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We introduce a contextual quantum system comprising mutually complementary observables organized into
two or more collections of pseudocontexts with the same probability sums of outcomes. These pseudocontexts
constitute non-orthogonal bases within the Hilbert space, featuring a state-independent sum of probabilities.
In other words, regardless of the initial state preparation, the total probability remains constant but may be
distinct from unity. The measurement contextuality in this setup arises from the quantum realizations of the
hypergraph, which adhere to a specific bound on the linear combination of probabilities. In contrast, classical
realizations can surpass this bound. The violation of quantum bounds stems from the inability of classical
ontological models, specifically the set-theoretic representation of the hypergraph corresponding to the quantum
observables’ collections, to adhere to and explain the observed statistics.
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I. CONTEXTUALITY AMONG MUTUALLY
NONCOMMUTING OBSERVABLES

Contextuality has various meanings and formalizations in
the literature [1–4]. One of the most common might be in
terms of Kochen and Specker’s demarcation criterion [5, The-
orem 0] concentrating on the separability of any pair of non-
commuting observables by two-valued states interpretable as
truth assignments.

In this framework, a logico-algebraic structure of proposi-
tions is considered [6], represented in terms of unit vectors
spanning linear subspaces. These subspaces are constructed
through the orthogonal projections formed by the summation
of dyadic vector products. The linear span of these subspaces
is identified with the logical ‘or’ operator, the formation of or-
thogonal subspaces is associated with the ‘not’ operation (or
complements), and set-theoretic intersection corresponds to
the ‘and’ operation.

When a collection of propositions is equipped with
a separating set of two-valued states, it can be termed
(quasi)classical. This is due to its set representability, that is,
the possibility of embedding the propositions by a homomor-
phic (structure preserving) map into a larger Boolean algebra.
On the other hand, if no structure-preserving homomorphic
embedding into a larger, representable Boolean algebra exists,
we classify it as contextual as well as (classically) value indef-
inite. This, in essence, is Kochen and Specker’s demarcation
criterion [5, Theorem 0].

However, there are various manifestations of weaker con-
textuality. Examples include Bell-type inequalities like the
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Clauser-Horne-Shimony-Holt inequality and the Klyachko in-
equality, paradoxes such as Hardy’s paradox, and configura-
tions like the Greenberger-Horne-Zeilinger setup (which in-
corporates operator-valued elements and is not exclusively
based on elementary propositional operators with eigenvalues
of zero and one). What distinguishes these instances are the
associated non-Boolean logics.

What unifies them is the potential existence of classical on-
tologic models, such as set representations, that replicate the
respective logics. However, the statistics derived from these
ontologies deviate from quantum predictions in terms of prob-
abilities, correlations, and expectations.

To address these situations, Spekkens has classified contex-
tuality in terms of operational equivalence of, say, measure-
ment outcomes, thereby also accommodating statistical forms
of contextual behavior [1]. Remarkably, these ‘weaker’ sta-
tistical forms of contextuality, even though they can be repre-
sented using sets and faithfully embedded into Boolean alge-
bras, include complementary observables that are not jointly
measurable. When realized in a quantum context, they result
in probabilities that differ from those in classical realizations.
The significance of these statistical contextual variations lies
in their potential for experimental verification (subject to the
assumptions such as counterfactuals), as opposed to relying
on theoretical proofs employing reductio ad absurdum (proof
by contradiction). While the specific concept of contextual-
ity introduced here can be considered within this statistical
framework, it retains its independent standing, encompassing
novel properties among collections of observables. The same
holds true when compared to the varieties of contextuality that
can be expressed in and linked to (hyper)graphs discussed pre-
viously [2–4, 7–9].

In the following sections, we will present a type of contex-
tuality falling within the realm of ‘weak’ contextuality. This
classification arises from the fact that its set of observables
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is both complementary and set-representable. However, clas-
sical ontologic models provide statistical predictions that di-
verge from those derived using quantum probabilities.

These collections of observables represent instances of ‘ex-
treme’ complementarity within the framework of contextual-
ity, as all propositions associated with them exist in distinct
contexts. As we proceed, we will examine six observables ar-
ranged into two triples. Remarkably, the sum of probabilities
for the occurrence of events within each of these two triples is
identical to the sum of probabilities of the other triple.

II. PSEUDOCONTEXTS OR PSEUDOBLOCKS

In what follows, we introduce a new concept: the ‘pseu-
doblock’ or ‘pseudocontext’ in a hypergraph. We begin with
hypergraphs that are uniformly conformal. ‘Uniform’ in this
context implies that the cardinality of a hyperedge in the hy-
pergraph, the number of elements of a hyperedge, remains
constant for all hyperedges in the hypergraph [10, Section 1.1,
p. 3]. ‘Conformal’ means that every maximal clique (al-
though we will primarily focus on uniform configurations,
so all cliques are maximal) is represented by a hyperedge
in the hypergraph [10, Section 2.4, p. 35]. Some related
graph-theoretical concepts include Greechie [11] and McKay-
Megill-Pavičić (MMP) diagrams [12].

The hypergraphs under consideration are often motivated
by and derived from configurations of observables in quantum
mechanics [5, 6], or from other algebraic structures such as
partition logics [13] and their empirical realizations through
initial state identification of finite automata [14] or general-
ized urn models [15]. At times, hypergraphs are constructed
solely to explore ‘exotic’ properties of specific algebraic struc-
tures [16–18].

As will be elucidated later, to establish a quantum model for
any such ad hoc hypergraph of the latter type, it must possess
a faithful orthogonal representation in terms of vector labels.
Similarly, for the development of a classical model that is set-
representable, such as a generalized urn or finite deterministic
automaton model, any ad hoc hypergraph of the latter type
must have a partition logic representation.

Any probability distribution on hypergraphs must adhere
to the following properties for each hyperedge within the hy-
pergraph: (i) Exclusivity: This ensures that the probabilities
associated with two distinct elements on the same hyperedge
are additive. (ii) Completeness: This requires that the sum of
probabilities assigned to all elements within any given hyper-
edge in the hypergraph equals one [19, 20].

For historical reasons, we use the terms ‘context’ or ‘block’
interchangeably to refer to a hyperedge within a hypergraph.
However, we intend to broaden this concept of context or
block by considering collections of elements in a hypergraph
that: (i) do not belong to any hyperedge and are, therefore,
complementary in quantum-mechanical terms, (ii) are not
necessarily mutually exclusive, (iii) do not necessarily sum
to one in terms of probabilities, (iv) nevertheless, they have a
total probability sum equal to that of other collections of ele-
ments in the same hypergraph. Such collections of elements in

3

4

5

1

2

8

9

10

6

7

13

14
15

11
12

FIG. 1. A hypergraph with two pseudocontexts formed by {1,6,11}
and {5,10,15} marked by dashed boxes.

a hypergraph will be referred to as ‘pseudocontexts’ or ‘pseu-
doblocks’.

We will illustrate this concept with two examples.

