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Kurzfassung

Auf den Blättern eines Wurzelbaums ist die ternäre Relation C definiert durch C(x, y, z)
genau dann wenn der jüngste gemeinsame Vorfahre von x, y und z strikt näher bei der
Wurzel liegt als der jüngste gemeinsame Vorfahre von y und z. Ein phylogenetisches
Problem ist ein Berechnungsproblem, dessen Instanzen Instanziierungen einer fixen Menge
Boolescher Kombinationen von Formeln der Form C(x, y, z) oder x = y sind; die Frage
ist, ob es einen Wurzelbaum und eine Abbildung von den Variablen auf die Blätter dieses
Baumes gibt, sodass alle Formeln erfüllt sind.

Jedes phylogenetische Problem entspricht einem Bedingungserfüllungsproblem (engl.
Constraint Satisfaction Problem, kurz CSP) einer speziellen unendlichen Struktur, die
ω-kategorisch und in den wichtigsten Fällen auch homogen ist. Es ist bekannt, dass
ein phylogenetisches CSP in P liegt, wenn diese Struktur eine bestimmte algebraische
Eigenschaft aufweist; andernfalls ist es NP-vollständig. In dieser Arbeit wollen wir die
deskriptive Komplexität solcher Probleme untersuchen, insbesondere ihre Ausdrückbarkeit
in Fixpunktlogiken.

Einerseits präsentieren wir ein phylogenetisches Problem, das zwar in P liegt, sich
aber nicht in Fixpunktlogik ausdrücken lässt, nicht einmal in der Erweiterung durch
Zählquantoren. Andererseits führen wir Boolesche Hornformeln ein; dabei handelt es
sich um eine syntaktische Einschränkung von affinen Hornformeln. Wir zeigen, dass alle
phylogenetischen CSPs, die eine Vorlage haben, deren Relationen sich mittels Booleschen
Hornformeln definieren lassen, in Fixpunktlogik ausdrückbar sind. Außerdem gibt es
eine spezielle Struktur, die alle solchen Strukturen pp-definiert. Unter einer zusätzlichen
Bedingung sind diese Strukturen genau die, die von einem bestimmten Polymorphismus
bewahrt werden.
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Abstract

On the leafs of a rooted tree, the ternary relation C is given by C(x, y, z) if and only if the
youngest common ancestor of x, y and z is strictly closer to the root than the youngest
common ancestor of y and z. A phylogeny problem is a computational decision problem
whose instances are instantiations of a fixed set of Boolean combinations of formulas of the
form C(x, y, z) and x = y; the question is whether there is a rooted tree and a mapping
from the variables to the leaves of the tree such that all formulas are satisfied.

Each phylogeny problem corresponds with a constraint satisfaction problem (CSP) of
a specific infinite structure, which is ω-categorical and in the most important cases also
homogeneous. It has been shown that a phylogeny CSP is in P if this structure fulfilles a
certain algebraic condition, and NP-complete otherwhise. In this thesis, we want to study
the descriptive complexity of such problems, especially their expressibility in fixed point
logics.

On the one hand, we present a phylogeny problem which is tractable, but inexpressible
in fixed point logic, even with counting. On the other hand, we introduce Boolean Horn
formulas; they are a further syntactic restriction of affine Horn formulas. It turns out
that all phylogeny CSPs with a template whose relations can be defined by Boolean
Horn formulas are expressible in fixed point logic. Moreover, there is a specific structure
which pp-defines all such structures. Under an additional assumption, those structures
are characterized as being preserved by a specific polymorphism.
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1 Introduction

Phylogeny problems are computation decision problems motivated by evolutionary biology.
Every species uniquely stems from a prior species, and all species have a common ancestor.
A natural question is how to reconstruct the tree of life (or parts of it) using only
observations about recent species, i. e. the leaves of the tree.

Figure 1: Illustration of an evolutionary tree in Darwin’s Origin of species (1859).

For the leaves x, y, z of a rooted tree, we write x|yz if the youngest common ancestor
of y and z lies strictly below the youngest common ancestor of x, y and z. The set of all
leaves of a rooted tree together with this ternary relation is called the leaf structure of the
tree. The basic phylogeny problem asks whether, for a given set of constraints of the form
xi|xjxk over variables V , there exists a mapping s from V to the leaves of some rooted
tree such that s(xi)|s(xj)s(xk) holds for every constraint xi|xjxk. It is known that this
problem can be solved in quadratic time using a simple divide-and-conquer algorithm [1].
Matters get more difficult, however, when we allow Boolean combinations as constraints.
For example, consider the ternary relation N defined by the formula (x|yz ∨ z|xy). The
problem whether there exists a rooted tree whose leaves satisfy a given set of constraints of
the form N(xi, xj, xk) is NP-hard [1]. The class of all phylogeny problems is obtained by
considering all sets of relations which are specified by Boolean combinations of formulas
of the form (x|yz) or (x = y).

1.1 The Algebraic Complexity Dichotomy

The key to a successful analysis of phylogeny problems was the observation that they
can be viewed as Constraint Satisfaction Problems (CSPs) of highly symmetrical infinite
structures [1]. The CSP of a structure Γ with a finite relational signature, denoted CSP(Γ),
is the following computational decision problem:
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CSP(Γ)
Instance: A finite conjunction ψ(x1, . . . , xk) of atomic formulas in the signature of Γ.
Question: Are there elements a1, . . . , ak ∈ Γ such that Γ |= ψ(a1, . . . , ak)?

The relational structure Γ is called a template of the CSP, and the conjuncts in ψ are
called constraints. The equivalent formulation below is more suitable in some contexts:

CSP(Γ)
Instance: A finite structure ∆ with the same signature as Γ.
Question: Is there a homomorphism from ∆ to Γ?

Every phylogeny problem is of the form CSP(Γ) for an ω-categorical structure Γ; we
can therefore speak of »phylogeny CSPs« instead of »phylogeny problems«. In the most
important cases, Γ is also homogeneous. The main result of [1] states that a phylogeny
CSP is solvable in polynomial time if the associated ω-categorical template fulfills a
certain algebraic condition, and NP-hard otherwise. Moreover, there is a uniform source
of hardness: the ability to primitive positively construct a finite structure which does
not satisfy this algebraic condition and whose CSP is NP-hard. Results of this form are
referred to as algebraic complexity dichotomies. The advantage over a plain complexity
classification is that the result remains nontrivial even if P = NP.

1.2 Descriptive Complexity

What is also unaffected by the P-NP problem is the expressibility of CSPs in fixed point
logics. Those are extensions of first-order logic by expressions whose semantics is given
in terms of fixed points of operators specified by first-order formulas. For instance, if
G = (V ;E) is a finite undirected graph, then there will be an expression for the relation
containing all pairs (x, y) contained in Ui at some stage of the following recursion:

U0 := ∅, Ui+1 := Ui ∪ {(x, y) ∈ V 2 | E(x, y) ∨ ∃z(E(x, z) ∧ Ui(z, y))}.
It is easy to see that the fixed-point U∞ :=

�
i Ui is the transitive closure of E. Using the

limits of such sentences, it becomes possible to define properties of structures that are not
definable in first-order logic, e. g. that G is connected: ∀x∀y(U∞(x, y)) [20].

In [3], a classification of temporal CSPs with respect to expressibility in some important
fixed point logics was given. Temporal CSPs are CSPs with a template that is a (first-
order) reduct of (Q;<); they are structurally similar to phylogeny CSPs and both appear
as special cases of CSPs of reducts of the universal homogeneous binary tree [2]. In
particular, the question arises which phylogeny CSPs are expressible in fixed point logic,
and how (in)expressibility can be characterized algebraically.

We will identify a large class of phylogeny CSPs which are expressible, as well as an
example of a tractable phylogeny CSP which is inexpressible in the basic fixed point logic
FP.

1.3 Organization of the Thesis

In Chapter 2, we will collect various definitions and known results which we will need
in later chapters. In particular, we will introduce polymorphisms, ω-categoricity and
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homogeneity, the concepts of Fraïssé amalgamation and pp-constructions as well as fixed
point logics. In the last subsection, we will establish a dichotomy for equality CSPs with
respect to their descriptive complexity.

In Chapter 3, we will formalize leaf structures and phylogeny problems. We will show
how to amalgamate two leaf structures, which yields the generic leaf structure (L;C) as a
Fraïssé limit, and how every phylogeny problem can be interpreted as the CSP of a reduct
of (L;C). Subsequently, we will use a known classification of such CSPs to study reducts
of (L;C) which do not pp-define C (the »degenerative« cases) and establish a dichotomy
for phylogeny CSPs in Datalog, a fragment of the basic fixed point logic FP.

In Chapter 4, we present a phylogeny problem which is tractable, but inexpressible in
fixed point logic, even with counting.

In Chapter 5, we introduce Boolean Horn formulas; they are a syntactic restriction
of affine Horn formulas introduced in [1]. It turns out that all phylogeny CSPs with a
template whose relations can be defined by Boolean Horn formulas are expressible in fixed
point logic. Moreover, there is a specific structure which pp-defines all such structures.
We also characterize such structures in terms of having a specific polymorphism.
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2 Preliminaries

2.1 Basic Definitions and Notation

We start with some basic vocabulary from model theory and logic. A relational structure
with signature τ = {R1, R2, . . .} is a tuple Γ = (DΓ;R

Γ
1 , R

Γ
2 , . . .) consisting of a domain DΓ

and relations RΓ
i ⊆ (DΓ)

ar(Ri) for each relation symbol Ri ∈ τ, where ar(R) denotes the
arity of R. For notational convenience, we will use Ri and RΓ

i interchangeably, when there
is no ambiguity. Moreover, we will not always rigorously distinguish between a structure
and its domain. Unless otherwise stated, all structures considered are assumed to be
relational; we will use constant symbols though as an abbreviation for unary relations
containing only one element.

Let Γ be a τ -structure. A reduct of Γ is a τ -structure ∆ with domain DΓ such that for
all R ∈ τ, R∆ has a first-order definition in Γ. Let S ⊆ DΓ, then we call the τ -structure
∆ with domain S and relations R∆ = RΓ ∩ Sar(R) the substructure of Γ induced by S; it is
denoted by Γ[S]. If f : Γ[S] → Γ[f(S)] is an isomorphism, we call it a partial isomorphism
of Γ.

If a is a tuple, we write ai for the i-th component of a. Let Γ,∆ be two τ -structures,
R ∈ τ and let h : Γ → ∆ be a function. We say that h preserves R, denoted by h ↷ R, if
(h(a1), . . . , h(an)) ∈ R∆ for all a ∈ RΓ. If h preserves all relations of Γ, we say that h is a
homomorphism between Γ and ∆. We write Γ → ∆ if there is a homomorphism from Γ to
∆. If Γ → ∆ and ∆ → Γ, we say that Γ and ∆ are homomorphically equivalent. If h is an
injective homomorphism that preserves all relations strongly, i. e. (h(a1), . . . , h(an)) ∈ R∆

if and only if a ∈ RΓ, h is called an embedding. An endomorphism is a homomorphism
from a structure to itself. An automorphism is a bijective embedding of a structure to
itself, or, equivalently, a bijective endomorphism such that its inverse is an endomorphism
as well. The sets of endomorphisms, embeddings and automorphisms of Γ are denoted by
End(Γ),Emb(Γ) and Aut(Γ), respectively.

Let F be some set of functions from Γ to itself and let a be a tuple from Γn, then
the orbit of a (with respect to F ) is the set O(a) := {(α(a1), . . . , α(an)) | α ∈ F}. F
locally interpolates a function g if for every finite A ⊆ DΓ, there is some f ∈ F such that
f
��
A
= g

��
A
. We denote the set of functions which can be locally interpolated by functions

from F by F .
We work with classical first-order logic, using ⊥, the Boolean connectives ∧,∨,¬, the

quantifiers ∀, ∃ and equality. φ → ψ is an abbreviation for ¬φ ∨ ψ. The symbol ≡ stands
for syntactic equality of formulas. A formula is called existential positive if it does not
contain universal quantifiers or negation symbols. A formula is primitive positive (shortly
pp) if it is of the form

∃x1 · · · ∃xk (ψ1 ∧ · · · ∧ ψn),

where each ψi is atomic, i. e. of the form ⊥, x = y or R(xi1 , . . . , xil).
For a structure Γ, we write ⟨Γ⟩ for the set of relations which have a pp-definition in Γ.
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2.2 Polymorphisms

Let m,n ≥ 1, let f : An → B be a function of arity n and let a1, . . . , an ∈ Am. We can
extend f to a function (Am)n → Bm by setting

f(a1, . . . , an) := (f(a11, . . . , an1), . . . , f(a1m, . . . , anm)). (1)

This action of f on n tuples can be visualized by viewing those tuples as the rows of a
matrix and applying f column-wise; the i-th component of the m-ary result is f applied
to the i-th column:

f

���������
(a11 a12 . . . a1m)
(a21 a22 . . . a2m)

...
(an1 an2 . . . anm)

f(a1, . . . , an)

This gives rise to a central tool in universal algebra:

2.1 Definition. An n-ary polymorphism of a k-ary relation R is a function f : Dn → D
such that for every n tuples a1, . . . , an ∈ R, we have f(a1, . . . , an) ∈ R, where f(a1, . . . , an)
is defined by (1). We also say that f preserves R and write f ↷ R; if this is not the case,
f violates R. A polymorphism of a structure Γ is a function f : Dn → D that preserves
all relations of Γ. We denote this by f ↷ Γ.

We write Pol(n)(Γ) for the set of n-ary polymorphisms of Γ and Pol(Γ) for the set of
all of its polymorphisms.

Alternatively, we can define the n-ary polymorphisms via the direct product: The
direct product of two τ -structures Γ1,Γ2 is the τ -structure Γ1×Γ2 with domain DΓ1 ×DΓ2 ,
where for every R ∈ τ, we have RΓ1×Γ2((a1, b1), . . . , (ak, bk)) if and only if RΓ1(a1, . . . , ak)
and RΓ2(b1, . . . , bk). Now the n-ary polymorphisms of Γ are the homomorphisms from
Γn = Γ× · · · × Γ to Γ. Note that Pol(1)(Γ) = End(Γ).

We will later need the following fact:

2.2 Lemma ([9, Lemma 10]). Let Γ be a relational structure and R be a k-ary relation
that is contained in a union of l orbits of k-tuples of Aut(Γ). If R is violated by some
polymorphism g ∈ Pol(m)(Γ) with m ≥ l, then R is also violated by some polymorphism
h ∈ Pol(l)(Γ).

2.3 Some Important Concepts from Model Theory

In the following, we will introduce a few key concepts from model theory, in particular
ω-categoricity and homogeneity, and the relationships between them:

2.3 Definition. A first-order theory T is called ω-categorical if it has at most one
countably infinite model up to isomorphism. A structure Γ is called ω-categorical if its
first-order theory is ω-categorical.
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An ω-categorical theory in a countable language either has a finite model, or exactly
one countably infinite model up to isomorphism (this follows from the Löwenheim-Skolem
Theorem, see e. g. [19, Corollary 3.1.5]). The following theorem plays a crucial role in
the study of countably infinite ω-categorical structures, as it shows that such structures
behave similiarly to finite structures:

2.4 Theorem (Ryll-Nardzewski, e. g. [19, Theorem 7.3.1]). Let Γ be a countably infinite
structure. Then the following statements are equivalent:

(1) Γ is ω-categorical.

(2) Aut(Γ) is oligomorphic, i. e. for all n ≥ 1, there are only finitely many orbits of
n-tuples with respect to Aut(Γ).

