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Kurzfassung

Music mood tagging Models, die vorhersagen, welche Stimmungen bestimmte Musiktitel
bei Menschen auslösen können, spielen eine entscheidende Rolle bei der Anwendungen
von Empfehlungsdiensten (engl. Recommender Systems) für Musik und der Erstellung
von stimmungsbasierter Wiedergabelisten.

In dieser Arbeit werden Methoden und Ansätze für das Tagging von Stimmungen in Musik
anhand des EMMA-Datensatzes untersucht. Dieser Datensatz beinhaltet Musiktitel und
die dazugehörigen Annotationen über die Stimmungen, die sie bei Zuhörern hervorrufen
sollen. Um die menschliche Wahrnehmung konsistent zu erfassen, wurden die Annotationen
von einem Team von Psychologen durch kontrollierte Experimente/Umfragen erstellt.

Der EMMA-Datensatz weist jedoch auch einige Hürden auf, die das Trainieren von
Stimmungs-Tagging-Modellen erschweren. Bestimmte Wertebereiche von einigen Stim-
mungen können schwer durch das Modell vorhergesagt werden, da bestimmte Werte
durch die extreme Rechtsschiefe Verteilung im Datensatz unterrepräsentiert werden. Die
Datensatzgröße ist auch sehr klein, insbesondere im Vergleich zu anderen Datensätzen im
Bereich des Music Information Retrieval. Daher ist die Wirksamkeit von Oversampling
und Data Augmentation als Lösung auch sehr begrenzt. Die Kombination dieser beiden
Probleme verstärkt die Schwierigkeit der Aufgabe.

Um diese Herausforderungen zu bewältigen, wurden verschiedene Ansätze und neu vorge-
schlagene Methoden erforscht, die durch frühere Forschungen zu ähnlichen Problemen
inspiriert wurden. In dieser Arbeit werden Oversampling- und Data Augmentation An-
sätze für Regressionsaufgaben mit ungleichmäßig verteilten Zielvariablen untersucht,
insbesondere in Fällen, in denen Labels empfindlich auf Veränderungen der Audiomerk-
male reagieren.

Der vorgeschlagene DOMR-Ansatz zeigt zwar vielversprechende Ergebnisse, doch wurden
nicht immer statistisch signifikante Verbesserungen der Modellleistung erzielt. Nichts-
destotrotz wurden wertvolle Einblicke in die Grenzen und Probleme bei der Nutzung
des Datensatzes für Musik-Tagging-Aufgaben und die Modellleistung gewonnen, die bei
zukünftigen Entwicklungen des EMMA-Datensatzes hilfreich sein können.

Zusammenfassend lässt sich sagen, dass diese Arbeit verschiedene Herausforderungen
beim Stimmungs-Tagging von Musik anhand des EMMA-Datensatzes unterstreicht und
erste Einblicke in mögliche Ansätze für Oversampling- und Data Augmentation gibt. Es
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sind jedoch noch weitere Forschungen in verschiedenen Bereichen erforderlich, um diese
Herausforderungen zu bewältigen.



Abstract

Music mood tagging, the task of predicting mood labels to music tracks, plays a crucial
role in applications such as music recommendation systems and mood-based playlist
generation. This thesis investigates methodologies and approaches for music mood
tagging using the EMMA dataset, a dataset comprised of music tracks annotated with
the moods evoked in the listeners as score values. The annotations were created by a
team of researchers in the field of psychology through controlled experiments, aiming to
capture human perception consistently.

Nevertheless, the EMMA dataset also presents certain limitations that present challenges
for training music mood tagging models. Certain values are difficult to predict as they
are underrepresented because of the extreme right skewness of certain mood scores in
the dataset. The sample size is also very small, especially compared to other datasets in
the field of Music Information Retrieval. Therefore, the effectiveness of Oversampling
and Data Augmentations as a solution is very limited. The combination of these two
issues intensifies the difficulty of the task at hand.

To address these challenges, various approaches and newly proposed methods, inspired
by past research of similar tasks were explored. In an effort to overcome these challenges,
this thesis investigates Oversampling and Data Augmentation approaches for regression
tasks with imbalanced target variables, particularly in cases where labels are sensitive to
changes in the audio features.

While the proposed DOMR approach shows promising results, statistically significant
improvements in model performance were not always achieved. Nevertheless, valuable
insights into the limitation and problems when utilizing the dataset for music tagging
tasks, and model performance were gained, which can help future developments of
the EMMA dataset. In conclusion, this thesis has shed light on various challenges in
music mood tagging using the EMMA dataset and provided initial insights into possible
oversampling and data augmentation approaches. However, further research into various
areas is still necessary to overcome these limitations.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Music is a medium that can evoke a wide range of emotions in humans. The ability to
automatically generate mood tags for music could greatly improve recommender systems
and the experience for listeners. Music tags in the context of Music Information Retrieval
(MIR) refer to label or metadata attached to a piece of music to describe its characteristics.
Predicting accurate tags could allow listeners to seamlessly discover and enjoy music that
resonates with their current emotional state, enhancing their interaction with music.

As shown in the works of Kim et al. [KSM+10] and Korzeniowski et al. [KNM+20],
substantial research has already been conducted in the domain of automatic music
tagging. Popular datasets in the Music Information Retrieval (MIR) realm, such as
MTG-Jamendo [BWT+19], Million Song Dataset [BMEWL11] and MagnaTagATune
[LWM+09], include mood annotations. However, they primarily focus on music-related
information retrieval tasks and do not specifically address the connection between music
and emotion. Further, hardly any existing works deal with the intensity of emotions
evoked by music. By doing so, mood tagging has to be transformed into a regression
problem (real-valued), as opposed to the more commonly used modeling as a classification
of discrete emotional states in the existing literature.

In terms of technical approaches, machine learning (ML) techniques have emerged as
the predominant approach for solving automatic music tagging problems as highlighted
by Won et al. [WFBS20]. ML algorithms learn patterns and relationships from
data, enabling them to make predictions or classifications. Among various ML models,
Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance
in music tagging tasks. CNNs, a type of neural network commonly used for image and
audio processing tasks, excels at capturing spatial and temporal dependencies in data
through its hierarchical architecture of convolution and pooling layers. By analyzing
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1. Introduction

spectrograms of the audio data, CNNs can learn patterns and correlations that correspond
to specific tags in music.
Especially in music mood prediction, state-of-the-art approaches are based on audio
processing [KNM+20, PS19, WFBS20], with some approaches, such as Delbouys et
al. [DHP+18], expanding to multi-modal methods using information gained from the
lyrics of a music piece.
A significant hurdle in this research domain is the acquisition or creation of appropriate
datasets. In particular, it can be difficult to annotate data consistently since the way
humans perceive emotions are subjective. EMMA, a dataset created by psychologists
from the University of Innsbruck containing information on the emotional effects of
hundreds of music excerpts from different genres, aims to solve this matter. [SVJ+24]
Different from most other datasets that predominantly utilize the circumplex model of
emotion developed by James Russell [Rus80], which includes emotions not specifically
relevant to music, EMMA employs the Geneva Emotion Music Scale (GEMS) [ZGS08].
The GEMS notation was derived from extensive research in the domain of emotion and
music, and incorporates nine distinct emotion labels, offering a refined representation of
the emotions evoked by music. This dataset has the potential to be used for training a
model that can accurately predict the emotion evoked in the listener.
The EMMA dataset, despite its advantage in the context of music, faces challenges due
to its limited size of 364 tracks and imbalances in GEMS scores. As the variance of scores
in the dataset is limited and predominantly right-skewed, a naive approach of training a
CNN with the data leads to a model predicting values that gravitate towards the mean
values. This situation underscores the need for targeted research into the challenges
encountered when training machine learning models with the EMMA dataset and GEMS.
It is important to explore advanced data augmentation, processing, and resampling
techniques to effectively counteract the issues of annotation imbalances and the dataset’s
restricted sample size. Such approaches can be essential to minimize prediction errors
and increase the robustness of the models. Variants of Transfer Learning methods using
pre-trained supervised and/or unsupervised models could also improve the prediction
performance. [MKO+22, LG20, WFBS20]

1.1.1 Expected Result
This thesis aims to develop a music mood regression model (automatic mood tagging)
that accurately captures the emotional content of music pieces in a way that is consistent
with human perception. The expected outcome is a model whose output can be used to
improve recommender systems and enhance the listening experience of users by allowing
them to more easily find music that matches their current mood. The model should
be able to predict a mood score for each GEMS label, given a music track. This score
ultimately helps to identify the associated emotion of the track.
Furthermore, this thesis aims to investigate and address the challenges encountered in
training a machine learning model on the EMMA dataset, particularly focusing on issues
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1.2. Structure

related to dataset characteristics. The insights gained from this thesis could contribute
to the further development and refinement of the EMMA dataset itself.

Given all of the above challenges, the research objective of this thesis is:

"How can a music mood regression/classification model be developed that accurately
captures the emotional content of music pieces in a way that is consistent with human
perception, using the EMMA dataset?"

In this thesis, the following research questions will be reflected on:

Research question 1: How much can resampling methods improve the per-
formance of a regression model in audio processing trained on the EMMA
dataset?

Given the sensitive nature of the song-emotion connection, new resampling strategies
are proposed, as traditional oversampling methods like SMOTR may not be ideal due
to potential synthetic changes in the features. The performance will be evaluated on
RMSE/R2.

Research question 2: How much can data augmentation methods improve the
performance of a regression model in audio processing trained on the EMMA
dataset?

To address the imbalanced target emotion scores data transformation approaches such as
compression, pitch shifting, time shift and other criteria will be used as data augmentation
methods. The performance increase will be evaluated on RMSE/R2.

Research question 3: How much can a combination of resampling and data
augmentation methods improve the performance of a regression model for
audio processing trained on the EMMA dataset?

To further improve the model’s performance, a resampling method including data aug-
mentation will be proposed. The performance increase will be evaluated on RMSE/R2.

1.2 Structure
The structure of this thesis is organized as follows:

1. Related Work
An extensive literature research of related work is needed to get a good under-
standing of the relationship between music and emotions, and pre-work done to the
music tagging tasks/multi-label classification tasks. Additionally, this study will
explore research in data augmentation methods, delving into potential strategies to
address issues related to data limitations and imbalances
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2. EMMA Dataset
The EMMA dataset and its unique differences in comparison to other existing
datasets will be described in detail. An in-depth analysis will be conducted,
discussing its strengths and shortcomings, in order to understand its implication
and potential in the field of music mood tagging research.

3. Methodology
The approach, dataset, and model architectures employed for both regression
and classification tasks will be described. The EMMA dataset will be analyzed,
specifically on its skewness and imbalances regarding the annotations. Implemented
pre-processing methods, models, and metrics will be described in detail. Further, an
in-depth description of the oversampling methods proposed in this thesis, addressing
the dataset’s challenges, will be provided. Finally, the approach to examine
the dependency of the methods on particular train-test set compositions will be
explained.

4. Results
In this chapter, the results will be systematically presented, focusing on the per-
formance metrics of each model under different conditions. This includes an
analysis of how various proposed oversampling and data transformation approaches
have impacted model performance. The results will be compared with each other
and highlighted, providing a comprehensive understanding of the efficacy of each
method employed. Next, the models will undergo validation through 10-stratified
fold cross-validation to assess their performance. Additional cross-validations will
be conducted using 10 different seeds for selected models.

5. Discussion
In this chapter, the results of the experiments and approaches of the proposed
methods and the dataset will be explored. Further, the limitations arising from
imbalances and data scarcity in particular will also be analyzed. This analysis will
investigate the implications of these constraints on the effectiveness of the methods
and the reliability of the results. Finally, potential strategies to mitigate these
limitations will be discussed.
Building upon identified limitations, potential directions for future research will
also be explored.

6. Conclusion
In the final chapter, the main findings of the thesis will be summarized and their
implications will be discussed. The initial research questions presented at the
beginning will also be revisited.
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CHAPTER 2
Related Work

This chapter gives a brief overview of existing work on automatic music tagging.

There has been a lot of research in the area of automatic music tagging over the
last decade. Various methods have been investigated to classify music pieces. In the
past, classification models using different features such as intensity, timber, fluctuation,
and rhythm [SEL11, LLZ06] have been trained, as these tend to be features that are
associated with emotions as discussed in the works of Gabrielsson and Sarkar et al.
[Gab16, SCD+20] . For example, higher harmonics may awake emotions such as disgust,
fear, or surprise, while lower harmonics may awaken happiness or pleasantness in the
listener [Gab16]. These features, such as timbre, intensity and pitch were used to
train models such as Naive Bayes, k-NN, AdaBoost [SEL11], SVM classifiers, and SVM
regressors [HRDH09, YLSC08].

However, feature engineering is a difficult task and is also a major research field [SCD+20].
Therefore, as of recent, more research into neural network models has been conducted
as it can avoid the task of feature engineering. Particularly, following the success in
image processing and speech recognition [SKrM+13], architectures based on Convolutional
Neural Networks (CNN) have been used for automatic music and speech tagging of various
labels, such as genre, mood[SCD+20], and instruments. [WFBS20, PNP+18, CFS16]

2.1 Convolutional Neural Network variants

2.1.1 Fully Convolutional Network
Choi et al. [CFS16] proposed a Fully Convolutional Network (FCN) which only includes
convolutional layers and subsampling layers without fully connected layers. Previously,
CNNs usually include fully connected layers (also called dense layers) that often act as
a post-processing of the output of the convolutional layers. These dense layers tend to
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2. Related Work

make up the majority of the parameters in a network and are prone to overfitting. For
data processing, raw audio data is transformed into Mel spectrograms and is taken as
input features. 2D kernels are used to learn temporal and spectral structures of the
respective music piece. After pilot experiments, the authors decided to trim the audio
signals down to 29.1s clips and downsample it to 12kHz. Even though this architecture
is rather simple, it was able to achieve an AUC of 0.894 on the MagnaTagATune dataset
and an AUC of 0.851 on the Million Song Dataset.