III. EXAMPLE 1: GENERALIZATIONS OF FIREFLY
LOGIC

Consider a 3-uniform (all hyperedges have three atoms or
elements) hypergraph depicted in Figure 1 [21]. This example
has 15 atoms in 8 contexts. It was suggested by René Mayet as
a simplification of the diagram described in the next section.
It was used as a cornerstone in [22].

Assuming exclusivity and completeness there are two
triples of elements or atoms {1,6,11} and {5,10,15} which
are not on a hyperedge and whose probability sums are equal.
The ‘coverings’ of the hypergraph depicted in Figures 2(a)
and 2(b) include 4 contexts but leave out the elements men-
tioned. Therefore,

15

∑
i=1

p(i) = ∑
i∈covering (a)

p(i)+ p(5)+ p(10)+ p(15)

= 4+ p(5)+ p(10)+ p(15)

= ∑
i∈covering (b)

p(i)+ p(1)+ p(6)+ p(11)

= 4+ p(1)+ p(6)+ p(11) ,

(1)

and thus p(1)+ p(6)+ p(11) = p(5)+ p(10)+ p(15), making
{1,6,11} and {5,10,15} pseudocontexts.
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FIG. 2. Graphical representation of the proof that there are two
triples of elements or atoms {1,6,11} and {5,10,15} which are not
on a hyperedge and whose respective probability sums are equal. The
‘coverings’ of the hypergraph depicted in (a) and (b) include 4 con-
texts but leave out the elements mentioned.

A. Representation in terms of sets and vectors

The hypergraph depicted in Figure 1 allows both a classical
and a quantum representation.

1. Quasiclassical representation in terms of partitions of sets

The hypergraph encompasses a total of 24 two-valued
states, which will not be exhaustively enumerated in this ar-
ticle. There exist two-valued states that are 0 on all of the
observables in the pseudocontexts {1,6,11} and {5,10,15},
as well as two-valued states that are 1 on two of them. As
classical probabilities are the convex combinations of all two-
valued states [23, 24], we obtain bounds for the sum of prob-
abilities p in the pseudocontexts:

0 ≤ p(1)+ p(6)+ p(11) = p(5)+ p(10)+ p(15)≤ 2. (2)

Therefore, the hypergraph can be used as a false-implies-false
gadget for the pseudocontexts {1,6,11} and {5,10,15}. If
the input state is chosen to be triple-0 on one pseudocon-
text, then the other pseudocontext exhibits an identical perfor-
mance. This property is symmetric with respect to exchange
of the pseudocontexts.

A systematic approach for creating set representations of
hypergraphs with a separating set of two-valued states, as out-
lined in Kochen and Specker’s demarcation criterion [5, The-
orem 0], involves a reverse indexing method that considers all
two-valued states [25, 26]. Using this method, we can derive
a partition logic representation of the pseudocontexts:

b1 ={1,2,3,4,5,6,7,8,9,10},
b6 ={1,5,6,11,12,15,16,17,19,20},

b11 ={2,7,9,11,13,15,17,18,21,23},
b5 ={5,6,7,8,9,10,15,16,17,18},

b10 ={1,2,3,6,9,11,12,17,20,23},
b15 ={1,2,4,5,7,11,13,15,19,21}.

(3)

Classical probability distributions are merely convex combi-
nations of the two-valued states, representing (not necessar-
ily all) ‘extremal points’ within a convex polytope. Conse-
quently, the multiplicities of the entries (and their absence)
within the partitions that constitute the two pseudocontexts
coincide.

2. Quantum representation in terms of vector labels

Lovász introduced a faithful orthogonal representation
(FOR) of a graph G with vertices 1, . . . ,n by a system of unit
vectors {|v1⟩, . . . , |vn⟩} in a Euclidean space “such that if i
and j are nonadjacent vertices, then |vi⟩ and |v j⟩ are orthog-
onal” [27]. In contradistinction, the more common definition
of FORs used here is via the complementary graph G, such
that if i and j are adjacent vertices—that is, if they belong
to the same edge also known as context or block of (maxi-
mal) mutually comeasurable observables—then |vi⟩ and |v j⟩
are orthogonal [28].

FORs have a direct quantum interpretation in terms of the
orthogonal (that is, self-adjoint) projection operators |vi⟩⟨vi|
of the Hilbert space H spanning a one-dimensional linear
subspace |vi⟩⟨vi|H which is a formalization of a pure quan-
tum state associated with a unit vector |vi⟩. The dyadic prod-
uct of any such vector can be identified as an orthogonal pro-
jection operator. This operator, in turn, can be interpreted as a
two-valued proposition observable in quantum mechanics.

We begin by enumerating a FOR obtained through the ap-
plication of a heuristic algorithm developed by McKay, Megill
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and Pavičić [29]:

|v1⟩=
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2
,

3
5
√

2
,−2

√
2

5

)
,

|v2⟩=
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3
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)
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)
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5
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6
,
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5
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 ,

|v13⟩=
(

4√
21

,
1√
21

,
2√
21

)
,

|v14⟩=

(
− 1√

6
,

√
2
3
,

1√
6

)
,

|v15⟩=

(
1√
14

,

√
2
7
,− 3√

14

)
.

(4)

The eigenvalues of |v1⟩⟨v1| + |v6⟩⟨v6| + |v11⟩⟨v11| =
|v5⟩⟨v5| + |v10⟩⟨v10| + |v15⟩⟨v15| are 2 with the associated
eigenvector

(
0,− 2√

5
, 1√

5

)
, as well as (7+

√
21)/14 ≈ 0.827,

and (7−
√

21)/14 ≈ 0.173, respectively.
While there is currently no feasible systematic method

for the coordinatization of hypergraphs, we will additionally
present an ad hoc analytical approach for generating a con-
tinuum of FORs that differ from those obtained heuristically.
This method can be extended to establish a coordinatization
for an enlarged hypergraph, encompassing a novel ‘combo’
combination of structures discussed in the next section. This
combination poses a greater challenge, prompting us to em-
ploy specific analytically obtained FORs to facilitate a seam-

less continuation, leveraging rotational symmetry as a simpli-
fying tool.

Degenerate cases necessitate individual computations for
each coordinatization, typically done manually and poten-
tially with the aid of computer algebra. Some of these cases
can be anticipated from the hypergraph itself, without explicit
reference to the specific vector representation. However, a
thorough analysis is indispensable to identify all potential un-
desirable relations, such as equalities and orthogonalities, in
order to describe all singular configurations accurately.

The analytically obtained coordinatization will, to some ex-
tent, be two-dimensional: The ‘spiral column’ of basis vectors
forming the two contexts or blocks {4,9,14} and {2,7,12}
lies on the hyperplane that is parallel to the x-y plane, at
z = 1/

√
3. The third dimension is used to ‘lift’ these two-

dimensional vectors so that the proper orthogonality relations
are satisfied [30].

The contexts {4,9,14} and {2,7,12} can be coordinatized
by assuming that they lie on a cone with an angle arccos

√
2/3

and an axis that we choose, without loss of generality, as the
‘north pole’ or z-axis (0,0,1).