(3) For all n ≥ 1, there are only finitely many inequivalent formulas over Γ whose free
variables are from x1, . . . , xn.

2.5 Corollary. Let Γ be a countably infinite ω-categorical structure and let ∆ be some
reduct of Γ. Then ∆ is ω-categorical as well.

Proof. We have Aut(Γ) ⊆ Aut(∆), since ∆ is a reduct of Γ (cf. Theorem 2.6 (1)). Hence,
if Aut(Γ) has only finitely many orbits of n-tuples, so does Aut(∆). The statement now
follows from Theorem 2.4.

The following theorem shows that important syntactic restrictions of first-order logic
have an algebraic counterpart. Statement (1) is well-known and has an easy inductive
proof which uses Theorem 2.4; for (2) and (3), see [11, Proposition 12]; a proof of (4) can
be found in [13, Theorem 4].

2.6 Theorem. Let Γ be a finite or countably infinite ω-categorical structure and R a
relation. Then the following statements hold:

(1) R is first-order definable in Γ if and only if Aut(Γ) ↷ R.

(2) R has an existential definition in Γ if and only if Emb(Γ) ↷ R.

(3) R has an existential positive definition in Γ if and only if End(Γ) ↷ R.

(4) R is pp-definable in Γ if and only if Pol(Γ) ↷ R.

2.7 Definition. A structure Γ is called homogeneous if every partial isomorphism between
substructures of Γ with finite domain can be extended to an automorphism of Γ.

2.8 Proposition. Let Γ be a countably infinite, homogeneous structure with finite signature.
Then Γ is ω-categorical.

Proof. By Theorem 2.4, it suffices to show that for every n ≥ 1, Aut(Γ) has only finitely
many orbits of n-tuples. For a ∈ (DΓ)

n, let Φa := {ψ(x1, . . . , xn) | ψ quantifier-free,Γ |=
ψ(a1, . . . , an)}. Since Γ has finite signature, there are only finitely many inequivalent
quantifier-free formulas with free variables x1, . . . , xn. Hence, there are only finitely many
sets of the form Φa. If Φa = Φb, then Γ[{a1, . . . , an}] is isomorphic to Γ[{b1, . . . , bn}]; thus,
a and b lie in the same orbit of Aut(Γ) due to the homogeneity of Γ.
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2.9 Theorem (see [19, Corollary 7.4.2]). Let Γ be an ω-categorical structure. Then Γ is
homogeneous if and only if it has quantifier elimination, i. e. if every first-order formula
is equivalent to a quantifier-free formula over Γ.

2.10 Definition. A structure Γ is called a core if End(Γ) = Emb(Γ).

2.11 Definition. A first-order theory T is called model-complete if all embeddings between
models of T preserve all first-order formulas. A structure Γ is called model-complete if its
first-order theory is model-complete.

2.12 Lemma. Let Γ be a homogeneous, ω-categorical structure. Then Γ is model-complete.

Proof. Let Λ,Ξ be two models of the theory of Γ, f : Λ → Ξ an embedding and
φ(x1, . . . , xn) a formula. We have to show that Λ |= φ(a1, . . . , an) ⇐⇒ Ξ |= φ(f(a1), . . . , f(an))
for arbitary a1, . . . , an ∈ DΛ. As Γ has quantifier elimination by Theorem 2.9, there is
a quantifier-free formula ψ such that Γ |= φ(x1, . . . , xn) ↔ ψ(x1, . . . , xn). As they have
the same theory as Γ, φ and ψ are also equivalent over Λ and Ξ. Hence, it suffices to
verify Λ |= ψ(a1, . . . , an) ⇐⇒ Ξ |= ψ(f(a1), . . . , f(an)); but this holds because ψ is
quantifier-free and f is an embedding.

2.13 Theorem ([10, Theorem 16]). Let Γ be an ω-categorical structure. Then Γ is
homomorphically equivalent to a model-complete core ∆, which is ω-categorical and unique
up to isomorphism.

Hence, it is justified to speak of the model-complete core of a certain ω-categorical
structure. It has the following algebraic characterization:

2.14 Theorem (cf. [11, Lemma 13]). Let Γ be a countably infinite ω-categorical structure.
Then Γ is a model-complete core if and only if Aut(Γ) locally interpolates End(Γ).

2.15 Lemma. Let ∆ be a reduct of a model-complete core Γ such that ∆ existentially
positively defines Γ. Then ∆ is a model-complete core, too.

Proof. By Theorem 2.14, it suffices to show that End(∆) ⊆ Aut(∆). Since Γ has an
existentially positive definition in ∆, we have End(∆) ⊆ End(Γ) by Theorem 2.6. As
∆ is a reduct of Γ, we obtain Aut(Γ) ⊆ Aut(∆) again by Theorem 2.6. Hence, overall,
End(∆) ⊆ End(Γ) ⊆ Aut(Γ) ⊆ Aut(∆), as required.

2.4 Fraïssé Limits

For a class A of finite structures fulfilling certain conditions, there exists a countably
infinite, homogeneous structure whose finite substructures are exactly the elements of A.
As the central structure of this thesis is obtained in that way, we will summarize the main
idea behind its construction.

2.16 Definition. Let A be a class of finite structures with signature τ . A is called
an amalgamation class if it is closed under isomorphisms, induced substructures and
amalgamation, i. e. it satisfies the following property: For all Γ1,Γ2 ∈ A such that Γ1 ∩ Γ2

is an induced substructure of both Γ1 and Γ2, there is a structure A(Γ1,Γ2) ∈ A, called
the amalgam of Γ1 and Γ2, and embeddings fi : Γi → A(Γ1,Γ2) for i ∈ {1, 2} such that
f1
��
Γ1∩Γ2

= f2
��
Γ1∩Γ2

.
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The following is a central theorem in model theory; a detailed proof of a more general
statement can be found in [19, § 7]. A short self-contained proof for relational structures
only can be found in the Appendix of [12].

2.17 Theorem (Fraïssé). Let A be an amalgamation class that contains countably many
non-isomorphic τ -structures. Then there is a countably infinite, homogeneous τ -structure
F(A), called the Fraïssé limit of A, such that A is exactly the set of finite structures that
can be embedded into F(A). Moreover, F(A) is unique up to isomorphism.

Proof sketch. Since A is closed under isomorphisms, the amalgamation property as stated
in Definition 2.16 can equivalently be formulated as follows: For all structures Γ0,Γ1,Γ2 ∈
A and embeddings fi : Γ0 → Γi, i ∈ {1, 2}, there is a structure Γ ∈ A and embeddings
gi : Γi → Γ, i ∈ {1, 2}, such that g1 ◦ f1 = g2 ◦ f2. Γ is called an amalgam of Γ1 and Γ2

over Γ with respect to f1 and f2.
Let Γ0,Γ1,Γ2, . . . be an enumeration of representatives of all distinct isomorphism

classes of structures in A. We construct a chain ∆0 ⊆ ∆1 ⊆ ∆2 ⊆ . . . of structures in
A as follows: Let ∆0 := Γ0 and assume that ∆0, . . . ,∆n are already constructed. Let
(Γik ,Γjk , fk, gk)1≤k≤m be an enumeration of all possible combinations of structures Γik ,Γjk

with ik, jk < n and of embeddings fk : Γik → Γjk and gk : Γik → ∆n. We build a nested
chain ∆n ⊆ Λ0 ⊆ Λ1 ⊆ . . . ⊆ Λm =: ∆n+1 of structures in A, where Λ0 is an amalgam of
∆n and Γn and, for 1 ≤ k ≤ m, Λk is an amalgam of Λk−1 and Γjk over Γik with respect
to fik and gik . Finally, let F(A) :=

�
n∈N ∆n.

By construction, all structures in A embed into F(A), and the following holds: For
all structures Γ1,Γ2 ∈ A, if Γ1 is an induced substructure of Γ2 and f1 : Γ1 → F(A) is
an embedding, then there is some embedding f2 : Γ2 → F(A) that extends f1. With a
back-and-forth argument, it is easy show that in the case of countable structures, the
latter property implies homogeneity. The uniqueness of F(A) up to isomorphism can be
shown with a back-and-forth argument as well.

2.18 Example. The class A of finite structures with an irreflexive linear order is an
amalgamation class; its Fraïssé limit is isomorphic to (Q;<). Note that A is the class
of finite structures that embed into (N, <) and (Z, <) as well; those are however not
homogeneous (e. g., the mapping 1 �→ 1, 2 �→ 3 is a partial isomorphism of both structures
that cannot be extended to an automorphism). Another example of an amalgamation
class is the class of finite undirected graphs; its Fraïssé limit is the Erdős-Rényi random
graph.

The following observation is helpful for working with concrete Fraïssé limits:

2.19 Lemma. Let A be a class of τ -structures with Fraïssé limit F(A) and let φ be some
universal τ -sentence. Then φ holds in F(A) if and only if φ holds in all structures of A.

Proof. Let φ ≡ ∀x1 · · · ∀xn (ψ(x1, . . . , xn)), where ψ is quantifier-free. Every Γ ∈ A is
isomorphic to a substructure of F(A) by the definition of Fraïssé limits. It is clear
that universal sentences are preserved under taking substructures. Hence, if F(A) |= φ,
then also Γ |= φ. Conversely, let φ be true in every Γ ∈ A and let a1, . . . , an ∈ F(A).
Then F(A)[{a1, . . . , an}] ∈ A by the definition of Fraïssé limits, thus F(A)[{a1, . . . , an}] |=
ψ(a1, . . . , an) by assumption. Because ψ is quantifier-free, we obtain F(A) |= ψ(a1, . . . , an).
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2.5 Relational Reductions between Structures

In this section, we will introduce a central tool to compare the CSPs of two fixed templates
with respect to their computational and descriptive complexity, namely pp-constructions.
A structure Γ pp-constructs a structure ∆ if it can »simulate« it in a certain sense; in
particular, the existence of such a reduction implies that CSP(∆) is log-space reducible to
CSP(Γ). As we will see in the next chapter, pp-constructions also preserve the expressibility
of CSPs in fixed point logics.

The following are standard definitions:

2.20 Definition. Let Γ,∆ be two structures with the same domain. We say that Γ
pp-defines ∆ if each relation of ∆ can be defined by a primitive positive formula over Γ.

2.21 Definition. Let Γ,∆ be two structures with signatures σ, τ, respectively. We say
that ∆ is a pp-power of Γ if there is some natural number d ≥ 1 (the dimension) such
that D∆ = (DΓ)

d, and for every k-ary R ∈ τ, the relation {(a11, . . . , a1d, . . . , ak1, . . . , akd) |
(a1, . . . , ak) ∈ R∆} ⊆ (DΓ)

d·k has a pp-definition in Γ.

2.22 Definition. We say that Γ pp-contructs ∆ if ∆ is homomorphically equivalent to a
pp-power of Γ.

2.23 Definition. Let Γ,∆ be a structures with signatures τ, σ, respectively. We say
that Γ pp-interprets ∆ if there is a natural number d ≥ 1 (the dimension), a subset
S ⊆ (DΓ)

d, an equivalence relation ϑ ⊆ S2 and a surjection f : S → D∆ such that
ker(f) = ϑ, S and ϑ have a pp-definition in Γ and, for every relation R ∈ σ, the set
f−1(R) := {(a11, . . . a1d, . . . , ak1, . . . , akd) | a1, . . . , ak ∈ S ∧ (f(a1), . . . , f(ak)) ∈ R∆} has
a pp-definition in Γ as well.

2.24 Definition. For a class K of structures, let

• D(K) be the class of structures which are pp-definable in some structure in K,

• P(K) be the class of structures which are a pp-power of some structure in K,

• I(K) be the class of structures which are pp-interpretable in some structure in K
and

• H(K) be the class of structures which are homomorphically equivalent to some
structure in K.

2.25 Lemma ([4, Lemma 3.8]). Let K be a class of structures. Then

D(K)
(a)

⊆ P(K)
(b)

⊆ I(K)
(c)

⊆ HP(K).

Moreover, HH(K)
(d)
= H(K),PP(K)

(e)
= P(K) and PH(K)

(f)

⊆ HP(K). In particular,
HPHP(K) = HP(K), i. e. pp-constructibility is transitive.

9



Proof. (a) is immediate, as pp-definitions are pp-powers with dimension d = 1. Regarding
(b), if ∆ is a pp-power of Γ, it also has a pp-interpretation in Γ: The dimension of the
pp-interpretation is the dimension of the pp-power and, using the notation of Definition
2.23, S = (DΓ)

d and ϑ is the equality relation.
For (c), let Γ,∆ be structures with signatures τ, σ, respectively, such that Γ pp-

interprets ∆; let d, S, ϑ and f be as in Definition 2.23. Let Ξ be the σ-structure with
domain DΞ := (DΓ)

d whose relations are given by RΞ := f−1(R∆). Extend f arbitrarily
to a mapping f ′ : DΞ → D∆ and choose some g : D∆ → S such that f ′ ◦ g = idD∆

. Then
Ξ → ∆ via f and ∆ → Ξ via g, hence Ξ and ∆ are homomorphically equivalent. Thus,
since Ξ is a pp-power of Γ, we obtain ∆ ∈ HP(Γ).

(d) holds because the composition of two homomorphisms is again a homomorphism.
(e) follows more or less trivially from the definitions.

It remains to show (f). Let ∆ ∈ PH(Γ), i. e. there is some structure Λ such
that Γ and Λ are homomorphically equivalent and ∆ is a pp-power of Λ of dimen-
sion, say, d. We want to show ∆ ∈ HP(Γ), so we want to find a structure Ξ which
is a pp-power of Γ such that ∆ and Ξ are homomorphically equivalent. Define a d-
dimensional pp-power of Γ with the same signature as ∆ like this: We know that,
by the definition of pp-powers, there is a pp-formula ψ for every relation symbol
R such that R∆(a1, . . . , ak) ⇐⇒ Λ |= ψ(a11, . . . , a1d, . . . , ak1, . . . , akd); now define
RΞ(b1, . . . , bk) :⇐⇒ Γ |= ψ(b11, . . . , b1d, . . . , bk1, . . . , bkd). Let f : Λ → Γ and g : Γ → Λ
be homomorphisms, then the component-wise actions of f and g on (DΛ)

d and (DΓ)
d,

respectively, homomorphically map ∆ and Ξ to each other.

The following statement demonstrates the utility of pp-constructions in the context of
CSPs:

2.26 Proposition. If Γ pp-constructs ∆, then CSP(∆) is log-space reducible to CSP(Γ).

Proof. We first observe that two homomorphically equivalent structures have the same
CSP: Homomorphisms transform solutions of an instance of one CSP into solutions of the
corresponding instance of the other CSP, and vice versa. Hence, we can assume that ∆ is
a pp-power of Γ; let d be its dimension.

Let φ be an arbitrary instance of CSP(∆). Without loss of generality, φ does not
contain any equality constraints. We transform φ into an instance φ̃ of CSP(Γ) as
follows: For each constraint R(x1, . . . , xk) of φ, there is, by assumption, a pp-definition
ψR(x11, . . . , x1d, . . . , xk1, . . . , xkd) of {(a11, . . . , a1d, . . . , ak1, . . . , akd) | (a1, . . . , ak) ∈ R∆}.
We replace R(x1, . . . , xk) by ψR, where, if necessary, we rename variables such that for any
two different relation symbols R and S, ψR and ψS do not have any existentially bound
variables in common. Subsequently, we remove all quantifiers, which yields a conjunction
φ̃(x11, . . . , x1d, . . . , xk1, . . . , xkd) of atomic formulas. By construction, φ is satisfiable over
∆ if and only if φ̃ is satisfiable over Γ. The reduction is obviously feasible in logarithmic
space.

