
Blockchain Interoperability: A
Cross-Chain Token Transfer

Protocol

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Dragan Tosic, BSc
Matrikelnummer 00927956

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Dr.-Ing. Stefan Schulte
Mitwirkung: Dr. techn. Michael Borkowski

Wien, 18. April 2024
Dragan Tosic Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Blockchain Interoperability: A
Cross-Chain Token Transfer

Protocol

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Dragan Tosic, BSc
Registration Number 00927956

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr.-Ing. Stefan Schulte
Assistance: Dr. techn. Michael Borkowski

Vienna, 18th April, 2024
Dragan Tosic Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dragan Tosic, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. April 2024
Dragan Tosic

v

Acknowledgements

I would like to thank my advisor Prof. Dr.-Ing. Stefan Schulte who gave me the
opportunity to write this thesis at the Distributed Systems Group. He always provided
very constructive and fast feedback, and continued supervising me even after he left TU
Wien. Furthermore, I would like to express my greatest gratitude to my co-advisor Dr.
techn. Michael Borkowski for his guidance and valuable feedback. Last but not least, I
would like to thank my parents, sister, and girlfriend for their unlimited support during
the years of my study.

vii

Kurzfassung

Blockchains, die wichtigste zugrundeliegende Technologie hinter Kryptowährungen, haben
in der Informatik, im Finanzwesen, in der Wirtschaft und in der Forschung großes Interesse
geweckt. Blockchains bieten die Möglichkeit, Daten zu speichern und Datenintegrität in
einer vertrauenswürdigen Umgebung zu gewährleisten, jedoch laufen sie grundsätzlich in
einer isolierten Umgebung. Eingeschränkte Interoperabilität zwischen Blockchains führt zu
Kompromissen, die Eigentümer digitaler Assets und Entwickler verteilter Anwendungen
machen müssen. Eine erhöhte Interoperabilität würde es Benutzern ermöglichen, ihre
Assets und Daten über mehrere Blockchains zu verteilen, und würde es Entwicklern
ermöglichen, Blockchain-unabhängige verteilte Anwendungen zu entwickeln. Im Zuge der
Erreichung der Interoperabilität zwischen Blockchains stehen wir vor dem Problem, dass
es nicht möglich ist, innerhalb einer Blockchain zu überprüfen, ob bestimmte Daten auf
einer anderen Blockchain aufgezeichnet wurden.

In dieser Arbeit stellen wir das Konzept von teilweise dezentralisierten Validation Parties
vor und argumentieren, wie dieses Konzept Blockchain-übergreifende Token-Transfers
auf überprüfbare Weise ermöglichen kann, ohne die Integrität der übertragenen Tokens
zu beeinträchtigen.

Im theoretischen Teil dieser Arbeit untersuchen wir die Literatur im Blockchain-Bereich,
wobei der Schwerpunkt auf dem State of the Art im Bereich Blockchain-Interoperabilität
liegt. Ziel ist es, die größten Herausforderungen für die Interoperabilität von Blockchains
zu identifizieren und Anforderungen für ein Blockchain-übergreifende Token-Transfers
Protokoll auf Basis einer teilweise dezentralisierten Architektur zur Verifizierung von
Blockchain-übergreifenden Beweisen zu definieren und zu spezifizieren. Der praktische
Teil dieser Arbeit zielt darauf ab, einen Prototyp des definierten Protokolls als Smart
Contract für Ethereum-basierte Blockchains zu implementieren. Um die Machbarkeit
des implementierten Protokolls zu zeigen, wird ein Proof of Concept einer prototypisch
verteilten Anwendung entwickelt, die in der Lage ist, Blockchain-übergreifende Token-
Transfers durchzuführen.

Letztendlich werden das Blockchain-übergreifende Token-Transfer Protokoll und der
Prototyp in einer aus zwei Ethereum-basierten Blockchains bestehenden Testumgebung
bereitgestellt und evaluiert. Wir diskutieren und bewerten verschiedene Anwendungsfälle
sowie gesammelte Metriken wie Transaktionskosten und Übertragungszeiten.

ix

Abstract

Blockchains, the main underlying technology behind cryptocurrencies, have gained
significant interest in computer science, finance, economics, and research. Blockchains
provide the means to store data and guarantee its integrity in a trustless environment, but
notably they run in an isolated setting. Limited interoperability between blockchains leads
to compromises that owners of digital assets and developers of distributed applications
have to make. Increased interoperability would allow users to distribute their assets
and data across multiple blockchains, and would enable developers to design blockchain-
agnostic distributed applications. In the course of achieving interoperability between
blockchains, we face the problem that it is not possible to verify that specific data has
been recorded on one blockchain from within another blockchain.

In this thesis, we present the concept of semi-decentralized validation parties, and argue
how this concept can enable cross-chain token transfers in a verifiable manner without
compromising the integrity of the transferred tokens.

In the theoretical part of this thesis, we survey literature in the blockchain field, with
focus on the current state-of-the-art in blockchain interoperability. The aim is to identify
the main challenges to achieve blockchains interoperability, and to define and specify
requirements for a cross-chain token transfer protocol based on a semi-decentralized
architecture for the verification of cross-chain proofs. The practical part of this thesis aims
to implement a prototype of the defined protocol as a smart contract for Ethereum-based
blockchains. To show the feasibility of the implemented protocol, a proof of concept
of a prototypical distributed application able to perform cross-chain token transfers is
developed.

Finally, the cross-chain token transfer protocol and the prototype are deployed and
evaluated in a test environment consisting of two Ethereum-based blockchains. We discuss
and evaluate various use cases, as well as collected metrics data such as transaction cost
and transfer times.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Work . 4

2 Background 5
2.1 Cryptocurrencies . 5
2.2 Blockchains . 8
2.3 Smart Contracts . 13

3 Related Work 17
3.1 Enabling Blockchain Innovations with Pegged Sidechains 17
3.2 Decred On-Chain Atomic Swaps . 19
3.3 Lightning Network Off-Chain Atomic Swaps 22
3.4 Token Atomic Swap Technology . 23

4 Motivating Scenarios 25
4.1 Token Definition . 25
4.2 Cross-Blockchain Proof Problem . 26
4.3 Semi-Decentralized Cross-Chain Validation 27
4.4 Use Case Scenarios . 28
4.5 Identified Requirements . 30

5 Solution Architecture 31
5.1 Overall Solution Design . 31
5.2 Cross-Chain Token Transfer Protocol 32

xiii

5.3 Distributed Application Architecture 35

6 Protocol Implementation 39
6.1 Cross-Chain Token Smart Contract . 39
6.2 Distributed Applications Implementation 45

7 Evaluation and Analysis 49
7.1 Lab Environment . 49
7.2 Evaluated Use Case Scenarios . 51
7.3 Token Transfer Metrics . 53
7.4 Discussion of Semi-Decentralized Validation Parties 55

8 Conclusion 57
8.1 Findings . 57
8.2 Future Work . 58

A Measurements 61
A.1 Cross-Chain Token Transfer Metrics . 61

List of Figures 67

List of Tables 69

Listings 71

Bibliography 73

CHAPTER 1
Introduction

This chapter provides an overview of the problem addressed by this thesis, including
motivation, problem statement, aim of the work, and methodological approach used to
solve the problem.

1.1 Motivation
Since the introduction of Bitcoin in 2009, cryptocurrencies and the main underlying
technology, blockchains, have gained significant interest in various fields, such as computer
science, research, finance, economics, society, etc. A blockchain is a data structure
consisting of blocks that are linked to each other by hash values forming a linked list
(chain). Each block contains data, the exact form of which is defined by each blockchain
(e.g., Bitcoin transactions), a timestamp, a hash of that block and a hash of the previous
block. This structure makes data in the blockchain tamper-resistant, because any
change of a single block would void the block’s hash and all subsequent block hashes.
Blockchains are distributed over a peer-to-peer network and they represent a distributed
ledger. Adding new blocks to a chain requires a majority consensus as defined by the
consensus algorithm of the particular blockchain (e.g., the majority of computing power
decides on the canonical blockchain) [22].

Bitcoin has demonstrated how distributed ledgers can be used to provide a completely
decentralized digital currency, which does not require a centralized verification entity, and
which cannot be controlled by a single entity (e.g., governments) [41]. Since the advent
of Bitcoin, a lot of research and development has been invested into new blockchain
technologies that can now be applied for storing any type of tamper-sensitive data, or for
building serverless distributed applications that are running on top of blockchains. For
instance, blockchains can be applied for runtime verification of business processes [19], or
for storing highly sensitive medical records in healthcare [42].

1

1. Introduction

Blockchains provide the means to store and guarantee integrity of data in a trustless
environment, but notably they run in an isolated setting, and there is no interconnection
between different blockchains foreseen. Therefore, users are forced to store their data (in-
cluding digital currencies or other domain-specific data) on the blockchain they have most
trust in, and developers must choose a single blockchain for developing their distributed
applications. Since various blockchains might offer different features and benefits, this
means that choosing one blockchain might force the developer to a compromise in the
design process. Finally, in case of a security vulnerability or cryptographic break in a
blockchain’s design or implementation, all digital assets on the chain selected by the user
or developer may be compromised. This increases the risk when utilizing blockchain
technology [33].

1.2 Problem Statement
To overcome limitations of relying on a single blockchain, it is necessary to enable
interoperability between blockchains. First, this allows users to distribute their assets and
data across multiple blockchains and move the assets from one blockchain to another at
their will. Second, with increased interoperability, developers can design applications that
are mostly blockchain-agnostic, and possibly benefit from multiple blockchains’ benefits.
Finally, the risk of asset loss is minimized since data, including digital assets, can be
freely moved between blockchains [16, 33].

While solutions like Atomic Swaps [27] only partly enable interoperability by guaranteeing
the atomicity of cross-chain assets exchange, current state-of-the-art solutions do not
support the actual transfer of assets between blockchains, where some data is destroyed
or reduced on one blockchain and created on another.

In the course of achieving interoperability between blockchains, we face the cross-
blockchain proof problem [31, 32]: If on a Blockchain A we want to prove that some
data D has been recorded on that blockchain, we can easily traverse over all blocks on
the Blockchain A until we find a block containing D. However, transferring D to another
Blockchain B poses a challenge, since there are no practical means, for two independent
Blockchains A and B, to verify on the Blockchain B whether the data D has been recorded
on the Blockchain A, as argued and formalized in [32].

In order to solve the problem, we propose the concept of semi-decentralized validation
parties that we are going to refer to as “validators”. In this thesis, we argue how
such validators can enable cross-chain token transfers in a verifiable manner without
compromising the integrity of the transferred tokens.

1.3 Aim of the Work
The aim of the theoretical part of this thesis is to survey literature in the blockchain
field, with special focus on the current state-of-the-art in cross-chain interoperability

2

1.4. Methodological Approach

technologies. Since this is a very recent topic, scientific papers are emerging, e.g., [16, 27,
31]. Similar approaches shall be analyzed, and their advantages and drawbacks compared,
to get more insight into the field.
The goal is to define a cross-chain token transfer protocol by introducing a semi-
decentralized architecture for the verification of cross-chain proofs. While the proof of
destroying the tokens on the source blockchain must be provided by a party trusted by
the network, i.e., a centralized model is used, the validity of this proof can in turn be
verified by anyone else. Thus, we call the approach semi-decentralized. This means that
while a central party is required to execute the cross-chain transfers, anyone can verify
that the central party is working correctly. The central party has disincentive to give
untrue confirmations, since doing so would destroy trust into the entire process.
The practical part of this thesis aims to implement a prototype based on the defined
protocol and architecture. The prototype shall be implemented using the Solidity contract-
oriented programming language for Ethereum-based blockchains. To demonstrate the
feasibility of the proposed solution, a proof of concept shall be applied on two Ethereum-
based test networks that performs a transfer of an ERC20 token between the two
blockchains.

1.4 Methodological Approach
The methodological approach of this thesis is divided into five phases.
Literature Research In the first phase, literature and the current state-of-the-art
in the blockchain field are reviewed and studied, with special focus on cross-chain
interoperability technologies. The goal is to identify the main challenges to achieve
interoperability between multiple blockchains, and to propose solutions and requirements
to overcome these challenges. The research is not only focused on cross-chain token
transfer techniques, but also includes general approaches to achieve an interconnection
between different blockchains.
Protocol Definition Based on the results and identified requirements from the first
phase, a protocol that allows cross-chain token transfers shall be defined and specified.
The protocol shall assure by its design that the integrity of tokens on all involved
blockchains is not compromised during a cross-chain transfer.
Protocol Implementation The protocol defined in Phase 2 shall be implemented as a
smart contract for Ethereum-based blockchains. Since smart contracts may be deployed
on public blockchains, and anybody could attempt potentially malicious function calls,
the security hardening of the smart contract will play an important role during the
protocol implementation phase.
Proof of Concept Implementation To demonstrate the feasibility of the protocol
defined and implemented in the previous two phases, it is planned to provide a proof of
concept by implementing a prototypical distributed application able to perform cross-chain
token transfers by interacting with the smart contract implemented in Phase 3.

3

1. Introduction

Evaluation In the final phase, the implementation of the cross-chain token transfer
protocol and the prototype are evaluated, and possible enhancements are identified. The
evaluation requires setting up a test environment consisting of two Ethereum-based
blockchains. The test environment will be used for performing and analyzing various use
cases, as well as for collecting metrics data such as transaction cost and transfer times.
Furthermore, results of a comparison with similar approaches are shown, and limitations
are presented.

1.5 Structure of the Work
The remainder of this thesis is structured as follows:

• Chapter 2 provides background information for the succeeding chapters. It provides
a short introduction to cryptocurrencies, the main technology behind them —
blockchains, and an overview of smart contract technologies that we will encounter
in the practical part of this thesis.

• Chapter 3 entails a survey of related work. In our research, we present and discuss
approaches that are related to the interoperability between multiple blockchains.

• Chapter 4 begins with the definition of the cross-blockchain proof problem, and
continues with motivating scenarios and the requirements specification.

• Chapter 5 describes the architecture of a solution for a cross-chain token transfer
based on the research of the cross-blockchain proof problem.

• Chapter 6 provides implementation details of a smart contract, which enforces a
cross-chain token transfers protocol. Implementation details of components that
interact with the smart contract are discussed in this Chapter as well.

• Chapter 7 presents evaluation of transfer metrics. It starts with a decription of a
test lab environment used to perform transfers, and continues with the discussion
of the results. This Chapter also comprises a discussion of semi-decentralized
validation parties.

• Chapter 8 concludes the work, and presents future work.

4

CHAPTER 2
Background

In this chapter, we introduce basic concepts that are used in this thesis. We start by
introducing cryptocurrencies in Section 2.1, followed by an introduction of the main
technology behind cryptocurrencies — blockchains (Section 2.2). In Section 2.3, we
discuss special programs that can be deployed and executed on blockchains called smart
contracts.

2.1 Cryptocurrencies
The invention of the Internet has changed the way people communicate, exchange
information, buy and pay for goods and services, etc. When it comes to online payments,
they are usually based on Web services of centralized financial institutions like banks and
credit card corporations, and prices are expressed in one of the fiat currencies that are
backed by governments and central banks. There have been many attempts to develop
alternative solutions for traditional e-commerce that cannot be monitored and controlled
by centralized authorities, and thus provide more safety and privacy for end users.

Even in the early nineties, solutions such as DigiCash have tried to tackle these problems
by utilizing cryptographic protocols to create payments based on a blind signature. The
main characteristic of such payments is the inability of a third-party to determine payee,
time or amount of payments, but still giving users an option to provide a proof of
payment [20]. The problem with this or similar solutions is that they either rely on
services of commercial banks, or they require some type of a central validation entity as
well. PayPal is a successful example of an alternative payment system that has grown to
a multi-billion business. However, it only serves as an intermediary processor between
businesses and customers, and PayPal accounts are connected to credit cards of its users.

