
Bridging Realms: Analyzing
App-to-Web Interactions in

Android IABs

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp Beer, BSc
Matrikelnummer 11807877

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dott.ric. Marco Squarcina
Mitwirkung: Dr.-Ing. Sebastian Roth, MSc

Dipl.-Ing.in Dr.in techn. Martina Lindorfer

Wien, 8. Mai 2024
Philipp Beer Marco Squarcina

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Bridging Realms: Analyzing
App-to-Web Interactions in

Android IABs

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp Beer, BSc
Registration Number 11807877

to the Faculty of Informatics

at the TU Wien

Advisor: Dott.ric. Marco Squarcina
Assistance: Dr.-Ing. Sebastian Roth, MSc

Dipl.-Ing.in Dr.in techn. Martina Lindorfer

Vienna, 8th May, 2024
Philipp Beer Marco Squarcina

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Philipp Beer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Mai 2024
Philipp Beer

v

Acknowledgements

I would like to express my sincere gratitude to all those who have supported me in
completing this thesis. First and foremost, thank you to my supervisors, Marco, Sebastian,
and Martina, for their guidance and support throughout this thesis. Your insights have
been crucial to my work.

Special thanks go to David, who not only pointed me in the right direction during
challenging times but also provided consistent support throughout the thesis.

My deepest appreciation is for my family and friends, whose endless encouragement and
support have been my stronghold. I am particularly grateful to my parents, Florian and
Krimhild, who allowed me to pursue my academic goals.

Thank you all for your support and encouragement.

vii

Kurzfassung

In-App-Browser (IABs) sind häufig verwendete Komponenten in mobilen Anwendungen,
die es App-Entwicklern ermöglichen, Webinhalte in nativen Anwendungen anzuzeigen.
Neben der einfachen Darstellung von Webinhalten bieten solche Komponenten der Anwen-
dung Funktionen wie das Einfügen von JavaScript-Code und den Zugriff auf die Cookies
der Website. Während diese Funktionen für Entwickler nützlich sind, ermöglichen sie
es potenziell unerwünschten Anwendungen (PUAs), bösartige Aktivitäten auf gutarti-
gen Websites durchzuführen, wie z. B. Session-Hijacking durch JavaScript-Injection. In
dieser Arbeit wird ein neuartiger Ansatz zur Analyse von App-to-Web-Interaktionen in
Android WebView, der primäre integrierten IAB-Komponente in Android, vorgestellt.
Wir verwenden eine Kombination aus statischen und dynamischen Analysetechniken, um
zunächst den Bauplan einer Anwendung zu erstellen und dann die App mithilfe dessen
zu Codeabschnitten zu navigieren, bei denen IABs gestartet werden. Unsere kontrollierte
Umgebung ermöglicht es uns, die Interaktionen zwischen der Anwendung und dem We-
binhalt aufzuzeichnen und so Falsch-Positive zu minimieren. Wir implementieren unseren
Ansatz in Form eines Prototyps namens IABInspect und wenden ihn auf 1.000 beliebte
Android-Anwendungen an. Insgesamt konnten wir 508 IAB-Aufrufe in 196 Anwendungen
dynamisch auslösen und in 50 Anwendungen eine Injektion von JavaScript-Code finden.
Unsere Ergebnisse zeigen, dass die Verwendung von WebViews in Android-Anwendungen
allgegenwärtig ist und dass das Einfügen von JavaScript-Code eine gängige Praxis ist,
was den Bedarf an weiterer Forschung in diesem Bereich unterstreicht.

ix

Abstract

In-app browsers (IABs) are heavily used components in mobile applications that allow
app developers to display web content in native applications. Apart from simply rendering
web content, such components provide the application with capabilities like the injection
of JavaScript code and access to the website’s cookies. While these features are useful
for developers, they also allow potentially unwanted applications (PUAs) to perform
malicious activities on benign websites, such as session hijacking using JavaScript injection.
This thesis presents a novel approach to analyzing app-to-web interactions in Android
WebView, the main built-in IAB component in Android. We use a combination of static
and dynamic analysis techniques to first build a blueprint of an application and then
dynamically drive the execution of the application to calls where IABs are launched.
Our controlled environment allows us to record the interactions between the app and
the web content, effectively minimizing false positives. We implement our approach as
a prototype called IABInspect and apply it to 1,000 popular Android applications. In
total, we are able to dynamically trigger 508 IAB launch calls in 196 applications and
find an injection of JavaScript code in 50 applications. Our results show that the use
of WebViews is ubiquitous in Android applications and that the injection of JavaScript
code is a common practice, underscoring the need for further research in this area.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Background 5
2.1 Android Operating System . 5
2.2 In-App Browsers . 10
2.3 Android App Analysis . 14

3 Related Work 17
3.1 Security of IABs . 17
3.2 Targeted and Forced Execution on Android 19

4 IABInspect 21
4.1 Overview of the Approach . 21
4.2 Threat Model . 22
4.3 Static Analysis . 23
4.4 Instrumentation . 28
4.5 Dynamic Analysis . 29

5 Evaluation and Limitations 41
5.1 Evaluation . 41
5.2 Static Analysis Limitations . 46

6 Results 49
6.1 Application Dataset . 49
6.2 Experiment Setup . 50
6.3 Static Analysis . 50
6.4 Dynamic Executor . 54
6.5 App-to-Web Interactions . 55

xiii

6.6 JavaScript Injection . 60

7 Conclusion 67

List of Figures 69

List of Tables 71

Bibliography 73

CHAPTER 1
Introduction

The rise of smartphones has significantly shifted the way users access web content. Users
no longer exclusively view web content on desktop devices but increasingly on their
smartphones as well. While in the first quarter of 2015, only 31.16% of the worldwide
website traffic was generated through mobile devices, this has risen up to 54.7% in the
third quarter of 2023 [1]. On desktop devices, the browser, e.g., Google Chrome or Mozilla
Firefox, is usually the primary means to access web content. While the browser is still a
possible way to access web content on mobile devices, users can also use non-browser
applications that offer so-called In App Browsers (IABs) to view web content. Both
Android and iOS, the two most popular mobile operating systems that hold a combined
global market share of 99.3% as of 2023 [2], allow such practices and offer developers
different components (embedded browsers) that allow the rendering of web content within
their applications. These components are heavily used in mobile applications. Android
WebView, a component used to render web content within Android applications, is used
by 85% of all free applications listed on the Google Play Store as of June 2014 [3].
While such embedded browsers enable web content rendering within applications, some
of them also offer the possibility to interact with the web content displayed in them, such
as Android’s WebView and iOS’s WKWebView. Other components, such as Android
Custom Tabs and iOS SFSafariViewController, are more limited in their capabilities but
provide features supported by a fully-fledged browser, such as Safe Search.
Interactions of IABs and applications can be categorized into two types: Web-To-App
Interactions, where web content can interact with the application, and App-To-Web
Interactions, where the application modifies or retrieves information from the web
content. With web-to-app interactions, applications can, for example, declare that web
content can call specific functions from the application. This can be used by a website
to read a user’s contacts or instruct the device to send an SMS message. In the case of
app-to-web interactions, applications can add cookies to a website loaded in an IAB to
automatically log users in and thus contribute to a seamless experience for the users.

1

1. Introduction

Similarly, they can read cookies from the website in an IAB used for authentication and
use them to authenticate the user in the application. Moreover, applications can inject
JavaScript code into the web content to customize it or add additional functionality. For
example, an application that provides an IAB to browse a third-party website can use
JavaScript to change the website’s text font.

While these interactions provide significant benefits for developers, they also pose severe
threats to the users’ security and privacy. Extensive research on web-to-app interactions [4,
5, 6, 7, 8, 9, 10, 11, 12] has revealed various vulnerabilities in this type of interaction.
For instance, research has shown how malicious websites loaded in IABs in vulnerable
applications can access sensitive user information like call logs and contacts. However,
app-to-web interactions have not been as thoroughly investigated despite their potential
for misuse. For example, a Potentially Unwanted Application (PUA), i.e., an application
that seems benign and useful but may have functionality that the user does not desire,
could abuse these interactions to steal the cookie of a user on a website loaded in an IAB
and conduct session hijacking. By allowing applications to inject JavaScript code into
the web content, applications can manipulate the web content, read the user’s username,
password, or other sensitive information displayed on the website, and potentially monitor
the user’s actions. An investigation by Felix Krause [13] in August 2022 that received
worldwide media attention highlighted this issue. By conducting a manual analysis of a
handful of social network applications for iOS, among which were popular applications
like Facebook, Instagram, and Twitter, he found that these applications inject JavaScript
code into the website that can be used to monitor and intercept user actions. This
discovery underscores the need for a systematic examination of app-to-web interactions.
The limited body of previous research in this area [4, 13, 14] is characterized by high
rates of false positives due to only relying on static analysis. Moreover, other studies
lack breadth, focusing on only a few applications.

To fill this gap, in this thesis, we present a novel approach to detect app-to-web interactions
in Android IABs and implement our approach in a prototype tool called IABInspect.
Our approach combines static and dynamic analysis to detect app-to-web interactions in
Android applications. We use static analysis to identify launch calls of IABs and find
paths from an entry point of the application to the IAB. We then use dynamic analysis to
drive the execution along these paths and detect app-to-web interactions by monitoring
the interactions in our controlled environment. IABInspect targets Android applications
due to Android’s popularity and the availability of tools to analyze applications. It
focuses on Android WebView as the underlying embedded browser.

In specific, we make the following contributions:

• we provide a summary of the state-of-the-art research on IAB security (Chapter 3),

• we present a novel approach based on a combination of static and dynamic analysis to
detect app-to-web interactions in Android applications and implement a prototype
tool called IABInspect tool (Chapter 4),

2

• we evaluate the effectiveness of IABInspect through a detailed manual analysis
of 10 applications, comparing these manual findings with the automated results
generated by our tool to ensure precision (Chapter 5), and

• we apply IABInspect to a dataset of 1,000 popular Android applications, suc-
cessfully triggering 508 IAB launch calls across 196 applications. Our analysis
reveals 137 unique JavaScript code snippets being injected into web content in 50
applications (Chapter 6).

To facilitate reproducibility, we open-source the implementation of IABInspect on https:
//purl.org/bridging-realms.

3

https://purl.org/bridging-realms
https://purl.org/bridging-realms

CHAPTER 2
Background

This chapter introduces basic concepts that this thesis relies upon. We first discuss
the basics of the Android operating system and then provide a brief overview of In-
App Browsers (IABs). Following this, we present fundamental app analysis principles,
including static and dynamic analysis approaches.

2.1 Android Operating System
Android, developed by Google, is the most popular operating system for mobile com-
puting, holding a worldwide market share of 70.11% and powering the vast majority
of smartphones, tablets, and other mobile devices [2]. Its popularity and open-source
nature, which contrasts with iOS’s closed-source approach, make Android an attractive
platform for researchers.

2.1.1 Basics of Android Applications
Android applications are primarily developed in Kotlin, as it is officially the preferred
language for Android application development since 2019 [15]. However, applications can
also be developed in Java. Moreover, the Native Development Kit (NDK) enables the
integration of native code, such as C or C++, which can then be called from either Java
or Kotlin code.

Unlike traditional Java and Kotlin applications that compile into Java-compatible byte-
code (.class files) and are executed by the Java Virtual Machine (JVM), Android
applications run on the Android Runtime (ART). Since ART cannot directly execute Java
bytecode, it is instead compiled into Dalvik bytecode (.dex files), which is then executed
by the Dalvik virtual machine. Native code, such as C, is compiled into shared libraries
(.so). These are bundled with Dalvik bytecode and other resources, such as images and
XML layout files, into an Android Package (APK). This APK file, which the developer

5

2. Background

.json

Result

.json

Result

.json

Result

.json

Result

.json

Result

.json

Result

.json

Result

.json

Result

Figure 2.1: Overview of the Android application generation process.

must digitally sign, serves as the distribution format for Android applications [16]. An
overview of this process is shown in Figure 2.1.

Each application installed on an Android device operates within its own sandbox, meaning
it runs in a separate process and is assigned a unique user ID. This architecture ensures
that applications are isolated from one another, securing them against unauthorized data
access.

2.1.2 Android Application Components
Unlike traditional Java applications, which typically start the execution at a single main

method, Android applications are highly event-driven and can have multiple entry points.
Application developers implement specific functions of the Android framework that are
then called by the system at specific points in time, e.g., when the user receives a text
message or a button is clicked. Therefore, an Android application can be considered
a “plugin into the Android framework” [17]. Each Android application consists of four
different types of loosely coupled components, namely activities, services, broadcast
receivers, and content providers [18].

Activity

An activity can be considered a single screen that presents a user interface and serves
a specific purpose [19]. For instance, a social networking app might include an ac-
tivity for displaying the user’s news feed (UserFeedActivity), another one for com-
posing posts (CreatePostActivity), and yet another one for viewing a user profile
(UserProfileActivity). Activities can launch other activities within the same or a
different app via intents, which we further discuss in Section 2.1.4. Typically, one activity
is the main activity, which is the first screen presented when the app is launched.

6

2.1. Android Operating System

Figure 2.2: Lifecycle of an Android activity [20].

Activities are subclasses of the Activity class and must override specific lifecycle methods
to manage their state within the app. Each method handles one stage of an activity, from
creation to destruction, including starting, resuming, pausing, and stopping an activity.
The lifecycle of an activity is depicted in Figure 2.2.

Service

Unlike an activity, a service does not provide a user interface but is used to perform
long-running operations in the background, e.g., music playback. Services are categorized
into three types: foreground services, background services, and bound services. While
a foreground service is used to run a task that is noticeable to the user and requires
a notification to display while it runs, background services are used for tasks that are
not noticeable to users. Due to system optimizations in recent Android versions, their
use is restricted to ensure they do not consume excessive system resources. These two
types of services are also commonly called started services. Bound services, on the other
hand, are used when an application component wants to communicate with the service.
The component then binds to the service and can interact with it through the IBinder
interface [21].

Like activities, services have a lifecycle that includes several states, such as onCreate,
onStartCommand, and onBind. The latter is limited to bound services.

7

2. Background

Broadcast Receiver

Broadcast receivers in Android are components that respond to system-wide broadcast
announcements or events. These events can range from system events, like a change
in battery level or connectivity status, to custom user-defined events. Even when the
application is not actively running, broadcast receivers can respond to incoming broadcast
messages [18].

Content Provider

Lastly, a content provider in Android serves as the standard interface for managing
an application’s data storage and provides a data retrieval system through URIs. For
instance, a content provider might manage access to a set of application settings. Other
applications can request data from this provider using a specific URI, which the content
provider uses to determine what data to return and whether the requester has the
necessary permissions to access it [18].

2.1.3 Manifest File

Every Android application includes a manifest file (AndroidManifest.xml) that informs
the Android system about its components, i.e., its activities, services, broadcast receivers,
and content providers, alongside their properties. It also specifies the application’s
permissions, such as the ability to access the internet or the camera.

Additionally, the manifest file declares the hardware and software requirements necessary
for the application, such as a microphone or camera requirement. It also plays a role
in declaring so-called intent filters, which are used to define possible inter-component
communication, i.e., specifying if and how different components can be started by others,
as we describe in Section 2.1.4 in more detail [22].

A snippet of an Android manifest is given in Listing 2.1. In this example, the application
declares two activities: MainActivity and SecondActivity. The intent filter for
MainActivity specifies that it is the application’s main activity, intended to be launched
when the application is started from the device’s launcher. The exported attribute
controls whether the activity is accessible to other applications. Because MainActivity

is exported, the intent filter has an effect, and the activity can be started externally, e.g.,
by other apps. In contrast, SecondActivity is not exported, meaning it can only be
initiated internally by the application itself.

8

2.1. Android Operating System

✞ ☎
<application

[...]>
<activity

android:name=".MainActivity"
android:exported="true">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity

android:name=".SecondActivity"
android:exported="false">

</activity>
</application>✝ ✆

Listing 2.1: Snippet of an Android manifest file.

2.1.4 Inter-Component Communication
In Android applications, components often need to communicate with and launch each
other. Android facilitates this communication through a mechanism called intents. Intents
can either be explicit or implicit.

Explicit Intent. An explicit intent directly specifies the component that should be
started. For example, when the UserFeedActivity of a social network application,
which displays the user’s feed, wants to launch the CreatePostActivity to allow the
user to create a new post, it would use an explicit intent to do so.

Implicit Intent. An implicit intent, on the other hand, does not specify the target
component but rather a general action that should be performed. For example, sup-
pose the CreatePostActivity wants to enable users to add a picture to their post.
In that case, it might launch the camera app using an implicit intent with the action
android.media.action.IMAGE_CAPTURE. The Android system then searches for suit-
able applications that contain an activity that can handle this type of action, based on
the activity’s intent filters. If there is such an application, the corresponding activity is
launched. If multiple activities or applications can handle the intent, the user is prompted
to select one. Note that doing so with an explicit intent would not trivially work, as the
package name of the installed camera app may not be known.

Intents can also carry additional information in the form of data and extras. Data is
a URI that specifies the actual data to operate on; e.g., in a web browser, the data
would likely be the URL to open. Extras are key-value pairs that can pass additional
information to the component [23].

An activity can launch the SecondActivity activity using an explicit intent, as we show
in Listing 2.2. This intent also contains the extra key with the string value value.

9

2. Background

✞ ☎
val intent = Intent(this, SecondActivity::class.java)
intent.putExtra("key", "value")
startActivity(intent)✝ ✆

Listing 2.2: Creating an explicit intent to launch the SecondActivity activity.

2.2 In-App Browsers
Websites on mobile devices are traditionally accessed through standalone web browsers
such as Google Chrome, Mozilla Firefox, or Microsoft Edge. However, they can also be
viewed through in-app browsers (IABs). An IAB is a component embedded within a
mobile application used to display and interact with web content. IABs are implemented
on top of embedded browsers, which are responsible for rendering the web content and
offering interaction capabilities between the app and the web, with both iOS and Android
offering such components. Embedding IABs into mobile applications is a common practice,
with popular apps such as Facebook, Instagram, TikTok, and X utilizing it.

