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Kurzfassung

Wir studieren die Synthese von rekursiven Funktionen mithilfe eines sättigungsbasierten,
automatisierten Theorembeweis-Tools. Wir verwenden das Superpositionsprinzip, um die
Korrektheit der Spezifizierungen an die Funktionen zu beweisen und konstruieren während-
dessen den Code, der genau diese Spezifizierung erfüllt. Die Spezifizierungen der Funktionen
sind in Prädikatenlogik ausgedrückt mit induktiv definierten Datentypen. Wir stellen neue
Folgerungsregeln für Induktion vor und verwenden sogenannte Beantwortungsliterale, um
rekursive Funktionen aus der Beweisableitung zu synthetisieren. Wir zeigen die Herausfor-
derungen von Synthetisierung rekursiver Funktionen anhand konkreter Beispiele und heben
dabei unsere Lösungen hervor.



Abstract

We study the synthesis of recursive functions using saturation-based first-order theorem
proving. We use superposition reasoning to prove the correctness of function specifications
while constructing code that satisfies the given specification. The function specifications
are expressed as first-order formulas with inductively defined data types. We present new
inference rules for induction in saturation and use answer literals to synthesize recursive
functions from saturation-based proof search. We show the challenges of recursive synthesis
using concrete examples, highlighting our solutions in this context.
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for her constant availability, facilitating weekly meetings that provided a platform for in-
sightful discussions and constructive feedback as well as prompt corrections. She not only
supervised my thesis but also invited me to numerous academic events to network and
collaborate with professionals in the field. I am also very thankful to her for giving me the
opportunity to attend the IJCAR 2024 conference in Nancy, France.
Secondly, I would like to thank Petra Hozzová who I have worked with over the past few
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1 Introduction

Program synthesis is a research field in computer science that emerged in the 1950s with the
establishment of artificial intelligence. The idea is that a computer can automatically derive
a program that has been specified by a user in advance. The format of these requirements
of the to-be synthesized code, that are also called specifications, depends on the framework
that is used. Automating the process of generating code can significantly reduce time and
errors, and, in the best case, leads to implementations of complex requirements or speci-
fications that may be difficult for programmers to implement manually. Today, program
synthesis is successfully used in many di↵erent research areas, such as software engineering,
biological discovery, computer-aided education, or end-user programming. There are sev-
eral applications of program synthesis in mass-market industrial products, e.g. FlashFill
or GitHub Copilot, [GPS17].

With formal program verification correctness of code can be proven and is widely used
in various industries. Here, the task is to firstly translate the code into formal semantics
that the computer can take as input and secondly prove its validity with the help of a
theorem prover, see Figure 1.1. Successful execution leads to code that has been proven to
be correct, which means that no further testing is required.

Deductive program synthesis or verified program synthesis combines these two ideas of
formal program verification and program synthesis, see Figure 1.1. This leads to, not only
automatically constructing code according to the given specification, but also simultane-
ously proving that the constructed code fulfills the given specification. Integrating theorem
proving, which is a part of formal program verification, with program synthesis can achieve
this.

The first step, in order to successfully synthesize code that is proven to be correct is to
express the specification in a language that the to-be-used theorem prover understands. In
our setting this is a first-order logic formula that has the following format

8x 9 y.F [x, y]. (1.1)

In (1.1) the formula F specifies the task of the to-be synthesized program, the variables
x = x1, ..., xn correspond to the program input and the variable y corresponds to the pro-
gram output.

The task is to come up with an implementation that fully automatically (i) tracks all
necessary information from the fully automatic proof and (ii) constructs the correct func-
tion from the extracted information for a given specification (1.1). In [HKNV23] Petra
Hozzová, Laura Kovács, and Andrei Voronkov successfully implemented such a synthesis

1
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Output:
Program correct

Theorem Proving:
Prove/Disprove

Validity

Translation into
(First-Order

Logic) Semantics

Input:
Program

if valid

Formal Program Verification

Output:
Correct Program

Prove Validity while
constructing Code

Input:
Specification

if valid

Verified Program Synthesis

Figure 1.1: Comparing formal program verification with verified program synthesis.

device for the specific theorem prover Vampire.

Induction is an important proving technique that successfully enables theorem provers to
prove more complex theorems, [HKRV22]. Induction is therefore also key for synthesizing
more complex programs.
There is a one-to-one correspondence of induction and recursive functions, functions that

call upon themselves. When induction is used during the proof, we exploit this correspon-
dence to directly create a recursive program, which is a program that contains recursive
functions. The successful implementation of synthesis that makes use of induction during
an automatic proof is what we achieved in [HAH+24] which therefore enables synthesis of
recursive programs.

In order to explain this process of synthesizing recursive functions from formal specifica-
tions in more detail, we will present an example in Section 1.1 that illustrates the mentioned
correspondence of induction and recursion in a simple way. At a later stage, we will use the
example in Section 1.1 to showcase how we can use this correspondence to fully automatize
program synthesis of recursive functions. This includes

1. manually proving a specification using a formal framework in Chapter 3,

2. manually synthesizing a program from a given specification using a formal framework
in Section 5.2,

3. and finally, automatically synthesizing a program from a given specification using an
operating implementation in Section 5.3.

2



1 Introduction

Steps 1 and 2 are my contributions in [HAH+24].

1.1 Motivating Example

We present an example that shows how to synthesize a recursive function from a given
formal specification (1.1) by proving the specification by induction and tracking changes in
the proof. Note here that we solely look at the informal proof for a better understanding
of the correspondence of induction and recursion.

Before being able to express the formal specification, we need to establish the setting
we are working with. In this case, it is the theory of natural numbers. Therefore we are
equipped with the constructors 0 and s (the successor function s is more commonly known
as the ”+1” operator). The first constructor, 0, is a constant (i.e. a function of arity 0)
and the second constructor, s, is a function of arity 1. The following axioms define these
constructors.

8x. s(x) 6= 0 (Nat1)

8x, y. s(x) = s(y) ! x = y (Nat2)

This setting translates exactly to what we know of the set of natural numbers N. The ax-
ioms (Nat1) and (Nat2) make sure of two things. First, there is no element coming before
0, and second, there are countably infinite elements coming after zero. This leads to an
algebraic datatype N with the following structure:

0 s(0) ' 1 s(s(0)) ' 2 s(s(s(0))) ' 3 s(s(s(s(0)))) ' 4

What we will also need are the two commonly known operators ” + ” and ”·”. They are
defined inductively over the theory of natural numbers by the following axioms.

8x 2 N.x+ 0 = x (Add1)

8x, n 2 N.x+ s(n) = s(x+ n) (Add2)

8x 2 N.x · 0 = 0 (Mult1)

8x, n 2 N.x · s(n) = x · n+ x (Mult2)

These axioms give us the tools we need for expressing the law of distributivity of natural
numbers. This law states that when two numbers are multiplied with the same factor and
added, one can simplify it by first adding those two numbers and then multiplying them,
e.g. 3 · 4 + 3 · 6 = 3 · (4 + 6) = 3 · 10. Expressed in first-order logic, we have

8x1, x2, x3 2 N. x1 · x2 + x1 · x3 = x1 · (x2 + x3). (Law of Distributivity)

We need to adapt (Law of Distributivity) in order to get a specification of the form (1.1).
The goal is to synthesize a function that computes x2+x3, this is what the output y should
be. This then leads to the following input.

3
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Input: 8x1, x2, x3 2 N. 9y 2 N. x1 · x2 + x1 · x3 = x1 · y (SPD)

The goal of the synthesis task is then the following: by proving (SPD) we want to come
up with a function f(x1, x2, x3) that computes y, which is x2 + x3. When the task is to
only prove (SPD) one needs to, in theory, only prove the existence of element y but does
not need to come up with how y looks like. However, we can also use the proof of existence
of y to construct y. This describes the core of the combination of theorem proving and
synthesis: we want to not only have the information of validity of (SPD) but also construct
a program that returns the specific output y for given input x.

Now we prove (SPD) on paper and use the important proving technique of induction.
Here, we are using induction over the natural numbers. Informally described, induction is
like constructing an infinite ladder. Firstly, we prove that a statement holds for the base
element 0, and then we prove that, if the statement holds for an arbitrary element n, it
also holds for the element that is coming after, s(n). If this can be done we can deduce by
the nature of the natural numbers that the statement holds for all elements in N. When
expressing induction in first-order logic, we have

(F [0] ^ 8n.(F [n] ! F [s(n)])) ! 8x.F [x]. (IndAx)

We call the formula (IndAx) the induction axiom. It holds for arbitrary first-order logic
formulas F .

The idea of our synthesis task is that when we apply induction while proving the in-
put specification (SPD), we also construct a recursive function that stores the following
information:

1. the input argument on which induction is applied,

2. the output for the input 0, the base case,

3. and the output for the input s(n), which makes use of the output for the input n.

We will explain this in more detail by writing down a proof of (SPD).

Proof. We apply induction on the formula

Fdis[x] : 8x1, x2 9y. x1 · x2 + x1 · x = x1 · y.
By doing this, we firstly show that

Fdis[0] : 8x1, x2 9y. x1 · x2 + x1 · 0 = x1 · y
holds. Because of (Add1) and (Mult1) the term x1 · x2 + x1 · 0 simplifies to x1 · x2. The
formula

8x1, x2. x1 · x2 = x1 · x2

4
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is trivially true, therefore setting y0 := x2 leads to validity of Fdis[0].
As a next step we assume that

Fdis[n] : 8x1, x2 2 N.9y 2 N.x1 · x2 + x1 · n = x1 · y (IndHyp)

holds and show that under the assumption of Fdis[n] also Fdis[s(n)] holds. The calculation
(1.2) shows that one can set ys := s(y).

x1 · x2 + x1 · s(n) (Mult2)
= x1 · x2 + x1 · n+ x1

(IndHyp)
= x1 · y + x1

(Mult2)
= x1 · s(y) (1.2)

We see that we have found an element ys such that Fdis[s(n)] holds. Therefore Fdis[s(n)]
is valid under assumption Fdis[n]. We have shown that the induction premises in (IndAx)
hold and can conclude that

8x.Fdis[x],

which is exactly the specification (SPD) we wanted to prove.

Going back to the three bullet points above, we can construct a recursive function f that
has

1. variable x3 as input, corresponding to the application of induction on exactly this
variable,

2. the output x2 for the input 0 and

3. the output s(y) for the input s(n), where y = f(n).

In summary, the constructed program is

Output: f(x3), (1.3)

where f is defined by

f(0) = x2

f(s(n)) = s(f(n)). (1.4)

We can easily verify that program (1.3) where the recursive function f is defined by (1.4)
has exactly the intended behavior of the given specification (SPD). It adds x3-times ”+1”
to x2, in other words x2 + x3.
To sum up, we have proven that (1.3) is the correct program corresponding to the

specification (SPD).

5



1 Introduction

1.2 Contributions and Outline

Outline. In this thesis, I show how the process discussed in Section 1.1 is formalized,
leading to fully automated synthesis of provable recursive programs.

For this, we firstly explain the basic notions of the resolution calculus in propositional
and first-order logic and further extend this to superposition first-order theorem proving in
Chapter 2. The superposition calculus is used by Vampire which enables reasoning over
theories with equality, as we have seen in 1.1 where we have reasoned over the natural
numbers. We give a derivation for the motivating example of Section 1.1 in Chapter 3 for
a better understanding of the superposition calculus.

As a second step, in Chapter 4 we introduce the concept of answer literals and show how
they can synthesize non-recursive functions using the superposition calculus. This is the
setting that essentially automatizes the process in Section 1.1, extracting the information
about variable y in the proof. We further discuss limitations of this framework related to
recursive synthesis.

At this stage, we revisit our motivating example a second time to show how the non-
recursive synthesis framework can be extended to synthesize the program (1.3). We also
show how this works in practice using the first-order theorem prover Vampire, see Chap-
ter 5.

In Chapter 6 we introduce the notion of inductive structures and prove certain proper-
ties to obtain a uniqueness relation of recursive functions and induction. We formalize the
extension of recursive synthesis explained in Chapter 5 by using specially defined induction
axioms dubbed as magic axioms.

We finally give several examples in Chapter 7 for di↵erent inductive structures (natural
numbers, natural lists, and natural binary trees) that show how this simple framework can
be extended further in order to synthesize more complex programs.

Finally, we compare di↵erent synthesis frameworks with ours, in Chapter 8.

My contributions. During the development of a recursive synthesis method [HAH+24],
implemented in the theorem prover Vampire, my contributions were the following:

1. creating interesting and challenging specifications to synthesize,

2. figuring out how the developed framework can synthesize these specifications by using
induction and

3. improving the developed framework in such a way that it can synthesize programs it
was not able to synthesize beforehand.

6
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My contributions deepened the understanding of recursive synthesis using the superposition
calculus and therefore helped to improve the implementation of the developed synthesis
approach.

Paper acceptance at the IJCAR 2024 conference. Parts of this thesis contributed to
the paper ”Synthesis of Recursive Programs in Saturation” [HAH+24] that was accepted
at IJCAR 2024 (International Joint Conference on Automated Reasoning). The paper was
mainly written by Petra Hozzvá and supervised by Laura Kovács and Andrei Voronkov.
Part of the implementation was done by Daneshvar Amrollahi. I lead the e↵orts in designing
challenging examples to be used for synthesis and proving each example in the superposition
calculus.

7



2 Preliminaries

In this chapter, the basic concept of first-order theorem proving is discussed. In Section 2.1
and Section 2.2 we recall and follow results from [GGH18], whereas Section 2.3 builds upon
the content of chapter 7, [NR01], and chapter 10, [DV01], of the Handbook of Automated
Reasoning.

The goal of first-order theorem proving is to establish validity of, hence prove, an arbi-
trary statement that is formulated in first-order logic. The underlining proving principle
used here, as well as in this thesis is proof by refutation. There, it is assumed that the
opposite of a given statement φ is true with the goal of finding a contradiction. When this
can be done, the original statement φ must hold. In terms of logic, this can be written as

φ is valid () ¬φ is unsatisfiable,

which means that, when a contradiction of statement ¬φ can be found, it immediately
follows that φ must hold. But how does one prove unsatisfiability of a given formula? The
keyword here is resolution. The input formula is resolved until the empty clause, denoted
as ⇤, is derived. The empty clause ⇤ is exactly the contradiction that is looked for,
it proves unsatisfiability of the negated input statement ¬φ, and therefore concludes the
proof of validity of φ. To understand the principle of resolution in more detail, firstly the
simpler resolution framework in propositional logic is presented in Section 2.1 and afterward
extended to first-order logic in Section 2.2. In Section 2.3 we introduce the superposition
calculus for reasoning over theories with equality.
It is assumed that the reader fairly knows the basic notions of propositional and first-

order logic, more detailed syntactical and semantic definitions can be found in Chapter II
and Chapter III of [GGH18].

2.1 Mathematical Background of Automating Proofs in
Propositional Logic

Propositional logic consists of boolean variables p, q, r, s, ..., the connectives ¬,^,_,!,$,
as well as >,? (verum and falsum). The set of boolean variables is denoted by BV . In
the following the process of proving validity of a propositional formula φ by resolution is
described. It consists of two steps, (i) preprocessing and (ii) proving the formula φ.

Definition 2.1.1 (Validity of Propositional Formulas). A formula φ in propositional logic
is said to be valid if and only if

8b : BV ! {>,?}. b(φ) = >.

A valid propositional formula is also called a tautology.

8



2 Preliminaries

Note here that b is a function that assigns for each boolean variable occurring in φ either
the value true (>) or false (?). We call these types of functions assignments. The function
b is an extension of b, in the sense that it can evaluate the truth values of propositional
formulas. This is done by using the truth values for the variables specified by b and nextly
interpreting the meaning of the connectives ¬,^,_,!, and $.

We show a simple example of evaluating a propositional formula for an assignment b in
the following.

Example 2.1.2 Let the assignment b be defined by b(p) = >, b(q) = > and b(r) =?
for the boolean variables p, q and r. Then the extension b evaluates the input formula
φ1 : (¬p _ q) ^ r as

b(φ1) = ((¬>) _ >)^ ?= (? _>)^ ?= >^ ?=? .

We conclude that the formula φ1 evaluates to false under assignment b.
Let us look at an example of a valid propositional formula, so formulas that evaluate to

true for every assignment b.

Example 2.1.3 The formula φ2 : (p ^ ¬p) ! q is valid. The two possible assignments for
variable p are b1(p) = > and b2(p) =? (the assigned value for variable q does not matter
in this case), from which b1(φ2) = b2(φ2) = > follows.

Let us now go back to the initial task, establishing validity of propositional formulas.
We start with preprocessing the input formula φ.

Preprocessing. The first step for proving validity of a given propositional formula φ is to
transform its negation ¬φ into a logically equivalent formula, that is in conjunctive normal
form.

Definition 2.1.4 (Logical Equivalence in Propositional Logic). Two formulas φ and φ0 in
propositional logic are called (logically) equivalent if and only if

8b : BV ! {>,?}. b(φ) = b(φ0).

Definition 2.1.5 (Conjunctive Normal Form). A propositional formula φpro
cnf is said to be

in conjunctive normal form, CNF for short when it has the following format

φpro
cnf :=

n̂

i=1

mi_
j=1

Li,j , (2.1)

where Li,j are literals, so either negated (e.g. ¬p) or non-negated (e.g. p) boolean variables.
For each i, the expression

Wmi
j=1 Li,j is called a clause, that is, a disjunction of literals. A

clause that contains no literals is called the empty clause and is denoted as ⇤. When there
is an index i such that mi = 0, the empty clause is contained in φpro

cnf , which makes φpro
cnf

9



2 Preliminaries

automatically unsatisfiable. A formula in CNF is also called a set of clauses and can be
written as φpro

cnf = {C1, ..., Cn}, where Ci = {Li,1, ..., Li,mi} for i 2 {1, ..., n}.
Transformation of ¬φ into CNF is called preprocessing and is done in several steps that

will be explained here.
As a first step, the connectives ! and $ are removed. This can be done with the

following equivalence transformations

φ ! ψ () ¬φ _ ψ

φ $ ψ () (¬φ _ ψ) ^ (¬ψ _ φ).

When the formula φ only contains connectives ¬, ^ and _ the next step is to move all outer
negations directly next to the variables using De Morgan’s Laws and the rule of double
negation

¬(φ _ ψ) () ¬φ ^ ¬ψ
¬(φ ^ ψ) () ¬φ _ ¬ψ

¬(¬φ) () φ.

Then using the distributivity laws

(φ ^ ψ) _ χ () (φ _ χ) ^ (ψ _ χ)

χ _ (φ ^ ψ) () (χ _ φ) ^ (χ _ ψ),

the formula can be transformed into CNF.

Resolution calculus. The second step of proving validity of a propositional formula φ,
after transforming its negation into CNF, is to derive from the given set of clauses (that
is exactly ¬φ) the empty clause ⇤ using the resolution and factoring rule, see Figure 2.1.
When the empty clause using the resolution and the factoring rule can be derived from ¬φ,
it is said that there is a resolution refutation of ¬φ. The following theorem assures that
the introduced resolution calculus is sound and complete.

Theorem 2.1.6 (Soundness and completeness of propositional resolution). Let φ be a
propositional formula. Then the following holds.

Soundness: If there is a resolution refutation of ¬φ, then φ is valid. (2.2)

Completeness: If φ is valid, then there is a resolution refutation of ¬φ. (2.3)

Proof. (2.2) follows from II.3.4 of [GGH18], whereas (2.3) follows from II.3.11 of [GGH18].
⇤

The proving process then works like this. Each application of an inference rule results
in a new clause. Assuming that ¬φ holds, each newly received clause must also hold
(soundness). Therefore the derived clause can be added to the input clause set and further
clauses can be derived. When at some point the empty clause ⇤ is added to the clause
set, the contradiction has been found (completeness). The empty clause ⇤ can never hold,

10



2 Preliminaries

Binary resolution (BR):

L _ C ¬L _D

C _D

Factoring (F):

L _ L _ C

L _ C

Figure 2.1: Inference rules of binary resolution and factoring in propositional logic. Expres-
sion L denotes a literal, and expressions C and D denote clauses. Underlining
literals is a notation to clarify which literals are selected for resolution or fac-
toring.

it is a disjunction of literals, to be true at least one literal must be fulfilled. Because it
is empty there is no literal that can be fulfilled, hence it is false. On the other hand, our
proof derivation states that the empty clause must hold. Because of the soundness of our
calculus, from Figure 2.1, the formula ¬φ is unsatisfiable, hence φ must be valid. Let us
look at a short example.

Example 2.1.7 We want to prove validity of the propositional formula φ3 : (p ^ ¬p) !
(q _ r). For this, we firstly transform ¬φ3 into CNF, that is

¬((p ^ ¬p) ! (q _ r))) = ¬(¬(p ^ ¬p) _ (q _ r)) = p ^ ¬p ^ (q _ r).

So ¬φ3 consists of the three clauses C1 : p, C2 : ¬p and C3 : q _ r. Now one can apply
binary resolution on clauses C1 and C2,

p ¬p
⇤ BR

,

which results in the empty clause ⇤. This completes the proof; the formula φ3 is indeed
valid.

2.2 Mathematical Background of Automating Proofs in
First-Order Logic

Having established a sound and complete calculus in propositional logic, Figure 2.1 is nextly
extended to first-order logic. Here the setting consists of variables x, y, z, ..., constants
a, b, c, ..., predicate symbols with arity p, q, r, ..., and functional symbols with arity f, g, h, ....
Expressions consisting of variables, constants, and functional symbols are called terms. For
example using functional symbols f with arity 2, g with arity 3, and constant symbol a,
we get the term g(f(x), y, a). For given terms t1, ..., tn and a predicate symbol p of arity
n, expressions of the form p(t1, ..., tn) are called atomic formulas. A formula consists of
atomic formulas connected with ¬,^,_,!,$. Additionally, the universal quantifier 8 and
the existential quantifier 9 can be used to bound variables.

The concept of validity in first-order logic changes slightly.

11



2 Preliminaries

Definition 2.2.1 (Validity of First-Order Formulas). We say that a formula φ in first-order
logic is valid, if and only if

8I.I |= φ.

Here, I denotes an interpretation, that is, informally described, a mapping that gives the
intended meaning of predicate symbols and functional symbols in our underlying language.
In this section, the process to prove validity of arbitrary closed formulas in first-order

logic is presented. Note here that a formula φ is closed if every variable occurring in φ is
bounded by either a universal (8) or an existential quantifier (9).

