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Kurzfassung

Die Anzahl der Blockchain-Anwendungen ist in den letzten 16 Jahren enorm gewachsen
und hat viele neue Forschungsbereiche geschaffen, die sich der Weiterentwicklung und
Analyse dieser Technologie widmen. Eine der bekanntesten Implementierungen ist das
Bitcoin-Netzwerk, das eine dezentralisierte Zahlungseinrichtung auf der Grundlage eines
öffentlich zugänglichen Blockchain-Ledgers etabliert hat.

Trotz seiner vielversprechenden Eigenschaften hat seine wachsende Popularität auch
dazu geführt, viele Probleme und Einschränkungen des ursprünglichen Designs aufzude-
cken. Ein spezifisches Problem, mit dem Bitcoin konfrontiert ist, während es versucht,
sich im Bereich der Decentralized Finance zu etablieren, ist seine Skalierbarkeit, um einen
höheren Transaktionsdurchsatz zu bewältigen. Off-Chain-Lösungen wie das Lightning Net-
work haben den Ansatz verfolgt, die Blockchain zu entlasten und direkte Zahlungskanäle
zwischen zwei Teilnehmern aufzubauen (daher Off-Chain). Mittels eines Konsensproto-
kolls tauschen die Parteien gültige On-Chain-Transaktionen aus, um ihren gemeinsamen
finanziellen Stand zu aktualisieren. Dies kann unbestimmt oft durchgeführt werden, wobei
das endgültige Ergebnis in der Blockchain eingetragen wird.

Solche Implementierungen stützen sich oft auf Timeout-Perioden, deren Einhaltung
durch das Bitcoin-Netzwerk und seine Skriptsprache gewährleistet ist, sowie auf die
Offenlegung geheimer Daten, um veraltete Zustände aufzuheben oder als Nachweis für
erfolgreiche Zahlungen zu dienen.

Mit steigender Komplexität solcher Protokolle können manuelle Beweise über deren
Richtigkeit zu fehlerhaften Ergebnissen führen. In dieser Arbeit legen wir den Grundstein
für eine teilautomatisierte Off-Chain-Protokollverifikation in Bitcoin unter Verwendung
der Programmiersprache F⋆. Wir erweitern das symbolische Verifikationsframework DY⋆
um ein Blockchain-Modell, das es ermöglicht zeitliche Garantien zu überprüfen und einen
neuen Label-Typ, um geheime Werte zu kennzeichnen, die gewollt offengelegt werden
sollen, ohne dabei bestehende Sicherheitsgarantien (z.B., Geheimhaltung) zu verletzen.

Um die Richtigkeit des Blockchain-Systems zu überprüfen, werden eine Reihe von
Lemmata, die Eigenschaften einer gültigen Blockchain beschreiben, als korrekt bewiesen.
Zusätzlich stellen wir zwei einfache Protokollimplementierungen bereit, um die neu
hinzugefügten Funktionalitäten vorzustellen.
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Abstract

The number of blockchain applications has grown immensely over the last decade, creating
many new research areas dedicated to advancing and analyzing this technology. One
of the most well-known implementations is the Bitcoin network, which established a
decentralized payment facility, based on a publicly accessible blockchain ledger.

Despite its promising features, the growth in its popularity has also led to uncovering
many issues and limitations of the original design. One specific problem Bitcoin encounters
as it seeks to establish itself in the Decentralized Finance sector is its ability to scale as the
transaction throughput grows. Off-chain solutions, such as the Lightning Network, aim
to shift the load away from the blockchain (hence off-chain) and create direct Payment
Channels between principals. In this way, the parties can publish on-chain only the
transaction that establishes a new channel and the one that closes the communication,
while all the intermediate exchanges are handled off-chain. Through a consensus protocol,
participants exchange valid on-chain transactions to update their common financial state
at their discretion. Once completed, the final result is recorded on the blockchain. Such
implementations often rely on timeout periods, which are enforced through the Bitcoin
network and its scripting language, and the disclosure of secret data to either revoke
outdated states or as proof for successful payments.

As the complexity of such protocols increases, relying solely on manual reasoning for
their correctness is insufficient, as it can be extremely time-consuming and error-prone.
Hence, within this work, we provide the basis for a semi-automated off-chain protocol
verification in Bitcoin using the proof-oriented programming language F⋆. We extend
the symbolic verification framework DY⋆ with a blockchain model supporting reasoning
over time and introduce important modifications in the type system, allowing us to
annotate secret values that will be intentionally disclosed without violating existing
secrecy guarantees.

To verify the correctness of the blockchain system, a set of lemmas expressing
properties of a valid blockchain are proven correct. Additionally, two simple protocol
implementations are provided to introduce the usage of newly added functionalities.
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CHAPTER 1
Introduction

The introduction of Bitcoin [Nak09] in 2008 has manifested the use of blockchain tech-
nology as a building block for decentralized applications and inspired an entire research
field [GMAA22]. The core protocol of Bitcoin is based on a peer-to-peer network where
transactions are recorded by the community on a public blockchain ledger, allocating coins
to participating nodes by the Unspent Transaction Output (UTXO) principle. Protocols
designed for Bitcoin (e.g., the Bitcoin core layer or protocols on top of it) often rely on
smart contracts, to provide specific guarantees to honest participants when interacting
with untrusted peers, together with the heavy use of cryptographic primitives. In the
core layer, for example, public and private key signatures are used to create transactions
and claim ownership of coins, and hash functions serve as tools to prevent the tampering
or disclosure of secret values on the public blockchain.
These measures are necessary to achieve the main idea behind Bitcoin, namely the
absence of a central trusted authority, managing the transfer and storage of funds.

Over the last 10 years, the trading price of Bitcoins has changed significantly: the
course went from about 130$ in 2013 to nearly 60,000$ in November 2021, back down to
about 16,000$ in December 2022, and hit a new peak in March 2024 of over 65,000$ [Sta23].
Despite this rapid growth of interest and willingness of people to buy Bitcoins, the under-
lying blockchain network suffers severe scalability problems [CDE+16, PD16, MMSH16]
regarding transaction throughput, lacking far behind the performance of centralized
financial institutions.

Off-chain protocols are one way to increase the number of transactions per second,
by allowing several micro-transactions to be conducted directly between peers, without
the need to write all of them to the blockchain [GMSR+19, MMSH16]. Those protocols
are often called Layer 2 solutions, as they are developed on top of the core network layer,
Layer 1 [GMSR+19].
Payment Channels (PC) are one example of off-chain protocols, enabling two parties
to distribute funds, allocated inside a shared budget, between them. By allowing to
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1. Introduction

route transactions through multiple PCs (and hence via multiple peers), one can create
Payment Channel Networks (PCN) [MMSH16, MMSK+17, GMSR+19], spanning yet
another network layer on top of the peer-to-peer network. One of the most prominent
examples of PCNs is the Bitcoin Lightning Network (LN)[PD16], developed in 2016.

The implementation of the LN utilizes Hashed Timelock Contracts (HTLC) [PD16] to
securely transfer funds from one peer to another, via an arbitrary number of intermediate
nodes. However, as it often happens, complex protocols hide subtle bugs that can
lead to security vulnerabilities, and the LN is no exception: for example, three years
after its creation, the Wormhole attack [MMSS+19] was found, affecting not only the
Bitcoin LN, but essentially every construction built on HTLCs (with only two rounds of
communication). As the main objective of the Bitcoin layer is to secure digital assets
and transfer currency between individuals, security and the absence of logical faults in
the protocol design are crucial. However, the combination of advanced cryptographic
methods and the decentralization on top of a publicly accessible blockchain ledger make
manual reasoning about protocols tedious and error-prone. Hence, a framework for the
verification of off-chain protocols appears to be necessary.

Current research results in the area of formal methods in blockchain systems include
statistical evaluation of attack probabilities (regarding inconsistent blockchain states)
[CFvdPS15, LV20], verification of specific protocols [BGW20, MSMH21, KL20, GH22,
GH23, Maz22], analysis of smart contracts [BZ19] through symbolic execution [JD23,
KB18, BBKM23], and formal modeling of blockchain and ledger-based systems [KK18,
ABLZ18]. However, besides some of the recently published work mentioned above, there
appears to be little literature tackling the formal analysis of protocols implemented on
top of the Bitcoin core layer.
Some of the identified approaches rely on established formal tools such as Tamarin
[MSCB13], ProVerif [Bla14], and the OFMC symbolic checker [BMV05], or deploy
custom methods based on input translation together with logical resolution or theorem
proving. Still, most methodologies require compact abstract protocol models (e.g., a
specification in spi-calculus, CSP, or domain-specific rules) [BGW20, GH22, GH23], which
may be far away from an actual protocol implementation in software, manual proof
assistance (as problems get too big for the applied tool to handle it) or hand-written
proofs [GH23, KL20], or simply do not scale well to accurately represent elaborate
protocols (e.g., unbounded number of players or protocol loops) [BGW20, GH22, GH23].

Type systems, on the other hand, seem to be a scalable solution for verification of
even complex protocols [BFG10]. Moreover, literature shows that elaborate type systems
can efficiently be implemented in software [BHM14, BBD+21a, BBF+08, CGLM17].
Recent developments on the verification framework DY⋆ [BBD+21a, BBD+21b] indicate
promising results of automated verification using type systems. DY⋆ is a symbolic
verification framework, that supports trace-based reasoning in the presence of a Dolev-
Yao attacker[DY83] and (in theory) executable protocol implementations. It is written in
the proof-oriented programming language F⋆ [SHK+16, Nik24], which supports a mix of
fully automated and manually guided proofs discharged by the SMT solver z3 [dMB08],
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1.1. Motivation

dependent and refinement types, and user-defined computational effects. The DY⋆ base
layer thus far does not include mechanisms to model off-chain protocols.

This thesis presents a formalization of a blockchain system in F⋆ to extend the DY⋆
framework, and thereby provide techniques to allow modeling of Bitcoin blockchain
protocols. Eventually, further extension should lead to the verification of HTLCs and
off-chain PCNs.

1.1 Motivation

Without rigorous verification, subtle errors can remain unnoticed for several years and
lead to major security breaches in the long run. One well-known example that emphasizes
the significance of verification is the Needham-Schroeder (NS) protocol [NS78]. The NS
protocol was introduced in 1978 and was designed to established secure communications
between two peers over an insecure network. It was considered secure for 17 years until
Gavin Lowe discovered an attack in 1995 [Low95] by applying model-checking techniques.
Today, blockchain technology represents the main building block of applications in the
Decentralized Finance (DeFi) sector [DSST+22]. Unidentified bugs in DeFi systems are a
main concern, as they can potentially cause serious financial damage. For this reason, a
thorough security analysis is indispensable.

Scalability of Bitcoin

As aforementioned, because of its growing number of participants, Bitcoin (and also other
cryptocurrencies built on the Bitcoin core) suffers scalability issues. The network can only
process below 10 transactions per second, whereas the leading financial service institutions,
such as Visa, can support up to several thousands [MDPM18, Vis23]. This bottleneck
stems mainly from the decentralized consensus and proof-of-work concept, limiting the
farming rate at which miners create new blocks, to an interval of approximately 10 minutes.
On average, blocks mined in July 2023, contain between 1800 and 3800 transactions
[Blo24], which equals a transaction rate of roughly 3 to 6 transactions per second.
Also, high processing fees, paid to miners as an incentive to favor certain transactions,
make small payments via Bitcoin unattractive. At its peak, in April 2021, average fee
prices were as high as 27$ [Sta22].
These problems primarily drive the research on new scalable solutions, such as increased
block size (to hold more transactions), efficient consensus mechanisms [LNB+15], off-chain
transactions, sharding [WSNH19] or novel blockchain implementations [DOA16].
The SegWit [Eri15] update (Segregated Witness) of 2017, almost doubled the effective
number of transactions per block, by excluding signature from transaction data. Besides
the slight increase in throughput, the adaption of SegWit enables the integration of
off-chain PCs, as the computation of the transaction identifier is now independent of
signature data (see Section 2.3 for details).
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Funding
TX

... ... Closing
TX

On-Chain:

Off-Chain:

Alice Bob

(1) agree on shared budget

(2) publish
funding TX

(3) update channel state

⋮
(TLS connection)

(4) publish
closing TX

Figure 1.1: Illustration of a LN Payment Channel

Payment Channels
Classical Bitcoin transactions are executed on-chain, as they are broadcasted to the
network and added to a block on the blockchain. Hence, anyone with access to the
current version of the ledger can observe and verify the existence of a certain transaction.
To spend the output of some transactions, one usually waits until it gets confirmed: this
happens when a sufficient amount of new blocks (usually at least 6) is added after the
block holding said transaction. The confirmation ensures that the transaction is part of
the longest blockchain version and is thus seen as valid by the network. Confirmation of
on-chain transactions can take a significant amount of time.

The channel construction defined by Poon et al. [PD16], interacts with the blockchain
only to open or settle (long-term) payments and resolve conflicts that arise due to protocol
violations. Thereby, the payment process is shifted away from the slow blockchain. The
protocol is illustrated in Figure 1.1 In bidirectional payments, a shared budget is created
through an initial funding transaction published on-chain, allocating coins from one
or both channel participants. Then micro-transactions are committed by exchanging
pre-signed on-chain transactions, that define a new distribution of funds from a shared
budget. Each transaction establishes a new channel state and can be published on the
blockchain anytime. By choosing not to publish them, the channel is kept open and
further state updates are possible, but as soon as one is published, the channel is closed
and the current payment is settled according to its defined state. State updates are
exchanged via secure communication paths outside the blockchain (e.g., TLS). Micro-
transactions are valid upon receipt, thereby eliminating long confirmation periods.
To invalidate outdated states, the parties exchange private signature keys, that allow the
punishment of a dishonest principal who published an invalid state, by collecting all of
their shared funds.
This punishment mechanism also depends on timelock features that are part of the
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Bitcoin consensus protocol [Pet14, Mar15a], which defines absolute and relative timelocks
for transaction validity.

PCNs (e.g., LN) extend simple PCs by connecting already existing channels and
route between them, rather than opening new ones, to avoid additional fees and long
confirmation periods. A payment that takes place over a PCN is called multi-hop
payment, highlighting the fact that the payment “hops” through different nodes before
arriving at its destination. To ensure the designated payment recipient actually receives
the coins, PCs of the LN are augmented by HTLCs, which enforce a certain behavior
of intermediate hops. HTLCs also rely on the disclosure of secret values, as proof for
successful payments, and timelocks to issue refunds after a timeout period.

Further details about off-chain payments are presented and discussed in Section 2.3.

Security and Privacy
The blockchain ledger, per construction, promises certain guarantees, as non-malleability
of transactions (once they are confirmed), pseudo-anonymity, and transparency (i.e., each
peer can check the history of transactions themselves and verify them). Still, Nakamoto
had already identified privacy issues, arising from analyzing chains of transactions and
pooling together addresses, believed to be owned by one person or organization, as it is
briefly described in the Bitcoin white paper [Nak09]. By applying clustering heuristics
on tagged addresses, links to real-life identities are possible (depending on the available
data) [MPJ+16]. Government authorities, for example, may force crypto-exchanges to
reveal user information (in case of possible criminal activities), to match issued addresses
with individuals.
Off-chain protocols could provide stronger notions of privacy if they are implemented
correctly, as not every transaction is traceable via the blockchain. Still, poorly designed
protocols may destroy such guarantees nonetheless, by revealing pieces of information on
the network, that allow actions to be linked with concrete pseudo-addresses.
The work of Malavolta et al. [MMSK+17, MMSS+19] analyzes security and privacy issues
in PCNs. They found privacy issues due to the leakage of common identifiers when using
HTLCs.

HTLCs are contracts set up between two individuals to lock funds until conditions
to distribute them are met. As an analogy, one can think of a payment process that
includes shipping goods, where a trusted third party keeps the money of the payer locked
up until the goods arrive, and afterwards gives the money to the payee. The locking
mechanism depends on a hash and the unlocking of the corresponding preimage. Along a
payment route in the LN, intermediate hops lock their coins with HTLCs but they all use
the same hash. This enables observing intermediate nodes to identify the endpoints of
the current transactions (i.e., who pays who) and in some cases even the entire payment
route [MMSK+17]. Multi-Hop HTLCs (MHTLC) have been proposed to counter those
issues, while still being compatible with the Bitcoin scripting language. The new contract
requires different but related hash preimages on every intermediate HTLC [MMSK+17].
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The communication effort is rather high, compared to standard LN payments: each hash
has to be sent by the receiver of the payment to all other nodes on the payment route.
In [MMSS+19] a more efficient and privacy-preserving lock construction is introduced,
so-called Anonymous Multi-Hop Locks (AMHL), based on Adaptor Signatures.

To open new channels, an initial transaction containing the channel capacity is
published (shared budget). The referenced coins are spendable by a multi-signature
(also called multisig) address, meaning that both PC participants have to collaboratively
provide a signature to move the funds. Currently, the share of output scripts that include
pure multi-signatures is far below 1% [JD23] (not considering “script-hash” payments),
hence such transactions are rather peculiar when seen on-chain.
The adaption of Schnorr signatures in the Bitcoin core, instead of the currently applied
ECDSA signatures, could mitigate privacy concerns of mutlisig transactions [MPSW19].
The Bitcoin Improvement Proposal (BIP) [Pie20], discussing the implementation of
Schnorr signatures in Bitcoin, lists multi-signature transactions as one potential applica-
tion, where the key and signature aggregation properties of Schnorr pose an advantage
over ECDSA. Multiple peers would be able to jointly sign a transaction by combining
their individual signatures into one, and derive a single verification key, using their public
key material. From a third-party perspective, there would then be no difference between
multi-signature and single-signature transactions.

In [MMSK+17, MMSS+19] the authors formulate a set of security and privacy prop-
erties applicable in the PCN setting. Such formulations are important to evaluate the
performance of protocols. The specification includes, among others, requirements con-
cerning Atomicity, Relationship Anonymity, and Balance Security. Intuitively, these
properties define, on a higher level, how payment operations should ideally behave from
a user’s point of view:

• Atomicity: Along a single payment route, if a PC changes its state (i.e., the channel
capacity updates), then the same change is applied to all other PCs on that route.
This means that all related HTLCs have the same outcome, and the corresponding
payment either went through and all channel states were updated, or it failed and
the states stayed the same.

• Relationship Anonymity: An intermediate node does not learn any information
about other participating nodes in a payment process, except its direct neighbors.

• Balance Security; An honest user can not lose coins by participating in a payment
process, even if all other participants exhibit malicious behavior.

