
Machine learning in credit default risk

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur / Master of Science

im Rahmen des Masterstudiums

Finanz- und Versicherungsmathematik (066 405)

eingereicht von

Alexander Petrov, BSc

Matrikelnummer 01525285

Ausgeführt bei: Institut für Stochastik und Wirtschaftsmathematik
Betreuer: Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser

Wien, am 8. Februar 2022

(Unterschrift Verfasser) (Unterschrift Betreuer)

Machine learning in credit default risk

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 8. Februar 2022

Alexander Petrov

Einverständniserklärung zur Plagiatsprüfung

Ich nehme zur Kenntnis, dass die vorgelegte Arbeit mit geeigneten und dem derzeitigen
Stand der Technik entsprechenden Mitteln (Plagiat-Erkennungssoftware) elektronisch-
technisch überprüft wird. Dies stellt einerseits sicher, dass bei der Erstellung der vorgelegten
Arbeit die hohen Qualitätsvorgaben im Rahmen der ausgegebenen der an der TU Wien
geltenden Regeln zur Sicherung guter wissenschaftlicher Praxis - Code of Conduct (Mit-
teilungsblatt 2007, 26. Stück, Nr. 257 idgF.) an der TU Wien eingehalten wurden. Zum
anderen werden durch einen Abgleich mit anderen studentischen Abschlussarbeiten Ver-
letzungen meines persönlichen Urheberrechts vermieden.

Wien, am 8. Februar 2022

Alexander Petrov

2

Machine learning in credit default risk

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Overview of Similar Works . 8
1.3 Binary Classification Problem . 9
1.4 Outlier Treatment . 9
1.5 Class Imbalance and Model Evaluation . 10

2 Data and Setup 11
2.1 Sample . 11
2.2 Data Partitioning . 12
2.3 Categorical Variables . 13
2.4 Missing Data . 13

2.4.1 Missing Data Classification . 13
2.4.2 Fully Conditional Specification . 13
2.4.3 Predictive Mean Matching . 14

3 Logistic Regression 15
3.1 Theory . 15
3.2 Application . 18
3.3 Regularized Logistic Regression . 20

3.3.1 Ridge Regression . 21
3.3.2 Lasso Regression . 23

4 Support Vector Machine 25
4.1 Margin . 25
4.2 Lagrangian Theory . 28
4.3 Computing the Classifier . 29
4.4 Kernels . 31
4.5 Application . 31

5 K-Nearest Neighbours 34
5.1 Theory . 34
5.2 Application . 35

6 Naive Bayes 37
6.1 Theory . 37
6.2 Application . 38

7 Tree-based Methods 40
7.1 Introduction . 40
7.2 Random Forest . 41

7.2.1 Theory . 41
7.2.2 Application . 42

7.3 Boosting Trees . 44
7.3.1 Motivation . 44

3

Machine learning in credit default risk

7.3.2 Exponential Loss - AdaBoost . 44
7.3.3 Application . 46

8 Neural Networks 47
8.1 General Structure . 47
8.2 Backpropagation . 48
8.3 Application . 50

9 Summary and Conclusions 52

A Gini-coefficient / Somers’ D 59

B Spearman’s Correlation 61

C Comparison of Similar Works 62

4

Machine learning in credit default risk

Kurzfassung

Das rasch zunehmende Volumen an Daten legt den Einsatz von fortgeschrittenen auf
maschinellem Lernen basierten Modellen bei Banken nahe. Der im November 2021 er-
schienene Artikel der Europäischen Bankenaufsichtsbehörde (EBA) könnte demnächst
neue Möglichkeiten für die Ermittlung der Kreditrisikoparameter nach dem IRB-Ansatz
(internal rating-based) verschaffen.

Die vorliegende Diplomarbeit stellt einen Vergleich der diversen Klassifizierungsmethoden
im Kreditrisikobereich auf, die zur Unterscheidung zwischen guten und schlechten Kunden
bei der Bestimmung der Ausfallswahrscheinlichkeit dienen. Diese werden auf die Bilanz-
daten der Geschäftskunden einer europäischen Bank angewendet, ergänzt durch die Land-
und Industriekategorien sowie den binären einjährigen Ausfallsindikator als Zielvariable.

Die Algorithmen werden aus theoretischer Sicht beschrieben und mittels diverser R Pakete
angewandt. Dabei bezieht die Datenaufbereitung einige Schritte mit ein, wie die Impu-
tation der fehlenden Daten und die Behandlung von Ausreißern, die eine entscheidende
Rolle spielt. Die Methodik umfasst weiters zwei Lösungsansätze für die unbalancierte
Zielvariable sowie ein Kreuzvalidierungsverfahren.

Laut den Ergebnissen schneiden manche fortgeschrittene Methoden besser ab, als die
logistische Regression und ihre Modifikationen, während die anderen Algorithmen ein
vergleichbares Ergebnis liefern. Ein einfaches neuronales Netzwerk mit einer verborgenen
Schicht ist das beste Model, wenn man eine uniforme Quantilentransformation auf die
Variablen anwendet. Random forest erzielt das beste Ergebnis auf den untransformierten
Daten, wobei die Interpretation und die Implementierung des Modells komplizierter wer-
den, als im Falle der logistischen Regression.

5

Machine learning in credit default risk

Abstract

While the amount of data collected by banks increases exponentially, the introduction of
sophisticated machine learning models becomes inevitable in order to keep up with the
times. The European Banking Authority (EBA) published a discussion paper in Novem-
ber 2021 which might open new possibilities for the estimation of the risk parameters by
the internal rating-based (IRB) approach.

This thesis aims to compare the performance of different machine learning algorithms
in the field of credit risk and, more specifically, in the discrimination of good and bad
customers as a part of the probability of default (PD) estimation. The data consists of
the corporate customers of a European bank and their balance sheet positions enriched by
the region and industry information with the 12 months default flag as the target variable.

The binary classification algorithms are described from the theoretical point of view and
then applied using R packages. Thereby, the data pre-processing pipeline including an
extensive missing data treatment as well as an outlier detection method plays a decisive
role because of a significant noise level in the sample, while simultaneously addressing the
problem of imbalanced data through undersampling and overweighting. A cross-validation
procedure ensures that an adequate out-of-time generalization is achieved.

The results state that some of the advanced machine learning techniques outperform the
ordinary logistic regression and its regularized modifications while the others such as
support vector machine deliver a comparable performance. A plain neural network with
one hidden layer provides the best predictions in terms of gini on the holdout sample
using a uniform quantile transformation. Random forest achieves the best performance
with the untransformed data, notwithstanding that the interpretation of the results and
implementation of the model in production environment are less straightforward than in
case of logistic regression.

6

Machine learning in credit default risk

1 Introduction

1.1 Motivation

While machine learning conquers different areas, the banking sector follows the trend.
On the one hand, this can be seen as a logical development since banks are naturally in
possession of large amounts of data. On the other hand, the financial institutions (and
the supervisors) are trying to use the most state-of-the-art knowledge and technologies
to quantify the risks. Most recently the use of machine learning models for the internal
rating-based (IRB) models was addressed in the discussion paper [EBA, 2021] by the
European Banking Authority (EBA) opening new possibilities and discussing how one
can overcome the challenges such as interpreting and understanding the results without
running into the risk of developing black box models. This is essential because credit
default risk is one of great importance since the assessment of the creditworthiness of a
customer contributes significantly to the risk management of the banks.

The spotlight problem is the prediction of the 12 months default flag of a customer. It
is important to mention that the quantification of the exact probability of default (cali-
bration) is not in scope of this thesis. The considered approaches aim to rank customers
and discriminate good and bad risks.

Since it is of high importance for a risk manager to have a clear understanding of the
algorithms used, each of the approaches is described from the theoretical point of view
and the deterministic results are then compared. The studied models are:

• logistic regression (logit) and shrinkage methods ridge and lasso;

• Support Vector Machine (SVM);

• k-Nearest Neighbors (KNN);

• Naive Bayes (NB);

• Random Forest (RF);

• AdaBoost;

• Neural Network (NN).

7

Machine learning in credit default risk

1.2 Overview of Similar Works

Nowadays, the spotlight problem draws more and more attention and similar papers and
works can be found. A few of them are summarized in Table 1.

Table 1: Comparison of similar works - summary

Source Data Evaluation
[Alonso and Carbo,
2021]

Consumer loans of Banco
Santander, 75000 credits,
370 features (2/3
categorical), no time
dimension

80/20 with 5-fold
cross-validation

[Granström and
Abrahamsson, 2019]

Nordea SME, 400 variables
including behavioural data,
13 variables selected for the
final model

cross-validation on training
plus holdout, SMOTE

[Choubey, 2018] Credit cards, 22 variables
and recursive selection

cross-validation on training
plus holdout

[Matre, 2019] Retail mortages 2009-2017,
19 variables

training/test/validation
40/30/30

[Accenture, 2020] (1) Loans, 23 variables training/test/validation
70/20/10

[Accenture, 2020] (2) Loans, 45 variables training/test/validation
70/20/10

It is important to be aware of the fact that the results measured in gini (can be found
in Appendix C) are not directly comparable to each other or to the results of this thesis.
The underlying variables as well as the segments are different but also the methods of
data pre-processing and sample splitting.

Nevertheless, one can get a rough idea of what can be expected. The tree-based methods
random forest, AdaBoost and XGBoost method (which is related to AdaBoost) seem to
be performing well in most of the cases. KNN and Naive Bayes have a rather poor per-
formance. The neural networks neither seem to always be the model of choice.

Finally, the logistic regression is often as good or only slightly worse than the other
machine learning algorithms but that is compensated by the interpretability and fast
fitting of the model.

8

Machine learning in credit default risk

1.3 Binary Classification Problem

The main framework is a binary classification. The default flag for each of the i = 1, . . . , N
customers is modeled as a binary random variable Yi ∈ {0, 1} with 0 being non-default
and 1 corresponding to the default scenario. The explanatory variables will be presented
in the next chapters. For the i-th customer one has a real-valued input Xi ∈ Rp with p
variables. The evaluation of binary classification problems is described in Appendix A.

1.4 Outlier Treatment

Since the presence of outliers in the balance sheet data draws a great deal of attention,
this issue will be addressed in two ways.

On the one hand, some balance sheet entry can lie outside of the range of values where
the underlying position would normally be expected to be due to an error during data
collection. While some algorithms can handle such situation in a robust manner (e.g.
tree-based methods), the others might be strongly affected by those observations (KNN,
Naive Bayes). Therefore, it will be addressed before applying those methods by using a
suitable variable transformation.

