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Kurzfassung

Diese Arbeit untersucht Pfadfindungsalgorithmen, um den zeiteffizientesten Weg für Agen-
ten in einem dynamischen Modell, das auf einem realen Eisenbahnnetz basiert, zu finden.
Aufgrund von zeitabhängigen Eigenschaften, wie ausgelastete Bahnhöfe und somit der dar-
aus resultierenden Verspätung, sind herkömmliche Pfadfindungsalgorithmen wie A* nicht
zufriedenstellend.
Im Zuge dieser Fragestellung analysieren wir das Verhalten von zwei spezifischen Algorith-
men: dem heuristischen D*-Lite Algorithmus und der Reinforcement Learning Methode
Dyna Q+.
Der D*-Lite Algorithmus ist eine inkrementelle heuristische Suchmethode, die Informa-
tionen wiederverwendet, um in unbekanntem Terrain zielgerichtet zu navigieren. Dieser
Algorithmus kann in seiner ursprünglichen Form blockierte Knoten mittels Überprüfung
der Umgebung in jedem Schritt erkennen. Durch eine Anpassung bezieht er in unserem
Fall auch in Zukunft mögliche Entwicklungen der Auslastung eines Knoten mit ein. Außer-
dem wird das Konzept des Reinforcement Learning vorgestellt, welches zu der Anwendung
des sogenannten Dyna Q+ Algorithmus führt. Dieser lernt durch einen Markov Decision
Process (MDP) die optimale Strategie, um sein Ziel zu erreichen. Er ermittelt für jeden
Zustand die beste Aktion, genauer gesagt jene welche die größte Belohnung bringt, mittels
einer Kombination aus bisher Gelerntem und Erkundung.
Einer der größten Schwächen von Dyna Q+ ist die Speicherung der Werte für jede mögliche
Kombination eines Zustands und einer Aktion. Um dies zu umgehen, wird die Deep Va-
riante von dieser Reinforcement Learning Methode eingeführt, welche einen Türöffner zur
Theorie der Neuronalen Netze darstellt. Hierbei müssen nur die Modellarchitektur und die
Parameter gespeichert werden.
Um die Unterschiede der Algorithmen aufzuzeigen, wird einerseits darauf geachtet, ob Pfa-
de überhaupt gefunden werden können und andererseits die qualitativen Unterschiede auf-
gezeigt. Hierfür betrachten wir anhand zweier Aspekte ob globale oder lokale optimale
Lösungen berechnet werden, nämlich die Lösung für den Agenten selbst und wie sich diese
auf das Zugnetzwerk auswirkt. Beim ersten Aspekt werden wir die Länge des Pfades und
die benötigte Dauer bis zum Erreichen des Ziels betrachten. Außerdem wird ein Augenmerk
auf die Aktionen gelegt, die der Agent aufgrund von zeitlich blockierten Stationen nicht
durchführen kann. Der zweite Aspekt, der die Unterschiede der Algorithmen aufzeigen soll,
ist die Auswirkung des Agenten, der den berechneten Pfad folgt, auf das Schienennetz. Hier
wird in Anzahl der blockierten Züge und Minuten der Verzögerung im gesamten System
unterteilt.
Zusammenfassend beleuchtet diese Arbeit nicht nur die konkrete Aufgabenstellung, sondern
versucht auch den allgemeinen Trend zur Nutzung künstlicher Intelligenzen zu begründen
und sowohl die Vor- als auch Nachteile dieser Technologie in der theoretischen und prakti-
schen Anwendung aufzuzeigen.



Abstract

This thesis studies path planning algorithms to find the most time efficient way for agents
in a dynamic model based on a real-life railway network. Because of the dynamic nature of
blocked nodes during various time steps while operating on an historical timetable, classical
path finding algorithms such as A* are not sophisticated enough to allow agents to find a
viable path through the system. Therefore, we analyze the behaviour of two specific algo-
rithms: the heuristical D*-Lite algorithm and the Reinforcement Learning method Dyna
Q+.
The D*-Lite algorithm is an incremental heuristic search method which reuses information
from previous searches to navigate goal-directed in unknown terrain. It will be adapted to
the specific setting with reusing blocked nodes. Furthermore, the concept of Reinforcement
Learning is introduced, which leads to Dyna Q+. This one will find the optimal policy
to achieve the goal by a Markov Decision Process (MDP). More precisely, it approximates
the best action for each state in the environment through the right balance of exploitation
and exploration, and draws its conclusions from the resulting outcomes. With respect to
already taken actions in a state, Dyna Q+ will tackle the arising issues of the dynamically
changing environment. To circumvent one of the biggest weaknesses of Dyna Q+, where
the value of each state-action combination has to be stored in a matrix, Deep variants
of Reinforcement Learning methods will be presented. Those are door openers to Neural
Network theory, where only the model architecture and parameters need to be stored.
In order to show the differences between the algorithms, we consider on the one hand
whether paths can be found at all and on the other hand the qualitative differences. For
this purpose, we consider two aspects whether global or local optimal solutions are com-
puted, namely the solution for the agent itself and how it affects the railway network. In
the first aspect, we will look at the length of the path and the duration needed to reach
the destination. We will also pay attention to the actions that the agent cannot perform
due to time-blocked stations. The second aspect to show the differences of the algorithms
is the impact of the agent following the calculated path on the railway network. Here it is
divided into number of blocked trains and minutes of delay in the whole system.
This work does not only illuminate the concrete task but also tries to justify the general
trend of using artificial intelligence and to shows both the advantages and disadvantages
of this technology in the theoretical and practical application.

Keywords: Agent Based Model, heuristic path finding, D*-Lite, Reinforcement Learning,
Q-Learning, Deep Reinforcement Learning, Deep Dyna Q, Neural Networks.
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1 Introduction

In this thesis two methods to navigate an agent through dynamic model based on a railway
network will be introduced, namely the heuristic D*-Lite algorithm and the Reinforcement
Learning method Dyna Q+. Due to the high complexity, the latter will result in the Deep
version of the method, and we will scratch the surface of artificial intelligence in general
and Neural Network in particular. With this specific example, the current trend to replace
conventional methods with artificial intelligence (Hoog, 2017), (Yin et al., 2021), (Friesen
and McLeod, 2014) can also be explained. However, it also shows some weaknesses of it,
such as the need for certain hardware resources or non-trivial proofs of the convergence to
global optimal solutions as well as the opaqueness of Neural Networks in general. In detail
D*-Lite is easier to understand since it follows straightforward update and calculation rules,
while even simple Neural Networks variants are non-transparent due to their architecture.

In the second chapter, the model will be presented. We will see how a railroad network with
stations and tracks in between can be described by a graph. In this environment, trains
(agents) move from one station to the next according to a certain schedule, which makes
it an agent-based model (ABM). Since agent-based models are built from the bottom up,
one of the most important properties can be observed: the emergence phenomenon. In our
particular case this means, that the trains following simple rules and can cause congestion
if at least one station reaches the maximum capacity. After introducing the model, two
algorithms are presented to move an additional, but unscheduled agent from a starting
point to a destination in this ABM with minimal disturbance of the existing schedule.
The first one is the heuristic approach in Chapter 3 which is called D*-Lite and follows the
results of (Koenig and Likhachev, 2002) and (Koenig, Likhachev, and Furcy, 2004). This
algorithm finds the shortest path between two nodes (stations) in an unknown environment
by computing the shortest path to the destination in the starting station and navigating to
the best neighbor. Then, the agent scans its immediate surroundings to see if a station has
reached its maximum capacity of trains, uses the newly acquired information to calculate
the shortest route to the destination and moves to the next ’best’ station, where it again
scans the surroundings, and so on until it reaches the destination station. D*-Lite uses
the estimate g(s) of the distance between a station s and the destination, the one-step
look-ahead values rhs(s), and a priority queue U to compute the shortest path. The latter
stores nodes in the order of a key that depends on the two earlier mentioned values g(s) and
rhs(s), only if g(s) < rhs(s) or g(s) > rhs(s) and will mandatory for proving the return
of the shortest path. Additionally, the algorithm is applied to our use case with different
scan ranges.
Since D*-Lite only detects new blocked nodes, but is not designed for such a dynamic en-
vironment where nodes can be unblocked after a certain time, an algorithm, named Dyna
Q+, that can deal with these circumstances is presented in Chapter 4. This Reinforce-
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1 Introduction

ment Learning method follows the theory of (Sutton and Barto, 2018) and will find the
optimal policy to achieve the goal in a Markov Decision Process (MDP). More precisely, it
approximates the best action for each state in the environment through the right balance of
exploitation and exploration, and draws its conclusions from the resulting outcomes. With
respect to already taken actions in a state, Dyna Q+ will tackle the arising issues of the
dynamically changing environment.
A major drawback of the Dyna Q+ algorithm is that each state and the possible actions are
stored in a so-called Q-matrix, which poses storage and computational problems for appli-
cations with high dimension. Therefore, Deep variants of Reinforcement Learning methods
are introduced, which are a door opener to Neural Network theory, where only the model
architecture and parameters need to be stored. We will see that this is a powerful and easy
to implement tool, which justifies the current trend, but also point out some drawbacks,
such as the more complex proof to the optimal solution compared to D*-Lite, as well as
the required deployment of special hardware components.

Path finding in dynamic environments is not only of high interest for researching, it can
also be very well applied in practice. An example is the routing and scheduling of freight
traffic in a railroad network. The implementation of a suitable path finding algorithm
can be used to respond to ad hoc events, such as blocked routes and stations or weather
changes. It will be shown that the algorithmically best solution is not always the best
solution for real-world applications, since aspects such as storage, reuse and adaptability
are relevant for business use. In the course of this work, we will observe that although the
heuristic approach finds the more optimal solution, it only finds this one for one path at a
time. This leads to the need of repeating the application to cover all possible paths. On
the other hand, the Reinforcement Learning method, and by extension the Deep variant of
it, offers a worse solution, but, given enough training, it computes a model that considers
all possible paths and can be reused in any point of time. Therefore, as soon as this model
is build for a business application with a certain network it will be more suitable for ad
hoc requests.
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2 The Model

Models describe real world problems in such a way that computer are able to solve them
using certain methods. Depending on the description of these problems, the goals of the
methods can be different. On the one hand, the present model describes the infrastructure
of Austrian railways with the stations and the tracks in between. On the other hand, it
describes the trains moving on this infrastructure, without disturbing other ones. Hence,
the full breadth of Agent Based Modeling can be applied.

2.1 The Environment

Each railway network can be described as a graph G = (V,E) where the set of nodes V
and set of edges E represent stations or tracks between them. In our model each node is
defined by the pair (sLat, sLng), which indicates its longitude and latitude. In our case, the
edges (s, s′) ∈ E for vertices s, s′ ∈ V are undirected, thus (s, s′) = (s′, s).

Figure 2.1: Austria’s railway network considered according to the provided data. Map in
the background is from (d-maps, n.d.)
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2 The Model

As we can see in the created graph in Figure 2.1, it contains circles that can produce
different paths in the different algorithms. Additionally, we can see some sections which
are candidates for delays, for example in Tyrol or Salzburg. Another property of the agent
based model, which is discussed in more detail in Section 2.2, is the maximum capacity of
each station, which indicates the highest number of trains that can be placed in a given
station.
Finally, we define the edge weights as the Euclidean metric (Kaltenbaeck, 2014)

dE(s, s
′) := (Latitudes − Latitudes′)2 + (Longitudes − Longitudes′)2 (s, s′) ∈ E.

(2.1)

Due to the long distances, Vincenty’s formula (Karney, 2013) is used to calculate (2.1)
in meters, this gives an higher accuracy for this purpose.

694

Latitude 48.27

Longitude: 16.4

Name: Floridsdorf

Max Capacity: 2

32792
Latitude 48.26

Longitude: 16.4

Name: Brünner Straße

Max Capacity: 1

dE = 1.33

Figure 2.2: Example of two nodes and their stored information
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2 The Model

2.2 Agent Based Model

Agent based applications are simulation techniques for real-world problems with epony-
mous agents as decision-making entities. Each of them evaluates its situation and chooses
the next action according to a set of rules. Further, there exist a relation between the
agents, which can be seen as communication. This leads to complex behavior patterns and
provides valuable information about the dynamics of the real-world problems it emulates
(Bonabeau, 2002). Therefore, the behavior of the model depends on the units and their
communication at the microscopic level, but cannot be reduced to the respective individual
system parts. The interactions between different, often simple parts of the model, we can
observe complex behavior, which is called emergence and shows that the whole is more
than the sum of its parts (Bonabeau, 2002).
A simple example of the emergent phenomenon can be found in (Bonabeau, 2002), where
each member of the group has the nominate two individuals, one with label A, one with
label B. After all choices are made, the persons should move in such a way that person A
(the protector) is located between the interviewed person and person B. Immediately after
that, people do not only move according to their choice, they are also taking into account
the choice of other people. Thus, the agents will form in a tight knot, which is the emergent
phenomenon in this example.
As we can see from the example, emergence is generated bottom-up in agent-based model-
ing. This draws the desired and characteristic property of building a dynamic and complex
problem from simple rules.