2.1.2 Musicnn

Another approach by Pons et al.[PS19, PNP+18] is the Musicnn model. This model
consists of two parts, the front-end and back-end block. The front-end network is the
so-called "musically motivated CNN", which introduces musically motivated features
by including vertical layers that should capture pitch-invariant timbral features and
horizontal filters that should capture the temporal energy envelope from the log-mel
spectrogram. These features are put into the dense layers in the mid-end, which should
extract higher-level representations. The output of the mid-end is then finally put into
the temporal-pooling back-end, which predicts the tags from the features(see fig. 2.1).
This architecture is able to achieve an ROC-AUC of 0.9069 on the MagnaTagATune
Dataset and 0.8801 on the Million Song dataset [PS19].

Figure 2.1: Musicnn architecture, image from [PS19]

2.1.3 Harmonic CNN model

Similar to Musicnn, Won et al. [WCNS20] tries to improve representation learning using
domain knowledge. The model introduces the so-called harmonic filters, which act as
a feature extractor. This turns spectrogram inputs into a 3-dimensional representation
consisting of harmonic, frequency, and time ("harmonic tensor") through harmonic
constant-Q transformation (HCQT) and also introduces a triangular band-pass filter to
eliminate redundant convolutions in order to increase the efficiency. The HCQT output
is then fed into a fully Convolutional Neural Network to classify the music tags (see fig.
2.2).

This model achieves an ROC-AUC of 0.9141 on the MagnaTagATune Dataset.
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2.2. Datasets

Figure 2.2: Harmonic CNN architecture, image from [WCNS20]

2.1.4 Short-chunk CNN model

Following the findings of the previous work of the harmonic CNN model, Won et al.
[WFBS20] implements the short-chunk CNN, a simple CNN model with 3x3 filters, which
is trained on small audio chunks . This architecture consists of 7 layers with residual
connections and a dense output layer. This is quite similar to the FCN model, but instead
of using 29.1-second snippets, it only uses 3.69s long segments of the input audio signal.
Despite its rather simple architecture, it is able to achieves increased model performance,
achieving an ROC-AUC of 0.9129 on the MagnaTagATune Dataset. Additionally, when
Won et al. compared model performance of the short-chunk CNN, Harmonic CNN and
Musicnn using three different datasets, the short-chunk CNN model was able to achieve
state-of-the-art performances on the MagnaTagATune and MTG-Jamedo dataset and
also was able to achieve equal performance as the harmonic CNN model on the Million
Song Dataset.(see fig. 2.3)

When looking at all of the above-mentioned architectures, it seems that a complex CNN
architecture may not improve the performance of the models much. Other methods, such
as different data augmentation, data quality, and pre-processing methods could be a
better direction to improve the model’s performance.

2.2 Datasets
To develop effective models for automatic music tagging, researchers heavily rely on the
availability of comprehensive and diverse datasets. There are several datasets that have
been used to train and evaluate the existing machine learning algorithms.

7
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Figure 2.3: Model comparison, image from [WFBS20]

2.2.1 MagnaTagATune

MagnaTagATune is a dataset used in a wide range of publications related to audio
classification. It was created by Law et al. [LWM+09] using an online game called
TagATune where two players receive either the same or different music excerpts for which
they have to choose suitable tags. Then, the players have to review each other’s tags and
speculate on whether or not they had been listening to the same song. For a tag to be
accepted into the dataset, two or more players had to have chosen the same tag in the
games.

The dataset itself is comprised of 6.622 songs, 517 albums, and 270 artists. Summed up,
the dataset contains 16.389 music clips, with each music clip being 29 seconds long. A
wide range of genres is included, such as Classical, New Age, Electronica, Rock and Pop,
among others. Each song is associated with a vector of binary tags (annotations).

2.2.2 Million Song Dataset

The Million Song Dataset (MSD) is another frequently used collection of songs and
annotations in publications. It contains 1,000,000 songs as the name already implies,
comprising 44,745 artists, 7,643 tags from Echo Nest API and 2,321 tags from MusicBrainz
[BMEWL11]. These tags include information such as pitches, timbre, beats and other
criteria of music excerpts. This dataset not only includes metadata information such as
genre, year, duration and other criteria, but also similarity relationship features between
artists. Further, many complementary datasets were created by the MSD community,
such as lyrics, various user data, genre labels and more.

8



2.3. Data Augmentation Methods In Music Classification Tasks

2.2.3 MTG-Jamendo Dataset
The MTG-Jamendo Dataset is an open dataset for music auto-tagging created by
Bogdanov et al. [BWT+19]. It contains over 55.000 tracks with 195 tags such as genre,
instruments, theme and mood. For mood, there are 6,611 annotations varying from
label to label with different agreement rates. Most of them were annotated by three
annotators.

2.2.4 MoodyLyrics Dataset
The MoodyLyrics dataset created by Çano et al. [cM17] differs significantly from the
datasets mentioned above, as it comprises mood annotations along with song lyrics. This
dataset explores mood annotations derived from the lyrical content and evaluates its
performance compared to subjective music tagging methodologies. The annotations are
systematically created using word lexicons, such as ANEW and WordNet, offering a
potential solution to the challenge of subjective mood annotation in musical pieces.

2.3 Data Augmentation Methods In Music Classification
Tasks

Data augmentation is a technique to increase the diversity and quantity of the training
dataset by modifying the data in order to counteract problems such as overfitting, small
volume of data and other criteria.

Two types of data augmentation methods in audio processing, sound segmentation,
and sound transformation were researched by Mignot et al. [MP19] specifically in the
context of musical genre classification. They focus on class-preserving data augmentation
methods.

2.3.1 Sound segmentation
The audio signal of songs in the training dataset can be cut into shorter (overlapping)
snippets to virtually increase the number of training examples. This is a method
commonly used in the context of machine learning for different audio [PS19, PNP+18,
USG14, WC05, SG15]. Depending on the window size of each excerpt, this can also cause
problems. For example, songs containing multiple musical mood changes may require
changing class labels. On the other hand, audio snippets that are too short may miss
crucial information [MP19].

2.3.2 Sound transformations
Mignot et al. [MP19] implemented so-called elementary transformations, filtering, equal-
izing, noise addition, scale changes (pitch shifting and time stretching), distortions,
quantization, dynamic compression, format encoding/decoding (e.g. MP3, GSM), and
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reverberation. These elementary transformations are then combined and applied at
random to each song.

2.3.3 Results of Mignot et al.
The experiments of Mignot et al. [MP19] show that shorter song segments can be used
in training and testing to increase the model performance significantly for small datasets,
with 30-second segments performing the best. Shorter segments may decrease the perfor-
mance. In the experiment, segments shorter than 15 seconds decreased the performance.
On the contrary, Pons et al. [PNP+18] were able to achieve great performance on music
classification tasks using 3-second segments. Although, it needs to be mentioned that
different from classic CNNs, musicnn uses "musically motivated" filters.

Further, Mignoet et al. [MP19] were not able to answer the question of which combination
of elemental transformations would improve the model. Individual transformations lead
to an overfitting problem and using several transformations in a chain does not improve
the model’s performance on the original data, but it can increase the robustness against
sound degradation.

10



CHAPTER 3
EMMA Dataset

The EMMA dataset [SVJ+24] was created by a group of researchers of the psychology
and computer science fields from the University of Innsbruck by conducting a controlled
experiment with 567 English- and German-speaking participants. The music excerpts
were carefully selected by researchers with extensive knowledge of music and emotion
studies, as well as students with heavy involvement with music-related activities. The set
of music was selected under the consideration that it should represent a broad range of
music from different genres and eras. Therefore, this dataset contains classical music that
is either instrumental, vocal or both, from several major canonical periods that represent
different ranges of arousal and valence. It is also comprised of pop and rap/hip-hop songs
with several sub-genres from different decades.
Many works in music emotion recognition (MER), such as the 1000 Song Database from
Soleymani et al. [SCS+13], AMG1608 from Chen et al. [CYWC15], MoodSwings from
Speck et al. [SSMK11] and more [SVJ+24], use the so-called circumplex model of emotion,
which assumes that emotions can be displayed in a two-dimensional space consisting of
arousal and valence, because of its simplicity and elegance [SVJ+24]. However, it can be
said that it has two significant limitations. First, it is a general model of affect and is not
specifically designed for music-evoked emotions. Second, there are distinct emotions that
occupy similar spaces in the model. According to Strauss et al. [SVJ+24], important
differences of several positive valence and low arousal emotions evoked by music are also
absent in the model. Another drawback is that it accounts for “utilitarian” emotions
(e.g. anger, fear, or disgust). These emotions have limitations when describing what kind
of emotion music can trigger in a human (e.g. music rarely triggers anger).
Therefore, the EMMA dataset uses the so-called Geneva Emotional Music Scale ("GEMS").
These emotion labels were derived from extensive research on emotion and music. Zentner
et al. [ZGS08] started out with 515 initial emotion terms and eliminated those that were
rarely evoked by music with the help of experiments. The scale includes nine first-order
factors that can be assigned to one of the three second-order factors Sublimity ("Wonder",
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3. EMMA Dataset

"Transcendence", "Tenderness", "Nostalgia", "Peacefulness"), Vitality ("Power", "Joyful
activation"), and Unease ("Tension", and "Sadness"). For this thesis, only the first-order
factors will be considered. Each factor can be rated between a score of 0 and 100.
Emotions that were not selected in the experiment for the EMMA dataset are set to a
scale of 0 [SVJ+24].

3.1 Advantages, Disadvantages & Differences
One major difference of this dataset in comparison to other datasets in this field (see
section 1.3.2) is the experiment setup. While other datasets were created using an online
game, online music platform, and/or annotators, the EMMA was created in a controlled
setting while also considering psychological and musical aspects [SVJ+24]. However,
it remains to be seen whether this method can be considered as an improvement. As
previously mentioned, the collection of music excerpts was selected by researchers with
extensive knowledge on music and human emotion, as well as students with strong
connections to music [SVJ+24].

Further, the EMMA dataset sets itself apart by deploying scores to represent emotions,
instead of to the binary labels commonly used in other datasets. This scoring approach
allows for a more nuanced depiction of the intensity of emotions experienced, offering
a richer understanding beyond a simple ’Yes’ or ’No’ response. The EMMA dataset
also considers musically relevant emotions outside of the basic emotions theory. It
deliberately omits labels that are not suited to describe the emotions evoked by music in
listeners. This approach provides a more comprehensive and less constrained framework
for understanding the emotional impact of music [SVJ+24].

One drawback of this dataset becomes visible when it is applied to a classification task,
as the annotations consist of scores ranging from 0 to 100. The conversion of the scores
into binary values for classification can be complicated, since the distribution of each
emotion score varies. Selecting a threshold at which score the song will be considered
to the emotion label is also not an easy task. For instance, it can be disputed whether
classifying a song with a joy score of only 2 is in fact capable of evoking joy in listeners.
Determining a threshold to classify each emotion label is not only difficult, but could
itself be a subject of research.

Imbalanced score labels present another challenge in this dataset. In every mood, we can
see that the scores are right-skewed (see figure 3.1). Especially, "Sadness", "Tenderness"
and "Tension" have extreme imbalances in the scores. E.g. for "Sadness", most of the
values are in the range of 1 to 5, while there are not many data excerpts for higher values
(see figure 3.1).

Additionally, due to the dataset’s imbalances, training a machine learning model is made
much more challenging by the small dataset size of only 364 songs, especially compared
to the size of other datasets in this field, such as the MagnaTagATune with 16,389 songs
and MTG-Jamedo with over 55,000 songs [BWT+19, LWM+09].
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Due to the limited availability of certain ranges of emotion scores, predicting those
ranges is more difficult. This limitation not only complicates the training process for
certain features, but also complicates evaluating the model. The reliability of the model’s
predictions and its performance metrics can become heavily dependent on the composition
of the train-test sets. When certain emotion ranges are underrepresented in the testing
set, it may lead to skewed results. Therefore, results will need to be validated using
various methods, such as the cross-validation.

Figure 3.1: EMMA Dataset distribution [SVJ+24]
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CHAPTER 4
Methodology

4.1 Approach

First, chosen state-of-the-art models were trained without any specific data augmentation
methods or fine-tuning of the model to study the prediction performance. The next
steps are determined through studying the prediction performance and exploratory data
analysis (EDA).

4.1.1 Pre-processing

The dataset in this thesis will be divided into training, validation, and test sets in a 0.7,
0.15, and 0.15 ratio, respectively. Following this, the audio data will be segmented into
smaller snippets, with the duration of each snippet varying between approximately 2 to
30 seconds, depending on the architecture being used. This thesis will tailor the snippet
length to the specific architecture.

The audio snippets will be transformed into Mel-spectrograms as seen in the works of
Choi et al. [CFS16], Pons et al. [PNP+18], Won et al. [WCNS20] and Mccallum et
al.[MKO+22]. These studies have demonstrated the effectiveness of Mel-spectrograms
for automatic tagging tasks. Mel-spectrograms provide an effective time-frequency
representation of sound, mimicking human perception through the application of the
so-called Mel scale. This scale, based on the human auditory system’s response to sound,
enables the representation of sound in a manner closely aligned with human perception.
The raw audio data will be transformed into spectrograms with overlapping frames and
each spectrogram will be transformed into the mel scale using a set of filterbanks.