The two main steps described in Section 2.1, preprocessing of the input formula into
CNF, and finding a resolution refutation are adjusted and formulated in the following.

2.2.1 Preprocessing in First-Order Logic

Preprocessing consists of transforming the negation of an arbitrary first-order logic formula
that is closed into CNF.

Definition 2.2.2 (Conjunctive Normal Form). A first-order logic formula is said to be in
conjunctive normal form, CNF for short when it has the following format

φfol
cnf := 8x1 ... 8xn

n̂

i=1

mi_
j=1

Li,j , (2.4)

where Li,j are literals, so either negated or non-negated atomic formulas, and x1, ..., xn are

all variables occurring in φfol
cnf .

Transformation into CNF is done in several steps, which are explained next.

1. Cleansing of the formula. When looking at a formula of the form (2.4), all its
quantifiers are located at the front. In order to move quantifiers to the front without
changing the intended meaning of the input formula, it may be necessary to rename some
variables, a process that is called cleansing.

Definition 2.2.3 (Cleansing). A first-order logic formula φ is called cleansed if

1. each variable occurring in φ is only bounded by one quantifier

2. no variable in φ is bounded by a quantifier in one part and is occurring as a free
variable in another.

The following lemma holds.

Lemma 2.2.4 Every first-order logic formula φ can be transformed into a logically equiv-
alent cleansed formula φ.
Proof. See IV.5.9 in [GGH18] ⇤

12
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Let us look at an example.

Example 2.2.5 The formula φ : (8x.9y.p(f(x), y)) ^ (9x.g(x, c)) can be transformed into
the logically equivalent and cleansed formula φclean : (8x.9y.p(f(x), y)) ^ (9z.g(z, c)).

2. Transformation into prenex-normal form. After the formula has been cleansed, all
its quantifiers can be moved to the front by using the following equivalence transformations:

(Qx.φ) ^ ψ () Qx.(φ ^ ψ)

φ ^ (Qx.ψ) () Qx.(φ ^ ψ)

(Qx.φ) _ ψ () Qx.(φ _ ψ)

φ ^ (Qx.ψ) () Qx.(φ _ ψ)

(Qx.φ) ! ψ () Qx.(φ ! ψ)

(φ ! (Qx.ψ)) () Qx.(φ ! ψ)

¬(Qx.φ) () Qx.¬φ.

Note here that the symbol Q denotes either a existential or universal quantifier, and Q = 8
if Q = 9, whereas Q = 9 if Q = 8.
When a first-order formula has all of its quantifiers in front, it is said to be in prenex

normal form, PNF for short. Note here that this transformation is not necessarily unique,
the sequence of the quantifiers can di↵er. But it is usually done in such a way that the
existential quantifiers are as far ahead as possible, which will become clearer in the next
step.
The following property of transformation into PNF can be stated.

Lemma 2.2.6 Every first-order logic formula φ can be transformed into a logically equiv-
alent formula φpnf that is in PNF.
Proof. See in IV.5.11 [GGH18]. ⇤

3. Skolemization. After the input formula is transformed into PNF, the next step is
to remove all existential quantifiers by introducing new functional symbols or constants,
so-called skolem functions or skolem constants. An important thing to note here is that
in all the other preprocessing steps, the formula is transformed into a logically equivalent
formula. A formal definition of this is the following.

Definition 2.2.7 (Logical Equivalence). Two formulas φ, φ0 in first-order logic are said
to be logically equivalent, φ $ φ0, if and only if

8I.(I |= φ () I |= φ0)

This means, essentially, that each interpretation that fulfills one formula must also fulfill
the other. Looking at Skolemization, this is no longer the case. Here the transformation
only ensures so-called equisatisfiability, which is defined like this.

13
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Definition 2.2.8 (Equisatisfiability). Two formulas φ, φ0 in first-order logic are said to be
equisatisfiable, φ $sat φ

0, if and only if

9I.I |= φ () 9I 0.I 0 |= φ0

The di↵erence to logical equivalence is, that the interpretations no longer must be the
same and, more importantly, that the property of validity is not necessarily preserved. But,
since our theorem proving goal is to prove unsatisfiability, equisatisfiability suffices. If the
transformed formula cnf(¬φ) can be proven to be unsatisfiable, it can still be concluded
that the original formula ¬φ is also unsatisfiable, which in turn proves validity of φ. Let
us look at Skolemization in more detail.

Lemma 2.2.9 Let φ : 8x1, ..., 8xn9y.φ0 be a closed first-order formula and f a new func-
tional symbol of arity n that is not occurring in φ. Then

8x1, ..., 8xn9y.φ0 is equisatisfiable to 8x1, ..., 8xn.φ0[y/f(x1, ..., xn)],

where f is a skolem function. Note here that when φ : 9y.φ0, the functional symbol f is of
arity 0, in other words, a constant and therefore non-dependent on any other variables. If
that is the case, f is called a skolem constant.

Proof. See IV.5.13 in [GGH18].

Theorem 2.2.10 (Skolemization). Let φ be a closed first-order logic formula in PNF.
Then there exists a skolemized formula φsko : 8x1, ..., 8xnφ0, where φ0 is quantifier-free such
that

φ $sat φsko.

Proof. See IV.5.14 in [GGH18].

4. Transformation into CNF. After the above preprocessing steps, the output formula
is of the form φ : 8x1, ..., xn.φ0, where φ0 is quantifier-free. Therefore, φ0 can be treated
like a propositional formula (the atomic formulas act like boolean variables) and hence be
transformed into CNF using the same process as described in Section 2.1. When this is done,
all occurring variables in φcnf must be universally quantified because we started o↵ with a
closed formula, and all existential quantifiers were removed in the process of skolemization.
Therefore all the quantifiers in front can be removed without a loss of information. This is
done for notational reasons, the variables are still universally bounded, it is just not written
down explicitly in the proof derivation. Therefore the final input after preprocessing will
be the quantifier-free fragment of φ, which is φ0.

14
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2.2.2 Automating Proving in First-Order Logic

As a next step, after transforming the formula φ into CNF, the goal is to come up with
a similar resolution calculus as described in Section 2.1. The important di↵erence here is,
that in contrast to propositional logic, we are not working with boolean variables, that can
be either equal or non-equal, but atomic formulas. So the question here is not if two given
atomic formulas are equal, but if they can be transformed into the same equal formula and
then be resolved. This transformation of two atomic formulas is done with substitutions.

Definition 2.2.11 (Substitution). We call a function ✓ : {x1 7! t1, ..., xn 7! tn} a
substitution, where x1, ..., xn are variables, t1, ..., tn terms and n ≥ 0. The set dom(✓) :=
{x1, ..., xn} is called the domain of substitution ✓. Note that the identity function, denoted
with id, is also a substitution.
Substitutions can be applied on any expression in first-order logic, meaning terms, lit-

erals, and formulas. For an expression E and substitution ✓ : {x1 7! t1, ..., xn 7! tn} it is
also written E✓ for E[x1/t1, ..., xn/tn]. Note here that, when handling a formula φ in CNF,
all variables occurring in φ are bounded by a universal quantifier. This means that when
applying a substitution ✓ on a clause C, the clause C✓ still holds under assumption C by
the definition of universal quantifiers.

Definition 2.2.12 (Union and Composition of Substitutions). For two substitutions σ1 :
{x1 7! t1, ..., xn 7! tn} and σ2 : {y1 7! s1, ..., ym 7! sm}, where dom(σ1) \ dom(σ2) = ;, the
substitution σ1 [ σ2 := {x1 7! t1, ..., xn 7! tn, y1 7! s1, ..., ym 7! sm} is called the union of
σ1 and σ2. For two substitutions ✓ : {x1 7! t1, ..., xn 7! tn} and σ : {y1 7! s1, ..., ym 7! sm},
where σ = σ1 [ σ2 and dom(σ1) ✓ dom(✓) and dom(σ2) \ dom(✓) = ;, the composition of
✓ and σ is defined as ✓ ◦ σ := {x1/t1σ, ..., xn/tnσ} [ σ2. When applying the composition
✓ ◦ σ on an expression E one can write E(✓ ◦ σ) ' (E✓)σ.

Definition 2.2.13 (Unifier). For two expressions E1, E2 we call a substitution ✓ a unifier
of E1 and E2 if E1✓ ' E2✓.

Remark 2.2.14 In our setting, the expressions E1 and E2 will be terms or literals. The
intended meaning of E1 ' E2 is, that expressions E1 and E2 consist of the same symbols
occurring at the same positions.
A unifier of two expressions is not necessarily unique. Therefore the question arises which

substitution is best to use. We define an ordering over the set of all unifiers.

Definition 2.2.15 (Ordering of Unifiers). For two expressions E1, E2 and two unifiers
✓1, ✓2 of E1, E2 an ordering can be defined, where ✓1 ✓2 if and only if there exists a
substitution σ such that ✓1 ◦ σ = ✓2.
Note here that for ✓1 = ✓2, the substitution σ is just the identity, id.
The idea of the ordering is that one unifier is considered to be smaller than the other

when it can already achieve to unify the two literals without ”needing” the substitution σ.
There also exists a minimal element on the set of all unifiers of two expressions E1 and E2,
if this set is non-empty.
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Binary resolution (BR):

L _ C ¬L0 _D

(C _D)✓

where ✓ := mgu(L,L0).

Factoring (F):

L _ L0 _ C

(L _ C)✓

where ✓ := mgu(L,L0).

Figure 2.2: Extension of the resolution calculus in first-order logic. Expressions L,L0 denote
literals and expression C and D are clauses.

Definition 2.2.16 (mgU). For two expressions E1, E2, the unifier ✓ is called the most
general unifier of E1 and E2, if for every unifier ✓0 of E1 and E2 it already follows that
✓ ✓0. This can also be denoted as ✓ = mgU(E1, E2).

Theorem 2.2.17 (Existence of mgU). If two expressions E1 and E2 have a unifier then
there also exists the most general unifier of E1 and E2.
Proof. See IV.5.23 in [GGH18]. ⇤

Let us consider the following example.

Example 2.2.18 The substitutions ✓1 : {x1 7! g(x3), x4 7! c, x5 7! g(x2)} and ✓2 : {x1 7!
g(g(c)), x2 7! c, x3 7! g(c), x4 7! c, x5 7! g(c)} are both unifiers for the atomic formulas A1 :
p(f(x1, c), g(x2)) and A2 : p(f(g(x3), x4), x5), but ✓1 ◦ σ = ✓2 for σ : {x2 7! c, x3 7! g(c)}.
Therefore the inequality ✓1 ✓2 holds. Additionally, it holds that ✓1 = mgU(A1, A2).

Remark 2.2.19 The first unification algorithm was developed by Robbinson in 1965,
[Rob65], which firstly determines for two given expressions E1 and E2 whether they are
unifiable or not and secondly returns the most general unifier mgU(E1, E2) if they are
unifiable.

Resolution in first-order logic. With this setting, the resolution calculus for closed
first-order formulas is completed. The rules in Figure 2.1 can be adapted by resolving
clauses with literals that can be unified, see Figure 2.2. The principle stays the same.
Firstly the input formula φ is negated and transformed into CNF. Secondly, the inference
rules in Figure 2.2 are applied on the clauses until the empty clause can be derived. This
completes the proof of validity of φ. Now, similarly to Section 2.1 the following theorem
can be stated.

Theorem 2.2.20 (Soundness and completeness of first-order resolution). Let φ be a first-
order logic formula. Then the following holds.

Soundness: If there is a resolution refutation of ¬φ, then φ is valid. (2.5)

Completeness: If φ is valid, then there is a resolution refutation of ¬φ. (2.6)
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Proof. Check IV.5.28 for (2.5) and IV.5.33 for (2.6) in [GGH18]. ⇤

Let us look once more at a small example.

Example 2.2.21 We prove validity of φ : (9x.p(f(x), x)) ! (9x.q(x) _ ¬q(a)). We trans-
form ¬φ into CNF.

¬φ Cleansing
= ¬((9x.p(f(x), x)) ! (9y.q(y) _ ¬q(a)))

PNF
= 9x8y.¬(p(f(x), x) ! (q(y) _ ¬q(a)))

Skolemization
= 8y.¬(p(f(σx), σx) ! (q(y) _ ¬q(a)))

CNF1
= 8y.¬(¬p(f(σx), σx) _ (q(y) _ ¬q(a)))
CNF2
= 8y.p(f(σx), σx) ^ ¬q(y) ^ q(a)

The term σx denotes the skolem constant for the existentially bounded variable x. We
obtain a clause set that contains the clauses C1 : p(f(σx), σx), C2 : ¬q(y) and C3 : q(a).
We apply binary resolution on C2 and C3 using the most general unifier ✓ : {y 7! a},

q(a) ¬q(y)
⇤ BR

,

which results in the empty clause ⇤. This completes the validity proof of φ.

2.3 First-Order Logic with Equality: The Superposition Calculus

In Section 2.2 the function and predicate symbols are stated, without necessarily knowing
what they are supposed to do or which property they are supposed to verify. This only
becomes clear when defining an interpretation, which gives intended meaning to symbols.
Another possibility to describe the properties of functions and predicates is to use axioms,
which are closed formulas in first-order logic. We already encountered this in the motivating
example 1 where we translated the meaning of addition and multiplication into first-order
logic formulas. Implicitly it was also described what the equality sign was supposed to do.
This needs to be formally clarified by additional axioms which is done in this section.
We call a set of axioms together with the functional and predicate symbols a theory, T .

From now on, when wanting to establish validity of a given formula in first-order logic, it
is always done with respect to their underlying theory.

Definition 2.3.1 (Validity of First-Order Formula wrt. Underlying Theory). A formula
φ is valid wrt. a theory T if and only if for each interpretation I the implication

I |= A ! I |= φ

holds, where A = {A1, .., An} denotes the set of axioms from theory T .
When a function or predicate symbol is described by a set of axioms it is said to be

interpreted. One example of an interpreted predicate symbol is the equality sign. It is clear
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what the equality sign is supposed to do; check whether two objects are equal or not. The
idea is to give a list of all properties that the equality sign must fulfill. This is the theory
of equality or first-order logic with equality, [DV01].

Definition 2.3.2 (First-Order Logic with Equality). The interpreted predicate symbol
”=” with arity 2 is interpreted by the following axioms:

8x.x = x (Reflexivity)

8x8y.x = y ! y = x (Symmetry)

8x8y8z.(x = y ^ y = z) ! x = z (Transitivity)

Additionally, for each functional symbol f with arity n and predicate symbol p with arity
m, the substitution axioms hold

8x1, ..., xn8y1, ..., yn.(x1 = y1 ^ ... ^ xn = yn) ! f(x1, ..., xn) = f(y1, ..., yn) (2.7)

8x1, ..., xn8y1, ..., yn.(x1 = y1 ^ ... ^ xn = yn) ! (p(x1, ..., xm) $ p(y1, ..., ym)). (2.8)

For two given terms, it is also written t1 6= t2 instead of ¬(t1 = t2).
For the remaining part of this thesis we will always implicitly use the theory of equality,

possibly extending it to more axioms that describe other symbols.
As a next step, the axioms described above are integrated into the sound and complete

resolution calculus introduced in the previous section. This extension is called the Super-
position Calculus, [NR01], the additional rules are stated in figure 2.3. The main idea of
the superposition principle is being able to substitute terms directly. This is called the
superposition rule. Its soundness can be derived from the substitution axioms for function
and predicate symbols. It also includes equality resolution, stemming from the reflexivity
axiom, and equality factoring, stemming from the symmetry and transitivity axiom. How
these new rules are connected to the axioms for equality will become clearer in the proof
of the next theorem.

Theorem 2.3.3 (Soundness and completeness of superposition calculus). A first-order
formula φ wrt. to the theory of equality is valid if and only if the empty clause ⇤ can be
derived from ¬φ using only rules of Figures 2.2–2.3.
Proof. We will prove soundness of the superposition, equality resolution, and equality
factoring rule by using the sound binary resolution and factoring rules of Figure 2.2. We
will assume that the terms s and s0 are unifiable.

• Equality resolution can be derived using the reflexivity axiom. The following deriva-
tion holds

s 6= s0 _ C x = x Ax

C✓
BR

where ✓ = mgU(s, s0).
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Superposition (Sup):

s = t _ C L[s0] _D

(L[t] _ C _D)✓

where ✓ := mgu(s, s0).

Equality resolution (ER):

s 6= s0 _ C

C✓

where ✓ := mgu(s, s0).

Equality factoring (EF):

s = t _ s0 = t0 _ C

(s = t _ t 6= t0 _ C)✓

where ✓ := mgu(s, s0).

Figure 2.3: Additional rules of the superposition calculus Sup, extending binary resolution
and factoring from Figure 2.2. The expressions s, s0, t, t0 denote terms, L denotes
a literal, C and D denote clauses.

• Equality factoring holds due to the transitivity axiom and the symmetry axiom (trans-
formed into CNF):

s = t _ s0 = t0 _ C

x 6= y _ y 6= z _ x = z
Ax

y = z _ z 6= y
Ax

x 6= y _ x = z _ z 6= y
BR

s = t _ C _ s0 = z _ z 6= t0
BR

(s = t _ t 6= t0 _ C)✓
F

where ✓ = mgU(s, s0). Note that in the last application of the binary resolution rule,
the most general unifier of the literals s0 = t0 and x 6= y is used, ✓0 = {x 7! s0, y 7! t0}.

• The superposition rule holds due to the substitution axioms for predicate and func-
tional symbols, that depending on how deep the term s is nested in literal L can be
applied several times. Without loss of generality, we can assume that the term s0

is always located at the first position of a predicate symbol p and function symbols
f1, ..., fn. This leads to easier notation and does not change anything in the proof.
We separate the proof into two cases.

Case 1 (L is a positive literal).

Let us firstly assume that L[s0] is positive literal, so a non-negated atomic formula
of the form p(fn(...f1(s

0, u1), un), up), where uk = uk1, ..., um
k
k for k 2 {1, ..., n, p} are

terms, mk + 1 denotes the arity for functional symbol fk, where k 2 {1, ..., n}, and
mp + 1 denotes arity of predicate symbol p. We add ” + 1” for the terms in the first
position. We know that the substitution axioms for functional symbols f1, ..., fn hold,
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(2.7), in particular

s = t ! f1(s, u1) = f1(t, u1)

f1(s, u1) = f1(t, u1) ! f2(f1(s, u1), u2) = f2(f1(t, u1), u2)

...

fn−1(...f1(s, u1)..., un−1) = fn−1(...f1(t, u1)..., un−1) !
fn(...f1(s, u1)..., un) = fn(...f1(t, u1)..., un).

We can resolve these n axioms n− 1 times into

s 6= t _ fn(...f1(s, u1)..., un) = fn(...f1(t, u1)..., un). (2.9)

We define the term r[s] := fn(...f1(s, u1)..., un) to shorten the notation. The weaker
form (only forward implication) of the substitution axioms for predicate symbols,
(2.8), holds:

r[s] = r[t] ! (p(r[s], up) ! p(r[t], up)). (2.10)

We transform (2.10) into CNF which leads to

r[s] 6= r[t] _ ¬p(r[s], up) _ p(r[t], up). (2.11)

Using (2.9) and (2.11), we can firstly derive the following using the left condition in
the superposition rule of Figure 2.3.

s = t _ C s 6= t _ r[s] = r[t]
Ax

r[s] = r[t] _ C
BR

r[s] 6= r[t] _ ¬p(r[s], up) _ p(r[t], up)
Ax

¬p(r[s], up) _ p(r[t], up) _ C
BR

Used together with the second condition of Figure 2.3, we have:

¬p(r[s], up) _ p(r[t], up) _ C p(r[s0], up) _D

(p(r[t], up) _ C _D)✓
BR

where ✓ = mgU(s, s0).

Case 2 (L is a negative literal).

The second case is that L[s0] is a negative literal, so a negated atomic formula of
the form ¬p(fn(...f1(s0, u1), un), up). We use the same notation as before. The only
di↵erence is, that the backward implication of the substitution axiom for predicate
symbols is used:

r[s] = r[t] ! (p(r[t], up) ! p(r[s], up)).
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The derivation trees then look like

s = t _ C s 6= t _ r[s] = r[t]
Ax

r[s] = r[t] _ C
BR

r[s] 6= r[t] _ ¬p(r[t], up) _ p(r[s], up)
Ax

¬p(r[t], up) _ p(r[s], up) _ C
BR

and

¬p(r[t], up) _ p(r[s], up) _ C ¬p(r[s0], up) _D

(¬p(r[t], up) _ C _D)✓
BR

where ✓ = mgU(s, s0).

This concludes the soundness proof for the superposition rule.

We have established soundness of the included rules of Figure 2.3. The completeness proof
goes analogously as the proof of (2.6). ⇤

A thorough example of how the superposition calculus works in theory will be presented
in Chapter 3. At a later stage, when the recursive synthesis framework is introduced, we
will also see how an automated proof (with synthesis) looks like in practice, using the
first-order theorem prover Vampire, see Section 5.3.
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In this chapter, we translate the proof from Section 1.1 into a formal one, using the super-
position calculus.

Let us restate the specification, whose validity we want to establish:

8x1, x2, x3 2 N. 9y 2 N. x1 · x2 + x1 · x3 = x1 · y. (SPD)

Validity in this case means validity with respect to an underlying theory, which is the theory
of equality with additional axioms that define the natural numbers N. These additional
axioms are given in Figure 3.1. Hence, all of these axioms can be used to prove validity of
(SPD).
Note here that for now, we are not yet interested in synthesizing a function that fulfills

specification (SPD), but only to derive a proof establishing validity of it. For this, the first
step is preprocessing the formula into CNF, as described in Section 2.2.

Preprocessing. Firstly, the formula (SPD) is negated, which entails flipping all quantifiers
and negating the equation, leading to

9x1, x2, x3 2 N. 8y 2 N. x1 · x2 + x1 · x3 6= x1 · y. (SPDneg)

The formula only consists of one literal and therefore all quantifiers are already at the
outermost position. Consequently, only skolemization is needed to transform (SPDneg) into
CNF. Because there is no universal quantifier coming before the three existential quantifiers,
we transform the variables x1, x2 and x3 into skolem constants that we will denote with
σ1, σ2 and σ3. After this is done, the formula looks like

8y 2 N. σ1 · σ2 + σ1 · σ3 6= σ1 · y. (SPDcnf )

To save space, the universal quantifier is removed, which leads to the final input,

σ1 · σ2 + σ1 · σ3 6= σ1 · y. (SPDin)

Proof derivation. When formalizing the proof from Section 1.1 using the superposition
calculus, one possible derivation is the following.