2.2.1 Android Embedded Browsers
On Android, various embedded browsers are available, ranging from system-provided
to third-party options. The system-provided embedded browser, Android WebView, is
widely used across applications to render web content within the application. In addition
to WebView, developers can utilize the Custom Tab protocol, which all major browsers on
Android support. Furthermore, developers can integrate third-party embedded browsers
directly into the application’s package. A visual comparison of a selected subset of
embedded browsers on Android and their usage in real-world applications is shown in
Figure 2.3.

Android WebView

Android WebView is a built-in system-level component that renders web content within
Android applications. Unlike a full-fledged browser, WebView does not include any
browser UI elements, such as a URL bar, navigation bar, or forward and backward
buttons. Android WebView is based on the Chromium project but does not support all
features available in Chrome, such as synchronizing browsing data or Web APIs such as
the Push API [24] used to receive push notifications. Moreover, it does not share any
data, such as cookies, caches, or service workers, with the Chrome browser [25].

Although WebView is a system-level component, it can be updated and installed as an
APK file. The Android system provides the API to interact with the WebView, but the
APK provides the actual implementation. This allows Google to update the WebView
implementation independently of the Android system. For security reasons, on release
builds of Android, the APK providing the concrete WebView implementation must be
signed by Google [26].

10

2.2. In-App Browsers

(a) Facebook provides a
browser backed by Android
WebView.

(b) French Today uses an
Android WebView to display
their privacy policy.

(c) Nike Training uses a
Chrome Custom Tab for user
authentication.

Figure 2.3: Usage of IABs in real-world applications on Android. The embedded browser
is highlighted in red.

Applications can open a website in a Webview by calling its loadUrl method. Listing 2.3
shows how to open https://www.example.com in a WebView. Other methods also
exist, such as loadData and loadDataWithBaseURL that allow loading data from a
string, and postUrl that allows loading a website with a POST request.✞ ☎
val wv: WebView = findViewById(R.id.webview);
wv.loadUrl("https://www.example.com");✝ ✆

Listing 2.3: Launching https://www.example.com in an Android WebView.

Apart from simply displaying the web content, WebView also offers some interaction
between the app and the web content, both in terms of app-to-web interactions and
web-to-app interactions.

App-to-web interactions. App-to-web interactions allow the application to engage
with the web content. For example, the app can inject JavaScript code into the website
being displayed by either calling the loadUrl method and passing the JavaScript code as
a string preceded by javascript: or by using the evaluateJavascript method of the

11

2. Background

WebView [27] class. This JavaScript code is then executed in the context of the website.
The WebView class also provides other APIs that can be used for app-to-web interactions,
such as the getCookie and setCookie methods of the CookieManager [28] class, which
allows the application to access and manipulate cookies stored for a website. Applications
can also save the whole page as a web archive using the saveWebArchive method of
the WebView class. A web archive is an MHTML file that contains all resources of a
webpage, such as images, CSS, and JavaScript files, in a single file. WebViews also
provide additional APIs for such interactions, and the interested reader is referred to the
official documentation for a comprehensive list [27].

Web-to-app interactions. In web-to-app interaction, the web content can interact
with the application and call native Java or Kotlin functions defined in the applica-
tion. This is achieved by exposing these functions to the web content through the
addJavascriptInterface method of the WebView class and specifying the target class
and the interface’s name. All functions annotated with the @JavascriptInterface

annotation in the target class are then exposed to the web content. For example, if a func-
tion sendMessage should be exposed to the web content that sends a message to a given
number, the code shown in Listing 2.4 would be used. The JavaScript code running on
the website can then call this function by executing window.JSBridge.call(1234567,

"Hello World").✞ ☎
webView.addJavascriptInterface(new JSBridge(), "JSBridge");

class JSBridge {
@JavascriptInterface
fun sendMessage(number: Int, message: String) {

// Send the message to the given number
}

}✝ ✆
Listing 2.4: Exposing the sendMessage function to the web content.

WebView Hooks. In addition to app-to-web interaction and app-to-web interaction
APIs, WebViews provide hooks that allow applications to intercept and respond to events
occurring within the WebView. For example, the WebViewClient [29] class provides a
method called shouldOverrideUrlLoading that is called whenever a new URL is about
to be loaded in the WebView. The application can override this method to intercept the
URL and perform custom actions, such as opening the URL in the system browser instead
of the WebView. The WebChromeClient [30] class supports similar hooks, such as the
onConsoleMessage method, which is called whenever a JavaScript console message is
logged in the WebView.

12

2.2. In-App Browsers

Android Custom Tabs

An Android Custom Tab is, strictly speaking, not a single component offered by Android
but a protocol implemented by browser vendors. Unlike Android WebViews, Custom
Tabs are provided by the browsers, e.g., Google Chrome or Mozilla Firefox. When the
embedding application opens a Custom Tab, an activity of the underlying browser is
launched. This activity includes a browser UI, including a navigation and URL bar [31].

Since the Custom Tab is an activity of the underlying browser, the component and the
browser are tightly coupled, and their state, such as cookies, is shared. Therefore, Custom
Tabs are especially useful in Single Sign On (SSO) flows, where the user is already logged
into the browser [32].

For security reasons, Custom Tabs do not support the same level of interaction between
the app and the web content as WebViews do. For example, the app cannot inject
JavaScript code into the website or access the website’s cookies. Custom Tabs also do
not allow the web content to call functions defined in the app. Nevertheless, Custom
Tabs offer so-called callbacks and engagement signals that the app can use to track the
user’s interaction with the web content [31]. Because of Custom Tab’s lack of app-to-web
interaction, we do not consider them for the rest of this thesis.

Third-Party Embedded Browsers

Android also allows the inclusion of third-party libraries that provide embedded browsers.
Unfortunately, there is no complete list of such libraries available, and our research
indicates that there are very few such libraries available, among which are Mozilla
GeckoView [33] and the discontinued Crosswalk Project [34], which we both do not
consider in this thesis.

2.2.2 iOS Embedded Browsers

In iOS applications, web content can only be rendered by the system-level components
WKWebView or SFSafariViewController [35]. Although this thesis focuses on Android,
we provide a brief overview of these iOS components for completeness.

WKWebView

WKWebView is the counterpart to Android’s WebView. Like Android WebView, WKWebView
displays web content without any browser UI elements and supports a comparable level
of interaction between the app and the web content. Apps can inject JavaScript into the
webpage using functions such as evaluateJavaScript, callAsyncJavaScript, and
addUserScript. Additionally, functions defined in the app can be exposed to the web
content through the WKUserContentController class [36].

13

2. Background

SFSafariViewController

SFSafariViewController, equivalent to Android Custom Tabs, is provided by Safari.
Unlike Custom Tabs, SFSafariViewController does not share state with the under-
lying browser. This component restricts interactions between the app and the web
content, limiting its functionality compared to WKWebView. However, for authentication
purposes, developers can utilize the ASWebAuthenticationSession class to open an
authentication website within an SFSafariViewController, allowing the app to receive
an authentication token. When ASWebAuthenticationSession is used, the component
can be configured to share state with the underlying browser in a controlled manner [37].

2.3 Android App Analysis

Program analysis techniques are used in many fields, such as for assessing the security
of applications, finding bugs, verifying program correctness, code optimization, and
supporting program development [38]. The field of program analysis can broadly be
categorized into two main types: static analysis and dynamic analysis.

2.3.1 Static App Analysis

Static analysis involves examining a program’s behavior by inspecting its source code or
bytecode without executing the program. This type of analysis often utilizes abstract
representations such as call graphs and control flow graphs to deduce the program’s
behavior. Generally, static app analysis is divided into two categories: intra-procedural
and inter-procedural analysis. Intra-procedural analysis examines the behavior of a single
method in isolation, typically using a control flow graph (CFG) for representation. On the
other hand, inter-procedural analysis crosses method boundaries to analyze the program
as a whole, often employing a call graph to connect methods [39].

Control Flow Graph

A control flow graph (CFG) is a directed graph that models the flow of control within a
method. Each node in the CFG represents a basic block, i.e., a sequence of instructions
executed sequentially without branching and interruption. Edges between the nodes
represent possible paths that execution might follow, making CFGs particularly useful
for understanding the branching mechanics within methods, such as those introduced by
conditional statements.

Figure 2.4 illustrates a CFG for a simple Java method named isPositive, which
checks if a parameter is greater than zero. The graph captures all potential execution
paths, including those conditioned by the if-else statement. Thus, a CFG is a useful
representation of conditional statements and their impact on a program.

14

2.3. Android App Analysis

✞ ☎
public void isPositive(int a) {

int d = 0;
if (a > d)

return true;
return false;

}✝ ✆
(a) Java method isPositive.

int d = 0

a > d

return true return false

true false

(b) Control flow graph of isPositive.

Figure 2.4: Java method and its control flow graph.

Call Graph

Object-oriented programming languages like Java and Kotlin are built around classes
as the general concept. These classes contain methods that can call other methods and
fields that represent the object. Such programs usually have a single entry point, i.e., a
main method, from which the program’s execution starts. Analyzing a program’s main
method, listing all methods it calls, and then iteratively analyzing these methods yields
the construction of a call graph and is a form of inter-procedural analysis. A call graph
consists of nodes representing methods and directed edges representing method calls.
Figure 2.5 shows an example of a call graph of a simple Java program.

A call graph can come in different precision levels that also impact the running time of
the analysis. Call graphs can be, for example, flow-sensitive, path-sensitive, or context-
sensitive. We will not detail these different precision levels but refer the interested reader
to Li et al. [39] for a detailed discussion.

2.3.2 Dynamic App Analysis
Dynamic analysis examines or modifies an application’s behavior by actually executing
the application. This method offers a key advantage over static analysis: it captures the
app’s actual behavior, making it particularly effective for tasks like malware analysis
where understanding real-world behavior is critical. However, dynamic analysis is less
scalable than static analysis due to the necessity of running the app, which can be
resource-intensive and time-consuming.

The monitoring and manipulation can be external to the device, such as intercepting
network traffic using tools such as Wireshark [40], or internal, such as intercepting and
modifying API calls and function parameters. For the latter, common approaches include
modifying the app’s execution environment. This can be achieved by modifying the

15

2. Background

✞ ☎
public class MainClass {

public static void main(String
[] args) {

Person person = new Person
();

person.setName("John Doe")
;
}

}

public class Person {
public String name;

public void setName(String
name) {

if (!name.isEmpty()) {
this.name = name;

} else {
setName("unknown")

}
}

}✝ ✆
(a) Java program.

MainClass.main

Person.<init> Person.setName

String.isEmpty

(b) Call graph of the program.

Figure 2.5: Java program and its call graph.

underlying system or employing runtime instrumentation. In runtime instrumentation,
an app is modified dynamically during its execution. This can be done, for example, by
hooking functions and overwriting them with user-defined code, such as with the popular
dynamic instrumentation tool Frida [41].

16

CHAPTER 3
Related Work

The related work for this thesis can be categorized into two areas: the security of IABs
on mobile devices and targeted execution on Android. We provide a brief overview of
these topics in the following sections.

3.1 Security of IABs

3.1.1 Web-To-App Interaction
Previous research on the security of In-App Browsers (IABs) has explored various
vulnerabilities and the associated risks of app-to-web and web-to-app interactions in
Android WebViews. Luo et al. [4] analyzed the dual threats posed by malicious web
pages interacting with benign apps and malicious apps exploiting benign web pages.
Specifically, they highlighted the dangers of allowing JavaScript within WebViews to
call Java or Kotlin functions, potentially leading to unauthorized access to sensitive
user data such as location information. They also discussed the risks associated with
the injection of malicious JavaScript code into WebViews and the possibilities for event
sniffing through the use of WebView hooks. Additionally, they conducted a small-scale
evaluation of 200 popular Android applications, revealing that WebViews were utilized
in 113 of these applications.

Neugschwandtner et al. [5] further focused on the security implications of Java code
invocation from JavaScript in Android WebViews, such as data exfiltration under a
man-in-the-middle attack scenario. Their analysis of over 250,000 Android applications
revealed that 30% had JavaScript interfaces allowing JavaScript to Java communication,
with 10% vulnerable to potential exploitation.

Chin et al. [6], Rizzo et al. [7], and El-Zawawy et al. [11] provided further insights into
app-to-web interactions, proposing tools for the automatic detection of attacks leveraging

17

3. Related Work

these vulnerabilities. Their methodologies relied on static analysis to identify exploitable
interfaces between web content and native app code.

Additionally, Zhang et al. [8] examined the security within “super-apps” like WeChat
and TikTok, which host multiple sub-apps within a single application using WebViews.
They discovered access control vulnerabilities across all 47 analyzed super-apps, enabling
unprivileged sub-apps to exploit privileged APIs.

3.1.2 App-To-Web Interaction
Expanding beyond the Android ecosystem, Krause [13] analyzed the usage of IABs
in a small set of popular applications (Instagram, Facebook, TikTok, Facebook Mes-
senger, Amazon, Snapchat, and Robinhood) on iOS. The methodology of the analysis
consists of manually interacting with the applications and loading a custom web page
(inappbrowser.com) in their IAB, which records JavaScript injections. The author
found that out of the seven analyzed applications, 5 inject JavaScript code, while 4
modify the web content. The injected JavaScript code encompassed code that could be
used to monitor user inputs such as keyboard input and user taps. Unlike our work,
Krause relied on manual analysis of a handful of applications, which is time-consuming
and does not scale. Also, he focused on the iOS ecosystem. Furthermore, the analysis is
limited to detecting JavaScript injection and did not consider other types of interactions
between the app and the web content.

Most similar to our work, Zhang et al. [14] focused on the usage of web resource
manipulation APIs of Android WebView, i.e., APIs that can be used to modify the
web content displayed in a WebView, such as evaluateJavascript. To do so, they
conducted a large-scale analysis of 80,694 Android applications. Even though they
targeted a similar problem as ours, their methodology differs. They relied on purely
static analysis of the application’s code to detect how the APIs are used by building
an inter-procedural control flow graph, which they traverse to check whether specific
APIs are used. To retrieve the parameter values of the API calls, they create a backward
slice of all instructions necessary to compute the parameter values, thus being able
to reconstruct the value of the parameter. Compared to our approach, this has some
severe limitations. To begin with, static analysis is known to be imprecise and prone to
false positives, i.e., static analysis flags a code as reachable even though it is not. Our
conservative targeted execution approach, however, is designed to avoid false positives.
Furthermore, only statically analyzing an application’s code does not capture the actual
behavior of the application, i.e., how the application interacts with the web content at
runtime. JavaScript code could be dynamically fetched from a remote server before it is
injected into the web content, or the JavaScript code could be dynamically generated at
runtime. A methodology purely based on static analysis would not capture these cases,
unlike our approach. Lastly, Zhang et al.’s analysis dates back to 2018, and the Android
ecosystem has evolved since then. Therefore, it is important to question the relevance
of their findings in the current Android landscape. Since they did not open-source and
publish their tool, we cannot verify their findings or compare their results with ours.

18

3.2. Targeted and Forced Execution on Android

3.1.3 Non-Interaction-Related Security Risks
Yang et al. [9] explored security issues using iframes and popups within Android WebViews.
Their research uncovered three novel attack vectors that exploit the lack of proper
sandboxing and isolation in WebViews. These vulnerabilities could allow a malicious
website loaded in an iframe to secretly redirect the main frame to malicious pages, secretly
access Java functions from JavaScript code, and overlay legitimate content with phishing
content. They also introduced DCV-Hunter, a static analysis tool that scans Android
applications for these vulnerabilities, and found high-profile applications like Facebook
and Instagram vulnerable.

Tiwari et al. [42] explored the potential for browser fingerprinting in applications that
use IABs. Their findings indicate that WebView fingerprints were more unique than
those of standalone browsers like Chrome. They also noted that the fingerprints of IABs
often contain device-specific and user-specific information, allowing them to fingerprint a
user uniquely.

Furthermore, Zhang et al. [43] focused on the usability of IAB interfaces and discovered
that several IABs fail to provide users with enough information about the website that is
opened, including information about unsafe operations during browsing, e.g., when the
website is served over an unencrypted connection.

3.2 Targeted and Forced Execution on Android
Research on driving the execution of an application to a specific location on Android can
broadly be divided into two categories: forced execution and targeted execution.

Forced execution on Android has been mainly used to detect malware. Tang et al. [44]
proposed Dual-Force, a forced execution tool that exposes malicious behavior in WebView
malware. WebView malware is malware that, among other malware techniques, also uses
the WebView component to conceal malicious behavior. For example, WebView malware
might not invoke a function using Java but instead use the JavaScript bridge to call a
malicious function via the web content, thus concealing the malicious behavior. To detect
malicious behavior in such malware, Dual-Force uses forced execution to explore the
application and the web content it loads. Similarly to our approach, the tool consists of
a static and a dynamic analysis phase. The static analysis phase is used to build the call
and control flow graphs and determine where Java and JavaScript code interact using a
WebView. However, unlike our approach, they employed a forced execution approach
for the dynamic part. That means they forced specific branch conditions and, therefore,
forced the execution of specific code paths by instrumentation. While this allowed them
to reach a high code coverage, it also has the downside of possibly reaching code that is
not reachable under normal circumstances, introducing false positives. Furthermore, the
tool is not open-source, and the exact internal workings are unknown to us.

Wang et al. [45] targeted a similar problem with Droid-AntiRM, a forced execution
tool that aims to uncover malicious behavior in Android applications by circumventing

19

3. Related Work

anti-analysis techniques, i.e., techniques to avoid detection by malware analysis tools.
Such techniques comprise conditional switches that, for instance, check whether the device
that currently executes the app is an emulator. Following a hybrid analysis approach,
after statically constructing a call graph and control flow graph and determining potential
anti-analysis condition statements, they instrument the application and then dynamically
force those condition statements to be taken.