2.2.1 The agents

In our case there are agents describing unique trains, which have a given track and time
table, and one additional agent, which has to navigate through the environment without
disturbing other agents. For consideration in this part of the thesis, we will focus on the
agents with a defined timetable, before adding the latter.
As described in Section 2.2, agent based modeling allows the representation of real-world
problems using self-deciding agents. In this thesis, the agents are assumed to be trains,
which are only able to take two actions, namely, arrival and departure. The execution time
for all these actions is stored in a time table, which is ordered by the trains, hence it is a
discrete state event model .

5



2 The Model

Arrival Train ID Node Departure Workflow

24.06.2018 00:19 A 1073 24.06.2018 00:22 1
24.06.2018 00:22 A 524 24.06.2018 00:23 3
24.06.2018 00:23 A 1449 24.06.2018 00:24 5
24.06.2018 00:22 B 524 24.06.2018 00:23 4
24.06.2018 00:23 B 1656 24.06.2018 00:25 6
24.06.2018 00:21 C 1449 24.06.2018 00:25 2
24.06.2018 00:25 C 1656 24.06.2018 00:26 7

Table 2.1: Example of the timetable which stores actions of the trains. Each action stores
the information about the train, train station and the time of arrival and depar-
ture. The first action is the one with the minimum arrival time, next, with the
next smallest number and so on. If there are more actions with the same arrival
time, they will processed top-down. The column Workflow displays the taken
actions in the order they were executed.

Although, the action space is that limited, it has a huge impact on the model itself. Since,
slots can be blocked in stations or nodes, a not executed action influences a lot of other
actions that should be executed afterwards. If the maximum capacity of a node is reached
and a new train should arrive, all of its actions will be delayed until the spot will be released.
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2 The Model

Get action

Maximum

capacity reached?

Release slot in current station

Block slot in new station

Is anyone leaving
the station this

time?

Reschedule all actions of the train
(including current)

Try it at the end
of the time segment

Next action

No Yes

No

Yes

Figure 2.3: Chart displays the actions of each train. If maximum capacity in station where
a train will arrive is reached and another train leaves the station in future,
the current action and all subsequent actions of the train will be rescheduled.
The current one will be executed the next time a slot is released, successive
actions relatively. On the other hand, if the capacity is full but another train is
departing at the same time, the action will be attempted after all other actions
have been performed in that time step.

We can observe an emergent behaviour, namely congestion. According to the policy de-
scribed in Figure 2.3 any agent who cannot perform his action will remain in the current
station until the desired one gets a free slot. This leads to the fact that in this station again
one slot is occupied and thus another agent could not carry out its actions. All together
this leads to the desired congestion.
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2 The Model

Let us take a look at a simple example. A train A in station x, which is at full capacity,
would like to arrive in station y at 9 AM, but the maximum capacity is reached in y and
the next time a slot will be free is 9 : 05 AM. As a consequence, all actions, including the
one just tried to execute, of the agent will be delayed by five minutes and it stays in x
for this occupation. At 9 : 03 AM another agent B will arrive in x from station z, but no
free slot is available in x. Hence, all actions of B will be delayed by two minutes, which is
similar to the difference to the next time A will try to arrive in y. If there are any other
agents, which will arrive in x or z, they will also be delayed and show us the phenomenon,
how one agent can cause congestion.

s

tu

v

w x

y

s

tu

v

w x

y

s

tu

v

w x

y

s

tu

v

w x

y

Figure 2.4: Another example to illustrate the phenomenon of congestion, where red nodes
indicate full capacity, while yellow means that there is at least one train in the
node, but it does not reach maximum capacity. The initial position (top left
graph) is that all nodes have a maximum capacity of two and each train want
to reach node s. Additionally s is fully utilized, while t and y each contain only
one train. If now the train from node t wants to move to s, this action cannot
be executed since lack of free places. Thus, only the train from y can move to
t, which means that this node also reaches the maximum capacity (top right
graph). All other trains that want to reach s via this route can only go to node
y until it is full (bottom left graph). Since not only these, but also all other
routes are used, the congestion can also be observed on these routes. (bottom
left graph).
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3 D*-Lite Algorithm

In this chapter we introduce the common algorithm for navigating through unknown ter-
rain - the D*-Lite Algorithm. It is based on Lifelong Planning A* (LPA*) (Koenig and
Likhachev, 2002), which uses the heuristic knowledge of the approximated goal distance to
calculate the shortest path from a vertex sstart to sgoal by starting at the first vertex and
moving to the ”best” successor.
Consider a graph, where at least one path exists between sstart and sgoal. An agent (robot)
starts at sstart with the task to reach a goal by the shortest path. To fulfill this, in each
state the shortest path to the goal will be computed, which yields to an update of the
values, as soon as an unknown blocked cell is found. Lets take an example for a better
understanding. In Figure 3.1 we see a graph with known blocked vertices and after a few
steps, the agent discovers a new blocked one, which is in the previous calculated shortest
path. Hence, some values have to be updated and the shortest path changes. In this ex-
ample sstart = s0 and sgoal = s9.

s0

s1s2

s3 s5

s4 s6

s7

s8

s9

s0

s1s2

s3 s5

s4 s6

s7

s8

s9

Figure 3.1: In this example all edge costs are one. The start node is s0 and D*-Lite Al-
gorithm calculates a path to the goal s9. The black vertex is known to be
blocked, so the shortest path is s0− s2− s3− s5− s7− s9 but after a few steps,
a new blocked vertex s5 is discovered. After recalculating, the shortest path is
s0 − s2 − s3 − s5 − s7 − s9.

In the following the D*-Lite will be introduced. Moreover, the similarities to the well
known heuristic search algorithm A* will be pointed out below. This section follows the re-
sults of (Koenig and Likhachev, 2002) and proofs of (Koenig, Likhachev, and Furcy, 2004)
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3 D*-Lite Algorithm

3.1 The algorithm

Before discussing the pseudo algorithm of D*-Lite in detail, we take a closer look at each
node and on the related information stored. Assume sstart is the starting vertex and V
the set of vertices. For each node s ∈ V exists a shortest path (distance) g∗(s) to the goal
point sgoal and the edge weights c(s, s′), where s′ is adjacent to s. It holds that

0 < c(s, s′) < ∞.

Let Succ(s) be the set of successors and Pred(s) denotes the set of predecessors of s ∈ V .
Since D*-Lite is a heuristic search algorithm, we need to specify its properties. First, the
heuristic should be non-negative, satisfy triangular inequality, and be admissible

h(s, s′) ≤ 0

h(s, s′) ≤ c∗(s, s′)
h(s, s′′) ≤ h(s, s′) + h(s′, s′′) ∀s, s′, s′′ ∈ V.

(3.1)

Therein, c∗(s, s′) denotes the costs of the shortest path from s to s′. If the vertices are
adjacent, then c∗(s, s′) = c(s, s′).

10



3 D*-Lite Algorithm

Algorithm A.1 D*-Lite

1: procedure CalculateKey(s)
2: return[min(g(s), rhs(s)) + h(sstart, s) + km;min(g(s), rhs(s))]

3: procedure Initialize( )
4: U = ∅
5: km = 0
6: for s ∈ S do
7: rhs(s) = g(s) = ∞
8: rhs(sgoal) = 0
9: U.Insert(sgoal, CalculateKey(sgoal))

10: procedure UpdateVertex(u)
11: if u ̸= sgoal then
12: rhs(u) = mins∈Succ(u)(g(s) + c(s, u))

13: if u ∈ U then
14: U.Remove(u)

15: if g(u) ̸= rhs(u) then
16: U.Insert(u,CalculateKey(u))

17: procedure ComputeShortestPath( )
18: while U.TopKey() < CalculateKey(sstart) or rhs(sstart) ̸= g(sstart) do
19: kold = U.TopKey()
20: u = U.Pop()
21: if kold < CalculateKey(u) then
22: U.Insert(u,CalculateKey(u)
23: else if g(u) > rhs(u) then
24: g(u) = rhs(u)
25: for s ∈ Pred(u) do
26: UpdateV ertex(s)

27: else
28: g(u) = ∞
29: for s ∈ Pred(u) ∪ {u} do
30: UpdateV ertex(s)

31: procedure Main( )
32: slast = sstart
33: Initialize()
34: ComputeShortestPath()
35: while sstart ̸= sgoal do
36: sstart = argmins∈Pred(sstart)(g(s) + c(sstart, s))
37: Move to sstart
38: Scan graph for changed edge costs
39: if any edge costs changed then
40: km = km + h(slast, sstart)
41: slast = sstart
42: for (u, v) ∈ E with changed costs do
43: Update c(u, v)
44: UpdateV ertex(u)

45: ComputeShortestPath() 11



3 D*-Lite Algorithm

For each vertex there exists an estimation g(s) for the distance between the vertex itself
and the goal. Additionally, the rhs-value gives a second estimation of the distance. These
are one-step look-ahead values of g(s) for all s ∈ V which leads to a better information in
comparison to the g-values.

Regarding to Algorithm A.1 the procedure Initialize() sets the rhs-value of the goal
state to zero and all others to infinity. The values of the vertices will be updated if the
procedure UpdateVertex(u) is called, what can be seen at the update rule in line 12. Hence,
the rhs-value satisfies

rhs(s) =
0 , s = sgoal

mins′∈Succ(s)(g(s′) + c(s′, s)) , otherwise
(3.2)

for all s ∈ V .
If the g-value of a vertex is equal to the rhs-value, we call the vertex locally consistent, in
case of inequality, locally inconsistent. Local consistent in all nodes leads to the equality
of g-values to the respective start values. Hence, the shortest path to sgoal from any vertex
s ∈ V can be computed by starting at s and taking the path to the successor s′ ∈ Succ(s),
which minimize g(s′) + c(s′, s) until the end point is reached.

Since the edge costs will be changed, not all vertices in D*-Lite will be locally consistent
anymore. This results in considering the heuristics for focusing the search and updates
g-values, which are relevant for the calculation of the shortest path. To store these relevant
vertices, a priority queue U , which contains pairs of states and is sorted by their priority,
is required.

Lemma 3.1.1. The priority queue U contains all locally inconsistent vertices in each
timestep.

Proof. After initializing the priority queue in Initialize() the only locally inconsistent vertex
sgoal is contained, since the other ones has g and rhs value infinity. The local consistency of
the nodes changes if the g-value or rhs-value changes, which happens in the procedures Up-
dateVertex(u) and ComputeShortestPath(). It first updates the rhs-value so that Equation
(3.2) is fulfilled and immediately removes the vertex if it is locally consistent or add it to
the priority queue if not. In ComputeShortestPath() the vertex s with the smallest priority
will be deleted from U and if it is locally overconsistent the g-value will be set equal to the
rhs-value. Hence, s is locally consistent and not in the priority queue. But if s is locally
underconsistent, UpdateVertex(s) will be called. Therein, the rhs-value is updated and if
it is locally inconsistent, s is added to the priority queue again. None of these steps will
be executed, when the priority key of s, is not the current one. Then, the vertex, which is
still locally inconsistent, will be reinsert to U with an updated key.
Since we add locally inconsistent and delete locally consistent vertices,, the priority queue
contains all locally inconsistent ones at each timestep.

Now, we take a closer look on the keys in the priority queue U , which will be calculated
in procedure CalculateKey(s) in Algorithm A.1. Therein a key is defined as a vector with
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two components k(s) = [k1(s); k2(s)] where

k1(s) = min(g(s), rhs(s)) + h(sstart, s) + km and

k2(s) = min(g(s), rhs(s)).
(3.3)

In (3.3), an unknown variable km appears that preserves the order of the priority queue
after the agent moves from a node s to s0 and the edge cost changes are detected. Since the
keys are calculated if a vertex is inserted in the priority queue, the priority of each vertex
u ∈ U is equal to k(u). Keys are compared according to a lexicographic ordering, i.e,

k(s) ≤ k′(s) ⇐⇒ k1(s) < k′1(s) or
k1(s) = k′1(s) and k2(s) ≤ k′2(s).

3.2 Termination and Correctness

To show that D*-Lite is correct and terminates, we will focus on local consistency of
vertices, which are selected for expansion between line 23 and 30 in Algorithm A.1. First,
we need to distinguish between keys before and after a vertex u ∈ V is expanded in line 23.
So, kb(u)(s) and ka(u)(s) donating the keys of vertex s ∈ V before and after the expansion
of u. The first property to verify is, that the change from locally consistency to locally
inconsistency of a vertex s, caused by select u for expansion in line 23, will result in a
higher key for s than for u after selection of u.

Lemma 3.2.1. Assume vertex u is selected for expansion in line 23 with key kb(u)(u).
Another vertex s is locally consistent before execution, but locally inconsistent after that,
then

ka(u)(s) > kb(u)(u)

Proof. Assume vertex u and s as required. Since u is locally inconsistent and s is locally
consistent, we may assume that s and u are different.
Regarding to the definition, local consistency only changes if the rhs or g-value changes.
According to (3.2) the rhs-value changes if the g-value or edge cost of the successors is
changing. As we can see in Algorithm A.1, only the g-value of the, for expansion selected,
vertex will change, if it is locally inconsistent. For calculating the change of the respective
rhs-, g-values and keys, we have to distinguish between locally over- and underconsistency.
Assume u is locally overconsistent. Therefore, the condition in line 23 of Algorithm A.1 is
fulfilled, which leads to

ga(u)(u) = rhsb(u)(u) < gb(u)(u). (3.4)

Due to the requirements, s is locally consistent before and locally inconsistent after the
expansion of u. As a consequence, u affects the consistency, more precisely the rhs- or
g-value, of the other vertex. The latter does not depend on the predecessors, but as the
rhs-values are defined by Equation (3.2), this value will change if u minimize the term
g(s′) + c(s, s′) for all s′ ∈ Succ(s),

rhsa(u)(s) = ga(u)(u) + c(s, u).