Again, without loss of generality, we may choose vertex 4

to be represented by the unit vector
(√

2
3 ,0,

1√
3

)
. Due to

orthogonality and the choice of the cone, we thereby fix the
positions of the two vertices 14 and 26, which are in the same
context as 2. This completes the construction of the orthonor-
mal basis representing {4,9,14}.

The context {2,7,12} can be obtained by rotating the unit
vectors {4,9,14} around the z-axis (0,0,1) by an angle α .
As a result, these vectors lie on the same cone. For the sake
of finding an instance, the choice α = π/3 complies with the
requirements. Thus, we obtain the orthonormal basis repre-
senting {2,7,12}.

Once the contexts {4,9,14} and {2,7,12} have been as-
signed vector labels, the other vertices and contexts are deter-
mined, e.g. by cross products. This concludes the construction
of the orthonormal bases representing {3,8,13}, {5,10,15},
and {1,6,11}. Thus, the vector labels for the hypergraph de-
picted in Figure 2 are enumerated.

The above construction can always be performed, but it
leads to undesired results in several singular cases discussed
below.

Excluding symmetrical solutions, we can, without loss of
generality, focus our attention on α within the range of [0,π].
However, we should exclude the case where α = 0 because, in
that scenario, {4,9,14} and {2,7,12}, as well as {5,10,15}
and {1,6,11}, would represent the same triples. In this case,
the labels for the lower half of the hypergraph depicted in Fig-
ure 1 would be identical to those of the upper half.

In this degenerate case, the construction yields nine
vectors, which, through proper rotation, can be associ-
ated with the edges and diagonals of faces of a cube,
for instance,

{
(1/

√
2)(1,−1,0), (0,0,1), (1/

√
2)(1,1,0),

(1/
√

2)(1,0,−1), (0,1,0), (1/
√

2)(1,0,1), (1/
√

2)(0,1,1),
(1,0,0), (1/

√
2)(0,1,−1)

}
. The ‘cube representation’ is al-

ways applicable to configurations such as the upper part of the
hypergraph, but it is not the sole representation.
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FIG. 3. A degenerated hypergraph for α0 ≈ 0.886257 has more
orthogonalities than desired.

Somewhat surprisingly, the other extreme case, α = π , does
not degenerate and results in the desired configuration.

For α = 2π/3, the triples {4,9,14} and {12,2,7} (in this
order) are the same and the degenerate construction produces
nothing more than these three vectors.

For all remaining values, α ∈ (0,π]\{2π/3}, we obtain 15
distinct vectors satisfying the desired orthogonality relations.
Nonetheless, it is important to acknowledge the possibility of
additional orthogonalities that could render our diagram in-
correct. Fortunately, there are only a limited number of vector
pairs that require verification for orthogonality. All linear sub-
spaces form an orthomodular lattice. It is known that such di-
agrams do not contain cycles of length 4, at least in our case of
3-element contexts (for more details, refer to [16]). Therefore,
any pair of vectors representing this ‘undesirable orthogonal-
ity’ must have a minimum distance of 4 in our diagram. A typ-
ical example is the pair 5 and 11, and, up to isomorphism, it
appears to be the only one. Using computer algebra we have
determined that this situation occurs for a single value

α0 = 2arctan
{

1
5

[
−29+2

2
3 2
(

75(69)
1
2 +623

) 1
3

+
1
3

(
538272−64800(69)

1
2

) 1
3
] 1

2
}
≈ 0.886257.

(5)

For potential future reference, we present the corresponding
diagram for α0 in Figure 3. In this degenerate case, the hy-
perdiagram obeys exclusivity (but not completeness) in its
respective pseudocontext because it serves as a true-implies-
false gadget for the two remaining elements in its pseudocon-
text.

For all values of α other than those mentioned earlier, we
acquire vector coordinatizations and thus FORs of the dia-
gram depicted in Figure 1. These coordinatizations are noni-
somorphic.
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FIG. 4. Hypergraph of a configuration of observables and contexts
containing 36 atoms in 22 contexts. Pseudocontexts are marked by
dashed boxes.

IV. EXAMPLE 2: GENERALIZED
FALSE-IMPLIES-FALSE AND TRUE-IMPLIES-TRUE

GADGET HYPERGRAPHS

The 3-uniform hypergraph depicted in Figure 4 is the past-
ing of two gadget graphs introduced earlier and was first pro-
posed in a letter by Vladimı́r Rogalewicz [31]. It was the ad-
dressee, René Mayet, who discovered the potential of this ob-
servation and possibilities of its generalization which allowed
future results [21] and [22]. This example has 36 atoms in 22
contexts.

Assuming exclusivity and completeness there are two
triples of elements or atoms {4,16,28} and {10,22,34} which
are not on a hyperedge and whose probability sums are equal.
The ‘coverings’ of the hypergraph depicted in Figures 5(a)
and 5(b) include 11 contexts but leave out the elements men-
tioned. Therefore,

36

∑
i=1

p(i) = ∑
i∈covering (a)

p(i)+ p(4)+ p(16)+ p(28)

= 11+ p(4)+ p(16)+ p(28)

= ∑
i∈covering (b)

p(i)+ p(10)+ p(22)+ p(34)

= 11+ p(10)+ p(22)+ p(34),

(6)

and p(4) + p(16) + p(28) = p(10) + p(22) + p(34). One
immediate consequence of this result is that two contexts
{4,16,28} and {10,22,34} can be added, but not just one of
them. More precisely, for the coordinatization of the hyper-
graph in terms of vector labels discussed below, when the z-
coordinates of 4, 16, and 28 are 1/

√
3, so are the z-coordinates

of 10, 22, and 34, and these triples form orthonormal bases.
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FIG. 5. Graphical representation of the proof that there are two
triples of elements or atoms {4,16,28} and {10,22,34} which are
not on a hyperedge and whose respective probability sums are equal.
The ‘coverings’ of the hypergraph depicted in (a) and (b) include 11
contexts but omit the elements mentioned.

(In contrast to this, the hypergraph from Figure 1 does not
allow the addition of any other context.)

A. Representation in terms of sets and vectors

The hypergraph depicted in Figure 4 allows both a classical
and a quantum representation.

1. Quasiclassical representation in terms of partitions of sets

The hypergraph encompasses a total of 225 two-valued
states, which will not be exhaustively enumerated in this arti-
cle. However, it is pertinent to emphasize that the set of states
is indeed separable. In Figure 6(a), we present a depiction of a

canonical coloring of the hypergraph 4, where all three colors
are represented within each of the blocks, also referred to as
cliques.

It is worth noting that in this particular coloring,
pseudoblocks or pseudocontexts such as {4,16,28} and
{10,22,34} also allow a three-coloring.

Identifying two colors with the value 0 and one color with
the value 1 is a straightforward procedure, as illustrated in
Figure 6(b). This enables the derivation of one of the 255 two-
valued states that is supported by the hypergraph depicted in
Figure 4.

In a classical context, achieving a probability of one for
specific observables within the triples 4,16,28 and 10,22,34
is feasible, while registering a probability of zero for the re-
maining observables. However, this classical scenario con-
trasts with the quantum mechanical perspective, as the triples
are not located on a shared edge and thus prevent the realiza-
tion of such probabilities.