Ares, proposed by Bello and Pistoia [46], takes a very similar approach to tackle the
same problem. They first use dataflow analysis to find evasion points, i.e., points where
anti-analysis techniques take place. For each evasion point, the tool instruments the Java
bytecode and flips the condition of the evasion point. The APK is also instrumented with
log calls after each evasion point to log whether a specific branch was taken. A new APK
is generated for every combination of forced conditions. Each APK is installed on an
actual device. Monkey, a tool that simulates random user inputs, is used to interact with
the application. Furthermore, they used a modified Android that logs when sensitive
functions are called, such as when an SMS is sent or code is dynamically loaded. Like
other tools on forced execution, Ares also has the downside of possibly reaching code
that is not reachable under normal circumstances, introducing false positives.

Wong and Li [47] presented IntelliDroid, a tool that drives the execution of an application
to a target location. Similar to our tool, it employs a hybrid analysis methodology
consisting of static and dynamic analysis. Unlike previous tools, IntelliDroid is not based
on forced execution. Instead, IntelliDroid uses constraint solving to generate inputs
that satisfy conditions that are required to reach a target location, e.g., IntelliDroid
simulates an incoming SMS of a specific format to satisfy a specific branch. To do so,
the static part first generates a call graph and finds the paths to the target location.
The constraints that need to be satisfied for each path are then extracted. At runtime,
IntelliDroid executes the application and uses a constraint solver to solve the constraints
on the branch conditions. The tool then generates the inputs that satisfy the constraints
and injects them into the application. While the tool is open-sourced, it, unfortunately,
targets an old version of Android, and a significant amount of engineering effort would
be required to adapt the tool to the current Android ecosystem.

Wong and Li [48] extended this work with a tool called Tiro and added support for
UI interactions. Their approach targets the problem of de-obfuscation of Android
applications by driving the execution of the application to a location where possible
obfuscation happens, e.g., a call to a native function. Unfortunately, only a small portion
of the tool was open-sourced.

20

CHAPTER 4
IABInspect

In this chapter, we present IABInspect, our prototype tool to automatically analyze
app-to-web interactions within IABs in Android applications. IABInspect employs a
hybrid analysis approach, combining both static and dynamic analysis techniques that
reduce the high false-positive rate of purely static analysis by dynamically triggering the
execution of IABs and recording the interactions between the application and the web.
This chapter begins with an overview of our approach, followed by a detailed discussion
of the tool’s components and operational steps.

4.1 Overview of the Approach
As discussed in Chapter 3, previous work only used static analysis to examine app-to-
web interactions in IABs. Although static analysis gives a high-level overview of the
app-to-web interactions, its precision is limited, often leading to a significant rate of false
positives, i.e., identifying code that, although present, is never executed. This is especially
true for IABs since they are frequently embedded in third-party libraries. Often, only a
fraction of the included library is used. Additionally, static analysis cannot accurately
trace dynamic interactions, such as JavaScript code executions that occur at runtime
and are fetched from remote servers.

While effective at capturing runtime interactions, purely dynamic analysis also has
drawbacks. It can be laborious, especially when involving manual UI exploration, and
does not scale well and is time-consuming when using automated exploration.

To address these challenges, we develop IABInspect, which consists of both static and
dynamic analysis phases. The tool first uses static analysis to construct a blueprint of the
application, identifying potential paths from the application launch to an IAB launch call.
The application is then instrumented with logging statements that facilitate monitoring
during the dynamic analysis phase.

21

4. IABInspect

The dynamic component of IABInspect executes the instrumented application, steering
it along the predefined paths to trigger IAB launches. This phase not only verifies
the actual use of the code paths but also captures the live interactions between the
app and the web content. An essential feature of IABInspect is its custom Android
WebView implementation, which we instruct Android to use. It can record the app-to-
web interactions whenever the dynamic executor triggers the launching of an IAB. This
custom WebView is furthermore modified to always load a controlled website that is able
to capture injected JavaScript code. In the rest of this thises, we refer to this website as
the “hooked website”. Figure 4.1 illustrates the high-level workflow of IABInspect.

.json

Result

.html

<html>

01100
00010
01110

APK Static
result

Result

Hooked
website

Instrumented
appInstrumentation

Static
analysis

WebView
provider

Dynamic
execution

Figure 4.1: Workflow and components of IABInspect.

4.2 Threat Model
As our threat model, we consider an App Attacker using an IAB, where a Potentially
Unwanted Application (PUA) loads a benign website in an IAB. The attacker’s objectives
can vary, aiming either to compromise the confidentiality of user data, such as by stealing
cookies or passwords from a user on a third-party website or to target the website’s
integrity, such as by executing unauthorized actions in it. A practical example of such a
PUA is an application requiring users to perform a login action at a third-party service
in an IAB, opening the door for the application to steal the user’s credentials.

There are two primary ways in which a PUA can become malicious or privacy-invasive:

Malicious or privacy-invasive application. In this scenario, the application itself
is malicious or privacy-invasive and operated directly by the attacker, masquerading as a

22

4.3. Static Analysis

legitimate and useful application to convince users to install it. This model aligns with
the threat model proposed by Luo et al. [4].

Benign application with malicious or privacy-invasive library. Here, the appli-
cation itself is benign but unknowingly embeds a malicious or privacy-invasive library
that performs unwanted and potentially harmful actions on the IAB [49, 50].

4.3 Static Analysis
The static analyzer of IABInspect is responsible for building the blueprint of the applica-
tion and computing paths from an application’s entry point to an IAB launch call, i.e., a
code segment that launches the IAB. The dynamic executor then uses these to steer the
application toward the IAB launch calls.

Initially, the analyzer preprocesses the application, followed by an analysis of the applica-
tion’s manifest file to understand the components of the application. It then generates
a call graph, which is further enriched by analyzing the application’s inter-component
communication (ICC). The call graph is extended with ICC edges and custom entry
methods designed for this analysis. Finally, the analyzer computes the paths leading
from an entry method to the IAB launch calls using the constructed and enhanced call
graph. A schematic overview of the static analyzer is illustrated in Figure 4.2.

.json

Result

Split APKs Merged
APK

Generate
call graph

Compute
ICC

Compute
paths

PRE

Preprocessing

ICC

Manifest
Android

Analyze
Manifest

Enhance
call graph

Static
result

Figure 4.2: Workflow of the static analyzer of IABInspect.

4.3.1 Preprocessing
Typically, Android applications are distributed as APK files, which are compressed
archives containing all the app’s code and necessary resources. However, Google now
requires that developers publish their apps as Android App Bundles (AAB) on the
Google Play Store. This format allows the Play Store to handle the APK generation
and signing process, optimizing resource delivery based on the user’s device [51]. As a

23

4. IABInspect

result, when a user downloads an app from the Play Store, they only receive the code
and resources necessary for their specific device, such as resource files for different screen
sizes, languages, or processor architectures. These resources are not served as a whole
but delivered as split APKs, tailored to meet the particular needs of the user’s device [52].
For example, the application abmm.heckyl.com may be divided into the following split
APK files:

• abmm.heckyl.com.apk is the base APK,

• abmm.heckyl.com.split.config.de.apk contains the resource files for the Ger-
man language, and

• abmm.heckyl.com.split.config.xxhdpi.apk contains the resource files for the
xxhdpi screen size.

Given our need to analyze the complete application, including all code stored in split
APKs, and considering that the application is only fully functional when all split APKs
are present, we must merge these split APKs into a single APK. To do so, we use the
open-source tool APKEditor [53], leaving us with a single APK file.

4.3.2 Manifest Analysis
The next step is the analysis of the application’s manifest file. The manifest file contains
a list of the application’s components and intent filters, which we later feed into the
dynamic executor. Additionally, the manifest file also declares which components are
exported, i.e., can be started from outside of the app, which we require in a later step to
compute the call paths accurately.

For parsing the manifest file, we rely on Soot, a state-of-the-art framework designed for
analyzing Java-based applications [54].

4.3.3 Call Graph Generation
We then generate a call graph of the application. This process begins by converting the
application’s Dalvik bytecode into the Jimple intermediary representation (IR) using the
Soot framework. Given that both Java and Kotlin applications compile down to Dalvik
bytecode, Soot can analyze applications written in either language. Although generating
a call graph may initially seem straightforward, the complexity of Android applications
presents significant challenges.

As previously discussed in Section 2.1, Android applications do not have a single main

method that is called at startup. Instead, these applications can have multiple entry points,
such as various activities through which users can enter the application. Furthermore,
Android apps are highly event-driven. Components like activities implement lifecycle
methods that the Android framework invokes at specific times, such as when an activity

24

4.3. Static Analysis

starts or stops. Other callbacks are called in response to user interactions, e.g., when a
button is clicked.

Accurately modeling these idiosyncrasies of Android applications is crucial for creating
a precise call graph that can guide the dynamic executor to the IAB launch calls.
Fortunately, FlowDroid [17], a state-of-the-art static taint analysis tool for Android
applications, can construct a callgraph that models these Android-specific behaviors.
While we do not use FlowDroid’s taint analysis capabilities, we use its capabilities to
determine the application’s entry methods and callbacks.

After parsing the application’s manifest file to determine the app’s components, i.e.,
activities, services, providers, and broadcast receivers defined in the application, Flow-
Droid constructs a dummy main method that serves as an artificial single entry point
into the application. It also constructs dummy methods for each component of the
application. These component-specific dummy methods contain edges to the actual
lifecycle methods of the component, such as onCreate or onStart, and to callback
methods in the component like onClick. Flowdroid adds an edge from the single dummy
main method to the dummy methods of all components. FlowDroid considers both
exported and non-exported components to be reachable from the dummy main method.

In each iteration, it generates a call graph that includes all methods reachable from the
dummy main method and searches for callback methods in the newly reachable code.
For example, an application might register a click callback by overriding the onClick

method or by defining it in the layout files. FlowDroid also parses these layout files,
integrating any discovered callbacks into the component-specific dummy methods before
reconstructing the call graph. This iterative process continues until no further changes
are detected in the call graph, resulting in the preliminary call graph on which we base
our static analysis.

4.3.4 ICC Computation
Android components may communicate with each other using intents. For example, an
activity HomeActivity might start another activity NewsFeedActivity by sending an
intent. This type of communication is known as Inter-Component Communication (ICC).
In our dataset that we propose in Chapter 6, applications are composed of, on average,
43.6 activities. Incorporating ICC into our analysis is thus crucial for comprehensively
understanding an application’s behavior.

Determining ICCs in Android applications is challenging due to the dynamic nature of
intents. Unlike intent filters, which are statically defined in the manifest file, intents are
typically created at runtime, and their target components may even be influenced by user
input. Although FlowDroid supports ICC analysis through its integration with ICCTA,
it cannot handle modern applications [55]. Instead, we rely on ICCBot [56].

ICCBot is a tool that uses static analysis to determine ICCs in Android applications.
Apart from tracking the source and target components of ICCs, it can also determine

25

4. IABInspect

the intent extras and intent data that a component expects. While we use the former to
enhance our call graph, as we discuss in the next section, we save the latter and feed it
to the dynamic executor.

4.3.5 Call Graph Enhancement
We enhance the callgraph constructed by FlowDroid in two ways. First, we add ICC
edges to the callgraph to be able to reason about the interactions between different
components of the application. Second, we add our own entry methods to the callgraph.
A graphical representation of the enhancements is shown in Figure 4.3 based on an
application containing two activities, ExportedActivity and NotExportedActivity,
as well as a broadcast receiver, a service, and a content provider.

ICC Edges. As output, ICCBot provides a list of ICC calls from a source statement to
a target component. For each of these ICC calls, we add extend the call graph by adding
and edge. For example, ICCBot may determine that a call to startActivity in function
onCreate of ExportedActivity starts the NotExportedActivity. In this case, we add
an edge from the startActivity statement in ExportedActivity.onCreate to the
dummy method generated by FlowDroid of the NotExportedActivity, thus encoding
the ICC in the callgraph.

Custom Entry Methods. FlowDroid’s dummyMainMethod is a good starting point
to model the entry points of an Android application. However, it also contains edges
to activities that are not exported, i.e., activities that are not accessible from other
applications and cannot be directly started from the outside, as well as content providers,
broadcast receivers, and services, which IABInspect currently does not support. We
add custom entry methods to the call graph to distinguish between exported activities
that can be opened from the outside and non-exported activities that we need for
the call path computation. In specific, we add the EntryClass class that contains
the resolvedEntry and partiallyResolvedEntry methods to the call graph. The
resolvedEntry method contains edges to the dummy methods of all exported activities,
while the partiallyResolvedEntry method contains edges to the dummy methods of
non-exported activities.

4.3.6 Call Path Computation
After constructing the call graph that includes callbacks and ICC edges, we proceed by
iterating through all Jimple statements of the application and identifying invocations of
methods that can be used to launch IABs. Each detected launch call is assigned a unique
ID. This ID is used in the dynamic analysis phase to identify the IAB launch call.

A complete list of methods we consider to be used to launch IABs is provided in Table 4.1.
Note that we consider all relevant methods that can be used to launch WebViews as per
the WebView documentation [27]. While our current analysis is limited to these methods,

26

4.3. Static Analysis

EntryClass.resolvedEntry EntryClass.partiallyResolvedEntry DummyMain.dummyMainMethod

DummyMain.Exported_Activity DummyMain.Not_Exported_Activity DummyMain.BCR,SER,CP

ExportedActivity.onCreate ExportedActivity.onClick NotExportedActivity.onCreate . . .

Figure 4.3: Callgraph enhancements with custom entry methods and ICC edges.
The colors indicate method affiliation: for newly added methods, for classes related
to ExportedActivity, for classes related to NotExportedActivity, for other
classes.
Shapes represent the method source: for newly added methods, for methods
generated by FlowDroid, for application methods.
Thick lines represent newly added edges.

IAB Method Description
WebView.loadUrl(String) Loads the given URL in the WebView.

WebView.loadUrl(String, Map)
Loads the given URL in the WebView with additional HTTP
request headers.

WebView.loadData(String, String,

String)
Loads the given data (e.g., HTML content) in the WebView.

WebView.loadDataWithBaseURL(String,

String, String, String, String)

Loads the given data in the WebView and allows to specify
a base URL.

WebView.postUrl(String, byte[]) Loads the given URL in the WebView using a POST request.

Table 4.1: Considered target functions used to launch IABs.

IABInspect is designed with flexibility and can be extended to include additional methods
in the future.

Once we have identified the IAB launch calls, we approach the pathfinding as a graph
search problem, backtracing the call paths from the target method to an entry point. We
define two types of entry points that lead to two different types of paths.

Exported activities leading to a resolved path. In case we find a path to the
resolvedEntry method from an IAB launch call, we refer to this path as a resolved path.
These paths originate from an actual entry point of the application, i.e., an exported
activity, and may involve ICC edges. Therefore, IABs launched by following a resolved
paths are guarenteed to be reachable in a real-world scenario.

Non-exported activities leading to a partially resolved path. In contrast, we
may find paths that start from the partiallyResolvedEntry method. This is the case

27

4. IABInspect

if the ICC analysis has not been able to resolve and find all ICCs of the application. We
call such paths partially resolved paths. Partially resolved paths serve as shortcuts to
reach the target IAB launch call, initiating from a point within the application that,
while not directly accessible from the outside, represents an entry to a self-contained
segment of the app. Since an application can declare activities in its manifest file that
are never used in practice, partially resolved paths are not guaranteed to be reachable in
real-world scenarios.

Starting from an IAB launch call, we then backtrace the call path in a breath-first search
manner. Using a breadth-first search has the advantage that it allows us to find the
shortest path to an entry method. IABInspect is configured to record up to 100 fully
resolved paths and 100 partially resolved paths to each target call site.

4.4 Instrumentation

In the instrumentation phase, we augment the application with information necessary for
the dynamic executor to accurately navigate to the IAB launch calls. The instrumentation
process fulfills two primary functions: (1) enabling the identification of IAB launch calls
and (2) enabling tracking of the application’s execution. Similar to the static analysis
phase, the instrumentation process relies on Soot.

4.4.1 Enabling the Identification of IAB Launch Calls

During the application’s execution, the dynamic executor must be able to monitor the
app’s current state by tracking which functions have been called. As we will discuss in
Section 4.5.3, the dynamic executor utilizes Frida [41], a dynamic instrumentation tool
that allows method invocations to be intercepted. This would allow the dynamic executor
to intercept calls to the IAB launch functions, such as WebView.loadUrl, and be notified
whenever these functions are called. By dynamically instrumenting the function to call
the java.lang.Thread.currentThread().getStackTrace() method, it is possible
to determine the source method from which the IAB launch call was made. However,
this approach has limitations in specific scenarios. For example, if one method contains
multiple IAB launch calls, we can only determine the method from which the IAB
launch call was made, but not the exact call site. Even though the StackTraceElement

returned by the currentThread call contains a line number, it does not correspond to
the line number in the source code.

To address this limitation, we instrument the application to insert a android.util.Log

call immediately before each IAB launch call. Each call is assigned a unique identifier,
which is included in the log statement and can be accessed by the dynamic executor.

Additionally, to ensure that information about the IAB launch call is passed to both
the custom WebView provider and the hooked website, we statically instrument the

28

4.5. Dynamic Analysis

application to append the identifier as a URL fragment1 to the URL passed in the IAB
call. If the URL already contains a fragment, the identifier is appended to the existing
fragment. This approach allows the dynamic executor to identify the IAB launch call
and the corresponding call site, even if the call is made from a method that contains
multiple IAB launch calls.

4.4.2 Enabling Function Tracking
While Frida’s hooking functionality theoretically enables tracking function calls by hooking
into application functions and logging their execution, this approach is not practical for
real-world-sized applications. Frida can only hook a limited number of functions before
the application crashes. In our experiments, Frida could hook only about 150 functions
before the application crashed, a limitation that is insufficient for handling applications
containing thousands of functions.

To address this limitation, we instrument the application by adding a log statement at
the beginning of each method on one of the identified paths from an entry method to
an IAB launch call. Each log statement includes the method’s signature, allowing the
dynamic executor to track the execution without the stability issues associated with
excessive hooking.