Even though standard HTLCs may not provide all the security and privacy require-
ments, as defined by Malavolta et al. [MMSK+17, MMSS+19], they are as today still part
of the LN specification [LN 16] and an important building block to construct networked
channels. They are also deployed in other protocols, such as cross-chain swaps [Maz22].
Hence, the ability to easily model and verify HTLC-based protocols remains an essential
part of improving the security of current blockchain applications.
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1.2 Problem Statement and Goal
Thorough formal analysis is essential to protocol construction, as it allows to identify
logical flaws and provide proofs of specific security properties. While successful tools
exist, such as ProVerif [Bla14] or Tamarin [MSCB13], protocols with an unbounded
number of rounds or players remain often infeasible to analyze. LN or PCNs in general
fall in that category, as the number of intermediate nodes taking part in a multihop
payment is arbitrary. On the other hand, type systems shine with this kind of problem
thanks to their strong compositional and inductive capabilities. For instance, the
DY⋆ framework [BBD+21b, BBD+21a] proposes an efficient type system based on semi-
automated protocol verification.

The significance of off-chain applications using HTLCs, particularly PCNs [MMSH16,
MMSK+17], as well as security and privacy concerns caused by faulty protocol imple-
mentations, has been well-established in the previous section. In light of this, we argue
that for further advancement of blockchain technologies, analysis of off-chain PCs is of
high importance. Hence, this thesis focuses on providing new ways to contribute to the
verification of off-chain systems and eventually HTLCs, as they are implemented in the
LN, and PCNs that incorporate them. Because of the aforementioned limitations of
standard verification tools, this work relies on and extends the DY⋆ framework.

In Section 1.1, we briefly review PCs and multi-hop payments (for more details
see Chapter 2, especially Section 2.3.1 and Section 2.3.2) and emphasize that both
constructions deliberately reveal secret data, either to invalidate outdated channel states
(exchange of private keys) or as evidence that a payment has been successfully completed
(preimage of hashes in HTLCs). Additionally, payment channel implementations impose
timing constraints by restricting transaction validity with timelocks.

To successfully verify such protocols within DY⋆, we identify two main sub-goals that
create a basis for the verification process:

1. Modify DY⋆’s type system to allow the intentional release of secret values to the
network.

2. Formalize a model of the blockchain that supports time-dependent reasoning over
block height.

(1): The property of a value x being secret until some event happens makes verification
with the prevalent framework definition impossible, as secrecy is of major concern (i.e.,
no disclosure of secret values). The property is difficult to formalize with type-based
proof assistants, as in contrast to non-type system tools, the notion of secrecy is defined
through type labels.

DY⋆ provides a labeling system to annotate data objects according to their security
level. However, the system is not expressive enough for our cause, as it is static and
labels of objects can not be switched once they are defined. Although DY⋆ includes
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session state compromising features to reveal private data to the attacker, its semantics
obviously differ from voluntary disclosure. For these reasons, we need to augment the
labeling system to make it suitable for our purposes. More precisely, we defined a new
type of label with the following property: when a certain entry appears in the trace, the
label (which is initially private) can flow to public labels. Similar ideas to construct such
a typing definition are found in the type system of [BHM14]. Here, the type private
is defined as a function from unit to Un (the type of values known to the attacker),
with refinement assert(false). Hence, once the private value is disclosed (i.e., the
function is executed), the assertion will fail, prohibiting data leakage. Tweaking the
refinement, to assert(C), where C is some (arbitrary) condition, would allow disclosure
provided C holds.

(2): A blockchain model for off-chain transactions should support the reasoning over
timeout periods. Fortunately, DY⋆ is built around a global trace, which serves as history
protocol execution steps. Each index of the trace can be seen as a time instance and
thereby an ordered relation between each entry is created. Bitcoin most commonly refers
to timing constraints using block height or depth. Both variants can be expressed using
just the list of block entries and their order. A related definition is given in [ABLZ18],
which presents a stripped-down formal model of Bitcoin transactions, using a list of single
transaction blocks.

We split up the work into those two parts mentioned above, with this thesis focusing
on the blockchain part (2). Thus, this thesis aims to contribute to the goal of automating
the verification process of blockchain protocols and especially off-chain based ones, like
those implemented in the Bitcoin Lightning Network, by extending the DY⋆ protocol
verification framework with a blockchain model formalization.
Work on (1) is currently in progress, and eventually both pieces will be merged together.
For the sake of completeness, current preliminary results are also briefly presented in
Section 3.6.

1.3 Contributions
This thesis covers the following contributions and extensions to DY⋆:

• A Bitcoin blockchain model integrated into DY⋆, supporting the notion of time
(block height).

• Formalization of the Bitcoin scripting language SCRIPT in F⋆.
• Predicates to reason about timelocks semantics of Bitcoin transactions, as needed

for off-chain protocols.

• User API functions to ease blockchain protocol implementation.

• An use-case example of a simple protocol that redeems coins on the blockchain.
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• A preview of a new label type to intentionally disclose secrets

The implementation includes an interpreter for Bitcoin scripts, including a selection
of opcodes listed on the Bitcoin wiki page [Bit24b]. Scripts can be written within the
framework as a list of opcodes. The parsing of real-world binary scripts is currently not
supported, due to the lack of available cryptographic functions in F⋆. The interpreter
can be used to either simply evaluate scripts through normalization or create (limited)
manual or semi-automated proofs about script execution.

The blockchain model supports time-depend protocols by reasoning over block height
(or depth) as implemented in the Bitcoin blockchain (see Section 2.2.3 for a deeper dive).
Furthermore, our new label type allows for the verification of protocols with intentionally
leaked secrets. Having both functionalities in place paves the way to verifying off-chain
related protocols, like HTLCs and the LN (see Section 2.3 for details on secret disclosure
and timeouts in PCs).

The project also includes simple examples using the newly integrated functionality.
We added a small protocol used to redeem coins on-chain to showcase the blockchain
machinery. This demonstrates the necessary steps to perform verification and also shows
the capabilities of added API functions.
Additionally, there is a simple test protocol for releasable labels included.

There has currently not been any attempt (at least known to us) of applying DY⋆ to
verify protocols in Bitcoin or within a blockchain setting.

1.4 Outline
After providing an introduction to off-chain protocols, mentioning scalability issues of
Bitcoin, and discussing security and privacy concerns of PCs, Chapter 2 provides technical
background information. Section 2.1 gives an overview of state-of-the-art verification
methodologies, and highlights some current work applying formal methods to Bitcoin. In
Section 2.2 important concepts of the Bitcoin blockchain are introduced, while Section 2.3
dives deeper into the workings of the Lightning Network.

Subsequent chapters focus on the extensions made during the work on this thesis:
First, Chapter 3 gives a quick overview of DY⋆, encompassing its global trace, the labeling
system, and invariant-based protocol reasoning. Chapter 4 builds on that knowledge, by
defining the blockchain model and how it is integrated into DY⋆. Information regarding
script parsing and time reasoning is also found here. Lastly, further improvements and
possible future work are discussed in Chapter 5, and finally, Chapter 6 concludes this
thesis.
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CHAPTER 2
Background

2.1 State of the Art
In the previous chapter, we discussed the need for automated security proofs and
highlighted problems of current blockchain protocols. This section first gives an overview
of current verification approaches and available tools and introduces the DY⋆ framework.
Then we show some of the recent research results in the area of formal verification
targeting Bitcoin.

2.1.1 Verification Methodologies and Tools
Formal methods in security is a vast research field, hence many different ways of modeling
and reasoning about protocols exist. We can, however, identify two main branches to
categorize tools, namely the symbolic model and the computational model [Bla12].

Computational Model. The computational model is mostly common among cryp-
tographers, who mathematically reason about cryptographic schemes (using game- or
simulation-based proofs). In this model, messages are represented as strings of bytes,
the adversary is a polynomial-time Turing machine, and cryptographic primitives are
expressed through mathematical equations: the goal is to show that the adversary has at
most a negligible probability of breaking the scheme [Bla12]. The computational model
works with a detailed and rigorous model of the cryptographic primitives; therefore, while
the resulting proofs can ensure a high level of accuracy, they require significantly more
effort to be produced, making the computational approach not scalable for large and
complex protocols.

Different verification tools based on the computational model were engineered over
the years. One of the most successful is CryptoVerif [Bla06], a computationally sound
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automated protocol verifier with support for secrecy, correspondence, and (some) equiv-
alence properties on stateless protocols. It functions by emulated game-based proofs
typically done by hand by a cryptographer.
Another popular tool is Squirrel [BDJ+21], based on the Bana-Comon logic [BCL12],
which brings computational soundness to a more symbolic style of proofs with a focus on
observational equivalence.

Symbolic Model. When the protocols we deal with are too large and complex to
verify with the computational model, we can rely on a symbolic approach. This method
treats cryptographic functions as reliable black boxes: it reasons over the protocol taking
into consideration only the extensional properties of such functions (i.e. what inputs they
take and what outputs are provided in return), while the details of the implementation
are blurred out [Bla12]. This places the focus on aspects of the underlying protocol,
rather than the cryptography involved. Furthermore, the higher level of abstraction
makes automated verification more manageable than in the computational case.

One of the most prominent tools within the symbolic world is ProVerif [Bla14], which
translates the input model (in applied pi-calculus) to a Horn-clause representation and
applies resolution over it against a logical model of the attacker (Dolev-Yao model [DY83]).
ProVerif can verify several security properties in a fully automated way, such as secrecy
and authentication, and supports differential equivalence (strong equivalence for similar
processes, differing only by their terms). Since the logical derivation resembles protocol
execution traces, counterexamples of queries can be provided.
On top of ProVerif, the (executable) modeling language ProScript [KBB17] provides a
higher level abstraction from process calculi. Models in applied pi-calculus are extracted
directly from ProScript code (that can be run within JavaScript), which are used for
further verification in ProVerif. The soundness of the translation to applied pi-calculus
has yet to be proven and also the software implementation is currently in an experimental
state.

The Tamarin [MSCB13] prover employs a constrained-solving algorithm [SMCB12],
utilizing a set of logical rules and reduction steps that specify a transition system. Security
properties (trace-based and observational equivalences [BDS15]) are written as first-order
formulas and proofs can be guided through lemmas in an automated or interactive way.
Similar to ProVerif, an unbounded number of sessions are supported and counterexamples
are generated. Additionally, protocols with mutable-state can be verified. Tamarin
has already been used to verify HTLC channels between two peers within a simplified
blockchain model [BGW20].

Type Systems. The revised tools tackle the problem of protocol verification directly,
by translating the whole input model into logical formulas and subsequently verifying
them via automated reasoning. This comes with the cost of abstraction (a model has to
be formulated) and scalability (e.g., state-space explosion through unbounded attacker,
composite or unbounded protocols), as the analysis for elaborate protocols can take a
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significant amount of time [BFG10] (see verification of Signal protocol in ProVerif
[KBB17]) and human effort regarding model design. To counter the abstraction problem,
the authors of [BFGT06] proposed, back in 2006, to extract models for ProVerif directly
from F# implementation code, following a similar idea as ProScript. They argue that, by
constructing models from the ground up, solely based on the protocol specification, many
bugs are left unrecognized, since they are most likely introduced during development.
Scalability problems can be solved by type systems [BFG10], as they naturally handle
compositional reasoning, allowing modules to be checked independently of others (hence
they can be verified once and for all) and support inductive reasoning of protocols with
unbounded loops [BBD+21b]. Tools like ProVerif or Tamarin have no or only limited
support for such operations. As an example consider, blockchain protocols, like multi-
hop payment channels, which allow an arbitrary number of participants. In [BBF+08]
Bengston et al. presented the F7 type checker for protocols written in F# and compared
it against previous work in [BFGT06]. Their evaluation showed an improvement in terms
of performance and the variety of protocols that can be verified (e.g., recursive functions),
however, they also highlight the lack of support for certain properties, like equivalences.

DY⋆ Library. DY⋆ [BBD+21a, BBD+21b] is a symbolic verification framework, that
integrates a security type system (similar to [FM11, BHM14]) on top of the programming
language F⋆ [SHK+16]. The core of the library is built around a global trace, which
tracks triggered events, messages sent on the network, and the state and ongoing sessions
of principles within a single protocol execution. By reasoning over trace entries and
their order, trace-based properties such as standard secrecy, authentication, and forward
secrecy can be verified, but not equivalences. The trace includes entries referring to
the state of principals, hence the class of stateful protocols is supported. Modeling
stateful protocols is only limited possible for example with ProVerif, without further
extensions [YXL+22]. The authors of the framework define a valid trace to adhere to a
set of invariants (generic and protocol-specific). Requirements of protocols are captured
via said invariants (e.g., “When can certain events be triggered?” or “How can a certain
state be reached?”), and security properties are stated in the form of F⋆ lemmas, which
are verified against the valid trace definition. A (Dolev-Yao) attacker can compromise
any state entry within the global trace (even old ones), thus gaining access to secrets
originating from that entry. Protocols are written in annotated F⋆ code and can be
compiled to OCaml (using a concrete library for cryptographic operations) and from
there to Assembly. Furthermore, by annotating the protocol code the designer is guided
during the implementation process, to obey the specified (sound) typing rules.
The authors [BBD+21b] claim that verification with DY⋆ requires less effort than with
comparable approaches, like F7. We give a detailed introduction to DY⋆ in Chapter 3.

2.1.2 Formal Methods in Bitcoin

There are different ways to show that a program is secure. One of these is leveraging
equivalence properties to prove that the executions of two different programs are in-
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distinguishable from the outside (by an adversary), given their externally observable
behavior. For instance, the Universal Composability (UC) framework [Can01] uses this
approach to define and prove security properties in a modular and composable way, by
comparing the protocol’s real-world specification against an ideal functionality. Desired
security properties are integrated into the design of the ideal functionality. By showing
that the real-world implementation is indistinguishable from the ideal version, the former
inherits all specified properties of the latter. If one can verify the security of the ideal
functionality, the security of the real-world protocol follows.
Kiayias et al. [KL20] modeled the LN specification [LN 16] within the UC framework.
They provided a proof-by-hand, which led them to the conclusion that honest principals
running programs adhering to the LN specification do not lose funds due to the malicious
behavior of peers.
Grundmann et al. [GH20, GH22, GH23] build upon the work of [KL20], with the goal of
automating some parts of the manual proof using model checking tools and the temporal
language TLA+. They show that their formalization refines the ideal abstraction, and
the abstraction implies the desired security goal: malicious peers are not able to steal
coins. The authors mention problems regarding large state spaces when modeling an
entire payment network. In their work, Grundmann et al. dealt with this problem, by
also refining PCs with an ideal functionality, limiting the number of possible channel
states. The provided proof sketch considers a multi-hop system with three users and two
PCs. During their work, they identified errors in the formalization of [KL20].

Atzei et al. define a formal model of Bitcoin transactions [ABLZ18], including multi-
signatures, segregated witness data, and scripts. The model can be applied in combination
with existing blockchain formalizations to enable reasoning about the Bitcoin blockchain
and smart contracts. Scripts are not defined in a stack-based manner but are formulated
as simple grammar over expressions together with semantics and evaluation procedures.
The grammar allows simple arithmetics, conditional branching, signature verification,
hashes, and two temporal operators, expressing absolute and relative timelocks. Using
their definitions the authors demonstrate how simple requirements of the blockchain, such
as the absence of double-spending transactions, can be expressed and evaluated in their
model. Additionally, a compiler is provided, which can translate modeled transactions
into real Bitcoin transactions.

The work in [BGW20] focuses on establishing a simplified formal blockchain model
in Tamarin. The authors identified some key aspects the model should support to allow
time-based protocol verification, such as the general notion of time and the ability to
trigger timeout events. The base construct of the model is the so-called Tickchain,
representing a linear increasing timeline. Each entry in the Tickchain has a corresponding
ledger entry, containing zero or one transaction, thus, enabling a variable timing definition
(e.g., block height or others). The model supports only two transaction formats: simple
transactions, transferring coins from an input to a public key address, and commitment
transactions, containing an HTLC output script instead of an address. To demonstrate
their model the authors perform an analysis of an HTLC-based cross-chain swap protocol
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(e.g., exchange Bitcoins for Altcoins) between two parties. Only one initiator and receiver
were modeled, thereby ignoring payment channels with multiple hops. Analyzed security
properties focus on temporal constraints, that limit the action space of participants
until certain transactions have been created or events occurred (e.g., timelock expires).
Their model is powerful enough to identify problems when establishing HTLCs across
blockchains evolving at different rates, as timeout periods might not match anymore.
The proof, so far, needs manual guidance.

Modesti et al. [MSMH21] analyzed the Bitcoin Payment Protocol, introduced in
BIP70 [Gav13], to formally show the protocol’s vulnerability to the Silkroad Trader
attack. The protocol describes the interaction of a customer with a merchant to buy
goods using Bitcoin. The authors formulate a model of the protocol in the AnB language
and verify a single session with the OFMC model checker. Their verification goals include
authentication and agreement over the issued refund addresses, by the customer to the
merchant. Results show that the merchant is not able to verify that the customer agrees
on the refund addresses, as the Payment message (which includes the refund addresses)
is missing a signature linkable to the customer’s payment. Malicious parties may take
advantage of this bug, by moving coins to illicit traders, from whom they acquire goods,
via an honest merchant, without being directly involved in the payment process.
Two fixes have been proposed and the specified authentication goals could be proven
correct.

In [LV20] the authors established a probabilistic Bitcoin network model as a stochastic
process of mining instances instantiated in parallel. During their work, they augment the
probabilistic model checker PRISM with blockchain-related datatypes, which they call
PRISM+. The enhanced model is used to compute the probabilities of attacks resulting
in inconsistencies of the blockchain (e.g., double-spends). For the example provided in
the paper, the model is used to calculate the probability of a malicious miner (or mining
pool) creating an alternate longest version of the blockchain depending on its available
hashing power and the depth of the fork where the miner starts.

The tool CHAUSETTE [JD23] performs a vulnerability analysis of non-standard
Bitcoin scripts, via symbolic execution. The author’s goal is to identify possible attacks
to steal coins from not sufficiently secured transactions. They gathered data from the
first 775.000 blocks of the Bitcoin blockchain and created a dataset of all the script
types found. The data shows that 3.868.544 non-standard scripts could be pinned down,
whereas 433.458 of them represent output scripts (i.e., are still spendable) and 3.435.086
are redeeming scripts (i.e., used to spend an output). The symbolic execution translates
the scripts into a logical formula and queries z3 [dMB08] to find a solution for inputs
which leads to the acceptance of the script (non-zero value on top of the stack). In total,
they discovered more than 300.000 unsafe scripts using their method.

Klomp et al. [KB18] introduced a symbolic verification tool, to check for constraints on
input scripts imposed by a given output script. The small-step evaluation is implemented
in the functional programming language Haskell. When run on a script, the tool gathers
constraints about the initial stack elements in all possible execution paths and queries a
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Finite Domain Constraint Solver in the back-end. The output is a description of how the
stack has to be set up by the input, such that the analyzed script executes successfully.
In another paper, the authors continue with this work and present a framework for
verification of decentralized applications in Bitcoin, based on the symbolic execution
of open scripts, called SCRIFY [BBKM23]. They show how generated constraints over
scripts can be used to reason about protocol behavior, using the example of HTLCs in
the context of PCs.