A central verification entity is required to store transaction records, and to resolve the
main issue of digital money — the double spending problem. In a digital world, creating

5

2. Background

a copy of digital money is trivial, which is the reason why double spending is the main
issue where one party could create two transactions for the same money units at the same
time. A centralized entity that keeps records of all transactions can easily recognize and
prevent double spending, but it must be trusted by all involved parties, and represents
a potential single point of failure. On the other hand, it is much harder to develop a
decentralized, Byzantine fault–tolerant [30] solution where components do not have to be
trusted, and can join and leave a network at their will without affecting integrity of the
network. The first completely decentralized solution that is not controlled by a single
entity offering at the same time anonymity and integrity of transactions was Bitcoin.

2.1.1 Bitcoin
Bitcoin was made public as an open-source project by a person, or an organization
known under the pseudonym Satoshi Nakamoto in 2009, based on the research that was
published in a white paper in 2008 [41]. It was proposed as a solution to the double
spending problem that is based on a peer-to-peer network consisting of different types of
nodes, among which the so-called miner nodes play the crucial role in the verification of
transactions. In a traditional payment system, a centralized party must be trusted and
verified, and any compromise of this party would lead to a disruption of the entire system.
Although decentralized systems with an increased number of controlling entities solve
the single point of failure issue, it introduces the Byzantine Generals problem of making
a mutual agreement in an environment where some participants might be malicious.

In order to overcome the problem, participants could vote upon a correct state of a
system, which would keep the system reliable as long as the majority of entities are
behaving honestly. However, a malicious party could run a Sybil attack [21] by setting up
multiple nodes, giving it more votes in the voting process. Bitcoin overcomes all of these
difficulties with a peer-to-peer network using proof-of-work to record a public history of
transactions and a consensus mechanism instead of relying on trust [22, 41].

Similar to the previously mentioned DigiCash, Bitcoin is utilizing cryptography to make
pseudo-anonymous transactions that cannot be linked to their issuers. Bitcoin is not only
an online payment system, but it is also a digital currency that represents an alternative
to traditional fiat currencies, and since it relies on cryptographic protocols, this new type
of digital currencies is called cryptocurrencies. Currently, there are thousands of different
cryptocurrencies, of which some are forks of Bitcoin called Altcoins (alternative coins)
with changed economics or a different consensus mechanism [22].

2.1.2 Transactions
Coins in cryptocurrencies like Bitcoin do not exist as such and they are not defined as
some special data structure. The coins are only represented as linked transactions that
show the ownership of cryptographically signed digital assets. Every transaction consists
of an identifier (the hash value of the transaction), and a list of inputs and outputs. Inputs
are represented as references to unspent outputs of previously executed transactions.

6

2.1. Cryptocurrencies

The Bitcoin network needs to actively keep track only of unspent transaction outputs
(UTXO), since only these outputs are relevant for future transactions, whereas spent
transaction outputs (STXO) can be archived [22].

Outputs are identified with an index within a specific transaction, and they show a
distribution of input values to new owners. All values of outputs referenced by inputs
of a transaction are always spent entirely, and they do not determine an amount spent
by an initiator of the transaction. If the referenced values are higher than the amount
that the initiator wanted to spend, then he can always specify an additional output that
will serve as a change. A sum of all input values of a single transaction must always
be equal or higher than a sum of all output values of the same transaction. The only
exception from this rule is a special coinbase transaction that only has an output without
any inputs [22].

Coinbase transactions can be created by validators of transactions as a reward for
their effort, but they serve as a mechanism to increase coin supply over time as well.
Furthermore, a difference between a sum of all input values and a sum of all output
values is called a transaction fee, and it can be collected by a transaction validator [22].
More detailed descriptions of a validation process and technical details of a transaction
execution are provided in subsequent sections. Figure 2.1 shows a Bitcoin transaction
with the total input and output sums as well as the included transaction fee.

Figure 2.1: Bitcoin Transaction1

2.1.3 Wallets and Exchanges

Users can access and spend their coins using a wallet, which stores public and private
keys for cryptographic signatures of assets on a blockchain. There are various types of
wallets such as software wallets, online wallets, hardware wallets, etc.

1https://www.blockchain.com/btc/tx/ffe1727a0d290b5294049faa41dcd5b5edf3ca949f1c5d879a265516370f20f4

7

2. Background

Software wallets are applications that are installed directly on a user’s computer, whereas
online wallets are provided as Web applications by third-party entities. Since the owner
of private keys controls all coins signed by these keys, it is very important how users
handle their keys. If a provider of online wallets is compromised, then an attacker
might gain access to coins of all users of that provider. There have been various news
reports about compromised online wallet providers in which users have lost their assets
(cryptocurrencies). Some online wallet providers do not store public and private keys
on their servers, and the keys are only loaded on the client’s side in a Web browser.
Hardware wallets are special devices that are usually not always connected to the Internet,
and they represent a more secure solution [22].

Online exchanges allow users to trade cryptocurrencies for fiat money or other crypto-
currencies. Similar to online wallets, online exchanges represent a high security risk as
providers of these wallets might get compromised. But since cryptocurrencies are based
on decentralized, peer-to-peer networks, users can use other mechanisms such as Atomic
Swaps [3] to safely exchange cryptocurrencies directly between two parties in a trustless
environment.

2.2 Blockchains
The core technology behind cryptocurrencies are blockchains. A blockchain is a data
structure consisting of blocks that are linked to each other by hash values forming
a linked list (chain). Every block contains at least, but not limited to, some data
(e.g., transactions), timestamp, hash of that block and hash of the previous block [22].
Figure 2.2 shows an example of a blockchain containing some transactions. This structure
of a blockchain makes it tamper-resistant, because any change of a single block would
void hash values of that, and all subsequent blocks. So, in order to make changes
on a blockchain, one would have to recalculate hash values of all blocks starting from
the modified block. If there is only one copy of a blockchain, changing blocks and
recalculating hash values would not be that hard. However, if we distribute a blockchain
over a peer-to-peer network, modifying the blockchain would require a majority consensus
of all involved parties. In this case, the blockchain represents a distributed ledger that
is suitable for storing tamper-sensitive data such as financial transactions [41], medical
records [42], etc.

Figure 2.2: Blockchain Consisting of Blocks Linked by Hash Values [22]

8

2.2. Blockchains

2.2.1 Blocks

Technologies and concepts used for implementations of blockchains are not new, but it
is the way how these technologies are combined together that makes the blockchains
technology unique. For instance, hash functions are an important part of blockchains,
and they have been used for decades in various fields of computer science. Hash functions
are compression functions that take some data as input, and always produce an output of
a fixed size. They are also called one-way functions, because it is infeasible to recalculate
an input value from the respective output value. For the same input data, hash functions
always return the same hash value. However, if we change only one bit of the input
data, the calculated hash value will be entirely different. Although these two inputs
differ by only one bit and thus can be associated with one another, their hash values
will be completely different, and it is not possible to associate one output value with the
other [18].

Hash functions have various applications, one of them being the usage of hash functions
as a message digest. The property of hash functions that they always produce the
same output if an input value is not modified, makes them suitable for validation of
data integrity. For example, if we download some file over the Internet, very often the
download does not take place from a single source, but various mirror sources are used.
In order to validate the integrity of the file, a provider of the file often offers the hash
value that users can use to make sure that the downloaded file has not been modified by
a mirror source. Another usage of hash functions is to create a digital commitment. A
digital commitment is the hash value resulting from applying a hash function on some
commitment message and a random value that is usually called a nonce. The hash value
is then published so that anybody with an access can read it. In case we want to reveal
the original commitment, we can publish the message and the nonce, and anybody can
now calculate the new hash value and compare it with the published one. This way the
commitment that was defined in the message still holds, and it could not be modified
over time.

Hashes are also used to create many data structures like hash pointers. A hash pointer
is a pointer to some data that also includes the hash of the data, which can be used to
check if data has been modified. Another useful data structure is a binary tree called a
Merkle tree. If we have a set of data and we want to calculate a hash value of all data
in the set, we can divide the data into two pairs, and then for each pair we create hash
values of pair members and calculate the hash of the created hashes. If we continue to
group hashes into two pairs and calculate their values, at one moment we will get only
one hash value called a Merkle root. The process is depicted in Figure 2.3.

Many of the previously mentioned properties and application possibilities of hash functions
are used in implementations of blockchains. As mentioned in the introduction part of
this thesis, a blockchain is a linked list of blocks that is similar to a hash pointer data
structure. The main difference is that a block does not only store some data and has
a hash pointer, but it also contains a hash of a previous block. Since one of the main

9

2. Background

applications of a hash functions is to verify integrity of data, this structure of a blockchain
makes it very hard for anyone to tamper with data stored on a blockchain, because if
somebody modifies data of a block, then that block and all subsequent blocks would have
different hash values. A block also contains a Merkle root of, e.g., transactions belonging
to the block. Transactions can be validated without running a full network node of a
blockchain. It it sufficient to keep a copy of block headers, which contain the hash of a
previous block and a Merkle root. To verify that a transaction has existed at some point,
we do not need all transactions, but only the transaction that we want to verify, and a
list of intermediary hashes required to build a Merkle root. If the Merkle root is the same
as the Merkle root saved in a block, then we can be sure that the transaction existed
at that point. This verification process is known as Simplified Payment Verification
(SPV) [22, 41].

Figure 2.3: Transactions Hashed in a Merkle Tree [41]

2.2.2 Mining

In blockchains, new blocks are added to a chain through a process called mining, and
nodes in a blockchain network involved in the mining process are called miners. Miners
collect and validate transactions, and they need to provide some proof-of-work in order
to add a new block to a blockchain. The reason for the proof-of-work is to make sure that
miners are validating transactions honestly, because mining is a computational intensive
task that requires a lot of computational power and thus consumes a lot of electricity. As
an incentive for validating transactions and providing proof-of-work, miners get a reward
(e.g., Bitcoins in case of Bitcoin mining). If a miner is not behaving rationally, he will not
receive a reward, and his blocks will be rejected as invalid by other nodes on a network.

10

2.2. Blockchains

Proof-of-work is provided by solving a puzzle that is given as a search problem in which
we need to find a hash value that suits some given criteria. Hash functions are puzzle
friendly given that it is required to search a very large space in order to provide a puzzle
solution. To provide a proof-of-work, one needs to calculate a hash value of a formed
block and a nonce by modifying the nonce until the resulting value is lower or the same
as some given target value. There is no other possibility to solve a mining puzzle, but to
try many difference nonces making mining a very computational demanding task. By
adjusting the difficulty of a puzzle, we can control how often new blocks will be added to
a blockchain, and in the case of cryptocurrencies this way we also control minting of new
coins and thus money supply [22].

2.2.3 Digital Signatures
Another security (cryptographic) concept used in implementations of blockchains are
digital signatures. Like a handwritten signature, a digital signature ensures that only
one person can sign a digital document, but anybody else is able to verify the signature
of the document. Another important property of a signature is that it is always related
to one specific document, meaning that we cannot take a signature of one document and
apply it to another document. In computer science, signatures are realized using applied
cryptography [22].

To sign a digital document, we first need to create a private and public key pair. The
private key is used to sign a document resulting in a signature of the document, and
only the party that is signing the document has access to the private key. The public
key, on the other hand, is published and accessible to anybody who wants to verify the
signature. In order to verify the signature of the document, one would need the public
key, document itself and the signature. It is crucial to use a high level of randomness
when generating key pairs and signing documents, otherwise somebody could be able
to determine a private key from several different signatures signed by the same private
key [22].

Private keys can sign only a limited amount of data (e.g., 256 bits), so they might
not be convenient for signing large data. However, we can instead sign hash values of
data, because as we have seen in the previous chapter, hash values always have the
same output size. In blockchains, digital signatures are used as proof of ownership of
digital assets stored on blockchains. Bitcoin for instance utilizes the elliptic curve digital
signature algorithm (ECDSA) for transaction signatures. If one person can prove that he
is the owner of a private key used to sign some transaction on a blockchain, then that
transaction and respective coins belong to that person [22].

In cryptocurrencies, coins are only represented as linked transactions that show the
ownership of signed digital assets. To issue a transaction that changes the ownership
of one Bitcoin, we first need the Bitcoin address (e.g., public key) of the new owner.
Then, the current owner needs to digitally sign the hash of a previous transaction proving
that he is the current owner, and the new owner’s public key. This way, we have linked

11

2. Background

transactions that we can traverse to determine owners of the respective coins. This is a
very simplified description and in reality, for example, we would use obfuscated public
keys for security reasons [22]. The process is illustrated in Figure 2.4.

Figure 2.4: Coins: Chain of Digital Signatures [41]

2.2.4 Anonymity

As mentioned before, cryptocurrencies like Bitcoin allow making pseudo-anonymous
transactions by utilizing the public key cryptography. Transactions cannot directly be
linked to concrete users, but they can only be linked to addresses (hashed public keys).
Thus, Bitcoin is considered to be pseudo-anonymous. However, there are various data
mining techniques that can be used for a deanonymization of users. One could, for
example, track the IP address of a transaction originator by controlling a hub connected
to all peers, under the condition that a transaction does not come from an online wallet.
In order to increase anonymity when interacting with a blockchain network, we can use
anonymity services such as Tor, which utilizes an onion routing protocol to hide the IP
address of a request sender. However, an attacker could disable Tor services by misusing
the Bitcoin denial-of-service protection [22].

Online wallets and exchanges also reduce anonymity, because companies behind them
are very often obligated to keep information about users [22].

12

2.3. Smart Contracts

2.3 Smart Contracts

The blockchain technology was introduced as the main technology behind cryptocurrencies,
but there are other application possibilities of blockchains as well. Blockchains can be
used as decentralized computer systems for running special programs for automated
contractual enforcements called smart contracts [36].

The term smart contract was first coined by Nick Szabo. A smart contract is defined
as a computerized transaction protocol that executes the terms of a contract. Digital
cash protocols are an example of smart contracts. The general objectives of smart
contract design are to satisfy common contractual conditions (e.g., payment terms),
minimize exceptions both malicious and accidental, and minimize the need for trusted
intermediaries. The economic goals of smart contracts include lowering fraud loss,
arbitration and enforcement costs, and other transaction costs [39].

Bitcoin utilizes a simple stack-based scripting language that, although not Turing-
complete, can be used for programming of more complex programs than only to manage
balances of coins. Although programmability of Bitcoin scripts is very limited, some
other blockchains like Ethereum provide a fully-fledged Turing-complete programming
language that can be used to create highly sophisticated smart contracts [9, 22].

In this thesis, we will mainly refer to Ethereum-based blockchains and smart contracts
for them.

2.3.1 Ethereum Smart Contracts

A smart contract runs on all nodes of a blockchain, which in the case of an Ethereum-
based blockchain are provided by the Ethereum Virtual Machine (EVM). The nodes
are able to execute compiled code written in the Solidity programming language that
has a syntax similar to C++ and JavaScript. On all nodes, outputs and state of a
smart contract must be the same. Smart contracts are isolated from the external world.
They can only answer requests of distributed applications through a public interface,
and communicate with other smart contracts on the same blockchain. Consequently,
development of blockchains-based software systems is divided into two phases. The first
phase is the specification and development of smart contracts. The second phase is the
specification and development of distributed applications that communicate with users
and smart contracts [36].

Smart contracts have a state that is permanently stored in a blockchain. Since blockchains
are immutable, smart contracts once deployed on a blockchain cannot be removed.
In Ethereum, smart contracts are deployed using special transactions to call their
constructors. After the deployment, public functions of a smart contract can be called
using a transaction. Message calls to a constructor or public messages that modify
the state of a smart contract consume gas, which must be paid in Ethereum’s native
cryptocurrency called Ether. Gas consumption of a transaction depends on executed

13

2. Background

Ethereum operations and used storage. There are no costs for calling public functions
that only return a value without modifying the state of a smart contract [36].
Smart contracts have some limitations as well. For instance, the maximum contract size
is limited to 24KB. Another limitation is that a smart contract cannot access the external
world and it cannot autonomously trigger an action [7].

