms of the development of the average asset and liability value over time, Figure
5.4 shows that both are steadily increasing on average within the projection horizon.

Figure 5.4.: Average asset and liability value and equity over time

Even though the average value of equity as the difference between the asset value and the
liability value is positive for all time steps, scenarios can occur in which the value of equity
can become negative, which could be interpreted as a form of default of the insurance com-
pany. Even with a matched duration of assets and liabilities leading to a similar sensitivity
of their values in case of changes in the yield curve due to the short rate dynamics, the lia-
bility value, unlike the asset value, cannot decrease in case of a negative investment return
due to the profit-sharing mechanism in (4.90) and (4.91). Thus, high negative investment
returns within a certain period, i.e. RA

k < 0, can force the value of the asset portfolio to fall
below the value of the liabilities, leading to a negative equity at the time. Additionally, as
there is a gap between the asset and liability duration within the first periods as described
above, an exposure to an increased interest rate risk is still given at the beginning. For the
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generated simulations in the presented scenario, this was the case for 14 scenarios in total,
leading to a probability of default of 1.4%.

To conclude, we illustrate the development of the average insurance contract portfolio
structure over all simulations for the given scenario, i.e. the average number of insured per
state over time, in Figure 5.5:

Figure 5.5.: Average number of insured per state over time

Comparing the number of policyholders exercising the premium waiver option to the num-
ber of policyholders exercising the surrender option reflects the parametrisation of this
scenario, in which the premium waiver probabilities were chosen to be twice as high as
the surrender probabilities. The number of deceased persons in this scenario has a minor
effect as the chosen age and contract term imply low probabilities of decease in general.
For scenarios where the insured are older at the start of the projection, this effect has a
greater impact.
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6. Conclusion and future scope

In the course of this thesis, we studied a scenario-based stochastic modelling approach for
interest rate risk management in life insurance. We started by discussing the method-
ological framework of stochastic modelling in the area of asset-liability management and
the legal requirements of Austrian insurance law that significantly influence the realisation
of ALM measures and the implementation of stochastic ALM models. Taking this legal
framework into account, we have derived interacting models for assets and liabilities and
formulated a two-stage optimisation problem with the objective of immunising an insur-
ance company against the underlying interest rate risk by dynamically restructuring the
investment portfolio.

Due to the complexity of modern financial markets and the broad spectrum of life insurance
products, we had to restrict ourselves to aspects considered essential for the purpose of the
model when deriving the individual model components. This, of course, opens up a range
of possibilities for model extensions or flexibilisations, some of which have already been
mentioned at appropriate points in the thesis. Especially for the capital market model, in
terms of the modelled financial instruments the insurance company can invest in, we re-
stricted ourselves to equities, fixed rate bonds and a money market account. Consequently,
extending the model by including further financial products and incorporating their risk-
reducing effects into the interest rate risk optimisation problem offers interesting options
for further analysis. First and foremost, floating-rate notes, interest rate swaps or other
derivative financial instruments permitted for life insurance companies can be mentioned
here as financial instruments that would meaningfully complement the model.
For the liability model, we covered the life insurance type of endowment insurance con-
tracts as these contracts are associated with a more complex interest rate risk due to the
distribution of expected benefit cash flows over the entire contract term and were therefore
considered as particularly relevant. This, however, makes it a sensible approach to model
and analyse other contract types such as whole life or pure endowment contracts or even
insurance portfolios consisting of different contract types. With regard to benefit payments,
it would be interesting to move away from the assumption of one-off benefit payments to-
wards benefit payments in the form of fixed-term or life annuities, as this has a particular
influence on the duration and thus the interest rate sensitivity of the insurance portfolio.
To conclude, the possible consideration of reinsurance contracts with their risk-reducing
effects, their influence on the structure of future expected cash flows and consequently their
impact on the interest rate sensitivity of the liabilities should also be mentioned here.
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A. Tables

Age
in years

Probability
of dying
between

ages x to x+ 1

Number
surviving to

age x

Number
dying

between
ages x to x+ 1

Expectation
of life

at age x

x qx lx dx ex

0 0.00277 100000 277 81.36
1 0.00020 99723 20 80.58
2 0.00014 99703 14 79.60
3 0.00011 99689 11 78.61
4 0.00009 99678 9 77.62
5 0.00008 99669 8 76.63
6 0.00008 99660 8 75.63
7 0.00007 99653 7 74.64
8 0.00006 99646 6 73.64
9 0.00005 99640 5 72.65
10 0.00005 99634 5 71.65
11 0.00007 99629 7 70.66
12 0.00009 99622 9 69.66
13 0.00012 99614 12 68.67
14 0.00016 99601 16 67.68
15 0.00021 99585 21 66.69
16 0.00025 99565 25 65.70
17 0.00029 99540 29 64.72
18 0.00032 99511 32 63.74
19 0.00035 99479 35 62.76
20 0.00037 99444 37 61.78
21 0.00038 99407 38 60.80
22 0.00038 99369 37 59.82
23 0.00037 99332 36 58.85
24 0.00036 99295 35 57.87
25 0.00035 99260 35 56.89
26 0.00035 99225 35 55.91
27 0.00037 99190 36 54.93
28 0.00039 99154 39 53.95
29 0.00042 99115 41 52.97
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x qx lx dx ex

30 0.00045 99074 45 51.99
31 0.00048 99029 48 51.01
32 0.00052 98981 51 50.04
33 0.00055 98930 54 49.06
34 0.00058 98876 58 48.09
35 0.00062 98819 61 47.12
36 0.00066 98757 65 46.15
37 0.00071 98692 70 45.18
38 0.00076 98622 75 44.21
39 0.00082 98547 81 43.24
40 0.00089 98466 87 42.28
41 0.00096 98379 94 41.31
42 0.00104 98285 103 40.35
43 0.00114 98182 112 39.39
44 0.00124 98071 122 38.44
45 0.00136 97949 133 37.49
46 0.00149 97816 145 36.54
47 0.00163 97671 159 35.59
48 0.00179 97512 175 34.65
49 0.00198 97337 192 33.71
50 0.00219 97145 212 32.77
51 0.00242 96933 235 31.84
52 0.00270 96698 261 30.92
53 0.00300 96437 289 30.00
54 0.00334 96147 321 29.09
55 0.00371 95827 356 28.19
56 0.00412 95471 393 27.29
57 0.00457 95078 435 26.40
58 0.00508 94643 481 25.52
59 0.00565 94163 532 24.65
60 0.00631 93630 591 23.78
61 0.00706 93039 657 22.93
62 0.00790 92382 730 22.09
63 0.00880 91652 807 21.26
64 0.00974 90845 885 20.45
65 0.01070 89960 963 19.64
66 0.01166 88997 1038 18.85
67 0.01265 87960 1113 18.07
68 0.01374 86847 1194 17.29
69 0.01501 85654 1286 16.53
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x qx lx dx ex

70 0.01652 84368 1394 15.77
71 0.01834 82974 1522 15.03
72 0.02044 81452 1665 14.30
73 0.02274 79787 1814 13.59
74 0.02515 77973 1961 12.89
75 0.02761 76012 2099 12.21
76 0.03006 73913 2222 11.54
77 0.03263 71691 2339 10.89
78 0.03555 69352 2466 10.24
79 0.03907 66886 2613 9.60
80 0.04342 64273 2791 8.97
81 0.04883 61482 3002 8.35
82 0.05544 58480 3242 7.75
83 0.06334 55238 3499 7.18
84 0.07262 51739 3758 6.63
85 0.08340 47981 4002 6.11
86 0.09575 43980 4211 5.62
87 0.10969 39769 4362 5.16
88 0.12519 35407 4433 4.74
89 0.14225 30974 4406 4.34
90 0.16084 26568 4273 3.98
91 0.18093 22295 4034 3.65
92 0.20245 18261 3697 3.35
93 0.22529 14564 3281 3.07
94 0.24934 11283 2813 2.82
95 0.27450 8470 2325 2.58
96 0.30110 6145 1850 2.37
97 0.32892 4295 1413 2.18
98 0.35800 2882 1032 2.00
99 0.38835 1850 719 1.84
100 0.41997 1132 475 1.69
101 0.45285 656 297 1.56
102 0.48700 359 175 1.43
103 0.52241 184 96 1.32
104 0.55909 88 49 1.21
105 0.59704 39 23 1.12
106 0.63625 16 10 1.03
107 0.67673 6 4 0.97
108 0.71848 2 1 0.95
109 0.76149 1 0 1.09
110 0.80576 0 0 1.97

Table A.1.: Smoothed mortality table (Unisex) for Austria, 2020–2022, Source: Statistics
Austria [27]
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B. Model implementation in Python

We here present the implementation code of the stochastic scenario-based model of Chapter
4 using the Python programming language. The code is structured in the following modules:

• Model parameters.py

Specification of all required model parameters.