Later in this thesis, various data augmentation methods, which form a part of the
pre-processing stage, will be examined.

15
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Figure 4.1: Architecture

4.1.2 Metrics
R2 statistics and Root Mean Squared Error (RMSE) will be used to evaluate the models
as these metrics have also been used in various other music emotion recognition works
such as Cunningham et al.[SHJR21], Yang et al.[YLSC07], Guan et al. [GCY12], Choi
et al. [CFSC17] and He et al. [HF20].
The R2 statistic, also known as the coefficient of determination, indicates the percentage
of variance of the dependent variable (y) that can be explained by the independent
variables (x) in a regression model:

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (4.1)

The RMSE is a widely used metric in regression tasks, that shows the accuracy of a
regression model. It takes the rooted mean value of the squared errors between the
predicted and actual values:

RMSE =

√∑n
i=1(yi − f(xi))2

n
(4.2)

4.2 Models
Through a literature review of previous work, including studies by Won et al. [[WFBS20]
and Choi et al. [CFS16, CFSC17], a simple baseline model has been selected to compare
the performance of the developed model. The following Convolutional Neural Network
models were explored in this thesis. They were derived from various existing papers on
music audio classification tasks.

4.2.1 Convolutional Neural Networks (CNN)
CNNs, originally motivated by the way biological vision systems work, try to capture
spatial information (low-level information) and use this information to capture high-level
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information [LB98]. Therefore, CNNs have traditionally been used for visual analysis
tasks. Interestingly, many state-of-the-art audio classification models also rely on CNNs as
shown in the evaluation work of state-of-the-art approaches of Won et al. [WFBS20]. This
can be traced back to the assumption that acoustic events can be learned by seeing their
time-frequency domain, the Spectrograms which visualize the spectrum of frequencies of
a signal. Choi et al. [CFS16] justifies the use of CNNs in automatic tagging as follows,
music tags are considered high-level features that represent an information level above
the intermediate features such as beats, cords, tonality and other criteria. This suits the
CNN well as it learns hierarchical features over multilayered information structures.

As already mentioned in section 4.1.1, the input data is transformed into the time-
frequency domain, specifically the Mel-spectrograms are widely adopted for tasks such
as tagging [DS13] or onset detection [SB14]. The Mel scale is used to mimic the way
humans perceive the difference of pitch or frequency [Moo12]. This scale is therefore
suited for tasks that capture the content of music pieces in a way that is consistent with
human perception.

Fully Convolutional Network

As already mentioned in chapter 2, Choi et al. [CFS16] introduced the fully convolutional
network (FCN), which is essentially a CNN without fully connected layers. A dense layer
is used to predict the class labels as output. This will be left out in this regression task
as we do not have any class labels to predict. Therefore this model will be converted
from a multiclass classification model to a multivariate regression model. Further, an
average-pooling layer is implemented in the FCN as the last layer instead of a sigmoid
activation function. The rest of the architecture follows generic CNN structures. 1D 3x3
convolutions are used with the numbers of layers varying from four to seven, depending
on setup. Further, each layer has batch normalization layers, max pooling layers to
reduce the size of the feature map and dropout layers for regularization. Based on the
Choi et al. approach, the chunk size for this model is set to 30 seconds, amounting to a
total of 625 training samples.

The FCN architecture is rather simple, but effective in audio classification tasks, achieving
state of the art performance in certain tasks as seen in the work of Won et al. [WFBS20]
where they conduct comparisons between state-of-the-art models. Therefore, the 6-layer
FCN that performed the best on the EMMA dataset with an R2 of 0.29 and RMSE of
6.32 will act as base model for this thesis. (See table 4.1)

17



4. Methodology

Model MAE RMSE R2

7-Layer FCN 4.900 6.446 0.276
6-Layer FCN 4.777 6.318 0.287
5-Layer FCN 4.998 6.595 0.237
4-Layer FCN 4.914 6.528 0.230

Table 4.1: Performance metrics of various Fully convolutional networks (based on works
from Choi et al.[CFS16])

Short-Chunk CNN Model

Furthermore, the Short-Chunk CNN model from Won et al. [WCNS20, WFBS20]
mentioned in chapter 2 which was able to produce promising results, is implemented. For
this model a very short audio chunk size of 3.6 seconds is used. Additionally, the sigmoid
layer in the last layer is removed to obtain scores as output instead of binary class labels.

Table 4.2 illustrates that the short-chunk CNN model performed relatively poorly com-
pared to the 6-layer FCN model, with an RMSE of 7.14 and R2 of 0.104.

Model RMSE R2

Short-chunk CNN 7.140 0.104

Table 4.2: Performance metrics of Short-chunk CNN

4.2.2 Transfer Learning - MULE (Musicset Unsupervised Large
Embedding)

In recent years research has been conducted in so-called audio understanding models
which can help in solving diverse problems in audio related tasks such as speech, music,
environment and more [MKO+22, WLW+21]. These models produce audio represen-
tations that can be used in various models and settings. Choi et al. [CFSC17] were
also able to produce promising performances on various different audio tasks using a
pre-trained Convolutional Neural Network that was trained to predict music tags from
the Million Song Dataset.

Another research of McCallum et al. [MKO+22] compares the performance of audio
representations produced by supervised and unsupervised learning models. The models
were trained using 3-second snippets of the raw audio file. The supervised model, a
Short-Fast Normalizer-Free Net F0, was trained on mel-spectrograms and existing binary
labels. For unsupervised learning, the so-called SimCLR objective, which is a contrastive
self-supervised learning algorithm from Chen at al. [CKNH20], is deployed. Using the
features produced by these models, simple multi-layer perceptron (MLP) classifiers were
trained. These models have been able to deliver promising results in audio and visual
understanding.
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McCallum et al. concluded that supervised learning on large-scale annotated datasets
can achieve state of the art performances, but also that unsupervised learning methods
can achieve promising results, especially on labels or information that are not much
present in the supervised dataset.

In this thesis a simple feed forward neural network model with four fully connected
layers with ReLU activation functions, batch normalization and dropout layers is trained
using the audio representation of the above mentioned unsupervised model, in particular
MULE (Musicset Unsupervised Large Embedding) [MKO+22]. This will help determine
the direction of research to improve the prediction performance of the annotations of the
EMMA dataset.

Table 4.3 depicts that the model has only a slightly improved RMSE of 6.04 compared
to the FCN model and a similar R2 of 0.29.

Model RMSE R2

Transfer learning unsupervised audio embeddings 6.0427 0.2936

Table 4.3: Transfer learning unsupervised audio embeddings

4.3 Exploratory Data Analysis
In this section, a comprehensive exploratory data analysis is performed to highlight the
characteristics of the dataset. Further, the imbalances present within the dataset will be
examined.

The skewness is interpreted by using the rule of thumb for skewness interpretation by
Bulmer [Bul79]:

• Highly skewed: Skewness is less than 1 or greater than +1

• Moderately skewed: Skewness is between 1 and −1
2 or between +1

2 and +1

• Approximately symmetric: Skewness is between −1
2 and +1

2

Analyzing the skewness presented in table 4.4 using the interpretation by Bulmer, we
can conclude that Tension and Sadness exhibit highly skewed distributions. Conversely,
Wonder, Transcendence, Nostalgia, Tenderness, Peacefulness, and Power demonstrate
moderately skewed distributions. Joy is the only emotion that has an approximately
symmetric distribution.

Upon closer examination of table 4.5, which shows the percentiles and maximum values,
we can see that, although the differences between the Q1, Q2, and Q3 percentile values are
relatively small, a pronounced discrepancy can be observed between the 75th percentile
and the maximum values across all emotion labels, indicating a rather high concentration
of the data on the lower end (left side) of the distribution, suggesting a right-skewed
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distribution. Additionally, it is evident that the maximum values for each emotion label
are notably distant from the highest attainable GEMS score of 100.

Skewness
Wonder 0.630
Transcendence 0.746
Nostalgia 0.633
Tenderness 0.850
Peacefulness 0.944
Joy 0.484
Power 0.853
Tension 1.468
Sadness 2.579

Table 4.4: Skewness of emotions scores (EMMA dataset)

Q1 (25th) Q2 (50th) Q3 (75th) Maximum
Wonder 8.89 13.22 16.71 37.21
Transcendence 5.28 8.71 13.24 32.16
Nostalgia 5.24 12.47 18.95 40.71
Tenderness 3.30 7.74 13.88 34.970
Peacefulness 7.13 13.18 20.32 48.16
Joy 11.56 18.60 26.69 51.04
Power 5.07 10.61 18.06 47.34
Tension 3.32 6.18 11.25 34.79
Sadness 0.0 1.46 4.23 29.94

Table 4.5: Percentile of emotions scores (EMMA dataset)

In chapter 4 we were able to observe model output that can be contributed to the
right-skewness of the data. Comparing the predictions of the baseline model (FCN model)
with the original annotations of the test set, we can see that certain values are not
predicted consistently. For example, we can observe that the model does not predict any
scores above around 21 for "Power" as illustrated in fig.4.2, fig.4.4 and fig.4.3 Similarly,
the model makes no predictions above 17 for "Wonder". Similar behavior can be observed
across all emotion scores.
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4.3. Exploratory Data Analysis

Figure 4.2: Test set Annotation
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Figure 4.3: Baseline Test set Prediction
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4.4. Addressing The Imbalance

Figure 4.4: Baseline Boxplot Prediction vs Annotation (Test set)

All of this suggests that the performance problem may not lie in the model’s architecture
but rather in the structure of the dataset, as already discussed in the Chapter 3.

To address this problem, different methods will be explored. For typical classification
problems, there exist various methods to address the imbalances, but for regression prob-
lems things get more complicated. Especially, re-sampling methods such as over-sampling,
under-sampling [KKP+06], synthetic minority over-sampling (SMOTE) [FGHC18] and
other criteria cannot be simply converted for regression task use, as they make use of
minority/majority classes, which do not exist in a regression problem.

4.4 Addressing The Imbalance

4.4.1 DenseLoss

In typical cost-sensitve learning methods, the cost of missclassification is modified in a
way that certain missclassified classes have higher error costs than other classes [KKP+06].
Steininger et al. [SKD+21] introduced the so-called DenseLoss, a cost-sensitive learning
approach for neural network regression tasks. This method makes use of a sample
weighting method called DenseWeight, also introduced by Steininger et al., which assigns
weights to each data point according to its rarity in the dataset using the kernel density
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estimation (KDE):

p(y) = 1
Nh

N∑
i=1

K(y − yi

h
) (4.3)

The weighting is calculated using the normalized density function p′ and a hyper-parameter
α which controls the strength of density-based weighting:

f ′(α, y) = 1 − αp′(y) (4.4)

The Gaussian kernel is used as the kernel function and the Silverman’s rule is used for
the bandwidth selection.

The DenseLoss is an approach implemented on the algorithm-level. Thus, making it
flexible in comparison to approaches on the data-level (i.e. re-sampling methods). It
integrates the DenseWeight into a loss function to obtain a cost-sensitive approach. In
training, the calculation of the gradient will take the weights into account. Meaning, rarer
data points will output a larger gradient than common data points based on DenseWeight.
It also can be adapted to any gradient descent optimization algorithm.

4.4.2 Oversampling Approach And Single-Class Ensemble Models
Under certain conditions a one-class model can outperform a mutli-class model [KKP+06].
Raskutti and Kowalczyk [RK04] show in their experiments that in extremely unbalanced
datasets, the one-class models can indeed outperform multi-class models.

Further, since each label score is differently distributed, we can also observe the effect of
different architectures, loss function and data augmentation methods on each individual
label more closely using single-task models. Single-class models also have the advantage
that classic re-sampling methods can be applied more easily as each individual label can
be assigned its own re-sampled dataset.

If results are promising, an ensemble model of single-class regression models could be
considered.

Density Based Oversampling For Single Variable Regression (DOSR)

Inspired by the weighting method of DenseLoss from Steininger et al. [SKD+21] and
KDE based class oversampling from Kamalov et al. [Kam20], this thesis proposes an
oversampling technique that relies on kernel density estimation. The hyperparameter
’threshold (t)’ plays a crucial role, determining which kernel density values are classified
as a minority data point and, consequently, included in the pool of candidates for
oversampling. This threshold effectively divides the dataset into segments akin to ’rare’ -
minority and ’common’ - majority data points, paralleling the minority-majority class
dichotomy in classification. Two specific strategies are considered:

DOSR: Each data point within the candidate pool is oversampled once.
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DOSR Percentile: Data points are oversampled with a frequency proportional to their
rarity, as determined by their percentile ranking. Data in the third quartile (Q3) will
undergo oversampling once, the second quartile (Q2) twice, and, finally, the first quartile
(Q1) will be oversampled three times.

However, this method has a limitation that it cannot be used for multivariate models.
Since each emotion score yields distinct kernel density estimation values, this leads
to varying candidate pools for each emotion label, complicating the application of this
oversampling method across multiple variables. The architecture of the proposed approach
is illustrated in Figure 4.5.

Figure 4.5: DOSR & DOMR architecture

Density Based Oversampling For Multivariate Regression (DOMR)

To apply the Density Based Oversampling For Single Variable Regression (DOSR)
approach on a multivariate model, the kernel density estimation of each emotion label
will be aggregated by calculating the average values for each song. This way we end up
with one single kernel density estimation value which will then be used to determine if a
sample should be oversampled. Similar to DOSR, the hyperparameter threshold (t) will
determine which values will be considered for oversampling.