2.27 Lemma ([4, Lemma 3.9]). Let Γ be an at most countable ω-categorical, model-
complete core and let ∆ be the expansion of Γ by a constant. Then ∆ ∈ HP(Γ).
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2.6 Fixed Point Logics

Let S be some finite set and let 2S be the power set of S. Take an arbitrary operator
F : 2S → 2S and consider the sequences defined by

U0 := ∅, Ui+1 := Ui ∪ F (Ui) (2)

and

U0 := S, Ui+1 := Ui ∩ F (Ui). (3)

Sequence (2) is increasing, sequence (3) is decreasing; since S is finite, in both cases there
will eventually be some index i such that Ui = Ui+1. This implies Ui = Uj for all j ≥ i; we
call Ui the limit of the sequence. The limit of (2) is called the inflationary fixed point of
F and denoted by Ifp(F ); the limit of (3) is called the deflationary fixed point of F and
denoted by Dfp(F ).†

Let Γ be a σ-structure, let R be a k-ary relation symbol with R ̸∈ σ and let
φ(x1, . . . , xk, y1, . . . , yl) be a (σ ∪ {R})-formula. For some X ⊆ (DΓ)

k, let (Γ, X) be
the (σ ∪ {R})-structure extending Γ where R is interpreted as X.

For c1, . . . , cl ∈ DΓ, we define the operator F Γ
φ(x1,...,xk,c1,...,cl)

as follows:

F Γ
φ(x1,...,xk,c1,...,cl)

:

�
(DΓ)

k → (DΓ)
k

X �→ {(a1, . . . , ak) : (Γ, X) |= φ(a1, . . . , ak, c1, . . . , cl)}.
We are now ready to define inflationary fixed point logic, denoted by IFP:

2.28 Definition (Syntax of IFP). Let σ be some signature. Then the set of IFP σ-formulas
is inductively defined as follows:

• Every atomic σ-formula is an IFP σ-formula.

• Every formula built from IFP σ-formulas by the first-order constructors ∧,∨,¬, ∃
and ∀ is an IFP σ-formula.

• If φ(x1, . . . , xk, y1, . . . , yl) is an IFP (σ∪{R})-formula for some k-ary relation symbol
R ̸∈ σ, then

�
ifpR,(x1,...,xk)

φ
�
is an IFP σ-formula with free variables x1, . . . , xk, y1, . . . , yl.

2.29 Definition (Semantics of IFP). The semantics of atomic formulas and of ∧,∨,¬, ∃
and ∀ is defined in the usual way like for first-order logic. Let Γ be a σ-structure and
let φ(x1, . . . , xk, y1, . . . , yl) be an IFP (σ ∪ {R})-formula for some k-ary relation symbol
R ̸∈ σ. Then for a1, . . . , ak, c1, . . . , cl ∈ DΓ, we define

Γ |= �
ifpR,(x1,...,xk)

φ
�
(a1, . . . , ak, c1, . . . , cl) :⇐⇒ (a1, . . . , ak) ∈ Ifp



F Γ
φ(x1,...,xk,c1,...,cl)

�
.

We use
�
dfpR,(x1,...,xk)

φ
�
as an abbreviation for ¬�ifpR,(x1,...,xk)

¬φ[R\¬R]
�
, where φ[R\¬R]

is the formula obtained from φ when R is replaced by ¬R everywhere. It is straightforward
to show that, as the notation suggests, Γ |= �

dfpR,xφ
�
(a, c) ⇐⇒ a ∈ Dfp(F Γ

φ(x,c)). We
will need one more logic:

† This terminology can be explained as follows: A set X is called a fixed point of an operator G if
G(X) = X. Now Ifp(F ) is a fixed point of the operator G defined by G(X) := X ∪F (X) and Dfp(F ) is a
fixed point of the operator G defined by G(X) := X ∩ F (X).
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2.30 Definition. Datalog is the existential positive fragment of IFP.

We say that a computational problem is expressible in a logic L if there is a sentence φ
in L that defines the class of all structures which are negative instances of the problem.†

It is well-known that graph connectivity is not definable by a first-order formula. It
can, however, be expressed in IFP, as the following standard example shows:

2.31 Example. Let G = (V ;E) be a finite graph, a, c ∈ V and let U be a new unary
relation symbol. Let φ(x, y) ≡ x = y ∨ ∃z(E(z, x) ∧ U(z)). Consider sequence (2) for the
operator F := FG

φ(x,c) : With an easy induction, we obtain that Ui is the set of vertices
reachable from c on a path of length at most i; thus, Ifp(F ) is the set of all vertices
reachable from c. Hence, G |= �

ifpU,xφ(x, y)
�
(a, c) if and only if a is reachable from c,

which implies that ∀v∀w �
ifpU,xφ(x, y)

�
(v, w) defines the class of connected finite graphs.

Besides IFP, there are various other fixed point logics like least fixed point logic (LFP)
and deflationary fixed point logic (DFP). They all have, however, equal expressive power,
for which reason they are often simply referred to as fixed point logic (FP). It has been
shown that FP captures polynomial time over the class of ordered structures (see e. g.
[20, Theorem 10.14]). An important extension of FP is fixed point logic with counting
(FPC); we will use this logic as a black box here. There was a prospect that FPC would
capture all of polynomial time, as it captures it over many important classes like trees
or planar graphs ([14]); however, it turned out that the problem of whether a system of
linear equations over a finite, nontrivial abelian group has a solution is not expressible in
FPC, not even in simple cases:

2.32 Theorem ([15]). Let EZ2,3 be the structure (Z2;R
2
0, R

3
0, R

3
1), where

Ri
a = {(x1, . . . , xi) : x1 + . . .+ xi = a}. Then CSP(EZ2,3) is not expressible in FPC.

We will cite an important relationship between the logics we defined and the concept
of pp-constructibility:

2.33 Theorem (see [18, Theorem 8.7.7]). Let Γ,∆ be structures with finite signatures
such that CSP(Γ) is expressible FPC (resp. FP, Datalog) and ∆ ∈ HP(Γ). Then CSP(∆)
is expressible in FPC (resp. FP, Datalog) as well.

Standard structures in the context of pp-constructions are

• ({0, 1}; NAE), where NAE = {0, 1}3\{(0, 0, 0), (1, 1, 1)},
• ({0, 1}; 1IN3), where 1IN3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and

• K3 = ({0, 1, 2}; ̸=).

They are all known to have NP-complete CSPs. Furthermore, they have the following
remarkable property:

2.34 Proposition. ({0, 1}; NAE), ({0, 1}; 1IN3) and K3 pp-construct all finite structures.

† Note that some logics like Datalog do not contain negation.
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2.35 Corollary. If a structure Γ pp-constructs one of ({0, 1}; NAE), ({0, 1}; 1IN3) and
K3, then CSP(Γ) is not expressible in FPC.

Proof. If Γ pp-constructs one of these structures, it pp-constructs all finite structures by
Proposition 2.34 and the transitivity of pp-constructibility (Lemma 2.25). In particular,
it pp-constructs the structure EZ2,3 from Theorem 2.32, whose CSP is not expressible in
FPC. Hence, CSP(Γ) cannot be in FPC either by Theorem 2.33.

Note that a structure that pp-constructs a structure with an NP-complete CSP has itself
an NP-complete CSP by Proposition 2.26. However, statements about the expressibility
of CSPs in fixed point logics remain interesting even if P = NP.

We conclude the section with the definition of a finite-variable logic with counting and
its relationship with FPC.

2.36 Definition. Lk is the fragment of first-order logic that only uses the variables
x1, . . . , xk. Ck is the extension of Lk by a counting quantifier ∃i for each i ∈ N, where
Γ |= ∃ix(φ(x)) if and only if there are at least i distinct elements a ∈ DΓ such that
Γ |= φ(a).

The bijective k-pebble game is a game played on two structures Γ and ∆ of the same
signature by two players, which are called the Spoiler and the Duplicator. The setup
includes k pairs of pebbles (a1, b1), . . . , (ak, bk). The game consists of potentially infinitely
many rounds, each of which proceeds as follows:

• The Spoiler chooses some i ∈ {1, . . . , k}.
• The Duplicator selects a bijection f : Γ → ∆ under the following restriction: For

each j ∈ {1, . . . , k}\{i} such that (ai, bi) has already been placed on the board,
f(aj) = bj must hold.

• The Spoiler places ai on any element of Γ and bi on f(ai).

If, after any round, the partial map between Γ and ∆ induced by the pebbles on the board
is not a partial isomorphism, the Spoiler wins the game. If the game lasts forever, the
Duplicator wins.

Let Γ and ∆ be two τ -structures. We write Γ ≡Ck ∆ if for every τ -sentence φ ∈ Ck,
Γ |= φ ⇐⇒ ∆ |= φ.

2.37 Lemma ([16]). For two τ -structures Γ and ∆, we have Γ ≡Ck ∆ if and only if the
Duplicator has a winning strategy for the bijective k-pebble game on Γ and ∆.

2.38 Theorem (Immerman-Lander, see e. g. [17]). Let φ be an FPC τ -sentence. Then
there is some k ∈ N such that, for all finite τ -structures Γ and ∆, if Γ ≡Ck ∆, then
Γ |= φ ⇐⇒ ∆ |= φ.

2.7 Equality Constraint Satisfaction Problems

An equality constraint language is a reduct of (N; =). Note that we could choose any
countable domain (e. g. Q) instead and would obtain an isomorphic structure. In this
section, we will show that the CSP of an equality constraint language is either expressible
in Datalog, or it pp-constructs K3.

We first summarize an argument which is only implicit in [7]:
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2.39 Proposition. Let Γ be an equality constraint language. If Γ does not have a constant
unary or an injective binary polymorphism, then it pp-defines every relation R with a
first-order definition in (N; =).

Proof. As Γ is a reduct of (N; =), its automorphism group is the full symmetric group
on N, which is obviously oligomorphic. Hence, R is the union of finitely many orbits
O(a1), . . . ,O(al). For a tuple a ∈ Nk, the formula ϱa(x) ≡

�
ai=aj

xi = xj ∧
�

ai ̸=aj
xi ̸= xj

defines the orbit of a; hence, R(x) ⇐⇒ 	
1≤i≤l ϱai(x). Since Γ does not have a constant

unary polymorphism, the binary inequality relation has a pp-definition in Γ by [7, Lemma
4]. Therefore, R has an existential positive definition in Γ, which implies End(Γ) ↷ R
by Theorem 2.6. Again because Γ does not have a constant unary or an injective binary
polymorphism, all polymorphisms of Γ only depend on one argument by [7, Lemma5
and Theorem 4]. Thus, End(Γ) ↷ R implies Pol(Γ) ↷ R, so Γ pp-defines R by Theorem
2.6.

The following Lemma is inspired by a gadget reduction in [7, Lemma 6].

2.40 Lemma. Let T := {(x, y, z) ∈ N3 | (x = y ∧ y ̸= z) ∨ (x ≠ y ∧ y = z)}. Then
(N;T, 0, 1, 2) pp-interprets K3.

Proof. We work with the notation from Definition 2.23. The dimension is d = 2. The
subset S is given by S = {(0, 0), (1, 1), (2, 0), (2, 1)} = {(c, d) ∈ N2 : T (d, c, 2) ∧ T (0, d, 1)}
and the equivalence relation ϑ by ϑ = {(a, b) ∈ S2 : a1 = b1} (remember that equality is
always part of the language). The mapping f does (0, 0) �→ 0, (1, 1) �→ 1, (2, 0) �→ 2 and
(2, 1) �→ 2. Now, for (a, b) ∈ S2, we have K3 |= f(a) ̸= f(b) ⇐⇒ (N;T, 0, 1, 2) |= a1 ̸= b1.
Because T (x, x, y) is a pp-definition of x ̸= y, this implies that f−1( ̸=) is also pp-definable
in (N;T, 0, 1, 2).

2.41 Proposition. Let Γ be an equality constraint language. If Γ does not have a constant
unary or injective binary polymorphism, then Γ pp-constructs K3.

Proof. As Γ is a reduct (N; =), it is ω-categorical and has the full symmetric group
on N as its automorphism group. Since Γ does not have a constant endomorphism,
every endomorphism of Γ is injective by [7, Lemma 3] and hence locally interpolated by
automorphisms of Γ. Hence, Γ is a model-complete core by Theorem 2.14.

By Proposition 2.39, we know that Γ pp-defines the relation T defined in Lemma 2.40.
Hence, by Lemma 2.40, K3 ∈ I(Γ, 0, 1, 2). Because Γ is an ω-categorical, model-complete
core, Lemma 2.25 and Lemma 2.27 imply that K3 ∈ HP(Γ).

It remains to study the complexity of equality languages which are preserved by a
constant unary or an injective binary polymorphism. Consider the relation

I := {(a, b, c, d) ∈ N4 | a = b → c = d}.
2.42 Lemma ([8, Proposition 43]). Let R be a relation with a first-order definition in
(N; =). Then the following two statements are equivalent:

(1) R is preserved by an injective binary polymorphism.

(2) R has a pp-definition in (N; I, ̸=).

14



Algorithm SolveE
Input: An instance Γ of CSP(N; I, ̸=)
Output: ⊤ or ⊥

Θ ← {(x, x) : x ∈ Γ}
while Θ changes:

for (x1, x2, x3, x4) ∈ IΓ :
if (x1, x2) ∈ Θ:

Θ ← tcl(Θ ∪ {(x3, x4), (x4, x3)}) � tcl is the transitive closure
for (x, y) ∈ ≠Γ :

if (x, y) ∈ Θ:
return ⊥

return ⊤

Figure 2. A Datalog algorithm for a generic equality CSP preserved by an injective binary polymorphism.

2.43 Lemma. The algorithm in Figure 2 is sound and complete for CSP(N; I, ̸=), i. e.

Γ → (N; I, ̸=) ⇐⇒ SolveE(Γ) = ⊤.

Proof. For some i ≥ 0, we denote by Θi the state of the program variable Θ after the i-th
iteration of the while-loop. Note that Θi ⊆ Θi+1; in particular, Θ reaches a limit Θ∞ after
finitely many iterations.

»⇒«: Let t : Γ → (N, I, ̸=) be a homomorphism. By induction on i, it is immediate
that Θi(x, y) implies t(x) = t(y). Whenever (x, y) ∈ ̸=Γ, we have t(x) ̸= t(y), since t is a
homomorphism; hence, Θ∞(x, y) cannot hold by the previous argument.

»⇐«: Let t : Γ → N be any mapping such that t(x) = t(y) if and only if (x, y) ∈ Θ∞.
For some constraint ̸=Γ(x, y), it holds that (x, y) ̸∈ Θ∞ since SolveE(Γ) = ⊤; thus,
t(x) ̸= t(y). For a constraint of the form IΓ(x1, x2, x3, x4), we distinguish two cases: If
(x1, x2) ̸∈ Θ∞, then t(x1) ̸= t(x2), which implies IN(t(x1), t(x2), t(x3), t(x4)). If (x1, x2) ∈
Θ∞, however, then (x3, x4) is added to Θ in some iteration of the first for-loop; hence
t(x3) ̸= t(x4), which implies IN(t(x1), t(x2), t(x3), t(x4)) too.

