
Supporting Register Pairs in
CompCert

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Alexander Loitzl, BSc
Matrikelnummer 11805113

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Math. Dr.techn Florian Zuleger

Wien, 8. Mai 2024
Alexander Loitzl Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Supporting Register Pairs in
CompCert

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Alexander Loitzl, BSc
Registration Number 11805113

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Math. Dr.techn Florian Zuleger

Vienna, May 8, 2024
Alexander Loitzl Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Loitzl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Mai 2024
Alexander Loitzl

v

Acknowledgements

First, I want to thank the two people who made it possible for me to work on CompCert,
a project I have grown fond of during the past year. Florian Zuleger, who welcomed a
new topic and trusted me to overcome the associated challenges. Christian Ferdinand,
who first gave me the opportunity to work on CompCert during an internship at AbsInt.

This thesis would not have been possible without the help of Bernhard Schommer, who
gave me helpful insights into the CompCert development and who I could turn to when I
was stuck. I would also like to thank Michael Schmidt, Christoph Cullmann and Christoph
Mallon for the help with the testing environment at AbsInt, as well as discussions about
CompCert and register allocation.

Most importantly, I would like to thank my parents for their continuous support through-
out my studies.

vii

Kurzfassung

Softwarekorrektheit ist essenziell in sicherheitskritischen Feldern wie der Luftfahrt und
der Automobilindustrie. Hierbei genügt es nicht Verifikation nur auf dem Quellcode
auszuführen, sondern es muss auch sicher gestellt werden, dass der genutzte Compiler
keine Fehler verursacht. Anders als gewöhnliche Compiler schließt der formal verifizierte
CompCert C Compiler solche Fehler aus, da er einen maschinengestützten Korrektheits-
beweis besitzt. Dieser Beweis garantiert korrekte Übersetzung des Quellcodes in die
modellierte Assembly Sprache der Zielarchitektur.

Wir präsentieren CompCertp, eine Erweiterung des CompCert Compilers welche Regis-
terpaare modelliert. Registerpaare werden von 32-bit Prozessoren verwendet um 64-bit
Gleitkommaarithmetik zu unterstützen. Zwei Hardwareregister können dabei zu einem
Paar zusammengeschlossen werden, welches als Operand von Instruktionen verwendet
werden kann.

CompCertp unterstützt Registerpaare im Backend und modelliert die korrekte Gleitkom-
masemantik der Arm Architektur. Dadurch können wir die Aufrufkonvention (calling
convention) für Gleitkommaargumente im bewiesenen Teil des Compilers unterstützen
und sind kompatibel mit Bibliotheken, welche mit anderen Compilern übersetzt wurden.
Außerdem können wir auf einen unverifizierten Teil von CompCert verzichten und erhöhen
das Vertrauen in CompCertps Korrektheitsbeweis.

Wir beweisen CompCertps Korrektheit für alle Architekturen die CompCert unterstützt,
und zeigen, dass CompCertp mit leicht längerer Übersetzungszeit entweder kleineren
oder vergleichbar großen Code generiert. Wir evaluieren CompCertp auf bekannten
Benchmarks und generierten Codebeispielen und erzielen bis zu 10% kleineren Code.

ix

Abstract

Software correctness is crucial in safety-critical fields like aviation and the automotive
industry. Performing verification only at the source-code level does not provide sufficient
guarantees as the compiler might introduce bugs during the translation to machine-code.
Unlike ordinary compilers, the CompCert formally-verified C compiler ensures correct
translation to the target’s modeled assembly language, therefore making additional
verification redundant.

We present CompCertp, an extension of the CompCert compiler that models register
pairs, a feature found in 32-bit processors to implement double-precision floating-point
arithmetic. Two hardware registers are grouped into a register pair that can be used as
an operand of machine instructions to pass 64-bit values.

By supporting register pairs in the backend of the compiler, we can correctly model the
floating-point semantics of the compiler’s Arm target. This allows us to implement the
correct calling conventions for floating-point arguments and be compatible with libraries
compiled with different compilers. Moreover, we can omit one of the unverified passes of
CompCert increasing the trust in CompCertp’s correctness proof.

We adapt the proofs for all supported architectures of CompCert and show that CompCertp

either improves on CompCert or performs similarly in terms of code size at the cost
of a slight increase in compile time. For the Arm target, we evaluate CompCertp on
well-known benchmark suites and tests generated by a fuzzer, showing an improvement
of up to 10% in code size.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions . 2
1.4 Structure of the Thesis . 3

2 Preliminaries 5
2.1 Notational Conventions . 5
2.2 Architectures & Registers . 6
2.3 CompCert . 8
2.4 Register Allocation . 15
2.5 Register Allocation in CompCert . 17

3 Design 23
3.1 Illustrating the issues via an example 23
3.2 Supporting Register Pairs in Allocation 25
3.3 Supporting Register Pairs in CompCert 27

4 Implementation 31
4.1 Splitting Values . 31
4.2 Allocation Validation . 33
4.3 Preservation of callee-save registers . 36
4.4 Register Allocation . 38

5 Evaluation 43
5.1 Benchmarks . 44
5.2 Related Work . 47

xiii

6 Conclusion 49
6.1 Future Work . 49

List of Figures 51

Acronyms 53

Bibliography 55

Appendix 59

CHAPTER 1
Introduction

1.1 Motivation
Software has become an integral part of our everyday life. Not only does it surround us
in the consumer electronics we all have gotten used to, but over the past decades it plays
an increasingly important role in safety-critical fields like aviation and the automotive
industry. For applications where bugs are just a nuisance to the end user, software testing
is relied upon to ensure functionality. In safety-critical applications, where bugs can
lead to catastrophic events, means for verification are employed throughout the entire
development process.
Safety standards like the DO-178C [RTCA11] for avionics dictate verification at multiple
development stages, in particular on the source code and machine code level. This
redundant verification effort highlights the safety-critical industry’s awareness that bugs
might be introduced during compilation. In other fields, many software developers treat
compilers as a black box, assuming that the behavior of the source code is reflected by
the output machine code. In reality, compilers are highly complex software systems and
bugs are regularly found and fixed [SLZS16; YCER11]. To minimize the risks of bugs
silently introduced by the compiler (miscompilation), either an additional verification at
the machine-code level is performed or a non-optimizing compiler is used to establish a
one-to-one correspondence between the source code and the machine code.
This additional cost of verification effort or execution time is addressed by CompCert
[Ler09b], a formally verified, optimizing C compiler. It is developed using Coq, an
interactive theorem prover, to provide a proof of semantic preservation between a C-like
intermediate language and the target architecture’s assembly code. In other words, the
behavior of the code output by the compiler corresponds to the behavior of the input
program as prescribed by the C semantics. The proof covers all optimizations and
non-trivial translation passes and therefore, unlike for other compilers, bugs usually do
not affect these stages of the translation [YCER11].

1

1. Introduction

CompCert is not exempt from the possibility of bugs and there are two main sources.
First, a mistake in the modeled semantics of either C or the assembly languages can
lead to miscompilation, even though a proof of correctness is established. Second, for
some constructs or target architectures, unverified OCaml code is used to modify the
final output before assembling to machine code. Both of these sources are part of the
so-called Trusted Computing Base (TCB) of CompCert which also includes all software
for which correctness is assumed. A detailed treatment of the TCB is given in [MB22].
This work aims to increase the trust in CompCert, by refining the semantic model of a
target architecture and reducing the TCB.

1.2 Problem Statement
One of the key engineering goals of CompCert is to reduce the proof burden, especially
redundancy in the architecture-specific reasoning. To overcome this issue, a common
interface, shared by all architectures, is used to establish the properties required for the
semantic preservation proof. Adopting such a shared view of the different architectures
can also lead to discrepancies between the individual semantic models and the actual
target language. Yet, the correctness of the assembly semantics can only be verified by
human reviewers and is part of the TCB. The gap between the semantic representation
and the actual target language can on the one hand lead to inefficient code generation,
while in the worst case, unverified code is required to modify the output of the compiler.
One such issue we identified is that of aliasing registers, two registers where writing to
one invalidates the other.

CompCert currently works under the assumption that all registers are disjoint, hence,
writing to a single register leaves all others unchanged. This property is enforced by
the shared semantic model of the register file, yet it is not necessarily true for modern
architectures. The 32-bit Arm floating-point coprocessor and the TriCore Aurix TC4x
architecture use aligned pairs of adjacent registers to hold 64-bit values. Both architectures
are prominently used in the automotive industry [Arma; Inf] and are desirable targets
for CompCert. The floating-point support for Arm is limited: only half of the floating-
point registers can be used by the compiler and it requires unverified code to conform
to the Application Binary Interface (ABI). The TriCore architecture is currently not
supported by CompCert but is planned for a future release. Unlike Arm, it does not
have a designated set of floating-point registers and all computations use a shared set of
data registers. A similar workaround is therefore not possible, as using only half of the
registers for all computations leads to inadequate code generation.

1.3 Contributions
By adding support for register pairs in CompCert we reduce the TCB, generate more
efficient code and ease the integration of new architectures in the future. Concretely, the
key contributions of this thesis are:

2

1.4. Structure of the Thesis

1. We improve the semantic model of the Arm target by modeling all available registers
and the correct calling conventions as prescribed by the ABI. These changes allow
us to omit unverified modifications of the output after code generation.

2. We adapt the intermediate languages in CompCert’s backend to handle register
pairs. We include these changes in all existing targets to either take advantage of
the new feature or to work as before.

3. To handle the new feature in the backend, we implement a register allocation
algorithm similar to that described in [SRH04]. We adapt the validator described
in [RL10] to handle register pairs.

4. All changes described above only affect the backend of the compiler. In particular,
we do not require any changes to the memory model or value representation. Hence,
the changes can be integrated into the CompCert compiler as is, and do not affect
other projects relying on the CompCert C semantics.

5. We perform extensive benchmarks of our changes. We record changes in compile
time due to the new register allocation algorithm and the size of the compiled
executable. We test our contributions on standard compiler benchmarks and
industry code.

1.4 Structure of the Thesis
In Chapter 2 we briefly review the properties of the two processor architectures that
motivated our changes. We go on to give an overview of the CompCert compiler, reviewing
the implementation and the high-level proof idea. Those components directly affected by
our changes will be treated in more detail, in particular, register allocation.

In Chapter 3 we show the limitation of CompCert by stepping through a concrete example.
We go on to discuss our design choices for the pair representation in both the register
allocator and the backend of the compiler.

In Chapter 4 we discuss the implementation of our contributions. We highlight how our
design choices affected the correctness proofs by looking at two translation steps in more
detail.

In Chapter 5 we evaluate our changes by performing benchmarks and putting our
contributions into the context of related work.

Finally, in Chapter 6 we sum up our contributions and discuss limitations and future
directions.

3

CHAPTER 2
Preliminaries

Before we can detail and motivate the contributions of this thesis we first need to provide
some background on the specific features of the affected Arm and TriCore architectures.
We go on to review CompCert’s internals, focusing on those parts that are affected by
our contributions. We pay special attention to register allocation and give a detailed
account of the allocation algorithm in CompCert.

2.1 Notational Conventions

In C, 64-bit and 32-bit floating-point numbers have types double and float, respectively.
In CompCert, 64-bit floating-point numbers have type float and 32-bit floating-point
numbers have type single. To use consistent names and avoid confusion, we use the type
double for 64-bit floating-point numbers and the type single for 32-bit floating-point
numbers. We use the same terminology in all pseudocode examples in this thesis, changing
the names of types, functions and constructors where necessary.

We present examples in C, several low-level intermediate languages of CompCert and
Arm assembly. Pseudocode showcasing our development is presented either in Gallina,
the specification language of the Coq theorem prover, or OCaml. We do not expect
any prior knowledge in any of the specific languages but assume some familiarity with
assembly code and functional as well as imperative languages.

We sometimes mix source code and a more mathematical notation. To describe the
result of a potentially failing computation (OCaml’s option type), we write ⌊x⌋ to denote
successfully returning x and ⊤ to denote failure. For a map x : Y → Z we write x(y) for
accessing the map and x[y ← z] for the map in which y is updated to z.

5

2. Preliminaries

2.2 Architectures & Registers
In the following, we give a brief overview of the relevant parts of the Arm and TriCore
architectures. We will focus on the layout of the register files and for the Arm architecture
also detail the calling conventions.

2.2.1 Arm
CompCert supports Armv8 in 64-bit mode and Armv8, v7 and v6 in 32-bit mode. For
the 32-bit architectures, it supports the additional VFPv2 (Armv6) and VFPv3-D16
floating-point coprocessors. All 32-bit Arm architectures are supported in little-endian
or big-endian mode. The contributions of this thesis affect only the 32-bit architectures
with floating-point support, hence, in the rest of this thesis we just use the shorthand
Arm when we refer to those architectures.