In addition, a modified approach, akin to the percentile method used in DOSR, is
proposed (termed as the DOMR Percentile). Here, data points with lower average KDE
values will be subject to more frequent oversampling, rather than a singular instance.
Data in the first quartile (Q1, 25th percentile) will be oversampled three times, data in
the second quartile (Q2, 50th percentile) will be oversampled twice and data in the third
quartile (Q3, 75th percentile) only once.

Finally, the DOMR No-Pool is introduced as an alternative strategy. This method retains
individual KDE values for each emotion score, without averaging. Under this model, if
any emotion score’s KDE value falls below the threshold (t), that data point is included
in the oversampling candidate pool.

4.4.3 Data transformation
Inspired by Mignot et al. [MP19], the following class-preserving elementary transfor-
mations are implemented to improve the models performance. The changes from the
transformations will be clearly noticeable, but in a way that it preserves the class labels.

25



4. Methodology

The strength of all of the changes will be based on the work of Mignot et al.. The strength
of the transformation ( γ ) is set to 1. The transformations are implemented using the
audiomentations python package [JTC+23].

Pitch shifting and Time stretching

The strength of the pitch shifting factor (sp) in semitones and time stretching scaling
(st) in percentage are randomly chosen using the formula from Mignot et al. [MP19]:(

sp

4

)2
+

(
st

5

)2
= γ2

ap and at set to 4 and 5 respectively, represent the maximum changes.

Mp3 compression

The audio file is compressed into an Mp3 file using the lame encoder with a bitrate of 40
kbps [MP19].

Background noise

One random background noise is added to the audio with a signal-to-noise ratio of 18 dB
[MP19]. The background noise are taken from the ESC dataset, a labeled collection of
environmental audio recordings for benchmarking [Pic].

Time shift

An imperceptible time shift is applied to the audio file. It is shifted by ±50γ in milliseconds
[MP19].

Low pass filter

A low pass filter is applied to the audio. The starting frequency is chosen between 20
and 150 hertz and the slope is given by a = 6γ in dB/decade [MP19].

Gain

A gain transition is applied to the audio varying between -4γ and +4γ in dB, simulating
a fade in and fade out [MP19].

Compression

The audio is compressed with a release time of 100 ms and a threshold of –60dB [MP19].

Application

Inspired by Mignot et al. [MP19], the transformations will be applied in a chain of
transformations. Four configurations will be explored:
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• Raw audio data + 1 transformation

• Raw audio data + 2 transformations

• Raw audio data + 4 transformations

• Raw audio data + 8 transformations

The applied transformation will be randomly chosen, the combination will be without
repetition. Meaning, if a transformation was already applied to the audio, it will not
be chosen again. Other than obtaining doubling the sample size, this could improve the
robustness of the model against noise.

4.4.4 Density Based Oversampling For Multivariate Regression With
Data Transformation (DOMR+)

In light of the observed performance gains from the data transformation method and the
Density-Based Oversampling for Multivariate Regression (DOMR) method, I propose an
integrated approach that incorporates data transformation into DOMR. This approach
will retain the kernel density estimation calculation for each emotion score from DOMR.
In contrast to DOMR, where raw data is oversampled, this method will oversample using
the transformed data, employing the same transformation techniques inspired by Mignot
et al. [MP19]. The hyperparameters will be the same as for DOMR, the "threshold (t)"
and "number of transformations" for the number of chained transformations without
repetition.

Further, similar to DOMR, this approach proposes two additional variants:

DOMR+ Percentile: This variant will focus on oversampling data points that fall within
the lower percentiles of kernel density estimation values with greater frequency. (see
section 4.4.2)

DOMR+ no-pool: This version will maintain individual kernel density estimation values
for each emotion label.

The proposed approach’s architecture is visually depicted in Figure 4.6.

Figure 4.6: DOMR+ architecture
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4.5 Dependency Of Training Set Composition
Due to the imbalances in the EMMA dataset, the models will be examined of its
dependency on a particular train set composition and the performance will be validated.
A 10-fold Cross-Validation will be used where the dataset will be split into ten equal sized
subsamples. One subsample will be used as the test set and the rest will be used as the
train-validation set for training. Each iteration the model trained on the train-validation
set (9 folds) will be evaluated on the test set (1 fold). This is repeated ten times and
each of the 10 subsamples will be used once as a test set for evaluation. The evaluation
metrics from each iteration will be collected and inspected for further implication. If
the metrics are close to each other, it implies that the model is not dependent on the
training set composition. On the other hand, if only a few fold variations perform well, it
is implied that the model is indeed strongly influenced by the training set composition.
Figure 4.7 presents a graphical illustration of the process.

In order to maintain similar data distribution throughout the folds, a stratified CV-fold
using the KDE values is proposed. First, the kernel density estimation values for each
data point will be calculated. Based on these values, the data will be categorized in 10
equal sized splits according to its "rareness". The assembly of equal-sized folds will then
be conducted according to this categorization.

Figure 4.7: Dependency of training set composition
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CHAPTER 5
Results

5.1 DenseLoss as Loss function
FCN models are trained using the DenseLoss function from Steininger et al. [SKD+21].
Kernel density estimations are calculated for each emotion score using the training set
and based on that the weight for the loss function will be calculated.

A multivariate FCN 6 layer regression model using the DenseLoss function [SKD+21]
is trained using audio snippets of 30 seconds, the sample size amounts to 625 samples.
Looking at the metrics (see table 5.1), the models trained with DenseLoss decreased in
performance in comparison to the baseline model. But this can be expected as every
emotion score has different distributions and applying the DenseLoss on each score may
be practical. But looking at the RMSE and R2 of each mood score in table 5.2 of the
Multivariate FCN6 Denseloss model, Denseloss does not improve the performance at all.
Another explanation is that the Denseloss was introduced by Steiniger et al. for a single
variable regression model instead of a multivariate regression model.

Therefore, an ensemble of single variable FCN 6 layer regression models deploying the
DenseLoss function is introduced to analyze the performance difference when applying
the DenseLoss on only a single emotion score. The parameter α was tuned in the range
between 1 and 3. Table 5.2 shows that a marginal performance increase can only be
observed for Power and Tension while all the other mood scores decreased in performance.

When examined more closely, we can see that the performance decrease from the DenseLoss
model is mainly caused by the performance of the emotions Wonder, Joy and Peacefulness
as seen in table 5.3. Implying that the score distribution of these scores may not be
suitable for the use of the DenseLoss function. Subsequently, we change the ensemble
model by incorporating the more effective single-variable model, chosen between the
baseline and DenseLoss models. This integration yields a new mixed model termed
Ensemble FCN6 L1 & DenseLoss. While the performance of this mixed model improves,
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it still falls short of outperforming the multivariate regression model (refer to Table 5.4).
Therefore, based on the analysis of the ensemble FCN models, it could be concluded
that multivariate regression models tend to exhibit superior performance across this task
overall.

Model RMSE R2

FCN6 Baseline 6.272 0.292
FCN6 DenseLoss 7.409 0.037

Table 5.1: DenseLoss performance on FCN

Model Wonder Trascendence Nostalgia Tenderness Peacfulness Joy Power Tension Sadness
Multivariate FCN Baseline 6.295803 4.117 6.609 5.372 6.631 8.601 7.950 7.757 3.333

Multivariate FCN6 Denseloss 6.630 4.134 9.342 7.405 8.625 10.017 8.645 8.001 3.883
Ensemble FCN6 6.376 4.052 8.627 5.574 6.738 9.458 8.414 7.216 3.449

Ensemble FCN6 DenseLoss 7.512 4.458 6.713 5.736 10.28 14.44 7.838 6.868 4.342

Table 5.2: Multivariate FCN6 vs Ensemble FCN6 vs Ensemble FCN6 Denseloss RMSE

Model Wonder Trascendence Nostalgia Tenderness Peacfulness Joy Power Tension Sadness
Ensemble FCN6 DenseLoss -0.329 0.236 0.401 0.309 -0.023 -0.767 0.293 0.201 3.333

Table 5.3: R2 of DenseLoss on single variable models

Models Overall RMSE R2

Multivariate FCN6 Baseline 6.272 0.292
Ensemble FCN6 6.672 0.213
Ensemble FCN6 DenseLoss 7.576 -0.012
Ensemble FCN6 L1 & DenseLoss 6.356 0.277

Table 5.4: Overall RMSE and R2

5.2 Density Based Oversampling For Single Variable
Regression (DOSR)

Next, we examine the performance of the Density Based Oversampling For Single Variable
Regression proposed in section 4.4.2 through single variable models and Ensemble models.
Two proposed models are implemented, "Ensemble FCN6 DOSR" and "Ensemble FCN6
DOSR percentile". For each single variable model the oversampling kernel density
estimation value threshold (t) is finetuned in the space between 0.3 and 0.7. For each
model in the ensemble, the threshold with the best performance is chosen.
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Model Wonder Trascendence Nostalgia Tenderness Peacfulness Joy Power Tension Sadness
Multivariate FCN6 Baseline 6.295 4.117 6.609 5.372 6.631 8.601 7.950 7.757 3.333

Ensemble FCN6 6.376 4.1586 8.627 5.574 6.738 9.458 8.414 7.216 3.485
Ensemble FCN6 DOSR 6.161 3.850 6.156 5.117 7.057 7.569 7.681 6.712 3.528

Ensemble FCN6 DOSR percentile 6.509 3.832 6.161 5.804 7.200 8.559 7.833 8.120 3.040

Table 5.5: Multivariate FCN vs Ensemble FCN vs Ensemble SV FCN oversampling vs
Ensemble SV FCN oversampling percentile

Model RMSE R2

Multivariate FCN6 Baseline 6.272 0.292
Ensemble FCN6 6.672 0.213

Ensemble FCN6 DOSR 5.981 0.348
Ensemble FCN6 DOSR percentile 6.223 0.286

Table 5.6: Overall RMSE and R2 for FCN6 DOSR

In table 5.5 we are able to observe that the Ensemble FCN6 DOSR, which oversamples
each data point under the threshold equally, outperforms both Multivariate FCN6 Baseline
and Ensemble FCN6 across the board, except for the emotion scores Peacefulness and
Sadness, which only performs slightly inferior. Even the overall RMSE and R2 statistic
show improved values with a RMSE of 5.98 and R2 statistic of 0.348. (Table 5.6)

The ensemble model, Ensemble FCN6 DOSR percentile, consisting of single-variate models
deploying the DOSR percentile approach, where the oversampling amount is determined
based on the percentile range of the kernel density estimation values, shows inferior
performance compared to the Ensemble FCN6 DOSR model. However, it still outperforms
the Ensemble FCN6 model across most emotion scores. Despite this improvement, it
remains insufficient to surpass the performance of the Multivariate FCN Baseline model.

5.3 Density Based Oversampling For Multivariate
Regression (DOMR)

As evident from Table 5.2, it becomes apparent that multivariate regression models may
outperform the ensemble models. Therefore, a multivariate approach of the DOSR, the
Density Based Oversampling For Multivariate Regression (DOMR) proposed in section
4.4.2, is implemented.

Model Wonder Trascendence Nostalgia Tenderness Peacefulness Joy Power Tension Sadness
Multivariate Baseline 6.295 4.117 6.609 5.372 6.631 8.601 7.95 7.757 3.333

DOMR 6.022 3.848 6.227 4.891 7.092 7.821 6.865 7.365 3.433
DOMR percentile 5.698 3.725 6.057 5.134 6.651 8.229 7.385 6.985 3.455

DOMR no-pool 6.362 3.684 6.795 5.225 6.541 8.549 7.871 6.856 3.259

Table 5.7: R2 of FCN6 Baseline/FCN6 DOMR/FCN6 DOMR percentile/FCN6 DOMR
no-pool
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Model RMSE R2

Baseline 6.272 0.292
DOMR 5.952 0.355

DOMR percentile 5.924 0.366
DOMR no-pool 6.126 0.332

Table 5.8: Average RMSE & R2 over all emotion scores: FCN6 Baseline/FCN6 DOMR
/FCN6 DOMR percentile/FCN6 DOMR no-pool

The optimal "threshold (t)" parameter for the DOMR model has been identified as 0.6,
meaning that data points with average kernel density estimation values below 0.6 are
selected for oversampling. This method increases the training sample size from 625 to
710. According to Table 5.7, the RMSE performance for each individual emotion score
in the DOMR model demonstrates improvement compared to the baseline, except for
’Sadness’, which shows a slight decrease in performance. The average metrics of the
DOMR model also demonstrate improvement over the Multivariate Baseline, with an R2

statistic of 0.355 and an RMSE of 5.952.

For the DOMR percentile model, with a threshold of 0.6 the total training sample size is
increased to 751. Further, we can observe in table 5.8, that the DOMR percentile model
outperforms the DOMR model with a R2 of 0.366 and RMSE of 5.924.

Finally, the DOMR no-pool approach is implemented. Instead of pooling (averaging)
the kernel density estimation value of the scores, this method includes every data point
as soon as any of the KDE values falls below the threshold. The training set with
oversampled data, with the parameter "threshold" set to 0.3, yields a sample size of 1020.
The optimal number of data transformation chains is found to be 1. While this model
does not surpass the performance of the other two approaches, it still demonstrates an
improvement over the baseline, as detailed in Table 5.8.