On the other hand, the explanatory variables of some row might have inconspicuous values
while the observation is mislabeled. This can be the case e.g. when a loan is incorrectly
identified as default / non-default. [Brodley and Friedl, 1999] propose to remove the in-
stances that do not follow the same pattern as the rest of the training data as they might
come from a different probability distribution. The filtering is done by either applying
one (single algorithm filter) or multiple classifiers (majority vote or consensus filter) on
the data and dropping the misclassified data (determined during a cross-validation pro-
cedure) and then training the model of choice. While the three filters exhibit on average
similar results, the gain in accuracy depends on the data set and the machine learning
algorithm as well as the percentage of noise that was introduced artificially.

For the given problem it is proposed to use a similar two-step training procedure. The
training takes place first on the full training sample and the mislabeled observations are
defined based on the distribution of the scores of the two labels. For example, in case
the predicted scores lie between 0 and 1 while the defaults have on average a higher score
close to 1, the defaults that have a score lower than 75% of non-defaults and are close to
zero (and vice versa) are excluded and the model is trained again. This corresponds to the
single algorithm filter from [Brodley and Friedl, 1999] with the same algorithm used for
both filtering and training but without additional cross-validation (it is computationally
not feasible for most of the models). The proposed definition of outliers has the advantage
of doing the job without explicitly defining the cut-off value for the binary classification.

9

Machine learning in credit default risk

1.5 Class Imbalance and Model Evaluation

Each model is trained on a training set with different hyperparameters. As a basic prin-
ciple, the training is done on the undersampled balanced data sets where the number
of defaults equals the number of non-defaults. The added value of undersampling is the
following:

• the model is forced to consider the underrepresented class as equally important;

• the fitting of the model is accelerated since less observations are considered.

Another possibility to handle class imbalance is to use weighting for the two classes in
order to increase the influence of misclassifying the underrepresented group on the model
fitting e.g. loss function. This approach will be applied for some algorithms such as logis-
tic regression and tree-based approaches and compared to the results from undersampling.

The main evaluation metric is the gini (see Appendix A). The hyperparameters from
grid search with the best oot-performance (5-fold cross-validated out-of-time mean gini)
are selected for the final model. In case multiple models have similar performances, the
one with the least gap between the in-sample and out-of-sample gini is chosen (least
overfitting). The model is then trained once more on the full history with the best
hyperparameters and evaluated on the holdout sample previously unseen by the model
(the last year Y11), Subsection 2.2 describes the approach in more detail.

At the end, this logic provides, on the one hand, a CV estimate, which is used to tune
the model, and on the other hand, an estimate for the real-life performance e.g. when a
quantitative analyst trains the given model on the whole available history and predicts
the probability of default for the current portfolio with non-observable defaults (per def-
inition the target variable is complete earliest 12 months after the reference date).

With that in mind, the tables containing the results will have the following structure at
the end of each chapter:

• sample: original (output of the general data pre-processing) or transformed
(additional steps applied to make the data suitable for the particular algorithm);

• method: cv (cross-validated (mean) results from hyperparameter-tuning) or hold-
out (single value);

• imb: the problem of imbalanced data is handled by undersampling (under) or
overweighting (weight);

• mislab: mislabeled observations are removed (1) or not (0);

• gini in: in-sample gini (training set);

• gini oot: out-of-time gini (test set).

10

Machine learning in credit default risk

2 Data and Setup

2.1 Sample

The data set consists of the clients of a European bank from its corporate segment. The
one-year default flag indicates whether a given client defaults in the next 12 months after
the reference date. According to Basel II ([BCBS, 2006]), a default occurs when:

• the obligor is unlike to pay its credit obligations in full without giving up a collateral;

• the obligor is 90 days past due on any material credit obligation.

Hence each row corresponds to a customer at some point in time / month and the obser-
vations are unique in terms of the customer ID and date. Additionally, two categorical
variables split the data set into sub-segments: regions and industries.

This table is merged with another table containing the balance sheets of the clients. For
each observation the latest available balance sheet is selected and attached. If all financials
of a given customer are older than 24 months defined as the gap between the reference
date and the balance sheet date and therefore there is no up-to-date financial information,
the client is dropped from the sample. The change of the predictive power as the balance
sheet gets older is an interesting topic worth investigating but is not in the scope of this
thesis.

The data collection as well as the definition of (meaningful) financial ratios and default
flags are neither in the scope. Both the anonymized raw balance sheet positions and the
ratios are already provided and the differences are considered from the statistical point
of view only.

Table 2: Sample preview

cust id year default 1y region industry x fin 100 x fin 200
CUST10025 Y9 0 REG4 IND2 0 94
CUST10051 Y1 0 REG4 IND6 2286 12
CUST10077 Y6 0 REG11 IND7 0 NA
CUST10101 Y10 0 REG4 IND2 0 139
CUST10130 Y5 0 REG4 IND1 400188 -9
CUST10160 Y4 0 REG3 IND2 0 19
CUST10187 Y3 0 REG4 IND3 445211 -36
CUST10225 Y10 0 REG4 IND1 0 56
CUST1026 Y10 0 REG2 IND1 7156 3
CUST10278 Y5 0 REG5 IND7 39 4

An important consideration is that balance sheets are not published on a monthly basis
and for consistency only those with 12-months reporting period are considered. However,
this also leads to the conclusion that the most of the neighboring timeslices of the same
customer will naturally contain the same financials figures e.g. both in September and
October the latest available data is most likely from December of the previous year. This

11

Machine learning in credit default risk

information does not bring any additional value for the further development and is there-
fore dropped: only the non-overlapping observations from one selected month of each
year with a one-year gap in-between are considered in the next steps. The data structure
is presented in Table 2.

At the start of the analysis, there are 626 numerical columns. Those include balance
sheet positions as well as financial ratios which capture some meaningful non-linear in-
teractions between the raw positions e.g. dividing the sum of equities by the total assets
results in the equity ratio.

2.2 Data Partitioning

At this stage, one has to keep in mind that a cross-validation approach will be used for
model selection. However, it would have been incorrect to select the features on the
whole sample by implicitly using the knowledge that the variable performs well or poorly
on the test set which contradicts with the purpose of the test set and might lead to overly
optimistic results. The goal is to imitate the process for the data which is available up
until some point in time and then make predictions on the new data for which the target
variable is not observed yet.

Therefore, the cross-validation partitions as presented in Figure 1 are defined now and
a separate variable selection is performed for each of the training sets as recommended
by [Hastie et al., 2017].

Figure 1: Training / Test structure

Each of the five training / test splits covers five years for the training purposes and a
one-year test set. The sixth round is run on the ten years of history to make a prediction
on the last year using the best hyperparameters (not to be confused with the model pa-
rameters that are re-estimated such as the regression coefficients).

12

Machine learning in credit default risk

All further steps are performed for each split separately unless stated otherwise.

2.3 Categorical Variables

Some regions and industries contain only few or none defaults. Therefore, the number
of subgroups is reduced by combining similar segments (neighbouring countries, related
industries). The two variables are then log-odd-transformed: the log-odds of each category
are calculated on the training set and replace the factors in the training and test sets.
This allows to treat all of the variables as numerical and order the sub-segments in terms
of historical riskiness.

2.4 Missing Data

2.4.1 Missing Data Classification

The missingness of the data X can be characterized by defining the indicator matrix M
of missing values in X and considering the conditional distribution of mi given xi (row i)
f(mi|xi, φ) with some unknown parameter φ. [Little and Rubin, 2019] distinguish three
cases when the data is missing:

• completely at random (MCAR) in case the missingness does not depend on the
missing or observed data in xi;

• at random (MAR) when the missingness depends only on the observed components
of xi;

• not at random (MNAR) if the distribution depends on the unobserved components
of xi.

The MAR assumption is plausible for balance sheets since the available positions might be
satisfactory to explain the missingness of the other positions well. This is a good starting
point for the further steps ([Van Buuren, 2018]).

2.4.2 Fully Conditional Specification

The given problem of multivariate missing data can be approached by applying the fully
conditional specification. The multivariate distribution of the data is specified by the it-
eration through conditional densities of the missing variables ([Van Buuren, 2018]). Each
missing variable is first imputed with a random draw from the observed values. The non-
missing values of the given variable are then used as target variable to fit a model with
other features used as explanatory variables. This algorithm is known as multivariate
imputation by chained equations (MICE).

[Van Buuren, 2018] suggests that a low number of 5 iterations is often enough to reach
convergence. However, one has to make sure that there are no high correlations between
variables as well as no high rates of missing data. This is ensured by considering only
variables with less than 25% percent missing rate and by excluding the variable with the
higher missing rate in case two features have a Spearman’s correlation of 80% or higher.
The advantage of using the Spearman’s correlation coefficient is described in Appendix B.

13

Machine learning in credit default risk

2.4.3 Predictive Mean Matching

After fitting the model, multiple possibilities are open on how to determine the value
for imputation. Predictive mean matching (PMM) calculates the fitted value of the tar-
get variable for some underlying imputation model and randomly selects the value to be
imputed from a set of donors (data points that are closest to the missing entry while
the metric can vary). This ensures that the imputed value is realistic and respects the
characteristics of the original variable such as skewness. It is, however, best to apply it
on large data sets ([Van Buuren, 2018]), which is the case for this application.

At this point the outliers are not treated in any manner hence one needs a robust method.
Random forest will be used which satisfies this criteria ([Van Buuren, 2018]). The follow-
ing code chunks shows how the function from the miceRanger package by [Wilson, 2021]
is applied.

rf_model <-

miceRanger(

dt_train,

m = 1,

maxiter = 5,

num.trees = 10, \\
returnModels = T,

valueSelector = "meanMatch",

meanMatchCandidates = 5

)

m is set to 1 because only one imputation is done. Nevertheless, the imputation un-
certainty is considered by doing different imputations across the CV folds. 10 trees are
selected based on the results of the study by [Shah et al., 2014]. [Van Buuren, 2018]
suggests to use 5 donors (meanMatchCandidates parameter) as the default value. The
model is trained on the training sample only and applied on the training and test samples
to avoid target leakage.

[Van Buuren, 2018] also discusses the variable selection for the imputation model. Since
random forest is capable of choosing the best variable in each split, all a priori available
information will be used. This also makes the MAR assumption more realistic.

14

Machine learning in credit default risk

3 Logistic Regression

Logistic regression is widely used in the credit risk modelling due to its relative simplicity
and interpretability of the impact each of the variables has on the result. Therefore the
logistic regression model will be considered as the baseline model for this thesis.

The idea is to model the posterior probability of default as a linear function in X. At the
same time, the probabilities must sum up to one and lie between zero and one to make
the output meaningful.

