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Abstract

This thesis investigates the performance of Large Language Models in answering medical
multiple-choice questions and explores strategies to enhance their accuracy, confidence
estimation, and calibration. Specifically, we analyze the capabilities of GPT-3.5 and
Cohere using the MedMCQA dataset, focusing on prompting techniques, revision strate-
gies, and post-processing calibration methods. Our goals include assessing the efficacy of
Chain of Thought prompting, examining the relationship between model confidence and
correctness, and evaluating post-processing calibration techniques such as Platt Scaling,
Beta Calibration, and Isotonic Regression.

Findings reveal GPT-3.5’s superior accuracy compared to Cohere in medical question-
answering. However, CoT prompting did not significantly improve model performance,
suggesting its limited effectiveness in this context. Model confidence correlated with an-
swer accuracy, but discrepancies between predicted and actual performance underscored
the importance of robust calibration methods. Revision strategies marginally improved
accuracy, with models adjusting responses when prompted to reconsider. Post-processing
calibration techniques, particularly Isotonic Regression, demonstrated significant im-
provements in alignment between predicted probabilities and actual outcomes, enhancing
model reliability.
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CHAPTER 1
Introduction

In recent years, Large Language Models (LLMs) have revolutionized natural language
processing (NLP) by exhibiting remarkable capabilities in understanding and generating
human-like text. These advanced AI models, trained on vast amounts of textual data,
have demonstrated proficiency across a wide range of tasks, from language translation to
question-answering [OA24].

In the domain of healthcare, the potential of LLMs to comprehend and analyze medical
information has garnered significant attention. Medical question-answering, in particular,
presents a challenging yet crucial task, with implications for clinical decision-making,
patient care, and medical education. The ability of LLMs to accurately interpret and
respond to medical queries has the potential to streamline information retrieval, support
diagnostic processes, and facilitate evidence-based practice.

This thesis focuses on evaluating the performance of LLMs, specifically GPT-3.5 and
Cohere, in answering medical multiple-choice questions. By leveraging the MedMCQA
dataset, I aim to assess the efficacy of different prompting strategies, confidence estimation
techniques, revision strategies, and post-processing calibration methods in enhancing the
accuracy, reliability, and calibration of LLM predictions.

Through empirical analysis and experimentation, I seek to elucidate the strengths and
limitations of LLMs in medical question-answering tasks, elucidate the effectiveness
of various strategies in optimizing model performance, and contribute to the ongoing
discourse on the integration of AI technologies in healthcare.

By elucidating the nuances of LLM performance in medical question-answering and
exploring avenues for improvement, this research endeavors to inform future developments
in AI-assisted clinical decision support systems, ultimately advancing the quality and
efficacy of healthcare delivery.
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1. Introduction

1.1 Research questions
The overarching goal of this research is to evaluate the effectiveness of calibration
methods compared to Chain-of-Thought Reasoning in enhancing the trustworthiness of
Large Language Models in the diagnostic domain. The hypothesis posits that Chain-Of-
Thought prompting methods can achieve superior calibration compared to traditional
post-processing calibration methods.

• How can post-processing calibration contribute to rendering LLMs more reliable
and trustworthy for applications in clinical settings?

• To what extent do various post-processing calibration techniques exhibit com-
parative advantages and limitations in the calibration of LLMs for diagnostic
purposes?

• Exploring the potential of Chain-of-Thought prompting: Can a more finely tuned
calibration be achieved compared to traditional post-processing calibration methods?
What is the procedural approach to achieving this calibration with the right
prompting strategies?
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CHAPTER 2
Literature Review

This chapter offers a comprehensive exploration of key themes and methodologies within
the realm of natural language processing which are important for this thesis. It covers
fundamental concepts such as large language models, logistic probabilities, and post-
processing calibration methods. Additionally, the chapter discusses innovative techniques
like Chain-of-Thought prompting, which aims to mimic human problem-solving strate-
gies to bolster the reasoning capabilities of LLM models, and also introduces essential
evaluation metrics for these models, like the Brier score and Expected Calibration Error.

2.1 Large Language Models

Large language models are advanced artificial intelligence systems designed to understand,
generate, and interact with human language at a scale and complexity that closely mimics
human language comprehension and production. These models are trained on vast
datasets comprising text from the internet, books, articles, and other sources, enabling
them to grasp a wide range of linguistic structures, styles, and content. The training
process involves adjusting the parameters of the model to minimize the difference between
the model’s predictions and the actual data [TTE+23].

LLMs are built using deep learning frameworks, especially transformers, which are neural
network models tailored for handling sequential data like text. Transformers utilize self-
attention to weigh the importance of each word or token in a sequence relative to all others,
allowing them to capture complex language dependencies efficiently. With multiple layers
consisting of attention heads and feedforward neural networks, transformers can learn
hierarchical representations of input data, from basic details to higher-level meanings.
This enables LLMs to understand not only the structure of sentences but also their
semantic nuances, producing coherent and contextually relevant text.

3



2. Literature Review

Pre-training is crucial for LLMs, involving exposing the model to large amounts of text
data to learn language intricacies. During pre-training, the model predicts the next word
or token in a sequence based on preceding context, known as masked language modeling.
This helps the model grasp language patterns effectively, aiding its performance in various
text generation tasks. Fine-tuning is another essential step where the pre-trained model
adapts to specific tasks by further training on task-specific data. Through fine-tuning,
the model can specialize in various applications, such as text classification, language
translation, or text generation, by adjusting its parameters to better align with the target
task’s objectives [TTE+23].

2.2 Logistic Probabilities

At the core of LLMs, in tasks like text generation or next-word prediction, is the model’s
ability to assign probabilities to potential next words or tokens in a sequence. This is
achieved through the softmax function, which is a generalization of logistic regression to
multiple classes. For a given input sequence, the LLM processes it through multiple layers
of the network to produce a set of scores (logits) for each token in the vocabulary. The
softmax function then converts these logits into probabilities by taking the exponential of
each logit, followed by normalizing these values so that they sum up to one. The formula
for the softmax function is as follows:

P (yi|x) = ezi�
j ezj

(2.1)

where P (yi|x) is the probability of the i-th token given the input sequence x, ezi is the
exponential of the score (logit) for the i-th token, and the denominator is the sum of
exponentials of scores for all possible tokens in the vocabulary [PLSL17].

When generating text, an LLM selects the next token based on these logistic probabilities,
often using techniques like sampling or beam search to ensure diversity and coherence in
the generated text. This probabilistic approach allows LLMs to produce text that is not
only grammatically correct but also contextually appropriate and varied [ZXG+24].

By examining these probabilities, researchers and practitioners can gain an understanding
of the model’s preferences, biases, and uncertainties. For instance, a high probability
assigned to a specific word or sequence in a given context can indicate the model’s
confidence in its relevance or appropriateness, reflecting its learned associations and
linguistic patterns. Conversely, a more uniform distribution of probabilities across multiple
options might signal uncertainty or a lack of clear context. Analyzing changes in these
probabilities in response to slight modifications in input can also reveal the sensitivity
and robustness of the model to variations in language use. Thus, logistic probabilities
serve not only as a mechanism for text generation and language understanding within
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2.3. Post-Processing Calibration Methods

LLMs but also as a diagnostic tool that can help developers and researchers refine models,
mitigate biases, and improve performance by offering a quantitative measure of the
model’s linguistic capabilities and limitations [ZXG+24].

2.3 Post-Processing Calibration Methods
2.3.1 Calibration
Post-processing calibration methods in LLMs are techniques applied after a model has
been trained to align its confidence levels with the actual likelihood of predictions being
correct. For a model to be well-calibrated, the confidence it expresses in its predictions
should accurately reflect the true probabilities of those predictions being correct. In
other words, if a model predicts an event with 70% confidence, that event should occur
roughly 70% of the time if the model is well-calibrated [Fer22].