5.4 Data Transformation

Class-preserving elementary transformations, introduced in section 4.4.3, are applied to
each data point (song) in a chain at random to create new samples. The transformed data
is subsequently added to the dataset, effectively doubling the available data to 1250 sam-
ples. Randomly selected from a pool of audio transformation techniques—including pitch
shifting, time stretching, MP3 compression, background noise addition, time shifting,
low-pass filtering, gain adjustment, and compression (see section 4.4.3)—the transforma-
tions are applied sequentially, without repeating any previously applied technique. Four
configurations are implemented each differentiating on the number of transformations
applied to the data.
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5.5. Density Based Oversampling For Multivariate Regression With Data Transformation
(DOMR+)

Model RMSE R2

Baseline 6.272 0.292
DT 1x 6.224 0.295
DT 2x 6.151 0.313
DT 4x 6.030 0.366
DT 8x 7.294 0.047

Table 5.9: Average RMSE & R2 over all emotion scores: FCN6 model with chained Data
transformations

The average metrics in table 5.9 reveal that all data transformation configurations,
except 8x lead to an improvement of the model. DT 1x outputs similar metrics as the
baseline model, but if we take a look at the model with higher transformation chains,
the performance improves. The model with four data transformation chains performs
the best with a RMSE of 6.03 and R2 statistic of 0.366. A decrease in RMSE can also
be observed across all emotions scores, except Nostalgia, Tenderness and Peacefulness,
which only perform slightly inferior than the baseline model (see table 5.10). Finally, the
DT 8x model, which includes songs that were transformed eight times, has decreased
performance metrics. This decline could be attributed to excessive alteration of the audio
data resulting from chaining eight transformations consecutively.

Model Wonder Transcendence Nostalgia Tenderness Peacefulness Joy Power Tension Sadness
Baseline 6.295 4.117 6.609 5.372 6.631 8.601 7.95 7.757 3.333

DT 1x 6.266 4.041 6.420 4.883 6.857 8.924 8.116 6.741 3.773
DT 2x 6.258 4.120 5.990 5.392 7.440 8.526 7.854 6.109 3.671
DT 4x 5.488 3.971 6.173 5.488 7.824 8.524 7.610 6.038 3.155
DT 8x 7.139 5.077 8.168 6.242 9.138 9.244 8.066 8.793 3.779

Table 5.10: R2: FCN6 model with chained data transformation per emotion scale

5.5 Density Based Oversampling For Multivariate
Regression With Data Transformation (DOMR+)

The newly proposed Density Based Oversampling For Multivariate Regression With Data
Transformation (DOMR+, section 4.4.4), combines the previously implemented DOMR
and Data Transformation approaches. Instead of oversampling raw data, the transformed
data will be oversampled. Same as for the DOMR model, three approaches introduced in
section 4.4.4 are implemented: DOMR+, DOMR+ Percentile and DOMR+ No-Pool.

The parameters threshold (t) and number of transformation chains are fine tuned for
each model. They are optimized in the parameter space between 0.3 and 0.7 for tolerance
(t) and 1, 2, 4 and 8 chains of transformations.

For the DOMR+ model with a ’threshold (t)’ set at 0.6, the training set’s sample size
increases to 710. The most effective number of data transformation chains for this model
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is identified as 2, leading to an improved performance with an RMSE of 5.906 and an R2

of 0.378, thus surpassing the baseline model.

Regarding the DOMR+ Percentile model, the optimal parameters are a ’threshold (t)’
of 0.7 and a single data transformation chain. This configuration results in a training
sample size of 853. The model achieves superior results compared to the baseline, with a
lower RMSE of 5.75 and a higher R2 of 0.395.

Finally, the DOMR+ No-Pool model, with its ’threshold (t)’ set to 0.3 and using two
data transformation chains, also shows promising performance. It achieves an RMSE of
5.907 and an R2 of 0.375. While its performance is comparable to the DOMR+ model, it
does not outperform the DOMR+ Percentile approach.

Model RMSE R2

FCN6 Baseline 6.272 0.292
DOMR+ 5.906 0.378

DOMR+ percentile 5.75 0.395
DOMR+ no-pool 5.907 0.375

Table 5.11: Average RMSE & R2 over all emotion scores: FCN6 model with DOMR+

Model Wonder Transcendence Nostalgia Tenderness Peacefulness Joy Power Tension Sadness
Baseline 6.296 4.118 6.610 5.373 6.632 8.602 7.951 7.758 3.333

DOMR+ 5.946 3.637 5.659 4.771 6.656 8.702 7.906 6.570 3.312
DOMR+ percentile 5.999 3.438 5.676 4.792 6.419 7.918 7.097 7.112 3.363

DOMR+ no-pool 6.194 4.073 6.054 4.499 7.057 8.475 7.135 6.459 3.224

Table 5.12: R2 per emotion scale : FCN6 model with DOMR +

5.6 Comparing The Performance
The results in table 5.13 reveal several insights into the performance of the methods.
The Ensemble FCN6 L1 & DenseLoss model stands out as the only approach that fails
to surpass the baseline model. However, it can be observed in table 5.2 that single
variable models performance can be improved by DenseLoss, but not enough to surpass
the multivariate baseline model.

Moreover, both proposed oversampling methods, DOSR and DOMR, demonstrate superior
performance over the baseline model in terms of RMSE and R2 statistic. Mirroring the
way the multivariate baseline model surpasses the ensemble single-variable model, the
multivariate DOMR model outperforms the single-variable DOSR model in R2 and across
all emotion labels, except for ’Nostalgia’.

Interestingly, the data transformation methods yield results comparable to the DOMR
method, with both achieving an R2 of 0.366. However, their slightly higher RMSE may
be attributed to the addition of every piece of data in the training set.
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Most notably, the data transformation-integrated DOMR, or DOMR+, outshines all
other approaches. It beats the baseline with an R2 of 0.395, an increase of 0.1, and an
RMSE of 5.75, an improvement of 0.877.

Models RMSE R2

FCN6 Baseline 6.272 0.292
Ensemble FCN6 L1 & DenseLoss 6.356 0.277
Ensemble FCN6 DOSR 5.981 0.348
FCN6 DT 4x 6.030 0.366
FCN6 DOMR percentile 5.924 0.366
FCN6 DOMR+ percentile 5.75 0.395

Table 5.13: Model comparison

5.7 Dependency Of Training Set Composition
Although we are able to observe that model performance can be improved by addressing
the data imbalance through various combinations of oversampling and data transformation
methods, we need to validate whether or not the models are dependent on the train-test
composition due to the imbalances in the dataset. Similarly, the proposed methods to
overcome the imbalances are expected to be dependent on the train-test composition,
especially regarding the set hyperparameters. For this, the 10-fold Cross-Validation will
be used, which is described more in detail in the section 4.5 in the chapter methodology.

5.7.1 Cross-Validation
The dataset has been randomly split into 10 equal sized folds. One fold will be used
to test the performance of the model while the rest will be used to train the models.
Meaning each configuration introduced in the earlier chapters will be trained ten times
with different fold compositions. Then the RMSE and R2 statistic of each model will be
evaluated.

First, we can see in table 5.14, that the performance of the base model (Mutlivariate
FCN6) achieves a mean R2 of 0.2706, a maximum value of 0.3662 and a minimum
value of 0.1665. First implications that the models performance is dependent on the
train-test composition can be seen through the rather high gap between the maximum
and minimum values.

Data Transformation

FCN6 models are trained with additional transformed data with different transformation
chain configurations, as already mentioned in the previous chapter. Looking at the
performance in table 5.14 and 5.15, it can be observed that the models using data
transformations do not improve the models’ average R2 statistics. Table 5.14 shows the
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models’ R2 statistics, indicating that while data transformations do not enhance the
average R2, but there is a noticeable improvement in the maximum R2 values, especially
the 1x and 2x chained transformations. Contrary to the results in 5.4, it can be seen
that the model trained with the additional 4x data transformation does not improve the
performance in terms of R2 or RMSE metrics. As expected, the model trained with 8x
data transformations shows the poorest performance, similar to the results in 5.4.

Baseline DT 1x DT 2x DT 4x DT 8x
Mean 0.2706 0.2563 0.2680 0.2217 -0.0716
Median 0.2746 0.2778 0.2661 0.2293 -0.0619
Max 0.3662 0.3784 0.4395 0.3434 0.1463
Min 0.1665 0.1080 0.1537 0.0383 -0.3643

Table 5.14: R2 statistics results from validation: FCN6 Baseline and FCN6 with chained
data transformations

Baseline DT 1x DT 2x DT 4x DT 8x
Mean 6.2930 6.3397 6.2706 6.4730 7.6604
Median 6.3663 6.3848 6.3118 6.5952 7.5253
Max 6.6026 6.9203 6.7541 7.1684 8.5693
Min 5.6987 5.7303 5.5754 5.6205 6.4647

Table 5.15: RMSE results from validation: FCN6 Baseline and FCN6 with chained data
transformations

Density Based Oversampling For Multivariate Regression (DOMR)

Different to the findings in section 5.3, the models utilizing DOMR performed poorly, as
can be seen in table 5.16 and 5.17. Mean R2 and RMSE do not show any improvements
regardless of the threshold. The only noteworthy observation is that while the maximum
R2 value for DOMR 0.6 saw some improvement, the minimum value deteriorated.

Baseline DOMR t=0.5 DOMR t=0.6 DOMR t=0.7
Mean 0.2706 0.2181 0.2502 0.2332
Median 0.2746 0.2266 0.2592 0.2245
Max 0.3662 0.3531 0.4094 0.3537
Min 0.1665 0.0545 -0.0016 0.1075

Table 5.16: R2 statistics results from validation: FCN6 DOMR with different thresholds
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Baseline DOMR t=0.5 DOMR t=0.6 DOMR t=0.7
Mean 6.2930 6.5293 6.3227 6.4191
Median 6.3663 6.5534 6.2739 6.4358
Max 6.6026 7.2463 7.2730 6.8530
Min 5.6987 5.6752 5.7033 5.8260

Table 5.17: RMSE results from validation: FCN6 DOMR with different thresholds

DOMR Percentile

Models utilizing the DOMR percentile approach show an even less favorable performance,
with metrics declining across the board compared to the baseline, as illustrated in Tables
5.18 and 5.19.

Baseline DOMR perc. t=0.5 DOMR perc. t=0.6 DOMR perc. t=0.7
Mean 0.2706 0.2305 0.2186 0.2068
Median 0.2746 0.2669 0.2200 0.2044
Max 0.3662 0.3587 0.3562 0.3518
Min 0.1665 0.0953 0.0750 0.0434

Table 5.18: R2 statistics results from validation: FCN6 DOMR percentile with different
thresholds

Baseline DOMR perc. t=0.5 DOMR perc. t=0.6 DOMR perc. t=0.7
Mean 6.2930 6.4913 6.4564 6.5067
Median 6.3663 6.5805 6.5251 6.5589
Max 6.6026 6.9928 6.8758 6.9432
Min 5.6987 5.9884 5.8921 5.8498

Table 5.19: RMSE results from validation: FCN6 DOMR percentile with different
thresholds

Density Based Oversampling For Multivariate Regression With Data
Transformation (DOMR+)

For the DOMR+ approach, different thresholds with data transformation chains of 1x,
2x and 4x have been trained. 8x chained transformations have been omitted as they did
not deliver any improvements in any of the previously trained models.

In general, across all configurations, the average performance of the DOMR+ model does
not surpass that of the baseline model in terms of both R2 and RMSE. Again, similar
to the DOMR 0.6 in table 5.16, for the DOMR+ model with the threshold set to 0.6,
the maximum value for the R2 increased, regardless of data transformation configuration
(see table 5.20 and 5.21). In terms of the RMSE no improvement can be observed as
indicated in tables 5.22 and 5.23.

37



5. Results

Baseline DOMR+ t=0.5 dt=1 DOMR+ t=0.5 dt=2 DOMR+ t=0.5 dt=4
Mean 0.2706 0.2581 0.2112 0.2450
Median 0.2746 0.2660 0.2197 0.2408
Max 0.3662 0.3730 0.3553 0.4066
Min 0.1665 0.1356 0.0490 0.1528

DOMR+ t=0.6 dt=1 DOMR+ t=0.6 dt=2 DOMR+ t=0.6 dt=4
0.2258 0.2390 0.2194
0.2488 0.2370 0.2143
0.3684 0.4042 0.4293
0.0380 0.1112 0.0956

Table 5.20: R2 statistics from validation: FCN6 DOMR+ with different thresholds

Baseline DOMR+ t=0.7 dt=1 DOMR+ t=0.7 dt=2 DOMR+ t=0.7 dt=4
Mean 0.2706 0.2438 0.1953 0.2078
Median 0.2746 0.2503 0.1859 0.2355
Max 0.3662 0.3699 0.3472 0.3590
Min 0.1665 0.0464 0.0893 0.0505

Table 5.21: R2 statistics from validation FCN6 DOMR+ with threshold 0.7 and data
transformation chains

Baseline DOMR+ t=0.5 dt=1 DOMR+ t=0.5 dt=2 DOMR+ t=0.5 dt=4
Mean 6.2930 6.3236 6.5454 6.3778
Median 6.3663 6.4620 6.6573 6.5362
Max 6.6026 6.6258 7.1189 6.7982
Min 5.6987 5.6449 5.7798 5.5838

DOMR+ t=0.6 dt=1 DOMR+ t=0.6 dt=2 DOMR+ t=0.6 dt=4
6.4474 6.3797 6.5039
6.4817 6.4304 6.5590
7.2910 6.7949 6.9556
5.6939 5.5589 6.0086

Table 5.22: RMSE results from validation: FCN6 DOMR+ with different thresholds

Baseline DOMR+ t=0.7 dt=1x DOMR+ t=0.7 dt=2x DOMR+ t=0.7 dt=4x
Mean 6.2930 6.3216 6.5884 6.5684
Median 6.3663 6.3027 6.5807 6.4906
Max 6.6026 6.7765 7.1616 7.4793
Min 5.6987 5.7748 5.8036 5.6396

Table 5.23: RMSE results from validation: FCN6 DOMR + with threshold 0.7 and data
transformation chains

DOMR+ Percentile

Similar to DOMR+, models using the DOMR+ percentile approach (introduced in
subsection 4.4.4), are trained with different thresholds and data transformation chains of
1x, 2x and 4x. The trained models also fail to show improvements in mean R2 and RMSE
as depicted in tables 5.24 and 5.25, with the exception of the model with a 0.8 threshold
and 1x data transformation, though this improvement is only minimal. Another notable
observation is that the maximum value for R2 using the DOMR+ percentile approach is
higher than the baseline model across the board, except for the model with the threshold
of 0.8 and 4x data transformation.