• Asset Model.py

Specification of all functionalities of the asset model as described in Section 4.1.

• Liability Model.py

Specification of all functionalities of the liability model as described in Section 4.2.

• ALM simulation.py

Main functionality for the stochastic scenario modelling and asset portfolio optimi-
sation.

Model parameters.py:

1 import numpy as np

2 import pandas as pd

3

4 ### General model parameters

5 N = 20

6 T_grid = list(range(N+1))

7 N_hat = 15

8 T_grid_hat = list(range(N_hat +1))

9 num_sim = 1000

10

11 param_general = {

12 ’N’: N,

13 ’T_grid ’: T_grid ,

14 ’N_hat ’: N_hat ,

15 ’T_grid_hat ’: T_grid_hat ,

16 ’num_sim ’: num_sim

17 }

18

19 ### Asset model parameters

20 # short rate model parameters

21 r0_r = 0.03

22 kappa_r = 1.2

23 theta_r = 0.02535

24 sigma_r = 0.004

25

26 # bond model parameters

27 n_B = 5

28 T_bonds = [5,10,15,20,25]
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B. Model implementation in Python

29 c_bonds = [0.027 , 0.027, 0.028, 0.028, 0.026]

30 t_c = list(range(1,max(T_bonds)+1))

31

32 # equity model parameters

33 n_E = 1

34 mu_S = [0.09060036]

35 sigma_S = [0.15140469]

36

37 # general asset model parameters

38 dt = 1/250

39 C_hat = np.array([

40 [1.0, -0.1],

41 [-0.1, 1.0]

42 ])

43 lambda_0 = [0.03 , 0.08, 0.02, 0.05, 0.16, 0.17, 0.49]

44 epsilon_0 = 0.05

45 alpha_S_min = 0.02

46 alpha_S_max = 0.12

47 alpha_C = 0.02

48 delta_lambda = 0.06

49

50 param_assets = {

51 ’r0_r’: r0_r ,

52 ’kappa_r ’: kappa_r ,

53 ’theta_r ’: theta_r ,

54 ’sigma_r ’: sigma_r ,

55 ’n_B’: n_B ,

56 ’T_bonds ’: T_bonds ,

57 ’c_bonds ’: c_bonds ,

58 ’t_c’: t_c ,

59 ’n_E’: n_E ,

60 ’mu_S’: mu_S ,

61 ’sigma_S ’: sigma_S ,

62 ’dt’: dt,

63 ’C_hat ’: C_hat ,

64 ’lambda_0 ’: lambda_0 ,

65 ’epsilon_0 ’: epsilon_0 ,

66 ’alpha_S_min ’: alpha_S_min ,

67 ’alpha_S_max ’: alpha_S_max ,

68 ’alpha_C ’: alpha_C ,

69 ’delta_lambda ’: delta_lambda

70 }

71

72 ### Liability model parameters

73 n_L = 1000

74 x_0 = 45

75 i_min = 0.00

76 Psi_0 = 0.0

77 Gamma_0 = 0.0

78 beta = 0.90

79 Lambda_d = 30000.0

80 Lambda_a = 30000.0

81 K = 3

82 xi = [0, 0.01, 0.02]

83 Delta_R_0 = 0.015
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84 premiums = pd.read_excel("model_parameters.xlsx", sheet_name = ’premiums ’,

�→ index_col =0).loc[:,’premiums ’]. to_list ()

85 gamma_S = 0.05

86 gamma_PW = pd.read_excel("model_parameters.xlsx", sheet_name = ’gamma_PW ’,

�→ index_col =0).loc[:,’gamma_PW ’]. to_list ()

87 N_Gamma = 500

88 dt_Gamma_estimation = 1/100

89 epsilon = 0.3

90

91 param_liabilities = {

92 ’n_L’: n_L ,

93 ’x_0’: x_0 ,

94 ’i_min ’: i_min ,

95 ’Psi_0 ’: Psi_0 ,

96 ’Gamma_0 ’: Gamma_0 ,

97 ’beta’: beta ,

98 ’Lambda_d ’: Lambda_d ,

99 ’Lambda_a ’: Lambda_a ,

100 ’K’: K,

101 ’xi’: xi,

102 ’Delta_R_0 ’: Delta_R_0 ,

103 ’premiums ’: premiums ,

104 ’gamma_S ’: gamma_S ,

105 ’gamma_PW ’: gamma_PW ,

106 ’N_Gamma ’: N_Gamma ,

107 ’dt_Gamma_estimation ’: dt_Gamma_estimation ,

108 ’epsilon ’: epsilon

109 }

110

111 ### Liability model data

112 # mortality table

113 mort_table = pd.read_csv("Geglaettete_Sterbetafel_2022.csv", delimiter = ’

�→ ;’, decimal = ’,’)

114

115 # probability tables for surrender and premium waiver probabilities

116 prob_table_surr = pd.read_excel("model_parameters.xlsx", sheet_name = ’

�→ Surrender ’, skiprows=2, index_col =0)

117 prob_table_pw = pd.read_excel("model_parameters.xlsx", sheet_name = ’

�→ Premium_waiver ’, skiprows=2, index_col =0)

118

119 data_liabilities = {

120 ’mort_table ’: mort_table ,

121 ’prob_table_surr ’: prob_table_surr ,

122 ’prob_table_pw ’: prob_table_pw

123 }

Asset Model.py:

1 import numpy as np

2 import pandas as pd

3

4 def simulate_corr_brownian_motion(param_assets , param_general):

5 """

6 Simulates n-dimensional Brownian motion up to time T with given
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�→ correlation structure C_hat.

7

8 :param param_assets: dictionary containing asset parameters

9 :param param_general: dictionary containing general model parameters

10 :return W: List of (n_E+1) data frames containing simulations

�→ of correlated brownian motions

11 """

12

13 N_hat = param_general[’N_hat’]

14 num_sim = param_general[’num_sim ’]

15 dt = param_assets[’dt’]

16 C_hat = param_assets[’C_hat’]

17 n_E = param_assets[’n_E’]

18

19 W_S = list()

20 for _ in range(n_E):

21 W_S.append(pd.DataFrame(0, index=[i * dt for i in range(0, int(N_hat / dt)

�→ + 1)], columns = [str(i) for i in range(num_sim)]))

22 W_r = pd.DataFrame(0, index=[i * dt for i in range(0, int(N_hat / dt) + 1)

�→ ], columns = [str(i) for i in range(num_sim)])

23

24 # Calculation of the Cholesky decompositon of C_hat

25 A = np.linalg.cholesky(C_hat)

26

27 for n in range(num_sim):

28 # Simulate n-dimensional Brownian motion with independent components

29 W_hat = np.zeros((int(n_E+1),int(N_hat/dt+1)))

30 for i in range(n_E +1):

31 W_hat[i,:] = np.cumsum(np.concatenate (([0] , np.random.normal(0, np.sqrt(dt

�→ ), int(N_hat/dt)))))

32

33 # Simulation of correlated Brownian motion

34 W = np.dot(A, W_hat)

35 for i in range(n_E):

36 W_S[i][str(n)] = W[i,:].T

37 W_r[str(n)] = W[-1,:].T

38

39 W = {’W_S’: W_S ,

40 ’W_r’: W_r}

41

42 return W

43

44 def simulate_short_rate(param_assets , param_general , W_r):

45 """

46 Simulates paths for the short rate using the Vasicek model.

47

48 :param param_assets: dictionary containing asset parameters

49 :param param_general: dictionary containing general model parameters

50 :param W_r: Brownian motion paths for short rate

51 :return r: Data frame containing simulations of short rate

�→ paths

52 """

53

54 N_hat = param_general[’N_hat’]

55 num_sim = param_general[’num_sim ’]
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56 dt = param_assets[’dt’]