Calibration is crucial for several reasons:

• Trustworthiness: Users can trust and rely on the model’s predictions and their
associated confidence scores.

• Decision Making: Accurate confidence estimates are essential for risk-sensitive
applications where decisions are made based on model predictions and their uncer-
tainties.

• Comparability: Well-calibrated models provide a level playing field for comparing
the performance of different models, especially in probabilistic tasks [Fer22].

To evaluate if an LLM is well-calibrated, one can use

• Calibration Metrics: Metrics like Brier Score (see more in Subsection 2.5.1), Ex-
pected Calibration Error (ECE) (see more in Subsection 2.5.2), and Log Loss
provide quantitative measures of how well a model’s confidence levels match with
actual outcomes.

• Reliability Diagrams: These are graphical representations that plot predicted
confidence levels against the actual fraction of predictions that were correct. For a
perfectly calibrated model, this would result in a straight line at a 45-degree angle,
indicating that the predicted probabilities match the observed frequencies [Fer22].

2.3.2 Calibration Techniques
Logistic Regression

Logistic regression is a statistical method used for binary classification that models the
probability of a binary response based on one or more predictor variables (or features). It

5



2. Literature Review

is used to predict the probability that a given input belongs to a particular category (class
1 or 0). The logistic regression model applies a logistic function to a linear combination
of the input features to produce a probability score between 0 and 1 [NC07].

Given an input feature vector X = [x1, x2, ..., xn], the logistic regression model estimates
the probability (P ) that the target variable Y is in a particular class (typically class 1),
as shown in equation 2.2.

P (Y = 1|X) = 1
1 + exp(−(β0 + β1x1 + β2x2 + ... + βnxn)) (2.2)

Here, β0, β1, ..., βn are the parameters of the model, including the intercept β0 and the
coefficients β1, ..., βn for each input feature x1, ..., xn. These parameters are estimated
from the training data using a maximum likelihood estimation method, which aims to
find the parameter values that make the observed data most probable.

The logistic function, also known as the sigmoid function, ensures that the output of
the model is always in the range (0, 1), making it interpretable as a probability. This
probability can then be used to make a classification decision, typically by selecting a
threshold value (often 0.5) above which the model predicts class 1, and below which it
predicts class 0 [NC07].

Platt Scaling

Platt scaling, also known as Platt calibration, is a method used to transform the output
scores from a classification model (such as a support vector machine or other models that
produce non-probabilistic outputs) into a probability distribution over classes [Pla00]. It
is particularly useful for models that output scores which cannot be directly interpreted
as probabilities, to calibrate them such that the scores represent the probability of a
particular class given an input feature vector. The basic idea behind Platt scaling is to fit
a logistic regression model to the scores output by the classifier. This is done using the
output scores as the features, and the true class labels as the targets during the logistic
regression training process.

Given a classifier that outputs a score f(x) for a given input x, the Platt scaling algorithm
models the probability that the target y = 1 (assuming a binary classification problem
with labels y ∈ {0, 1}) given the score f(x) as shown in equation 2.3 [Pla00].

[P (y = 1|f(x)) = 1
1 + exp(Af(x) + B) (2.3)

Here, A and B are scalar parameters optimized through maximum likelihood estimation
applied to the dataset of classifier scores f(x) and their true labels, mapping them to
their corresponding probabilities.
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2.3. Post-Processing Calibration Methods

Isotonic Regression

Isotonic Regression is a non-parametric calibration technique used to adjust the predictions
from a classification or regression model so that they form a monotonic sequence, aligning
more closely with the observed frequencies of outcomes. This method is particularly
useful for transforming non-probabilistic model outputs or those from models whose
output does not naturally represent probabilities, into calibrated probabilities that more
accurately reflect the true likelihood of each class given an input feature vector. Unlike
Platt scaling, which fits a logistic regression model to the classifier’s scores, Isotonic
Regression does not assume any specific functional form between the scores and the
target probabilities [ZE02].

Given a set of predictions f(x) from a model for inputs x, and the corresponding true
outcomes y, Isotonic Regression seeks to find a monotonic function g that minimizes the
difference between g(f(x)) and the true outcomes y. The goal is to adjust f(x) such that
the adjusted predictions g(f(x)) are non-decreasing (or non-increasing, depending on the
problem context) with respect to f(x) and as close as possible to the actual observed
probabilities of the outcomes.

The process involves sorting the data by the model’s predictions f(x), then finding a
piecewise constant function g that is monotonically increasing with f(x) and minimizes a
loss function, typically the mean squared error, between the adjusted predictions g(f(x))
and the true labels y. This results in a stepwise non-linear transformation that calibrates
the original model’s outputs into probabilities that are better aligned with the observed
distribution of the outcomes.

Isotonic Regression is particularly useful when the relationship between the model scores
and the true probabilities is known to be monotonic but may not follow a specific
parametric form, making it a flexible tool for calibration in various applications where
maintaining the order of predictions is crucial [ZE02].

Beta Calibration

Beta Calibration is a method used to calibrate the output probabilities of a binary
classification model, ensuring that the predicted probabilities accurately reflect the true
likelihood of the outcomes. This technique is particularly useful for adjusting the outputs
of models that already produce probabilistic predictions but might not be well-calibrated,
meaning the predicted probability of an event occurring does not match the observed
frequency of that event. Unlike Platt scaling, which fits a logistic regression to the scores,
Beta Calibration applies a more flexible transformation that can capture a wider range
of calibration issues [KSFF17].

Given a set of predicted probabilities p from a model and the corresponding true binary
outcomes y, Beta Calibration seeks to adjust p using a transformation that is based on
the Beta distribution 2.4.

7
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p̂ = (pα)a

(pα)a + ((1 − p)β)b
(2.4)

Here, α and β are parameters that adjust the shape of the Beta distribution, allowing the
calibration to capture different types of miscalibration patterns, such as sigmoid-shaped
or reverse sigmoid-shaped deviations from perfect calibration. The parameters a and b
are additional scaling factors that provide further flexibility in the calibration process.
These parameters are typically estimated using maximum likelihood estimation on a
calibration dataset, which consists of the model’s predicted probabilities and the true
outcome labels [KSFF17].

Gaussian Process Calibration

Gaussian Process (GP) Calibration, similar to Platt scaling, is a technique aimed at
refining the output of a model to produce well-calibrated probability estimates, but it
specifically leverages the framework of Gaussian Processes. While Platt scaling applies
a logistic regression model to adjust the scores from a classifier, Gaussian Process
Calibration uses a Gaussian Process model to achieve a more nuanced and flexible
calibration, especially beneficial when dealing with complex, non-linear relationships
between model scores and true probabilities [CPH23].

Given a model that outputs a score f(x) for a given input x, Gaussian Process Calibration
seeks to model the relationship between these scores and the true probabilities of belonging
to a particular class (in the context of binary classification, for instance) through a
Gaussian Process.

P (y = 1|f(x)) = G(f(x); µ, σ2) (2.5)

Here, G represents a Gaussian Process with mean function µ and variance σ2, which are
functions of the input score f(x). The goal is to learn the parameters of this Gaussian
Process (typically the parameters defining µ and σ2) from the data, such that the process
accurately maps the original model scores to probabilities.

The calibration process involves training the Gaussian Process on a dataset consisting of
the original model’s scores and the true outcomes. The GP learns a function that, given
a new score from the model, can predict a calibrated probability of the positive class.
This approach is particularly powerful due to the non-parametric nature of Gaussian
Processes, which allows for modeling complex, non-linear relationships without explicitly
defining the form of such relationships beforehand [CPH23].
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2.3. Post-Processing Calibration Methods

Hosmer Lemeshow Test

The Hosmer-Lemeshow Test is a statistical test used for evaluating the goodness-of-fit of
logistic regression models. The test is based on the principle that a well-fitted model
should show no significant difference between the observed and predicted probabilities of
the outcome variable across different groups of predictor variables [HLM+20].