13
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This together with Equation (3.4) will lead to a decreased rhs-value after selection of u

rhsa(u)(s) = ga(u)(u) + c(u, s),

< mins′∈Succ(s)(gb(u)(s′) + c(s, s′)),

= rhsb(u)(s).

The local consistency of s before selection of u for expansion yields

rhsa(u)(s) < rhsb(u)(s) = gb(u)(s) = ga(u)(s). (3.5)

Now, we can take a look on the keys and formulate the intended inequality. We start with
the first component of those

ka(u)1(s)
(3.3)
= min(ga(u)(s), rhsa(u)(s)) + h(s) + km

(3.5)
= rhsa(u)(s) + h(sstart, s) + km

(3.2)
= ga(u)(u) + c(s, u) + h(sstart, s) + km.

Since edge costs are positive and heuristics fulfill Equation (3.1), we obtain

ka(u)1(s) ≥ ga(u)(u) + h(u) + km

(3.4)
= rhsb(u)(u) + h(sstart, u) + km

(3.4)
= min(gb(u)(u), rhsb(u)(u)) + h(sstart, u) + km

(3.3)
= kb(u)1(u).

(3.6)

Keys are compared in lexicographic ordering, which allows us to formulate the desired
inequality, if strictness is fulfilled in (3.6). In case of equality, we have to investigate the
second entry of the regarding keys

ka(u)2(s)
(3.3)
= min(ga(u)(s), rhsa(u)(s))

(3.5)
= rhsa(u)(s)

(3.2)
= ga(u)(u) + c(s, u)

> ga(u)(u)

(3.4)
= rhsb(u)(u)

(3.4)
= min(gb(u)(u), rhsb(u)(u))

(3.3)
= kb(u)2(u).

(3.7)

Due to Equation (3.6) and (3.7) we receive

ka(u)(s) > kb(u)(u).

14



3 D*-Lite Algorithm

After obtaining the locally overconsistent case, the locally underconsistent one is partly the
same. Here, the condition in line 23 in Algorithm A.1 is not fulfilled which leads to line
27 and the g-value of u is set to infinity. This will only affect the rhs-value of s if

rhsb(u)(s) = gb(u)(u) + c(s, u).

Hence, the increasing of ga(u)(u) to infinity results in

rhsa(u)(s) > rhsb(u)(s) = gb(u)(s) = ga(u)(s), (3.8)

since s was locally consistent before selecting u. In the following, we take a look on the
first component of the key

ka(u)1(s)
(3.3)
= min(ga(u)(s), rhsa(u)(s)) + h(sstart, s) + km

(3.8)
= ga(u)(s) + h(sstart, s) + km

(3.8)
= rhsb(u)(u) + h(sstart, s) + km

(3.2)
= gb(u)(u) + c(s, u) + h(sstart, s)

≥ gb(u)(u) + h(u)

(3.8)
= min(gb(u)(u), rhsb(u)(u)) + h(sstart, u) + km

(3.3)
= kb(u)1(u).

With the same argumentation like in the case above with the second components of the
keys, we proved the lemma.

In the next Lemma we investigate that the key of a, for expansion selected, locally
overconsistent vertex remains the same after the selection, but the local consistency will
change.

Lemma 3.2.2. If a locally overconsistent vertex u with key kb(u)(u) is selected for expan-
sion, then it is locally consistent the next time the line 20 will be executed and kb(u)(u) =
ka(u)(u).

Proof. Assume u fulfills the requirements. Hence gb(u)(u) > rhsb(u)(u), which yields to line
23 in Algorithm A.1 and local consistency

ga(u)(u) = rhsa(u)(u) = rhsb(u)(u). (3.9)

Now, we have to verify, that line 26 does not change the behaviour of the vertex anymore,
if u is a predecessor of itself. According to (3.2), if u is the end vertex, it has a rhs value
of zero. Assume that u is not the end vertex, then there exists a w ∈ Succ(u) with

rhsb(u)(u) = gb(u)(w) + c(u,w). (3.10)

We note that w cannot be the same vertex as u, since

rhsb(u)(u) = gb(u)(u) + c(u, u) ≥ gb(u)(u)
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and this is a contradiction to local overconsistency. Combining (3.10) and (3.9) yields

ga(u)(u) + c(u, u) = rhsb(u)(u) + c(u, u)

> rhsb(u)(u)

= gb(u)(w) + c(u,w)

= ga(u)(w) + c(u,w).

Insertion into (3.2) leads to local consistency

rhsa(u)(u) = min(ga(u)(w) + c(u,w), ga(u)(u) + c(u, u))

= ga(u)(w) + c(u,w)

= rhsb(u)(u)

= ga(u)(u).

Now, we proof the equality of the keys before and after the selection of u.

ka(u)(u) = [min(ga(u)(u), rhsa(u)(u) + h(sstart, u) + km;min(ga(u), rhsa(u)(u)]

= [rhsa(u)(u) + h(sstart, u) + km; rhsa(u)(u)]

= [rhsb(u)(u) + h(sstart, u) + km; rhsb(u)(u)]

= [min(gb(u)(u), rhsb(u)(u) + h(sstart, u) + km;min(gb(u), rhsb(u)(u)]

= kb(u)(u)

In Lemma 3.2.1 we discussed vertices, which change local consistency after selection of
another vertex for expansion. The next lemma shows the change of the keys, if the vertices
remain locally inconsistent.

Lemma 3.2.3. Assume vertex u is selected for expansion in line 23 in Algorithm A.1 with
key kb(u)(u). If a vertex s is locally inconsistent at this point and the next time line 20 is
executed, then

ka(u)(s) ≥ kb(u)(u)

Proof. Assume u and s as demanded. Due to the fact that the function U.pop returns the
locally inconsistent vertex with smallest key, it holds

kb(u)(s) ≥ kb(u)(u).

Now, we evaluate how the key of s is changing. First, we assume that ka(u)(s) does not
change, then

ka(u)(s) = kb(u)(s) ≥ kb(u)(u). (3.11)

If the key of s changes and s = u, then it was locally underconsistent. Lemma 3.2.2 shows
that local overconsistency leads to local consistency the next time the line 20 is executed.
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This violates our assumptions and hence, s was locally underconsistent. Therefore, we
obtain that the condition of line 23 is not fulfilled and the g-value of u = s is set to infinity.
The rhs-value of this vertex will only change, if s is a predecessor of itself. Formulating the
last two sentences as equations yields

∞ = ga(u)(u) ≥ gb(u)(u)

rhsa(u)(u) ≥ rhsb(u)(u)

and

ka(u)(s) = ka(u)(u) ≥ kb(u)(u)

The third case is, that the key of s changes, s ̸= u and u was locally overconsistent. Then,
line 23 will set

ga(u)(u) = rhsb(u)(u) < gb(u)(u). (3.12)

Equivalent to the proof of Lemma 3.2.1 the rhs value of s only changes if u is the minimizer
of (3.2)

rhsa(u)(s) = ga(u)(u) + c(s, u)

(3.12)
= rhsb(u)(u) + c(s, u)

(3.12)
= min(gb(u)(u); rhsb(u)(u)) + c(s, u).

As a consequence,

rhsa(u)(s) ≥ min(gb(u)(u); rhsb(u)(u)). (3.13)

Consider the first component of the key of s

ka(u)1(s) = min(ga(u)(s), rhsa(u)(s)) + h(sstart, s) + km.

If ga(u)(s) is the minimum and we know that the heuristic fulfills Equation (3.1), it follows
that

ka(u)1(s) = ga(u)(s) + h(sstart, s) + km

= gb(u)(s) + h(sstart, s) + km

≥ min(gb(u)(s); rhsb(u)(s)) + h(sstart, u) + km

= kb(u)1(s)

(3.11)

≥ kb(u)1(u)

If rhsa(u)(s) is the minimum and we know h fulfills (3.1), we obtain

ka(u)1(s) = rhsa(u)(s) + h(sstart, s) + km

(3.13)

≥ min(gb(u)(u); rhsb(u)(u)) + h(sstart, u) + km

= kb(u)1(u).
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The last two equations hold also for the second entry of the key, so

ka(u)(s) ≥ kb(u)(u).

It remains to work on the case when the key of s changes, s ̸= u and u is locally un-
derconsistent. Thus, the g-value of s does not change, but the rhs-value. Therefore, u is
a predecessor of s, where the g-value is set to infinity in line 28. This will yield to non
decreasing rhs-values, since the other g-values remain at the same value. Therefore, we
obtain

ka(u)(s) = [min(ga(u)(s), rhsa(u)(s)) + h(sstart, s) + km;min(ga(u)(s), rhsa(u)(s))]

≥ [min(gb(u)(s), rhsb(u)(s)) + h(sstart, s) + km;min(gb(u)(s), rhsb(u)(s))]

= kb(u)(s)

(3.11)

≥ kb(u)(u),

which finishes the proof.

In the next theorem we will show one of the major similarities to the A* Algorithm. The
f-values form the A* Algorithm of the expanded vertices in the latter are monotonically
non-decreasing over time. In D*-Lite the keys of the expanded vertices are non-decreasing.

Theorem 3.2.1. The keys of the, in line 23 for expanding chosen, vertices are monotoni-
cally non-decreasing.

Proof. Recall the fact, that all vertices, which are candidates for expansion, are elements
of U . According to Lemma 3.1.1 these are locally inconsistent. Assume that u is chosen
for expanding with key kb(u)(u). The next time line 20 is executed, vertex s will be chosen.
If those vertex was locally consistent before selecting u and became locally inconsistent
during expansion, it follows that

ka(u)(s) > kb(u)(u)

according to Lemma 3.2.1. If s was locally inconsistent before and after expansion, then

ka(u)(s) ≥ kb(u)(u)

regarding Lemma 3.2.3.

In the next theorems we will discuss vertices which are locally consistent at the time,
line 18 is executed. Theorem 3.2.2 ensures, that locally consistent vertices stay locally
consistent as long as the condition in line 18 is not fulfilled. In Theorem 3.2.3 a for
expansion selected locally overconsistent vertex will also stay locally consistent until the
condition is not fulfilled anymore.

Theorem 3.2.2. Let k be the smallest priority key of U which we get from U.TopKey(U)
in line 18. Additionally, we assume, that a vertex s is locally consistent at this time with

k(s) ≤ k.

Then, s remains locally consistent, until the condition in line 18 is not fulfilled anymore.
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Proof. Let U be empty. Hence, all vertices are locally consistent, as U contains every
locally inconsistent vertices, according to Lemma 3.1.1. So, rhs(sstart) = g(sstart) and
k = [∞;∞]. The latter equality gives us the information, that k ≥ k(sstart), which means
the condition in line 18 is not fulfilled and the theorem is trivial.
In case that U is not empty, the proof is done by contradiction. Assume that s is locally
consistent with key k(s) ≤ k and becomes locally inconsistent after expanding a vertex
u ̸= s, since locally inconsistent vertices can be candidates for expansion. According to
Lemma 3.2.1 and Theorem 3.2.1 the equations ka(u)(s) > kb(u)(u) and kb(u)(u) ≥ k hold
respectively. Hence,

ka(s)(u) > k ≥ k(u)

and further

[min(ga(u)(s),rhsa(u)(s)) + h(sstart, s) + km;min(ga(u)(s), rhsa(u)(s))]

> [min(g(s), rhs(s)) + h(sstart, s) + km;min(g(s), rhs(s))]

= [g(s) + h(sstart, s) + km; g(s)].

This follows according to the definition of the keys (3.3) and due to the fact that s is
locally consistent. It follows that ga(u)(s) > g(s) which is a contradiction since there was
no possibility to change the g-value of s.

Theorem 3.2.3. A locally overconsistent vertex u which is selected for expansion in line
23 is locally consistent the next time the condition in line 18 is queried. Furthermore, it
remains in this property until the condition is not fulfilled.

Proof. Assume u is a locally overconsistent vertex, which is selected for expansion. Ac-
cording to Lemma 3.2.2 it is locally consistent after expansion and ka(u)(u) = kb(u)(u).
Let kb(u) be the smallest key in priority queue U before and ka(u) after expansion of u. As
shown in Theorem 3.2.1 the keys of the, for expanding selected, vertices are monotonically
non-decreasing. Thus, ka(u) ≤ kb(u). Since u is the selected node in line 20, kb(u)(u) = kb(u)
holds. Putting all the information together, u is locally consistent with key

ka(u)(u) = kb(u) ≤ ka(u),

which fulfills the requirement of Theorem 3.2.2 and yields to local consistency of u until
the while loop breaks.