Baseline DOMR+ perc. t=0.6 dt=1 DOMR+ perc. t=0.6 dt=2 DOMR+ perc. t=0.6 dt=4
Mean 0.2706 0.2319 0.2615 0.2032
Median 0.2746 0.2398 0.2543 0.2180
Max 0.3662 0.4003 0.3984 0.3758
Min 0.1665 0.0464 0.1737 0.0472

DOMR+ perc. t=0.7 dt=1 DOMR+ perc. t=0.7 dt=2 DOMR+ perc. t=0.7 dt=4
0.2505 0.2167 0.2136
0.2803 0.2259 0.2030
0.3791 0.3717 0.4042
0.0616 0.0441 0.0411

Table 5.24: R2 statistics results from validation: FCN6 DOMR+ percentile with different
thresholds
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Baseline DOMR+ perc. t=0.8 dt=1 DOMR+ perc. t=0.8 dt=2 DOMR+ perc. t=0.8 dt=4
Mean 0.2706 0.2721 0.2448 0.1622
Median 0.2746 0.2788 0.2552 0.1312
Max 0.3662 0.3877 0.4605 0.3007
Min 0.1665 0.1505 0.0546 0.0437

Table 5.25: R2 statistics results from validation: FCN6 DOMR + percentile with threshold
0.8 and data transformation chains

Baseline DOMR+ perc. 0.6_1 DOMR+ perc. 0.6_2 DOMR+ perc. 0.6_4
Mean 6.2930 6.3893 6.3287 6.5469
Median 6.3663 6.4233 6.3569 6.5425
Max 6.6026 7.1020 7.0352 7.0165
Min 5.6987 5.6660 5.7353 6.0521

DOMR+ perc. 0.7_1 DOMR+ perc. 0.7_2 DOMR+ perc. 0.7_4
6.3225 6.4781 6.5153
6.4381 6.5353 6.5390
6.6781 7.0935 6.8693
5.7223 5.8719 5.9142

Table 5.26: RMSE from validation FCN6 DOMR+ percentile with different threshold

Baseline DOMR+ perc. 0.8_1 DOMR+ perc. 0.8_2 DOMR+ perc. 0.8_4
Mean 6.2930 6.2843 6.3483 6.7315
Median 6.3663 6.3901 6.2785 6.7283
Max 6.6026 6.7214 6.9918 7.4032
Min 5.6987 5.5662 5.8874 5.9791

Table 5.27: RMSE after CV fold DOMR + percentile with threshold 0.8 and data
transformation chains

Baseline DT 2x DOMR DOMR perc. DOMR+ DT 1x DOMR+ DT 2x DOMR+ DT 4x DOMR+ perc. DT 1x DOMR+ perc. DT 2x DOMR+ perc. DT 4x
Mean 6.2930 6.2706 6.3227 6.4564 6.3216 6.3797 6.3778 6.2843 6.3483 6.5469
Median 6.3663 6.3118 6.2739 6.5251 6.3027 6.4304 6.5362 6.3901 6.2785 6.5425
Max 6.6026 6.7541 7.2730 6.8758 6.7765 6.7949 6.7982 6.7214 6.9918 7.0165
Min 5.6987 5.5754 5.7033 5.8921 5.7748 5.5589 5.5838 5.5662 5.8874 6.0521

Table 5.28: Best performing models per RMSE for CV-fold

Implications and Limitations

The results of the models above suggest that the implemented approaches do not improve
model performance on average. Generally, there is a huge discrepancy between the
maximum and minimum value with a difference of 0.3086 on average throughout the
models. We can see this more clearly in table 5.29, which depcits the RMSE and R 2 of
each fold of the best performing model, FCN6 DOMR+ percentile with a threshold of 0.7
and 1x data transformation. Notably, both the R2 and RMSE values exhibit significant
fluctuations across different folds. All of this could suggest that the performance of the
model and the effectiveness of the given approach is highly dependent on the train-test
composition.

The results may also reflect the data scarcity issue of the data set. As the data is extremely
right-skewed for several emotion labels, the chosen training folds may not represent all
emotion ranges very well. As certain emotion ranges are rarer, they may have not been
selected for some of the folds. Figure 5.1 depicts the kernel density estimation values of
each of the 10 folds. Especially for the labels "Wonder", "Transcendence", "Nostalgia",
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"Peacefulness" and "Joy", we can observe some differences between the folds distribution.
This issue will be further addressed in the next section.

Fold R2 RMSE
1 0.1686 6.7214
2 0.2870 6.5118
3 0.3116 5.8255
4 0.2607 5.5662
5 0.1505 5.9534
6 0.2418 6.4214
7 0.2707 6.5698
8 0.3389 6.3589
9 0.3877 6.3516

10 0.3034 6.5627

Table 5.29: FCN6 DOMR+ percentile, threshold: 0.7, 1x DT
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Figure 5.1: CV: Kernel density estimation plots for each fold and emotion label

5.7.2 Stratified Cross-Validation using KDE-values

To counteract the issue of sampling folds of unequal distributions, a stratified cross-
validation inspired approach is proposed, described in section 4.5 in chapter Methodology.

Data transformation

Models with different data transformation configurations have been trained under strat-
ified fold sampling. Different to the non-stratified fold sampling, the results depicted
in table 5.30 show that the DT 1x and DT 2x models exhibit superior performance
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compared to the baseline models on average. Further, an increase for the maximum
R2 value can be seen for all data transformation configurations, except for DT 8x —
consistent with earlier findings in this thesis. This pattern is also reflected in RMSE
performance, although with a marginal improvement (see table 5.31).

Baseline DT 1x DT 2x DT 4x DT 8x
Mean 0.2397 0.2508 0.2527 0.2146 -0.1521
Median 0.2378 0.2659 0.2530 0.2149 -0.1468
Max 0.2947 0.3188 0.3024 0.3413 0.1784
Min 0.1656 0.1729 0.1587 0.1111 -0.4461

Table 5.30: R2 statistics results from stratified validation: FCN6 Baseline and Data
transformation

Baseline DT 1x DT 2x DT 4x DT 8x
Mean 6.4346 6.3608 6.3557 6.4836 7.8432
Median 6.4187 6.3585 6.3703 6.6637 7.9232
Max 6.9655 7.0083 6.6499 6.9137 8.7804
Min 5.9962 5.9130 5.9660 5.7676 6.5186

Table 5.31: RMSE results from stratified validation: FCN6 Baseline and Data transfor-
mation

Density Based Oversampling For Multivariate Regression (DOMR)

The tables 5.32 and 5.33 show, different to the results of the non-stratified fold sampling
and consistent with the finding in section 5.3, that the models utilising DOMR have
improved performance in regards to the R2 and RMSE. The thresholds 0.5 and 0.7 show
an improved performance in the average performance and also in the maximum value of
R2. Again, the RMSE improvement is only minimal.

Baseline DOMR t=0.5 DOMR t=0.6 DOMR t=0.7
Mean 0.2397 0.2430 0.2122 0.2539
Median 0.2378 0.2550 0.2134 0.2436
Max 0.2947 0.2989 0.2930 0.3500
Min 0.1656 0.1499 0.0753 0.2035

Table 5.32: R2 statistics results from stratified validation: FCN6 Baseline and DOMR
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Baseline DOMR t=0.5 DOMR t=0.6 DOMR t=0.7
Mean 6.4346 6.4343 6.5440 6.3459
Median 6.4187 6.3746 6.4996 6.3291
Max 6.9655 6.8729 7.1522 6.8176
Min 5.9962 5.9813 6.0754 5.8168

Table 5.33: RMSE results from stratified validation: FCN6 Baseline and DOMR

DOMR Percentile

Similarly to the results obtained from the non-stratified folds method, models trained
using the DOMR percentile approach perform poorly and exhibit inferior performance
compared to the baseline model in terms of R2 and RMSE, as depicted in Tables 5.34
and 5.35.

Baseline DOMR perc. t=0.5 DOMR perc. t=0.6 DOMR perc. t=0.7
Mean 0.2397 0.2020 0.1742 0.1815
Median 0.2378 0.2073 0.1912 0.1708
Max 0.2947 0.2733 0.2804 0.3098
Min 0.1656 0.1191 0.0311 0.0829

Table 5.34: R2 statistics from stratified validation: FCN6 Baseline and DOMR percentile

Baseline DOMR perc. t=0.5 DOMR perc. t=0.6 DOMR perc. t=0.7
Mean 6.4346 6.5903 6.6559 6.5888
Median 6.4187 6.5756 6.5840 6.6256
Max 6.9655 7.2895 7.3794 7.3330
Min 5.9962 6.2462 6.0705 5.7659

Table 5.35: RMSE from stratified validation: FCN6 Baseline and DOMR percentile

Density Based Oversampling For Multivariate Regression With Data
Transformation (DOMR+)

Again, for the DOMR+ approach models with varying thresholds and data transformation
chain configurations have been trained. Different to the results of the non-stratified fold
sampling method, models with a threshold of 0.5 and data transformation chain of 1x
and 4x exhibits superior performance compared to the baseline model on average, as
illustrated in tables 5.36, 5.37, 5.38 and 5.39. Specifically, the DOMR+ model with a
threshold of 0.5 and 4x data transformation (DOMR+ t=0.5 dt=4) outperforms the
baseline model in terms of mean, median, maximum, and minimum values for both R2

and RMSE. This result is also consistent with the findings in section 5.5 .
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Baseline DOMR+ t=0.5 dt=1 DOMR+ t=0.5 dt=2 DOMR+ t=0.5 dt=4
Mean 0.2397 0.2579 0.2388 0.2459
Median 0.2378 0.2658 0.2416 0.2525
Max 0.2947 0.3712 0.3156 0.3047
Min 0.1656 0.1543 0.1510 0.1956

DOMR+ t=0.6 dt=1 DOMR+ t=0.6 dt=2 DOMR+ t=0.6 dt=4
0.2365 0.1878 0.1863
0.2297 0.2162 0.2090
0.3238 0.2671 0.2862
0.1512 0.0738 0.0456

Table 5.36: R2 statistics results from stratified validation: FCN6 DOMR+ with different
threshold

Baseline DOMR+ t=0.7 dt=1 DOMR+ t=0.7 dt=2 DOMR+ t=0.7 dt=4
Mean 0.2397 0.2149 0.2060 0.1475
Median 0.2378 0.2044 0.2201 0.1729
Max 0.2947 0.3546 0.3304 0.2489
Min 0.1656 0.1046 0.0513 -0.1246

Table 5.37: R2 statistics results from stratified validation: FCN6 DOMR + with threshold
0.7 and data transformation chains

Baseline DOMR+ t=0.5 dt=1 DOMR+ t=0.5 dt=2 DOMR+ t=0.5 dt=4
Mean 6.4346 6.3477 6.4441 6.3920
Median 6.4187 6.2211 6.4150 6.3045
Max 6.9655 7.1883 6.8034 6.7810
Min 5.9962 5.9043 6.0616 5.9919

DOMR+ t=0.6 dt=1 DOMR+ t=0.6 dt=2 DOMR+ t=0.6 dt=4
6.4301 6.6108 6.5905
6.4663 6.5889 6.5254
7.0846 7.2848 7.0922
5.9058 6.0689 6.0968

Table 5.38: RMSE results from stratified validation: FCN6 DOMR+ with different
threshold

Baseline DOMR+ t=0.7 dt=1 DOMR+ t=0.7 dt=2 DOMR+ t=0.7 dt=4
Mean 6.4346 6.4680 6.5372 6.7933
Median 6.4187 6.4834 6.5380 6.7121
Max 6.9655 7.0861 7.4439 7.5620
Min 5.9962 5.7142 5.9264 6.2182

Table 5.39: RMSE esults from stratified validation: FCN6 DOMR + with threshold 0.7
and data transformation chains

DOMR+ Percentile

We observe similar trends in the performance of models trained using the DOMR+
percentile approach compared to those trained using DOMR+. Consistent with the
results in section 4.4.4, tables 5.24, 5.41, 5.42 and 5.43 show that the models with various
DOMR+ configurations beat the performance of the baseline models. Models with the
thresholds 0.6 and 0.8 with 1x, 2x and 1x data transformation chains respectively perform
the best in terms of R2 and RMSE.