2.44 Corollary. CSP(N, I, ̸=) is expressible in Datalog.

Proof. We rewrite the algorithm in Figure 2 into a Datalog formula. It is easy to see that
SolveE(Γ) = ⊥ ⇐⇒ Γ |= φ, where

φ ≡ ∃x, y 
 ̸=(x, y) ∧ �
ifpΘ,(x3,x4)

�
tcl ϱ(x3, x4)

��
(x, y)

�
and

ϱ(x3, x4) ≡ x3 = x4 ∨ ∃x1, x2



Θ(x1, x2) ∧ I(x1, x2, x3, x4)

�
.�

tcl ϱ
�
(x3, x4) in turn is an abbreviation for the formula�

ifpZ,(s,t) ϱ(s, t) ∨ ∃z(ϱ(s, z) ∧ Z(z, t))
�
(x3, x4);

it computes the transitive closure of ϱ, cf. Example 2.31.
Hence, Γ ̸→ (N; I, ̸=) ⇐⇒ Γ |= φ by Lemma 2.7.
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2.45 Proposition. Let Γ be an equality constraint language with finite signature. If Γ has
a constant unary or injective binary polymorphism, then CSP(Γ) is expressible in Datalog.

Proof. If Γ has a constant unary polymorphism, then an instance of CSP(Γ) is unsatisfiable
if and only if it contains an empty relation, which is clearly definable in Datalog, because
Γ has finite signature. If it has an injective binary polymorphism, we have Γ ∈ D(N, I, ̸=)
by Lemma 2.42. As CSP(N, I, ̸=) is expressible in Datalog by Corollary 2.44, so is CSP(Γ)
by Theorem 2.33.

We obtain the following corollary:

2.46 Theorem. Let Γ be an equality constraint language with finite signature. Then
either Γ pp-constructs K3, or CSP(Γ) is expressible in Datalog.

Proof. If Γ has a constant unary or an injective binary polymorphism, then CSP(Γ) is
expressible in Datalog by Proposition 2.45. If this is not the case, then Γ pp-constructs
K3 by Proposition 2.41.
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3 Phylogeny Problems

In this chapter, we will introduce phylogeny problems, which are computational problems
concerning the hierarchy of common ancestors of leaves in binary trees. A key result is
the existence of the generic leaf structure (L;C), which is obtained as a Fraïssé limit,
such that every phylogeny problem is equivalent to the CSP of a reduct of (L;C). A
study of some of these reducts yields a classification of phylogeny problems regarding
their expressibility in Datalog.

3.1 Leaf Structures

A tree is a finite undirected graph which is connected and acyclic. A binary rooted tree is
a tree with a designated vertex r, the root, such that r has degree 2 and all other vertices
either have degree 3 or 1; the latter are called the leaves. We denote the set of vertices of
a tree T by V (T ) and the set of its leaves by L(T ).

It is easy to see that in every tree, there is a unique shortest path between any two
distinct vertices. For x, y ∈ V (T ), we write x ≤ y if the path from x to the root contains
y and x < y if x ≤ y and x ̸= y. Note that ≤ is a partial order on V (T ). The youngest
common ancestor of a set X ⊆ V (T ), shortly yca(X), is the lowest upper bound of X
with respect to ≤; it is uniquely determined by X.

3.1 Definition. Let T be a tree. On L(T ), we can define a ternary relation C by

C(x, y, z) ⇐⇒ yca({y, z}) < yca({x, y, z}).

The leaf structure of T is the structure (L(T );C) and T is called its underlying tree.

3.2 Definition. Let T be a rooted tree and X1, X2 ⊆ V (T ). We write X1|X2 if
yca(X1) ̸≤ yca(X2) and yca(X2) ̸≤ yca(X1). We also write x1, . . . , xn|y1, . . . , ym if
{x1, . . . , xn}|{y1, . . . , ym}.
3.3 Lemma. Let T be a binary rooted tree with leaf structure (L(T );C) and x, y, z, u,
x1, . . . , xn, y1, . . . , ym ∈ L(T ). Then the following holds:

(1) C(x, y, z) ⇐⇒ x|yz.
(2) Exactly one of x|yz, y|xz, z|xy and x = y = z holds.

(3) x1, . . . , xn|y1, . . . , ym ⇐⇒ �
i,j≤n

�
k,l≤m(xixj|yk ∧ xi|ykyl).

(4) y|xz ∧ x|zu =⇒ y|xu.
(5) x|yu ∧ x|zu =⇒ x|yz.

Proof. (1) follows directly from the definitions; (2) holds because T is binary. »
(3)⇒« is trivial;

for »
(3)⇐«, let X := {x1, . . . , xn}, Y := {y1, . . . , ym}. The claim is trivial for |Y | = 1, so let

|Y | ≥ 2 assume towards contradiction that (without loss of generality) yca(X) ≤ yca(Y ).
Because yca(Y ) is the least upper bound of Y, there must be some y1 ∈ Y in the left
subtree of the subtree of T rooted at yca(Y ) and some y2 ∈ Y in the right subtree. Due
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to yca(X) ≤ yca(Y ), one of those subtrees must contain some x ∈ X, hence xy1|y2 or
xy2|y1, contradiction. (4) holds because yca({x, u}) = yca({x, z}) < yca({y, x}). For (5),
suppose that x|yz does not hold, but instead, without loss of generality, y|xz. From x|zu
it follows by (4) that y|xu, contradicting the assumption x|yu.
3.4 Lemma. Let T be an arbitrary finite rooted tree. Then there is a finite binary rooted
tree T ′ with the same set of leaves such that, for all a, b, c ∈ L(T ), a|bc in the leaf structure
of T implies a|bc in the leaf structure of T ′.

Proof. We inductively transform T into T ′. If |T | = 1, then we set T ′ := T. Let |T | ≥ 2,
let T1, . . . , Tn be the (maximal) subtrees of T rooted at the children of the root of T and
assume that T ′

1, . . . , T
′
n are already constructed. Let T ′ be the tree obtained from T as in

Figure 3 and let a, b, c ∈ L(T ) such that a|bc.

T1 T2 T3
. . . Tn

⇝ T ′
1

T ′
2

T ′
3

...

Figure 3: Transformation of an arbitrary rooted tree
into a binary rooted tree that preserves the C-relation.

We distinguish two cases: If there is some i ∈ {1, . . . , n} such that a, b, c ∈ Ti, then
we have a|bc in T ′

i by the induction hypothesis. The second possibility is that there are
i ̸= j ∈ {1, . . . , n} such that a ∈ Ti and b, c ∈ Tj. In this case, a|bc holds in the leaf
structure of T ′ by the construction of T ′.

From now on, unless otherwhise stated, all considered trees will be binary rooted trees;
this will, in the light of Lemma 3.4, make no difference in many problems we will discuss.

3.5 Definition. A phylogeny formula is a quantifier-free formula built from atomic
formulas of the form x|yz or x = y.

For a finite set Φ of phylogeny formulas, we are interested in the following problem:

Phylo(Φ)
Instance: A finite set V of variables and a set Ψ of formulas, where each ψ ∈ Ψ is
obtained from some φ ∈ Φ by replacing all variables from φ by variables from V.
Question: Is there a binary rooted tree T and an assignment s : V → L(T ), such that
(L(T );C) satisfies all formulas in Ψ under the assignment s?
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3.2 The Fraïssé Limit of the Class of Leaf Structures

Crucially, there is a special structure (L;C) such that every phylogeny problem is equivalent
to the CSP of a reduct of (L;C). The construction of this generic structure is our next
goal:

3.6 Proposition. The class of all leaf structures of finite binary rooted trees is an
amalgamation class.

Proof. Let T1, T2 be two finite trees. Let T11, T21 and T12, T22 denote the left and right
subtrees of them, respectively; let Li and Lij denote the leaf structures of Ti and Tij for
i, j ∈ {1, 2}.

Assume that L1 ∩ L2 induces a substructure of both L1 and L2. We will show the
existence of a tree T and of embeddings fi : Li → (L(T );C) for i ∈ {1, 2} such that
f1(a) = f2(a) for all a ∈ L1 ∩ L2. We proceed by induction on |L1|+ |L2| and distinguish,
without loss of generality, two cases:

• Case 1: L1 ∩ L2 = (L11 ∩ L21) ∪ (L12 ∩ L22).

By induction hypothesis, there are amalgams A(L11, L21) and A(L12, L22) of L11, L21

and L12, L22, respectively, as well as suitable embeddings f11, f21, f12, f22. Let T be
the tree with the underlying tree of A(L11, L21) as its left subtree and the underlying
tree of A(L12, L22) as its right subtree. Obviously, L1 and L2 embed into (L(T );C)
via the functions f1 := f11∪ f12 and f2 := f21∪ f22, respectively, and those mappings
coincide on L1 ∩ L2.

• Case 2: L11 ∩ L21 ̸= ∅ and L11 ∩ L22 ̸= ∅.

Let a ∈ L11 ∩ L21 and b ∈ L11 ∩ L22. We observe that L12 ∩ L2 = ∅ : If there
was some c ∈ L12 ∩ L21, then L1 |= ab|c, but L2 |= ac|b, contradiction. Similiarily,
L12 ∩ L22 = ∅, for if there was some d ∈ L12 ∩ L22, we would obtain L1 |= ab|d and
L2 |= a|bd. By induction hypothesis, there is an amalgam A(L11, L2) of L11 and L2

with embeddings f11 and f2, respectively. Let T be the tree with the underlying tree
of A(L11, L2) as its left subtree and T12 as its right subtree. Since L12 ∩ L2 = ∅, we
get that f1 := f11 ∪ idL12 and f2 are suitable embeddings of L1 and L2, respectively,
into (L(T );C).

Combining Theorem 2.17 and Proposition 3.6, we obtain the Fraïssé limit of the class
of all finite leaf structures. We denote this special structure by (L;C). We can take
statements (1) and (3) of Lemma 3.3 as definitions of | on (L;C) and observe that, for
arbitrary x, y, z, u ∈ L, statements (2), (4) and (5) are true as well; this follows a fortiori
from Lemma 2.19.

For an arbitrary finite set X ⊆ L with |X| ≥ 2, there is a partition of X into two
nonempty sets X0 and X1 such that X0|X1, viz. the elements of X which are leaves of
the right and left subtree of the underlying tree of (L;C)[X]. This partition is unique up
to interchanging X0 and X1. It is sometimes useful to exclude this ambiguity; this can be
done as follows (see [5, § 3.5]): A linear order ≺ on a leaf structure (L;C) is called convex
if x ≺ y ≺ z implies x|yz or xy|z. The class A′ of all leaf structures with a convex linear
order is an amalgamation class as well; its Fraïssé limit is isomorphic to an extension
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(L;C,≺) of (L;C) by a convex linear order ≺.† Now there is a unique nontrivial partition
{X0, X1} of X such that X0 ≺ X1.

As (L;C) is homogeneous and has a finite signature, we get the following result from
Proposition 2.8 and Theorem 2.9:

3.7 Proposition. (L;C) is ω-categorical and admits quantifier-elimination.

Now we are able to prove a statement which explains the importance of (L;C) in the
context of phylogeny problems:

3.8 Proposition (cf. [1, p. 6 f.]). There is the following correspondence between phylogeny
problems and CSPs of reducts of (L;C) :

(1) For every phylogeny problem Phylo(Φ), there is a reduct ΓΦ of (L;C) such that
Phylo(Φ) is (trivially) reducible to CSP(ΓΦ).

(2) For every reduct Γ = (L;R1, . . . , Rn) of (L;C), there is a set Φ of phylogeny formulas
such that CSP(Γ) is (trivially) reducible to Phylo(Φ).

Proof. (1) For every φ(x1, . . . , xk) ∈ Φ, let Rφ be a relation symbol of arity k. For any
leaf structure (L;C), we define R

(L;C)
φ := {(a1, . . . , ak) ∈ L : (L;C) |= φ(a1, . . . , ak)}.

The structure ΓΦ is given by ΓΦ := (L; (R(L;C)
φ )φ∈Φ).

Let (V,Ψ) be an arbitrary instance of Phylo(Φ). The corresponding instance ψ
of CSP(ΓΦ) is defined as the conjunction of all formulas Rφ(xi1 , . . . , xil), where Ψ
contains the formula φ(xi1 , . . . , xil). Now it holds that

(V,Ψ) is a positive instance of Phylo(Φ)
⇐⇒ there is a tree T and an assignment s : V → L(T ) such that

(L(T );C) |=
�

Ψ under the assignment s

⇐⇒ there is a tree T and an assignment s : V → L(T ) such that

(L(T ); (R(L;C)
φ )φ∈Φ) |= ψ under the assignment s

⇐⇒ there is a substructure (L; (Rφ)φ∈Φ) of ΓΦ and an assignment s : V → L such that
(L; (Rφ)φ∈Φ) |= ψ under the assignment s

⇐⇒ ψ is a positive instance of CSP(ΓΦ).

(2) By Proposition 3.7, all relations Ri of (L;R1, . . . , Rn) have a quantifier-free definition
φi over (L;C). Define Φ := {φ1, . . . , φn}. Let ψ be an arbitrary instance of CSP(Γ);
we can reduce it to the following instance (V,Ψ) of Phylo(Φ): V is the set of
variables occurring in ψ and, for every conjunct Ri(xi1 , . . . , xil) of ψ, Ψ contains the
formula φi(xi1 , . . . , xil). The correctness of this reduction is immediate.

† Remarkably, (L;≺) is a dense linear order without endpoints, so it is isomorphic to (Q;<) by
Cantor’s isomorphism theorem.
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We will later need the following lemma:

3.9 Lemma. Let L1, L2 be two finite subsets of L. Then there is some α ∈ Aut(L;C)
such that L1|α(L2).

Proof. Note that L1 and L2 do not have to be disjoint. Consider the finite tree T which has
L1 as the leaf structure of its left subtree and a disjoint copy L′

2 of L2 as the leaf structure
of its right subtree. (L(T );C) embeds into (L;C) via some embedding β. β−1

��
β(L1)

is
a partial isomorphism of (L;C), so it can be extended to some γ ∈ Aut(L;C) by the
homogeneity of (L;C). Let α′ : L2 → L′

2 be an isomorphism. γ ◦ β ◦ α′ : L2 → γ(β(L′
2))

is a partial isomorphism of (L;C), so it can be extended to some α ∈ Aut(L;C). Now
L1|α(L2), as required.

3.3 Reducts of the C-Relation and Phylogeny CSPs in Datalog

In this section, we will study the following important reducts of (L;C) :

Cd := {(x, y, z) ∈ L3 : x|yz ∧ y ̸= z},
Q := {(x, y, u, v) ∈ L4 : (xy|u ∧ xy|v) ∨ (x|uv ∧ y|uv)},
Qd := {(x, y, u, v) ∈ L4 : Q(x, y, u, v) ∧ x ̸= y ∧ u ̸= v},
N := {(x, y, z) ∈ L3 : x|yz ∨ xy|z},
Nd := {(x, y, z) ∈ L3 : N(x, y, z) ∧ x ̸= y ∧ y ̸= z}.

By examining reducts of (L;C) which do not pp-define C, we will obtain a dichotomy for
phylogeny CSPs regarding their expressibility in Datalog.