57 r0 = param_assets[’r0_r’]

58 kappa = param_assets[’kappa_r ’]

59 theta = param_assets[’theta_r ’]

60 sigma = param_assets[’sigma_r ’]

61

62 r = pd.DataFrame (0., index=[i * dt for i in range(0, int(N_hat / dt) + 1)

�→ ], columns = [str(i) for i in range(num_sim)])

63 r.iloc [0] = r0

64

65 dW_r = W_r.diff().iloc [1:]

66 for i in range(1,int(N_hat/dt)+1):

67 r.iloc[i] = r.iloc[i-1] + kappa * (theta - r.iloc[i-1]) * dt + sigma *

�→ dW_r.iloc[i-1]

68

69 return r

70

71

72 def simulate_bank_account(param_assets , param_general , r):

73 """

74 Simulates paths for the bank account using the short rate paths.

75

76 :param param_assets: dictionary containing asset parameters

77 :param param_general: dictionary containing general model parameters

78 :param r: Short rate paths

79 :return C: Data frame containing simulations of bank account

�→ value paths

80 """

81

82 N_hat = param_general[’N_hat’]

83 num_sim = param_general[’num_sim ’]

84 dt = param_assets[’dt’]

85

86 C = pd.DataFrame (0., index=[i * dt for i in range(0, int(N_hat / dt) + 1)

�→ ], columns = [str(i) for i in range(num_sim)])

87 C.iloc [0] = 1

88

89 for i in range(1,int(N_hat/dt)+1):

90 C.iloc[i] = C.iloc[i-1] + C.iloc[i - 1] * r.iloc[i - 1] * dt

91

92 return C

93

94 def simulate_stocks(param_assets , param_general , W_S):

95 """

96 Simulates paths for stock prices following geometric Brownian motions.

97

98 :param param_assets: dictionary containing asset parameters

99 :param param_general: dictionary containing general model parameters

100 :param W_S: List of Brownian motion paths for stock prices

101 :return S: List of Data frames containing simulations of

�→ stock prices

102 """

103

104 N_hat = param_general[’N_hat’]

105 dt = param_assets[’dt’]
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106 n_E = param_assets[’n_E’]

107 mu = param_assets[’mu_S’]

108 sigma = param_assets[’sigma_S ’]

109

110 S = list()

111

112 for j in range(n_E):

113 S.append(np.exp(( sigma[j] * W_S[j]).add([(mu[j] - (sigma[j]**2) /2) * i *

�→ dt for i in range(0, int(N_hat / dt) + 1)], axis =0)))

114

115 return S

116

117 def simulate_bonds(param_assets , param_general , r):

118 """

119 Simulates paths for the fixed rate bond prices using the short rate paths.

120

121 :param param_assets: dictionary containing asset parameters

122 :param param_general: dictionary containing general model parameters

123 :param r: Short rate paths

124 :return B: List of Data frames containing simulations of

�→ fixed rate bond price paths

125 """

126

127 num_sim = param_general[’num_sim ’]

128 n_B = param_assets[’n_B’]

129 T_bonds = param_assets[’T_bonds ’]

130 c_bonds = param_assets[’c_bonds ’]

131 t_c = np.array(param_assets[’t_c’])

132

133 # Cash flow profiles of all bonds

134 cfs = pd.DataFrame (0., index = sorted(set(t_c) | set(T_bonds)), columns =

�→ [str(i) for i in range(n_B)])

135

136 for i in range(n_B):

137 cfs.loc[t_c[t_c <= T_bonds[i]],str(i)] = c_bonds[i]

138 cfs.loc[[ T_bonds[i]], str(i)] = cfs.loc[[ T_bonds[i]], str(i)] + 1

139

140 B = [pd.DataFrame (0., index=param_general[’T_grid_hat ’], columns = [str(i)

�→ for i in range(num_sim)]) for _ in range(n_B)]

141

142 for t in param_general[’T_grid_hat ’]:

143 zcb_prices = np.transpose(np.array ([np.exp(-B_helper(param_assets , t, t+

�→ t_j) * r[r.index == t]. values + A_helper(param_assets , t, t+t_j)).

�→ tolist ()[0] for t_j in list(cfs.index)]))

144 for j in range(n_B):

145 B[j].loc[t,:] = np.dot(zcb_prices [:, :len(cfs.index[cfs.index <= T_bonds[j

�→ ]])], np.array(cfs.loc[cfs.index <= T_bonds[j], str(j)]))

146

147 return B

148

149 # functions A(t,T) and B(t,T) for the zero coupon price formula

150 def B_helper(param_assets , t, T):

151 kappa = param_assets[’kappa_r ’]

152 if t > T:

153 raise TypeError(’t must be smaller than T.’)
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154 return (1 / kappa) * (1 - np.exp(-kappa * (T - t)))

155

156 def A_helper(param_assets , t, T):

157 kappa = param_assets[’kappa_r ’]

158 theta = param_assets[’theta_r ’]

159 sigma = param_assets[’sigma_r ’]

160 if t > T:

161 raise TypeError(’Error: t must be smaller than T.’)

162 return (theta - ((sigma ** 2) / (2 * (kappa ** 2)))) * (B_helper(

�→ param_assets , t, T) - T + t) - ((sigma ** 2) / (4 * kappa)) * (

�→ B_helper(param_assets , t, T) ** 2)

163

164 def P(param_assets , t, T, r):

165 """

166 Calculates the zero coupon bond price at time t with maturity T under the

�→ Vasicek short rate model.

167 :param param_assets: asset parameters

168 :param t: time point

169 :param T: maturity

170 :param r: short rate paths

171 :return: zero coupon bond price at time t with maturity T

172 """

173 if t > T:

174 return [0]*r.shape [1]

175 return np.exp(-B_helper(param_assets , t, T)*r[r.index == t]. values +

�→ A_helper(param_assets , t, T)).tolist ()[0]

176

177 def E_P_t_T_s(param_assets , t, T, s, r_s):

178 """

179 Calculates the conditional expectation of P(t,T) given F_s for s <= t < T.

180 :param param_assets: asset parameters

181 :param t: time point

182 :param T: maturity

183 :param s: time point

184 :param r_s: short rate paths at time s

185 :return: conditional expectation of P(t,T) given F_s

186 """

187 kappa = param_assets[’kappa_r ’]

188 theta = param_assets[’theta_r ’]

189 sigma = param_assets[’sigma_r ’]

190 if t > T:

191 raise TypeError(’t must be smaller than T.’)

192 if s > t:

193 raise TypeError(’s must be smaller than or equal to t.’)

194 return np.exp(A_helper(param_assets , t, T) - B_helper(param_assets , t, T)

�→ *(r_s*np.exp(-kappa *(t-s)) + theta *(1-np.exp(-kappa *(t-s)))) + ((

�→ B_helper(param_assets , t, T)**2)*(sigma **2)*(1-np.exp(-2*kappa *(t-s))

�→ ))/(4* kappa))

195

196

197 def portfolio_return(k, lambda_k , C, S, B, r, param_assets):

198 """

199 Calculates the return of the portfolio for the k-th time period.

200

201 :param k: Time point
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202 :param lambda_k: Portfolio weights at time k

203 :param C: Bank account values

204 :param S: Stock prices

205 :param B: Bond prices

206 :param r: Short rate paths

207 :param param_assets: dictionary containing asset parameters

208 :param param_general: dictionary containing general model parameters

209 :return: Portfolio return at time k

210 """

211

212 T_bonds = param_assets[’T_bonds ’]

213 c_bonds = param_assets[’c_bonds ’]

214 t_c = param_assets[’t_c’]

215 n_B = param_assets[’n_B’]

216

217 R_C = (C[C.index == k].sum().sum() - C[C.index == k-1]. sum().sum()) / C[C.

�→ index == k-1]. sum().sum()

218 R_S = [(S[j][S[j]. index == k].sum().sum() - S[j][S[j]. index == k-1]. sum().

�→ sum()) / S[j][S[j]. index == k-1]. sum().sum() for j in range(len(S))]

219

220 # bond cash flow profiles

221 cfs = pd.DataFrame (0., index=sorted(set(t_c) | set(T_bonds)), columns =[str

�→ (i) for i in range(param_assets[’n_B’])])

222

223 for i in range(n_B):

224 cfs.loc[[x for x in t_c if x<= T_bonds[i]], str(i)] = c_bonds[i]

225 cfs.loc[[ T_bonds[i]], str(i)] = cfs.loc[[ T_bonds[i]], str(i)] + 1

226

227 R_B = []

228 zcb_prices_shift = np.transpose(np.array([np.exp(-B_helper(param_assets ,

�→ 1, t_j) * r[r.index == k]. values + A_helper(param_assets , 1, t_j)).