2.3.2 Smart Contracts Security
Security is a critical consideration when designing and implementing smart contracts.
The reason for this is that smart contracts run in trustless and decentralized environments.
In contrast to centralized solutions, vulnerabilities in smart contracts are much harder
to fix. Once a bug in a smart contract is exposed, it is hard to prevent exploitation of
the bug due to the decentralized nature of smart contracts. Assets stolen during such
exploits are usually irrecoverable due to immutability of smart contracts [12].
A well known example of a security incident, which shows how expensive a vulnerability
in a smart contract can be, is the DAO attack. A DAO is a Decentralized Autonomous
Organization in which anyone can participate by purchasing DAO tokens. Governance
rules of the organization are formalized, automated and enforced by a smart contract. A
hacker exploited a vulnerability in the DAO smart contract and stole more than three
million Ethers. Furthermore, the incident led to a fork of the Ethereum blockchain.
Although developers of the DAO were already aware of the issue and they had prepared
the fix for it, they were not able to patch the security flaw on time. The DAO attack
demonstrates how important security aspects are for development of smart contracts [12,
14].
To develop a secure smart contract, various steps can be taken during development and
operation of the smart contract. One of the steps is the definition of proper access controls.
Since anyone can make a call to public functions of a smart contract, developers can apply
the ownable pattern and the role-based access control to limit which entities are allowed
to call these functions. An address of a smart contract owner is remembered during
the creation of the smart contract. If a public function is marked with the OnlyOwner
modifier, only function calls from the owner’s address are allowed. Calls from any other
address are reverted. Apart from the predefined OnlyOwner modifier, a role-based access
control allows developers to define custom modifiers for multiple administrative accounts.
Similar to the ownable pattern, only addresses which have specific roles assigned can call
public functions marked with the respective modifiers [12].
To avoid centralized control of smart contracts, multi-signature accounts are another
approach for defining secured access control. With a multi-signature account, developers
can avoid a single point of failure if account keys are compromised or in the case of a
malicious insider. These accounts require signatures from multiple entities to execute a
transaction [12].
Smart contracts enforce terms of a contract. To guarantee correct behavior of smart
contracts, developers can also guard function calls with the require, assert and

14

2.3. Smart Contracts

revert statements. The require statement defines preconditions (e.g., valid user
inputs, state variables, etc.) that must be met before the execution of a function. The
assert statement is similar to the require statement, but it is used to check for
internal errors. If such errors occur, changes to state variables are rolled back. Finally,
the revert statement is usually used together with if-else statements to trigger exception
and revert state variables if certain conditions are not satisfied [12].

Beside the code specific enforcements of the smart contract security, other steps during
the smart contract development phase can be applied to ensure development of secured
smart contracts. These steps include: unit testing, static and dynamic code analysis,
formal verification, independent code audits, etc. [12].

Even with all previously mentioned development best practices applied, vulnerabilities
can still appear after a smart contract deployment. To minimize the risk and exposure
in such cases, a disaster recovery plan should be incorporated as well. One of the steps
of the disaster recovery plan is to enable contract upgrades. For instance, this can be
achieved with the proxy pattern. In the proxy pattern, a contract state and logic are
separated in two contracts. The first contract is the proxy contract that users and
other smart contracts can interact with. This contract also stores state variables and it
forwards function calls to the second contract. The second contract contains logic of the
smart contract, but it stores the state in the storage of the first contract. Thus, in order
to upgrade the smart contract logic, one would have to deploy another logic contract
preserving the state from the proxy contract [12].

Upgrading a smart contract requires time, and as it was already mentioned in the DAO
attack example, the time is critical if a vulnerability in the smart contract is exposed. To
guard the smart contract in such situations an emergency stop can be implemented [38].
An emergency stop is a Boolean variable, which is by default set to false. In case a
vulnerability in the smart contract is exposed, it can be set to true by the contract
owner or other trusted address with a specific role. To avoid the risk that a single entity
can activate the emergency stop, a multi-signature account could be used. Functions of
the smart contract have the require statement that ensures that the emergency stop
is not activated before execution under normal circumstances. In case a vulnerability
is exposed, it offers a fast response mechanism to disable functions execution, and thus
prevent a vulnerability exploit and potential assets lost [12].

The previously mentioned best practices enable developers to build secure, robust, and
resilient smart contracts. By implementing and applying these best practices in the smart
contract development and operation, we can prevent vulnerabilities and reduce the risk
of assets lost during security incidents.

15

CHAPTER 3
Related Work

In this chapter, we survey existing approaches that are related to blockchain interoper-
ability. Not all approaches tackle the problem of cross-blockchain asset transfers, but they
all aim to enable interoperability between blockchains. The work discussed in Section 3.1
shows how to enable blockchain interoperability using pegged sidechains. In Sections 3.2
and 3.3, we discuss two different solutions for Atomic Swaps. Finally, two projects that
aim at cross-blockchain asset transfers are discussed in Sections 3.4 and 3.5.

3.1 Enabling Blockchain Innovations with Pegged
Sidechains

Since the introduction of Bitcoin, many alternate blockchains, or altchains, have been
developed, which share the codebase of Bitcoin with various modifications and extensions
of blockchain features. One of the main reasons for these modifications was the very
limited feature set the Bitcoin blockchain provides, which only supports transfer of a
single digital currency. Although this allowed many simplifications in the implementation
and increased auditability of this cryptocurrency, there were many trade-offs between
scalability and decentralization, security and cost, and in technology improvements
(e.g., composite signatures [17] or ring signatures [40]). Changes in the implementation
are difficult to deploy, because they must be accepted and executed by all network
participants. As a solution to this problem, various altchains have emerged. They
allow experimentations with different blockchain technologies and economics of digital
currencies [16].

However, this has also lead to a significant fragmentation of the cryptocurrency market
and of blockchain infrastructure. Each altchain has its own cryptocurrency with different
economics and floating price. This exposes users to the high risk and volatility of these
new cryptocurrencies. Also, the risk of security vulnerabilities is much higher, because

17

3. Related Work

each altchain has its own technology stack that has to be maintained. This is especially
a problem considering a security-specific domain of cryptocurrencies, where exploited
security weaknesses can lead to total loss of assets [16].

As a solution to the fragmentation problem, the paper [16] introduces interoperable
blockchains called pegged sidechains. Pegged sidechains allow the movement of digital
assets from one blockchain to another. The main observation of the paper is that the
Bitcoin cryptocurrency is independent from the Bitcoin blockchain, and this can be
applied to any cryptocurrency or digital asset [16].

The process of transferring assets from a parent chain to a sidechain starts by creating
a locking transaction on the parent chain. Then, on the sidechain, another transaction
is created with a cryptographic proof that the lock on the parent blockchain was done
correctly. Inputs of the second transaction contain proofs of possession and they are
tagged with an asset type (e.g., the genesis hash of the parent blockchain). The transferred
assets could also be moved to a third blockchain and then back to the original blockchain
using the same principle [16].

In the introduction part of the thesis in Section 2.2.1, we provided descriptions of blocks,
block headers and simplified payment verification (SPV). The authors of [16] additionally
define block headers as a dynamic-membership multi-party signature (DMMS). The
terms dynamic-membership and multi-party refer to miners, because anyone can join a
network and contribute at any time without an enrollment process [16].

A DMMS is a signature of computational power of miners, and since blockheaders are
chained together, DMMS is cumulative as well. Any chain fragment is a DMMS on its
first block, whose computational strength is equal to the sum of computational strengths
of each DMMS the chain fragment consists of [16].

An example of a cumulative DMMS is a SPV proof, which is composed of a list of block
headers demonstrating proof-of-work that a transaction has been accepted in one of the
blocks. SPV proofs can be used to transfer coins from a parent chain to a sidechain.

A transfer starts by sending a specific amount of coins to a SPV-locked output on a
parent chain. Then, a user needs to wait for a sufficient cumulative DMMS (SPV) to
be created, which contains a transaction that the coins were sent to the SPV-locked
output. This wait is called the confirmation period and it typically takes one to two days.
After the confirmation period, the user creates a transaction on a sidechain providing
the SPV proof with enough proof-of-work that the coins are locked on the parent chain.
The transferred coins on the sidechain cannot be used immediately, because SPV proofs
can be invalidated by a longer chain. The user needs to wait for the contest period in
order to prevent double-spending. This wait takes another one to two days [16].

The coins on the sidechain retain their identity, and they can be transferred on the
sidechain independently from the parent chain. They can also be sent back to the parent
chain using the same approach as described above. The transfer process is demonstrated
in Figure 3.1.

18

3.2. Decred On-Chain Atomic Swaps

The process described above is called the symmetric two-way peg, because both chains
have to validate SPV proofs from the other chain. To simplify the process, sidechain
nodes could be full validators of a parent chain. This would allow transfer of coins from
the parent chain to the sidechain without SPV proofs, and only transfer of coins back to
the parent chain would require SPV proofs validation on the parent chain. The simplified
process is known as the asymmetric two-way peg.

Figure 3.1: Two-Way Peg Protocol

3.2 Decred On-Chain Atomic Swaps
Blockchains and cryptocurrencies are based on a peer-to-peer communication, but in
order to exchange one cryptocurrency for another, users usually rely on online exchanges.
The problem with a direct exchange of coins between two parties is that there are no
guarantees that both parties will fulfil their obligations. Such exchange must be enforced
by a protocol so that either both parties get their coins or the exchange is not conducted
at all. An Atomic Swap protocol allows two or more parties to exchange coins on different
blockchains without a third party intermediary, and it guarantees by its design that each
party will get its coins even in a trustless environment. Let us assume that Alice owns

19

3. Related Work

some Bitcoins and Litecoins, and that she wants to use Bitcoins for a payment in a Web
shop that accepts only Bitcoins. However, she does not have enough Bitcoins for this
transaction. One solution for this scenario would be to buy more Bitcoins on one of
the online exchanges, but since Alice also owns some Litecoins, she decides to directly
exchange her Litecoins for more Bitcoins. On the other side, Bob owns some Bitcoins
and Litecoins as well, and he believes that the value of Litecoins will grow in the future,
and he is willing to trade some of his Bitcoins for more Litecoins. Since Bob and Alice
do not know and do not trust each other, they can apply an Atomic Swap protocol to
make sure that they both get their new coins.

The Decred cross-chain atomic swapping project is a proof-of-concept for Atomic Swaps
that supports many different cryptocurrencies (Bitcoin, Bitcoin Cash, Decred, Litecoin,
Monacoin, Particl, Polis, Vertcoin, Viacoin and Zcoin). The project provides the following
six commands to perform a cross-chain swap [3]:

• initiate <participant address> <amount>

• participate <initiator address> <amount> <secret hash>

• redeem <contract> <contract transaction> <secret>

• refund <contract> <contract transaction>

• extractsecret <redemption transaction> <secret hash>

• auditcontract <contract> <contract transaction>

A swap is started by executing the initiate command to create a hash-locked smart
contract on the first blockchain that is also enforced by a timelock of 48 hours. The
initiator needs to specify an address of the second participant and an amount of coins to
be sent, and the command will generate a Secret s and a hash value h of the secret.
The participant must then execute the participate command to create a hash-locked
smart contract on the second blockchain using the initiator’s address and the same hash
value h, but this time with a timelock of 24 hours. After the creation of the smart
contracts on both blockchains, the initiator is the first to run the redeem command to
get his coins as defined in the smart contract created by the participant. The participant
can then extract the Secret s with the extractsecret command, and redeem his coins
as well. If any of the timelocks expire, respective sides can use the refund command
to get back their original coins. Additionally, the auditcontract command should be
used by both sides to verify the contract of the other side by checking addresses, output
values, and timelock durations [3]. The workflow of a Decred cross-chain Atomic Swap is
illustrated in the Figure 3.2.

Atomic Swap smart contracts are enforced with a hashlock h and a timelock t. The first
enforcement, hashlock h, allows both parties to redeem their new assets from the contract
if they send a Secret s, such that h = H(s) where H(.) is a hash function. The

20

3.2. Decred On-Chain Atomic Swaps

Figure 3.2: Visualization of Steps Performed During Decred Atomic Swap

second enforcement, timelock t, allows both parties to refund their original assets after
the defined time if the actual swap was not finished successfully (e.g., Secret s was
not revealed, or either party withdraws from the contract). Bitcoin and many altcoins
support this feature due to the CheckLockTimeVerify and CheckSequenceVerify options
in their transaction scripts [27].

If any side is behaving irrationally (e.g., the initiator withdraws himself after the partici-

21

3. Related Work

pant deploys his smart contact on a blockchain), the other side will be able to refund
his original coins after the timelock t expires. Also, the order of the single steps of
Atomic Swaps is significant. If, for example, the initiator publishes the Secret s before
the participant deploys his smart contract, then the participant might use the secret
to redeem his new coins without giving the initiator the possibility to redeem his coins.
Furthermore, if a participant’s timelock is not shorter than a timelock defined by the
initiator, then the initiator might wait until the very last moment of the timelock to
redeem the new coins, and since in the meantime the timelock of the other contract has
expired, he could use the option to refund his original coins as well. This way, the initiator
gives no time for the participant to redeem his coins as defined in the contract [27].

Atomic Swaps are not limited to only two parties, and it is possible to conduct Atomic
Swaps between three or more parties where once all smart contracts are published on
the respective blockchains and a Secret s is revealed, all parties are able to redeem their
coins [27].

The biggest disadvantage of the Decred Atomic Swap solution is that it requires some
type of a side channel (e.g., instant messenger) to exchange data required as input
parameters of the commands. Furthermore, it is required to manually monitor the
respective blockchains in order to find out relevant contracts and transactions.

3.3 Lightning Network Off-Chain Atomic Swaps
Although the Bitcoin blockchain is suitable for storing financial transactions in a safe
and verifiable way, when it comes to performance characteristics of Bitcoin as a payment
system, it performs much worse compared to the traditional payment systems like Visa.
For example, the Bitcoin network supports only around 7 transactions per second, whereas
the Visa network supports up to 47000 transactions per second. There are numerous
parameters that affect the number of transactions that can be conducted on the Bitcoin
network such as computational power of miners, size of blocks on the blockchain, current
difficulty of cryptographic puzzles, etc. Adjusting these parameters cannot be done
without consequences. If we, for example, increase the size of blocks on the blockchain,
there is a very high chance that this would cause centralization of mining nodes. This
leads to a scalability problem of the Bitcoin blockchain [28].

The Lightning Network tries to solve the scalability problem of the Bitcoin blockchain by
introducing off-chain payment channels that support millions of transactions per second.
These payment channels operate on top of blockchains, and they do not record every
transaction on the blockchains. Two parties can open a new payment channel by sending
a funding transaction to a blockchain using a special wallet that signs transactions
with two private keys, one owned by the first participant and one owned by the second
participant. After creating the payment channel, the involved parties can exchange as
many transactions as they want, where every new transaction is signed by both parties.
Transactions that are exchanged only on a payment channel are called commitment
transactions, and the latest commitment transaction can be used by either side to close

22

3.4. Token Atomic Swap Technology

the payment channel by sending a closing transaction to the blockchain. The closing
transaction represents the final balance of all transactions from the payment channel
that will be recorded on the blockchain. Although two parties might have exchanged
millions of transactions, only the funding and closing transactions are actually published
on the blockchain [28].

However, two parties that want to conduct transactions between each other do not
necessarily have to open a new channel if they are already connected through a route of
payment channels. If Alice has a payment channel with Bob, and Bob has a payment
channel with Carol, then Alice can route her transactions through these two channels
to Carol. This is enabled using a Hashed Time-Locked Contract that is similar to the
previously mentioned hashlock and timelock contracts used to implement Decred Atomic
Swaps, with the additional option to extend the duration of a channel. In this concrete
example, Carol would have to generate a Secret s (also called a preimage in the
Lightning Network), and send a hash value h=H(s) to Alice, who then needs to forward
the hash value to Bob. Upon receiving the hash value, all parties create a timelocked
contract, where the timelock period is decreasing with every new contract. Finally, Carol
needs to send the secret in a reverse order until Alice receives it. All parties are motivated
to activate their contracts using the secret, and send the secret to the next participant,
because otherwise they might lose their assets [25].