3.1 Theory

Consider applying the regular linear regression on the binary response variable Yi ∈ {0, 1}
representing the i-th customer with intercept β0 and coefficient vector β1. It takes the
form

Yi = β0 + βT
1 Xi + �i (1)

and since the error term �i has a zero expectation, it follows that

E[Yi] = β0 + βT
1 Xi (2)

and assuming that Yi is Bernoulli-distributed with P (Yi = 1) = PDi the formula is
transformed into

E[Yi] = 1 · PDi + 0 · (1− PDi) = PDi . (3)

Therefore, the mean response simply equals the probability of default PDi given some val-
ues of the predictor vector Xi. This, however, leads to certain complications as described
in [Kutner et al., 2005]:

• the binary response variable Yi implies that also the error term �i can only take
two values violating the normally distributed error assumption of the ordinary least
squares regression;

• the variance of �i is Xi-dependent and therefore violates the assumption V [�i] =
const. for all i because:

V [�i] = V [Yi] = E[Y 2
i]− E[Yi]

2 = PDi · 12 + 0− PD2
i = PDi(1− PDi) (4)

• PDi is a probability and therefore the following must hold for the response function
of choice:

0 ≤ E[Yi] ≤ 1 . (5)

One function which fulfills those constraints is the standard normal cumulative distribu-
tion function (or probit):

PDi = Φ(β0 + βT
1 Xi) . (6)

15

Machine learning in credit default risk

Alternatively (and frequently), the logistic distribution is used which has heavier tails
[Kutner et al., 2005]:

PDi =
exp(β0 + βT

1 Xi)

1 + exp(β0 + βT
1 Xi)

. (7)

This results in the logit response function of the PDi and one gets a linear model for the
log-odds of the default event:

ln

�
PDi

1− PDi

�
= β0 + βT

1 Xi . (8)

Using the definition of the Bernoulli probability function and the fact that the Yi are
assumed to be independent for all i, one gets for the joint probability function of Y :

g(Y1, . . . , YN) =
N�
i=1

PDYi
i (1− PDi)

1−Yi . (9)

After applying the logarithm and inserting the Equation (7) from above, one ends up with
the following Log-Likelihood function:

l(β) = ln(L(β)) = ln

N�
i=1

PD(xi; β)
yi(1− PD(xi; β))

1−yi

�

=
N�
i=1

ln(PD(xi; β)
yi(1− PD(xi; β))

1−yi)

=
N�
i=1

ln(PD(xi; β)
yi) + ln((1− PD(xi; β))

1−yi)

=
N�
i=1

yi · ln(PD(xi; β)) + (1− yi) · ln(1− PD(xi; β))

=
N�
i=1

yi · ln
�

exp(βTxi)

1 + exp(βTxi)

�
+ (1− yi) · ln

�
1

1 + exp(βTxi)

�

=
N�
i=1

yi(β
Txi)− ln(1 + eβ

T xi)

(10)

with β = (β0, β1) and the first component of xi is 1. The derivatives are set to zero to
maximize the log-likelihood:

∂l(β)

∂β
=

N�
i=1

xi(yi − eβ
T xi

1 + eβT xi� �� �
=PD(xi;β)

) = 0 (11)

also known as score equations. Because of the intercept in xi, the first of the p + 1
equations which hide behind the Equation (11) has the form

16

Machine learning in credit default risk

N�
i=1

yi =
N�
i=1

PD(xi; β) =
N�
i=1

E[Yi] (12)

hence demands that the observed number of defaults equals the expected number of de-
faults.

The solution can then be found by iteratively applying the Newton-Raphson algorithm.
The second derivative or Hessian matrix is calculated as

∂2l(β)

∂β∂βT
= −

N�
i=1

PD(xi; β)(1− PD(xi; β))xix
T
i (13)

and βold is updated as described in [Hastie et al., 2017] by

βnew = βold −
�
∂2l(β)

∂β∂βT

�−1
∂l(β)

∂β

����
β=βold

. (14)

To get more insight, one can write these equations in matrix notation. Let:

• y... 0/1 vector with N default flags yi;

• X... N × (p+1) matrix with the intercept (1) in the first row and each of the other
rows corresponding to a feature vector xi;

• p... vector with N fitted probabilities of default PD(xi; βold);

• W... diagonal matrix with PD(xi; β)(1− PD(xi; β)) in the ith diagonal element.

Therefore, Equation (11) can also be written as

∂l(β)

∂β
= XT (y − p) (15)

and Equation (13) as

∂2l(β)

∂β∂βT
= −XTWX (16)

thus for the Newton update the following holds

βnew = βold + (XTWX)−1XT (y − p)

= (XTWX)−1XTW (Xβold +W−1(y − p))

= (XTWX)−1XTWz .

(17)

This can be seen as a weighted least-squares step with an adjusted response

z = Xβold +W−1(y − p) . (18)

At each iteration the β changes leading to a new p hence W and z are updated too. The
problem that is solved can be expressed as

βnew ← argmin
β

(z −Xβ)TW (z −Xβ) . (19)

17

Machine learning in credit default risk

3.2 Application

Logistic regression requires several assumptions to be fulfilled ([Stoltzfus, 2011]). The
independence of error terms is assumed to be fulfilled because each row corresponds to
a different customer at a different point in time. Furthermore, one has to make sure
that the data contains no strongly influential outliers, taking also into account that the
variables have different scales (percentages in the range from 0 to 100, ratios between -1
and 1, absolute values with arbitrarily high or low values). Additionally, the distribu-
tions are mostly skewed, some of them are concentrated at different levels and / or show
multimodal shape. Based on these facts it is proposed to transform each variable to a
uniform distribution between zero and one (this will be referred to later as the uniform
transformation). Outliers are then treated as neighbours of normal cases.

The next step is to ensure the linearity in the logit for the independent variables. It is
fulfilled per definition for the log-odd-transformed categorical variables. The continuous
variables are binned and a linear model is fit with the bin log-odds as the target variable
and the mean value for each bucket bin as the independent variable. Testing whether
the p-value of the model coefficient is below 5% leads to a decision whether to keep the
variable for modelling or not.

The last issue to take care of is the multicollinearity / redundancy of the variables. It can
be measured by the variance inflation factor (VIF) defined as

VIF =
1

1−R2
i

, (20)

where R2
i is the coefficient of determination when modelling the i-th variable with all other

predictors from the model. The common rule of thumb is 5 indicating a high correlation.

Since not all of the selected variables might be statistically significant, the model is fit
multiple times and in each step the independent variable with the highest p-value above
0.05 is dropped (stepwise approach).

The removal of mislabeled rows improves the performance on the raw variables, however,
one can observe the main increase in the gini when applying the variables pre-processing
including the uniform transformation as described earlier. In this case, the mislabeled
observations do not have a high impact and only affect the in-sample gini.

Table 3: Logistic regression - results with undersampling

sample method mislab gini in gini oot
original cv 0 0.55 0.49
original cv 1 0.66 0.53
transformed cv 0 0.63 0.58
transformed cv 1 0.70 0.58

Similar situation is observed when fitting the model on the whole sample and overweight-
ing the default class. The parameter weights in the glm() function is set equal to 1 for the

18

Machine learning in credit default risk

default class and to the default rate for non-defaults (inversely proportional to the class
imbalance) and drives the overweighting in the log-likelihood function (Equation (10))
which is aquivalent to adding more observations while the weights are not necessarily
integers.

Table 4: Logistic regression - results with overweighting

sample method mislab gini in gini oot
original cv 0 0.39 0.36
original cv 1 0.45 0.40
transformed cv 0 0.62 0.59
transformed cv 1 0.62 0.59
transformed holdout 1 0.62 0.52

The result is slightly better than for undersampling and consequently this method is se-
lected for the final model which has a significantly lower gini on the holdout sample.
However, the final model does not not fully profit from the cross-validation approach
because no hyperparameters are selected / tuned. This will be covered in the next sub-
chapters. The goal is to use two enhanced versions of the logistic regression: ridge and
lasso. Both of them are shrinkage methods which punish the size of the regression coef-
ficients in a way that the model gives more stable results. Ridge regression will help to
find the optimal coefficients for the given set of variables whereas lasso will be used to
reduce the number of selected features without losing much of predictive power.

19

Machine learning in credit default risk

3.3 Regularized Logistic Regression

The idea is to penalize the size of the coefficients and thus tackle the problem of high
variance by allowing more bias. This can be the case if one large positive coefficient is
cancelled out by a large negative coefficient of another highly correlated variable.

Assume without loss of generality that the observations are standardized
�N

i=1 xij = 0,
1
N

�N
i=1 x

2
ij = 1 for each j = 1, . . . , p. The model is fit on the log-likelihood function with

additional penalty

max
β

1

N

N�
i=1

yi(β

Txi)− ln(1 + eβ
T xi)

�
− λPα(β) , (21)

where the penalty term is defined as

Pα(β) = (1− α)
1

2
||β||22 + α||β||1 (22)

with α = 0 referring to the ridge regression and α = 1 to the lasso regression.

The approach for finding the optimal β is described in [Friedman et al., 2010]. For each
λ, a quadratic approximation lQ of the log-likelihood (Taylor expansion about current
estimates) is computed which equals

lQ(β0, β) = − 1

2N

N�
i=1

wi(zi − β0 − xT
i β)

2 + C(βold)
2 (23)

with the following notation which is similar to the one from the previous chapter

z = Xβold +W−1(y − p) , (24)

W = diag(PD(xi; β)(1− PD(xi; β))) . (25)

For a given lambda, the coordinate descent algorithm is applied on the penalized and
weighted least-squares problem

min
β

(−lQ(β) + λPα(β)) (26)

with the update being done coordinate-wise

βnew,j =
S
��N

i=1 wixij(yi − yold,i), λα
�

�N
i=1 wix2

ij + λ(1− α)
, (27)

where the S(z, γ) is the soft-threshold operator defined by

sign(z)(|z| − γ)+ =


z − γ z > 0, γ < |z|
z + γ z < 0, γ < |z|
0 γ ≥ |z|

(28)

and yold,i is the fitted value but with the contribution from xij excluded

20

Machine learning in credit default risk

yold,i = βold,0 +
�
l �=j

xilβold,l . (29)

Therefore, yi − yold,i is the partial residual for fitting βj.

3.3.1 Ridge Regression

Ridge shrinks the coefficients towards each other. In the (extreme) case of n identical
variables, each coefficient will have the 1/n of the size it would have had in the univariate
model.

The glmnet R package from [Friedman et al., 2010] provides an implementation of the
elastic net algorithm which is a generalization of the ridge regression. The alpha is set to
zero in order to use the L2-norm as shown in Equation (22). The further parameters of
the cv.glmnet() function are:

• family is set equal to ”binomial” to perform the logistic regression;

• lambda is a vector of lambdas for which the regression will be fitted;

• standardize is set to TRUE;

• type.measure defines the metric based on which the optimal lambda will be se-
lected and is set equal to ”auc”;

• nfolds equal 10 indicates that a 10-fold cross-validation is performed for each
lambda.

The two vertical dashed lines in the Figure 2 indicate the two optimal lambdas proposed
by the package. The left one is the lambda.min value for which the AUC is maximized, the
right one is the lambda.1se value that lies within one standard deviation from lambda.min
and refers to the most regularized model (highest lambda) with this property.