�→ tolist ()[0] for t_j in list(cfs.index)]))

229 for j in range(n_B):

230 R_B.append ((np.dot(zcb_prices_shift [:, :len(cfs.index[cfs.index <= T_bonds

�→ [j]])],np.array(cfs.loc[cfs.index <= T_bonds[j], str(j)])) / B[j][B[j

�→ ].index == k-1]. sum().sum() - 1).sum())

231

232 R_k = lambda_k [0] * R_C + sum([ lambda_k[j+1] * R_S[j] for j in range(len(S

�→ ))]) + sum([ lambda_k[j+1+len(S)] * R_B[j] for j in range(len(B))])

233 return R_k

234

235

236 def Gamma_estimation_corr_brownian_motion(param_assets , param_liabilities ,

�→ param_general):

237 """

238 Simulates n-dimensional Brownian motion up to time T with given

�→ correlation structure C_hat.

239

240 :param param_assets: dictionary containing asset parameters

241 :param param_general: dictionary containing general model parameters

242 :return W: List of (n_E+1) data frames containing

�→ simulations of correlated brownian motions

243 """

244

245 N = param_general[’N’]
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246 N_hat = param_general[’N_hat’]

247 C_hat = param_assets[’C_hat’]

248 n_E = param_assets[’n_E’]

249 N_Gamma = param_liabilities[’N_Gamma ’]

250 dt = param_liabilities[’dt_Gamma_estimation ’]

251

252 W_Gamma = []

253

254 # Calculation of the Cholesky decompositon of C_hat

255 A = np.linalg.cholesky(C_hat)

256

257 for k in range(N_hat +1):

258 W_S = []

259 for _ in range(n_E):

260 W_S.append(pd.DataFrame(0, index=[i * dt for i in range(0, int((N-k) / dt)

�→ + 1)], columns = [str(i) for i in range(N_Gamma)]))

261 W_r = pd.DataFrame(0, index=[i * dt for i in range(0, int((N-k) / dt) + 1)

�→ ], columns = [str(i) for i in range(N_Gamma)])

262

263 for n in range(N_Gamma):

264 W_hat = np.zeros((int(n_E+1),int((N-k)/dt+1)))

265

266 for i in range(n_E +1):

267 W_hat[i,:] = np.cumsum(np.concatenate (([0] , np.random.normal(0, np.sqrt(dt

�→ ), int((N-k)/dt)))))

268

269 W = np.dot(A, W_hat)

270 for i in range(n_E):

271 W_S[i][str(n)] = W[i,:].T

272 W_r[str(n)] = W[-1,:].T

273

274 for i in range(n_E):

275 W_S[i] = W_S[i].loc[range(N-k+1)]

276

277 W = {’W_S’: W_S ,

278 ’W_r’: W_r}

279 W_Gamma.append(W)

280

281 return W_Gamma

282

283 def duration_bonds(k, r_k , param_assets):

284 """

285 Calculates the duration of the bonds at time k.

286

287 :param k: Time point

288 :param r_k: Short rate at time k

289 :param param_assets: dictionary containing asset parameters

290 :param param_general: dictionary containing general model parameters

291 :return: List of bond durations at time k

292 """

293

294 T_bonds = param_assets[’T_bonds ’]

295 c_bonds = param_assets[’c_bonds ’]

296 t_c = param_assets[’t_c’]

297 n_B = param_assets[’n_B’]
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298

299 durations = []

300

301 # bond cash flow profiles

302 cfs = pd.DataFrame (0., index=sorted(set(t_c) | set(T_bonds)), columns =[str

�→ (i) for i in range(param_assets[’n_B’])])

303

304 for i in range(n_B):

305 cfs.loc[[x for x in t_c if x <= T_bonds[i]], str(i)] = c_bonds[i]

306 cfs.loc[[ T_bonds[i]], str(i)] = cfs.loc[[ T_bonds[i]], str(i)] + 1

307

308 for i in range(n_B):

309 weighted_cfs = sum([ E_P_t_T_s(param_assets , k, k + j, k, r_k) * cfs.iloc[j

�→ -1,i] * j for j in [x for x in cfs.index if x <= T_bonds[i]]])

310 price = sum([ E_P_t_T_s(param_assets , k, k + j, k, r_k) * cfs.iloc[j-1,i]

�→ for j in [x for x in cfs.index if x <= T_bonds[i]]])

311 durations.append(weighted_cfs / price)

312

313 return durations

314

315 def expected_one_period_returns(k, r_k , param_assets , bond_prices):

316 """

317 Calculates the expected one -period returns of the assets at time k.

318

319 :param k: Time point

320 :param r_k: Short rate at time k

321 :param param_assets: dictionary containing asset parameters

322 :param param_general: dictionary containing general model parameters

323 :return: List of expected one -period returns of the assets

�→ at time k

324 """

325

326 mu_S = param_assets[’mu_S’]

327 n_E = param_assets[’n_E’]

328 T_bonds = param_assets[’T_bonds ’]

329 c_bonds = param_assets[’c_bonds ’]

330 t_c = param_assets[’t_c’]

331 n_B = param_assets[’n_B’]

332

333 exp_returns = []

334

335 # expected return of bank account

336 exp_returns.append(np.exp((1-np.exp(-param_assets[’kappa_r ’]))/

�→ param_assets[’kappa_r ’]*(r_k -param_assets[’theta_r ’]-( param_assets[’

�→ sigma_r ’]**2)/( param_assets[’kappa_r ’]**2))+( param_assets[’sigma_r ’

�→ ]**2) /(4*( param_assets[’kappa_r ’]**3))*(1-np.exp(-2* param_assets[’

�→ kappa_r ’]))+( param_assets[’sigma_r ’]**2) /(2* param_assets[’kappa_r ’

�→ ]**2)+param_assets[’theta_r ’]) -1)

337

338 # expected returns of stocks

339 for j in range(n_E):

340 exp_returns.append(np.exp(mu_S[j]) -1)

341

342 # expected returns of bonds

343 cfs = pd.DataFrame (0., index=sorted(set(t_c) | set(T_bonds)), columns =[str

93



B. Model implementation in Python

�→ (i) for i in range(param_assets[’n_B’])])

344

345 for i in range(n_B):

346 cfs.loc[[x for x in t_c if x <= T_bonds[i]], str(i)] = c_bonds[i]

347 cfs.loc[[ T_bonds[i]], str(i)] = cfs.loc[[ T_bonds[i]], str(i)] + 1

348 exp_returns.append(sum([ E_P_t_T_s(param_assets , k+1, k+j, k, r_k) * cfs.

�→ iloc[j - 1, i] for j in [x for x in cfs.index if x <= T_bonds[i]]])/

�→ bond_prices[i] - 1)

349

350 return exp_returns

Liability Model.py:

1 from functools import reduce

2 from Asset_Model import *

3

4 def P_X(k, l, I, param_liabilities , data_liabilities , param_general):

5 """

6 Calculates the transition matrix P_X(k,l) for given k, l and threshold

�→ interval I for surrender/premium waiver probabilities.

7

8 :param k: k in P_X(k,l)

9 :param l: l in P_X(k,l)

10 :param I: threshold interval for surrender/premium waiver probabilities

11 :return: transition probability P_X(k,l)

12 """

13

14 N = param_general[’N’]

15 x_0 = param_liabilities[’x_0’]

16 K = param_liabilities[’K’]

17 mort_table = data_liabilities[’mort_table ’]

18 prob_table_surr = data_liabilities[’prob_table_surr ’]

19 prob_table_pw = data_liabilities[’prob_table_pw ’]

20

21 assert type(k) == int , "Parameter ’k’ must be an integer."

22 assert k < N, "Parameter ’k’ must be less than ’N ’."

23 assert type(I) == int , "Parameter ’I’ must be an integer."