The test involves the following steps:

1. The data is divided into deciles (or other groups) based on the predicted probabilities
of the outcome variable.

2. For each group, the observed number of events (i.e., instances of the outcome
variable) and non-events are counted.

3. The expected number of events and non-events in each group are calculated based
on the model’s predicted probabilities.

4. A chi-square statistic is calculated based on the differences between the observed
and expected counts. See Equation 2.6.

5. The p-value for the chi-square statistic is calculated. If the p-value is less than a
chosen significance level (e.g., 0.05), the null hypothesis that the model fits the
data well is rejected.

H =
G�

g=1

(O1g − E1g)2

E1g
+ (O0g − E0g)2

E0g
(2.6)

where O1g and O0g are the observed numbers of events and non-events in group g,
respectively, E1g and E0g are the expected numbers of events and non-events in group g,
respectively, and G is the number of groups [HLM+20]..

Calibration Curve

Calibration curves are a visual tool used to assess the calibration of a predictive model,
especially in the context of binary classification. The curve is a plot that compares the
predicted probabilities of a model against the actual proportions of positive outcomes
observed in the data .

A perfectly calibrated model would result in a calibration curve that is a straight diagonal
line from (0,0) to (1,1), indicating that for any given predicted probability, the proportion
of positive outcomes in the data is exactly the same. For instance, if a model predicts
a probability of 0.7 for a set of instances, then around 70% of those instances should
actually belong to the positive class [Fer22].

To construct a calibration curve, the following steps are typically followed:

9
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• Sort the instances in the dataset based on the predicted probabilities from the
model.

• Partition the sorted instances into a number of bins (e.g., 10 bins). Each bin
contains instances with predicted probabilities within a certain range.

• For each bin, calculate the mean predicted probability and the actual proportion of
positive outcomes.

• Plot the mean predicted probabilities (x-axis) against the actual proportions (y-axis).
Each bin corresponds to one point on the plot.

The shape of the calibration curve can provide insights into the type of miscalibration that
the model suffers from. For instance, a curve below the diagonal line suggests that the
model is overconfident (i.e., it predicts probabilities higher than the actual proportions),
while a curve above the diagonal line suggests that the model is underconfident (i.e., it
predicts probabilities lower than the actual proportions) [Fer22].

Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) curves are instrumental in assessing the per-
formance of binary classification models. On these plots, the false positive rate (FPR) -
the proportion of negative instances misclassified as positive - forms the x-axis. Simulta-
neously, the true positive rate (TPR), synonymous with sensitivity or recall, forms the
y-axis. This rate measures the proportion of positive instances correctly identified.

The ROC curve depicts the interplay between TPR and FPR across varying classification
thresholds. A model demonstrating perfect discrimination will display an ROC curve
that adheres closely to the y-axis and plot’s upper boundary, reflecting a TPR of 1 and
an FPR of 0. In stark contrast, a model devoid of any discriminatory capacity will exhibit
an ROC curve resembling a 45-degree diagonal line extending from the plot’s bottom-left
to the top-right corner.

Area Under the Curve

The Area Under the Curve (AUC) is a commonly used metric in machine learning
that measures the two-dimensional area underneath the entire ROC curve from (0,0) to
(1,1). It provides an aggregate measure of performance across all possible classification
thresholds, serving as a single scalar value summarizing the ROC curve [Fer22].

AUC ranges in value from 0 to 1. An AUC of 1 signifies that the model has perfect
discriminatory capacity; it can perfectly distinguish between positive and negative
instances. Conversely, an AUC of 0.5 suggests that the model has no discriminatory
capacity and is as good as random guessing.

10
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2.4 Chain-of-Thought Prompting
Chain-Of-Thought (CoT) prompting is a technique used in the field of natural language
processing (NLP) and, more specifically, in the interaction with LLMs to enhance their
ability to solve complex problems, including arithmetic, logic puzzles, and reasoning
tasks. This method involves structuring the input prompt to encourage the model to
generate intermediate steps or reasoning paths that lead to the final answer, rather
than attempting to reach the conclusion in a single step. The fundamental concept
behind Chain-Of-Thought prompting is to mimic human problem-solving processes,
where complex problems are often broken down into smaller, more manageable parts
[WWS+22].

When employing Chain-Of-Thought prompting, the user crafts a prompt that not only
asks the model to solve a problem but also to elaborate on the sequential steps or thought
process that could logically lead to the solution. This approach helps in making the
model’s decision-making process more transparent and can significantly improve the
model’s performance on tasks that require multi-step reasoning or detailed explanations.
[WWS+22].

Example Consider a complex arithmetic problem such as calculating the total cost of
items bought in different quantities and prices. Instead of simply asking, "What is the
total cost?", the prompt might be structured as:

"First, calculate the cost of 3 apples at $2 each. Then, add the cost of 5 bananas at $1
each. Finally, include the cost of 2 oranges at $1.50 each. What is the total cost?"

This prompt encourages the model to follow a clear, step-by-step reasoning path, detailing
each calculation:

Cost of apples = 3 × $2 = $6
Cost of bananas = 5 × $1 = $5
Cost of oranges = 2 × $1.50 = $3

Thus, the total cost is calculated by summing up the individual costs:

Total cost = $6 + $5 + $3 = $14

Given a complex question or task Q, the Chain-Of-Thought prompting method can be
conceptualized as guiding the model to generate a sequence of intermediate thoughts
or steps [T1, T2, ..., Tn] that logically connect the initial problem statement to the final
answer A. The model is thus encouraged to output a narrative that reflects a reasoned
path from Q through [T1, T2, ..., Tn] to A, as shown in equation 2.7.

11



2. Literature Review

Chain-Of-Thought: Q → [T1, T2, ..., Tn] → A (2.7)

In this approach, each Ti represents an intermediate thought or step that contributes
to building a comprehensive understanding of how to approach and solve Q, ultimately
leading to the answer A. This method not only aids in solving the given task more
effectively but also in generating explanations that are more interpretable and educational
for human users, aligning with the goal of making AI interactions more intuitive and
insightful.

2.5 Evaluation Metrics

2.5.1 Brier Score
The Brier score is a post-processing calibration metric used to evaluate the accuracy of
probabilistic predictions. It measures the mean squared difference between the predicted
probabilities and the actual outcomes. The Brier score is particularly useful for assessing
the performance of classification models that output probabilities for two or more classes.
It can be applied to any model that generates probabilistic forecasts, providing a single-
number summary that represents the model’s accuracy.

Given a set of N predictions, where each prediction i consists of a predicted probability
pi that a certain event (e.g., belonging to a particular class) will occur, and the actual
outcome of that event yi (with yi = 1 if the event occurs and yi = 0 otherwise), the Brier
score (BS) is calculated:

BS = 1
N

N�
i=1

(pi − yi)2 (2.8)

The Brier score ranges from 0 to 1, where 0 represents a perfect model that always
predicts the actual outcomes with 100 % certainty, and 1 represents the worst possible
model. A lower Brier score indicates better calibration and reliability of the model’s
probabilistic predictions. It effectively penalizes both overconfident and underconfident
predictions that do not align with the actual outcomes, encouraging models not only to
be accurate but also to have well-calibrated probability estimates.

2.5.2 Expected Calibration Error
Expected Calibration Error (ECE) is another post-processing calibration metric used
to assess the reliability of probabilistic predictions made by classification models. ECE
measures the discrepancy between the predicted probabilities and the actual outcomes,
providing an aggregate measure of the difference between the predicted confidence of a
model and its actual accuracy.

12



2.5. Evaluation Metrics

To compute it, predictions are first grouped into M equally spaced bins based on their
predicted probability. Within each bin, the average predicted probability (pavg) and the
actual accuracy (aavg)—the fraction of correct predictions—are calculated. The ECE is
then the weighted average of the absolute differences between the predicted probabilities
and the actual accuracies across all bins, with the weights being the number of predictions
in each bin. This can be mathematically represented as shown in equation 2.9.