21

Machine learning in credit default risk

Figure 2: Optimal lambda in ridge - example

The out-of-time predictions are done with lambda.1se and for the holdout sample, the
mean of those is used.
The feature preprocessing is the same as the one used for the logistic regression except
that the multicollinear variables are not excluded since the elastic net is capable of dealing
with such cases. Another difference is that regularization requires standardized feature.
Otherwise, the penalty on the coefficients will be uneven for the variables with different
scales, see Equation (22). This is handled by the function internally.

Table 5: Ridge regression - results

method imb mislab lambda 1se gini in gini oot
cv under 0 0.69 0.60 0.59
cv under 1 0.30 0.69 0.59
cv weight 0 0.22 0.62 0.60
cv weight 1 0.26 0.62 0.60
holdout weight 1 0.26 0.62 0.54

The performance is better than for the logistic regression. Again, the overweighting
provides slightly better results than undersampling while the method seems to be robust
against the mislabled observations.

22

Machine learning in credit default risk

3.3.2 Lasso Regression

The lasso approach is similar to ridge and uses the L1-norm as the penalty term:

max
β

N�
i=1

yi(β

Txi)− ln(1 + eβ
T xi)

�
− λ

p�
j=1

|βj| . (30)

The difference lies in the nature of the L1- and L2-norms as displayed in Figure 3 (from
[Hastie et al., 2017]).

Figure 3: L1 vs L2 norm

The elliptical forms refer to the residual sum of squares (least-squares error function)
for different coefficients with the center being the least-squares estimate. The coefficients
must lie in the constraint region in the middle, however, those regions have different forms.
In case of ridge, one has a circle because of

|β1|2 + |β2|2 ≤ t , (31)

whereas for lasso this has a diamond form with corners

|β1|+ |β2| ≤ t , (32)

where the solution is more likely to be found and therefore the method does a kind of
variable selection by setting more and more coefficients equal to zero as the lambda gets
higher.

Again, the glmnet package will be used. The only difference is that the α parameter will
be set to 1.
Figure 4 shows that decreasing the amount of features through increasing of lambda does
not lead to any change in the AUC for quite long time, it remains stable.

23

Machine learning in credit default risk

Figure 4: Optimal lambda in lasso - example

The results is as good as for ridge given that the number of variables used is strongly
reduced.

Table 6: Lasso regression - results

method imb mislab lambda 1se gini in gini oot
cv under 0 0.02 0.61 0.58
cv under 1 0.02 0.69 0.57
cv weight 0 0.01 0.62 0.59
cv weight 1 0.01 0.63 0.60
holdout weight 1 0.01 0.63 0.54

24

Machine learning in credit default risk

4 Support Vector Machine

4.1 Margin

Consider a p-dimensional feature space and a two-class problem with the target variable
yi ∈ {−1, 1} consisting of i = 1, . . . , N observations xi ∈ Rp. A hyperplane or affine set
L defined by

L = {x : f(x) = β0 + xTβ = 0} (33)

with ||β|| = 1 induces a classification rule sign(f(x)). In two or three dimensions, it is
equivalent to building a line/plain and determining whether some xi lies above it in case
of f(xi) > 0 or below it (f(xi) < 0) [Hastie et al., 2017].

The hyperplane as presented in Figure 5 (from [Hastie et al., 2017]) has the following
properties:

• for two points x1 and x2 which lie on L holds βT (x1 − x2) = 0 and consequently,
β∗ = β/||β|| is the unit vector normal to the hyperplane;

• the signed distance of any point x to L is proportional to f(x):

β∗T (x− x0) =
βT (x− x0)

||β||

=
βTx−

=−β0� �� �
βTx0

||β||
=

βTx+ β0

||β||
=

f(x)

||f �(x)|| .

(34)

25

Machine learning in credit default risk

Figure 5: Hyperplane in 2D

It is possible that a hyperplane exists which perfectly separates the two classes which is
equivalent to yif(xi) > 0 by definition and one can then find an optimal hyperplane with
the maximal margin M (distance to the nearest observations) which also defines the band
of width 2M around f(x) (see the left panel of Figure 6 from [Hastie et al., 2017]).

Figure 6: Separable vs. non-separable case

This setup can be written as a optimization problem of the form

max
β,β0,||β||=1

M ,

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N .

(35)

In words: maximize the margin M as long as the distance to the points is at least M.

26

Machine learning in credit default risk

By setting M = 1/||β||, this can be further re-written as

min
β,β0

||β|| ,
subject to yi(x

T
i β + β0) ≥ 1, i = 1, . . . , N ,

(36)

while the constraint ||β|| = 1 is eliminated. This works because multiplying the left-hand
side of the constraint in Problem 35 with 1/||β|| eliminates the condition ||β|| = 1. Any
positively scaled multiple of some β, β0 that satisfies the new condition also satisfies it.
Hence M can be selected arbitrarily.

However, the classes often overlap in the feature space and one has to allow some obser-
vations to violate the rule and consequently to be misclassified leading to the so-called
”soft-margin”. The extent of the margin violation is given by the so-called slack variables
�i, i = 1, . . . , N .
The soft-margin can be defined by changing the constraint either to

yi(x
T
i β + β0) ≥ M − �i (37)

or

yi(x
T
i β + β0) ≥ M(1− �i) (38)

with �i ≥ 0,
�

i �i ≤ const.
The first version measures the overlap in absolute terms which seems to be more natural,
however, leads to a non-convex optimization problem. The second option makes use of
the relative distance in terms of M or in other words the proportional amount by which
the xi is placed on the wrong half-space. The sum of �i gives the total misclassification
proportion that should be as small as possible. This leads to a convex optimization
problem defined as follows ([James et al., 2017]):

max
β,β0

M ,

subject to yi(β0 + xT
i β) ≥ M(1− �i) ,

�i ≥ 0,
N�
i=1

�i ≤ C, �β� = 1

(39)

or by getting rid of M

min
β,β0

||β|| ,
subject to yi(β0 + xT

i β) ≥ 1− �i ,

�i ≥ 0,
N�
i=1

�i ≤ C .

(40)

In case �i = 0 the observation is placed on the correct side of the margin (that in fact
is equivalent to Problem 36) and is incorrectly classified in case of �i > 1. The values

27

Machine learning in credit default risk

in-between represent the case when the points lie between the margin and the hyperplane.
Therefore, C is an important tuning parameter:

• it bounds the number of observations allowed to be on the wrong side hence

• higher values less overfitting.

Consequently, only the observations which lie on the margin or violate it, affect the hy-
perplane and are referred to as ”support vectors” [James et al., 2017]. This fact leads
to the conclusion that outliers or point lying far inside of one of the half-spaces do not
impact the decision boundary.

[Hastie et al., 2017] suggests to use the equivalent form

min
β,β0

1

2
||β||2 + C

N�
i=1

�i ,

subject to yi(β0 + xT
i β) ≥ 1− �i ,

�i ≥ 0 ,

(41)

which is basically a regularized optimization problem. Note that the parameter C has
an inverse effect here compared to previous steps: a higher C makes the algorithm less
tolerant of margin violations.

4.2 Lagrangian Theory

The explanation in this subsection follows the lecture by [Palomar, 2020].

The Problem 41 can be generalized as

minf0(x) ,

subject to fi(x) ≤ 0 i = 1, . . . ,m ,

hj(x) = 0 j = 1, . . . , p .

(42)

The Lagrangian primal function is defined by

L(x, α, λ) = f0(x) +
m�
i=1

αifi(x) +

p�
j=1

λihi(x) . (43)

By setting the x derivatives to zero and substituting, one gets the Lagrangian dual function
defined by

g(α, λ) = inf
x
L(x, α, λ) . (44)

This leads to the so-called Lagrangian dual problem

28

Machine learning in credit default risk

max
α,λ

g(α, λ) ,

subject to α ≥ 0 ,
(45)

which is a convex optimization problem (maximization of a concave function with linear
constraints).

The weak duality theorem states that maximizing the dual problem produces a bound

g(α, λ) ≤ f0(x
∗) (46)

for all α ≥ 0 and λ. x∗ is the optimal solution of the primal problem. Therefore it holds
in particular for the optimal dual solution (weak duality)

g(α∗, λ∗) ≤ f0(x
∗) . (47)

The Slater’s Theorem or Strong Duality Theorem says that if the constraint functions are
affine, the duality gap (the gap between g(α∗, λ∗) and f0(x

∗)) is zero. Then the Karush-
Kuhn-Tucker conditions provide the sufficient conditions for x∗ to be an optimum:

• the first-order derivative of optimality is given by ∂L(x,α∗,λ∗)
∂x

����
x=x∗

= 0

• the complementary slackness conditions are defined by α∗
i fi(x

∗) = 0

• dual constraints α∗
i ≥ 0

• and finally the prime constraints fi(x
∗) ≤ 0 and hj(x

∗) = 0.

4.3 Computing the Classifier

With the tool described previously, one can now attack the Problem (41). This is possible
because the strong duality obviously holds. The prime problem has 2N constraints and
the Lagrange primal function equals

L(β, �, α, µ) =
1

2
||β||2 + C

N�
i=1

�i

−
N�
i=1

αi(yi(x
T
i β + β0)− (1− �i))−

N�
i=1

µi�i .

(48)

This is to be minimized with respect to β, β0 and �i, therefore, the respective derivatives
are set to zero:

β =
N�
i=1

αiyixi , (49)

29

Machine learning in credit default risk

0 =
N�
i=1

αiyi , (50)

αi = C − µi . (51)

The substitution into Equation (48) gives the Lagrangian dual objective function and
consequently a lower bound for the objective function ([Hastie et al., 2017]):

LD(α) =
N�
i=1

αi − 1

2

N�
i=1

N�
j=1

αiαjyiyjx
T
i xj . (52)

Additionally to the prime constraints, the Karush-Kuhn-Tucker conditions are the follow-
ing:

αi(yi(x
T
i β + β0)− (1− �i)) = 0 , (53)

0 ≤ αi ≤ C , (54)

µi�i = 0 . (55)

The solution of the optimization problem comes from the Equation (49)

β̂ =
N�
i=1

α̂iyixi , (56)

where the coefficients α̂i are non-zero only for the support vectors. The observations
which lie on the edge of the margins (�i = 0) can then be identified by C > α̂i > 0 and
the others by α̂i = C (and �i > 0). β̂0 can be determined with the help of Equation (53):
it can be calculated for any point with �i = 0 and α̂i > 0. For numerical stability, the
average of these solutions is used ([Hastie et al., 2017]).

Coming back to the f(x), it means that for some new data u ([Kuhn and Johnson, 2013]):

f(u) = β̂0 + uT β̂

= β̂0 +

p�
j=1

β̂juj

= β̂0 +

p�
j=1

N�
i=1

α̂ixijuj

= β̂0 +
N�
i=1

α̂i

� p�
j=1

xijuj

�
.

