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Kurzfassung

Fuzzers sind Werkzeuge zur automatisierten Durchführung von Softwaretests, die un-
erwartetes oder falsches Verhalten von Software aufdecken, indem diese wiederholt mit
verschiedenen Inputs ausgeführt wird. Die Entwicklung von Fuzzern ist ein reger For-
schungsbereich und neue Fuzzer und Fuzzingmethoden werden laufend eingeführt; es
ist daher wichtig, Stärken und Schwächen verschiedener Fuzzer evaluieren zu können.
Es gibt bereits viele verschiedene Fuzzer-Benchmarking Projekte, allerdings vergleichen
diese immer Fuzzer einer bestimmten Programmiersprache, was es schwierig macht,
Fuzzer verschiedener Sprachen vergleichen zu können. Wir führen Muzzle ein, ein Fuzzer-
Benchmarking Werkzeug, das fehlerhafte, semantisch äquivalente C und Solidity
Programme generiert. Muzzle evaluiert Fuzzer beider Sprachen mithilfe von Benchmarks
aus Programmen, die es generiert. Wir verwenden Muzzle, um einen solchen Bench-
mark aus Programmen zu generieren und vergleichen damit verschiedene Solidity
und C Fuzzer basierend auf ihren Fähigkeiten und ihre Geschwindigkeit, Fehler in den
Programmen zu finden. Unsere Ergebnisse zeigen, dass C Fuzzer wesentlich besser als
Solidity Fuzzer abschneiden, allerdings gibt es auch innerhalb der Solidity Fuzzer
starke Unterschiede.
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Abstract

Fuzzers are testing tools which discover unexpected or incorrect behaviour in software
applications by repeatedly executing software with different inputs. Development of
fuzzers is an active research area and new fuzzers and fuzzing techniques are introduced
constantly, therefore it is important to evaluate strengths and weaknesses of different
fuzzers. Various fuzzer benchmarking projects already exist, but existing tools only
compare fuzzers of a specific programming language, making it hard to tell how fuzzers
of different languages compare. We introduce Muzzle, a fuzzer benchmarking tool which
generates buggy, semantically equivalent C and Solidity programs. Muzzle evaluates
fuzzers of both languages using the programs it generates as a benchmark. We generate
a benchmark of programs using Muzzle and evaluate different Solidity and C fuzzers
based on their ability and speed in finding bugs. Our results show that C fuzzers one-
sidedly outperform Solidity ones, yet even between the evaluated Solidity fuzzers
there are stark differences.
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CHAPTER 1
Introduction

With increasing complexity and size of software applications, the demands on software
quality assurance have increased in turn. Fuzzing [Micheal et al., 2007] is a method of
increasing trust in the correctness of software. In particular, it is the process of finding
bugs and vulnerabilities by repeatedly testing programs with fuzzed or modified inputs.

The effectiveness of fuzzing software or fuzzers can be compared by executing fuzzers
on different programs and comparing their ability to find bugs in these programs. The
amount of found bugs or how fast bugs are found can then be used as the performance
evaluation factor.

There already exist various projects with the goal of benchmarking different fuzzers, which
differ by the types of programs that are supplied to the fuzzers. Some use real-world
programs that are known to have vulnerabilities, such as the C fuzzer benchmarking tools:
Fuzzbench Metzman et al. [2021], Magma Hazimeh et al. [2021] and UNIFUZZ Li et al.
[2020]. Others, such as FIXREVERTER Zhang et al. [2022], take existing real-world
programs and inject bugs into these programs. There also exist benchmarking projects
that completely synthesise the input programs, such as HyperPut Felici et al. [2022]
which generates C input programs using bugs as seeds or Daedaluzz Wüstholz [2023]
which generates Solidity input programs from mazes.

Being able to synthesise buggy programs is useful for testing and comparing existing
fuzzers as this allows the generation of a varied and fair input program set. Currently, there
exist fuzzer benchmarking projects which produce buggy code of specific programming
languages in order to compare fuzzers of that language but, to the best of our knowledge,
there exists no tool, able to compare fuzzers of different programming languages.

Fuzzle [Lee et al., 2022] is a C programming language fuzzer benchmarking tool which
uses the Python library mazelib [maz, 2014] as a starting point for program generation.
It generates code based on mazes constructed by mazelib, where a goal specified within
the maze represents a bug in the program and the start of the maze represents the
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1. Introduction

program’s entrypoint. The maze’s cells are translated to functions, where function a can
be entered from function b in the generated program if cell a is a neighbour of cell b
in the corresponding maze. Intuitively, a fuzzer trying to find a bug in the generated
program then represents an agent trying to find the goal while traversing the maze.

Smart contracts are programs deployed on the blockchain and often represent financially
critical systems. It is therefore important to have ways of gaining trust in smart contract
software. Solidity is a popular language for writing smart contracts deployed on
the Ethereum Wood et al. [2014] blockchain. Fuzzing tools for Solidity have been
introduced in recent years, but they are young compared to long existing C fuzzers. It is
therefore hard to know how good Solidity fuzzers are at finding vulnerabilities.

In the course of this work, we introduce Muzzle, an extension to the existing Fuzzle
project, able to generate buggy C programs as well as semantically equivalent buggy
Solidity programs based on mazes supplied by mazelib. This will allow cross-language
comparison and evaluation of fuzzers. We then use input programs generated with Muzzle
to compare two C fuzzers and three Solidity fuzzers based on the amount of bugs
found by each fuzzer and the time taken to find these bugs.

Currently, Fuzzle benchmarks AFL [Zalewski, 2019], AFLGo [Böhme et al., 2017],
AFL++ [Fioraldi et al., 2020], Eclipser [Choi et al., 2019] and Fuzzolic [Borzacchiello
et al., 2021a,b]. We plan to add the Solidity fuzzers Echidna [Grieco et al., 2020],
ItyFuzz [Shou et al., 2023] and Foundry [fou, 2022] and compare them to the C fuzzers
AFL++ Fioraldi et al. [2020] and libfuzzer [Project, 2018].