24 assert I <= K, "Parameter ’I’ must be less or equal to ’K ’."

25

26 assert type(l) == int , "Parameter ’l’ must be an integer."

27 assert l >= k & l <= N, "Parameter ’l’ must be greater or equal to ’k’ and

�→ less or equal to ’N ’."

28

29 states = [’a’, ’s’, ’d’] + ["pw_" + str(i+1) for i in range(N)] # state

�→ space

30

31 if l == k:

32 return pd.DataFrame(np.eye(len(states)), index=states , columns=states)

33

34 P = []

35 for j in range(l-k):

36 P_j = pd.DataFrame(np.zeros((len(states), len(states))), index=states ,

�→ columns=states)

37 P_j.loc[’a’, ’a’] = (1- mort_table.loc[x_0+k+j, ’q_x’]) * (1-
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�→ prob_table_surr.loc[I, k+j] - prob_table_pw.loc[I, k+j])

38 P_j.loc[’a’, ’pw_’+str(k+j+1)] = (1- mort_table.loc[x_0+k+j, ’q_x’]) *

�→ prob_table_pw.loc[I, k+j]

39 P_j.loc[’a’, ’s’] = (1- mort_table.loc[x_0+k+j, ’q_x’]) * prob_table_surr.

�→ loc[I, k+j]

40 P_j.loc[’a’, ’d’] = mort_table.loc[x_0+k+j, ’q_x’]

41 P_j.loc[’s’, ’s’] = 1

42 P_j.loc[’d’, ’d’] = 1

43 for i in range(N):

44 if i < k:

45 P_j.loc[’pw_’+str(i+1), ’pw_’+str(i+1)] = (1- mort_table.loc[x_0+k+j, ’q_x’

�→ ]) * (1- prob_table_surr.loc[I, k+j])

46 P_j.loc[’pw_’+str(i+1), ’s’] = (1- mort_table.loc[x_0+k+j, ’q_x’]) *

�→ prob_table_surr.loc[I, k+j]

47 P_j.loc[’pw_’ + str(i + 1), ’d’] = mort_table.loc[x_0 + k + j, ’q_x’]

48 else:

49 P_j.loc[’pw_’ + str(i + 1), ’pw_’ + str(i + 1)] = 1

50 P.append(P_j)

51 P = reduce(lambda P_i , P_j: P_i.dot(P_j), P)

52

53 return P

54

55 def one_step_insurance_portfolio_simulation(k, ell_old , I,

�→ param_liabilities , data_liabilities , param_general , r, Gamma ,

�→ param_assets):

56 """

57 Simulates the insurance contract portfolio.

58

59 :param k: time step

60 :param ell_old: preceding contract portfolio structure vectors at time t_k

�→ for each simulation

61 :param I: threshold interval for surrender/premium waiver probabilities

62 :param param_liabilities: liability model parameters

63 :param data_liabilities: liability model data

64 :param param_general: general model parameters

65 :param r: short rate model parameters

66 :param Gamma: state -dependent bonus accounts at time t_k -1

67 :return: portfolio structure vectors at time t_k+1

68 """

69

70 N = param_general[’N’]

71 states = [’a’, ’s’, ’d’] + ["pw_" + str(i + 1) for i in range(N)] # state

�→ space

72

73 Delta_Nij = np.zeros((N+3, N+3))

74 P = P_X(k, k+1, I, param_liabilities , data_liabilities , param_general)

75 for i in range(N+3):

76 if ell_old[i] == 0:

77 continue

78 transition = np.random.choice(states , size = int(ell_old[i]), p = P.iloc[i

�→ ])

79 Delta_Nij[i,:] = list({key: np.count_nonzero(transition == key) for key in

�→ states }. values ())

80

81 ell_new = list(np.sum(Delta_Nij , axis = 0))
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82

83 ### calculation of cash flows

84 # prospective reserve at t_k+1

85 V_res = list(V_prospective_reserve(k+1, r[r.index == k+1]. sum().sum(),

�→ param_liabilities , param_general , I, data_liabilities , param_assets).

�→ loc[:, str(k+1)])

86 # payout function

87 a = a_Post(k, V_res , param_liabilities , param_general , Gamma)

88 cash_flow = (pd.DataFrame(Delta_Nij , index = states , columns = states) * a

�→ ).sum().sum()

89 return [ell_new , cash_flow]

90

91 def calculation_actuarial_reserve(param_liabilities , param_general):

92 """

93 Calculates the actuarial reserve Psi for all relevant states.

94

95 :param param_liabilities: liability model parameters

96 :param param_general: general model parameters

97 :return: actuarial reserve Psi

98 """

99

100 N = param_general[’N’]

101 Psi_0 = param_liabilities[’Psi_0’]

102 premiums = param_liabilities[’premiums ’]

103 i_min = param_liabilities[’i_min’]

104

105 Psi = []

106 Psi_a = [Psi_0]

107 for k in range(1, N+1):

108 Psi_a.append (( Psi_a[k-1] + premiums[k-1]) * (1 + i_min))

109 Psi.append(Psi_a)

110

111 for j in range(1, N+1):

112 Psi_pw_j = np.zeros(j).tolist ()

113 Psi_pw_j.append(Psi_a[j])

114 for k in range(j+1, N+1):

115 Psi_pw_j.append(Psi_pw_j[k-1] * (1 + i_min))

116 Psi.append(Psi_pw_j)

117 Psi = pd.DataFrame(Psi , index=[’a’] + ["pw_" + str(i + 1) for i in range(N

�→ )], columns =[str(i) for i in range(N+1)])

118 return Psi

119

120 def a_Pre(k, param_liabilities , param_general , Gamma = None):

121 """

122 Calculates the prior payout function matrix at t_k.

123

124 :param param_liabilities: liability model parameters

125 :param param_general: general model parameters

126 :return: payout function vector

127 """

128

129 N = param_general[’N’]

130

131 assert k <= N, "Parameter ’k’ must smaller or equal to N."

132
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133 if Gamma is None:

134 Gamma = list(np.zeros((N+1)))

135

136 states = [’a’, ’s’, ’d’] + ["pw_" + str(i + 1) for i in range(N)]

137

138 if k < N:

139 return pd.DataFrame(np.array([- param_liabilities[’premiums ’][k]] + [0 for

�→ i in range(N+2)]).T, index=states)

140 else:

141 return pd.DataFrame(np.array ([( param_liabilities[’Lambda_a ’] + Gamma [0])]

�→ + [0,0] + [(1- param_liabilities[’gamma_PW ’][i]) * param_liabilities[’

�→ Lambda_a ’] + Gamma [1:][i] for i in range(N)]).T, index=states)

142

143 def a_Post(k, V_k_1 , param_liabilities , param_general , Gamma = None):

144 """

145 Calculates the posterior payout function matrix at t_k.

146

147 :param V_k_1: Vector of state -dependent prospective reserves at k+1

148 :param param_liabilities: liability model parameters

149 :param param_general: general model parameters

150 :param Gamma: List of state -dependent bonus accounts at k for states a,

�→ pw_1 , ..., pw_N (length = N+1)

151 :return: payout function matrix

152 """

153 N = param_general[’N’]

154

155 assert k < N, "Parameter ’k’ must smaller than N."