Register Files

Arm’s registers are split into core registers and extension registers. The processor has

• thirteen 32-bit General purpose registers (GPRs) R0-R12,

• three 32-bit special use registers SP, LR and PC, which can also be referred to as
R13-R15

• sixteen 64-bit GPRs that can be seen as:

– thirty-two single-precision GPRs S0-S31, or
– sixteen double-precision GPRs D0-D15.

In Figure ?? below, we illustrate the two register files, the core registers on the left and
the extension registers on the right. The sixteen double-precision registers are aligned
pairs of single-precision registers. For 0 ≤ n ≤ 15, the register D<n> is made up of the
two registers S<2n> and S<2n+1>. The least significant half of a value stored in D<n> is
in S<2n>.

We view the register files as split into three different classes. The class of integer registers
R, the class of single-precision registers S and the class of double-precision registers D.
Registers in D are what we refer to as register pairs and may alias with registers from S.
If two registers alias, assigning to one invalidates the value in the other register. The
register D<n> aliases with S<2n> and S<2n+1>.

Calling Conventions

The GPRs are split into caller-save and callee-save registers. The registers R4-R11 and
S16-S31 are the callee-save registers. If a function uses these registers it is responsible
for restoring the values they contained before the function was called. The other GPRs

6

2.2. Architectures & Registers

R0

R1

··
·

R14

R15

Core Registers

S0

S1

S2

S3

··
·

S30

S31

Extension Registers

D15

D0

D1

Figure 2.1: Arm register files

are the caller-save registers. The calling function is responsible for preserving their value
and they are used for argument passing.

Without the floating-point coprocessor, parameters are passed in registers R0-R3 and
any additional parameters on the stack. This also applies to variadic functions where
the number of formal parameters is not fixed. For non-variadic functions, floating-point
arguments are passed in registers S0-S15 (D0-D8). Starting with S0, the arguments
are passed in the next available register respecting alignment constraints of the double-
precision registers. If a register is skipped to respect the alignment constraints of an
argument, it is used for the next argument that fits into the register. Consider the
example of a simple C function f below.

f(

R0� �� �
int i,

S0� �� �
single f1,

d1/(S3,S2)� �� �
double d1 ,

S1� �� �
single f2)

The parameters of the function are annotated with the registers that their argument will
be passed in. In particular, notice how the second single-precision parameter f2 is passed
in register S1, which was skipped to pass the third parameter d1.

2.2.2 TriCore
CompCert currently does not support the TriCore architecture but is planned to in a
future release. The TriCore architecture has 32 GPRs split into address registers A0-A15
and data registers D0-D15. Similar to the Arm floating-point coprocessor, aligned pairs of
both data and address registers can be addressed. In Figure ??, we show the register files.
Function calls are handled by special instructions automatically storing and reloading
the callee-save registers and we omit giving the details.

7

2. Preliminaries

D[0]

D[1]

D[2]

D[3]

··
·

D[14]

D[15]

Data Registers

A[0]

A[1]

A[2]

A[3]

··
·

A[14]

A[15]

Address Registers

E[14]

E[2]

E[0]

P[14]

P[0]

P[2]

Figure 2.2: Tricore register files

2.3 CompCert

The CompCert project was initiated in 2005 and since then has been a prominent basis
for low-level systems research and compiler verification. The main contributions are the
formally verified, industrial-strength compiler CompCert and formal semantics for the
C language. Throughout the years CompCert has seen many extensions [BBGH+19;
BDP14; SCKK+19], has been integrated into larger toolchains [App11; AAMP+17] and
its memory model has inspired others [JJKD17; SLKM+21]. CompCert has also seen
industry adoption in safety-critical fields [KBWS+18], and has been shown to improve
code size and worst-case execution time compared to previously used compilers [BBFL+12;
KBWS+18]. For its contributions to research and industry, CompCert received the ACM
Software Systems Award in 2021.

Below we give an overview of the structure of the compiler toolchain, focussing on the
parts relevant for this thesis. CompCert, like a typical compiler, is split into a C-dependent
frontend and a target-dependent backend. Additionally, it comes with rigorous semantics
of all intermediate languages, required to reason about the correctness of the compiler.
The review is based on multiple works detailing the components of CompCert [BDL06;
LABS14; Ler09a; Ler23] and the latest development found online [LBDJ+].

2.3.1 Machine Model & Semantics

Reasoning about the behavior of a program requires a rigorous formulation of the
semantics of the language it is written in. In CompCert’s case, this requires formal
semantics for C, the target’s assembly language, and all intermediate languages of the
compiler. Defining the semantics of imperative languages requires modeling the state

8

2.3. CompCert

Inductive val: Type :=
| Vundef
| Vint (n: int)
| Vlong (n: int64)
| Vdouble (f: float64)
| Vsingle (f: float32)
| Vptr (b: block) (ofs: ptrofs).

Tany64

TlongTany32 Tdouble

Tsingle Tint

Figure 2.3: Values and types

they are manipulating. For the languages used in CompCert, we require models of the
machine representation of values, memory, and registers.

Values

All languages operate on the val datatype given above in Figure 2.3. Vundef is an
undefined value and for example, used to refer to the result of accessing uninitialized
memory. The scalar types are a wrapper around the concrete representation of machine
integers n or IEEE floating-point numbers f. Pointers are not represented at the bit-level
but instead consist of a block identifier b and an offset ofs into the block.

The subtyping relation is given in Figure 2.3 on the right. The arithmetic values are
typed intuitively and Vundef is of any type. Pointers either have type Tlong or Tint,
depending on the target architecture. The types Tany32 and Tany64 are reserved for
special operations on memory.

Memory

CompCert uses a single memory model for source, target and intermediate languages.
A memory state is specified via an abstract datatype mem and consists of a collection
of disjoint blocks. Addressing is performed via an integer offset into a block, allowing
pointer arithmetic within a block.

Memory is modeled at the byte-level to capture low-level programming idioms. It comes
with a more fine-grained notion of types capturing signedness and size. Memory types τ
are passed as an argument to every memory access performing necessary type-conversions.
Below we give an intuition of some memory operations, omitting those explicitly working
on the byte-level (store_bytes, load_bytes, drop_perm).

• alloc(m, lo, hi) returns an updated memory and the address of the freshly
allocated block of size hi − lo.

• store(τ, m, b, ofs, v) returns an updated memory with block b at ofs con-
taining the value v encoded according to τ . A store can fail if the memory at

9

2. Preliminaries

the given address is not writeable. We use the following notation for a store:
m[(b, ofs) ←τ v].

• load(τ, m, b, ofs) decodes and returns the value at ofs in block b. A load
can fail if the address is not readable. We use the following notation for a load:
m[(b, ofs)]τ .

• free(m, b, lo, hi) frees a memory quantity. A free can fail if an already freed
block is freed again.

The abstract datatype specifies the behavior of the operations in a natural fashion. The
example below states that after successfully storing a value encoded with τ ′, a load from
the same location succeeds if loaded with a compatible type τ . We write τ ∼ τ ′ to denote
compatibility between two types, e.g., the types of 32-bit signed and unsigned integers.

If m[(b, ofs) ←τ ′ v] = ⌊m’⌋ and τ ∼ τ ′ then m’[(b, ofs)]τ = ⌊v⌋.

Since memory is modeled at the byte level, a load can also succeed even if no previous
store was performed on the exact address loaded from. We can for example load only one
half of a 64-bit integer previously stored in a block b at ofs, by loading a 32-bit quantity
from block b at ofs + 4. This is only possible for the arithmetic types as pointers are
not modeled at the byte level. Moreover, CompCert also supports loads and stores using
the types Tany32 and Tany64. Like pointers, the values are not split into the individual
bytes and any overlapping load will fail.

Register File

CompCert models the register file rs of its intermediate languages as a simple map
rs : Regs → val from the set of registers Regs to values. Hence, all registers are disjoint
and untyped giving us two convenient properties to reason about updates. First, assigning
a value v to a register and reading back from r returns the same value v.

∀r, v : rs[r ← v](r) = v.

Second, if two registers r and r′ differ, setting the value of one leaves the value stored in
the other unaffected.

∀r, r′, v : r ̸= r′ ⇒ rs[r′ ← v](r) = rs(r).

Since registers are assumed to be disjoint Arm’s register file cannot be modeled correctly.
The employed workaround is that only the double-precision registers are used. This cuts
the number of available registers for single-precision computations in half. Moreover, the
calling conventions cannot be modeled correctly.

10

2.3. CompCert

2.3.2 Preprocessing & Compiler Frontend

C CompCertC Clight C#minor Cminor*
pure expr. type elim. stack alloc.

Figure 2.4: Translation steps from C to Cminor

The source language of CompCert is a large subset of C99 with some extensions from
C11. The initial preprocessing and parsing contains multiple unverified steps (indicated
by a dashed arrow in Figure 2.4). It translates the input program to the CompCertC
language, the entry point to the verified part of the compiler. To increase trust in this
unverified pass, one can optionally output the resulting CompCertC program. Static
analysis can then be performed on the preprocessed CompCertC program, instead of the
C source code.

The next translation step to Clight pulls side effects out of expression, inserting appropriate
statements capturing the semantics of the side effects. The final two translation steps
resolve type-dependent behavior, like overloaded operators, and identify those variables
whose address is never taken. Local variables of a function whose address is not taken
(temporaries) are subject to register allocation, while the others are allocated on the
stack. The resulting intermediate language Cminor is a target-independent, untyped,
low-level language.

2.3.3 Compiler Backend, Assembling & Linking

Cminor CminorSel RTL LTL

Linear Mach Asm Exe

Instruction
selection

CFG
constr.

register
allocation

stack layout Instruction
expansion

*

optimizations

CFG
destrcution

Figure 2.5: Translation steps from Cminor to the executable

The first translation of the backend is to CminorSel, a variant of Cminor in which processor-
dependent instructions are selected for expressions. Simple constant propagation and

11

2. Preliminaries

arithmetic identities are used to minimize the number of required instructions. The next
translation step to RTL introduces fresh temporaries for intermediate results and the
program is transformed into a Control-flow graph (CFG). RTL is the target language of
almost all optimizations of CompCert and is the last intermediate language unaffected
by our contributions.

To get an intuition for the intermediate languages and translation steps we show the
signatures of selected RTL and LTL instructions below in Figures 2.6 and 2.7. The RTL

Inductive instruction: Type :=
| Iop (op: operation) (r⃗: list reg) (r: reg) (s: node)
| Iload (τ: memory_chunk) (addr: addressing) (r⃗: list reg) (r: reg) (s: node)
| Icall (sig: signature) (ros: reg + ident) (r⃗: list reg) (r: reg) (s: node).

Figure 2.6: Selected RTL instructions

instructions operate on temporaries (type reg) and a map rs, from temporaries to their
stored values, is part of the program state. Each instruction takes a list of arguments
r⃗ and returns a result in r. The nodes of the CFG are single instructions, hence each
instruction has a successor s. The semantics of the instructions follow a common pattern.
The arguments are evaluated using the map rs. The values are used in an arithmetic
operation op, used to compute the address using the addressing mode addr, or passed as
arguments to a function call. The result is then stored in rs at the specified destination
r.

The translation between LTL and RTL is register allocation and assigns machine registers
(type mreg) and stack slots to temporaries. An LTL execution state has a location map
ls from stack slots and machine registers to values. For the selected LTL instructions
given below, only machine registers are allowed to pass as arguments and store results in.

Inductive instruction: Type :=
| Lop (op: operation) (r⃗: list mreg) (r: mreg)
| Lload (τ: memory_chunk) (addr: addressing) (r⃗: list mreg) (r: mreg)
| Lcall (sg: signature) (ros: mreg + ident)
| Lbranch (s: node).

Figure 2.7: Selected LTL instructions

The instructions are syntactically and semantically similar to the RTL instructions.
They do not have a successor, as in LTL a basic block in the CFG can have multiple
instructions and is terminated with the newly introduced Lbranch instruction. The
Lload and Lop instructions directly correspond to their counterpart in RTL, using ls to
evaluate the registers. The Lcall instruction does not have any arguments or destination
as the argument values are passed in machine registers according to the signature of the
function.

12

2.3. CompCert

The next translation step to Linear destructs the CFG and the step to Mach, makes
the stack layout of a function explicit, hence called the Stacking pass. Up until LTL,
stack accesses are modeled using the location map. In Mach, the stack is treated as part
of the memory. Another responsibility of the Stacking pass is to insert instructions to
preserve callee-save registers across a function call. Previously, callee-save registers were
automatically restored and built into the semantics of calls. In the Stacking pass, the
callee-save registers that are used by a function are determined and instructions to store
them on the stack are inserted in the function prologue. Symmetric instructions to reload
the registers are inserted in the function epilogue.

The last formally proven translation step is to Asm, the targets’s assembly semantics.
The final steps of generating the executable, are once again unverified and an off-the-shelf
assembler is used. On some architectures, there are additional unverified passes before
assembling to fix potential discrepancies between the modeled semantics and the actual
target.