In order to conduct Atomic Swaps in the Lightning Network, we can simply utilize a
Hashed Time-Locked Contract, and do not need any additional extensions. Similar to
creating a route of payment channels, we just need to construct a closed loop between
parties involved in an Atomic Swap using payment channels that are opened on blockchains
of different cryptocurrencies [25]. Since the Hashed Time-Locked Contract is one of the
core features of the Lightning Network, this implementation of Atomic Swaps is much
more sophisticated compared to the Decred Atomic Swaps implementation, and it does
not require any side channels for exchanging required data like secrets, contracts and
transactions. However, since this type of Atomic Swaps operates off-chain, it can be
affected by potential bugs or security vulnerabilities in the Lightning Network. Also, only
cryptocurrencies that are supported by the Lightning Network can benefit from this type
of Atomic Swaps. Currently, only a few main cryptocurrencies are supported, and most
of them are in a prototype phase at the moment.

3.4 Token Atomic Swap Technology
The “Token Atomic Swap Technology” (TAST) project is a research project which aims
to develop a platform for cross-blockchain interoperability. In a series of white papers, the
authors review the state of the art in blockchain technologies with a focus on blockchain
interoperability, introduce and formalize the cross-blockchain proof problem, and discuss
possible solutions to this problem.

The first white paper [33] provides an overview of some of the prevailing blockchains,
discussing their properties like support for the User-Issued Assets (e.g., tokens) and

23

3. Related Work

support for smart contracts. Differences in the implementation of these blockchains make
them more or less suitable for interoperability. Whereas some blockchains like Ethereum
use Turing-complete smart contracts, others like Bitcoin use only a stack-based, non-
Turing-complete scripting language. Achieving interoperability on blockchains without
support for smart contracts poses a challenge. However, some projects (CounterParty [1],
OpenAssets [10] and OmniLayer [29] create an additional layer on top of, e.g., Bitcoin
that adds support for the User-Issued Assets. Transactions issued by these layers look
like regular transactions to the underlying blockchain.

Apart from differences in blockchain technologies, a crucial challenge in interoperability
is the cross-blockchain proof problem, which is discussed in the second white paper [32].
Using the lemma of rooted blockchains, the authors show that for two independent
Blockchains A and B, there are no practical means to verify the existence of specific data
(e.g., transactions) on the Blockchain A from the Blockchain B. There are two main issues
that make interoperability between blockchains difficult. First is that blockchains have
to support a sufficiently powerful transaction consensus of other blockchains included in
an interoperability process. For instance, the Bitcoin blockchain would have to execute a
smart contract instruction set. Another issue is that in order to verify the presence of
some data on a single blockchain, one must traverse all blocks up to the genesis block
(i.e., the root block). In case of multiple blockchains, we would have to store blocks from
one chain on another chain. This is infeasible, as storage in blockchains is expensive [34].

The cross-blockchain proof problem implies that it is not possible to check if a digital
asset is spent on one blockchain in order to claim it on another. This makes cross-
chain execution of traditional spend-first transactions difficult. As a solution to the
problem, the authors introduce the concept of claim-first transactions, in which the
order of transactions is inverted. This concept uses a special CLAIM transaction that
both the sender and receiver have to sign. The cryptographic signatures of the sender
and receiver represent the so-called proof of intent, which allows users to claim an
asset on the target blockchain. Once the CLAIM transaction is executed, anyone can
participate in the execution of a SPEND transaction on the source blockchain to destroy
the transferred asset. Parties responsible for submitting the SPEND transaction are
called witnesses. As account balances from all supported blockchains are held on each of
these blockchains, the witnesses are also responsible for updating the account balances on
all involved blockchains. The witnesses get rewarded for submitting SPEND transactions
and updating account balances. Deciding which witness is responsible for which SPEND
transaction, and thus which witness collects the reward, poses an additional challenge.
This challenge is resolved using the concept of the deterministic witness, which introduces
a contest between the witnesses. The winner in this contest is determined by the lowest
distance of the hash value of a witness address from the hash value of the proof of intent
signature of a transaction in question [31].

24

CHAPTER 4
Motivating Scenarios

This chapter presents motivating scenarios and high-level requirements that we will use
throughout this thesis. We start by defining the Cross-Chain Token in Section 4.1. In
Sections 4.2 and 4.3, we elaborate the cross-blockchain proof problem, and a possible
solution for it. Use cases of a cross-chain token transfer are presented in Section 4.4.
Finally, Section 4.5 imposes requirements that will drive architecture and implementation
of a solution.

4.1 Token Definition
In the blockchain field, a token is a smart contract that keeps track of mappings between
user accounts and balances. Tokens can serve as a base medium for any application that
requires assigning a balance to a specific user, such as cryptocurrencies or general voting
rights. Since smart contracts are usually written in a Turing-complete programming
language like Solidity, there are no special rules about how one needs to implement a
smart contract of a token. However, to allow any wallet or distributed application to
interact with tokens, additional standardization of the tokens is required [13].

The ERC20 Token Standard [23] specifies the interface for a smart contract implemen-
tation of fungible tokens. Fungibility of tokens means that all tokens are equal. The
standard defines basic functions that must be provided by each interface implementation.
These functions include a possibility to transfer tokens to another user (address), and to
approve tokens so that they can be spent by another user. Listing 4.1 shows all functions
required by the standard.

When deploying a token smart contract to a blockchain, we usually have to deploy a so-
called crowdsales smart contract as well. The crowdsales define how tokens are going
to be distributed to users, that is, they define the economics of the tokens. There are
various properties to specify when defining a crowdsale, the most important being: price

25

4. Motivating Scenarios

and rate, emission, capitalization, distribution, etc. A properly defined crowdsale can
have a huge impact on how new tokens are accepted by users [2].

In this thesis, we present the Cross-Chain Token (XCT) that is based on and compliant
with the ERC20 Token Standard, but that, in addition, can be transferred from one
blockchain to another. The token is blockchain-independent, meaning that it can be
deployed on multiple blockchains. Users can choose on which blockchain they are going
to hold their tokens, distribute their tokens across several blockchains, and also move
tokens from one blockchain to another whenever they want. For the proof of concept of
this thesis, we will not implement a corresponding crowdsale smart contract. Instead, the
token will be mintable, so that the contract owner can mint new tokens when required.
Nevertheless, in a real-world scenario the XCT supports crowdsales similarly to any other
ERC20 token.

Listing 4.1: The ERC20 Token Standard Interface
1 function name() public view returns (string);
2 function symbol() public view returns (string);
3 function decimals() public view returns (uint8);
4 function totalSupply() public view returns (uint256);
5 function balanceOf(address _owner) public view returns (

�→ uint256 balance);
6 function transfer(address _to, uint256 _value) public

�→ returns (bool success);
7 function transferFrom(address _from, address _to, uint256

�→ _value) public returns (bool success);
8 function approve(address _spender, uint256 _value) public

�→ returns (bool success);
9 function allowance(address _owner, address _spender) public

�→ view returns (uint256 remaining);

4.2 Cross-Blockchain Proof Problem

The main challenge in achieving interoperability between blockchains is the cross-
blockchain proof problem discussed in [32]. The problem implies two requirements
for verification on Blockchain B if data D is stored in a block of Blockchain A. The first
requirement is the presence of the block lineage of A on B. The lineage of the block
represents the line of descent of the block from the genesis block. The second requirement
is the ability of Blockchain B to verify if the block containing D is a valid next block of
its lineage. In other words, the transaction consensus of Blockchain B must be able to
resemble the transaction consensus of Blockchain A [32].

The formal definition of the problem is given as the Lemma of Rooted Blockchains [32]:

26

4.3. Semi-Decentralized Cross-Chain Validation

For any D ∈ B, the existence of Dproof ∈ Ca ⇐⇒ D ∈ B implies (i) access to the
lineage of the block containing D on A, and (ii) a sufficiently powerful transaction

consensus tca to mimic tcb.

As a consequence of the cross-blockchain proof problem, it is difficult to verify on one
blockchain whether a digital asset has been recorded on another blockchain. To satisfy
the first requirement, we would have to store blocks from Blockchain A on Blockchain
B. Furthermore, if multiple blockchains support interoperability, every single blockchain
would have to store blocks from all other blockchains. In blockchains, data is already
stored in a compact way, since storage is expensive [34]. This makes implementation of
the requirement practically not feasible.

Even if the first requirement can be fulfilled by providing a block lineage, the transaction
consensus of Blockchain B would have to be able to check if the block lineage is valid.
However, blockchains use different instruction sets for validation of transactions. For
instance, Bitcoin is using a simple scripting system that is not Turing-complete. Ethereum,
on the other hand, is using Turing-complete virtual machines (EVM). Thus, the Bitcoin
blockchain is not able to simulate instruction sets of the EVM, and consequently it is not
able to check whether the block lineage from the Ethereum blockchain is valid.

4.3 Semi-Decentralized Cross-Chain Validation
In the previous section, we discussed the cross-blockchain proof problem, and why it is
the main challenge in achieving blockchain interoperability. For instance, a cross-chain
token transfer is practically infeasible due to this problem, since it is not possible to
verify on the target blockchain if the token exists on the source blockchain.

To enable cross-chain token transfers, we propose the concept of an off-chain token transfer
validation. Such transfers are initiated on the source blockchain and finalized on the target
blockchain. However, the validation of the transfers is performed off-chain by validation
parties that we are going to refer to as “validators”. Although the validation is performed
off-chain, the validators perform it in a verifiable manner without compromising the
integrity of the transferred tokens.

We call this concept semi-decentralized cross-chain validation. On the one hand, the
validators operate in a centralized way which is necessary to bypass the cross-blockchain
proof problem. On the other hand, the validators are parties trusted by the network of
blockchains supporting this type of transfers. Furthermore, validation steps are managed
and enforced by natively decentralized mechanisms of these blockchains.

The implementation of the semi-decentralized cross-chain validation poses its own chal-
lenges and limitations. Involved blockchains must support smart contracts, as the
implementation of such transfers requires Turing-complete instruction sets. Another
challenge is how to ensure trustworthiness of the validators. Also, the implementation

27

4. Motivating Scenarios

must prevent double spending, in a case where some party tries to transfer the same
token from one source blockchain to two different target blockchains.

4.4 Use Case Scenarios

In this section, we describe the two identified use case scenarios: a valid scenario
for transferring tokens between different blockchains, and a malicious scenario where
an attacker wants to transfer the same tokens from one blockchain to two different
blockchains.

4.4.1 Valid Token Transfers

In case of a valid cross-chain token transfer, we always have one source blockchain where
a user is holding some tokens, and one target blockchain where the user wants to send the
tokens. Now, various reasons exist why users might want to transfer tokens to a different
blockchain. For instance, they might want to distribute their assets across multiple
blockchains in order to avoid the lock-in problem, or simply a receiving party might only
have an address on a target blockchain. Nevertheless, from a technical perspective, it
does not make any difference if a user just wants to move his tokens to his address on
another blockchain, or if he wants to transfer the tokens to an address of a different user
on another blockchain. In both cases, the balance of the user on the source blockchain
is reduced for the transferred amount, and the balance of the receiving party on the
target blockchain is increased for the same amount. Also, the number of available tokens
on both blockchains are adjusted accordingly, and the total supply of tokens across all
blockchains remains the same.

Blockchain BBlockchain A

X

Blockchain BBlockchain A

X X

Blockchain BBlockchain A

X

Total supply: zSupply: x Supply: y

Supply: x-1 Supply: y+1Total supply: z

Figure 4.1: Valid Cross-Chain Token Transfer Use Case

28

4.4. Use Case Scenarios

Figure 4.1 illustrates a use case of a valid token transfer. Before the transfer, a user
owns one token on Blockchain A. Furthermore, the token supply on Blockchain A and
Blockchain B is x and y respectively, with the total supply on all blockchains equal to
some value z. The user transfers his token from Blockchain A to Blockchain B. As result,
the token is destroyed on Blockchain A and a new token is minted on Blockchain B. After
the transfer, the supply of tokens on Blockchain A is reduced by one and, consequently,
the supply of tokens on Blockchain B is increased by one. However, the total supply of
tokens on all blockchains remains unchanged.

4.4.2 Malicious Token Transfers
Blockchains have been introduced as a solution for the double-spending problem in a
trustless distributed environment. When transferring tokens from one address to another
on a single blockchain, a double spending is prevented by the blockchain itself. However,
by introducing a token that can reside on multiple blockchains, and that can be freely
moved between these blockchains, a new type of the double-spending problem is created,
namely the cross-chain double spending problem.

The cross-chain double spending problem is in essence a replay attack, where a malicious
user tries to move the same tokens from one blockchain to two different blockchains,
or where an attacker monitors blockchains for valid transfers and then tries to reply
transfers to another blockchain using different target addresses. This misuse case will
guide security decisions of the protocol design and implementation in this thesis.

Blockchain B

Blockchain A

X

X

Blockchain C

X

Figure 4.2: Malicious Cross-Chain Token Transfer Use Case

Figure 4.2 illustrates a use case of a malicious token transfer. A malicious user holds one
token on Blockchain A and attempts to transfer it to Blockchain B and Blockchain C at
the same time. This would result in destroying the token on Blockchain A and minting
two new tokens (one on Blockchain B and one on Blockchain C), thus increasing the
total supply of tokens by one. As Blockchain B cannot check if the token has already
been transferred to Blockchain C, and vice versa, malicious token transfers like this must
be prevented by the design of the transfer protocol.

29

4. Motivating Scenarios

4.5 Identified Requirements
In order to implement a portable and yet secure and reliable token, we identify the
following high-level requirements that serve as guidelines throughout this thesis:

• All functionalities of the ERC20 Token Standard shall be supported when interacting
with tokens on a single blockchain.

• Users shall be able to transfer their tokens from one blockchain to another at their
will.

• Cross-chain transfers are approved by trusted semi-decentralized parties, whereas
anybody shall be able to verify correctness of all transfer approvals.

• Reply attacks (double spending) of both malicious users and attackers shall be
prevented by the design of a smart contract.

• The integrity of digital assets must not be compromised during a token transfer.

30

CHAPTER 5
Solution Architecture

In this chapter, we discuss the architecture of a solution for a cross-chain token transfer.
The first section of this chapter, Section 5.1, provides an overview of components and
actors of the solution. Section 5.2 describes in-depth a protocol which enables cross-
chain token transfers. The architecture of distributed applications used to interact with
blockchains is discussed in Section 5.3.

5.1 Overall Solution Design
In Section 4.2, we elaborated on the cross-chain proof problem. The key goal of this work
is to develop a solution for the problem, which ultimately should enable a cross-chain
transfer of tokens. Developing such a solution requires implementing multiple components
that are used by various actors.

As mentioned in Section 2.3, we can divide the development of the solution in two phases.
The first phase is specification and development of a smart contract, and the second
phase is specification and development of distributed applications that communicate with
users and with the smart contract.

The core component of the solution is a protocol that defines what actions and in which
order must be performed by the actors, in order to perform a XCT transfer. The protocol
is enforced by a smart contract, which is the central point of interaction of all involved
actors. The actors interact with the smart contract via different distributed applications
depending on their role.

The main idea of the solution is to perform off-chain validation of token transfers as
discussed in Section 4.3. The so-called validators are responsible for these validations.
Validators can only be trusted and verified parties as defined by the smart contract.
Beside the validators, the solution distinguishes between two other types of roles: clients
and observers. Clients can be anyone who own tokens and are interested in transferring

31

5. Solution Architecture

Validators

O
b

se
rv

er
s

Blockchain A

Clients

Blockchain CBlockchain B

Figure 5.1: Solution Components and Actors

tokens between blockchains. Observers represent anybody who want to verify that the
validators are working correctly.

Figure 5.1 shows an overview of the components and actors of the XCT transfer solution.