The next result gives us the information, how often a vertex is selected for expansion, if
we simplify the condition in line 18.

Lemma 3.2.4. If we change the condition in line 18 to ”U is not empty”, then each vertex
will be selected for expansion at most twice, more accurate at most once when it is locally
over- and underconsistent respectively. After termination of ComputeShortestPath() the
g-values are equal to their respective start distances.

19



3 D*-Lite Algorithm

Proof. Assume that we have changed the condition in line 18 like required. Consequently,
U will be empty, if and only if there are no more locally inconsistent vertices anymore.
To prove, that each vertex is expanded at most twice, we have to split the cases where the
node is selected for expansion. First, consider the vertex is locally overconsistent. As a
result of Theorem 3.2.3, it is locally consistent after expansion and remains this property
until the code terminates. Hence, a locally overconsistent vertex will only be selected for
expansion once. If it is locally underconsistent, the g-value will be set to infinity in line 28.
Thus, the node is either locally consistent or locally overconsistent after expansion, where
the latter leads to the previous case. Hence, every vertex will be selected for expansion at
most twice.
To prove the second statement, recall that g(s) = rhs(s) and (3.2) holds, which is equal to
their start distances.

The next lemma is about finding a shortest path from any vertex to sgoal.

Lemma 3.2.5. By execution of line 18, let k be the smallest key in priority queue U and a
vertex u locally consistent with k(u) ≤ k. Then, the g-value of u equals their start distance.
Additionally, we can trace back a shortest path from u to sgoal, by starting at u and moving
to the successor s′, that minimizes equation g(s′) + c(s, s′), where s is the current node in
the path.

Proof. If the priority queue is empty, we are done by applying Lemma 3.2.4. So, we assume,
that U is not empty.
Assume that u is locally consistent when line 18 is executed with key

k(u) ≤ k. (3.14)

First, we consider the case that g(u) = ∞. Since u is locally consistent, it holds that

g(u) = rhs(u) = ∞,

further k(u) = [∞;∞]. According to Assumption (3.14), the entries of k are infinity. Hence,
the vertex with priority key k has to be locally consistent, which is a contradiction, since
U contains locally inconsistent vertices as shown in Lemma 3.1.1. Hence, g(u) < ∞.
If u is equal to the end node, then g(u) = rhs(u) = 0 which yields to the equality of the
g-value and the start distance. Thus, the lemmas proof is trivial.
Assume, that u is not sgoal and a successor s, which minimizes g(s) + c(u, s). The aim is
to prove the local consistency of s by showing k(s) ≤ k, which finishes the proof since k is
the smallest priority key of any locally inconsistent vertex. The assumptions for s lead to

g(u) = rhs(u) = mins′∈Succ(u)(g(s′) + c(s′, u)) (3.15)

= g(s) + c(u, s). (3.16)

Since the edge costs are positive and heuristics consistent, g(s) ≤ g(u) and h(s) ≤ c(u, s)+
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h(u) hold. Hence,

k(s) = [min(g(s), rhs(s)) + h(sstart, s) + km;min(g(s), rhs(s))]

≤ g(s) + h(sstart, s) + km; g(s)]

< [g(u) + h(u); g(u)]

= [min(g(u), rhs(u)) + h(sstart, u) + km;min(g(u), rhs(u))]

= k(u)

≤ k,

and therefore, s is locally consistent. Due to u and s are both locally consistent, Theorem
3.2.2 and Lemma 3.2.4 yield that the vertices remain locally consistent until the while-
condition is not fulfilled and the g-value will be equal to their start distances. This together
with (3.15) implies, that the edge between u and s is the last one in the path from u and
the start node.
This procedure can be repeated to all vertices on the shortest path, starting at u, until
sgoal is reached.

Finally, we can prove the correctness of the algorithm.

Theorem 3.2.4. The procedure ComputeShortestPath() in Algorithm A.1 expands every
vertex at most twice, at most once when it is locally overconsistent and at most once if it is
locally underconsistent. After termination, a shortest path from sstart to sgoal can be found,
by starting at sstart and moving to the successor s, that minimizes g(s) + c(u, s) until sgoal
is reached.

Proof. According to Lemma 3.2.4, ComputeShortestPath() expands each vertex at most
twice, if the condition in line 18 is changed to ”U is not empty”. Assume that the condition
is not changed, then it will terminate, when U is empty, since k = U.TopKey() = [∞;∞].
Then, k ≥ k(sstart) and rhs(sstart) = g(sstart) as all vertices are locally consistent. There-
fore, the condition does not affect which vertices are expanding or the order and so it
terminates after expanding each vertex at most twice. Then, sstart satisfy the requirements
of Lemma 3.2.5 and we obtain the result.
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In this chapter we will discuss the approach to use Reinforcement Learning to navigate
through a railway network. Its idea is to learn by interacting with an environment, like
the learning we know from the nature, in a computational approach. The main aspect of
this method is to learn behavior patterns, in other words, deciding in certain situations to
obtain the best outcome. Simply put, Reinforcement Learning is nothing more than trial
and error and learning from this. Iteratively, the actor tries different approaches (actions)
and tries to maximize his output. Before discussing the basics of Reinforcement Learning,
we will take a look on trivial examples made by (Sutton and Barto, 2018), for better a
understanding.

Chess player Before making a move in a chess game, the player has to take a look
on the board and the place of the figures. After evaluating this, the player can decide
for a move, which is already known and will increase the chance to win or one he
never tried before and learn for future games.

Robot in a maze A robot starts in an arbitrary place in a maze with full energy
and attempts finding the exit of it, before the energy runs out. Of course, the more
information the robot will gain from previous attempts, the nearer it will find the
most efficient way to escape the maze.

4.1 Basics of Reinforcement Learning

The first part of introducing the Reinforcement Learning will be the definition of the most
important vocabulary and formulas, while the first method is presented in 4.3.
The key terms in Reinforcement Learning are states, which describes a certain status in
the environment, like the places of figures on a chess table. The transition from one state
to another is called an action. Note, that the actions depending on the state and can be
different for each one. The next term that needs to be specified is a policy. It defines the
agent’s way of behaving at a given time and is a possibility of an action, at a perceived
state of the environment.
A reward defines the goal of a Reinforcement Learning problem. For each taken action, the
environment will send a number, which can be positive or negative. This distinction also
allows us to distinguish between good and bad decisions. To stay with the example of a
chess player, a move which will arise the chance for a win will result in a positive reward,
while a decreasing would be negative. In this example, but also for Reinforcement Learning
in general, maximizing rewards is the goal. Thus, actions and the resulting rewards affects
the policy. For example, if an action leads to lower rewards, then the policy is changed so
that it is selected less often in the future.
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Rewards indicate which action is good in a specific situation, but does not tell us anything
for the long run. To obtain this information, we need a value function that gives us the
total amount of reward an agent can expect to accumulate in the future for each state,
starting from that state. As a result, it is possible for an action to have a small reward,
but have a large value due to following high rewards or the reverse could occur. Thus, the
values are primary for the action choices, but must be estimated and re-estimated from the
observation an agent makes, while the rewards are given directly from the environment.
This is why one of the most important components of Reinforcement Learning algorithms
is a method for efficiently estimating values (Sutton and Barto, 2018).

Agent

Environment

Rt+1

St+1

Reward RtState St
Action At

Figure 4.1: The agent-environment interaction in a Markov decision process. The agent
chooses an action At and the environment responses with the state St+1 and
reward Rt+1. If the goal state is not reached, the agent will choose action At+1

and the environment response with St+2 and Rt+2 and so on. (Sutton and
Barto, 2018)

To understand how problems are solved, we first consider finite Markov Decision Processes,
which are mathematically idealized form of Reinforcement Learning processes for which
precise theoretical statements can be made (Sutton and Barto, 2018).
As illustrated in Figure 4.1, in state St ∈ S the agent chooses an action At ∈ A(s), where
A(s) define the set of actions in a certain state. At the next step, where it should be
mentioned that these are discrete steps t = 0, 1, 2, ..., the agent receives a numerical reward
Rt+1 ∈ R ⊂ R and is in the state St+1. Thus, rise to a trajectory that starts like

S0, A0, R1, S1, A1, R2, S2, ... (4.1)

The goal in Reinforcement Learning is to maximize the total amount of rewards an agent
receives, precisely the expected return Gt at a timestamp t. The simplest form is the trivial
sum of rewards

Gt = Rt+1 +Rt+2 + . . .+RT , (4.2)

where T denotes a final step. This final step marks the end of a so-called episode, which
are subsequences of the trajectory. But how to calculate the expected profit if the task is
not episodic but continuous? The remedy for these tasks is a concept called discounting,
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where the rewards lose value, the further they are in the future. Hence, the expected return
is defined as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞

k=0

γkRt+k+1, (4.3)

where the discount rate γ ∈ [0, 1) ensures that rewards lying in the future are worth less.
To use only one formula and refer to the close parallel between continuing and episodic
tasks, the literature agrees on one formula for both variants,

Gt =
T

k=t+1

γk−t−1Rk, (4.4)

including the possibility T = ∞ or γ = 1, but not both simultaneously (Sutton and Barto,
2018).
The goal is to maximize Equation (4.4) and therefore the rewards, which depend on the
actions the agent choose in a specific state. Recall the policy, which is a probability
distribution over actions if the agent is at a certain state, mathematically written

π(a, s) = P(a|St = s), (4.5)

where a ∈ A denotes the action and s ∈ S the state. As already mentioned, a value
function is needed to evaluate the decision possibilities in the long run. For this purpose,
two functions are defined, which calculate either the value in a certain state or taking an
action in a particular state under a policy π.
The first function we define, calculates the expected return when starting in state s and
following policy π. The so-called state-value function is defined as (Sutton and Barto, 2018)

vπ(s) = Eπ [Gt|St = s]

(4.4)
= Eπ

T

k=t+1

γk−t−1Rk St = s . (4.6)

To calculate the value function from choosing an action a in a certain state s under policy
π is called the action-value function (Sutton and Barto, 2018)

qπ(s, a) = Eπ [Gt|St = s,At = a]

(4.4)
= Eπ

T

k=t+1

γk−t−1Rk St = s,At = a . (4.7)

Both functions are defined for any policy π, to maximize the value function, the goal is to
find the optimal policy π∗, its state-value function v∗(s) and action-value function q∗(s, a).
Note, that there can be multiple policies, but the optimal value functions are unique.
Policies are comparable by means of their state value functions (Sutton and Barto, 2018),
i.e

π ≥ π′ ⇔ vπ(s) ≥ vπ′(s), ∀s ∈ S.
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Hence, the state-value function of the optimal policy is greater or equal in all states than
state-value function of any other policy,

v∗(s) = max
π

vπ(s)

and therefore the action-value function satisfies

q∗(s, a) = max
π

qπ(s, a).

Finally, we can formulate Bellman optimality equation according to (Sutton and Barto,
2018) which defines the state-value and action-value functions of the optimal policy.

Theorem 4.1.1 (Bellman Equation). The state-value function of an optimal policy is
defined as

v∗(s) = max
a

E Rt+1 + γv∗(St+1) St = s,At = a ,

for all s ∈ S. Moreover, the action-value function can be written as

q∗(s, a) = E Rt+1 + γmax
a′

q∗(St+1, a
′) St = s,At = a .

for all s ∈ S and a ∈ A(s).

Proof. Assume π∗ is an optimal policy. The state-value function of the optimal policy
describes the biggest value function if we start in state s and follow policy π∗. The action-
value function in turn provides the biggest value function if start in s, take action a and
follow the optimal policy. We obtain that, v∗(s) is nothing else than the action-value
function, with the action, which maximizes the value function, i.e.

v∗(s) = max
a∈A(s)

qπ∗(s, a). (4.8)

Thus,

v∗(s)
(4.8)
= max

a∈A(s)
q∗(s, a)

(4.7)
= max

a∈A(s)
Eπ∗ [Gt|St = s,At = a]

(4.4)
= max

a∈A(s)
Eπ∗ Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s,At = a

= max
a∈A(s)

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

= max
a∈A(s)

Eπ∗ [Rt+1|St = s,At = a] + γ max
a∈A(s)

Eπ∗ [Gt+1|St = s,At = a] .

The last term denotes the expected reward, if the action in state s is taken, which maximizes
the expected reward and follows the optimal policy afterwards. This value is equal to the
unique optimal state-value function in state St+1. Hence,

v∗(s) = max
a∈A(s)

E [Rt+1 + γv∗(St+1)|St = s,At = a] .
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With (4.8) we receive

q∗(s) = Eπ∗ [Gt|St = s,At = a]

= Eπ∗ [Rt+1 + γGt|St = s,At = a]

= E [Rt+1 + γv∗(St+1)|St = s,At = a]

= Eπ∗ Rt+1 + γ max
a′∈A(s)

q∗(St+1, a
′)|St = s,At = a .