156

157 if Gamma is None:

158 Gamma = list(np.zeros((N+1)))

159

160 states = [’a’, ’s’, ’d’] + ["pw_" + str(i + 1) for i in range(N)]

161 a = pd.DataFrame(np.zeros((N+3, N+3)), index=states , columns=states)

162

163 a.loc[:, ’d’] = [( param_liabilities[’Lambda_d ’] + Gamma [0])] + [0,0] + [(

�→ param_liabilities[’Lambda_d ’] + val) for val in Gamma [1:]]

164 a.loc[:, ’s’] = [(1- param_liabilities[’gamma_S ’]) * (V_k_1 [0] + Gamma [0])]

�→ + [0,0] + [(1- param_liabilities[’gamma_S ’]) * (V_k_1[-N:][i] + val)

�→ for i, val in enumerate(Gamma [1:])]

165 return a

166

167 def V_prospective_reserve(k, r_k , param_liabilities , param_general , I,

�→ data_liabilities , param_assets):

168 """

169 Calculates the future state -dependent prospective reserves at time t_k.

170

171 :param k: time step

172 :param r_k: short rate at time t_k

173 :param param_liabilities: liability model parameters

174 :param param_general: general model parameters

175 :param I: threshold interval for surrender/premium waiver probabilities

176 :return: future state -dependent prospective reserves at time t_k

177 """

178

179 states = [’a’, ’s’, ’d’] + ["pw_" + str(i + 1) for i in range(
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�→ param_general[’N’])]

180 # boundary conditions

181 V = [[ param_liabilities[’Lambda_a ’]] + [0,0] + [(1- param_liabilities[’

�→ gamma_PW ’][i]) * param_liabilities[’Lambda_a ’] for i in range(

�→ param_general[’N’])]]

182

183 for j in range(param_general[’N’]-1, k-1, -1):

184 V_j = []

185 for i in range(param_general[’N’]+3):

186

187 # a_ij * V_j for all j according to Thiele difference equation

188 tmp = [a + b for a,b in zip(list(a_Post(j, V[-1], param_liabilities ,

�→ param_general).iloc[i,:]),V[-1])]

189

190 P = list(P_X(j, j+1, I, param_liabilities , data_liabilities , param_general

�→ ).iloc[i,:])

191 V_j.append(a_Pre(j, param_liabilities , param_general).iloc[i,:]. sum() +

�→ E_P_t_T_s(param_assets , j, j+1, k, r_k) * sum([a * b for a,b in zip(

�→ tmp ,P)]))

192 V.append(V_j)

193

194 V = V[::-1]

195 df = pd.DataFrame(V).transpose ()

196 df.index = states

197 df.columns = [str(i) for i in range(k, param_general[’N’]+1)]

198 return df

199

200 def Gamma_recursion(k, Gamma_old , Psi , z_k , param_liabilities ,

�→ param_general):

201 """

202 Calculates the state -dependent bonus accounts at time t_k.

203

204 :param k: time step

205 :param Gamma_old: preceding state -dependent bonus accounts at time t_k -1

206 :param Psi: actuarial reserve in all relevant states

207 :param z_k: state -dependent cash flows at time t_k

208 :param param_liabilities: liability model parameters

209 :param param_general: general model parameters

210 :return: state -dependent bonus accounts at time t_k

211 """

212

213 i_min = param_liabilities[’i_min’]

214 premiums = param_liabilities[’premiums ’]

215 N = param_general[’N’]

216

217 Gamma_active = (1+ z_k)*Gamma_old [0] + (z_k - i_min)*( premiums[k-1] + Psi.

�→ iloc[0,k-1])

218 Gamma = [Gamma_active] + [(1+ z_k)*Gamma_old[i] + (z_k - i_min)*Psi.iloc[i,

�→ k-1] for i in range(1, k)] + [Gamma_active] + [0 for i in range(k+1,N

�→ +1)]

219 return Gamma

220

221

222 def Gamma_estimation(k, W_Gamma , r_k , lambda_k , Gamma_k , Psi ,

�→ param_liabilities , param_assets , param_general):
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223 """

224 Estimates the state -dependent bonus accounts at future time steps.

225

226 :param k: time step

227 :param W_Gamma: Brownian motion for bonus account estimation

228 :param r_k: short rate at time t_k

229 :param lambda_k: portfolio weights for estimation

230 :param Gamma_k: state -dependent bonus accounts at time t_k

231 :param Psi: actuarial reserve in all relevant states

232 :param param_liabilities: liability model parameters

233 :param param_assets: asset model parameters

234 :param param_general: general model parameters

235 :return: estimates for future state -dependent bonus accounts

236 """

237

238 T_bonds = param_assets[’T_bonds ’]

239 c_bonds = param_assets[’c_bonds ’]

240 t_c = np.array(param_assets[’t_c’])

241 dt = param_liabilities[’dt_Gamma_estimation ’]

242 n_B = param_assets[’n_B’]

243

244 W_S = W_Gamma[k][’W_S’]

245 W_r = W_Gamma[k][’W_r’]

246

247 r = pd.DataFrame (0., index=W_r.index , columns=W_r.columns)

248 r.iloc [0] = r_k

249

250 dW_r = W_r.diff().iloc [1:]

251 for i in range(1, len(r.index)):

252 r.iloc[i] = r.iloc[i - 1] + param_assets[’kappa_r ’] * (param_assets[’

�→ theta_r ’] - r.iloc[i - 1]) * dt + param_assets[’sigma_r ’] * dW_r.iloc

�→ [i - 1]

253

254 C = pd.DataFrame (0., index=r.index , columns=r.columns)

255 C.iloc [0] = 1

256

257 for i in range(1, len(r.index)):

258 C.iloc[i] = C.iloc[i - 1] + C.iloc[i - 1] * r.iloc[i - 1] * dt

259

260 C = C.loc[W_S [0]. index]

261 C_ret = ((C.shift(-1)-C).div(C)).iloc [:-1]

262

263 # bond cash flow profiles

264 cfs = pd.DataFrame (0., index=sorted(set(t_c) | set(T_bonds)), columns =[str

�→ (i) for i in range(param_assets[’n_B’])])

265

266 for i in range(n_B):

267 cfs.loc[[x for x in t_c if x<= T_bonds[i]], str(i)] = c_bonds[i]

268 cfs.loc[[ T_bonds[i]], str(i)] = cfs.loc[[ T_bonds[i]], str(i)] + 1

269

270 B_ret = [pd.DataFrame (0., index=list(range(param_general[’N’]-k)), columns

�→ =r.columns) for _ in range(n_B)]

271

272 for t in list(B_ret [0]. index):

273 zcb_prices = np.transpose(np.array ([np.exp(-B_helper(param_assets , t, t +

99



B. Model implementation in Python

�→ t_j) * r[r.index == t]. values + A_helper(param_assets , t, t + t_j)).

�→ tolist ()[0] for t_j in list(cfs.index)]))

274 zcb_prices_shift = np.transpose(np.array([np.exp(-B_helper(param_assets ,

�→ t+1, t + t_j) * r[r.index == t+1]. values + A_helper(param_assets , t

�→ +1, t + t_j)).tolist ()[0] for t_j in list(cfs.index)]))

275 for j in range(n_B):

276 B_ret[j].loc[t, :] = (pd.DataFrame(np.dot(zcb_prices_shift [:, :len(cfs.

�→ index[cfs.index <= T_bonds[j]])],np.array(cfs.loc[cfs.index <=

�→ T_bonds[j], str(j)]))).div(pd.DataFrame(np.dot(zcb_prices [:, :len(cfs

�→ .index[cfs.index <= T_bonds[j]])],np.array(cfs.loc[cfs.index <=

�→ T_bonds[j], str(j)])))) -1)[0]. values

277

278 S = list()

279 S_ret = list()

280 for j in range(param_assets[’n_E’]):

281 S.append(np.exp(

282 (param_assets[’sigma_S ’][j] * W_S[j]).add([( param_assets[’mu_S’][j] - (

�→ param_assets[’sigma_S ’][j] ** 2) / 2) * i for i in range(0,

�→ param_general[’N’] - k + 1)],

283 axis =0)))

284 S_ret.append (((S[j]. shift(-1) - S[j]).div(S[j])).iloc [:-1])

285

286 Gamma_estimate = [Gamma_k]

287

288 for j in range(param_general[’N’]-k):

289 ret_j = lambda_k [0] * C_ret.iloc[j]

290 for df , weight in zip(S_ret , [lambda_k[j] for j in range(1, param_assets[’

�→ n_E’]+1)]):

291 ret_j = ret_j.add(df.iloc[j] * weight)

292 for df , weight in zip(B_ret , lambda_k[-param_assets[’n_B’]:]):

293 ret_j = ret_j.add(df.iloc[j] * weight)

294

295 z_j_sim = [param_liabilities[’i_min’] + max(param_liabilities[’beta’] * (

�→ R_k -param_liabilities[’i_min ’]) ,0) for R_k in ret_j]

296 z_j_estimate = sum(z_j_sim) / len(z_j_sim)

297 Gamma_estimate.append(Gamma_recursion(k+j+1, Gamma_estimate [-1], Psi ,

�→ z_j_estimate , param_liabilities , param_general))

298

299 Gamma_estimate = pd.DataFrame(Gamma_estimate).transpose ()

300 Gamma_estimate.index = [’a’] + ["pw_" + str(i + 1) for i in range(

�→ param_general[’N’])]

301 Gamma_estimate.columns = [str(i) for i in range(k, param_general[’N’]+1)]

302 return Gamma_estimate

303

304 def liability_value_duration(k, I, Gamma_estimate , r_k , param_liabilities ,

�→ data_liabilities , param_general , param_assets , scope = ’all’):

305 """

306 Calculates the state -dependent liability values at time t_k.

307

308 :param k: time step

309 :param I: threshold interval for surrender/premium waiver probabilities

310 :param Gamma_estimate: estimates for future state -dependent bonus accounts

311 :param r_k: short rate at time t_k

312 :param param_liabilities: liability model parameters

313 :param data_liabilities: liability model data
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314 :param param_general: general model parameters

315 :param param_assets: asset model parameters

316 :param scope: scope of calculation (’all’ liability value and duration , ’

�→ liability value’ for calculation of liability value only)

317 :return: state -dependent liability values at time t_k

318 """

319

320 assert scope in [’all’, ’liability value ’], "Parameter ’scope ’ must be

�→ either ’all’ or ’liability value ’."