ECE =
M�

m=1

|Nm|
N

|pavg,m − aavg,m| (2.9)

where Nm is the number of predictions in bin m, N is the total number of predictions,
pavg,m is the average predicted probability in bin m, and aavg,m is the actual accuracy in
bin m.

The ECE metric ranges from 0 to 1, where 0 indicates perfect calibration (i.e., the
predicted probabilities perfectly match the actual outcomes), and higher values indicate
greater discrepancies between the model’s confidence and its empirical accuracy.

Differences between Brier Score and ECE

The choice of binning strategy can significantly affect the ECE, potentially leading to
different interpretations of model calibration. ECE is straightforward to interpret as
it directly reflects the calibration error in a probabilistic model. It is highly sensitive
to discrepancies in calibration, making it useful for models where calibration is critical.
Brier Score, on the other hand, evaluates both the calibration and the resolution of
the predictions, giving a more complete picture of prediction quality. By squaring
the differences, the Brier Score is sensitive to the size of the prediction errors, heavily
penalizing larger errors. But, while comprehensive, the Brier score does not isolate
calibration errors specifically, which can be a drawback when calibration is the primary
concern [Fer22].
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CHAPTER 3
Theoretical Framework and

Methodology

This chapter provides an approach to the research process, outlining the selection of Large
Language Models and detailing the methodology employed for questioning, answering,
and evaluating responses. It begins by explanation of the reason behind choosing specific
LLMs, which are OpenAI’s GPT-3.5 and Cohere Co.Generate. Subsequently, it describes
the interrogation process using medical multiple-choice questioning datasets, such as
MedMCQA and MedMC, along with specialized querying extensions and prompting
strategies like Chain-of-Thought and Revision steps. The chapter further elucidates
post-processing calibration methods including Platt Scaling, Isotonic Regression, as well
as evaluation metrices like the Hosmer-Lemeshow Test, Calibration Curve, ROC Curve,
Youden’s Index, and Area Under the Curve.

3.1 Large Language Models
In the context of this research, the selection of appropriate Large Language Models is
important. The primary criteria for selection was the ability of the models to return the
logistic probability of each generated token, indicating the model’s confidence level in its
own response. This feature is integral to the objectives of my thesis, and hence, models
that lack this capability were not considered.

Based on these prerequisites, I have chosen LLMs for my work:

• OpenAI GPT-3.5-turbo-instruct [Ope23]

• Cohere Co.Generate [Coh23]
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3. Theoretical Framework and Methodology

3.2 Questioning
The methodology for my Master’s thesis is primarily based on interrogating the Language
Learning Model with questions sourced from the medical multiple choice questioning
datasets.

3.2.1 MedMCQA
The MedMCQA is a Multiple Choice Question Answering dataset, specifically curated
to address real-world medical entrance exam questions. With over 194,000 questions
sourced from institutions like the All India Institute of Medical Science and the National
Eligibility cum Entrance Test, both qualifying and ranking examinations in India, for
students who wish to study as a postgraduage in the field of medicine [PUS22]. It
encompasses both multiple-choice and single-choice questions, with the focus of this
thesis being solely on single-choice questions.

For instance, a typical question could be: "Thiamine deficiency causes lactic acidosis
due to defect in the action of?", with 4 choices offered:

(a) Alpha - KG dehydrogenase

(b) Sorbitol reductase

(c) Lactate dehydrogenase

(d) Pyruvate dehydrogenase

From this dataset, a subset of 100 single-choice questions was extracted for the primary
phase of inquiry. To enrich the analysis, a second subdataset comprising 1000 additional
single-choice questions was incorporated, ensuring that none of the questions overlapped
with those from the initial subset.

3.2.2 MedMC
The MedMC dataset was used as a control dataset on Cohere Co.Generate. Similar to
MedMCQA, MedMC is a subset of the United States Medical Licensing Examination
(USMLE), a examination for medical licensure in the USA, with around 12000 questions
[JPO+20]. It includes single-choice questions, with five choices given. A typical question
with its answer possibilities would be:

"An investigator is studying neuronal regeneration. For microscopic visualization of the
neuron, an aniline stain is applied. After staining, only the soma and dendrites of the
neurons are visualized, not the axon. Presence of which of the following cellular elements
best explains this staining pattern?"

(a) Microtubule
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(b) Rough endoplasmic reticulum

(c) Nucleus

(d) Lysosome

(e) Golgi apparatus

3.2.3 Query Extension
To gain insights into the model’s decision-making process, I extend the query to include
ranking the possible answers. This is done by appending the phrase:

Arrange the following letters in the order of the correct answer to the least correct answer
based on the presented answer possibilities. Provide the sequence starting with the correct
answer letter and proceeding to the less probable answers letter, but with a blank between,
e.g. a b c d. Question: ...

3.2.4 Chain-of-Thought Step
For the Chain-Of Thought prompting strategy, different pre-questioning phrases are
introduced to the model to guide its thought process. These include:

• Let’s work this out in a step by step way to be sure we have the right answer.

• Carefully go through each step to make sure we achieve the correct outcome.

• "I’d appreciate it if you could tackle this task step by step for precision and the
right outcome.

• Walk through the process step by step to confirm we’re on the correct path.

3.2.5 Revision step
Subsequently, a secondary result review of the model’s responses is conducted. This
involves re-prompting the model with the original question, while also referring to its
previous response. The model is then asked to reaffirm or revise its answer, and provide
an explanation either way. This is done with the following phrase:

You did say in a previous response, that the correct answer is ... . Are you sure this is
the correct answer? If you are, explain to me why, and if not, give me the correct answer.

This secondary evaluation phase is implemented twice. The first instance is performed
on the entire dataset, while the second instance is only executed if the likelihood of the
stated answer falls below a predetermined threshold. This threshold is discussed further
in subsection Youlden’s Index 3.4.6.
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3.3 Answering
In listing 3.3 there is one response JSON. There are outputs from the LLM to the question,
and added stats and calculations from my code. The JSON properties and details are
described as following:

• correct: Did the LLM answer this question correct the first time?

• correct_answer : What would have been the correct answer?

• stated_answer : The selected answer in the first process

• options: The textual output of the LLM have been only the letters of the answer
possibilities in the question. In example 3.3, this would have been "c d a b". Here
we have for each token, e.g. each letter, some more characteristics:

– token: The answer possibility
– likelihood: the logistic probability for this token in the sequence "c d a b"
– likelihood_perc: The logistic probability likelihood transformed into "normal"

probability, so e.g. 0.8833 mean 88,33 %
– toplog_percentage: Explained below in 3.3
– calculated_percentage: Explained below in 3.3

• input_question: The input question from the MedMCQA with:

– question: The question
– cop: the correct answer possibility. 1: a, 2: b, 3: c, 4: d
– opa/opb/opc/opd: Single Choice option a/b/c/d

• restated: Was the answer restated in the revision step process 3.2.5

• response: The response of the revision step process

• restated_answer : The restated answer of the revision step process

• restated_correct: The selected answer in the revision step process

• state: The result revision state, defined in 3.1

• percentage_new_calc: The probability of the restated answer from the first step,
calculated

• percentage_new_topl: The probability of the restated answer from the first step,
retrieved from the toplog
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3.3. Answering

Token probabilities

The OpenAI model has the capacity to yield not only the most probable token but also
to return the other highly probable tokens at each token position. We can map these
’toplogs’ to each subsequent token if they exist. However, as Cohere lacks this feature, we
introduce a calculated_percentage. This percentage is computed based on the previous
likelihoods.

Let’s denote the calculated_percentage for options[i] as Pi, and the
options[i].likelihood_percentage as Li.