Besides off-chain solutions, there exist other approaches to mitigate the scalability
issues encountered by blockchain-based networks, such as Bitcoin. A Temporal Blockchain
[DOA16] has been proposed aiming to keep the size of the blockchain ledger as small as
possible. The authors argue that the Bitcoin blockchain is to large in terms of storage
space (currently over 500GB 1) for most people to consider running a full node and
actively participate in the network, as they would have to download the entire ledger. In
contrast, they claim that their implementation keeps a fixed size of only 4.5GB despite
continuous network growth. This involves miners periodically creating checkpoints and
removing blocks of a specific “age”, to keep the size constant.
By recruiting more active nodes, the network not only becomes publicly more accessible
but should also allow more resource-limited users to provide hashing and computing
power to the network. Doing so, the authors see an improvement in Bitcoin’s security, as
they find 51%-attacks to get more unlikely and resource intensive.
They conduct a formal analysis through model checking by specifying their blockchain in
the B-language and evaluate against an attacker with less than 50% of the available total
computing power. Due to the lack of well-established blockchain security definitions at
the time, the authors focused on key properties that blockchains should provide, such
as the non-malleability of blocks (given blocks are removed regularly by miners). Their
results claim the Temporal Blockchain provides the same security guarantees as the
standard blockchain but needs to undergo further research to gain confidence the design.

2.2 Bitcoin Blockchain
The Bitcoin blockchain [Nak09] is a collection of transactions enabling coins to flow from
one to the other given a set of conditions is satisfied (for details on the implementation of
the Bitcoin core refer to [Bit24a]). The transactions are gathered in blocks over which a
decentralized consensus algorithm is run (proof of work in Bitcoin’s case). The consensus
ensures the blockchain is kept in a valid state, without having a central authority in
place.

The blockchain is often referred to as a public ledger, that contains the history of all
transactions that have ever been recorded. It follows the Unspent-Transaction-Output
(UTXO) principle, meaning that it ensures the consistency of each transaction (through
consensus), but notably, does not track the balance of its users. An agent “owns” the

1https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/, accessed 6-
November-2023
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coins of any output from which they have enough information to claim. The ledger
is maintained by having each block reference its predecessor block, thus creating the
eponymous chain.

Bitcoin blocks can contain an arbitrary number of transactions (bounded by the
maximum size of blocks), that consume coins from previous transactions and transfer
ownership of said coins. Each transaction has a list of at least one2 or more inputs and
outputs (see Figure 2.1). The inputs define where to pull coins from, while the outputs
describe how and how much of those coins can be redeemed. The output locks coins
by defining a small program, written in a simple (non Turing-complete) stack-based
scripting language, called SCRIPT [Bit24b]. An input references a specific transaction
output on-chain and has to provide information to satisfy the output’s script. The input
also passes the required data in the form of a script. Evaluation is done by running
the interpreter on the concatenation of both scripts, input and then output. Hence the
input’s script sets up the stack on which the output’s script is run. Most commonly,
output scripts require a signature associated with a public key of the payment recipient,
but they can even contain more complex conditions (including timing restriction or the
knowledge of some secret), or simply trivially satisfied programs (see [JD23] for some
examples).

Transactions within a block are independent of one another. Blocks and transactions
are “uniquely” identified by their block identifier (BID) and transaction identifier (TXID)
respectively. The TXID is computed as the double hash of the serialized transaction
[Eri15]. The BID is the hash of the block header [Bit21], which includes meta-data like
the hash of the previous block, a nonce related to the proof-of-work computations, and a
merkle-root hash of all the block’s transactions. The merkle-root commits a block to its
list of transactions. Hence, changing the contents of one transaction will have effects on
the respective TXID and BID. Transactions and blocks are referenced by their respective
ID.

2.2.1 Consensus Rules
Bitcoin’s decentralized approach requires the community to establish consensus over the
state of the blockchain. A wrong state could reduce trust in the currency and cause
financial harm to all participants of the network: this incentivizes every participant to
keep the blockchain in a valid state.

Miners are the ones who generate new blocks and hence, need to verify their correctness.
The generation of a block includes a computational puzzle, called proof-of-work, to make
the block valid. In the specific case of Bitcoin, miners have to find a random value (or
nonce) and add it to the block header, so the BID has a certain format. The difficulty of
the puzzle is adjustable and is set by the Bitcoin protocol such that new blocks are mined
approximately every ten minutes. This is an important factor for its current scalability
issues, as discussed in Section 1.1. Miners are rewarded for their work by charging fees

2Except the founding transaction
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and creating new coins (hence the term “mining”), however, if they fail to follow the rules
their blocks will be ignored by other miners, and their earnings are rendered useless.

It may happen that two independent miners add a new block at merely the same
time, thus creating two versions of the chain (one with block A and one with block B):
this scenario is called a fork of the blockchain. If both blocks are correct, new ones
could be added on top of either one. It depends on the miners on which version they
continue, however, in the end, the community accepts only the longest correct version of
the blockchain.

Forks make the top of the blockchain rather unstable, as it is unsure which version
miners will choose to continue on. Hence, to be on the safe side, one usually waits until
a block is buried deep enough on the longest chain before acknowledging it. A block is
said to have received n confirmations, if there are n blocks added on top of it. Typically,
after being confirmed 6 times it is safe to assume a block is part of the blockchain. As
block mining takes on average ten minutes, payment confirmations can take up to one
hour (slow compared to standard online banking).

On a higher level, we can derive the following conditions to be met for a block to be
considered valid and ready to be included in the blockchain:

(1) The BID is computed correctly (according to the proof-of-work puzzle)

(2) The TXID of each transaction is computed correctly

(3) There are no contradicting transactions in the block (e.g., spent the same transaction
output)

(4) Each input of a transaction references only outputs that have not been spent before
(no double spends)

(5) Each transaction does not spend more coins through their outputs as are available
on its inputs3

(6) Each input’s script satisfies the referenced output’s script (i.e., evaluation is suc-
cessful)

(7) Absolute and relative timing constraints are met by each transaction and their
inputs (see Section 2.2.3)

Points (1) and (2) can be verified by recomputing the IDs. To exclude double spending
as required by (3) and (4) one has to parse the whole blockchain and check if some output
is referenced already. In practice, one would parse the blockchain once and create the
UTXO-set, containing references to all unspent outputs and when new blocks are added
the set is simply updated. Concerning (5), all referenced outputs are checked and the

3Expect so-called coinbase transactions added by miners to create new coins.
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sum of their transferred coins is compared to the amount of coins spent by the current
transaction. Through (6) one can define conditions for how their coins can be spent,
while (7) provides a way to direct when a transaction should be added to the chain. By
combining both, it is possible to create time-dependent output locks [Pet14, Mar15a].
The semantics of Scripts and timing mechanisms of Bitcoin are presented in the following
two sections.

2.2.2 Scripts
As mentioned before, Bitcoin utilizes simple programs written in SCRIPT, a custom
stack-based scripting language, to identify who is eligible to spend a transaction output.
A script consists of a list of opcodes that are interpreted as a series of operations. The
language supports operations for cryptography such as hashes and signature verification,
stack manipulation, arithmetic, boolean logic, and branching, but doesn’t provide looping
instructions, which makes the language non-Turing complete. A list of opcodes and their
meaning can be found in [Bit24b].

Tx1

In0

In1

In2

Out0
script_pubkey

Out1

Tx2

In0
script_sig

Out0

Out1

0.7 BTC0.2 BTC

0.8 BTC

0.3 BTC 0.6 BTC

0.6 BTC

0.1 BTC

Figure 2.1: Illustration of two Bitcoin transactions

The originator of a transaction (payer) includes a script for each transaction output
to specify how coins can be redeemed. The output script is, however, only one part of the
whole script. The receiver of the payment has to specify with each transaction input a
second script, including the information that satisfies the output script. Commonly, the
output’s script is referred to as script_pubkey and the input’s script as script_sig.
Figure 2.1 depicts two transactions Tx1 and Tx2, with the only input of Tx2 referring
the first output of Tx1 (thus moving coins from Tx1 to Tx2 in the direction of the arrow).
The figure explicitly highlights the scripts of the involved entries. Miners append the
input script in front of the referenced output’s script and evaluate the concatenation
(i.e., [script_sig++script_pubkey]). Thereby, the input script is executed first
and sets up the stack with the data required for the output script to run successfully.

In the Bitcoin network, the identities of individuals are hidden behind public keys,
which are often referred to as Bitcoin addresses. To transfer coins to a specific receiver,
one of its public keys (or address) has to be known. The output script performs a
signature verification, whereas the signature is provided through the input scripts and
has to match the public key. As signature generation requires a secret signature key, it is
ensured that the coins can only be redeemed by the individual in possession of that key.
Some applications require the authorization of multiple principles to conduct payments.
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☛
script_pubkey := [OP_DUP ; OP_HASH160 ; OP_PUSH <hash160 public−key> ;

OP_EQUALVERIFY ; OP_CHECKSIGVERIFY]

script_sig = [OP_PUSH <public−key> ; OP_PUSH <valid−sig>] ✠
Listing 2.1: Pay-2-Pub-Key-Hash script

For such scenarios SCRIPT, supports multi-signature checks [Gav11]: the input script
has to contain more than a single valid signature (bounded by their public key) to redeem
an output. Those outputs that include multi-signature checks are said to send coins to a
multi-sig address.

(1)

script_sig:
OP_PUSH <public−key>
OP_PUSH <sig>

public-key

signature

(2)

script_pubkey:
OP_DUP
OP_HASH160
OP_PUSH <hash pk>

hash pk

hash pk

public-key

signature

(3)

OP_EQUALVERIFY

public-key

signature

(4)

OP_CHECKSIGVERIFY

VALID

Figure 2.2: Stack evaluation of Pay-To-Pub-Key-Hash script on valid input script

As an example, Listing 2.1 shows the standard output script Pay-2-Pub-Key-Hash,
together with the associated input script, which specifies the hash of a public key belonging
to the receiver (OP_PUSH <hash160 publick−key>). The receiver has to provide the original
public key together with a valid signature in order to redeem the coins. Scripts evaluation
hashes the public key from the input scripts and compares it with the hash in the
output script before verifying the signature with said key. Other common scripts are
the Pay-2-Pub-Key script and payments to multi-sig addresses. The evaluation of
the scripts in Listing 2.1 is shown in Figure 2.2, divided into four phases: each phase
shows the script part that was executed and the resulting stack below. The opcode
OP_PUSH <data> pushes the defined bytestring on the stack, OP_DUP duplicates the top value
of the stack, OP_HASH160 removes the top of the stack hashes it and puts the result back
on the stack, OP_EQUALVERIFY removes the two topmost values and continues only if they
are equal and finally OP_CHECKSIGVERIFY pops a public key and a signature (relating to the
transaction [Joh16]) from the stack and verifies the signature given the key.
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2.2.3 Timelocks
Timelocks can be used to postpone the validity of transactions to a later point in time.
Bitcoin implements two timelock mechanisms to express absolute and relative timing
constraints. They are controlled by special fields inside the transaction definition and are
set during creation: each transaction has a field nLocktime and each input a separate
field nSequence [Mar15b]. Miners have to check both fields and identify if they mine
the transaction or reject it for now:

• Setting nLocktime to height h tells the miners to reject the transaction until the
blockchain contains at least h blocks (absolute timelock).

• In contrast, nSequence lets one specify the age of an output referenced by a
given input (relative timelock). When setting nSequence to height d, the
corresponding input is only valid once its referenced output is buried by at least d
blocks (i.e. the block containing that output has d confirmations).

It is also possible to use Unix-time instead of block height, but since it is rarely used, we
will omit this feature for the rest of this document.

The scripting language defines two opcodes for comparison of the timelock fields
within scripts: OP_CHECKLOCKTIMEVERIFY (CLTV) and OP_CHECKSEQUENCEVERIFY (CSV). Scripts
including either opcode impose timing conditions on redeeming transactions, such as
timeout periods (see Section 2.3). Both opcodes have been introduced through soft-
forks4 [Pet14, Mar15a] and replace NO_OP operations (which leaves the stack as it is)
such that Bitcoin clients running on an older version simply ignore the new commands.

During script evaluation, the interpreter has access to nLocktime and nSequence.
Both fields need to be set accordingly to satisfy the output script, otherwise, the evaluation
fails and the transaction is rejected. If they are set correctly and the evaluation is
successful, it is guaranteed by consensus that the timing constraints are met. Indeed, if
a (malicious) principal tries to consciously alter a timelock field (e.g., to skip timeout
periods) the script evaluation will fail when the timelocks are compared.

4A soft-fork is a way of adding features to the Bitcoin protocol while ensuring older versions still
function correctly.
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Transaction Headline

Input Output Signed By

0. Tx1 0. v coins to: Alice A˜lˇi`c´e
1. x coins to: Alice after t blocks

2. y coins to: Alice at height h

3. z coins to: Alice if M

Figure 2.3: Example transaction to show notation used in this section

2.3 The Lightning Network

The section introduces the off-chain PC implementation of the LN [PD16, LN 16], and
multi-hop payments with HTLCs in more detail, highlighting the aspects relevant to this
thesis. This section and the illustrations in it (regarding transaction formats) are inspired
by the lecture of [ND18] and the original white paper [PD16]. It is structured as follows:
First, we briefly introduce the idea of simple bidirectional Payment Channels and show
how transaction revocation is done through punishing dishonest principals. We then
move on to transaction formats, that represent immediate channel states. Afterwards,
we proceed to dive deeper into HTLCs and, finally, combine simple channels with HTLC
outputs to obtain more advanced networked channels with payment forwarding.

Within this section, simplified Bitcoin transactions are depicted to help understand
the concepts presented (see Section 2.2 for a description of Bitcoin transactions). For
simplification, we only consider four types of output conditions (defined by output scripts)
shown in the example transaction in Figure 2.3. The depicted transaction has only one
input Tx1 and four outputs that spend v, x, y, and z coins from the input transaction.
Furthermore, the transaction has been signed by Alice, meaning she agrees with its
contents. Output 0 can be redeemed with Alice’s signature right away. If more than
one signature is required (i.e., multi-sig address) we denote this with A + B, meaning a
valid signature of A and B is required. Output 1 can be redeemed with Alice’s signature
after this transaction received t confirmations (relative timelock). Output 2 can be
redeemed with Alice’s signature when the blockchain has reached an absolute height
of h blocks (absolute timelock). Output 3 can be redeemed with Alice’s signature
together with the value M . The logical combination of conditions is possible.
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2.3.1 Simple Payment Channels
Payment channels enable the exchange of several micro-transactions that happen off-chain,
avoiding to overload the blockchain. The visible footprint of a PC consists, ideally, of
only two blockchain entries, a funding and a closing transaction. The former establishes
a shared budget between two principles, Alice and Bob, and the latter distributes that
budget between them, according to their last state of consensus (see Figure 1.1).

To open a channel, at least one of them must transfer an initial amount of coins to a
multi-signature address, i.e., signatures from both participants are required to redeem the
shared coins. Now they can create commitment transactions (which are valid on-chain
transactions), referencing the funding transaction to change the current distribution of
coins. In other words, a commitment transaction defines a new channel state.
Since the funding transaction is controlled by both Alice and Bob, they both have to
agree on new states, by signing the commitments. Each party creates its own version of
a commitment transaction, signs it, and sends it to its peer to store it (e.g., on their own
storage device). Once the commitments are exchanged, payments are valid immediately
as either party can add the missing signature instantly and broadcast it to the network.
They can create and exchange as many commitment transactions as they want. When
they are done, only the last one is published on the blockchain. This closes the channel.

Transaction refunds. The creation of the funding transaction requires special care.
Once published the referenced coins cannot be retrieved unless both parties cooperate.
However, if one party acts maliciously, they may keep the coins locked by refusing to
sign additional commitments.
Therefore a refund transaction is established before signing the funding transaction.
This refund transaction will reimburse Alice and Bob with their shares of the initial
channel budget. It is important to note that the refund transaction references the funding
transaction, which is, at this point, unsigned and unpublished. Prior to SegWit [Eri15],
the signature affected the calculation of the TXID, hence it was not possible to generate
the TXID of unsigned transactions.
If the funding transaction is signed first, there is again no guarantee that both peers
cooperatively proceed to create the refund afterwards.

Transaction revocation. Every commitment transaction of an open channel is valid
and can be broadcast anytime. Hence, a malicious node may choose to publish an
outdated, but financially more favorable, transaction, which will eventually be accepted
in the ledger.

It is important to note that published transactions can not be undone once they have
been confirmed and entered into the blockchain, i.e., it is not possible to remove them.
The revocation mechanism, therefore, involves an additional transaction, undoing the
effects (movement of coins) of wrongfully entered ones. To make the revocation possible,
whenever new commitment transactions are created, old ones are invalidated, by having
Alice and Bob exchange private Revocation Keys [ND18, LN 24]. In the following, we

23



2. Background

Commitment Tx (created by Alice)

Input Output Signed By

0. Funding Tx 0. x coins to: Alice A˜lˇi`c´e

1. v coins to:
Bob after t blocks∨
Alice + rk_bob

Figure 2.4: PC Commitment Transaction created by Alice

denote the Revocation Keys created by Alice and Bob, with rk_alice and rk_bob
respectively. The keys are used to unlock a special output of the commitment transaction,
that allows one peer to acquire all coins, locked in the funding transactions, in case their
dishonest counterpart tries to close the channel with an invalidated commitment. They
can spend the output by proving they are in possession of the corresponding private key,
i.e., presenting a valid signature (as part of script_sig). A transaction transferring
coins from that “punishment output” is often called a Breach Remedy Transaction (BRT)
and is meant to punish dishonest behavior. This punishment acts as deterrence to render
the attack unprofitable.

We want to emphasize an important point: the keys must initially be secret, but they
can be made public when creating further commitments. Since Alice and Bob can not
be sure that their counterparty deleted old transactions, the exchange of rk_alice and
rk_bob acts as insurance for both to not get defrauded in the future.

Commitment Transaction Formats

The format of the commitment transactions created by Alice is shown in Figure 2.4.
The transaction is partially signed by Alice and defines a new state, granting x coins
to Alice and v coins to Bob, with x + v being the total amount of their shared budget.
There is only one input, the funding transaction, and two outputs. Output 0 guarantees
x coins to Alice right away (bounded to her signature). Output 1 has a condition,
which says that v coins go to

(1) Bob if more than t blocks are added after the block holding this transaction
(relative timelock) or

(2) immediately to Alice if she knows rk_bob (presenting her signature and one
using rk_bob).