5.2 Cross-Chain Token Transfer Protocol
The cross-chain token transfer protocol presented in this section is a solution for the
cross-chain proof problem, and it enables users to send tokens from one blockchain to
another. The protocol defines steps required for the cross-chain token transfer based on
the semi-decentralized cross-chain validation discussed in Section 4.3. These steps must
be performed in the specific order on different blockchains. Some steps are executed by a
client who wants to transfer tokens, and others by validators.

The protocol describes a distributed coordination task, which can be divided in three
main phases: initialization, burn and approval. The first two phases, initialization and
burn, are performed by the initiator of a transfer (client), whereas the approval phase
must be performed by trusted semi-decentralized parties (validators). Furthermore, only
the burn phase takes place on the source blockchain (that is, the blockchain holding
tokens to be transferred). The initialization and approval phases are, in contrast, always
executed on the target blockchain.

We assume that a client owns some tokens on a Blockchain A, and that he wants to
transfer the tokens to a Blockchain B. Moreover, the transfer must be approved by a
validator. For simplicity, we assume that at any point there is at least one validator
awaiting transfer requests from supported blockchains. In the following, all three phases
of the cross-chain token transfer protocol are described. The sequence diagram of the
transfer phases is shown in Figure 5.2.

Transfer Initialization Phase

The initialization phase is performed by the client on the target blockchain, and it shows

32

5.2. Cross-Chain Token Transfer Protocol

Blockchain AClient ValidatorBlockchain B

Secret
init

emit
Transfer TID

burn

emit
Burn TID

approve

Figure 5.2: Sequence Diagram of Cross-Chain Token Transfer Protocol

an incentive of the client to move the tokens to Blockchain B. Before calling the init
function of the XCT smart contract on the blockchain, the client first needs to create
a random secret, which is used to generate a unique and deterministic identifier of the
transfer that we refer to as a transfer ID (TID). The TID is defined as the hash value
of a hashed random secret and a chain ID. The chain ID is introduced in EIP-155 to
prevent replay attacks between Ethereum based blockchains [11]. When sending the
transaction to the blockchain, the client specifies the secret, a target address to which
the tokens will be sent, as well as an amount of the tokens to be transferred. The TID is
generated on the blockchain from the provided secret and the chain ID already stored on
the blockchain. When the execution of the init function is finished, the respective event
containing the TID is emitted to validators. As the result of the transaction execution,
we have a new transfer request stored on Blockchain B, however, the tokens are still not
issued to the target address.

Tokens Burn Phase

The burn phase is conducted by the client as well, however, this time on the source
blockchain. In essence, the client needs to provide a proof of burn proving that he
has destroyed (burned) the tokens on Blockchain A. This is done by calling the burn
function of the XCT smart contract on the blockchain. The client needs to specify the

33

5. Solution Architecture

same TID generated during the transfer initialization phase, and the same amount of
tokens. In the burn phase, the TID is directly provided by the client and not calculated
on the chain. When the execution of the burn function is finished, the respective event
containing the TID is emitted to the validators. After this phase, there is a short
period of inconsistency across the blockchains, since the tokens on the Blockchain A are
already burned, and although we have the transfer initialization request stored on the
Blockchain B, the tokens are still not redeemed.

Transfer Approval Phase

The approval phase can only be performed by verified and trusted validators, whose pseudo
identities (addresses) are stored on the involved blockchains. The validators monitor
supported blockchains awaiting cross-chain transfer requests. When a validator observes
the transfer initialization and burn events from both blockchains, he then validates the
cross-chain transfer by checking if the amount of tokens burned on Blockchain A is equal
or greater than the amount of tokens that the client wants to transfer to Blockchain B.
Since the TID is unique on both blockchains, the validator can easily associate the transfer
initialization request on Blockchain B with the corresponding burn request on Blockchain
A. If the transfer request is valid, the validator approves the transfer by calling the
approve function of the XCT smart contract on the blockchain. As result, the tokens
specified in the initialization phase are issued to the specified address. Otherwise, if the
transfer is invalid (e.g., the burn step is not executed, or the burned amount is less than
the transfer amount), the validator does not take any actions, and simply waits until all
steps performed by the client are valid.

Finally, as a result of the successful token transfer, the tokens on Blockchain A are
irrevocably destroyed, and the total supply of tokens on this blockchain is reduced.
Moreover, the total supply of tokens on Blockchain B is increased, as well as the balance
of the address specified in the initialization phase. However, the total supply of the
tokens on all blockchains remains identical as before the transfer.

The order of the execution of the first two phases is not significant for a successful token
transfer. The client can either first initialize a transfer on Blockchain B, or instead he
could first burn the tokens on Blockchain A. As soon as the validator receives both events,
he will validate and approve the transfer if valid. However, it is recommended to always
start with the initialization phase, because the burn phase is a destructive operation,
which irrevocably destroys tokens on a source blockchain. Tokens that are burned on one
blockchain can only be redeemed on a target blockchain by providing the corresponding
transfer initialization request.

The protocol is designed to prevent replay attacks (double spending) by both malicious
users and attackers. The first design decision, which prevents malicious users from
conducting a replay attack, is the usage of a unique chain ID to generate a TID. Chain
IDs are stored on blockchains and unique across well-established blockchains. In the
initialization phase, the client needs to provide a previously generated secret. As part of
an initialization transaction, a TID is calculated by firstly concatenating the hashed secret

34

5.3. Distributed Application Architecture

and the chain ID, and then applying a hash function to the resulting value. This way, a
transfer request is always tied to exactly one target blockchain. If the client attempts
to use the same secret on another blockchain, the resulting TID would be completely
different, because the chain ID on that blockchain will not be the same as on the first
blockchain. In contrast, in the burn phase the client directly provides the TID. Since
this phase is destructive, users should perform it only if they know the corresponding
secret and target blockchain.

The usage of a secret in the protocol has a twofold purpose. The first is to generate a
unique and deterministic TID, so that a validator is able to associate transfer initialization
and burn requests across blockchains. The second is to prevent an attacker from replaying
a transfer of another user by creating a transfer request using the identical TID, but
with a different target address. The secret is only known to the client so that only he
can finalize the transfer request.

Transfers are approved by verified and trusted validators. When the XCT smart contract
is deployed on a blockchain, the contract owner specifies addresses of the validators
trusted by the owner. Only holders of the respective private and public cryptographic keys
that are associated with the specified addresses are able to call the approve function of
the XCT smart contract. Any other call to the function is rejected by the smart contract.

5.3 Distributed Application Architecture

Traditional distributed systems are based on client-server or peer-to-peer architectures.
With the introduction of blockchains, new architectural approaches to design distributed
systems have emerged. These blockchain-based systems are usually composed of a
blockchain, and of an off-chain application which is able to interact with it through
transactions. An off-chain application could be a standalone, serverless application
operating on top of a blockchain, or it could be a part of a more complex system,
where components are communicating with each other over the blockchain. This type of
distributed applications is often called a dApp [36].

A dApp provides a user interface to end users, so that they do not have to interact with a
blockchain directly. Moreover, users may not even be aware that they are using a system
based on a blockchain [35], since a user interface could look like any other Web-based
frontend, or it could be as simple as a command line tool.

A blockchain-based architecture does not tend to replace the traditional architectures of
distributed systems, but instead it enriches them by providing means to store date in an
immutable and tamper-resistant ledger. For instance, in a hybrid architecture [24] most
business logic could still be handled in a direct communication between a client and a
server, whereas only certain parts of applications that benefit from the use of blockchain
technologies could send transactions to and query data from a blockchain.

35

5. Solution Architecture

5.3.1 Distributed Application Design Patterns

In case of Ethereum-based blockchains, dApps communicate with the blockchains through
the web3 library which is available for many modern programming languages (e.g., Java,
Python, JavaScript, etc.). The library provides an implementation of Ethereum’s JSON
RPC1 client API allowing dApps to work with smart contracts and integrate with
Ethereum nodes [15].

There are multiple design patterns, how a dApp based on the web3 library can establish
a connection to Ethereum nodes [5]. Each transaction being sent to a blockchain needs
to be signed by a user’s account. These design patterns differ from each other in the way
that transactions are signed and propagated to nodes, and in the way that user accounts
are stored and managed.

One option, in case of a Web-based dApp, is to use a browser plugin like Metamask2

to inject the plugin’s provided web3 instance into the dApp. In this case, Metamask
is responsible for managing user accounts, signing transactions and sending them to
Metamask public nodes, so these features do not have to be implemented by the dApp,
nor do they require any special local infrastructure. However, the main drawback of
this approach is that the dApp depends on a third-party plugin that must be installed
separately by users [5].

Another design pattern is to run a private Ethereum node with an unlocked account
in a local infrastructure. Transactions are then sent by the dApp to the private node,
where they are being signed and broadcasted to other Ethereum nodes. The JSON
RPC interface of the private node should only be accessible from the local infrastructure,
otherwise one could be able to misuse the unlocked account on the node [5].

The third pattern is from a development point of view probably the most challenging,
since it includes implementing account management and offline signing of transactions
directly into the dApp. To send a transaction to a blockchain, the dApp must first read
a private key of a user’s account, sign the transaction offline using the private key, and
finally submit the signed transaction to a public node. Although the public node cannot
modify the transaction, it could ignore the transaction by not broadcasting it to other
nodes. To increase the chance of submitting the transaction to the blockchain, the signed
transaction could be sent to multiple public nodes at once [5].

Combining these patterns is possible as well. For instance, a dApp could first check if
there is a third-party web3 instance (e.g., Metamask) provided, and use that library if
it exists. Otherwise, it could fall back to a local Ethereum node or sign transactions
offline [5].

36

5.3. Distributed Application Architecture

Blockchain A Blockchain B Blockchain C

dApp

web3 web3 web3

Private Key Private Key Private Key

Figure 5.3: Architecture of Cross-Chain Token Distributed Application

5.3.2 Cross-Chain Token Distributed Applications
In order to successfully perform a cross-chain token transfer, two distinct distributed
applications are required. The first dApp allows users to transfer tokens from one
blockchain to another, whereas the second dApp can only be used by verified and
trusted validators to approve transfers. Optionally, a third dApp can be implemented to
demonstrate how anybody could verify the validity of transfers. This third dApp does
not send any transactions to blockchains, and it only queries states of transfers.

The client and validator dApps have a very similar architecture in regard to how they
interact with blockchains. Designing and implementing these dApps pose a challenge
compared to other dApps, since they need to communicate with multiple blockchains,
and therefore to manage multiple instances of a web3 library. The dApps must be able
to asynchronously listen to events from two or more blockchains, and send transactions
to these blockchains in a specific order.

In the previous section, we discussed various design patterns how dApps can interact with
blockchains. For the client and validator dApps, we choose the pattern of in-application
accounts management and sending offline-signed transactions to Ethereum nodes. This is
illustrated in Figure 5.3. Although this approach requires much more complex codebase
compared to other solutions [5], it offers at the same time the most flexibility for managing
multiple instances of a web3 library. Using a third-party plugin like Metamask is not
even feasible, because it provides a connection to only one Ethereum blockchain network
at a time. Also, it can be cumbersome to have to run multiple private Ethereum nodes
with unlocked accounts in a local infrastructure.

1https://github.com/ethereum/wiki/wiki/JSON-RPC
2https://metamask.io/

37

https://github.com/ethereum/wiki/wiki/JSON-RPC
https://metamask.io/

5. Solution Architecture

When the client and validator dApps are started, they first read blockchain network
configurations and accounts, and create web3 instances for all supported blockchains.
The web3 instances and accounts are identifiable by chain IDs. If a user of the client
dApp wants to transfer tokens from one blockchain to another, he needs to specify a
source chain ID, a target chain ID, an account on the target blockchain to which the
tokens are transferred and an amount of tokens to be transferred. The client dApp first
initializes the transfer on the target blockchain, and then burns the transferred tokens on
the source blockchain.

The validator dApp once started does not require any interaction by users. It simply
awaits burn and transfer initialization events from supported blockchains, and sends
approval transactions for valid transfers. All transactions sent by validator dApps must
be signed exclusively by private keys of accounts that are registered as validators on the
blockchains. Otherwise, transactions are rejected by the blockchains.

38

CHAPTER 6
Protocol Implementation

In this chapter, we discuss implementations of components that are required to perform
the steps of the XCT transfer protocol. In Section 6.1, we discuss the implementation of
the XCT smart contract for Ethereum-based blockchains. Section 6.2 describes reference
implementations of dApps that are able to interact with the smart contract.

6.1 Cross-Chain Token Smart Contract
One of the core components of an implementation of the cross-chain token transfer
protocol is the smart contract implementation of a token. Section 4.1 provides the
definition of the XCT, and in this section we will go through the most important
implementation details of the token’s smart contract. For the purpose of this proof
of concept, we have implemented the smart contract using the Solidity programming
language for Ethereum-based blockchains.

The implementation of the cross-chain token smart contract is based on the OpenZep-
pelin1 implementation of the ERC20 Token Standard. The OpenZeppelin framework
provides secured implementations of common smart contract libraries for various token
standards, crowdsales, access control, etc. The XCT smart contract directly inherits
the ERC20, ERC20Detailed, ERC20Mintable and ERC20Burnable smart contract
libraries from the OpenZeppelin framework. The ERC20 smart contract implements the
base functions of the ERC20 Token Standard as defined in Section 4.1. In the original
ERC20 Token Standard, the name, symbol and decimals getters are optional, so these
immutable values are added to the token through the ERC20Detailed smart contract.
The ERC20Mintable and ERC20Burnable smart contracts provide the functions to
mint and burn tokens, respectively. These smart contract libraries are required since a

1https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/
contracts/token/ERC20/ERC20.sol/

39

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/ERC20.sol/
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/ERC20.sol/

6. Protocol Implementation

<<contract>>
CrossChainToken

chainId : Integer

<<struct>>
CrossChainTransfer

account : Address
value : Integer
approved : Boolean

<<map[bytes32]>>
CrossChainBurns

CrossChainBurn

value : Integer

0..*0..* <<map[bytes32]>>
CrossChainTransfers

<<library contract>>
ERC20

<<library contract>>
ERC20Mintable

<<library contract>>
ERC20Detailed

<<library contract>>
ERC20Burnable

<<library contract>>
Roles

<<library contract>>
ValidatorsRole

validators : Roles.Role

Figure 6.1: UML Class Diagram of the Cross-Chain Token Smart Contract

cross-chain transfer is a matter of burning tokens on a source blockchain followed by a
subsequent minting of new tokens on a target blockchain.

The cross-chain token smart contract stores a minimum set of information, which is
necessary to enable cross-chain transfers. First of all, the smart contract stores a
unique chain ID. This value is immutable, and it is provided by the contract owner as a
constructor parameter during a contract deployment. Furthermore, the contract stores
mappings of all initialized cross-chain transfer requests as well as all cross-chain burn
requests performed on the blockchain in question. The cross-chain burn requests are
stored as a simple mapping between TIDs and burned amounts, whereas the cross-chain
transfer requests are stored as a mapping between TIDs and the complex data structure
CrossChainTransfer encapsulating a target account, an amount to be transferred
and a flag if a transfer is approved as shown in Figure 6.1. Additionally, the contract
contains a mapping of Ethereum addresses which have the validators role assigned to
them. Figure 6.1 shows also the ValidatorsRole that is implemented as a separate
smart contract, which inherits the Roles smart contract library from the OpenZeppelin
framework. By default, the contract owner has automatically the validators role assigned,
and existing validators are able to nominate new validators.

The UML class diagram of the cross-chain token smart contract is shown in Figure 6.1.
This diagram is based on a modified UML class diagram [36], which has been adjusted
to support smart contract specific entities (e.g., contract, struct, mapping, etc.).

The basic standard token has been extended by additional functions to enable the cross-
chain portability of the token. These functions correspond to the three phases of the
XCT transfer protocol specified in Section 5.2.