The developed extension will be published as open source software in support of open
science.

In Chapter 2 we introduce the benchmarked fuzzers, discuss different fuzzer benchmarking
projects and research into evaluation of fuzzer benchmarking. In Chapter 3 we explain
relevant concepts for reading this thesis, such as the Solidity programming language
and fuzzing, going into detail on commonly used fuzzing techniques. We also provide
a description of Fuzzle, introducing our terminology when talking about mazes and
describing Fuzzle’s program generation process. Chapter 4 discusses Muzzle, our contri-
bution, first providing some motivation and then describing the program generation and
fuzzer benchmarking implementation of Muzzle. We then describe technical challenges
encountered during Muzzle’s development. Finally, we explain how we constructed our
benchmark set and discuss the results in Chapter 5.
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CHAPTER 2
State of the Art

In this chapter, we will introduce the fuzzers, we evaluate using our Muzzle benchmarking
tool. We will first introduce the C fuzzers, then the Solidity fuzzers. Then, we will
move on to discuss existing fuzzer benchmarking libraries and finally proceed to research
on evaluation of different fuzzer benchmarking tools.

2.1 C fuzzers

In the following section, we introduce all C fuzzers that are evaluated using the Muzzle
benchmarking tool.

2.1.1 The AFL family fuzzers

American Fuzzy Lop, or AFL for short, is a brute-force, grey-box fuzzer, developed by
Zalewski which combines compile-time instrumentation with genetic algorithms, in order
to discover test cases which cover a high variety of internal program states and can thus
help in increasing a project’s code coverage. The fuzzer is open source and can be found
on GitHub AFL [2013], though it is read-only and has not been maintained since 2020.

AFL is succeeded by AFL++ [Fioraldi et al., 2020] which has improved performance
and additional compatibility features compared to its predecessor, it is also open source
software and available on GitHub AFL [2019].

While AFL and AFL++ utilise a brute-force approach, AFLGo, as introduced by Böhme
et al., is an extension to AFL which targets specific locations in the code and aims to
generate inputs in order for these targets to be reached while not wasting resources on
irrelevant parts of the program.
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2.1.2 LibFuzzer
LibFuzzer [Project, 2018] is an in-process C-fuzzing engine which is integrated into LLVM.
It is not part of the group of C fuzzers tested in Fuzzle, but we include it into Muzzle
due to its popularity. This coverage-guided, genetic fuzzer provides the option to supply
corpus data containing sample inputs, which the fuzzer then mutates. This can be useful
when the tested program expects complex input structures. LibFuzzer is shipped with
clang but has been put on maintenance mode in 2022 and is therefore no longer actively
being developed.

2.2 Solidity fuzzers
In the following section, we introduce the Solidity fuzzers that are evaluated using
Muzzle.

2.2.1 Echidna
Echidna [Grieco et al., 2020] can be used for property testing of Solidity programs by
allowing the specification of assertions in the code. The fuzzer then reports any assertions
it falsifies during its run.

2.2.2 Foundry
Foundry [fou, 2022] is a toolkit for Ethereum Wood et al. [2014], which provides a
testing framework called forge that natively supports fuzzing of specified functions in the
test-suite. Forge’s fuzzing functionality is applied to a project’s test-suite, where each
unit test taking at least one parameter is treated as a property-based test.

2.2.3 ItyFuzz
ItyFuzz Shou et al. [2023] is a snapshot-based fuzzer, meaning it stores snapshots of states
and singleton transactions instead of sequences of transactions. This allows exploration
of the code by starting from different stored states, instead of having to re-execute inputs
in order to reach these states. To deal with the issue of runtime memory introduced
by storing too many snapshots, Shou et al. design a feedback mechanism to classify
more interesting snapshots. ItyFuzz is the first smart-contract fuzzer to support on-chain
testing, i.e. testing a contract deployed on the blockchain, as well as testing in local
deployment.

2.3 Fuzzer benchmarking libraries
There exist many different benchmarking libraries for fuzzers of the C programming
language.
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2.3. Fuzzer benchmarking libraries

One of the most well-known C benchmarking tools is Google’s FuzzBench [Metzman
et al., 2021] which provides a service that evaluates fuzzers using real-world projects. It
consists of an API which allows users to integrate different fuzzers to be measured by
running them on oss-fuzz [oss, 2016] projects. These projects are real-world open-source
codebases and the fuzzers applied to can then be compared based on code coverage or
found bugs. The results of the benchmark are provided by a reporting library in graph
and table format.

Magma is a ground-truth fuzzing benchmark developed by Hazimeh et al. which provides
real world programs with known bugs as fuzzer input. These real-world programs are
selected projects from the aforementioned oss-fuzz project, that are still actively developed.
After cloning the Magma repository, a user can manage fuzzing campaigns using Magma’s
captain scripts. The results of each measured fuzzer can then be read from a JSON file,
showing how often each bug was reached and triggered respectively.

UNIFUZZ [Li et al., 2020] provides an open-source platform which includes 20 real-world
programs and measures 35 different C fuzzers. They measure the fuzzers’ respective
performance based on six metrics, including quantity and quality of found bugs, speed
and stability of finding these bugs, as well as coverage and the resource cost of the fuzzers.
Li et al. observe that no single fuzzer outperforms the others in all of these metrics.

Zhang et al. created a benchmark set, called FIXREVERTER, which consists of 10 input
C programs that contain over 8000 bugs in total. These input programs were created
by using bugfix patterns to inject bugs into existing programs, taken from Google’s
fuzzbench as well as the GNU Binutils.

Similarly to FIXREVERTER, HyperPUT by Felici et al. also uses bugs as the baseline
to create benchmarks for C fuzzers. But instead of injecting bugs into existing programs,
HyperPUT takes a so called ‘seed’ bug and then creates an input program by adding
program structures to this bug until the program is of a sufficient size. Since these PUTs
or ProgramUnderTests, can be configured to have certain properties, this method allows
fuzzers to be tested according to their suitability for finding bugs in programs with these
properties.