Alice now hands over this partially signed transaction to Bob, who could add his
signature and publish it, thereby closing the channel, or hold onto it indefinitely.
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Commitment Tx (created by Bob)

Input Output Signed By

0. Funding Tx 0. x coins to:
Alice after t blocks∨
Bob + rk_alice

B`o˝b

1. v coins to: Bob

Figure 2.5: PC Commitment Transaction created by Bob

Since Alice already signed the transaction, Bob could wait and publish it at a
later point in time, even if the state in this commitment is outdated. In such a case
the condition of output 1 acts as a safeguard to Alice. If she is in possession of
rk_bob, she can claim all the coins in the funding transaction (thereby punishing Bob).
Ideally Alice knows rk_bob, as they should have exchanged their private keys for old
commitments a priori. Still, Alice has to monitor the blockchain, in order to act quickly
enough before Bob’s timelock expires.
Output 0 specifies the funds reserved for the counterpart, in this case Alice. There is
no condition to this output, as by broadcasting, Bob agrees to grant x coins to Alice.

Bob’s commitment transaction is shown in Figure 2.5. It has a similar structure to
Alice’s, but now punishing Alice. output 0 requires her to wait for t blocks to redeem
her x coins. If the state is old, and Bob knows rk_alice, he can claim this output
before Alice’s timelock expires. Bob can claim his v coins right away, via output 1.

2.3.2 Multi-Hop Payment Channels

The creation of PCs is only practical if multiple micro-transactions will take place.
Otherwise, the overhead of opening and closing a channel is too large. This, however,
implies that one-time transactions still have to be carried out over the blockchain, despite
limited transaction throughput. Forming a channel between every peer on the network is
also not desirable, making PCs alone, not a scalable solution.

Having to open new channels for one-time payments is not very economical: at least
two transactions have to be published, and besides the confirmation waiting time, fees to
mining nodes incur. The economic aspect is even worse for small payments.
Instead of opening new channels, it would be far more efficient to utilize existing ones.
With multi-hop (or networked) channels, transactions can be forwarded, through multiple
intermediate nodes, required one can find a route of actively open channels (i.e., each
node on the route is responsive). The forwarding is done by adding a new output type
to the already existing commitment transactions, namely a Hashed Timelock Contract.
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Hashed Timelock Contract

An HTLC is a regular output script, with a special definition [LN 24, Sea17, PD16]. It
is not tight to use for PCs only but can be included in any transaction output if desired.
One can see it as a contract between two parties Alice and Bob, according to the
following conditions:

(1) Bob gets coins from Alice if he knows the preimage R of some hash H(R) specified
by Alice, or

(2) Alice is able to refund the coins at a specific time point (absolute timelock).

To fulfill the contract Alice requires a proof-of-knowledge by Bob, otherwise if Bob is
not able to present the preimage until the set deadline, Alice gets her coins back.

We can write down an HTLC in the form of a constructor

htlc(A,B,y,h,H(R)),

where principal A pays y coins to principle B, if B learns R before the blockchain reaches
height h.
Note that HTLCs can be used to create conditional payments. In Figure 2.4 output 1
guarantees v coins to Bob, as long as this commitment stays valid. From Alice point
of view, these v coins are gone for now, and can not be taken back. An HTLC output,
on the other hand, places a condition on Bob’s side, to deliver a special value, before he
gets paid. In this case Alice can revoke the payment, if Bob does not succeed.

Multi-Hop Payments

As already mentioned before, multi-hop payments utilize existing PCs to forward payments
through a network of channels. However, if Alice sends coins to Bob and asks him
to forward the coins to Carol, via an existing channel, there is a likelihood he simply
keeps the coins to himself. This is because simple channels lack the ability to put any
obligations on channel participants on how to spend their funded budget. To make sure
Alice does not lose coins to Bob, in the case he does not comply, Alice could set up a
contract, more specifically an HTLC.

The contract promises Bob he will be reimbursed by Alice if he can prove he sent
the agreed amount of coins to Carol, otherwise Alice will not pay him. As an incentive
for Bob to cooperate Alice may choose to give him a fee for his service. The proof is
a secret value, only known to Carol, but verifiable by Alice (i.e., the preimage of a
hash). When Bob pays Carol, she reveals the secret to him.

This payment process is illustrated in Figure 2.6, assuming PCs between Alice and
Bob, as well as Bob and Carol exist. Solid lines refer to the creation of HTLCs with
the given parameters, whereas the arrow starts at the peer, who initiated the contract,
while dashed lines represent communication outside of any channel. The figure shows the
5 steps to establish and settle the forwarded payment (Alice giving y coins to Carol):
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Figure 2.6: Successful Multi-Hop payment with HTLCs

1. Carol generates a fresh secret R and shares the hash H(R) with Alice

2. Alice creates an HTLC between her and Bob over H(R) with deadline hA

3. Bob creates an HTLC between him and Carol over H(R) with deadline hB

4. Carol settles the contract by redeeming y coins from Bob and disclosing R to
him

5. Bob settles the contract by redeeming y coins from Alice and disclosing R to
her as proof he complied to the contract

It is important that Bob sets hB < hA, otherwise Carol and Alice can close the
channels at the same time (when hA runs out), stealing coins from Bob. Also, note that
multi-hop payments can be conducted with an arbitrary number of intermediate hops.

To support multi-hop payments via simple Payment Channels, the new HTLC output
is appended to the original commitment transactions. Note, that the HTLC is not
present all the time, it is only added when needed. Figure 2.7 shows Alice’s updated
commitment transaction with payment forwarding. Output 2 is the so-called HTLC-
output, setting up the contract between Alice and Bob. Output 0 and 1 define the
current state of funds distributed between Alice and Bob, whereas Alice gets y coins
less than in the previous state. Output 2 states that Bob can spend those y coins if he
knows the hash preimage R, or Alice can claim them back, once the timelock expires
(i.e., the blockchain reached absolute block height h).
Figure 2.8 shows Bob’s new commitment transaction containing the HTLC-output. The
output is similar to Alice’s, if Bob wants to take the y coins he can only do so if he
knows R, and Alice can revoke the payment after height h.
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Commitment Tx with HTLC (created by Alice)

Input Output Signed By

0. Funding Tx 0. x − y coins to: Alice A˜lˇi`c´e

1. v coins to:
Bob after t blocks∨
Alice + rk_bob

2. y coins to:
Bob if preimage of H(R)∨

Alice at height h

Figure 2.7: Commitment Transaction with HTLC output created by Alice

Commitment Tx with HTLC (created by Bob)

Input Output Signed By

0. Funding Tx 0. x − y coins to:
Alice after t blocks∨
Bob + rk_alice

B`o˝b

1. v coins to: Bob

2. y coins to:
Bob if preimage of H(R)∨

Alice at height h

Figure 2.8: Commitment Transaction with HTLC output created by Bob

The HTLC output (e.g., Figure 2.7 output 2) uses absolute timelocks since the timeout
should expire regardless of the transaction being broadcasted or not. In contrast, the
revocable output (e.g., Figure 2.7 output 1) has a relative timelock to give honest peers
enough time to react after the transaction has been maliciously published (independent
of the time the transaction enters the blockchain).
HTLC payments are done within two rounds of communication: (1) new commitment
transactions containing the HTLC-output are created, and then (2) debts are settled by
either presenting R or issuing a refund after the timelock.

Note that revocation of HTLC outputs requires several pre-signed transactions,
exchanged by Alice and Bob, which have not been discussed here (e.g., HTLC-Timeout
and HTLC-Success transactions). The idea is similar to “standard” revocable outputs,
which means having separate signature keys for every possible execution branch. For
more details, we refer the reader to [PD16] and [LN 24].
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Closing a Multi-Hop Channel

In a best-case scenario, honest and responsive peers can handle many steps without
having to rely on commitment transactions. For example, when Carol is revealing R
to Bob, they may agree to clear the HTLC-output from their channel (since obviously
Carol can take her coins if the current commitment transaction of their channel is
published) and create a commitment with a new balance, guaranteeing her the received
coins. If Bob is not responding, Carol has to publish the transaction containing the
HTLC, so, she can take her coins before Bob chooses to refund them (after the timeout).
This, however, closes the channel.

In total a multi-hop channel can be closed in three different ways5:

• Mutual Close: If both parties act honestly and cooperate they can choose, to erase
all unnecessary conditions from their last commitment transaction and create a new
clean transaction, that simply sends coins of the funding budget to both parties,
according to their last state.
At least two transactions are added to the blockchain: Funding Transactions and a
freshly created Closing Transaction.

• Revoked Transaction Close: An invalid commitment transaction gets published and
is revoked afterwards, punishing the broadcasting node.
At least three transactions are added to the blockchain: Funding Transactions,
Invalid Commitment Transaction and Breach Remedy Transaction.

• Unilateral Close: One party could simply publish the last valid commitment trans-
action, containing all three conditional outputs. They might choose so if their peer
does not respond or does not adhere to the protocol. Closing the channel this
way limits the short-time liquidity of the publishing node (usually the one acting
honestly), as a certain amount of time has to pass before an output is spendable.
At least two transactions are added to the blockchain: Funding Transactions and
the last valid Commitment Transaction.

Attacks on Multi-Hop Payments

The preimage R can be disclosed in two ways:

1. Both parties are cooperative and clear the HTLC-output by agreeing on a new
state. In this case, R can be sent directly to the counterpart via a secure channel.

2. R is revealed via the blockchain embedded in the redeeming script (script_sig),
by spending the HTLC-output.

5https://github.com/lightning/bolts/blob/master/05-onchain.md, accessed 27-April-2024
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Alice Eve Bob Eve Carol

htlc(H(R)) htlc(H(R)) htlc(H(R)) htlc(H(R))

R

R

R

Figure 2.9: Simplified illustration of information leakage of Multi-Hop payments with
HTLCs

In both cases, a malicious peer might get access to R, either directly by participating
as a hop during payment forwarding or indirectly whilst monitoring the blockchain for
spending of HTLC-output transactions (see the discussion on LN privacy in Section 1.1).
Hence, one might want to treat R as a public value, once it has been revealed.
LN payment channels reuse the same preimage on every HTLC on the payment route,
thereby compromising Atomicity requirements of the locking mechanism. Execution of
the Wormhole attack [MMSS+19] on the LN takes advantage of the intended leakage
of R, by bypassing intermediate hops along a payment route. The attack incorporates
forwarding of the learned preimage by principle A to a cooperating hop B, closer to the
sender of the payment. Thereby, A and B can collect payment fees, intended for nodes
that lie between them on the route.

Figure 2.9 shows a simplified instance of the attack presented in [MMSS+19] (timelocks,
coins, etc. were omitted for clarity). It instantiates a multi-hop payment from Alice
to Carol that goes through Bob and twice through the attacker (Eve). To settle the
payment, the recipient (Carol) sends R back the path to Eve. Then, Eve sends the
preimage directly to Alice instead of Bob. From Bob’s point of view, the payment has
been unsuccessful. So he has to wait for the end of the HTLC’s timeout for the channels
on both sides to revert to their original state, losing the fees he was promised along the
way.

Technically speaking, no financial harm is caused in this process. From the perspective
of the sender, receiver, and non-bypassed intermediate nodes, the payment has been
successful. Bypassed nodes perceive the payment to have failed and simply refund their
stake. Balance Security [MMSK+17] still holds, as no participant of the payment path,
other than the sender, effectively loses coins (not considering the loss in service fees).
However, ideally, there should be an overall consensus on the payment outcome along
the path, referred to as Atomicity [MMSK+17].

In addition to stealing service fees, Eve can deduce information about participating
peers. Since every HTLC along the path is locked with the same hash H(R), Eve knows
that Alice, Bob, and Carol are participating in the same payment. Using different
hashes for each lock (involving higher communication effort), or replacing the HTLCs in
favor of AMHLs.
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CHAPTER 3
Type System of DY⋆

This chapter aims to provide the reader with a deeper dive into how DY⋆ works and how
it is used to provide meaningful security guarantees. It highlights the most important
parts of the verification procedure, without going too deep into implementation details
(refer to [BBD+21b, BBD+21a] for an extensive introduction), but accurately enough to
understand where and why changes were made throughout this thesis.
DY⋆ (“Doley-Yao-Star”) is a framework to symbolically verify cryptographic protocols
in the presence of a Dolev-Yao Attacker [DY83]. Such an attacker is able to intercept,
modify and forward any message sent over the network, and apply any function to terms
it has knowledge of. Hence, the attacker can interact with principals based on publicly
available data. Additionally, in DY⋆ the attacker can compromise protocol sessions of
principals and thereby recover private information.

This chapter is structured in the following way: First, we introduce the concept
of global trace and see how the underlying labeling system is constructed. Afterwards,
we define what a valid trace is, providing a quick overview of F⋆’s effect system and
explaining how it is used throughout DY⋆ for labeled trace operations. Then we provide
an introduction to DY⋆’s trace-based reasoning in the form of witnessed predicates.
Finally, we present the implementation and first results of a labeling extension for
dynamic leakage of secret data: the releasable label.

Throughout the sections, code snippets and type definitions, written in F⋆ syntax, are
shown or placed side-by-side with textual information to link theory and implementation.
Note that those examples are taken from the implementation code of DY⋆1 but may have
been adjusted and simplified to explain the concepts.
F⋆ features type refinements over any type t, written as type t’ = x:t{phi}, where phi is
some proposition, restricting possible values of x. The refinement creates a subtyping
relation t’ <: t, requiring phi to hold, whenever an element of type t’ is expected,

1https://github.com/REPROSEC/dolev-yao-star, accessed 30-April-2024
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☛

1 type entry_t =
2 | RandGen: b:bytes → l:label → u:usage → entry_t
3 | SetState: principal → v:version_vec → new_state:state_vec → entry_t
4 | Corrupt: corrupted_principal:principal → session:N → version:N → entry_t
5 | Event: sender:principal → event → entry_t
6 | Message: sender:principal → receiver:principal → message:bytes → entry_t ✠

Listing 3.1: The type entry_t of global trace entries

otherwise verification will not succeed.
Type refinements are a form of intrinsic proofs in F⋆ which abidance is automatically
checked during verification. Extrinsic proofs, on the other hand, are explicitly stated
as a Lemma, which can be recalled to “remind” F⋆ of a fact that has already been proven.
For a more detailed description of F⋆ syntax and typing capabilities, we refer the reader
to the online tutorial [Nik24].

3.1 Global Trace
The global trace logs all the operations that occur during a single protocol execution.
In principle, it represents a timely-ordered list of each step performed by all principals
involved. It introduces a notion of time by giving each entry in the trace a unique
timestamp, representing its index in the trace (type timestamp = N). By using F⋆’s proof
machinery together with z3, queries about trace (or safety) properties can be conducted.
In Section 3.5, we explain details about DY⋆’s trace-based reasoning.

The trace is defined as a list of trace entries, which includes, in the original framework,
five different protocol operations. The corresponding type entry_t is shown in Listing 3.1.
The definition contains entries referring to the generation of fresh random secrets (Line 2:
RandGen), updates of principals state (Line 3: SetState), the triggering of protocol-specific
events (Line 5: Event), and the transmission of messages (Line 6: Message). Additionally,
the trace can contain entries to denote the corruption of one principal’s sessions (Line 4:
Corrupt) and the leakage of the associated data.

Figure 3.1 illustrates how the state evolves from a starting trace t0 to t1 after a
protocol-specific event A is triggered. The figure depicts, in a simplified way, the latest
entries of both traces. Trace indexing starts at timestamp 0, hence the length of t0 is t.
We say that the current time of a trace equals the trace length, hence t0 is currently at
time t. The new protocol step always happens at the next available timestamp; therefore,
when event A occurs, it gets triggered at time t, corresponding to the insertion index.
The execution of the event trigger causes the trace to evolve from t0 into t1, and since
all the entries up to t − 1 are equal, we have that

t1 = (Event A)::t0.
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Figure 3.1: Evolution of the global trace after triggering an event

The attacker can call all functions available but is restricted to using only data
derived from its current knowledge by applying primitive functions to public data (i.e.,
literals or data sent over the network). The attacker can split tuples of values, reduce
them with known functions, and obtain new keys from a given context. Public data
is made available to the attacker when sent over the network. (e.g., each trace entry
of the form Message:sender:principal → receiver:principal → message:bytes contributes to
the attacker’s knowledge.)

The global trace definition allows verification against all possible protocol executions
still, the trace is never explicitly built. DY⋆ interprets the trace as a logical construct,
which adheres to certain invariants. Standard invariants, like secrecy of private values,
are enforced by the framework, while protocol-specific rules are defined by the user and
are written down as trace invariants and usage predicates (more information can be
found in Section 3.3).
Functions that alter the trace are verified to adhere to the specified rules, from which
properties can be concluded. This technique demands some effort when designing
and proving postconditions of lemmas, but eases type-checking in the long run. Also,
properties have to be proven only once and can be used later on, without additional
compiler effort.

Most of the benefits of using DY⋆ come from its API, which abstracts away the trace
from the protocol designer while helping F⋆ to prove that the trace invariants are indeed
upheld. The API includes functions for

• creating new and recalling old session states,

• sending and receiving messages on the network,

• generating random data (nonce),

• retrieving public and private key material,
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• triggering events (to ensure authentication and restrict protocol flow), and

• all sorts of cryptographic operations, such as encryption signatures and hashes.

Writing protocol code can be done entirely using API calls, thus handling the trace
directly is not necessary.

3.2 Labeling System and Can Flow Relation
Similar to other security type systems (e.g., [FM11, BHM14]), DY⋆ defines labels to
annotate objects and restrict the data flow, using the type label. The subtyping relation
of labels is defined through a lattice given the can_flow predicate2:

val can_flow:(ts:timestamp)→ (l1:label)→ (l2:label)→ Type0

The relation takes a timestamp and two labels and returns a proposition stating whether
l1 can be subtyped as l2 at timestamp ts. In DY⋆, labeling is static, meaning that once
the label of an object is set, it cannot be changed at a later timepoint. An exception
to this rule is the state-compromising feature of the attacker, allowing secrets to be
type-checked as public values if the state is compromised, thus changing their behavior.

Secret values are typed with the label val readers (list id):label, denoting that only
principals whose identifier is in the list of possible readers are allowed to access the value.
The top element of the labeling lattice is the type let private_label:label = readers [ ],
referring to data that can not be read by any principal (i.e., an empty list of readers).
Every label can flow to the top element, as restricting the number of possible readers is
always safe. The bottom element, instead, is val public:label, indicating a value that can
be read by everybody. This label is given to types that can be safely sent over the network
or that belong to a compromised principal’s state. The lattice is completed by the labels
val join:(l1:label)→ (l2:label)→ label and val meet:(l1:label)→ (l2:label)→ label, which
represent the union and intersection of labels respectively.