4.2 Exploration and Exploitation

In the beginning of Chapter 4 we denoted Reinforcement Learning as learning of trial and
error methods which we will now take a closer look at. In general, Reinforcement Learning
methods want to take the actions, which were already tried in the past and effective to
produce reward, called exploitation. But how do we discover the profitable actions or those
that generate more rewards than the ones we already know? This is where exploration
comes in, which means that with a certain probability the greediest choice is not taken,
but a random one. It is obvious that neither pure exploitation nor pure exploration can
solve the task satisfactorily, so an agent must try a variety of actions and favor the already
discovered best actions. This dilemma is unique for Reinforcement Learning algorithms
and is still unresolved (Sutton and Barto, 2018).
To ensure a good mix of the two decision policies, we will use an ϵ-greedy policy (Sutton
and Barto, 2018) with ϵ < 1. So, with probability 1−ϵ the action is taken, which maximizes
the reward, else it takes an arbitrary action. In general, the agent only knows the initialized
values at the begin, thus, we will focus on exploration. The more the values are updated
by (4.9), the more information about the environment the agent gains. Hence, the focus
should be more on exploitation than exploration. Remedy provides us the Exponential
decay formula

ϵ(E) = ϵ0e
−λE ,

where E indicates the episode, ϵ0 the initial value and λ ∈ (0, 1) a constant called decay
constant.
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Figure 4.2: Exponential decay with initial value ϵ0 = 1 and decay λ = 0.01 over thousand
episodes and minimal possible value 0.01

4.3 Q-Learning

Q-Learning (Watkins, 1989) is a simple algorithm for estimating the action-value function
to get the greatest expected reward for an action in a certain state. The idea of this method
is to estimate the value under a performed action a in a state s directly after receiving the
reward, which reduces the length of the trajectory (4.1) and hence the amount of samples
compared to Monte Carlo methods, which assume all values for the calculation of the
optimal strategy (Sutton and Barto, 2018). The approach we are using belongs to the
Temporal Difference learning algorithms.
Q-Learning updates the entries of the eponymous Q-matrix, which rows are the states and
the columns the actions, by the rule (Sutton and Barto, 2018)

Q(St, At) = Q(St, At) + α Rt+1 + γ max
a∈A(St+1)

Q(St+1, a)−Q(St, At) . (4.9)

Q(St, At) defines the Q-value if the agent is in state St and choose action At. Obviously,
the Q-value on the left hand side of Equation (4.9) presents the new calculated value,
while occurrence on the right hand side defines the old value before update. The term in
the brackets define the Temporal Difference Error which is calculated as the sum of the
expected optimal reward, Theorem 4.1.1, and the current value. The learning rate α ∈ [0, 1]
indicates how much the new value affect the old one. In the literature the default value is
assumed to be 0.1 (Sutton and Barto, 2018).
In our case, the aim of Q-Learning is to train an agent to find an optimal path between a
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start state/node/train station sstart and a terminal one, sgoal. Therefore, in each timestep
the ϵ-greediest action, according to the Q-values, will be taken and the reward r and next
step s′ observed. Next, the Q-value of action a in state s is calculated by update rule (4.9).
If s′ is not equal to the terminal state sgoal, the steps are repeated with s′, otherwise the
episode successfully terminates and the next starts with the current Q-values.

Algorithm A.2 Q-Learning

1: procedure Initialize( )
2: for s ∈ S do
3: for a ∈ A(s) do
4: Q(s, a) is arbitrarily

5: Q(sgoal, ·) = 0

6: procedure Main( )
7: for each episode do
8: s = sstart
9: while s ̸= sgoal do

10: Choose a in s using ϵ-greedy policy on Q(s, ·)
11: Observe r and s′

12: Q(s, a) = Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a)]

13: s = s′

As already mentioned, the selection of an action in a certain state follows an ϵ-greedy policy
on Q(s, ·), which means that with probability 1 − ϵ the action a, which maximizes Q(s, ·)
is taken, else an arbitrary action is selected. The first case indicates the exploitation part,
we discussed in Section 4.2, the latter the exploration.

4.4 Dyna Q+

Q-Learning in Section 4.3 focus on improving the policy by learning due to episodes, so we
select an action in a certain state based on the knowledge we gain through previous episodes.
In this section a new method for agents will be introduced, the planning. In (Sutton and
Barto, 2018), planning refers to the task of improving policy through interaction with a
so-called modeled environment, which helps an agent to predict the expected return based
on a taken action by using simulated experience. The model helps the agent predicting
the reward and next state according to a certain state and taken action by producing a
simulated experience. In (Sutton and Barto, 2018) two ways of simulating the environment
are introduced. On the one hand, given a state and a given action, the probability of all
next states and reward possibilities are calculated, which are called distributional models;
on the other hand, the so-called sample models generate only one possibility according to
the probability.
For better understanding and to draw attention to the differences, consider modeling the
sum of two dices. A distribution model generates all possible sums and their probabilities,
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while a sampling model generates only a single sum according to its probability distribution.
Obviously, the first model variant is more accurate, but it is more difficult to implement
all possible sums and their possibilities as a simulation of dice rolls and return of sums.
At all when the environment becomes more complex, sampling models will be easier to
implement which is why in this thesis sample models are used. State-space planning uses
these models as input and computes value functions to optimize strategies using backup
operations applied to simulated experiences. Thus, both planning, which uses simulated
experience generated by a model, and learning, which use real experience generated by the
environment, estimates value functions through supporting update operations.

Algorithm A.3 Q-Planning

1: procedure Initialize( )
2: for s ∈ S do
3: for a ∈ A(s) do
4: Q(s, a) is arbitrarily

5: Q(sgoal, ·) = 0

6: procedure Main( )
7: while 1 do
8: Select s ∈ S, a ∈ A random
9: Send s, a to sample model and observe s′ and r

10: Q(s, a) = Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a)]

Learning affects the policy directly, so it is called direct Reinforcement Learning, while
planning uses the information of the modeled environment and affects the policy via the
model in small, incremental steps. Therefore, it is called indirect Reinforcement Learning.
According to (Sutton and Barto, 2018) the advantages of direct Reinforcement Learning
methods is to achieve better policies with fewer interactions with the environment, while
indirect methods are simpler and do not depend on the model design. Agents that enjoy
the benefits of both methods are called Dyna agents.

value/policy

experiencemodel

acting

model learning

pl
an
ni
ng learning

Figure 4.3: This figure shows the actions of a Dyna agent. The circle value/policy-acting-
experience-learning marks the direct Reinforcement Learning part, while the
circle, which includes the model, the indirect part (Sutton and Barto, 2018).

29



4 Reinforcement Learning

One example of Dyna agents, which includes all of the processes in Figure 4.3, is the
Dyna Q algorithm.

Algorithm A.4 Dyna Q

1: procedure Initialize( )
2: for s ∈ S do
3: for a ∈ A(s) do
4: Q(s, a) is arbitrarily
5: M(s, a) = NULL

6: Q(sgoal, ·) = 0

7: procedure Main( )
8: for each episode do
9: s = sstart

10: while s ̸= sgoal do
11: Choose a in s using ϵ-greedy policy on Q(s, ·)
12: Observe r and s′

13: Q(s, a) = Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a)]

14: M(s, a) = (r, s′)
15: s = s′

16: for i ∈ {1, . . . , n} do
17: select a random state ŝ, which was already observed
18: select a random action â which was already taken in ŝ
19: (r̂, ŝ′) = M(ŝ, â)
20: Q(ŝ, â) = Q(ŝ, â) + α[r̂ + γ max

â′∈A(ŝ′)
Q(ŝ′, â′)−Q(ŝ, â)]

In Algorithm A.4 we can see the learning method from line 11 to 13, which is equal to
the steps of our direct Reinforcement Learning method Q-Learning A.2. In line 14 we see
one Dyna Q typical indirect Reinforcement Learning method called model learning, which
indicates the mapping of a state-action pair (s, a) to a reward-state pair (r, s′), leading to
the knowledge of gaining the reward and next state, if an action is selected in a certain
state. Between lines 16 and 20 we obtain planning steps which use the information of the
model to update the values of already chosen actions to get closer to the real environment,
like the planning Algorithm A.3. Therefore, Dyna Q has a combination of both methods.
As discussed, Dyna Q tries to model the environment as best it can, but reaches its limits
when the environment is dynamic (Sutton and Barto, 2018). To solve this issue we will
introduce Dyna Q+ (Sutton and Barto, 2018), where the model stores the information
when the action was selected, which has an impact on the reward

rnew = r + κ τ(s, a), (4.10)

where τ(s, a) defines the time an action was not selected and κ a small number lower than
one. This will force agents to choose actions which were not taken for a longer time and
reminds on the exploration-exploitation approach of the direct Reinforcement Learning
methods but on the model level. The last difference to Dyna Q is the initialization of the
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modeled environment, where each state-action pair is initialized with a reward of zero and
returns the same state.

Algorithm A.5 Dyna Q+

1: procedure Initialize( )
2: for s ∈ S do
3: for a ∈ A(s) do
4: Q(s, a) is arbitrarily
5: M(s, a) = (0, s, 1)

6: Q(sgoal, ·) = 0

7: procedure Main( )
8: for each episode do
9: s = sstart

10: t = 0
11: while s ̸= sgoal do
12: Choose a in s using ϵ-greedy policy on Q(s, ·)
13: Observe r and s′

14: Q(s, a) = Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a)]

15: M(s, a) = (r, s′)
16: s = s′

17: t = t+ 1
18: for i ∈ {1, . . . , n} do
19: select a random state ŝ, which was already observed
20: select a random action â which was already taken in ŝ
21: (r̂, ŝ′, τ) = M(ŝ, â)
22: rnew = r̂ + κ

√
τ

23: Q(ŝ, â) = Q(ŝ, â) + α[rnew + γ max
â′∈A(ŝ′)

Q(ŝ′, â′)−Q(ŝ, â)]
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4.5 Deep Dyna Q

One of the biggest limitations of the forms of Q-Learning is the calculation and storage
of the Q-matrix since it has to be computed for each state. In our case a state is the
composition of a feature vector x, where each entry represent a node, where

xi =




1, if xi = s or sgoal

0.5, if xi is blocked

0, else

(4.11)

for all i ∈ {1 . . . n}, and the information of the date when this vector is valid. Therefore, the
computation time for the Q-values will be unsatisfying for high dimensional applications.
In (Sutton and Barto, 2018) a solution to this problem is presented by using the tech-
niques from the increasingly widespread field of artificial intelligence, the so called Deep Q
Networks (DQN) which are Neural Networks.

4.5.1 Basics of Neural Networks

A Neural Network consists of different layers of neurons, which are connected by edges.
Since we are using Feed Forward Neural Networks, each layer gets the input of the previous
one and provides the results to the next one, starting with an input layer, that has an
argument, the feature vector x from (4.11). The layers between the input and the output
are called hidden layers, where hidden layer l is calculated (Fan et al., 2020) by a function

fl : Rdl−1 →Rdi

fl(x̂) =σ(Wlx̂+ vl),
(4.12)

where dl defines the dimension of the current layer and d0 indicates the size of the input
feature vector x. Additionally, in (4.12) we will find the so called rectified linear unit
(ReLU) activation function σ(·) = max(0, ·), the weight matrix Wl ∈ Rdl×dl−1 and the shift
bias vector vl. Hence, defining a ReLU network with L hidden layers, the composition of
all layer functions and input vector x ∈ Rd0 is

f : Rd0 →RdL+1

f(x) =fL+1 ◦ fL ◦ . . . ◦ f1(x)
=WL+1σ(WLσ(WL−1σ(. . . σ(W1x+ v1)) + vL−1) + vL)),

(4.13)

where we note, that the shift bias vector of the output layer vL+1 is zero and this layer
does not require an activation function.

32



4 Reinforcement Learning

x1

x2

x3

y1

y2

l1

l2

l3

l4

l5

x f1(x) = σ(W1x+ v1) f(x) = W2f1(x)

Figure 4.4: Example of a simple fully connected Feed Forward Neural Network with one
hidden layer L = 1 with dimension d1 = 5. x defines the input vector with
dimension d0 = 3 and the output layer is size dL+1 = d2 = 2

4.5.2 The algorithm

In (Mnih et al., 2015) two steps, that are crucial for receiving the optimal result with
Deep Dyna Q, are presented. The first one is called experience replay (Lin, 1992), where
a replay memory M stores, like in Dyna Q+ A.5, the taken action in certain states and
their corresponding following states and reward values, to train the network via stochastic
gradient descent. With this method, temporal uncorrelated samples can be obtained to
increase the accuracy of gradient estimation for the optimal result. The second step is the
usage of a policy and a target network. While the first one will update its parameters after
a certain time with a minibatch of M , the second one will only update for runs, where the
goal is achieved. Both steps combined will update the parameter of the models correctly.
Let θ be the parameter of the Qθ-network and θ∗ of the target network. Selecting an
independent set of samples {si, ai, s′i, ri} ∈ M ∀i ∈ 1, . . . , n, where n is the size of the
minibatch, the target value Yi is calculated quite similar to the Temporal Difference Error
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in Bellman Equation in (4.9)

Yi = ri + γ max
a′i∈A(s′i)

Qθ∗(s
′
i, a

′
i) (4.14)

for updating θ by evaluating the gradient of the mean square error (MSE)

L(θ) =
1

n

n

i=1

[Yi −Qθ(si, ai)]
2. (4.15)

Algorithm A.6 Deep Dyna Q

1: procedure Initialize( )
2: M = ∅
3: set time for up Ttarget

4: initialize network Qθ

5: initialize target network Qθ∗ with θ∗ = θ

6: procedure Main( )
7: for each episode do
8: s = sstart
9: t = 0

10: while s ̸= sgoal do
11: Choose a in s using ϵ-greedy policy on Qθ(s, ·)
12: Observe r and s′

13: store (s, a, r, s′) in M
14: sample random minibatch {si, ai, s′i, ri} of M with size n
15: compute target Yi = ri + γ max

a′i∈A(s′)
Qθ∗(s

′
i, a

′
i) for all i ∈ {1, . . . , n}

16: Update θ = θ − α 1
n

n

i=1
[Yi −Qθ(si, ai)]∇θQθ(si, ai)

17: if t = Ttarget then
18: θ∗ = θ
19: t = 0
20: else
21: t = t+ 1

4.5.3 Convergence to optimal solution

Since Neural Networks are learning the correlation between specific inputs and outputs, the
question is how to prove the convergence to the optimal solution Q∗. As already mentioned,
we consider networks with ReLU activation function, defined in (Fan et al., 2020), where
most parameters are zero.