Fuzzle, developed by Lee et al. in 2022, is a fuzzer benchmarking tool which generates
buggy C programs and uses them to evaluate C fuzzers. The input programs are
constructed by generating mazes using the Python library, mazelib maz [2014], and
translating these mazes to C code. The fuzzer acts as an agent in the maze, trying to
find the maze’s exit, which is translated to a program crash in the code. Thus, the agent
finding the exit of the maze is equivalent to the fuzzer finding an execution path to the
bug in the translated program. Lee et al. ensure realistic benchmarks by using CVEs in
SMT-LIB format to generate additional path constraints for the test-suite. Fuzzle is used
to evaluate five state-of-the-art fuzzers: AFL, AFLGo, AFL++, Eclipser and Fuzzolic.

Recently, there has also been development in benchmarking tools for smart-contract
fuzzers. In 2023, Daedaluzz [Wüstholz, 2023] was introduced, which uses mazes containing
multiple bugs to generate input programs for Solidity fuzzers.
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2.4 Research in fuzzer benchmark evaluation
In this section, we will discuss research in the area of fuzzer benchmark evaluation, i.e.
how well suited certain types of programs are as input programs in order to evaluate the
effectiveness of fuzzers.

Bundt et al. examine the value of synthetic bug injection for benchmarking fuzzers by
comparing eight different fuzzers on 20 targets from different sources. These targets
contain real-world bugs as reported in CVEs, and a significant result of the evaluation is
that none of the measured fuzzers were able to detect any of these 50 real-world bugs.
The authors conclude that synthetic bugs remain significantly easier to discover by fuzzers
compared to organically occurring ones, but still provide significant insight into different
fuzzers’ strengths and weaknesses. They go on to analyse flaws in current bug injection
techniques and suggest improvements.

Most fuzzer benchmarking tools look into a fuzzer’s ability to find specific points in the
programs where synthetic or real-world bugs are located. Böhme et al. examine the
correlation between the covered code and the number of bugs found by the fuzzer. They
evaluate ten fuzzers on 24 input programs and conclude that there is indeed a strong
correlation between code coverage and the amount of found bugs but only a moderate
level of agreement. They also highlight the difference of a fuzzer reaching a fault in the
code in terms of code-coverage reaching the respective line and the fuzzer actually being
able to expose or trigger the bug.
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CHAPTER 3
Background

In this chapter, we will introduce background information on concepts used throughout
this thesis. First, we will introduce Solidity, the language we generate programs in.
We will then move on to the concept of fuzzing while discussing different techniques
commonly applied by fuzzers. Lastly, we will introduce Fuzzle, the project we extend to
implement Muzzle.

3.1 Solidity

Smart contracts are programs deployed on the blockchain that have a balance of tokens
and expose a public interface, allowing them to accept transactions from any party. These
transactions are calls to the contract’s public functions or token transfers to the deployed
contract, which can be triggered by any party. Each transaction executes a function
which can change the smart contract’s state and is irreversible once completed.

Solidity is one of the most popular languages for writing smart contracts. It is a
high-level object-oriented language, first proposed in 2014 by Wood et al.. The language
was designed to write smart contracts to be deployed on the Ethereum blockchain, but
smart contracts written in Solidity can also be deployed on other blockchains. In
order to run Solidity programs on the Ethereum blockchain, these programs first have
to be compiled to Ethereum Virtual Machine byte code.

3.2 Fuzzing
Fuzzing is an automated software testing approach with the goal of generating inputs
which expose unwanted behaviour in the software. Tools which use this approach are
called fuzzers. Fuzzers repeatedly execute a program under test with different inputs to
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3. Background

find crashes, memory leaks or other behaviour deviating from the specification of the
program.

In the simplest sense these different inputs can be seen as random, but most fuzzers use
more sophisticated techniques. These techniques are often aimed at achieving the highest
possible code coverage, since this allows finding bugs in as many places as possible.

3.2.1 Genetic algorithms

One of the techniques to maximise code coverage is applying genetic algorithms during
the fuzzing process. Genetic algorithms represent algorithms where the solution space
undergoes some selection using a so-called fitness function during runtime. The possible
solutions selected by this fitness function are then mutated in some way and used as the
solution space in the next iteration. Mutations are predefined alterations to elements of
the solution space, such as random bit-flips.

In fuzzing, instead of randomly generating new inputs in each iteration, any fuzzed inputs
which discover new paths or branches in the tested program are selected for mutation.
The selected inputs are then mutated and added to the queue of inputs to be executed in
the next fuzzing run.

3.2.2 White-, grey- and black-box fuzzing

Fuzzers can be categorised into white-, grey- or black-box. This term refers to how
aware the tools are of the tested program’s structure, where black-box fuzzers are
entirely unaware of the program’s structure, treating it like a black-box. White-box
fuzzers on the other hand, analyse the tested programs to be able to generate inputs
in a more targeted way, often trying to maximise code coverage. Black-box fuzzing
is often unable to discover more complex bugs while white-box fuzzing often carries a
significant performance overhead. Grey-box fuzzing is a method with less performance
overhead aimed at being able to discover more complex bugs than black-box fuzzing using
instrumentation with a low overhead rather than program analysis tools like symbolic
execution used in white-box fuzzing, which provides information to guide the fuzzer into
finding better program inputs.

3.2.3 Symbolic execution

Symbolic execution is a program analysis technique where a program execution is abstract,
where instead of inputs, it is executed with input classes. These represent possible inputs
to reach a certain point in the program, meaning inputs that lead through a certain
execution path in the program. The result of such a symbolic execution is represented by
symbolic formulas, which describe inputs satisfying the branch conditions to traverse a
certain path of the program.