(57)

The sum in the brackets in the last line is nothing else than a dot / inner product of
the new data ui and the i-th training observation xi. It also refers to the so-called linear
kernel which will be discussed and modified in the subsection below.

30

Machine learning in credit default risk

4.4 Kernels

The last result can be re-written with the help of the kernel function K which is a
generalized version of the inner product of two transformed vectors ([James et al., 2017]):

K(xi, xi�) =

p�
j=1

h(xij)h(xi�j) , (58)

f(u) = β̂0 +
n�

i=1

α̂iK(u, xi) , (59)

by using a transformation h(.). Therefore, the decision-making is based on the weighted
sum where K can be seen as a measure of similarity between new data u and each and
every support vector xi. The optimization problem in fact doesn’t involve the h(x) ex-
plicitly but only the kernel itself which computes the dot products in some transformed
space where the decision boundary is linear but simultaneously non-linear in the original
feature space ([Hastie et al., 2017]). In case of the polynomial kernel, one implicitly gets
the power transformations of the original variables as well as their interaction terms.

In the R package e1071 by [Meyer et al., 2019] the four popular kernels K(u, v) are
available:

• linear: u�v

• polynomial: (γu�v + coef0)degree

• radial basis: e−γ||u−v||2

• sigmoid: tanh(γu�v + coef0)

with γ, coef0, degree as well as the cost factor C being the tuning parameters.

4.5 Application

Support vector machine requires variables to be scaled in order to avoid a variable with
greater numeric ranges to dominate the inner product ([Hsu et al., 2003]). Furthermore,
SVM is not robust for highly skewed variables ([Siddiqui and Ali, 2016]). Therefore,
the uniform transformation will be applied on the input data. The best result on the un-
transformed data (see Table 7) is rather poor, although significantly better when removing
mislabeled observations.

Table 7: SVM - results on the untransformed sample

method mislab kernel cost gini in gini oot
cv 0 linear 100 0.17 0.15
cv 1 linear 100 0.52 0.30

In case of the uniform transformation, all four kernels lead to very similar cross-validated

31

Machine learning in credit default risk

results (see Table 8) as well as holdout ginis (see Table 9). The outcome for the polynomial
kernel doesn’t seem to be significantly better than the performance of the linear kernel.
This leads to the conclusion that the power transformation of the variables as well as
interaction terms do not give any added value for this particular problem.

Table 8: SVM - CV results with uniform transformation

mislab kernel cost gamma gini in gini oot
0 linear 1e-02 NA 0.61 0.59
1 linear 1e-02 NA 0.69 0.59
0 polynomial 1e+02 1e-03 0.62 0.60
1 polynomial 1e+02 1e-03 0.69 0.59
0 radial 1e+03 1e-05 0.63 0.60
1 radial 1e+03 1e-05 0.70 0.60
0 sigmoid 1e+02 1e-03 0.64 0.60
1 sigmoid 1e+02 1e-03 0.72 0.60

Table 9: SVM - holdout results with uniform transformation

kernel gini in gini oot
linear 0.62 0.55
polynomial 0.62 0.55
radial 0.63 0.55
sigmoid 0.64 0.53

Another important observation is that the radial kernel is overfitting for higher gamma
values as shown in Figure 7.

Figure 7: Radial kernel and the gamma parameter - example

A similar situation can be observed for the polynomial kernel, see Figure 8.

32

Machine learning in credit default risk

Figure 8: Polynomial kernel and the gamma parameter - example

Hence it is important to select the gamma parameter based on the cross-validated out-
of-time gini for a good performance on the holdout sample.

The overweighting is computationally infeasible with the given resources. The function
provides the possibility to define the class.weights that scale the cost parameter C in
Equation (41) in order to increase the misclassification penalty of the underrepresented
group.

33

Machine learning in credit default risk

5 K-Nearest Neighbours

5.1 Theory

The K-nearest neighbours algorithm (or simply KNN) captures the idea that the observa-
tions with the same label have similar features in terms of the distance which is measured
by some metric. Often the Euclidean distance is used

d(x, y) = ||x− y||2 . (60)

One computes the distances of each and every observation from the training set to the
given test observation. The k closest points are taken and the label is assigned based
on the majority voting upon the neighbours. Therefore, the training of the algorithm
incorporates both training and test set in order to identify the optimal value of k.

Another important consideration is that heavily imbalanced data might lead to a poor
performance on the default class for high k. This is due to the fact that the density of
the dominating class is simply so high that it will always dominate the decision and the
defaults will be misclassified. For this reason, only the undersampled data set will be
considered.

The variables should be standardized in order to assure that the influence of one given
variable doesn’t come from the larger scale of its values. The presence of outliers makes
it necessary to use a robust scaler e.g. the IQR scaler defined as

xt =
xraw −Q25

Q75 −Q25

(61)

for the raw data xraw and the quantiles of the variable distribution Q25 and Q75.

A further improvement can be achieved by incorporating the covariance structure of the
data set by using the Mahalanobis distances defined for two points x and y as

M(x, y) =
�

(x− y)�Σ−1(x− y) (62)

with the covariance matrix Σ.

Since the data contains outliers there is a need for a robust covariance estimator. One
common approach is to use the minimum covariance determinant (MCD). For a training
set of size n one selects a subset of size 0.5 ·n ≤ h ≤ n with the lowest determinant of the
covariance matrix. Then the scatter estimate is proportional to the covariance matrix of
those h points. This is equivalent to finding h rows with a tolerance ellipsoid (for a given
level) of the minimal volume around them ([Rousseeuw and Leroy, 1987]). In practice,
one cannot consider all possible combinations and can take the best one upon some high
number of subsets.

The advantage of using the MCD estimate is visualized in Figure 9 (from [Rousseeuw
and Leroy, 1987]). While the classical covariance estimate would give a tolerance ellipse

34

Machine learning in credit default risk

which is distorted by outliers (dashed line), the MCD estimate ignores the outliers and
consideres only the points from the ”true” distribution:

Figure 9: Gini for different k and transformations

The MCD estimator has a high breakdown point (robustness against a certain percentage
of outliers). If the fraction of the outliers is at most 0 < α ≤ 0.5 then one can consider
subsets up to h = [n · (1− α)] + 1 ([Rousseeuw and Leroy, 1987]).

5.2 Application

The knn function from the R package class by [Venables and Ripley, 2002] is used to run
the algorithm with the Euclidean metric. The CV result is only around 24% (for k = 21).

The results are significantly further improved by using the Mahalanobis distances with
the robust covariance estimator, see Figure 10. Since there is no R implementation of such
algorithm, it is programmed from scratch. The MCD covariance estimator is computed
based on 1000 runs and a fraction of 75% using the MASS package by [Venables and Ripley,
2002]. The Mahalanobis distances are computed between each and every observation in
training and test sets and used to determine a score between 0 and 1 as a proportion of
the defaulted cases upon the k nearest observations.

35

Machine learning in credit default risk

Figure 10: Gini for different k and transformations

The uniform transformation improves the gini even more while removing mislabeled ob-
servations improves the result slightly for the optimal k = 35.

Table 10: Robust KNN - results (for k=35)

method sample mislab gini in gini oot
cv IQR 0 0.54 0.47
cv IQR 1 0.62 0.46
cv uniform 0 0.58 0.50
cv uniform 1 0.66 0.51
holdout uniform 1 0.67 0.46

36

Machine learning in credit default risk

6 Naive Bayes

6.1 Theory

The Naive Bayes method is based on the famous Bayes formula

P (A|B) =
P (B|A)P (A)

P (B)
(63)

or rather on its generalized form, the Bayes Theorem

P (Y = k|X = x) =
p(X = x|Y = k) · P (Y = k)

p(X = x)
. (64)

Let Y be the default flag as a random variable and X represent the independent vari-
ables. The P (Y = 1) corresponds to the prior probability of default and represents the
proportion of defaults in the training sample. The term p(X = x|Y = k) corresponds to
the likelihood (conditional density) of the observed feature vector x given the class k = 1
(default) or k = 0 (non-default), see Figure 11.

Figure 11: Posterior densities of a variable - example

The ”naive” part of the algorithm is that the features are assumed to be conditionally
independent which is a strong assumption that is rarely fulfilled. It leads, however, to the
significant simplification that the a-posteriori density can be written as a product of the
single densities of the p features:

p(X = x|Y = k) =

p�
i=1

p(Xi = xi|Y = k) . (65)

One can take for the single Xi|Y = k a normal distribution (another strong assumption)
with µi and σi being the estimates from the training sample:

37

Machine learning in credit default risk

p(Xi = x|Y = k) =
1

σi

√
2π

e−(x−µi)
2/2σ2

i (66)

with estimates µi and σi for the expectance and standard deviation of the variable i. The
term p(X = x) in the denominator of the Equation (64) can be computed with the law
of total probability via the joint probability of X = x and Y = k

p(X = x) = p(X = x, Y = 1) + p(X = x, Y = 0)

= p(Y = 1)p(X = x|Y = 1) + p(Y = 0)p(X = x|Y = 0) .
(67)

A new unlabeled sample is then classified based on the maximum posterior probability
P (Y = k|X = x). Often, the denominator can be even dropped since it stays the same
for all k and the prediction is done by determining the class k which the numerator is
maximal for:

y = argmaxk

�
P (Y = k) ·

p�
i=1

p(Xi = xi|Y = k)

	
(68)

or equivalently on the logarithmic scale in order to avoid numerical issues arising when
multiplying small numbers:

y = argmaxk

�
log(P (Y = k)) +

p�
i=1

log(p(Xi = xi|Y = k))

	
. (69)

However, this will not be done since the given problem requires the probability of default
as output and not only the class prediction.

6.2 Application

The independence of the variables is almost never fulfilled in practice ([Kuhn and John-
son, 2013]). Nevertheless, the variables with the strongest correlations have already been
eliminated earlier. Another important aspect to consider is the estimation of the mean
and variance parameters because the presence of outliers might bias those significantly.
Therefore, the uniform transformation is applied. Alternatively, one can use robust esti-
mates for scale and variance, see e.g. [Ahmed et al., 2017].

The problem of imbalanced classes is of no concern for this algorithm and evaluation
metric because the P (Y = k) term in Equation (64) does not change the risk ordering of
the customers. Hence the full training sample will be utilized.

The R package naivebayes by [Majka, 2019] is used. The performance on the raw data is
poor and improved drastically by the uniform transformation, see Table 11.

38

Machine learning in credit default risk

Table 11: Naive Bayes - results

method sample mislab gini in gini oot
cv original 0 0.03 0.05
cv original 1 0.03 0.04
cv transformed 0 0.57 0.57
cv transformed 1 0.57 0.57
holdout transformed 0 0.57 0.56

A further attempt to improve the performance is done by using only the best MCD subset
from the previous chapter, see Table 12. The idea is to exclude outliers and allow a robust
estimation of the parameters for the normal distribution. That works for the raw data
but the gini of the transformed sample remains unchanged. Same holds for the removal
of mislabeled data.