Definition 4.5.1 (Sparse ReLU Network). Let L, s ∈ N, V > 0 and dl ∈ N for all l ∈
{0, . . . , L+1}. Then, the family of sparse ReLU networks are bounded by V with L hidden
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layers, weight sparsity s is defined as

F(L, (di)
L+1
i=0 , s, V ) = f : max

l∈{0,...,L+1}
∥(Wl, vl)∥∞ ≤ 1,

L+1

l=1

∥(Wl, vl)∥0 ≤ s, max
l∈{0,...,L+1}

∥fl∥∞ ≤ V ,

where fl is defined equal to (4.12). Hence, (Wl, vl) are the weight matrices and shift biased
vector of the corresponding layer function.

In Definition 4.5.1 the norms indicates the ℓp-norm (Kaltenbaeck, 2014), especially the
ℓ0-norm which counts the entries not equal to zero.
Since the value functions vπ and qπ, which are defined in (4.6) and (4.7), are bounded by
Vmax = Rmax

1−γ , the Sparse ReLU Networks are bounded by Vmax. Therefore, we will write

F(L, (di)
L+1
i=0 , s) instead of F(L, (di)

L+1
i=0 , s, Vmax) in the following. To calculate the error of

the neural network with respect to the optimal solution, the problem must be rewritten into
a value iteration (Sutton and Barto, 2018). For this purpose, instead of experience replay,
a sample of independent transitions from a given distribution is taken by σ ∈ P(S × A),
leading to the following representation of the Bellman Equation (4.9)

E(Yi|Si, Ai) = (TQθ∗)(si, ai) (4.16)

where TQθ∗ is called the Bellman Operator and describes the optimal state-action equation
in Theorem (4.1.1) with Q-matrix Qθ∗ in a certain state Si and taken action Ai. Next, we
will examine the significance of the need for target network Qθ∗ based on the expected loss
via bias-variance decomposition (Friedman, 2017), for which the target network is initially
disregarded, i.e. θ∗ = θ,

E(L) = ∥Qθ − TQθ∥2σ + E [Y1 − (TQθ)(s1, a1)]
2 . (4.17)

Therein, the first term indicates the so-called mean-squared Bellman Error (MSBE) (Sut-
ton and Barto, 2018), which indicates the difference of the calculated Q matrix to the
Bellman optimality operator. The second term describes variance of Y1. In other words,
loss function L(θ) is the empirical version of MSBE with a bias, which also depends on
θ. Thus, minimizing L(θ) is not equal to minimizing MSBE. To eliminate this problem,
the previously mentioned target network is used to make the bias dependent on the target
network, which leads to

E(L) = ∥Qθ − TQθ∗∥2σ + E [Y1 − (TQθ∗)(s1, a1)]
2 (4.18)

and

min
θ∈Θ

L(θ) ≈ min
θ∈Θ

∥Qθ − TQθ∗∥2σ, (4.19)

where Θ is the parameter space. Note that, if {Qθ : θ ∈ Θ} contains TQθ∗ , (4.19) has
solution Qθ = TQθ∗ , that is why the problem can viewed as an one-step of the previous
mentioned value iteration.
Taking a function family of neural networks F , defined on S ×A and let Q̃k be the current
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estimation of the optimal solution Q∗ in the k-th iteration step, we define the target value
according to (4.14)

Yi = ri + γ max
a′i∈A(s′i)

Q̃k(s
′
i, a

′
i) (4.20)

and the update of Q̃k

Q̃k+1 = argmin
f∈F

1

n

n

i=1

[Yi − f(si, ai)]
2 (4.21)

leads to the neural fitted-Q iteration algorithm (Riedmiller, 2005), which is stated in A.7.

Algorithm A.7 neural fitted-Q iteration (neural FQI)

1: procedure Initialize( )
2: F function class of neural networks
3: set sampling distribution σ
4: set number of iterations K
5: set number of samples n
6: set initial estimator Q̃0

7: procedure Main( )
8: for k = 0, 1, . . . ,K − 1 do
9: Sample i.i.d observations {(si, ai, ri, s′i)} for i ∈ {1, . . . , n}

with (si, ai) drawn by distribution σ
10: Yi = ri + γ max

a′i∈A(s′i)
Q̃k(s

′
i, a

′
i)

11: Update Q̃k+1 = argmin
f∈F

1
n

n

i=1
[Yi − f(si, ai)]

2

12: Define policy πK as greedy policy with respect to estimator Q̃K

Algorithm A.7 starts with an estimator Q̃0 and learns the approximation of the Bellman
optimality operator T and T̂1 via (4.21) and n samples {(si, ai, ri, s′i)}. We obtain that the
next estimator Q̃1 satisfies Q̃1 = T̂1Q̃0. Observe that T̂2 is learned by another batch of
samples, which yields to Q̃2 = T̂2Q̃1 and so on. Applying these steps K times, the final
estimator results in

Q̃K = T̂K T̂K−1 . . . T̂1Q̃0. (4.22)

For proving the convergence of Algorithm A.6 and thus of the DQN to the optimal solution,
we will need some assumptions (Fan et al., 2020). First, the state space S is a compact
subset in Rr and without loss of generality S = [0, 1]r. Additionally, the action space A
is finite. Last but not least, we will define the function class F and the approximation of
the Bellman optimality operator in a mathematical formal way, which will be done for the
first via Definition 4.5.1 and the latter via compositions of Hölder Smooth Functions (Fan
et al., 2020).

36



4 Reinforcement Learning

Definition 4.5.2 (Hölder Smooth Function). Let D be a compact subset of Rr, r ∈ N and
the parameter β,H > 0, then the set of Hölder Smooth Functions on D is defined as

Cr(D, β,H) =

f : D → R :

α:|α|<β

∥∂αf∥∞ +

α:∥α∥1<β

sup
x,y∈D,x ̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥β−⌊β⌋

∞
≤ H

 ,

where ⌊β⌋ is the floor function which returns the biggest integer smaller than β. Addi-
tionally, we are using the multi-index notation α = (α1, . . . , αr)

T ∈ Nr, which leads to
∂α = ∂α1 · · · ∂αr .

Since the final estimator is defined like in (4.22), compositions of Hölder Smooth Func-
tions have do be defined (Fan et al., 2020).

Definition 4.5.3 (Composition of Hölder Smooth Functions). Let q ∈ N, pj ⊂ N and
aj , bj ⊂ R such that aj < bj for all j ∈ {1, . . . , q}. In addition, let

gj : [aj , bj ]
pj → [aj+1, bj+1]

pj+1

be a function, where the components gjk are Hölder smooth for each k ∈ {1, . . . , pj+1} and
they depend on tj of its input variables, where tj ≤ pj. Hence, gjk ∈ Ctj ([aj , bj ]tj , βj , Hj).
With this assumptions and pq+1 = 1, the family of compositions G({pj , tj , βj , Hj}) can be
defined, whenever f ∈ G({pj , tj , βj , Hj}) can be written as

f = gq ◦ gq−1 ◦ . . . ◦ g2 ◦ g1,

with Hölder smooth gjk ∈ Ctj ([aj , bj ]tj , βj , Hj) for each k ∈ {1, . . . , pj+1} and j ∈ {1, . . . , q}.

With previous mentioned assumptions and Definition 4.5.3 class of functions F0 and the
set which contains Bellman optimality operator TQ can be defined (Fan et al., 2020).

Definition 4.5.4. Let F(L, (di)
L+1
i=0 , s) be the family of sparse ReLU networks defined on

S with d0 = r and DL+1 = 1, following Definition 4.5.1. Then, the set of functions in
Algorithm A.7 is defined by

F0 = {f : S ×A → R : f(·, a) ∈ F(L, (di)
L+1
i=0 , s)}.

Furthermore, let G({pj , tj , βj , Hj}j∈{1,...,n} be a set of Hölder smooth function compositions
from Definition 4.5.3. Similar to the previous definition, a function class G is defined as

G0 = {f : S ×A → R : f(·, a) ∈ G({pj , tj , βj , Hj}j∈{1,...,n} for any a ∈ A}.

Now we will assume a property based on (Fan et al., 2020) of the function classes F0

and G0 that are important for the neural FQI Algorithm A.7, namely, that the Bellman
optimality operator Tf is a composition of Hölder smooth functions if f ∈ F0.
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Lemma 4.5.1. For any f ∈ F0, there exists Tf ∈ G0, where T is the Bellman optimality
operator, i.e. for any f ∈ F0 and a ∈ A, Tf(·, a) can be written as composition of Hölder
smooth functions as a function of s ∈ S.
Proof. The proof will be split into two cases. First, we assume the satisfaction of some
smoothness condition. So, let f ∈ F0 and for any state-action pair (s, a) ∈ S ×A, P (·|s, a)
the density of the next state. By definition of the Bellman optimality operator as function
in Theorem 4.1.1, it can be written as

(Tf)(s, a) = r(s, a) + γ
S

max
a′∈A

f(s′, a′) · P (s′|s, a)ds′. (4.23)

For any s′ ∈ S and a ∈ A we define g1(s) = r(s, a) and g2(s, a) = P (·|s, a) as Hölder smooth
functions on S = [0, 1]r with parameter β and H. As already mentioned, f is limited by
Vmax, i.e. ∥f∥∞ ≤ Vmax. Thus, the order of differentiation and integration in (4.23) can
be changed with respect to s, if (Tf)(s, a) is differentiated, which yields to the affiliation
of s → (Tf)(s, a) to Hölder smooth class Cr(S, β,H ′), where H ′ = H(1 + Vmax).
Now, take a look on the more general case, where we want to describe P (s′|s, a) only for any
fixed a ∈ A. Then, P (s′|s, a) = h1[h2(s, a), h3(s

′)], where h2 : S → Rr1 and h3 : S → Rr2

are feature mappings and h1 : Rr1+r2 is a bivariate function. Defining h4 : R
r1 → R as

h4(u) =
S

max
a′∈A

f(s′, a′) h1[u, h3(s
′)]ds′ (4.24)

will lead to

(Tf)(s, a) = g1(s) + γh4 ◦ h2(s, a), (4.25)

which is a composition of Hölder smooth functions if h4 is Hölder smooth and g1, h2 can
be represented as composition of Hölder smooth functions. It follows that Tf ∈ G0.

The second case is, when the transition density P (s′|s, a) is not smooth, so consider the
extreme case where s′ is a function s′ = h(s, a). Hence,

(Tf)(s, a) = r(s, a) + γmax
a′∈A

f [h(s, a), a′]. (4.26)

Due to

max
a′∈A

f(s′1, a
′)−max

a′∈A
f(s′2, a

′) ≤ max
a′∈A

f(s′1, a
′)− f(s′2, a

′)

for any s′1, s′2 ∈ S and the fact that f(·, a) is Lipschitz continuous for any a ∈ A, m1(s) =
max
a′∈A

f(s, a′) is Lipschitz on S. Now assume g1(s) = r(s, a) and m2(s) = h(s, a) are compo-

sitions of Hölder smooth functions, so is (Tf)(s, a) = g1(s) +m1 ◦m2(s).

Lemma 4.5.1 describes, that TQ̃k ∈ G0 for each iteration step in neural FQN A.7. Accord-
ing to (Fan et al., 2020) the optimal solution Q∗ is closed to F0 if G0 can be approximated
by functions from F0. Thus, F0 is approximately closed under T .
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The next assumption is a standard assumption in the literature of approximating policies
and value iteration, i.e (Fan et al., 2020), (Munos and Szepesvári, 2008), (Scherrer et al.,
2015) and (Farahmand, Munos, and Szepesvári, 2010), which measures the mismatch be-
tween a reference measure ν2 and the distribution of future states starting with measure
ν1 and making m steps according to policies π1, · · · , πm.