8



3.3. Fuzzle

Concolic testing

Analysing a program with symbolic execution needs a lot of resources and the exploration
often remains shallow without entering deeper paths of the program. Concolic testing is
a testing technique which applies symbolic execution but replaces the symbolic inputs
with concrete ones in order to reduce performance overhead and find these deeper paths.

3.3 Fuzzle
Fuzzle is a fuzzer benchmarking tool developed by Lee et al., which evaluates different C
fuzzers by generating buggy programs from mazes as benchmark inputs.

3.3.1 Maze terminology
We define a maze to be a two-dimensional matrix of either cells or walls. Two cells in
the maze are neighbours if they are adjacent, note that diagonal cells are not adjacent.
In our case there is exactly one cell which is the entry point of the maze and exactly one
cell which is the goal of the maze. An agent traversing the maze starts at the entry point
and tries to find a path to the goal, where it can only move from one cell to another if it
is a neighbour of their current cell. Let the agent’s position be at some cell in the maze,
then we say there is a branching point in the maze if there exist two different cells the
agent can travel to from its current one.

3.3.2 Program generation
This method of generating input programs for fuzzers stems from the observation that
finding a bug in any given software resembles solving a maze. Intuitively, we can see
a resemblance between branching paths in a maze and branches in a program and,
similarly, maze cells as program instructions. The authors utilise the Python library
mazelib maz [2014] which provides functionality for generating mazes, using different
types of generation algorithms. The library also provides capability for solving mazes,
which Lee et al. utilise to be able to provide a ground truth for the input program they
generate from said mazes. Additionally, the library can be used to generate an image
from the maze in order to provide a visualisation correlating with the possible paths
through the input program. We provide an example for such a visualisation in Figure 3.1
where the entry point of the program is marked by a green arrow and the goal is marked
by a red bug.

The mazelib-generated maze is translated into a C-program such that for each cell in the
maze, a function is generated. The functions have an identifying suffix using the maze
cell’s indices, where the top-left cell is labelled zero and the bottom-left cell is labelled
n, where n = w × h with w, h being the width and height of the maze respectively. A
function b can be entered from another function a in the input program if and only if the
corresponding cell b is a connected neighbour of cell a in the maze. A simplified example
of functions generated corresponding to the highlighted cells in the maze visualised in

9



3. Background

Figure 3.1: 5x5 maze.

1 void func_16(signed char *input){

2 if ( condit ) {
3 func_21(input);
4 }

5 else if ( condit ) {
6 func_17(input);
7 }
8 }
9

10 void func_17(signed char *input){

11 if ( condit ) {
12 func_12(input);
13 }

14 else if ( condit ) {
15 func_18(input);
16 }
17 }
18
19 void func_21(signed char *input){

20 if ( condit ) {
21 func_20(input);
22 }

23 else if ( condit ) {
24 func_22(input);
25 }
26 }

Figure 3.2: C code example of translated
functions.

Figure 3.1 can be seen in Figure 3.2. The branching point at cell 16 is represented by
the conditionals of func_16 seen in Line 1. Depending on the input, either func_17 or
func_21 is entered next. The yellow boxes represent placeholders for some conditionals,
which are randomly filled in with predefined formulas during the generation process.

The function corresponding to the maze’s exit is the only function in the generated
program which calls the function containing the bug/vulnerability to be detected by the
fuzzer. Mazes used for program generation always have exactly one starting cell and one
exit cell, meaning the generated programs have exactly one starting function and one
function, able to call the bug function. The starting function is called from the generated
program’s entry point, which is provided the fuzzed input. The fuzzers benchmarked by
Fuzzle receive the fuzzed input via standard input, store it in an array, and pass this
array through the cell functions. Each cell function accesses this array at a tracked index,
which increases after every read operation, this allows for different input data in each
function call. If there are not enough inputs to pass through the whole maze, the fuzzing
run is aborted without finding a bug.

Fuzzle always generates mazes where the exit is reachable from the start, i.e. there exists
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3.3. Fuzzle

a path for an agent traversing the cells leading to the maze’s exit. By the input programs’
construction, there exists a path through the program, where a fuzzer calls the functions
corresponding to the cells in the agent’s exit path. Similarly, since every generated maze
contains a path to the exit, a fuzzer can trigger the bug in the program by traversing the
corresponding functions in the program.

3.3.3 Configurability
Fuzzle provides various parameters for fine-tuning the types of programs to be generated.
Most of this configurability directly stems from deciding what kind of initial maze is
generated. Firstly, as already mentioned, there are different algorithms Fuzzle can use
for generating the starting maze, namely Backtracking, Kruskal, Prims, Wilsons or
Sidewinder. The shape of the initial maze and thus the shape of the resulting program is
impacted by the choice of algorithm. In addition, performance of the maze generation
and thus of the program generation as a whole may differ, depending on which maze-
generation algorithm is selected. The size of the initial maze is also configurable in Fuzzle,
the minimum size being four by five or five by four. This allows the generated C programs
to be of different sizes.

The resulting program may contain different amounts of cycles, this can be configured in
percentages, starting from zero up to 100 percent. These percentages are based on the
maximum number of cycles that may be inserted into the maze, where Fuzzle first inserts
a connection b to a for each connection from a function a to another function b and then
removes these connections based on the parameter. Removing no connections would
result in 100 percent cycles, and removing them all would result in zero percent cycles.

Lastly, to be able to provide more realistic buggy programs, i.e. ones that are more similar
to real-world ones, Fuzzle may take a CVE file to use as ‘inspiration’ for generating more
realistic program branching conditions. A CVE, which is short for Common Vulnerability
and Exposures, is a known, publicly disclosed vulnerability. Fuzzle uses symbolic execution
to extract path constraints which describe these vulnerabilities, and then uses these
constraints to construct additional paths in the generated functions which have to be
traversed in order to reach the bug.