Table 12: Naive Bayes - results with MCD

method sample mislab gini in gini oot
cv original 0 0.38 0.37
cv original 1 0.39 0.38
cv transformed 0 0.58 0.57
cv transformed 1 0.57 0.57

39

Machine learning in credit default risk

7 Tree-based Methods

7.1 Introduction

A decision tree can be interpreted as the well-known if/elseif/else statement in the world
of algorithms: the prediction is based on a chain of yes/no checks which divide the feature
space into rectangular decision areas. Figure 12 shows a simple example of a such decision
tree.

Figure 12: Decision tree - example

Each split is shown as a threshold of a certain variable based on which the decision is
made. Furthermore, every node contains three figures:

1. the predicted class of the observations in the node based on the proportions of the
classes;

2. the proportion of the defaults;

3. the percentage of the observations which the node contains out of all observations.

This results in the following strength of such models [Kuhn and Johnson, 2013]:

• high interpretability;

• no need to pre-process variables, the splits can handle categoricals;

• graphical visualization.

Nevertheless, one single tree is often insufficient due to its instability when introducing
even slight changes in the train data resulting in poor performance on the test set (high
degree of overfitting) [Kuhn and Johnson, 2013]. To solve this issue, different algorithms

40

Machine learning in credit default risk

were invented which use ensembling techniques to stabilize the results. One can also
use a test set / cross-validation approach to determine the right tree size for the optimal
out-of-sample performance. The process of growing a tree is discribed in the next chapter.

Due to their structure, the decision-tree-based algorithms are robust against outliers in
the explanatory variables and highly skewed data, which can also be proven by empirical
studies e.g. [Siddiqui and Ali, 2016]. Therefore, no transformation will be applied on the
explanatory variables since any order-preserving transformation will not affect the results.

7.2 Random Forest

7.2.1 Theory

Random forest is a special case of a more general approach called bagging (Bootstrap
AGGregation), where on each of the bootstrap samples, a separate tree is generated and
the average of their predictions gives the final prediction. Random forest goes even further
and introduces a new random component: a random selection of variables considered at
each split. The resulting trees are even more decorrelated leading to a variance reduction
([Kuhn and Johnson, 2013]).

The splits are made based on the gini impurity (not to be confused with Somers’ D). Let
pm,k represent the proportion of the class k in the node m, then the impurity is a measure
of how frequently some element from the node would be incorrectly classified if it was
randomly labeled according to the distribution of classes in the node or ([James et al.,
2017])

Impm =
K�
k=1

pm,k(1− pm,k) . (70)

For each of the splits considered in the given step, the ginis of the two resulting nodes
are calculated and weighted based on the number of observations. The split with the
lowest weighted impurity is selected (gini gain below certain threshold can be used as a
stopping criteria for growing a single tree). This further provides a basis for a natural
variable importance measure: a high mean gini gain (impurity of the root node minus the
weighted leaf impurity) of a given variable indicates a high predictive power, see Figure 13.

41

Machine learning in credit default risk

Figure 13: Gini impurity - example

An alternative approach suggests to score the out-of-bag (OOB: data that was not used in
the particular bootstrap sample, 1/3 on average) and then repeat it but with the selected
variable permuted. The decrease in accuracy (averaged over all trees) provides a measure
of variable importance (”OOB randomization”, [Hastie et al., 2017]).

Random forest can be used for regression as well as classification tasks. In case of classi-
fication, the prediction of each tree counts as a vote and the proportion of the outcomes
provides the predicted probabilities for the classes.

7.2.2 Application

The R package randomForest by [Liaw and Wiener, 2002] is one of the many implemen-
tations of this algorithm in R. The user can tune the following (hyper-)parameters:

• ntree defines the number of trees to grow. The increasing ntree does not lead to
overfitting because of the decorrelation. Therefore, it should be high enough so
that adding more trees does not further improve the oos performance but keeping
in mind that the computational power is limited;

• mtry is the number of predictors randomly chosen at each split as described pre-
viously. The default value for classification is

√
p (and p/3 for regression). A low

value leads to a higher variability across the trees since sub optimal variables are
selected more frequently while a high mtry implies that the strong predictors do not
let the others to influence the model. Hence it is of high importance to tune this
parameter carefully;

• replace and sampsize control the bootstrapping. Those values will be left at the
default settings (bootstrap with replacement of training sample size);

42

Machine learning in credit default risk

• nodesize and maxnodes define the minimum size and the maximum number of
the terminal nodes and therefore are the main parameters to control the tree depth
hence to combat the overfitting. Although they are closely related to each other
and e.g. increasing nodesize / decreasing maxnodes both lead to smaller trees, the
interaction between them is an interesting aspect which will be analysed empirically
on the data.

• classwt will be used for overweighting of the default class by applying a higher
weight on those observations during the voting process as well as for the selection
of the best split.

While 200 trees are enough to achieve optimal results with undersampling, it takes 5000
trees for the full sample while the gini is significantly worse. In the latter case, the removal
of the mislabeled observations helped to achieve a minor improvement in the gini.

Table 13: Random Forest - results

method imb mislab ntree nodesize maxnodes gini in gini oot
cv under 0 200 300 50 0.64 0.58
cv under 1 200 300 50 0.69 0.58
cv weighted 0 5000 300 5 0.54 0.43
cv weighted 1 5000 300 5 0.56 0.45
holdout under 0 200 300 50 0.65 0.60

In both cases, the optimal trees are rather small judging by the nodesize and maxnodes
parameters. This can be justified by Figure 14 which shows how Random Forest overfits:
if other parameters are assumed to be fixed, the increasing number of nodes does not lead
to a (significant) improvement of the out-of-sample performance while the in-sample gini
increases rapidly. Therefore the parameters selected by the grid search on the mean out-
of-time gini are those leading to smaller trees and less difference between the in-sample
and out-of-time ginis.

Figure 14: Overfitting and maxnodes - example

43

Machine learning in credit default risk

7.3 Boosting Trees

7.3.1 Motivation

Similarly to the bagging approach, the boosting technique takes advantage of aggregating
many weak learners (models with a classification error which is only slightly better than
a coin toss) to one classifier by majority voting. However, in each iteration the training
set gets adjusted and also the voting does not follow the rule one model - one vote, but
is weighted.

Each of N observation gets a weight ωi assigned which for the first iteration simply equals
1/N . The idea is to update the weights in a way that the misclassified data points
attain more weight in the next iteration. The majority vote also considers the individual
misclassification error of each tree by applying the weights αm ([Hastie et al., 2017]):

G(M)(x) = sgn
M�

m=1

αmGm(x) , (71)

where G(M) represents a boosting classifier consisting of M Gm trees. The algorithm, how
αm and ωi are determined and Gm are grown, is described in the next section.

7.3.2 Exponential Loss - AdaBoost

One can fit the model by minimizing a loss function L summed over the training obser-
vations:

arg min
αm,Gm

N�
i=1

L(yi,
M�

m=1

αmGm(x)) . (72)

This is often a computationally intensive problem but can be approximated by the for-
ward stagewise approach which boosting is based on. Forward stagewise means that at
each iteration m, only the new basis function / tree Gm and the corresponding coefficient
αm are estimated whereas the previous parameters are not adjusted ([Hastie et al., 2017]).

Following this steps with the exponential loss function for a predictor f(x)

L(y, f(x)) = exp(−yf(x)) (73)

leads to the AdaBoost algorithm which searches for the solution of

(βm, Gm) = argmin
β,G

N�
i=1

exp(−yi(G
(m−1)(xi) + βG(xi)))

= argmin
β,G

N�
i=1

ω
(m)
i exp(−yiβG(xi))

(74)

with

ω
(m)
i = exp(−yiG

(m−1)(xi)) . (75)

44

Machine learning in credit default risk

This coefficient does not depend on the step m but only on the previous iterations because
of G(m−1) hence is updated in each step.
This problem can be solved by firstly fixing a β > 0 and re-writing the minimized term
in Equation (74) for y ∈ {−1, 1} as

e−β ·
�

yi=G(xi)

ω
(m)
i + eβ ·

�
yi �=G(xi)

ω
(m)
i (76)

and further

(eβ − e−β)
N�
i=1

ω
(m)
i I(yi
= G(xi)) + e−β ·

N�
i=1

ω
(m)
i . (77)

For a fixed β > 0 the solution of Equation (74) is then

Gm = argmin
G

N�
i=1

ω
(m)
i I(yi
= G(xi)) . (78)

Gm minimizes the weighted classification errors. Plugging Gm and Equation (77) into
Equation (74) results in the following solution ([Hastie et al., 2017]):

βm = 0.5 log
1− errm
errm

. (79)

errm stands for the minimized weighted error rate:

errm =

�N
i=1 ω

(m)
i I(yi
= Gm(x))�N

i=1 ω
(m)
i

. (80)

The approximation for the next step is therefore

G(m) = G(m−1) + βmGm (81)

hence the weights for the m+ 1st iteration are computed as

ω
(m+1)
i = ω

(m)
i · e−βmyiGm(xi)

= ω
(m)
i · e2βmI(yi �=Gm(x)) · e−βm .

(82)

e−βm multiplies every single weight thus can be dropped whereas αm = 2βm.

Thus, AdaBoost can be summarized as follows: for each m = 1, . . . ,M

• Fit a tree Gm(x) which minimizes the loss function;

• Calculate the error rate errm and the coefficient αm = log 1−errm
errm

;

• Update the weights with ω
(m+1)
i = ω

(m)
i · eαmI(yi �=Gm(x)).

45

Machine learning in credit default risk

The final classifier is then G(x) = sgn(
�M

m=1 αmGm(x)). The sign comes from the fact
that if one wants to minimize the expected exponential loss, the following holds as shown
in [Friedman et al., 2000]:

E(e−yf(x) | x) = P (y = 1 | x) · e−f(x) + P (y = −1 | x) · ef(x) . (83)

After deriving and setting to zero

∂E(e−yf(x))

∂f(x)
= −P (y = 1 | x) · e−f(x) + P (y = −1 | x) · ef(x) = 0 , (84)

one sees that AdaBoost approximates one half log-odds

f(x) = 0.5 · ln
�

PDx

1− PDx

�
. (85)

7.3.3 Application

The R package gbm by [Greenwell et al., 2020] has the AdaBoost algorithm implemented
with the following hyperparameters:

• distribution is set to ”AdaBoost”, other loss functions are available too;

• n.trees which refers to M as the total number of trees;

• n.minobsinnode controls the minimal number of observations in the terminal
nodes similarly to the random forest;

• shrinkage is applied to every tree coefficient αm and slows down the learning rate
which might require more trees;

• bag.fraction defines a subset of the training set on which each tree is fit. This
introduces randomness and also reduces the computation time (is set to default
which is 0.5);

• weights impose a heavier cost if misclassification occurs in the default class (over-
weighting).