Assumption 4.5.1 (Concentrability Coefficients). Let ν1, ν2 ∈ P(S × A) absolutely con-
tinuous regarding to a Lebesgue measure on S × A and {πt} a sequence of policies for
t ∈ {1, . . . ,m}. Starting at initial pair (s0, a0) with distribution ν1 and taking action at
according to policy πt for t ∈ {1, . . . ,m}. Then, PπmPπm−1 · Pπ1ν1 is the donated as the
distribution of {(st, at)}mt=0, which allows us to define the m-th concentrability coefficient
as

κ(m, ν1, ν2) = sup
π1,...,πm

Eν2

d(PπmPπm−1 · Pπ1ν1)

dν2

2 1/2

.

Moreover, let σ be the sampling distribution of A.7 and µ a fixed distribution on S × A,
then we assume the existence of a constant ϕµ,σ < ∞ such that

(1− γ)
m≥1

γm−1 ·m · κ(m,µ, σ) ≤ ϕµ,σ,

where (1− γ) is a normalization term, in fact that
m≥1

γm−1 ·m = (1− γ)−2.

Assumption 4.5.1 requires a sufficient coverage of S×A through sampling distribution σ,
which is, as shown in (Chen and Jiang, 2019), crucial for the success of batch reinforcement
learning methods.
With Lemma 4.5.1 and Assumption 4.5.1 we can introduce the Lemma to estimate the
error between the optimal solution and result of the neural FQI A.7.

Theorem 4.5.1. With Lemma 4.5.1 and Assumption 4.5.1, F0, G0 are defined as in Def-
inition 4.5.4 with constants {Hj}j∈{1,...,q}. Furthermore, for any j ∈ {1, . . . , q − 1} define

β∗
j = βj

q

l=j+1

min(βl, 1),

where β∗
q = 1 and let

α∗ = max
j∈{1,...,q}

tj
2β∗

j + tj
.

Assume that batch sample size n is sufficiently large such that a constant ξ > 0 for the
parameter of G0 exists, which satisfies

max


q

j=1

(tj + βj + 1)3+tj ,

q

j=1

log(tj + βj), max
j∈{1,...,q}

pj

 ≤ (log n)ξ. (4.27)
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Setting the hyperparameter L∗, (d∗i )
L∗+1
i=0 and s∗ of F0, d

∗
0 = 1, d∗L∗+1 = 1 and some constant

ξ∗ > 1 + 2ξ set

L∗ ≲ (log n)ξ
∗
,

r ≤ min
j∈{1,...,L∗}

d∗j ≤ max
j∈{1,...,L∗}

d∗j ≲ nξ∗ ,

s∗ ∼ nα∗
(log n)ξ

∗
,

(4.28)

then there exists a constant C > 0 such that

∥Q∗ −QπK∥1,µ ≤ C
ϕµ,σ · γ
(1− γ)2

|A|(log n)1+2ξ∗n(α∗−1)/2 +
4γK+1

(1− γ)2
Rmax. (4.29)

Sketch of Proof. Remember that the neural FQI A.7 returns an estimator Q̃K after K
iteration steps and define a policy with respect to it. For calculating the error to the
optimal solution ∥Q∗ − QπK∥1,µ it is crucial to relate them to errors done in each step
{Q̃k − TQ̃k−1}k∈{1,...,K}. According to (Fan et al., 2020) and (Munos and Szepesvári,
2008) the error propagation in batch Reinforcement Learning provides an upper bound of
∥Q∗ −QπK∥1,µ using {∥Q̃k − TQ̃k−1∥σ}k∈{1,...,K}, i.e.

∥Q∗ −QπK∥1,µ ≤ ϕµ,σ · γ
(1− γ)2

max
k∈{1,...,K}

∥Q̃k − TQ̃k−1∥σ +
4γK+1

(1− γ)2
Rmax, (4.30)

where ϕµ,σ is the constant from Assumption 4.5.1. In error propagation (4.30) the upper
bound can be split into the statistical error, where maxk∈{1,...,K} ∥Q̃k−TQ̃k−1∥σ is essential,
on the left hand side and an algorithmic error on the right hand side. The latter will decay
to zero geometrically as the number of iterations K increases. For the convergence of the
statistical error depending on the batch size n we have to bound the term ∥Q̃k −TQ̃k−1∥σ,
which is shown in (Fan et al., 2020) under Lemma 4.5.1 for any k ∈ {1, . . . ,K}. Hence,

∥Q̃k − TQ̃k−1∥2σ ≤ 4[dist∞(F0,G0)]
2 + C

V 2
max

n
logNδ + δCVmax, (4.31)

for any δ > 0, constant C > 0 and the minimum number of balls to cover F0, with respect
the ℓ∞ norm, Nδ. Moreover,

dist∞(F0,G0) = sup
f ′∈G0

inf
f∈F0

∥f − f ′∥∞ (4.32)

indicates the ℓ∞ error of functions in G0 which are approximated by functions in F0, i.e.
using ReLU networks.
Equation (4.31) will be essential for the proof, so it is crucial to understand the boundary.
As already mentioned, the first term with [dist∞(F0,G0)]

2 indicates the bias caused by
approximating G0 functions with ReLU networks, while the remaining term
C(V 2

max/n) logNδ + δCVmax measures the variance of the estimator.
For further steps we will set δ = 1/n, which yields to

∥Q̃k − TQ̃k−1∥2σ ≤ 4[dist∞(F0,G0)]
2 + C

V 2
max

n
logNδ +

1

n
CVmax

≤ 4[dist∞(F0,G0)]
2 + C

V 2
max

n
logNδ.

(4.33)
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The next and final step in this proof is to show that functions in G0 can be written as com-
position of Hölder smooth functions defined on a hypercube, which, according to (Schmidt-
Hieber, 2020), can be approximate by a ReLU network and so also the functions in G0.
Bounding the error of this approximation and applying the classical results on the covering
number of neural networks (Anthony, Bartlett, and Bartlett, 1999) on logNδ concludes the
proof.

First, let us recall Definitions 4.5.3 and 4.5.4, which states that for any f ∈ G0 and any
a ∈ A, f(·, a) ∈ G({pj , tj , βj , Hj}) can be written as composition f(·, a) = gq ◦ · · · ◦ gq with
Hölder smooth gjk ∈ Ctj ([aj , bj ]tj , βj , Hj) for each k ∈ {1, . . . , pj+1} and j ∈ {1, . . . , q}.
Now, define Hölder smooth functions on a hypercube like in (Fan et al., 2020)

h1(u) =
g1(u)

2H1
+

1

2
,

hq(u) = gq(2Hj−1u−Hq−1) and

hj(u) = gj
2Hj−1u−Hj−1

2Hj
+

1

2
∀j ∈ {2, . . . , q − 1}.

(4.34)

Thus,

f = gq ◦ · · · ◦ gq = hq ◦ · ◦ h1 (4.35)

with Hölder smooth functions hjk ∈ Ctj ([0, 1]tj , β,W ) where

W = max max
1≤j≤−1

(2Hj−1)
βj , Hq(2Hq−1)

βq . (4.36)

Applying the results of (Schmidt-Hieber, 2020) together with the assumptions from (Fan
et al., 2020) namely, m = η⌈log2 n⌉, η > 1 sufficiently large constant, a N ∈ N sufficiently
large number depending on batch size n and Lj = 8 + (m + 5)(1 + ⌈log2(tj + βj)⌉), leads
to a sparse ReLU network h̃jk ∈ F(Lj , {tj , d̃j , . . . , d̃j , 1}, s̃j) with

d̃j = 6(tj + ⌈βj⌉)N,

s̃j ≤ 141(tj + βj + 1)3+tjN(m+ 6)

∥h̃jk − hjk∥∞ ≲ N−βj/tj .

(4.37)

Defining f̃ : S → R by f̃ = h̃q ◦ · ◦ h̃1 and setting

N = max
1≤j≤q

Cntj/(2β
∗
j+tj) , (4.38)

(Fan et al., 2020) shows that F(Lj , {tj , d̃j , . . . , d̃j , 1}, s̃j) can be embedded in

F(L∗, {tj , d̃j , . . . , d̃j , 1}, s̃j + (L∗ − (̃L)d̃j)) which is a subset of the required network
F(L∗, {d∗j}L

∗+1
j=1 , s∗).

For bounding the difference between f̃ and f(·, a), we define

λj =

q

l=j+1

(βl ∧ 1)
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for any j ∈ {1, . . . , q − 1} and set λq = 1. Consequently, βjλj = β∗
j for all j ∈ {1, . . . , q}.

Combining the result of (Fan et al., 2020) which estimates

∥f(·, a)− f̃∥∞ ≲
q

j=1

∥h̃j − hj∥λj∞

and Assumptions (4.38) and (4.37) will lead to

[dist(F0,G0)]
2 ≲ nα∗−1. (4.39)

Last but not least we estimate the number of balls for covering F0 with classical results
on the covering number of neural networks (Anthony, Bartlett, and Bartlett, 1999) and
adapting them to our case (Fan et al., 2020), i.e.

logNδ ≲ |A|s∗L∗ max
j∈{1,...,L∗}

log(d∗j )

≲ |A|nα∗
(log n)1+2ξ,

(4.40)

where δ = 1/n.
Combining (4.33), (4.39) and (4.40) allows us to estimate (4.30) in the required way.

After proving the estimation of the error to optimal solution in Theorem 4.5.1, we will
discuss the boundary and why it will converge to zero. Similar to (4.30) it can be split into
the a statistical error on the left hand side and an algorithmic error on the right hand side.
The latter will geometrically converge to zero if iteration step K will be sufficiently large,
while the convergence of the other is not that trivial to prove. According to (Fan et al.,
2020) the statistical error dominates the algorithmic one if the iteration step satisfies

K ≥ C ′[log |A|+ (1− α∗ log n)]
log(1/γ)

, (4.41)

where C ′ is a sufficiently large constant. In this case consider ϕµ,σ and γ as constants,
ignore the logarithmic term, the error in (4.29) is

|An(α∗−1)/2| = |A| max
j∈{1,...,q}

n
− β∗j

2β∗
j
+tj , (4.42)

which scales linear with the batch sample size n and converges to zero if n goes to infinity.
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The first task of navigating an agent through an existing railway network was to implement
an agent based model. To this end, we constructed a data table layout, which was shown
in Table 2.1, to store and work with the real data of the Austrian railway network. This
table contains the schedule of each agent, i.e. the arrival and departure time and the
corresponding station. For this purpose, the real data had to be adjusted from data errors
first, which were, for example, unfeasible station sequences, incorrect date information and
trains blocking each other. By developing simple rules, as shown in Figure 2.3, which
we assigned to each agent and by combining these, as well as the communication of the
individual agents, we were able to map phenomenon of emergence well and also observe it
further on. This leads to congestion which was shown graphically in Figure 2.4.
To adapt the well-known D*-Lite algorithm to our model, we defined the cost-function
c(s, s′) as the average time it takes a train to move from train station s to his neighbour s′

c(s, s′) =
dE(s, s

′)
average speed

. (5.1)

We used a similar definition for the heuristic h and the costs of the shortest path c∗. Hence,
then necessary inequalities, as mentioned in 3.1, are satisfied, which gives the correctness
and termination of the algorithm.
As mentioned in Chapter 2 it is possible that the maximum capacity of a train station
is reached and therefore the station will be blocked. If one blocked node is part of the
calculated shortest path, the agent has two options to handle this issue. Either, like in
Figure 3.1, the agent takes a new path without the blocked node or he will wait until the
node is not blocked anymore. The latter option changes the costs of the incident edges
from Equation (5.1) to

c(s, s′) =
dE(s, s

′)
average speed

+ tblocked(s
′) ∗ 5, (5.2)

where tblocked(s
′) indicates the time until s′ is not blocked anymore. Equation (5.2) will

force an agent to wait but the costs will increase at each timestep.
Unfortunately, we were not able to run our models on the entire Austrian railway network
due to its computational complexity. Therefore, we made our observations based on the
eastern region, to be more precise, the stations which have Longitude greater than 14.25
and Latitude greater than 47.25.
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Figure 5.1: railway sub-network, where each node has Longitude greater than 14.25 and
Latitude greater than 47.25

In order to make more general statements and draw comparisons to the upcoming algo-
rithms, 300 random start and end nodes were chosen and their path was first computed
using A*. Each calculation starts at 16.01.2017− 00 : 00, but D*-Lite agent begins to cal-
culate its path only at 16.01.2017− 07 : 00, which means that around 20.000 actions have
already been made and this leads to the fact that stations can be occupied. In addition,
all paths were calculated with scan range one and five, which means that after each step
of the D*-Lite agent once only the adjacent nodes and the other time even the neighbors
over four nodes are examined for cost changes. Unfortunately, we were not able to run
our models on the entire Austrian railway network due to its computational complexity.
Therefore, we made our observations based on the eastern region. In addition, all paths
were calculated with scan range one and five, which obviously leads to different results as
shown in Table 5.1 and Figure 5.2.
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A∗ D∗
1 D∗

5

accuracy to A* paths 1 0.93 0.92
runs with delayed trains 0.182 0.151 0.144
runs with delayed D*-Lite agent 0.106 0.072 0.068
average no. of delayed trains p.r.w.d. 2.83 2.91 3.45

Table 5.1: Table displays results regarding the delays for agents following the A* path and
D* path with scan range one (D∗

1) and five (D∗
5).

p.r.w.d = per run with delay

According to the results shown in Table 5.1, the agent following the D*-Lite path with
scan range 5 interferes least with the existing trains and also avoids delays at the agent
itself. These results can be explained due to the higher scanning range and thus the higher
number of nodes that are scanned for updates after each step. This behavior tries to avoid
delays, but when they occur more trains are hindered in comparison to the other algorithms,
as stated in Table 5.1. It also shows that a higher scan range and the associated higher
probability of deviating from the trunk routes will block more trains on their designated
routes, causing more delayed trains.
Another aspect that should not be neglected is the shortest path that the agent should
take, and here, D*-Lite with scan range 1 performs best compared on 300 paths in total.
Defining the average speed in (5.2) as 100km/h yields that the sum of the travel time over
all 300 paths is 2.5 minutes faster than A* and even 27.8 minutes faster than D*-Lite with
scan range 5. This leads us to conclude that D*-Lite with scan range 1 is best suited for
our application.
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Figure 5.2: Example of calculated paths with scan range 1 (top) and 5 (bottom). Since
the longer range also takes into account nodes that are further away, the agent
can decide to take a different action, which leads to a different and also longer
path. In this example, the D*-Lite agent with scan range 1 got a travel time
of 88 minutes until the goal is reached, while the variant with the higher scan
range needs 108 minutes.
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D*-Lite only detects new blocked nodes, but we have observed, that it is not designed
for such a dynamic environment where nodes can be unblocked after a certain time. Fur-
thermore, the algorithm can only compute one path at a time, which makes it useless for
a business application.
To deal with the time depending component of our model, we first studied Reinforcement
Learning theory, namely the Q-Learning and Q-Planning methods. It turned out, that a
combination of those two was a good candidate for path finding in our considered dynamic
railway network. This combination is known as Dyna Q+. Therein, actions that have
already been performed are stored in a memory buffer and the q-values that are updated
taking into account the time that has elapsed since the action was performed.