3.3.4 Fuzzer benchmarking
Fuzzle provides an automated process of measuring C fuzzers on a set of input C-
programs. This process spawns a docker container for each input program combined
with each fuzzer. Fuzzle supports the C fuzzers: afl [Zalewski, 2019], aflgo [Böhme et al.,
2017],afl++ [Fioraldi et al., 2020], fuzzolic [Borzacchiello et al., 2021a,b] and eclipser [Choi
et al., 2019] and provides docker images and container management scripts to benchmark
each of them.
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CHAPTER 4
Muzzle - Multilingual Fuzzle

In this chapter, we will first motivate the need for Muzzle, then proceed to discuss its
implementation. We will move on to describe the technical challenges encountered in the
development of Muzzle and finally discuss benchmarking results when using Muzzle to
compare C and Solidity fuzzers.

4.1 Motivation
Blockchain and smart contract technology have seen an increase in popularity in recent
years and are often used in financially critical systems. Solidity is a language for
writing smart contrasts, deployed on the Ethereum Wood et al. [2014] blockchain and
has, in turn, seen a rise in popularity. Since smart contracts can have their state altered
by calls to their public interface, ensuring trust is especially critical for smart contract
languages. Trust in Solidity software can be increased using testing tools such as
fuzzers, but since Solidity is a very young language, introduced in 2015, so are its
tools. The C programming language and its tools, on the other hand, have been developed
for much longer, but to the best of our knowledge, there is no way to compare C fuzzers
to the comparatively newly developed Solidity ones.

We introduce Muzzle, a way to gain insight into Solidity fuzzers’ performance compared
to C fuzzers. Muzzle generates semantically equivalent benchmarks for C- as well as
Solidity fuzzers and measures the performance of different fuzzers of both languages.

4.2 Muzzle implementation
We extend Fuzzle to be able to generate semantically equivalent Solidity programs
in addition to the existing C program generation. This will enable automated, fair
comparison of C and Solidity fuzzers using synthetically generated input programs.

13
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4.2.1 Program generation

We implement this extension by starting out from the same initial maze and generating
the C-program as Fuzzle does, but we generate a semantically equivalent Solidity
program at the same time.

Similarly to the C program generation, we create a function for each cell to construct
the Solidity program. A simplified example of a generated Solidity program can
be seen in Listing 4.1, the maze consists of the function func_0 as defined in line 6,
representing the starting cell, the function func_bug, defined in line 19 and a dead end in
the maze which is the cell represented by func_1 in line 16. We consider that Solidity
fuzzers do not have a specific entry point in the fuzzed program, but instead call all
exposed functions in random order and with random input. Therefore, we only expose
one external function, called step, as can be seen in line 23 of Listing 4.1, to be called by
the fuzzer which relays the fuzzed input to the inner ‘cell’ function. Which of the inner
functions is called depends on the ‘maze’s’ progression state, this state is tracked in the
func_req variable, which stores the integer corresponding to the suffix of the function
which is to be entered next. In other words, if we view the fuzzer as an agent traversing
the maze, the exposed function tracks the agent’s progress through the maze and calls
the function corresponding to the agent’s current cell accordingly.

Unlike the input provided by the C fuzzers, which is passed through the standard
input, Solidity fuzzers directly fuzz the parameters of the external functions they
call. Therefore, we define the external function called by the fuzzers to have a single
array function parameter. This array is passed to the internal functions and a require

statement at the start of each inner function ensures that the array contains enough
input for the inner function such that each array access is valid, the function body is
not executed if this statement is not satisfied. This can be seen in line 7 of Listing 4.1,
as in the next line an array access occurs which could trigger an unwanted crash to be
detected by the fuzzer if the input array was empty.

We label the ‘cell’ functions in the same way we do for the C functions, with an identifying
suffix according to the corresponding cells and generate the start function func_start

and the goal function func_bug which triggers the bug.

In a similar manner as the generated C programs, generated Solidity programs contain
a path from the function corresponding to the entry point of the maze to the func_bug

function by construction. Thus, there exists a path to trigger the bug in each Solidity
program which can be discovered by a fuzzer. In the case of our example, this path
would simply be func_0 ⇒ func_bug with the fuzzed input being some array containing
an entry greater or equal to zero at index zero.

Muzzle offers the same configurability options for program generation of Solidity and
C programs as Fuzzle.
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1 contract Maze {
2
3 bool public bug = false;
4 int8 func_req = 0;
5
6 function func_0(int8[] memory inp) internal {
7 require(inp.length >= 1);
8 if (inp[0] >= 0) {
9 func_req = -1;

10 }
11 else if (inp[0] < 0) {
12 func_req = 1;
13 }
14 }
15
16 function func_1(int8[] memory inp) internal {
17 }
18
19 function func_bug(int8[] memory inp) internal {
20 bug = true;
21 }
22
23 function step(int8[] calldata inp) external {
24 if (func_req == 0) {
25 func_0(inp);
26 return;
27 }
28 if (func_req == 1) {
29 func_1(inp);
30 return;
31 }
32 if (func_req == -1) {
33 func_bug(inp);
34 return;
35 }
36 }
37 }

Listing 4.1: Solidity code generated for simple example maze with entry, goal and
one dead-end cell.
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4.2.2 Fuzzer benchmarking
Each fuzzer tested by Muzzle has its own docker image, which allows creating isolated
containers to execute a fuzzing campaign. The docker image defines two scripts specific
to the fuzzer. The first script runs the specific fuzzer on the given input program and
times how long it takes the fuzzer to find a bug. The second script interprets the fuzzer’s
results and stores them in a file with a format shared between all the different fuzzers’
containers. A docker container which receives the program input and executes a fuzzing
run on that program input is then spawned per campaign per fuzzer. If the fuzzing
run has not completed after some allocated time, the command is interrupted. The
fuzzing run’s results are then collected to the result file, which is copied to a shared, local
directory. Each results file contains information about whether the bug was found, the
time taken by the fuzzer to find it, and whether the fuzzer crashed unexpectedly for the
specific input program and fuzzer.