Moreover, there exist two-valued states that are 0 on all
of the observables in the pseudocontexts {4,16,28} and
{10,22,34}, as well as two-valued states that are 1 on all of
them. As classical probabilities are the convex combinations
of all two-valued states [23, 24], we obtain bounds for the sum
of probabilities p in the pseudocontexts:

0 ≤ p(4)+ p(16)+ p(28) = p(10)+ p(22)+ p(34)≤ 3. (7)

Because of the lower and upper bounds 0 and 3, respec-
tively, the hypergraph can be used as a gadget hypergraph
exhibiting a generalized true-implies-false and true-implies-
true sets of propositions in noncontextual hidden-variable the-
ories [32]: If, say, the input state is chosen to be triple-0 or
triple-1 on one pseudocontext, then the other pseudocontext
exhibits an identical performance. This property is symmet-
ric with respect to the exchange of the pseudocontexts. This
represents a generalization of the Specker bug [5, 33, 34] and
the true-implies-false gadgets of the Hardy type [35–37] (for
a historical overview, refer to [32]).

2. Quantum representation in terms of vector labels

Throughout this section, when we refer to ‘elements’ (of
edges of the hypergraph) or ‘points’, we are referring to ‘unit
vectors extending from the origin to those points’.

In regard to labeling vertices with vectors, we have not
been able to find suitable labels using the previously employed
heuristic method. Therefore, we have extended the analytic
strategy for coordinatization used earlier in Section III A 2—
to find FORs, that is, vertex vector labels obeying mutual or-
thogonality for the other vertex labels on the same edge—for
the hypergraph 4 as follows: The hypergraph will be parti-
tioned into two sides—a ‘left’ and a ‘right’ side—and thereby
‘cut’ along the vertical ‘axis’ formed by the six elements
{4,16,28} and {10,22,34}.

As depicted in Figure 7 the two parts are the gadgets from
Figure 1 and we use their coordinatization from the previous
section. On the left-hand side, we utilize it in a literal sense,
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FIG. 6. (a) One canonical [26] coloring of the hypergraph. (b) One
two-valued state derived from the canonical coloring depicted in (a),
obtained from this coloring by identifying one color ‘red’ with the
value ‘1’ and the two remaining colors ‘green’ and ‘blue’ with the
value ‘0’.

with the angle α serving as a degree of freedom. The right-
hand side is a mirror image of the left-hand side, and we em-
ploy the same coordinatization (with the same α). The only
difference is that we rotate it around the z-axis by an angle β .
This means that ‘adjacent’ pairs of points on the left and the
right side, such as the pairs 2 and 6 or 8 and 12 or, in par-
ticular, 3 and 5, are a rotation angle β along the z-axis apart.
Moreover, because of this rotation around the z-axis, points
3 and 5 lie on the same circle with the same ‘longitudinal’
z-coordinate.

In the final stage, the two parts will be ‘pasted’ or ‘stitched’
together by observing the proper orthogonality relations. To
achieve this, β must be chosen in such a way that points 3 and
5 become orthogonal. Once this condition is met, all other
necessary orthogonalities follow from the rotational symme-
try.

left side right side
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FIG. 7. The hypergraph depicted in Figure 4 ‘cut’ along the ‘vertical
axis’ formed by {4,16,28} and {10,22,34}.

To determine β as a function of α , we first observe that, as
has been pointed out before, points 3 and 5 lie on the same cir-
cle with the same longitudinal z-coordinate. For point 3 this
longitudinal z-coordinate is already determined by the con-
struction mentioned earlier in Section III A 2. More explicitly,
in terms of the cross product of vectors in three dimensions,
|v3⟩ is the unit vector in the direction |v2⟩×|v1⟩. Because |v1⟩
is the unit vector in the direction |v2⟩× |v12⟩, we end up with
|v3⟩ being the unit vector in the direction |v2⟩× (|v2⟩× |v12⟩).

Therefore, given the longitudinal third coordinate of |v3⟩
(which is dependent on α) we already know the identical lon-
gitudinal third coordinate of the corresponding vector |v5⟩.
All that is needed is to rotate |v5⟩ by a rotation angle β along
the z-axis so that the scalar product with |v3⟩ vanishes, that is,
⟨v3|v5⟩= 0. This yields β as a function of α:

β (α) =arccos
(
−1+ cosα

5+4cosα

)
=arcsec

[
4+9(−1+ cosα)−1

]
.

(8)

Note that the third longitudinal coordinates of |v3⟩ and |v5⟩
must be less than 1/

√
2 because if they exceed 1/

√
2, this

circle cannot contain orthogonal vectors. In the case where the
third longitudinal coordinate is 1/

√
2, the orthogonal vectors

are on opposite sides, resulting in β = π . Some values of β as
a function of α are presented in Table I.

The function β (α) is defined for α ∈ [0,αmax], where
αmax = π − arccos(4/5) = 2arctan3. In combination with
the restrictions from the previous section, we allow values
α ∈ (0,2arctan3] \ {2π/3,α0}. In all these cases, we ob-
tain (nonisomorphic) coordinatizations. We acknowledge that
there may be some (finitely many) values of α that could lead
to additional orthogonalities not depicted in the hypergraph.
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α β (α)

0 π

2
π

3 π − arccos 1
14 = arcsec(−14)

2
3 π

2
3 π

π − arccos 4
5 π

TABLE I. Typical values of the function β as a function of α in our
construction. The value α = β = 2π/3 is disallowed because it yields
degeneracies due to multiplicities of vectors, see Section III A 2.

For example, for α = π/3 and β (π/3) = arcsec(−14), the
vector labels of the pseudocontexts are rendered by this con-
struction as follows:

|v4⟩=

(
1
14

√
1

15

(
209−9

√
65
)
,−5+3

√
65

70
√

2
,−
√

13
15

)
,

|v16⟩=

(√
65−3

14
√

6
,

1
14

√
69
5

+
√

65,−
√

13
15

)
,

|v28⟩=

(
−15+2

√
65

35
√

6
,

√
65−10
35
√

2
,−
√

13
15

)
,

|v10⟩=

 1√
30
(

97+12
√

65
) , 10+

√
65

35
√

2
,−
√

13
15

 ,

|v22⟩=

(
−3+

√
65

14
√

6
,− 1

14

√
1
5

(
69−5

√
65
)
,−
√

13
15

)
,

|v34⟩=

(
45+

√
65

70
√

6
,

5−3
√

65
70
√

2
,−
√

13
15

)
.

(9)

Notice that all six lie in the plane z = −
√

13/15 .
There is an equidistancing of the two triples {4,16,28} and
{10,22,34} in terms of the Hilbert space inner products:

⟨v4|v16⟩= ⟨v4|v28⟩= ⟨v16|v28⟩

= ⟨v10|v22⟩= ⟨v10|v34⟩= ⟨v22|v34⟩=
4
5
.