4.4.3 Changes to Soot
Soot throws an exception when attempting to build Android applications that specify a
minSdk version lower than 22 due to the lack of multi-dex support for these older API
versions. Since Android API versions 22 and above include built-in support for multi-dex,
applications targeting these versions can run on devices that support them without issues.
To allow Soot to build applications with a lower minSdk version, we introduce a new flag,
ignore_dex_overflow. This flag allows Soot to ignore the multi-dex overflow error and
successfully build applications that would otherwise fail due to this limitation.

4.5 Dynamic Analysis
Following the static analysis, which constructs a blueprint of the application and identifies
paths from an entry method to the IAB launch calls, the instrumented application is
executed to record the actual app-to-web interactions during the dynamic analysis phase.
This phase involves three main components, as illustrated in Figure 4.4: the Custom
WebView Provider used to record the IAB API calls of the application, the Hooked Website,
a controlled site used to record JavaScript injections performed by the application into
the web content which is forcibly loaded into the IAB, and the Dynamic Executor, which
is responsible for monitoring the execution of the application and steering it towards the

1A URL fragment is the part of a URL that follows the # symbol [57]. For example, in the URL
example.com/path#fragment, fragment represents the URL fragment.

29

4. IABInspect

IAB launch calls by following the paths computed by the static analyzer. In this section,
we will discuss each component in detail.

IAB
interactions

monitor IAB
API usages

trigger UI and system interactions

monitor application state

monitor JS injections

load website
.html

<html>

WebView
provider

Dynamic
executor

Instrumented
app

Web
server

Hooked
website

IAB
interactions

serve website
and report

JS injections

Figure 4.4: Overview of the dynamic analysis phase.

4.5.1 Custom WebView Provider
The WebView class in Android, which represents the View in which web content is
rendered and provides the APIs to interact with the web, is not directly linked to the
underlying browser. Instead, the actual browser functionality is provided by an external
application, known as the WebView Provider, which is loaded into the app’s process
upon the initialization of a WebView. The Android framework handles the loading of the
WebView provider. If multiple WebView providers are installed on a device, users can
select their preferred WebView provider through the developer settings [58]. We use this
to our advantage and implement a custom WebView provider that records the API calls
made by the application and replaces the requested website with our controlled website
used to monitor the injected JavaScript code.

We base our custom WebView provider on Chromium 125.0.6374 and open-source our
implementation.

Monitoring and Recording API calls

To monitor and record the API calls made by the application, we insert Log.i statements
at the beginning of each function in the WebView provider that matches an API call. The
log statements contain the function’s name, the parameters passed to the function, and a
unique identifier. Upon initialization, this identifier is created for each WebView instance
and is used to determine if two API calls belong to the same WebView instance. This is
necessary since one WebView provider may simultaneously be responsible for multiple

30

4.5. Dynamic Analysis

WebViews, e.g., when multiple WebViews are displayed on a single screen. In specific,
we monitor every API call to the WebView [27], CookieManager [28], WebSettings [59],
and WebViewDatabase [60] classes.

The parameters passed to the function may be very large, e.g., when the loadData

function is called with a large HTML string. This string may be too large to be logged in
a single log statement since the maximum length of a logcat log statement is 4KB. Our
evaluations showed that splitting the string into multiple log statements and immediately
logging many statements one after the other may lead to logcat missing some statements
in some cases. We use the following approach to prevent this: If the string is too large to
fit into a single log statement, we create a temporary file and write the string to the file.
Instead of logging the whole string, we log the API usage and the path to the temporary
file. As we will discuss later, the dynamic executor can then pull the file from the device
and thus retrieve the whole string.

Loading the Hooked Website

For our hooked website to record the injected JavaScript code, we must ensure it is loaded
into the WebView. To this end, we add a new flag to Chromium that can be enabled
in the WebView DevTools, a graphical interface on the device that allows developers
to set various flags and settings in the WebView provider. Enabling this flag causes
the WebView to force-load the hooked website, reflects this in the WebView hooks, and
ignores possible SSL exceptions that this may cause.

Overwriting the URL. The WebView provider overwrites the URL of the requested
website passed in the loadUrl and postUrl calls with the URL of the hooked website.
Calls to loadData and loadDataWithBaseURL are internally redirected to loadUrl

with the hooked website as a parameter. Furthermore, we add the unique identifier of
the WebView instance as a URL fragment to the website’s URL. This allows the hooked
website to track which WebView instance loaded the website, as we will describe in more
detail in Section 4.5.2.

Handling hooks. Because applications embedding WebViews can be notified about
events on the website, e.g., through the WebViewClient and WebChromeClient classes,
and these notifications contain website-specific information, such as the website’s URL,
we overwrite these methods to return the URL of the originally requested website, which
obfuscates the fact that the hooked website is loaded.

Handling SSL exceptions. Although the hooked website is served via HTTPS and
the certificate from the root CA that signed the website’s certificate can be installed
into Android’s system certificate storage, some applications employ certificate pinning,
which can block websites not signed by a designated certificate. To circumvent this, we
modify the onReceivedSslError method in the WebViewClient class to always invoke

31

4. IABInspect

the proceed method of the SslErrorHandler, effectively allowing the WebView to load
the hooked website despite SSL certificate errors.

WebView Provider Restrictions

For security reasons, Android restricts the applications that can be used as WebView
providers. When attempting to use an application as a WebView provider, three checks
are typically performed [61]:

• Signature check at installation: Since Android uses Application Signing [62],
all applications installed on the device must be signed. In case an application is
updated, the signature of the updated application must match the signature of the
installed application.

• Package name check when setting the WebView provider: Since Android
10 (API level 29), the package name of the application that is set as the Web-
View provider is restricted to com.google.android.webview (preinstalled) and
com.google.android.webview.[beta|dev|canary] [26].

• Signature check when setting the WebView provider: When setting an appli-
cation as the WebView provider, the application’s signature is checked against a list
of predefined signatures located in the res/xml/config_webview_packages.xml
file of the framework-res.apk, which is part of the Android framework.

Therefore, the installation and setting of a WebView provider differs from a regular
application installation. Google waives some restrictions for some Android build types,
and the correct setup depends on the build type used.

AOSP Builds. In Android Open Source Project (AOSP) builds, builders have full
control and can modify the system to accept any WebView provider. Unfortunately,
AOSP does not contain the Google Mobile Services (GMS), which applications may rely
upon. This renders applications relying on these services, such as those displaying Google
Maps, unusable.

User Builds. All three checks are enforced on user builds of Android, i.e., builds
that end users use. Interestingly, the framework-res.apk does not specify a signature
for the com.google.android.webview package name. Nevertheless, it is impossible
to simply update it, as the install-time signature check is enforced, and an application
with this package name comes pre-installed. To circumvent this, we temporarily disable
the verification of application signatures on Android using the CorePatch module [63]
of the Xposed framework, build the custom WebView Provider with the package name
com.google.android.webview, and install it on the device. After the installation, we
re-enable the signature verification.

32

4.5. Dynamic Analysis

Userdebug Builds. Google waives some of the restrictions for userdebug builds
of Android, i.e., builds used for development purposes, for which Google also pro-
vides ready-to-use emulator images running Android with Google Mobile Services
(GMS). While this build type still only allows the usage of WebView providers with the
package names com.google.android.webview and com.google.android.webview.

[beta|dev|canary], the signature check at the time of setting the WebView provider is
disabled. The WebView provider can, therefore, be built with any of the above-mentioned
package names and installed on the device without any further modifications.

4.5.2 Hooked Website
A primary objective of this thesis is to examine the JavaScript code injected by applications
into web content. Since manual analysis of the injected JavaScript code is cumbersome,
we have established a controlled monitoring environment, i.e., a website that we control
and that monitors the actions performed by injected JavaScript code. This website is
always loaded by our custom WebView provider whenever a website is requested.

Serving the Website

The website is served by a web server running on the Android device. We implement
the custom web server as a separate application and rely on ktor [64], a framework
for building web servers in Kotlin. The application consists of an activity that can
be used to start and stop the server and a foreground service that keeps the server
running in the background, i.e., the web server runs even when the application is closed.
Compared to running an external web server, this has the advantage that we do not have
network-related overhead and can stick to a simple setup.

Recording Actions of the Injected JavaScript Code

Upon loading the website, we hook JavaScript functions that are interesting to us, such as
document.cookie. We do this as follows: For functions, we overwrite the original func-
tion with a new function that reports the function name along with the parameters passed
to it before calling the original function. For properties, we use Object.defineProperty
to overwrite the property’s getter and setter. This interception records any access or
modifications to the property, recording how the JavaScript manipulates and accesses the
web content. In cases where the function or property is defined on the object’s prototype,
we modify the prototype directly.

Additionally, we set up a MutationObserver within the window.onload function to
monitor any changes to the DOM2, enabling observation of how the document’s structure
changes.

We also implement a Content-Security-Policy (CSP) [66]. Although primarily a security
feature designed to mitigate XSS attacks by restricting resources the browser can load,

2The Document Object Model (DOM) represents the structure and content of a website [65].

33

4. IABInspect

we utilize it to monitor the JavaScript’s activities further. Our CSP prevents form
submissions, blocks all navigations on the page, and restricts URLs that can be accessed
via functions such as XMLHttpRequest or fetch to only allow the website’s origin. By
monitoring violations of this CSP, we can detect injected JavaScript code that attempts
to submit form data, navigate to other websites, or send data to external servers.

Furthermore, we register a Trusted Types policy [67], another security measure designed to
mitigate XSS attacks that works by ensuring that all data passed into sensitive functions,
such as Element.innerText or Element.innerHTML, is properly sanitized. For example,
a direct assignment, such as element.innerHTML = "<p>Paragraph</p>", would be
denied under this policy. However, the same content passed through a Trusted Types pol-
icy policy as in element.innerHTML = policy.createHTML("<p>Paragraph</p>"),
would be allowed. Monitoring and logging violations of this policy allow us to identify
such modifications.

In order to test whether the application actively seeks out login forms and attempts to
extract values, the website includes a fake login form with username and password fields.

We give a complete list of the monitoring capabilities of the hooked website in Table 4.2.

Reporting Actions

Whenever an action of interest occurs within the website, it initiates a POST request to
the web server hosting it. This request includes detailed information about the action
performed and the identifier of the WebView instance that loaded the website. This
identifier, previously passed to the website as a URL fragment, helps in tracking which
WebView instance is responsible for the action. Upon receiving a POST request, the server
logs the event using Log.i, informing the dynamic executor about the actions.

4.5.3 Dynamic Executor
The dynamic executor is the key component of the dynamic analysis phase, responsible
for driving the execution of the application towards the IAB launch calls. It also monitors
the interactions between the application and the web. The executor is implemented as a
Python script that employs the Android Debug Bridge (ADB) and the dynamic analysis
tool Frida for application interaction.

High-Level Overview

The dynamic executor begins by targeting one IAB launch call at a time. For each IAB
launch call, it follows the paths computed by the static analyzer, which outlines the exact
sequence of methods the application must execute to reach the call, along with necessary
interactions at each step, such as whether a button click is necessary or a specific activity
has to be launched. Therefore, it continuously monitors the functions executed by the
application and performs the required interactions. If the executor encounters an IAB
launch call, it queries and records the app-to-web interactions captured by the custom

34

4.5. Dynamic Analysis

Monitored Element Description
DOM Manipulation Monitoring

Hooking of Element.innerHTML, TT Monitors changes to the inner HTML content of elements.
Hooking of Element.outerHTML, TT Monitors changes to the outer HTML content of elements.
Hooking of HTMLFormElement.action Monitors changes to the action URL of form elements.

Hooking of HTMLIFrameElement.srcdoc Monitors changes to the source document of iframe ele-
ments.

Hooking of HTMLIFrameElement.src Monitors changes to the source URL of iframe elements.
Hooking of HTMLScriptElement.text Monitors changes to the text content of script elements.
Hooking of Element.insertAdjacentHTML, TT Monitors insertion of HTML content adjacent to elements.
Hooking of document.write(ln), TT Monitors calls to write new content into the document.
Hooking of Range.createContextualFragment Monitors creation of new DOM subtrees from strings.
Hooking of Element.setAttribute, TT Monitors changes to attributes of HTML elements.
Hooking of HTMLInputElement.value Monitors changes to the value of input elements.

Hooking of HTMLAnchorElement.href Monitors changes to the hyperlink reference of anchor ele-
ments.

Registration of MutationObserver Monitors changes to the DOM.
Data Exfiltration Monitoring

Hooking of document.cookie Monitors access to and modifications of cookies.
Hooking of window.postMessage Monitors messages sent between window contexts.
Hooking of XMLHttpRequest, CSP Monitors AJAX requests made by the browser.
Hooking of window.fetch, CSP Monitors fetch API requests made by the browser.
CSP Monitors insertions of a tags.
CSP Monitors the creation of WebSockets.
CSP Monitors usage of EventSource.
CSP Monitors calls to Navigator.sendBeacon.

Dynamic JavaScript Execution Monitoring
Hooking of document.cookie Monitors access to and modifications of cookies.
Hooking of window.postMessage Monitors messages sent between browser contexts.
Hooking of XMLHttpRequest Monitors HTTP requests made by the browser.

Hooking of window.fetch Monitors fetch API requests (e.g. HTTP requests) made
by the browser.

TT Monitors the usage of eval.
Event Monitoring

Hooking of EventTarget.addEventListener Monitors event listeners added to DOM elements or other
event targets.

Hooking of document.addEventListener Monitors event listeners added to the entire document.
Hooking of window.addEventListener Monitors event listeners added to the window object.
Hooking of document.onunload Monitors unload events on the document.
Hooking of window.onunload Monitors unload events on the window.
Hooking of HTMLFormElement.onsubmit Monitors form submission events.
Hooking of HTMLInputElement.onkey[down|

up|press]
Monitors key[down|up|press] events on input elements.

Hooking of document.onkey[down|up|press] Monitors key[down|up|press] events on the document.
Hooking of window.onkey[down|up|press] Monitors key[down|up|press] events on the window.
CSP Monitors form submission and navigation.

Table 4.2: Monitoring capabilities of the hooked website.

WebView provider and the JavaScript injections reported by the web server serving the
hooked website.

35

4. IABInspect

Following a Path

The static analyzer often generates a large set of potential paths, some of which may
include subpaths of others. Before following a path, we check whether the path is new,
i.e., whether we have already followed a path with the same beginning and got stuck
before the paths diverge. For instance, the analyzer may identify six paths to an IAB
launch call, all requiring the launch of the same activity, but the paths divert after the
activity launch. The application immediately crashes because the activity requires a
specific intent extra to be set that the analyzer does not know about. In this case, there
is no benefit in following all six paths since they all require the same interaction that
fails. We, therefore, skip such paths.

Furthermore, we prioritize resolved paths, i.e., those that start at an exported activity.
We only follow partially resolved paths, i.e., those starting at a non-exported activity, if
following all resolved paths did not lead to the IAB launch call. We do this because we
can guarantee that reaching an IAB launch call via a resolved path does not lead to a
false positive, whereas this guarantee does not hold for partially resolved paths.

For time reasons and to avoid getting stuck on a path, we set a timeout for each path
to 4 minutes. Furthermore, we restrict our exploration to 20 resolved and 20 partially
resolved paths for each IAB launch call.

Progress and Application Monitoring

We continuously monitor the execution of the application while we follow a path. In
specific, we monitor three aspects: (1) the functions of the application that are executed,
(2) IAB launches, and (3) IAB interactions. Since all of these information are logged, we
can use the logcat [68] command line tool of the Android Debug Bridge (ADB), which
is part of the Android SDK, to read these them from the device.

Monitoring Function Calls. In order to determine whether the execution of the
application is on track with the path that we are following and update the path progress
accordingly, we monitor the functions executed by the application. In the instrumentation
phase, we instrumented the application by adding logging statements to the beginning of
the functions that are on our path, which the dynamic executor can now read from the
device’s log.

Monitoring IAB Launches. The instrumented application contains a log statement
that is logged when an IAB launch call is triggered. This log statement contains a unique
identifier that allows us to determine which IAB launch call has been triggered and that
we can read.

Monitoring IAB Interactions. We also query the IAB interactions that have been
performed. These come from two sources: the web server that serves the hooked website
and the custom WebView provider. While the web server logs the actions of the JavaScript

36

4.5. Dynamic Analysis

code injected into the hooked website, the custom WebView provider logs the app-to-web
interaction API usage. In case the log statement suggests that the log line was too long,
meaning that the custom WebView provider created a temporary file on the device to
store the log line, we pull this file from the device using ADB and reconstruct the log
line.

Interacting with the Application

When we encounter a step along the path that requires an interaction, such as clicking
a button, we execute this interaction. In IABInspect, such interactions are modeled as
Actions. One interaction might lead to multiple possible actions. For example, several
buttons may activate the same callback method, but only one may lead to the desired
IAB launch call. Every possible button click is therefore modeled as an action, i.e., an
action is a specific instance of an interaction we can perform.

Whenever we determine the possible actions of a required interaction, we add these to the
Action Queue. The action queue can be considered the set of “to-do” actions. Whenever
the execution is stuck on a path, the dynamic executor takes the first action from the
action queue and performs it, hoping that this action will lead to progress in the path.
Conceptually, this is similar to a breadth-first approach, where we explore all possible
actions that can be performed at a given application state before moving on to the next
state.

One challenge arises when an action fails to advance the path, requiring recovery from
this detour. Simple strategies like pressing the back button may work if a new activity
is initiated but fail in other scenarios, such as when a button click starts a video. In
such cases, pressing back may lead to unexpected behaviors. To address this, we adopt a
more comprehensive strategy. Along with determining possible actions for a required
interaction, we also record the sequence of events that led to the current application
state, referred to as the Transition Path. An action is, therefore, always associated with
a specific application state defined by the transition path. If an action is about to be
performed, we verify that the application is in the correct state. If not, we revert the
application to the correct state using the transition path and then perform the action.