1. σ1 · σ2 + σ1 · σ3 6= σ1 · y [(SPDin)]

2. σ1 ·σ2+σ1 ·0 6= σ1 ·u0_σ1 ·σ2+σ1 ·σn = σ1 ·σv _σ1 ·σ2+σ1 ·x = σ1 ·f(x) [(IndAx1)]
3. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us _

_ σ1 · σ2 + σ1 · x = σ1 · f(x) [(IndAx2)]

4. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn = σ1 · σv [BR 1, 2]
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8x. s(x) 6= 0 (Nat1)

8x, y. s(x) = s(y) ! x = y (Nat2)

8x 2 N.x+ 0 = x (Add1)

8x, n 2 N.x+ s(n) = s(x+ n) (Add2)

8x 2 N.x · 0 = 0 (Mult1)

8x, n 2 N.x · s(n) = x · n+ x (Mult2)

(F [0] ^ 8n.(F [n] ! F [s(n)])) ! 8x.F [x]. (IndAx)

Figure 3.1: Some of the axioms in the theory of natural numbers N.

5. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us [BR 1, 3]

6. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn + σ1 6= σ1 · us [Sup 5, (Mult2)]

7. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σv + σ1 6= σ1 · us [Sup 4, 6]

8. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σv + σ1 6= σ1 · us [F 7]

9. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · s(σv) 6= σ1 · us [Sup 8, (Mult2)]

10. σ1 · σ2 + σ1 · 0 6= σ1 · u0 [ER 9]

11. σ1 · σ2 + 0 6= σ1 · u0 [Sup 10, (Mult1)]

12. σ1 · σ2 6= σ1 · u0 [Sup 11, (Add1)]

13. ⇤ [ER 12]

Going through the formal proof. Let us take a closer look at the proof derivation.
The first observation is, that the last line consists only of the empty clause ⇤, which means
that the derivation was indeed successful, validity of (SPD) has been proven. We will now
go through all the steps leading to the empty clause. The inference rules that were used
can be found in Figures 2.2–2.3.
Preprocessing from above gives us the input clause 1. So our clause set consists of a

clause containing one literal. To derive the empty clause, we need to construct a literal of
the form σ1 · σ2 + σ1 · σ3 = σ1 · x. This is done by using the induction axiom (IndAx) that
holds for any arbitrary formula F .
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3 First Revisit of Motivating Example

We use the formula F [x] : 9 y. σ1 · σ2 + σ1 · x = σ1 · y, so when plugging formula F in the
induction axiom we get

((9y 2 N. σ1 · σ2 + σ1 · 0 = σ1 · y) ^
8n 2 N.((9y 2 N. σ1 · σ2 + σ1 · n = σ1 · y) ! (9y 2 N. σ1 · σ2 + σ1 · s(n) = σ1 · y))

! 8x 2 N.(9y 2 N.σ1 · σ2 + σ1 · x = σ1 · y)). (IndAx’)

The induction axiom, as the name states, is an axiom in the theory N of natural numbers.
Therefore, we can add it to our clause set. When doing this we first have to transform
(IndAx’) into CNF. We go through all the steps described in Section 2.2.1. This includes
cleansing, where we rename the first occurrence of variable y to u0, symbolizing the base
case, and the second occurrence of variable y to us, symbolizing the step case. This leads
to

(9u0 2 N. σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
8n 2 N.(9v 2 N. σ1 · σ2 + σ1 · n = σ1 · v ! 9us 2 N. σ1 · σ2 + σ1 · s(n) = σ1 · us))

! 8x 2 N.(9y 2 N.σ1 · σ2 + σ1 · x = σ1 · y). (IndAxClean)

The transformation into PNF, as stated before is not unique. We choose the PNF formula
where the fewest dependencies take place:

9n 2 N 9v 2 N 8x 2 N 9y 2 N 8u0 2 N 8us 2 N.
((σ1 · σ2 + σ1 · 0 = σ1 · u0 ^

(σ1 · σ2 + σ1 · n = σ1 · v ! σ1 · σ2 + σ1 · s(n) = σ1 · us))
! σ1 · σ2 + σ1 · x = σ1 · y). (IndAxPNF)

Now, we skolemize the existentially quantified variables, σv is the skolem constant for
variable v, σn the skolem constant for variable n, and f the skolem function of arity 1 for
variable y:

8x 2 N 8u0 2 N 8us 2 N.
(σ1 · σ2 + σ1 · 0 = σ1 · u0 ^

σ1 · σ2 + σ1 · σn = σ1 · σv ! σ1 · σ2 + σ1 · s(σn) = σ1 · us))
! σ1 · σ2 + σ1 · x = σ1 · f(x)). (IndAxSko)

As a last step, the quantifier-free segment is transformed into CNF, resulting in two clauses.

8x 2 N 8u0 2 N 8us 2 N.
(σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn = σ1 · σv _ σ1 · σ2 + σ1 · x = σ1 · f(x))

(IndAx1)

^(σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us _ σ1 · σ2 + σ1 · x = σ1 · f(x))
(IndAx2)

The two clauses, (IndAx1) and (IndAx2), can then be added to our clause set and used for
resolving the literal σ1 ·σ2+σ1 ·σ3 6= σ1 · y in clause 1 with σ1 ·σ2+σ1 ·x = σ1 · f(x), using
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3 First Revisit of Motivating Example

the substitution ✓1 : {x 7! σ3, y 7! f(σ3)}. This results in clauses 4 and 5 respectively. Our
goal is to change the literal σ1 · σ2 + σ1 · s(σn) 6= σ1 · us in clause 5 in such a way that the
term σ1 · σ2 + σ1 · σn appears and can therefore be substituted, using the literal in clause
4, with σ1 · σv. The idea behind this is to use the induction hypothesis, which is exactly
the second literal in clause 4, to be able to resolve the negated induction assumption, the
second literal in clause 5. This is where the superposition calculus comes into play. We
state the (Mult2) axiom again

8x, n 2 N.x · s(n) = x · n+ x. (Mult2)

We apply the substitution ✓2 : {x 7! σ1, n 7! σn} on (Mult2) resulting in

σ1 · s(σn) = σ1 · σn + σ1, (3.1)

and see that the term on the right side of the equality in (3.1) is contained in the second
literal in clause 5. So using ✓2, we can apply the superposition rule on the clause (Mult2)
and clause 5 in our derivation, where the underlined term is σ1 · s(σn), resulting in clause
6.
Now the changed literal in clause 6 contains the term σ1 · σ2 + σ1 · σn and this term also

appears in the second literal in clause 4. Therefore, we can apply the superposition rule
again on clauses 4 and 6, this time not even needing a substitution (or using the identity
substitution, to be exact).
In the derived clause 7, the literal σ1 · σ2 + σ1 · 0 6= σ1 · u0 appears twice but can be

removed with the factoring rule, resulting in clause 8.
We apply superposition once again with the axiom (Mult2) resulting in clause 9. Now,

the second literal can be easily resolved using equality resolution with the substitution
✓3 : {us 7! s(σv)}.
What is left to do is to simplify the term on the right side of the equality until one can

resolve the last literal in clause 10. This is done with the axioms (Mult1) and (Add1)
resulting in clauses 11 and 12 respectively. As a last step, equality resolution is applied
using the substitution ✓4 : {u0 7! σ2}, resulting in the empty clause, which concludes the
formal proof.
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4 Synthesis of Non-recursive Programs in
Saturation

The findings that are used for this chapter have been developed by Petra Hozzová, Laura
Kovács, Chase Norman, and Andrei Voronkov in [HKNV23]. The notions, definitions, and
properties of this section are thus based upon [HKNV23].
Following and recalling results of [HKNV23], in Section 4.1 we introduce the notions of

answer literals and show how to use answer literals to track changes in the proof derivation.
Answer literals are used to adapt the superposition calculus in such a way that synthesis
of non-recursive programs is possible.
In Section 4.2 we formulate a small problem to showcase what the introduced framework

can do.
In Section 4.3 we explain what the limitations of the framework are regarding recursive

programs.

4.1 Tracking Changes in Proof Derivations with Answer Literals

Firstly the definition of a synthesis specification is stated, as a formula written in first-order
logic. This formula, the specification, is supposed to convey the intended behavior of the
program that should be synthesized.

Definition 4.1.1 (Synthesis Specification). Let x = x1, ..., xn and y be the only free
variables of an arbitrary formula F in first-order logic with equality. Then we call

8x 9y.F [x, y] (4.1)

a synthesis specification with input x and output y. We call a term r a witness of the
synthesis specification (4.1) for the variable y if the formula

8x.F [x, r[x]] (4.2)

is valid.
The synthesis task is then to prove validity of a given specification of the form (4.1) and

to simultaneously compute a witness for which the specification holds. Answer literals are
used to track changes in the proof and will be denoted with ans(.).

Answer literals. When looking back at the motivating example of Section 1.1 we have
seen that while resolving literals, the algorithm applied substitutions on di↵erent variables.
We have also seen that these substitutions translated exactly to what the task of our pro-
gram was. The idea of answer literal is to track the changes of the output variable y by
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4 Synthesis of Non-recursive Programs in Saturation

storing the substitutions that are applied on y, written as ans(y), [Gre69]. Answer literals
do not change anything in the proof and are also not used for deriving new clauses. If at
some point a clause is derived that contains only an answer literal, this is the pendant to
the usual proving process, the empty clause, which means that a refutation has been found.
The term inside the answer literal of the last step is then used to construct a witness for
the given specification.

Preprocessing of synthesis specification. The proof principle stays the same, namely
proving by refutation. Therefore, the input specification (4.1) is negated and nextly trans-
formed into CNF, see Section 2.2.1. This results in a first-order logic formula of the form

cnf(9x 8y.¬F [x, y]). (4.3)

The distinct part of preprocessing for synthesis is to add to each clause in (4.3) an answer
literal that is dependent on the output of our specification, i.e. ans(y). This then leads to
the following input

cnf(cnf(9x 8y.¬F [x, y]) _ ans(y)). (4.4)

The resulting set of clauses is the final input, which concludes preprocessing.

Introducing Superposition Calculus with Synthesis. The inference rules of the
superposition calculus for synthesis are stated in Figure 4.1. One thing to ensure is that the
answer literals are not used for the proof. For this, the inference rules from the superposition
calculus are adapted. For discussing these new rules in more detail the following concept
is introduced.

Definition 4.1.2 (Abstract Unifier). We call a pair (✓,D) an abstract unifier of two
expressions E1 and E2 if

1. ✓ is a substitution andD a disjunction of disequalities, i.e. D ' (s1 6= t1_..._sn 6= tn),
where s1, ...., sn and t1, ..., tn are terms and

2. (D _ E1 ' E2)✓ is valid in the underlying theory.

Remark 4.1.3 To clarify the intended meaning of an abstract unifier we rewrite the second
bullet point of Definition 4.1.2 into

(s1 = t1 ^ ... ^ sn = tn)✓ ! (E1 ' E2)✓.

We see that the substitution of the abstract unifier only surely unifies the expressions E1

and E2 if all the equalities in D with respect to substitution ✓ are fulfilled. Essentially, an
abstract unifier is a most general unifier with conditions. On the other hand, every most
general unifier is an abstract unifier where D is the empty set ;.
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We state a simple example of an abstract unifier.

Example 4.1.4 Let us look at the atomic formulas A1 : f(x1, c) = g(x2) and A2 :
f(g(x3), x4) = x5. For given condition x1 = g(x3), the substitution ✓ : {x4 7! c, x5 7!
g(x2)} is a unifier of A1 and A2. Therefore, the tuple (✓, {x1 6= g(x3)}) is an abstract
unifier of A1 and A2.

Definition 4.1.5 (Computable Symbol). We di↵erentiate between computable and un-
computable symbols. A symbol is computable if there is a program that can evaluate it.
We say that an expression E is computable, if it only contains computable symbols.
We want our synthesized program to only consist of computable expression, therefore we

further adapt the definition of abstract unifiers to the following.

Definition 4.1.6 (Computable Unifier). We call (✓,D) a computable unifier of two ex-
pressions E1 and E2 with respect to expression E3 if (✓,D) is an abstract unifier of E1 and
E2 and the expression E3✓ is computable.

Remark 4.1.7 The concept of computable unifiers ensures that an expression is still com-
putable after the substitution has been applied. Therefore, by restricting the unifiers to be
computable, only computable expressions will appear inside the answer literal, see Figure
4.1.

Example 4.1.8 For any expression E3, the abstract unifier (✓,D) from Example 4.1.4 is a
computable one, as long as the expression E3✓ is computable.
To be able to di↵erentiate between di↵erent cases we introduce the following notion.

Definition 4.1.9 (if− then− else−Constructor). For arbitrary terms s, t and an arbitrary
atomic formula A we define

if A then s else t :=

(
s, if A is valid

t, else.

Saturation process with synthesis. In Figure 4.1 the adapted rules of the superposition
calculus are stated and will be discussed in the following.

1. We start with the simplest modification first: Factoring, equality resolution, and
equality factoring. For these rules, only one clause is in the precondition. Therefore,
the answer literal is treated like the other remaining literals in the clause and not
modified, except for the application of the substitution. Due to the fact that we
want to avoid uncomputable symbols occurring inside the answer literal, we are only
considering computable unifiers with respect to the term r that is inside the answer
literal.

2. For binary resolution there are two possibilities. First, the terms inside the answer
literals, r, and r0 can be unified. If that is possible, we first apply binary resolution
(note here that the term r 6= r0 is added to the postcondition) and then equality
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Binary resolution with condition
(BR’):

L _ C _ ans(r) ¬L0 _ C 0 _ ans(r0)
(D _ C _ C 0 _ ans(if L then r0 else r))✓

where (✓,D) is a computable unifier of
L,L0 wrt. if L then r0 else r

Binary resolution (BR):

L _ C _ ans(r) ¬L0 _ C 0 _ ans(r0)
(D _ C _ C 0 _ r 6= r0 _ ans(r))✓

where (✓,D) is a computable unifier of
L,L0 wrt. r.

Superposition with condition (Sup’):

s = t _ C _ ans(r) L[s0] _ C 0 _ ans(r0)

(D _ L[t] _ C _ C 0 _ ans(if s = t then r0 else r))✓

where (✓,D) is a computable unifier of s, s0 wrt.
if s = t then r0 else r.

Superposition (Sup):

s = t _ C _ ans(r) L[s0] _D _ ans(r0)

(D _ L[t] _ C _ C 0 _ r 6= r0 _ ans(r))✓

where (✓,D) is a computable unifier of
s, s0 wrt. r.

Factoring (F):

L _ L0 _ C _ ans(r)

(D _ L _ C _ ans(r))✓

where (✓,D) is a computable unifier of
L,L0 wrt. r.

Equality resolution (ER):

s 6= s0 _ C _ ans(r)

(D _ C _ ans(r))✓

where (✓,D) is a computable
unifier of s, s0 wrt. r.

Equality factoring (EF):

s = t _ s0 = t0 _ C _ ans(r)

(D _ s = t _ t 6= t0 _ C _ ans(r))✓

where (✓,D) is a computable
unifier of s, s0 wrt. r.

Figure 4.1: Adapted rules of the superposition calculus Sup including answer literals for
non-recursive synthesis. The expressions s, s0, t, t0 denote terms, L denotes a
literal, C and D denote clauses.

resolution. Second, if the terms r and r0 are in fact not unifiable, we need to introduce
the if − then− else constructor. Binary resolution is applied in the usual way and the
term inside the answer literal changes to if L then r0 else r. We call this adapted rule
binary resolution with condition.

3. The modification of the superposition rule works in a similar way to binary resolution.
In the first case when terms r and r0 are unifiable, we apply superposition and equality
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resolution. The second case is that r and r0 are not unifiable; then the term inside the
answer literal changes to if s = t then r0 else r. We call this adapted rule superposition
with condition.

The following theorem ensures that the adapted rules in Figure 4.1 are sound.

Theorem 4.1.10 (Correctness of Superposition with Synthesis). The inference rules of
the adapted superposition calculus Sup with answer literals, stated in Figure 4.1, are sound.
Proof. Lemma 4 in Appendix A in [HKNV23]. ⇤

The next theorem states that if a refutation using the adapted rules in Figure 4.1 has
been found, this also entails the detection of a witness for the input specification.

Theorem 4.1.11 Assume that for a specification of the form (4.1) a clause containing only
the answer literal has been derived using only rules in Figure 4.1. Then the term inside the
answer literal is a witness of specification (4.1).
Proof. Theorem 1 in Appendix A in [HKNV23]. ⇤

4.2 Illustrative Example: Maximum of Two Naturals

We show a small example to showcase the utility of described superposition calculus with
answer literals. The synthesis task is to come up with a program that computes the
maximum of two given natural numbers. For stating the specification we need the predicate
symbol of arity 2 that determines if one natural is smaller or equal than the other.

Definition 4.2.1 (Ordering on Naturals). We define a predicate symbol ” ” of arity 2
inductively.

8x.(x 0 $ x = 0) (Order1)

8x, y.(x s(y) $ (x y _ x = s(y))) (Order2)

Lemma 4.2.2 The predicate symbol ” ” defined by (Order1) and (Order2) has the follow-
ing property:

8x.x x. (Reflexivity)

Proof. The ordering ” ” was defined inductively, therefore it comes intuitively that we
also prove by induction. PLugging in the induction axiom with the formula F [x] : x x
leads to

(0 0 ^ 8n.(n n ! s(n) s(n))) ! 8x.x x. (4.5)

We transform (4.5) into CNF, resulting in the two clauses

¬0 0 _ σn σn _ x x (4.6)

¬0 0 _ ¬s(σn) s(σn) _ x x. (4.7)
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We use the second clause, (4.7), together with the following two clauses resulting from
transforming the ordering axioms into CNF,

8x.x 6= 0 _ x 0 (4.8)

8x 8y.x 6= s(y) _ x s(y), (4.9)

to derive the following formal proof.

1. ¬(σx σx) [input]

2. ¬0 0 _ ¬s(σn) s(σn) _ x x [(4.7)]

3. ¬0 0 _ ¬s(σn) s(σn) [BR 1, 2]

4. x 6= 0 _ x 0 [(4.8)]

5. z = z [(Reflexivity)]

6. 0 0 [BR 4, 5]

7. ¬s(σn) s(σn) [BR 3, 6]

8. x 6= s(y) _ x s(y) [(4.9)]

9. s(σn) s(σn) [BR 5, 8]

10. ⇤ [BR 7, 9]

We used the following substitutions: ✓1 : {x 7! σx} for resolving clause 1 and 2, ✓2 : {x 7!
0, z 7! 0} for resolving clause 4 and 5 and finally ✓3 : {x 7! s(σn), y 7! σn, z 7! s(σn)} for
resolving clause 5 and 8. ⇤

Using the reflexivity property of ” ”, we can prove the following specification

8x1, x2 2 N.9y 2 N.x1 y ^ x2 y ^ (x1 = y _ x2 = y). (SpecMaxNat)

For preprocessing, the specification (SpecMaxNat) is negated and transformed into CNF;
this entails flipping the quantifiers, skolemizing the variables x1 and x2 and multiplying out
the two clauses. In addition to the usual preprocessing, we add the answer literal ans(y)
to both of the clauses, leading to

¬(σ1 y) _ ¬(σ2 y) _ σ1 6= y _ ans(y) (C1)

¬(σ1 y) _ ¬(σ2 y) _ σ2 6= y _ ans(y). (C2)

This is then the input set of clauses for superposition with synthesis. We can come up with
the following derivation.

1. ¬(σ1 y) _ ¬(σ2 y) _ σ1 6= y _ ans(y) [(C1)]
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2. ¬(σ1 y) _ ¬(σ2 y) _ σ2 6= y _ ans(y) [(C2)]

3. ¬(σ1 σ1) _ ¬(σ2 σ1) _ ans(σ1) [ER 1]

4. ¬(σ1 σ2) _ ¬(σ2 σ2) _ ans(σ2) [ER 2]

5. ¬(σ2 σ1) _ ans(σ1) [BR 3, (Reflexivity)]

6. ¬(σ1 σ2) _ ans(σ2) [BR 4, (Reflexivity)]

7. ans(if σ1 σ2 then σ2 else σ1) [BR’ 5, 6]

8. ⇤ [answer literal removal]

Going through program derivation. We apply equality resolution on both clause (C1)
(✓1 : {y 7! σ1}) and clause (C2) (✓2 : {y 7! σ2}), resulting in clauses 3 and 4. Note here
that this resolution results in a change of the answer literal. We can resolve the literal
¬(σ1 σ1) in clause 3, and ¬(σ2 σ2) in clause 4, by using the reflexivity axiom, resulting
in clause 5 and clause 6, respectively. Note that the skolem constants σ1 and σ2 that
appear inside the answer literals are not unifiable. Therefore, the binary resolution rule
with condition is used to obtain clause 7. As a last step, the answer literal is removed
resulting in the empty clause. The proving process then terminates and returns the answer
literal. Postprocessing consists of mapping the skolem constants back to their original
variable. The output is therefore the following program

if x1 x2 then x2 else x1,

which can easily be verified as the program that computes the maximum of two numbers.
Interestingly enough this example could also be synthesized in a recursive way due to the
definition of the ordering.

4.3 Limitations

We will shortly reference back to Chapter 3 and state the program derivation used to prove
validity of the law of distributivity using the basic superposition calculus.

1. σ1 · σ2 + σ1 · σ3 6= σ1 · y [input]

2. σ1 ·σ2+σ1 ·0 6= σ1 ·u0_σ1 ·σ2+σ1 ·σn = σ1 ·σv_σ1 ·σ2+σ1 ·x = σ1· f(x) [(IndAx1)]
3. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us _

_ σ1 · σ2 + σ1 · x = σ1· f(x) [(IndAx2)]

4. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn = σ1 · σv [BR 1, 2]

5. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us [BR 1, 3]

6. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn + σ1 6= σ1 · us [Sup 5, (Mult2)]

7. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σv + σ1 6= σ1 · us [Sup 4, 6]
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8. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σv + σ1 6= σ1 · us [F 7]

9. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · s(σv) 6= σ1 · us [Sup 8, (Mult2)]

10. σ1 · σ2 + σ1 · 0 6= σ1 · u0 [ER 9]

11. σ1 · σ2 + 0 6= σ1 · u0 [Sup 10, (Mult1)]

12. σ1 · σ2 6= σ1 · u0 [Sup 11, (Add1)]

13. ⇤ [ER 12]

Let us look at this derivation in more detail and explain the issues with the described
synthesis framework from Section 4.1 in regards to this specific example.