Baseline DOMR+ perc. t=0.6 dt=1 DOMR+ perc. t=0.6 dt=2 DOMR+ perc. t=0.6 dt=4
Mean 0.2397 0.2413 0.2459 0.2279
Median 0.2378 0.2605 0.2544 0.2171
Max 0.2947 0.3098 0.3333 0.2677
Min 0.1656 0.1440 0.1507 0.1984

DOMR+ perc. t=0.7 dt=1 DOMR+ perc. t=0.7 dt=2 DOMR+ perc. t=0.7 dt=4
0.2159 0.2136 0.1608
0.2098 0.2134 0.1716
0.3174 0.3212 0.3215
0.1125 0.1328 0.0219

Table 5.40: R2 statistics aesults from stratified validation: FCN6 DOMR+ percentile
with different threshold
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Baseline DOMR+ perc. t=0.8 dt=1 DOMR+ perc. t=0.8 dt=2 DOMR+ perc. t=0.8 dt=4
Mean 0.2397 0.2532 0.2344 0.2149
Median 0.2378 0.2455 0.2310 0.2011
Max 0.2947 0.3251 0.3559 0.3299
Min 0.1656 0.1795 0.1340 0.0868

Table 5.41: R2 statistics results from stratified validation: FCN6 DOMR + percentile
with threshold 0.8 and data transformation chains

Baseline DOMR+ perc. t=0.6 dt=1 DOMR+ perc. t=0.6 dt=2 DOMR+ perc. t=0.6 dt=4
Mean 6.4346 6.4224 6.3873 6.4385
Median 6.4187 6.4466 6.4821 6.4145
Max 6.9655 6.7519 6.8402 6.8087
Min 5.9962 5.9919 5.9182 6.1264

DOMR+ perc. t=0.7 dt=1 DOMR+ perc. t=0.7 dt=2 DOMR+ perc. t=0.7 dt=4
6.4957 6.5301 6.6861
.4684 6.5154 6.7812

6.9971 7.0099 7.1474
5.9245 6.0200 6.0199

Table 5.42: RMSE esults from stratified validation: FCN6 DOMR+ percentile with
different threshold

Baseline DOMR+ perc. t=0.8 dt=1 DOMR+ perc. t=0.8 dt=2 DOMR+ perc. t=0.8 dt=4
Mean 6.4346 6.3539 6.4486 6.5026
Median 6.4187 6.3728 6.3823 6.5090
Max 6.9655 6.8595 7.2862 7.4882
Min 5.9962 5.8793 6.0666 5.8323

Table 5.43: RMSE esults from stratified validation: FCN6 DOMR + percentile with
threshold 0.8 and data transformation chains

Implications and Limitations

The stratified fold approach is implemented in order to create a more equal distribution
throughout the folds, thereby mitigating the issue of certain emotion ranges not being
present in some folds due to their rarity. As intended, in comparison to the non-stratified
folds (see graph 5.1), the implementation of the stratified cross-validation inspired
approach is able to achieve a more uniform distribution across all folds, as the graph 5.2,
which illustrates the kernel density estimation values of the folds, suggest. Therefore, it
can be argued that the results of this experiment could provide stronger evidence for the
effectiveness of the proposed approaches.

While the models evaluated with the non-stratified fold approach do not deliver an
improvement in performance in terms of average R2, except the FCN6 DOMR+ percentile
with threshold 0.8 + DT 1x (table 5.25), multiple models evaluated with the stratified
fold approach demonstrate improved performance.

Every proposed approach appears to improve performance, except for the DOMR per-
centile model, which resulted in a inferior performance regardless of the set parameters.
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5. Results

Figure 5.2: Stratified CV: Kernel density estimation plots for each fold and emotion label

5.8 T-Test
A dependent pairwise t-test is conducted to statistically compare the performance of the
proposed approaches to the baseline model and to evaluate whether the mean difference
in metrics between the two models is statistically significant. For this analysis, the
R2 statistics from the stratified validations are used. Table 5.44 and 5.45 depict the
t-statistics and p-value of the pairwise t-tests for R2 and RMSE of the promising models.
T statistic is calculated as:

t = X̄D − µ0
sD/

√
n
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5.8. T-Test

R2
The results of table 5.44 suggest that there is no significant variability (p-value > 0.05)
in the R2 statistic across most of the proposed models. We can examine the t-statistic
to find out which of the two groups’ mean is higher or lower. A negative t-statistics
value indicates that the mean R2 of the proposed model is higher than the R2 of the
baseline model (see t-test formula). Negative t-statistics can be seen in table 5.44 for the
Models deploying 1x and 2x chained data transformation (DT 1x & DT 2x), DOMR with
threshold set to 0.5 and 0.7 (DOMR 0.5 & DOMR 0.7), DOMR+ with a threshold set to
0.5 and employing 1x and 4x chained data transformations (DOMR+ 0.5 1x & DOMR
0.5 4x), as well as the DOMR+ percentile with a threshold set to 0.6 and employing 1x
and 2x chained data transformations (DOMR+ perc. 0.6 1x & DOMR perc. 0.6 2x),
and with a threshold set to 0.8 and employing 1x chained data transformation (DOMR+
perc. 0.8 1x). These findings align with the results presented in Section 5.7.2, but it is
important to note that despite the negative t-statistics, these values are not statistically
significant (p-value < 0.05).

Model t-stat p-value significance
DT 1x -0.498 0.623 FALSE
DT 2x -0.694 0.4961 FALSE
DT 4x 0.909 0.375 FALSE

DOMR t=0.5 -0.163 0.871 FALSE
DOMR t=0.6 1.087 0.291 FALSE
DOMR t=0.7 -0.770 0.451 FALSE

DOMR perc. t=0.5 1.753 0.096 FALSE
DOMR perc. t=0.6 2.244 0.037 TRUE
DOMR perc t=0.7 2.122 0.047 TRUE

DOMR+ t=0.5 dt=1 -0.694 0.496 FALSE
DOMR+ t=0.5 dt=2 0.048 0.961 FALSE
DOMR+ t=0.5 dt=4 -0.359 0.723 FALSE

DOMR+ perc. t=0.6 dt=1 -0.069 0.945 FALSE
DOMR+ perc. t=0.6 dt=2 -0.274 0.787 FALSE
DOMR+ perc. t=0.6 dt=4 0.779 0.445 FALSE
DOMR+ perc. t=0.8 dt=1 -0.659 0.517 FALSE
DOMR+ perc. t=0.8 dt=2 0.227 0.822 FALSE
DOMR+ perc. t=0.8 dt=4 0.827 0.4189 FALSE

Table 5.44: Paired T-test: R2 stratified validation

RMSE

Table 5.45 shows that for each negative t-statistics value in table 5.44, we can observe
a positive t-statistics value, indicating that the mean RMSE of the proposed model is
higher than the RMSE of the baseline model. However, similar to the R2 analysis, these
differences in RMSE are not statistically significant.
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Model t-stat p-value significance
DT 1x 0.5420 0.5945 FALSE
DT 2x 0.6688 0.5121 FALSE
DT 4x -0.3052 0.7637 FALSE

DOMR t=0.5 0.0029 0.9977 FALSE
DOMR t=0.6 -0.7277 0.4762 FALSE
DOMR t=0.7 0.6531 0.5219 FALSE

DOMR perc. t=0.5 -1.0734 0.2973 FALSE
DOMR perc. t=0.6 -1.3211 0.2030 FALSE
DOMR perc. t=0.7 -0.8704 0.3955 FALSE

DOMR+ t=0.5 dt=1 0.5417 0.5947 FALSE
DOMR+ t=0.5 dt=2 -0.0779 0.9388 FALSE
DOMR+ t=0.5 dt=4 0.3321 0.7437 FALSE

DOMR+ perc. t=0.6 dt=1 0.0982 0.9228 FALSE
DOMR+ perc. t=0.6 dt=2 0.3465 0.7330 FALSE
DOMR+ perc. t=0.6 dt=4 -0.0328 0.9742 FALSE
DOMR+ perc. t=0.8 dt=1 0.5582 0.5836 FALSE
DOMR+ perc. t=0.8 dt=2 -0.0891 0.9300 FALSE
DOMR+ perc. t=0.8 dt=4 -0.3699 0.7158 FALSE

Table 5.45: Paired T-test: RMSE stratified validation
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5.8. T-Test

Model R2 RMSE
Baseline 0.239 6.434

DT 1x 0.250 6.361
DT 2x 0.252 6.356
DT4x 0.214 6.484

DOMR t=0.5 0.243 6.434
DOMR t=0.6 0.174 6.655
DOMR t=0.7 0.253 6.346

DOMR perc. t=0.5 0.201 6.590
DOMR perc. t=0.6 0.174 6.656
DOMR perc. t=0.7 0.181 6.589

DOMR+ t=0.5 dt=1 0.257 6.348
DOMR+ t=0.5 dt=2 0.238 6.444
DOMR+ t=0.5 dt=4 0.245 6.392

DOMR+ perc. t=0.6 dt=1 0.241 6.422
DOMR+ perc. t=0.6 dt=2 0.245 6.387
DOMR+ perc. t=0.6 dt=4 0.227 6.439
DOMR+ perc. t=0.8 dt=1 0.253 6.354
DOMR+ perc. t=0.8 dt=2 0.234 6.449
DOMR+ perc. t=0.8 dt=4 0.214 6.503

Table 5.46: Stratified fold mean R2 and RMSE

5.8.1 Seeding
To further empirically assess the efficacy of the proposed approaches in enhancing model
performance, chosen models are trained 10 times using the stratified fold methods,
respectively outlined in section 5.7.1 and 5.7.2. Each training cycle (Cross-Validation)
employs a different seed for random sampling. This process will be repeated 10 times.
Doing so results in a total of 100 trained models (10 seeds × 10 folds). For comparative
analysis, we employ the baseline FCN6 model alongside the best-performing models
identified in sections 5.7.1 and 5.7.2: the FCN6 model with 1x chained data transformation
(DT 1x), the FCN6 model with 2x chained data transformation (DT 2x), the FCN6
model applying DOMR with a threshold set to 0.7 (DOMR t=0.7), the FCN6 DOMR+
with a threshold of 0.5 and 4x chained data transformation (DOMR+ perc. t=0.5 dt=4),
the FCN6 DOMR+ percentile with a threshold of 0.8 and 1x chained data transformation
(DOMR+ perc. t=0.8 dt=1).

Results

When we only look at the mean values of the R2 and RMSE in table 5.47, we can see
that only the DT 1x model improved in performance.

Further, the t-test results on R2 in table 5.48 show, that the differences between the
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baseline and each model, except DOMR+ t=0.5 dt=4, are statistically not significant.
Although significant, the DOMR+ t=0.5 dt=4 model’s t-statistic is positive, indicating
that these models have a decrease in performance against the baseline model on average
regarding the R2. Similar results can be seen for the DT 2x and DOMR t=0.7 models,
with positive t-statistics. Similarly, it can be said for these models for the RMSE, as seen
in table 5.49, that the values are statistically not significant and decreased in performance,
except for DT 2x, but only with pretty much negligible t-statistics value of 0.057. For
the DT 1x model a negative t-statistic value of -1.145 for R2 and positive t-statistics
of 1.515 for RMSE can be seen in table 5.48 and 5.49, but again these values are not
statistically significant.

The DOMR+ perc. t=0.8 dt=1 model by far delivers the most promising results, with
a negative t-statistic of -1.726 for R2. While the p-value of 0.087 is not below the
significance threshold value (0.05), it is quite close to it. Similarly, we can see an increase
in RMSE performance with a t-statistic of 3.046, which is also statistically significant
with a p-value of 0.002.

Mean metrics (10 seeds, 10-stratified fold CV)
Model R2 RMSE
Baseline 0.258 6.377
DT 1x 0.267 6.315
DT 2x 0.254 6.376
DOMR t=0.7 0.251 6.382
DOMR+ t=0.5 dt=4 0.244 6.412
DOMR+ t=0.8 DT=1x 0.251 6.312

Table 5.47: Mean R2 and RMSE results of 10-stratified fold CV (10 seeds)

Model t-stat p-value significant
DT 1x -1.145 0.254 FALSE
DT 2x 0.828 0.409 FALSE

DOMR t=0.7 1.297 0.197 FALSE
DOMR+ t=0.5 dt=4 2.459 0.015 FALSE

DOMR+ perc. t=0.8 dt=1 -1.726 0.087 FALSE

Table 5.48: 10 seeds x 10 folds, Paired T-test for R2 (FCN6 model, stratified validation)
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Model t-stat p-value significant
DT 1x 1.515 0.132 FALSE
DT 2x 0.057 0.954 FALSE

DOMR t=0.7 -0.201 0.840 FALSE
DOMR+ t=0.5 dt=4 -1.40 0.163 FALSE

DOMR+ perc. t=0.8 dt=1 3.046 0.002 TRUE

Table 5.49: 10 seeds x 10 folds, Paired T-test for RMSE (FCN6 model, stratified
validation)
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CHAPTER 6
Discussion

In this chapter, we will discuss the implications of the results obtained from the experi-
ments. We will examine what these findings suggest and identify any inherent limitations
and future research directions.

6.1 Implications
This thesis contributes to the ongoing research that aims to improve the accuracy and
robustness of music mood tagging models through explorations of different oversampling
techniques for imbalanced audio dataset, specifically for discrete or continuous variables,
which could pave the way for future research in this area.

Furthermore, this thesis can help further develop the EMMA dataset by highlighting areas
where additional annotations or data collection efforts may be needed. By identifying
limitations in the current dataset, researchers can prioritize future efforts to ensure the
usability of the dataset. This includes improving the diversity and coverage of emotion
scores within the dataset, as well as refining the annotation process to better align with
the requirements of machine learning tasks. This in turn could also help the usability for
other use cases of the dataset.

Upon reviewing the results presented in Chapter 5, it becomes apparent that none
of the proposed approaches were able to significantly improve the performance of the
models. However, certain approaches demonstrate promising potential, as evidenced by
the findings in tables 5.48 and 5.49. Particularly noteworthy is the DOMR+ percentile
model with a threshold of 0.8 and a data transformation chain of 1, which exhibit an
increased average R2 performance compared to the baseline model. Its p-value of 0.08,
which is close to the significance threshold, suggests potential significance. It was able
to achieve an increase in performance in regards to the average RMSE, which was also
statistically significant with a p-value of 0.002. Further investigation with adjustments to
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the model parameters and performance measurements on different datasets could validate
its effectiveness.