A transition path comprises a sequence of transitions, each involving a source screen, a
target screen, and an action. A screen is defined by the currently displayed activity and
its clickable elements. We use the uiautomator2 library to retrieve the XML layout
of the current screen and identify its clickable elements. Since we noticed issues with
this approach when WebViews are involved, we exclude clickable elements that are part
of a WebView. To determine the displayed activity, we use the adb shell dumpsys

activity activities command.

To revert an application to a specific state, we restart the application and perform each
action in the transition path. For UI interactions, we may have to wait until a specific
screen is displayed. Therefore, we continuously cross-check the current screen with the

37

4. IABInspect

screens in the transition path, waiting for the correct screen to be displayed and then
performing the action.

We distinguish between two types of possible interactions: system interactions and UI
interactions, which we will discuss in the following sections.

System Interactions

A system interaction is an interaction that requires the application to interact with the
Android system. Currently, we only support launching activities as system interactions.
When a system interaction is required, we first check whether the target component to
launch requires any intent extras. Fortunately, the static analysis phase provides this
information. From the static analysis, we know the intent extras’ names and their data
types. The activity to launch may require intent extras to be set to be started, or it may
implement conditional logic based on the intent extras. For example, an activity may
take a URL as a string extra and only launch a WebView if the URL is not empty or
starts with https://. Therefore, we need to supply values for the intent extras. First,
since we noticed that applications heavily rely on the use of the url intent extra, we
supply this intent extra in every launch. We do this to increase the chances of triggering
an IAB, even when the static analysis did not detect the use of such an intent extra.
Second, we use a simplified fuzzing strategy.

Fuzzing of intent extras. We use a simplified fuzzing strategy and add common
values for each data type as intent extras. Specifically, we create all possible combinations
of intent extras based on the data types and values depicted in Table 4.3. For instance,
if a target activity TargetActivity takes a boolean extra open and a string extra web,
we add four actions to the action queue:

• (TargetActivity, {open: true, web: "https://44website66.com"})

• (TargetActivity, {open: true, web: "44String66"})

• (TargetActivity, {open: false, web: "https://44website66.com"})

• (TargetActivity, {open: false, web: "44String66"})

Performing system interactions. Although intents can be sent and activities
launched using ADB with the am command, which also supports sending intent ex-
tras such as strings, integers, or booleans, we opt not to use this method. ADB is limited
to launching only exported activities. Instead, to also launch non-exported activities, we
utilize Frida to send the intent. Specifically, we dynamically instrument the application
to call the startActivity method from the currently opened activity and pass in any
required intent extras.

38

4.5. Dynamic Analysis

Extra data type Values
boolean true, false
String “https://44website66.com”, “44String66”
int 0, 1
float 1.0
long 1
short 1
char ’a’
byte 1

Table 4.3: Intent Extras

UI Interactions

Android applications use event handlers to react to user inputs. To react to button clicks,
application developers have two options: they can implement a predefined interface that
reacts to button clicks, e.g., View.OnClickListener and then set the button’s click
listener to an instance of the implemented interface, or they can define the click handler
in the XML layout file. In the latter case, the click handler is defined as an attribute of
the button element, e.g., android:onClick="onButtonClick".

Whenever a step in the path requires a UI interaction, the static analyzer provides the
callback method that needs to be triggered. A naive approach would be directly calling
the respective callback method dynamically, e.g., using Frida. This has some drawbacks,
however. These callback methods take the View that was clicked as an argument. Since
we do not know which View needs to be clicked, and the callback method may use the
View to perform some action, we cannot simply call the callback method directly. Instead,
we need to find the specific View that needs to be clicked. Statically determining the
specific View that calls a specific callback is challenging and leads to inaccurate results.
Instead, we dynamically determine the specific View that needs to be clicked.

To do so, we first use uiautomator2 to get all of the clickable Views on the current
screen. We then use Frida to overwrite all click listeners in the application with a custom
click listener. We then click all the clickable Views on the screen using uiautomator2,
which gives us a mapping between Views and click listeners. After this process, we remove
the overwritten methods and create an action for each clickable View that triggers the
required callback method, which we add to the action queue.

The callback method is not directly called for applications that use the AndroidX library
and those that specify the callback method in XML. Instead, the onClick method of the
androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener is
called. This listener then dynamically searches for the respective method to call. In
this case, we cannot simply overwrite this intermediate callback. Instead, we need to
instrument it and dynamically retrieve the target method call using Frida.

39

4. IABInspect

IABInspect currently only supports clicks on Views. Other UI interactions, such as
swipes or taps, are not supported.

40

CHAPTER 5
Evaluation and Limitations

In this chapter, we evaluate our prototype tool, IABInspect, focusing on its ability to
accurately trigger IABs that are reachable in real-world scenarios while avoiding launching
those that are not. A reliable evaluation of IABInspect’s overall false negatives requires
a ground truth of all reachable IABs within an application, which is not available for our
dataset. Establishing such a ground truth without access to the application’s source code
is challenging and not only laborious but also prone to errors, especially considering that
applications may include various forms of obfuscation to hide code or hidden triggers
activated only under specific conditions.

Given these challenges and considering IABInspect’s primary objective to minimize false
positives, we do not attempt a full evaluation of the tool’s overall false negatives. Instead,
we focus on assessing its precision, which is defined as the ratio of correctly triggered
IAB launch calls to the total number of IAB launch calls triggered. Nevertheless, by
tracking why the dynamic analysis phase failed to trigger a reachable IAB call for which
a path could be found, we can pinpoint and understand the current limitations of the
dynamic analysis phase in triggering IABs.

Even though we do not conduct a detailed evaluation of the tool’s overall false negatives,
we also discuss potential limitations of the static analysis phase that may lead to false
negatives in IABInspect later in this section.

5.1 Evaluation
From our dataset of applications, which we run IABInspect on in Chapter 6, we randomly
select 10 applications that were successfully processed. We restrict our selection to
applications that meet two criteria: each application must contain at least one IAB
launch call that was identified by the static analyzer but not triggered during the dynamic
analysis phase and at least one IAB launch call that was successfully triggered. This dual

41

5. Evaluation and Limitations

selection criterion allows us to comprehensively evaluate both the static and dynamic
analysis phases simultaneously.

5.1.1 Static Analysis Phase
For each application in our sample, we manually analyze the IAB launch calls for which
the static analyzer identified a path. This is done to determine whether these launch
calls are indeed reachable in a real-world scenario, i.e., are true positives, or whether
the static analyzer falsely identified them as reachable, i.e., they are false positives. We
define a call as reachable if it can be triggered on an actual device, specifically a Pixel
4a running Android 13, which represents the testing environment used throughout this
thesis. If we encounter a false positive, we analyze the reason for this.

To verify the reachability of each IAB launch call, we employ a combination of manual
reverse engineering and code inspection, supplemented by manual UI fuzzing. The
latter technique involves interacting with the application’s user interface to trigger the
IAB launch call. If we cannot conclusively determine a call’s reachability through code
inspection, e.g., due to heavy obfuscation of the code, and we cannot trigger it through
manual fuzzing, we consider it as not reachable. We explicitly highlight such cases in our
evaluation.

Among the 10 selected applications, the static analyzer found paths to 45 IAB launch
calls. Out of these, 35 IAB launch calls were correctly identified as reachable. In contrast,
10 were inaccurately identified as reachable, resulting in a precision1 of 77.8%. The
results of our manual analysis of the static analysis phase are presented in Figure 5.1.

Reasons for False Positives

Various factors led the static analyzer to identify paths to IAB launch calls that were not
actually reachable in our sample. We identified the following reasons.

Device and version-specific functionality. Two IAB launch calls were behind checks
for device-specific functionality or a specific version. In one case, the IAB launch call
could only be triggered on devices with a specific version of the WebView installed, while
in the other case, the IAB launch call was only reachable on devices with a specific screen
size, both of which were not met in our testing environment.

Conditional logic in code. Applications can include conditional checks that block
the execution of IAB launch calls unless specific variable values are met. We identified
four such IAB launch calls in our sample, for which the conditions to trigger these calls
were never satisfied. This, among others, occurred in scenarios where the IAB launch call
was located within a library and depended on the usage of a specific library functionality.
However, the functionality was never used in the app.

1Precision is defined as precision = T P
T P +F P

, where T P denotes the true positives, and F P the false
positives.

42

5.1. Evaluation

Partially resolved path Fully resolved path

Path identifed by static analysis

R
e
a
c
h
a
b
le

N
o
t

re
a
c
h
a
b
le

R
e
a
c
h
a
b
le

 i
n
 r

e
a
l-

w
o
rl

d
 s

e
tt

in
g

21 14

2 8

Heatmap of IAB Launch Call Reachability (Static Analyzer)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 5.1: Heatmap of IAB launch call reachability in the dynamic analysis phase. The
x-axis categories represent the path type identified in the static analysis and the y-axis
represents reachability in a real-world scenario. The cell numbers indicate the count of
IAB calls in each category.

Class inheritance. In one case, the method containing the IAB launch call was
overwritten by a subclass, making the original method in the superclass obsolete. The
static analyzer did not accurately model this.

Unknown but not manually triggered. In two cases, we could not determine the
exact reason why the IAB launch call was not reachable due to heavy obfuscation, but
could not trigger the IAB launch call by manual fuzzing.

5.1.2 Dynamic Analysis Phase
For every IAB launch call triggered by the dynamic analysis phase and where a path
was found in the static analysis phase, we check whether we previously flagged the IAB
launch call as reachable in a real-world scenario. If we find a discrepancy between our
manual analysis and the results of the dynamic analysis phase, we analyze the reasons for
this. This evaluation helps us assess the precision and effectiveness, including limitations
of the dynamic analysis phase in triggering IAB launch calls.

Out of 20 IAB launch calls triggered by the dynamic executor, only one was not reachable

43

5. Evaluation and Limitations

Triggered
via partially resolved path

Triggered
via fully resolved path

Not triggered

Path type by which the IAB launch call was triggered

R
e
a
c
h
a
b
le

N
o
t

re
a
c
h
a
b
le

R
e
a
c
h
a
b
le

 i
n
 r

e
a
l-

w
o
rl

d
 s

e
tt

in
g 8 11 16

1 0 9

Heatmap of IAB Launch Call Reachability (Dynamic Analyzer)

0

2

4

6

8

10

12

14

16

Figure 5.2: Heatmap of IAB launch call reachability in the dynamic analysis phase. The
x-axis categories represent the path types identified in the static analysis and the y-axis
represents reachability in a real-world scenario. The cell numbers indicate the count of
IAB calls in each category.

in a real-world scenario, resulting in a false positive. Conversely, 10 IAB launch calls were
correctly identified as not reachable, i.e., the IAB launch calls were indeed not reachable
in a real-world scenario.

The dynamic analysis phase achieved a precision of 95% and a recall2 of 54% (based on
the results of the static analysis phase), therefore significantly reducing the number of
false positives compared to the static analysis phase. The results of this evaluation are
depicted in Figure 5.2.

Reasons for False Positives

False positives in the dynamic analysis phase can only occur when following a partially
resolved path, i.e., whenver we launch an activity that is not exported. In real-world
scenarios, these activities might not be used at all or only in conjunction with specific
values for intent extras. The dynamic executor, however, launches each activity for which
a partially resolved path can be found and supplies arbitrary intent extras, which can
trigger code paths that would not normally be executed under standard application usage,
leading to false positives.

2Recall is defined as recall = T P
T P +F N

, where T P denotes the true positives, and F N denotes the
false negatives.

44

5.1. Evaluation

In our sample, we encountered one such false positive. The dynamic executor followed a
partially resolved path and launched an activity listed in the application’s manifest. The
purpose of the activity was to be used by developers to test certain functionalities, but it
was never called from the application code.

Reasons for False Negatives

The dynamic executor was not able to trigger 4 IAB launch calls that were flagged as
reachable and for which the static analyzer could find a path. This discrepancy helped
us identify several limitations in the dynamic analysis phase.

System interaction not modeled. The dynamic analyzer is limited to triggering
activities only. Reaching some IAB launch calls requires more complex interactions, such
as pressing the back button (onBackPressed) or any hardware key (onKeyDown). Two
IAB launch calls could not be reached because the dynamic executor lacked the capability
to simulate these interactions.

App crash due to instrumentation. Instrumentation issues with the underlying
tool, Soot, can lead to unstable APKs. The application may crash before reaching the
IAB launch call in such cases. One IAB launch call was not triggered due to this issue.

UI interaction not modeled. Currently, the dynamic executor only supports trigger-
ing UI interactions through button clicks (onClick) and clicks on list items onItemClick.
Other UI callbacks like onItemSelected, which may be necessary for triggering specific
IAB launches, are not supported. This limitation prevented three IAB launch calls from
being triggered.

Incomplete identification of intent extras. While we use ICCBot to identify intent
extras required by an activity, it may not always correctly identify all necessary extras. If
an application checks for null values in the intent extras and the required extra is missing,
the specific code path leading to an IAB launch will not execute. This issue affected two
IAB launch calls.

Specific value of intent extras not provided. Applications may also require specific
values within intent extras, such as a particular URL or integer value. Additionally, our
current setup does not support parcelables within intent extras. These constraints led to
three IAB launch calls not being triggered due to incorrect intent extra values.

Web action required. Specific IAB launch calls may also be called only in response
to a web action, such as when the web content logs a specific output, the website takes
too long to load, or cannot be loaded. Since our hooked website does not simulate these
conditions, five IAB launch calls requiring such triggers were not triggered.

45

5. Evaluation and Limitations

5.2 Static Analysis Limitations
We discuss possible limitations of the static analyzer that may lead to false negatives in
IABInspect. False negatives occur when IABInspect fails to trigger an IAB launch call
present in the application even though it is reachable. The static analysis phase lays the
groundwork by generating blueprints that guide the dynamic analysis into executing the
IABs. Unfortunately, static analysis, particularly in Android applications, is known for
its inherent imprecision.In IABInspect, the following limitations of the static analysis
phase may lead to false negatives.

Reflection. Android applications may invoke methods using reflection. Reflection, a
feature inherent to Java, enables developers to dynamically inspect, modify, and access
objects and invoke methods during runtime. Due to the dynamic nature of method
invocation, where the method name may only be known at runtime, static analysis tools
encounter challenges in resolving the call target. Soot and FlowDroid, serving as the under-
lying tools, offer support for reflection when using SPARK as the underlying pointer analy-
sis and configuring InfoFlowAndroidConfiguration.setEnableReflection(true),
as IABInspect does. Consequently, our tool can handle straightforward instances of
reflection like the one mentioned above. However, more intricate scenarios involving
reflection, such as cases where the string containing the method name is encrypted, as is
typically used for obfuscation, are unsupported, thus rendering IABInspect incapable of
resolving the call target in such situations.

Dynamic code loading. In addition to reflection, Android applications can load
code dynamically at runtime through the DexClassLoader class. This class enables
the loading of classes from locations external to the application’s APK file. Since these
dynamically loaded classes are not part of the APK, they are not considered by the static
part of IABInspect and can thus not be targeted by the dynamic executor. Nevertheless,
the dynamic executor can capture the IAB calls from dynamically loaded code if triggered
during the run. It is worth noting that applications distributed via the Google Play Store
are not allowed to download executable code from sources other than Google Play [69].
Instead, these apps must use Play Feature Delivery, in which split APKs are downloaded
from the Google Play Store on-demand [70]. However, our tool currently does not address
the analysis of such on-demand loaded APKs.

Native methods. Android applications can also be (partially) developed in C and
C++ code. This code can then be called via the Java Native Interface (JNI). Since we
rely on Soot and FlowDroid, which are targeted at analyzing Java code, we are unable to
analyze such native code.

Android-specific callbacks and events. Android applications are event-driven, i.e.,
the application’s code is executed in response to events, such as user interactions like a
button click or system events such as an incoming text message. Statically detecting all

46

5.2. Static Analysis Limitations

possible events that need to be triggered is inherently difficult for Android applications.
Even though we rely on FlowDroid, a state-of-the-art static analysis tool for Android
that models the Android lifecycle and considers the peculiarities of Android applications,
we may still fail to detect some Android-specific callbacks.

Inter-component communication and fragments. As previously discussed, Inter-
Component Communication (ICC) plays a vital role in Android applications, and we
integrate ICCBot into IABForce to capture ICCs. Despite ICCBot being a state-of-the-
art tool for ICC analysis, it is not flawless and may miss connections. Furthermore,
since FlowDroid’s capabilities of modeling fragments are limited, and ICCBot, in reality,
supports fragments only to a limited extent, we may miss IABs that are triggered inside
fragments.

47

CHAPTER 6
Results

In this chapter, we apply IABInspect to a dataset of 1,000 popular Android applications.
We begin by discussing the dataset of applications we analyzed. This is followed by a
presentation of our evaluation setup. We then discuss the results of our analysis and
illustrate the use of app-to-web interactions with case studies.

6.1 Application Dataset
Since no comprehensive listing of applications is available on the Google Play Store, we use
AndroZoo [71], a collection of Android applications aimed at helping researchers conduct
reproducible experiments. AndroZoo is operated by the University of Luxembourg and
contains, as of February 2024, over 24M applications.

To ensure our dataset includes only relevant and widely used applications, we cross-
checked the applications in AndroZoo with those available on Google Play, selecting only
those also present on Google Play. Further, we narrowed our selection to applications
with over 1 million downloads, resulting in a list of 61, 263 applications.

Out of those applications, we were able to download 46,441 applications (75.8%) suc-
cessfully using gplaycrawler [72]. Note that the reasons for failed downloads could be
due to restrictions on the availability of the application, such as on the Android version
of the device used, the device’s architecture, missing hardware features, or geolocation
restrictions, e.g., the application is not available in a specific country1.

Most of these applications (34,863) were distributed as split APKs. We attempted to
merge these split APKs into single APK files. This process failed for 19 applications,
leaving us with a dataset of 46, 422 applications.