Nonces (i.e., random numbers) can be given arbitrary labels, while constants (repre-
sented by string, integers, or bitstrings) are always public. The meet and join operations
let us assign labels to composite terms such as tuples, enums and cryptography-related
objects.

Most of DY⋆’s modules don’t have access to can_flow’s implementation for verification
(for modularity reasons, F⋆ restricts access to one module’s implementation), but they
instead rely on a set of lemmas that captures the relation’s behavior. The properties of
can_flow can be split into two categories:

2Note that Type0 is used to encode propositions that are not decidable (e.g., function equivalence)
and have to be proven using the SMT solver. In contrast, bool defines solely decidable equality.
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public

join(l1,l2)

l1 l2

meet(l1,l2)

private_label

Legend:

• l l’ denotes can_flow p i l l’ (assuming a reflexive and transitive graph).

• l l’ indicates the effective new label of l after corruption.

Figure 3.2: Lattice order of can-flow-relation with corruption

• Temporal Relations:
Defines how labels behave, depending on the current timestamp. For example:
can_flow_later t1 t2 l1 l2, to ensure once a label l1 can flow to l2 at t1 it can also
flow at a later timestamp t2.

• Label Flow:
This includes the general flow of labels according to their definition, as well as
proofs of reflexivity and transitivity.

Given those properties, can_flow forms a preorder over the set of labels. DY⋆’s dynamic
corruption system (as explained in Section 3.1) can eliminate the static specification and
can cause any label at any timestamp to flow to any other label. Once the attacker learns
a secret, it is not safe anymore to type it as private: instead, it has to be treated as public
and the rest of the protocol implementation has to take the possibility into account. Thus
can_flow is not a total order, or even an order at all, as shown in Example 3.2.1.

Example 3.2.1 (can_flow is not a total order) Note that it is not total: for exam-
ple, the two labels readers [P a] and readers [P b] of two different principals a and b can
not be ordered (i.e., one is not a subtype of the other).

It is not an order either: for instance, once ids contains a corrupted agent, readers ids
flows to public and vice versa; hence the lack of anti-symmetry.

In Figure 3.2 the simplest lattice ordering for two non-comparable labels l1 and l2
is shown, which illustrate the position of meet and join. The black arrows define the
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☛

1 val pke_enc: #i:timestamp → #nl:label → public_key:msg i public →
2 nonce:msg i nl → message:msg i (get_sk_label public_key){
3 can_flow i (get_label message) nl ∧
4 can_pke_encrypt i public_key message} →
5 msg i public ✠

Listing 3.2: Simplified signature of the public-key encryption function pke_enc

direction in which labels can flow, while the red arrows indicate the corruption of labels.
Each label can at any point in time flow to public, once any of its principals has been
corrupted (thus reverting the original label flow). The meet of two labels is semantically
comparable to the intersection of both reader lists, hence it restricts access. In contrast,
join grants access to any of its two label arguments.
The figure, of course, does not cover all cases possible with two labels, as there are infinite
options. With each set of two labels, we can create a new one using meet or join, which
can be used to create yet further labels, and so on. Even if the label meet (meet(l1,l2),l1)
is semantically not different from meet(l1,l2), syntactically they are not the same. DY⋆
does not actually compute meet and join into a set of eligible readers, but instead defines
their semantics through can_flow.

To demonstrate how can_flow is used to define typing relations (as known from formal
type system definitions) and to enforce security guarantees like secrecy, we take a look
at the (simplified) declaration of public key encryption pke_enc, shown in Listing 3.2.
The type msg i l is given to values whose label can flow to label l at time i (i.e. can be
typed with label l at i). The encryption function takes as argument a public key of type
msg i public (hence it can be typed public), a nonce of type msg i nl, and the message
to be encrypted. Public values are considered publishable, and hence it is ensured that
public keys can be sent over the network and shared with other principals (including the
attacker).
The type of the message is a bit more interesting: it is also of type msg p i l, but (1) l
is expected to equal the label of the corresponding secret key of the given public key
(get_sk_label public_key), thereby making sure the principal in possession of the secret
key is eligible to read the encrypted message and (2) the type is given a refinement,
written inside the curly braces (Line 3 and Line 4). The defined refinement enforces
restrictions over the message to be encrypted: the label of message (and hence also the
label of the secret key) has to be a supertype of the nonce-label nl (Line 3) and the public
key is eligible to encrypt the message at i (Line 4), verified using the usage-predicate
can_pke_encrypt (see Section 3.3). Overall, this refinement guarantees that public key
encryption is performed only with valid keys and messages can be safely typed on the
receiving side.

If the message consists of several values gathered into a tuple its label is given by
the meet of all individual item labels (which requires nesting meet definitions if the tuple
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☛
val send: (#i:timestamp) → (sender:principal) → (receiver:principal) →

(message:msg i public) → ... ✠
Listing 3.3: Signature of send function with label information on message

☛
1 let valid_trace (tr:trace) =
2 (∀ (i:timestamp) (t:bytes) (s:principal) (r:principal).
3 i < trace_len tr �⇒
4 (was_message_sent_at i s r t �⇒ (is_publishable i t)))
5 ∧ (∀ (i:timestamp) (p:principal) (v:version_vec) (s:state_vec).
6 i < trace_len tr �⇒
7 (state_was_set_at i p v s �⇒ (state_inv pr i p v s)))
8 ∧ (∀ (i:timestamp) (s:principal) (e:event). i < trace_len tr �⇒
9 (did_event_occur_at i s e �⇒ (event_pred_at pr i s e))) ✠

Listing 3.4: Definition of a valid trace

includes more than two values). As meet creates the semantic intersection of all labels,
secrecy is given by the label lattice by restricting access to the tuple only to the readers
in common.

To send an object with label l at timestamp i over the network, it has to be
“publishable”, meaning that can_flow i l public holds. In this context, publishable means
that the message is allowed to be known by anyone (especially by the attacker, who can
intercept any message sent). The signature of the send function, shown in Listing 3.3,
only takes messages as input that can be typed public, i.e. have type msg p i public. The
encryption function returns exactly the type needed, allowing to safely send secret data
over the network, provided it is encrypted.

3.3 Valid Trace
DY⋆ enforces security properties via a typed protocol implementation style and verification
of a set of trace invariants, including general statements (valid for any secure protocol)
and protocol-specific invariants (only applying to a concrete implementation). A trace
adhering to this specification is considered valid, and valid traces are identified by the
valid_trace property of Listing 3.4. In the base implementation of DY⋆, we can identify
invariants for three parts of the protocol: (1) Secrecy, (2) Sessions, and (3) Events
Verification is performed by requiring a valid trace throughout each step of the protocol.

The first one, Secrecy, is a general invariant, that applies to all secure protocols. It is
defined in Line 2 of the valid_trace predicate (Listing 3.4) and ensures that messages that
have been sent at time i were publishable at that time. The clauses in Line 5 and Line 8
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☛

type usage_preds = {
can_sign: timestamp → timestamp → key:bytes → msg:bytes → Type0;
can_pke_encrypt:timestamp → timestamp → pub_key:bytes → msg:bytes → Type0;
...

} ✠
Listing 3.5: Type of usage-predicates

take protocol-specific session state and event invariants into account and are specified by
the user, called state_inv and event_pred_at. This enables reasoning over the protocol flow
of execution. At the beginning of each protocol implementation, a set of reachable session
states is declared, as well as a set of events, which are relevant to meet security goals
(e.g., authentication). Then the trace invariants session_st_inv and can_trigger_event are
defined over the set of available states and events: the former controls when and by whom
a certain state can be reached, and the latter when events can be triggered (examples:
another event occurred before - a nonce, that is included in the event, has been generated
before - a specific session state has been reached).

In addition to trace invariants, usage predicates, defined in Listing 3.5, enable fine-
grained control over the intended use of cryptographic material, like signatures (can_sign)
and public key encryption (can_pke_encrpyt). A valid trace ensures that the respective
usage predicate holds upon message encryption or signing (see example of public key
encryption in Section 3.2). By making honest principals adhere to those predicates, one
can recall them when doing the composite action. For example, if honest principal A
signs a message and sends it to principal B, B can be sure that can_sign was satisfied by A.
This allows one to infer judgments on the receiving side.

3.4 The CRPYTO and LCRYPTO Effects
Effects in F⋆. Effects define computations that differ from pure total functions, like
mutable state or divergence. F⋆ supports a rich system of computational effects, defined
via a monadic representation with weakest-predcondition-transformers (WPT). The basis
of effect theory and a formal definition of WPTs can be found in [SCL13, SHK+16,
AHM+19]. A WPT is a function of the form wpt: post → pre that takes as input a
postcondition and returns the weakest precondition needed to satisfy the postcondition.
As effects are represented by monads, one needs to define combinators for computations
(e.g., bind, if-then-else, return), as well as their WPT, that define the workings of the
effect. F⋆ uses those combinators to generate the necessary verification conditions (VC)
to be discharged by z3.
The core of F⋆ is a pure functional programming language, where each function is
guaranteed to terminate. These functions are part of the PURE effect. F⋆ predefines
multiple effects on top of it to introduce side effects (the Tot effect, used by default) or
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non-terminating functions (the Div effect) and much more. Those effects are layered out
in a lattice restricting when to call one from the other (e.g., one can call a PURE function
from a Tot one, but not the other way around).

A function is defined by its effect type together with a return type (the result of
computation) and a WPT. As writing down specifications using WPT can be difficult and
hard to read, it is also possible to create sub-effects that take a pre- and a postcondition
instead (similar to Hoare annotations). During type-checking, F⋆ verifies that the
implementation of the function matches its effect and proves its annotations. A strength
of type systems is that this verification needs only to be done once. Afterwards, the
concrete implementation is hidden behind its effect properties and never looked at again.
Many side effects (e.g., error handling, divergence, mutable-state) are transparent to the
end user due to the monadic definition.

DY⋆ defines two effect types called CRYPTO and LCRYPTO, whereas the latter is a refine-
ment of the former. Both define mutable-state computations over the global trace defined
in Section 3.1. All trace-interacting API functions and protocol implementations are
defined over one of those two effects. The following two paragraphs introduce the two
layers of DY⋆, the unlabeled and labeled layer, and explain their relation to the effect
definitions.

Unlabeled Layer and CRPYTO. The unlabeled layer is the lower layer of DY⋆ and
sets up the interaction with the trace and the attacker (e.g., through sending messages
and state compromise). For trace interaction, this layer defines the effect CRYPTO and its
Hoare-style alias Crypto as a mutable-state monad, including error handling. This means
computations in this effect can access the trace, analyze its entries, and append new
ones to it. This layer includes symbolic and concrete implementations of cryptographic
operations and it is possible to verify protocols in this layer to check for guarantees
with respect to the attacker. However, there are no validations of secrecy labels or trace
validity.

Labeled Layer and LCRPYTO. Built on top of the unlabeled layer is the labeled
one. It maintains the same guarantees as the former by relying on its API but enhances
the verification process with a security type system. This layer enforces the annotation of
objects with information about their security level, through type refinements in function
signatures (see signatures of public key encryption Listing 3.2 and send Listing 3.3),
and relies on the can_flow predicate, as subtype relation between labels (presented in
Section 3.2). Protocol designers need to correctly identify labels of generated objects,
use the labeled API functions to access the trace and perform cryptographic operations
with their labeled counterparts.
This layer defines the effect LCRYPTO (and its Hoare-style abbreviation LCrypto), as a
refinement of CRYPTO. The new effect preserves the valid_trace property as part of its pre-
and postcondition annotations, hence labeled trace computations ensure that
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3. Type System of DY⋆
if the initial trace t0 is valid, then calling the function leads to a new valid trace t1,

thereby implicitly verifying trace-invariants, as they are part of the valid_trace definition
(Listing 3.4). As a valid trace alone does not cover the validity of usage-predicates, it is
necessary to use labeled versions of cryptographic operations to verify them.

Verification of protocols at this layer is done by implementing them as functions
of type LCrypto. The protocol is defined as a series of computational steps altering the
trace (e.g., effectful API functions), from which VCs are generated, based on pre- and
postcondition annotations. If the VCs are valid, the series of computation steps (aka the
protocol implementation) is correct with respect to the provided function specification. By
defining trace invariants and usage predicates, protocols-specific properties are captured.

3.5 Witnesses and stable Predicates
The global trace allows to reason over trace-based or safety properties. As the trace tracks
each protocol step, the existence of specific operations and the time of their execution are
of main interest and let one reason about the protocol flow. For example, authentication
properties usually check that prior to reaching an authenticated state an associated
event has been triggered before (e.g., if both principals are not compromised then event E
happened before event E’.). It is possible to transform certain trace predicates into proven
facts upon their validation, given that they hold in all succeeding states, to simplify
verification and avoid a trace variable from being passed around. Thereby, it is possible
to decouple the predicate from the trace and use it to do extrinsic proofs in the form of
standalone lemmas in a concise way.
DY⋆ defines a predicate to query if a specific trace entry e has been added at time i:

let trace_entry_at (i:timestamp)(e:entry_t):Type0= witnessed (trace_entry_at_pred i e)

Its definition introduces a logical construction witnessed (built into F⋆) that turns a
trace-dependent predicate into a trace-independent one (see also [AFH+17]). Note that
trace_entry_at i e is a proposition of type Type0 and does not take a trace as an argument.
Its semantics is encoded into the predicate trace_entry_at_pred i e of type trace_pred (see
Listing 3.6 Line 1), which receives a trace and, therefore, can verify if the entry at index
i is indeed e.

The transformation of the predicate is implemented using so-called witnesses over
stable predicates of monotonic states, whose underlying logic has been formally defined
and proven sound by Ahman et al. [AFH+17]. They identify a state definition to be
monotonic if it grows from some state s to s’ with respect to a preorder relation ⪯, i.e.:

∀s→∗ s′ �⇒ s ⪯ s′ (3.1)

where s →∗ s′ is true if s′ is a successor state of s. If such an order exists, a stable
predicate can be defined as follows:
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☛
1 type trace_pred = trace → Type0

2

3 val witness (pred:trace_pred) : CRYPTO unit
4 (λ post s → pred s ∧ stable pred ∧ (witnessed pred �⇒ post (Success ()) s))
5 let witness pred = assume(witnessed pred) ✠

Listing 3.6: Definition of the witness predicate for trace reasoning

Definition (Stable Predicates) Let ⪯ be a preorder relation defined over a monotoni-
cally growing state space S then a predicate p is stable if it is valid in any successor state
s’ given it has been witnessed before in a predecessor state s:

∀s,s’:(p s) ∧ s ⪯ s′ �⇒ p s’.

As the global trace is an append-only list, we use the prefix partial order (written ≤).
The predicate stating that an entry e exists at an index i of the trace can be proven to be
stable over ≤. That is, if an entry e is added at some position i to the trace, it will never
disappear from that position as the trace continues to grow (or simply: “Once something
happened, it happened”). In practice, we call a function witness, shown in (Listing 3.6),
to propagate the validity of a stable predicate. It is defined over the CRYPTO effect and
hence can analyze the trace (see Section 3.4 for details on effects). If its argument pred
of type trace → Type0 (Line 1) can be proven stable over ≤ and valid in the current state
s, then by the definition of Stable Predicates it is safe to assume it will stay valid.
The fact that the predicate has been witnessed in a prior state is conveyed through the
logical construction witnessed pred that is independent of the trace. The proposition
witnessed pred is brought into the SMT solver’s context as a proven fact, through the
assume statement. By the soundness proof given in [AFH+17] this operation is safe to do
and the witness can be recalled in a later state s’ to extract a proof of pred s’.
To prove the predicate trace_entry_at i e, for arbitrary i and e, F⋆ actually checks if
there exists a proof of witnessed (trace_entry_at_pred i e), or in other words if it has been
witnessed before.

This reasoning is sound but not complete: for instance, one can only prove the
validity of a given witness proposition but can not make any judgments when there is no
witness. The DY⋆ framework asserts witnesses during user API calls of the unlabeled
layer (therefore also by the labeled layer). In the unlabeled layer, the trace is accessed and
analyzed. If a trace predicate is seen to be true, it is witnessed and its trace-independent
version is made visible in the postcondition of the API call.

As an example, we take a look at how triggering an event causes the witnessed
predicate to propagate, given the definition of trigger_event in Listing 3.7. The function
takes as input the identifier p of the principal triggering the event and the specific event
ev to trigger (see interface in Line 2). It is a function of the Crypto effect, annotated
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☛

1 (∗ interface ∗)
2 val trigger_event (p: principal) (ev: event): Crypto unit
3 (requires (λ t0 → True))
4 (ensures (λ t0 r t1 →
5 match r with
6 | Error _ → t0 == t1
7 | Success _ → trace_len t1 = trace_len t0 + 1 ∧
8 did_event_occur_at (trace_len t0) p ev))
9

10 (∗ implementation ∗)
11 let trigger_event p ev =
12 let t0 = c_get () in (∗ get current trace ∗)
13 write_at_end (Event p ev); (∗ append event entry ∗)
14 let trace_predicate = (∗ constructing predicate ∗)
15 trace_entry_at_pred (trace_length t0) (Event p ev) in
16 witness trace_predicate; (∗ witness predicate ∗)
17 assert (witnessed trace_predicate); (∗ verifies predicate has been witnessed ∗)
18 assert (did_event_occur_at (trace_length t0) p ev) ✠
Listing 3.7: Interface and implementation of the effectful function to trigger protocol
events

with requires and ensures clauses, which represent, respectively, the precondition, defined
over the current trace t0, and the postcondition, which is a function over the trace t0
before the function was triggered, the result of the computation r and the resulting
trace t1. The function has a trivial precondition, while the postcondition ensures that if
it returns successfully, the trace length increases, and the specified event ev occurs at
the current timestamp. Note that did_event_occur_at i p ev in Line 8 is a shorthand for
trace_entry_at i (Event p ev).
The implementation of trigger_event in Listing 3.7 appends a new entry to the trace and
witnesses it immediately. First the actual trace-dependent predicate trace_predicate on
Line 15 is constructed, stating that Event p ev is the latest entry of the trace, before
calling the function witness with it as an argument in Line 16. The predicate is proven
to be stable and valid in the current trace as part of the WPT of witness (as the new
trace entry has been appended to only two lines above, in Line 13, F⋆ can easily prove
trace_predicate to hold in the updated trace). Afterwards, the associated proposition
(witnessed trace_predicate) is added to the SMT solver’s scope, as a witness of the new
entry, and the validity of the trace-independent predicate is asserted on Lines 16-18.

This may seem trivial, but this way information about the witnessed predicate is
conveyed to the calling function. F⋆ verifies that the signature in Listing 3.7 conforms
with the implementation in Listing 3.7. This needs to be done only once.. From there
on, whenever the function trigger_event p ev is called in a protocol implementation, its
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postcondition is in scope and can be used to prove further assertions.