When the induction axiom was preprocessed, the skolem function f was introduced. The
function symbol f (highlighted in bold) therefore appears in clauses 2 and 3. In the usual
superposition proof, the expressions σ1 ·σ2+σ1 ·σ3 6= σ1 ·y and σ1 ·σ2+σ1 ·x = σ1 ·f(x) are
resolved together with the substitution ✓ : {y 7! f(x)}. However, this step cannot be done
with the introduced synthesis framework, due to the fact that f is not interpreted and hence,
also not computable. Therefore the expression f(x) is restricted from being substituted
into the answer literal and the clauses in lines 2 and 3 cannot be resolved further. This
shows that the use of the induction axiom together with this synthesis framework needs to
be adapted further. We will see how this issue is resolved in Chapter 5.
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We now explain how the synthesis framework described in Chapter 4 can be further ex-
tended to also being able to synthesize recursive functions, see Section 5.1. We will showcase
this with the motivating example that was already formally proven in Chapter 3. After
giving the theoretical proof derivation with synthesis in Section 5.2, we will also show how
this synthesis task can look in practice, using the first-order theorem prover Vampire, see
Section 5.3.

5.1 From Non-recursive to Recursive Synthesis: Changing Order
of Quantifiers

In the following section we explain how recursive synthesis is possible based on the moti-
vating example introduced in Section 1.1.

The goal is to synthesize a function that fulfills the following specification:

8x1, x2, x3 2 N. 9y 2 N. x1 · x2 + x1 · x3 = x1 · y. (SPD)

We look in detail how the induction axiom was preprocessed in Chapter 3 before adding it
to the set of clauses used for deriving the empty clause.
We have used the induction axiom

(F [0] ^ 8n.(F [n] ! F [s(n)])) ! 8x.F [x] (IndAx)

with the first-order logic formula

F [x] : 9 y. σ1 · σ2 + σ1 · x = σ1 · y. (5.1)

After inserting the specified formula (5.1) and cleansing (IndAx) we get

(9u0 2 N. σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
8n 2 N.(9w 2 N. σ1 · σ2 + σ1 · n = σ1 · w ! 9us 2 N. σ1 · σ2 + σ1 · s(n) = σ1 · us))

! 8x 2 N.(9y 2 N.σ1 · σ2 + σ1 · x = σ1 · y). (IndAxClean)

As a next step the induction axiom was transformed into PNF, resulting in the following
formula:

9n 2 N 9w 2 N 8x 2 N9y 2 N8u0 2 N8us 2 N.
((σ1 · σ2 + σ1 · 0 = σ1 · u0 ^

(σ1 · σ2 + σ1 · n = σ1 · w ! σ1 · σ2 + σ1 · s(n) = σ1 · us))
! σ1 · σ2 + σ1 · x = σ1 · y). (IndAxPNFOld)
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We want to emphasize on the order of the quantifiers in (IndAxPNFOld). In particular,
we see that the existential quantifier of variable y is coming before the universal quantifiers
of variables u0 and us. When skolemizing (IndAxPNFOld) this therefore results in

8x 2 N8u0 2 N8us 2 N.
(σ1 · σ2 + σ1 · 0 = σ1 · u0 ^

σ1 · σ2 + σ1 · σn = σ1 · σw ! σ1 · σ2 + σ1 · s(σn) = σ1 · us))
! σ1 · σ2 + σ1 · x = σ1 · f(x)). (IndAxSkoOld)

We see in (IndAxSkoOld) that the skolem function f of variable y only depends on
variable x. For just proving the specification (SPD), as was done in Chapter 3, this order
of the quantifier suffices. But for synthesizing a program we also want to track changes
in the answer literal of variables u0 and us and construct a recursive function with their
stored values. Therefore, we want to change the order of the quantifiers in such a way
that the universal quantifiers of variables u0 and us come before the existential quantifier
of variable y. Then, during skolemizing, we will get a computable function, denoted with
rec, that depends not only on the input x but also on the base case variable (u0) and the
step case variable (us).
An important thing to note here is that there are di↵erent transformations into PNF

that are all logically equivalent to the original formula.

Let us look at this in more detail. Starting from the cleansed formula of the induction
axiom,

(9u0 2 N. σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
8n 2 N.(9w 2 N. σ1 · σ2 + σ1 · n = σ1 · w ! 9us 2 N. σ1 · σ2 + σ1 · s(n) = σ1 · us))

! 8x 2 N.(9y 2 N.σ1 · σ2 + σ1 · x = σ1 · y), (IndAxClean)

we firstly pull out the quantifiers of variables w and us resulting in

(9u0 2 N. σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
8n 2 N8w 2 N9us 2 N.(σ1 · σ2 + σ1 · n = σ1 · w ! σ1 · σ2 + σ1 · s(n) = σ1 · us))

! 8x 2 N.(9y 2 N.σ1 · σ2 + σ1 · x = σ1 · y). (IndAx’)

Nextly, the quantifiers are pulled out of the outermost premise in the following order

9n 2 N 9w 2 N 8u0 2 N 8us 2 N. (σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
(σ1 · σ2 + σ1 · n = σ1 · w ! σ1 · σ2 + σ1 · s(n) = σ1 · us))

! 8x 2 N.(9y 2 N.σ1 · σ2 + σ1 · x = σ1 · y). (IndAx”)
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Only then the quantifiers of variable x and y are pulled out, with the final result of

9n 2 N 9w 2 N 8u0 2 N 8us 2 N 8x 2 N 9y 2 N.
((σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
(σ1 · σ2 + σ1 · n = σ1 · w ! σ1 · σ2 + σ1 · s(n) = σ1 · us))

! σ1 · σ2 + σ1 · x = σ1 · y). (IndAxPNFNew)

We firstly skolemize the bounded variables n and w in (IndAxPNFNew), leading to

8u0 2 N8us 2 N8x 2 N9y 2 N. (σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
(σ1 · σ2 + σ1 · σn = σ1 · σw ! σ1 · σ2 + σ1 · s(σn) = σ1 · us))

! σ1 · σ2 + σ1 · x = σ1 · y, (IndAxSkoNew’)

where σn is a skolem constant of n and σw is a skolem constant of w.
Now one can see in (IndAxSkoNew’) that when variable y is skolemized, a skolem function

with three inputs u0, us and x will be introduced. We will denote this skolem function with
rec. This results in the following formula:

8u0 2 N8us 2 N8x 2 N. (σ1 · σ2 + σ1 · 0 = σ1 · u0 ^
(σ1 · σ2 + σ1 · σn = σ1 · σw ! σ1 · σ2 + σ1 · s(σn) = σ1 · us))
! σ1 · σ2 + σ1 · x = σ1 · rec(u0, us, x)). (IndAxSkoNew)

As a last step of preprocessing, we transform the quantifier-free segment of (IndAxSkoNew)
into CNF, resulting in the two clauses

8u0 2 N8us 2 N8x 2 N.
(σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn = σ1 · σw_

_ σ1 · σ2 + σ1 · x = σ1 · rec(u0, us, x))^ (IndAxNew1)

^(σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us_
_ σ1 · σ2 + σ1 · x = σ1 · rec(u0, us, x)). (IndAxNew2)

Changing the input clauses (IndAxNew1) and (IndAxNew2) in this way enables us to not
only track changes of variable x when applying induction, but also of the base case u0
and step case us. The expression rec(u0, us, x) can then be computed as f(x) where f is a
function of the form

f(0) = u0

f(s(n)) = us[f(n)].
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5.2 Recursive Synthesis in Theory

Based on the adaptions in Section 5.1, we nextly show how the recursive function for
specification (SPD) can be synthesized.
The specification of the distributivity law is

8x1, x2, x3 2 N. 9y 2 N. x1 · x2 + x1 · x3 = x1 · y. (SPD)

Preprocessing works exactly like preprocessing for non-recursive synthesis. After negating
(SPD), transformation into CNF, and adding the answer literal we have the following input
clause

σ1 · σ2 + σ1 · σ3 6= σ1 · y _ ans(y). (SPD’)

Besides (IndAxNew1) and (IndAxNew2), the additionally used axioms are

8x 2 N.x+ 0 = x (Add1)

8x 2 N.x · 0 = 0 (Mult1)

8x, n 2 N.x · s(n) = x · n+ x. (Mult2)

Program derivation. We state the program derivation and nextly go through it step by
step.

1. σ1 · σ2 + σ1 · σ3 6= σ1 · y _ ans(y) [input]

2. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn = σ1 · σw _
_ σ1 · σ2 + σ1 · x = σ1 · rec(u0, us, x) [(IndAxNew1)]

3. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us _
_ σ1 · σ2 + σ1 · x = σ1 · rec(u0, us, x) [(IndAxNew2)]

4. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn = σ1 · σw _ ans(rec(u0, us, σ3)) [BR 1, 2]

5. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · s(σn) 6= σ1 · us _ ans(rec(u0, us, σ3)) [BR 1, 3]

6. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · σn + σ1 6= σ1 · us _
_ ans(rec(u0, us, σ3)) [Sup 5, (Mult2)]

7. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σw + σ1 6= σ1 · us _
_ ans(rec(u0, us, σ3)) [Sup 4, 6]

8. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · σw + σ1 6= σ1 · us _ ans(rec(u0, us, σ3)) [F 7]

9. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ σ1 · s(σw) 6= σ1 · us _ ans(rec(u0, us, σ3)) [Sup 8, (Mult2)]

10. σ1 · σ2 + σ1 · 0 6= σ1 · u0 _ ans(rec(u0, s(σw), σ3)) [ER 9]

11. σ1 · σ2 + 0 6= σ1 · u0 _ ans(rec(u0, s(σw), σ3)) [Sup 10, (Mult1)]

12. σ1 · σ2 6= σ1 · u0 _ ans(rec(u0, s(σw), σ3)) [Sup 11, (Add1)]
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13. ans(rec(σ2, s(σw), σ3)) [ER 12]

14. ⇤ [answer literal removal 13]

Going through program derivation. This derivation is analogous to the one in Chapter
3, with additional tracking of changes of the variables by the answer literal.
Together with the input clause 1, we also add the two clauses of our modified induction

axioms, (IndAxNew1) and (IndAxNew2), to the clause set. We then resolve the input
clause 1 with clause 2, resulting in clause 4, and a second time with clause 3 resulting in
clause 5. This is the step where the rec-function firstly appears inside the answer literal
which happens due to the characteristics of the binary resolution rule.
In order to unify the literals σ1 ·σ2+σ1 ·σ3 = σ1 ·y and σ1 ·σ2+σ1 ·x = σ1 · rec(u0, us, x),

the substitution ✓1 : {x 7! σ3, y 7! rec(u0, us, σ3)} is used. Due to the fact that the rec
function is considered to be computable, this results in a substitution of the answer literal
to ans(rec(u0, us, σ3)), as can be seen in clauses 4 and 5.
Nextly, the same steps occur as in the derivation of Chapter 3. The answer literal

changes again when applying equality resolution on clause 9. Here, the substitution
✓2 : {us 7! s(σw)} is used, which results in the answer literal ans(rec(u0, s(σw), σ3)). In
clause 12, equality resolution is applied again, resulting in the answer literal changing to
ans(rec(σ2, s(σw), σ3)). Additionally, the clause containing only the answer literal is de-
rived. As a last step, the answer literal is removed resulting in the empty clause and the
derivation terminates. The skolem constants are then mapped to their stored variables,
resulting in the answer literal

ans(rec(x2, s(w), x3)). (5.2)

Constructing recursive function from given answer literal. The next task is to
construct the recursive function from (5.2). Here we have to remember what each of the
arguments in (5.2) stands for. The third argument in the rec-function stands for the input
variable. Therefore the recursive function, denoted with f , has the input variable x3.
Nextly, the first argument was originally the variable found for the base case where the
input is 0. Therefore, we know that the function f has the output x2 for the input 0. As a
last step, for given n we know that the function returns the value w, one could thus write
f(n). Therefore, we know that f(s(n)) = s(w) = s(f(n)). Putting this all together we
conclude with the function f(x3) for (5.2), where

f(0) = x2,

f(s(n)) = s(f(n)),

which can be easily validated to be x2 + x3.

5.3 Recursive Synthesis in Practice using Vampire

Laura Kovács from TU Wien and Andrei Voronkov from the University of Manchester,
and their respective research groups, develop the first-order theorem prover Vampire for
reasoning with first-order theories with equality, using the superpostion calculus, [KV13].
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The process described in Section 5.1 was implemented in Vampire by Petra Hozzová and
Daneshvar Amrollahi. In chapter 7 more examples will be presented not only over term
algebras of natural numbers but also natural lists and natural binary trees. Several of
these examples work in practice, which can be looked into in Table 7.1. These examples
and derivations have been my contributions.

For the proving example of the law of distributivity, Petra Hozzová successfully found
the following proving configuration in Vampire.

-forced options av=off:bd=preordered:bce=on:flr=on:fsr=off:lma=on:nwc=2.0

:sp=occurrence:urr=ec only:ind=struct:indu=off:qa=synthesis:tgt=off:erd=off

:updr=off:indc=goal plus:indgenss=2:indgen=on:indmd=2:drc=off:to=lpo 1010

The command calls upon an input file that contains the specification (SPD), as well as the
axioms defining the function symbols ” + ” and ” · ”, written in SMT-Lib syntax [Cok13]:

(set -logic UFDT)

; TYPE OF NATURAL NUMBERS

(declare -datatypes ((nat 0)) ((( zero) (s (s0 nat)))))

(declare -fun add (nat nat) nat)

(declare -fun mult (nat nat) nat)

;; NATURAL NUMBER AXIOMS

; add base

(assert (forall ((x nat)) (= x (add x zero))))

; add step

(assert (forall ((x nat) (n nat)) (= (add x (s n)) (s (add x n

)))))

; mult base

(assert (forall ((x nat)) (= zero (mult x zero))))

; mult step

(assert (forall ((x nat) (n nat)) (= (mult x (s n)) (add (mult

x n) x))))

; SPECIFICATION

(assert -not(

forall ((x nat) (y nat) (z nat))

(exists ((w nat))

(=

(add (mult x y) (mult x z))

39



5 Second Revisit of Motivating Example

(mult x w)

)

)

)

)

(check -sat)

In the following we will state the full output of Vampire. The idea here is not to fully
trace back everything Vampire is doing but to (i) highlight the important steps that were
also discussed in the theoretic proof of Section 5.2 and (ii) to show the full scale of how a
theorem prover works. The text highlighted in red corresponds to the proof steps of Section
5.2.

% Running in auto input_syntax mode. Trying SMTLIB2

% Refutation found. Thanks to Tanya!

% SZS status Unsatisfiable for distributivity

% Inputs for synthesis:

6. ⇠! [X1 : ’nat()’,X0 : ’nat()’,X2 : ’nat()’] : ? [X3 : ’nat()’] :

mult(X0,X3) = add(mult(X0,X1),mult(X0,X2)) [negated conjecture 5]

% Recursive function definitions:

rf3523(zero) = X1

rf3523(s(X7)) = s(rf3523(X7))

% SZS answers Tuple [[ rf3523(X2)]|_] for distributivity

% SZS output start Proof for distributivity

1. ! [X0 : ’nat() ’] : add(X0 ,zero) = X0 [input]

2. ! [X1 : ’nat()’,X0 : ’nat() ’] : s(add(X0 ,X1)) = add(X0 ,s(X1)) [

input]

3. ! [X0 : ’nat() ’] : zero = mult(X0 ,zero) [input]

4. ! [X1 : ’nat()’,X0 : ’nat() ’] : add(mult(X0 ,X1),X0) = mult(X0 ,s(

X1)) [input]

5. ! [X1 : ’nat()’,X0 : ’nat()’,X2 : ’nat() ’] : ? [X3 : ’nat() ’] :

mult(X0 ,X3) = add(mult(X0 ,X1),mult(X0 ,X2)) [input]

6. ⇠! [X1 : ’nat()’,X0 : ’nat()’,X2 : ’nat() ’] : ? [X3 : ’nat() ’] :

mult(X0 ,X3) = add(mult(X0 ,X1),mult(X0 ,X2)) [negated conjecture 5]

10. ! [X3 : ’nat()’] : ⇠(mult(sK2 in,X3) =

add(mult(sK2 in,sK1 in),mult(sK2 in,sK3 in)) & ans0(X3)) [answer literal

with input var skolemisation 6]

11. ! [X0 : ’nat() ’] : ⇠(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK3_in)
) = mult(sK2_in ,X0) & ans0(X0)) [rectify 10]

12. ! [X0 : ’nat()’,X1 : ’nat() ’] : add(mult(X1 ,X0),X1) = mult(X1 ,s(

X0)) [rectify 4]

13. ! [X0 : ’nat()’,X1 : ’nat() ’] : s(add(X1 ,X0)) = add(X1 ,s(X0)) [

rectify 2]

14. ! [X0 : ’nat() ’] : (add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK3_in

)) != mult(sK2_in ,X0) | ⇠ans0(X0)) [ennf transformation 11]

15. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK3_in)) != mult(sK2_in ,X0)

40



5 Second Revisit of Motivating Example

| ⇠ans0(X0) [cnf transformation 14]

16. add(mult(X1 ,X0),X1) = mult(X1 ,s(X0)) [cnf transformation 12]

17. zero = mult(X0 ,zero) [cnf transformation 3]

18. s(add(X1 ,X0)) = add(X1 ,s(X0)) [cnf transformation 13]

19. add(X0 ,zero) = X0 [cnf transformation 1]

34. ? [X7 : ’nat() ’] : ? [X8 : ’nat() ’] : ! [X9 : ’nat()’,X5 : ’nat

() ’] : ! [X10 : ’nat() ’] : ((add(mult(sK2_in ,sK1_in),mult(sK2_in ,

zero)) = mult(sK2_in ,X5) & (add(mult(sK2_in ,sK1_in),mult(sK2_in ,

X7)) = mult(sK2_in ,X8) => add(mult(sK2_in ,sK1_in),mult(sK2_in ,s(

X7))) = mult(sK2_in ,X9))) => add(mult(sK2_in ,sK1_in),mult(sK2_in ,

X10)) = mult(sK2_in ,rec10(X5 ,X9 ,X10))) [structural induction

hypothesis]

35. ? [X7 : ’nat() ’] : ? [X8 : ’nat() ’] : ! [X9 : ’nat()’,X5 : ’nat

() ’] : ! [X10 : ’nat() ’] : (add(mult(sK2_in ,sK1_in),mult(sK2_in ,

X10)) = mult(sK2_in ,rec10(X5 ,X9 ,X10)) | (add(mult(sK2_in ,sK1_in),

mult(sK2_in ,zero)) != mult(sK2_in ,X5) | (add(mult(sK2_in ,sK1_in),

mult(sK2_in ,s(X7))) != mult(sK2_in ,X9) & add(mult(sK2_in ,sK1_in),

mult(sK2_in ,X7)) = mult(sK2_in ,X8)))) [ennf transformation 34]

36. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) = mult(sK2_in ,sK12) |

add(mult(sK2_in ,sK1_in),mult(sK2_in ,zero)) != mult(sK2_in ,X5) |

add(mult(sK2_in ,sK1_in),mult(sK2_in ,X10)) = mult(sK2_in ,rec10(X5 ,

X9,X10)) [cnf transformation 35]

37. mult(sK2_in ,X9) != add(mult(sK2_in ,sK1_in),mult(sK2_in ,s(sK11)))

| add(mult(sK2_in ,sK1_in),mult(sK2_in ,zero)) != mult(sK2_in ,X5)

| add(mult(sK2_in ,sK1_in),mult(sK2_in ,X10)) = mult(sK2_in ,rec10(

X5,X9,X10)) [cnf transformation 35]

38. add(mult(sK2 in,sK1 in),mult(sK2 in,s(sK11))) != mult(sK2 in,X1) |

mult(sK2 in,X0) != add(mult(sK2 in,sK1 in),mult(sK2 in,zero)) |

ans0(rec10(X0,X1,sK3 in)) [resolution 37 ,15]

39. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) = mult(sK2_in ,sK12) |

mult(sK2_in ,X0) != add(mult(sK2_in ,sK1_in),mult(sK2_in ,zero)) |

⇠ans0(rec10(X0,X1,sK3_in)) [resolution 36,15]

107. mult(sK2_in ,X0) != add(mult(sK2_in ,sK1_in),zero) | add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)) = mult(sK2_in ,sK12) | ⇠ans0(

rec10(X0,X1,sK3_in)) [forward demodulation 39 ,17]

108. mult(sK2_in ,sK1_in) != mult(sK2_in ,X0) | add(mult(sK2_in ,sK1_in

),mult(sK2_in ,sK11)) = mult(sK2_in ,sK12) | ⇠ans0(rec10(X0 ,X1 ,

sK3_in)) [forward demodulation 107 ,19]

109. mult(sK2_in ,X1) != add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11

),sK2_in)) | mult(sK2_in ,X0) != add(mult(sK2_in ,sK1_in),mult(

sK2_in ,zero)) | ⇠ans0(rec10(X0 ,X1 ,sK3_in)) [forward demodulation

38,16]

110. mult(sK2_in ,X0) != add(mult(sK2_in ,sK1_in),zero) | mult(sK2_in ,

X1) != add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK2_in)) | ⇠
ans0(rec10(X0 ,X1 ,sK3_in)) [forward demodulation 109 ,17]

111. mult(sK2_in ,X1) != add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11

),sK2_in)) | mult(sK2_in ,sK1_in) != mult(sK2_in ,X0) | ⇠ans0(rec10

(X0,X1,sK3_in)) [forward demodulation 110 ,19]

736. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) = mult(sK2_in ,sK12)

| ⇠ans0(rec10(sK1 in,X0,sK3 in)) [equality resolution 108]
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1456. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK2_in)) != add(

mult(sK2_in ,X0),sK2_in) | mult(sK2_in ,sK1_in) != mult(sK2_in ,X1)

| ⇠ans0(rec10(X1 ,s(X0),sK3_in)) [superposition 111 ,16]

18325. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK2_in)) != add

(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK2_in) | mult(sK2_in

,sK1_in) != mult(sK2_in ,sK1_in) | ⇠ans0(rec10(sK1 in,s(sK12),sK3 in)) [

superposition 1456 ,736]

18471. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK2_in)) != add

(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK2_in) | ⇠ans0(rec10

(sK1_in ,s(sK12),sK3_in)) [trivial inequality removal 18325]