1For our experiments, we simulated the use of a Google Pixel 4 running Android 13 (API level 33)
based in Austria.

49

6. Results

Due to the considerable amount of time required to analyze each application and hardware
constraints, we randomly selected 1,000 applications from the dataset on which we ran
IABInspect and left the analysis of the other apps for future work.

6.2 Experiment Setup
The experimental setup is divided into two main parts: the static analysis phase, including
the instrumentation of the apps, and the dynamic analysis phase, each executed on
different machines.

Static Analysis. We perform the static analysis on a server running Ubuntu 22.04
equipped with 112 AMD EPYC 7702 cores and 298 GB of RAM. We optimize the use
of this system by concurrently running 18 instances of IABInspect, with each instance
allocated 16 GB of RAM. Furthermore, we set a timeout of 120 minutes to analyze an
application.

Dynamic Execution. For dynamic execution, we use an Apple Mac Mini that operates
an Android emulator, simulating a Pixel 4a running Android 13 (API level 33) with
Google Mobile Services. We opted for an emulator rather than a physical device primarily
for reproducibility and stability. First, an emulator ensures that other researchers
can precisely replicate the testing environment. Second, when using Frida with the
instrumented applications on physical devices, we encountered stability issues. These
issues were not present when using an emulator.

6.3 Static Analysis
The static analysis phase of IABInspect timed out for 247 applications, leaving us with
753 applications (75.3%). Additionally, the analysis failed for 158 applications due to
exceptions within the analysis pipeline. Among these failures, 115 are due to issues with
Soot and FlowDroid, while 43 resulted from problems specific to IABInspect. As a result,
we are left with 595 applications (59.5% of the original dataset) that successfully passed
through the static analysis. A graphical representation of the static analyzer’s success
rate is shown in Figure 6.1.

IAB Launch Calls

Our static analyzer identified IAB launch calls, i.e., calls to a WebView’s loadUrl,
loadData, loadDataWithBaseURL, or postUrl method, in 552 of the applications
analyzed (92.8%). Only 33 applications did not contain any detectable IAB launch calls.
The distribution of IAB launch calls per application is illustrated in Figure 6.2. On
average, each application contained on average 25 IAB launch calls, though this number
varied widely, with a maximum of 190 IAB launch calls found in a single application.

50

6.3. Static Analysis

All applications (1000)

Successfull static analysis (595)

Soot/FlowDroid error (115)

Other error (43)

Timeout (247)

Success Rate of the Static Analysis

Figure 6.1: Success rate of the static analysis. 595 applications could be successfully
statically analyzed.

IAB Launch Method # call sites # applications
absolute relative absolute relative

WebView.loadUrl(String) 9,963 67.10% 546 93.34%
WebView.loadUrl(String, Map) 347 2.34% 149 25.47%
WebView.loadData 1,160 7.81% 470 80.34%
WebView.loadDataWithBaseURL 3,191 21.49% 503 85.98%
WebView.postUrl 186 1.25% 108 18.46%

Table 6.1: Distribution of IAB launch methods as determined by the static analyzer.
Note that one application can contain multiple IAB launch calls.

The breakdown of the specific methods used for these IAB launch calls is detailed in
Table 6.1. The most commonly used method was WebView.loadUrl(String), which
appeared in 546 applications, accounting for 67.10% of all calls identified. In contrast,
WebView.postUrl was the least common, found in 108 applications.

Figure 6.3 shows the sources of the IAB launch calls, i.e., the locations where the calls
are made. As can be seen in the figure, the majority of calls originate from third-party
libraries embedded in applications. The top 20 libraries are responsible for more than
50% of all IAB calls that the static analyzer could detect. The sources where the IAB

51

6. Results

0 25 50 75 100 125 150 175

IAB launch calls per application

16.0

Distribution of IAB launch calls per application

Figure 6.2: Distribution of IAB launch calls per application.

launch calls originate can be categorized into the following groups.

Advertisement and analytics libraries. Advertisement and analytics libraries are
responsible for the absolute majority of IAB calls. The most common library is the
Google Mobile Ads SDK (com.google.android.gms.internal.ads and com.google.

android.gms.ads.internal). Other libraries include the Meta Audience Network
(com.facebook.ads) and the AppLovin MAX SDK (com.applovin).

IAB libraries. These libraries provide an IAB and serve as a wrapper around the
Android WebView. A common library in this category is React Native Webview
(com.reactnativecommunity.webview), which provides a WebView component for
React Native applications.

Other libraries. Other libraries, such as the Unity Services Core SDK (com.unity3d.
services.core) and SafeDK (com.safedk.android) cannot be categorized into the
previous two groups. The Unity Services Core SDK library provides core services for
Unity games, while SafeDK is a tool that helps developers manage third-party SDKs in
their applications.

Others. This category encompasses other sources of IAB launch calls. It includes calls
from the application itself but also calls from less commonly used libraries that are not
part of those displayed in the figure.

Path Determination

The static analyzer processed a total of 14,847 IAB launch calls, out of which it computed
a path for 1,526 calls. Of these, 712 paths were fully resolved, starting at an exported

52

6.3. Static Analysis

o
th

e
rs

c
o

m
.s

a
fe

d
k
.*

 (
3

.4
%

)

c
o

m
.u

n
it
y
3

d
.s

e
rv

ic
e

s
.c

o
re

.*
 (

2
.2

%
)

c
o

m
.r

e
a

c
tn

a
ti
v
e

c
o

m
m

u
n

it
y.

w
e

b
v
ie

w
.*

 (
0

.9
%

)

c
o

m
.g

o
o

g
le

.a
n

d
ro

id
.g

m
s
.i
n

te
rn

a
l.
a

d
s
.*

 (
1

8
.9

%
)

c
o

m
.a

p
p

lo
v
in

.*
 (

9
.3

%
)

c
o

m
.f

a
c
e

b
o

o
k
.a

d
s
.*

 (
6

.5
%

)

c
o

m
.i
a

b
.o

m
id

.*
 (

5
.1

%
)

c
o

m
.g

o
o

g
le

.a
n

d
ro

id
.g

m
s
.i
n

te
rn

a
l.
c
o

n
s
e

n
t_

s
d

k
.*

 (
4

.0
%

)

c
o

m
.u

n
it
y
3

d
.s

e
rv

ic
e

s
.a

d
s
.*

 (
3

.1
%

)

c
o

m
.i
ro

n
s
o

u
rc

e
.*

 (
2

.9
%

)

c
o

m
.g

o
o

g
le

.a
n

d
ro

id
.g

m
s
.a

d
s
.i
n

te
rn

a
l.
*

(2
.1

%
)

c
o

m
.f

y
b

e
r.

in
n

e
ra

c
ti
v
e

.*
 (

2
.1

%
)

c
o

m
.m

b
ri
d

g
e

.*
 (

2
.1

%
)

c
o

m
.k

id
o

z
.*

 (
2

.0
%

)

c
o

m
.t

a
p

jo
y.

*
(1

.8
%

)

c
o

m
.i
n

m
o

b
i.
*

(1
.4

%
)

c
o

m
.v

u
n

g
le

.*
 (

0
.7

%
)

O
th

e
rs

O
th

e
r

L
ib

ra
ry

IA
B

 L
ib

ra
ry

A
d

 L
ib

ra
ry

T
o

p
 O

ri
g

in
s

 o
f

IA
B

 L
a

u
n

c
h

e
s

Fi
gu

re
6.

3:
So

ur
ce

s
of

IA
B

la
un

ch
ca

lls
de

te
rm

in
ed

by
th

e
st

at
ic

an
al

yz
er

.

53

6. Results

activity, while 814 were partially resolved, beginning at an activity that is not necessarily
exported. For 5,648 launch calls, the static analyzer could not determine any path.

Due to timing restrictions and to maintain manageable analysis times, we exclude specific
commonly used libraries that contain IAB launch calls from the path-finding process.
These libraries, once embedded, function identically across all applications and can later
be manually analyzed. Therefore, they are not the focus of our study. Table 6.2 lists the
libraries we omitted from our analysis2.

7,679 call sites were ignored in the path-finding process because they were located in
libraries excluded from our analysis. An illustration of the distribution of the path types
computed per application is presented in Figure 6.4.

Library Package Name
Google Play Services com.google.android.gms

Google Mobile Ads com.google.ads

Facebook Audience Network com.facebook.ads

Chartboost com.chartboost.sdk

Unity 3D Ads com.unity3d.services.ads

SafeDK com.safedk.android

AppLovin com.applovin

AerServ com.aerserv.sdk

IronSource com.ironsource.sdk

Braze com.appboy

Adobe Experience Platform com.adobe.marketing

Table 6.2: Libraries excluded from path-finding process.

6.4 Dynamic Executor
The dynamic executor attempted to trigger IAB launch calls in all but 90 applications
where the static analyzer succeeded. These 90 applications were skipped since either
no IAB launch calls could be identified in the app or the static analyzer only identified
IAB launch calls that are located in excluded libraries. In total, the dynamic executor
followed 2,546 paths computed by the static analyzer. This process led the dynamic
executor to trigger 508 IAB launch calls across 196 applications.

Figure 6.5a categorizes these triggered calls by their path types as determined statically:
97 of the triggered IAB launch calls were resolved and 180 were partially resolved.
Additionally, the dynamic executor triggered 171 IAB launch calls for which the static

2To match a method to a library, we use the method’s signature. If the method’s signature,
such as com.facebook.ads.AdView.loadAd matches the package name of a library, such as
com.facebook.ads, we consider the method to be part of the library.

54

6.5. App-to-Web Interactions

0 5 10 15 20 25 30 35 40

IAB call sites per application

2.0

2.0

7.0

11.0

Distribution of Path Types of IAB launch calls per application

Resolved path found

Partially resolved path found

No path found

Ignored

Figure 6.4: Distribution of the path type determined by the static analyzer for IAB
launch calls per application.

analyzer had skipped the path-finding process and another 60 for which no path had
been found.

The statically-determined path type does not necessarily reflect the circumstances under
which the IAB launch calls were triggered. For example, even though a resolved path
could be found to an IAB launch call, the dynamic executor may not have been able to
trigger it while following this path but while following a partially resolved path to the
same call. Moreover, IAB launch calls may be triggered “coincidentally”. This is the case
when the dynamic executor follows a path intended for an IAB launch call but triggers
another IAB launch call on the way.

Figure 6.5b illustrates the circumstances under which IAB launch calls were triggered.
A majority, 167, were coincidentally triggered while the dynamic executor followed a
partially resolved path intended for another IAB call launch. Another 141 calls were
triggered under similar conditions but while following a resolved paths. The fewest, 41,
were directly triggered by following a resolved path.

6.5 App-to-Web Interactions
This section explores the interactions between applications and the web content. We start
by analyzing the content loaded in the IABs, followed by a discussion of the application’s
API usages. An overview of the API usages in IABs across the analyzed applications is
shown in Table 6.3.

55

6. Results

WebView API # Applications
Loading Content

WebView.loadUrl(String) 187
WebView.loadDataWithBaseUrl 82
WebView.loadUrl(String, Map) 21
WebView.loadData 4
WebView.postUrl 3
WebView.reload 2
WebView.restoreState 1

Interacting with Cookies
CookieManager.getCookie 100
CookieManager.setAcceptThirdPartyCookies 21
CookieManager.setAcceptCookie 19
CookieManager.flush 17
CookieManager.setCookie 8
CookieManager.removeAllCookies 5
CookieManager.removeSessionCookies 3
CookieManager.setAcceptFileSchemeCookies 2
CookieManager.removeAllCookie 1

Influencing Requests
WebSettings.setUserAgentString 126
WebView.setBlockNetworkImage 25
WebView.loadUrl(String, Map) 21
WebView.setBlockNetworkLoads 22

Using JavaScript
WebSettings.setJavaScriptEnabled 213
WebView.addJavascriptInterface 155
WebView.loadUrl(javascript:) 39
WebView.evaluateJavascript 22

Others
WebSettings.setSavePassword 106
WebSettings.setSaveFormData 25
WebView.clearFormData 2
WebView.clearCache 15

Table 6.3: Usage of app-to-web interaction APIs.

56

6.5. App-to-Web Interactions

ignored partially resolved resolved unresolved

Static resolution type

0

25

50

75

100

125

150

175

200

IA
B

 l
a
u
n
c
h
 c

a
lls

171
180

97

60

Triggered IAB launch calls by static resolution type

(a) Triggered IAB launch calls by their static resolution type.

coincidentally triggered
on partially resolved path

coincidentally triggered
on resolved path

triggered via following
partially resolved path

triggered via following
resolved path

Dynamic triggering method

0

25

50

75

100

125

150

175

200

IA
B

 l
a
u
n
c
h
 c

a
lls

167

141

159

41

Triggered IAB launch calls by dynamic triggering method

(b) Triggered IAB launch calls by their dynamic triggering method.

Figure 6.5: Overview of triggered IAB launch calls by static resolution type and their
triggering methods during dynamic execution.

6.5.1 Loading Content

We find multiple app-to-web interaction APIs used to load web content. While we
have already described the loadUrl, loadData, loadDataWithBaseUrl, and postUrl

methods, we also consider the reload and restoreState methods. The reload method
is used to reload the current URL, while the restoreState method is used to restore
the state of the WebView from a previously saved state.

To analyze the content that is actually loaded, we consider the parameters of the
calls to the loadUrl, loadData, loadDataWithBaseUrl, and postUrl methods. The

57

6. Results

Content in IAB # call sites # applications
googleads.g.doubleclick.net 210 108
file: URL 177 34
about:blank 124 123
Data passed as HTML 82 82
ws.tapjoyads.com 67 6
URL passed in intent extra 50 48
JavaScript code 46 40
null 27 27
empty string 14 13
cdn2.inner-active.mobi 13 13

Table 6.4: Top 10 loaded content in IABs.

majority of the loaded content originates from the domain, specifically googleads.g.

doubleclick.net. Other frequently encountered domains include ws.tapjoyads.com

and about:blank, the latter indicating the loading of a blank page.

Table 6.4 shows the top 10 content loaded in the IABs across the analyzed applications,
categorized by the number of associated IAB launch calls. For calls made via loadData

and loadDataWithBaseUrl methods, we extract the content type of the data passed to
the WebView. Loading of null or an empty string may indicate that the application
requires an intent extra to be set, which our dynamic analyzer could not provide. 48
applications loaded the website that we provided in the intent extra, indicating that the
IAB may be used to display arbitrary user-defined web content.

6.5.2 Interacting with Cookies
Applications can interact with websites loaded in them in terms of cookies, i.e., they can
read, set, and remove cookies and can define the behavior of the WebView with respect
to cookies. To do so, applications can use the CookieManager [28] class.

Reading Cookies. In our dataset, 100 applications read cookies from the Web-
View. The applications read cookies from 75 unique URLs on 39 unique domains.
Cookies from googleads.g.doubleclick.net are the most frequently read, with
81 applications reading cookies from this domain. 6 applications read cookies from
codepush.appcenter.ms. Other commonly accessed domains include facebook.com,
crashlyticsreports-pa.googleapis.com, and graph.facebook.com.

Setting Cookies. Compared to reading cookies, setting cookies is less common. Only
8 applications set cookies using the CookieManager.setCookie method on 15 unique
URLs and 10 unique eTLD+1s. Each URL is used by only one application, which include,
among others, gatr.hit.gemius.pl, www.myprotein.com, and ebank.msb.com.vn.

58

6.5. App-to-Web Interactions

Other Cookie Interactions. Applications can also remove cookies from the Web-
View using the CookieManager.removeAllCookie method and the CookieManager.

removeAllCookies method, which 6 applications use. Note that the former has been
deprecated since Android 5.0. Session cookies, i.e., cookies without an expiration date,
are removed by 3 applications.

Applications embedding WebViews can also set specific cookie policies. Using the
CookieManager.setAcceptCookie method, 19 applications explicitly set whether the
WebView should accept and send cookies. The default behavior of a WebView is to
accept cookies. Interestingly, none of these applications change the default behavior but
rather set it to true explicitly.

If cookies, in general, are allowed, applications can also specify whether cookies are
allowed when a file scheme URL or third-party cookies are allowed. For the former, the
default behavior is to allow such cookies. Even though applications explicitly use APIs
to set this policy, they do not overwrite the default behavior, which is to send and accept
cookies from file scheme URLs. For third-party cookies, the default behavior varies. For
applications that target Android 5.0 or later, the default behavior is to deny third-party
cookies. Previous Android versions, by default, accept them. All except one application
that uses this API explicitly set the policy to accept third-party cookies to true.

If cookies should be stored across sessions, the CookieManager.flush method can be
used to save them to storage. 17 applications use this method.

6.5.3 Modifying Requests

Applications can also modify the requests made by the WebView. It is possible to
explicitly set the user agent using the WebSettings.setUserAgentString method, out
of which 105 applications make use of this feature. The website loaded in the WebView
can also be loaded with extra headers using the loadUrl method. 21 applications use
this feature.

The application can pass additional HTTP headers to the server when web content is
loaded into an IAB using the loadUrl(String,Map) method. Our analysis finds 21
applications using this pattern. Based on our analysis, the injected headers are not
standard headers, but custom headers, such as app-key, platform, and package-name.

In 22 applications, we found the usage of WebView.setBlockNetworkLoads, which
allows applications to set whether the WebView should block network loads. The default
behavior is to allow network loads. None of the analyzed applications actually changes the
default behavior. One application uses the WebView.setBlockNetworkImage method
to block the loading of network images.

59

6. Results

6.6 JavaScript Injection
Based on our analysis, injecting JavaScript code is a common practice, with 50 applications
employing this technique, either by using the loadUrl method with a JavaScript string
or the evaluateJavascript method.

IABInspect detected 137 unique JavaScript code snippets being injected into WebViews.
From these snippets, we identified four primary use cases for JavaScript injection:

• modification of the appearance of the website,

• accessing the website’s content,

• facilitating bi-directional communication in hybrid applications, and

• altering the behavior of the website.