Neither overweighting nor the removal of outliers improves the outcome of undersampling.
In all setups the same optimal hyperparameters are selected (200 trees with at least 200
observations per node and a shrinkage parameter of 0.001).

Table 14: AdaBoost - results

method imb mislab gini in gini oot
cv under 0 0.58 0.55
cv under 1 0.67 0.55
cv weighted 0 0.57 0.55
cv weighted 1 0.67 0.54
holdout under 0 0.57 0.51

46

Machine learning in credit default risk

8 Neural Networks

8.1 General Structure

A classical neural net which can be used for the purposes of this thesis consists of

• an input layer where every neuron refers to one of the variables

• an output layer with only one neuron which represents the probability of default

• one or multiple hidden layers with every neuron being connected to each and every
neuron of the previous and the next layer.

Figure 15: Single-layer Neural Network

In order to calculate the jth neuron of the of the lth layer alj, the k
th neuron of the (l−1)st

layer al−1
k is firstly multiplied with the corresponding weight wl

jk. Those are summed up
in order to get an intermediate quantity

zlj =
�
k

wl
jka

l−1
k + blj , (86)

which is simply a linear combination of the previous layer plus the intercept term blj (can
be identified by the blue color in the plot). Finally, an activation function σ is applied

alj = σ(zlj) (87)

because otherwise one would end up with an ordinary logistic regression model. The
logistic/sigmoid function σ(z) = 1

1+e−z will be used as the activation function for each
layer including the output layer in order to end up with a PD value at the end. The
cross-entropy will be used as the error (or cost) function

47

Machine learning in credit default risk

E = −
N�

n=1

(yn log(ŷn) + (1− yn) log(1− ŷn)) (88)

with the weights being adjusted so that the cross-entropy value becomes as low as possible.
This is done by the backpropogation algorithm and its modifications as implemented in
the R package neuralnet by [Fritsch et al., 2019].

8.2 Backpropagation

The algorithm is presented graphically in the Figure 16 (from [Günther and Fritsch, 2010]).
In the one-dimensional case, the derivative of the error function E is computed and the
weight wt is shifted towards the minimum of the error function, resulting in the updated
weight wt+1.

Figure 16: Backpropagation algorithm

The mathematical motivation is presented below, the explanation follows [Nielsen, 2015].
The main idea is to compute iteratively the partial derivatives ∂E

∂wl
j
of the error function

with respect to each and every weight by using the chain rule. A further intermediate
quantity is introduced to make the computation easier

δlj =
∂E

∂zlj
, (89)

which refers to the error in the jth weighted input of the lth layer. By making use of the
chain rule this can be written for the output neuron (layer L, index skipped) as

δL =
∂E

∂zL

=
∂E

∂aL
∂aL
∂zL

=
∂E

∂aL
σ�(zL) .

(90)

48

Machine learning in credit default risk

For any layer l this can be computed by using the derivatives from the next layer. One
starts with the chain rule:

δlj =
∂E

∂zlj

=
�
k

∂E

∂zl+1
k

∂zl+1
k

∂zlj

=
�
k

δl+1
k

∂zl+1
k

∂zlj
.

(91)

The weighted input can be written as

zl+1
k =

�
j

wl+1
kj alj + bl+1

k =
�
j

wl+1
kj σ(zlj) + bl+1

k (92)

and the derivative is then simply

∂zl+1
k

∂zlj
= wl+1

kj σ�(zlj) . (93)

By combining Equation (91) and Equation (93), the final equation has the form

δlj = σ�(zlj)
�
k

δl+1
k wl+1

kj . (94)

The further steps are not proved by [Nielsen, 2015] but follow the same idea. One can
start by computing the derivative with respect to the bias which in fact equals δlk that
has already been calculated because

δlj =
∂E

∂zlj

=
�
k

∂E

∂blk

∂blk
∂zlj

=
∂E

∂blj

∂blj
∂zlj����
=1

(95)

due to the second derivative term being zero for j
= k and 1 for j = k since the bias can
be written as a linear function of z

blk = zlk −
�
j

wl
kja

l−1
j . (96)

Last but not least, the partial derivative with respect to the weight wl
jk equals

49

Machine learning in credit default risk

∂E

∂wl
jk

=
�
m

∂E

∂zlm

∂zlm
∂wl

jk

=
∂E

∂zlj

∂zlj
∂wl

jk

= δlja
l−1
k .

(97)

The regular backpropagation algorithm is applied in order to minimize the error function.
This is done by applying a simple gradient descent procedure. From iteration t to iteration
t+ 1 the weights are updated as follows

wl
jk(t+ 1) = wl

jk(t)− �
∂E

∂wl
jk

(t) . (98)

The learning rate � is constant and its selection is essential for the performance. A too
large value might lead to oscillation which would prevent the error to fall below a certain
level. On the other hand, a too low value could lead to a slow convergence requiring a
high number of iterations in order to reach an optimal solution.

[Riedmiller and Braun, 1993] propose the so-called resilient backpropagation which is also
implemented in [Fritsch et al., 2019]. The weight adjustment does not depend on the
absolute value of the derivative and the learning rate changes over the time based on the
change of the derivative’s sign. If the sign remains unchanged

∂E

∂wl
jk

(t) · ∂E

∂wl
jk

(t− 1) > 0 , (99)

the step size from the previous epoch/iteration is increased (multiplied with some �+ > 1)
in order to accelerate convergence. Otherwise, the previous iteration is undone and a
smaller step size is applied in the succeeding iteration (multiplied by 0 < �− < 1). This
part is referred to as weight backtracking and is implemented in [Fritsch et al., 2019]
as RPROP+. The parameters proposed by the authors are �+ = 1.2 and �− = 0.5 and
remain unchanged in the application.

8.3 Application

Some theoretical studies suggest that a variable transformation can improve the results.
[Siddiqui and Ali, 2016] show that artificial neural networks performed poorly on skewed
data. [Khamis et al., 2005] claim that a high percentage of outliers has a significant im-
pact on the performance, as it could be expected for a parametric method. Therefore,
the features are again uniformly-transformed.

Since there is no way to determine the optimal number and the size of the hidden layers
a priori, one to three hidden layers of different sizes are combined and tuned as hyperpa-
rameters. Another hyperparameter is the threshold which defines the stopping criteria in
terms of the change in the partial derivatives of the error function (a lower value leads to
a higher number of iterations and significant overfitting, see Figure 17).

50

Machine learning in credit default risk

Figure 17: Neural network - effect of the threshold

The results indicated that only one hidden layer with few nodes is enough to achieve
the best gini. The transformation also improves the performance significantly while the
removal of mislabeled instances has a low but positive impact.

Table 15: Neural network - results for one hidden layer

sample method mislab threshold nodes gini in gini oot
original cv 0 10 30 0.46 0.41
original cv 1 10 30 0.62 0.40
transformed cv 0 20 20 0.58 0.57
transformed cv 1 20 20 0.67 0.58
transformed holdout 1 20 20 0.70 0.63

The class weighting is not implemented in the neuralnet package hence not applied. Simi-
larly to the other algorithms, one would adjust the loss function Equation (88) and choose
the weights inversely proportional to the class distribution in the training sample.

51

Machine learning in credit default risk

9 Summary and Conclusions

In this section the results from previous chapters are summarized and the best model is
selected. Additionally, few possible steps are proposed that could improve the performance
further. Table 16 provides an overview of the ginis, calculated on the holdout sample (last
available year).

Table 16: Overview of the results on the holdout sample

model kernel gini
Neural Network 62.74%
Random Forest 59.99%
Naive Bayes 56.43%
Support Vector Machine linear 55.30%
Support Vector Machine polynomial 55.22%
Support Vector Machine radial 54.82%
Ridge Regression 54.48%
Lasso Regression 53.64%
Support Vector Machine sigmoid 53.04%
Logistic Regression 51.98%
AdaBoost 50.85%
k-Nearest Neighbours 46.27%

The special treatment of the (potentially) mislabeled observation does not improve the
results significantly. On the one hand, a more conservative threshold than the one pro-
posed in Subsection 1.4 might lead to a different outcome. On the other hand, it might
be an indication of a good quality of the target variable. Furthermore, most of the algo-
rithms, where both approaches of dealing with imbalanced data are applied, do not profit
from the overweighting significantly while the increased number of observations triggers a
longer search for the optimal hyperparameters. For most of the methods, the best results
are achieved after applying the uniform transformation which leads to some loss of infor-
mation but the outcome verifies that the elimination of outliers and skewness, achieved
by doing so, leads to a better performance.

K-nearest neighbours are strongly underperforming compared to the other methods. That
fact is supported by the overview of related works in Table 17. On the contrary, Naive
Bayes achieves solid results putting it in the upper half of the ranking while it is highly
attractive because of the fast fitting process. Both of those methods profit massively from
the variable transformation and might be further enhanced in terms of the out-of-time
gini by applying some variable selection procedure e.g. backward elimination.

It is confirmed that the logistic regression and its regularized versions may offer models
that are comparable to some of the more sophisticated or less widespread approaches
such as support vector machine. In case of SVM, the four different kernels provide similar
results proving that the best model can be obtained with the linear kernel.

The tree-based methods which are applied on original untransformed data are placed in

52

Machine learning in credit default risk

the opposite tails of the evaluation table. While random forest almost reaches impressive
60%, AdaBoost has the second worst gini. This is rather unexpected when looking at the
other sources in Table 17 and might indicate a need for a further hyperparameter search.

Finally, a neural network with one hidden layer consisting of twenty nodes outperformed
the multi-layer networks as well as other methods. This method is easier to implement
in production environment than e.g. a random forest model but the structure makes the
interpretation of the impact of each of the variables on the score less intuitive than in
logistic regression. In addition, a careful training with an evaluation on the test set is
required in order to avoid overfitting. The early stopping procedure does the job well,
nevertheless, other techniques like regularization might be considered for this purpose.

53

Machine learning in credit default risk

References

Accenture (2020). The future of default prediction: A comparison of machine learn-
ing model performance. https://www.accenture.com/nl-en/blogs/insights/the-
future-of-default-prediction-a-comparison-of-machine-learning-model-

performance.

Ahmed, M., Shahjaman, M., Rana, M., and Mollah, M. N. (2017). Robustification of
naive bayes classifier and its application for microarray gene expression data analysis.
BioMed Research International, 2017:1–17.

Alonso, A. and Carbo, J. (2021). Understanding the performance of machine learning
models to predict credit default: A novel approach for supervisory evaluation. Banco de
Espana Working Paper No. 2105.

BCBS (2006). International convergence of capital measurement and capital standards.
https://www.bis.org/publ/bcbs128.pdf.