2.3.4 Correctness Proof
CompCert is implemented using the Coq interactive theorem prover and machine-checked
proofs are carried out directly on its source code. In the proven correct parts of the
compiler, this rules out any miscompilation with near-certainty. The proof of correctness
relates the source and output program via the notion of semantic preservation.

Definition 2.3.1 (Semantic Preservation [Ler23])
For all source programs S and compiler-generated code C,
if the compiler, applied to the source S, produces the code C,
without reporting a compile-time error,
then the observable behavior of C improves one of the allowed observable behaviors of S.

Note that the compiler need not output code for any particular source code S. CompCert
may fail at compile-time if the input is malformed. It may also fail on well-formed
input, e.g., if it cannot allocate a function without exceeding the maximum stack size.
Moreover, the compiler is allowed to refine the behavior of S. The C expression evaluation
is non-deterministic and the compiler can choose one of the allowed execution orders. It
is also allowed to improve on the behavior, i.e., giving a program with undefined behavior
meaning. This is necessary to perform optimizations like dead-code elimination, which
might remove sources of undefined behavior.

Semantic preservation is established between any two intermediate languages and the
proofs are composed to the main theorem of semantic preservation between CompCertC
and the target’s assembly semantics Asm. To prove the correctness of the individual
translations, two approaches are used. We write S ≈ C to denote semantic preservation.

13

2. Preliminaries

Definition 2.3.2 (Verified Compiler [Ler09a])
A compiler is said to be verified if it is accompanied with a formal proof of the following
property:

∀S, C : Comp(S) = OK(C) =⇒ S ≈ C

Adopting the above terminology, we can view each translation step of CompCert as
a single compiler between two intermediate languages. Most translation passes are a
Verified Compiler implemented in Coq requiring each translation step to be reasoned
about. Another approach, e.g., used for register allocation, is that of a Verified Validator
defined below.

Definition 2.3.3 (Verified Validator [Ler09a])
A validator Validate is said to be verified if it is accompanied with a formal proof of the
following property

∀S, C : V alidate(S, C) = true =⇒ S ≈ C

The compiler itself does not need to be verified and only the result is inspected. The
validator itself is proven to only accept the program C if it preserves the semantics of S.
This can be convenient for very complex translations since one does not have to reason
about every compilation step.

2.3.5 Pairs of Registers in CompCert
CompCert supports 64-bit integer arithmetic on its 32-bit target architectures where the
operations have no corresponding machine instructions. Instead, library functions with
axiomatized semantics are relied on to offer full support. Since 32-bit registers cannot
hold values of type Tlong, values are split up into two registers. Semantically, this is
done by the functions makelong, lowordoflong, and hiwordoflong. The functions are
only defined on values Vlong n, accessing the bit representation n of the value. The
semantics of 64-bit arithmetic is therefore only defined on values Vlong n and otherwise
Vundef. This is no different from the arithmetic machine operations returning Vundef
for those values that are not supported.

Similarly, values of type Tlong can be used as function arguments and are, according to
the target’s calling conventions, potentially passed in two registers. This is captured by
the type rpair mreg, containing either one or two registers.

The difference to the register pairs we refer to in the course of this thesis is that they
are only an abstraction adopted by the compiler. Independent machine registers can
be grouped into a pair, capturing that the compiler used them to hold two halves of a
value. They are deliberately limited in use, only available where the compiler uses them
for 64-bit integer arithmetic. The register pairs we support with our contributions are
a notion of the target’s machine semantics and can be used as arguments to machine

14

2.4. Register Allocation

instructions. This requires adopting pairs at the level of the machine semantics and using
them in all places where only single registers are supported so far.

2.4 Register Allocation
A register allocator takes a program operating on an unbounded number of temporaries
and transforms it into a semantically equivalent program operating on a finite number
of machine registers. Temporaries are those variables of a program whose address is
never taken and therefore do not need to be represented in memory. An optimizing
compiler relies on the ability to create temporaries when needed, e.g., to hold a common
sub-expression to avoid recomputation. Hence, good register allocation is crucial for an
optimizing compiler.

CompCert uses a graph-coloring allocator, an approach available in many modern
compilers [TMKF+19; GNU; GHC]. In the following, we give a detailed treatment of
graph-coloring allocation and the concrete algorithm used in CompCert.

2.4.1 Graph-coloring Register Allocation
Graph-coloring register allocation is a global register allocation approach. Rather than
assigning machine registers per basic block, allocation is performed per function. At
the heart of a graph-coloring register allocator lies the interference graph. The nodes
are comprised of temporaries and the interference edges connect two temporaries that
are live at the same time, hence cannot be mapped to the same machine register. This
gives us an immediate reduction to the coloring problem by determining the number of
colors K by the available machine registers. A successful coloring gives us an assignment
of machine registers such that no two interfering temporaries are mapped to the same
register.

In Figure 2.8 we compiled a simple code snippet with CompCert. For the sake of this
example, we manually turned off optimizations during the allocation phase. In the
resulting RTL code, each line is annotated above with the set of temporaries that are
live before the instruction. The corresponding interference graph is constructed using
the liveness information of the RTL program. Two temporaries are connected by an
interference edge, the solid lines, if one is live after an assignment to the other. Consider
the two temporaries x1 and x3. In line 6 of the RTL code is an assignment to x3, but x1
is live after the instruction as it is used in line 8. This prohibits both x1 and x3 from
being assigned to the same machine register. The dashed lines record moves between
two registers, e.g., line 2. We can also have precolored vertices in the graph such as in
this case R0. It is used to enforce the calling conventions, passing the parameter of f in
register R0.

Casting register allocation as a coloring problem raises two issues. First, unlike a coloring
problem, we cannot deem a graph uncolorable or find the smallest number of necessary
colors instead. Second, graph coloring is NP-complete and we cannot afford to naively

15

2. Preliminaries

1 int f (int a) {
2 int d = a;
3 int b = 1;
4 int c = b + a;
5 d = c + b;
6 return d + c;
7 }

(a) C code

1 f() {
2 x1 = R0;
3 {x1}
4 x4 = x1;
5 {x1}
6 x3 = 1;
7 {x1, x3}
8 x2 = x3 + x1;
9 {x2, x3}

10 x4 = x2 + x3;
11 {x2, x4}
12 x5 = x4 + x2;
13 {x5}
14 R0 = x5; return R0
15 }

(b) RTL code

x5

R0 x1

x3 x2

x4

(c) Interference Graph

Figure 2.8: Simple C-code and corresponding interference graph

search for an optimal solution. To see how these issues are addressed we perform register
allocation on our example graph using Chaitin’s Algorithm [CACC+81; Cha82], the first
implementation of a graph-coloring register allocator. The algorithm is separated into 4
phases detailed below, and the effects on the graph are illustrated in Figure 2.9.

1. Coalescing: The Coalescing phase combines any two non-interfering nodes that
participate in a move. When combining two nodes, we take the union of their
neighbors. In our example, we therefore combine vertices x1, x4, x5 with R0,
keeping the color. If any nodes are coalesced, the graph is rebuilt, potentially
leading to new opportunities for further coalescing.

2. Simplify: The Simplify phase removes vertices from the graph based on the
following observation: If a vertice v has less than K neighbors, a graph G is
K-colorable if and only if G \ {v} is K-colorable. This simple criterion is used to
remove vertices from the graph, pushing them onto a stack, until no more low-degree
(< K) vertices are in the graph. In our example, we can repeat this until we end
up with the empty graph.

3. Spilling: If the above strategy gets stuck we give up on coloring the graph. We
pick a node in the graph and rather than finding a register for it, we decide to store
it on the stack instead. We insert spill-code into the program that loads and stores
the temporary before and after every use. If we need to spill a temporary we start
over on the new program. In our example, we do not need to spill any temporaries.

16

2.5. Register Allocation in CompCert

4. Select: The Select phase is responsible for the coloring. It pops temporaries off the
stack assigning a color for each. Since we traverse the temporaries in the reverse
order than they were removed in, we are guaranteed that the vertice has less than
K neighbors and therefore is colorable.

x5

R0 x1

x3 x2

x4

⇒
Coalesce

x3

R0

x2

⇒
Simplify

Stack
x3
R0
x2

⇒
Spilling

⇒
Select

x3

R0

x2

Figure 2.9: Coloring using Chaitin’s algorithm with K = 3

2.5 Register Allocation in CompCert
The register allocation in CompCert is an implementation of Iterated Register Coalescing
(IRC) [GA96]. Similar to Chaitin’s algorithm, it builds an interference graph and
manipulates it in several phases, pictured below. The Coalescing phase and the Simplify
phase are interleaved in a loop. Furthermore, it uses a different strategy for Coalescing
and Spilling. We discuss the changes and new phases below.

Build Simplify Conservative
Coalesce Freeze

Potential
Spill Select

Actual
Spill

spilled

Figure 2.10: Phases of IRC [GA96]

1. Simplify: While Chaitin’s algorithm removes all low-degree nodes, IRC only
removes low-degree nodes that do not participate in any move.

2. Coalescing: IRC relies on the Conservative coalescing strategy introduced by
Briggs et al. [BCT94]. It combines nodes only if the resulting node has less than K
neighbors of high-degree (≥ K). This guarantees that a graph colorable with K
colors does not turn uncolorable by coalescing. Consider the example of Chaitin’s

17

2. Preliminaries

Algorithm in Figure 2.9. The original graph was two-colorable while the graph
after coalescing is not. If we try to color it with K = 2, Chaitin’s algorithm inserts
unnecessary spill-code. Since Coalescing and Simplify create opportunities for
further progress for one another they are repeated in a loop.

3. Freeze: If neither Simplify nor Conservative Coalesce can make any progress, we
give up on coalescing a move between two low-degree nodes. This will lead to
further opportunities for Simplify.

4. Spilling: Based on Optimistic Coloring [BCT94], spilling decisions are shifted from
the Simplify phase to the Select phase. Unlike Chaitin’s Algorithm which spills a
node if no progress can be made during Simplify, IRC picks a node, pushes it onto
the stack and continues with Simplify. Now, during Select, we are not guaranteed
to find a color. If no color is available we spill the node and rebuild the graph on
the modified program.

In Figure 2.11 below, we color our example interference graph with IRC, but this time
with K = 2. Since all low-degree vertices are part of a move, we cannot make any
progress in Simplify. The initial Coalesce, unlike Chaitin’s Algorithm, will not combine
all move-related nodes as the resulting node would have degree two. After freezing the
move, Simplify will once again be able to remove all nodes after which we can find a
valid coloring in the Select phase.

x5

R0 x1

x3 x2

x4
⇒

Simplify,
Coalesce

x3

R0

x2

x4
⇒

Freeze

x3

R0

x2

x4
⇒

Simplify,
Select

x3

R0

x2

x4

Figure 2.11: Coloring using IRC with K = 2

2.5.1 Allocation Validation
The allocation validation algorithm forms the translation step from RTL to LTL and
follows the principle of a Verified Validator. It relies on an untrusted register allocator to
produce LTL code and checks if the result is semantics-preserving. Similar to register
allocation, validation is performed function by function. First, the allocator performs a
structural check, verifying that the two programs are similar. This deliberately limits
the scope of the validator and reduces the proof effort. Second, a data-flow analysis
relates RTL temporaries with LTL locations, ensuring that they contain the same value
for all executions of the program. Below we give an intuition of the validation algorithm
based on [RL10], focusing on those parts that are affected by our changes. For a more
in-depth description, we refer to the original description in [RL10] and the current
development [LBDJ+].

18

2.5. Register Allocation in CompCert

Structural Checks

After receiving the LTL code from the allocator, the validator establishes a correspondence
between RTL instructions and LTL basic blocks. The register allocator needs to be able
to insert new instructions, e.g., Spilling, or remove instructions, e.g., Coalescing. The
validator imposes two limits on the program transformations the allocator may perform.
First, instructions without a corresponding one in the RTL code can only be moves,
including stack accesses. Second, every RTL instruction needs a corresponding LTL
instruction, therefore forcing the allocator to replace an instruction with a nop instead
of removing it. The LTL code output by the allocator is only accepted if each RTL
instruction is related to one LTL basic block containing a matching LTL instruction
potentially preceded by moves between locations. A matching LTL instruction can either
be a nop or an equivalent LTL instruction using locations instead of temporaries.

Data-Flow Analysis

The second part of validation is a backward data-flow analysis, statically ensuring that the
same values flow through the RTL and LTL programs. It manipulates a set of equations
E relating RTL temporaries with LTL locations. An equation between a temporary x
and a location l can take three shapes:

1. x =F l, equating the value stored in x and l (F stands for full),
2. x =L l, equating the value stored in l to the lower half of that stored in x,
3. x =H l, equating the value stored in l to the upper half of that stored in x.