18771. ! [X0 : ’nat() ’] : (add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,

sK11),zero)) = add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),

zero) & (add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),X0)) = add

(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),X0) => add(mult(

sK2_in ,sK1_in),add(mult(sK2_in ,sK11),s(X0))) = add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),s(X0)))) => ! [X1 : ’nat() ’] :

add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),X1)) = add(add(mult

(sK2_in ,sK1_in),mult(sK2_in ,sK11)),X1) [structural induction

hypothesis]

18772. ! [X1 : ’nat() ’] : add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,

sK11),X1)) = add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),X1) |

? [X0 : ’nat() ’] : (add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11

),zero)) != add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero)

| (add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),s(X0))) != add(

add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),s(X0)) & add(mult(

sK2_in ,sK1_in),add(mult(sK2_in ,sK11),X0)) = add(add(mult(sK2_in ,

sK1_in),mult(sK2_in ,sK11)),X0))) [ennf transformation 18771]

18773. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK3519)) = add(

add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519) | add(mult(

sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | add(mult(sK2_in ,sK1_in)

,add(mult(sK2_in ,sK11),X1)) = add(add(mult(sK2_in ,sK1_in),mult(

sK2_in ,sK11)),X1) [cnf transformation 18772]

18774. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),s(sK3519))) !=

add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),s(sK3519)) | add(

mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | add(mult(sK2_in ,sK1_in)

,add(mult(sK2_in ,sK11),X1)) = add(add(mult(sK2_in ,sK1_in),mult(

sK2_in ,sK11)),X1) [cnf transformation 18772]

18775. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),s(sK3519))) !=

add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),s(sK3519)) | add(

mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | ⇠ans0(rec10(sK1_in ,s(

sK12),sK3_in)) [generalized induction hyperresolution

18471 ,18774]

18776. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK3519)) = add(

add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519) | add(mult(

sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | ⇠ans0(rec10(sK1_in ,s(

sK12),sK3_in)) [generalized induction hyperresolution
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18471 ,18773]

18811. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) != add(mult(sK2_in

,sK1_in),add(mult(sK2_in ,sK11),zero)) | add(mult(sK2_in ,sK1_in),

add(mult(sK2_in ,sK11),sK3519)) = add(add(mult(sK2_in ,sK1_in),mult

(sK2_in ,sK11)),sK3519) | ⇠ans0(rec10(sK1_in ,s(sK12),sK3_in)) [

forward demodulation 18776 ,19]

18812. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) != add(mult(sK2_in

,sK1_in),mult(sK2_in ,sK11)) | add(mult(sK2_in ,sK1_in),add(mult(

sK2_in ,sK11),sK3519)) = add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,

sK11)),sK3519) | ⇠ans0(rec10(sK1_in ,s(sK12),sK3_in)) [forward

demodulation 18811 ,19]

18813. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK3519)) = add(

add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519) | ⇠ans0(rec10(

sK1_in ,s(sK12),sK3_in)) [trivial inequality removal 18812]

18814. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),s(sK3519))) !=

s(add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519)) | add(

mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | ⇠ans0(rec10(sK1_in ,s(

sK12),sK3_in)) [forward demodulation 18775 ,18]

18815. s(add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519)) !=

add(mult(sK2_in ,sK1_in),s(add(mult(sK2_in ,sK11),sK3519))) | add(

mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | ⇠ans0(rec10(sK1_in ,s(

sK12),sK3_in)) [forward demodulation 18814 ,18]

18816. s(add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519)) !=

s(add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK3519))) | add(

mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),zero)) != add(add(mult(

sK2_in ,sK1_in),mult(sK2_in ,sK11)),zero) | ⇠ans0(rec10(sK1_in ,s(

sK12),sK3_in)) [forward demodulation 18815 ,18]

18817. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) != add(mult(sK2_in

,sK1_in),add(mult(sK2_in ,sK11),zero)) | s(add(add(mult(sK2_in ,

sK1_in),mult(sK2_in ,sK11)),sK3519)) != s(add(mult(sK2_in ,sK1_in),

add(mult(sK2_in ,sK11),sK3519))) | ⇠ans0(rec10(sK1_in ,s(sK12),

sK3_in)) [forward demodulation 18816 ,19]

18818. add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)) != add(mult(sK2_in

,sK1_in),mult(sK2_in ,sK11)) | s(add(add(mult(sK2_in ,sK1_in),mult(

sK2_in ,sK11)),sK3519)) != s(add(mult(sK2_in ,sK1_in),add(mult(

sK2_in ,sK11),sK3519))) | ⇠ans0(rec10(sK1_in ,s(sK12),sK3_in)) [

forward demodulation 18817 ,19]

18819. s(add(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519)) !=

s(add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK3519))) | ⇠ans0

(rec10(sK1_in ,s(sK12),sK3_in)) [trivial inequality removal 18818]

18820. add(mult(sK2_in ,sK1_in),add(mult(sK2_in ,sK11),sK3519)) != add

(add(mult(sK2_in ,sK1_in),mult(sK2_in ,sK11)),sK3519) | ⇠ans0(rec10

(sK1_in ,s(sK12),sK3_in)) [term algebras injectivity 18819]

18877. ⇠ans0(rec10(sK1 in,s(sK12),sK3 in)) [unit resulting resolution

18813 ,18820]

18878. ans0(X0) [answer literal]

18879. $false [unit resulting resolution 18878 ,18877]

% SZS output end Proof for distributivity
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% ------------------------------

% Version: Vampire 4.8 (commit cc590a820 on 2024 -02 -04 18:01:23

+0100)

% Linked with Z3 4.12.2.0 e417f7d78509b2d0c9ebc911fee7632e6ef546b6

z3 -4.8.4 -7517 - ge417f7d78

% Termination reason: Refutation

% Memory used [KB]: 15971

% Time elapsed: 0.852 s

% ------------------------------

% ------------------------------

Going through main steps. We now discuss the output highlighted in red.

1. In line 6 the negated specification is highlighted. The exclamation mark ”!” denotes a
universal quantifier and the question mark ”?” denotes an existential quantifier. The
tilde symbol ”⇠” denotes a negation, ¬. Further, we see the input variables X0, X1
and X2 and the output variable X3 with their respective types.

2. In line 10 the specification is fully preprocessed, including the answer literal, contain-
ing the output variable X3.

3. In line 38 we see the resolution of the induction axiom together with the input clause
which results in the first appearance of an answer literal with a rec-term.

4. In line 736 the rec-term changes, the skolem constant sK1 in is substituted for the
variable X0.

5. In line 18325 the rec-term changes again, here the term s(sK 12) is substituted for
the variable X0.

6. The clause containing only the answer literal is derived in line 18877, which evokes
termination of the derivation.

In conclusion, we see that the automatic proof of the Vampire theorem prover follows a
similar guideline as the manually deducted theoretic proof of Section 5.2.
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Saturation

In this chapter, our goal is to formalize the program synthesis process that was described
based on the distributivity example in Chapter 5. In Section 6.1 we define the concepts of
inductive structures, inductive proofs, and recursive functions, [GJ95]. In Section 6.2 we
explain how one can construct recursive functions given an inductive proof over an induc-
tive structure [HAH+24]. Section 6.1 and Section 6.2 are mostly based on the inductive
structure of natural numbers. In Section 6.3 we will explain how synthesis of recursive
functions works for the inductive structures of lists and binary trees.

6.1 Inductive Structures

The idea of being able to synthesize recursive functions from first-order logic specifications
relies on the one-to-one correspondence between induction and recursion. For this we will
introduce the following concept.

Definition 6.1.1 (Inductiv Structure). A set S is called an inductive structure, notated
as S = ind(C,O), where C denotes a set of constants and O a set of functions, together
with their arity if the following properties hold.

1. Every constant c 2 C is in S.
2. For every operator f 2 O with arity n and a1, ..., an 2 S it holds that f(a1, ..., an) 2 S.
3. For every element s 2 S it holds that either s 2 C or there are elements a1, ..., an 2 S,

a function f 2 O with arity n such that s = f(a1, ..., an).

The elements in C and O are also called constructors.

Remark 6.1.2 The name inductive structure comes from the fact that these structures are
defined inductively using constants and operators.

Example 6.1.3We have already encountered an example of an inductive structure, namely
the theory of natural numbers denoted as N. Additionally to the predicate symbol of
equality ” = ”, defined by the axioms given in Section 2.3, it consists of the function
symbols 0 and s for which the following two axioms hold

8x. s(x) 6= 0 (Nat1)

8x, y. s(x) = s(y) ! x = y. (Nat2)
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Therefore, the inductive structure of the natural numbers is induced by the constant 0 and
the operator s with arity 1 and can be written as N = ind({0}, {s}). Following Definition
6.1.1 we can construct the elements of N in the following way.

1. 0 2 C ! 0 2 N

2. 0 2 N, s 2 O ! s(0) 2 N

3. s(0) 2 N, s 2 O ! s(s(0)) 2 N

4. ...

Further, it follows from item 3 of Definition 6.1.1, that only elements constructed by 0 and
s are contained in N. Therefore, we can express the set of natural numbers as

N = {0, s(0), s(s(0)), s(s(s(0))), ...}.
The idea of having inductive structures is that one can easily establish whether some

property holds, by proving with induction.

Definition 6.1.4 (Proof by Induction). Let S = ind(C,O) be an inductive structure and
P : S ! {>,?} a property. If

1. for each constant c 2 C, P (c) is true and

2. for each function f 2 O with arity n and elements s1, ..., sn for which property P is
true it follows that P (f(s1, ..., sn)) is true as well,

then the following formula is valid

8x 2 S.P (x).

Definition 6.1.5 (Proof by Induction over N). For the inductive structure of the natural
numbers N, proof by induction simplifies to the following. Let P : N ! {>,?} be an
arbitrary property. If

1. P (0) holds

2. and for each element x 2 N it holds that P (x) ! P (s(x))

then

8x 2 N.P (x)

is valid.

As a next step, we define the property of unique readability over inductive structures.
This property ensures that each element of an inductive structure can be expressed in
exactly one way. We will then use this property for expressing unique recursive functions
over inductive structures.
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Definition 6.1.6 (Unique Readability). An inductive structure S = ind(C,O) has the
property of unique readability if for every b 2 S exactly one of the following two properties
P1, P2 hold:

1. P1(b) : b 2 C or

2. P2(b) : There are unique elements s1, ..., sn 2 S and a unique operator f 2 O with
arity n such that b = f(s1, ..., sn) and no element in C, other than b, is of the form
f(s1, ..., sn).

We prove that the property of unique readability holds for the natural numbers.

Lemma 6.1.7 The inductive structure of the natural numbers N = ind({0}, {s}) has the
property of unique readability.
Proof. We prove by induction. Following Definition 6.1.6 we want to prove that the
following property holds for all elements in N:

P (x) : P1(x) _ P2(x).

The base case is easily established: Because 0 2 C also P (0) holds.
For the step case, we assume that P (x) for arbitrary x 2 N holds. There are two cases to
distinguish.
Case 1. Assume that P1(x) is true. This means that x 2 C = {0} from which x = 0 follows.
Using the substitution axiom for s, (2.7), it follows that s(x) = s(0). The set of operators
of the natural numbers consists only of s with arity 1. Therefore, there is an element in
N, 0, and a unique operator, s, such that s(x) = s(0). Assume there is an element x0 in N
di↵erent from 0 such that s(x) = s(x0) holds. Using the injectivity axiom (Nat2) it follows
that x = x0 and therefore it follows from the transitivity axiom of the equality sign that
also x0 = 0. This shows that 0 is the unique element such that s(x) = s(0).
From the definition of an inductive structure it follows that for any element b0 2 N it either
holds that

1. b0 = 0 or

2. there is n 2 N such that b0 = s(n).

Axiom (Nat1) states that 0 6= s(x) and Axiom (Nat2) states that if s(n) = s(x) it must
follow that n = x. This proves that no element other than s(x) can be written as s(0).
We have proven that P2(s(x)) holds and therefore also P (s(x)) holds.

Case 2. If Case 1 does not hold, ¬P1(x), it immediately follows that P2(x) must be true.
There is only one operator in O: s of arity 1. Therefore it follows that there is a unique
element, sx, and a unique operator, s, such that x = s(sx). Using again the substitution
axiom (2.7) we get s(x) = s(s(sx)). In particular, there is an element, s(sx) and a unique
(the only) operator, s such that s(x) = s(s(sx)). Assume there is another s0x in N such that
x = s(s0x). This means that s(sx) = s(s0x). Using Axiom (Nat2) it follows that sx = s0x.
This shows the uniqueness of element sx.
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The fact that there is no other element in N that can be written as s(sx) follows from
the same argument given in Case 1.
This shows that P2(s(x)) holds.
We have shown the precondition for induction in Definition 6.1.5, therefore we can deduce

8x 2 N.P (x),

which completes the proof. ⇤

As a next step, we state the following lemma, which defines recursive functions over
natural numbers.

Lemma 6.1.8 (Recursive functions over N). For an arbitrary set A let Gs : A ! A be a
function and let a0 be an element of A. Then there exists a unique function f : N ! A
such that the following properties hold

f(0) = a0

8k 2 N.f(s(k)) = Gs(f(k)).

Proof. See Proof of Lemma 1.1.30 in [GJ95].

Remark 6.1.9 We call functions constructed as in Lemma 6.1.8 recursive functions over
the natural numbers. Note, that the recursive function f is uniquely defined by the pair
(a0, Gs) in an inductive way.

Remark 6.1.10 The result of Lemma 6.1.8 can be generalized to arbitrary inductive
structures with unique readability, see Lemma 1.1.31 in [GJ95].

Remark 6.1.11 Going back to Chapter 5 we have seen that after the termination of the
proof derivation, the answer literal contained the term

rec(x2, s(w), x3).

This corresponds uniquely to the recursive function f defined by the tuple (x2, s(.)), where
the value for input x3 is computed.

We have established that proof by induction is very useful to showcase certain properties
of inductive structures. Further, we can uniquely define recursive function over inductive
structures with unique readabilty. When proving by induction over formulas with a special
structure, the pair (a0, Gs) can be used to define a recursive function.

As a next step we formalize the process of translating inductive proofs to recursive
functions over natural numbers.
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6.2 Constructing Recursive Functions from Inductive Proofs

We explain the following process for the inductive structure on natural numbers to get a
better intuition. In Section 6.3 we explain how this works for the inductive structures of
lists and binary trees.

We start with a specification of the form

8x 9y.F [x, y]. (6.1)

The idea is the following: when a clause containing a literal of the form ¬G[σx, y] is derived,
where the variable y is the output variable of (6.1), the induction axiom can be applied
using the formula

8x 9y.G[x, y]. (6.2)

The induction axiom with the plugged-in formula, (6.2), is next preprocessed. We have
described this in more detail in Section 5.1, for a specific formula. Preprocessing entailed
transformation into PNF with the right order of the quantified variable and introduced the
skolem function that we denoted with rec. This results in a formula of the form

cnf((G[0, u0] ^ (G[σn, σv] ! G[s(σn), us]))

! G[x, rec(u0, us, x)]). (MagAxNat)

Remark 6.2.1 We call formulas of the form (MagAxNat) magic axioms. This is done
in order to shorten notation and highlight the main mechanism of synthesizing recursive
functions.

We use the literal G[x, rec(u0, us, x)] contained in all clauses of (MagAxNat) to resolve the
literal ¬G[σx, y] with the substitution ✓ : {x 7! σx, y 7! rec(u0, us, σx)}. This application
of ✓ then also results in substituting the output, variable y, inside the answer literal to
rec(u0, us, σx). Resolving further literals in (MagAxNat) results in substitutions of variables
u0 and us. If at some stage the proof terminates, the content of the answer literal is
postprocessed into a program consisting of recursive functions.

Remark 6.2.2 Several applications of induction during the proof can result in several
rec-terms nested inside of each other. After successful termination, the content of the
answer literal is unrolled inside out resulting in nested recursive functions. This will be
demonstrated with concrete examples (Examples 7.1.1 and 7.2.3) in Chapter 7.

Remark 6.2.3 If the formula (6.2), where induction is applied upon, consists of a unit
clause (which was the case with the distributivity example in Section (5.2)), the trans-
formation of the formula (MagAxNat) into CNF results in two clauses. If G is a clause
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containing more literals or even consists of more clauses, the formula (MagAxNat) turns
into a vastly bigger clause set, which will be illustrated with concrete examples in Chapter
7. Examples 7.2.4 and 7.3.1 use induction on a formula of the form {{l1, l2}, {l01, l02}}. The
added clause set then contains a total of 12 clauses, which already highly increases the size
of the derivation.

Adapted Inference Rules of the Superposition Calculus. Additionally to appear-
ances of rec-terms that are translated into recursive functions, we introduce two new
rules of the superposition calculus in Figure 6.1. These two rules allow for if − then −
else−constructors to appear inside of rec-terms. The rules can be applied if the rec-terms
in the two clauses have the same input arguments r0 and r and have two unifiable expres-
sions rs and r0s as their second argument. The if − then − else−constructor then appears
in the second argument of the rec-term. If the derivation is indeed successful, the program
then contains recursive functions with if − then− else− conditions in the step case.

Remark 6.2.4 The derivations of the Examples 7.1.2, 7.1.3, 7.2.4 and 7.3.1 in Chapter 7
make use of the adapted rules given in Figure 6.1.

Binary resolution with condition
inside rec-term (BR”):

L _ C _ ans(rec(r0, rs, r)) ¬L0 _ C 0 _ ans(rec(r0, r
0
s, r))

(D _ C _ C 0 _ ans(rec(r0, if L then r0s else rs, r)))✓

where (✓,D) is a computable unifier of
L,L0 wrt. rec(r0, if L then r0s else rs, r))

Superposition with condition inside rec-term
(Sup”):

s = t _ C _ ans(rec(r0, rs, r)) L[s0] _ C 0 _ ans(rec(r0, r
0
s, r))

(D _ L[t] _ C _ C 0 _ ans(rec(r0, if s = t then r0s else rs, r)))✓

where (✓,D) is a computable unifier of s, s0 wrt.
rec(r0, if s = t then r0s else rs, r)).

Figure 6.1: Additional rules of the superposition calculus Sup for recursive synthesis. The
expressions s, s0, t, t0 denote terms, L denotes a literal, C and D denote clauses.
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The next theorem ensures correctness of the introduced framework for recursive synthesis.

Theorem 6.2.5 (Correctness of Superposition with Recursive Synthesis). Assume that
for a given specification

8x 9y.F [x, y] (6.3)

the clause containing only the answer literal ans(r[σ]) has been derived from the set of
clauses

{M1, ...,Mn, cnf(¬F [σ, y] _ ans(y))},
where M1, ...,Mn denote di↵erent instances of magic axioms and r[σ] is computable. We
write rR[x] for the term where for each rec-term coming from a di↵erent magic axiom the
unique recursive function has been substituted. The expression rR[x] is then a witness for
y for (6.3).
Proof. A detailed proof can be found in [HAH+24], page 23. ⇤

6.3 Magic Axioms for Di↵erent Inductive Structures

Besides natural numbers, we will also derive examples over di↵erent inductive structures,
i.e. natural lists and natural binary trees. In the following we will shortly explain the magic
axioms for these inductive structures. We refer to Section 8 in [HAH+24] for the general
version of the structural induction axiom and its respective translation into a recursive
function.

6.3.1 Natural Lists

The inductive structure of natural lists consists of the constructors nil of arity 0 and
cons : N⇥ L ! L of arity 2. Therefore the structural induction axiom over lists looks like

(F [nil] ^ 8n 2 N, l 2 L.(F [l] ! F [cons(n, l)]))

! 8x 2 L.F [x], (IndAxList)

for arbitrary first-order logic formulas F .
We use the induction axiom for lists (IndAxList) with formulas of the format (6.2). After

preprocessing the magic axioms for natural lists then looks like

cnf((G[nil, u0] ^ (G[σl, σv] ! G[cons(σn, σl), us]))

! G[x, rec(unil, ucons, x)]). (MagAxList)

The recursive function over natural lists that is uniquely defined by the pair (unil, ucons(.))
with input x can then be written as

f(nil) = unil

f(cons(n, l)) = ucons[f(l)]. (6.4)

Remark 6.3.1 We note that the function in (6.4) does not depend on the variable n but
only on the remaining part of the list l.
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6.3.2 Natural Binary Trees

The inductive structure of binary trees consists of the constructors leaf : N ! BT of arity 1
and bt : N⇥BT⇥N ! BT of arity 3. Therefore the structural induction axiom over natural
binary trees looks like

((8a 2 N.F [leaf(a)]) ^ 8n 2 N, l, r 2 BT.((F [l] ^ F [r]) ! F [bt(l, n, r)]))

! 8x 2 BT.F [x], (IndAxTree)

for an arbitrary first-order logic formula F .
We, again, use the induction axiom (IndAxTree) together with a formula of the format

(6.2). After correct preprocessing this results in the magic axiom for natural binary trees

(G[leaf(a), u0] ^ ((G[σl, σv] ^G[σr, σ
0
v]) ! G[bt(σl, σn, σr), us])

! G[x, rec(uleaf , ubt, x)]. (MagAxTree)

The recursive function over natural binary trees that is uniquely defined by the pair
(uleaf , ubt(., .)) with input x can then be written as

f(leaf(n)) = uleaf

f(bt(l, n, r)) = ubt[f(l), f(r)]. (6.5)

Remark 6.3.2 Note here, that this time the step case of the recursive function in (6.5)
depends on two arguments, the left part of the tree, l, and the right part of the tree r.
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7 Exploring Recursive Synthesis in Saturation
over Di↵erent Inductive Structures

In this chapter, I want to showcase some of the examples I developed and realized while
working with Laura Kovács and Petra Hozzová. The outcome of this work was depicted in
the paper ”Synthesis of Recursive Programs in Saturation”, [HAH+24]. My contributions
are presented in the Appendix D section of this very paper, which follows a similar structure
to this chapter. Furthermore, all the tables, figures and program derivations are taken from
there. The Appendix D section was written by myself, the formatting of Table 7.1 and
proofreading was done by Petra Hozzová and Laura Kovács.
The lemmas used for the derivations are given in Figure 7.3. Note that contrary to

the distributivity example in Chapter 5, the proofs of the lemmas are not written down
explicitly, but can be formally proven like Lemma 4.2.2 with the use of the superposition
calculus.
To highlight the important derivation steps, some literals and terms are typeset in bold.

This is done either to mark on which literal induction is applied on or when an inference
rule applied on the literal causes a rec-term to change.
Note that for examples using the predicate symbol ”<”, the expression x y is sometimes

used as a syntactic macro for ¬(y < x) to increase readability.