We can express the relationships between these variables using the following formulae:

1. The first calculated percentage is simply equal to the first likelihood percentage:

P0 = L0

2. For the second token:
P1 = (1 − P0) × L1

3. For the third token:
P2 = (1 − (P0 + P1)) × L2

4. For the fourth token:

P3 = (1 − (P0 + P1 + P2)) × L3

In its general form:

Pi = (1 − (P0 + P1 + .. + Pi−1)) ∗ Li

or equivalently:

Pi = (1 −
i−1�
k=0

Pk) × Li

The above expressions allude to the computation of the probability of each option consid-
ering the likelihood percentage of each option and the probabilities of preceding options.
The close alignment of these calculated probabilities to the given toplog_percentages
permits us to use these as the probability of a token, thus also defining the confidence of
the model in terms of the correct answer. Therefore, the calculated_percentage could be
deemed as the model’s confidence score ascribed to each token, making this a potential
way of quantifying a model’s certainty in this answer.

1 {
2 "id": 284,
3 "llm": "GPT-3.5",
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4 "correct": false,
5 "correct_answer": "d",
6 "stated_answer": "c",
7 "percentage_old_calc": 0.8833222675944602,
8 "percentage_old_topl": 0.8833222675944602,
9 "options": [

10 {
11 "token": "c",
12 "likelihood": -0.124065176,
13 "likelihood_perc": 0.8833222675944602,
14 "calculated_percentage": 0.8833222675944602,
15 "toplog_percentage": 0.8833222675944602
16 },
17 {
18 "token": "d",
19 "likelihood": -0.18756504,
20 "likelihood_perc": 0.828975199879996,
21 "calculated_percentage": 0.09672294654242705,
22 "toplog_percentage": 0.06709673465825658
23 },
24 {
25 "token": "a",
26 "likelihood": -0.45635712,
27 "likelihood_perc": 0.6335875299128606,
28 "calculated_percentage": 0.01264310348494966
29 },
30 {
31 "token": "b",
32 "likelihood": -0.00026431592,
33 "likelihood_perc": 0.9997357190083754,
34 "calculated_percentage": 0.007309750039493698,
35 "toplog_percentage": 0.030375773883496462
36 }
37 ],
38 "input_question": {
39 "question": "Best X ray view to visualize superior

orbital fissure is",
40 "cop": 4,
41 "opa": "Anteroposterior",
42 "opb": "Basal",
43 "opc": "Towne’s",
44 "opd": "Caldwell luc view",
45 "subject_name": "Ophthalmology",
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46 "topic_name": "Diseases of orbit, Lids and lacrimal
apparatus",

47 "id": "6dd7bd1f-4375-4df3-b502-3e19cc4f0305",
48 "choice_type": "single"
49 },
50 "restated": true,
51 "response": "The correct answer is not c) Towne’s view. The

best X-ray view to visualize the superior orbital
fissure is actually d) Caldwell luc view. The Caldwell
luc view is a specialized X-ray view that is taken with
the patient’s head tilted slightly backward. This view
allows for better visualization of the superior orbital
fissure, which is a small opening in the skull located
behind the eye socket. This view is particularly useful
for assessing fractures or other abnormalities in this
area. I hope this clarifies things for you. Thank you
for pointing out the error, and I appreciate your
understanding.",

52 "restated_answer": "d",
53 "restated_correct": true,
54 "state": 3,
55 "percentage_new_calc": 0.09672294654242705,
56 "percentage_new_topl": 0.06709673465825658
57 }

3.3.1 Answer Evaluation

For the result revision, there are different states possible, based on the first and second
answer for the question of the LLM. I defined those in Table 3.1.

State Correct Correct
number First Time Second Time Description

0 No new answer given
1 1 1 Correct both times, "stood on answer"
2 1 0 Switches from correct to false answer,

corrected itself incorrectly
3 0 1 Corrected itself correctly
4 0 0 Stood on answer incorrectly
5 0 0 Recorrected to another false answer

Table 3.1: State definition after revision step
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3.4 Post-Processing Calibration

3.4.1 Platt Scaling

Platt Scaling was implemented on the dataset. The true labels of the dataset represent
whether the model accurately answered the question, while the scores correspond to the
toplog or calculated probabilities. We have returned calibrated probabilities.

3.4.2 Isotonic Regression

In a similar vein to Platt Scaling, Isotonic Regression was also executed.

3.4.3 Hosmer Lemeshow Test

Subsequently, the Hosmer-Lemeshow test was performed on both the uncalibrated and
Platt Scaling-calibrated probabilities. This test serves as a measure of the effectiveness
of the Platt Scaling method. A low p-value, such as less than 0.005, as a result of the
Hosmer Lemeshow test, suggests a poor alignment between the predicted probabilities
and the data.

3.4.4 Calibration Curve

The calibration curve is plotted with the predicted probabilities on the x-axis and the
actual probabilities on the y-axis. A perfectly calibrated model will have a calibration
curve that lies on the 45-degree diagonal line. Any deviation from this line indicates a
discrepancy between the predicted and actual probabilities.

3.4.5 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The area under the ROC curve (AUC) is a measure of how well a parameter can distinguish
between two diagnostic groups (diseased/normal) [REC20].

3.4.6 Youden’s index

The Youden index is a statistic used to evaluate the performance of diagnostic tests. It is
calculated as the difference between TPR and FPR. Essentially, it measures the ability of
a test to correctly identify positive cases while avoiding false positives. A higher Youden
index therefore means better test performance. Youden’s Index is closely related to the
ROC curve, as it represents a single summary statistic derived from the ROC curve,
maximizing the vertical distance from the diagonal line, indicating the optimal trade-off
between sensitivity and specificity [FFR05].
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3.4.7 Area Under the Curve
The Area Under the Curve represents the degree or measure of separability. It tells how
much model is capable of distinguishing between classes. Higher the AUC, better the
model is at predicting 0s as 0s and 1s as 1s. An excellent model has AUC near to the 1
which means it has good measure of separability. A poor model has AUC near to the 0
which means it has worst measure of separability. In fact it means it is reciprocating the
result. It is predicting 0s as 1s and 1s as 0s. And when AUC is 0.5, it means model has
no class separation capacity whatsoever [REC20].
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CHAPTER 4
Results

This results chapter examines the performance of the Language Learning Models in terms
of correctness, and confidence, both in their initial responses and after employing the
Chain-Of-Thought prompting strategies. A comprehensive overview of the correctness of
LLM responses is given, examining how well they answered the medical multiple-choice
questions and their capability to either revise or maintain their responses through the
Result Revision process. Furthermore, the calibration of the models is evaluated, both
before and after applying post-processing calibration techniques such as Platt Scaling,
Beta Calibration and Isotonic Regression, to enhance their predictive accuracy.

4.1 Correctness Overview
The correctness comparison is evaluated on the basis of the accuracy of the responses
provided by the two Large Language Models. GPT3.5 exhibited an accuracy of 58 % in
answering the first dataset of 100 questions, and this slightly declined to 54.2% when the
model was subjected to the larger dataset comprising of 1000 questions, see Figure 4.1.

Contrarily, the performance of Cohere was significantly lower in comparison. Within a set
of 100 questions, the model was able to correctly answer only 20%. This low performance
was consistently reflected in another test conducted using an alternative Medical Question
Answering dataset, MedMC. Cohere again scored low with only 26 correct answers out
of a set of 100 questions.

In the case of MedMC, with five answer possibilities, random guessing would statistically
yield a correct answer 1 out of 5 times, or 20% of the time. This is because there is
one correct answer among five choices. Now, in MedMCQA, where there are only four
answer possibilities, the probability of randomly guessing the correct answer increases
slightly. With one correct answer among four choices, random guessing would yield a
correct answer 1 out of 4 times, or 25% of the time.
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Figure 4.1: Correctness for GPT-3.5 on 100 and 1000 MedMCQA questions, cohere on
100 MedMCQA and 100 MedMC questions.