3.10 Lemma ([1, Lemma 3.1]). ⟨(L;C)⟩ = ⟨(L;Cd)⟩, ⟨(L;Q)⟩ = ⟨(L;Qd)⟩ and ⟨(L;N)⟩ =
⟨(L;Nd)⟩.
Proof. ∃u (C(x, y, u)), ∃u, v (Q(u, x, v, y)) and ∃u (N(x, y, u)) are pp-formulas equivalent
to x ̸= y, thus Cd ∈ ⟨(L;C)⟩, Qd ∈ ⟨(L;Q)⟩ and Nd ∈ ⟨(L;N)⟩. For the inverse inclusions,
it is not difficult to show that

C(x, y, z)
(†)⇐⇒ ∃u (Cd(x, y, u) ∧ Cd(x, z, u)),

Q(x, y, z, t) ⇐⇒ ∃u, v (Qd(u, x, v, z) ∧Qd(u, x, v, t) ∧Qd(u, y, v, z) ∧Qd(u, y, v, t)) and
N(x, y, z) ⇐⇒ ∃u, v (Nd(v, x, u) ∧Nd(v, u, x) ∧Nd(u, v, y) ∧Nd(u, y, v) ∧Nd(u, z, v)).

We exemplarily give a proof of (†). »
(†)⇐« is a direct consequence of Lemma 3.3 (5) and

Lemma 2.19. For »
(†)⇒«, let x, y, z ∈ L such that C(x, y, z). Because (L;C) is the Fraïssé

limit of the class of all leaf structures of finite binary rooted trees, we can assume that
the leaf structures of the trees depicted in Figure 4 are substructures of (L;C).

x̃ ỹ=z̃ ũ x̃ ỹ ũ z̃

Figure 4: Two binary rooted trees, whose leaf structures
can be assumed to be substructures of (L;C).
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We distinguish two cases: If y = z, consider the tree on the left; if y ̸= z, consider the
right tree. In both cases, the map β which is defined by β(x̃) = x, β(ỹ) = y and β(z̃) = z is
a partial isomorphism between (L;C)[{x, y, z}] and the leaf structure of the respective tree.
By the homogeneity of (L;C), β can be extended to some α ∈ Aut(L;C). Let u := α(ũ).
The leaf structures of the depicted trees fulfill Cd(x̃, ỹ, ũ) ∧ Cd(x̃, z̃, ũ), so (L;C) |=
Cd(x̃, ỹ, ũ) ∧ Cd(x̃, z̃, ũ). Since α ∈ Aut(L;C), we obtain (L;C) |= Cd(α(x̃), α(ỹ), α(ũ)) ∧
Cd(α(x̃), α(z̃), α(ũ)), i. e. (L;C) |= Cd(x, y, u) ∧ Cd(x, z, u).

3.11 Lemma ([1, Lemma 3.7]). (L;C) and (L;Q) are ω-categorical, model-complete
cores.

Proof. Let f ∈ End(L;C) be arbitrary; we first show that f ∈ Emb(L;C), i. e. that f
is injective and preserves all relations strongly. If u, v ∈ L are distinct, then uu|v and
consequently f(u)f(u)|f(v) hold; the latter implies f(u) ̸= f(v). The formula ¬(x|yz) is
equivalent to the existential positive formula (x = y = z) ∨ y|xz ∨ z|xy, hence f preserves
C strongly. Model-completeness follows via Lemma 2.12, as (L;C) is ω-categorical and
homogeneous.

Now let g ∈ End(L;Q). From u ̸= v ⇐⇒ Q(u, u, v, v) we conclude that g is injective.
For g being an embedding, it suffices that ¬Q(x, y, z, t) implies ¬Q(g(x), g(y), g(z), g(t)).
We have

¬Q(x, y, z, t) ⇐⇒ ¬
(xy|z ∧ xy|t) ∨ (x|zt ∧ y|zt)�
⇐⇒ (¬xy|z ∨ ¬xy|t) ∧ (¬x|zt ∨ ¬y|zt)
⇐⇒ 


(x = y = z) ∨ x|yz ∨ y|xz ∨ (x = y = t) ∨ x|yt ∨ y|xt� ∧

(x = z = t) ∨ t|xz ∨ z|xt ∨ (y = z = t) ∨ z|yt ∨ t|yz�.

If one of the four equality disjuncts holds true, we are done: E. g., if x = y = z, then g(x) =
g(y) = g(z), which implies ¬Q(g(x), g(y), g(z), g(t)). Otherwise, one of the four remaining
disjuncts in the first conjunct and one of the four remaining disjuncts in the second conjunct
must be true. If e. g. x|yz and t|xz are satisfied, we can infer t|yz and, subsequently,
Q(x, t, y, z). Thus, Q(g(x), g(t), g(y), g(z)), which implies ¬Q(g(x), g(y), g(z), g(t)). The
other cases can be treated similarly. The ω-categoricity of (L;Q) follows from Corollary
2.5. The proof of the homogeneity of (L;Q) is a bit subtle, it can be found in [5, Lemma
14]. Its model-completeness follows again from Lemma 2.12.

3.12 Lemma. (L;N) is an ω-categorical, model-complete core.

Proof. Follows immediately from Lemma 2.15 and Lemma 3.11, since C(x, y, z) ⇐⇒
N(x, y, z) ∧N(x, z, y).

3.13 Proposition ([1, Proposition 8.3]). Let a, b be two distinct elements from L. Then
(L;N, a, b) pp-interprets ({0, 1}; NAE).
Proof. In the notation of Definition 2.23, the interpretation is as follows: The dimension is
d = 1, the subset S is given by S = {x ∈ L : Nd(a, x, b)}, ϑ is the equivalence relation on
S with the two classes S0 = {x ∈ S : ax|b} and S1 = {x ∈ S : a|xb} and f is the function
that maps x to 0 if x ∈ S0 and to 1 if x ∈ S1. Since Nd ∈ ⟨(L;N)⟩ by Lemma 3.10 and
C ∈ ⟨(L;N)⟩, we observe that S and ϑ are pp-definable in (L;N). It remains to show
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that f−1(NAE) = {(x, y, z) ∈ L3 | (f(x), f(y), f(z)) ∈ NAE} is pp-definable in (L;N).
We claim that (f(x), f(y), f(z)) ∈ NAE ⇐⇒ (L;N) |= φ(x, y, z), where

φ(x, y, z) ≡ ∃w1, w2 (Nd(x, w1, y) ∧Nd(w1, w2, z) ∧Nd(w1, a, w2) ∧Nd(w1, b, w2)).

For »⇐«, assume towards contradiction that φ(x, y, z) holds, but (f(x), f(y), f(z)) ̸∈
NAE, without loss of generality f(x) = f(y) = f(z) = 0. Then there is some w1 such that
either x|w1y or xw1|y and some w2 such that either w1|w2z or w1w2|z. By the definition
of f, we have ax|b, ay|b and az|b, so in any case axyzw1w2|b. But, because of the last
conjunct in φ, also w1|bw2 or w1b|w2 holds, contradiction.

For »⇒«, first consider the case that f(x) = f(y) = 0 and f(z) = 1, i. e. ax|b, ay|b
and a|zb. If ax|y, then w1 and w2 can be choosen according to the leaf structure of the
tree in Figure 5 (a); if ay|x, the same tree with x and y swapped works; if a|xy, then a
and y must be swapped. Next, assume that f(x) = f(z) = 0 and f(y) = 1. If ax|z, then
w1 and w2 can be choosen as in Figure 5 (b); if az|x, swap x and z; if a|xz, swap a and z.

a w1 x y z w2 b a w2 x z y w1 b

(a) (b)
Figure 5.

The cases considered are exhaustive since φ is symmetric in a and b as well as in x
and y.

With a bit more work, one can also show the following:

3.14 Proposition ([1, Proposition 8.4]). Let a, b, c be three distinct elements from L.
Then (L;Q, a, b, c) pp-interprets ({0, 1}; NAE).
3.15 Corollary. (L;N) and (L;Q) pp-construct ({0, 1}; NAE).
Proof. For arbitrary distinct a, b ∈ L, we have ({0, 1}; NAE) ∈ I(L;N, a, b) by Proposition
3.13; hence, ({0, 1}; NAE) ∈ HP(L;N, a, b) by Proposition 2.25 (c). By Lemma 3.12,
(L;N) is an ω-categorical, model-complete core, thus (L;N, a, b) ∈ HP(L;N) by Lemma
2.27. Putting this together, we obtain ({0, 1}; NAE) ∈ HPHP(L;N). The claim follows
for (L;N) since HPHP(L;N) = HP(L;N) again by Proposition 2.25. For (L;Q), we
can argue in a similar way.

3.16 Theorem ([5]). Let Γ be a reduct of (L;C). Then one of the following applies:

(1) End(Γ) contains a constant operation.

(2) The model-complete core of Γ is isomorphic to a reduct of (L; =).

(3) End(Γ) = End(L;Q).

(4) End(Γ) = End(L;C).
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3.17 Lemma ([1, Lemma 4.2]). Let Γ be a reduct of (L;C). Then one of the following applies:

(1) End(Γ) contains a constant operation.

(2) The model-complete core of Γ is isomorphic to a reduct of (L; =).

(3) Γ is a model-complete core, and C ∈ ⟨Γ⟩ or Q ∈ ⟨Γ⟩.
Proof. Observe that Cd is contained in one orbit of 3-tuples of Aut(Γ) : For x, y ∈ Cd, the
map xi �→ yi, i ∈ {1, 2, 3}, is a partial isomorphism of (L;C) and can thus be extended to
an automorphism of (L;C) by homogeneity. Since Aut(L;C) ⊆ Aut(Γ), x and y are in
particular in the same orbit with respect to Aut(Γ).

We distinguish two cases. First, suppose that C ∈ ⟨Γ⟩. Then Γ is a model-complete core
by Lemma 2.15 and Lemma 3.11, and we are done. If C ̸∈ ⟨Γ⟩, however, then, by Lemma
3.10, Cd ̸∈ ⟨Γ⟩. By Theorem 2.6, there is some g ∈ Pol(Γ) that violates Cd. Because Cd

is contained in one orbit of 3-tuples of Aut(Γ), there is some f ∈ End(Γ) that violates
Cd by Lemma 2.2. f also violates C, again by Lemma 3.10; thus, End(Γ) ̸= End(L;C).
Assume that (1) and (2) do not hold; Theorem 3.16 implies that End(Γ) = End(L;Q).

Let x, y ∈ Qd, then the map xi �→ yi, i ∈ {1, 2, 3, 4}, is a partial isomorphism of (L;Q);
it can be extended to some α ∈ Aut(L;Q) by the homogeneity of (L;Q) (see [5, Lemma
14]). Since End(Γ) = End(L;Q), in particular Aut(Γ) = Aut(L;Q), we get α ∈ Aut(Γ).
Thus, Qd is contained in one orbit of 4-tuples of Aut(Γ).

Now assume towards contradiction that Q ̸∈ ⟨Γ⟩. Then Qd ̸∈ ⟨Γ⟩ by Lemma 3.10,
hence there is some g ∈ Pol(Γ) that violates Qd. Because Qd is contained in one orbit
of 4-tuples of Aut(Γ), there is some f ∈ End(Γ) that violates Qd, in contradiction to
End(Γ) = End(L;Q). Hence, Q ∈ ⟨Γ⟩. It follows from Aut(Γ) = Aut(L;Q) and Lemma
2.15 that Γ is a model-complete core.

Using another known result, we obtain a full dichotomy for phylogeny CSPs in Datalog:

3.18 Theorem. Let Γ be a reduct of (L;C) with finite signature. Then exactly one of the
following holds:

(1) C ∈ ⟨Γ⟩ or ({0, 1}; NAE) ∈ HP(Γ) (and CSP(Γ) is inexpressible in Datalog).

(2) CSP(Γ) is expressible in Datalog.

Proof. If Γ pp-constructs ({0, 1}; NAE), then CSP(Γ) is inexpressible in FPC by Corollary
2.35; in particular, it is inexpressible in Datalog, since Datalog is a fragment of FPC.
CSP(L;C) is inexpressible in Datalog by [18, Theorem 8.6.10]. Hence, each structure that
pp-defines C is inexpressible in Datalog by Theorem 2.33.

So assume that (1) does not hold; we have to show that CSP(Γ) is expressible in
Datalog. We make a case distinction over the three cases of Lemma 3.17. If Γ has a
constant endomorphism, then CSP(Γ) is trivially expressible in Datalog since it has finite
signature. If the model-complete core ∆ of Γ is isomorphic to a reduct of (L; =), then, by
Theorem 2.46, either CSP(Γ) = CSP(∆) is expressible in Datalog, or K3 ∈ HP(∆). Since
({0, 1}; NAE) ∈ HP(K3) and ∆ ∈ H(Γ), the latter case would imply ({0, 1}; NAE) ∈
HPHPH(Γ) = HP(Γ) by Lemma 2.25, contradiction. Otherwise, since C ̸∈ ⟨Γ⟩ by
assumption, Lemma 3.17 implies that (L;Q) ∈ D(Γ). Since ({0, 1}; NAE) ∈ HP(L;Q) by
Corollary 3.15, we obtain ({0, 1}; NAE) ∈ HPD(Γ) = HP(Γ), which is a contradiction as
well.
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4 A Tractable Phylogeny Language not in FPC

This section is about the relation

J := {(x1, x2, x3, x4) ∈ L4 :

� �
1≤i<j≤4

xi ̸= xj



∧ (x1x2|x3x4 ∨ x1x3|x2x4 ∨ x1x4|x2x3)}.

J(x1, x2, x3, x4) asserts that two elements out of {x1, x2, x3, x4} lie on the right side and
two lie on the left side of their youngest common ancestor, and that they are all pairwise
distinct. We will show that CSP(L; J) is not expressible in FPC, although there is a
simple polynomial-time algorithm for it. For auxiliary purposes, we will also use the
relation

�J := {(x1, x2, x3, x4, x5, x6) ∈ L6 :

� �
1≤i<j≤6

xi ̸= xj



∧ ∃h(J(x1, x2, x3, h) ∧ J(h, x4, x5, x6))}.

4.1 Lemma. J and �J are characterized by even splits, i. e.

(1) For any injective tuple x ∈ L4, x ∈ J ⇐⇒ ∃π ∈ Sym(4) : xπ(1)xπ(2)|xπ(3)xπ(4).

(2) For any injective tuple x ∈ L6, x ∈ �J ⇐⇒ ∃π ∈ Sym(6) : xπ(1)xπ(2)|xπ(3)xπ(4)xπ(5)xπ(6).

Proof. (1) follows directly from the definition of J. For »
(2)⇒«, first assume towards

contradiction that x1|x2x3x4x5x6 holds. By assumption, there is some h ∈ L such
that J(x1, x2, x3, h) and J(h, x4, x5, x6). Now, on the one hand, x1h|x2x3 must hold,
hence x1h|x2x3x4x5x6 and subsequently h|x4x5x6, contradiction. Next, assume that
x1x2x3|x4x5x6; without loss of generality, x1x2|x3h and hx4|x5x6 shall be true. But this
implies x1x2x3h|x4x5x6 as well as x1x2x3|hx4x5x6, which contradict each other. Finally,
assume that x1x2x4|x3x5x6. It follows that x1x2|x3h; thus, x4|hx5x6, which is a contradic-

tion as well. The case distinction is exhaustive since J is totally symmetric. For »
(2)⇐«,

we only have to consider two cases, again due to the symmetry of J. First, suppose that
x1x2|x3x4x5x6. Without loss of generality, let x4|x5x6. Due to the homogeneity of (L;C),
there exists some h ∈ L such that hx4|x5x6. Clearly, this implies x1x2|x3h. Secondly,
consider the case that x1x4|x2x3x4x5. The homogeneity of (L;C) provides some h ∈ L
such that x1x4h|x2x3x4x5x6. Hence, x1h|x2x3 and x4h|x5x6.