7.1 Recursive Synthesis over Natural Numbers

Example 7.1.1 (Subtraction with condition). This first example shows how two applica-
tions of induction result in a program consisting of two nested recursive functions. The goal
is to synthesize the subtraction function. Due to the fact that we are working with natural
numbers, we add a precondition in the specification that makes sure that the number that
is subtracted is strictly smaller than the number that is subtracted from. This then ensures
validity of the specification.

Specification.

8x1, x2 2 N.9y 2 N.(x2 < x1 ! x2 + y = x1)

Here we are using the strictly smaller ordering, defined in Figure 7.1, that fulfills the axioms
(A7N) and (A8N). For synthesizing the subtraction function, we apply induction two times,
which will therefore lead to two nested recursive functions.
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Natural numbers N Natural lists L Natural binary trees BT
Constructors 0 : N nil : L leaf : N ! BT

s : N ! N cons : N⇥ L ! L bt : BT⇥ N⇥ BT ! BT
Symbols + : N⇥ N ! N ++ : L⇥ L ! L

· : N⇥ N ! N len : L ! N inBT : N⇥ BT ! {>,?}
< : N⇥ N ! {>,?} su↵ : L⇥ L ! {>,?}

inL : N⇥ L ! {>,?}

Figure 7.1: Definitions for the theories of natural numbers N, lists L, and binary trees BT.
The axioms defining function and predicate symbols can be found in Figure
(7.2). When it is clear from the context we will just write in instead of inL/inBT.

Preprocessing. Preprocessing results in the following two clauses

σ2 < σ1 _ ans(y) (Inp1)

σ2 + y 6= σ1 _ ans(y), (Inp2)

where σ1 and σ2 denote the skolem constants of variables x1 and x2 respectively.

Details of the magic. We firstly use the magic axiom with the formula G[t, x] :=
L1[t] _ L2[t, x], where L1[t] := ¬(t < σ1) and L2[t, x] := t+ x = σ1, hence we get

(G[0, u0] ^ (G[σy, σw] ! G[s(σy), us]))

! G[x, rec(u0, us, x)]. (7.1)

When transforming (7.1) into CNF we end up with the following six clauses:

¬L1[0] _ L1[σy] _ L2[σy, σw] _ L1[z] _ L2[z, rec(u0, us, z)] (7.2)

¬L2[0, u0] _ L1[σy] _ L2[σy, σw] _ L1[z] _ L2[z, rec(u0, us, z)] (7.3)

¬L1[0] _ ¬L1[s(σy)] _ L1[z] _ L2[z, rec(u0, us, z)] (7.4)

¬L1[0] _ ¬L2[s(σy), us] _ L1[z] _ L2[z, rec(u0, us, z)] (7.5)

¬L2[0, u0] _ ¬L1[s(σy)] _ L1[z] _ L2[z, rec(u0, us, z)] (7.6)

¬L2[0, u0] _ ¬L2[s(σy), us] _ L1[z] _ L2[z, rec(u0, us, z)] (7.7)

In our derivation we will only use the clauses (7.3), (7.6) and (7.7) since the literal
¬L1[0] : 0 < σ1 cannot be resolved.
The second application of induction uses the unit literal L[t, x] : t = s(x). The formula

8x9y.x = s(y) does not hold; a contradiction can be easily deduced using the axiom 8x.0 6=
s(x). However, what can be proven is the statement 8x.9y.x 6= 0 ! x = s(y). In order to
prove this we use induction in a slightly di↵erent way; we start with s(0) as a base case.⇣

9u0.L[s(0), u0] ^ 8y. y 6= 0 ^ 9w.L[y, w] ! 9us.L[s(y), us]
⌘
! 8x.9y.(x 6= 0 ! L[x, y]).
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Note that using this induction axiom results in a di↵erent scheme for the synthesized
recursive function: the base case of the function will be s(0), and the recursive case will be
s(n) conditioned on n 6= 0. The CNF of the corresponding induction axiom for synthesis
is:

¬L[s(0), u0] _ σy 6= 0 _ x = 0 _ L[x, rec(u0, us, x)] (7.8)

¬L[s(0), u0] _ L[σy, σw] _ x = 0 _ L[x, rec(u0, us, x)] (7.9)

¬L[s(0), u0] _ ¬L[s(σy), us] _ x = 0 _ L[x, rec(u0, us, x)] (7.10)

Derivation and program. Putting this alltogether we obtain the following program
derivation. For readability, we denote the two rec-symbols used in the two magic formulas
by recsub and recpre.

1. σ2 < σ1 _ans(y) [Inp1]

2. σ2 + y 6= σ1 _ans(y) [Inp2]

3. 0 + u0 6= σ1_¬(σy < σ1) _ σy + σw = σ1 _ ¬(σ2 < σ1) _
_ ans(recsub(u0, us,σ2)) [BR 2, (7.3)]

4. 0 + u0 6= σ1_s(σy) < σ1 _ ¬(σ2 < σ1) _ ans(recsub(u0, us,σ2)) [BR 2, (7.6)]

5. 0 + u0 6= σ1_s(σy) + us 6= σ1 _ ¬(σ2 < σ1) _ ans(recsub(u0, us,σ2)) [BR 2, (7.7)]

6. 0+ u0 6= σ1 _ ¬(σy < σ1) _ σy + σw = σ1 _ ans(recsub(u0, us, σ2)) [BR 1, 3]

7. 0+ u0 6= σ1 _ s(σy) < σ1 _ ans(recsub(u0, us, σ2)) [BR 1, 4]

8. 0+ u0 6= σ1 _ s(σy) + us 6= σ1 _ ans(recsub(u0, us, σ2)) [BR 1, 5]

9. ¬(σy < σ1) _ σy + σw = σ1 _ ans(recsub(σ1, us, σ2)) [Sup, ER (L1N), 6]

10. s(σy) < σ1 _ ans(recsub(σ1, us, σ2)) [Sup, ER (L1N), 7]

11. s(σy) + us 6= σ1 _ ans(recsub(σ1, us, σ2)) [Sup, ER (L1N), 8]

12. σy + s(us) 6= σ1 _ ans(recsub(σ1, us, σ2)) [Sup (L2N), 11]

13. σy < σ1 _ ans(recsub(σ1, us, σ2)) [BR (L5N), 10]

14. σy + σw = σ1 _ ans(recsub(σ1, us, σ2)) [BR 9, 13]

15. σy + s(us) 6= σy + σw _ ans(recsub(σ1, us, σ2)) [Sup 12, 14]

16. σw 6= s(us) _ans(recsub(σ1, us, σ2)) [BR (L14N), 15]

17. s(0) 6= s(u0)_σy = s(σ0
w) _ σw = 0 _

_ ans(recsub(σ1, recpre(u0, us,σw), σ2)) [BR 16, (7.9)]

18. s(0) 6= s(u0)_s(σy) 6= s(us) _ σw = 0 _
_ ans(recsub(σ1, recpre(u0, us,σw), σ2)) [BR 16, (7.10)]
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19. σy = s(σ0
w) _ σw = 0 _

_ ans(recsub(σ1, recpre(0, us, σw), σ2)) [ER 17]

20. s(σy) 6= s(us)_σw = 0 _
_ ans(recsub(σ1, recpre(0, us, σw), σ2)) [ER 18]

21. s(σy) = s(s(σ0
w))_σw = 0 _

_ ans(recsub(σ1, recpre(0, us, σw), σ2)) [BR (A2N), 19]

22. σw = 0 _ ans(recsub(σ1, recpre(0,s(σ
0
w), σw), σ2)) [BR 20, 21, ER]

23. σw 6= 0 _ ans(recsub(σ1, us, σ2)) [BR (L6N), 13, 14]

24. ans(recsub(σ1, recpre(0, s(σ
0
w), σw), σ2)) [BR 22, 23, ER]

25. ⇤ [answer literal removal 24]

After completing the proof, we construct the program from the content of the answer
literal in the following way. We start by constructing the recursive function pre from the
innermost rec-term

recpre(0, s(σ
0
w), σw).

Due to the fact that the base case of the magic axiom was changed to s(0), this results in
the following recursive function

pre(s(0)) = 0

n 6= 0 ! pre(s(n)) = s(pre(n)).

The second recursive function coming from the recsub-term calls upon the pre function in
the base case. This leads to the following recursive function

sub(0) = x1

sub(s(n)) = pre(sub(n)).

The synthesized program is then

sub(x2).

Note that following this program the inner function pre never has 0 as an input. We see
that the program is doing what was specified: subtracting 1 from x1 x2-times.

Example 7.1.2 (Floored square root). The next example aims to compute the rounded
root of a natural number. We specify this using the following two constraints.

Specification.
8x9y.(y · y x ^ x < s(y) · s(y))
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Details of the magic. For this example and for Example 7.1.3, the specification contains
two unit clauses. In order to derive the synthesized program, we use a magic axiom with
G[t, x] := L1[t, x] ^ L2[t, x]. The CNF of its magic formula is:

¬L1[0, u0] _ ¬L2[0, u0] _ L1[σy, σw] _ L1[z, rec(u0, us, z)] (7.11)

¬L1[0, u0] _ ¬L2[0, u0] _ L1[σy, σw] _ L2[z, rec(u0, us, z)] (7.12)

¬L1[0, u0] _ ¬L2[0, u0] _ L2[σy, σw] _ L1[z, rec(u0, us, z)] (7.13)

¬L1[0, u0] _ ¬L2[0, u0] _ L2[σy, σw] _ L2[z, rec(u0, us, z)] (7.14)

¬L1[0, u0] _ ¬L2[0, u0] _ ¬L1[s(σy), us] _ ¬L2[s(σy), us] _ L1[z, rec(u0, us, z)] (7.15)

¬L1[0, u0] _ ¬L2[0, u0] _ ¬L1[s(σy), us] _ ¬L2[s(σy), us] _ L2[z, rec(u0, us, z)] (7.16)

Note that after we resolve the formulas above with a premise ¬L1[t, x] _ ¬L2[t, x] _ C _
ans(r[x]), we obtain only three clauses:

¬L1[0, u0] _ ¬L2[0, u0] _ L1[σy, σw] _ C _ ans(r[rec(u0, us, t)]) (7.17)

¬L1[0, u0] _ ¬L2[0, u0] _ L2[σy, σw] _ C _ ans(r[rec(u0, us, t)]) (7.18)

¬L1[0, u0] _ ¬L2[0, u0] _ ¬L1[s(σy), us] _ ¬L2[s(σy), us] _ C _ ans(r[rec(u0, us, t)]) (7.19)

For the derivation, we use the instances L1[t, y] : y · y t and L2[t, y] : t < s(y) · s(y).

Derivation and program.

1. σx < y · y_¬(σx < s(y) · s(y))_ans(y) [input]

2. 0 < u0 · u0 _ ¬(0 < s(u0) · s(u0)) _ ¬(σy < σw · σw) _
_ ans(rec(u0, us,σx)) [(7.17)]

3. 0 < u0 · u0 _ ¬(0 < s(u0) · s(u0)) _ σy < s(σw) · s(σw) _
_ ans(rec(u0, us,σx)) [(7.18)]

4. 0 < u0 · u0 _ ¬(0 < s(u0) · s(u0)) _ s(σy) < us · us _
_ ¬(s(σy) < s(us) · s(us)) _ ans(rec(u0, us,σx)) [(7.19)]

5. 0 6= u0 · u0 _¬(0 < s(u0) · s(u0)) _ ¬(σy < σw · σw) _
_ ans(rec(u0, us, σx)) [BR (L7N), 2]

6. 0 6= u0 · u0 _¬(0 < s(u0) · s(u0)) _ σy < s(σw) · s(σw) _
_ ans(rec(u0, us, σx)) [BR (L7N), 3]

7. 0 6= u0 · u0 _¬(0 < s(u0) · s(u0)) _ s(σy) < us · us _
_ ¬(s(σy) < s(us) · s(us)) _ ans(rec(u0, us, σx)) [BR (L7N), 4]

8. ¬(0 < s(0) · s(0)) _ ¬(σy < σw · σw) _
_ ans(rec(0, us, σx)) [ER (A5N), 5]

9. ¬(0 < s(0) · s(0)) _ σy < s(σw) · s(σw) _
_ ans(rec(0, us, σx)) [ER (A5N), 6]

57



7 Exploring Recursive Synthesis in Saturation over Di↵erent Inductive Structures

10. ¬(0 < s(0) · s(0)) _ s(σy) < us · us _
_ ¬(s(σy) < s(us) · s(us)) _ ans(rec(0, us, σx)) [ER (A5N), 7]

11. ¬(0 < s(0) · 0+ s(0)) _ ¬(σy < σw · σw) _
_ ans(rec(0, us, σx)) [ER (A6N), 8]

12. ¬(0 < s(0) · 0+ s(0)) _ σy < s(σw) · s(σw) _
_ ans(rec(0, us, σx)) [ER (A6N), 9]

13. ¬(0 < s(0) · 0+ s(0)) _ s(σy) < us · us _
_ ¬(s(σy) < s(us) · s(us)) _ ans(rec(0, us, σx)) [ER (A6N), 10]

14. ¬(0 < 0+ s(0)) _ ¬(σy < σw · σw) _ ans(rec(0, us, σx)) [ER (A5N), 11]

15. ¬(0 < 0+ s(0)) _ σy < s(σw) · s(σw) _ ans(rec(0, us, σx)) [ER (A5N), 12]

16. ¬(0 < 0+ s(0)) _ s(σy) < us · us _ ¬(s(σy) < s(us) · s(us)) _
_ ans(rec(0, us, σx)) [ER (A5N), 13]

17. ¬(0 < s(0)) _ ¬(σy < σw · σw) _ ans(rec(0, us, σx)) [Sup (L1N), 14]

18. ¬(0 < s(0)) _ σy < s(σw) · s(σw) _ ans(rec(0, us, σx)) [Sup (L1N), 15]

19. ¬(0 < s(0)) _ s(σy) < us · us _ ¬(s(σy) < s(us) · s(us)) _
_ ans(rec(0, us, σx)) [Sup (L1N), 16]

20. ¬(σy < σw · σw) _ ans(rec(0, us, σx)) [BR (A8N), 17]

21. σy < s(σw) · s(σw) _ ans(rec(0, us, σx)) [BR (A8N), 18]

22. s(σy) < us · us_¬(s(σy) < s(us) · s(us))_ans(rec(0, us, σx)) [BR (A8N), 19]

23. s(σy) < s(σw) · s(σw)_s(σy) = s(σw) · s(σw)_
_ ans(rec(0, us, σx)) [BR (L8N), 21]

24. s(σy) < σw · σw _ s(σy) = s(σw) · s(σw) _ ans(rec(0,σw, σx)) [BR 22, 23, ER]

25. ¬(s(σy) < σw · σw) _ ans(rec(0, us, σx)) [BR (L9N), 20]

26. s(σy) = s(σw) · s(σw) _ans(rec(0, σw, σx)) [BR 24, 25]

27. s(σy) 6= us · us_¬(s(σy) < s(us) · s(us)) _ ans(rec(0, us, σx)) [BR (L7N), 22]

28. s(σy) < s(σw) · s(σw) _ ¬(s(σy) < s(s(σw)) · s(s(σw))) _
_ ans(rec(0,s(σw), σx)) [BR 23, 27, ER]

29. s(σy) < s(σw) · s(σw) _
_ ¬(s(σw) · s(σw) < s(s(σw)) · s(s(σw))) _
_ ans(rec(0, s(σw), σx)) [Sup 23, 28]

30. s(σy) < s(σw) · s(σw) _
_ ¬(s(σw) · s(σw) < s(s(σw)) · s(σw) + s(s(σw))) _
_ ans(rec(0, s(σw), σx)) [Sup (A6N), 29]
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31. s(σy) < s(σw) · s(σw) _
_ ¬(s(σw) · s(σw) < s(σw) · s(σw) + s(σw) + s(s(σw))) _
_ ans(rec(0, s(σw), σx)) [Sup (L4N), 30]

32. s(σw) · s(σw) < s(σw) · s(σw) + s(σw) [BR (A1N), (L10N)]

33. s(σw) · s(σw) + s(σw) < s(σw) · s(σw) + s(σw) + s(s(σw)) [BR (A1N), (L10N)]

34. s(σw) · s(σw) < s(σw) · s(σw) + s(σw) + s(s(σw)) [BR (A9N), 32, 33]

35. s(σy) < s(σw) · s(σw) _ ans(rec(0, s(σw), σx)) [BR 31, 34]

36. s(σy) 6= s(σw) · s(σw) _ans(rec(0, s(σw), σx)) [BR (L7N), 35]

37. ans(rec(0,if s(σy) = s(σw) · s(σw)) then s(σw) else σw, σx) [BR00 26, 36]

38. ⇤ [answer literal removal 37]

Note that in step 37 we use the adapted binary resolution rule from Figure 6.1, which
therefore introduces an if−then−else into the rec-term.
We can translate the content of the answer literal into

f(x),

where f is the recursive function defined as

f(0) = 0

f(s(n)) = if s(n) = s(f(n)) · s(f(n)) then s(f(n)) else f(n).

Example 7.1.3 (Floored divison). The next example is similar to the previous one, the
goal is to synthesize the rounded division of two inputs. In order to preserve validity, we
add a condition that prevents division by zero.

Specification.
8x1, x29y.(x2 6= 0 ! (y · x2 x1 ^ x1 < s(y) · x2))

Details of the magic. The formula used with the magic axiom has the same struc-
ture as in Example 7.1.2. This time the specific literals are L1[t, y] : y · σ2 t and
L2[t, y] : t < s(y) · σ2.

Derivation and program.

1. σ2 6= 0 _ ans(y) [input]

2. σ1 < y · σ2_ ¬(σ1 < s(y) · σ2)_ans(y) [input]
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3. 0 < u0 · σ2 _ ¬(0 < s(u0) · σ2) _ ¬(σy < σw · σ2) _
_ ans(rec(u0, us,σ1)) [(7.17)]

4. 0 < u0 · σ2 _ ¬(0 < s(u0) · σ2) _ σy < s(σw) · σ2 _
_ ans(rec(u0, us,σ1)) [(7.18)]

5. 0 < u0 · σ2 _ ¬(0 < s(u0) · σ2) _ s(σy) < us · σ2 _
_ ¬(s(σy) < s(us) · σ2) _ ans(rec(u0, us,σ1)) [(7.19)]

6. 0 6= u0 · σ2_¬(0 < s(u0) · σ2) _ ¬(σy < σw · σ2) _
_ ans(rec(u0, us, σ1)) [BR (L7N), 3]

7. 0 6= u0 · σ2_¬(0 < s(u0) · σ2) _ σy < s(σw) · σ2 _
_ ans(rec(u0, us, σ1)) [BR (L7N), 4]

8. 0 6= u0 · σ2_¬(0 < s(u0) · σ2) _ s(σy) < us · σ2 _
_ ¬(s(σy) < s(us) · σ2) _ ans(rec(u0, us, σ1)) [BR (L7N), 5]

9. ¬(0 < s(0) · σ2) _ ¬(σy < σw · σ2) _ ans(rec(0, us, σ1)) [ER (L3N), 6]

10. ¬(0 < s(0) · σ2) _ σy < s(σw) · σ2 _ ans(rec(0, us, σ1)) [ER (L3N), 7]

11. ¬(0 < s(0) · σ2) _ s(σy) < us · σ2 _
_ ¬(s(σy) < s(us) · σ2) _ ans(rec(0, us, σ1)) [ER (L3N), 8]

12. ¬(0 < 0 · σ2 + σ2) _ ¬(σy < σw · σ2) _
_ ans(rec(0, us, σ1)) [ER (L4N), 9]

13. ¬(0 < 0 · σ2 + σ2) _ σy < s(σw) · σ2 _
_ ans(rec(0, us, σ1)) [ER (L4N), 10]

14. ¬(0 < 0 · σ2 + σ2) _ s(σy) < us · σ2 _
_ ¬(s(σy) < s(us) · σ2) _ ans(rec(0, us, σ1)) [ER (L4N), 11]

15. ¬(0 < 0+ σ2) _ ¬(σy < σw · σ2) _ ans(rec(0, us, σ1)) [Sup (L3N), 12]

16. ¬(0 < 0+ σ2) _ σy < s(σw) · σ2 _ ans(rec(0, us, σ1)) [Sup (L3N), 13]

17. ¬(0 < 0+ σ2) _ s(σy) < us · σ2 _ ¬(s(σy) < s(us) · σ2) _
_ ans(rec(0, us, σ1)) [Sup (L3N), 14]

18. x < x+ σ2 _ ans(y) [BR (L10N), 1]

19. ¬(σy < σw · σ2) _ ans(rec(0, us, σ1)) [BR 15, 18]

20. σy < s(σw) · σ2 _ ans(rec(0, us, σ1)) [BR 16, 18]

21. s(σy) < us · σ2_¬(s(σy) < s(us) · σ2)_ans(rec(0, us, σ1)) [BR 17, 18]

22. s(σy) < s(σw) · σ2_s(σy) = s(σw) · σ2_
_ ans(rec(0, us, σ1)) [BR (L8N), 20]
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23. s(σy) < σw · σ2 _ s(σy) = s(σw) · σ2 _
_ ans(rec(0,σw, σ1)) [BR 21, 22]

24. ¬(s(σy) < σw · σ2) _ ans(rec(0, us, σ1)) [BR (L9N), 19]

25. s(σy) = s(σw) · σ2 _ans(rec(0, σw, σ1)) [BR 23, 24]

26. s(σy) 6= us · σ2_¬(s(σy) < s(us) · σ2) _ ans(rec(0, us, σ1)) [BR (L7N), 21]

27. s(σy) < s(σw) · σ2 _ ¬(s(σy) < s(s(σw)) · σ2) _
_ ans(rec(0,s(σw), σ1)) [BR 22, 26, ER]

28. s(σy) < s(σw) · σ2 _ ¬(s(σw) · σ2 < s(s(σw)) · σ2) _
_ ans(rec(0, s(σw), σ1)) [Sup 22, 27]

29. s(σy) < s(σw) · σ2 _ ¬(s(σw) · σ2 < s(σw) · σ2 + σ2) _
_ ans(rec(0, s(σw), σ1)) [Sup (L4N), 28]

30. s(σy) < s(σw) · σ2 _ ans(rec(0, s(σw), σ1)) [BR 18, 29]

31. s(σy) 6= s(σw) · σ2 _ans(rec(0, s(σw), σ1)) [BR (L7N), 30]

32. ans(rec(0,if s(σy) = s(σw) · σ2) then s(σw) else σw, σ1) [BR00 25, 31]

33. ⇤ [answer literal removal 32]

The program we obtain is

f(x1),

where f is the recursive function defined as

f(0) = 0

f(s(n)) = if s(n) = s(f(n)) · x2 then s(f(n)) else f(n).