40

6.1. Cross-Chain Token Smart Contract

Table 6.1: Public Functions of the Cross-Chain Token Smart Contract

Function Modifiers Description

init notNull Initializes a new cross-chain token transfer.
uniqueInitRequest Parameters: bytes32 secret, address to,

uint256 value

burn uniqueBurnRequest Burns the specified amount of token to
enable the cross-chain tokens transfer.

Parameters: bytes32 tid, uint256 value

approve onlyValidator Approves the cross-chain token transfer.
notApproved Parameters: bytes32 tid

transferStatusFor Gets the approval status for the given
transfer ID. Parameters: bytes32 tid

transferAmountFor Gets the amount to be transferred for the
given transfer ID. Parameters: bytes32 tid

burnedAmountFor Gets the burned amount for the given
transfer ID. Parameters: bytes32 tid

Table 6.2: Modifiers of the Cross-Chain Token Smart Contract

Modifier Description

notNull Assures that a given address is valid (not null).
Parameters: address address

uniqueInitRequest Makes sure that the given secret has not been used before
to initialize a transfer. Parameters: bytes32 secret

uniqueBurnRequest Makes sure that the given transfer ID has not been used
before in a burn request. Parameters: bytes32 tid

onlyValidator Allows only users having the validator
role assigned to execute a function.

notApproved Makes sure that a transfer request is not already approved.
Parameters: bytes32 tid

41

6. Protocol Implementation

The functions and their modifiers are described in Tables 6.1 and 6.2. The first function
is the init function, which is always called on a target blockchain during the transfer
initialization phase. This function is called by the client who wants to transfer tokens.
The client needs to provide three parameters to the function. The first parameter is a 32
bytes long random secret, which is generated by and only known to the client, and which,
together with the chain ID defined by the contract owner during the contract deployment,
forms a unique and identifiable transfer request. Thus, only the client can start and
finalize one specific token transfer request. The second parameter is the target Ethereum
address to which the tokens will be transferred, and the third parameter represents the
amount of tokens to be transferred. To make sure that the function can only be executed
with valid parameters, a call to the function is enforced by two modifiers. The notNull
modifier assures that the given target address is valid, and the uniqueInitRequest
modifier assures that the transfer initialization request is unique by checking if the
provided secret has not been used in any previous request. If parameters are valid, the
function will generate a new transfer ID by first concatenating the secret and the chain
ID, and then applying a hash function to the resulting value. In Ethereum, the KECCAK
algorithm [26] is a well-established hash function, which is also the hash function used to
generate a TID. Since the Ethereum implementation of KECCAK returns 32 bytes, the
TID is 32 bytes long as well. The TID is stored in a blockchain as a key of a mapping
relation to a CrossChainTransfer structure encapsulating basic transfer information
such as target address, amount of tokens, and a flag denoting if a transfer is approved.
Finally, the function emits a CrossChainTransferInitialized event containing
the TID and the amount of tokens, thus informing validators and other interested parties
that a new token transfer has been initialized.

The burn function is called by the client as well, only this time on a source blockchain
during the token burn phase of the XCT transfer protocol. When calling the function,
the client specifies the same TID as generated by the init function, as well as the same
amount of tokens. This function calls the burn function of the ERC20Burnable smart
contract library, which irrevocably destroys the specified amount of tokens from the mes-
sage sender’s balance. Tokens that are burned this way can only be redeemed by calling
the init function with a corresponding secret. To assure that users do not burn their
tokens multiple times by accident, the function is enforced by the uniqueBurnRequest
modifier to make sure that the TID is unique. The function stores in a blockchain a map-
ping of TIDs to burned amount of tokens. Finally, it emits a CrossChainBurnIssued
event containing the TID and the burned amount of tokens, thus informing validators
and other interested parties about a new burn request.

The third function is the approve function, which is called on a target blockchain
during the transfer approval phase of the cross-chain token transfer protocol. Whereas
the first two functions can be called by anyone, only trusted validators are eligible to
execute the approve function. This is enforced by a role-based access control, which is
implemented using authorization design patterns for smart contracts [37]. The validator
role smart contract shown in Listing 6.1 stores addresses of validators that are able to

42

6.1. Cross-Chain Token Smart Contract

Table 6.3: Events of the Cross-Chain Token Smart Contract

Event Description

CrossChainTransferInitialized Notifies all listeners that a new transfer has been
initialized. Parameters: bytes32 tid, uint256 value

CrossChainBurnIssued Notifies all listeners that a new burn request has
been issued. Parameters: bytes32 tid, uint256 value

CrossChainTransferApproved Notifies all listeners that a transfer has
been approved. Parameters: bytes32 tid

approve cross-chain token transfers. As shown in Listing 6.1 in line 10, the contract
owner is automatically added as the validator in the constructor of the validator role
smart contract. For simplicity, existing validators can add additional validators using the
addValidator function (line 22).

To restrict the access to the approve function, the onlyValidator modifier from
the validator role smart contract (line 13) is used to check whether an address of a
function’s caller has the validator role assigned. When calling the approve function, a
validator only specifies a TID. The TID is used to identify a transfer request that is stored
in a blockchain during the transfer initialization phase. Another function’s modifier
(notApproved) makes sure that the transfer request is not already approved. If all
modifiers are successfully passed, the function marks the transfer request as approved
and issues tokens to the address specified in the transfer request. The tokens are issued
by calling the mint function of the ERC20Mintable smart contract library. Finally,
a CrossChainTransferApproved event is emitted to all subscribers. The events
that are published by the XCT smart contract and awaited by validators are listed in
Table 6.3.

Apart from the functions described above, which are required for performing a XCT
transfer, the smart contract also provides the following functions to query a current state
of a transfer with a specified TID: transferStatusFor, transferAmountFor and
burnedAmountFor. The functions are listed in Table 6.1 as well. These functions only
return requested values, and they do not modify the state of the smart contract.

43

6. Protocol Implementation

Listing 6.1: Smart Contract for Role Based Access Control
1 contract ValidatorRole {
2 using Roles for Roles.Role;
3
4 event ValidatorAdded(address indexed account);
5 event ValidatorRemoved(address indexed account);
6
7 Roles.Role private _Validators;
8
9 constructor () internal {

10 _addValidator(msg.sender);
11 }
12
13 modifier onlyValidator() {
14 require(isValidator(msg.sender));
15 _;
16 }
17
18 function isValidator(address account) public view

�→ returns (bool) {
19 return _Validators.has(account);
20 }
21
22 function addValidator(address account) public

�→ onlyValidator {
23 _addValidator(account);
24 }
25
26 function renounceValidator() public onlyValidator {
27 _removeValidator(msg.sender);
28 }
29
30 function _addValidator(address account) internal {
31 _Validators.add(account);
32 emit ValidatorAdded(account);
33 }
34
35 function _removeValidator(address account) internal {
36 _Validators.remove(account);
37 emit ValidatorRemoved(account);
38 }
39 }

44

6.2. Distributed Applications Implementation

6.2 Distributed Applications Implementation
For the proof of concept of a XCT transfer, we implemented the client, validator and
monitor distributed applications, which are based on the architecture discussed throughout
Section 5.3.2. All applications are implemented as command line applications in the
Java 8 programming language, and therefore they utilize the Java version of the web3
library (web3j2). In this section, we discuss the most relevant implementation details of
these applications.

The monitor dApp subscribes to events that are published by XCT smart contracts from
supported blockchains. The dApp is not required to successfully perform a transfer.
Instead, it only demonstrates how observer actors can monitor the blockchains to verify
if validators are working correctly. When an event occurs on the blockchains, it simply
displays the event details on a monitor keeping track of which event occurred on which
blockchain.

Listing 6.2: Initialization of Client Distributed Application
1 private Map<Integer, CrossChainToken> contractWrappers;
2
3 public void init() {
4 int chainId = 1;
5 while (env.containsProperty("app.bc" + chainId + ".url

�→ ")) {
6 Web3j web3 = Web3j.build(new HttpService(env.

�→ getProperty("app.bc" + chainId + ".url")));
7 Credentials credentials = Credentials.create(env.

�→ getProperty("app.bc" + chainId + ".private.key
�→ "));

8 CrossChainToken wrapper = CrossChainToken.load(env.
�→ getProperty("app.bc" + chainId + ".contract.
�→ address"), web3, credentials, new
�→ DefaultGasProvider());

9
10 contractWrappers.put(chainId, wrapper);
11 web3s.add(web3);
12 chainId++;
13 }
14 }

The client dApp provides a user the functionality to transfer XCT tokens. The dApp
initialization is shown in Listing 6.2. Upon initialization of the client dApp, the application
first iterates over environment configurations and reads the blockchain location (line
6), the account credential (line 7) and the address of a XCT contract (line 8) for

2https://github.com/web3j/web3j/

45

https://github.com/web3j/web3j/

6. Protocol Implementation

all supported blockchains. For each supported blockchain, as shown in line 10, the
application creates a new Web3j object, which is configured to communicate with exactly
one specific blockchain. The Web3j object is then encapsulated by an instance of the
CrossChainToken class (line 12), which is a wrapper class that provides methods
to call the functions of a cross-chain token contract. The dApp stores a map of these
CrossChainToken wrappers that can be identified by the respective chain ID.

Once started, the dApp awaits a transfer command in the following format:

transfer <sourceChainId> <targetChainId> <address> <value>.

The transfer command is shown in Listing 6.3. For each command, as shown in lines
2 to 4, the application generates a new random secret and the corresponding TID.
Depending on the sourceChainId and targetChainId parameters, the application
issues the transfer initialization transaction on the target blockchain (line 6), and the
burn transaction on the source blockchain (line 7), using the methods of the respective
CrossChainToken wrappers.

Listing 6.3: Transfer Method of the Client dApp
1 public void transfer(final TransferRequest request) {
2 byte[] secret = new byte[32];
3 new Random().nextBytes(secret);
4 byte[] tid = Hash.sha3(Bytes.concat(secret, Numeric.

�→ toBytesPadded(BigInteger.valueOf(request.
�→ getTargetChainId()), 32)));

5
6 contractWrappers.get(request.getTargetChainId()).init(

�→ secret, request.getAddress(), request.getValue())
�→ .send();

7 contractWrappers.get(request.getSourceChainId()).burn(
�→ tid, request.getValue()).send();

8 }

Similarly to the client dApp, the validator dApp also first reads environment config-
urations and initializes CrossChainToken wrappers for all supported blockchains.
Furthermore, the application subscribes to the CrossChainTransferInitialized
and CrossChainBurnIssued events discussed in Section 6.1. By subscribing to these
events, the application is asynchronously listening to new XCT transfer requests.

The validator dApp does not require any interaction from a user and is completely
autonomous. It operates as a state machine for a received event. On each request,
the validate method shown in Listing 6.4 is called, which is responsible for approv-
ing cross-chain transfers. As shown in line 2, if the received event is of the type
CrossChainTransferInitialized, then the method first checks if there is al-
ready a corresponding CrossChainBurnIssued event (line 3). In case that such

46

6.2. Distributed Applications Implementation

an event exists, the method verifies that the transferred amount is the same as the
burned amount (line 4) and approves the valid transfer (line 5). Otherwise, if the cor-
responding CrossChainBurnIssued event does not exist, the event is simply stored
in-memory (line 9). The same logic is applied if the newly received event is of the
type CrossChainBurnIssued (line 11). Only this time, the method checks if there is
a corresponding CrossChainTransferInitialized event already issued (line 13).
The validation code remains the same.

Listing 6.4: Validate Method of the Validator dApp
1 private synchronized void validate(String type, int

�→ chainId, String tid, BigInteger value) {
2 if (type.equals(FUNC_INIT)) {
3 if (burnRequests.containsKey(tid)) {
4 if (value.equals(burnRequests.get(tid))) {
5 contractWrappers.get(chainId).approve(

�→ BaseEncoding.base16().lowerCase().decode
�→ (tid)).send();

6 burnRequests.remove(tid);
7 }
8 } else {
9 transferRequests.put(tid, new InitRequest(

�→ chainId, value));
10 }
11 } else if (type.equals(FUNC_BURN)) {
12 if (transferRequests.containsKey(tid)) {
13 if (value.equals(transferRequests.get(tid).

�→ getValue())) {
14 contractWrappers.get(transferRequests.get(tid

�→).getChainId()).approve(BaseEncoding.
�→ base16().lowerCase().decode(tid)).send()
�→ ;

15 transferRequests.remove(tid);
16 }
17 } else {
18 burnRequests.put(tid, value);
19 }
20 }
21 }

For simplicity, the dApp only considers transfer requests that are issued after the
application is started, and we assume that at each moment there is at least one validator
awaiting cross-chain transfers. However, since all requests are stored on blockchains as
well, future extensions of the dApp may include an option to consider also transfers
issued prior to the startup of the application. Also, it is sufficient to store received events

47

6. Protocol Implementation

only in-memory, since they are stored on blockchains, and can be queried from these
blockchains on demand.

48

CHAPTER 7
Evaluation and Analysis

In this chapter, we evaluate the XCT transfer protocol and the proof of concept implemen-
tation of the protocol described in Chapter 5 and 6, respectively. We start by describing
a test lab environment that we used to perform transfers. In Section 7.2, we evaluate
basic use case scenarios described in Section 4.4. Section 7.3 provides the evaluation of
the transfer metrics. Finally, Section 7.4 discusses the limitations of semi-decentralized
validation parties.

7.1 Lab Environment
A mainnet is an official network of a blockchain that requires spending a native currency
(e.g., Ether in the case of the Ethereum blockchain) to use it. This makes the mainnet
inadequate for testing a smart contract, especially since bugs in smart contracts can be
expensive as we have already discussed in Section 2.3. Furthermore, for the evaluation of
cross-chain token transfers, we require at least two Ethereum-based blockchains.

As an alternative to the mainnet, local blockchains or testnets could be utilized for testing
smart contracts. During the development of the proof of concept of cross-chain token
transfers in this thesis, we deployed and tested the smart contract on a Ganache local
blockchain. On local blockchains, Ether can be acquired in unlimited amounts and blocks
are mined instantly. Optionally, we can artificially define mining time in seconds, for
instance, to match the average mining time on the Ethereum mainnet of 15 seconds [4].

Currently, there are multiple Ethereum testnets of which the most popular are: Rinkeby,
Goerli, Kovan and Ropsten1. The first three testnets are proof-of-authority blockchains,

1End of 2022 the Ethereum mainnet has been transformed from a proof-of-work to a proof-of-stake
consensus mechanism [8]. As a consequence of this transformation, Ropsten has been deprecated as of
December 2022. Before the transformation, Ropsten was similar to the proof-of-work mainnet. The
evaluation of the proof of concept of this thesis was performed before the transformation.

49

7. Evaluation and Analysis

Ropsten Monitor
Ropsten Blockchain

Validator

Monitor
Local BlockchainInternet

Local Blockchain
Client

Local Network

Figure 7.1: Lab Environment

whereas Ropsten is the only proof-of-work blockchain that closely resembles the Ethereum
mainnet. Ether for these blockchains is free, but must be requested from a faucet.

For the evaluation phase of this thesis, we conduct cross-chain token transfers between
the Ropsten testnet and a local blockchain. We choose the Ropsten testnet as it is the
most similar to the Ethereum mainnet. And since we need a second Ethereum-based
blockchain as well, we decided to use a local blockchain as it is easy to deploy and to
acquire Ether on this type of blockchains.

To demonstrate the feasibility of the cross-chain token transfer protocol introduced in
Section 5.2, we prepare a test environment consisting of the Ropsten testnet, the Ganache
local blockchain and the dApps implemented and discussed in Section 6.2. Apart from
the Ropsten testnet, all other components of the test environment are deployed on a
local Linux-based virtual machine.

The Ganache local blockchain is configured to mine one block every 15 seconds. We
deploy the XCT smart contract introduced in Section 6.1 to both the Ropsten and local
blockchains. Furthermore, we deploy one validator, one client and two monitor dApps.
The validator is configured to listen for transfer initialization and burn requests from
both blockchains, and perform approvals of valid transfers. We use the client application
to initiate token transfers, whereas the two monitor applications observe events from the
blockchains.