(10)

The sums of the projection operators of the respective
triples yield diagonal matrices

|v4⟩⟨v4|+ |v16⟩⟨v16|+ |v28⟩⟨v28|
= |v10⟩⟨v10|+ |v22⟩⟨v22|+ |v34⟩⟨v34|

= diag
(

1
5
,

1
5
,

13
5

)
.

(11)

A min-max argument [38] yields bounds for the quantum
probabilities of the sums of observables in the two pseudo-
contexts {4,16,28} and {10,22,34} that are strictly smaller

0
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FIG. 8. Dependencies of the angle β and the ‘aperture’ angle of
the cone, on which {4,16,28} and {10,22,34} lie relative to the z-
axis. The dashed (blue) line represents β , and the solid (red) line
represents the aperture angle as functions of the angle α . The units
of angles are in radians.

than the classical bounds (7). In this case:

0 <
1
5
≤ p(4)+ p(16)+ p(28)

= p(10)+ p(22)+ p(34)≤ 13
5

< 3.
(12)

The triples of vectors {|v4⟩, |v16⟩, |v28⟩} and
{|v10⟩, |v22⟩, |v34⟩} lie on a cone with the z-axis vector
(0,0,1) as its symmetry axis |z⟩ = (0,0,1), and an aperture
of arccos|⟨v4|z⟩| = · · · = arccos|⟨vz|z⟩| = arccos

√
13/15 ≈

0.374 ≡ 21.4◦. That is, the construction renders vectors in
the pseudocontexts whose convex combinations (with equal
weights) are equal to the z-axis (0,0,1).

Figure 8 presents the dependencies of the angle β be-
tween corresponding vectors on the contexts {2,14,26} and
{6,18,30}, and the ‘aperture’ angle of the cone on which
{4,16,28} and {10,22,34} lie relative to the z-axis, as a func-
tion of the angle α between corresponding vectors on the con-
texts {2,14,26} and {12,24,36} as well as {6,18,30} and
{8,20,32}.

V. DISCUSSION

The observed scenario can be understood within the frame-
work of Spekkens’ contextuality [1], a broader concept that
extends the initial understanding of contextuality within quan-
tum theory. Measurement contextuality highlights differing
statistical predictions across various models, particularly con-
cerning quantized systems and classical ontological models.
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The type of measurement contextuality introduced earlier
is independent of the preparation procedure. We can estab-
lish equivalence between measurement procedures by sum-
ming the probabilities of elements within their corresponding
pseudocontexts. This summation process enables us to define
equivalence relations among measurements, resulting in the
formation of distinct equivalence classes.

This form of contextuality arises from the observation that
quantum realizations of the hypergraph defining the pseudo-
contexts, which adhere to the equivalence constraints, do not
violate a specific bound on the sum of probabilities within
these pseudocontexts. In contrast, classical realizations can
exceed this bound.

This new type of contextuality can be quantified by ob-
serving the sums of the observables in the pseudocontexts
such as {4,16,28} and {10,22,34} depicted in Figure 4. As
mentioned earlier, there exists a separating set of two-valued
states that are either 0 or, alternatively, 1 on all of the observ-
ables in the pseudocontexts. Consequently, there exist classi-
cal bounds (7) that exceed the quantum bounds (12) obtained
from a min-max calculation.

Pseudocontexts in general, and the statistical equivalence
of pseudocontexts in particular, have the potential to serve as
valuable tools for studying quantized systems beyond merely
certifying their non-classical nature. These pseudocontexts
can be correlated with non-orthogonal bases in Hilbert space,
and, due to the preparation independence of their probability
sums, represent generalizations of orthogonal frames.

Equality of the probability sums across pseudocontexts is
only possible when considering more than two observables
(e.g., triples) within each pseudocontext and in Hilbert spaces
of dimensions greater than two. This restriction arises from
the inherent impossibility of intertwining edges with fewer
than three observables.

Assume two couples of vectors, {|a⟩, |b⟩}, {|c⟩, |d⟩}, such
that each state attains the same sum of values on them. In par-
ticular, this holds for any vector state determined by a vector
|e⟩. If |e⟩ is orthogonal to |a⟩, |b⟩, this sum is zero, hence |e⟩
must be orthogonal also to |c⟩, |d⟩. This implies the equal-
ity of the orthogonal spaces, {|a⟩, |b⟩}⊥ = {|c⟩, |d⟩}⊥, and all
four vectors |a⟩, |b⟩, |c⟩, |d⟩ lie in a plane. Taking now |e⟩ in
this plane, the sums of the corresponding vector state over the
couples are not constant because |a⟩ ̸⊥ |b⟩. The maximum is
attained when |e⟩ is an axis of symmetry of |a⟩, |b⟩ and the

value of this maximum determines the angle of |a⟩, |b⟩. The
same applies to |c⟩, |d⟩, so these couples must be equal.

Furthermore, these pseudocontexts can also function as
gadgets for both false-implies-false and true-implies-true sce-
narios. They constitute broader and extended variations of the
Specker bug and hypergraphs that necessitate a true-implies-
true (TITS) set of two-valued states.

It can be argued that, to a certain extent, these observ-
ables are intricately interconnected or grouped together, de-
spite lacking mutual co-measurability. This situation draws
parallels with the Einstein-Podolski-Rosen scenario [39, 40].
For instance, one could consider the utilization of an entan-
gled singlet state involving two or three constituents (in three
dimensions per constituent) [41, Table 4], simultaneously
measuring all elements of a pseudocontext, or alternatively,
elements in different pseudocontexts, (1/

√
3)
(
− |0,0⟩ +

| − 1,1⟩+ |1,−1⟩
)

and −(1/
√

6)
(
| − 1,0,1⟩+ |0,1,−1⟩+

|1,−1,0⟩
)
+(1/

√
6)
(
|− 1,1,0⟩+ |0,−1,1⟩+ |1,0,−1⟩

)
, re-

spectively. For instance, with a two-partite singlet state and in
an Einstein-Podolsky-Rosen-type setup, we can measure one
observable of one pseudocontext with one of the two particles.
Similarly, we can measure one observable of the other pseu-
docontext with the second particle in the entangled particle
pair. Observing the cumulative statistics, potentially employ-
ing a protocol akin to Bennett and Brassard’s approach [42],
could offer a dependable means of certifying the generation
of quantum random numbers.
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Appendix A: Boolean set representation of the logic depicted in Figures 1 and 4

‘Bare, generic’ labels 1, . . . ,15 and 1, . . . ,36 are used for the exposition of the original hypergraph. Different label types
b1, . . . ,b36 are used for set representations by partition logics, and |v1⟩, . . . , |v36⟩ for vector label representations.

A systematic way of generating a Boolean set representation is by computing all two-valued states of all atomic propositions,
and then, for each of the atoms, generating an index set of all those two-valued states acquiring the value ‘1’ on that atom [25].