3.6 A dynamic Releasable Label
In the introduction (Chapter 1) and especially in the problem statement section (Sec-
tion 1.2), we laid great emphasis on the intentional leakage of secret data. This is a
key ingredient to many off-chain protocols like simple LN channels or HTLCs, as they
require the disclosure of a private nonce at some point during protocol execution (see
Section 2.3). The disclosed value is either a special Revocation Key used to revoke
outdated transactions, or serves as proof of successful payment delivery (or receipt). The
original DY⋆ framework, however, presented two limitations that were preventing us
from defining the correct label for such situations:

• Firstly, as mentioned previously, DY⋆’s labeling system is static, and this clashes
with the necessity of assigning a label that can change when a certain event occurs.

• Secondly, DY⋆ only supports unintentional leakage of data via state compromise,
so it does not allow to model the intentional publication of a secret, as it happens
in HTLC scripts.

This section briefly explains how we solved these issues, presenting a new label type
for the DY⋆ framework, defined as

val releasable:(s:string)→ (l:inner_label)→ label,

which allows dynamic flow of a label associated with a string s to public, upon adding a
special Release (s:string) entry to the trace.

3.6.1 Integration in DY⋆
The new label type is added to the definition of can_flow and requires some adaption of
the current label mechanism.
We capture the semantics of releasable (s:string)(l:inner_label) by the following changes
to the label system:

• A new type inner_label that represents readers [ids] and public, which we call base
labels.

• A type label which is either an inner_label, meet/join of two labels, or releasable
of a string s and an inner_label.

• We say a string s has been released at timestamp i, if the corresponding entry
Release s has been added to the trace before or at i.
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• If the string s is not released yet, then releasable s l behaves as l.

• Once s has been released releasable s l behaves as public and can flow to any other
label.

The decision to create an entirely new label, rather than “simply” adjusting can_flow
relation, to account for trace entries of the form Release s, with existing labels has the
reason, that can_flow operates solely on label types. Hence, it would not be possible
to differentiate between distinct objects with the same label. This implies that we
can only release per label, and not for a single secret, as we would like to do. By
utilizing only existing labels we could have unwanted flows to public of objects annotated
with the same label. Changing the signature of can_flow and letting it extract labeling
information directly from objects themselves would cause a major revision of the whole
DY⋆ framework, potentially creating new dependencies, and is therefore not an ideal
solution.
As one can release only per label, refactoring the label type was inevitable. By having
the new releasable label be indexed with strings they can be associated with specific
objects. Using different strings for different objects lets us distinguish between them.
On the other hand, it is possible to group several secrets and release them at once by
attributing them to the same string s.

During the integration of the new label, we took care to retain the “preorder” features
of the original system, like transitivity and reflexivity, but also that the new label adheres
to the semantics of meet and join.
Still, some lemmas defining the behavior of can_flow had to be changed, as they were not
applicable anymore. For example, before changing the labeling system, a flow to label
public was only possible in the case of corruption, or via reflexivity. Now there is also a
third option by releasing labels.

The release of a string s is captured by the global trace via a new trace entry

Release:s:string → entry_t (∗s associated to released nonce ∗)

to indicating the release of s. The witnessing features of DY⋆ (Section 3.5) enable queries
about the existence of the release entry and are used to alter the label flow accordingly.

When implementing protocols, principals can mark the release of their secrets by
calling the API function release (s:string), which appends the new entry to the trace.
Additionally, we plan to add a usage-predicate, called can_release, to the usage predicates
of Listing 3.5 introduced in Section 3.3, thus enabling thinner control over the release of
labels.

3.6.2 A simple Protocol
To demonstrate our new label type we implemented a test protocol that simulates the
intentional release of a nonce by Alice to Bob, as depicted in Figure 3.3.
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Alice Bob

(1) generate private nonce rk_a

(2) Release "rk−alice"

(3)
rk_a

Figure 3.3: Simple protocol to demonstrate the usage of the releasable label type, where
string ’rk−alice’ is associated with the nonce rk_a

The corresponding protocol implementation (releasable_test) is shown in List-
ing 3.8. It is divided into four steps:

(1) Alice creates a new nonce rk_a (stand-in for “revocation key”) on Line 7 and
labels it with releasable ’rk−alice’ (inner_readers [P a]), where ’rk−alice’ is the
string associated with nonce rk_a and inner−readers [P a] represents the base label
of data accessible only by principal a (Alice’s identifier). The created nonce can
not flow to public yet (failing assertion on Line 9), but it can flow to readers [P a]
as defined by the label semantics (succeeding assertion onLine 12).

(2) On Line 16, the label associated with the string ’rk−alice’ is released and the
existence of the release entry is verified on Line 17.

(3) Now the nonce can be treated as given label public as asserted on Line 22.

(4) Lastly, the nonce is sent out to principal b (Bob’s identifier) over the network
(Lines 26-27).

For now, some assertion checks still require calling explicit lemmas for verification
(e.g., lines 10, 11 and 21). Future versions could further automate the verification process
and delegate F⋆ to automatically instantiate the right lemmas (through pattern matching
in z3 [dMB08]), instead of having the user provide them.
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☛
1 val releaseable_test (a b: principal): LCrypto unit
2 (requires λ t0 → True) (ensures λ t0 idx t1 → True)
3

4 let releaseable_test a b =
5 (∗ (1) generate revocation key ∗)
6 let rka_label = releasable ’rk−alice’ (inner_readers [P a]) in
7 let (|t0, rk_a|) = rand_gen rka_label in
8

9 (∗ assert(can_flow t0 rka_label public); ∗) (∗ this fails, as expected... ∗)
10 inner_label_readableby_lemma [P a];
11 releasable_can_flow_to_inner_label t0 ’rk−alice’ (inner_readers [P a]);
12 assert(can_flow t0 rka_label (readers [P a]));
13

14 (∗ (2) release nonce (this will add a Release event on the trace) ∗)
15 let t1 = global_timestamp () in
16 let t1 = release ’rk−alice’ in
17 assert(trace_entry_at t1 (Release ’rk−alice’));
18

19 (∗ (3) check if nonce can flow to public now ∗)
20 let t2 = global_timestamp () in
21 released_label_flows_to_anything t2 ’rk−alice’ (inner_readers [P a]) public;
22 assert(can_flow t2 rka_label public);
23

24 (∗ (4) send released nonce un−encrypted ∗)
25 let t3 = global_timestamp () in
26 let now = send #t3
27 a (∗ <− the sender ∗) b (∗ <− the receiver ∗) rk_a (∗ <− the message ∗) ✠

Listing 3.8: Simple protocol to release a secret revocation key
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CHAPTER 4
Blockchain Formalization in F⋆

This chapter focuses on the implementation of the integrated blockchain system. First,
we start with a short discussion of made assumptions and abstractions compared to the
real Bitcoin blockchain (see Section 2.2). Afterwards, the section gives more detailed
insights into the actual implementation within DY⋆ and how it can be used from a user
perspective. Then, we introduce an interpreter for Bitcoin scripts implemented in F⋆ to
allow (limited) guided proofs of script evaluation in the framework. At last, we define
some basic blockchain properties of interest that are provable with the extension and
present a simple protocol to demonstrate the added functionalities.

4.1 Abstractions and Assumptions

Trying to model every little detail of the Bitcoin blockchain is not only cumbersome but
would not even be useful for our purposes, as we are interested in modeling only those
details that are relevant with respect to the properties that we want to prove. For this
reason, we decided to make the following abstractions:

1. First of all, we are not interested in how transactions are entered into the chain
(e.g., through mining blocks and proof-of-work); instead we focus on the fact that
they are included eventually, and are validated according to the consensus rules
introduced in Section 2.2.1. Our model assumes a “perfect” blockchain, where
the consensus algorithm is abstracted away. The model itself acts as a global
instance to check if a block or transaction is valid at a given time and thereby
ready to be included in the blockchain (details on block validity are discussed
in Section 4.2.2). Hence, we do not formalize proof-of-work aspects, transaction
selection, or maximizing fees/profit as these points mainly concern mining parties.
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2. Assuming global consensus and keeping the blockchain in a valid state implies

the existence of only one single version of the blockchain; therefore, forks are not
possible.

3. Instead of creating block and transaction identifiers by hashing their contents
[Eri15, Bit21], we implement them as unique random values, supplied by the
blockchain system.

4. As the main objective of the model lies in off-chain protocol verification, we
assume that transaction signatures do not influence the transaction identifier:
the transactions follow the SegWit [Eri15] pattern. Our defined type to model
transaction identifiers does not depend on the transaction data at all (see point 3
above), thus decoupling it naturally from any signatures stored in the input script1.

5. Transactions do not include separate witness data, hence, the provided script
formalization does not support Witness Programs [Eri15]

4.2 Blockchain Model
This section describes the integration of the blockchain model into DY⋆: First, we give
the type definitions of the blockchain layer, relating back to the introduction of the
Bitcoin blockchain in Section 2.2. Then, we show how the blockchain is embedded into the
existing global trace, and finally, we touch upon the verification of correctness properties
of new blocks.

4.2.1 A Definition with Types
Our goal is to keep the blockchain formalization as close to the real-world implementation
as possible without unnecessarily overloading the framework. This subsection introduces
the model through type definitions and explains their meaning. The application of
those types and construction of the blockchain machinery is explained in Section 4.2.2.
Figure 4.1 provides an overview of associated data type definitions. The notation is as
follows: data types are defined as record types with their name on the gray background.

• Blocks: Blocks are defined via the block_t type and are composed of the block’s
own identifier (bid), the identifier of the previous block (pid), and a list of
transactions (txs). The pid and bid are represented by unique sequences of
bytes or bytestrings. A block is uniquely identified by its bid. The model does not
specify a limit on how many transactions are placed inside a block.

• Transactions: Transactions follow the definition of tx_t. This type encompasses
an identifier (id), a list of transaction inputs (txin_list), a list of transaction

1Reminder: PCs of the LN need to create refunding transactions (to reimburse participants in case
their counterpart does not respond), that reference a funding transaction that is not signed yet. By
decoupling signatures from the TXID calculation, the funding transaction can be correctly referenced.
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block_t
bid : bytes
pid : bytes
txs : [tx_t]

txid_t
bid : bytes
tx_idx : N

ptr_t
txid : txid_t
idx : N

txout_t
self_ptr : ptr_t
value : coin
script_pubkey : script_t

txin_t
self_ptr : ptr_t
txout_ptr : ptr_t
value : coin
script_sig : script_t
nSequence : block_height

tx_t
id : txid_t
txin_list : [txin_t]
txout_list : [txout_t]
nLocktime : block_height

Figure 4.1: Data types of blockchain model

outputs (txout_list) and an absolute timelock field (nLocktime). Similar to
blocks, transaction input and output lists are not limited in size.

• Inputs: Transaction inputs, as given by txin_t, reference an (already existing)
output (txout_ptr) and provide a redeeming script (script_sig) to unlock
the coins held by that output. The type definition includes a self-reference (self_-
ptr) to ease accessing the right block and transaction during type checking. The
output-reference identifies a transaction on chain and the index of the referenced
output to be found in txout_list. The remaining fields refer to the amount of
coins consumed (value) and the relative timelock field (nSequence).
References to inputs (and outputs) are specified by a pointer type ptr_t, which
includes the identifier of the transaction (txid) holding the input (or output) and
an index (idx), to select the right input (respectively output) from the transaction’s
input (respectively output) list.

• Outputs: Transaction outputs txout_t (like inputs) carry a self-reference
(self_ptr) for easier access. They contain the amount of coins that are spent
(value) by that output and a locking script (script_pubkey) to set conditions
for redeeming the coins.

• TXID: Finally, the identifier of a transaction is modeled through the type txid_t.
It uniquely identifies a transaction through the identifier of the block (bid) holding
the transaction, as well as its index (tx_idx) in the transaction list.
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• Scripts: Input and output scripts (script_sig and script_pubkey) are

represented by the type script_t as a list of opcodes. The type is part of our
SCRIPT language formalization explained in Section 4.3.

The type bytes is built into DY⋆ and represents arbitrary bytestrings. Depending
on the compilation mode, either a symbolic or concrete implementation is loaded2. The
symbolic version includes data constructors for literals, as well as cryptographic material,
like keys, and hashes.

4.2.2 Integration in DY⋆
The blockchain model is deeply integrated in DY⋆ and its trace-based reasoning. Core
parts of the model are built around new trace entries, resembling blocks (via types shown
in Figure 4.1) and validity checks to enforce consensus properties through the newly
introduced Blockchain Runtime Layer. The validity checks follow the consensus rules
listed in Section 2.2.1.
Besides the properties found in a consensual blockchain, like no-double-spends, block
validity checks of our module depend on three main parts:

1. Well-Formedness Properties
Due to the layered approach of DY⋆, splitting the framework into an unlabeled
part and a labeled part on top, additional checks have to be performed to ensure
blockchain types contain only public data.

2. Timelock Checks
Absolute and relative time dependencies of the Bitcoin protocol are verified through
new witnessed predicate definitions, as introduced in Section 3.5.

3. Script Evaluation
A monadic interpreter implementation can evaluate scripts with concretely defined
values, using F⋆’s term normalization techniques.

With the global trace at hand (cf. Chapter 3), which is simply a continuously ordered
list of protocol steps indexed through timestamps, a blockchain extension comes naturally.
The type of trace entries entry_t is expanded by a new data constructor, shown in
Listing 4.1.☛

Block: pid:bytes → bid:bytes → txs:[tx_t] → entry_t ✠
Listing 4.1: New block entry to extend global trace

2Remember that DY⋆ protocols can be executed. The concrete implementation makes that execution
somewhat efficient.
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Trace:

Blockn-1... Blockn
Send
msg

Event
ev

Blockn+1 ...

block_t

pid

bid

txs

t − 1 t t + 1 t + 2 t + 3

Tx0

Tx1

Tx2⋮

Tx0:nLockTime

In0 Out0

Out1

Blockchain:

Blockn-1... Blockn Blockn+1 ...

Legend:

• : indicates backward references of blocks to their predecessor.

• : denotes the evolution of the trace (forward in time).

Figure 4.2: Global trace with block entries and extracted blockchain

The new entry represents a block, specified by the identifiers pid and bid, and its
transaction list txs. To DY⋆ it behaves as any other trace entry, and is therefore bound
to a unique timestamp. Figure 4.2 illustrates how the blockchain is embedded in the
trace, showing simplified entries. The trace includes any protocol-related execution step
and each entry is associated with an index (t − 1, t, t + 1, ...), representing the global
advance of time. Block entries can be added at any timestamp and the current blockchain
can be extracted from the trace by simply ignoring non-block entries.
The figure depicts five trace entries: at timestamps t − 1, t, and t + 3 three block entries
have been added. At timestamp t + 1 some message msg was sent over the network and
at t + 2 an event ev was triggered. The blocks are indexed with variable n, independent
of the global time t, whereas n ≤ t holds at any time. Below the block with index n, the
underlying record type is shown to contain transaction-related information, defined by
the types in Figure 4.1. Note that the index of a given block represents the absolute
block height of the blockchain at the time, e.g., the index n of Blockn at timestamp t,
indicates the blockchain has reached height n.

Relying on the already existing global trace lets us reuse its pre-existing functionalities
when it comes to trace reasoning. It also lets us interact with the witness framework
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let was_block_mined_at j pid bid txs =
trace_entry_at trace_index (Block pid bid txs)

let was_block_mined_before j pid bid txs =∃ i. i < j ∧ was_block_mined_at i pid bid txs ✠
Listing 4.2: Trace-independent predicates to verify the existence of block entries

introduced in Section 3.5 and define the predicates in Listing 4.2 describing whether
a block is part of the trace. The predicate was_block_mined_at j pid bid txs checks for
a previously witnessed trace entry of the form Block pid bid txs at the timestamp j,
telling us if that block was “mined” at that timestamp, while the second predicate
was_block_mined_before j pid bid txs asserts the block has been entered before j.
Recall that verification of trace-independent predicates requires a witness of the corre-
sponding trace-dependent predicate to update the SMT solver’s scopes, otherwise the
proposition can not be proven correct (reasoning is not complete). Through the unlabeled
backbone of DY⋆, new blocks can be mined by appending them to the trace and at the
same time witnessing them.

4.2.3 Blockchain Runtime Layer
When we refer to the blockchain in DY⋆, we mean the ordered list of block entries that can
be extracted from the trace. As discussed in Section 4.1 the consensus aspects are modeled
through a “perfect” blockchain (i.e., one that verifies all invariants of Section 2.2.1). For
that matter, the model requires each block to fulfill certain constraints before being added
to the chain. To ensure a consistent view of the blockchain at all times, checks are added
directly to the valid_trace predicate that has been introduced in Section 3.3 (remember:
trace validity is a consequence of using the LCrypto effect). Hence, by ensuring trace
validity, the validity of the blockchain invariants follows. By having these requirements
in place, consensus about the blockchain is enforced during labeled protocol verification.
Furthermore, one can infer those constraints back as properties when seeing a block on
chain, via valid_trace. This stands in contrast to the real-world Bitcoin implementation,
where everyone can verify the correctness of blocks themselves. However, the trust of a
block being correct increases when it has received many confirmations and is part of the
longest (valid) chain. Once it is buried deep enough, one may simply assume (or infer) it
satisfies the consensus rules.

Consensus Validation

We define the Blockchain Runtime Layer to be the global instance for validation of
blockchain invariants. In a sense, this layer mimics the work done by miners, who perform
correctness checks on gathered transactions. We say a block is valid if it conforms to
the correctness rules presented in Section 2.2.1, with some adjustments to comply with
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the defined blockchain data types. As discussed in Section 4.1 and Section 4.2.1 the
computation of TXID and BID are not modeled, hence their definition of validity differs.
We now present a nested definition of valid blocks, based on the types in Figure 4.1.

Definition 1 (Block Validity) A block of type block_t is considered to be valid if

(B.1) its pid references the latest block on chain,
(B.2) its bid is unique w.r.t. the global trace,
(B.3) its transaction list is consistent (point (3) of Section 2.2.1), and
(B.4) all of its transactions txs are valid.

Identifiers are implemented as random numbers, that are assumed to be unique.
This is a distinction to the real Bitcoin protocol, where the BID depends on the header
information and the nonce “found” as a solution to the proof-of-work puzzle by the miner.
Since each new block references the latest block on chain forks of the blockchain are
prevented.
We refer to a transaction list as consistent if it does not contain any two transaction
inputs referencing the same output.