Muzzle extends the automatic benchmarking process of Fuzzle to be able to support
benchmarking of fuzzers of different languages.

In addition to the C fuzzers already supported by Fuzzle, Muzzle adds docker images
and container management scripts for the Solidity fuzzers: Echidna [Grieco et al.,
2020], Foundry [fou, 2022] and ItyFuzz [Shou et al., 2023] as well as the popular C-fuzzer
LibFuzzer [Project, 2018].

4.3 Technical challenges
In this chapter, we will discuss the technical challenges encountered during the devel-
opment of Muzzle. Firstly, we will discuss the properties required of input programs of
the benchmarked Solidity fuzzers and how Muzzle generates code according to them.
We will then move on to describe how we adapted data types in the generated code to
be able to generate semantically equivalent programs in both languages. Lastly, we will
discuss how Muzzle generates branch constraints from CVE files for C files and how we
implemented an equivalent process for Solidity code generation.

4.3.1 Fuzzer compatibility
This section describes differences between C and Solidity fuzzers and the effect this
has on how Solidity code is generated in Muzzle.

Fuzzed input

The C fuzzers benchmarked in Fuzzle provide an input stream via the standard input
and call the main function. The main function then reads the fuzzed input and passes it
to the function corresponding to the entry point of the maze.

Solidity fuzzers, on the other hand, call any external functions of the contract in an
arbitrary order and provide fuzzed inputs for any of their parameters. An example of
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1 contract Maze {
2 bool public bug = false;
3 int8 func_req = 0;
4
5 function func_0(int8[] memory inp) external {
6 require(func_req == 0);
7 require(inp.length >= 1);
8 if (inp[0] >= 0) {
9 func_req = -1;

10 }
11 else if (inp[0] < 0) {
12 func_req = 1;
13 }
14 }
15
16 function func_1(int8[] memory inp) external {
17 require(func_req == 1);
18 }
19
20 function func_bug(int8[] memory inp) external {
21 require(func_req == -1);
22 bug = true;
23 }
24 }

Listing 4.2: Alternative Solidity implementation of the maze.

this can be seen in Listing 4.2, here all cell functions are external and can be called by
the fuzzer at any time during the fuzzing process. To ensure, that the fuzzer is only
able to call neighbouring cells, require statements as in line 6 prevent a function body
from being executed unless func_req has the value of the function’s identifying suffix.
Without this statement, the fuzzer could simply circumvent ‘traversing’ the maze and
call func_bug directly. Since each fuzzing call executes a function at random, there may
be several calls to func_1 before func_0 is called for the first time and any progress in
the maze is made. Comparatively, the generated C code enforces a strict order on when
functions are called. Here, the fuzzers cannot call functions which make no progress
through the maze. In order to guarantee fairness when comparing C- and Solidity
fuzzers, we define only one external function such that fuzzers don’t spend unnecessary
time calling the wrong functions without making any progress in the maze.

We implement this, via the step function, as mentioned in Section 4.2 and shown in line
23 of Listing 4.1. This function tracks the progress through the maze using a variable
which stores the identifying suffix of the next function to be called and calls that function
accordingly, passing along the fuzzed input. This external function takes an array as its
sole input parameter, which is fuzzed by the fuzzers and passed along to the internal
functions. Each internal function checks that the size of the passed array is sufficient
before accessing the input using a require statement, as can be seen in Line 7.
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1 function echidna_bug() external returns (bool) {return !bug;}

Listing 4.3: Bug property, defined for echidna.
1 import "forge-std/Test.sol";
2 contract TestMaze is Test {
3 Maze m;
4 function setUp() external {
5 m = new Maze();
6 }
7 function invariant_no_bug() external {
8 if (m.bug()) { fail(); }
9 }

10 }

Listing 4.4: Bug property, defined for foundry.

Bug implementation

Since we want to evaluate the fuzzers based on their ability to find bugs in the code, we
need to define something fuzzers recognise as a bug in the code we generate in Muzzle.
In the C code, generated by Fuzzle, this is a simple abort(); call in the goal function of
the maze.

The Solidity fuzzer, Echidna, on the other hand, requires a specific function with a
name starting with the prefix echidna_ which defines some property under test. Echidna
then reports any such properties that were falsified during its fuzzing run. ItyFuzz is
designed to be compatible with code written for, Echidna and therefore also treats the
properties designed for Echidna in the same way. We therefore simply write such a
function as shown in Listing 4.3 at the end of the generated Solidity code.

Since Foundry’s forge is a tool for writing Solidity test-suites, its fuzzer is designed to
audit a given test-suite. The fuzzer implementation is designed to report any falsified
invariants over some contract under test defined in the test-suite contract. The test suite
contract then fuzzes the external functions of the contract under test and reports falsified
invariants.

To be able to support the differing requirements of these fuzzers, Muzzle generates two
different Solidity programs. One to be tested by Echidna and ItyFuzz which contains
the already mentioned property defined in Listing 4.3 and the other one to be compatible
with Foundry. The generated Foundry-compatible code contains a test contract, TestMaze
as can be seen in Listing 4.4. This contract is defined to test the Maze contract. We
define an invariant as can be seen in Line 7 such that the fuzzer reports when the goal of
the maze is reached and the bug is found. We then ensure that each Solidity fuzzer is
called with the input program defined as required.
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4.3.2 Translation of data types

The C code generated in Fuzzle reads fuzzed inputs from the standard input and stores
them in an array. Singular inputs are read from the array and assigned to variables of
type char.

There is no obvious semantically equivalent data type to translate this to when generating
Solidity code, since the char data type is not fully defined in the C specification.
The char data type may be signed or unsigned depending on the platform ISO [2018],
therefore neither int8 nor uint8 is always the correct choice for a semantically equivalent
data type in Solidity. Since we cannot find a correct solution in the Solidity code
generation, we fix the input array in the generated C code in Muzzle instead. We change
the data type fuzzed inputs are written to signed char instead to avoid the ambiguity.
The change has also been merged into the original Fuzzle Lee et al. [2022] project. This
ensures that the generated C code’s behaviour is not platform dependent while allowing
us to use the semantically equivalent input data type, int8 when generating Solidity
code at the same time.