Equations typically are of the first form, establishing a one-to-one relation between a
temporary and a location. The other two equation kinds are used to support 64-bit
integer arithmetic on 32-bit machines. As mentioned in Section 2.3.5, values of type
Tlong may be split up into two machine registers. Each half is then related to the
temporary that was used to hold the entire value in the RTL code.

The analysis uses standard fixpoint iteration to compute the set of equations that need
to hold at the entry point of a function f . The result is checked for compatibility against
the set of equations relating f ’s parameters with the machine registers that are used to
pass the arguments in the LTL code.

To prepare the presentation of parts of the transfer function, we first define some
operations on equation sets. A pair (x, l) is compatible with a set of equations E, if all
equations either relate x and l or involve neither of the two. We give the formal definition
below, where l ⊥ l′ asserts that the two locations do not overlap.

(x, l) ⊥ E
def= ∀(x′ =κ l′) ∈ E : (x′ = x ∧ l′ = l ∧ κ = F) ∨ (x′ ̸= x ∧ l′ ⊥ l).

Compatibility between a pair (x, l) and a set E is checked routinely and the equation sets
are therefore implemented redundantly, as AVL trees. One is ordered first by temporaries,
the other first by locations allowing us to quickly find all equations that contain x or

19

2. Preliminaries

locations overlapping with l. Next, we define the substitution of a location. It simulates
the effect of an assignment of ls to ld on a set of equations E. If E contains an equation
with a location l′ partially overlapping with ld, denoted l′#ld, the set of equations becomes
unsatisfiable, denoted by ⊤.

E[ld ← ls] def= ⊤ if there exists (x = l′) ∈ E s.t. l′#ld.

E[ld ← ls] def= {(x =κ ls | (x =κ ld) ∈ E} ∪ {(x =κ l) | (x =κ l) ∈ E ∧ l ⊥ ld})}.

Below we give a pseudocode example of the transfer function used in the data flow
analysis. Given an equation set E, and two related pieces of RTL and LTL code it
computes the set of equations that has to hold before execution, such that E holds
after execution. The first case is the simple case of two arithmetic operations being

transfer_instr instr bblock E :=
match instr, bblock with
| Iop _ x⃗ x _, Lop _ l⃗ l _ =>

if (x,l)⊥E then E \ {x = l} ∪ {x⃗ = l⃗} else ⊤
| _, (Lop mov ld ls) :: bblock => transfer_instr instr bblock E[ld ← ls]
end.

Figure 2.12: Parts of the transfer function

related. Intuitively, if we can establish the equality of all arguments before executing the
operation, we know that the results contain the same value. Additionally, we need to
check the compatibility to rule out invalidating any other equations by the assignment.
The second case corresponds to a move inserted by the allocator. Any equation that
involves ld can only be satisfied by the RTL code if it holds with ls before the assignment.

Proving Soundness

The soundness proof guarantees that the validator only accepts the LTL code if it
preserves the semantics of the RTL code. The proof maintains and uses the notion of
equation satisfaction defined below. It relates an RTL register map rs to an LTL location
map ls.

rs, ls |= E
def= ∀(x =κ l) ∈ E, rs(x) =κ ls(x).

The soundness proof proceeds by forward simulation, stepping through the RTL and LTL
program maintaining equation satisfaction between the state of the register map and the
location map. In other words, we prove that the semantics of executing an instruction is
reflected by an update of the equation set according to the transfer function.

Below we state the lemmas corresponding to the two cases of the transfer function
above. Note the symmetry between the lemmas and the transfer function. The transfer
function is used in a backward data-flow analysis, while the lemmas are used in the

20

2.5. Register Allocation in CompCert

forward simulation proof. Each Lemma relates the manipulation of equation sets with
the equivalent operations on the register and location maps.

Lemma 2.5.1 lets us reason about the simultaneous assignment of two related values v
and v′ to a temporary x and a location l. If rs and ls satisfy the equation set without
the equation relating x and y, and (x, y) is compatible with E, a simultaneous update of
x in rs and l in ls satisfies E.

Lemma 2.5.1 (Simultaneous Assignment)
If rs, ls |= E \(x =κ l), (x, l) ⊥ E, and v =κ v′ then rs[x ← v], ls[l ← v′] |= E.

Lemma 2.5.2 corresponds to the second case of the transfer function. If rs and ls satisfy
the equation set in which we replace all occurrences of ld with ls then rs and ls[ld ← ls]
satisfy E.

Lemma 2.5.2 (Inserted Move)
If E[ld ← ls] ̸= ⊤ and rs, ls |= E[ld ← ls] then rs, ls[ld ← ls(ls)] |= E.

21

CHAPTER 3
Design

In this chapter, we give an overview of CompCertp, an extension of CompCert supporting
register pairs. To motivate the changes, we step through the compilation of a simple
example program, showing where CompCertp improves on the current state of CompCert.
After the motivation, we detail the scope of our changes and discuss our design choices.

3.1 Illustrating the issues via an example
We compile the simple C program in Figure 3.1. It calls the function sum which adds
three floating-point numbers together. The parameters a and c are single-precision and
their sum is explicitly cast to a double-precision value before adding b. The corresponding
RTL code, on the right, closely resembles the C code and is the same for CompCert and
CompCertp.

1 double sum(single a, double b, single c){
2 double d = (double) (a + c);
3 return d + b;
4 }
5
6 int main(){
7 sum (0.f, 1.0, 2.f);
8 return 0;
9 }

1 sum(x5, x4, x6){
2 x2 = x5 +fs x6;
3 x1 = doubleofsingle(x2);
4 x3 = x1 +f x4;
5 return x3;
6 }
7
8 main(){
9 x2 = 0.f; x3 = 1.; x4 = 2.f;

10 x5 = "sum"(x2, x3, x4);
11 x1 = 0;
12 return x1;
13 }

Figure 3.1: Simple program summing up floating-point numbers

23

3. Design

The differences start after RTL, during register allocation, when assigning machine
registers to the temporaries. In Figure 3.2 below, we show the two interference graphs of
the sum function after coalescing. The interference graph of CompCert on the left uses
floating-point registers F<n> treating single-precision and double-precision temporaries
the same. Even coalescing between the two is possible as witnessed by the coalescing
of F0, x5, and x3. CompCertp on the other hand distinguishes between single-precision
and double-precision temporaries and makes use of all of Arm’s registers. A weighted
directed graph is used to capture the effects between nodes of different register classes.
The edge from D1/x4 to x2 has weight 2 as picking a double-precision machine-register
blocks 2 candidates for any interfering single-precision node.

F0/x5 : s/x3 : d

F1/x4 : d

F2/x6 : s

x1 : d x2 : s

S0/x5 : s

D1/x4 : d

S1/x6 : s

D0/x3 : d

x1 : d x2 : s

1

1

12

1

1

12

1 1 1
2

1
2

1

2

Figure 3.2: Interference Graphs of sum
The interference graph of CompCert (left) is undirected, while that of CompCertp (right) is a directed
weighted graph. We illustrate the effect of coalescing by listing all individual nodes separated by a “/”.
The type of a temporary is indicated by s for single-precision and d for double-precision.

1 sum() {
2 F0 = F0 +fs F2;
3 F0 = doubleofsingle(F0);
4 F0 = F0 +f F1;
5 return;
6 }
7
8 main() {
9 F0 = 0.f; F1 = 1.; F2 = 2.f;

10 call "sum";
11 R0 = 0;
12 return;
13 }

1 sum() {
2 S0 = S0 +fs S1;
3 D0 = doubleofsingle(S0);
4 D0 = D0 +f D1;
5 return;
6 }
7
8 main() {
9 S0 = 0.f; D1 = 1.; S1 = 2.f;

10 call "sum";
11 R0 = 0;
12 return;
13 }

Figure 3.3: Mach code of CompCert (left) and CompCertp (right)

In Figure 3.3 is the corresponding Mach code. It closely resembles the RTL code,

24

3.2. Supporting Register Pairs in Allocation

but temporaries have been replaced with machine registers. CompCert still uses the
ambiguous F<n> registers rather than the hardware registers. The consequences of this
representation are visible in the assembly output below.

1 sum:
2 vmov.f32 s4, s1

3
...

4 vadd.f32 s0, s0, s4
5 vcvt.f64.f32 d0, s0
6 vadd.f64 d0, d0, d1

7
...

8 main:
9

...
10 vmov.f32 s0, #1.
11 vmov.f64 d1, #2.
12 vmov.f32 s4, #3.
13 vmov.f32 s0, s0
14 vmov.f32 s1, s4
15 bl sum
16 mov r0, #0

17
...

1 sum:
2

...
3 vadd.f32 s0, s0, s1
4 vcvt.f64.f32 d0, s0
5 vadd.f64 d0, d0, d1

6
...

7 main:
8

...
9 vmov.f32 s0, #1.

10 vmov.f64 d1, #2.
11 vmov.f32 s1, #2.
12 bl sum
13 mov r0, #0

14
...

Figure 3.4: Assembly output of CompCert (left) and CompCertp (right)

The output is stripped of all assembler directives and instructions dealing with function
calls which are identical for CompCert and CompCertp. The output of CompCertp on the
right is in a one-to-one correspondence with the Mach code. In the output of CompCert
on the left three additional move instructions are highlighted in red. The insertion of
the vmov instruction in line 13 was an oversight and has since been fixed1. The vmov
instructions in lines 2 and 14 on the other hand are necessary. Since CompCert does not
properly model all the machine registers of Arm, it cannot enforce the correct calling
conventions. The vmov instructions copy values from the registers that are used for
parameter passing according to the ABI to those used by the code output by CompCert.
These instructions are inserted by an additional pass after compilation and are not
captured by CompCert’s proof.

3.2 Supporting Register Pairs in Allocation
The register allocator is inspired by the Generalized Register Allocator (GRA) introduced
in [SRH04]. It is built on top of the existing implementation of IRC and exposes the
concept of register classes to the allocator. For Arm, we give the allocator access to

1https://github.com/AbsInt/CompCert/commit/ccb88a8e49fd28029e086a7b0855bbe0216e3bc0

25

https://github.com/AbsInt/CompCert/commit/ccb88a8e49fd28029e086a7b0855bbe0216e3bc0

3. Design

the class of integer GPRs R, the class of single-precision GPRs S, and the class of
double-precision GPRs D. As for GRA, we define the measure worst(C, C ′) between
any two classes C and C ′. It captures how many candidates for a register in class C can
be blocked if it interferes with a register of class C ′. For Arm, we get worst(S, D) = 2
and worst(D, S) = 1. A single-precision register can only block one double-precision
register, while a double-precision register blocks two single-precision registers. If registers
of two classes cannot interfere, e.g., an integer register with a floating-point register, we
leave worst undefined. For all architecture except Arm, worst(C, C ′) = 1 if C = C ′ and
otherwise is undefined.
We use a weighted directed interference graph G = (V, E, ω) to capture the effect of
allocating registers in multiple register classes. As usual, the vertices consist of the
temporaries and the edges connect two interfering nodes. If two vertices u, v interfere
they are connected by the edges (u, v) and (v, u). For any edge e = (u, v), the associated
weight ω(e) = worst(V, U) where U and V are the classes of u and v respectively. The
degree d(v) of a node v is the sum of the incoming edge weights:

d(v) =
	

e=(u,v)∈E

ω(e).

For the Simplify phase, where low-degree nodes are removed from the graph, we use
worst to compute the degree based on the class of nodes. For the Select phase and
Coalescing, we need to define aliasing between individual registers. During Select when
assigning a machine register to a node, we check the neighbors that have already been
assigned. When determining available registers, rather than checking for equality with
neighbors, we check for aliasing. For Coalescing, we need to ensure that we do not create
a shared lifetime between two aliasing machine registers.
Consider the two example graphs in Figure 3.5. Each graph has two single-precision
temporaries x1, x2 and two double-precision temporaries x3, x4. The graph on the left
is similar to that in the example of Section 3.1 and shows the case of an architecture
with aligned pairs of single-precision registers. The only interesting case is the edge
(x4, x1) with weight 2. An assignment of a register to x4 blocks two candidates for
x1. On the right side, we show the case of unaligned register pairs. The omission of
alignment constraints leads to higher constraints between two interfering nodes. The
most interesting case is the interference between the two double-precision registers x4
and x3 which has a weight of 3. A pair p aliases with itself, but can also alias with the
two pairs which share one of the registers with p.

x1 : s

x4 : d

x2 : s

x3 : d

1

1

12

1

1

x1 : s

x4 : d

x2 : s

x3 : d

1

1

22

3

3

Figure 3.5: Interference graphs with aligned (left) and unaligned pairs (right)

26

3.3. Supporting Register Pairs in CompCert

3.3 Supporting Register Pairs in CompCert
We strive for an easy integration of our contributions into CompCert and therefore
refrain from adapting the semantics of the machine model. Since the memory model and
the value representation are shared by all languages, adapting either of the two greatly
increases the proof burden and potentially interferes with projects relying on CompCert’s
C semantics. We therefore considered two approaches, both restricted to the backend of
the compiler.