Definition 2 (Tx Validity) A transaction of type tx_t is considered valid if

(Tx.1) its id field is set correctly,
(Tx.2) the absolute height of the blockchain is greater than its nLockTime field (point

(7) of Section 2.2.1),
(Tx.3) the sum of its output spendings is less or equal to the sum of coins available in

its inputs (point (5) of Section 2.2.1),
(Tx.4) the self_ptr is set correctly on all outputs, and
(Tx.5) all of its inputs are valid.

The id field of a transaction is correct if its bid matches the identifier of the current
block and tx_idx identifies the transaction in the block’s transaction list.
Timelock checks reject the transaction if it cannot be proven that the blockchain has
reached the demanded height.
The pointer self_ptr has to identify the output amongst all blocks and transactions
on the chain. It is set correctly if its tx_id refers to the id field of the transaction
holding the output and the index idx identifies the output in the transaction’s output
list. Its correctness is verified to be sure accessing it (in a valid context) unambiguously
references the output itself and also its parent transaction and block.

Definition 3 (Tx Input Validity) A transaction input of type txin_t is considered
valid if
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let valid_trace (tr:trace) =⋮∧ (∀ (i:timestamp) (pid:bytes) (bid:bytes) (txs: tx_list_t).
i < trace_len tr �⇒ (was_block_mined_at i pid bid txs �⇒
is_block_valid_at i pid bid txs)) ✠

Listing 4.3: Extended valid_trace predicate with block validity checks

☛
let valid_blockchain_at (j:timestamp) =

(∀ pid bid txs i. i < j ∧ was_block_mined_at i pid bid txs �⇒
is_block_valid_at i pid bid txs) ✠

Listing 4.4: Predicate that defines a valid blockchain

(In.1) there exists a block containing the output referenced by txout_ptr, and

(In.2) the relative age of that block is greater than the input’s nSequence field (point
(7) of Section 2.2.1),

(In.3) the referenced output is spendable (preventing double-spends - point (4) of
Section 2.2.1),

(In.4) the referenced output script script_pubkey evaluates to true on the input
script script_sig (point (6) of Section 2.2.1), and

(In.5) its self_ptr is set correctly.

The definition of a valid transaction input is the most interesting one. It encompasses
the main conditions that need to be satisfied in order to redeem an output including
script evaluation (In.4) and the prevention of double spends (In.3).

All of the above validity checks are encoded in F⋆ and enforced by extending
the valid_trace predicate as shown in Listing 4.3. The listing introduces a function
is_block_valid_at i pid bid txs, which checks the validity of the block parametrized by
pid, bid and txs, at time i, as given by Definition 1. Thus, a valid trace guarantees
the validity of each block in the blockchain.
We define a blockchain, that is all the blocks that have been mined so far, to be valid at a
certain timestamp i if all blocks in the chain are valid at i. The corresponding predicate
is defined in Listing 4.4.

Using the updated definition of valid_trace and valid_blockchain_at, we can prove our
first blockchain property: A valid trace guarantees a valid blockchain. The corresponding
lemma definition is shown in Listing 4.5. The proof does not need manual guidance and
can be discharged automatically.
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☛
val valid_trace_implies_valid_blockchain (t0:trace) : Lemma

(requires valid_trace t0)
(ensures valid_blockchain_at (trace_len t0)) ✠

Listing 4.5: First blockchain property: a valid trace implies a valid blockchain

Well-Formedness

In addition to the validity checks, we require that all elements of a block are well-formed.
We then say that the block itself is well-formed. A block’s element is well-formed if it
contains only public values, hence, it can be published.

Well-formedness mimics one of the most important features of the blockchain, its
public accessibility: every principal can scan the blockchain at any time. To preserve
secrecy private, objects are not allowed to be part of the blockchain: this is mainly
interesting for the creation of scripts that can include arbitrary data as part of push
opcodes. Recall that PCs of the LN and HTLCs include pre-images of hashed secrets in
scripts in some protocol steps and require the secret as proof of dishonest behavior or
successful payments. With well-formedness in place alone, the protocols are not provable
with the standard static type system of DY⋆. As presented in Section 3.6 through
adjustments in the labeling system it is possible to intentionally leak sensitive information
and thus include them within scripts, while not violating secrecy.

Reasoning about time with the blockchain

The timelock features of the Bitcoin protocol (see Section 2.2.3) allow postponing the
validity of a transaction to a later timepoint, using absolute and relative timing constraints.
We define absolute timelocks in terms of block-height (i.e., current height of blockchain)
and relative timelocks as block-age (i.e., depth of a specific block). To perform validity
checks the Blockchain Runtime Layer has to verify the current height of the blockchain,
as well as the depth of individual blocks (cf. validity checks in Definitions 2 and 3).

Following the approach of stable predicates over the monotonic state (see Section 3.5)
to create the trace-independent trace_entry_at predicate, both timelock properties have
been translated to stable predicates as well:

(TL.1) block_height_at_pred i h t:
The absolute block-height of the blockchain, extracted from trace t, is h at
timestamp i

(TL.2) block_age_at_pred i a bid t:
The relative block-age of the block identified by bid is a at timestamp i, given
the blockchain extracted from trace t
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script_pubkey = [OP_PUSH <public−key>; OP_CHECKSIGVERIFY]

script_sig = [OP_PUSH <valid−sig>] ✠
Listing 4.6: Pay-2-Pub-Key output script and valid input script

From the definitions, it is easy to see why stability holds, given that the global trace
adheres to the preorder ≤: the trace is an append-only list, and therefore, the blockchain
too can only grow. It can be verified the blockchain has height exactly h (i.e., h blocks
have been mined so far) at timestamp i, by counting all block entries up to i. As for any
succeeding trace, the entries up to index i do not change given ≤, hence the predicate
still holds.
Similarly, having verified the age of a specific block at a timestamp i will hold in a later
trace, as entries up to i do not change.

The predicates (TL.1) and (TL.2) can be turned into trace-independent ones, similar
to trace_entry_at.

4.3 SCRIPT Formalization

Scripts are one of the most essential parts of the Bitcoin blockchain, as they control
the flow of coins and allow locking payments through arbitrary conditions (with respect
to the scripting language). Without the inclusion of scripts protocols such as Payment
Channels would not be possible.

The blockchain provides certain guarantees once a confirmed transaction is seen on
chain: the presence of the transaction on chain implies (1) all input scripts have been
evaluated successfully on top of the referenced output scripts (including potential timing
dependencies) and (2) transferred coins are locked by the specified output scripts.
Note that publishing a transaction is not enough to infer meaningful properties, as miners
could still choose to reject the transaction or add it at a later time.
For verification purposes, it might be beneficial to infer properties about the output lock
to phrase security goals and also prove them correct. Hence, the ability to formulate
proofs over script execution would enhance the verification process.

The script_pubkey in Listing 4.6, often referred to as Pay-2-Pub-Key, for
example, locks the output to be only accessible by those who can present a valid signature
verifiable by the given public key. Seeing a confirmed transaction output using that script
implies the principal in possession of the corresponding private signature key can redeem
its coins at any time. While assuming secrecy of the private key, no other principal is
able to steal the coins. Of course, trying to prove larger scripts including several possible
branches is more interesting.
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type op_t =

| OP_0 (∗ 0x00 ∗)
| OP_PUSH: bytes → op_t (∗ 0x01 − 0x4b ∗)
| OP_1 | OP_2 | OP_3 | OP_4 (∗ 0x51 − 0x54 ∗)⋮

let script_t = list op_t ✠
Listing 4.7: Type definition of opcodes and scripts

In this section, we present a formalization of a SCRIPT interpreter in F⋆, to evaluate
scripts using normalization. Unfortunately upon completion of this thesis, we were not
able to achieve the desired performance, hence proving capabilities are limited.
In Section 4.3.1 we define the type of scripts and comment on our choice towards a script
formalization. Afterwards in Section 4.3.2 and Section 4.3.3 we show two implementation
approaches and discuss encountered problems.

4.3.1 Script Definition and Well-Formedness

Scripts are defined as a list of opcodes as shown in Listing 4.7. The type op_t covers a
subset of opcodes from [Bit24b], including off-chain protocol relevant timelock opcodes
(OP_CHECKLOCKTIMEVERIFY [Pet14] and OP_CHECKSEQUENCEVERIFY [Mar15a]) and signature checks
(OP_CHECKSIG [Joh16]).

The type script_t is used for input as well as output scripts (cf. blockchain type
definition of Figure 4.1). The interpreter implements a boolean evaluation function to run
the concatenation of input and output script. The definitions above include the unlabeled
data type bytes, built-into DY⋆. To preserve the secrecy of data embedded in scripts, the
interpreter implementations should operate only on labeled types. For that matter, we
define well-formed refinements of op_t and script_t. Essentially the only “problematic”
opcode is OP_PUSH (b:bytes), which may contain sensitive data. For readability reasons,
well-formed type definitions are omitted from listings.

As shown in Listing 4.8 an alternative approach to a script interpreter implementation,
could be to model scripts as arbitrary total boolean functions in F⋆. In this example,
scripts are defined as type bytes → bool, i.e., functions from arbitrary bytestrings to
boolean values. The type bytes encodes arbitrary sequences of bytes, that are concatenated
together and can be split up again using the function split, returning Success (b1,b2) if
the original bytestring contains sub-bytestrings b1 and b2, and Error otherwise. The term
hash pk, represents the hash of the public key pk and verify pk h sig denotes signature
verification using the public key pk the message h and the signature sig. The lemma in
Line 9 over the script in Line 3 can be proven easily by F⋆.
Still, by allowing scripts to be represented through arbitrary functions, the semantics of
the Bitcoin script evaluation are missing. Firstly, SCRIPT is limited in its expressiveness
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1 type script_t = bytes → bool
2

3 let p2pkh (h:bytes) : script_t = λ wit →
4 match (split wit) with
5 | Success (sig,pk) → h = hash pk && verify pk h sig
6 | Error _ → false
7

8 (∗ Lemma is proven without manual guidance ∗)
9 let p2pkh_lemma (h:bytes) :

10 Lemma (∀ wit. p2pkh h wit ⇐⇒ (∃ sig pk.
11 Success (sig,pk) = split wit ∧ h = hash pk ∧ verify pk h sig)) = () ✠

Listing 4.8: Pay-2-Pub-Key-Hash script defined as boolean function in F⋆

(e.g., non-turing complete, no loops), hence user-defined scripts could be out of the scope
of the real language, thus eliminating verification results. Secondly, the language is
in itself not finished and updates are usually delivered through soft-forks, overwriting
NO_OP operations. Thus, opcodes may leave the stack in a different state than one would
expect (e.g., the stack stays the same even though a value is consumed). Also, bugs
in the evaluation of scripts can not be fixed easily, without forcing the whole Bitcoin
network to jointly update. This could lead to scripts containing subtle bugs, which would
be detectable through a well-defined formalization.

The formalization approaches discussed in the next sections are defined through
operational semantics. Related work: The authors of [Roy23] show how to translate the
semantics of a simple imperative programming language to F⋆, for teaching purposes.
[KB18] and [JD23] introduce tools for the symbolic execution of Bitcoin scripts, to analyze
criteria for successful execution of output scripts.

4.3.2 The Monadic Approach
In the first instance, the interpreter is implemented in a purely monadic fashion. The
defined monad covers states including exceptions. The state type includes the following
data:

(1) Execution stack (es): list of bytes to hold data relevant for execution

(2) Operation stack (os): list of bytes to hold branching relevant data

(3) Current transaction (tx): to access nLockTime field

(4) Index of current input (txin_idx): to access nSequence field

(5) The output script (pks): for signature verification

58



4.3. SCRIPT Formalization

Evaluation of opcodes is done according to the specification taken from [Bit24b]. The
branching mechanisms utilize a second stack (operation stack), to push a special stack
frame, containing information about which branch is taken and the current branching
depth. Information about the current transaction and input, are needed for timelock
checks.
Signature checks verify the signature as part of the redeeming script script_sig of
a transaction input. When signing a transaction all input scripts are replaced by the
referenced output script, and the resulting transaction serialization is hashed and signed.
Currently, only this one signature mode is supported, committing to the referenced
output and to the current transactions outputs list.

Evaluation is performed as small-step relation, with each opcode being implemented
as a single step. For validity checks, specified in Section 4.2.2, input and output scripts
are run together on empty stacks. The evaluation function is a total boolean function
that recursively performs each step of the script and returns true if no errors were raised
during execution.
As it turns out F⋆ has problems verifying proofs over the monadic definition. By visually
examining the generated z3 queries, it seems that the monad is translated into several
higher-order function applications, which could slow down the SMT solver’s performance
significantly.

Normalizer of F⋆. The monadic implementation works fine when all objects it operates
on are fully specified and pure syntactic evaluation is run. F⋆ includes a normalizer to
reduce terms as far as possible (via substitution) before querying z3. By either using
assert_norm or the metaprogramming features of F⋆ [MAD+18] (to guide proofs), concrete
instantiations of scripts can be run through normalization.
We also tried to guide proofs through a mix of normalization and equality rewriting, to
help F⋆, but with no success. The problem is that for z3 alone the monadic representation
is too big and needs to be reduced as far as possible before issuing a query. Unfortunately,
one can not easily define how far terms should be reduced, only if they are reduced at all.
Hence, when applying normalization it happens that already established facts can not be
rewritten, as their definition has already been reduced.

Script Benchmarks. Since we can not present proofs, a set of standard scripts (shown
in Listing 4.9) has been evaluated, to benchmark the interpreter, including the standard
scripts (1) Pay-To-Pub-Key (P2PK) and (2) Pay-To-Pub-Key-Hash (P2PKH), as
well as a multi-signature checks (3) Pay-To-Multi-Sig (P2MS) - (2-of-3), and an
(4) HTLC script [LN 24, Sea17] (no HTLC revocation output).
For more information about the meaning of opcodes refer to [Bit24b]. For script (3) we
ran benchmarks for all possible combinations of keys eligible to redeem coins and also
verified that the wrong combinations failed. We also checked both branches of the HTLC
script (4). Benchmarks were run using assert_norm and could be discharged by F⋆.
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p2pk = [OP_PUSH <public−key>; OP_CHECKSIGVERIFY]

p2pkh = [OP_DUP ; OP_HASH160 ; OP_PUSH (hash160 <publick−key>) ; OP_EQUALVERIFY ;
OP_CHECKSIGVERIFY]

p2ms = [OP_2; OP_PUSH <public−key−3>; OP_PUSH <public−key−2>;
OP_PUSH <publick−key−1>; OP_3; OP_CHECKMULTISIGVERIFY]

htlc = [OP_IF ;
OP_SHA256 ; OP_PUSH <sha265 R> ; OP_EQUALVERIFY ; OP_DUP ; OP_HASH160 ;
OP_PUSH (hash160 <public−key−bob>) ;

OP_ELSE ;
OP_PUSH <timelock> ; OP_CHECKLOCKTIMEVERIFY ; OP_DROP ; OP_DUP ;
OP_HASH160 ; OP_PUSH (hash160 <public−key−alice>) ;

OP_ENDIF ;
OP_EQUALVERIFY ;
OP_CHECKSIGVERIFY] ✠

Listing 4.9: Script definitions for benchmarking the monadic interpreter

4.3.3 The Effectful Approach
We keep the definition from the monadic approach and turn the monad into an effect.
Effects in F⋆ can be described by pre- and postconditions, which are proven correct over
the actual implementation. Thus, by writing postconditions for each opcode, a formal
proof of the specification is obtained.

Theoretically, F⋆ enables intrinsic and extrinsic proofs of effectful computations.
Intrinsic proofs are done within the effect through pre- and postconditions, while extrinsic
proofs require the effect to be turned into its state-passing form and then evaluated over a
concrete initial state. The switch from effect to state-passing is called reification [AHM+19]
and is only limited possible with the latest released F⋆ version to date (v2023.09.03). As
far as we found out (by searching discussion forums and issue threads, release notes, and
looking at the SMT queries), the current effect type of Layered-Effects, has only limited
support for reification. This implies that proofs using the effect interpreter formalization
can (so far) not be used outside the effect environment (to the best of our knowledge).
Hence, lemmas reasoning over script execution for use in the blockchain model needs to
be admitted, while an intrinsic proof of the same script is possible to justify this step.

As explained in Section 3.4, effects define computations with side-effects. The effectful
script interpreter BTCInt is defined over a state monad, with the same state definition as
used for the monadic interpreter. We added annotations to the step functions of opcodes,
which can be proven by F⋆ within some hundred milliseconds each without further guid-
ance. Intrinsic proofs solely depend on available postconditions, which have to be strong

60



4.3. SCRIPT Formalization

☛
1 type post_cond_t (#a:Type) = (s0:state) → (r:result a) → (s1:state) → Type0

2

3 (∗ Bind for postconditions to type continuation ∗)
4 let bind_post_cond #a #b (pc1: post_cond_t #a) (pc2: post_cond_t #b) :
5 post_cond_t #b = λ s0 r s1 →
6 (∃ (s’:state) (r’:result a). pc1 s0 r’ s’ ∧
7 (Success?r’ �⇒ pc2 s’ r s1) ∧ (∗ if r’ is Success check pc2∗)
8 (Error?r’ �⇒ Error?r ∧ s’ == s1)) (∗ if r’ is Error stop ∗) ✠

Listing 4.10: “Bind” operation for postcondition of recursive interpreter functions

☛
1 let rec eval_post_cond (sc:script_t) : post_cond_t =
2 match sc with
3 | [] → λ s0 r s1 → s0 == s1 ∧ Success?r
4 | op::sc’ → bind_post_cond (step_post_cond op) (eval_post_cond sc’) ✠

Listing 4.11: Recursive postcondition of evaluation function

enough. F⋆ only uses the postconditions available at the topmost level, meaning that
postconditions of nested functions are blurred out. While a step function can be given a
big but definitive postcondition, the recursive evaluation function requires a recursive
postcondition. To concatenate an arbitrary number of postconditions Listing 4.10 defines
a “bind” operation. The type post_cond_t #a (Line 1) defines functions that reason over
an initial state s0, a result r and the final state s1 of an interpreter step. The type
result a on Line 1 encodes results of computations that may fail, and is either Success r’
for some r’ of type a, to denote successful execution or Error.
bind_post_cont #a #b pc1 pc2 on Line 4 takes two postconditions and returns a postcon-
dition of the computational continuation described by pc1 and pc2. It introduces an
existential qualifier over a potential intermediate state s’ and an associated result r’.
First pc1 is verified over the initial state and intermediate values, then one has to account
for failed and successful operations: if r’ was returned successful, then pc2 has to hold
too, otherwise we stop immediately.
The postcondition of the evaluation function is shown in Listing 4.11 using bind_post_cond.
The type step_post_cond (op:op_t) (Line 4) is the postcondition of the step function.