Figure 7.1 illustrates the lab environment.

50

7.2. Evaluated Use Case Scenarios

Figure 7.2: Client Console Output

7.2 Evaluated Use Case Scenarios
In Section 4.4, we introduced use cases of valid and malicious cross-chain token transfers.
In this section, we present in detail the execution of a valid cross-chain token transfer in
the lab environment.

The lab environment is deployed as described in the previous section. Before any transfer,
we mint 1000 XCT tokens to the account E7AE6cb3f69d070ea774CAFaD8d9975465c1200a
on the Ropsten blockchain. In the execution of the valid use case scenario, we want
to transfer a XCT token from this account on the Ropsten blockchain to the account
30f1103269c50dc312137D21AD4ce4aBD36c155B on the local blockchain. The ac-
count on the local blockchain does not have any tokens before the execution, meaning
also that the total supply of XCT tokens on both blockchains is 1000 tokens.

Using the client dApp, we initiate a transfer of one XCT token from the Ropsten
blockchain to the local blockchain. For this we use the client’s transfer command and
specify the source blockchain (chain ID 3 for the Ropsten), the target blockchain (chain

Figure 7.3: Validator Console Output

51

7. Evaluation and Analysis

ID 2 for the local blockchain), the target account (30f1103269c50dc312137D21AD4ce
4aBD36c155B), and the amount of tokens that we want to transfer (1 in this case).

Figure 7.2 shows the client console output.

The client initializes the transfer by sending an INIT transaction to the target blockchain
and a BURN transaction to the source blockchain. The local blockchain monitor dApp
records and outputs the INIT events with the corresponding TID. Similarly, the Ropsten
blockchain monitor dApp records and outputs the BURN events with the same TID. The
console outputs of the monitor dApps are shown in Figures 7.4 and 7.5.

The validator dApp awaits new transfers and approves them without any user interactions.
Since the validator has to approve the transfer on the target blockchain, the local
blockchain monitor dApp records and outputs the APPROVE events as well. After the
approval of the transfer by the validator dApp, the client gets notified about the successful
transfer. Figure 7.3 shows the validator console output.

Figure 7.4: Local Blockchain Monitor Console Output

Figure 7.5: Ropsten Blockchain Monitor Console Output

52

7.3. Token Transfer Metrics

Figure 7.6: Local Blockchain Truffle Console Output

Figure 7.7: Ropsten Blockchain Truffle Console Output

As shown in Figures 7.6 and 7.7, we performed two transfers of one XCT token per transfer
from the Ropsten blockchain to the local blockchain. To check the balances of the accounts
before and after the transfers, we used the truffle console to call the cross-chain token smart
contract. After the transfers, the account 30f1103269c50dc312137D21AD4ce4aBD36c155B
on the local blockchain now has 2 XCT tokens. Consequently, the balance of the account
E7AE6cb3f69d070ea774CAFaD8d9975465c1200a on the Ropsten blockchain is re-
duced from 1000 to 998 XCT tokens. Furthermore, the total supply of XCT tokens on
both blockchains remains the same after the transfers (1000 XCT tokens).

The truffle console outputs are shown in Figures 7.6 and 7.7.

7.3 Token Transfer Metrics
For the evaluation of the transfer metrics of the implemented proof of concept, we
measure duration and transfer cost of the three phases of the protocol (INIT, BURN and
APPROVE). We perform a total of 50 transfers, 25 transfers from the local blockchain to
Ropsten and 25 transfers from Ropsten to the local blockchain. However, we only evaluate
metrics of transactions executed on Ropsten as they are closer to the real-world scenario
since the local blockchain is running in the same environment as other components (e.g.,
dApps). The measured values can be found in the Appendix A of the thesis.

The duration is measured from the moment a client sends a transaction until the
corresponding event from a blockchain is received by the client. When measuring the
duration, we do not include a block confirmation time as this may vary depending on the
current underlying metrics of a blockchain (e.g., mining complexity, block size, etc.). We
measure the transfer cost of these transactions as well. The transfer cost expresses the

53

7. Evaluation and Analysis

0

10

20

30

40

50

60

70

INIT BURN APPROVE

Figure 7.8: Average Transaction Duration

gas consumption of transactions behind each of the three phases executed on blockchains
during the transfer.

Since the INIT transaction represents a client intention to transfer a token, and only
generates and stores a TID on a blockchain without interacting with XCT, it achieves
the shortest average duration of 23 seconds (standard deviation of 10 seconds). The
BURN transaction, which reduces the balance of an owner, requires on average 28 seconds
(standard deviation of 15 seconds). The average duration of the APPROVE transaction
is 36 seconds (standard deviation of 25 seconds). This transaction requires the highest
amount of time. It stores a confirmation of a successful transfer and mints new tokens to
the owner. Figure 7.8 shows the average duration for each transaction type.

As gas consumption depends on executed Ethereum operations and storage used during
a transaction as mentioned in Section 2.3.1, the three transaction types of the protocol
consume almost a consistent amount of gas. In Section 6.1 we discuss the implementation
details of the XCT smart contract. We showed that the INIT transaction stores mappings
between a TID and the complex data structure CrossChainTransfer, whereas the
BURN transaction stores only a mapping between a TID and the amount of burned
tokens. Consequently, the INIT consumes more gas, 74.94 kGas, compared to the BURN
transaction which requires 58.62 kGas. The gas consumption of the APPROVE transaction,
that is responsible for minting new tokens, is about 67.41 kGas.

Figure 7.9 shows the average gas consumption for each transaction type.

54

7.4. Discussion of Semi-Decentralized Validation Parties

0

10

20

30

40

50

60

70

INIT BURN APPROVE

Figure 7.9: Average Transaction Gas Consumption

7.4 Discussion of Semi-Decentralized Validation Parties
The main issue with the concept of semi-decentralized validation parties is that it
is not entirely compatible with the main blockchain design principle, which is the
complete decentralization. Validations and approvals of transfers occur off-chain by
semi-decentralized parties — validators. However, the validation process and steps are
enforced by the XCT smart contract. For instance, the XCT smart contract enforces
which accounts are able to approve transactions. In the proof of concept, a contract
owner specifies these accounts, and validators are continuously running as background
applications. Furthermore, anyone can verify the trustworthiness of validators. If the
specified accounts are compromised, the entire XCT system is compromised as well.
Meaning, that an attacker would be able to approve malicious transfers where, for
instance, one token is burned but 10 tokens are issued. The risk could be reduced by
using multi-signature accounts. Further research is required on the possible hardening of
the validation process. Some ideas gathered during the work on this thesis are documented
in the following sections.

55

CHAPTER 8
Conclusion

This chapter discusses the outcome of the thesis, and presents future and ongoing work.

8.1 Findings
Blockchain technologies are developing rapidly, causing severe infrastructure and market
fragmentations. Furthermore, because of the isolated nature of blockchains, further tech-
nical means are needed to achieve interoperability between them. In such an environment
developers are forced to choose a single blockchain for their applications, and users are
exposed to the high risk and volatility of digital assets. Creating digital assets that are
blockchain independent could minimize or even completely avoid these risks.

However, to create blockchain-independent digital assets, we first need to solve the cross-
blockchain proof problem discussed in Chapter 4. In this thesis, we argue that it is
possible to bypass the problem by introducing the concept of semi-decentralized validation
parties.

In the course of this thesis, we specified the cross-chain token transfer protocol described
in Chapter 5, and implemented the proof of concept consisting of components introduced
in Chapter 6. In Chapter 4, we also specified a blockchain independent digital asset: the
XCT token.

We showed in our lab environment that the concept of semi-decentralized validation
parties enforced by the cross-chain token transfer protocol is feasible. We successfully
performed multiple transfers of the XCT token from one blockchain to another and
vice versa. All requirements specified in Chapter 4 were fulfilled. Although there is a
short period of inconsistency when a token is burned on the source blockchain, but still
not issued on the target blockchain, as soon as the corresponding INIT transaction is
executed and at least one validator is available, the balances will be settled.

57

8. Conclusion

During the evaluation of the proof of concept we gathered insights about the required
time and costs of cross-chain transfers.

The average durations of INIT, BURN and APPROVE transactions are 23, 28 and 36
seconds, respectively. In the implemented prototype, the INIT and BURN transactions
are sent sequentially one after the other. However, they are independent and can also be
executed in parallel, whereas the APPROVE transaction has to wait until both the INIT
and BURN transactions are executed. Considering that a block confirmation time will
take significantly more time, the average cross-chain transfer can be performed within
acceptable time limits.

The gas consumptions of INIT, BURN and APPROVE transactions are 73.94, 58.62 and
67.41 kGas, respectively, and the total gas consumption for a single transfer is about
199.97 kGas. Arguably, taking into consideration two involved blockchains and multiple
transactions, the cross-chain transfer costs are not significantly higher than the costs of a
standard ETH transfer which is about 21 kGas [6].

8.2 Future Work
The developed prototype is a proof of concept demonstrating the feasibility of a cross-
chain token transfer based on the concept of semi-decentralized validation parties. Some
parts of the implementation are omitted for simplicity reasons, but they might be required
in a real-world scenario. Also, many features and changes have been identified based on
our findings in this thesis. In this section, we discuss these identified fields of possible
future work.

8.2.1 Definition of Token Economics
Defining token economics was beyond the scope of the thesis, and the XCT token from
the proof of concept is mintable by the contract owner. However, the economics of a token
can have a decisive effect on the token acceptance by users. Modern tokens should avoid
issues of early cryptocurrencies, including Bitcoin, that are distributed in a short period
of time to small groups of people, and have supply limits. Similarly to other ERC20
tokens, initial distribution, monetary supply and mintage rate of the XCT token can be
defined using a crowdsale smart contract. In the case of the XCT token, the crowdsale
could take place on multiple blockchains due to its portability. Another advantage of
the XCT token’s portability, is that it is not tied to blockchains on which the initial
crowdsale occurred, and can be freely moved to future blockchains as the blockchain
technology improves.

8.2.2 Support for Non-Ethereum Blockchains
The XCT token is currently deployable to any Ethereum-based blockchain. The portability
of the token is not limited to these blockchains. Any blockchain with a support of Turing-
complete smart contracts and User-Issued Assets represents a potential candidate for

58

8.2. Future Work

cross-chain token transfers. Since validation is performed off-chain and validators are
already able to manage multiple Web3 instances, validation of transfers on new blockchains
does not require changes in the validation process that is specific to the new blockchains.
Even blockchains whose capabilities are limited to simple scripts like Bitcoin can be
supported by using on-blockchain token layers [1, 10, 29]. Another option is the usage of
sidechains with support for smart contracts like Bitcoin’s sidechain RootStock [43].

8.2.3 Improvements of Validation Process
We already discussed limitations of the semi-decentralized validation parties, and further
research is needed in how to improve the validation process. To minimize the risk of
compromised accounts, access control to APPROVE transactions can be enforced with
multi-signature accounts, or that each transfer must be verified and approved by more
than one validator.

Optimization of transfer costs is another field of a possible validation process improvement.
A TID is calculated from a hash function and is 32 bytes long. Using a shorter TID
might reduce storage usage and with that also the transfer costs, without compromising
its uniqueness.

8.2.4 Web-Based Distributed Applications
The distributed applications used in the proof of concept are implemented as simple
console applications. Although the validator console dApp is not intended to be used by
end users, we can improve usability of the client and monitor dApps by implementing
them as modern Web applications.

59

APPENDIX A
Measurements

A.1 Cross-Chain Token Transfer Metrics
Table A.1: Cross-Chain Token Transfer TIDs.

Trunsfer No. TID
1 5f13795f6696c23e5efbed6ced72961fcb2f51c80eba32433aeec0aab92792ae
2 65b840e29827cc260ddfaf674fb8c703a69c6590f6050649b7136c5869b37715
3 da57841325ae864cb962b51cab57d1cbee2664d832060154780316f3af1e456f
4 07a2f1a28c6988bf43033a790b0af9b368d24fdade5219e71052a8afcb3e3849
5 d97a094783c6c910d1f127ea4e0f49f6f5ea346857ecd10dfdd7069a405b85de
6 b58534f471e3b4e575df8030dfd3377e8efe9e4651675e19c76d09ca73713f8c
7 767b421dd472635fe9a7dd8be1920e2622c486bf093df24af9eeea739264e4de
8 a7af421c01c59c0b25bc5b7de1debf26767ede04cdd32aeb04c32b574d8add89
9 55ce2de19805300ae827e4883875992d99c276fac456f22597e944f8fc996aa1
10 90d632c3d474e4a985ecbf9cb2325016cca7a9cb74a378c33de41f95775c70b4
11 19842a3c0a9e61af1eecb7eafb4e1b437bdcbb019b7667f8abd6b2539c9d11ea
12 1be3d28d2e09f81b96aa413f2e37349cf7e751c1c3c641544e8cac80dda24c03
13 f892aed10a9867609ee7144808ff0bebd1b631b27d34387417dcc61d8542a953
14 4658a1b6a965497a977694a50ba14acdc76ae2770aec4a61f4d2d6cf90b4439e
15 c9bc5dc3034ebae9432d1f1621fac36c44b128557ebc687c44e36fd5bfbec9b3
16 6629927745470a30021ad6f4dd7bad7c6e5ee25c5ae1456e7c60a0e8fc56fe06

61

A. Measurements

Continuation of TableA.1
Trunsfer No. TID

17 a13cfe7afbb26f84cb72d782263b94530bc4623db9a9828a4af113faad0d9677
18 209ee6a4b052a7fba0a1249538e1d6ce9bebd0fc2cc269f611ca1b183e04cbf3
19 21a5ecae470fe8dee93deb6ef875350f1ca66141001177042b85e19e04fef6d4
20 a6c67479ea961ab756300a9eac9836ac6aac3f8bef7739a1178ac648286774cf
21 4408b5ff9fb37859e2ead9d0f509f9d40b089b99712949e4c7c0fe9e18315918
22 b53a505c53017bf6f1449cf18204824eda6f5ba70ac5769cc5a87b33b5028a3d
23 ea76f2e002eb727d3b7e084194932afcb0bc49eac927737fabb1ef0a6a36c0a1
24 1494bb0d85c2f19ceb5c27edbb11b7a47877d6516227570d5a7346bceadf2fb8
25 1896d71c8257be831a11181024c4942786b7c80f743ebae1074b2bcf0dc64498
26 176c5047cbf8a9055a8ab49a61e618aef54798c4b0772edefe531d5b6fdd16c5
27 70cb510d770d99af5f6b3d30fff964b7578c8136ab9b812afcecdfc4f2a63792
28 075aef760234d321fa0743ca1a9eeaa6db7059c87c62421baa9c556ce86faec0
29 4a49a12cfd59fda564b0833e30a40f376cc4179f694c65ecc8ad52d5eb18c05d
30 ac28efe09d238a7596ba359d3a65b7b599425a1fc006f668708cfff0f32c3f37
31 99e09e1a24f056dd4031818040105d7d5f277117dbea615057a056733548fa65
32 97a0b4ecc02de95a3b49debceec9418957e9ae6c2573de2d06215cea0a70b960
33 bfe032afaffa49947fbef2a948706096901263f74b9f99181d6f7eed07ce2c9b
34 b179b40db4dd5c8d23e5b51b5c459657976f91169c95ad05e890ac9cb98c09b6
35 5e424f9d6034a7d885f088e095ac7649b832bbfdba61c4c7d56d1296d0c89bef
36 6fd4da05c6cde493d4b9464cc7ceddc21865e999fbb8e65ff1f593fea6bdd867
37 6f97ab7083e6dc34f6345a7fbf3c60ae11ca170343b413942ceab8db43f3e2ad
38 bd890bd0683fee8bd4326652e759b8fa2e198a2369102c9b0f899a87fe0bb0c1
39 931f1bc89b9deaa80f7be8e283b021ab0a2bbee6cf4778b8a3647fb9e0242fda
40 ef020f9c4d8e836f489ca7e5fce173b360bce58352b628755de5a95eee08291d
41 33891781acb7a147660e5ae2b00524bd4a3f53715624fabc001a582d11308917
42 28e152cced37446220ee5595907409f9030afba0ddda8bdfd1e18c4d1cd4b4c7
43 cb099516274d6be0ef46a35b74e27959501908f946c0d436c7c0c8b8af416bb7
44 10097ea8ffefb18d2ca6e88d57a375a7639e00f136a126cd069f9efd1cccf671
45 3842d9c2dc036cb266c97a59401c087b9b2342b973fceb1302d16a58f2b199fd

62

A.1. Cross-Chain Token Transfer Metrics

Continuation of TableA.1
Trunsfer No. TID

46 d7ff8e8da408e560e6d07c52c2729185e06c918c5dbfbe461c7adc6a34e116b4
47 032e6f3662483fa7683347a5445262b256b784d1b27819c4517dee4e7f3d3940
48 259070409da87ae98b62e75a20ba0deb137ae5bab1629777c8876ac231a70f12
49 ff8e99db2650d8da7e7f479f2182fffd8d283461984cf1a6a12854c09f8f959d
50 6a3eefee9d83d1ea18be78558ae8a3e9ceac5ccc815d660eb0892174e28f9d51

Table A.2: Cross-Chain Token Transfer INIT Transaction Metrics.