In the following sections, we will illustrate each use case with case studies of applications
from our analysis. Although an application may employ JavaScript injection for various
purposes and could thus be categorized under multiple use cases, we assign each application
to the use case that best describes the primary intent of the injected JavaScript code.

6.6.1 Modifications of the Appearence of the Website
A common use case among the applications we analyzed is to modify the website’s
appearance. This includes changing the background color, hiding elements, or changing
the font size of a website.

Mapple

Mapple3 is an application that provides maps and navigation and has more than 1M
downloads on Google Play. The application uses a WebView to display its Terms of Use
(ToS). Upon loading the ToS in the WebView, the application injects the JavaScript
code snippet shown in Listing 6.1 to change the website’s appearance. The code snippet
changes the text color of the website to black, the background color to white, and the
font size to 12pt.✞ ☎
document.body.style.color = "#000000";
document.body.style.backgroundColor = "#ffffff";
document.body.style.fontSize = "12pt";✝ ✆

Listing 6.1: JavaScript code snippet used by Mapple.

3Available at https://play.google.com/store/apps/details?id=jp.mappleon.androi
d.mapplelink.

60

https://play.google.com/store/apps/details?id=jp.mappleon.android.mapplelink
https://play.google.com/store/apps/details?id=jp.mappleon.android.mapplelink

6.6. JavaScript Injection

ATV

Similarly, ATV 4, an application of a Turkish TV channel with more than 5M downloads
on Google Play, includes an exported activity that loads any URL in a WebView. Upon
loading the URL, the application injects the JavaScript code shown in Listing 6.2 to set
the width of the first image on the website to 100%.✞ ☎
(function() {

document.getElementsByTagName(’img’)[0].setAttribute(’width’,’100%’);
})()✝ ✆

Listing 6.2: JavaScript code snippet used by ATV.

6.6.2 Accessing the Website’s Content

Applications also use JavaScript injection to access DOM elements of the website and
therefore read the content of the website. This can be used to extract information, such
as the value of a specific input field or the content of a specific element.

Video downloader, Story saver

The application Video Downloader, Story Saver5 is an application that enables users
to download photos and videos from Instagram. It has more than 10M downloads on
Google Play.

To download certain types of videos, users must log into their Instagram account in the
application. The application uses a WebView for this purposes and loads Instagram’s
login page within it. Upon loading, it registers a JavaScript bridge named action and
injects JavaScript code to periodically (every 600ms) retrieve the value from the DOM
element with the name username. This element corresponds to the username input field
on the Instagram login page, thus allowing the application to capture the username. The
script used to achieve this is shown in Listing 6.3.

When the user succesfully logs in, the application accesses the cookies saved for Instagram
and stores the username-cookie pair in the shared preferences of the app. These credentials
are then used to authenticate requests to the Instagram API to start the download process.

4Available at https://play.google.com/store/apps/details?id=tr.atv.
5Available at https://play.google.com/store/apps/details?id=com.story.saver.in

stagram.video.downloader.repost

61

https://play.google.com/store/apps/details?id=tr.atv
https://play.google.com/store/apps/details?id=com.story.saver.instagram.video.downloader.repost
https://play.google.com/store/apps/details?id=com.story.saver.instagram.video.downloader.repost

6. Results

✞ ☎
function getUserName(){

var user = document.getElementsByName("username");
if(user.length > 0){

action.getUserName(user[0].value);
}

}

setInterval("getUserName()",600);✝ ✆
Listing 6.3: Code snippet used by Video downloader, Story saver.

6.6.3 Facilitating Bidirectional Communication
JavaScript code that we identified also enables the bidirectional communication between
the application and the website, specifically in hybrid applications. The JavaScript code
is used to inform the website about certain actions, or instruct the website to inform the
application about events.

Fake call - prank

The application Fake call - prank6 allows users to simulate fake call scenarios. It has
more than 50M downloads on Google Play. The UI is implemented as a WebView that
loads a local file. Whenever the UI should change, the application injects a JavaScript
code snippet that calls a function defined on the website that triggers the change, such
as the injection of showWellDone() to show a success message.

Driver Pulse by Tenstreet

This application7 serves as a platform for truck drivers and carriers and has more than
1M installs. The application is also implemented as a hybrid application and uses
the evaluateJavascript method to retrieve information from the website, such as
by calling evaluateJavascript with pulse.current_badge_count. The application
also uses JavaScript injection to send instructions to the website by calling functions
defined in the website, such as by injecting pulse.keep_alive(true).

CITRUSS World of Shopping

CITRUSS World of Shopping8 is a home shopping platform with over 1M installs on
Google Play. CITRUSS uses communication from the website to the application to
keep track of the user’s activity on the website and execute actions based on that. For
example, if the user clicks on a specific button on the website, the application will
navigate to a specific screen. Interestingly, the application does not use a JavaScript

6Available at https://play.google.com/store/apps/details?id=com.fakecallgame.
7Available at https://play.google.com/store/apps/details?id=com.mobile.tenstre

et.driverpulse.
8Available at https://play.google.com/store/apps/details?id=citruss.android.

62

https://play.google.com/store/apps/details?id=com.fakecallgame
https://play.google.com/store/apps/details?id=com.mobile.tenstreet.driverpulse
https://play.google.com/store/apps/details?id=com.mobile.tenstreet.driverpulse
https://play.google.com/store/apps/details?id=citruss.android

6.6. JavaScript Injection

bridge using @JavascriptInterface to communicate between the WebView and the
application. Instead, the application injects a script using loadUrl that implements a
custom JavaScript bridge and facilitates communication between the website and the
application.

Specifically, the script registers the object WebViewJavaScriptBridge in the global
scope. This object acts as the point of interaction for JavaScript running on the website.
The website’s JavaScript code can interact with the native application using two methods
provided by WebViewJavascriptBridge. The first method is WebViewJavascript

Bridge.send, which can be used to send a message to the native side. The second
method is WebViewJavascriptBridge.callHandler, which is used to send a message
to a specific handler registered on the native side.

To facilitate communication without registering a JavaScript bridge provided by the Web-
View, the script adds hidden iframes to the website, which we term iframe1 and iframe2.
When the website sends a message to the application, the script changes the source of
iframe1 to yy://__QUEUE_MESSAGE__. This triggers the shouldOverrideUrlLoading
method in the application. The application checks if the URL of the request starts
with the custom URL scheme yy://. If so, the application injects JavaScript code
that calls the WebViewJavascriptBridge._fetchQueue() method. This method
stringifies the message and redirects the hidden iframe iframe2 using the custom
URL scheme yy://return/_fetchQueue/<stringified_queue>. This again triggers
the shouldOverrideUrlLoading method in the application, where the application
checks if the URL starts with the custom URL scheme yy://return. If so, the ap-
plication parses the stringified message. In case a response is expected, the applica-
tion sends the response back to the website by injecting WebViewJavascriptBridge.

_handleMessageFromNative(<response>) into the website.

It is not clear why the application uses this complex mechanism to communicate between
the website and the application, as the Android WebView provides a simpler way to
communicate between the website and the application using the @JavascriptInterface
annotation. Nevertheless, using IABInspect, we were able to uncover this complex
communication mechanism.

e-Sim Countryball Be President

This application9 is a MMO (massively multiplayer online) game with more than 1M
downloads on Google Play. The game is played in a WebView that loads the game’s
website. The application injects JavaScript code that monitors the user’s actions on the
website and informs the application about it. The injected JavaScript code is shown in
Listing 6.4. The code registers an event listener for the ajaxComplete event. Whenever
an AJAX request is completed, the application sends a message to the native side using
the Android JS Bridge. The handler function on the native side checks the URL and,
depending on the URL, takes further actions, such as showing a notification.

9Available at https://play.google.com/store/apps/details?id=com.eworld.mobile.

63

https://play.google.com/store/apps/details?id=com.eworld.mobile

6. Results

✞ ☎
$(document).ajaxComplete(function (event, request, settings) {

Android.ajaxDone(’Xena.e-sim.org’, settings.url, request.status);
});✝ ✆

Listing 6.4: JavaScript code snippet used by e-Sim Countryball Be President.

Myprotein: Fitness & Shopping

Myprotein: Fitness & Shopping10 is an application that allows users to shop for fitness
products. It has more than 1M downloads on Google Play. The application provides
a WebView that loads the URL https://www.myprotein.com/, which belongs to the
same company as the application. The WebView serves as a means to browse the
products available on the website. By injecting JavaScript code, the application hides
specific elements of the website, such as the footer and the header, and adjusts the
website’s padding. During the checkout process, the application injects JavaScript code
that removes the payment options of Google Pay and Apple Pay from the website and
automatically clicks a button that expands a list with further payment options, as shown
in Listing 6.5.✞ ☎
if(document.querySelectorAll(’button[data-test="

PaymentOptionRadioList__expandButton"]’)[0]) {

document.querySelectorAll(’button[data-test="
PaymentOptionRadioList__expandButton"]’)[0].click()

document.querySelectorAll(’div[data-payment-option-name="GOOGLEPAY"]’)
[0].remove();

document.querySelectorAll(’div[data-payment-option-name="APPLEPAY"]’)[0].
remove();

}✝ ✆
Listing 6.5: JavaScript code snippet used by Myprotein.

Furthermore, the app injects JavaScript code that monitors what a user does on
the website. This is made possible by previously registering a JavaScript bridge
ReactNativeWebView.postMessage that allows the website to send messages to the
application. The website keeps a list of events happening in an array. The JavaScript
code overwrites the push method of the array to intercept the events and send them to
the application via the bridge.

Interestingly, the application sets cookies on the website to set specific preferences, such
as the user’s country and currency. Furthermore, using cookies, it disables the newsletter
prompt on the website that would otherwise be displayed to the user.

10Available at https://play.google.com/store/apps/details?id=com.thehutgroup.ec
ommerce.myprotein.

64

https://play.google.com/store/apps/details?id=com.thehutgroup.ecommerce.myprotein
https://play.google.com/store/apps/details?id=com.thehutgroup.ecommerce.myprotein

6.6. JavaScript Injection

✞ ☎
try {

const dataLayer = window.dataLayer;
if(dataLayer) {

Object.defineProperty(dataLayer, "push", {
configurable: true,
writable: true,
value: function (...args) {

const result = Array.prototype.push.apply(this, args);
const event = args[0];
if(event.event === "elysiumEvent" && event.eventData) {

window.ReactNativeWebView.postMessage(JSON.stringify(args
[0].eventData));

}
return result;

}
})

}
} catch(e) {

true;
}
true;✝ ✆

Listing 6.6: JavaScript code snippet used by Myprotein.

6.6.4 Altering the Behavior of the Website

Injected JavaScript code can also be used to alter how the website behaves, as in the
case of Telemicro.

Telemicro

Telemicro11 is an application of the Dominican TV channel Telemicro. The app provides
an internal browser activity, in which the application injects the JavaScript code shown
in Listing 6.7. The JavaScript code changes the behavior of video playbacks of videos
embedded on the website. Specifically, the JavaScript code loops through all video
elements on the website and registers an event listener for the play event. When the
play event is triggered, i.e., when the user starts playing the video, the event listener
prevents the video from playing, resets the video’s current time to 0, and informs the
application about the video URL that the user wants to view using the JavaScript
bridge VideoHTML5. Upon receiving the video URL, the application opens the video in a
separate activity and navigates away from the WebView.

11Available at https://play.google.com/store/apps/details?id=com.goodbarber.tel
emicro

65

https://play.google.com/store/apps/details?id=com.goodbarber.telemicro
https://play.google.com/store/apps/details?id=com.goodbarber.telemicro

6. Results

✞ ☎
(function(){

var b = document.getElementsByTagName("video");
videosCount = b.length;
for(var a = 0; a < videosCount; a++){

(function(c) {
b[c].addEventListener("play", function(f) {

f.preventDefault();
var d = b[c];
d.pause();
d.currentTime = 0;
VideoHTML5.viewVideo(b[c].currentSrc)

}, false)
})(a)

}
})();✝ ✆

Listing 6.7: JavaScript code snippet used by Telemicro.

66

CHAPTER 7
Conclusion

This thesis introduced a novel approach to analyzing app-to-web interactions in Android
in-app browsers (IABs) through a prototype tool, IABInspect, which integrates both
static and dynamic analysis techniques. The static analysis creates a blueprint of the
application, identifying paths from an entry method to IAB launch calls, while the
dynamic executor actively follows these paths to monitor interactions using a custom
WebView provider. The WebView provider forces the loading of a website in our control
that is able to record JavaScript code injected in it.

IABInspect was evaluated on a subset of 10 applications, achieving a precision rate of 95%.
When extended to 1,000 popular Android applications, it successfully triggered 508 IAB
launch calls across 196 applications, revealing that 100 of these read cookies from 75 unique
URLs. Furthermore, 50 of these applications practice JavaScript code injection. This
injection primarily serves functions related to modifying website appearances, accessing
content, facilitating web-to-app communication, and altering website behaviors. We
furthermore demonstrated the usage of JavaScript injection in various case studies.

Fortunately, we did not find any clearly malicious behavior in the analyzed applications.
However, the high prevalence of JavaScript code injection that we observed is concerning.
This highlights the need for further research, especially an upscaling of the analysis to a
larger dataset to better understand the implications of such practices. This expansion is
among the essential steps we plan to address in our future work.

Future Work
The initial findings of IABInspect, while promising, have revealed several possibilities
for improvement and expansion. We plan on addressing three main areas in future
work: scaling up the analysis, reducing the false negative rate of the tool, determining

67

7. Conclusion

the relatedness of the app and the web content, and including the analysis of excluded
libraries using WebViews.

Scaling up the analysis. In this thesis, we only analyzed a small subset (1,000
applications) of the bigger dataset we collected (46,441 applications). To generalize
our findings more confidently and explore a wider array of app behaviors, we plan to
apply IABInspect to the entire dataset. This will validate the prevalence of JavaScript
injections in a broader context and help potentially identify rarer privacy-invasive IAB
usages that were not observable in our small sample.

False negative rate. A limitation in our current methodology is the potential under-
estimation of security risks due to false negatives. Even though we have not provided
a quantitive evaluation of the false negative rate of IABInspect due to the lack of a
ground truth, experimental results suggest that the false negative rate is substantial.
This issue stems partly from the static analysis’s inability to capture all paths due to the
complex structures within apps, such as fragments and dialogs. Moreover, the dynamic
executor’s limited interaction capabilities restrict the paths that can be followed. To
address these challenges, we plan to refine our static analysis algorithms to include these
complex constructs and enhance the dynamic executor to support more diverse UI and
system interactions. To improve the precision of tracking intent extras, we also plan to
dynamically hook the getExtra method of the Intent class to record the extras that
are accessed on the fly.

Relatedness of the app and the web content unclear. Currently, IABInspect
only records the interactions between the app and the web content, as well as the web
content itself. Security-wise, it is important to determine whether the content loaded in
the IAB is related to the app. While interactions from AppA published by A can safely
interact with a.com published by A, since they are under the same control, interactions
from AppA to b.com published by B may be problematic, such as when cookies are read.
Therefore, we plan to extend IABInspect with capabilities to determine the relatedness
of the app and the web content.

Analysis of libraries using WebViews. In this thesis, we excluded the path-finding
process for some commonly used libraries for time reasons. However, these libraries may
contain potentially privacy-invasive app-to-web interactions. We plan to further analyze
these libraries to understand their behavior and the potential risks they pose.

68

List of Figures

2.1 Overview of the Android application generation process. 6
2.2 Lifecycle of an Android activity [20]. 7
2.3 Usage of IABs in real-world applications on Android. 11
2.4 Java method and its control flow graph. 15
2.5 Java program and its call graph. 16

4.1 Workflow and components of IABInspect. 22
4.2 Workflow of the static analyzer of IABInspect. 23
4.3 Callgraph enhancements with custom entry methods and ICC edges. . . . 27
4.4 Overview of the dynamic analysis phase. 30

5.1 Heatmap of IAB launch call reachability in the dynamic analysis phase. . 43
5.2 Heatmap of IAB launch call reachability in the dynamic analysis phase. . 44

6.1 Success rate of the static analysis. 51
6.2 Distribution of IAB launch calls per application. 52
6.3 Sources of IAB launch calls determined by the static analyzer. 53
6.4 Distribution of the path type determined by the static analyzer for IAB launch

calls per application. 55
6.5 Overview of triggered IAB launch calls by static resolution type and their

triggering methods during dynamic execution. 57

69

List of Tables

4.1 Considered target functions used to launch IABs. 27
4.2 Monitoring capabilities of the hooked website. 35
4.3 Intent Extras . 39

6.1 Distribution of IAB launch methods as determined by the static analyzer. 51
6.2 Libraries excluded from path-finding process. 54
6.3 Usage of app-to-web interaction APIs. 56
6.4 Top 10 loaded content in IABs. 58

71

Bibliography

[1] Statista, “Percentage of mobile device website traffic worldwide from 1st quarter
2015 to 4th quarter 2023.” https://www.statista.com/statistics/2771
25/share-of-website-traffic-coming-from-mobile-devices/, Jan.
2024. (Accessed on 07/02/2024, https://archive.is/HsZJW).

[2] Statista, “Global market share held by mobile operating systems from 2009 to 2023,
by quarter.” https://www.statista.com/statistics/272698/global-m
arket-share-held-by-mobile-operating-systems-since-2009/, Jan.
2024. (Accessed on 07/02/2024, https://archive.is/4NdUZ).

[3] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A large-scale study
of mobile web app security,” in MoST, co-located with IEEE SP, 2015.

[4] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView in the Android
system,” in ACSAC, 2011.

[5] M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View to a Kill: WebView
Exploitation,” in LEET, co-located with USENIX, 2013.

[6] E. Chin and D. Wagner, “Bifocals: Analyzing WebView Vulnerabilities in Android
Applications,” in WISA, Springer International Publishing, 2013.

[7] C. Rizzo, L. Cavallaro, and J. Kinder, “BabelView: Evaluating the Impact of Code
Injection Attacks in Mobile Webviews,” in RAID, Springer, 2018.