Satisfiability of instances of tractable phylogeny CSPs is closely related to the solvability
of linear equation systems over Z2. Intuitively, for some elements x1, . . . , xn ∈ L, we can
assign 0 or 1 to each of them, depending on whether they are contained in the left or the
right subtree of the underlying tree of the leaf structure (L;C)[x1, . . . , xn]. In the specific
case of J, the following two computational problems are of our interest:

(2, 3, 4, 5)-Ord-Xor-Sat
Instance: A finite homogeneous system of linear equations of length l ∈ {2, 3, 4, 5}
over Z2.
Question: Does every nonempty subset of the equations have a solution where at least
one variable occurring in this subset has value 1?
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(4, 6)-Phylo-Xor-Sat
Instance: A finite homogeneous system of linear equations of length l ∈ {4, 6} over Z2.
Question: Does every nonempty subset of the equations have a solution where at least
one variable occurring in this subset has value 0 and at least one variable occurring in
this subset has value 1?

4.2 Definition. For an instance Γ = (V ; J, �J) of CSP(L; J, �J), let A(Γ) be the instance
of (4, 6)-Phylo-Xor-Sat with domain V that contains the equation x1 + x2 + x3 + x4 = 0 for
each constraint of the form JΓ(x1, x2, x3, x4) and the equation x1 + x2 + x3 + x4 + x5 + x6 = 0

for each constraint of the form �JΓ(x1, x2, x3, x4, x5, x6).

Since A(Γ) and Γ have the same domain, we will view functions on A(Γ) also as
functions on Γ in the following.

4.3 Lemma ([3, proof of Theorem 4.23]). For every k ≥ 3, there are instances A′
1 and A′

2

of (2, 3, 4, 5)-Ord-Xor-Sat such that A′
1 is a negative instance, A′

2 is a positive instance
and A′

1 ≡Ck A′
2.

4.4 Lemma. For every k ≥ 3, there are instances A1 and A2 of (4, 6)-Phylo-Xor-Sat
such that A1 is a negative instance, A2 is a positive instance and A1 ≡Ck A2.

Proof. Let A′
1 and A′

2 be the instances of (2, 3, 4, 5)-Ord-Xor-Sat provided by Lemma 4.3.
A1 and A2 are obtained from A′

1 and A′
2, respectively, by introducing a fresh variable z

and performing the following transformation:

x1 + x2 = 0 ⇝ x1 + x2 + z + z = 0,

x1 + x2 + x3 = 0 ⇝ x1 + x2 + x3 + z = 0,

x1 + x2 + x3 + x4 = 0 ⇝ x1 + x2 + x3 + x4 + z + z = 0,

x1 + x2 + x3 + x4 + x5 = 0 ⇝ x1 + x2 + x3 + x4 + x5 + z= 0.

We have to show three things:

• A1 is a negative instance of (4, 6)-Phylo-Xor-Sat: Let F ′ be a subset of A′
1 that only

admits the all-zero solution and let F be the corresponding subset of A1 obtained
from F ′ by the transformation above. Assume towards contradiction that F has
a solution s taking values from both 0 and 1. If s(z) = 0, then the restriction of s
to the variables without z is a solution to F ′ where at least one variable has value
1, contradiction. If s(z) = 1, then �s(x) := s(x) + 1 is a solution of F taking values
from both 0 and 1 with �s(z) = 0, which yields a contradiction as in the former case.

• A2 is a positive instance of (4, 6)-Phylo-Xor-Sat: Let F be some nonempty subset of
A2. The corresponding subset F ′ of A′

2 has a solution where at least one variable is
mapped to 1. Extend it by sending z to 0 to obtain a solution of F attaining both 0
and 1 (note that z occurs in F since it occurs in every equation).

• A1 ≡Ck A2 : As we have stated in Section 2.6, ≡Ck is characterized by the bijective
k-pebble game. Since A′

1 ≡Ck A′
2, we know that the Duplicator has a winning

strategy in the game played on A′
1 and A′

2. In the game played on A1 and A2, he
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can choose the same strategy extended by always mapping z to z. We prove this
for those for whom this is not obvious: Let α be the partial map induced by the
pebbles after a certain round. The restriction α′ of α to those pebbles which do not
lie on z is the same map that would have been on the board if the game would have
been played on A′

1 and A′
2 with the rounds removed in which the Spoiler chose z.

By assumption, α′ is a partial isomorphism between A′
1 and A′

2. Now consider for
example an equation of A1 of the form x1 + x2 + z + z = 0 where x1, x2 and z are
in the domain of α. It holds that

A1 |= x1 + x2 + z + z = 0 ⇐⇒ A′
1 |= x1 + x2 = 0

⇐⇒ A′
2 |= α′(x1) + α′(x2) = 0

⇐⇒ A2 |= α′(x1) + α′(x2) + z + z = 0

⇐⇒ A2 |= α(x1) + α(x2) + α(z) + α(z) = 0,

so α strongly preserves the equation. The other types of equations can be treated
similiarly.

The following is a divide-and-conquer algorithm for CSP(L; J, �J). It clearly has poly-
nomial runtime, because checking whether a system of linear equations over Z2 has a
solution taking values from both 0 and 1 can be done via Gaußian elimination. The idea
of solving CSPs of phylogeny languages with a divide-and-conquer approach is from [1,
§ 6.4].

Algorithm SolveJ

Input: An instance Γ of CSP(L; J, �J)
Output: ⊤ or ⊥

if A(Γ) = ∅ :
return ⊤

else :
if there is no solution of A(Γ) taking values from both 0 and 1:

return ⊥
else :

s ← a solution of A(Γ) taking values from both 0 and 1
if SolveJ(Γ[s−1(0)]) = ⊥ :

return ⊥
else if SolveJ(Γ[s−1(1)]) = ⊥ :

return ⊥
else :

return ⊤

Figure 6. A polynomial-time divide-and-conquer algorithm for CSP(L; J, �J).
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4.5 Proposition. The algorithm in Figure 6 is sound and complete for CSP(L; J, �J), i. e.

Γ → (L; J, �J) ⇐⇒ SolveJ(Γ) = ⊤.

Proof. We proceed by induction over the recursion levels of SolveJ. If JΓ and �JΓ are
empty, the statement is trivially true. So assume for the rest of the proof that Γ contains
at least one constraint.

»⇒«: Let t : Γ → L be a solution to Γ. By the definition of J and �J, t(Γ) must contain
at least four, in particular at least two distinct elements of L. Hence, there is a partition of
t(Γ) into two nonempty sets X and Y such that X|Y. Define a function s on Γ by s(x) = 0

if t(x) ∈ X and s(x) = 1 if t(x) ∈ Y. For each constraint J(x1, . . . , x4) or �J(x1, . . . , x6),
an even number of its variables must be contained in t−1(X) and an even number must
be contained in t−1(Y ) by Lemma 4.1. Hence, s is a solution to A(Γ). It attains both
the values 0 and 1 since X and Y are nonempty. Taking the restriction of t, we obtain a
solution to the subproblems Γ[s−1(0)] and Γ[s−1(1)]. Thus, SolveJ(Γ[s−1(0)]) = ⊤ and
SolveJ(Γ[s−1(1)]) = ⊤ by the induction hypothesis; hence, overall, SolveJ(Γ) = ⊤.

»⇐«: We will inductively show that Γ has an injective solution. By assumption,
there is a solution s to A(Γ) that attains both the values 0 and 1. Let S0 := s−1(0) and
S1 := s−1(1). By induction hypothesis, Γ[S0] → (L; J, �J) and Γ[S1] → (L; J, �J) via injective
functions t0 : S0 → L and t1 : S1 → L. By Lemma 3.9, there is some α ∈ Aut(L;C) such
that t0(S0)|α(t1(S1)). We will show that the function t : Γ → L defined by

t(x) =

�
t0(x), x ∈ S0

α(t1(x)), x ∈ S1

is an injective solution to Γ.
The injectivity is clear since α is an automorphism. For some constraint J(x1, . . . , x4)

or �J(x1, . . . , x6) of Γ, we distinguish two cases: If it contains only variables from S0 or
only variables from S1, it is preserved by t by the induction hypothesis. If the constraint
however contains variables from both S0 and S1, then an even number of them are
contained in S0 and S1, respectively, since s is a solution to A(Γ). Hence, an even number
of their images under t is contained in t(S0) and t(S1), respectively. Since t(S0)|t(S1), t
preserves the constraint in this case as well due to Lemma 4.1.

4.6 Proposition. Let Γ be an instance of CSP(L; J, �J). Then

Γ → (L; J, �J) ⇐⇒ A(Γ) is a positive instance of (4, 6)-Phylo-Xor-Sat.

Proof. »⇒«: Let F be some nonempty subset of A(Γ). By Proposition 4.5, SolveJ(Γ)
returns ⊤ in every step. In some subprocedure, F is fully contained in the set of equations
for the last time. Let s be a solution of the equations in this subprocedure attaining both
0 and 1. Since the variables of F are neither fully contained in s−1(0) nor in s−1(1), s is a
suitable solution to F.

»⇐«: If every nonempty subset of A(Γ) has a solution attaining both 0 and 1, then
SolveJ(Γ) returns ⊤ in every step. Hence, Γ → (L; J, �J) by Proposition 4.5.
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4.7 Theorem. CSP(L; J, �J) is inexpressible in FPC.

Proof. Assume towards contradiction that there is an FPC sentence φ such that
Γ |= φ ⇐⇒ Γ ̸→ (L; J, �J) for all finite {J, �J}-structures Γ. By Theorem 2.38, there is some
k ∈ N such that Γ1 ≡Ck Γ2 implies Γ1 |= φ ⇐⇒ Γ2 |= φ for all finite {J, �J}-structures Γ1

and Γ2.
For k as above, there are, due to Lemma 4.4, instances A1 and A2 of (4, 6)-Phylo-

Xor-Sat such that the former is a negative instance, the latter is a positive instance and
A1 ≡Ck A2. Let Γ1 and Γ2 be the corresponding {J, �J}-structures, i. e. A(Γ1) = A1 and
A(Γ2) = A2. Obviously, A1 ≡Ck A2 implies Γ1 ≡Ck Γ2. By Proposition 4.6, Γ1 ̸→ (L; J, �J)
and Γ2 → (L; J, �J); thus, Γ1 |= φ and Γ2 ̸|= φ, in contradiction to Γ1 ≡Ck Γ2.

4.8 Corollary. CSP(L; J) is inexpressible in FPC.

Proof. This follows immediately from Theorem 4.7, since (L; J, �J) ∈ D(L; J) ⊆ HP(L; J)
and pp-constructibility preserves expressibility in FPC by Theorem 2.33.
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5 Boolean Phylogeny CSPs

5.1 Horn Formulas and the Operation tb

5.1 Definition (Affine and Boolean Horn relations). For B ⊆ {0, 1}n, we set

φB(z1, . . . , zn) ≡ (z1 = · · · = zn) ∨
�

t∈B\{(0,...,0),(1,...,1)}
{zi : ti = 0}|{zi : ti = 1}.

φB is called affine if B ∪ {(0, . . . , 0), (1, . . . , 1)} is an affine subspace of {0, 1}n, and it is
called Boolean if B ∪{(0, . . . , 0), (1, . . . , 1)} is a Boolean algebra with respect to min,max
and the Boolean complementation. An affine (resp. Boolean) Horn clause is a formula of
the form

x1 ̸= y1 ∨ · · · ∨ xm ̸= ym

or of the form

x1 ̸= y1 ∨ · · · ∨ xm ̸= ym ∨ φB(z1, . . . , zn),

where φB is affine (resp. Boolean). An affine (resp. Boolean) Horn formula is a
conjunction of affine (resp. Boolean) Horn clauses.

5.2 Definition (Perfect domination). Let U, V ⊆ L. A function f : L2 → L is called
perfectly dominated by the first argument on U × V if the following holds:

• For all u1, u2, u3 ∈ U and v1, v2, v3 ∈ V, if u1|u2u3, then f(u1, v1)|f(u2, v2)f(u3, v3).

• For all u ∈ U and v1, v2, v3 ∈ V, if v1|v2v3, then f(u, v1)|f(u, v2)f(u, v3).
It is called perfectly dominated by the second argument on U × V if the function (x, y) �→
f(y, x) is perfectly dominated by the first argument on V × U.

The following property is simply called semidomination in [1].

5.3 Definition (Balanced semidomination). Let U be a finite subset of L and f : L2 → L.
We inductively define when f is balanced semidominated on U × U : If |U | ≤ 1, then f
is balanced semidominated on U × U. If |U | ≥ 2, then f is balanced semidominated on
U × U if there is a partition of U into nonempty sets U0 and U1 such that U0|U1 and the
following conditions hold:

• f is balanced semidominated on U0 × U0 and U1 × U1,

• f is perfectly dominated by the first argument on U0 × U1 and perfectly dominated
by the second argument on U1 × U0,

• f(U0 × U0) | f(U1 × U1),

• f(U0 × U1) | f(U1 × U0) and

• f((U0 × U1) ∪ (U1 × U0)) | f((U0 × U0) ∪ (U1 × U1)).

30



5.4 Definition (Unbalanced semidomination). Let U be a finite subset of L and f : L2 →
L. We inductively define when f is unbalanced semidominated on U ×U : If |U | ≤ 1, then
f is unbalanced semidominated on U ×U. If |U | ≥ 2, then f is unbalanced semidominated
on U × U if there is a partition of U into nonempty sets U0 and U1 such that U0|U1 and
the following conditions hold:

• f is unbalanced semidominated on U0 × U0 and U1 × U1,

• f is perfectly dominated by the first argument on U0 × U1 and perfectly dominated
by the second argument on U1 × U0,

• f(U0 × U0) | f(U1 × U1),

• f(U0 × U1) | f(U1 × U0),

• f((U0 × U1) ∪ (U1 × U0)) | f(U0 × U0) and

• f((U0 × U1) ∪ (U1 × U0)× (U0 × U0)) | f(U1 × U1).

f(U0 × U1) f(U1 × U0) f(U0 × U0) f(U1 × U1) f(U1 × U0) f(U0 × U1)

f(U0 × U0)

f(U1 × U1)

Figure 7. An illustration of balanced (left) and unbalanced (right) semidomination.

5.5 Definition (Affine and Boolean tree operations). A function f : L2 → L is called an
affine tree operation if f is balanced semidominated on U × U for every finite U ⊆ L; f
is called a Boolean tree operation if it is unbalanced semidominated on U × U for every
finite U ⊆ L.

5.6 Proposition ([1, Proposition 7.3]). There exists an affine tree operation tx. For every
finite U ⊆ L, there is some γ ∈ Aut(L;C) such that tx(x, y) = γ(tx(y, x)) for all x, y ∈ U.

We will show analagously that there exists a Boolean tree operation tb with the same
property. The proof is in fact almost the same as for tx, with the conditions for balanced
semidomination replaced by those for unbalanced semidomination. We first need the
following lemma:

5.7 Lemma (cf. [1, Lemma 7.2]). Let X ⊆ L be finite. Then there is a function
f : X ×X → L such that

(1) for every U ⊆ X, f is unbalanced semidominated on U × U and

(2) for all U0, U1 ⊆ X such that U0|U1 and U0 ≺ U1, f is perfectly dominated by the
first argument on U0 × U1 and by the second argument on U1 × U0.