7.2 Recursive Synthesis over Natural Lists

Example 7.2.1 (Length of two concatenated lists). As the first example over lists, we
want to compute the length of two concatenated lists.

Specification.
8x1, x2 2 L.9y 2 N.y = len(x1++x2)

To avoid the trivial solution of len(x1++x2), the symbol ++ is marked as uncomputable.
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Details of the magic. This is our first example over the theory of lists. The structure
of the magic axiom we use is similar to the one for natural numbers, just with di↵erent
constructors. The 0-constructor changes to nil and the s-constructor to cons, with an
additional argument n, which is in the magic formula skolemized as σn.
The CNF of the magic formula is:

¬L[nil, unil] _ L[σl, σw] _ L[z, rec(unil, ucons, z)] (7.20)

¬L[nil, unil] _ ¬L[cons(σn, σl), ucons] _ L[z, rec(unil, ucons, z)] (7.21)

We will denote the application of induction with this magic formula by MagIndL.

Derivation and program.

1. y 6= len(σ1++σ2)_ans(y) [input]

2. unil 6= len(nil++σ2) _ σw= len(σl++σ2) _ ans(rec(unil, ucons,σ1)) [MagIndL, BR 1]

3. unil 6= len(nil++σ2) _ ucons 6= len(cons(σn, σl)++σ2) _
_ ans(rec(unil, ucons,σ1)) [MagIndL, BR 1]

4. unil 6= len(σ2)_σw = len(σl++σ2) _ ans(rec(unil, ucons, σ1)) [Sup (L1L), 2]

5. σw = len(σl++σ2) _ ans(rec(len(σ2), ucons, σ1)) [ER 4]

6. unil 6= len(σ2)_ucons 6= len(cons(σn, σl)++σ2) _
_ ans(rec(unil, ucons, σ1)) [Sup (L1L), 3]

7. ucons 6= len(cons(σn, σl)++σ2) _ ans(rec(len(σ2), ucons, σ1)) [ER 6]

8. ucons 6= len(cons(σn, σl++σ2)) _ ans(rec(len(σ2), ucons, σ1)) [Sup (A2L), 7]

9. ucons 6= s(len(σl++σ2)) _ ans(rec(len(σ2), ucons, σ1)) [Sup (A4L), 8]

10. ucons 6= s(σw)_ans(rec(len(σ2), ucons, σ1)) [Sup 5, 9]

11. ans(rec(len(σ2),s(σw), σ1)) [ER 10]

12. ⇤ [answer literal removal 11]

The program constructed from rec(len(x2), s(f(l)), x1) is

f(x1)

where

f(nil) = len(x2)

f(cons(n, l)) = s(f(l)).
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Example 7.2.2 (Last element of a list).

Specification. The specification is

8x 2 L9y 2 N.(x 6= nil ! 9z 2 L.x = z++cons(y, nil))

.

Details of the magic. We apply induction with the base cons(a, nil), similarly how we
did in Example 7.1.1. The CNF of the magic formula is:

¬L[cons(σa, nil), unil] _ σl 6= nil _ z = nil _ L[z, rec(unil, ucons, z)] (7.22)

¬L[cons(σa, nil), unil] _ L[σl, σw] _ z = nil _ L[z, rec(unil, ucons, z)] (7.23)

¬L[cons(σa, nil), unil] _ ¬L[s(σl), ucons] _ z = nil _ L[z, rec(unil, ucons, z)] (7.24)

We will denote the application of induction with this magic formula by MagInd0L.
For the derivation we instantiate the magic axiom with the formula L[t, x] := 9z 2 L.t =

z++cons(x, nil).

Derivation and program.

1. σx 6= nil _ ans(y) [input]

2. σx 6= z++cons(y, nil)_ans(y) [input]

3. cons(σa, nil) 6= z1++cons(unil, nil) _ σl = σz++cons(σw, nil) _
_ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0L, BR 2]

4. cons(σa, nil) 6= z1++cons(unil, nil) _
_ cons(σn, σl) 6= z2++cons(ucons, nil) _
_ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0L, BR 2]

5. cons(σa, nil) 6= z1++cons(unil, nil)_σl = σz++cons(σw, nil) _
_ ans(rec(unil, ucons, σx)) [BR 1, 3, ER]

6. cons(σa, nil) 6= z1++cons(unil, nil)_
_ cons(σn, σl) 6= z2++cons(ucons, nil) _
_ ans(rec(unil, ucons, σx)) [BR 1, 4, ER]

7. σl = σz++cons(σw, nil) _ ans(rec(σa, ucons, σx)) [ER (L1L), 5]

8. cons(σn, σl) 6= z2++cons(ucons, nil) _ ans(rec(σa, ucons, σx)) [ER (L1L), 6]

9. cons(σn, σz++cons(σw, nil)) 6= z2++cons(ucons, nil)_
_ ans(rec(σa, ucons, σx)) [Sup 7, 8]

10. ans(rec(σa,σw, σx)) [Sup (A2L), 9, ER]

11. ⇤ [answer literal removal 10]
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We derive the program
f(x),

where f is the recursive function defined as

f(cons(a, nil)) = a

f(cons(n, l)) = f(l).

Note. Similarly to Example 7.2.2, we could synthesize the function that returns the first
element of a list. However, in practice such a negated skolemized specification would be
instantly resolved using the destructor for cons.

Example 7.2.3 (Prefix of a list given its suffix). For the next example, we want to return
the remaining part of a list x1 that has the list x2 as a suffix. The goal is to construct a
function that removes the list x2 of list x1. Using the predicate symbol su↵ for checking
whether list x2 is the first part of list x1 (see Figure 7.1 and Figure 7.3), we get the following
specification.

Specification.
8x1, x2 2 L.9y 2 L.(su↵(x2, x1) ! x1 = y++x2)

Note here, that we can see this as the analogue to Example 7.1.1 for lists; subtracting list
x2 from list x1. This results in a very similar program derivation and constructed recursive
function; two applications of induction and hence, two nested recursive functions.

Details of the magic. We need to apply induction on su↵(σ2, σ1) and σ1 6= y++σ2.
Therefore we instantiate the magic axiom for lists with a disjunction G[t, x] := L1[t] _
L2[t, x]. We obtain a formula analogous to the one from Example 7.1.1. The CNF of the
corresponding magic formula is:

¬L1[nil] _ L1[σl] _ L2[σl, σw] _ L1[z] _ L2[z, rec(unil, ucons, z)] (7.25)

¬L2[nil, unil] _ L1[σl] _ L2[σl, σw] _ L1[z] _ L2[z, rec(unil, ucons, z)] (7.26)

¬L1[nil] _ ¬L1[cons(σn, σl)] _ L1[z] _ L2[z, rec(unil, ucons, z)] (7.27)

¬L1[nil] _ ¬L2[cons(σn, σl), ucons] _ L1[z] _ L2[z, rec(unil, ucons, z)] (7.28)

¬L2[nil, unil] _ ¬L1[cons(σn, σl)] _ L1[z] _ L2[z, rec(unil, ucons, z)] (7.29)

¬L2[nil, unil] _ ¬L2[cons(σn, σl), ucons] _ L1[z] _ L2[z, rec(unil, ucons, z)] (7.30)

We will denote the application of induction with this magic formula by MagInd00L.
After applying MagInd00L with G[t, y] : ¬(su↵(t, σ1)) _ σ1 = y++t in the derivation, we

need to apply induction again. Similarly to Example 7.1.1, the second time we need a
non-standard base case: instead of nil, we use cons(a, nil). The magic axiom is:⇣

8a.9unil.G[cons(a, nil), unil] ^ 8n, l. l 6= nil ^ 9w.G[l, w] ! 9ucons.G[cons(n, l), ucons]
⌘

! 8z.9x.(z 6= nil ! G[z, x])
(7.31)
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We will denote the application of induction with this magic formula by MagInd000L . We
instantiate it with G[t, x] := ¬(su↵(cons(σn, nil), t)) _ t = x++cons(σn, nil).

Derivation and program.

1. su↵(σ2, σ1)_ans(y) [input]

2. σ1 6= y++σ2_ans(y) [input]

3. σ1 6= unil++nil_¬su↵(σl, σ1) _ σ1 = σw++σl _
_ ans(recpref(unil, ucons,σ2)) [MagInd00L, BR 1, 2]

4. σ1 6= unil++nil_su↵(cons(σn, σl), σ1) _
_ ans(recpref(unil, ucons,σ2)) [MagInd00L, BR 1, 2]

5. σ1 6= unil++nil_σ1 6= ucons++cons(σn, σl) _
_ ans(recpref(unil, ucons,σ2)) [MagInd00L, BR 1, 2]

6. ¬su↵(σl, σ1) _ σ1 = σw++σl _ ans(recpref(σ1, ucons, σ2)) [Sup, ER (A1L), 3]

7. su↵(cons(σn, σl), σ1) _ ans(recpref(σ1, ucons, σ2)) [Sup, ER (A1L), 4]

8. σ1 6= ucons++cons(σn, σl) _ ans(recpref(σ1, ucons, σ2)) [Sup, ER (A1L), 5]

9. su↵(σl, σ1) _ ans(recpref(σ1, ucons, σ2)) [BR (A8L), 7]

10. σ1 = σw++σl _ ans(recpref(σ1, ucons, σ2)) [BR 6, 9]

11. σw++σl 6= ucons++cons(σn, σl) _ ans(recpref(σ1, ucons, σ2)) [Sup 8, 10]

12. σw++σl 6= ucons++cons(σn, nil++σl) _ ans(recpref(σ1, ucons, σ2)) [Sup (A1L), 11]

13. σw++σl 6= ucons++cons(σn, nil)++σl _ ans(recpref(σ1, ucons, σ2)) [Sup (A2L), 12]

14. σw 6= ucons++cons(σn, nil)_ans(recpref(σ1, ucons, σ2)) [BR (L6L), 13]

15. su↵(cons(σn, nil), σw)_ans(recpref(σ1, ucons, σ2)) [BR (L3L), 7, 10]

16. cons(a, nil) 6= unil++cons(σn, nil)_¬su↵(cons(σn, nil), σl) _
_ σl = σ0

w++cons(σn, nil) _ σw = nil _
_ ans(recpref(σ1, recremove(unil, ucons,σw), σ2)) [MagInd000L , BR 14, 15]

17. cons(a, nil) 6= unil++cons(σn, nil)_
_ su↵(cons(σn, nil), cons(σ

0
n, σl)) _ σw = nil _

_ ans(recpref(σ1, recremove(unil, ucons,σw), σ2)) [MagInd000L , BR 14, 15]

18. cons(a, nil) 6= unil++cons(σn, nil)_
_ cons(σ0

n, σl) 6= ucons++cons(σn, nil) _ σw = nil _
_ ans(recpref(σ1, recremove(unil, ucons,σw), σ2)) [MagInd000L , BR 14, 15]

19. cons(a, nil) 6= unil++cons(σn, nil)_σl 6= nil _ σw = nil _
_ ans(recpref(σ1, recremove(unil, ucons,σw), σ2)) [MagInd000L , BR 14, 15]
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20. ¬su↵(cons(σn, nil), σl) _ σl = σ0
w++cons(σn, nil) _ σw = nil _

_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR (A1L), 16]

21. su↵(cons(σn, nil), cons(σ
0
n, σl)) _ σw = nil _

_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR (A1L), 17]

22. cons(σ0
n, σl) 6= ucons++cons(σn, nil) _ σw = nil _

_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR (A1L), 18]

23. σl 6= nil _ σw = nil _
_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR (A1L), 19]

24. cons(σn, nil) = cons(σ0
n, σl) _ su↵(cons(σn, nil), σl) _

_ σw = nil _ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR (L2L), 21]

25. σl = nil _ su↵(cons(σn, nil), σl) _ σw = nil _
_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR (A9L), 24]

26. su↵(cons(σn, nil), σl) _ σw = nil _
_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR 23, 25]

27. σl = σ0
w++cons(σn, nil) _ σw = nil _

_ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [BR 20, 26]

28. cons(σ0
n, σ

0
w++cons(σn, nil)) 6= ucons++cons(σn, nil)_

_ σw = nil _ ans(recpref(σ1, recremove(nil, ucons, σw), σ2)) [Sup 22, 27]

29. σw = nil _
_ ans(recpref(σ1, recremove(nil,cons(σ0

n, σ
0
w), σw), σ2)) [Sup (A2L), 28]

30. σ1 6= σl _ ans(recpref(σ1, ucons, σ2)) [BR (L4L), 7]

31. σ1 = σl _ σw 6= nil _ ans(recpref(σ1, ucons, σ2)) [BR (L5L), 10]

32. σw 6= nil _ ans(recpref(σ1, ucons, σ2)) [BR 30, 31]

33. ans(recpref(σ1, recremove(nil, cons(σ
0
n, σ

0
w), σw), σ2)) [BR, ER 29, 32]

34. ⇤ [answer literal removal 33]

The program is constructed as

pref(x2),

where pref is the recursive function defined as

pref(nil) = x1

pref(cons(n, l)) = remove(pref(l)),
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and remove is the recursive function defined as

remove(cons(a, nil)) = nil

remove(cons(n, l)) = cons(n, remove(l)).

Example 7.2.4 (Maximum element of a list). This next example aims to return the
maximum element, given the well-founded ordering ” ” of an arbitrary list as an input.
The specification is then the following.

Specification.

8x 2 L9y 2 N.(x 6= nil ! (in(y, x) ^ 8k 2 N(in(k, x) ! k y)

The expression in(y, x) returns true, if the element y occurs in the list x. For a formal
definition, see Figure 7.1 and Figure 7.3. The specification then verifies if the element y is
a member of the input list x and if for every member of x it holds that k y.

Details of the magic. The magic axiom is used with a formula of the form G[t, x] :=
L1[t, x]^ (L2[t]_L3[x]). Similarly, as in the previous example, we choose cons(a, nil) for the
base case. We will denote the application of induction with this magic axiom by MagInd0000L ,
and we apply it with G[t, x] := in(x, t) ^ (¬in(σk, t) _ σk x).

Derivation and program.

1. σx 6= nil _ ans(y) [input]

2. in(σk, σx)_¬in(y, σx)_ans(y) [input]

3. y < σk_¬in(y, σx)_ans(y) [input]

4. ¬in(unil, cons(σa, nil))_in(σk, cons(σa, nil)) _
_ in(σw, σl) _ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

5. ¬in(unil, cons(σa, nil))_in(σk, cons(σa, nil)) _
_ ¬in(σk, σl) _ σk σw _ σx=nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

6. ¬in(unil, cons(σa, nil))_unil < σk _ in(σw, σl) _
_ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

7. ¬in(unil, cons(σa, nil))_unil < σk _ ¬in(σk, σl) _
_ σk σw _ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

8. ¬in(unil, cons(σa, nil))_in(σk, cons(σa, nil)) _
_ ¬in(ucons, cons(σn, σl)) _ in(σk, cons(σn, σl)) _
_ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

9. ¬in(unil, cons(σa, nil))_in(σk, cons(σa, nil)) _
_ ¬in(ucons, cons(σn, σl)) _ ucons < σk _ σx = nil _
_ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]
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10. ¬in(unil, cons(σa, nil))_unil < σk _
_ ¬in(ucons, cons(σn, σl)) _ in(σk, cons(σn, σl)) _
_ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

11. ¬in(unil, cons(σa, nil))_unil < σk _
_ ¬in(ucons, cons(σn, σl)) _ ucons < σk _
_ σx = nil _ ans(rec(unil, ucons,σx)) [MagInd0000L , BR 2, 3]

12. in(σk, cons(σa, nil)) _ in(σw, σl) _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 4]

13. in(σk, cons(σa, nil)) _ ¬in(σk, σl) _ σk σw _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 5]

14. σa < σk _ in(σw, σl) _ σx=nil _ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 6]

15. σa < σk _ ¬in(σk, σl) _ σk σw _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 7]

16. in(σk, cons(σa, nil)) _ ¬in(ucons, cons(σn, σl)) _ in(σk, cons(σn, σl)) _
_ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 8]

17. in(σk, cons(σa, nil)) _ ¬in(ucons, cons(σn, σl)) _
_ ucons < σk _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 9]

18. σa < σk _ ¬in(ucons, cons(σn, σl)) _ in(σk, cons(σn, σl)) _
_ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 10]

19. σa < σk _ ¬in(ucons, cons(σn, σl)) _ ucons < σk _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A10L), (A11L), 11]

20. σa 6= σk _ in(σw, σl) _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (L7N), 14]

21. σa 6= σk _ ¬in(σk, σl) _ σk σw _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (L7N), 15]

22. σa 6= σk _ ¬in(ucons, cons(σn, σl)) _ in(σk, cons(σn, σl)) _
_ σx = nil _ ans(rec(σa, ucons, σx)) [BR (L7N), 18]

23. σa 6= σk _ ¬in(ucons, cons(σn, σl)) _ ucons < σk _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (L7N), 19]

24. σk = σa _ in(σw, σl) _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A11L), 12]

25. σk = σa _ ¬in(σk, σl) _ σk σw _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A11L), 13]

26. σk = σa _ ¬in(ucons, cons(σn, σl)) _
_ in(σk, cons(σn, σl)) _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A11L), 16]
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27. σk = σa _ ¬in(ucons, cons(σn, σl))
_ ucons < σk _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A11L), 17]

28. in(σw, σl)_σx = nil _ ans(rec(σa, ucons, σx)) [BR 20, 24]

29. ¬in(σk, σl) _ σk σw _ σx = nil _ ans(rec(σa, ucons, σx)) [BR 19, 25]

30. ¬in(ucons, cons(σn, σl)) _ in(σk, cons(σn, σl)) _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR 22, 26]

31. ¬in(ucons, cons(σn, σl)) _ ucons < σk _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR 23, 27]

32. ucons 6= σn_in(σk, cons(σn, σl)) _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A11L), 30]

33. ¬in(ucons, σl)_in(σk, cons(σn, σl)) _ σx = nil _
_ ans(rec(σa, ucons, σx)) [BR (A11L), 30]

34. ucons 6= σn _ ucons < σk _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A11L), 31]

35. ¬in(ucons, σl) _ ucons < σk _ σx = nil _ ans(rec(σa, ucons, σx)) [BR (A11L), 30]

36. in(σk, cons(σn, σl)) _ σx = nil _ ans(rec(σa,σw, σx)) [BR 28, 33, ER]

37. σk = σn _ σx = nil _ ans(rec(σa, σw, σx)) [BR (A11L), 36]

38. σw < σk _ σx = nil _ ans(rec(σa, σw, σx)) [BR 28, 35]

39. ¬σx = nil _ ans(rec(σa, σw, σx)) [BR 29, 38]

40. σk = σn _ σx = nil _ ans(rec(σa, σw, σx)) [BR 37, 39]

41. σw < σn_σx = nil _ ans(rec(σa, σw, σx)) [Sup 38, 40]

42. in(σk, cons(σn, σl)) _ σx = nil _ ans(rec(σa,σn, σx)) [ER 32]

43. σn < σk _ σx = nil _ ans(rec(σa, σn, σx)) [ER 34]

44. σk = σn _ σx = nil _ ans(rec(σa, σn, σx)) [BR (A11L), 42]

45. σk = σn _ σk σw _ σx = nil _ ans(rec(σa, σn, σx)) [BR 29, 44]

46. ¬(σn < σk) _ σk σw _ σx = nil _ ans(rec(σa, σn, σx)) [BR (L7N), 45]

47. σk σw _ σx = nil _ ans(rec(σa, σn, σx)) [BR 43, 46]

48. σn σk _ σx = nil _ ans(rec(σa, σn, σx)) [BR (L11N), 43]

49. σn σw_σx = nil _ ans(rec(σa, σn, σx)) [BR (A9N), 47, 48]

50. σx = nil _ ans(rec(σa,if σw < σn then σn else σw, σx)) [BR00 41, 49]
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51. ans(rec(σa, if σw < σn then σn else σw, σx)) [BR, ER 1, 50]

52. ⇤ [answer literal removal 51]

The program is then
f(x)

where f is the recursive function defined as

f(cons(a, nil)) = a

f(cons(n, l)) = if f(l) < n then n else f(l).

7.3 Recursive Synthesis over Natural Binary Trees

Example 7.3.1 (Maximum element of a tree). This example is the analogous to Example
7.2.4 over binary trees. The intended meaning of the predicate symbol in is the same but
defined over binary trees, see Figure 7.1 and Figure 7.3 for the formal definition. The
specification is then the same as in Example 7.2.4 with the di↵erence of using the predicate
symbol in over binary trees. This results in a more complex derivation.

Specification.

8x 2 BT9y 2 N.(in(y, x) ^ 8k 2 N(in(k, x) ! k y)

Details of the magic. The structure of the formula used to instantiate the magic axiom
is the same as in Example 7.2.4, G[t, x] := L1[t, x] ^ (L2[t] _ L3[x]), using the standard
base case leaf(a). We will denote the application of induction with this magic axiom by
MagInd0BT, and we apply it with G[t, x] := in(x, t) ^ (¬in(σk, t) _ σk x).

Derivation and program.