1. Boolean set representation of the logic depicted in Figure 1

For the the logic depicted in Figure 1 the 24 two-valued states yield the following quasiclassical vertex labels:

b1 ={1,2,3,4,5,6,7,8,9,10},
b2 ={11,12,13,14,15,16,17,18},
b3 ={19,20,21,22,23,24},
b4 ={1,2,3,4,11,12,13,14},
b5 ={5,6,7,8,9,10,15,16,17,18},
b6 ={1,5,6,11,12,15,16,17,19,20},
b7 ={2,3,7,8,9,21,22,23},
b8 ={4,10,13,14,18,24},
b9 ={5,7,8,15,16,19,21,22},

b10 ={1,2,3,6,9,11,12,17,20,23},
b11 ={2,7,9,11,13,15,17,18,21,23},
b12 ={1,4,5,6,10,19,20,24},
b13 ={3,8,12,14,16,22},
b14 ={6,9,10,17,18,20,23,24},
b15 ={1,2,4,5,7,11,13,15,19,21}

(A1)
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2. Boolean set representation of the logic depicted in Figure 4

For the the logic depicted in Figure 4 the 225 two-valued states yield the following quasiclassical vertex labels:

b1 ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,
62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86},

b2 ={87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,
110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,
133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,
155,156,157,158,159,160,161},

b3 ={162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,
202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,
221,222,223,224,225},

b4 ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,87,88,89,90,91,92,93,94,95,
96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,
119,120,121,122,123,124,125,126,127,128,129,130,131,132,133},

b5 ={51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,
75,76,77,78,79,80,81,82,83,84,85,86,134,135,136,137,138,139,140,141,142,143,144,145,
146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161},

b6 ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,162,163,164,
165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,
185,186,187,188,189},

b7 ={27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
49,50,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
126,127,128,129,130,131,132,133,190,191,192,193,194,195,196,197,198,199,200,201,
202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,
222,223,224,225},

b8 ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,51,52,53,54,55,56,57,58,59,60,61,
62,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,134,135,136,137,138,139,140,141,
142,143,144,145,146,147,162,163,164,165,166,167,168,169,170,171,172,173,174,175,
176,177,178,179,180,181},

b9 ={15,16,17,18,19,20,21,22,23,24,25,26,63,64,65,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,80,81,82,83,84,85,86,102,103,104,105,106,107,148,149,150,
151,152,153,154,155,156,157,158,159,160,161,182,183,184,185,186,187,188,189},

b10 ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,
87,88,89,90,91,92,93,94,95,108,109,110,111,112,113,114,115,116,117,118,119,
120,121,134,135,136,137,138,139,162,163,164,165,166,167,190,191,192,193,194,
195,196,197,198,199,200,201},

(A2)
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b11 ={96,97,98,99,100,101,122,123,124,125,126,127,128,129,130,131,132,
133,140,141,142,143,144,145,146,147,168,169,170,171,172,173,174,175,176,177,
178,179,180,181,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,
217,218,219,220,221,222,223,224,225},

b12 ={87,88,89,90,91,92,93,94,95,102,103,104,105,106,107,108,109,110,
111,112,113,114,115,116,117,118,119,120,121,134,135,136,137,138,139,148,149,
150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,182,
183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201},

b13 ={1,2,3,4,15,16,17,18,27,28,29,30,31,32,51,52,53,54,63,64,65,66,
67,68,87,88,89,90,91,92,96,97,102,103,104,105,106,108,109,110,111,112,113,114,
115,116,122,123,124,125,134,135,136,137,138,140,141,142,148,149,150,151,152,
153,154,155,156,162,163,168,169,170,171,182,183,184,190,191,192,193,202,203,
204,205,206,207},

b14 ={5,6,7,8,9,10,11,19,20,21,22,23,24,33,34,35,36,37,38,39,40,41,42,
43,44,55,56,57,58,59,60,69,70,71,72,73,74,75,76,77,78,79,80,164,165,166,172,
173,174,175,176,177,178,185,186,187,188,194,195,196,197,198,199,208,209,210,
211,212,213,214,215,216,217,218,219},

b15 ={12,13,14,25,26,45,46,47,48,49,50,61,62,81,82,83,84,85,86,93,94,
95,98,99,100,101,107,117,118,119,120,121,126,127,128,129,130,131,132,133,139,
143,144,145,146,147,157,158,159,160,161,167,179,180,181,189,200,201,220,221,
222,223,224,225},

b16 ={1,2,5,6,7,8,15,19,27,28,29,30,33,34,35,36,37,38,39,40,51,52,53,
55,56,57,58,59,63,64,65,66,69,70,71,72,73,74,75,76,87,88,89,96,102,108,109,110,
111,112,113,122,123,134,135,136,137,140,141,148,149,150,151,152,153,162,164,165,
166,168,169,172,173,174,175,182,185,190,191,192,194,195,196,197,198,202,203,
204,205,208,209,210,211,212,213,214,215},

b17 ={3,4,9,10,11,16,17,18,20,21,22,23,24,31,32,41,42,43,44,54,60,67,
68,77,78,79,80,90,91,92,97,103,104,105,106,114,115,116,124,125,138,142,154,155,
156,163,170,171,176,177,178,183,184,186,187,188,193,199,206,207,216,217,218,219},

b18 ={27,28,29,33,34,35,36,37,45,46,47,48,51,52,55,56,57,61,63,64,65,
69,70,71,72,73,81,82,83,84,108,109,110,111,117,118,119,122,126,127,128,129,130,
134,135,136,140,143,144,145,148,149,150,151,157,158,159,190,191,194,195,196,200,
202,203,204,208,209,210,211,212,220,221,222,223},

b19 ={1,2,5,6,7,8,12,13,14,15,19,25,26,30,38,39,40,49,50,53,58,59,62,
66,74,75,76,85,86,87,88,89,93,94,95,96,98,99,100,101,102,107,112,113,120,121,
123,131,132,133,137,139,141,146,147,152,153,160,161,162,164,165,166,167,168,169,
172,173,174,175,179,180,181,182,185,189,192,197,198,201,205,213,214,215,224,225},

b20 ={16,17,20,21,22,23,27,28,31,33,34,35,36,41,42,45,46,47,63,64,67,69,
70,71,72,77,78,81,82,83,103,104,105,108,109,110,114,117,118,119,122,124,126,127,
128,129,148,149,150,154,157,158,159,183,186,187,188,190,194,195,196,199,200,202,
203,206,208,209,210,211,216,217,220,221,222},
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b21 ={3,4,9,10,11,18,24,29,32,37,43,44,48,51,52,54,55,56,57,60,61,65,68,
73,79,80,84,90,91,92,97,106,111,115,116,125,130,134,135,136,138,140,142,143,144,
145,151,155,156,163,170,171,176,177,178,184,191,193,204,207,212,218,219,223},

b22 ={1,2,5,6,7,12,15,16,17,19,20,21,22,25,27,28,30,31,33,34,35,38,39,41,
45,49,53,58,63,64,66,67,69,70,71,74,75,77,81,85,87,88,89,96,98,99,100,102,103,104,
105,108,109,110,112,113,114,122,123,124,126,127,128,131,132,137,141,146,148,149,
150,152,153,154,162,168,169,172,173,174,179,182,183,190,192,202,203,205,206,208,
209,210,213,214,216,220,224},