1. Modeling register aliasing: Similar to the approach taken for the allocator,
register classes are modeled and their aliasing is handled explicitly. Whenever a
value is assigned to a register, all aliasing registers are set to Vundef. This approach
is not restricted to pairs and allows support for arbitrary aliasing relationships
between registers.

2. Using optional register pairs: This approach is restricted to register pairs.
Aliasing is not modeled explicitly, but instead, we model the pair a register repre-
sents. For Arm, instead of using register D<n>, the pair (S<2n+1>, S<2n>) is used.
Assigning a value to a pair requires the value to be split in two and each half is
stored in the individual registers. Any aliasing is therefore handled implicitly as
assigning a value to a register S<n> invalidates the value stored in any register pair
containing S<n>.

We followed the second approach as strictly following the first approach leads to problems
with the preservation of callee-save registers across function calls. A function needs to
ensure that the state of each callee-save register is restored before returning. Since, on
hardware, D<n> is the same location as (S<2n+1>, S<2n>), callee-save registers potentially
alias with one another. This prohibits modeling the preservation of all callee-save registers,
as assigning a value to a register invalidates all aliasing registers.

In Figure 3.6 we illustrate the scope of our changes putting them into the context of the
whole semantics used throughout compilation. The affected components and translation
steps are highlighted in red. Pairs are introduced starting at LTL and resolved during
Asm generation for the architectures not using pairs, leaving their semantics untouched.
In the following, we give a more detailed account of the concrete changes to the affected
intermediate languages and their translation steps, as well as the Arm assembly semantics.

3.3.1 Changes to Intermediate Languages & Translations
Components that stretch several intermediate languages, like the memory or arithmetic
machine operations (Op), all operate on values. Specifics of an intermediate language,
e.g., storing values in temporaries (RTL) or machine registers (LTL) are resolved in the
semantics of the respective intermediate language. This allows us to handle pairs at the
level of the intermediate languages rather than changing the machine model.

27

3. Design

CompCertC RTL LTL Linear Mach

Arm Asm

Other Asm

.

Memory Values

Op

Locations

*

Frontend Backend

M
ac

hi
ne

M
od

el

Figure 3.6: Scope of our contributions

We use the type rpair mreg, a simple container of either one or two registers, to
enable intermediate languages to operate on register pairs or single registers. Alignment
constraints, or other restrictions on pairs, are not enforced but rather checked when
translating into the respective target’s assembly language. Syntactically, the change is
minimal and below we give an excerpt of the LTL instruction type, highlighting where
pairs have replaced the use of single registers. Most occurrences of mreg are replaced by
rpair mreg, but pairs are not supported as arguments of all instructions. The arguments
to Lload, used to compute the address, are only integer registers and we therefore omit
providing support for pairs.

Inductive instruction: Type :=
| Lop (op: operation) (r⃗: list (rpair mreg)) (r: rpair mreg)
| Lload (chunk: memory_chunk) (addr: addressing) (r⃗: list mreg) (r: rpair mreg)
| Lcall (sg: signature) (ros: mreg + ident)
| Lbranch (s: node)

Figure 3.7: Selected LTL instructions with pairs

Semantically, we need to support retrieving and storing pairs of registers in an LTL
location map. We do not change the location map but rather load the two halves of a
pair individually and append the two halves at the bit-level. Storing a value splits it into
two halves and then stores them in the individual registers. Establishing the correctness
of the repeated splitting and combining of values is done during the proof of semantic
preservation between RTL and LTL.

The later translations do not require such an argument since they all handle pairs and
perform the same splitting and combining. This is also why the translation between

28

3.3. Supporting Register Pairs in CompCert

LTL and Linear required no adaptation. The translation from Linear to Mach required
adaptations only for the newly inserted code dealing with callee-save registers.

3.3.2 Changes to Assembly Generation & Assembly Semantics
In the Arm semantics, we now model the single-precision registers S0-S31 instead of
the double-precision registers. Instructions in the assembly semantics are typed, only
accepting either floating-point or integer registers. The correct use of registers is enforced
by the register allocator, but for convenience also rechecked at assembly generation. We
make this more fine-grained, restricting the double-precision instructions to pairs and
single-precision instructions to single registers.

Modeling all registers enables us to implement the calling conventions correctly. Previously,
since only double-precision registers were used, the semantics could not reflect the correct
handling of single-precision registers. We can omit any unverified additional code enforcing
calling conventions.

The semantics of all intermediate languages that do not use pairs stay unchanged.
Assembly generation checks the correct use of registers and we can simply add an
additional restriction excluding the use of pairs.

29

CHAPTER 4
Implementation

In this chapter, we highlight some implementation details and discuss how our design
choices affected the development. The aim is to present insights into specific parts of
the work rather than detailing the entire development accessible online1. We start with
detailing how we resolve pairs by splitting values in Section 4.1 and then discuss two
translation passes in the following sections. We conclude by giving insights into the
register allocator in Section 4.4.

4.1 Splitting Values
As outlined in Section 3.2 our contributions affect only the semantics of intermediate
languages and the machine model remains as is. To achieve this, we resolve pairs at the
level of intermediate languages by splitting and combining values at the bit-level. When
a pair is used as an argument of an operation, the two values stored in the individual
halves are loaded, combined and then passed as arguments. To store the result of an
operation in a pair, the value is split and the halves are stored in the two registers making
up the pair. This splitting and combining of values poses four main challenges.

1. Splitting and combining is only well-defined for some values. The bit representation
of pointers is not available and therefore splitting is not possible. Moreover, we do
not want to give semantics to arbitrary combinations of values, e.g., combining a
single-precision float and a long integer.

2. Combining two values requires information about the expected value. We need to
be able to reconstruct the correct value, given the two halves. This boils down to
picking the right constructor.

1https://github.com/AlexLoitzl/CompCertp

31

https://github.com/AlexLoitzl/CompCertp

4. Implementation

3. Type information is not sufficient for combining values. Depending on the architec-
ture, pointers have either type Tlong or Tint, but pointer values cannot be split in
two. Moreover, any value has type Tany64 further complicating the matter.

4. Combining and splitting can destroy values. If we take two arbitrary values, combine
them and split them apart again we have no guarantee that we get back the original
values.

We define the three operations combine, loword, and hiword that are only defined on
Vdouble and Vlong, and for all others return Vundef. The definitions of the first two
are given below. The functions longofwords and doubleofsingles simply append the
two binary representations of the arguments together, forming the combined value. The
functions lowordoflong and lowordofdouble split the binary representation in two,
returning the lower half as a Vint or Vsingle.

Definition combine (v1 v2: val) :=
match v1, v2 with
| Vint _, Vint _ =>

longofwords v1 v2
| Vsingle _, Vsingle _ =>

doubleofsingles v1 v2
| _, _ => Vundef
end.

Definition loword (v: val) :=
match v with
| Vlong _ => lowordoflong v
| Vdouble _ => lowordofdouble v
| _ => Vundef
end.

Figure 4.1: Functions to split and combine values

Our definitions address the second and third challenges mentioned above. Combining and
splitting is only defined on Vfloat and Vlong and we use the values Vsingle and Vint
to represent their halves, respectively. Representing one half of a Vdouble as a Vsingle,
rather than more naturally as a Vint, allows us to correctly recombine the values without
requiring any additional typing information.

The remaining two challenges are not directly addressed by our definitions but rather
handled during the proofs. Below we show two interesting properties related to our
definitions.

Lemma combine_split_eq establishes that we can split and recombine a value of type
Tdouble. We can also prove a similar lemma for Tlong, but require an additional
hypothesis excluding pointers of type Tlong. In the proof of allocation validation,
showcased in Section 4.2, we rely on these two lemmas to prove correct splitting and
combining of values. This is only possible because of the data-flow analysis connecting
the halves to their corresponding value in the RTL code.

The converse, namely first combining two values and then splitting them does not enjoy
the same property. Lemma hiword_combine_eq is not provable and corresponds to the
fourth challenge listed above. Even if we can ensure that both values v1 and v2 have

32

4.2. Allocation Validation

type Tsingle, it might be the case that v2 is Vundef. Hence, combining and splitting
the two might not retain v1.

Lemma combine_split_eq:
forall v,
Val.has_type v Tdouble ->
v = combine (hiword v) (loword v).

Lemma hiword_combine_eq:
forall v1 v2,
Val.has_type v1 Tsingle
/\ Val.has_type v2 Tsingle ->
v1 = hiword (combine v1 v2).

Figure 4.2: Lemmas to reason about splitting and combining values

4.2 Allocation Validation
Proving the correctness of allocation validation was one of the main challenges of
introducing pairs to CompCert. We need to verify that the result of the new register
allocator, now using pairs, preserves the semantics of the RTL code. We adapt the
algorithm reviewed in Section 2.5.1 to support reasoning about the repeated splitting and
recombining of pairs. We retain the two phases, first performing structural checks and
then a data-flow analysis. Below we discuss the changes to the algorithm highlighting
two interesting cases of the transfer function.

4.2.1 Structural Checks

In addition to the existing checks, we now enforce the correct use of register pairs. We
check that the two registers in a pair are distinct and that two pairs involved in a move
do not overlap. If these two properties hold, and, as outlined above, we can split a value
correctly, we can view a move between two pairs, as two moves between the individual
halves. We do not enforce any architectural constraints like alignment of pairs as the
correct use of registers is enforced during assembly generation.

4.2.2 Data-Flow Analysis

The data-flow analysis requires more significant changes. We need to relate the values
flowing through the RTL and LTL programs, where in the latter we repeatedly split and
recombine values in register pairs. The original algorithm uses equation sets to relate
values in temporaries and locations and already offers some support for splitting 64-bit
integers. The main difference in CompCertp is that we can update the two registers of a
pair simultaneously with a single LTL instruction. This also needs to be reflected in the
equation sets and we considered two options.

1. Modeling pairs in equations: Rather than equations relating RTL temporaries
with locations, they relate temporaries with location pairs (rpair loc), explicitly
connecting the two halves of a pair.

33

4. Implementation

2. Keeping the equation sets as they are: Equations already come in three kinds
to enable the relation of a location containing one half of a split 64-bit integer with
the temporary containing the entire value. Extending this to floating-point values
is easy, but the two halves of a pair are treated as two unrelated registers.

The first option is attractive as it keeps track of pairs and allows performing a single
update on the equation set to reflect an assignment to a pair. The downside is that the
location pairs of two equations can alias and updates to the equation set need to check
all other equations for aliasing. This complicates an efficient implementation of equation
sets preventing fast implementation of routine operations like updates and compatibility
checks.

We therefore implemented the second option, extending the use of equation kinds to
floating-point values. Keeping the equations as they are allows for a straightforward
adaptation of many cases of the transfer function, including that of arithmetic operations.
The main difficulty is reasoning about the inserted moves which now requires strong
assertions to relate the two halves of a pair. Below we first define some new operations
on equation sets and then showcase the updated transfer function.

We write x ≈ p to relate a temporary x with a location pair p (rpair loc).

x ≈ p
def=

����
⌊{x =F m}⌋ , if p = One m

⌊{x =L lo, x =H hi}⌋ , if p = (Two hi lo) and splittable(x)
⊤ , otherwise

The predicate splittable(x) checks that x can be split and recombined without destroying
the value stored in x. This amounts to checking that x has type Tdouble or that it has
type Tlong and pointers have type Tint.

We define the intersection between a location l and equation set E as all equations that
relate l to some temporary.

l ∩ E
def= {(x =κ l′) | (x =κ l′) ∈ E ∧ l = l′}

We overload ⊥ to check compatibility of a location l with an equation set E for kinds
K ⊆ {F, H, L}. A location l is compatible with E for kinds k ∈ K if all equations either
contain l and are of kind k ∈ K or the location does not overlap with l.

l ⊥K E
def= ∀(x′ =κ l′) ∈ E : (x′ = x ∧ l′ = l ∧ κ ∈ K) ∨ (x′ ̸= x ∧ l′ ⊥ l).

Below we detail the adapted transfer function. The case for the arithmetic operations is
similar to before, now adding and removing two equations in case of register pairs. Since
operations are typed, we can check that pairs are only used for arguments or results of
type Tlong and Tdouble.

34

4.2. Allocation Validation

The case for inserted moves now requires multiple checks to ensure correct splitting and
combining of values. As outlined in Section 4.1, combining two values and then splitting
them apart may not preserve the two values. To reason about the result of the move we
check that the two registers of a pair are related to the upper or lower halves of the same
RTL temporaries.

transfer_instr instr bblock E :=
match instr, bblock with
| Iop _ x⃗ x _, Lop _ l⃗ l _ =>

if (x,l) ⊥ E then E \ {x ≈ l} ∪ {x⃗ ≈ l⃗} else ⊤
| _, (Lop mov (Two dsthi dstlo) (Two srchi srclo)) :: bblock =>

if dsthi ∩ E = dstlo ∩ E /\ dstlo ⊥{L,H} E /\ dsthi ⊥{L,H} E
then let E' := transfer_instr instr bblock E[dstlo ← srclo] in

transfer_instr instr block E’[dsthi ← srchi]
else ⊤

end.