1. in(σk, σx)_¬in(y, σx)_ans(y) [input]

2. y < σk_¬in(y, σx)_ans(y) [input]

3. ¬in(uleaf , leaf(σa))_in(σk, leaf(σa)) _
_ in(σw, σl) _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

4. ¬in(uleaf , leaf(σa))_in(σk, leaf(σa)) _
_ ¬in(k, σl) _ ¬(σw < k) _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

5. ¬in(uleaf , leaf(σa))_uleaf < σk _ in(σw, σl) _
_ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

6. ¬in(uleaf , leaf(σa))_uleaf < σk _ in(σw, σl) _
_ σw < σk _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

7. ¬in(uleaf , leaf(σa))_in(σk, leaf(σa)) _
_ in(σ0

w, σr) _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]
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8. ¬in(uleaf , leaf(σa))_in(σk, leaf(σa)) _
_ ¬in(k, σr) _ ¬(σ0

w < k) _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

9. ¬in(uleaf , leaf(σa))_uleaf < σk _ in(σ0
w, σr) _

_ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

10. ¬in(uleaf , leaf(σa))_uleaf < σk _ ¬in(k, σr) _
_ ¬(σ0

w < k) _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

11. ¬in(uleaf , leaf(σa))_in(σk, leaf(σa)) _
_ ¬in(ubt, bt(σl, σn, σr)) _ in(σk, bt(σl, σn, σr)) _
_ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

12. ¬in(uleaf , leaf(σa))_in(σk, leaf(σa)) _ ¬in(ubt, bt(σl, σn, σr)) _
_ ubt < σk _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

13. ¬in(uleaf , leaf(σa))_uleaf < σk _ ¬in(ubt, bt(σl, σn, σr)) _
_ in(σk, bt(σl, σn, σr)) _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

14. ¬in(uleaf , leaf(σa))_uleaf < σk _ ¬in(ubt, bt(σl, σn, σr)) _
_ ubt < σk _ ans(rec(uleaf , ubt,σx)) [MagInd0BT, BR 1, 2]

15. in(σk, leaf(σa)) _ in(σw, σl) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 3, ER]

16. in(σk, leaf(σa)) _ ¬in(k, σl) _ ¬(σw < k) _
_ ans(rec(σa, ubt, σx)) [BR (A1BT), 4, ER]

17. σa < σk _ in(σw, σl) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 5, ER]

18. σa < σk _ ¬in(k, σl) _ ¬(σw < k) _
_ ans(rec(σa, ubt, σx)) [BR (A1BT), 6, ER]

19. in(σk, leaf(σa)) _ in(σ0
w, σr) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 7, ER]

20. in(σk, leaf(σa)) _ ¬in(k, σr) _ ¬(σ0
w < k) _

_ ans(rec(σa, ubt, σx)) [BR (A1BT), 8, ER]

21. σa < σk _ in(σ0
w, σr) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 9, ER]

22. σa < σk _ ¬in(k, σr) _ ¬(σ0
w < k) _

_ ans(rec(σa, ubt, σx)) [BR (A1BT), 10, ER]

23. in(σk, leaf(σa)) _ ¬in(ubt, bt(σl, σn, σr)) _
_ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 11, ER]

24. in(σk, leaf(σa)) _ ¬in(ubt, bt(σl, σn, σr)) _
_ ubt < σk _ ans(rec(σa, ubt, σx)) [BR (A1BT), 12, ER]

25. σa < σk _ ¬in(ubt, bt(σl, σn, σr)) _
_ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 13, ER]
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26. σa < σk _ ¬in(ubt, bt(σl, σn, σr)) _ ubt < σk _
_ ans(rec(σa, ubt, σx)) [BR (A1BT), 14, ER]

27. σa = σk _ in(σw, σl) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 15]

28. σa = σk _ ¬in(k, σl) _ ¬(σw < k) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 16]

29. σa 6= σk _ in(σw, σl) _ ans(rec(σa, ubt, σx)) [BR (L12N), 17]

30. σa 6= σk _ ¬in(k, σl) _ ¬(σw < k) _ ans(rec(σa, ubt, σx)) [BR (L12N), 18]

31. σa = σk _ in(σ0
w, σr) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 19]

32. σa = σk _ ¬in(k, σr) _ ¬(σ0
w < k) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 20]

33. σa 6= σk _ in(σ0
w, σr) _ ans(rec(σa, ubt, σx)) [BR (L12N), 21]

34. σa 6= σk _ ¬in(k, σr) _ ¬(σ0
w < k) _ ans(rec(σa, ubt, σx)) [BR (L12N), 22]

35. σa = σk _ ¬in(ubt, bt(σl, σn, σr)) _
_ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (A1BT), 23]

36. σa = σk _ ¬in(ubt, bt(σl, σn, σr)) _ ubt < σk _
_ ans(rec(σa, ubt, σx)) [BR (A1BT), 24]

37. σa 6= σk _ ¬in(ubt, bt(σl, σn, σr)) _
_ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (L12N), 25]

38. σa 6= σk _ ¬in(ubt, bt(σl, σn, σr)) _ ubt < σk _
_ ans(rec(σa, ubt, σx)) [BR (L12N), 26]

39. in(σw, σl)_ans(rec(σa, ubt, σx)) [BR 27, 29]

40. ¬in(k, σl) _ ¬(σw < k) _ ans(rec(σa, ubt, σx)) [BR 28, 30]

41. in(σ0
w, σr)_ans(rec(σa, ubt, σx)) [BR 31, 33]

42. ¬in(k, σr) _ ¬(σ0
w < k) _ ans(rec(σa, ubt, σx)) [BR 32, 34]

43. ¬in(ubt, bt(σl, σn, σr)) _ in(σk, bt(σl, σn, σr)) _
_ ans(rec(σa, ubt, σx)) [BR 35, 37]

44. ¬in(ubt, bt(σl, σn, σr)) _ ubt < σk _ ans(rec(σa, ubt, σx)) [BR 36, 38]

45. ubt 6= σn _ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (A2BT), 43]

46. ¬in(ubt, σl) _ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (A2BT), 43]

47. ¬in(ubt, σr) _ in(σk, bt(σl, σn, σr)) _ ans(rec(σa, ubt, σx)) [BR (A2BT), 43]

48. ubt 6= σn_σk = σn _ in(σk, σl) _ in(σk, σr) _
_ ans(rec(σa, ubt, σx)) [BR (A2BT), 45]
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49. ¬in(ubt, σl)_σk = σn _ in(σk, σl) _ in(σk, σr) _
_ ans(rec(σa, ubt, σx)) [BR (A2BT), 46]

50. ¬in(ubt, σr)_σk = σn _ in(σk, σl) _ in(σk, σr) _
_ ans(rec(σa, ubt, σx)) [BR (A2BT), 47]

51. ubt 6= σn_ubt < σk _ ans(rec(σa, ubt, σx)) [BR (A2BT), 44]

52. ¬in(ubt, σl)_ubt < σk _ ans(rec(σa, ubt, σx)) [BR (A2BT), 44]

53. ¬in(ubt, σr)_ubt < σk _ ans(rec(σa, ubt, σx)) [BR (A2BT), 44]

54. σk = σn _ in(σk, σl) _ in(σk, σr) _ ans(rec(σa,σn, σx)) [ER 48]

55. σn < σk _ ans(rec(σa,σn, σx)) [ER 51]

56. σn 6= σk _ ans(rec(σa, σn, σx)) [BR (L12N), 55]

57. in(σk, σl) _ in(σk, σr) _ ans(rec(σa, σn, σx)) [BR 54, 56]

58. ¬(σw < σk) _ in(σk, σr) _ ans(rec(σa, σn, σx)) [BR 40, 57]

59. ¬(σw < σn) _ in(σk, σr) _ ans(rec(σa, σn, σx)) [BR (A9N), 55, 58]

60. ¬(σw < σn) _ ¬(σ0
w < σk) _ ans(rec(σa, σn, σx)) [BR 42, 59]

61. ¬(σw < σn) _ ¬(σ0
w < σn)_ans(rec(σa, σn, σx)) [BR (A9N), 55, 60]

62. σk = σn _ in(σk, σl) _ in(σk, σr) _ ans(rec(σa,σw, σx)) [BR 39, 49, ER]

63. σw < σk _ ans(rec(σa,σw, σx)) [BR 39, 52, ER]

64. σw < σn _ in(σk, σl) _ in(σk, σr) _ ans(rec(σa, σw, σx)) [Sup 62, 63]

65. σw < σn _ ¬(σw < σk) _ in(σk, σr) _ ans(rec(σa, σw, σx)) [BR 40, 64]

66. σw < σn _ ¬(σw < σk) _ ¬(σ0
w < σk) _ ans(rec(σa, σw, σx)) [BR 42, 65]

67. σw < σ0
w _ ¬(σw < σ0

w) [Taut.]

68. σw < σn _ ¬(σw < σk) _ σw < σ0
w _ ans(rec(σa, σw, σx)) [BR (L13N), 66, 67]

69. σw < σn _ σw < σ0
w_ans(rec(σa, σw, σx)) [BR 63, 68]

70. σ0
w < σn _ σw < σ0

w_ans(rec(σa, σw, σx)) [BR (L13N), 69]

71. σk = σn _ in(σk, σl) _ in(σk, σr) _ ans(rec(σa,σ
0
w, σx)) [BR 41, 50, ER]

72. σ0
w < σk _ ans(rec(σa,σ

0
w, σx)) [BR 41, 53, ER]

73. σ0
w < σn _ in(σk, σl) _ in(σk, σr) _ ans(rec(σa, σ

0
w, σx)) [Sup 71, 72]

74. σ0
w < σn _ ¬(σw < σk) _ in(σk, σr) _ ans(rec(σa, σ

0
w, σx)) [BR 40, 73]
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75. σ0
w < σn _ ¬(σw < σk) _ ¬(σ0

w < σk) _ ans(rec(σa, σ
0
w, σx)) [BR 42, 74]

76. σ0
w < σn _ ¬(σ0

w < σk) _ ¬(σw < σ0
w) _

_ ans(rec(σa, σw, σx)) [BR (L13N), 67, 75]

77. σ0
w < σn _ ¬(σw < σ0

w)_ans(rec(σa, σ0
w, σx)) [BR 72, 76]

78. σw < σn _ ¬(σw < σ0
w)_ans(rec(σa, σ0

w, σx)) [BR (L13N), 77]

79. ¬(σ0
w < σn) _ σw < σ0

w _
_ ans(rec(σa,if σw < σn then σn else σw, σx)) [BR00 61, 69]

80. σw < σ0
w _ ans(rec(σa,if σ0

w < σn then
if σw < σn then σn else σw else σw, σx)) [BR00 70, 79]

81. ¬(σw < σn) _ ¬(σw < σ0
w) _

_ ans(rec(σa,if σ0
w < σn then σn else σ0

w, σx)) [BR00 61, 77]

82. ¬(σw < σ0
w) _ ans(rec(σa,if σw < σn then

if σ0
w < σn then σn else σ0

w else σ0
w, σx)) [BR00 78, 81]

83. ans(rec(σa,if σw < σ0
w then if σw < σn then

if σ0
w < σn then σn else σ0

w else σ0
w else if σ0

w < σn then
if σw < σn then σn else σw else σw, σx)) [BR00 80, 82]

84. ⇤ [answer literal removal 83]

The program we end up with is
f(x),

where

f(leaf(a)) = a

f(bt(l, n, r)) = if f(l) < f(r) then

if f(l) < n then

if f(r) < n then n else f(r)

else f(r)

else if f(r) < n then

if f(l) < n then n else f(l)

else f(l).
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Specification Program Synthesized definitions Vampire

Distributivity of multiplication 5.2:

8x1, x2, x3 2 N.9y 2 N.
(x1 · x2 + x1 · x3 = x1 · y)

f(x3)
f(0)=x2

f(s(n))= s(f(n))
3

Subtraction with condition 7.1.1:

8x1, x2 2 N.9y 2 N.
(x2 < x1 ! x2 + y = x1)

f(x2)
f(0)=x1

f(s(n))= p(f(n))
3

Floored square root 7.1.2:

8x 2 N.9y 2 N.
(y · y x ^ x < s(y) · s(y))

f(x)
f(0)= 0

f(s(n))= if s(n)= s(f(n))·s(f(n))
then s(f(n)) else f(n)

7

Floored division 7.1.3:

8x1, x2 2 N.9y 2 N.(x2 6= 0 !
(y · x2 x1 ^ x1 < s(y) · x2))

f(x1)
f(0)= 0

f(s(n))= if s(n)=s(f(n))·x2

then s(f(n)) else f(n)

7

Length of 2 concatenated lists 7.2.1:

8x1, x2 2 L.9y 2 N.
y = len(x1++x2)

f(x1)
f(nil)= len(x2)

f(cons(n,l))= s(f(l))
3

Last element of a list 7.2.2:

8x 2 L.9y 2 N.(x 6= nil !
9z 2 L.x = z++cons(y, nil))

f(x)
f(cons(n,nil))=n

l 6= nil! f(cons(n,l))= f(l)
3

Prefix of a list given its suffix 7.2.3:

8x1, x2 2 L.9y 2 L.
(su↵(x2, x1) ! x1 = y++x2)

f(x2)

f(nil)=x1

f(cons(n,l))= g(f(l))

g(cons(n,nil))= nil

l 6= nil! g(cons(n,l))= cons(n,g(l))

7

Maximum element of a list 7.2.4:

8x 2 L.9y 2 N.(x 6=nil !
(in(y,x)^8k2N.(in(k,x)!k y))

f(x)
f(cons(n,nil))=n

l 6= nil! f(cons(n,l))= if f(l)<n

then n else f(l)

7

Maximum element of a tree 7.3.1:

8x 2 BT.9y 2 N.
(in(y,x)^8k2N.(in(k,x)!k y)

f(x)

f(leaf(n))=n

f(bt(l,n,r))=

if f(l)<f(r) then

if f(l)<n then

if f(r)<n thenn else f(r)

else f(r)

else if f(r)<n then

if f(l)<n thenn else f(l)

else f(l)

7

Table 7.1: Summary of all introduced synthesis examples using natural numbers N, lists L
and binary trees BT. The x-variables in the program and synthesized definitions
are the inputs. While the introduced framework synthesizes all these examples,
the implementation in Vampire only synthesizes those marked with “3”. Note
that for “Length of 2 concatenated lists” we consider ++ to be uncomputable.
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8x 2 N. s(x) 6= 0 (A1N)

8x, y 2 N. x = y ! s(x) = s(y) (A2N)

8x 2 N. x+ 0 = x (A3N)

8x, k 2 N. x+ s(k) = s(x+ k) (A4N)

8x 2 N. x · 0 = 0 (A5N)

8x, n 2 N. x · s(n) = x · n+ x (A6N)

8x 2 N. ¬(x < 0) (A7N)

8x, y 2 N. x < s(y) $ x < y _ x = y (A8N)

8x, y, z 2 N. (x < y ^ y < z) ! x < z (A9N)

8x 2 L. x = x++nil (A1L)

8x, l 2 L. 8n 2 N. cons(n, l)++x = cons(n, l++x) (A2L)

len(nil) = 0 (A3L)

8l 2 L. 8n 2 N. len(cons(n, l)) = s(len(l)) (A4L)

8l 2 L. su↵(nil, l) (A5L)

8l 2 L. 8n 2 N. ¬(su↵(cons(n, l), nil)) (A6L)

8l, l0 2 L. 8n 2 N. su↵(l0, l) ! su↵(l0, cons(n, l)) (A7L)

8l, l0 2 L. 8n0 2 N. su↵(cons(n0, l0), l) ! su↵(l0, l) (A8L)

8l, l0 2 L. 8n, n0 2 N. cons(n, l) = cons(n0, l0) ! (n = n0 ^ l = l0) (A9L)

8n 2 N. ¬inL(n, nil) (A10L)

8l 2 L. 8n, k 2 N. inL(n, cons(k, l)) $ (inL(n, l) _ n = k) (A11L)

8n, k 2 N. inBT(n, leaf(k)) $ n = k (A1BT)

8l, r 2 BT. 8n, k 2 N. inBT(n, bt(l, k, r)) $ (inBT(n, l) _ inBT(n, r) _ n = k) (A2BT)

Figure 7.2: List of all axioms defining function and predicate symbols and/or are used for
the derivations.
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8x 2 N. x = 0+ x (L1N)

8x, n 2 N. s(x) + n = x+ s(n) (L2N)

8x 2 N. 0 · x = 0 (L3N)

8x, y 2 N. s(x) · y = x · y + y (L4N)

8x, y 2 N. s(x) < y ! x < y (L5N)

8x, y, z 2 N. (y + x = z ^ y < z) ! x 6= 0 (L6N)

8x, y 2 N. x < y ! x 6= y (L7N)

8x, y 2 N. x < y ! (s(x) < y _ s(x) = y) (L8N)

8x, y 2 N. y x ! y s(x) (L9N)

8x, y 2 N. y 6= 0 ! x < x+ y (L10N)

8x, y 2 N. x < y ! x y (L11N)

8x, y 2 N. x < y ! x 6= y (L12N)

8x, y, z 2 N. ((x y _ x z) ^ y z) ! x z (L13N)

8n, n0,m 2 N. n = n0 ! m+ n = m+ n0 (L14N)

8x 2 L. nil++x = x (L1L)

8l, l0 2 L. 8n 2 N. l0 6= cons(n, l) ! (su↵(l0, cons(n, l)) ! su↵(l0, l)) (L2L)

8x, y, z 2 L. 8n 2 N. (x = y++z ^ su↵(cons(n, z), x)) ! su↵(cons(n, nil), y) (L3L)

8x, y 2 L. n 2 N. su↵(cons(n, x), y) ! x 6= y (L4L)

8x, y, z 2 L. (x = y++z ^ x 6= z) ! y 6= nil (L5L)

8x, y, z 2 L. x = y ! x++z = y++z (L6L)

Figure 7.3: List of all lemmas used for the derivations.
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8 Related Work

In this chapter, several frameworks for synthesizing non-recursive and recursive programs
are compared.

Deductive Synthesis with Answer Literals. The approach introduced in this thesis
builds upon non-recursive synthesis [HKNV23] using answer literals [Gre69] and extends
this framework to synthesize recursive functions in the program with the use of special in-
duction axioms, dubbed magic axioms [HAH+24]. This framework extends upon a theorem
prover with saturation. This requires a fully formalized specification in first-order logic and
is fully automated.

A similar approach was developed by Manna and Waldinger [MW80] that relies on the
one-to-one translation of induction axioms and recursive functions.
In [LWC74] results stemming from Waldinger and Lee are further developed to increase

efficiency. The correctness proof of the introduced algorithm is given.
A form of completeness is proven for the A-resolution calculus in [Tam95] that was also

used for adapting the superposition calculus rules in [HKNV23].
Unlike [MW80, LWC74, Tam95], we use answer literals in saturation-based proving with

induction, allowing us to synthesize recursive functions from superposition proofs.

Component-Based Synthesis. Component-based synthesis constructs functions using
a set of libraries and di↵ers in this regard to deductive synthesis. The usage of APIs from
libraries has the e↵ect that the correctness of the constructed program is no longer a given.

In [GJTV11] synthesis of loop-free programs is explored using components from a given
library. This is done using a constraint-based approach; the algorithm introduced uses
SMT solvers.
Graphical specifications are used to synthesize programs from a subroutine library in

[SWL+94]. Applications consist of constructing software for interplanetary missions. Graph-
ical specification in this sense means, that the specification is not formally described but
is drawn out by the user through a menu-driven graphical user interface, which has been
very well received.
The work in [TGD15] is also based on SMT solvers and uses two distinct interpretations

of symbols occurring in the program.
Unlike these works, our approach is not restricted to decidable SMT theories and does

not require user guidance in the function specification.

Syntax-Guided Synthesis (SyGuS). The main idea of Syntax-guided synthesis is to
decrease the possible search space of programs by allowing the user to, additionally to
a logical specification, give a syntactic set of possible implementations, [ABD+15]. The
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problem then is to find a solution for the specification that also fulfills the given constraints
stated by the user.
In contrast to this line of research, we do not rely on user-given constraints or templates.

Sketching Technique. The sketching technique [SL09] allows users to partially state
the intended meaning of the program aimed to be synthesized. The synthesis task is then
to fill this sketch of a program to a full extent. This approach does not rely on logical
specifications as an input.

ROSETTE, a framework that designs solver-aided languages is introduced in [TB13] and
relies on the sketching technique.

In [TNS+21] one specifies the intended program behavior by input/output examples
which also di↵ers from our approach. This is called example-guided synthesis; a well-known
example of this approach is FlashFill which uses programming by example in Microsoft
Excel [Gul11].
Our approach is conceptually di↵erent as we synthesize code from its correctness proof,

using superposition reasoning and without concrete instances of input/output examples.
Rather, we use the logical specification of the code to be synthesized.
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9 Conclusions

In this thesis, we introduced the basic resolution calculus for theorem proving in propo-
sitional logic (see Section 2.1) as well as first-order logic (see Section 2.2) in Chapter 2.
We provided small examples to enhance comprehension of the newly established concepts.
After that, we introduced the superposition calculus that is based on the resolution calculus
of first-order logic and used for reasoning over theories with equality in Section 2.3. We
have proven the soundness of the superposition calculus.

To further deepen the understanding of how the main inference rules of the superposition
calculus act, we have shown a derivation of the distributivity example and explained it in
detail in Chapter 3.

As a next step in Chapter 4 we explained the non-recursive synthesis approach from
[HKNV23] in detail (see Section 4.1) and further demonstrated how the introduced frame-
work solves a small example, finding the maximum of two natural numbers (see Section
4.2). We also pointed out the limitations of the framework regarding recursive synthesis in
Section 4.3.

Based on the distributivity example, we explained thoroughly how the extended frame-
work for synthesizing recursive programs over the natural numbers [HAH+24] works in
Chapter 5. This entailed changing the prioritizing order of the quantifiers while transform-
ing the specification into prenex normal form (PNF). The quantifiers are therefore moved
to the front in such a way, that the existentially quantified output variable y depends on
three arguments; the input variable x, the base case variable u0 and the step case variable
us. After skolemizing, this produced a skolem-function, denoted with rec, that depends on
these three arguments. When the rec-term is resolved it appears inside the answer literal
and is used to construct a recursive function when the derivation terminates.
We explained this derivation process in detail based on the distributivity example in

Section 5.2.
Further, we showed the output for this specific example of the synthesis implementation

of the first-order theorem prover Vampire. This was done to display the correspondence
between manual proof derivations and automatic proofs.

We introduced the concepts of inductive structures, inductive proofs, and unique read-
ability in Section 6.1 of Chapter 6. These concepts helped us establish the unique transla-
tion from rec terms to recursive functions, [GJ95].
Further, we introduced the notions of magic axioms to help synthesize recursive functions

and explained the adapted rules for the recursive synthesis framework. We introduced these
rules in order to substitute if − then− else−constructors into rec-terms.
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9 Conclusions

We introduced inductive structures, namely natural lists and natural binary trees, and
explained the structure of the magic axioms for these types of inductive structures.

In Chapter 7 we gave program derivations for interesting examples over di↵erent inductive
structures and translated the output into recursive programs, see Table 7.1.
To showcase several applications of induction and how this translates into several re-

cursive functions that are internally linked we presented the examples subtraction with
condition and prefix of a list.
With the examples rounded root and rounded division we explored how the framework

synthesizes a recursive function with given constraints as an input.
The examples maximum of a list and maximum of a binary tree show how fast the search

space continues to grow when induction is applied on a formula containing multiple clauses
and/or literals.

Finally, we compared di↵erent synthesis techniques in Chapter 8. In particular, deduc-
tive synthesis with the use of answer literals, component-based synthesis, syntax-guided
synthesis, and the sketching technique, which also includes programming by example.
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