Therefore, when looking at the scoring percentages alone, it might seem like cohere’s
responses are guided more by random guessing. This is because the score of 26% in
MedMCQA aligns more closely with the probability of random guessing (1 out of 4),
same for the score of 20% in MedMC (1 out of 5). Thus, model’s responses seemed to be
guided more by random guessing rather than a knowledgeable deduction, see also Figure
4.1.

4.1.1 Chain-of-Thought Correctness
The Chain-of-Thought prompting technique did not lead to a significant improvement in
the performance of GPT-3.5. In fact, there was a marginal decrement in the correctness
of the results generated by the model, see Figure 4.2.

In contrast, Cohere demonstrated no improvement in performance using the Chain-of-
Thought prompting.

But strikingly, both models did not demonstrate any notable difference in their response
to different Chain-of-Thought prompts. Their performance remained consistent regardless
of the specific prompt used. As a result, in the subsequent data presentation, I will only
incorporate data obtained through the prompt, "Let’s work this out in a step by step
way to be sure we have the right answer".

4.2 Confidence overview
The confidence levels extrapolated from the probabilities given by the GPT-3.5 model,
either from the top logs or computed, yields a noteworthy observation. There appears to

26



4.3. Result revision

GPT-3.5 CoT GPT-3.5 cohere CoT cohere
0

20

40

60

80

100

Pe
rc

en
ta

ge 58.00%
51.00%

20.00% 20.00%

42.00%
49.00%

80.00% 80.00%

Overview of Correct vs. Incorrect Answers (%)

Correct
Incorrect

Figure 4.2: Correctness for GPT-3.5 and Cohere on 100 MedMCQA questions, with and
without Chain-of-Thought prompting.

be a direct relationship between the model’s confidence and the likelihood of the answer
being correct: It can be inferred that higher confidence levels of the model correspond to
a higher likelihood of the answer being correct, see Figure 4.3.

As we have seen before, Chain-of-Thought prompting did not improve in the correctness
of the results, and here we see it also does not affect the confidence of the model in its
answers. See Figure 4.4a and Figure 4.4b.

4.3 Result revision
The process of result revision was carried out twice. In the first instance, with the entire
dataset, a reduction to only 26 % accuracy for 100 questions and 35.64 % was observed
for GPT-3.5, as shown in Figure 4.5a.

Conversely, for cohere, a significant increase in the number of correct responses was
noted.

Given the decrease in accuracy for GPT-3.5, a second round of result revision was
introduced. This involved the calculation of Youden’s index, which was used as a
threshold parameter. The model’s confidence in its initial response was evaluated against
this threshold. If it fell below the threshold, the model was prompted to reassess the
question. If the confidence level was above the threshold, the initially provided answer
was accepted (state 0).

Post this secondary revision, there was a minor increase in the correct responses provided
by GPT-3.5, a finding which can be seen in Figure 4.5b.
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Figure 4.3: Histogram of GPT-3.5’s confidence in its answers.

In order to reassess the shift between correct and incorrect answers, I established distinct
states, see Table 3.1. The results for the dataset of 100 questions are illustrated in Figure
4.6a. It shows that there were more questions that were initially answered incorrectly but
corrected in the revision process (state 3) as compared to questions which were initially
correct but revised to incorrect answers (state 2). The difference between these states
directly corresponds to the observed increment in accuracy.

To substantiate the observed elevation in accuracy, the same evaluation was performed
on the dataset of 1000 questions. Regrettably, the improved accuracy was not maintained
in this larger dataset, as illustrated in Figure 4.6b. Expressing this in terms of state
numbers, there were more questions in state 2 (initially correct, revised to incorrect) than
in state 3 (initially incorrect, corrected upon revision). To enhance accuracy, the situation
needs to be reversed - with more questions improving from state 3 than deteriorating
from state 2.

The analysis of the stages reveals an intriguing pattern: when confronted with result
revision prompts, the model consistently responded with minimal resistance to altering
its initial answer. Rarely did it firmly adhere to its original response, whether accurate
(state 1) or inaccurate (state 4). Instead, it predominantly transitioned from an incorrect
to a correct answer (state 2), vice versa (state 3) or from one incorrect answer to another
one (state 5). This observation suggests that the prompt primarily serves to signal the
model to modify its response, irrespective of its accuracy.
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Figure 4.4: Histograms comparing cohere’s confidence in its answers
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(a) Following the initial revision step, there was a significant drop in GPT-3.5’s accuracy.
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(b) Following the second revision step, there was a small increase in GPT-3.5’s accuracy. After
the second revision step with 1000 questions, we did not have the same effect we had on 100.

Figure 4.5: Comparison of accuracy changes after revision steps

4.4 Calibration Evaluation

The following analysis was constructed from the data after the previous result revision.
Platt Scaling, Beta Calibration and Isotonic Regression were implemented. For each
method, a training function was defined to fit the calibration model using the correctness,
if the answer was answered correctly, as labels and probabilities of the model’s confidence.
Subsequently, an application function is used to leverage the trained model for calibrating
probabilities.

30



4.4. Calibration Evaluation

4.4.1 Hosmer Lemeshow Test
The Hosmer Lemeshow Test yielded limited insights due to the absence of sufficient data
points in many of the bins, particularly those representing uncalibrated probabilities.
In statistical analysis, "bins" refer to predefined intervals into which data points are
grouped based on their values. This suggests an uneven distribution of probabilities
across the range of 0 to 1. While it’s common to address such issues by adjusting the
bins, such as by adding a small constant to prevent division by zero, this approach
risks introducing artificial data points into empty bins, potentially skewing the results of
the Hosmer-Lemeshow test. Ideally, empty bins should be excluded from calculations
to maintain the test’s integrity. However, given the significant number of empty bins
observed, I opted to omit the Hosmer Lemeshow Test from my analysis. Instead, I
focused on alternative indicators such as the Expected Calibration Error , Brier Score,
and Calibration Curve for a more robust assessment.

4.4.2 Brier Score
Analysis of the Brier scores provided in Table 4.1 for the models GPT-3.5 (on 100 and
1000 questions) and Cohere, and calibration methods: Uncalibrated, CoT (Calibration
over Time), Platt Scaling, Beta Calibration, and Isotonic Regression.

Brier score ranges from 0 to 1, with 0 indicating perfect accuracy (the predicted proba-
bilities match the actual outcomes) and 1 indicating perfect inaccuracy (the predicted
probabilities are completely off). So, the closer the Brier score is to 0, the better the
predictions.

The uncalibrated models have relatively high Brier scores across the board, indicating
suboptimal accuracy in probabilistic predictions. Cohere exhibits the highest Brier score
among all models, suggesting the least accurate predictions among the uncalibrated
models.

CoT is only available for GPT-3.5 on 100 questions and for Cohere. For GPT-3.5 it
shows a slightly worse performance compared to the uncalibrated GPT-3.5 model, with
a higher Brier score. Cohere has the same score for CoT as uncalibrated.

Platt Scaling improves the calibration of the predictions for all models compared to
their uncalibrated versions. However, Cohere still exhibits the highest Brier score among
all models even after Platt Scaling calibration. Beta Calibration further improves the
calibration of the predictions, resulting in lower Brier scores compared to Platt Scaling
for all models. Among all models, Cohere demonstrates the best performance after Beta
Calibration. Isotonic Regression consistently outperforms both Platt Scaling and Beta
Calibration for all models, showcasing the lowest Brier scores.

Isotonic Regression consistently provides the best calibration and accuracy improvement
for all models, followed by Beta Calibration and Platt Scaling. However, even after
calibration, Cohere tends to have higher Brier scores compared to the GPT-3.5 models,
indicating potentially less accurate probabilistic predictions.
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Model GPT-3.5 GPT-3.5 1000 Cohere
Uncalibrated 0.205 0.270 0.618

CoT 0.275 - 0.618
Platt Scaling 0.190 0.222 0.160

Beta Calibration 0.164 0.210 0.155
Isotonic Regression 0.144 0.203 0.138

Table 4.1: Brier Score

4.4.3 Expected Calibration Error
As Brier Score, for the Expected Calibration Error applies: the smaller, the better. Let’s
analyze the Expected Calibration Error (ECE) scores provided in Table 4.2.