[8] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang, G. Yang, and
M. Yang, “Identity Confusion in WebView-based Mobile App-in-app Ecosystems,”
in USENIX, USENIX Association, 2022.

[9] G. Yang, J. Huang, and G. Gu, “Iframes/Popups Are Dangerous in Mobile WebView:
Studying and Mitigating Differential Context Vulnerabilities,” in USENIX, 2019.

[10] G. Yang, A. Mendoza, J. Zhang, and G. Gu, “Precisely and Scalably Vetting
JavaScript Bridge in Android Hybrid Apps,” in RAID, pp. 143–166, Springer, 2017.

[11] M. A. El-Zawawy, E. Losiouk, and M. Conti, “Vulnerabilities in Android webview
objects: Still not the end!,” Comput. Secur., vol. 109, oct 2021.

73

https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://archive.is/HsZJW
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://archive.is/4NdUZ

[12] L. Yang, X. Cui, C. Wang, S. Guo, and X. Xu, “Risk Analysis of Exposed Methods
to JavaScript in Hybrid Apps,” in Trustcom/BigDataSE/ISPA, IEEE, 2016.

[13] F. Krause, “iOS Privacy: Instagram and Facebook can track anything you do on any
website in their in-app browser.” https://krausefx.com/blog/ios-priva
cy-instagram-and-facebook-can-track-anything-you-do-on-any
-website-in-their-in-app-browser, aug 2022. (Accessed on 11/21/2023,
https://archive.is/0u4vE).

[14] X. Zhang, Y. Zhang, Q. Mo, H. Xia, Z. Yang, M. Yang, X. Wang, L. Lu, and
H. Duan, “An Empirical Study of Web Resource Manipulation in Real-world Mobile
Applications,” in USENIX, 2018.

[15] Android Developers, “Android’s Kotlin-first approach.” https://developer.
android.com/kotlin/first, Jan. 2024. (Accessed on 15/02/2024, https:
//archive.is/EtWqn).

[16] J. Bleier and M. Lindorfer, “Of Ahead Time: Evaluating Disassembly of Android
Apps Compiled to Binary OATs Through the ART,” in EuroSec, ACM, 2023.

[17] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps,” SIGPLAN Not.,
vol. 49, p. 259–269, jun 2014.

[18] Android Developers, “Application fundamentals.” https://developer.andr
oid.com/guide/components/fundamentals, Oct. 2023. (Accessed on
11/02/2024, https://archive.is/iXl73).

[19] Android Developers, “Introduction to activities.” https://developer.androi
d.com/guide/components/activities/intro-activities, Jan. 2024.
(Accessed on 11/02/2024, https://archive.ph/pJtVD).

[20] Android Developers, “The activity lifecycle.” https://developer.android.
com/guide/components/activities/activity-lifecycle, Feb. 2024.
(Accessed on 08/04/2024, https://archive.is/PekBb).

[21] Android Developers, “Services overview.” https://developer.android.com/
develop/background-work/services, Jan. 2024. (Accessed on 11/02/2024,
https://archive.is/QEFtQ).

[22] Android Developers, “App manifest overview.” https://developer.android.
com/guide/topics/manifest/manifest-intro, Apr. 2024. (Accessed on
11/02/2024, https://archive.is/PuYkA).

[23] Android Developers, “Intents and intent filters.” https://developer.andr
oid.com/guide/components/intents-filters, Feb. 2024. (Accessed on
11/02/2024, https://archive.is/ed7wS).

74

https://krausefx.com/blog/ios-privacy-instagram-and-facebook-can-track-anything-you-do-on-any-website-in-their-in-app-browser
https://krausefx.com/blog/ios-privacy-instagram-and-facebook-can-track-anything-you-do-on-any-website-in-their-in-app-browser
https://krausefx.com/blog/ios-privacy-instagram-and-facebook-can-track-anything-you-do-on-any-website-in-their-in-app-browser
https://archive.is/0u4vE
https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://archive.is/EtWqn
https://archive.is/EtWqn
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://archive.is/iXl73
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://archive.ph/pJtVD
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://archive.is/PekBb
https://developer.android.com/develop/background-work/services
https://developer.android.com/develop/background-work/services
https://archive.is/QEFtQ
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://archive.is/PuYkA
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://archive.is/ed7wS

[24] MDN Web Docs, “Push API.” https://developer.mozilla.org/en-U
S/docs/Web/API/Push_API, oct 2023. (Accessed on 09/04/2024, https:
//archive.is/BzXRK).

[25] T. Steiner, “What is in a Web View: An Analysis of Progressive Web App Features
When the Means of Web Access is not a Web Browser,” in WWW, International
World Wide Web Conferences Steering Committee, 2018.

[26] WebView docs, “WebView Build Instructions.” https://chromium.googlesou
rce.com/chromium/src/+/lkgr/android_webview/docs/build-instr
uctions.md, Feb. 2024. (Accessed on 21/02/2024, https://archive.is/eQm
sl).

[27] Android Developers, “WebView.” https://developer.android.com/re
ference/android/webkit/WebView, apr 2024. (Accessed on 09/04/2024,
https://archive.is/Yway9).

[28] Android Developers, “CookieManager.” https://developer.android.co
m/reference/android/webkit/CookieManager, apr 2024. (Accessed on
09/04/2024, https://archive.is/ZI4Qz).

[29] Android Developers, “WebViewClient.” https://developer.android.com/
reference/android/webkit/WebViewClient, Feb. 2024. (Accessed on
21/02/2024, https://archive.is/2OOAl).

[30] Android Developers, “WebChromeClient.” https://developer.android.co
m/reference/android/webkit/WebChromeClient, Apr. 2024. (Accessed on
26/04/2024, https://archive.is/wTkpO).

[31] Chrome Developers, “Overview of Android Custom Tabs.” https://develo
per.chrome.com/docs/android/custom-tabs, feb 2024. (Accessed on
09/04/2024, https://archive.is/gXAeb9).

[32] P. Beer, M. Squarcina, L. Veronese, and M. Lindorfer, “Tabbed Out: Subverting
the Android Custom Tab Security Model,” in S&P, IEEE, 2024.

[33] GeckoView, “GeckoView.” https://mozilla.github.io/geckoview/. (Ac-
cessed on 21/02/2024, https://archive.is/IEIb9).

[34] GitHub, “scrosswalk-project/crosswalk.” https://github.com/crosswalk-p
roject/crosswalk. (Accessed on 21/02/2024).

[35] Apple Developer Documentation, “SFSafariViewController.” https://develope
r.apple.com/documentation/safariservices/sfsafariviewcontrol
ler. (Accessed on 11/02/2024, https://archive.is/WVkDI).

75

https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://archive.is/BzXRK
https://archive.is/BzXRK
https://chromium.googlesource.com/chromium/src/+/lkgr/android_webview/docs/build-instructions.md
https://chromium.googlesource.com/chromium/src/+/lkgr/android_webview/docs/build-instructions.md
https://chromium.googlesource.com/chromium/src/+/lkgr/android_webview/docs/build-instructions.md
https://archive.is/eQmsl
https://archive.is/eQmsl
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://archive.is/Yway9
https://developer.android.com/reference/android/webkit/CookieManager
https://developer.android.com/reference/android/webkit/CookieManager
https://archive.is/ZI4Qz
https://developer.android.com/reference/android/webkit/WebViewClient
https://developer.android.com/reference/android/webkit/WebViewClient
https://archive.is/2OOAl
https://developer.android.com/reference/android/webkit/WebChromeClient
https://developer.android.com/reference/android/webkit/WebChromeClient
https://archive.is/wTkpO
https://developer.chrome.com/docs/android/custom-tabs
https://developer.chrome.com/docs/android/custom-tabs
https://archive.is/gXAeb9
https://mozilla.github.io/geckoview/
https://archive.is/IEIb9
https://github.com/crosswalk-project/crosswalk
https://github.com/crosswalk-project/crosswalk
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://archive.is/WVkDI

[36] Apple Developer Documentation, “WKWebView.” https://developer.ap
ple.com/documentation/webkit/wkwebview. (Accessed on 11/02/2024,
https://archive.is/KM4rb).

[37] Apple Developer Documentation, “ASWebAuthenticationSession.” https://deve
loper.apple.com/documentation/authenticationservices/aswebau
thenticationsession. (Accessed on 11/02/2024, https://archive.is/5
F379).

[38] A. Møller and M. I. Schwartzbach, “Static Program Analysis,” October 2018. De-
partment of Computer Science, Aarhus University, http://cs.au.dk/~amoel
ler/spa/.

[39] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
and L. Traon, “Static Analysis of Android Apps: A Systematic Literature Review,”
Information and Software Technology, vol. 88, pp. 67–95, 2017.

[40] Wireshark, “Wireshark.” https://www.wireshark.org/. (Accessed on
27/04/2024, https://archive.is/g9a9Q).

[41] Frida, “Frida • A world-class dynamic instrumentation toolkit.” https://frid
a.re/docs/android/. (Accessed on 27/04/2024, https://archive.is/ejV
b7).

[42] A. Tiwari, J. Prakash, A. Rahimov, and C. Hammer, “Understanding the Impact of
Fingerprinting in Android Hybrid Apps,” in MOBILESoft, IEEE, 2023.

[43] Z. Zhang, “On the usability (in)security of in-app browsing interfaces in mobile
apps,” in RAID, ACM, 2021.

[44] Z. Tang, J. Zhai, M. Pan, Y. Aafer, S. Ma, X. Zhang, and J. Zhao, “Dual-Force:
Understanding WebView Malware via Cross-Language Forced Execution,” in ASE,
ACM, 2018.

[45] X. Wang, S. Zhu, D. Zhou, and Y. Yang, “Droid-AntiRM: Taming Control Flow
Anti-analysis to Support Automated Dynamic Analysis of Android Malware,” in
ACSAC, ACM, 2017.

[46] L. Bello and M. Pistoia, “Ares: Triggering Payload of Evasive Android Malware,” in
MOBILESoft, IEEE/ACM, 2018.

[47] M. Y. Wong and D. Lie, “IntelliDroid: A Targeted Input Generator for the Dynamic
Analysis of Android Malware,” in NDSS, 2016.

[48] M. Y. Wong and D. Lie, “Tackling runtime-based obfuscation in Android with Tiro,”
in USENIX, 2018.

76

https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview
https://archive.is/KM4rb
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://archive.is/5F379
https://archive.is/5F379
http://cs.au.dk/~amoeller/spa/
http://cs.au.dk/~amoeller/spa/
https://www.wireshark.org/
https://archive.is/g9a9Q
https://frida.re/docs/android/
https://frida.re/docs/android/
https://archive.is/ejVb7
https://archive.is/ejVb7

[49] J. Wang, Y. Xiao, X. Wang, Y. Nan, L. Xing, X. Liao, J. Dong, N. Serrano,
H. Lu, X. Wang, et al., “Understanding Malicious Cross-library Data Harvesting on
Android,” in USENIX, 2021.

[50] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An Empirical Study of
Potentially Malicious Third-Party Libraries in Android Apps,” in WISEC, ACM,
2020.

[51] Android Developers, “About Android App Bundles.” https://developer.
android.com/guide/app-bundle, Nov. 2023. (Accessed on 14/02/2024,
https://archive.is/2JN9x).

[52] Android Developers, “Build multiple APKs.” https://developer.android.
com/build/configure-apk-splits, Apr. 2023. (Accessed on 14/02/2024,
https://archive.is/UHe8l).

[53] GitHub, “REAndroid/APKEditor.” https://github.com/REAndroid/APKEd
itor, Feb. 2024. (Accessed on 14/02/2024).

[54] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan,
“Optimizing Java bytecode using the Soot framework: Is it feasible?,” in Compiler
Construction: 9th International Conference, CC 2000 Held as Part of the Joint
European Conferences on Theory and Practice of Software, pp. 18–34, Springer,
2000.

[55] D. Schmidt, C. Tagliaro, K. Borgolte, and M. Lindorfer, “IoTFlow: Inferring IoT
Device Behavior at Scale through Static Mobile Companion App Analysis,” in CCS,
ACM, 2023.

[56] J. Yan, S. Zhang, Y. Liu, J. Yan, and J. Zhang, “ICCBot: Fragment-Aware and
Context-Sensitive ICC Resolution for Android Applications,” in ICSE, ACM/IEEE,
2022.

[57] MDN Web Docs, “Identifying resources on the Web.” https://developer.
mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifyi
ng_resources_on_the_Web, 2023 July. (Accessed on 28/04/2024, https:
//archive.is/cIVhq).

[58] Android Developers, “Configure on-device developer options.” https://develo
per.android.com/studio/debug/dev-options, Apr. 2024. (Accessed on
17/04/2024, https://archive.is/LN3JE).

[59] Android Developers, “WebSettings.” https://developer.android.com/refe
rence/android/webkit/WebSettings, Apr. 2024. (Accessed on 05/05/2024,
https://archive.is/vcr28).

77

https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle
https://archive.is/2JN9x
https://developer.android.com/build/configure-apk-splits
https://developer.android.com/build/configure-apk-splits
https://archive.is/UHe8l
https://github.com/REAndroid/APKEditor
https://github.com/REAndroid/APKEditor
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web
https://archive.is/cIVhq
https://archive.is/cIVhq
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/debug/dev-options
https://archive.is/LN3JE
https://developer.android.com/reference/android/webkit/WebSettings
https://developer.android.com/reference/android/webkit/WebSettings
https://archive.is/vcr28

[60] Android Developers, “WebViewDatabase.” https://developer.android.co
m/reference/android/webkit/WebViewDatabase, Apr. 2024. (Accessed on
29/04/2024, https://archive.is/WG7ku).

[61] WebView docs, “WebView Providers.” https://chromium.googlesource.co
m/chromium/src/+/HEAD/android_webview/docs/webview-providers
.md. (Accessed on 29/04/2024, https://archive.is/9mXbG).

[62] Android Developers, “Application Signing.” https://source.android.com/d
ocs/security/features/apksigning, Mar. 2024. (Accessed on 29/04/2024,
https://archive.is/g6M8w).

[63] GitHub, “LSPosed/CorePatch.” https://github.com/LSPosed/CorePatch,
Apr. 2024. (Accessed on 18/04/2024).

[64] GitHub, “ktorio/ktor.” https://github.com/ktorio/ktor. (Accessed on
29/04/2024).

[65] MDN Web Docs, “Introduction to the DOM.” https://developer.mozill
a.org/en-US/docs/Web/API/Document_Object_Model/Introduction,
Nov. 2023. (Accessed on 29/04/2024, https://archive.is/sJXY1).

[66] MDN Web Docs, “Content Security Policy (CSP).” https://developer.mozi
lla.org/en-US/docs/Web/HTTP/CSP, Mar. 2024. (Accessed on 29/04/2024,
https://archive.is/cgOsZ).

[67] MDN Web Docs, “Trusted Types API.” https://developer.mozilla.org/en
-US/docs/Web/API/Trusted_Types_API, jan 2024. (Accessed on 29/04/2024,
https://archive.is/GHEY4).

[68] Android Developers, “Logcat command-line tool.” https://developer.an
droid.com/tools/logcat, jan 2024. (Accessed on 05/05/2024, https:
//archive.is/2WYw5).

[69] Google Play Console Help, “Device and Network Abuse.” https://support.
google.com/googleplay/android-developer/answer/9888379, 2024.
(Accessed on 19/02/2024, https://archive.is/QesVl).

[70] Android Developers, “Overview of Play Feature Delivery.” https://developer.
android.com/guide/playcore/feature-delivery, Feb. 2024. (Accessed
on 19/02/2024, https://archive.is/5Bquu).

[71] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting Millions
of Android Apps for the Research Community,” in MSR, ACM, 2016.

[72] GitLab, “marzzzello/gplaycrawler.” https://gitlab.com/marzzzello/gpla
ycrawler, july 2021. (Accessed on 05/05/2024).

78

https://developer.android.com/reference/android/webkit/WebViewDatabase
https://developer.android.com/reference/android/webkit/WebViewDatabase
https://archive.is/WG7ku
https://chromium.googlesource.com/chromium/src/+/HEAD/android_webview/docs/webview-providers.md
https://chromium.googlesource.com/chromium/src/+/HEAD/android_webview/docs/webview-providers.md
https://chromium.googlesource.com/chromium/src/+/HEAD/android_webview/docs/webview-providers.md
https://archive.is/9mXbG
https://source.android.com/docs/security/features/apksigning
https://source.android.com/docs/security/features/apksigning
https://archive.is/g6M8w
https://github.com/LSPosed/CorePatch
https://github.com/ktorio/ktor
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://archive.is/sJXY1
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://archive.is/cgOsZ
https://developer.mozilla.org/en-US/docs/Web/API/Trusted_Types_API
https://developer.mozilla.org/en-US/docs/Web/API/Trusted_Types_API
https://archive.is/GHEY4
https://developer.android.com/tools/logcat
https://developer.android.com/tools/logcat
https://archive.is/2WYw5
https://archive.is/2WYw5
https://support.google.com/googleplay/android-developer/answer/9888379
https://support.google.com/googleplay/android-developer/answer/9888379
https://archive.is/QesVl
https://developer.android.com/guide/playcore/feature-delivery
https://developer.android.com/guide/playcore/feature-delivery
https://archive.is/5Bquu
https://gitlab.com/marzzzello/gplaycrawler
https://gitlab.com/marzzzello/gplaycrawler

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Android Operating System
	In-App Browsers
	Android App Analysis

	Related Work
	Security of IABs
	Targeted and Forced Execution on Android

	IABInspect
	Overview of the Approach
	Threat Model
	Static Analysis
	Instrumentation
	Dynamic Analysis

	Evaluation and Limitations
	Evaluation
	Static Analysis Limitations

	Results
	Application Dataset
	Experiment Setup
	Static Analysis
	Dynamic Executor
	App-to-Web Interactions
	JavaScript Injection

	Conclusion
	List of Figures
	List of Tables
	Bibliography