Intrinsic Script Proofs

Regarding proofs, recursive postconditions introducing new existential quantification
with each operation step, seem to overlead F⋆ quickly. Listing 4.12 shows an intrinsic
proof (starting ob Line 3) of a simple script pushing the number 1 on the stack twice and
verifying their equality. The proof has a trivial precondition (Line 4) and its postcon-
dition asserts the script will run successfully and the state does not change. The proof
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☛

1 let simple_script: script_t = [OP_1; OP_1; OP_EQUALVERIFY]
2

3 let eval_simple_script : BTCInt unit
4 (λ s0 → True)
5 (λ s0 r s1 → Success?r ∧ s0 == s1) =
6 eval_ test_script ✠
Listing 4.12: Simple script evaluation using intrinsic proofs within the BTCInt effect

☛
1 let step_p2pk (pk:bytes) (sig:bytes) : BTCInt unit
2 (λ s0 → True)
3 (λ s0 r s1 → Success?r ⇐⇒
4 (∃ h. h = (hash (serialize (commit_tx s0.tx s0.txin_idx s0.pks))) ∧
5 verify pk h sig)) =
6 (∗ script_sig = [OP_PUSH sig] ∗)
7 step (OP_PUSH sig);
8 (∗ script_pubkey = [OP_PUSH pk ; OP_CHECKSIGVERIFY]∗)
9 step (OP_PUSH pk);

10 step (OP_CHECKSIGVERIFY) ✠
Listing 4.13: Intrinsic proof of Pay-2-Pub-Key script within BTCInt effect

takes about 7 seconds to complete with an increased resource limit for z3 (z3rlimit)
on a standard consumer laptop. When splitting up the [OP_EQUALVERIFY] opcode into
[OP_EQUAL; OP_VERIFY] (which does not affect the script evaluation) the proof takes already
over 14 seconds. Hence, trying to prove more complex properties of longer scripts, is not
practical with this approach.
However, by stripping away the “overload” of the recursive postcondition of the evaluation
function and specifying each opcode by a dedicated step, proofs have way better perfor-
mance. In Listing 4.13 we specify a detailed intrinsic proof under which conditions the
Pay-2-Pub-Key output script (Listing 4.9) is satisfied. The definition of hash and verify
are the same as for Listing 4.8. The function serialize takes a transaction and returns its
serialized form as type bytes. For signature checks the function commit_tx tx txin_idx pks
in Line 4, replaces script_sig of the input specified by txin_idx in tx with the output
script pks. The hash of the newly obtained transaction commits to input to the output
script. Signature checks verify against the hash of the serialized committed transaction.
The proof takes under 10 seconds and does not require a higher resource limit but is run
with the option "split_queries always" to split up the SMT query (see the F⋆
tutorial [Nik24]).

Listing 4.14 shows how to verify conditions of the initial state given an “unfinished”
script (e.g., only the output script). In this particular case, one can prove that the
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☛
1 let step_p2pk’ (pk:bytes) : BTCInt unit
2 (λ s0 → True)
3 (λ s0 r s1 → Success?r ⇐⇒
4 (∃ h es’ sig. s0.es == sig::es’ ∧
5 h = (hash (serialize (commit_tx s0.tx s0.txin_idx s0.pks))) ∧
6 verify pk h sig)) =
7 (∗ script_pubkey = [OP_PUSH pk ; OP_CHECKSIGVERIFY]∗)
8 step (OP_PUSH pk);
9 step (OP_CHECKSIGVERIFY) ✠
Listing 4.14: Intrinsic proof verifying initial stack conditions for evaluating
Pay-2-Pub-Key script

execution stack of s0 (s0.es) needs to have a signature as the top element, that is
verifiable with the specific public key pk (from Line 4). The proof takes about 20 seconds
but needs to be split and requires a higher resource limit.

Until the problems of the script evaluation are fixed or a different solution is found,
protocol verification needs admitted proofs for scripts, that define the conditions for
successful evaluation.

4.4 Blockchain Protocol Verification

This section provides information on how the blockchain is scanned to assert information
like the uniqueness of identifiers or whether an output on chain is spendable or not.
Furthermore, some blockchain properties of interest (consensus rules) of the integrated
system are presented which were proven correct in F⋆, Lastly, we present a simple
blockchain protocol implementation of Alice mining a new block to redeem coins from
a given transaction output on chain.

4.4.1 Scanning the whole Trace

We extend the idea of witnessing single trace entries and allow trace queries over the
whole trace, up to its current length. Hence, we are able to create propositions quantifying
over all trace entries (i.e. (∀ e:entry_t. P) or ~(∃ e:entry_t. P), where P is some predicate
over e). Standard security lemmas and trace-related propositions of DY⋆ get along by
proving the existence of a specific trace entry. Most proofs are interested in showing that
either a session has been corrupted, an event was triggered, or a specific message was
sent before. In contrast, the blockchain not only represents a collection of transactions
but also imposes constraints on newly mined blocks, which need to be checked before
insertion. A miner has to look through the entire blockchain, to decide that an output
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☛

1 (∗ Witness all entries in the trace ∗)
2 val witness_all (i:timestamp) : Crypto unit
3 (requires λ t0 → i < trace_len t0)
4 (ensures λ t0 r t1 → t0 == t1 ∧
5 (match r with
6 | Error _ → True
7 | Success _ → ∀j. j <= i �⇒ (∃ e. (index t0 j == e) ∧ trace_entry_at j e)))
8

9 (∗ Wtiness all entries in the trace and prove f for all of them ∗)
10 val for_all_trace_entries (#i:timestamp) (f: entry_t → bool) : Crypto unit
11 (requires λ t0 → i == trace_len t0)
12 (ensures λ t0 r t1 → t0 == t1 ∧
13 (match r with
14 | Error _ → True
15 | Success _ → ∀j e. j < i ∧ trace_entry_at j e �⇒ f e)) ✠

Listing 4.15: Witnessing a boolean function for all trace entries

has not been spent yet. On the other hand, the existence of a block that spends a specific
output is enough, to declare that output spent.

We introduce two auxiliary functions embedded into the unlabeled runtime layer
of DY⋆ defined by the signatures in Listing 4.15. These serve as assistance to verify
postconditions quantifying over the whole trace and are meant to be called by API
functions. witness_all (in Line 2) looks through the entire trace, and witnesses every
entry up to the provided timestamp. The function for_all_trace_entries (Line 10), first
witnesses every entry and then goes through the trace again to check an arbitrary
(decidable) proposition f over trace entries. If it can prove f to hold for all entries then it
returns successful and asserts this in its postcondition.

To check if a given transaction output txout is “spendable” (i.e., the output has not
been referenced before by an input), every entry has to be visited, which requires forall
quantification. Listing 4.16 defines the respective predicate that checks that no input txin
on chain references txout (by comparing the output-reference of txin with the self pointer
of txout), which can be verified by the method introduced above. The associated function
f: entry_t → bool has to check for every block entry if there exists an input spending
txout.

4.4.2 Blockchain Lemmas
The blockchain model enforces consensus rules defined in Section 2.2.1, to establish a
valid version of the blockchain. Following those rules Section 4.2 describes a notion of
block validity through Definitions 1, 2 and 3 given the internal type representations in
F⋆. By adding validity checks to the definition of a valid trace and by requiring protocol
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☛
(∗ ~~~ Check if txout has already been spend (double spending) ~~~ ∗)
let is_txout_spendable_at (i: timestamp) (txout: txout_t) =

(∀ (txin: txin_t). exist_block_with_txin_before i txin �⇒
~(txin.txout_ptr == txout.self_ptr)) ✠

Listing 4.16: Verify a given transaction output txout is “spendable”

implementations to maintain a valid trace throughout execution, consensus rules are
followed. In Listing 4.5 we present a lemma to prove that “a valid trace implies a valid
blockchain”.
To verify the blockchain implementation behaves as expected and to support proofs of
security goals, consensus rules are formulated as lemmas and proven correct in F⋆. Below
we define a set of lemmas (in textual description) that cover properties of interest, most
noteworthy is Lemma 4, which states that no two distinct inputs can reference a single
output.

Lemma 1 (Unique BID) If there are two blocks with the same BID on a valid blockchain,
then those blocks are the same.

Lemma 2 (Transaction Spending) Each transaction that is part of a valid blockchain
spends less coins than the sum of its inputs.

Lemma 3 (Reference Spenadable TxOut) Each transaction input that is part of a
valid blockchain references only transaction outputs, that have not been spent before.

Lemma 4 (No Double-Spends) A valid blockchain does not contain any two different
transaction inputs, that reference the same transaction output.

Lemma 5 (Blockchain Secrecy) Each block that is part of a valid blockchain only
contains public data.

Lemma 6 (TxOut Spending Conditions) A transaction input txin that is part of
a valid blockchain, can spend a referenced transaction output txout only if the following
conditions are met:

• The referenced txout exists and is part of the chain before txin.

• The blockchain has reached the absolute block-height specified by the nLockTime
field of the transaction containing txin.

• The block containing txout has reached the depth (or age) specified by the nSequence
field of txin.

• The output script script_pubkey of txout evaluates successful on the the input
script script_sig of txin.
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Figure 4.3: A simple blockchain protocol to redeem a given output on-chain

Some lemmas need guidance through auxiliary lemmas, but mostly no additional
compiler options for increased resources or fuel are needed. The blockchain machinery
including validity lemmas is defined in the BlockChainRuntime module, which is
verified in about 30 seconds. The verification has to be done only once after downloading
the DY⋆ code, afterwards, the proven lemmas can be used for further proof support.

4.4.3 A simple Blockchain protocol
To demonstrate the functionalities of the blockchain system we implemented a simple
protocol as illustrated in Figure 4.3. Alice analyzes the blockchain through the API
(see appendix for API signatures) and mines a new block to redeem coins locked in an
output on-chain.

At the beginning Alice gets a pointer to the output (including the identifier of the
block containing the output and the output’s index), she then performs step (1) and
checks the blockchain for the given output. If the output can be found on-chain Alice
verifies the output script (step (2)) and creates a corresponding input script. Then in step
(3) she creates a new block, including the transaction to spend the output, and mines it in
step (4). The mining process verifies the validity of the block, thereby preserving a valid
blockchain. If the block was mined successfully Alice can verify its existence through
the postcondition of the mining function (i.e., the new block has been witnessed - step
(5)). Additionally, Alice can confirm the referenced output is not spendable anymore.
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CHAPTER 5
Improvements and Future Work

In this work, we showed how a Bitcoin blockchain layer can be encapsulated into the
DY⋆ framework for symbolic protocol verification. Thereby we could create a basis for
future blockchain-related verification techniques, especially for off-chain protocols.
To reach this goal we have identified the following key points and possible improvements
to be the subject of future work:

• Support F⋆ during verification with additional lemmas about block validity checks,
to prevent performance issues due to the nested record types.

• Merging the existing blockchain layer with the new labeling system to release secret
data and create a stable version.

• Create protocol abstractions and define security goals for off-chain protocols such
as PC and HTLCs.

• Formalize the protocols step by step in DY⋆ together with the targeted properties,
and the verification techniques shown in this thesis.

• Improve the scripting part of the blockchain layer, by either enabling proof assistance
of the current scripting system or resorting to a different approach, which could be

1. switching away from the monadic implementation to a pure state passing one,
to eliminate higher-order function applications in the SMT encoding,

2. down-scaling the language to a simpler imperative grammar,
3. using total boolean functions over bytestrings, or
4. revise the inclusion of F⋆’s effect system (if possible) with a combination of

intrinsic and extrinsic proofs using reification.
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CHAPTER 6
Conclusion

This thesis focused on establishing a basis for verifying off-chain protocol implementations,
specifically targeting the Bitcoin protocol and the Lightning Network. The presented
approach utilizes type system based reasoning and proof-assistance using the symbolic
verification framework DY⋆, written in the proof-oriented programming language F⋆.

In the introduction, we highlighted two essential aspects typical to the mentioned
off-chain protocols: (1) the intentional disclosure of secret data, and (2) the inclusion
of timeout periods for issuing refunds or punishing malicious actions. To facilitate the
verification of off-chain protocols, the methods utilized should support both of these
characteristics.

We extended the symbolic verification framework DY⋆ by adapting its labeling system
and the global trace infrastructure to support blockchain-like data types. A new label
type releasable (l:inner−label)(s:string) formalizes the ability to release the annotated
data object to type public once a corresponding release entry, associated to string s, is
entered to the trace. Furthermore, a blockchain system is integrated, based on new global
trace entries, resembling Bitcoin blocks. Bitcoin is built around a consensus protocol to
keep the blockchain in a valid state all the time. Our system guarantees the inclusion of
valid blocks only, thus mimicking the consensus mechanisms.

Validity checks rely on three main components:
1. Well-formedness: Given the blockchain’s public accessibility, each block must

exclusively contain public data to preserve overall secrecy.

2. Timelocks: The blockchain can be extracted from the trace by filtering out all non-
block entries. Specialized trace-predicates are utilized to verify timing constraints
related to both absolute block-height and relative block-age.

3. Script evaluation: The formalization of SCRIPT in F⋆ enables the evaluation
of semantically fully specified scripts through normalization and provides limited
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6. Conclusion

proof capabilities. A small series of benchmarks has been conducted to assess the
implementation and build confidence in its accuracy.

We demonstrated the adherence of the implemented blockchain model to a set of
consensus rules derived from the Bitcoin protocol by formalizing them as lemmas and
verifying their correctness. Additionally, to showcase the usability of our extension, we
include implementations of two simple protocols, one for the labeling and one for the
blockchain part.
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Appendix

Blockchain API
This section shows the implemented API function for blockchain access. Listing 1 defines
the function signature to mine new blocks. It returns the current height of the blockchain
(after adding the new block). The precondition checks for block validity (Line 4), to
keep the trace valid and includes a user-defined trace invariant mine_pred_at to control
the mining of blocks. Its postcondition ensures the new black was mined at the current
timestamp (Line 6) and the blockchain reached the absolute block height that has been
returned (Line 7).

In Listing 2 shows a function signature to determine the block height at a given
timestamp for additional checks. The function ensures that the state does not change
and the returned height has been reached at the specified time (Line 4). As explained in
Section 4.2.3 verifying timelock specification is done through witness predicates.

☛
1 val mine_block: #i:timestamp → pid:bytes → bid:bytes →
2 txs: tx_list_t → LCrypto block_height
3 (requires (λ t0 → i == trace_len t0 ∧ mine_pred_at i pid bid txs ∧
4 is_block_valid_at i pid bid txs)
5 (ensures (λ t0 h t1 → trace_len t1 == trace_len t0 + 1 ∧
6 was_block_mined_at (trace_len t0) pid bid txs ∧
7 trace_block_height_reached_at (trace_len t1) h)) ✠

Listing 1: User API function to mine new blocks

☛
1 val get_block_height: i:timestamp → LCrypto block_height
2 (requires (λ t0 → i <= trace_len t0))
3 (ensures (λ t0 h t1 → t0 == t1 ∧ i <= trace_len t1 ∧
4 trace_block_height_reached_at i h)) ✠

Listing 2: User API function to determine the current height of the blockchain
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☛
1 val get_txout : block_index:timestamp → txout_ptr:ptr_t →
2 LCrypto (now:timestamp & txout:txout_t & block_age:block_height)
3 (requires (λ t0 → True))
4 (ensures (λ t0 (|now,txout,block_age|) t1 → t0 == t1 ∧
5 now == trace_len t0 ∧ block_index < now ∧
6 is_well_formed_txout #now txout ∧
7 txout.self_ptr == txout_ptr ∧
8 exist_block_with_txout_at block_index txout ∧
9 trace_block_age_at now block_age txout.self_ptr.tx_id.bid)) ✠

Listing 3: User API function to search and return a specific transaction output

☛
1 val verify_txout : txout:txout_t → script_pubkey:script_t →
2 LCrypto unit pr
3 (requires (λ t0 → True ))
4 (ensures (λ t0 (s) t1 → t0 == t1 ∧ txout.script_pubkey == script_pubkey ∧
5 is_txout_spendable_at (trace_len t0) txout)) ✠

Listing 4: User API function to verify properties of given transaction output

To spend specific transaction outputs on the chain, the given output has to be
validated first, to ensure it contains the right script and is has not been spent before.
An output can be extracted from the global trace by calling the function in Listing 3.
It gets the index of the block containing the output and the corresponding pointer and
returns the target output and its current age. The postcondition ensures the output is
well-formed (Line 6), as can be inferred from its presence on the chain, its self-reference
equals the specified output pointer (Line 7), its is part of the block mined at the given
index (Line 8) and the returned age has been witnessed before (Line 9).

The extracted output is verified with the function defined in Listing 4. It gets a
specific output and an anticipated output script, and ensures that the script of the
provided output matches the specified output script (to build a corresponding input
script - Line 4) and that the output is indeed spendable at the current timestamp (Line 5).

New block identifier are generated at random and witnessed to be unique by traversing
the trace. The function signature in Listing 5 returns a fresh random bytestring and
asserts its uniqueness (Line 4).

Besides mining complete blocks, we added a function to publish single transactions to
the network (or to the miners), which is closer to the real Bitcoin network. Its signature is
shown in Listing 6 and it takes the current timestamp, a publisher id, and the transaction
to be published as arguments. The precondition requires the given transaction to be valid
(i.e., preserve valid trace properties - Line 3). The postcondition asserts the transaction
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☛
1 val generate_bid : unit → LCrypto (now:timestamp & bid:msg now public)
2 (requires (λ t0 → True))
3 (ensures (λ t0 (|now,bid|) t1 → trace_len t1 = trace_len t0 + 1 ∧
4 now = trace_len t0 ∧ is_bid_unique_at (trace_len t1) bid)) ✠

Listing 5: User API function to generate a fresh block-id

☛
1 val publish_tx: #i:timestamp → publisher:principal → tx:tx_t →
2 LCrypto timestamp
3 (requires (λ t0 → i == trace_len t0 ∧ is_tx_valid_at i tx))
4 (ensures (λ t0 r t1 → r == trace_len t0 ∧
5 trace_len t1 = trace_len t0 + 1 ∧
6 was_message_sent_at (trace_len t0) publisher ’MINER’ (serialize tx))) ✠

Listing 6: User API function to publish a transaction to the network

has been serialized and sent over the network (Line 6), which implies the trace length
increased by one (Line 5). Internally this function is a wrapper for send (see Listing 3.3)
to enter a send event to the trace with the receiver being attributed to the string ’MINER’.
As the attacker’s knowledge grows with every send event the transaction is disclosed
upon publishing it. Via deduction rules, the attacker can derive the transaction and its
internal types, such as scripts to extract embedded data.
As publishing a transaction alone does not justify inferring its presence on the blockchain
(cmp. discussion in Section 4.3), we do not learn more than that the transaction has been
sent out. If reasoning requires the presence of a certain transaction on chain, it has to be
validated separately (i.e., analyze whole blockchain), as one would in the real world.
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