Model GPT-3.5 GPT-3.5 1000 Cohere
Uncalibrated 0.174 0.224 0.660

CoT 0.241 - 0.618
Platt Scaling 0.134 0.073 0.002

Beta Calibration 0.076 0.026 0.074
Isotonic Regression 5.32e-17 2.05e-17 2.19e-17

Table 4.2: Expected Calibration Error

Similar to the Brier scores, the uncalibrated models exhibit relatively high ECE scores, in-
dicating a lack of calibration in their probabilistic predictions. Cohere again demonstrates
the highest ECE among all models, indicating the poorest calibration.

CoT for GPT-3.5 shows a higher ECE compared to its uncalibrated version, indicating
worsened calibration. Cohere is slightly better for CoT here.

Platt Scaling significantly improves calibration for all models, resulting in substantially
lower ECE scores compared to their uncalibrated versions. Beta Calibration further
improves calibration, resulting in even lower ECE scores compared to Platt Scaling for
all models. Isotonic Regression provides near-perfect calibration, resulting in ECE scores
very close to zero for all models. This indicates highly accurate and well-calibrated
probabilistic predictions across all models after applying Isotonic Regression.

Among the Calibration methods, Isotonic Regerssion provides the best calibration for all
models.

The scientific question that CoT can achieve higher calibration than post-processing
calibration methods is wrong based on the measures Brier Score and Expected Calibration
Error, and, indeed the opposite seems to be true.
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(b) We have more answers in state 2 than 3, thus declining the accuracy.

Figure 4.6: Comparison of state frequency overview
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4.4.4 Calibration curve
In the following analysis, the calibration of the models is assessed using calibration curves.

The calibration curve for cohere (Figure 4.7) exhibits substantial deviation from the ideal
diagonal line, indicating poor calibration. This suggests that the model’s probabilistic
predictions are not aligned with the actual outcome frequencies, reinforcing the hypothesis
that the cohere model may be operating on a guessing mechanism.
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Figure 4.7: Calibration curve for the uncalibrated Coherence demonstrates suboptimal
calibration. Isotonic Regression improves calibration immensely.

Contrasting with Cohere, GPT-3.5 demonstrates a notably superior calibration curve
when considering the initial uncalibrated data (refer to Figure 4.9 for the Calibration
Curve of 1000 sample questions and Figure 4.8 for 100 samples, including Chain-Of-
Thought Calibration). The curve of the uncalibrated proabilities tracks the diagonal
line, indicative of a positive correlation between predicted probabilities and actual
outcomes. This alignment underscores the model’s increasing confidence in its predictions
corresponding to a higher likelihood of accuracy.
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Figure 4.8: Calibration Curve for GPT-3.5 showing fine calibration for uncalibrated,
improving after applying the Post-Processing Calibration methods, especially perfect
calibration after applying Isotonic Regression.
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Figure 4.9: Calibration Curve for GPT-3.5 showing good calibration aligning with the
ideal diagonal line after applying Post-Processing Calibration methods

In line with observations on Brier Score and Expected Calibration Error, once again,
CoT does not significantly impact calibration. However, both Platt Scaling and Beta
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4. Results

Calibration visibly enhance calibration, evidenced by a closer alignment with the diagonal
line representing perfect calibration. Notably, Isotonic Calibration precisely matches the
line of perfect calibration, suggesting it as the optimal method for refining post-processing
calibration for this model.
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4.4. Calibration Evaluation

4.4.5 ROC Curve
The ROC curve depicted in Figure 4.10 reveals a notable deficiency in discriminatory
capability for Cohere, as evidenced by its AUC score of 0.55. This outcome strongly
suggests that the model’s predictions closely resemble random guesses. Notably, the
curve closely mirrors the diagonal line, a hallmark of random guessing. Although a
slight enhancement is observed upon incorporating Isotonic Regression, the overwhelming
evidence pointing to mere guesswork renders the addition of further Post-Processing
Calibration methods unnecessary for Cohere.
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Figure 4.10: ROC for cohere indicating random guessing.

In contrast, the GPT-3.5 model’s ROC curves (see Figure 4.9 for the Calibration Curve
of 1000 sample questions and Figure 4.8 for 100 samples, including Chain-Of-Thought
Calibration) showcases an improvement over Cohere’s. Although not flawless, the curve
demonstrates a tendency towards the "hugging" direction, implying a more optimal
balance between the model’s true positive rate and false positive rate. The term "hugging"
refers to the curve’s proximity to the upper-left corner of the ROC space, where the true
positive rate is high and the false positive rate is low. This alignment indicates a more
desirable performance of the model in distinguishing between positive and negative cases.
Additionally, with an AUC score of 0.72, the model’s performance is deemed acceptable.

Post-processing calibration method further enhance the AUC score, with Isotonic Regres-
sion yielding a significant improvement. However, Platt Scaling and Beta Calibration did
not result in any noticeable enhancements. Notably, there is no discernible calibration
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Figure 4.11: ROC curve for GPT-3.5 with 1000 samples demonstrates an acceptable
level of calibration, albeit not achieving perfection. Notably, both Platt Scaling and
Beta Calibration fail to induce any detectable alterations to the uncalibrated ROC curve,
rendering them indistinguishable within the plot.

enhancement observed with Chain-Of-Thought Prompting, as the AUC Score is almost
identically to the calibration before CoT, even slightly below, with 0.71 (in Contrast to
0.72).
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Figure 4.12: ROC curve for GPT-3.5 displays a passable level of calibration, which gets
better with Isotonic Regression. Interestingly, both Platt Scaling and Beta Calibration
show again no noticeable improvement over the uncalibrated curve. Moreover, the CoT
Curve performs even worse than the uncalibrated ROC curve.
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CHAPTER 5
Discussion

This thesis focused on evaluating how well Large Language Models, specifically GPT-3.5
and Cohere, can accurately answer medical multiple-choice questions. It looked into
how different prompting techniques and adjustments after the initial processing might
improve the models’ performance, in both correctness and confidence in its responses.
The research used the MedMCQA and MedMC dataset for testing. The results provide
a clear view of what these advanced AI models can and cannot do when it comes to
understanding medical information, highlighting their capabilities and limitations.

5.1 Model Performance and Prompting Strategies

The comparison between GPT-3.5 and Cohere showed a noticeable difference in their
performance on answering medical multiple-choice questions, with GPT-3.5 achieving a
significantly higher accuracy rate than Cohere. This difference might be due to several
factors, including the amount and type of training data each model was exposed to, their
architectural differences, and the technologies they’re built on. It’s possible that GPT-3.5
had access to a broader range of medical content during training, which might explain
its superior performance.

Despite expectations, using Chain-of-Thought prompting strategies did not lead to a
significant improvement in the accuracy of the models. It was anticipated that CoT
prompts would help the models adopt a more systematic approach to solving problems,
but the results showed that these prompts had little to no effect on the accuracy of the
responses. This suggests that the effectiveness of CoT prompting might be limited to
specific contexts or types of questions. In the case of medical multiple-choice questions,
which often require direct factual knowledge rather than complex reasoning, CoT prompts
seem to offer little benefit.
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5. Discussion

5.2 Confidence and Calibration
The analysis of model confidence showed that there is a link between how confident
GPT-3.5 is in its answers and how often those answers are correct. This suggests that
the model’s own estimates of how likely it is to be correct could be a useful tool for
determining the reliability of its medical advice.

However, when looking at how well the models’ confidence matched their actual per-
formance, both GPT-3.5 and especially Cohere showed significant discrepancies. This
misalignment means that the models’ confidence levels might not always reflect their true
likelihood of being correct. It indicates that if GPT-3.5 is very sure about its answer,
above a threshold of about 90%, it truly reflects that it knows the question, as in the
context that the model was trained on the domain and question.