b23 ={8,13,14,23,26,36,40,42,46,47,50,59,62,72,76,78,82,83,86,93,94,95,
101,107,117,118,119,120,121,129,133,139,147,157,158,159,160,161,164,165,166,167,
175,180,181,185,186,187,188,189,194,195,196,197,198,199,200,201,211,215,217,221,
222,225},

b24 ={5,6,7,9,10,11,12,19,20,21,22,24,25,33,34,35,37,38,39,41,43,44,45,48,
49,55,56,57,58,60,61,69,70,71,73,74,75,77,79,80,81,84,85,98,99,100,126,127,128,130,
131,132,143,144,145,146,172,173,174,176,177,178,179,208,209,210,212,213,214,216,218,
219,220,223,224},

b25 ={5,6,9,10,19,20,21,24,33,34,37,38,41,43,55,56,58,60,69,70,73,74,77,79,
87,88,90,91,93,94,98,99,102,103,104,106,107,108,109,111,112,114,115,117,118,120,126,
127,130,131,134,135,137,138,139,143,144,146,148,149,151,152,154,155,157,158,160,164,
165,172,173,176,177,185,186,187,194,195,197,199,208,209,212,213,216,218},

b26 ={1,2,3,4,12,13,14,15,16,17,18,25,26,27,28,29,30,31,32,45,46,47,48,
49,50,51,52,53,54,61,62,63,64,65,66,67,68,81,82,83,84,85,86,162,163,167,168,169,
170,171,179,180,181,182,183,184,189,190,191,192,193,200,201,202,203,204,205,206,
207,220,221,222,223,224,225},

b27 ={7,8,11,22,23,35,36,39,40,42,44,57,59,71,72,75,76,78,80,89,92,95,96,
97,100,101,105,110,113,116,119,121,122,123,124,125,128,129,132,133,136,140,141,
142,145,147,150,153,156,159,161,166,174,175,178,188,196,198,210,211,214,215,217,219},

b28 ={1,3,5,9,12,13,16,20,27,30,31,32,33,38,41,43,45,46,49,50,51,53,54,55,58,
60,61,62,63,66,67,68,69,74,77,79,81,82,85,86,87,90,93,98,103,108,112,114,115,117,120,
126,131,134,137,138,139,143,146,148,152,154,155,157,160,162,163,164,167,168,170,172,
176,179,180,183,186,190,192,193,194,197,199,200,201,202,205,206,207,208,213,216,218,
220,221,224,225},

b29 ={2,4,6,10,14,15,17,18,19,21,24,25,26,28,29,34,37,47,48,52,56,64,65,70,
73,83,84,88,91,94,99,102,104,106,107,109,111,118,127,130,135,144,149,151,158,165,169,
171,173,177,181,182,184,185,187,189,191,195,203,204,209,212,222,223},

b30 ={30,31,32,38,39,40,41,42,43,44,49,50,53,54,58,59,60,62,66,67,68,74,75,76,
77,78,79,80,85,86,112,113,114,115,116,120,121,123,124,125,131,132,133,137,138,139,141,
142,146,147,152,153,154,155,156,160,161,192,193,197,198,199,201,205,206,207,213,214,
215,216,217,218,219,224,225},
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b31 ={1,3,5,7,8,9,11,12,13,16,20,22,23,27,33,35,36,45,46,51,55,57,61,63,69,71,
72,81,82,87,89,90,92,93,95,96,97,98,100,101,103,105,108,110,117,119,122,126,128,129,
134,136,140,143,145,148,150,157,159,162,163,164,166,167,168,170,172,174,175,176,178,
179,180,183,186,188,190,194,196,200,202,208,210,211,220,221},

b32 ={15,18,19,24,25,26,29,30,32,37,38,39,40,43,44,48,49,50,65,66,68,73,74,
75,76,79,80,84,85,86,102,106,107,111,112,113,115,116,120,121,123,125,130,131,132,133,
151,152,153,155,156,160,161,182,184,185,189,191,192,193,197,198,201,204,205,207,212,
213,214,215,218,219,223,224,225},

b33 ={2,4,6,10,14,17,21,28,31,34,41,42,47,52,53,54,56,58,59,60,62,64,67,70,77,
78,83,88,91,94,99,104,109,114,118,124,127,135,137,138,139,141,142,144,146,147,149,154,
158,165,169,171,173,177,181,187,195,199,203,206,209,216,217,222},

b34 ={1,3,5,8,9,13,15,16,18,19,20,23,24,26,27,29,30,32,33,36,37,38,40,43,46,
50,51,55,63,65,66,68,69,72,73,74,76,79,82,86,87,90,93,96,97,98,101,102,103,106,107,
108,111,112,115,117,120,122,123,125,126,129,130,131,133,134,140,143,148,151,152,155,
157,160,164,168,170,172,175,176,180,185,186,194,197,202,204,205,207,208,211,212,213,
215,218,221,225},

b35 ={7,11,12,22,25,35,39,44,45,48,49,57,61,71,75,80,81,84,85,89,92,95,100,
105,110,113,116,119,121,128,132,136,145,150,153,156,159,161,162,163,166,167,174,178,
179,182,183,184,188,189,190,191,192,193,196,198,200,201,210,214,219,220,223,224},

b36 ={1,2,3,4,8,13,14,15,16,17,18,23,26,27,28,29,30,31,32,36,40,42,46,47,50,
51,52,53,54,59,62,63,64,65,66,67,68,72,76,78,82,83,86,96,97,101,122,123,124,125,129,
133,140,141,142,147,168,169,170,171,175,180,181,202,203,204,205,206,207,211,215,217,
221,222,225}.

Appendix B: Faithful orthogonal representation of the logic depicted in Figure 4

According to an ‘inverted’ definition [28] inspired by Lovász [27], a faithful orthogonal representation or coordinatization of a
hypergraph G with elements 1, . . . ,n is a corresponding system of vector labels—that is, unit vectors |v1⟩, . . . , |vn⟩ in a Euclidean
space—such that if i and j are in the same hyperedge, then |vi⟩ and |v j⟩ are orthogonal.

There is currently no tractable systematic method for the coordinatization of hypergraphs. The following two faithful orthogo-
nal representations have been obtained by an ad hoc analytical approach, using rotations by two angles α and β along a common
axis.