4.3.3 CVE translation

As mentioned in Section 3.3, Fuzzle uses Common Vulnerabilities and Exposures or CVE
files to inject more realistic path constraints into branching conditionals of the generated
code. Muzzle is able to use these CVE files to generate semantically equivalent C and
Solidity branch constraints.

Some of the CVEs used in Muzzle revolve around integer casting semantics, in particular
over- and underflow semantics. We will not go into detail on the syntax of the used
SMT files, but it is important to know that in the generated C code, integer casts are
translated from signed and zero extensions of bit vectors in the SMT files. Let us consider
the bit vector 1010 with length 4. We can increase the length of this vector to 8 using
zero extension. Zero extension adds leading zero bits to reach the required size, resulting
in 0000 1010. On the other hand, we can apply signed extension to increase the size of
the same 4 bit integer to size 8. Then the bit vector is interpreted as a signed binary
integer in two-complement, and the added leading bits depend on the sign of the integer.
Leading 0 bits are added if the represented integer is positive, while leading 1 bits are
written if the integer is negative. This would result in the bit vector 1111 1010, in our
case, since the 1010 vector would be interpreted as the integer −6.

This behaviour can be emulated in C by applying integer casts, which is how Muzzle
translates the signed and unsigned extensions when generating C programs. In order
to emulate the same zero extension of some variable x, we call (uint8_t)x, casting the
variable to an unsigned integer of bit width 8. Similarly, we emulate the signed extension
by calling (int8_t)x, casting x to a signed integer of the same bit width. Thus, to
implement a zero extension of an 8 bit vector in C by 24 bits, we write (uint32_t)x and
for signed extension, we write (int32_t)x.
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int8 uint8
signed extend-8 int16(x) int16(int8(x))
zero extend-8 uint16(uint8((x)) uint16(x)
signed extend-24 int32(x) int32(int8(x))
zero extend-24 uint32(uint8(x)) uint32(x)
signed extend-56 int64(x) int64(int8(x))
zero extend-56 uint64(uint8(x)) uint64((x))

Table 4.1: Intermediate casts applied to emulate zero and signed extensions in Solidity.

We now represent an 8 bit vector in Solidity as the variable int8 x and want to
emulate zero extension in the same way. We can try to cast in the same way as in C by
calling uint32(x) but this does not compile in Solidity. Solidity does not allow
casting from unsigned to signed or signed to unsigned while changing the bit size of the
integer at the same time. Therefore, we have to apply intermediate casts when translating
signed and zero extensions to Solidity. In order to zero extend x to a 32 bit width, we
first cast x to an unsigned integer of the same bit width and then extend the bit width
to 32 by calling uint32(uint8(x)). To signed extend x we can simply cast to the desired
size without any intermediate steps by calling int32(x). In order to be able to apply
intermediate casts correctly, we have to keep track of the last cast of each variable or
constant during the generation process.

In Table 4.1 we show the intermediate casts used to emulate signed and zero extensions
in Solidity. It shows how signed and unsigned integers of bit width 8 are extended
to different bit widths using signed and unsigned extension. The columns represent the
type of some variable x which can emulate either a signed or unsigned bit vector of width
8. The rows represent whether to apply signed or unsigned extension and how many bits
to extend x by.
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CHAPTER 5
Experimental Results

In this chapter, we will first go into detail on how we conduct our benchmarks, including
which fuzzers are measured, and the program set the fuzzers are tested with. We will
then proceed to show our results and discuss them.

5.1 Experimental setup
The benchmark consists of 120 different programs, generated by Muzzle. This program
set is composed of four different maze dimensions:

• 5 × 5,

• 10 × 10,

• 15 × 15,

• and 20 × 20.

We generate 15 mazes for each dimension using the Prims algorithm. Each maze is
then used to generate two programs, one using a random CVE file to generate branch
constraints and one using trivial branch constraints, taken from a predefined set of
boolean expressions. Therefore, there are 30 different input programs generated per maze
dimension.

A campaign represents a single execution of one fuzzer on one input program with a
specific starting seed passed to the fuzzer. We run five such campaigns per generated
program per fuzzer. Thus, in total, 600 campaigns are executed per fuzzer. Each
campaign is interrupted after thirty minutes.
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We benchmark three Solidity fuzzers: Foundry fou [2022], Echidna Grieco et al. [2020]
and ItyFuzz Shou et al. [2023] and two C fuzzers: AFL++ [Fioraldi et al., 2020] and
LibFuzzer Project [2018].

The benchmarks are run on an AMD Epyc 7702 processor, which has 64 cores and a
single core performance of 2.0 GHz up to 3.35 GHz, on a machine with 512 GB DDR4
RAM.

5.2 Results
Figure 5.1 shows how many bugs each of the benchmarked fuzzers was able to find during
all executed campaigns. The evaluated fuzzers are represented on the y-axis and labelled
using their names. The x-axis represents the number of bugs found by each fuzzer, which
are grouped by the maze dimensions used to generate the input program the fuzzer found
the bug in. The total number of bugs to be found per fuzzer and maze dimension is 150
since we ran five campaigns for each of the 30 input programs of a maze dimension.

Figure 5.1: Number of bugs found by each fuzzer.