31



Proof. f is constructed by induction on |X|. If X = {x}, we can take an arbitrary a ∈ L
and set f(x, x) := a. So let |X| ≥ 2. Let {X0, X1} be a nontrivial partition of X with
X0|X1 and X0 ≺ X1. By the induction hypothesis, there are functions f0,0 : X0 ×X0 → L
and f1,1 : X1 × X1 → L that satisfy (1) and (2) for X0 and X1, respectively. We can
assume that f0,0(X0 ×X0) | f1,1(X1 ×X1) (otherwhise, there exist α, β ∈ Aut(L;C) such
that α(f0,0(X0 ×X0)) | β(f1,1(X1 ×X1)) by the homogeneity of (L;C)).

Let f0,1 : X0×X1 → L and f1,0 : X1×X0 → L be such that f0,1 is perfectly dominated
by the first argument on X0 ×X1 and f1,0 is perfectly dominated by the second argument
on X1 ×X0. By again exploiting the homogeneity of (L;C), we can assume that

f0,1(X0 ×X1) | f1,0(X1 ×X0),

f0,1(X0 ×X1) ∪ f1,0(X1 ×X0) | f0,0(X0 ×X0) and
f0,1(X0 ×X1) ∪ f1,0(X1 ×X0)× f0,0(X0 ×X0)) | f1,1(X1 ×X1).

Now let f : X × X → L be defined by f(x, y) := fi,j(x, y) if x ∈ Xi and y ∈ Xj. It
remains to show that f satisfies (1) and (2). Let U ⊆ X. If U ⊆ X0 or U ⊆ X1, then f is
semidominated on U × U since f0,0 and f1,1 are. Otherwhise, let {U0, U1} be a partition
of U such that U0|U1 and U0 ≺ U1. Clearly, U0 ⊆ X0 and U1 ⊆ X1. Hence,

f(U0 × U0) | f(U1 × U1),

f(U0 × U1) | f(U1 × U0),

f(U0 × U1) ∪ f(U1 × U0) | f(U0 × U0) and
f(U0 × U1) ∪ f(U1 × U0)× f(U0 × U0)) | f(U1 × U1),

as required. Moreover, f0,1 is perfectly dominated by the first argument on X0 × X1

and f1,0 is perfectly dominated by the second argument on X1 ×X0; thus, f is perfectly
dominated by the first argument on U0 × U1 and perfectly dominated by the second
argument on U1 × U0. Because f0,0 and f1,1 are unbalanced semidominated on U0 × U0

and U1 ×U1, respectively, we conclude that f is unbalanced semidominated on U ×U.

5.8 Proposition (cf. [1, Proposition 7.3]). There exists a Boolean tree operation tb. For
every finite U ⊆ L, there is some γ ∈ Aut(L;C) such that tb(x, y) = γ(tb(y, x)) for all
x, y ∈ U.

Proof. Let X ⊆ L be finite and let f, g : X × X → L be two functions satisfying
conditions (1) and (2) from Lemma 5.7. We will show by induction on |X| that there
is some α ∈ Aut(L;C) such that f(x, y) = α(g(x, y)) for all x, y ∈ X. If |X| ≤ 1, this
trivially holds; so let |X| ≥ 2 and let {X0, X1} be a nontrivial partition of X such that
X0|X1 and X0 ≺ X1. By the induction hypothesis, there are α0,0, α1,1 ∈ Aut(L;C) such
that f(x, y) = α0,0(g(x, y)) for all x, y ∈ X0 and f(x, y) = α1,1(g(x, y)) for all x, y ∈ X1.
Since f and g are perfectly dominated by the first argument on X0×X1 and by the second
argument on X1 ×X0, there are α0,1, α1,0 ∈ Aut(L;C) such that f(x, y) = α0,1(g(x, y))
for all (x, y) ∈ X0 × X1 and f(x, y) = α1,0(g(x, y)) for all (x, y) ∈ X1 × X0. Define
β : g(X ×X) → f(X ×X) by β(g(x, y)) = αi,j(g(x, y)) if (x, y) ∈ Xi ×Xj. (Note that
this is well-defined since g is injective due to being unbalanced semidominated.) It follows
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from

f(X0 ×X0) | f(X1 ×X1),

f(X0 ×X1) | f(X1 ×X0),

f((X0 ×X1) ∪ (X1 ×X0)) | f(X0 ×X0),

f((X0 ×X1) ∪ (X1 ×X0)× (X0 ×X0)) | f(X1 ×X1)

and the analogous conditions for g that β is a partial isomorphism of (L;C) and can thus
be extended to some α ∈ Aut(L;C) due to homogeneity.

Let X, Y be arbitary finite subsets of L with X ⊆ Y and let f : X × X → L be a
function satisfying the conditions (1) and (2) from Lemma 5.7. By Lemma 5.7, there is a
function g : Y × Y → L satisfying (1) and (2). As we have shown above, there is some
α ∈ Aut(L;C) such that f(x, y) = α(g(x, y)) for all x, y ∈ X. Thus, α ◦ g is an extension
of f to Y × Y satisfying (1) and (2). The existence of tb follows since L is countable.

For the second statement, note that, since tb is injective, the function γ : tb(L2) →
tb(L2) given by γ(tb(x, y)) = tb(y, x) is well-defined. We claim that γ

��
X

is a partial
isomorphism for every finite X ⊆ L. We will again proceed by induction on |X|. If
|X| ≤ 1, the claim trivially holds, so let |X| ≥ 2 and let {X0, X1} be a nontrivial
partition of X such that X0|X1. By the induction hypothesis, γ

��
tb(X0×X0)

and γ
��
tb(X1×X1)

are partial isomorphisms of (L;C). Because tb is perfectly dominated by the first argument
on X0 × X1 and by the second argument on X1 × X0, γ

��
tb(X0×X1)

and γ
��
tb(X1×X0)

are
partial isomorphisms of (L;C). Let A1 := tb(X0 × X0), A2 := tb(X1 × X1) and A3 :=
tb((X0×X1)∪(X1×X0)). Since, for all i ̸= j, Ai|Aj and γ

��
Ai

is a partial isomorphism from
Ai to Ai, we obtain that γ

��
X

is a partial isomorphism of (L;C). Since X was arbitrary,
we get γ ∈ Emb(L;C). Obviously, γ is self-inverse, thus even γ ∈ Aut(L;C) holds.

A binary function f on a structure Γ is said to be symmetric modulo endomorphisms
if there are e1, e2 ∈ End(Γ) such that e1(f(x, y)) = e2(f(y, x)) for all x, y ∈ Γ. Both tx
and tb have this property, as the following lemma shows:

5.9 Lemma ([1, Lemma 7.7]). Let Γ be ω-categorical and f ∈ Pol(2)(Γ). Suppose that
for every finite A ⊆ Γ there is some γ ∈ Aut(Γ) such that f(x, y) = γ(f(y, x)) for all
x, y ∈ A. Then f is symmetric modulo endomorphisms.

We will cite the two dichotomies for reducts of (L;C) obtained in [1].

5.10 Theorem ([1, Theorem 8.8]). Let Γ be a reduct of (L;C) such that C ∈ ⟨Γ⟩. Then
the following statements are equivalent:

(1) N ̸∈ ⟨Γ⟩.
(2) All relations in ⟨Γ⟩ are affine Horn.

(3) tx ↷ Γ.

(4) There are f ∈ Pol(2)(Γ) and e1, e2 ∈ End(Γ) such that e1(f(x, y)) = e2(f(y, x)) for
all x, y ∈ Γ.

(5) No expansion of Γ by finitely many constants pp-interprets ({0, 1}; NAE).
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5.11 Theorem ([1, Theorem 3.1]). Let Γ be a reduct of (L;C) with finite signature and
let ∆ be its model-complete core. If there are f ∈ Pol(2)(∆) and e1, e2 ∈ End(∆) such
that e1(f(x, y)) = e2(f(y, x)) for all x, y ∈ ∆, then CSP(Γ) is in P. Otherwhise, it is
NP-complete.

The polymorphism tx was a central tool for showing that, for reducts Γ of (L;C)
with C ∈ ⟨Γ⟩, unless P = NP, CSP(Γ) is in P if and only if all relations in Γ have an
affine Horn definition. Using the polymorphism tb, we will show that if all relations in a
structure Γ have a Boolean Horn definition, then CSP(Γ) is even expressible in FP.

5.12 Definition (Split vector). Let x ∈ Ln. Then s ∈ {0, 1}n is a split vector of x
if, for all i, j, k ∈ {1, . . . , n}, si ̸= sj = sk implies xi|xjxk. s is called nontrivial if s ̸∈
{(0, . . . , 0), (1, . . . , 1)}. For a, b ∈ Lk, we write a ∼split b if either a and b are both constant
tuples or they have a common nontrivial split vector. For a phylogeny relation R ⊆ Ln, the
split relation of R is the set S(R) := {s ∈ {0, 1}n | s is the split vector of some x ∈ R}.

Note that every nonconstant tuple has a nontrivial split vector and that if s is a split
vector of x, then also the Boolean complement of s is.

5.13 Lemma (cf. [1, Lemma 7.4]). Let B ⊆ {0, 1}n be such that B∪{(0, . . . , 0), (1, . . . , 1)}
is a Boolean algebra with respect to min,max and the Boolean complementation. Then tb
preserves φB.

Proof. Let a, b ∈ Ln such that φB(a) and φB(b) hold and let A := {a1, . . . , an} and
B := {b1, . . . , bn}. We have to show φB(tb(a, b)). Note that φB(x) ⇐⇒ φB(y) whenever
x ∼split y.

First, suppose that |A| = 1. If also |B| = 1, then all components of tb(a, b) are equal,
which implies φB(tb(a, b)). So let |B| > 1. If A|B, then tb(a, b) ∼split b, since |A| = 1 and
tb is perfectly dominated by one argument on A×B. The other possibility is the existence
of a partition of B into two nonempty subsets B0 and B1 such that (A ∪B0)|B1. Since tb
is unbalanced semidominated on A ∪ B, it holds that tb((A ∪ B0)

2) | tb((A ∪ B0)× B1);
in particular, tb(A× B0) | tb(A× B1), which implies tb(a, b) ∼split b.

The case that |B| = 1 is symmetric; so suppose that |A| ≥ 2 and |B| ≥ 2. Let
X := A ∪ B = {x1, . . . , xm} and let s be a nontrivial split vector of (x1, . . . , xm). We will
view s as a function X → {0, 1}. We distinguish the following cases:

• s is constant on A and on B : Then A|B, so tb is perfectly dominated by the first
or by the second argument on A × B. Thus, tb(a, b) ∼split a or tb(a, b) ∼split b,
respectively.

• s is constant on A, but not on B : Then there is a partition of B into two nonempty
subsets B0 and B1 such that (A∪B0)|B1. We obtain tb((A∪B0)

2) | tb((A∪B0)×B1),
hence tb(A × B0) | tb(A × B1) and therefore tb(a, b) ∼split b. The case that s is
constant on B, but not on A, is symmetric.

• s is neither constant on A nor on B : Let X0 and X1 be two nonempty sets
that form a partition of X such that X0|X1. Without loss of generality, assume
that tb(X1 × X1) | tb((X0 × X0) ∪ (X1 × X0) ∪ (X0 × X1)). If a ∼split b, then
tb(X0 ×X0) | tb(X1 ×X1) implies that a ∼split b ∼split tb(a, b).
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So assume that a ̸∼split b. Let s′ ∈ B be a nontrivial split vector of a and let s′′ ∈ B
be a nontrivial split vector of b. Since s is not constant on a nor on b, we know
that s′ and s′′ are both constant on X0 as well as on X1. Since B also contains the
Boolean complements of s′ and s′′, we can assume without loss of generality that
s′
��
X0∩A = s′′

��
X0∩B ≡ 0 and s′

��
X1∩A = s′′

��
X1∩B ≡ 1.

Consider the sets U := {tb(a, b)i | s′i = s′′i = 1} and V := {tb(a, b)i | s′i = 0 or s′′i = 0}.
By the previous assumption, U ⊆ tb(X1 × X1) and V ⊆ tb((X0 × X0) ∪ (X1 ×
X0)∪ (X0×X1)); thus, U |V. We know that the binary minimum operation preserves
B, so min(s′, s′′) ∈ B. By the definitions of U and V, we get tb(a, b)i ∈ U ⇐⇒
min(s′, s′′) = 1 and tb(a, b)i ∈ V ⇐⇒ min(s′, s′′) = 0, so min(s′, s′′) is a split
vector of tb(a, b).

5.14 Proposition. tb preserves all Boolean Horn formulas.

Proof. It suffices to show the claim for Boolean Horn clauses. Let a, b be two tuples which
satisfy the clause x1 ̸= y1 ∨ · · · ∨ xm ̸= ym ∨φB(z1, . . . , zn), where φB is Boolean. If either
a or b satisfies one of the inequality disjuncts, then also tb(a, b) does since tb is injective.
If, however, both a and b satisfy φB, then so does tb(a, b) by Lemma 5.13.

5.15 Lemma. tb ↷ C, but tb ̸↷ N.

Proof. Let x, y, z, x′, y′, z′ ∈ L such that x|yz and x′|y′z′ and let B := {(0, 1, 1), (1, 0, 0)}.
By Lemma 5.13, tb preserves the formula φB(x, y, z) ≡ x|yz ∨ (x = y = z); thus,
tb(x, x′)|tb(y, y′)tb(z, z′) ∨ (tb(x, x′) = tb(y, y′) = tb(z, z′)). Since x ̸= y and tb is
injective, we obtain tb(x, x′) ̸= tb(y, y′), so tb(x, x′)|tb(y, y′)tb(z, z′).

To show that tb does not preserve N, consider the following tree:

x z′ y y′ x′ z

Figure 8.

Clearly, we have N(x, y, z) and N(x′, y′, z′). By the semidomination property of tb (note
that {x, z′}|{y, y′, x′, z}), we have tb(y, y′)|tb(x, x′)tb(z, z′); thus, N(tb(x, x′), tb(y, y′), tb(z, z′))
does not hold.

5.16 Lemma. Let R be a phylogeny relation such that tb ↷ R. Then S(R) is closed
under min.

Proof. Let s, s′ ∈ S(R) be split vectors of t, t′ ∈ R, respectively. We show the existence
of some t′′ ∈ R with split vector min(s, s′). Assume without loss of generality that s, s′ ̸∈
{(0, . . . , 0), (1, . . . , 1)}. Let u, v be arbitrary distinct elements of L and set Xu := {x ∈
L : ux|v}, Xv := {x ∈ L : u|xv}. tb is unbalanced semidominated on {u, v}2; we can
assume without loss of generality that tb(v, v)|tb(u, u)tb(u, v)tb(v, u) :
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tb(v, u) tb(u, v)

tb(u, u)

tb(v, v)

Figure 9.

By the homogeneity of (L;C), there are α, β ∈ Aut(L;C) such α({ti : si = 0}) ∪
β({t′i : s′i = 0}) ⊆ Xu and α({ti : si = 1}) ∪ β({t′i : s′i = 1}) ⊆ Xv. For some i ∈
{1, . . . , ar(R)}, we distinguish four cases:

• If si = 0 and s′i = 1, then v|α(ti)u and u|β(t′i)v, hence tb(v, u)|tb(α(ti), β(t′i))tb(u, v).
• If si = 1 and s′i = 0, then tb(u, v)|tb(α(ti), β(t′i))tb(v, u).
• If si = 0 and s′i = 0, then tb(v, v)|tb(α(ti), β(t′i))tb(u, u).
• If si = 1 and s′i = 1, then tb(u, u)|tb(α(ti), β(t′i))tb(v, v).