1. α = π

3 and β
(

π

3
)
= arcsec(−14)

In the first faithful orthogonal representation of the hypergraph depicted in Figure 4, the values α = π

3 and β (π

3 )= arcsec(−14)
have been chosen.
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3

)
,

|v15⟩=

(√
5
6
,

1√
10

,
1√
15

)
,

|v16⟩=

(√
65−3

14
√

6
,

1
14

√
69
5

+
√

65,−
√

13
15

)
,

|v17⟩=
(

1
84

(√
30+3

√
78
)
,

1
140

(√
10−25

√
26
)
,− 1√

15

)
,

|v18⟩=
(

1
84

(√
6−3

√
390
)
,− 1

14

√
33+

√
65,

1√
3

)
,

(B1)



17

|v19⟩=

−

√
39
2

7
,− 1

7
√

10
,−
√

3
5

 ,

|v20⟩=

(
− 1

14

√
293
3

+
√

65,

√
65−1

14
√

2
,

1√
3

)
,

|v21⟩=

(
1

14

√
1
3

(
61−3

√
65
)
,

1
14

√
813

5
+
√

65,− 1√
15

)
,

|v22⟩=

(
−3+

√
65

14
√

6
,− 1

14

√
1
5

(
69−5

√
65
)
,−
√

13
15

)
,

|v23⟩=

(√
5
6
,− 1√

10
,− 1√

15

)
,

|v24⟩=
(

1√
6
,

1√
2
,

1√
3

)
,

|v25⟩=

(
−
√

3
10

,− 1√
10

,−
√

3
5

)
,

|v26⟩=
(
− 1√

6
,− 1√

2
,

1√
3

)
,

|v27⟩=

(
−2

√
2

15
,

√
2
5
,

1√
15

)
,

|v28⟩=

(
−15+2

√
65

35
√

6
,

√
65−10
35

√
2

,−
√

13
15

)
,

|v29⟩=
(

1
210

(
15
√

78−2
√

30
)
,

1
70

(√
10+10

√
26
)
,− 1√

15

)
,

|v30⟩=

(
1

84

(√
6+3

√
390
)
,−

√
65−1

14
√

2
,

1√
3

)
,

|v31⟩=

(
1

14

√
3
10

(
1+

√
65
)
,

1−3
√

65
14

√
10

,−
√

3
5

)
,

|v32⟩=

 1
7
√

6
,−

√
65
2

7
,

1√
3

 ,

|v33⟩=

(
1

420

(√
30−45

√
78
)
,− 1

14

√
1
5

(
37+3

√
65
)
,− 1√

15

)
,

|v34⟩=

(
45+

√
65

70
√

6
,

5−3
√

65
70

√
2

,−
√

13
15

)
,

|v35⟩=
(
− 1√

30
,

3√
10

,− 1√
15

)
,

|v36⟩=

(
−
√

2
3
,0,

1√
3

)
.
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2. α = π

2 and β
(

π

2
)
= arcsec(−5)

The second faithful orthogonal representation of the hypergraph depicted in Figure 4 uses the values α = π

2 and β
(

π

2

)
=

arcsec(−5).

|v1⟩=
(

1
2
,−1

2
,− 1√

2

)
,

|v2⟩=

(√
2
3
,0,

1√
3

)
,

|v3⟩=

(
− 1

2
√

3
,−

√
3

2
,

1√
6

)
,

|v4⟩=

(
1
5

√
29
6

+
√

6,

√
6−1

5
√

2
,

√
2
3

)
,

|v5⟩=
(

1
30

(
18
√

2−
√

3
)
,− 1

10

√
11+4

√
6,− 1√

6

)
,

|v6⟩=

−

√
2
3

5
,−4

5
,

1√
3

 ,

|v7⟩=
(

1
10

(
−1−2

√
6
)
,

1
10

(
1−2

√
6
)
,− 1√

2

)
,

|v8⟩=

−4
5
,

√
2
3

5
,

1√
3

 ,

|v9⟩=
(

1
10

(√
3−2

√
2
)
,

1
30

(
18
√

2+
√

3
)
,− 1√

6

)
,

|v10⟩=

(
−1

5

√
7
2
+
√

6,
1
5

√
29
6

−
√

6,

√
2
3

)
,

|v11⟩=

(
−
√

3
2

,− 1
2
√

3
,− 1√

6

)
,

|v12⟩=

(
0,−

√
2
3
,

1√
3

)
,

|v13⟩=
(

1
4

(√
3−1

)
,

1
4

(
1+

√
3
)
,− 1√

2

)
,

|v14⟩=
(
− 1√

6
,

1√
2
,

1√
3

)
,

|v15⟩=
(

1
12

(
9+

√
3
)
,

1
4

(√
3−1

)
,

1√
6

)
,

|v16⟩=

(
1
60

(
−18−9

√
2−2

√
3+3

√
6
)
,

1
20

(
2+

√
2−2

√
3+3

√
6
)
,

√
2
3

)
,

|v17⟩=
(

1
60

(
9−18

√
2+

√
3+6

√
6
)
,

1
20

(
−1+2

√
2+

√
3+6

√
6
)
,− 1√

6

)
,

|v18⟩=

(
12+

√
2

10
√

3
,

1
10

(
4−

√
2
)
,

1√
3

)
,

(B2)
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|v19⟩=
(

1
20

(
1+6

√
2−

√
3+2

√
6
)
,

1
20

(
−1−6

√
2−

√
3+2

√
6
)
,− 1√

2

)
,

|v20⟩=

(
1

10

(
4−

√
2
)
,−12+

√
2
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√

3
,

1√
3

)
,

|v21⟩=
(

1
20

(
−1−6

√
6+
√

11−4
√

6
)
,

1
60

(
9−18

√
2−

√
3−6

√
6
)
,− 1√

6

)
,

|v22⟩=

(
1

20

(
2+

√
2+2

√
3−3

√
6
)
,

1
60

(
−18−9

√
2+2

√
3−3

√
6
)
,

√
2
3

)
,

|v23⟩=
(

1
4

(
1+

√
3
)
,

1
12

(√
3−9

)
,− 1√

6

)
,

|v24⟩=
(

1√
2
,

1√
6
,

1√
3

)
,

|v25⟩=
(

1
4

(
−1−

√
3
)
,

1
4

(
1−

√
3
)
,− 1√

2

)
,

|v26⟩=
(
− 1√

6
,− 1√

2
,

1√
3

)
,

|v27⟩=
(

1
12

(√
3−9

)
,

1
4

(
1+

√
3
)
,

1√
6

)
,

|v28⟩=

(
1

60

(
18−9

√
2−2

√
3−3

√
6
)
,

1
20

(
−2+

√
2−2

√
3−3

√
6
)
,

√
2
3

)
,

|v29⟩=
(

1
60

(
−9−18

√
2+

√
3−6

√
6
)
,

1
20

(
1+2

√
2+

√
3−6

√
6
)
,− 1√

6

)
,

|v30⟩=

(√
2−12

10
√

3
,

1
10

(
4+

√
2
)
,

1√
3

)
,

|v31⟩=
(

1
20

(
1−6

√
2+

√
3+2

√
6
)
,

1
20

(
−1+6

√
2+

√
3+2

√
6
)
,− 1√

2

)
,

|v32⟩=

(
1

10

(
4+

√
2
)
,

1
5

√
73
6

−2
√

2,
1√
3

)
,

|v33⟩=
(

1
20

(
1+6

√
6+
√

11−4
√

6
)
,

1
60

(
−9−18

√
2−

√
3+6

√
6
)
,− 1√

6

)
,

|v34⟩=

(
1

20

(
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√
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√
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√
6
)
,

1
60

(
18−9

√
2+2

√
3+3

√
6
)
,

√
2
3

)
,

|v35⟩=
(

1
4

(√
3−1

)
,

1
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(
9+

√
3
)
,− 1√

6

)
,

|v36⟩=
(
− 1√

2
,

1√
6
,

1√
3

)
.
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