321

322 N = param_general[’N’]

323 states = [’a’, ’s’, ’d’] + ["pw_" + str(i + 1) for i in range(N)]

324 L = pd.DataFrame(np.zeros((N+3, 1)), index = states , columns = [’L_i’])

325 D_L = pd.DataFrame(np.zeros((N+3, 1)), index = states , columns = [’D_L_i’

�→ ])

326 V_pro = V_prospective_reserve(k, r_k , param_liabilities , param_general , I,

�→ data_liabilities , param_assets)

327

328 for l in range(k+1, N+1):

329 P_kl = P_X(k, l, I, param_liabilities , data_liabilities , param_general)

330 P_k_l_1 = P_X(k, l - 1, I, param_liabilities , data_liabilities ,

�→ param_general)

331 P_l_1 = P_X(l - 1, l, I, param_liabilities , data_liabilities ,

�→ param_general)

332 a_Pre_l = a_Pre(l, param_liabilities , param_general , list(Gamma_estimate[

�→ str(l)]))

333 a_Post_l_1 = a_Post(l-1, list(V_pro[str(l)]), param_liabilities ,

�→ param_general , list(Gamma_estimate[str(l-1)]))

334

335 for j in range(N+3):

336 L.loc[states[j], ’L_i’] = L.loc[states[j], ’L_i’] + E_P_t_T_s(param_assets

�→ , k, l, k, r_k)*sum([a * b for a,b in zip(list(a_Pre_l [0]), list(P_kl

�→ .iloc[j,:]))])

337 L.loc[states[j], ’L_i’] = L.loc[states[j], ’L_i’] + E_P_t_T_s(param_assets

�→ , k, l, k, r_k)*sum([sum([a * pkl_1 * pl for a, pkl_1 , pl in zip(list

�→ (a_Post_l_1.iloc[:,h]), list(P_k_l_1.iloc[j,:]), list(P_l_1.iloc[:,h

�→ ]))]) for h in range(N+3)])

338 if scope == ’all’:

339 D_L.loc[states[j], ’D_L_i’] = D_L.loc[states[j], ’D_L_i’] + (l-k)*

�→ E_P_t_T_s(param_assets , k, l, k, r_k)*sum([a * b for a,b in zip(list(

�→ a_Pre_l [0]), list(P_kl.iloc[j,:]))])

340 D_L.loc[states[j], ’D_L_i’] = D_L.loc[states[j], ’D_L_i’] + (l-k)*

�→ E_P_t_T_s(param_assets , k, l, k, r_k)*sum([sum([a * pkl_1 * pl for a,

�→ pkl_1 , pl in zip(list(a_Post_l_1.iloc[:,h]), list(P_k_l_1.iloc[j,:])

�→ , list(P_l_1.iloc[:,h]))]) for h in range(N+3)])

341

342 D_L[’D_L_i’] = D_L[’D_L_i’].div(L[’L_i’]).fillna (0)

343 return [L, D_L]

ALM simulation.py:

1 from scipy.optimize import minimize

2 import bisect

3 import time
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4 import warnings

5 from Asset_Model import *

6 from Liability_Model import *

7 from Model_parameters import *

8

9

10 def main_ALM_simulation_optimisation(param_general , param_assets ,

�→ param_liabilities , data_liabilities):

11 """

12 Main function for the ALM simulation with optimisation of the asset

�→ portfolio

13 :param param_general: General model parameters

14 :param param_assets: Asset model parameters

15 :param param_liabilities: Liability model parameters

16 :param data_liabilities: Data for liability model

17 :return: simulation results

18 """

19

20 N = param_general[’N’]

21 num_sim = param_general[’num_sim ’]

22 i_min = param_liabilities[’i_min’]

23 beta = param_liabilities[’beta’]

24 Gamma_0 = param_liabilities[’Gamma_0 ’]

25 T_grid_hat = param_general[’T_grid_hat ’]

26

27 # Simulation of asset processes for all simulation paths

28 W = simulate_corr_brownian_motion(param_assets , param_general)

29 r = simulate_short_rate(param_assets , param_general , W[’W_r’])

30 C = simulate_bank_account(param_assets , param_general , r)

31 S = simulate_stocks(param_assets , param_general , W[’W_S’])

32 B = simulate_bonds(param_assets , param_general , r)

33

34 # Reduction of asset processes to the relevant time grid

35 r = r.loc[T_grid_hat]

36 C = C.loc[T_grid_hat]

37 for i in range(len(S)):

38 S[i] = S[i].loc[T_grid_hat]

39 for j in range(len(B)):

40 B[j] = B[j].loc[T_grid_hat]

41

42 # Simulation of the Brownian motion for the estimation of the future

�→ Gamma_k for all simulation paths

43 W_Gamma = Gamma_estimation_corr_brownian_motion(param_assets ,

�→ param_liabilities , param_general)

44

45 # Initialisation of main variables

46 ell = [[] for _ in range(N_hat + 1)]

47 lambda_A = [[] for _ in range(N_hat + 1)]

48 A = [[] for _ in range(N_hat + 1)]

49 L = [[] for _ in range(N_hat + 1)]

50 D_L = [[] for _ in range(N_hat)]

51 D_A = [[] for _ in range(N_hat)]

52

53 # Calculation of actuarial reserve Psi

54 Psi = calculation_actuarial_reserve(param_liabilities , param_general)
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55

56 # Simulation of the ALM model for all simulation paths

57 for i in range(num_sim):

58 # Simulation asset paths

59 ri = r[str(i)]. to_frame ()

60 Ci = C[str(i)]. to_frame ()

61 Si = [S[j][str(i)]. to_frame () for j in range(len(S))]

62 Bi = [B[j][str(i)]. to_frame () for j in range(len(B))]

63

64 # Initialisation of insurance portfolio , asset portfolio composition and

�→ Gamma at t_0

65 ell [0]. append ([ param_liabilities[’n_L’]] + list(np.zeros(N + 2)))

66 lambda_A [0]. append(lambda_0)

67 Gamma = []

68 Gamma.append ([ Gamma_0] + [0 for _ in range(N)])

69

70 # Simulation of future profit participation account values

71 Gamma_estimate = Gamma_estimation (0, W_Gamma , param_assets[’r0_r’],

�→ lambda_0 , Gamma[-1], Psi , param_liabilities , param_assets ,

�→ param_general)

72

73 # Liability value at t_0

74 L[0]. append(param_liabilities[’n_L’] * liability_value_duration (0, bisect.

�→ bisect_right(xi , Delta_R_0), Gamma_estimate , param_assets[’r0_r’],

�→ param_liabilities , data_liabilities , param_general , param_assets , ’

�→ liability value’)[0]. loc[’a’].sum())

75

76 # Asset portfolio value at t_0

77 A[0]. append(L[0][ -1] * (1 + param_assets[’epsilon_0 ’]))

78

79 # Simulation of time steps up to optimisation horizon N_hat

80 for k in range(1, N_hat + 1):

81 # Calculation of preceding return and z_k

82 R_C_k = (Ci[Ci.index == k].sum().sum() - Ci[Ci.index == k - 1].sum().sum()

�→ ) / Ci[Ci.index == k - 1].sum().sum()