6.2 Limitations
6.2.1 Dataset size & Imbalance
Arguably, the biggest drawback of the EMMA dataset is its extremely small sample
size compared to other datasets in the field. Already mentioned in section 2.2, existing
datasets can reach a sample size up to a million music samples (e.g. Million Song Dataset
[BMEWL11]). While the EMMA dataset arguably offers superior data quality compared
to its counterparts, its sample size significantly diminishes its potential. Furthermore,
in addition to its small sample size, the right skewness observed in certain emotion
scores, such as Sadness and Tension as seen in chapter 3, further exacerbates the issue.
This skewness results in certain data ranges being even less represented in an already
data-scarce dataset. Similarly, due to the small sample size and right skewness, the
performance of the model can get very dependent on the train-test composition. This
dependency is evident in the contrasting results obtained from the non-stratified and
stratified fold methods, as discussed in sections 5.7.1 and 5.7.2.

Consequently, the DOMR approaches, which oversample according to the rarity of the
data point, have limited data to work with. For instance, the smaller the pool of data for
a certain range, the less data will be oversampled from it, making it difficult to balance
out the skewness. Additionally, the diversity of the oversampled data will also be limited.
This can be also observed in the metrics, as the R2 improves, the RMSE hardly improves.
Generally, oversampling, regardless of the method, will most likely not improve the model
significantly due to this constraint. Further, even if effective oversampling methods exist,
the samples size cannot be enlarged enough if the original sample amount is too low
to begin with. We can see in section 5.3, how a rather tolerant threshold point of 0.6
increases the sample size from 625 to only 710.

6.2.2 Annotation
The spread of the emotion scores appears to have low variance (see figure 4.4), which may
present challenges for effectively capturing the nuances of music mood tagging. Therefore,
the current annotation methodology may not be optimally suited for this kind of task.
Further refinement of the annotation/scoring process, while considering machine learning
tasks, could make the dataset more suitable for music mood tagging tasks.

6.2.3 Model selection & Evaluation
The choice of model architecture and hyperparameters in this thesis may not have been
optimal. While a variety of models was explored, there may exist other architectures or
configurations that could yield improved performance. The various models implemented
in this thesis only had marginal or no differences to the performance. This could partly
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be attributed to the limited availability of data, which may have hindered the models’
ability to learn the underlying patterns in the audio data effectively.

Moreover, the evaluation metrics used in this thesis, such as R2 and RMSE, provide
insights into model performance, but may not capture all aspects of music mood tag-
ging accuracy. Further, future research could consider additional evaluation metrics
or qualitative assessments to provide a more comprehensive understanding of model
performance. R2 and RMSE cannot capture whether or not predicted scores reflect the
emotions perceived by human listeners.

6.3 Future Work
While this thesis provides first insights into the performance, problems and approaches
for music mood tagging using the EMMA dataset, there are still numerous areas open to
be researched. In this section, we outline potential directions for further investigation.

EMMA dataset

As discussed in the limitations section, the small sample size of the EMMA dataset poses
a significant challenge in training a music mood tagging model. Therefore, one direction
for future work could be the expansion of the EMMA dataset. Especially, rare score
ranges need to be covered more by the data. Further, adjusting the dataset’s coverage of
a broader range of score variations could substantially improve model performance.

Combination of Datasets

Another direction for future research could be to find an appropriate taxonomy to
merge the EMMA dataset with other similar datasets introduced in the related works
to overcome the data scarcity problem. Datasets such as MTG-Jamendo, the Million
Song Dataset, and MagnaTagATune have been extensively used in the field of Music
Information Retrieval (MIR). By leveraging the strengths of multiple datasets and
exploring multimodal features, it may be possible to improve mood based recommender
systems and the understanding of the emotional content of music.

Oversampling, Data transformation & DOMR

The DOMR approaches implemented in this thesis have shown limitations, but also have
only been applied to a rather small dataset. Therefore, training models using the DOMR+
perc. t=0.8 dt=1 approach from section 5.8.1, which yielded optimistic results to larger
datasets, could provide a more comprehensive understanding of their effectiveness in
enhancing model performance. Furthermore, the development of more refined techniques
other than the kernel density estimation for selecting data to be used in oversampling
has the potential to significantly improve the efficacy of DOMR approaches.
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Models & transfer learning

While this thesis prioritized addressing the challenge of data scarcity over exploring
model architecture, it is worth noting that alternative architectures may increase model
performance. Additionally, while transfer learning did not enhance model performance in
this thesis, it is possible that the limited data size played a role in this outcome. Further
exploration of methods to improve model performance through transfer learning remains
a direction for future research.

Further, as already mentioned, to capture whether the predictions are consistent with the
emotions perceived by listeners, qualitative assessments could be considered in the future.
For instance, this could involve conducting questionnaires with listeners or designing
interactive games where participants judge the predictions made by the model based on
their perceived emotions. These qualitative approaches could help ascertain whether the
model’s predictions align with the emotions perceived by listeners and provide valuable
insights into the real-world applicability of the proposed approaches. The information
gained from these assessments could also be embedded into the training process.

Multimodel data

Another promising area for future research is the integration of multimodal data for
music mood tagging. While this thesis focused primarily on audio features, incorporating
additional modalities such as lyrics, user metadata, or audiovisual information could
provide richer context and improve the accuracy of mood prediction. Pyrovolakis et al.
[PTS22] were able to achieve promising results on the MoodyLyrics dataset [cM17] by
combining lyrics and audio data by constructing a uniform system. They utilized BERT
for extracting features from lyrics and a CNN for processing audio data. The output
from both models was then combined, and a neural network with two fully-connected
layers was employed to predict the labels.

However, this approach may encounter potential limitations if applied to the EMMA
dataset. For instance, the dataset includes classical music without lyrics, as well as songs
with non-English lyrics. These factors could pose challenges in effectively integrating
multimodal data and may require further research.

Data transformations

Similar to DOMR approaches, chained Data transformation methods yielded results
that could potentially improve model performances. However, as observed in Table
5.7.1 and 5.7.2, transformations with more than 2x tend to lead to inferior results.
This suggests a potential area for further investigation. Exploring the optimal number
and types of transformations that enhance model performance without diminishing
it could be a valuable research direction. Data transformation approaches, while not
statistically significant in this thesis, have shown potential to have a positive effect on
model performance as seen in table 5.44 and 5.48 and warrant further investigation as a
potential research direction.
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CHAPTER 7
Conclusion

In conclusion, this thesis has explored through extensive experimentation and analysis
various methodologies and approaches for music mood tagging tasks using the EMMA
dataset and several key findings have emerged.

Firstly, the limitations of the EMMA dataset, including its small sample size and the right
skewness of certain emotion scores, present significant challenges for effectively training
music mood tagging models. Additionally, there is not a lot of research done in oversam-
pling or data augmentation methods tailored for audio regression tasks. While certain
approaches, such as Density Oversampling for Multivariate Regression (DOMR/DOMR+)
and data transformation techniques, have shown promise, none have yielded statistically
significant improvements in model performance when trained and tested on the EMMA
dataset. That being said, DOMR+ showed signs of potential and therefore warrants
further exploration. Particularly, applying DOMR+ to other larger datasets could pro-
vide valuable insights into its effectiveness. Similarly, data transformation methods also
demonstrated glimpses of improvement in model performance, suggesting their relevance
for enhancing the effectiveness of the EMMA dataset in music mood tagging tasks.

Particularly for training machine learning models using the EMMA dataset, the mentioned
shortcomings need to be addressed. Researchers could explore approaches to enhance
the EMMA dataset, such as increasing its sample size and refining its annotation process.
By addressing these weaknesses, the dataset could be more suitable for model training
and be able to predict moods that are potentially consistent with human perception.

In summary, while this thesis has shed light on various challenges in music mood tagging
using the EMMA dataset, further research into various areas is still needed to overcome
the limitations.
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CHAPTER 8
Update: Performance on the

Extended EMMA Dataset

Near the completion of this thesis, an extended version of the EMMA dataset has been
released, incorporating additional data and possibly addressing some of the limitations
identified in the previous version.

8.1 New Dataset

The dataset size increased from 364 to 823 songs, covering more score ranges than the
previous version as depicted in figure 8.1. However, the problem of right skewness still
exists. When examining the skewness values presented in Table 8.1, and referring to
Bulmer’s interpretation of skewness [Bul79], already introduced in section 4.3, none of
the emotions are approximately symmetric, Tenderness, Tension and Sadness are highly
skewed.
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(a) Original (b) Extended

Figure 8.1: Emma dataset distribution

Skewness
Wonder 0.715
Transcendence 0.757
Nostalgia 0.839
Tenderness 1.096
Peacefulness 0.949
Joy 0.757
Power 0.804
Tension 1.992
Sadness 1.880

Table 8.1: Skewness of emotions scores (Extended EMMA dataset)

Due to the higher number of samples, the KDE based stratified folds of the extended
dataset exhibit higher similarity to each other, as it can be seen by the comparisons
shown in figure 8.2.
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(a) Original (b) Extended

Figure 8.2: Emma dataset fold distribution

8.2 Model Performance with the Extended EMMA
Dataset

Similar to section 5.8.1, models were trained using 10-stratified fold cross-validation
with 10 different seeds, resulting in a total of 100 models. For this, both the baseline
FCN6 model and the best performing model from Section 5.8.1, DOMR+ percentile
with parameters t=0.8 and DT=1x, were trained. The mean, median, minimum and
maximum metrics are compared and a dependent pairwise t-test between the baseline
model and DOMR+ percentile will be conducted.
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Baseline
R2 RMSE

0.258 9.374
0.262 9.392
0.248 9.433
0.264 9.370
0.275 9.300
0.246 9.466
0.237 9.513
0.248 9.446
0.238 9.528
0.273 9.302

DOMR+ perc. t=0.8 DT=1x
R2 RMSE

0.297 9.102
0.275 9.392
0.288 9.433
0.298 9.370
0.289 9.300
0.291 9.466
0.274 9.513
0.276 9.446
0.286 9.528
0.299 9.302

Table 8.2: Baseline FCN6 vs DOMR+ perc. t = 0.8 DT = 1x FCN6 model, Stratified
fold mean R2 and RMSE for extended EMMA dataset

Model Baseline DOMR+ perc. t=0.8 DT=1x
Metric R2 RMSE R2 RMSE
Mean 0.255 9.412 0.287 9.186

Median 0.2592 9.371 0.288 9.182
Min 0.021 8.786 0.1676 8.373
Max 0.374 10.467 0.396 10.105

Table 8.3: Baseline vs DOMR+ perc. t=0.8 DT = 1x, Statistics over 100 models (10
seeds x 10 stratified folds)

R2

Model t-stat p-value significant
DOMR+ perc. t=0.8 DT = 1x -5.536 0.00000025 TRUE

Table 8.4: T-test results for R2 against the Baseline model (extended Dataset)

RMSE
Model t-stat p-value significant

DOMR+ perc. t=0.8 DT = 1x 5.691 0.00000013 TRUE

Table 8.5: T-test results for RMSE against the Baseline model (extended Dataset)

Looking at the average R2 and RMSE values of the Baseline and the DOMR+ in table
8.2, we cannot see a similar performance in R2 and an notable increase in RMSE. This
increase in RMSE could be attributed to the dataset more than doubling in size. With a
broader range of score values covered by the data, the test dataset naturally includes
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score ranges that are more challenging to predict, thereby leading to higher prediction
errors.

When comparing the DOMR+ t=0.8 DT=1x to the baseline model, as seen in table
8.3, we can see an increase in mean and median performance for the RMSE and R2.
This was not the case for the models trained on the original dataset as seen in table
5.47. Additionally, the DOMR+ model shows a higher minimum performance for both
RMSE and R2, as well as a higher maximum performance for R2. Similarly, an increase
in performance can be observed for both the minimum and maximum RMSE values.

For the t-test results shown in table 8.4, we observe a t-statistic of -5.536. The negative
sign indicates that the sample mean of the DOMR+ percentile is higher than the sample
mean of the baseline models, suggesting an increase in R2 performance. Furthermore,
the p-value is below the threshold of 0.05, indicating statistical significance.

Similarly, in table 8.5, the t-statistic has a positive sign with 5.691. This suggests that
the sample mean of the DOMR+ percentile is lower than the sample mean of the baseline
models, indicating an improvement in RMSE performance. Again, the p-value is below
the threshold of 0.05, confirming statistical significance.

This contrasts with the results obtained from the original dataset, as depicted in table
5.48 and table 5.48, where the difference in R2 was not statistically significant.

8.3 Implication, Future Work and Conclusion
With an increased volume of annotated music excerpts, the dataset offers a more compre-
hensive representation of emotional responses to music. This opens up research for even
deeper analysis and exploration of approaches, including those already examined in this
thesis, such as oversampling and data augmentation. With more data available, these
methods can be more viable and effective.

Already, the DOMR+ percentile model, though not specifically fine-tuned for the extended
dataset, has exhibited promising performance improvements, positioning it as a potential
candidate for further investigation and application in mood tagging tasks.

In conclusion, the extension of the EMMA dataset is already a promising improvement
in score distribution and sample size. While there is still room for improvement in these
areas, the extended dataset already indicates progress in the right direction.

While this thesis did not delve deeply into the extended EMMA dataset, its prelimi-
nary findings already reflect the potential of the DOMR+ approach to enhance model
performance in music mood tagging tasks.
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