Figure 4.3: Parts of the new transfer function

Proving Soundness

The soundness proof proceeds the same as for the original algorithm. Below we state two
lemmas that allow us to reason about the two cases of the transfer function given above.
Lemma 4.2.1 lets us reason about the simultaneous assignment of a value v to a temporary
x and a location pair (hi, lo). This is similar to the original case but amounts to checking
the constraints for each half individually.

Lemma 4.2.1 (Simultaneous Pair Assignment)
If rs, ls |= E \{(x =H hi), (x =L lo)}, (x, lo) ⊥ E, and (x, hi) ⊥ E,
then rs[x← v], ls[hi← hiword v][lo ← loword v] |=E.

Lemma 4.2.2 corresponds to the second case of the updated transfer function. It highlights
the downside of the chosen representation of equation sets. The equation set only allows
updates of each half of the pair individually, while on the level of the location map, we
perform a single update. We write ls[(dsthi, dstlo) ← ls((srchi, srclo))] to signify that
the update is simultaneous. In the background, this amounts to, loading each half srchi,
and srclo individually, combining the value, splitting it again and assigning to dsthi, and
dstlo. The additional hypotheses of the lemma serve to ensure that this is equivalent to
the two updates of the equation set.

Lemma 4.2.2 (Inserted Pair Move)
If E[dsthi ← srchi][dstlo ← srclo] ̸= ⊤ and rs, ls |= E[dsthi ← srchi][dstlo ← srclo],
and dsthi ∩ E = dstlo ∩ E, and dstlo ⊥{L,H} E, and dsthi ⊥{L,H} E,
and dstlo ̸= dsthi, and dsthi ̸= srclo,
then rs, ls[(dsthi, dstlo) ← ls((srchi, srclo))] |= E.

35

4. Implementation

4.3 Preservation of callee-save registers
Up to the Mach intermediate language the automatic preservation of callee-save registers
was built into the semantics of a function call. This is resolved during Stacking, the
translation pass from Linear to Mach. It determines the used callee-save registers of a
function and inserts instructions into the function prologue and epilogue that ensures their
preservation across a function call. The new instructions do not have any corresponding
ones in the previous intermediate languages. This sets the Stacking pass apart from the
other translation passes affected by our changes.

CompCertp exposes a more fine-grained view of the registers, giving us three possibilities
to handle the preservation of callee-save registers.

1. Only saving pairs: This approach saves the entire pair if any of its subregisters
is used by the function. The downside of this approach is the slight increase of
the function’s stack frame as we are also saving registers that are not used by the
function.

2. Saving individual registers: Saving all registers individually prevents wasting
any space in the stack frame. It comes at the cost of a greater code size, as we
need two instructions to preserve a pair if both halves are used.

3. Saving pairs only if both registers are used: This approach is the best of
both worlds. If only one register is used we only store one half, not wasting any
stack space. If both registers of a pair are used by a function, we only use one
instruction saving both halves.

Initially, while proving the soundness of CompCertp we first followed the second approach.
CompCert has no notion of pairs and while it stores individual registers, its strategy for
Arm corresponds to the first approach. Since only double-precision registers are used,
even if they only hold a single-precision value, the entire register is stored on the stack.
In CompCertp, we switched to modeling single-precision registers and by following the
same strategy as CompCert we implemented the second approach.

Implementing the third approach is difficult since no information about the values stored
in the registers is available. The contents of the registers stem from the calling function
and we cannot even hope to compute a precise type at compile time. This is the main
difference to the proof of the allocation validation detailed above. There, two halves of a
value were always related to the entire value in the RTL program.

The problem we encounter corresponds to the second, unprovable lemma in Section 4.1.
If we store a pair of registers containing unrelated values, we cannot prove that we
can retrieve the two original values. For the sake of producing more efficient code, we
implement approach three for CompCertp, treating the action of saving and restoring
callee-save registers differently than a normal store or load.

36

4.3. Preservation of callee-save registers

We introduce the two new instructions Msavecallee and Mrestorecallee to the Mach
intermediate language. The two instructions store to and load from the stack. Unlike
other instructions, they do not combine and split values but rather treat the two halves
individually. Below we showcase the semantics of Msavecallee for a register pair.
Conceptually easy, it also highlights the special care required if we do not perform the
splitting and combining at the level of values. The instruction needs to be endian aware,
storing the correct half at the lower address. In addition, we need to explicitly compute
the offset to store the second register.

Definition save_callee_rpair m sp ofs p rs :=
match p with
| Two r1 r2 => let rhi:= if big_endian then r2 else r1 in

let rlo := if big_endian then r1 else r2 in
let κ := type_of rlo in
let κ′ := type_of rhi in
if m[(sp, ofs) ←κ rs(rlo)] = ⌊ m’⌋
then m'[(sp, ofs + |κ|) ←κ′ rs(rhi)]
else ⊤

end.

Figure 4.4: Pseudocode of save_callee_rpair for pairs

For the correctness proof we need to show that we can save the register contents
onto the stack using Msavecallee instructions and later reload the correct value using
Mrestorecallee instructions. We define a separating conjunction contains_rpair de-
picted below. It is quite similar to save_callee_rpair and has a matching contains
predicate for each store in save_callee_rpair. Intuitively, the contains predicate states
that the memory m at the given block sp and offset ofs contains a value v of a certain
type κ. The ** is the star operator from separation logic ensuring disjoint memory
regions.

Definition contains_rpair sp ofs p rs :=
match p with
| Two r1 r2 => let rhi := if Archi.big_endian then r2 else r1 in

let rlo := if Archi.big_endian then r1 else r2 in
let κ := type_of rlo in
let κ′ := type_of rhi in
contains κ sp pos (rs rlo)
** contains κ′ sp (pos + |κ|) (rs rhi)

end.

Figure 4.5: Simplified separating conjunction

Equipped with the contains_rpair predicate above, we can formulate a lemma capturing
the use of save_callee_rpair to save a register pair to the stack. As expected, the lemma

37

4. Implementation

allows us to establish that after saving a register to the stack using callee_save_rpair,
the memory satisfies the contains_rpair predicate, stating that the memory contains
the two values stored in the register pair. The first two assumptions ensure that the
registers have the same size and that the size of the pair divides the offset being stored to.
This is a requirement to satisfy alignment constraints of the stack. The third assumption
states that the memory has a disjoint range from ofs to (ofs + size_of p) in block sp
with write access.

Lemma contains_rpair_save_callee_rpair:
forall (spec: mreg -> val -> Prop) spec1 m sp ofs P ls p rs,

wf_pair p ->
size_of p | ofs ->
m |= range b ofs (ofs + size_of p) ** P ->
exists m',
save_callee_rpair m sp ofs p rs = Some m'

/\ m' |= contains_rpair sp ofs p rs ** P.

Figure 4.6: Selected LTL instructions with pairs

The proof establishing the correct preservation of the callee-save registers uses the
properties and functions showcased above. We can state and prove a similar lemma to
contains_rpair_save_callee_rpair that allows us to correctly reload the values from
the stack given it satisfies the separating conjunction.

The changes to the Mach semantics also need to be reflected in the Arm assembly semantics.
We adapt the semantics of the Pfldd_a and Pfstd_a instructions, corresponding to the
Arm instructions vldr and vstr. The instructions have been introduced to CompCert
to handle the loading and storing of callee-save registers. We adapt them to reflect
the semantics of Msavecallee and Mrestorecallee, similarly storing the individual
registers and explicitly computing the offset. This is defined in accordance with the Arm
semantics [Armb]. The architectures that do not support register pairs do not need to be
adapted.

4.4 Register Allocation

CompCert’s implementation of IRC closely follows the pseudocode given in [GA96], but
allocates both integer and floating-point registers at the same time. Our allocator, similar
to GRA, builds on top of the existing implementation. Each architecture needs to export
an interface to the allocator. The changes to the allocator itself are then small and mostly
consist of replacing constants and hard-coded assumptions with architecture-dependent
functionality.

38

4.4. Register Allocation

4.4.1 Architecture Interface
We equip each architecture with an interface detailing its register classes and how they
interact. Since the registers available to the allocator may differ from those modeled in
CompCertp’s semantics, each architecture also provides functions to map back and forth
between the two.

In the case of Arm, the allocator adopts the view of the two classes S and D of single-
precision and double-precision floating-point registers. The assembly semantics on the
other hand, only use the registers in S and the double-precision registers are modeled
explicitly as a pair of registers. For convenience, we extend the type mreg with the
registers from D, but do not model any aliasing. If the LTL code output by the allocator
would use any registers from D, the compiler would abort.

Below we give a pseudo-code excerpt from the interface exposed by Arm. On the
left, we see how classes and their relationship are modeled. On the right, the function
expand_mreg implements the mapping between the registers used in the allocator to the
type rpair mreg used by LTL. We also define the concrete aliasing between any two
specific registers in regs_alias.

1 let classes = [I; S; D]
2
3 let class_of_reg r =
4 match r with
5 | R0 | ... | R12 -> I
6 | F0 | ... | F31 -> S
7 | D0 | ... | D15 -> D
8
9 let classes_alias c1 c2 =

10 match c1, c2 with
11 | S, D | D, S -> true
12 | _, _ -> (c1 = c2)
13
14 let worst class1 class2 =
15 match class1, class2 with
16 | I, I | S, S | D, D -> 1
17 | S, D -> 2
18 | D, S -> 1
19 | _, _ -> assert false

20 let expand_mreg m =
21 match m with
22 | D0 -> Two (F1, F0)
23 | D1 -> Two (F3, F2)

24
...

25 | D15 -> Two (F31, F30)
26 | mr -> One mr
27
28 let regs_alias r1 r2 =
29 let alias f1 f2 =
30 match f1, f2 with
31 | F0, D0 | F1, D0 -> true
32 | F2, D1 | F3, D1 -> true

33
...

34 | F30, D15 | F31, D15 -> true
35 | _, _ -> false
36 in
37 r1 = r2 || alias r1 r2 || alias r2 r1

Figure 4.7: Architecture interface of Arm

The interface exported by the other architectures is quite simple and reflects the assump-
tions the allocator previously made about every architecture. There are two disjoint
classes of floating-point and integer registers that do not alias. Every neighbor increases
the degree of a node by one. The registers used by the allocator are the same as those

39

4. Implementation

modeled in the assembly semantics, hence a trivial mapping into the type rpair mreg is
defined. Since distinct registers do not alias, we check for equality.

1 let classes = [I; F]
2
3 let class_of_reg r =
4 if is_float_reg r then F else I
5
6 let classes_alias c1 c2 = (c1 = c2)

7 let worst class1 class2 =
8 match class1, class2 with
9 | I, I | F, F -> 1

10 | _, _ -> assert false
11
12 let expand_mreg m = One m
13
14 let regs_alias r1 r2 = (r1 = r2)

Figure 4.8: Generic architecture interface

4.4.2 Changes to the Allocator

The changes to the allocator are simple and consist of replacing hard-coded assumptions
about register classes with the architecture interfaces defined above. In many places,
we change equality tests between registers with alias tests and degree computations use
worst.

While illustrating the interference graph as a weighted directed graph is convenient,
we do not change the internal representation of the graph. IRC caches the degree and
the neighbors of each node and incrementally updates the two whenever necessary. For
example, during the construction of the graph, when an edge is added, the degree of
each node is increased and the interfering nodes are added to each other’s adjacency lists.
Instead of incrementing the degree by one, we use worst to compute the change. While
in [SRH04], Smith et al. report on reusing IRC’s coalescing criterion for GRA, we found
that introducing register classes can lead to faulty coalescing of nodes. Below we explore
the problem in more detail.

Coalescing & Constrained Moves

In [GA96], the notion of a constrained move is introduced. A move is constrained if it
cannot be coalesced or frozen. In IRC, constrained moves occur if two nodes that are
move-related also interfere, as depicted on the left in Figure 4.9. When generalizing the
allocator to support aliasing machine registers, constrained moves can take more complex
shapes.

In the classic setting without aliasing registers, one can include the K machine registers
in the graph as a K clique to prevent any coalescing[CACC+81]. When introducing
register classes, this view cannot be adopted as two aliasing machine registers cannot be
live at the same time. Hence, the absence of an interference edge between two machine
registers signals that they do not have overlapping lifetimes.

40

4.4. Register Allocation

x0 x1 D0 x0

S0

Figure 4.9: Constrained moves

The allocator needs to ensure that two aliasing machine registers are never connected by
an interference edge. Hence, a move between two nodes u and v is constrained if either,
u and v interfere or if the resulting node aliases with one of its neighbors. The second
case is depicted in Figure 4.9 on the right. The machine registers D0 and S0 alias. If
we coalesce the move, we introduce an interference edge between the two and create an
overlapping lifetime.