83 R_A_k = portfolio_return(k, lambda_A[k - 1][-1], Ci , Si , Bi , ri ,

�→ param_assets)

84 Delta_R_k = max(max(i_min , beta * R_A_k) - R_C_k , 0)

85 z_k = i_min + max(beta * (R_A_k -i_min), 0)

86

87 # Calculation of new profit participation account values and I (threshold

�→ interval)

88 Gamma.append(Gamma_recursion(k, Gamma[-1], Psi , z_k , param_liabilities ,

�→ param_general))

89 if k == 1:

90 I = bisect.bisect_right(xi , Delta_R_0)

91 else:

92 I = bisect.bisect_right(xi , Delta_R_k)

93

94 # Simulation of new insurance portfolio structure

95 [ell_k , cf_Post] = one_step_insurance_portfolio_simulation(k - 1, ell[k -

�→ 1][-1], I, param_liabilities , data_liabilities , param_general , ri ,

�→ Gamma[k - 1], param_assets)

96 ell[k]. append(ell_k)

97
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98 # Calculation of cash flows at t_k / Updating the asset values at t_k

99 cf_Pre = sum([l * cf for l, cf in zip(ell_k , list(a_Pre(k,

�→ param_liabilities , param_general , Gamma[k]).iloc[:, 0]))])

100 A[k]. append(A[k - 1][-1] * (1 + R_A_k) - cf_Post - cf_Pre)

101

102 # Simulation of future profit participation account values

103 Gamma_estimate = Gamma_estimation(k, W_Gamma , ri[ri.index == k].sum().sum

�→ (), lambda_A[k - 1][-1], Gamma[-1], Psi , param_liabilities ,

�→ param_assets , param_general)

104

105 # Calculation of state -dependent liability values at and portfolio

�→ liability value at t_k

106 [L_k_i , D_L_k_i] = liability_value_duration(k, I, Gamma_estimate , ri[ri.

�→ index == k].sum().sum(), param_liabilities , data_liabilities ,

�→ param_general , param_assets , ’all’)

107 L_k = np.dot(ell[k][-1], list(L_k_i[’L_i’]. values))

108 L[k]. append(L_k)

109

110 # Calculation of liability duration at t_k

111 D_L_k = sum([( ell_k_j * L_k_j / L_k) * D_k_j for ell_k_j , L_k_j , D_k_j in

�→ zip(ell[k][-1], list(L_k_i[’L_i’]. values), list(D_L_k_i[’D_L_i’].

�→ values))])

112 D_L[k - 1]. append(D_L_k)

113

114 ### Optimisation of the asset portfolio composition at t_k

115 # Calculation of asset durations at t_k

116 D_B = duration_bonds(k, ri[ri.index == k].sum().sum(), param_assets)

117

118 # First stage of optimisation

119 def objective_function_stage1(lambda_opt , D_L_k , D_B , n_B):

120 return abs(np.multiply(lambda_opt[-n_B:], D_B).sum() / sum(lambda_opt[-n_B

�→ :]) - D_L_k)

121

122 def constraint1(lambda_opt):

123 return sum(lambda_opt) - 1

124

125 def constraint2(lambda_opt , alpha_S_max , n_E):

126 return alpha_S_max - lambda_opt [1: n_E + 1]

127

128 def constraint3(lambda_opt , alpha_S_min , n_E):

129 return lambda_opt [1: n_E + 1] - alpha_S_min

130

131 def constraint4(lambda_opt , alpha_C):

132 return lambda_opt [0] - alpha_C

133

134 def constraint5(lambda_opt):

135 return lambda_opt

136

137 def constraint6(lambda_opt , lambda_old , delta_lambda):

138 return delta_lambda - abs(lambda_opt - lambda_old)

139

140 constraints = [{’type’: ’eq’, ’fun’: constraint1},

141 {’type’: ’ineq’, ’fun’: constraint2 ,

142 ’args’: (param_assets[’alpha_S_max ’], param_assets[’n_E’])},

143 {’type’: ’ineq’, ’fun’: constraint3 ,
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144 ’args’: (param_assets[’alpha_S_min ’], param_assets[’n_E’])},

145 {’type’: ’ineq’, ’fun’: constraint4 , ’args’: (param_assets[’alpha_C ’],)},

146 {’type’: ’ineq’, ’fun’: constraint5},

147 {’type’: ’ineq’, ’fun’: constraint6 ,

148 ’args’: (np.array(lambda_A[k - 1][ -1]), param_assets[’delta_lambda ’])}]

149

150 stage_1_result = minimize(objective_function_stage1 , np.array(lambda_A[k -

�→ 1][ -1]), method=’SLSQP’, args=(D_L_k , np.array(D_B), param_assets[’

�→ n_B’]), constraints=constraints)

151 min_duration_gap = stage_1_result.fun

152 optimised_lambda_stage1 = [round(i, 10) for i in list(stage_1_result.x)]

153

154 # stage 2 optimisation

155 bond_prices_k = [Bi[j].loc[k]. values [0] for j in range(len(Bi))]

156 exp_returns_k = expected_one_period_returns(k, ri[ri.index == k].sum().sum

�→ (), param_assets , bond_prices_k)

157

158 def objective_function_stage2(lambda_opt , exp_returns_k):

159 return -sum(np.multiply(lambda_opt , exp_returns_k))

160

161 def constraint7(lambda_opt , min_duration_gap , epsilon , D_B , D_L_k , n_B):

162 return min_duration_gap + epsilon - abs(np.multiply(lambda_opt[-n_B:], D_B

�→ ).sum() / sum(lambda_opt[-n_B:]) - D_L_k)

163

164 def constraint8(lambda_opt , min_duration_gap , epsilon , D_B , D_L_k , n_B):

165 return abs(np.multiply(lambda_opt[-n_B:], D_B).sum() / sum(lambda_opt[-n_B

�→ :]) - D_L_k) - min_duration_gap - epsilon

166

167 constraints = constraints + [

168 {’type’: ’eq’, ’fun’: constraint7 ,

169 ’args’: (min_duration_gap , param_assets[’epsilon_0 ’], np.array(D_B),

�→ D_L_k , param_assets[’n_B’])},

170 {’type’: ’eq’, ’fun’: constraint8 ,

171 ’args’: (min_duration_gap , param_assets[’epsilon_0 ’], np.array(D_B),

�→ D_L_k , param_assets[’n_B’])}]

172

173

174 stage_2_result = minimize(objective_function_stage2 , np.array(

�→ optimised_lambda_stage1), method=’trust -constr ’, args=(np.array(

�→ exp_returns_k)), constraints=constraints)

175 optimised_lambda_stage2 = [round(i, 10) for i in list(stage_2_result.x)]

176 lambda_A[k]. append(optimised_lambda_stage2)

177 D_A[k - 1]. append(np.multiply(np.array(optimised_lambda_stage2)[-

�→ param_assets[’n_B’]:], np.array(D_B)).sum() / sum(np.array(

�→ optimised_lambda_stage2)[-n_B :]))

178

179 lambda_results = [pd.DataFrame(np.transpose(np.array(lambda_A[k])), index

�→ =[’C’] + [’S’ + str(i + 1) for i in range(param_assets[’n_E’])] + [’B

�→ ’ + str(i + 1) for i in range(param_assets[’n_B’])]) for k in range(

�→ N_hat + 1)]

180 ell_results = [pd.DataFrame(np.transpose(np.array(ell[k])), index =[’a’, ’s

�→ ’, ’d’] + ["pw_" + str(i + 1) for i in range(N)]) for k in range(

�→ N_hat + 1)]

181 A_results = pd.DataFrame(np.array(A), index=T_grid_hat)

182 L_results = pd.DataFrame(np.array(L), index=T_grid_hat)
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183 Equity = A_results - L_results

184 D_L_results = pd.DataFrame(np.array(D_L), index=T_grid_hat [1:])

185 D_A_results = pd.DataFrame(np.array(D_A), index=T_grid_hat [1:])

186

187 return [lambda_results , ell_results , A_results , L_results , Equity ,

�→ D_L_results , D_A_results]

188

189

190 # run the model

191 [lambda_results , ell_results , A_results , L_results , Equity , D_L_results ,

�→ D_A_results] = main_ALM_simulation_optimisation(param_general ,

�→ param_assets , param_liabilities , data_liabilities)
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