Hence, tb(v, v)tb(α(ti), β(t′i))|tb(u, u) if and only if min(si, s
′
i) = 1. Therefore, min(s, s′)

is a split vector of t′′ := tb(α(t), β(t′)) ∈ R.

5.17 Proposition. Let Γ be a reduct of (L;C) such that C ∈ ⟨Γ⟩ and tb ↷ Γ. Then
every relation R ∈ ⟨Γ⟩ has a Boolean Horn definition.

Proof. Since tb ↷ C and tb ̸↷ N by Lemma 5.15, all results from [1, § 5–6] remain
valid for R. A closer inspection of the proofs there shows that it suffices to prove that
φS(R) is a Boolean Horn formula, i. e. that S(R) is a Boolean algebra (cf. the statement
of [1, Lemma 6.6] and the definition of ψR there). It in turn suffices to show that S(R)
is closed under min, since S(R) is clearly closed under Boolean complementation and
max(a, b) = (min(ac, bc))c. Hence, the statement follows from Lemma 5.16.

5.2 An FP Algorithm for Boolean Phylogeny CSPs

This section is about the relation

Rtb := {(u, v, x, y, z) ∈ L5 : (u ̸= v) ∨ (xy|z) ∨ (x = y = z)}.

We will show that CSP(L;Rtb, ̸=) is expressible in FP. Moreover, (L;Rtb, ̸=) pp-defines all
phylogeny relations defined by a Boolean Horn formula. Hence, all CSPs with a Boolean
Horn template are expressible in FP.

Consider the following algorithm:
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Algorithm SolveB
Input: An instance Γ of CSP(L;Rtb, ̸=)
Output: ⊤ or ⊥

�Θ ← {(x, x) : x ∈ Γ}
while �Θ changes:

Θ ← A2

while Θ changes:
Θ′ ← �Θ
for (u, v, x, y, z) ∈ RΓ

tb :

if (u, v) ∈ �Θ and (x, y), (y, z) ∈ Θ:
Θ′ ← Θ′ ∪ {(x, y), (y, x)}

Θ ← tcl(Θ′) � tcl is the transitive closure�Θ ← Θ
if there are a, b ∈ Γ such that (a, b) ∈ �Θ and (a, b) ∈ ̸=Γ :

return ⊥
else :

return ⊤

Figure 10. An FP algorithm for a generic phylogeny CSP preserved by tb.

5.18 Proposition. The algorithm in Figure 10 is sound and complete for CSP(L;Rtb, ̸=),
i. e.

Γ → (L;Rtb, ̸=) ⇐⇒ SolveB(Γ) = ⊤.

Proof. For some i ≥ 0, we write �Θi for the state of the program variable �Θ after the i-th
iteration of the outermost loop. For some i, j ≥ 0, we denote by Θi,j the state of Θ after
the j-th iteration of the inner while-loop within the i-th iteration of the outermost loop.
Since Γ is finite and both �Θ and Θ are increasing, they will eventually reach a limit; let
∞ denote the respective final iteration. Note that �Θi = Θi,∞ for all i ≥ 1.

»⇒«: Let h : Γ → (L;Rtb, ̸=) be a solution to Γ. We will show that for every i ≥ 1,�Θi(a, b) implies ¬( ̸=Γ(a, b)) for all a, b ∈ Γ. It suffices to show that h(a) = h(b), since this
implies ¬( ̸=Γ(a, b)) because h is a homomorphism. We will proceed by induction on i.

If i = 0, then a = b and hence h(a) = h(b). So let i ≥ 1 and let (a, b) ∈ �Θi. Consider
the last iteration of the inner loop within the i-th iteration of the outer loop: We have
(a, b) ∈ Θi,∞ = tcl(Θ′). Hence, there is a path (x1, x2), (x2, x3), . . . , (xn−1, xn) in Θ′ with
x1 = a and xn = b. We will show that h(xj) = h(xj+1) for all j ∈ {1, . . . , n}. At some
point, (xj, xj+1) is added to Θ′. If (xj, xj+1) ∈ �Θi−1, then h(xj) = h(xj+1) by the induction
hypothesis. So assume that (xj, xj+1) is added to Θ′ within the for-loop, i. e. there are
u, v, z ∈ Γ such that (u, v) ∈ �Θi−1, (xj, xj+1), (xj+1, z) ∈ Θi,∞ and RΓ

tb(u, v, xj, xj+1, z).
Because h is a solution, we obtain RL

tb(h(u), h(v), h(xj), h(xj+1), h(z)) and hence, because
h(u) = h(v) by the induction hypothesis, h(xj)h(xj+1)|h(z) or h(xj) = h(xj+1) = h(z). If
the latter disjunct is true, we are done, so assume towards contradiction that the first one
holds.
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Let C be the connected component of xj, xj+1 and z with respect to Θi,∞ and observe
that it has at least two elements, since h(xj)h(xj+1)|h(z). Thus, there is a partition of
C into two nonempty sets C1 and C2 such that h(C1)|h(C2). Since C is connected, there
must exist a tuple (x, y) ∈ Θi,∞ = tcl(Θ′) with x ∈ C1 and y ∈ C2. We can even assume
that (x, y) ∈ Θ′. It is impossible that (x, y) ∈ �Θi−1, since this would imply h(x) = h(y);
thus, (x, y) is added to Θ′ within the for-loop. Subsequently, there are elements �u, �v, �z ∈ Γ

such that (�u, �v) ∈ �Θi−1, (y, �z) ∈ Θi,∞ and RΓ
tb(�u, �v, x, y, �z). By the induction hypothesis,

h(�u) = h(�v), thus, similiary to before, we obtain h(x)h(y)|h(�z) or h(x) = h(y) = h(�z).
Both cases contradict the assumption that x ∈ C1, y ∈ C2 and h(C1)|h(C2).

»⇐«: We construct a rooted tree T whose leaves are the equivalence classes [·] of�Θ∞ such that RΓ
tb(u, v, a, b, c) implies ([u] ̸= [v]) ∨ ([a][b]|[c]) ∨ ([a] = [b] = [c]) for all

u, v, a, b, c ∈ Γ. The tree T which we construct is in general not binary, but from T we
can build a binary tree T ′ with the same property by Lemma 3.4. T ′ can be embedded
into (L;C) and the respective embedding composed with the canonical projection x �→ [x]
is a solution to Γ.

For i ≥ 0, the vertices on the i-th level of T shall be the sets of equivalence classes of �Θ∞

whose representatives form a connected component of Θ∞,i. This is well-defined: Assume
that (a, b) ∈ Θ∞,i and (a, a′), (b, b′) ∈ �Θ∞; since �Θ∞ ⊆ Θ∞,i and Θ∞,i is transitively closed,
we can infer (a′, b′) ∈ Θ∞,i. Since �Θ∞ = Θ∞,∞, the leaves of T exactly correspond to the
equivalence classes of �Θ∞.

Let u, v, a, b, c ∈ Γ such that RΓ
tb(u, v, a, b, c). If [u] ̸= [v] or [a] = [b] = [c], there is

nothing to show. So assume that [u] = [v] and ¬([a] = [b] = [c]). We distinguish two
cases: If [a] = [b] ̸= [c], we can trivially conclude [a][b]|[c]. If, however, [a] ̸= [b], then
there is some i such that (a, b) ∈ Θ∞,i−1\Θ∞,i; in other words: [a] and [b] are in the same
vertex on the (i− 1)-th level, but in different vertices on the i-th level. Assume towards
contradiction that (a, c) ∈ Θ∞,i−1 (or, equivalently, (b, c) ∈ Θ∞,i−1). Since (u, v) ∈ �Θ∞

and RΓ
tb(u, v, a, b, c) hold, (a, b) is added to Θ∞,i in the for-loop, contradiction. Hence,

[a][b]|[c], as required.

As a rule of thumb, an algorithm can be translated into an FP formula if it does not
contain choices of arbitrary elements; we will perform the translation for SolveB:

5.19 Corollary. CSP(L;Rtb, ̸=) is expressible in FP.

Proof. We will translate the algorithm SolveB into an FP formula φ, i. e. Γ |= φ ⇐⇒
SolveB(Γ) = ⊥. Then Γ ̸→ (L;Rtb, ̸=) ⇐⇒ Γ |= φ by Proposition 5.18. It is easy to
see that the formula

φ ≡ ∃a, b
�ifp�Θ,(x,y)ψ(x, y)
�
(a, b) ∧ ≠(a, b)

�
is a suitable translation, where

ψ(x, y) ≡ x = y ∨ �
dfpΘ,(�x,�y)�tcl ϱ�(�x, �y)�(x, y)

and

ϱ(�x, �y) ≡ �Θ(�x, �y) ∨ 
∃u, v, z
Rtb(u, v, �x, �y, z) ∧ �Θ(u, v) ∧Θ(�x, �y) ∧Θ(�y, z)��.
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�
tcl ϱ

�
(�x, �y) in turn is an abbreviation for the formula�

ifpZ,(s,t) ϱ(s, t) ∨ ∃z(ϱ(s, z) ∧ Z(z, t))
�
(�x, �y);

it computes the transitive closure of ϱ, cf. Example 2.31.

5.20 Lemma. Let B ⊆ {0, 1}n. Then B is a nontrivial Boolean algebra with respect to
min,max and the Boolean complementation if and only if B is characterized by a set of
equations of the form xi + xj = 0 (where + is the addition modulo 2).

Proof. One implication is trivial: If a, b ∈ {0, 1}n satisfy the equation xi + xj = 0, then it
is also satisfied by max(a, b), min(a, b) and the Boolean complement ac of a. B is nontrivial
since it contains the two elements (0, . . . , 0) and (1, . . . , 1).

So assume that B is a nontrivial Boolean algebra. Let E be the set of all equations of
the form xi + xj = 0 which hold for all elements of B. Let a be a tuple from {0, 1}n that
satisfies all equations from E; we have to show that a ∈ B.

We define an equivalence relation on {x1, . . . , xn} by xi ∼ xj if and only if E contains the
equation xi+xj = 0. Without loss of generality, assume that x1, . . . , xk are representatives
of the classes of ∼. Let B′ := {(x1, . . . , xk) | (x1, . . . , xn) ∈ B} and note that B′ is a
Boolean algebra which only satisfies the trivial equations xi+xi = 0 of length 2. We claim
that B′ = {0, 1}k. It suffices to show that all k-ary unit vectors are contained in B′ since
all vectors from {0, 1}k can be built from them using max. It in turn suffices to show that
for all y ∈ B′ which have at least two entries containing 1, there is a tuple w ∈ B′ such
that (0, . . . , 0) < w < y, where u < v if and only if u = min(u, v) and u ̸= v. Assume
without loss of generality that y1 = y2 = 1. Since B′ only satisfies trivial equations of
length 2, there is some z ∈ B′ with z1 = 0 and z2 = 1. Now w := min(y, z) is a suitable
choice.

Thus, we have proven that B′ = {0, 1}k. In particular, (a1, . . . , ak) ∈ B′, which means
that there are �ak+1, . . . ,�an such that (a1, . . . , ak,�ak+1, . . . ,�an) ∈ B. But �ak+1, . . . ,�an are
uniquely determined by a1, . . . , ak and E; so �ai = ai for all i ∈ {k + 1, . . . , n}, which
concludes the proof.

5.21 Lemma. (L;Rtb, ̸=) pp-defines every phylogeny relation defined by a Boolean Horn
formula.

Proof. It suffices to show the claim for Boolean Horn clauses.
We will first show by induction on m that the 2m-ary relation defined by the clause

ϱm(x1, y1, . . . , xm, ym) ≡ x1 ̸= y1 ∨ · · · ∨ xm ̸= ym has a pp-definition in (L;Rtb, ̸=). This
is trivial for m = 1. For m ≥ 1, we claim that

ϱm+1(x1, y1, . . . , xm+1, ym+1) ⇐⇒
∃a
ϱm(x1, y1, . . . , xm−1, ym−1, xm, a) ∧Rtb(xm+1, ym+1, xm, a, ym)

�
.

(4)

»⇒«: First, assume that ϱm−1(x1, y1, . . . , xm−1, ym−1) holds. If xm = ym, we set
a := xm; if xm ̸= ym, then there is some a ∈ L with a ̸= xm such that xma|ym. In both cases,
Rtb(xm+1, ym+1, xm, a, ym) is fulfilled. Next, assume that ϱm−1(x1, y1, . . . , xm−1, ym−1)
is not true; this implies xm ̸= ym or xm+1 ̸= ym+1. If the former holds, we obtain
the existence of some a ∈ L with a ̸= xm and xma|ym; if xm+1 ̸= ym+1, choose an
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arbitrary a ∈ L such that a ̸= xm. Either way, ϱm(x1, y1, . . . , xm−1, ym−1, xm, a) as well as
Rtb(xm+1, ym+1, xm, a, ym) hold.

»⇐«: If ϱm−1(x1, y1, . . . , xm−1, ym−1) holds, then we are done. Otherwise, xm ̸= a.
Since Rtb(xm+1, ym+1, xm, a, ym), we obtain xm+1 ≠ ym+1 or xma|ym, where the latter of
course implies xm ̸= ym.

Now, for some Boolean algebra B ⊆ {0, 1}n and m ≥ 0, consider the clause

φB
m,n(x1, y1, . . . , xm, ym, z1, . . . , zn) ≡ x1 ̸= y1 ∨ · · · ∨ xm ̸= ym ∨ φB(z1, . . . , zn).

We will again use induction on m to show that the relation defined by φB
m,n has a

pp-definition ψB
m,n in (L;Rtb, ̸=). By Lemma 5.20, B is characterized by a set of equations

of the form zik + zjk = 0, k ∈ {1, . . . , ℓ}. For every k, let Bk ⊆ {0, 1}n be the Boolean
algebra characterized by the single equation zik + zjk = 0. It suffices to show the claim
for each Bk since φB

m,n ⇐⇒ φB1
m,n ∧ · · · ∧ φBℓ

m,n. Hence, we can assume without loss of
generality that B = {z ∈ {0, 1}n : z1 + z2 = 0}.

In light of Lemma 3.3 (3), it is easy to see that

φB
0,n ⇐⇒

�
i,j∈{3,...,n}

Rtb(z1, z1, z1, z2, zi) ∧Rtb(z1, z1, zi, zj, z1) ∧Rtb(z1, z1, zi, zj, z2)

and

φB
1,n ⇐⇒

�
i,j∈{3,...,n}

Rtb(x1, y1, z1, z2, zi) ∧Rtb(x1, y1, zi, zj, z1) ∧Rtb(x1, y1, zi, zj, z2).

For m ≥ 1, one can show very similiarly to (4) that

φB
m+1,n(x1, y1, . . . , xm+1, ym+1, z1, . . . , zn) ⇐⇒
∃a
φB

m,n(x1, y1, . . . , xm−1, ym−1, xm, a, z1, . . . , zn) ∧Rtb(xm+1, ym+1, xm, a, ym)
�
.

5.22 Corollary. Let Γ be a reduct of (L;C) such that all relations in Γ have a Boolean
Horn definition. Then CSP(Γ) is expressible in FP.

Proof. By Lemma 5.21, (L;Rtb, ̸=) pp-defines Γ. By Corollary 5.19, CSP(L;Rtb, ̸=) is
expressible in FP. Thus, CSP(Γ) is expressible in FP as well by Theorem 2.33.
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