Brodley, C. and Friedl, M. (1999). Identifying mislabeled training data. Journal of
Artificial Intelligence Research - JAIR, 11:131–167.

Choubey, A. (2018). Predicting credit default risk via statistical model and machine
learning algorithms. Master’s thesis, University of North Caroline, Charlotte.

EBA (2021). EBA discussion paper on machine learning for IRB mod-
els. https://www.eba.europa.eu/regulation-and-policy/model-validation/
discussion-paper-machine-learning-irb-models.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28:337–407.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularized paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

Fritsch, S., Guenther, F., and Wright, M. N. (2019). neuralnet: Training of neural
networks. CRAN.R-project.org/package=neuralnet. R package version 1.44.2.

Granström, D. and Abrahamsson, J. (2019). Loan default prediction using supervised
machine learning algorithms. Master’s thesis, KTH Royal Institute of Technology.

Greenwell, B., Boehmke, B., and Cunningham, J. (2020). gbm: Generalized boosted
regression models. CRAN.R-project.org/package=gbm. R package version 2.1.8.

Günther, F. and Fritsch, S. (2010). neuralnet: Training of neural networks. The R
Journal, 2(1):30–38.

Hastie, T., Tibshirani, R., and Friedman, J. (2017). The Elements of Statistical Learning.
Springer, 2nd edition.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support vector
classification. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

54

https://www.accenture.com/nl-en/blogs/insights/the-future-of-default-prediction-a-comparison-of-machine-learning-model-performance
https://www.accenture.com/nl-en/blogs/insights/the-future-of-default-prediction-a-comparison-of-machine-learning-model-performance
https://www.accenture.com/nl-en/blogs/insights/the-future-of-default-prediction-a-comparison-of-machine-learning-model-performance
https://www.bis.org/publ/bcbs128.pdf
https://www.eba.europa.eu/regulation-and-policy/model-validation/discussion-paper-machine-learning-irb-models
https://www.eba.europa.eu/regulation-and-policy/model-validation/discussion-paper-machine-learning-irb-models
CRAN.R-project.org/package=neuralnet
CRAN.R-project.org/package=gbm
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Machine learning in credit default risk

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017). An Introduction to Statis-
tical Learning. Springer.

Khamis, A., Ismail, Z., Khalid, H., and Mohammed, A. (2005). The effects of outliers
data on neural network performance. Journal of Applied Sciences, 5(8):1394–1398.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer.

Kutner, M., Nachtsheim, C., Neter, J., and Li, W. (2005). Applied Linear Statistical
Models. McGraw-Hill Irwin.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News,
2(3):18–22.

Little, R. and Rubin, D. (2019). Statistical Analysis with Missing Data. John Wiley &
Sons, 3rd edition.

Majka, M. (2019). naivebayes: High performance implementation of the naive bayes
algorithm in R. CRAN.R-project.org/package=naivebayes. R package version 0.9.7.

Matre, A. (2019). Machine learning in default prediction: The incremental power of
machine learning techniques in mortage default prediction. Master’s thesis, Norwegian
School of Economics.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2019). e1071:
Misc functions of the department of statistics, probability theory group (formerly:
E1071), TU Wien. CRAN.R-project.org/package=e1071. R package version 1.7-1.

Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press.

Palomar, D. (2020). Lagrange duality. https://palomar.home.ece.ust.hk/
ELEC5470 lectures/slides Lagrange duality.pdf.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropaga-
tion learning: The RPROP algorithm. IEEE Int. Conf. Neural Networks, 1:586–591.

Rousseeuw, P. and Leroy, A. (1987). Robust Regression & Outlier Detection. John Wiley
& Sons.

Shah, A., Bartlett, J., Carpenter, J., Nicholas, O., and Hemingway, H. (2014). Com-
parison of random forest and parametric imputation models for imputing missing data
using mice: A caliber study. American Journal of Epidemiology, 179(6):764–774.

Siddiqui, F. and Ali, Q. (2016). Performance of non-parametric classifiers on highly
skewed data. Global Journal of Pure and Applied Mathematics, 12:1547–1565.

Stoltzfus, J. (2011). Logistic regression: A brief primer. Academic Emergency Medicine,
18:1099–1104.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Chapman and Hall, 2nd
edition.

55

CRAN.R-project.org/package=naivebayes
CRAN.R-project.org/package=e1071
https://palomar.home.ece.ust.hk/ELEC5470_lectures/slides_Lagrange_duality.pdf
https://palomar.home.ece.ust.hk/ELEC5470_lectures/slides_Lagrange_duality.pdf

Machine learning in credit default risk

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer,
4th edition.

Wilson, S. (2021). miceranger: Multiple imputation by chained equations with random
forests. CRAN.R-project.org/package=miceRanger. R package version 1.5.0.

56

CRAN.R-project.org/package=miceRanger

Machine learning in credit default risk

List of Figures

1 Training / Test structure . 12
2 Optimal lambda in ridge - example . 22
3 L1 vs L2 norm . 23
4 Optimal lambda in lasso - example . 24
5 Hyperplane in 2D . 26
6 Separable vs. non-separable case . 26
7 Radial kernel and the gamma parameter - example 32
8 Polynomial kernel and the gamma parameter - example 33
9 Gini for different k and transformations . 35
10 Gini for different k and transformations . 36
11 Posterior densities of a variable - example 37
12 Decision tree - example . 40
13 Gini impurity - example . 42
14 Overfitting and maxnodes - example . 43
15 Single-layer Neural Network . 47
16 Backpropagation algorithm . 48
17 Neural network - effect of the threshold . 51
18 Confusion matrix . 59
19 ROC-curve - example . 60
20 High spearman correlation - example . 61

57

Machine learning in credit default risk

List of Tables

1 Comparison of similar works - summary 8
2 Sample preview . 11
3 Logistic regression - results with undersampling 18
4 Logistic regression - results with overweighting 19
5 Ridge regression - results . 22
6 Lasso regression - results . 24
7 SVM - results on the untransformed sample 31
8 SVM - CV results with uniform transformation 32
9 SVM - holdout results with uniform transformation 32
10 Robust KNN - results (for k=35) . 36
11 Naive Bayes - results . 39
12 Naive Bayes - results with MCD . 39
13 Random Forest - results . 43
14 AdaBoost - results . 46
15 Neural network - results for one hidden layer 51
16 Overview of the results on the holdout sample 52
17 Comparison of similar works - results . 62

58

Machine learning in credit default risk

A Gini-coefficient / Somers’ D

The given setup is a binary classification problem which can be evaluated by the so-called
confusion matrix (Figure 18). The output of a model will be some real number and based
on the selected threshold / cut-off value, one ultimately decides whether some observation
gets classified as 0 or 1. In real-life problems a perfect separation is almost never possible
and one can work with measures derived from the confusion matrix.

Figure 18: Confusion matrix

True and False refer to correctly and incorrectly predicted classes while Positive and
Negative are the classes of the target variable e.g. TN is the number of the observations
which belong to the negative class and were also classified as negative.

The sensitivity (also known as true positive rate or recall) is the proportion of correctly
classified positive observations

Sensitivity =
TP

TP + FN
(100)

Similarly, the specificity (or true negative rate) is defined as the proportion of correctly
classified negative observations

Specificity =
TN

TN + FP
(101)

If one imagines moving the threshold along the real axis, it gets clear that the one of the
two measures will always increase and the second one will simultaneously decrease. To
cover all of the possible thresholds at once, the ROC-curve is used which displays the
sensitivity and the False Positive Rate (or 1 - Specificity) for all possible cut-off values
(see Figure 19). The base ”random” model refers to the diagonal in this plot which has
an area under the curve (AUC) of 0.5.

59

Machine learning in credit default risk

Figure 19: ROC-curve - example

The area under the ROC-curve can also serve for the univariate analysis and evaluate the
performance of each and every financial variable as if it was a standalone model score.
Since an AUC value under 50% would indicate that the sign of the financial should be
changed in order to achieve consistency in terms of economic interpretation (e.g. higher
values imply a better credit worthiness and a lower probability of default), the AUC is
transformed as

Gini = AUC · 2− 1. (102)

The resulting figure is the so-called Gini-coefficient or Somers’ D and is a measure of
ordinal association between an independent variable and a binary target variable. The
sign of the feature is selected in a way that the gini is always negative for consistency
purposes.

60

Machine learning in credit default risk

B Spearman’s Correlation

The Spearman’s correlation of two continious variables x and y is formulated as the
Pearson’s correlation coefficient of the rank transformed variables rgx and rgy

rs = ρ(rgx, rgy) =
Cov(rgx, rgy)

σrgx · σrgy

(103)

where σrgx and σrgy denote the standard deviations of the rank variables.

This is more general than the ordinary linear Pearson’s correlation because only the
monotonicity of the relationship is considered and the outliers do not have a high influence
on the outcome. This can be seen in the Figure 20. The robust Spearman’s correlation
is 89% whereas the Pearson correlation is only 56% because of the outlier.

Figure 20: High spearman correlation - example

61

M
ach

in
e
learn

in
g
in

cred
it
d
efau

lt
risk

C Comparison of Similar Works

Table 17: Comparison of similar works - results

Source Logit NN RF XGBoost AdaBoost SVM NB KNN
[Alonso and Carbo, 2021] 0.56 0.62 0.66 0.68 NA NA NA NA
[Granström and Abrahamsson,
2019]

0.76 0.76 0.76 0.78 0.76 0.48 NA NA

[Choubey, 2018] 0.42 0.34 0.52 NA NA NA NA NA
[Matre, 2019] 0.77 0.80 0.80 0.76 NA 0.80 NA 0.59
[Accenture, 2020] (1) 0.54 0.56 0.54 0.56 0.54 0.52 0.48 0.52
[Accenture, 2020] (2) 0.54 0.62 0.60 0.62 0.60 NA 0.32 0.50

62

	Introduction
	Motivation
	Overview of Similar Works
	Binary Classification Problem
	Outlier Treatment
	Class Imbalance and Model Evaluation

	Data and Setup
	Sample
	Data Partitioning
	Categorical Variables
	Missing Data
	Missing Data Classification
	Fully Conditional Specification
	Predictive Mean Matching

	Logistic Regression
	Theory
	Application
	Regularized Logistic Regression
	Ridge Regression
	Lasso Regression

	Support Vector Machine
	Margin
	Lagrangian Theory
	Computing the Classifier
	Kernels
	Application

	K-Nearest Neighbours
	Theory
	Application

	Naive Bayes
	Theory
	Application

	Tree-based Methods
	Introduction
	Random Forest
	Theory
	Application

	Boosting Trees
	Motivation
	Exponential Loss - AdaBoost
	Application

	Neural Networks
	General Structure
	Backpropagation
	Application

	Summary and Conclusions
	Gini-coefficient / Somers' D
	Spearman's Correlation
	Comparison of Similar Works