5.3 Revision Strategy Efficacy
The accuracy of GPT-3.5’s responses improved slightly after revising the answers, but
the overall impact was not significant. This indicates that while strategies to revise
answers have the potential to correct inaccuracies, their effectiveness may be hampered
by the model’s initial comprehension of the question and its ability to generate improved
responses on further consideration.

Additionally, it was observed that if the model is prompted with a suggestion that its first
response may be incorrect, it indeed tends to alter its answer. This behavior was noted
when all questions were subjected to revision, highlighting the necessity of establishing a
threshold for when to apply revisions, to not impair the overall correctness of the results.

5.4 Post-Processing Calibration and Comparison
The assessment of Brier scores reveals the extent of calibration achieved by each method.
Lower Brier scores indicate better calibration, with Isotonic Regression consistently
outperforming Platt Scaling and Beta Calibration across all models. This highlights the
efficacy of Isotonic Regression in improving the alignment between predicted probabilities
and actual outcomes, leading to more accurate and reliable predictions.

Similarly, the analysis of ECE scores reaffirms the superior performance of Isotonic
Regression in achieving near-perfect calibration. The negligible ECE scores obtained
after applying Isotonic Regression indicate minimal discrepancies between predicted
probabilities and observed frequencies, signifying highly calibrated models.

The Calibration curves offered a visual representation of model calibration, with the
ideal calibration depicted by a diagonal line. Discrepancies from this line indicate
deviations in calibration, with Cohere exhibiting substantial deviations, particularly
at certain probability thresholds. In contrast, GPT-3.5 models demonstrate superior
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5.5. Research questions

calibration, especially after post-processing calibration methods such as Platt Scaling,
Beta Calibration, and Isotonic Regression. These methods effectively reduce deviations
from the diagonal line, indicating improved calibration.

ROC curves provide insights into the discriminatory capability of models, with higher AUC
scores indicating better performance. Cohere’s ROC curve reflects poor discriminatory
capability, resembling random guessing, whereas GPT-3.5 models exhibit moderate
discrimination, with room for improvement. Post-processing calibration methods enhance
discrimination, with Isotonic Regression yielding the most significant improvements.

Notably, Chain-Of-Thought Prompting does not significantly impact discrimination,
suggesting its limited effectiveness in enhancing model performance in this context.

5.5 Research questions
5.5.1 How can post-processing calibration contribute to rendering

LLMs more reliable and trustworthy for applications in clinical
settings?

By calibrating LLM predictions, post-processing techniques such as Platt Scaling, Beta
Calibration, and Isotonic Regression help align predicted probabilities with actual out-
comes, thereby improving the model’s calibration and accuracy. In clinical applications,
where decisions are often based on probabilistic predictions, well-calibrated models instill
confidence among practitioners and patients alike. Additionally, calibrated LLMs are
better equipped to provide accurate risk assessments, aid in treatment planning, and
support clinical decision-making processes. By leveraging post-processing calibration,
LLMs can contribute to more reliable diagnostic outcomes, but there is still a lot of work
to do until they ultimately can enhance patient care and safety in clinical settings.

5.5.2 To what extent do various post-processing calibration techniques
exhibit comparative advantages and limitations in the
calibration of LLMs for diagnostic purposes?

Post-processing calibration has distinct advantages and limitations in calibrating LLM
predictions for diagnostic purposes. Platt Scaling is a simple yet effective method that
improves calibration by fitting a logistic regression model to LLM scores. While it provides
noticeable calibration improvements, it may struggle with extreme probabilities and may
not fully capture non-linear relationships between LLM scores and true probabilities. Beta
Calibration, on the other hand, addresses these limitations by modeling the calibration
curve using a non-parametric approach, resulting in more flexible calibration. However,
it may require larger datasets for optimal performance and can be computationally
intensive. Isotonic Regression stands out as a highly effective calibration technique,
offering near-perfect calibration by modeling the calibration curve as a piecewise constant
function. It is robust to outliers and can handle small datasets effectively. However, it
may suffer from overfitting if not appropriately regularized.
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5. Discussion

5.5.3 Exploring the potential of Chain-of-Thought prompting: Can a
more finely tuned calibration be achieved compared to
traditional post-processing calibration methods? What is the
procedural approach to achieving this calibration with the right
prompting strategies?

Chain-of-Thought prompting represents an innovative approach to prompting LLMs by
guiding the generation process through structured prompts. While Chain-of-Thought
prompting may excel in facilitating coherent and contextually relevant responses for logic
and procedural questions, its effectiveness in improving calibration and accuracy for LLMs
when answering questions based on unfamiliar knowledge is limited. Unlike traditional
post-processing calibration methods such as Platt Scaling, Beta Calibration, and Isotonic
Regression, which focus on adjusting predicted probabilities to align with ground truth
outcomes, Chain-of-Thought prompting does not inherently address calibration issues.

The procedural approach to employing Chain-of-Thought prompting involves designing
prompts tailored to guide the LLM through complex reasoning tasks, such as solving
intricate calculations by breaking them down into manageable steps. However, when
applied to questions requiring knowledge outside the LLM’s training data, Chain-of-
Thought prompting may not achieve improved calibration or accuracy. In such cases,
the LLM’s responses may lack grounding in factual information, leading to unreliable
predictions.

While Chain-of-Thought prompting holds promise for certain types of tasks, its utility
for improving calibration and accuracy in diagnostic settings where knowledge outside
the training data is frequently required is limited.
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CHAPTER 6
Conclusion

In this thesis, I investigated the capabilities of Large Language Models, specifically GPT-
3.5 and Cohere, in answering medical multiple-choice questions and explored various
strategies to improve their performance, confidence estimation, and calibration. Through
experimentation with the MedMCQA and MedMC dataset, insights were gained into the
strengths and limitations of these advanced AI models in comprehending and responding
to medical inquiries.

The findings revealed significant differences in the performance of GPT-3.5 and Co-
here, with GPT-3.5 demonstrating superior accuracy in answering medical MCQs. We
attributed this variance to factors such as the models’ training data diversity, architec-
tural variances, and underlying technologies. Despite expectations, employing Chain-of-
Thought prompting strategies did not substantially enhance model accuracy, indicating
the contextual limitations of this approach in medical question-answering tasks.

Also the relationship between model confidence and correctness of responses was examined,
noting a correlation between GPT-3.5’s confidence and answer accuracy. However,
discrepancies between predicted confidence and actual performance highlighted the need
for robust calibration methods to ensure the reliability of model predictions in clinical
applications.

Furthermore, my investigation into revision strategies underscored their potential to
marginally improve response accuracy, albeit with minimal impact overall. Notably,
prompting models with suggestions of potential inaccuracies prompted them to reconsider
and revise their initial responses, suggesting the importance of judiciously applying
revision strategies to optimize accuracy does not always work. Here it is important to
notice, that those revision strategy also change correct responses to incorrect ones.

Post-processing calibration techniques, including Platt Scaling, Beta Calibration, and
Isotonic Regression, emerged as pivotal tools for aligning model predictions with ground
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6. Conclusion

truth outcomes. Isotonic Regression, in particular, exhibited remarkable effectiveness in
achieving near-perfect calibration, thereby enhancing the reliability and trustworthiness
of LLMs for clinical applications.

In conclusion, our study sheds light on the nuanced interplay between LLM performance,
prompting strategies, confidence estimation, revision techniques, and calibration methods
in the context of medical question-answering. While LLMs like GPT-3.5 show promise in
understanding medical content, their optimal utilization in clinical settings necessitates
careful consideration of contextual factors, rigorous calibration, and ongoing refinement
of strategies to ensure accuracy, reliability, and most, learning and training of more
medical context. Moving forward, further research and development efforts are warranted
to enhance LLM capabilities and maximize their potential contributions to healthcare
delivery and decision-making processes.
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