The three benchmarked Solidity fuzzers can be seen at the top of Figure 5.1, namely
Foundry, Echidna and ItyFuzz. Only Echidna and ItyFuzz were able to solve any of
the input programs generated from 15 × 15 and 20 × 20 mazes. The C fuzzers on the
other hand were able to solve all of them. It is interesting to note that some of the
programs generated from the smaller 5 × 5 mazes were not solved by the C fuzzers, this
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is due to complex branch constraints generated from some of the CVE files. ItyFuzz is
the best performing Solidity fuzzer, being able to solve all of the 10 × 10 mazes and
significantly more 15 × 15 and 20 × 20 mazes than the second best performing Solidity
fuzzer, Echidna. Echidna is also able to solve all 10 × 10 mazes but solves less than half
of the 15 × 15 mazes. The fuzzer even manages to solve some of the 20 × 20 mazes, but
significantly less than ItyFuzz. On the other hand, Foundry is outperformed heavily by
both Echidna and ItyFuzz, being able to solve only less than a third of the 10 × 10 mazes.

Figure 5.2 shows a cactus plot describing how long each fuzzer took to solve the mazes it
found bugs in. The x-axis describes the number of mazes the fuzzer was able to solve in
the time described by the y-axis. Here, the maximum number of bugs each fuzzer could
find surmounted to 600 since there were 120 programs to find bugs in and five campaigns
were run per fuzzer per program. The longest a fuzzer could take to solve a maze was
thirty minutes, as a fuzzing run was interrupted after that time. We show the time on a
logarithmic scale, as the fuzzers differ too greatly in how long they take to find the bugs
to be able to read the C fuzzers’ and ItyFuzz’s times otherwise.

Figure 5.2: Time taken for the fuzzers to find bugs.

As can be seen, Foundry not only finds the fewest bugs but also takes more time to find
each of them, it takes a long time to find bugs in even the simplest instances. Echidna on
the other hand, exhibits runtimes that increase with the size and depth of the programs
it is executed on. While ItyFuzz is significantly quicker on all of the instances it is able
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to solve than Echidna and Foundry, it still lags behind the C fuzzers when it comes to
more complex input programs. The C fuzzers and ItyFuzz take similar amounts of times
in solving the smaller mazes, but the difference is that LibFuzzer and AFL++ solve
more mazes than ItyFuzz and are quicker when it comes to solving the larger and more
complex mazes.
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CHAPTER 6
Conclusion

Fuzzle Lee et al. [2022] is a C fuzzer benchmarking tool which generates C programs from
mazes. In this thesis, we introduced Muzzle, an extension to Fuzzle which allows bench-
marking of C and Solidity fuzzers. Muzzle generates highly configurable mazes and
uses them to construct semantically equivalent C and Solidity programs. Intuitively,
mazes are translated to programs such that the entry point of the maze corresponds to
the entry point of the program and the goal of the maze corresponds to some bug in the
program. A fuzzer, which takes such a program as its input, can then be seen as an agent
traversing the maze and trying to find the maze’s goal. We use programs generated by
Muzzle to evaluate different Solidity and C fuzzers on whether they can find the bugs
and how fast they find them if they do.

We used Muzzle to generate 120 different input programs to evaluate the Solidity
fuzzers: Echidna Grieco et al. [2020], Foundry fou [2022] and ItyFuzz Shou et al. [2023]
and compare them to the C fuzzers: AFL++ Fioraldi et al. [2020] and LibFuzzer Project
[2018]. We observed that all Solidity fuzzers were outperformed by the C fuzzers in
terms of how many bugs they were able to find as well as how quickly they were able
to find the bugs. Within the Solidity fuzzers, ItyFuzz was not only able to find the
most bugs, but it was also the only Solidity fuzzer which came close to the C fuzzers
in terms of speed. While Echidna was not able to solve as many mazes as ItyFuzz, it still
managed to solve almost half of the 15 × 15 mazes, however it did so with significantly
worse runtimes. Foundry on the other hand, was heavily outperformed by the other
Solidity fuzzers in both performance and its ability to find bugs in the input programs.
It was the only fuzzer unable to solve any 15 × 15 mazes and only solved a small amount
of the 10 × 10 ones.
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6.1 Future Work
We believe Muzzle can be a valuable tool to guide researchers in improving existing
fuzzers or even when developing completely new ones.

In order for researchers to be able to use Muzzle in this way, there should be a modular
and easy-to-use process for integrating a new fuzzer to be benchmarked by Muzzle. We
have already provided a way to add a new fuzzer to the benchmarking process where
researchers only need to add a docker image for the fuzzer to be run in, a script describing
how the fuzzer should be executed and a collection script which extracts the relevant
information from the fuzzer’s output. Additionally, it would be helpful to modularise the
program generation such that fuzzer-specific pieces of code like the bug-function or main
can be defined when adding a new fuzzer.

As there are many more C and Solidity fuzzers available in the language’s respective
ecosystems, adding them to the default set of supported fuzzers is a worthwhile extension
of Muzzle.

A more ambitious extension to Muzzle would be to generate benchmarks in even more
different languages. Popular languages such as Python, Java, JavaScript or C++
could be supported, since it would be interesting to see how their fuzzers compare to
C ones. On the other hand, there are also more young or niche languages similar to
Solidity which could benefit from options for evaluating the performance of their
respective tools.

Muzzle could also be improved in its evaluation metrics, since we currently only evaluate
fuzzers based on their speed and ability to find bugs. A common evaluation metric for
fuzzers is code coverage, which is currently not supported by Muzzle due to some of the
Solidity fuzzers not providing any such information. However, Fuzzle does evaluate
code coverage of the C fuzzers and some of the Solidity fuzzers such as Echidna provide
code coverage information as well. Therefore, it could be useful to add an option to the
benchmark configuration file to define that a benchmark should collect code coverage
information with the prerequisite that all measured fuzzers for that benchmark are able
to provide code coverage information.

The results from our benchmarks could be used to compare the features of weaker fuzzers
to better performing ones and improve the former.

As previously mentioned in Section 2.4 there is some research on comparing fuzzer
benchmarking tools. Using a similar method to compare Muzzle to other state of the art
fuzzer benchmarking tools could provide some valuable insights into how well constructed
and varied our input program generation methods actually are.
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