Parallel Moves

One component of the register allocator of CompCert that we have not mentioned
so far is the algorithm to perform parallel moves. A parallel move is an assignment
(x1, . . . , xn) := (y1, . . . , yn), such that after the assignment each xi contains the value
stored in yi. A simple serialization x1 := y1; . . . ; xn := yn can lead to a different outcome
than the parallel assignment, if there are some i, j, such that xi = yj and i ̸= j. The
simplest such case is the parallel move (x1, x2) := (x2, x1).

Parallel moves are not part of any of CompCert’s intermediate languages and are only
used to honor calling conventions. The RTL code uses temporaries to pass arguments
while the LTL code uses fixed machine registers prescribed by the calling conventions.
After an execution of IRC CompCert inserts a serialized parallel move between the
registers assigned to the RTL temporaries and those used in the LTL code.

The algorithm used by CompCert relies on a fresh temporary to serialize the parallel
move in linear time. It views the parallel move as a directed graph in which the registers
are the node and a node u is connected to v if there is a move from v to u. These graphs
are of a tree-like shape, but may also contain disjoint cycles. A detailed description of
the graphs and the concrete algorithm used is given in [RSL08].

Introducing aliasing between registers destroys the property of disjoint cycles. We
therefore instrument IRC to ensure that the destination and sources of a parallel move do
not partially overlap. We achieve this by introducing additional interference edges when
constructing the interference graph. Hence, for any two registers x and y in a parallel
move, either x = y or x ⊥ y.

41

CHAPTER 5
Evaluation

The two big contributions of CompCertp are the new register allocator and the adapted
backend now supporting register pairs. In total, the git statistics report around 7000
(5000+/2000-) changed lines compared to CompCert. Using coqwc and ocamlwc we give
a detailed breakdown of the additional lines of code.

backend Arm other architectures (Avg.)
Coq Implementation 613 34 53.6
Coq Proofs 795 261 51.2
Ocaml Code 83 119 5

Table 5.1: Additional lines of codes of CompCertp

Note that the numbers reported in the table above only capture the overhead of
CompCertp. We successfully managed to keep the additions to the unaffected archi-
tectures minimal. The bigger increase in proofs for the Arm architecture is due to the
handling of the two new instructions Msavecallee and Mrestorecallee we introduced
to the Mach intermediate language. In the backend, proofs and implementation grew at
the same rates, which is similar to the existing development.

The development of CompCertp was carried out on CompCert (Release 23.10) distributed
by AbsInt 1 and all tests and the statistics above compare CompCertp against this release.
The contributions published online2 have been ported to the public release.

1https://www.absint.com
2https://github.com/AlexLoitzl/CompCertp

43

https://www.absint.com
https://github.com/AlexLoitzl/CompCertp

5. Evaluation

5.1 Benchmarks
In the following, we compare compile time, code size of the generated object files, and
statistics of the register allocator. We use three benchmark suites described below.

1. SPEC CPU 20003: The SPEC CPU benchmarks are a popular benchmark suite
used by industry and academia. We use the benchmarks 175.vpr, 176.gcc, 186.crafty,
254.gap, 255.vortex, and 300.twolf from the CINT2000 suite and 177.mesa, 179.equake,
and 188.ammp from the CFP2000 suite.
Since CompCert only supports C, we were limited in the choice of benchmarks,
especially for the floating-point suite which only includes 4 C benchmarks. We did
not use two benchmarks with very short compile times (256.bzip2, 179.art) and
slightly modified the used benchmarks to comply with C99. The benchmarks are
therefore so-called non-reportable runs according to the SPEC rules.

2. absint: This benchmark suite was provided by AbsInt and contains over 5000 test
cases comprised of industry code and commercial compiler benchmarks.

3. fuzz: This benchmark suite is split into fuzz1, fuzz2, and fuzz3 each consisting
of 100 files. It includes generated test cases that contain increasingly complex
floating-point expressions and function calls using floating-point parameters. We
use it both as a stress test of our register allocator and to highlight the best-case
improvement our contributions can provide. We make the test cases available online
together with CompCertp.

We ran all tests on a notebook with an AMD Ryzen 7 Pro 5850U CPU (8 Cores, 16
hardware threads, 1.9/4.4GHz clock) and 32GB of DDR4 RAM running Debian trixie
(kernel 6.6.15). In an attempt to decrease system noise, we ran all tests in recovery mode,
set up a shielded set of cores and set the CPU scaling governor to performance.

In the following, we compare the compile time and generated code size of CompCert and
CompCertp. We run all tests on the Risc-V target as a representative for the architectures
that do not support register pairs. For Arm, we run all tests on the two supported Arm
ABIs. The hard float ABI corresponds to the calling conventions presented in Section 2.2.
The soft float ABI uses the standard calling conventions to pass arguments in the registers
R0-R3 but otherwise uses the floating-point registers. This can be used to link with a
library that uses emulated software floating-point arithmetic. In this chapter we highlight
the biggest differences and include the remaining measurements in the appendix.

5.1.1 Compile Time
Figure 5.1 shows the compile times of CompCertp in relation to CompCert. The mea-
surements for the SPEC benchmarks were repeated 10 times, the others 5 times. We

3https://www.spec.org/cpu2000

44

https://www.spec.org/cpu2000

5.1. Benchmarks

show the standard deviation with red error bars. We used perf4 to get timings of the
different phases during compilation, giving us an insight into the various tests and how
hard their allocation problems are. In most cases register allocation and the allocation
validation increase slightly.

vpr gcc
cra

fty gap
vor

tex twolf mesa
equ

ake
am

mp
absin

t
fuzz1 fuzz2 fuzz3

0%

50%

100%

CompCert CompCertp Register Allocation Alloc. Validation

Figure 5.1: Compile times for the Arm target (Hard float)

In Table 5.2 we capture the average change in execution time across all benchmark suites
for all architectures. We see a slight increase in total compilation time, with the Arm
soft float target being an outlier. This is due to the single big improvement on the
fuzz3 benchmark, which might be a skewed measurement. Allocation validation takes
considerably longer for the Arm targets due to the two benchmarks ammp and equake in
which the time increases by 45.54% and 21.02% respectively. Since allocation validation
is usually short, this does not contribute a big increase to the total compile time.

arm_hard arm_soft riscv
Register Allocation +1.63% -0.04% +4.00%
Allocation Validation +11.61% +11.94% +1.17%
Remaining Translations +0.24% -0.12% +0.59%
Total compile time +0.99% -0.29% +1.91%

Table 5.2: Compile times split into phases

5.1.2 Code Size
Most examples did not change significantly in code size. Since the allocation algorithm
uses heuristics to color the graph, changes to the layout of the graph already lead to

4https://perf.wiki.kernel.org

45

https://perf.wiki.kernel.org

5. Evaluation

small changes in the output code. We therefore see small changes in the code size when
compiling to Arm. For the targets that do not use register pairs, our allocator outputs
identical code. Below we list the tests for which we recorded the biggest changes.

vpr mesa fuzz1 fuzz2 fuzz3
arm_hard -0.95% -1.97% -8.38% -8.78% -9.60%
arm_soft -0.16% -0.65% -0.36% +0.22% +0.39%

Table 5.3: Changes in generated code size between CompCert and CompCertp

We see the biggest improvements in our generated test cases for the Arm hard float
target. Omitting the unverified pass that inserts moves around function calls gives us a
significant decrease in code size. For the Arm soft float target we record less significant
changes and for some of the generated test cases even see a small increase in code size.

5.1.3 Allocation

For the cases in which we see more significant changes, we list more detailed statistics
of the allocator in Tables 5.4 and 5.5. We capture the moves remaining in the program
after register allocation and the moves inserted by the unverified pass for the hard float
ABI. We record reloads and spills and the average number of iterations per function. For
the fuzzed suites we take the average of all contained test cases.

Remaining Inserted Reloads Spills Iterations
C Cp C C Cp C Cp C Cp

vpr 4557 4557 253 275 275 298 297 2.67 2.67
mesa 13414 13420 1341 1401 1276 2265 2133 1.4 1.32
fuzz1 119 118 84 17 17 17 15 1.16 1.14
fuzz2 404 404 307 115 115 74 64 1.26 1.24
fuzz3 1515 1514 1184 456 461 267 226 1.43 1.39

Table 5.4: Selected register allocation statistics for Arm (Hard float)

For both Arm targets, we see a decrease of up to 10% in spills and reloads and a decrease
in iterations, which also explains the less significant changes in compile time for the Arm
targets compared to the Risc-V target. For the hard float Arm target, we also see the
impact of the inserted move instructions. For the two SPEC benchmarks, CompCert
increases the number of moves by 5% and 10%. For our generated test cases with many
function calls the inserted moves contribute considerably to code size.

46

5.2. Related Work

Remaining Reloads Spills Iterations
C Cp C Cp C Cp C Cp

vpr 4557 4557 275 275 298 297 2.67 2.67
mesa 13415 13420 1398 1276 2260 2133 1.4 1.32
fuzz1 119 119 17 17 17 15 1.16 1.14
fuzz2 404 404 115 115 74 67 1.26 1.23
fuzz3 1515 1514 456 460 268 231 1.44 1.39

Table 5.5: Selected register allocation statistics for Arm (Soft float)

5.2 Related Work
5.2.1 Register pairs in CompCert
In [Bar18], Barany reports on an effort to introduce register pairs to CompCert. Instead
of splitting values to store individual halves, the register and stack are modeled as a
block of bytes. This requires typing information in the backend to translate between
values and sequences of bytes stored in the register set. This model of the register file
should support register pairs where one half can be accessed with an offset into the pair.
Support for pairs was never added and the changes have not been included in CompCert.

5.2.2 Aliasing Registers in Graph-Coloring Register Allocation
Early approaches to support register pairs [BCT92] and addressable aligned consecutive
registers [Nic90] focused on modifying the interference graph to represent the additional
constraints. Unlike the approach we took, they are constrained to certain kinds of aliasing
relationships.
An early predecessor of GRA, presented in [SH00], puts weights on the nodes of the
interference graph based on the class of the temporary. This approach can model arbitrary
aliasing relationships but may be more conservative during Simplify. GRA focuses on
optimizing the degree computation of a node by constructing a class tree capturing the
aliasing relationships between register classes. Each node caches the contribution to its
degree per class and performs recursive updates of the cached values in its class tree.
CompCert only uses GPRs (type mreg) during allocation and the class trees for all
supported architectures only consist of a single root node. We therefore omit the
unnecessary caching and recursive computation of degree changes, giving us a small
performance benefit and allowing a more natural interpretation of the interference graph.
This simplified version of GRA corresponds to the ideas presented in [RN03; RN02].
They implement their strategy only on a simplified version of Chaitin’s algorithm without
coalescing.
None of the above works reports on parallel moves or necessary changes to coalescing.
Since we have precolored temporaries to enforce calling conventions, aggressive coalescing
leads to errors in the allocation.

47

CHAPTER 6
Conclusion

One of the central efforts of safety-critical software development lies in the various
verification means to ensure correctness. The CompCert formally verified compiler reduces
the required verification steps via a machine-checkable proof of semantic preservation.
The proof ensures the correct translation from a C-like intermediate language to the
modeled semantics of the target’s assembly language.

The aim of this thesis has been to adapt CompCert to support register pairs, a common
hardware feature in which two registers are used to hold a single value. To this end, we
implemented CompCertp, a simple extension of CompCert that can be easily integrated
into the main development.

CompCertp’s adapted backend supports register pairs such that the semantics of archi-
tectures with no support are not affected. We revise the Arm semantics of CompCert
to include register pairs, allowing us to correctly implement the calling conventions for
floating-point arguments in the proven part of CompCertp. Unlike CompCert, we do
not rely on unverified code to comply with the floating-point calling conventions of Arm.
CompCertp’s Arm semantics model those of the architecture specification more precisely
than CompCert, therefore increasing the trust in the correctness proof.

We perform extensive tests on well-known benchmarks and generated test cases showing
that CompCertp either generates smaller or similar code with a slightly increased compile
time. On examples with many function calls and floating-point arithmetic, we achieve a
decrease of up to 10% in code size.

6.1 Future Work
Currently, CompCert’s only supported target with register pairs is Arm, while support
for the TriCore architecture is planned for a future release. Similar to Arm, it also uses

49

6. Conclusion

register pairs to support double-precision floating-point arithmetic. The next step is to
model register pairs in the TriCore semantics and make use of the new backend.

For register allocation, there are two open directions to investigate further. Currently,
we handle parallel moves by instrumenting the register allocator to prevent any overlap
between registers participating in the move. An algorithm that can handle parallel moves
between aliasing registers could help to decrease the register pressure around parallel
moves during allocation.

CompCertp reuses the spilling heuristics of CompCert and does not take register classes
into account. A more sophisticated approach may tune the spilling heuristics for each
architecture and their aliasing relationships. Since registers from different classes have
different effects on each other, favoring one over the other might improve spilling.