Trunsfer No. Source Chain Target Chain INIT Duration (s) INIT Gas
26 Local Ropsten 21 73937
27 Local Ropsten 12 73937
28 Local Ropsten 37 73937
29 Local Ropsten 27 73937
30 Local Ropsten 19 73937
31 Local Ropsten 24 73937
32 Local Ropsten 10 73937
33 Local Ropsten 35 73937
34 Local Ropsten 29 73937
35 Local Ropsten 52 73937
36 Local Ropsten 20 73937
37 Local Ropsten 23 73937
38 Local Ropsten 29 73937
39 Local Ropsten 20 73925
40 Local Ropsten 27 73937
41 Local Ropsten 23 73937
42 Local Ropsten 33 73937
43 Local Ropsten 18 73937
44 Local Ropsten 36 73937
45 Local Ropsten 14 73937
46 Local Ropsten 12 73937
47 Local Ropsten 8 73937

63

A. Measurements

Continuation of TableA.2
Trunsfer No. Source Chain Target Chain INIT Duration (s) INIT Gas

48 Local Ropsten 12 73937
49 Local Ropsten 21 73937
50 Local Ropsten 11 73937

Table A.3: Cross-Chain Token Transfer BURN Transaction Metrics.

Trunsfer No. Source Chain Target Chain BURN Duration (s) BURN Gas
1 Ropsten Local 32 58616
2 Ropsten Local 17 58616
3 Ropsten Local 34 58616
4 Ropsten Local 47 58616
5 Ropsten Local 62 58616
6 Ropsten Local 32 58616
7 Ropsten Local 17 58616
8 Ropsten Local 2 58616
9 Ropsten Local 17 58616
10 Ropsten Local 17 58616
11 Ropsten Local 17 58616
12 Ropsten Local 32 58616
13 Ropsten Local 17 58616
14 Ropsten Local 2 58616
15 Ropsten Local 17 58616
16 Ropsten Local 32 58616
17 Ropsten Local 32 58616
18 Ropsten Local 32 58616
19 Ropsten Local 32 58616
20 Ropsten Local 32 58616
21 Ropsten Local 17 58616
22 Ropsten Local 62 58616
23 Ropsten Local 32 58616

64

A.1. Cross-Chain Token Transfer Metrics

Continuation of TableA.3
Trunsfer No. Source Chain Target Chain BURN Duration (s) BURN Gas

24 Ropsten Local 32 58616
25 Ropsten Local 17 58616

Table A.4: Cross-Chain Token Transfer APPROVE Transaction Metrics.

Trunsfer No. Source Chain Target Chain APPROVE Duration (s) APPROVE Gas
26 Local Ropsten 29 67416
27 Local Ropsten 90 67416
28 Local Ropsten 89 67416
29 Local Ropsten 30 67416
30 Local Ropsten 30 67416
31 Local Ropsten 15 67416
32 Local Ropsten 15 67416
33 Local Ropsten 75 67416
34 Local Ropsten 15 67416
35 Local Ropsten 30 67416
36 Local Ropsten 60 67416
37 Local Ropsten 30 67416
38 Local Ropsten 15 67416
39 Local Ropsten 30 67416
40 Local Ropsten 15 67416
41 Local Ropsten 60 67404
42 Local Ropsten 15 67416
43 Local Ropsten 15 67416
44 Local Ropsten 45 67404
45 Local Ropsten 15 67416
46 Local Ropsten 15 67416
47 Local Ropsten 75 67416
48 Local Ropsten 15 67416
49 Local Ropsten 15 67416
50 Local Ropsten 45 67416

65

List of Figures

2.1 Bitcoin Transaction1 . 7
2.2 Blockchain Consisting of Blocks Linked by Hash Values [22] 8
2.3 Transactions Hashed in a Merkle Tree [41] 10
2.4 Coins: Chain of Digital Signatures [41] . 12

3.1 Two-Way Peg Protocol . 19
3.2 Visualization of Steps Performed During Decred Atomic Swap 21

4.1 Valid Cross-Chain Token Transfer Use Case 28
4.2 Malicious Cross-Chain Token Transfer Use Case 29

5.1 Solution Components and Actors . 32
5.2 Sequence Diagram of Cross-Chain Token Transfer Protocol 33
5.3 Architecture of Cross-Chain Token Distributed Application 37

6.1 UML Class Diagram of the Cross-Chain Token Smart Contract 40

7.1 Lab Environment . 50
7.2 Client Console Output . 51
7.3 Validator Console Output . 51
7.4 Local Blockchain Monitor Console Output 52
7.5 Ropsten Blockchain Monitor Console Output 52
7.6 Local Blockchain Truffle Console Output 53
7.7 Ropsten Blockchain Truffle Console Output 53
7.8 Average Transaction Duration . 54
7.9 Average Transaction Gas Consumption . 55

67

List of Tables

6.1 Public Functions of the Cross-Chain Token Smart Contract 41
6.2 Modifiers of the Cross-Chain Token Smart Contract 41
6.3 Events of the Cross-Chain Token Smart Contract 43

A.1 Cross-Chain Token Transfer TIDs. 61
A.2 Cross-Chain Token Transfer INIT Transaction Metrics. 63
A.3 Cross-Chain Token Transfer BURN Transaction Metrics. 64
A.4 Cross-Chain Token Transfer APPROVE Transaction Metrics. 65

69

Listings

4.1 The ERC20 Token Standard Interface 26
6.1 Smart Contract for Role Based Access Control 44
6.2 Initialization of Client Distributed Application 45
6.3 Transfer Method of the Client dApp 46
6.4 Validate Method of the Validator dApp 47

71

Bibliography

[1] Counterparty. https://counterparty.io/docs. Accessed 2024-04-15.

[2] Crowdsales. https://docs.openzeppelin.org/v2.3.0/crowdsales. Ac-
cessed 2024-04-15.

[3] Decred-compatible cross-chain atomic swapping. https://github.com/decred/
atomicswap. Accessed 2024-04-15.

[4] Deploying and interacting with smart contracts. https://
docs.openzeppelin.com/learn/deploying-and-interacting. Accessed
2024-04-15.

[5] Designing the architecture for your ethereum application. https:
//blog.openzeppelin.com/designing-the-architecture-for-your-
ethereum-application-9cec086f8317. Accessed 2024-04-15.

[6] Gas and fees. https://ethereum.org/en/developers/docs/gas/. Accessed
2024-04-15.

[7] Introduction to smart contracts. https://ethereum.org/en/developers/
docs/smart-contracts. Accessed 2024-04-15.

[8] The merge. https://ethereum.org/en/roadmap/merge. Accessed 2024-04-
15.

[9] A next-generation smart contract and decentralized application platform. https:
//ethereum.org/en/whitepaper. Accessed 2024-04-15.

[10] Openassets. https://github.com/OpenAssets. Accessed 2024-04-15.

[11] Simple replay attack protection. https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-155.md. Accessed 2024-04-15.

[12] Smart contract security. https://ethereum.org/en/developers/docs/
smart-contracts/security/. Accessed 2024-04-15.

[13] Tokens. https://docs.openzeppelin.org/v2.3.0/tokens. Accessed 2024-
04-15.

73

https://counterparty.io/docs
https://docs.openzeppelin.org/v2.3.0/crowdsales
https://github.com/decred/atomicswap
https://github.com/decred/atomicswap
https://docs.openzeppelin.com/learn/deploying-and-interacting
https://docs.openzeppelin.com/learn/deploying-and-interacting
https://blog.openzeppelin.com/designing-the-architecture-for-your-ethereum-application-9cec086f8317
https://blog.openzeppelin.com/designing-the-architecture-for-your-ethereum-application-9cec086f8317
https://blog.openzeppelin.com/designing-the-architecture-for-your-ethereum-application-9cec086f8317
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/smart-contracts
https://ethereum.org/en/developers/docs/smart-contracts
https://ethereum.org/en/roadmap/merge
https://ethereum.org/en/whitepaper
https://ethereum.org/en/whitepaper
https://github.com/OpenAssets
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://ethereum.org/en/developers/docs/smart-contracts/security/
https://ethereum.org/en/developers/docs/smart-contracts/security/
https://docs.openzeppelin.org/v2.3.0/tokens

[14] Understanding the dao attack. https://www.coindesk.com/learn/
understanding-the-dao-attack/. Accessed 2024-04-15.

[15] Web3j documentation. https://docs.web3j.io. Accessed 2024-04-15.

[16] Enabling blockchain innovations with pegged sidechains. https:
//blockstream.com/sidechains.pdf, 2014. Accessed 2024-04-15.

[17] A. Saxena, J. Misra, and A. Dhar. Increasing Anonymity in Bitcoin. In Financial
Cryptography and Data Security, pages 122–139. Springer Berlin Heidelberg, 2014.

[18] B. Schneier. OneWay Hash Functions. Applied Cryptography, Second Edition:
Protocols, Algorthms, and Source Code in C. pages 429–459, 2015.

[19] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Runtime verification for business
processes utilizing the bitcoin blockchain. In Future Generation Computer Systems,
2018.

[20] D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology:
Proceedings of CRYPTO, pages 199–203, 1982.

[21] J. R. Douceur. The sybil attack. In Peer-to-Peer Systems, First International
Workshop, IPTPS, pages 251–260, 2002.

[22] F. Tschorsch, and B. Scheuermann. Bitcoin and beyond: A technical survey on
decentralized digital currencies. IEEE Communications Surveys and Tutorials,
18(3):2084–2123, 2016.

[23] F. Vogelsteller, V. Buterin. Eip 20: Erc-20 token standard. https://
eips.ethereum.org/EIPS/eip-20, 2015. Accessed 2024-04-15.

[24] F. Wessling, C. Ehmke, M. Hesenius, and V. Gruhn. How much blockchain do
you need? towards a concept for building hybrid dapp architectures. In 2018
IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering
for Blockchain (WETSEB), pages 44–47, 2018.

[25] C. Fromknecht. Connecting blockchains: Instant cross-chain transactions on
lightning. https://blog.lightning.engineering/announcement/2017/
11/16/ln-swap.html, 2017. Accessed 2024-04-15.

[26] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge func-
tion family main document. https://keccak.team/obsolete/Keccak-main-
1.0.pdf, 2009. Accessed 2024-04-15.

[27] M. Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC, pages 245–254, 2018.

74

https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://docs.web3j.io
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://blog.lightning.engineering/announcement/2017/11/16/ln-swap.html
https://blog.lightning.engineering/announcement/2017/11/16/ln-swap.html
https://keccak.team/obsolete/Keccak-main-1.0.pdf
https://keccak.team/obsolete/Keccak-main-1.0.pdf

[28] J. Poon, and T. Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. https://lightning.network/lightning-network-paper.pdf,
2016. Accessed 2024-04-15.

[29] J. Willett, M. Hidskes, D. Johnston, R. Gross, and M. Schneider. Omni protocol
specification. https://github.com/OmniLayer/spec. Accessed 2024-04-15.

[30] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM,
4(3):382–401, 1982.

[31] M. Borkowski, C. Ritzer, and S. Schulte. Deterministic witnesses for claim-first trans-
actions. http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-
white-paper-3.pdf, 2018. Accessed 2024-04-15.

[32] M. Borkowski, D. McDonald, C. Ritzer, and S. Schulte. Caught in chains: Claim-
first transactions for cross-blockchain asset transfers. http://dsg.tuwien.ac.at/
staff/mborkowski/pub/tast/tast-white-paper-2.pdf, 2018. Accessed
2024-04-15.

[33] M. Borkowski, D. McDonald, C. Ritzer, and S. Schulte. Towards atomic
cross-chain token transfers: State of the art and open questions within
TAST. http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-
white-paper-1.pdf, 2018. Accessed 2024-04-15.

[34] M. Conoscenti, A. Vetro, and J. C. De Martin. Blockchain for the internet of things:
A systematic literature review. In IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), pages 1–6, 2016.

[35] M. Di Angelo, A. Soare, and G. Salzer. Smart contracts in view of the civil code. In
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pages
392–399. ACM, 2019.

[36] M. Marchesi, L. Marchesi, and R. Tonelli. An agile software engineering method
to design blockchain applications. In Proceedings of the 14th Central and Eastern
European Software Engineering Conference Russia, pages 3:1–3:8. ACM, 2018.

[37] M. Wöhrer, and U. Zdun. Design patterns for smart contracts in the ethereum
ecosystem. In 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pages 1513–1520, 2018.

[38] M. Wöhrer, and U. Zdun. Smart contracts: security patterns in the ethereum
ecosystem and solidity. pages 2–8, 2018.

[39] N. Szabo. Smart contracts. https://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/
szabo.best.vwh.net/smart.contracts.html. Accessed 2024-04-15.

75

https://lightning.network/lightning-network-paper.pdf
https://github.com/OmniLayer/spec
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-3.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-3.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-2.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-2.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-1.pdf
http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/tast-white-paper-1.pdf
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

[40] N. van Saberhagen. Cryptonote v 2.0. http://diyhpl.us/~bryan/papers2/
bitcoin/cryptonote.pdf, 2013. Accessed 2024-04-15.

[41] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf, 2008. Accessed 2024-04-15.

[42] D. Rakic. Blockchain technology in healthcare. In Proceedings of the 4th International
Conference on Information and Communication Technologies for Ageing Well and
e-Health - Volume 1: ICT4AWE, pages 13–20, 2018.

[43] S. D. Lerner. Rsk: Bitcoin powered smart contracts. https://rootstock.io/
rsk-white-paper-updated.pdf, 2019. Accessed 2024-04-15.

76

http://diyhpl.us/~bryan/papers2/bitcoin/cryptonote.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/cryptonote.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://rootstock.io/rsk-white-paper-updated.pdf
https://rootstock.io/rsk-white-paper-updated.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Background
	Cryptocurrencies
	Blockchains
	Smart Contracts

	Related Work
	Enabling Blockchain Innovations with Pegged Sidechains
	Decred On-Chain Atomic Swaps
	Lightning Network Off-Chain Atomic Swaps
	Token Atomic Swap Technology

	Motivating Scenarios
	Token Definition
	Cross-Blockchain Proof Problem
	Semi-Decentralized Cross-Chain Validation
	Use Case Scenarios
	Identified Requirements

	Solution Architecture
	Overall Solution Design
	Cross-Chain Token Transfer Protocol
	Distributed Application Architecture

	Protocol Implementation
	Cross-Chain Token Smart Contract
	Distributed Applications Implementation

	Evaluation and Analysis
	Lab Environment
	Evaluated Use Case Scenarios
	Token Transfer Metrics
	Discussion of Semi-Decentralized Validation Parties

	Conclusion
	Findings
	Future Work

	Measurements
	Cross-Chain Token Transfer Metrics

	List of Figures
	List of Tables
	Listings
	Bibliography