Figure 5.3: Average Dyna Q+ reward over 10 runs with different planning steps and 1000
episodes, where the reward function is as for Deep Dyna Q and a state is defined
as feature vector x. We observe convergence to the optimal reward function,
which is identical to convergence to the optimal path. Note that this does not
indicate convergence to the global optimal solution; it may also be a local one.
Another observation is that the number of planning steps does not dramatically
affect convergence.

A major drawback of the Dyna Q+ algorithm is that each state and the possible ac-
tions are stored into the Q-matrix, which causes storage and computational problems for
applications with high dimensions. This is the case for our model with 1198 nodes, where
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a specific action is that an agent can choose which neighbor it will visit next. We obtain
m(s) ∈ N actions in each node/state, where m(s) indicates the number of neighbors in
state s ∈ S. Therefore, Deep variants of Reinforcement Learning methods were used for
implementing a Deep Dyna Q algorithm as it was done in Algorithm A.6. One of the first
and most important thoughts about implementing Neural Networks is the choice of feature
vector. This has to be chosen such that the individual states are unique and clear. In
our case, if the agent is in a certain station and has a certain goal, we want to find the
best action. Furthermore, it would be advantageous to include possible currently blocked
track sections in the decision. Formally speaking, the agent is in node s with goal sgoal and
therefore the feature vector x = (x1, x2, . . . , xn) ∈ Rn is defined as

xi =




1, if xi = s or sgoal

0.5, if xi is blocked

0, else

(5.3)

where i ∈ 1, . . . , n. Note that n ∈ N indicates the number of station in the selected eastern
region. The order of the nodes in the feature vector remains the same in all calculations.
Another important aspect for Reinforcement Learning in general and the variants of Dyna
Q+ in particular is the choice of the reward function. In path finding problems, one uses
a positive return if the agent reaches the goal and to avoid infinite paths, a negative or
neutral one for each other possible action (Sutton and Barto, 2018). In our setting this
leads to

r :S ×A → R

r(s, a) =
1000, if s with a leads to sgoal

−1 · cfailed(s), else

(5.4)

Note that cfailed(s) ∈ N indicates the amount of failed actions, as the last one was success-
ful in state s ∈ S. The reason for choosing the function that way was that if we are using
a lower reward for reaching the goal, the actions that penalize the agents would clearly
outweigh the positive reward. This leads to a model where the agent would never learn to
reach the target node because it is an insignificant part of the total reward.

Due to time and resource constraints, it was not possible to compute all paths, as Neural
Network training is time consuming and requires sufficiently powerful hardware. Neverthe-
less, the feasibility of this approach was demonstrated, but the results did not reach the
expected quality, as a tendency for the gradient descent to get stuck in a local minimum
was observed for the subset of paths where the algorithm successfully finished.
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Figure 5.4: Example of a calculated Deep Dyna Q path in comparison with the calculated
D* path. Red edges indicates the Deep Dyna Q solution which needs 22 minutes
to reach the goal, while blue ones the D* result, which only needs 21. Start
and goal are green.
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Figure 5.4 shows an example of finding a local but not global minimum. As we can see, the
Deep Dyna Q solution takes a different and longer path than the D* solution. Examining
the solution using the delayed trains, as for D*-Lite agents, shows us that neither the agent
nor other trains have delays. Therefore, the algorithm computes a solution that does not
cause delays, but it does not find the global optimal path.
Despite all this, if the Neural Network finds a path, you can see in Figure 5.5 and 5.6 that
it can then approximate the behavior of the Dyna Q+ algorithm well. Figure 5.5 shows
that choosing the action with the maximum value in each state leads to the (local) optimal
path. Furthermore, in the second part of the figure it is shown that when the agent starts
from a nearby station, it finds the aforementioned optimal path to the same destination
and follows it until it reaches the goal state. In 5.6, we see that the closer the agent is to
the target node, the higher the approximated Q-values for the optimal solution are.

Figure 5.5: Example of a calculated Deep Dyna Q path from a starting point (black node),
which displays the approximated Q-values for all steps. If an agent starts at the
black start node, the edges are colored according to a traffic light system. This
means that the edge with the best value is colored green and is therefore also
the next one that the agent visits. Actions with at least 50% of the maximum
value are colored orange, those below are colored red. The second image shows
that the agent, starting from another node that is near the origin path, finds
its way back to the path and follows it until the destination is reached. The
path in grey is the previous one from the left picture.
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5 Results

Figure 5.6: The figure shows the Q-values of each possible action for each station on a
given calculated path. The closer the station is to the destination, the higher
the value. This behavior shows the correct approach of the Dyna Q method.
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Additionally, we proved the convergence to the optimal solution by rewriting the Neural
Network as a sparse matrix in an iterative algorithm and define the Bellman Operator as
composition of Hölder smooth function by following (Fan et al., 2020). Then the error in
the optimal solution can be bounded by a statistical and an algorithmic error, the first
converging to zero when the sample size approaches infinity, and the second when the iter-
ation steps are sufficiently large.

5.1 Conclusion

To summarize this and bridge to the current trend, the reason for employing an artificial
intelligence is the insufficient applicability to complex systems of the conventional method,
in our case this was the heuristic approach D*-Lite. Simple machine learning methods, such
as Dyna Q+, have their drawbacks, such as enormous computation times or memory prob-
lems at high dimensions, but serve their purpose once computed. Moreover, these methods
have been thoroughly and comprehensibly proven, whereas neural networks, despite their
large field of application, can be seen as a black box. Therefore, proving convergence to
the optimal solution is nontrivial, which leads to the fact that proofs of already known
applications have been published only recently or not at all. It is undisputed that Neural
Networks are a powerful tool and also relatively easy to implement, but due to the high
computational cost and opaqueness often simpler machine learning methods are at an ad-
vantage. However, since this field of research has experienced a real upswing in recent years,
it is to be expected that new insights will be gained in both the applied and theoretical
areas and that neural networks will be favored in the future.
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For all presented algorithms, implementation improvements can of course still be made
and applied to the route network of the whole of Austria. Apart from these basic exam-
ples, more complex solutions can be implemented in the agent based model, Reinforcement
Learning methods, and Neural Network. In ABM, for example, the individual agent’s
control system can be extended to include more data. This can be external factors such
as weather influences or spontaneously closed edges, or internal ones such as maintenance
times.
After that, one can tackle the problem of navigating another agent through the network,
which leads us to transfer learning, i.e. learning the new target with the help of the al-
ready trained network (Torrey and Shavlik, 2010) and Multi Agent Reinforcement Learning
(MARL) (Busoniu, Babuska, and De Schutter, 2008). The last method presented in this
chapter for future work is using a so-called Graph Convolutional Network (GCN) (Kipf and
Welling, 2016). Deep Dyna Q 4.5 learns while searching for the optimal result and is an
unsupervised learning method by definition. Neural Networks are presented as supervised
methods in the literature, that is why GCNs are worth mentioning to get a general insight
into this topic.

6.1 Graph Convolutional Network

Similar to 4.5, the network consist of layers. Here, the input layer X consists of a matrix
whose entries are the vectors of the individual nodes. Thus, the dimension is n× d , where
n ∈ N indicates the amount of nodes and d ∈ N the dimension of the feature vector xi,
i ∈ {1, . . . , n}. The dimension of the output layer Z is n× f where f is the number of the
output features. According to (Kipf and Welling, 2016), each hidden layer can be written
as non-linear function, which depends on the previous layer and the adjacency matrix A,
i.e.

H(l+1) = f(H(l), A), (6.1)

where H(0) = X, H(L) = Z and l ∈ {0, . . . , L− 1}.

A common propagation rule of Graph Convolutional Networks is defined in (Kipf and
Welling, 2016) as

H(l+1) = σ(D− 1
2 ÂD− 1

2H(l)W (l)). (6.2)

In (6.2) H(l) indicates the l-th neural network layer, while W (l) is a weight matrix for

them. Now consider the term D− 1
2 ÂD− 1

2 and what information it provides to the prop-
agation layer. First, the use of the matrix Â = A + I ensures the sum up features of all
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adjacency nodes and the node itself. According to (Kipf and Welling, 2016), multiplying
with Â will chance the scale of the feature vectors, as a consequence we have to normalize
the matrix, i.e. the sum of each row is one. Therefore, the diagonal node degree matrix
D of Â is multiplied by the matrix. Last but not least each layer is completed with an
activation function σ(·) which categorizes the output values, for example either zero or one.

Applying GCN to our work, the probability to visit an adjacent node in a certain state is
recommended. To this end, we follow the idea of (Osanlou et al., 2021). There, the input
is an instance I = (sstart, sgoal), where sstart is the start node, while sgoal is the end node
and the feature matrix is a pair of features for each node, more precisely

xn = (sn, gn),

where

sn =
1 , if n = sstart

0 , else

and

gn =
1 , if n = sgoal

0 , else

for each node n ∈ V .
In this thesis 3 convolution layers are used, where the activation function for each layer is
the so called ReLu function σ(·) = ReLu(·) = max(0, ·), (Osanlou et al., 2021). According
to (Osanlou et al., 2021), the softmax function

softmax(z)i =
ezi

|V |
k=1 e

zk

is used after the last layer for calculating the probabilities of each vertex.

Similar to the thesis (Osanlou et al., 2021), we are using a learning method, which is
called supervised learning. There, the optimal solution is already known and the loss of
the trained Graph Convolutional Network will be calculated and effect the further learning
sequences.
For generating training instances, the shortest path between each two nodes in the graph
is calculated via A* algorithm. The longest ones are taken and stored as basis instance
I = (sstart, sgoal), with an optimal shortest path
p = {sstart, s1, s2, . . . , sp, sgoal}. Each of the instance-solution pairs (I, p) is split into the
components of the optimal path and creates more instance-solution pairs (Ii, pi). According
to (Osanlou et al., 2021) the split pairs satisfies, that pi is the shortest path of Ii.

Lemma 6.1.1. Assume instance I = (sstart, sgoal) with a corresponding optimal path p =
{sstart, s1, s2, . . . , sp, sgoal}. Then, pi = {si, si+1, . . . , sp, sgoal} is an optimal solution for
the instance Ii = (si, sgoal) for all i ∈ 1, . . . , p.
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Proof. Assume p = {sstart, s1, s2, . . . , sp, sgoal} is the optimal path of the instance I =
(sstart, sgoal) and p1 = {s1, s2, . . . , sp, sgoal} is not the optimal solution for the instance
I1 = (s1, sgoal). Then, there exits another path p̂, which is a shorter path as p1. Thus, p is
not the optimal solution for I, which is a contradiction to the assumption. Applying this
inductively, the Lemma is proved.

According to Lemma 6.1.1 the train set contains root pairs (Ij , pj) and the resulting pairs
(Iji , pji). Training the network to gain the next best node ŝji , the second entry of the pair
is replaced by those. Our data set D contains all of those pairs ((Iji , ŝji)) and is split into
disjoint train and test sets

D = Dtrain∪̇Dtest, (6.3)

where 80% of the data is split between the first data set and the remaining 20% for vali-
dation.
First, the model is trained with the regarding data set and the loss function L is defined
in (Osanlou et al., 2021) as the average of the logarithmic loss of the probability predicted
by the neural network

L =
1

m

m

i=1

n

j=1

−tijf(xi)j , (6.4)

where m indicates the number of examples in Dtrain, n the number of nodes and

tij =
1 , if n = ŝij

0 , else
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