50

List of Figures

2.1 Arm register files . 7
2.2 Tricore register files . 8
2.3 Values and types . 9
2.4 Translation steps from C to Cminor . 11
2.5 Translation steps from Cminor to the executable 11
2.6 Selected RTL instructions . 12
2.7 Selected LTL instructions . 12
2.8 Simple C-code and corresponding interference graph 16
2.9 Coloring using Chaitin’s algorithm with K = 3 17
2.10 Phases of IRC [GA96] . 17
2.11 Coloring using IRC with K = 2 . 18
2.12 Parts of the transfer function . 20

3.1 Simple program summing up floating-point numbers 23
3.2 Interference Graphs of sum . 24
3.3 Mach code of CompCert (left) and CompCertp (right) 24
3.4 Assembly output of CompCert (left) and CompCertp (right) 25
3.5 Interference graphs with aligned (left) and unaligned pairs (right) 26
3.6 Scope of our contributions . 28
3.7 Selected LTL instructions with pairs . 28

4.1 Functions to split and combine values . 32
4.2 Lemmas to reason about splitting and combining values 33
4.3 Parts of the new transfer function . 35
4.4 Pseudocode of save_callee_rpair for pairs 37
4.5 Simplified separating conjunction . 37
4.6 Selected LTL instructions with pairs . 38
4.7 Architecture interface of Arm . 39
4.8 Generic architecture interface . 40
4.9 Constrained moves . 41

5.1 Compile times for the Arm target (Hard float) 45

51

Acronyms

ABI Application Binary Interface. 2, 3, 25, 44, 46

CFG Control-flow graph. 12, 13

GPR General purpose register. 6, 7, 26, 47

GRA Generalized Register Allocator. 25, 26, 38, 40, 47

IRC Iterated Register Coalescing. 17, 18, 25, 38, 40, 41, 51

TCB Trusted Computing Base. 2

53

Bibliography

[AAMP+17] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew
Weaver. Certicoq: a verified compiler for coq. In The third international
workshop on Coq for programming languages (CoqPL), 2017.

[App11] Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor,
Programming Languages and Systems, pages 1–17, Berlin, Heidelberg.
Springer Berlin Heidelberg, 2011.

[Arma] Arm Holdings plc. Fye24-q2 results presentation. url: https://investors.
arm.com/financials/quarterly-annual-results (visited on 04/14/2024).

[Armb] Arm Limited. Arm architecture reference manual for a-profile architecture.
Version J.a. url: https://developer.arm.com/documentation/ddi0487
(visited on 04/14/2024).

[Bar18] Gergö Barany. A more precise, more correct stack and register model for
CompCert. In LOLA 2018 - Syntax and Semantics of Low-Level Languages
2018, Oxford, United Kingdom, July 2018.

[BBFL+12] Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy,
Marc Pantel, and Jean Souyris. Formally verified optimizing compilation in
ACG-based flight control software. In ERTS2 2012: Embedded Real Time
Software and Systems, Toulouse, France. AAAF, SEE, February 2012.

[BBGH+19] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent
Laporte, David Pichardie, and Alix Trieu. Formal verification of a constant-
time preserving c compiler. Proc. ACM Program. Lang., 4(POPL), Decem-
ber 2019.

[BCT92] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring register
pairs. ACM Lett. Program. Lang. Syst., 1(1):3–13, March 1992.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
graph coloring register allocation. ACM Trans. Program. Lang. Syst.,
16(3):428–455, May 1994.

55

https://investors.arm.com/financials/quarterly-annual-results
https://investors.arm.com/financials/quarterly-annual-results
https://developer.arm.com/documentation/ddi0487

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of
a C compiler front-end. In FM 2006: Int. Symp. on Formal Methods, vol-
ume 4085 of Lecture Notes in Computer Science, pages 460–475. Springer,
2006.

[BDP14] Gilles Barthe, Delphine Demange, and David Pichardie. Formal verification
of an ssa-based middle-end for compcert. ACM Trans. Program. Lang.
Syst., 36(1), March 2014.

[CACC+81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register allocation via
coloring. Computer Languages, 6(1):47–57, 1981.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph coloring. In Pro-
ceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’82, pages 98–105, Boston, Massachusetts, USA. Association
for Computing Machinery, 1982.

[GA96] Lal George and Andrew W. Appel. Iterated register coalescing. ACM
Trans. Program. Lang. Syst., 18(3):300–324, 1996.

[GHC] GHC Team. The glasgow haskell compiler. Version 9.8.2. url: https:
//www.haskell.org/ghc/ (visited on 04/14/2024).

[GNU] GNU Project. The gnu compiler collection. Version 13.2. url: https:
//gcc.gnu.org (visited on 04/14/2024).

[Inf] Infineon Technologies AG. Company presentation. url: https://www.
infineon.com/cms/en/about-infineon/press/general-information/
facts-figures (visited on 04/14/2024).

[JJKD17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: securing the foundations of the rust programming language. Proc.
ACM Program. Lang., 2(POPL), December 2017.

[KBWS+18] Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc Schlickling, Bern-
hard Schommer, Michael Schmidt, Christian Ferdinand, Xavier Leroy,
and Sandrine Blazy. CompCert: Practical Experience on Integrating and
Qualifying a Formally Verified Optimizing Compiler. In ERTS2 2018 - 9th
European Congress Embedded Real-Time Software and Systems, pages 1–9,
Toulouse, France. 3AF, SEE, SIE, January 2018.

[LABS14] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.
The CompCert memory model. In Andrew W. Appel, editor, Program
Logics for Certified Compilers. Cambridge University Press, April 2014.

[LBDJ+] Xavier Leroy, Sandrine Blazy, Zaynah Dargaye, Jacques-Henri Jourdan,
Michael Schmidt, Bernhard Schommer, and Jean-Baptiste Tristan. Com-
pcert, the formally-verified c compiler. Version 3.13. url: https://github.
com/AbsInt/CompCert (visited on 04/14/2024).

56

https://www.haskell.org/ghc/
https://www.haskell.org/ghc/
https://gcc.gnu.org
https://gcc.gnu.org
https://www.infineon.com/cms/en/about-infineon/press/general-information/facts-figures
https://www.infineon.com/cms/en/about-infineon/press/general-information/facts-figures
https://www.infineon.com/cms/en/about-infineon/press/general-information/facts-figures
https://github.com/AbsInt/CompCert
https://github.com/AbsInt/CompCert

[Ler09a] Xavier Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009.

[Ler09b] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[Ler23] Xavier Leroy. The compcert c verified compiler: documentation and user’s
manual, version 3.13, 2023.

[MB22] David Monniaux and Sylvain Boulmé. The trusted computing base of the
compcert verified compiler. In Ilya Sergey, editor, Programming Languages
and Systems, pages 204–233, Cham. Springer International Publishing,
2022.

[Nic90] Brian R Nickerson. Graph coloring register allocation for processors with
multi-register operands. ACM SIGPLAN Notices, 25(6):40–52, 1990.

[RL10] Silvain Rideau and Xavier Leroy. Validating register allocation and spilling.
In Rajiv Gupta, editor, Compiler Construction, pages 224–243, Berlin,
Heidelberg. Springer Berlin Heidelberg, 2010.

[RN02] Johan Runeson and Sven-Olof Nyström. Generalizing Chaitin’s algorithm:
Graph-coloring register allocation for irregular architectures. Technical
report, Uppsala University, 2002.

[RN03] Johan Runeson and Sven-Olof Nyström. Retargetable graph-coloring regis-
ter allocation for irregular architectures. In Andreas Krall, editor, Software
and Compilers for Embedded Systems, pages 240–254, Berlin, Heidelberg.
Springer Berlin Heidelberg, 2003.

[RSL08] Laurence Rideau, Bernard Paul Serpette, and Xavier Leroy. Tilting at
windmills with Coq: formal verification of a compilation algorithm for
parallel moves. Journal of Automated Reasoning, 40(4):307–326, 2008.

[RTCA11] Radio Technical Comission for Aeronatuics. Software Considerations in
Airborne Systems and Equipment Certification. Washington, D.C., USA,
2011.

[SCKK+19] Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang,
and Chung-Kil Hur. Compcertm: compcert with c-assembly linking and
lightweight modular verification. Proc. ACM Program. Lang., 4(POPL),
December 2019.

[SH00] Michael D. Smith and Glenn Holloway. Graph-Coloring Register Allocation
for Irregular Architectures. Technical report, Harvard University, 2000.

[SLKM+21] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian,
Derek Dreyer, and Deepak Garg. Refinedc: automating the foundational
verification of c code with refined ownership types. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pages 158–174, New York, NY,
USA. Association for Computing Machinery, 2021.

57

[SLZS16] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward un-
derstanding compiler bugs in gcc and llvm. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016,
pages 294–305, New York, NY, USA. Association for Computing Machinery,
2016.

[SRH04] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized
algorithm for graph-coloring register allocation. SIGPLAN Not., 39(6):277–
288, 2004.

[TMKF+19] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, and Michael Norrish. The verified CakeML compiler backend.
Journal of Functional Programming, 29, 2019.

[YCER11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’11, pages 283–294, New York, NY, USA. Association for Computing
Machinery, 2011.

58

Appendix

vpr gcc
cra

fty gap
vor

tex twolf mesa
equ

ake
am

mp
absin

t
fuzz1 fuzz2 fuzz3

0%

50%

100%

CompCert CompCertp Register Allocation Alloc. Validation

Figure A.1: Compile times for the Arm target (Soft floats)

vpr gcc
cra

fty gap
vor

tex twolf mesa
equ

ake
am

mp
absin

t
fuzz1 fuzz2 fuzz3

0%

50%

100%

CompCert CompCertp Register Allocation Alloc. Validation

Figure A.2: Compile times for the Risc-V 32bit target

59

Remaining Inserted Reloads Spills Iterations
C Cp C C Cp C Cp C Cp

vpr 4557 4557 253 275 275 298 297 2.67 2.67
gcc 52810 52810 0 1125 1125 2006 2006 2.41 2.41

crafty 19501 19501 0 512 512 240 241 1.91 1.91
gap 20145 20145 0 390 390 869 869 2.81 2.81

vortex 19542 19542 0 266 266 324 324 2.82 2.82
twolf 8888 8888 0 342 343 506 506 2.12 2.16
mesa 13414 13420 1341 1401 1276 2265 2133 1.4 1.32

equake 631 631 0 1 1 2 2 1.0 1.0
ammp 3995 3995 0 114 114 333 333 1.82 1.82
fuzz1 119 118 84 17 17 17 15 1.16 1.14
fuzz2 404 404 307 115 115 74 64 1.26 1.24
fuzz3 1515 1514 1184 456 461 267 226 1.43 1.39

Table A.1: Register allocation statistics for Arm (Hard Float)

Remaining Reloads Spills Iterations
C Cp C Cp C Cp C Cp

vpr 4557 4557 275 275 298 297 2.67 2.67
gcc 52810 52810 1125 1125 2006 2006 2.41 2.41

crafty 19501 19501 512 512 240 241 1.91 1.91
gap 20145 20145 390 390 869 869 2.81 2.81

vortex 19542 19542 266 266 324 324 2.82 2.82
twolf 8888 8888 342 343 506 506 2.12 2.16
mesa 13415 13420 1398 1276 2260 2133 1.4 1.32

equake 631 631 1 1 2 2 1.0 1.0
ammp 3995 3995 114 114 333 333 1.82 1.82
fuzz1 119 119 17 17 17 15 1.16 1.14
fuzz2 404 404 115 115 74 67 1.26 1.23
fuzz3 1515 1514 456 460 268 231 1.44 1.39

Table A.2: Register allocation statistics for Arm (Soft Float)

60

ai vpr gcc crafty gap vortex twolf
arm_hard -0.02% -0.95% +0.04% +0.03% +0.00% -0.00% +0.00%
arm_soft +0.03% -0.16% +0.04% +0.03% +0.00% -0.00% +0.00%

mesa equake ammp fuzz1 fuzz2 fuzz3
arm_hard -1.97% -0.05% +0.02% -8.38% -8.78% -9.60%
arm_soft -0.65% -0.04% +0.02% -0.36% +0.22% +0.39%

Table A.3: Changes in generated code size between CompCert and CompCertp

61

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Structure of the Thesis

	Preliminaries
	Notational Conventions
	Architectures & Registers
	CompCert
	Register Allocation
	Register Allocation in CompCert

	Design
	Illustrating the issues via an example
	Supporting Register Pairs in Allocation
	Supporting Register Pairs in CompCert

	Implementation
	Splitting Values
	Allocation Validation
	Preservation of callee-save registers
	Register Allocation

	Evaluation
	Benchmarks
	Related Work

	Conclusion
	Future Work

	List of Figures
	Acronyms
	Bibliography
	Appendix

